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My job, I believe, is to persuade others that my conclusions are
sound. I will use an array of devices to do this: theory, stylized
facts, time-series data, surveys, appeals to introspection, and so on.

—Fischer Black
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Preface

A cademic books and papers on finance have become regrettably formal
over the past 30 years, filled with postulates, theorems, and lemmas. This

axiomatic approach is suitable for presenting pure mathematics, but, in our
view, is inappropriate for the field of finance. In finance, ideas should come
first; mathematics is simply the language that we use to express ideas and
elaborate their consequences.

We feel that the best way to learn and teach financial theory is to walk a
middle line between the traditionally math-inclined academic and the stereo-
typically math-skeptical trader. This book tries to present a treatment of the
volatility smile that combines the insight that comes from models with the
practicality of the trading desk.

The first two chapters of this book provide a close look at the theory
of modeling and the principles of valuation, themes that we return to again
and again throughout the book. Chapters 3 through 13 explore the Black-
Scholes-Merton option pricing model. At the heart of this model is a clash
with the actual behavior of markets, the contradiction of the volatility smile.
We show how, despite this flaw, there are productive ways to use not only the
model itself, but the principles underlying it. Finally, in Chapters 14 through
24, we explore more advanced option models consistent with the smile.
These models can be grouped into three families: local volatility, stochas-
tic volatility, and jump-diffusion. While these newer models address many
of the shortcomings of the Black-Scholes-Merton model, they are them-
selves imperfect. As markets evolve and traders gain experience, old models
inevitably fail and need modification, or are replaced by newer models. Our
hope is that the principles in this book will provide readers with the ability
to develop and use their own models.
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CHAPTER 1
Overview

� Financial models in light of the great financial crisis.
� The difficulties of option valuation.
� An introduction to the volatility smile.
� Financial science and financial engineering.
� The purpose and use of models.

INTRODUCTION

Our primary aim in this book is to provide the reader with an accessible,
not-too-sophisticated introduction to models of the volatility smile. Prior
to the 1987 global stock market crash, the Black-Scholes-Merton (BSM)
option valuation model seemed to describe option markets reasonably well.
After the crash, and ever since, equity index option markets have displayed
a volatility smile, an anomaly in blatant disagreement with the BSM model.
Since then, quants around the world have labored to extend the model to
accommodate this anomaly. Our main focus in this book will be the theory
of option valuation, the study of the BSM model and its limitations, and a
detailed introduction to the extensions of the BSM model that attempt to
rectify its problems. Most of the book is devoted to these topics.

A secondary motivation for writing this book originates in the great
financial crisis of 2007–2008, which began with the collapse of the mort-
gage collateralized debt obligation (CDO) market, whose structured credit
products were valued using financial engineering techniques. When the cri-
sis began, some pundits blamed the practice of financial engineering for the
mortgage market’s meltdown. Paul Volcker, whose grandson was a finan-
cial engineer, wrote the following paragraph as part of an otherwise sensible
speech he gave in 2009:

A year or so ago, my daughter had seen . . . some disparaging remarks
I had made about financial engineering. She sent it to my grandson,

1



2 THE VOLATILITY SMILE

who normally didn’t communicate with me very much. He sent me
an email, “Grandpa, don’t blame it on us! We were just following
the orders we were getting from our bosses.” The only thing I could
do was send him back an email, “I will not accept the Nuremberg
excuse.”

Comparing financial modelers to Nazi war criminals seems extreme, and
indeed, since then, opinions about modelers’ responsibility for the financial
meltdown have become more nuanced. Spain and Ireland developed housing
market bubbles that, unlike those in the United States, were not inflated by
complex financially engineered products. Paul Krugman has suggested that
the root cause of the crisis lay in the West’s rapid withdrawal of capital from
Asia after the currency crisis of 1998, leading Asian countries thereafter to
concentrate on exporting, saving, and hoarding, which led them to provide
cheap credit that fueled speculation. Other competing explanations abound.
As with all complex human events, it’s impossible to pinpoint a single cause.

Nevertheless, models did play a part in the development of the crisis.
In the face of very low safe yields, badly engineered financial models were
indeed used to tempt investors—at times misleadingly and deceptively—into
buying structured CDOs that promised optimistically high yields. Though
our expertise lies in models for option valuation rather than mortgage secu-
rities, we also wanted to write a book that illustrates how to be sensible
about model building.

THE BLACK-SCHOLES-MERTON MODEL AND
ITS DISCONTENTS

Stephen Ross of MIT, one of the inventors of the binomial option valuation
model and the theory of risk-neutral valuation, once wrote: “When judged
by its ability to explain the empirical data, option pricing theory is the most
successful theory not only in finance, but in all of economics” (Ross 1987).
But even this most successful of models is far from being perfect.

Finance academics tend to think of option valuation as a solved problem,
of little current interest. But readers of this book who end up working as
practitioners—on options trading desks in equities, fixed income, currencies,
or commodities, as risk managers or controllers or model auditors—will find
that the valuation of options isn’t really a solved problem at all. Financial
markets disrespect the traditional BSM formula even while they employ its
flawed language to communicate with each other. Practitioners and traders
who are responsible for coming up with the prices at which they are willing
to trade derivative securities, especially exotic illiquid derivatives, grapple
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with appropriate valuation every day. They have to figure out how to amend
the BSM model to cope with an actual market that violates its assumptions,
and they have to keep finding new ways of doing so as the market modifies
its behavior based on its experiences.

In this book we’re going to focus on the BSM model and its discontents.
In one sense the BSM model is a miracle: It lets you value, in a totally rational
way, securities that before its existence had no plausible or defensible the-
oretical value at all. In the Platonic world of BSM—a world with normally
distributed returns, geometric Brownian motion for stock prices, unlimited
liquidity, continuous hedging, and no transaction costs—their model pro-
vides a method of dynamically synthesizing an option. It’s a masterpiece of
engineering in an imaginary world that doesn’t quite exist, because markets
don’t obey all of its assumptions. It’s a miracle, but it’s only a model, and
not reality.

Some of the BSM assumptions are violated in minor ways, some more
dramatically. The assumption that you can hedge continuously, at zero trans-
action cost, is an approximation we can adjust for, as we will illustrate in
later chapters. Skilled traders and quants do this with a mix of estimation
and intuition every day. You can, for example, heuristically allow for trans-
action costs by adding some dollars to your option price, or some volatility
points to the BSM formula. In that sense the model is robust—you can per-
turb it from its Platonic view of the world to approximate the messiness of
actual markets.

Other BSM assumptions are violated in more significant ways. For
example, stock prices don’t actually follow geometric Brownian motion.
They can jump, their distributions have fat tails, and their volatility varies
unpredictably. Adjusting for these more significant violations is not always
easy. We will tackle many of these difficulties in this book.

In the end, the BSM model sounds so rational, and has such a strong
grip on everyone’s imagination, that even people who don’t believe in its
assumptions nevertheless use it to quote prices at which they are willing to
trade.

A QUICK LOOK AT THE IMPLIED VOLATIL ITY SMILE

The BSM model assumes that a stock’s future return volatility is constant,
independent of the strike and time to expiration of any option on that stock.
Were the model correct, a plot of the implied BSM volatilities for options
with the same expiration over a range of strikes would be a flat line. Fig-
ure 1.1 shows what three-month equity index implied volatilities looked like
before the Black Monday stock market crash of 1987.
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F IGURE 1.1 Representative S&P 500 Implied Volatilities prior
to 1987

Prior to the crash, therefore, the BSM model seemed to describe the
option market rather well, at least with respect to variation in strikes. Fig-
ure 1.2 shows typical three-month implied volatilities after the crash of 1987.
Even though all the options used to generate the smile were written on the
same underlier, each option had a different implied volatility. This is incon-
sistent with the BSM model, which assumes that implied volatility is a fore-
cast of actual volatility, for which there can be only one value. You can
think of options as metaphorical photographs of the stock’s future volatility,
taken from different angles or elevations. While photographs of a building
taken from different points might look different, the actual size of a building
remains the same. In a similar way, if the BSM model were truly reliable, the
implied volatility of the stock would be the same, no matter which option
you chose to view it with. The option price is derived from the stock price,
but the stock’s volatility should not depend on the option.

Though the smile appeared most dramatically in equity index option
markets after the 1987 crash, there had always been a slight smile in currency
option markets, a smile in the literal sense that the implied volatilities as a
function of strike resembled one: . As depicted in Figure 1.2, the equity
“smile” is really more a skew or a smirk, but practitioners have persisted in
using the word smile to describe the relationship between implied volatilities
and strikes, irrespective of the actual shape. The smile’s appearance after the
1987 crash was clearly connected with the visceral shock upon discovering,
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F IGURE 1.2 Representative S&P 500 Implied Volatilities after
1987

for the first time since 1929, that a giant market could suddenly drop by 20%
or more in a day. Market participants immediately drew the conclusion that
an investor should pay more for low-strike puts than for high-strike calls.

Since the crash of 1987, the volatility smile has spread to most other
option markets (currencies, fixed income, commodities, etc.), but in each
market it has taken its own characteristic form and shape. Traders and
quants in every product area have had to model the smile in their own mar-
ket. At many firms, not only does each front-office trading desk have its own
particular smile models, but the firm-wide risk management group is likely
to have its own models as well. The modeling of the volatility smile is likely
one of the largest sources of model risk within finance.

NO-NONSENSE F INANCIAL MODEL ING

During the past 20 years there has been a tendency for quantitative finance
and asset pricing to become increasingly formal and axiomatic. Many
textbooks postulate mathematical axioms for finance and then derive the
consequences. In this book, though, we’re studying financial engineering,
not mathematical finance. The ideas and the models are at least as important
as the mathematics. The more math you know, the better, but math is the
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syntax, not the semantics. Paul Dirac, the discoverer of the Dirac equation
who first predicted the existence of antiparticles, had a good point when
he said:

I am not interested in proofs, but only in what nature does.
—Paul Dirac

About Theorems and Laws

Mathematics requires axioms and postulates, from which mathematicians
then derive the logical consequences. In geometry, for example, Euclid’s
axioms are meant to describe self-evident relationships of parts of things to
the whole, and his postulates further describe supposedly self-evident prop-
erties of points and lines. One Euclidean axiom is that things that are equal to
the same thing are equal to each other. One Euclidean postulate, for example,
is that it is always possible to draw a straight line between any two points.

Euclid’s points and lines are abstracted from those of nature. When
you get familiar enough with the abstractions, they seem almost tangible.
Even more esoteric abstractions—infinite-dimensional Hilbert spaces that
form the mathematical basis of quantum mechanics, for example—seem
real and visualizable to mathematicians. Nevertheless, the theorems of
mathematics are relations between abstractions, not between the realities
that inspired them.

Science, in contradistinction to mathematics, formulates laws. Laws
are about observable behavior. They describe the way the universe works.
Newton’s laws allow us to guide rockets to the moon. Maxwell’s equations
enable the construction of radios and TV sets. The laws of thermodynamics
make possible the construction of combustion engines that convert heat into
mechanical energy.

Finance is concerned with the relations between the values of securities
and their risk, and with the behavior of those values. It aspires to be a practi-
cal field, like physics or chemistry or electrical engineering. As John Maynard
Keynes once remarked about economics, “If economists could manage to
get themselves thought of as humble, competent people on a level with den-
tists, that would be splendid.”Dentists rely on science, engineering, empirical
knowledge, and heuristics, and there are no theorems in dentistry. Similarly,
one would hope that finance would be concerned with laws rather than theo-
rems, with behavior rather than assumptions. One doesn’t seriously describe
the behavior of a market with theorems.
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How then should we think about the foundations of finance and finan-
cial engineering?

On Financia l Engineering

Engineering is concerned with building machines or devices. A device is a
little part of the universe, more or less isolated, that, starting from the con-
structed initial conditions, obeys the laws of its field and, while doing so,
performs something we regard as useful.

Let’s start by thinking about more familiar types of engineering.
Mechanical engineering is concerned with building devices based on the
principles of mechanics (i.e., Newton’s laws), suitably combined with empir-
ical rules about more complex forces that are too difficult to derive from
first principles (friction, for example). Electrical engineering is the study of
how to create useful electrical devices based on Maxwell’s equations and
quantum mechanics. Bioengineering is the art of building prosthetics and
biologically active devices based on the principles of biochemistry, physiol-
ogy, and molecular biology.

Science—mechanics, electrodynamics, molecular biology, and so on—
seeks to discover the fundamental principles that describe the world, and is
usually reductive. Engineering is about using those principles, constructively,
to create functional devices.

What about financial engineering? In a logically consistent world, finan-
cial engineering, layered above a solid base of financial science, would be the
study of how to create useful financial devices (convertible bonds, warrants,
volatility swaps, etc.) that perform in desired ways. This brings us to financial
science, the putative study of the fundamental laws of financial objects, be
they stocks, interest rates, or whatever else your theory uses as constituents.
Here, unfortunately, be dragons.

Financial engineering rests upon the mathematical fields of calculus,
probability theory, stochastic processes, simulation, and Brownian motion.
These fields can capture some of the essential features of the uncertainty
we deal with in markets, but they don’t accurately describe the characteris-
tic behavior of financial objects. Markets are plagued with anomalies that
violate standard financial theories (or, more accurately, theories are plagued
by their inability to systematically account for the actual behavior of mar-
kets). For example, the negative return on a single day during the crash of
1987 was so many historical standard deviations away from the mean that
it should never have occurred in our lifetime if returns were normally dis-
tributed. More recently, JPMorgan called the events of the “London Whale”
an eight-standard-deviation event (JPMorgan Chase & Co. 2013). Stock
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evolution, to take just one of many examples, isn’t Brownian.1 So, while
financial engineers are rich in mathematical techniques, we don’t have the
right laws of science to exploit—not now, and maybe not ever.

Because we don’t have the right laws, the axiomatic approach to finance
is problematic. Axiomatization is appropriate in a field like geometry, where
one can postulate any set of axioms not internally inconsistent, or even in
Newtonian mechanics, where there are scientific laws that hold with such
great precision that they can be effectively regarded as axioms. But in finance,
as all practitioners know, our “axioms” are not nearly as good. As Paul
Wilmott wrote, “every financial axiom . . . ever seen is demonstrably wrong.
The real question is how wrong . . .” (Wilmott 1998). Teaching by axioma-
tization is therefore even less appropriate in finance than it is in real science.
If finance is about anything, it is about the messy world we inhabit. It’s best
to learn axioms only after you’ve acquired intuition.

Mathematics is important, and the more mathematics you know the bet-
ter off you’re going to be. But don’t fall too in love with mathematics. The
problems of financial modeling are less mathematical than they are concep-
tual. In this book, we want to first concentrate on understanding concepts
and their implementation, and then use mathematics as a tool. We’re less
interested here in great numerical accuracy or computational efficiency than
in making the ideas we’re using clear.

We know so little that is absolutely right about the fundamental behav-
ior of assets. Are there really strict laws they satisfy? Are those laws sta-
tionary? It’s best to assume as little as possible and rely on models as little
as possible. And when we do rely on models, simpler is better. With that in
mind, we proceed to a brief overview of the principles of financial modeling.

THE PURPOSE OF MODELS

Before examining the notion of modeling, we must distinguish between price
and value. Price is simply what you have to pay to acquire a security, or what
you get when you sell it; value is what a security is worth (or, more accurately,
what you believe it is worth). Not everyone will agree on value. A price is
considered fair when it is equal to the value.

But what is the fair value? How do you estimate it? Judging value, in
even the simplest way, involves the construction of a model or theory.

1 See, for example, Mandelbrot (2004) and Gabaix et al. (2003).
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A Simple but Prototypica l F inancia l Model

Suppose a financial crisis has just occurred. Wall Street is laying off people,
apartments in nearby Battery Park are changing hands daily, but large lux-
urious apartments are still illiquid. How would you estimate the value of a
seven-room apartment on Park Avenue, whose price is unknown, if someone
tells you the price of a two-room apartment in Battery Park? This would be
a reasonable model: First, figure out the price per square foot of the Battery
Park apartment; second, multiply by the square footage of the Park Avenue
apartment; third, make some adjustments for location, views, light, staff,
facilities, and so forth.

For example, suppose the two-room Battery Park apartment cost
$1.5 million and was 1,000 square feet in size. That comes to $1,500 per
square foot. Now suppose the seven-room Park Avenue apartment occupies
5,000 square feet. According to our model, the price of the Park Avenue
apartment should be roughly $7.5 million. But Park Avenue is a very desir-
able location, and so we understand that there is about a 33% premium over
Battery Park, which raises our estimate to $10 million. Furthermore, large
apartments are scarce and carry their own premium, raising our estimate fur-
ther to $13 million. Suppose further that the Park Avenue apartment is on a
high floor with great views and its own elevator, so we bump up our estimate
to $15 million. On the other hand, say the same Park Avenue apartment is
being sold by the family of a recently deceased parent who hasn’t renovated
it for 40 years. It will need a lot of work, which causes us to lower our
estimate to $12 million.

Our model’s one initial parameter is the implied price per square foot.
You calibrate the model to Battery Park and then use it to estimate the value
of the Park Avenue apartment. The price per square foot is truly implied from
the price; $1,500 is not the price of one square foot of the apartment, because
there are other variables—views, quality of construction, neighborhood—
that are subsumed into that one number.

With financial securities, too, as in the apartment example, models are
used to interpolate or extrapolate from prices you know to values you
don’t—in our example, from Battery Park prices to Park Avenue prices.
Models are mostly used to value relatively illiquid securities based on the
known prices of more liquid securities. This is true both for structural option
models and purely statistical arbitrage models. In that sense, and unlike
models in physics, models in finance don’t really predict the future. Whereas
Newton’s laws tell you where a rocket will go in the future given its initial
position and velocity, a financial model tells you how to compare different
prices in the present. The BSM model tells you how to go from the current
price of a stock and a riskless bond to the current value of an option, which
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it views as a mixture of the stock and the bond, by means of a very sophis-
ticated and rational kind of interpolation. Once you calibrate the model to
a stock’s implied volatility for one option whose price you know, it tells you
how to interpolate to the value of options with different strikes. The volatil-
ity in the BSM model, like the price per square foot in the apartment pricing
model, is implied, because all sorts of other variables—trading costs, hedg-
ing errors, and the cost of doing business, for example—are subsumed into
that one number. The way property markets use implied price per square
foot illustrates the general way in which most financial models operate.

Addit ional Advantages of Using a Model

Models do more than just extrapolate from liquid prices to illiquid values.

Ranking Securit ies A security’s price doesn’t tell you whether it’s worth
buying. If its value is more than its price, it may be. But sometimes, faced
with an array of similar securities, you want to know which security is the
best deal. Models are often used by investors or salespeople to rank secu-
rities in attractiveness. Implied price per square foot, for example, can be
used to rank and compare similar, but not identical, apartments. Suppose,
to return to our apartment example, that we are interested in purchasing a
new apartment in the Financial District. The apartment lists at $3 million,
but is 1,500 square feet, or $2,000 per square foot, appreciably higher than
the $1,500 per square foot for the Battery Park apartment. What justifies
the difference? Perhaps the Financial District apartment has better features.
We might even go one level deeper and start to build a comparative model
for the features themselves, or for both the features and the square footage,
to see if the features are fairly priced.

Implied price per square foot provides a simple, one-dimensional scale
on which to begin ranking apartments by value. The single number given by
implied price per square foot does not truly reflect the value of the apartment;
it provides a starting point, after which other factors must be taken into
account. Similarly, yield to maturity for bonds allows us to compare the
values of many similar but not identical bonds, each with a different coupon,
maturity, and/or probability of default, by mapping their yields onto a linear
scale from high (attractive) to low (less so). We can do the same thing with
price-earnings (P/E) ratio for stocks or with option-adjusted spread (OAS)
for mortgages or callable bonds. All these metrics project a multidimensional
universe of securities onto a one-dimensional ruler. The implied volatility
associated with options obtained by filtering prices through the BSM model
provides a similar way to collapse instruments with many qualities (strike,
expiration, underlier, etc.) onto a single value scale.
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Quant i fy ing Intu i t ion Models provide an entry point for intuition, which
the model then quantifies. A model transforms linear quantities, which you
can have intuition about, into nonlinear dollar values. Our apartment model
transforms price per square foot into the estimated dollar value of the apart-
ment. It is easier to develop intuition about variation of price per square foot
than it is about an apartment’s dollar value.

In physics, as we stressed, a theory predicts the future. In finance, a model
translates intuition into current dollar values. As a further example, equity
analysts have an intuitive sense, based on experience, about what constitutes
a reasonable P/E ratio. Developing intuition about yield to maturity, option-
adjusted spread, default probability, or return volatility may be harder than
thinking about price per square foot. Nevertheless, all of these parameters
are directly related to value and easier to judge than dollar value itself. They
are intuitively graspable, and the more experienced you become, the richer
your intuition will be. Models advance by leapfrogging from a simple, intu-
itive mental concept (e.g., volatility) to the mathematics that describes it
(geometric Brownian motion and the BSM model), to a richer concept (the
volatility smile), to experience-based intuition (the variation in the shape of
the smile), and, finally, to a model (a stochastic volatility model, for example)
that incorporates an extension of the concept.

Styles of Model ing: What Works and What Doesn’t

The apartment model is an example of relative valuation. With relative valu-
ation, given one set of prices, one can use the model to determine the value of
some other security. One could also hope to develop models that value secu-
rities absolutely rather than relatively. In physics, Newton’s laws are absolute
laws. They specify a law of motion, F = ma, and a particular force law, the
gravitational inverse-square law of attraction, which allow one to calculate
any planetary trajectory. Geometric Brownian motion and other more elab-
orate hypotheses for the movement of primitive assets (stocks, commodities,
etc.) look like models of absolute valuation, but in fact they are based on
analogy between asset prices and physical diffusion phenomena. They aren’t
nearly as accurate as physics theories or models. Whereas physics theories
often describe the actual world—so much so that one is tempted to ignore the
gap between the equations and the phenomena—financial models describe
an imaginary world whose distance from the world we live in is significant.

Because absolute valuation doesn’t work too well in finance, in this book
we’re going to concentrate predominantly on methods of relative valuation.
Relative valuation is less ambitious, and that’s good. Relative valuation is
especially well suited to valuing derivative securities.



12 THE VOLATILITY SMILE

Why do practitioners concentrate on relative valuation for derivatives
valuation? Because derivatives are a lot like molecules made out of sim-
pler atoms, and so we’re dealing with their behavior relative to their con-
stituents. The great insight of the BSM model is that derivatives can be man-
ufactured out of stocks and bonds. Options trading desks can then regard
themselves as manufacturers. They acquire simple ingredients—stocks and
Treasury bonds, for example—and manufacture options out of them. The
more sophisticated trading desks acquire relatively simple options and con-
struct exotic ones out of them. Some even do the reverse: acquiring exotic
options and deconstructing them into simpler parts to be sold. In all cases,
relative value is important, because the desks aim to make a profit based on
the difference in price of inputs and outputs—the difference in what it costs
you to buy the ingredients and the price at which you can sell the finished
product.

Relative value modeling is nothing but a more sophisticated version of
the fruit salad problem: Given the price of apples, oranges, and pears, what
should you charge for fruit salad? Or the inverse problem: Given the price
of fruit salad, apples, and oranges, what is the implied price of pears? You
can think of most option valuation models as trying to answer the options’
analogue of this question.

In this book we’ll mostly take the viewpoint of a trading desk or a market
maker who buys what others want to sell and sells what others want to
buy, willing to go either way, always seeking to make a fairly safe profit
by creating what its clients want out of the raw materials it acquires, or
decomposing what its clients sell into raw materials it can itself sell or reuse.
For trading desks that think like that, valuation is always a relative concept.



CHAPTER 2
The Principle of Replication

� The law of one price: Similar things must have similar prices.
� Replication: the only reliable way to value a security.
� A simple up-down model for the risk of stocks, in which expected return
𝜇 and volatility 𝜎 are all that matter.

� The law of one price leads to CAPM for stocks.
� Replicating derivatives via the law of one price.

REPLICATION

Replication is the strategy of creating a portfolio of securities that closely
mimics the behavior of another security. In this section we will see how repli-
cation can be used to value a security of interest. We define different styles
of replication, and discuss the power and limits of this method of valuation.

The One Law of Quant i tat ive F inance

Hillel, a famous Jewish sage, when asked to recite the essence of God’s laws
while standing on one leg, replied:

Do not do unto others as you would not have them do unto you.
All the rest is commentary. Go and learn.

Andrew Lo, a professor at MIT, has quipped that while physics has three
laws that explain 99% of the phenomena, finance has 99 laws that explain
only 3%. It’s a funny joke at finance’s expense, but finance actually has one
more or less reliable law that forms the basis of almost all of quantitative
finance.

13
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Though it is often stated in different ways, you can summarize the
essence of quantitative finance somewhat like Hillel, on one leg:

If you want to know the value of a security, use the price of another
security or set of securities that’s as similar to it as possible. All the
rest is modeling. Go and build.

This is the law of analogy: If you want to value something, do it by compar-
ing it to something else whose price you already know.

Financial economists like a different statement of this principle, which
they call the law of one price:

If two securities have identical payoffs under all possible future sce-
narios, then the two securities should have identical current prices.

If two securities (or portfolios of securities) with identical payoffs were to
have different prices, you could buy the cheaper one and short the more
expensive one, immediately pocket the difference, and experience no positive
or negative cash flows in the future, since the payoffs of the long and short
positions would always exactly cancel.

In practice, we will rarely be able to construct a replicating portfolio that
is exactly the same in all scenarios. We may have to settle for a replicating
portfolio that is approximately the same in most scenarios.

What both of the aforementioned formulations hint at is the impossi-
bility of arbitrage, the ability to trade in such a way that will guarantee a
profit without any risk. Another version of the law of one price is therefore
the principle of no riskless arbitrage, which can be stated as follows:

It should be impossible to obtain for zero cost a security that has
nonnegative payoffs in all future scenarios, with at least one scenario
having a positive payoff.

This principle states that markets abhor an arbitrage opportunity. It is equiv-
alent to the law of one price in that, if two securities were to have identical
future payoffs but different current prices, a suitably weighted long position
in the cheaper security and a short position in the more expensive one would
create an arbitrage opportunity.

Given enough time and enough information, market participants will
end up enforcing the law of one price and the principle of no riskless arbi-
trage as they seek to quickly profit by buying securities that are too cheap
and selling securities that are too expensive, thereby eliminating arbitrage
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opportunities. In the long run, in liquid markets, the law of one price usu-
ally holds. But the law of one price is not a law of nature. It is a statement
about what prices should be, not what they must be. In practice, in the short
run, in illiquid markets or during financial crises and panics, and in some
other instances too, the law of one price may not hold.

The law of one price requires that payoffs be identical under all possible
future scenarios. Trying to imagine all future scenarios is an impossible task.
Even if markets are not strictly random, their vagaries are too rich to capture
in a few thoughts, sentences, or equations. In practice, extreme and often
unimaginable scenarios (September 11, 2001, for example) are considered
possible only after they have happened. Before they happen, these events are
not just considered unlikely, but are entirely excluded from the distribution.

Valuat ion by Repl icat ion

How do you use the law of one price to determine value? If you want to esti-
mate the unknown value of a target security, you must find some replicating
portfolio, a set of more liquid securities with known prices, that has the same
payoffs as the target, no matter how the future turns out. The target’s value
is then simply the known price of the replicating portfolio.

Where do models enter? It takes a model to demonstrate that the target
and the replicating portfolio have identical future payoffs under all circum-
stances. To demonstrate similarity, you must (1) specify what you mean by
“under all circumstances” for each security, and (2) find a strategy for creat-
ing a replicating portfolio that, in each future scenario or circumstance, will
have payoffs identical to those of the target.

The first step is reductive and involves science. We need to take some
very complicated things—the economy and financial markets—and reduce
them to mathematical equations that describe their potential range of future
behavior. The second step is constructive or synthetic, and involves mostly
engineering. We must create a replicating portfolio of liquid securities whose
payoffs match the payoffs of the target in all future scenarios.

Styles of Repl icat ion

There are two kinds of replication, static and dynamic. Static replication
reproduces the payoffs of the target security over its entire lifetime with an
initial portfolio of securities whose weights will never need to be changed.
Once the static replicating portfolio is created, by buying and selling the
necessary securities, no additional trading is required for the lifetime of the
target security. Assuming that the replicating portfolio can be set up, the only
thing that can go wrong is a failure of credit: Counterparties may not pay
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what they owe you when the securities you purchased from them require
that they make payments to you. Static replication is the simplest and most
straightforward method of valuation, but is feasible only in the rare cases
when the target security closely resembles the available liquid securities.
Even when the resemblance isn’t perfect, the attraction of a static portfolio
is so great that traders often try to create static portfolios that only approx-
imately replicate the target. We will illustrate this for barrier options in
Chapter 12.

With dynamic replication, the components and weights of the replicat-
ing portfolio must change over time. We need to continually buy and sell
securities as time passes and the price of the underlier changes in order to
achieve theoretically accurate replication. As practitioners who work with
trading desks know, dynamic replication can be very complex, both in the-
ory and in practice. Part of the trouble is the mismatch between the model of
the markets (the science) and the actual behavior of markets. When it does
work, though, dynamic replication allows us to value a wide range of secu-
rities, many of which would be difficult or impossible to value otherwise.
In 1973, Fischer Black and Myron Scholes, and separately Robert Merton,
published papers explaining how to replicate a stock option by constructing
a dynamic portfolio containing shares of the underlying stock and a riskless
bond. This allowed traders to determine the value of an option based on
the price of the underlying stock, the prevailing level of interest rates, and
an estimate of future stock price volatility. That this replicating portfolio
could be constructed was unsuspected until it was achieved, and its discov-
ery dramatically changed the financial world. This insight would eventu-
ally earn Scholes and Merton the Nobel Prize in Economics. Black unfortu-
nately died before the award was given, and Nobel Prizes are not granted
posthumously.

Dynamic replication is very elegant, and almost all of the advances in the
field of derivatives over the past 40 years have been connected with extend-
ing the fundamental insight that you can sometimes replicate a complex
security by dynamically adjusting the weights of a portfolio of the security’s
underliers.

The L imits of Repl icat ion

As noted in Chapter 1, all financial models are based on assumptions. Mod-
els are toy-like descriptions of an idealized world. They don’t accurately
describe the world we operate in, though they may resemble it. At best,
therefore, financial models are only approximations to reality. Understand-
ing the assumptions of our models is the key to understanding the limits of
replication.
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The first step in replication involves science: specifying as accurately as
possible the future scenarios for underliers, interest rates, and so forth. Much
of the mathematical complexity in finance originates in our attempt to define
and describe possible future scenarios. Complete accuracy is virtually impos-
sible in finance. We would like our financial model to be as simple as possible
while still capturing the essential characteristics of the underlier’s behavior.
Choosing a financial model, then, often comes down to selecting the model
that is just complicated enough.

The second step, constructing a replicating portfolio, is mostly engi-
neering. In theory, given the necessary securities, constructing the replicat-
ing portfolio is simply a matter of determining a set of portfolio weights at
any instant. The efficacy of dynamic hedging rests on the correctness of the
assumed evolution for the price of the underliers, and on the assumption that
the person executing the replication strategy can react instantly to any price
change by adjusting the associated portfolio weights. In practice, adjusting
the weights by trading in the market can be problematic. Bid-ask spreads,
illiquidity, and market impact can all affect the replication strategy. If we try
to buy too much of a security we may push the price up, and when we need
to sell we may find it difficult to sell at the market price. If we need to short
a security, we must consider borrowing costs, which rise when the security
is hard to borrow. Financing costs, transaction costs, and operational risks
may vary from firm to firm. These problems are all much worse for dynamic
hedging than for static hedging, because dynamic hedging requires continu-
ous trading. Finally, dynamic hedging often requires us to estimate the future
values of certain parameters that are difficult or impossible to observe in the
market. The most important of these parameters, the future volatility of an
option’s underlier, is the main topic of this book.

Wherever we can, we will first try to use static replication for valuing
securities. If we cannot, then we will use dynamic replication. In actual mar-
kets, one cannot always find a replicating strategy. In that case, one must
resort to using economic models. This last approach often requires assump-
tions about how market participants feel about risk and return—that is,
about their utility function. Utility functions are the hidden variables of eco-
nomic theory, quantities never directly observed, and our policy in this book
will be to avoid them. Much of the charm of option theory lies in its seeming
ability to ignore these personal preferences.

MODELING THE RISK OF UNDERLIERS

As described earlier, replication begins with the science, the descriptive
model of underlier behavior. Modern portfolio theory rests on the efficient
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market hypothesis (EMH), a framework that has come under renewed and
very severe attack since the onset of the great financial crisis of 2007–2008.
Let’s try to understand what it proposes.

The Ef f ic ient Market Hypothesis

Empirically, no one is very good at stock price prediction, whether using
magical thinking or deep fundamental analysis. To be sure, there have been
a few investors who have significantly outperformed the market in the past.
Whether you believe their performance was due to luck or to skill, to sig-
nificantly outperform the market you do not need to be very good at stock
price prediction. Being right just 55% to 60% of the time, consistently, over
many trades, is remarkable and can lead to great profit.

In the 1960s, faced with this failure at price prediction, a group of aca-
demics associated with Eugene Fama at the University of Chicago developed
what has become known as the efficient market hypothesis. Over the years,
many formulations of the theory have evolved, some more mathematical and
rigorous, and some less so. Economists have defined strong, weak, and other
kinds of “efficiency.” No matter how we define it, though, at its core the
EMH acknowledges the following more or less true fact of life:

It is difficult or well-nigh impossible to successfully and consistently
predict what is going to happen to a stock’s price tomorrow based
on all the information you have today.

The EMH formalizes this concept by stating that it is impossible to beat the
market in the long run, because current prices reflect all current economic
and market information.

Converting the experience of failed attempts at systematic stock price
prediction into a hypothesis was a fiendishly clever jiu-jitsu response on the
part of economists. It was an attempt to turn weakness into strength: “I can’t
figure out how things work, so I’ll make the inability to do that a principle.”

Uncerta inty, R isk, and Return

It might seem as though the efficient market hypothesis claims that the
stock’s price and value are identical, and that nothing more can be said.
That’s not the case. Let’s proceed to understand how the assumption of effi-
cient markets can lead to a model for valuing securities. The elephant in the
room of finance, as in the realm of all things human, is the unknown future.
Uncertainty implies risk; risk means danger; danger means the possibility of
loss.
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In economics, thoughtful people have come to distinguish between quan-
tifiable and unquantifiable uncertainty. Examples of unquantifiable uncer-
tainty include the likelihood of a revolution in Russia within two years,
the probability of a terrorist attack in midtown Manhattan this year, or the
chance of finding intelligent life on another planet. Not only are all of these
events highly uncertain, but any model that we would develop to try to pre-
dict these events is likely to be highly subjective. There is no way of honestly
estimating these probabilities. This type of probability is often referred to as
uncertainty or Knightian uncertainty. We can say that these events are likely
or unlikely or very unlikely, but not much more.

In some rare and somewhat idealized cases, uncertainty is quantifiable.
Some economists like to define risk as quantifiable uncertainty. A good exam-
ple is the uncertainty involved in tossing an unbiased coin: will it come up
heads or tails? The probability that an unbiased coin lands on heads is equal
to the probability that it lands on tails, 1/2. Similarly, one can determine the
probability for three successive heads followed by two successive tails to be
(1/2)5, or 1/32. This is the frequentist definition of probability that defines
the concept in terms of expected frequency of occurrences, in the limit, for
an infinite number of tosses.

You might argue that quantifiable uncertainty is unrealistic. On the one
hand, a perfect coin is a Platonic ideal and no coin is perfectly fair. On the
other hand, a coin toss is, in some theoretical sense, predictable. If we knew
the velocity and angle of the flick, how the air was moving around the coin as
it spun, and the irregularities of the floor upon which the coin was bouncing,
we could predict the outcome of the coin flip with a high degree of accuracy.
If we are willing to ignore quantum mechanics, we could argue that there are
no truly random events, only pseudo-random ones. From a practical stand-
point, though, outside of a laboratory, even without quantum mechanical
effects, there are so many factors that might impact the result of a coin toss
that we may as well consider it to be a random event.

In human affairs, frequentist probabilities are rare. The world is con-
stantly changing, and experiments with humans cannot easily be repeated
with the same initial conditions. Importantly, human beings learn from expe-
rience. For example, credit markets after the great financial crisis won’t
behave like credit markets before the crisis, because we have all learned a
lesson, at least temporarily.

Put another way, human institutions display hysteresis: Their current
state depends on their entire history. Though the history of the world doesn’t
affect a coin toss, the history of the world does have a bearing on the like-
lihood of a political revolution or the next change in a stock’s price. The
uncertainty in the behavior of a stock’s price is qualitatively different from
the uncertainty of a coin flip, because the behavior of people is very different
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from the behavior of coins. The likelihood of a stock market crash is not like
the likelihood of throwing five tails in succession, because market crashes are
societal events, and society remembers the last crash and fears the next. A
coin doesn’t fear a sequence of five tails, and isn’t affected by the other coins
in your pocket.

The Behavior of a Share of Stock

A company—take Apple Inc., for example—is a tremendously complex and
structured endeavor. Apple has tens of thousands of employees, owns or
leases buildings in many countries, designs products ranging from power
plugs and cables to desktop and laptop computers through iPhones, iPads,
and the Apple Watch. It manufactures some of them on its own, and out-
sources the manufacturing of others. It distributes its products through
Apple’s website and stores as well as via third parties, and sells music, videos,
and books over the Internet. Apple advertises, provides product support,
maintains websites, and carries out research and development.

Amazingly, the entire economic value of this organization can, in theory,
be summed up in just one number, the quoted price of a share of Apple’s
stock.1 The quoted stock price is the amount of money that was required
to buy or sell just one incremental share of the company the last time the
stock traded. Financial modeling is an attempt to project the value of the
entire enterprise into that single number that symbolizes its value. It aims
to tell you what you should pay today for a share of the company’s future
performance.

The task of a would-be forecaster sounds impossibly difficult, and it gets
worse. In order to predict the movement of stock prices, it is not enough
to understand all of the complexities of a corporation and its place in the
economy. In addition, we need to understand how all the other participants
in the market view the company as well. Predicting the direction of stock
prices, as Keynes wrote, is a lot like predicting the winner of a traditional
beauty contest; you are not trying to figure out who is the most attractive,

1 To be clear, the total value of a firm, what financial analysts refer to as a company’s
enterprise value, includes the value of both the company’s stock and its debt, and
Apple, like most large firms, does issue debt. In fact, in 2013 Apple issued what was,
at the time, the largest corporate debt issue in history. The value of a company’s debt
is generally fixed and largely predictable, except perhaps when it enters a credit crisis.
The interesting part of determining the value of a company is, in most cases, almost
entirely concerned with determining the value of its stock. This is what we focus on
here, though more advanced models do treat the enterprise value as the fundamental
underlier.
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but who the judges think is the most attractive (Keynes 1936). In the long
run, fundamentals, the state of the economy, and the state of the company
count. Sentiment can maintain its influence for only so long. In the short
run, though, people’s opinions and passions count for a lot. But then again,
the short run influences the long run. Short-term changes in the price of a
company’s stock will affect the behavior of the company, its customers, and
its creditors; psychological reality and economic reality interact, and are in
fact indivisible.2 When people thought Lehman Brothers might go bankrupt
in late 2008, they wouldn’t continue to lend it money, so it went bankrupt.

The more you think about it, if you are honest and introspective, the
more you realize that valuation is a vastly complex problem involving eco-
nomics, politics, and psychology—the whole world, in fact—at both short-
and long-term time scales. That the efficient market hypothesis is able to say
anything universal about valuation is in fact quite remarkable. And it does
it by ignoring as much of the particulars as possible.

The Risk of Stocks

The most important feature of a stock is the uncertainty of its returns. One
of the simplest models of uncertainty is the risk involved in flipping a coin.
Figure 2.1 illustrates a similarly simple model, a binomial tree, for the evo-
lution of the return on a stock with return volatility 𝜎 and expected return
𝜇 over a small instant of time Δt.3 The mean return during this time is 𝜇Δt,
with a 50% probability that the return will be higher, 𝜇Δt + 𝜎

√
Δt, and a

50% probability that the return will be lower, 𝜇Δt − 𝜎
√
Δt.

The volatility 𝜎 is a measure of the stock’s risk. If 𝜎 is large, then the
difference between an up-move and a down-move will be significant.

This simple model turns out to be extremely powerful. By adding more
steps, as in Figure 2.2, and shrinking the size of Δt, we can mimic the more or
less continuous motion of prices, much as movies produce the illusion of real
motion by changing images at the rate of 24 frames per second. Assuming

2 Ole Bjerg, a philosopher working in the framework of Slavoj Žižek, sees the corpo-
ration as “the real” and the stock price as its “symbol,” and this seems right. What
interests Bjerg is the way fantasy and ideology fill the gap between reality and sym-
bol, as discussed in his book Making Money: The Philosophy of Crisis Capitalism
(Verso Press, 2014).
3 Throughout the book, whenever we specify the return or volatility of a security
without specifying a time period, you can assume these values are being expressed
per year. In our current example, when we said “with . . . expected return 𝜇,” this
was shorthand for “with an expected return of 𝜇 per year.”
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F IGURE 2.1 A Binomial Tree for the
Future Returns of a Stock

successive returns are uncorrelated with each other, in the limit as Δt → 0,
the distribution of returns at time t becomes normally distributed with mean
total return 𝜇t and standard deviation of returns 𝜎

√
t. Various normal dis-

tributions are portrayed in Figure 2.3.
The key feature of this model of risky securities is that the entire behavior

of the security is captured in just two numbers, the expected return 𝜇 and
the volatility 𝜎. This assumption, a very strong one, will be used later, in
combination with the law of one price, to derive some famous results of
neoclassical finance, in particular the capital asset pricing model (CAPM),
and later, the famous Black-Scholes-Merton option pricing formula.
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F IGURE 2.2 Binomial Tree of Returns with Four Steps
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F IGURE 2.3 Examples of Normal Distributions

The symmetric distribution of our simple model is at odds with the
observed return distributions of almost all securities, which are characterized
by negatively skewed distributions and fat tails. Nevertheless, the binomial
model is a reasonable starting point for modeling risk. Though the actual
behavior of securities is more complex and unpredictable, the binomial
model provides an easily accessible intuitive and mathematical treatment
of risk. Actual risk is wilder than the model and the normal distribution
can accommodate. This should never be forgotten. We will investigate some
more ambitious models, which go beyond these assumptions, later in this
book.

Riskless Bonds

In the binomial model in the limit when 𝜎 is zero, the up-move and the down-
move are identical, and risk vanishes. We refer to the rate earned by a riskless
security as the riskless rate, often denoted by r. The riskless rate is ubiqui-
tous throughout economics and finance and is central to the replication and
valuation of options.

Figure 2.4 shows the binomial tree for a riskless security. The two
branches of our tree, though we’ve kept them separate in the drawing, are
identical. No matter which branch we take, the end value is the same.

For any risky security, the riskless rate must lie in the zone between the
up-return and the down-return. If this were not the case—if, for example,
both the up- and down-returns were greater than the riskless return—you
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could create a portfolio that is long $100 of stock and short $100 of a risk-
less bond with zero net cost and a paradoxically positive payoff under all
future scenarios in the binomial model. Any model with such possibilities is
in trouble before it leaves the ground, because it immediately provides an
opportunity for a riskless profit, an arbitrage opportunity that violates the
principle of no riskless arbitrage.

How do we determine the riskless rate in practice? One possibility is
to use the yield of a bond with no risk of default, such as a U.S. Treasury
bill, commonly considered to be entirely safe. Rather than talking about bor-
rowing or lending at the riskless rate, in fact, we often talk about buying or
selling a riskless bond. The problem of determining the riskless rate is then a
problem of defining and then finding a riskless bond. While this may sound
simple, in practice agreeing on what number to use for the riskless rate can
become complicated, especially in crisis-ridden markets. Here we will simply
assume the riskless rate is known.

THE KEY QUESTION OF INVESTING

We never know what the future holds. An extremely important question
in life as well as in finance is how to act in the face of risk or uncertainty.
In finance, as outlined in the previous section, we think about securities in
terms of their anticipated risk and return. The key question of investing can
therefore be stated as follows:

What anticipated possible future reward justifies a particular
anticipated risk?

The law of one price states that securities with identical payoffs under all
possible circumstances should have identical prices. For the binomial model
described earlier, the payoffs for a security are entirely characterized by its



The Principle of Replication 25

volatility 𝜎 and its expected return 𝜇. Within the binomial framework, on
which we will focus for now, the key question of finance then becomes:

What is the relation between 𝜇 and 𝜎?

To answer this question, we must think more deeply about risk and return.

Some Investment Risks Can Be Avoided

The law of one price states that securities with identical payoffs under all
possible circumstances should have identical prices, and therefore identical
expected returns. It is tempting to reformulate the law of one price to say
that securities with identical risks should have identical expected returns. It’s
not quite that simple, though. Not all risks are the same. The risk of a secu-
rity depends on its relation to other securities. Two securities with the same
numerical volatility 𝜎 might, for example, have different correlations with
the Standard & Poor’s (S&P) 500 index, and, therefore, when one hedges
their exposure to the S&P 500, they would have different risks. In other
words, when more than one stock exists, 𝜎 alone is not an adequate charac-
terization of risk.

In life, there are certain risks that we can avoid, alter, or voluntarily
expose ourselves to, while there are other risks that cannot be avoided. The
same is true in financial markets. By combining assets in various ways via
financial engineering, we can alter, avoid, or eliminate many forms of finan-
cial risk. It’s only unavoidable investment risk that is truly fundamental. We
must therefore consider whether risk is avoidable or unavoidable.

In general, as we will illustrate in the following sections, there are three
ways to alter or avoid risk: by dilution, by diversification, and by hedging
away common risk factors. We propose that you should expect to earn a
return in excess of the riskless rate on an investment only if that invest-
ment’s risk is unavoidable or irreducible. An irreducible or unavoidable risk
is the risk of an asset that is uncorrelated with all other assets. We therefore
reformulate our law of one price to state:

Identical unavoidable risks should have identical expected returns.

To examine the relation between a security’s 𝜇 and 𝜎, we will consider
a stock with volatility 𝜎 and return 𝜇. We will then evaluate its risk in a
sequence of imaginary, but increasingly realistic, model worlds that involve
ensembles of securities, to determine how much of the security’s risk is avoid-
able by dilution, diversification, or hedging. Whatever is left over has only
unavoidable risk, and we will then assume (1) that it has the same return
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as other unavoidable risks of the same size, and (2) that the principle of
replication applies to it and all other securities. In particular, we will use the
principle of replication to show that a portfolio with zero risk should earn
the riskless return. This will allow us to derive a relation between the risk
and return of any stock.

The three model worlds we now consider are:

� World #1: a simple world with a finite number of uncorrelated stocks
and a riskless bond.

� World #2: a world with an infinite number of uncorrelated stocks and
a riskless bond.

� World #3: a world with an infinite number of stocks all simultaneously
correlated with the market M, and a riskless bond.

We will now use the simple Worlds #1 and #2 as warm-up exercises to
deduce a relation between 𝜇 and 𝜎 from the law of one price. The results
we deduce in those worlds will be logically consistent, but will not resemble
the relation between 𝜇 and 𝜎 in actual markets. We are using those worlds
to illustrate an argument so that when we apply it to World #3, which is
more complicated, the logic will be clearer. World #3 is the one that most
closely resembles the world we live in. By applying the reformulated law
of one price to it, we will show how it leads, in that world, to a renowned
relation between risk and expected return, the capital asset pricing model4

or the arbitrage pricing theory (APT) (Ross 1976). In all cases, we restrict
ourselves to a world in which securities evolve according to the binomial
model, so that every security is entirely characterized by its volatility 𝜎 and
its expected return 𝜇.5

4 A more complete version of the following presentation is contained in E. Derman,
“The Perception of Time, Risk and Return during Periods of Speculation,” Quanti-
tative Finance 2 (2002): 282–296.
5 In this section and in what follows, we have been assuming that all that matters
for valuing a security is its volatility 𝜎 and its expected return 𝜇. In actual markets,
security returns can have higher-order moments and cross moments. In the real world,
two securities could both be uncorrelated with all other securities and have equal
standard deviations, but have different skewness and/or kurtosis. Securities can also
differ in their liquidity, in their tax treatment, and in a whole host of other ways that
investors care about. These factors could, in turn, cause expected returns to be higher
or lower. In the derivations in this chapter, when we say equal unavoidable risk, we
are basically assuming that all of these other risk factors do not matter. That is an
implicit assumption of this model that assumes everything of interest to valuation is
captured by the first two moments.
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World #1: Only a Few Uncorrelated Stocks
and a Riskless Bond

In this simple world, there are a finite number of stocks and a riskless bond.
Each stock is uncorrelated with all of the other stocks (and any combina-
tion of the other stocks). In other words, in this world, stocks have only
unavoidable risk. Suppose we are interested in investing in a risky stock S
with volatility 𝜎 and expected return 𝜇. Since there are only a finite num-
ber of uncorrelated stocks in this world, we cannot entirely avoid its risk by
hedging or by diversification. We can, however, reduce our overall invest-
ment risk by combining it in a portfolio with a riskless bond. For example,
given $100, instead of investing all $100 in the risky stock, we could invest
only $40 in the stock and the remaining $60 in a riskless bond. This can be
thought of as diluting the risk of the stock.

More generally, assume that we dilute the risk of stock S by investing a
percentage of our portfolio, w, in a risky stock and (1 – w) in riskless bonds.
If w is 1, our portfolio is entirely invested in risky securities. If w is 0, our
portfolio is entirely invested in riskless bonds. If 0 < w < 1 then our portfolio
is a mix of risky and riskless securities. If w is greater than 1, then (1 – w) is
negative and we are borrowing at the riskless rate in order to leverage our
investment in the risky security.

w( Δ Δ ) + (1− w)rΔ

w( Δ Δ ) + (1− w)rΔ

0

Δ

50%

50%

F IGURE 2.5 Binomial Tree for a Mixture of a
Risky Stock S and a Riskless Bond

Figure 2.5 shows the binomial tree of returns for a mixture of a risky
security and riskless bonds. The expected return of this portfolio, 𝜇P, is sim-
ply the weighted average of the risky security and the riskless bonds:

𝜇P = w𝜇 + (1 − w) r

= r + w (𝜇 − r)
(2.1)
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Because the riskless bonds have no volatility, the volatility 𝜎P of the portfolio
is simply w𝜎. By decreasing volatility from 𝜎 to w𝜎, we decrease the expected
excess return to w(𝜇 − r), the excess return being the return of a security or
portfolio minus the riskless rate.

Define a new variable 𝜆, the ratio of a security’s excess return to its
volatility, so that

𝜆 ≡

𝜇 − r
𝜎

(2.2)

The variable 𝜆 is the well-known Sharpe ratio. Now, for the portfolio of a
risky security and riskless bonds in Equation 2.1, the Sharpe ratio is

𝜆P ≡

𝜇P − r
𝜎P

=
w𝜇 + (1 − w) r − r

w𝜎
=

w (𝜇 − r)
w𝜎

= 𝜇 − r
𝜎

≡ 𝜆 (2.3)

The Sharpe ratio of the portfolio is equal to the Sharpe ratio of the risky
security. Diluting a portfolio by investing part of the portfolio in riskless
bonds has no effect on the Sharpe ratio.6

Now consider another uncorrelated stock S′ that has the same volatility
w𝜎 as the portfolio P. It has the same numerical risk as portfolio P consisting
of S and a riskless bond, but, since it is a separate source of risk, uncorrelated
with the behavior of S, both risks are unavoidable. The reformulated law
of one price tells us that any security with unavoidable risk w𝜎 must have
expected excess return w(𝜇 − r). Therefore, S′ must have the same return as
P. Thus,

𝜆S′ ≡
𝜇S′ − r
𝜎S′

≡

𝜇P − r
𝜎P

= 𝜇 − r
𝜎

≡ 𝜆 (2.4)

Equation 2.4 shows that the Sharpe ratio is the same both for the secu-
rity S′ and for the security S. Therefore, in World #1, the Sharpe ratio must
be the same for all stocks. By varying w in Figure 2.5, we can create port-
folios P of any risk 𝜎P. Equation 2.3 shows that the excess return of any
uncorrelated security will be proportional to its volatility. It confirms the
popular maxim “More risk, more return,” which strictly speaking should
read “More unavoidable risk, more expected return.”

The Sharpe ratio 𝜆 is an extremely popular measure of risk-adjusted
performance first proposed by William Sharpe in 1966. The Sharpe ratio

6 We’re assuming that w > 0. If we allow w to be negative, effectively shorting the
risky asset, then 𝜎P = |w|𝜎 = −w𝜎 but 𝜇P is still w(𝜇 – r) and the Sharpe ratio 𝜇P−r

𝜎P
=

w(𝜇−r)
−w𝜎

= − (𝜇−r)
𝜎

. The magnitude of the Sharpe ratio for a short position in the risky
asset is still the same, but with opposite sign.
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measures the amount of excess return earned per unit of risk. Crudely speak-
ing, it’s the bang you get for your risk buck. A portfolio manager can always
increase expected returns by taking more risk (by diluting the portfolio less
or by borrowing more). In order to generate a higher Sharpe ratio, however,
a portfolio manager must either increase excess returns without increasing
risk, keep excess returns the same while lowering risk, or both increase excess
returns and lower risk. All other things being equal, rational investors prefer
investments with higher Sharpe ratios.

Asset managers often employ leverage, and one additional feature of the
Sharpe ratio as a measure of performance is that, assuming you can borrow
at the riskless rate, the Sharpe ratio is invariant under changes in leverage. If a
portfolio manager borrows the full value of her original portfolio with char-
acteristics (𝜇, 𝜎) to invest twice as much in the same portfolio, her expected
return increases to 2𝜇 − r, twice as much from the portfolio less the interest r
paid on the loan. The excess return of the leveraged portfolio therefore dou-
bles to 2𝜇 − 2r. But the portfolio also has double the volatility, so its Sharpe
ratio remains the same. It is fitting that a measure of fund performance
should not increase when the fund simply borrows more money to invest.

Note that the Sharpe ratio is not dimensionless. When calculating the
Sharpe ratio, we typically use annualized numbers. The average return is
then the average return per year, and volatility is calculated as the square
root of the standard deviation of returns per year, so that the dimension of
𝜆 is (year)−1/2. The Sharpe ratio therefore depends on the units of time used
to calculate the returns. If we used daily or monthly returns to calculate
the average return and volatility, we would get a different Sharpe ratio. By
convention, Sharpe ratios, then, are reported in units of (year)−1/2.

In this model world, World #1, with a finite number of uncorrelated
stocks, the law of one price requires securities with the same volatility to
have the same expected return. Stated another way, therefore, the law of one
price requires all uncorrelated securities to have the same Sharpe ratio.

Notice, importantly, that the law of one price, at least so far, has not
given us an indication of the magnitude of the Sharpe ratio, but only that it
is the same for all uncorrelated securities.

SAMPLE PROBLEM

Question:

Suppose an emerging markets index has an expected return of 24% per
year and an annual volatility of 30%. An investor wishes to invest in

(continued)
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(continued)

emerging markets, but desires a volatility of 15%. You offer to create a
custom basket for the investor by combining some amount of riskless
bonds and the index. Assume you can borrow at a riskless rate of 4%.
What is the expected return of the basket?

Answer:

The Sharpe ratio of the index is 2/3:

𝜆I =
0.24 − 0.04

0.30
= 2

3

Because you can borrow at the riskless rate, the Sharpe ratio is
invariant under leverage. Thus the basket will have the same Sharpe
ratio as the index, even though its expected return and volatility will
be different. Rearranging Equation 2.2 for the basket, we have:

𝜇B − r = 𝜆I𝜎B

𝜇B = r + 𝜆I𝜎B

𝜇B = 0.04 + 2
3

0.15

𝜇B = 0.14

The expected return of the basket is therefore 14%.
We can also figure out how many of the riskless bonds to add

to the index. To lower the volatility of 30% to 15% when the volatility
of the riskless bonds is zero, we need to lower the weight of the index
in the basket to be 1∕2. The other 1∕2 must be riskless bonds. With a
50–50 mix of index with return 24% and bonds with return 4%, you
can see that the expected return of the basket is 50% × 24% + 50% ×
4% = 12% + 2% = 14%.

World #2: An Inf in i te Number of Uncorrelated
Stocks and a Riskless Bond

We have shown that in World #1 the Sharpe ratio of all stocks is the same.
Now, suppose that we extend World #1 into World #2, in which there are an
infinite number of uncorrelated stocks available in the market. In this world,
just as in World #1, we can still alter risk by dilution. In this world, we can
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also do something that we could not do in World #1: We can fully eliminate
risk by diversification.

Diversification is arguably the most fundamental risk-reduction strat-
egy. By combining a large number of uncorrelated stocks, we can create a
portfolio that has lower volatility than any of the securities from which it is
constructed. We will now show that this method of risk reduction, combined
with the law of one price, demands that, in this simplified model world, the
Sharpe ratio of all securities be identical and equal to zero! If this sounds
strange, remember that this is so because we are still operating in a model
world that is very different from reality.

We illustrate our analysis with the special case where all the securities
in a portfolio have the same volatility 𝜎. If we have n securities, then the
volatility of the portfolio will be 𝜎∕

√
n (remember, we are assuming zero

correlation). In the limit n → ∞ the portfolio volatility approaches zero.
In this limit, if the portfolio volatility is zero, then the portfolio bears

no risk, and consequently replicates a riskless bond. Thus, by the law of
one price, the expected return of the portfolio must be the riskless return r.
Because the return of the portfolio is just the weighted average of the returns
of all the stocks in the portfolio, this implies that the expected return of
each of the stocks in the portfolio must also be the riskless rate.7 Thus, in
World #2, if we can diversify to attain zero risk, then the expected return
of any stock must be the riskless rate. Now, by Equation 2.2, for any stock,
𝜇 − r = 𝜆𝜎. If the left-hand side of this equation is zero, and the volatility of
the individual stock is not zero, then we conclude that 𝜆 must be zero. That
is, in this model world the Sharpe ratio of every stock must be zero. Recall
again: If this sounds strange, remember that this is so because we are still
operating in a model world in which all stocks are uncorrelated.

World #3: An Inf in i te Number of Stocks Al l
S imultaneously Correlated with the Ent ire
Market , and a Riskless Bond

World #2 is not the world we live in. In fact, we cannot reduce the volatility
of a portfolio of stocks to zero simply by increasing the number of stocks

7 This follows because the expected return of an uncorrelated stock cannot be less
than the riskless rate. Securities that are negatively correlated with other securities
can have negative expected excess returns (many insurance products have this char-
acteristic), but in an efficient market uncorrelated securities should always have non-
negative excess returns. There is no benefit to an investor in holding an uncorrelated
security with a negative expected excess return, when the investor could be holding
riskless bonds instead.
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in the portfolio because most stocks are highly correlated with each other.
Between July 2013 and July 2014, the mean volatility of stocks in the S&P
500 was 21%, whereas the volatility of the index as a whole was 10%. There
was some reduction in volatility due to diversification, but nowhere near the
roughly 22-fold reduction we would have seen if the 500 stocks in the index
had been perfectly uncorrelated. This is because returns on equities tend to
be driven by the same macroeconomic factors: the growth of the economy,
consumer spending, tax policies, interest rates, and so on. In aggregate, we
can refer to these common factors as “the market.” To a greater or lesser
degree, all equity returns are driven by the market. As a result, when we
put a large number of equities into a portfolio there will be only a modest
reduction in the level of volatility. Diversification cannot totally eliminate
market risk.

We now extend World #2 into World #3. Suppose that in World #3
all stocks are correlated with another single tradable security M that tracks
the behavior of the entire market, and that this M represents the “market
factor” that influences all stocks. Then, though we cannot reduce volatility
to zero simply by means of diversification alone, there is a subtler way to
achieve the same aim. We can first hedge away the market-related risk of each
stock by shorting some amount of the security M with which it is correlated.
We call each mini-portfolio, which is long a single stock and short enough
of M to remove the portfolio’s market risk, the market-neutral stock. We
then diversify over a large number of market-neutral stocks. The risk of that
first-hedged-and-then-diversified portfolio tends to zero as the number of
market-neutral stocks grows, and therefore its expected return must also
tend to zero. As a result, in an infinite portfolio of market-neutral stocks,
every market-neutral stock must have zero Sharpe ratio and zero expected
return. This, as we will show, leads to a result similar to that of the capital
asset pricing model (CAPM).8

Let’s examine this line of reasoning more carefully. Denote the value
of the ith stock by Si and its expected return and volatility by 𝜇i and 𝜎i,
respectively. Similarly, denote the value of the market-factor security M and
its expected return and volatility by 𝜇M and 𝜎M, respectively. Let 𝜌i be the
correlation between the returns of the ith stock and M. Now, because all

8 In the original CAPM, the market is endogenous. In an effort to find mean-variance
efficient portfolios, market participants determine the basket of securities that define
the market. In our derivation, we will take the market as a given exogenous variable.
Our model is clearly different in this respect, but, as you will see, we arrive at the
same formulation.
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stocks are correlated with the market, one can create a reduced-risk market-
neutral version of each stock Si by shorting exactly Δi shares of M against
Si, where Δi is

Δi = 𝜌i
𝜎i

𝜎M

Si

M

= 𝛽i
Si

M

(2.5)

where 𝛽 i = 𝜌i𝜎i/𝜎M. Let’s denote the market-neutral version of the ith stock
by the portfolio S̃i, where

S̃i = Si − ΔiM (2.6)

By construction, S̃i has no exposure to M and no correlation with M.
Using Equations 2.5 and 2.6, the expected increase in value per unit

time of S̃i is 𝜇iSi − 𝛽i
Si
M

M𝜇M = (𝜇i − 𝛽i𝜇M)Si. The value of S̃i is Si − ΔiM =
Si − 𝛽i

Si
M

M = (1 − 𝛽i)Si. The expected return 𝜇̃i of S̃i is therefore given by the
ratio of these two quantities, namely

𝜇̃i =
𝜇i − 𝛽i𝜇M

1 − 𝛽i
(2.7)

We constructed these market-neutral stocks S̃i to have no correlation
with M. All their risk is idiosyncratic. We now assume that these idiosyn-
cratic risks are uncorrelated with each other (if they were all correlated, we
could hedge away that correlation with another factor different from M, and
extend World #3 into World #4 . . .). In that case, we can create a large diver-
sified portfolio of n market-neutral stocks S̃i such that the volatility of the
portfolio tends to zero as n → ∞. Since this portfolio will replicate a riskless
bond, we can show that, as in the previous World #2, the expected return of
each market-neutral stock S̃i must be the riskless rate r, and its Sharpe ratio
must be zero.

Setting 𝜇̃i equal to r in Equation 2.7 leads to

𝜇i − r = 𝛽i(𝜇M − r) (2.8)

This result is known as the Sharpe-Lintner-Mossin capital asset pricing
model, later generalized to the arbitrage pricing theory by Stephen Ross. It
states that, if all that matters to investors is 𝜇 and 𝜎, and equal unavoidable
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risks lead to equal expected returns, then the excess return you can expect
from buying a stock is 𝛽 times the expected excess return of every stock’s
common hedgeable factor, in this case the market. Put differently, you can
only expect to be rewarded for the unavoidable factor risk of each stock,
because all other risks can be eliminated by hedging. One can extend this
approach to worlds with several factors.

Though the CAPM and APT are at the core of neoclassical finance,
economists have debated and continue to debate just how relevant the
assumptions underlying these models are to actual markets. The rational-
ity of investors and the efficiency of markets have always been in doubt.
You don’t have to be a rocket scientist to see that investor behavior is not
always rational and markets are not always efficient!

SAMPLE PROBLEM

Question:

ABC stock has a beta of 2.50 to the market and volatility of 130%.
The expected market return is 10% and the riskless rate is 4%. The
market volatility is 20%. According to the model just presented, what
is the expected return of ABC?

Answer:

From Equation 2.8,

𝜇ABC − r = 𝛽(𝜇M − r)

𝜇ABC = 𝛽(𝜇M − r) + r

𝜇ABC = 2.50(0.10 − 0.04) + 0.04

𝜇ABC = 0.19

The expected return of ABC is 19%.
The beta of ABC is 2.50, but the expected return of ABC is just

under 2.0 times the expected return of the market. Remember, accord-
ing to our model, it is the excess return of the security (19% − 4% =
15%) that is 2.50 times the excess return of the market (10% − 4% =
6%).
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F IGURE 2.6 Call Option Payoff Function

DERIVATIVES ARE NOT INDEPENDENT SECURIT IES

A derivative is a contract whose payoff is determined by a specified func-
tional relation to the price of a simpler security called its underlier. Often,
the relation is nonlinear. Figure 2.6 shows the payoff function for a European
call option at expiration as a function of the underlying stock price.

In the next chapter we will show how a call option can be replicated by
continuous trading of the underlier and a riskless bond. To do that, we will
use many of the ideas and tools developed in this chapter.

END-OF-CHAPTER PROBLEMS

2-1. Imagine that there are only two states of the world, S1 and S2, and
there are only two securities. Security A pays $9 in S1 and $11 in S2.
Security B pays −$5 in S1 and $5 in S2. Using static replication, create
a portfolio that pays $100 in both states.

2-2. The Sharpe ratio of ABC stock is 0.60 and the riskless rate is 2%. What
is the expected return of a portfolio with a volatility of 10% containing
only ABC stock and riskless bonds? Assume that you can borrow at the
riskless rate.

2-3. You receive $100 from an investor. You can invest in an exchange-
traded fund (ETF) that tracks the Hang Seng Index (HSI), and you can
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borrow at the riskless rate. Create a levered portfolio that returns 2×
the return of the HSI. Assume the riskless rate is zero. What does your
initial investment involve? After your initial investment, the market
moves up 10% in one day. What is the leverage of your portfolio now?
Does maintaining a constant level of leverage require static or dynamic
replication?



CHAPTER 3
Static and Dynamic Replication

� Exploring replication.
� Exact static replication for European options.
� Approximate static replication for exotic options.
� Dynamic replication and continuous delta-hedging.
� What should you pay for convexity?
� Implied volatility is a parameter; realized volatility is a statistic.
� Hedging an option means betting on volatility.

EXACT STATIC REPLICATION

We begin this chapter by examining how we can employ static replication
to re-create a wide range of payoffs using puts, calls, their underliers, and
riskless bonds as ingredients.

Put-Cal l Pari ty

A vanilla European call option at expiration has the value:

C(ST , T) = max[ST − K, 0] (3.1)

where ST is the price of the underlying stock at expiration, K is the strike
price, and T is the time at expiration.

Similarly, the value at expiration of a European put with strike price of
K is:

P(ST , T) = max[K − ST , 0] (3.2)

As shown in Table 3.1, if we buy a European call and sell a European
put with the same strike price, we are guaranteed a payoff of (ST − K) at
expiration, no matter what the final value of the stock price is.

37
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TABLE 3.1 Payoffs of European Calls and Put Positions at Expiration

ST ≤ K ST ≥ K

C(ST,T) 0 ST − K
P(ST,T) K − ST 0
−P(ST,T) ST − K 0
C(ST,T) − P(ST,T) ST − K ST − K

Assume the stock pays no future dividends. At a time t, prior to expira-
tion, if we purchase a share of the underlying stock at the prevailing price
St, and sell Ke–r(T−t) of riskless bonds, then at T we will also have a portfolio
worth (ST − K). By the law of one price, the two portfolios—the first long a
European call and short a European put at the same strike price, the second
long the stock and short the riskless bond—must have the same current price.

C(S, t) − P(S, t) = S − Ke−r(T−t) (3.3)

This equivalence is known as put-call parity. Rearranging Equation 3.3,
it is clear that we can always replicate a call by means of a portfolio con-
taining a put with the same strike and expiration, the underlying stock, and
a position in a riskless bond. Similarly, we can replicate a put by a call with
the same strike and expiration, the underlying stock, and a position in the
riskless bond. Thus,

C(S, t) = P(S, t) + S − Ke−r(T−t) (3.4a)

P(S, t) = C(S, t) − S + Ke−r(T−t) (3.4b)

Figure 3.1 shows graphically how the payoff profile at expiration of a
call can be transformed into a put. This result is strictly true only for vanilla
European options on non-dividend-paying underliers, though the relation-
ship can be easily extended to the case where future dividends are known.

Repl icat ing a Col lar

A collar is a popular instrument for portfolio managers who have made some
gains by time t during the year, and are willing to forgo some upside in order
to gain protection on the downside for the remainder of the year (until time
T). The payoff at expiration of a collar at time T with break points at L and
U on a stock with terminal price ST is shown in Figure 3.2.

Assuming we own the stock S, we can create the collar by buying a put
with a strike price of L and selling a call with a strike price of U, where
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F IGURE 3.1 Put-Call Parity

L < S < U and both options have the same expiration date T. The put will
limit our losses if the price of the stock falls below L, and the call will cap
our profits if the stock rises above U. We can write the value of a collar at
time t as

Collar = S + PL(S, t) − CU(S, t) (3.5)

where the subscripts L and U indicate the strike prices of the options.
The popularity of collars with investors in the stock market forces

derivatives dealers to be short puts and long calls. These market forces tend
to push up the price dealers charge for puts they sell and lower the price of
calls they buy, and is one of the reasons for the observed volatility smile in
index options markets.

Equation 3.5 is not the only way to decompose the collar into options.
Moving through the payoff in Figure 3.2 from left to right, we can see that
the payoff is equivalent to a long position in a riskless bond with a notional
value of L, a long position in a call with a strike of L, and a short position in
a call with strike of U. In this way (or, more formally, by using the put-call
parity relationship of Equation 3.3 and substituting it into Equation 3.5),
we can write the value of the collar at time t as

Collar = Le−r(T−t) + CL(S, t) − CU(S, t) (3.6)
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where r is the riskless interest rate. Alternatively, moving through the payoff
in Figure 3.2 from right to left, we can see that instead of using two calls we
could also replicate the payoff of a collar using a long position in a riskless
bond with notional value U and two puts. This is left as an exercise at the
end of the chapter.

General i zed Payof fs

One can use combinations of options to replicate arbitrary payoffs at a fixed
expiration. To see how, suppose you can approximate the payoff of a deriva-
tive at some future expiration time T by a piecewise-linear function of the
terminal stock price ST that is defined by its y-axis intercept I and the slopes
𝜆i of each successive linear piece, as shown in Figure 3.3.

It is not difficult to see that this function is the payoff of a portfolio
consisting of riskless bonds with face value I and present value Ie−r(T–t), plus
some stock (which you can think of, if you like, as a call with zero strike)
and a further series of calls C(Ki) with successively higher strikes Ki. The
portfolio’s value at an earlier time t is therefore

V(t) = Ie−r(T−t) + 𝜆0St + (𝜆1 − 𝜆0)C(K0) + (𝜆2 − 𝜆1)C(K1) +⋯ (3.7)

where St and C(Ki) are the values of the stock and options, respectively, at
time t, and we have for simplicity assumed that the stock pays no dividends.
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F IGURE 3.3 A General Payoff Function

The value of this generalized payoff can therefore be expressed in terms of
the market value of the bonds, the stock, and the calls.

You can check the formula by seeing what happens at time T. For exam-
ple, if the stock price at expiration ends up between K1 and K2, then all of the
calls beyond C(K1) would expire worthless, and the payoff of the portfolio
would be

V(T) = I + 𝜆0ST + (𝜆1 − 𝜆0)(ST − K0) + (𝜆2 − 𝜆1)(ST − K1)

= I + 𝜆0K0 + 𝜆1(K1 − K0) + 𝜆2(ST − K1)
(3.8)

where ST is the value of the stock at expiration. This expression is consistent
with the payoff function displayed in Figure 3.3.

This method is a reliable replication mechanism, provided you can buy
or sell the options you need. It gives you the value of the generalized payoff
in terms of its ingredients and what it costs to acquire them in the market,
which is much better than any theoretical model that makes assumptions
about the future behavior of stocks and volatilities.

In conclusion, we note a useful principle to be used when construct-
ing replicating portfolios: For ingredients, use the securities that most
closely resemble the target security, preferably liquid securities whose prices
are readily available. Even if they are less complex, avoid using securi-
ties that require you to make theoretical assumptions about their future
behavior.
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SAMPLE PROBLEM

Question:

The payoff of a structured product is a piecewise-linear function of an
underlying stock, S. The payoff has the following break points:

� S = $0: payoff = $10
� S = $10: payoff = $20
� S = $20: payoff = $40

How would you replicate the payoff of the structured product
using only riskless bonds, the stock, and calls on the stock? Assume
the riskless rate is 0%.

Answer:

We need to buy $10 of riskless bonds, one share of the underlying
stock, and one call option with a strike price of $10.

Because the riskless rate is 0%, we do not need to worry about the
e−r(T–t) term in Equation 3.7. The slope between the first two break
points is ($20 − $10)/($10 − $0) = 1. The slope between the second
and third is ($40 − $20)/($20 − $10) = 2. The change in slope between
them is therefore 2 − 1 = 1.

We can check our answer: At S = $0, the bonds are worth $10,
the stock is worth $0, and the call is worth $0, or $10 total. At S =
$10, the bonds are worth $10, the stock is worth $10, and the call is
worth $0, or $20 total. At S = $20, the bonds are worth $10, the stock
is worth $20, and the call is worth $10, or $40 total. Our portfolio
passes through all of the break points.

Approximate Stat ic Hedge for a European
Down-and-Out Cal l

It is often more useful to have an approximate static hedge that uses easily
priced securities than to have a nominally perfect dynamic hedge that uses
securities whose stochastic behavior is not well known.

Consider as an example an exotic option, in particular a European
down-and-out call with expiration of T on a stock with current price S and
dividend yield d. We denote the strike level by K and the level of the out
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F IGURE 3.4 A Down-and-Out European Call Option with B = K

barrier by B. We assume in this particular example that B and K are equal
and that there is no cash rebate when the barrier is hit.

There are two classes of scenarios for the stock price paths between t
and T: scenarios of type 1 in which the barrier is avoided and the option fin-
ishes in-the-money; and scenarios of type 2 in which the barrier is hit before
expiration and the option expires worthless. These are shown in Figure 3.4.

In scenarios of type 1, the call pays out ST − K, where ST is the unknown
value of the stock price at expiration. This is the same as the payoff of a for-
ward contract with delivery price K. At time t this forward has a theoretical
value, F = Se−d(T–t) − Ke−r(T–t), where d is the continuously paid dividend
yield of the stock. For scenarios of type 1, you can replicate the down-and-
out call under all stock price paths with a long position in the forward.

For scenarios of type 2, where the stock price hits the barrier at any time
t′ before expiration, the down-and-out call immediately expires with zero
value according to the terms of the contract. Notice, though, that the forward
F that replicates the barrier-avoiding scenarios of type 1 is worth Ke−d(T–t′ ) −
Ke−r(T–t′ ) at time t′ between t and T at which the barrier is struck. This value
is equal to zero for all times t′ only if r = d. So, if the riskless interest rate
equals the dividend yield (that is, the stock forward price is equal to the
current stock price), a forward with delivery price K will exactly replicate a
down-and-out call with barrier and strike at the identical level K, no matter
what path the stock price takes, so their prices must be equal.1 When r is

1 In late 1993, for example, the S&P 500 dividend yield was close in value to the
short-term interest rate, so this hedge might have been applicable to short-term down-
and-out S&P 500 options.
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close to but not exactly equal to d, valuing the down-and-out option using
this method is likely more reliable than relying on dynamic replication that
makes many unconfirmed assumptions about the stochastic behavior of the
stock price S and its volatility.

One important caution: If and when the stock hits the barrier, you must
be able to sell the forward to close out the replication. If you don’t, the target
down-and-out option will have knocked out, but the replicating portfolio
will still continue evolving, resulting in subsequent losses or gains.

A SIMPLIF IED EXPLANATION OF DYNAMIC
REPLICATION

Options theory is based on the insight that, in an idealized and simplified
world, options are not an independent asset. Because of this, we can use
dynamic replication, using simpler securities to mimic the payoff of options.
How closely the actual world matches the hypothetical simplified one deter-
mines how well the theory works in practice.

To begin with, for pedagogic simplicity, assume that the expected rate
of return of a stock is zero. An investor who is long the stock makes money
if it goes up, and loses money if it goes down. The profit and loss (P&L) is
linear in the price of the stock. Figure 3.5 shows our binomial model for a
share of stock with current price S and volatility 𝜎. The change in the value

+

−

F IGURE 3.5 Binomial Model of
Underlying Stock Price, 𝜇 = 0
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Payoff at Expiration
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F IGURE 3.6 The Payoff of a Vanilla Call Option at Expiration

of the stock over dt is dS = ±𝜎S
√

dt, so that dS2 = 𝜎2S2dt, irrespective of
whether the stock moves up or down.

Now consider an option on the stock. The solid line in Figure 3.6 dis-
plays the payoff of a vanilla call option at expiration, and the dashed line
represents its value at some earlier time, both plotted as a function of the
underlying stock price. The graph of the payoff is kinked, and the value
at an earlier time is more smoothly curved. Both lines have convexity, a
quintessential quality of options. As a consequence of the convexity, the
option increases more in value if the stock moves above the strike than if
it moves the same amount below the strike. Convexity is a valuable quality
in a security, and the fundamental question of options valuation is: What
should you pay for convexity?

We can answer this by using the principle of replication and the law of
one price, as originally discovered by Black and Scholes, and Merton. We can
specify the change in the price C(S,t) of a vanilla call when the underlying
stock, whose price is S at time t, changes by a small amount dS during time
dt, by using a Taylor series expansion of the call price:

C(S + dS, t + dt) = C(S, t) + 𝜕C
𝜕t

dt + 𝜕C
𝜕S

dS + 1
2
𝜕2C
𝜕S2

dS2 +⋯ (3.9)

We have terminated the Taylor series at the dS2 term because, from
Figure 3.5, the size of the squared change in S in our binomial model is
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proportional to dt. For small dt, terms involving dt2 or dSdt and any higher-
order terms will be extremely small and considered negligible.

The partial derivatives in Equation 3.9 are so frequently used that prac-
titioners denote them by the following Greek letters:

Θ = 𝜕C
𝜕t

(3.10a)

Δ = 𝜕C
𝜕S

(3.10b)

Γ = 𝜕2C
𝜕S2

(3.10c)

For the remainder of the book, we will refer to an option’s theta, delta,
or gamma when discussing these partial derivatives. We can then write Equa-
tion 3.9 more succinctly as

C(S + dS, t + dt) = C(S, t) + Θdt + ΔdS + 1
2
ΓdS2 (3.11)

How would the value of a call option change in our binomial model
when the underlying price changes as in Figure 3.5? In Figure 3.7, we use
Equation 3.11 to calculate the corresponding change in the value of the call
due to the stock price changes in Figure 3.5.

Except for the ±Δ𝜎S
√

dt terms, the payoffs are the same whether the
stock moves up or down. If we could somehow eliminate this Δ term, we
would have a guaranteed (i.e., riskless) payoff an instant later, and, based on

−

F IGURE 3.7 Binomial Model of the Value of a Call
Option, 𝜇 = 0
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−

−

F IGURE 3.8 Delta-Hedged Call Option, 𝜇 = 0

the law of one price, we know that all riskless payoffs should earn the risk-
less rate of return. Requiring that the return on this instantaneously riskless
portfolio be equal to the riskless rate would then lead to the Black-Scholes-
Merton (BSM) option pricing formula.

In our binomial framework, in order to cancel out the ±Δ𝜎S
√

dt terms
that distinguish the up-payoff from the down-payoff in Figure 3.7, we need
to short Δ shares of the underlying stock S. The binomial evolution of the
long-call/short-stock portfolio, which is called a delta-hedged portfolio, is
shown in Figure 3.8.

Since the delta-hedged portfolio in Figure 3.8 has the same value whether
the stock moves up or down, it is riskless.

Call the initial value of the delta-hedged portfolio V = C(S, t) – ΔS.
Figure 3.8 shows that the change in value of the hedged position, V, is
given by

dV(S, t) = Θdt + 1
2
Γ𝜎2S2dt (3.12)

or, equivalently,

dV(S, t) = Θdt + 1
2
ΓdS2 (3.13)

The second term in Equation 3.13 is quadratic in dS, and describes a
parabola. It is much smaller than the linear change in value of V, propor-
tional to dS, which has been removed by the delta hedge. If Γ is positive,
then we say that the option position displays positive convexity or is convex
in dS. To get the benefit of pure curvature, you must delta-hedge away the
linear part of the change in the call option’s value due to dS, which would
otherwise swamp the small but significant change, proportional to dS2, that
arises from the curvature.

Figure 3.9 shows the change in value (the P&L) of a hedged option with
positive convexity, for a small change, dS, in the stock price.
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dS

P&L

F IGURE 3.9 P&L with Positive Convexity

SAMPLE PROBLEM

Question:

Yesterday, XYZ stock closed at $100. At the close, a call option with
a delta of 0.50, gamma of 0.02, and theta of −3.65 was worth $5.00.
Today, XYZ was up 10%. Using Equation 3.11, estimate the final price
of the call option today. Note: By convention, theta is quoted in dollars
per year; assume 365 days in a year.

Answer:

The change in the stock price, dS, is $100 × 0.10 = $10; dt is 1/365
years. Using Equation 3.11, we can estimate the final call price as

C(S + dS, t + dt) = C(S, t) + Θdt + ΔdS + 1
2
ΓdS2

= $5 + −$3.65
year

1
365

year + 0.5 ⋅ $10 + 1
2

0.02 ⋅ 102

= $5 − $0.01 + $5 + $1

= $10.99
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Note, in this case, which is not atypical, most of the change in the value
of the option is due to the delta term. You can often get good estimates
for changes in the values of portfolios using Taylor series in this way.

What Should You Pay for Convexity?

In our binomial model, the delta-hedged option position is riskless over an
infinitesimal time dt, and should therefore, according to the law of one price,
earn the riskless rate of return. If we continue with the additional assump-
tion, convenient but not necessary, that the riskless rate is zero, then our
delta-hedged position should earn zero profit, so there should be no change
in the value of the position after a time dt passes. From Equation 3.12,
therefore,

dV = Θdt + 1
2
Γ𝜎2S2dt = 0

Θ + 1
2
Γ𝜎2S2 = 0

(3.14)

For a long option position, when rates are zero, the amount Θdt that
the option loses from time decay must be precisely offset by the gain
(1/2)Γ𝜎2S2dt that results from convexity as the stock price moves by
±𝜎S

√
dt.

Written out in full, Equation 3.14 is the BSM equation for zero interest
rates:

𝜕C
𝜕t

+ 1
2
𝜎2S2 𝜕

2C
𝜕S2

= 0 (3.15)

When the riskless rate r is nonzero, a riskless position worth V must earn
interest rVdt. As we will show in a subsequent chapter, because of this, the
BSM equation for nonzero rates involves two additional terms and can be
written as:

𝜕C
𝜕t

+ rS
𝜕C
𝜕S

+ 1
2
𝜎2S2 𝜕

2C
𝜕S2

= rC (3.16)

The solution is a function C(S, t, K, T, 𝜎, r) where K is the strike of the call
option, 𝜎 is the volatility of the stock, and r is the riskless interest rate. We
will display and discuss this classic Black-Scholes-Merton (BSM) formula in
the next chapter.

In our binomial model, the option delta (the number of shares necessary
to cancel the term linear in dS in the P&L) is fixed over our short time step, dt.
Over the life of the option, as the price changes and the time to expiration
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decreases, the delta of the option changes as well. Like the call price, Δ is
also a function of S, t, K, T, 𝜎, and r. The BSM equation assumes that we
can instantaneously and continuously rehedge our portfolio at every instant
of time using the formula for Δ. True dynamic replication in the continuous
time limit is equivalent to shrinking the time step in our binomial model to
an infinitesimally small interval, and making sure we rehedge at the end of
each period after the underlying stock has moved up or down.

The Dist inct ion between Impl ied Volat i l i ty
and Real i zed Volat i l i ty

In the BSM formula, S, t, K, T, and r are all known at the moment the option
is priced. But where do we get our value of the volatility 𝜎?

If you look back at Figure 3.5, you will see that 𝜎 determines the size of
the next up- or down-move of the stock price S. It is a variable whose value
will become known only after the move. Before that, it’s a sort of guess or
expectation. We can look back at the size of previous up- or down-moves in
the stock to get a statistical estimate of past volatility, but future volatility
is truly unknown. When Black and Scholes first started making use of their
formula, they used past volatility for 𝜎 in their formula.

Over time, most people have come to use the model differently. They
first obtain the price of a particular option from the market. Then they force
the model to fit this market price by tuning the value of 𝜎 until the model
price matches the market price. That value of 𝜎 that matches the model to
the market is called the implied volatility. It’s the value that the unknown
future stock volatility has to assume in order that the model will have valued
the option correctly in advance. The implied volatility is the constraint that
the model wants to impose on future stock evolution. Given the implied
volatility, one can then use the model to calculate the appropriate hedge
ratio Δ to use in dynamic replication.

In finance we refer to backed-out estimates of the future values of param-
eters obtained by forcing a market price to fit a model as implied values.
Implied values are predictions, but they are predictions based on currently
observed market prices. The implied volatility can be fruitfully regarded as
the market’s expected value of future volatility. When time passes, we get to
see what the value should have been. We refer to the values that we observe
after time has passed as realized values. Thus, the initial value of the param-
eter 𝜎 that fits the model to the market price is a parameter called the implied
volatility. The statistical standard deviation of returns per unit of time that
can be measured after the stock has moved between t and T is a statistic
called the realized volatility.

As time passes, what was once the future will become the past. One
can then compare the implied volatility parameter to the realized volatility
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statistic. For example, we can compare today’s one-month implied volatil-
ity for a stock, extracted from option prices, to realized volatility over the
next month. Similarly, in the interest rate market, one can compare implied
forward interest rates to realized ones.

Is this comparison valid? Should we expect our realized statistic to match
our implied parameter? If they are not expected to be the same, should
you hedge with implied volatility or with what you think realized volatil-
ity might be? Though these questions do not have unambiguous answers,
we will examine them in a future chapter.

Though everyone in the options world has become accustomed to this
state of affairs and considers it unremarkable, it isn’t. Let’s compare this use
of a classic financial model to the use of a classic physics model.

In mechanics, considering the motion of a projectile, one begins from
its initial position and velocity and then, using Newton’s laws, predicts the
future trajectory. Amazingly, this works. Physics models move forward in
time. In finance, when it comes to pricing options, we need first to estimate
(guess?) what the future volatility of the stock will be and then to use that
estimate of the future to determine the option’s current price. In a sense, then,
finance models go backwards in time.

In finance it is not uncommon for current values to depend on expecta-
tions about the future. Current stock prices reflect expected future earnings,
life insurance premiums reflect expectation of future mortality, and fire
insurance premiums reflect expectations of future fires. Future earnings,
future mortality, and the probability of future fires are at present unknown,
but we need to guess their future distribution in order to value these
important financial products. While this backwards logic might be common
in finance, the mathematical elegance and precision of the BSM model—a
framework borrowed from the physics of diffusion—makes it easy to forget
that we are using the model in a way that is very different from how
physicists use the model.

Notat ion for Impl ied Variab les

Implied variables are parameters backed out from market prices. Implied
price per square foot for an apartment, for example, is the parameter in a
model that matches the market price to the model price using the equation
[market price] = [price per square foot] × [area]. Similarly, implied volatil-
ity is the parameter that matches the model price of a call option to its
market price using the BSM equation. In that sense, because they are derived
from current market prices, implied variables are more closely related to the
market prices than to the past or realized values of the parameters. Implied
variables represent the present and the imagined future. Realized variables
represent the past.
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Throughout this book, we will use capital letters to represent market-
derived prices. The price of a stock, bond, call, and put will typically be
represented by S, B, C, and P, respectively, for example. To emphasize that
implied volatility is also a market-derived parameter rather than a statistic,
implied volatility will typically be represented by a capital 𝛴, in contrast to
realized volatility, a statistic, which will be represented by a lowercase 𝜎.

Hedging an Opt ion Means Bett ing on Volat i l i ty

In accordance with our convention, we will denote the implied volatility by
𝛴, which in the framework of our model can be regarded as the market’s
anticipated value for future volatility, 𝜎, which is unknown. If the realized
volatility 𝜎 turns out to be different from what we expected, then the stock
will move either more or less than we anticipated. If 𝜎 turns out to be greater
than 𝛴, the convex delta-hedged option position V = C − ΔS in Figure 3.8
will increase in value more than anticipated, no matter which direction the
stock moves. Similarly if 𝜎 is lower than anticipated, the hedged position will
appreciate less.

We can quantify the gain made from convexity and the loss from time
decay for a long option position. Replacing 𝜎 with 𝛴 in Equation 3.15 to
account for the fact that we anticipate a volatility of 𝛴, we have

𝜕C
𝜕t

+ 1
2
Γ𝛴2S2 = 0 (3.17)

The amount we expect to lose due to time decay during time dt is
(1∕2)Γ𝛴2S2dt. The gain from convexity, if the stock moves an amount
dS = ±𝜎S

√
dt with a realized volatility 𝜎, is (1∕2)Γ𝜎2S2dt. The net infinites-

imal profit or loss (P&L) after time dt is then the difference between these
two quantities:

Profit = 1
2
ΓS2(𝜎2 − 𝛴2)dt (3.18)

Figure 3.10 illustrates how the P&L of the hedged position varies with
the realized move dS in the stock price.

As is clear from Equation 3.18 and Figure 3.10, when we delta-hedge a
long option position, we are effectively making a bet on volatility. To profit,
we need the realized volatility to be greater than the implied volatility. A
short position profits when the opposite holds. In the next chapter we will
discuss volatility and variance swaps, instruments that the market has devel-
oped to help traders bet directly on volatility.
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F IGURE 3.10 P&L from Implied versus Realized
Volatility

END-OF-CHAPTER PROBLEMS

3-1. How could you replicate a collar without using any call options?
Assume the underlying stock pays no dividends.

3-2. Figure 3.11 shows the payoff from a butterfly position B(S, t) on
an underlying stock, S. The break points are at x and y coordinates

0
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0 10 20 30 40

B(S,t)

S

F IGURE 3.11 Payoff of Butterfly at Expiration
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(10, 0), (20, 10), and (30, 0). Replicate this payoff using riskless bonds,
calls, and the underlying stock, as necessary.

3-3. Your firm owns 100 puts. Each put has a delta of −0.40, gamma of
0.04, and theta of −7.3. The underlying price is $100. How many
shares should you buy or short in order to delta-hedge this position?
After you have delta-hedged the position, how much would you expect
to make if, by the end of the next day, the stock moved up 1%? Down
1%? Assume 365 days per year and a riskless rate of 0%.

3-4. Using the same information from the previous question, what would
happen if the stock moved up 4%?

3-5. With the price of GOOG at $500 per share, your firm owns 100
European call options on GOOG with a strike price of $550, and has
shorted $10,000 worth of stock in order to delta-hedge the position
correctly. Assume that interest rates are zero and that GOOG pays no
dividends. If, instead of 100 calls, your firm had purchased 100 Euro-
pean puts at the same strike price and with the same time to expiration,
how much GOOG stock would have been needed to delta-hedge the
position? When interest rates are zero, what is the relationship between
put and call deltas for options with the same strike and same time to
expiration?

3-6. Figure 3.12 shows the payoff function for an option strategy at expi-
ration in four months. Determine the value of this option strategy. The

0
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20

0 10 20 30 40

V(S)

S

K          C(K)

10        10.09
20          3.17
30          0.79
40          0.19

F IGURE 3.12 Option Payoff at Expiration
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accompanying table provides prices for four-month calls at various
strike prices. Assume the riskless rate is 0%. The current price of the
underlier is $20.

3-7. Replicate the payoff function from the previous problem taking into
account that out-of-the-money options tend to be more liquid. Assume
that you can easily buy and sell four-month calls with a strike of 20,
but calls with a strike of 10 are unavailable and only puts with a strike
of 10 can be traded. How can you replicate the payoff function now?
What is the value?





CHAPTER 4
Variance Swaps

A Lesson in Replication

� Option values are sensitive to volatility and stock price.
� A better way to trade pure volatility is through volatility and variance

swaps.
� How to replicate a variance swap out of a portfolio of options that has

the payoff of a log contract.
� How to replicate a variance swap when volatility is stochastic.
� Valuing the swap.
� The consequence of errors in replication.

THE VOLATIL ITY SENSIT IV ITY OF AN OPTION

As shown in the previous chapter, the Black-Scholes-Merton (BSM) partial
differential equation for the price C of a contingent claim on a non-dividend-
paying stock S is given by

𝜕C
𝜕t

+ rS
𝜕C
𝜕S

+ 1
2
𝜎2S2 𝜕

2C
𝜕S2

= rC

The solution to this equation for a vanilla European call option on the
stock is

C(S, K, 𝜏, 𝜎, r) = SN(d1) − Ke−r𝜏N(d2)

d1,2 =
ln
(

S
K

)
+
(

r ± 𝜎2

2

)
𝜏

𝜎
√
𝜏

N(z) = 1
√

2𝜋 ∫

z

−∞
e−

1
2

y2
dy

(4.1)
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Here S is the price of the underlying stock, 𝜎 is the stock’s return volatility,
K is the strike price, r is the riskless rate, and 𝜏 is time to expiration (T – t).
N(z) is the standard cumulative normal distribution.

Define v = 𝜎
√
𝜏, the total volatility of the stock over the remaining life

of the option. For pedagogical reasons, for the time being, assume that the
riskless rate is zero. We can then rewrite Equation 4.1 as

C(S, K, v) = SN(d1) − KN(d2)

d1,2 = 1
v
ln
(

S
K

)
± v

2

(4.2)

We now define two option sensitivities to volatility, namely:

V = 𝜕C
𝜕𝜎

=
S
√
𝜏

√
2𝜋

e−
1
2

d2
1

𝜅 = 𝜕C
𝜕𝜎2

=
S
√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1

(4.3)

We refer to V as vega (which is not actually a Greek letter, but a star in
the constellation Lyra), and we refer to 𝜅, or kappa, as variance vega.1 The
formulas for vega and kappa for a vanilla European put are the same as they
are for a vanilla European call.

Figure 4.1 shows a plot of 𝜅 for three options, with the same time
to expiration but with three different strikes, on the same underlying
stock.

As is clear from Figure 4.1, assuming all other parameters are held con-
stant, the variance vega function shifts to the right—acquiring a greater
width and a higher peak—as the strike price of the option increases. For
any particular option value of the variance vega peaks when the underlying
price is close to the strike price. We find the precise location in the following
sample problem.

1 This nomenclature is far from universal. Many authors reverse this notation, using
V for what we have labeled 𝜅, and 𝜅 for what we have labeled V.
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F IGURE 4.1 The Variance Vega for Three Strike Prices

SAMPLE PROBLEM

Question:

Using Equation 4.3, find the price of the underlying where 𝜅 is maxi-
mum.

Answer:

The maximum occurs where the derivative of 𝜅 with respect to S is
zero.

𝜅 = 𝜕C
𝜕𝜎2

=
S
√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1

𝜕𝜅

𝜕S
=

√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1 +

S
√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1
(
−d1

)(1
v

1
S

)

=
√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1

(
1 − 1

v
d1

)

=
√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1

(
1
2
− 1

v2
ln
(

S
K

))

(continued)
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(continued)

To find the maximum, we need to find the value of S, S∗, for which
𝜅 is zero. This requires that

1
2
− 1

v2
ln
(

S∗

K

)
= 0

Therefore

S∗ = Ke
1
2

v2

The maximum occurs when the underlying price is Ke
1
2

v2
. For typ-

ical values of volatility and times to expiration, v2 is very close to zero,

meaning e
1
2

v2
is just slightly greater than 1, and S∗ is just slightly greater

than K. Note that we have assumed zero interest rates in this example.
When interest rates are nonzero, the maximum occurs when S∗ is close
to the forward value of the strike price.

You can formally prove that S∗ is the maximum and not the min-
imum by calculating the second derivative of 𝜅 with respect to S and
confirming that this quantity is negative at S∗.

VOLATIL ITY AND VARIANCE SWAPS

As just shown, the exposure of a vanilla option to volatility or variance is a
peaked function of the stock price. If you are long such an option, the gain
in value when volatility increases will depend not only on the increase in
volatility, but also on how far the stock price is away from the strike. For
someone who wants to speculate on volatility, this is inconvenient, since the
magnitude of the payoff will depend not only on correctly predicting the
future level of volatility, but also on how well you predict the future stock
price.

It would be much better to be able to buy a contract whose exposure to
volatility is independent of stock price, and therefore not dependent on its
future path. A volatility swap is such an instrument. A volatility swap is a
forward contract on realized volatility. At expiration, it pays the difference in
dollars between the realized return volatility over the lifetime of the contract,
𝜎R, and some previously agreed-upon delivery volatility, 𝜎K. You can also
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think of it as a swap between the future floating volatility 𝜎R and a fixed
volatility 𝜎K. The value of a volatility swap at expiration is then

𝜋 = N(𝜎R − 𝜎K) (4.4)

where N is the notional amount, often referred to as notional vega for volatil-
ity swaps.

Similarly, a variance swap is a forward contract on realized variance. At
expiration, it pays

𝜋 = N
(
𝜎2

R − 𝜎2
K

)
(4.5)

The notional amount for the variance contract, N, is often referred to as
notional variance. Again, you can think of the variance swap as a swap of
floating variance for fixed variance.

Variance is the square of the volatility, so we can think of variance as
being a derivative of volatility, or vice versa. Assuming (𝜎R − 𝜎K) to be small
and keeping only first-order terms, we can approximate the payoff of a vari-
ance swap in terms of a volatility swap as follows:

𝜎2
R − 𝜎2

K ≈ 2𝜎K(𝜎R − 𝜎K) (4.6)

Therefore, a variance swap with a notional of $1 has approximately the same
payoff as a volatility swap with a notional of $2𝜎K. Owning a volatility swap
with a notional that is 2𝜎K times the notional of a variance swap should
provide a payoff approximately equal to the payoff of a variance swap with
the same delivery volatility 𝜎K and the same time to expiration.

For either a volatility swap or a variance swap, the contract must spec-
ify the precise method for calculating the realized volatility at expiration,
including the source and observation frequency of prices, the annualization
factor for volatility, and whether the sample mean is subtracted from each
return when computing the variance. Figure 4.2 shows a sample variance
swap contract. Notice that the volatility calculation is the population stan-
dard deviation (the default standard deviation method for many statistical
programs is the sample standard deviation), and the calculation does not sub-
tract the mean from the observed returns. This is equivalent to assuming that
the mean return is known and equal to zero. This is a common assumption
for volatility and variance swap contracts. Also, notice that even though this
is a contract for a variance swap, the notional is first specified as a notional
vega, with the notional variance derived from this quantity. The strike price is
also quoted in terms of volatility. The contract accentuates volatility because
traders and clients are more comfortable thinking in terms of volatility than
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Variance Swap on S&P 500

Instrument: Variance Swap
Variance Buyer: EFG Fund
Variance Seller: ABC Bank
Trade Date: January 29, 2016
Start Date: January 29, 2016
End Date: June 30, 2017
Currency: USD
Vega Amount: 1,000,000
Underlying: S&P 500 Index
Strike Price: 16
Variance Amount: 31,250, calculated as [Vega Amount]/(2 × [Strike Price])
Equity Amount: [Equity Amount] = [Variance Amount] × {[Final Realized

Volatility]2−[Strike Price]2}

If the Equity Amount is positive, the Variance Seller will pay the Variance Buyer
the Equity Amount. If the Equity Amount is negative, the Variance Buyer will pay
the Variance Seller the Equity Amount. The Final Realized Volatility will be
determined according to

Final Realized Volatilty = 100 ×

√√√√252 ×
∑n

t=1

(
ln

(
Pt

Pt−1

))2

n
where

n = number of trading days during the observational period
Pt = the Official Closing of the Underlying on date t
P1 = the Official Closing of the Underlying on the Start Date
Pn = the Official Closing of the Underlying on the End Date

F IGURE 4.2 Sample Variance Swap Contract

in terms of variance, though, as we shall see, variance is the quantity that is
replicated most directly.

REPLICATING VOLATIL ITY SWAPS

Swaps are traditionally structured so that their price at issue is zero. Doing
this eliminates the need for any cash flows at the start of the contract. What
is the fair value of variance or volatility, the fixed 𝜎K that makes it worth
zero at inception? Fair values are found, as always, by replication!

While option traders tend to think in terms of volatility, it turns out that
variance swaps are easier to replicate and hedge. Because of this, market



Variance Swaps 63

–16

–12

–8

–4

0

4

8

12

16

10% 20% 30% 40% 50%

E
xp

ira
tio

n 
V

al
ue

σR

Variance Swap Volatility Swap
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makers are more willing to trade these contracts, and we will spend most of
this chapter discussing variance swaps.

Figure 4.3 shows the payoff function at expiration for a variance swap
with a delivery, or fixed volatility, of 30% and a notional of $100, and a
volatility swap with a delivery volatility of 30% and a notional of $60 = 2 ×
30% × $100. The approximation is good for values of realized volatility
near 𝜎K, but progressively poorer for volatilities above or below the strike.

In Figure 4.3 the payoff of the variance swap is always greater than or
equal to the value of the volatility swap. Unless future volatility is known
with certainty and equal to the strike, the variance swap dominates the
volatility swap, and it must be worth more before the delivery date. In order
to make the expected values of both swaps equal—to ensure that one can
be fairly traded for the other with no exchange of cash—it is necessary to
lower the strike of the volatility swap, shifting its linear payoff to the left.
How much we have to lower the strike depends crucially on how uncertain
future volatility is; that is, it depends on the volatility of volatility.

In theory, we could dynamically replicate a volatility swap by trad-
ing variance swaps, though the illiquidity of variance swaps would tend to
make this approach prohibitive. Determining the dynamic replication and
the resultant value for the volatility swap would require a model for volatil-
ity of variance, just as dynamically replicating a derivative contract on a
stock requires a model for the volatility of the stock price.
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REPLICATING VARIANCE SWAPS OUT OF OPTIONS
IN A BLACK-SCHOLES-MERTON WORLD

It is instructive to compare options as a bet on variance with corporate bonds
as a bet on credit spreads. When you buy a corporate bond, you are exposed
to both riskless interest rates and the credit spread, because the bond’s yield
is a combination of the riskless rate and the credit spread. In order to be
exposed to the credit spread only, you have to short Treasury bonds in
just the right amount to eliminate the pure interest-rate risk. Credit default
swaps were invented to address this problem by providing pure exposure
to credit spreads. Similarly, variance swaps, which we are about to discuss,
were invented to provide pure exposure to variance independent of stock
price.

The key to replicating a variance swap is based on the following formula,
previously derived for the incremental profit earned from delta-hedging an
option using the implied volatility hedge ratio over the next instant of time
dt:

Profit = 1
2
ΓS2(𝜎2

R − 𝛴2) dt (4.7)

Here S is the stock price, Γ is the second partial derivative of the option
price with respect to S, and 𝜎R and 𝛴 are, respectively, the realized volatil-
ity and implied volatility. The hedged position is sensitive to the difference
between the fixed and the realized variance, (𝜎2

R − 𝛴2), which is almost
exactly the dependence we require for a variance swap. Unfortunately, ΓS2

varies as time passes and/or the stock price changes, and so does the profit
and its dependence on 𝜎2

R in Equation 4.7. A delta-hedged option is a bet on
variance, but it is not a clean bet.

If ΓS2 is not constant over time, then couldn’t we replicate a variance
swap dynamically by adjusting the size of the hedged position over time?
Couldn’t we increase the size of the delta-hedged position (buy more calls,
sell more stock) when ΓS2 was low, and decrease the size of delta-hedged
positions when ΓS2 was high? This is a possible strategy in theory. In prac-
tice, options tend to be considerably less liquid than their underlying securi-
ties. Dynamically hedging is challenging under the best of circumstances, but
dynamically hedging with illiquid instruments is too difficult and expensive
to work in practice. The attractive feature of the replication in this section
is that it is static.

What if Γ were equal to 1/S2 in Equation 4.7? If that were the case, then
ΓS2 would be constant as time passes and the stock price varies, ensuring
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that the profit in Equation 4.7 was independent of S. Γ is not equal to 1/S2

for vanilla options, but what if we could create a portfolio of vanilla options
where Γ was equal to 1/S2? Creating such a portfolio is the key to replicating
a variance swap whose exposure to variance is independent of stock price. To
create this portfolio, we will need to make use of Equation 4.3, the formula
for the variance sensitivity 𝜅 of a vanilla option, assuming the validity of the
BSM model and formula.

As we saw in Figure 4.1, the sensitivity of an option to variance changes
as the strike price of the option increases. By combining a number of options,
we can create a portfolio whose 𝜅 is constant, independent of S. Such a port-
folio would be a clean bet on variance. Because the magnitude of 𝜅 increases
with the strike price, this portfolio requires more options with lower strike
prices and fewer options with higher strike prices. More specifically, as we
will now demonstrate, we need to vary the number of vanilla option con-
tracts in inverse proportion to the square of the strike price. Figure 4.4 shows
the 𝜅 of various portfolios of options, both equally weighted and weighted
proportionally to 1/K2. As we increase the number of options, the 𝜅 profile
becomes increasingly flatter. In theory, with an infinite number of options we
could create a perfectly flat profile.

To see this, consider a portfolio of vanilla call options with variable
strike K and a density function 𝜌(K), so that the number of vanilla options
with value C(S, K, v) with strike between K and K + dK is 𝜌(K)dK. The value
of the portfolio is then given by

𝜋(S) =
∫

∞

0
𝜌(K)C(S, K, v) dK (4.8)

We will show that the sensitivity of this portfolio to variance, 𝜕𝜋/𝜕𝜎2, is
independent of the stock price S when 𝜌(K) = 1/K2. Though we have used
call options, the argument we are about to present will apply if we had used
put options or any combination of puts and calls too, because vanilla puts
and calls both have the same vega.

We want the portfolio to have no link between its variance sensitivity 𝜅

and the level of the stock price. If the sensitivity of the call option to changes
in variance is

𝜅 (S, K, 𝜈) = 𝜕C
𝜕𝜎2

=
S
√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1 (4.9)
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F IGURE 4.4 The Variance Vega of a Portfolio of Vanilla Options: Replicating a
Variance Swap with Options Using Two Weighting Schemes

then the variance sensitivity of the entire portfolio is

𝜅𝜋 = 𝜕𝜋

𝜕𝜎2
=
∫

∞

0
𝜌(K)𝜅(S, K, v) dK

=
√
𝜏

2𝜎
√

2𝜋 ∫

∞

0
𝜌(K)Se−

1
2

d2
1 dK

≡

∫

∞

0
𝜌(K)Sf

(K
S

, 𝜈, 𝜏
)

dK

(4.10)
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where d1 was defined in Equation 4.1, v = 𝜎
√
𝜏, and

f
(K

S
, 𝜈, 𝜏

)
=

√
𝜏

2𝜎
√

2𝜋
e−

1
2

d2
1 (4.11)

is a function of K/S, but not K or S separately.
Define a new variable K/S = x. Then Equation 4.10 can be rewritten as

𝜅𝜋 =
∫

∞

0
𝜌 (xS) S2f (x, 𝜈, 𝜏) dx (4.12)

Since all the S-dependence is now in the term 𝜌 (xS) S2, with only the den-
sity function 𝜌( ) to be chosen, removing the S-dependence of 𝜅𝜋 requires
that we choose the density to satisfy 𝜌(xS) ∝ 1∕(x2S2), which requires that
𝜌(K) = c/K2.

This demonstrates that a continuous density of vanilla options whose
weights decrease like 1/K2 will have a variance sensitivity independent of
the stock price, and thus replicate a variance swap. To create this continuous
density, we would need a portfolio with an infinite number of options at an
infinite number of strikes. In practice, we will never be able to construct this
portfolio, but with a reasonable number of contracts we can have a fairly
constant sensitivity to variance over a reasonable range of underlying prices,
as shown in Figure 4.4.

We now proceed to examine the payoff of this portfolio of vanilla
options. Though each vanilla put or call has a hockey-stick payoff cen-
tered on the strike, we will see that the entire portfolio behaves much more
smoothly.

A PORTFOLIO OF VANILLA OPTIONS WITH 1/K2

WEIGHTS PRODUCES A LOG PAYOFF

Out-of-the-money puts with low strike prices tend to be more liquid than
in-the-money puts with high strike prices. The opposite is true for calls.
High-strike calls tend to be more liquid than those with low strikes. In con-
structing our portfolio with an infinite number of options whose density is
equal to 1/K2, to be practical we assume that we purchase puts for those
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strikes between 0 and some break point S∗, and calls for strikes greater than
S∗. The value of this portfolio is then

𝜋(S, S∗, v) =
∫

S∗

0

1
K2

P(S, K, v) dK +
∫

∞

S∗

1
K2

C(S, K, v) dK (4.13)

At expiration, if the terminal stock price ST is greater than S∗, then the
calls with strikes between S∗ and ST will be worth (ST – K), and all the other
calls and all of the puts will expire worthless. The total payoff would then
be given by

𝜋(ST , S∗, 0) =
∫

ST

S∗

1
K2

(ST − K) dK for ST > S∗ (4.14)

where v = 0 at expiration. Similarly, if ST is less than S∗, then the puts with
strikes between ST and S∗ will be worth (K – ST), while all the other puts
and all of the calls will expire worthless. The total payoff would then be

𝜋(ST , S∗, 0) =
∫

S∗

ST

1
K2

(
K − ST

)
dK for ST < S∗

=
∫

ST

S∗

1
K2

(ST − K) dK

(4.15)

The integrals in both Equation 4.14 and Equation 4.15 lead to the same
result at expiration whether ST is greater or less than S∗; therefore,

𝜋(ST , S∗, 0) =
∫

S∗

0

1
K2

P(ST , K, 0) dK +
∫

∞

S∗

1
K2

C(ST , K, 0) dK

=
∫

ST

S∗

1
K2

(ST − K) dK

=
(

ST − S∗

S∗

)
− ln

(
ST

S∗

)

(4.16)

The first term in the last line of Equation 4.16 is equal to the payoff at
expiration of 1/S∗ forward contracts on S with a delivery price of S∗. The
second term describes the payoff of a log contract, a derivative whose value
at expiration depends on the log of the terminal stock price. The log contract
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F IGURE 4.5 Value of Replicating Portfolio at Expiration, S∗ = 100

is an exotic option that was first described by Neuberger (1994). The first
term in Equation 4.16, the forward contract, can be valued by static arbitrage
without any knowledge of or sensitivity to the volatility of S; therefore, all
of the sensitivity to volatility in our replicating portfolio is determined by
the log contract. Figure 4.5 shows the payoff at expiration of the replicating
portfolio described by Equation 4.16.

It is a bit more difficult to prove, but if we integrate across all of the
option strikes in our replicating portfolio using the option values given by
the BSM formula prior to expiration, again assuming that the riskless rate
r = 0 for simplicity, we find that

𝜋(S, S∗, v) =
(

S − S∗

S∗

)
− ln

(
S
S∗

)
+ 1

2
v2 (4.17)

which differs by only one term from the formula in Equation 4.16. This close
similarity between the value at expiration and prior to expiration (which
is not the case for a vanilla option) is a consequence of the simple behav-
ior of a logarithmic function of the stock price under geometric Brownian
motion.
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Value of a Log Contract in the
Black-Scholes-Merton World

A log contract L is a derivative that, at expiration T, pays the value

L(S, S∗) = ln
(

ST

S∗

)
(4.18)

where ST is the terminal stock price at time T, and S∗ is a fixed strike. What
is the value of this contract at an earlier time t?

Just as with any other derivative of the stock S, we can delta-hedge the
log contract, and therefore the BSM equation must hold. If the riskless rate
is again taken to be zero, then from Equation 3.14 in Chapter 3

𝜕L
𝜕t

+ 1
2
𝜎2S2 𝜕

2L
𝜕S2 = 0 (4.19)

The solution to this equation that satisfies the terminal condition, Equa-
tion 4.18, is

L(S, S∗, t, T) = ln
(

S
S∗

)
− 1

2
𝜎2(T − t) (4.20)

A short position in a log contract is therefore worth

− L(S, S∗, t, T) = − ln
(

S
S∗

)
+ 1

2
𝜎2 (T − t) = − ln

(
S
S∗

)
+ 1

2
v2 (4.21)

From Equation 4.16, we see that the 1/K2 weighted portfolio of puts and
calls that replicates a variance swap effectively has the payoff of a much
simpler portfolio that is short a log contract with strike S∗ and long 1/S∗

forward contracts with delivery price S∗.
In order to remove any sensitivity to the price of the underlier, we need

to delta hedge the short position in the log contract. The delta of the short
position in the log contract in the BSM world is simply –𝜕L/𝜕S = −1/S. We
can delta-hedge −L(S, S∗, t, T) by owning 1/S shares of the underlier—that
is, by owning exactly $1 of the underlier at all times.

The gamma of −L(S, S∗, t, T) is 1/S2. As mentioned earlier, an individ-
ual vanilla call or put is not a clean bet on volatility, because the quantity
ΓS2 fluctuates over time. For the short position in the log contract, because
Γ = 1/S2, ΓS2 is constant, independent of stock price and time, just as we
wanted. The log contract provides a clean bet on volatility. The forward (in
combination with the log contract) is necessary to eliminate any exposure to
the stock price.

The sensitivity 𝜅 of −L(S, S∗, t, T) to variance is (T – t)/2. At the start
of the contract, when t = 0, 𝜅 = T/2. If we scale up our replicating portfolio
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from Equation 4.17 by a factor of 2/T, buying 2/T forward contracts with
a delivery price of S∗ and selling 2/T log contracts, we will have 𝜅 = 1 at
inception. We can write the value of this new portfolio as

𝜋(S, S∗, t, T) = 2
T

[(
S − S∗

S∗

)
− ln

(
S
S∗

)]
+ T − t

T
𝜎2 (4.22)

Define the price of the stock at the start of the contract to be S0. If we set
S∗ equal to S0—equivalent to buying puts below S0 and buying calls above
S0—then we have S = S0 = S∗ at inception, and the first term in Equation
4.22 drops out, leaving us with

𝜋
(
S0, S0, 0, T

)
= 𝜎2 (4.23)

In a BSM world, the initial fair value of our properly scaled replicating port-
folio is equal to 𝜎2, the variance of the underlying stock. By continuously
hedging a log contract, properly scaled, we can produce a portfolio whose
value is the variance of the stock, independent of the stock price.

At expiration, the payoff profile of this scaled portfolio will equal

𝜋
(
ST , S0, T, T

)
= 2

T

[(
ST − S0

S0

)
− ln

(
ST

S0

)]
(4.24)

PROOF THAT THE FAIR VALUE OF A LOG CONTRACT
WITH S∗ = S0 IS THE REALIZED FUTURE VARIANCE

How does continuously hedging a log contract actually produce a security
whose value is the variance 𝜎2 of the stock? In this section we show in dis-
crete time, step-by-step, how hedging a log contract replicates the variance
of a stock.

Consider a log contract with unknown value that pays out ln(ST/S0) at
expiration T. Let its value today be denoted by L0. For pedagogical simplicity,
we will assume that the riskless rate and the dividend yield are zero. Now
consider the trading strategy that begins with a short position in one log
contract and long $1 worth of shares, and then maintains this dollar value
of shares by rebalancing the portfolio at the end of every time step between
time t0 and expiration of the contract at time tN. Any money required to
purchase additional shares is borrowed from the bank at zero interest, and
any money received from selling shares is similarly deposited at zero interest.

The following sequence of tables displays the bank balance and the posi-
tion in the stock and the log contract, before and after rebalancing, at each
successive time ti.

As shown in Table 4.1, initially, we own 1/S0 shares of the stock worth
$1, and are short a log contract with value L0. The second line in Table 4.1
shows the values at time t1, before rebalancing.
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TABLE 4.1 Before Rebalancing, Part I

No. of Value of Total
Stock Shares Value of One Log Bank Value of

Time Price of Stock Stock Contract Balance Position

t0 S0
1
S0

1 L0 0 1 − L0

t1 (pre) S1
1
S0

S1

S0
L1 0

S1

S0
− L1

Now we need to rebalance the portfolio to get our stock position back
to $1. To do this we buy (1/S1 − 1/S0) shares by borrowing (1/S1 − 1/S0)S1 =
1 − S1/S0 dollars. You then own 1/S1 shares worth $1, and you have bor-
rowed (that is, you are short) 1 − S1/S0 dollars. The position after rebalanc-
ing is shown in Table 4.2.

TABLE 4.2 Rebalancing, Part II

No. of Value of Total
Stock Shares Value of One Log Bank Value of

Time Price of Stock Stock Contract Balance Position

t1 (post) S1
1
S1

1 L1 −
S0 − S1

S0
1 − L1

−
S0 − S1

S0

Now move to time t2 and rebalance again, to get the position shown in
Table 4.3.

TABLE 4.3 Rebalancing, Part III

No. of Value of Total
Stock Shares Value of One Log Bank Value of

Time Price of Stock Stock Contract Balance Position

t2 (post) S2
1
S2

1 L2 −
S0 − S1

S0

−
S1 − S2

S1

1 − L2

−
S0 − S1

S0

−
S1 − S2

S1
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If we keep repeating, rebalancing N times, until we reach expiration, the
final value of the positions is given by

VN = 1 − LN −
N−1∑

i=0

Si − Si+1

Si

= 1 − ln
(

SN

S0

)
+

N−1∑

i=0

ΔSi

Si

= 1 −
N−1∑

i=0

ln
(

Si+1

Si

)
+

N−1∑

i=0

ΔSi

Si

(4.25)

where, to get to the last line, we rely on the fact that ln(SN/S0) = ln(SN) –
ln(S0) = [ln(SN) – ln(SN−1)] + [ln(SN−1) – ln(SN−2)] + … + [ln(S1) – ln(S0)].
Taking a second-order Taylor expansion of the terms in the first summation,
we have

VN = 1 −
N−1∑

i=0

[
ΔSi

Si
− 1

2

(
ΔSi

Si

)2
]

+
N−1∑

i=0

ΔSi

Si

= 1 +
N−1∑

i=0

1
2

(
ΔSi

Si

)2

= 1 +
N−1∑

i=0

𝜎2
i Δti

2

(4.26)

Given that interest rates are zero, by the principle of no riskless arbitrage,
the initial value of the portfolio must also be equal to VN, so that

V0 = 1 − L0 = 1 +
N−1∑

i=0

𝜎2
i Δti

2
(4.27)

and the initial value of the log contract must be

L0 = −
N−1∑

i=0

𝜎2
i Δti

2
(4.28)

The present value of the log contract is proportional to the future realized
variance over the life of the contract.
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Repl icat ing Variance When Volat i l i ty Is Stochast ic

The preceding discussion assumed the validity of the BSM option pricing
formula. In fact, as long as the stock price diffuses continuously, even with a
stochastic volatility—that is, as long as the stock price makes no discontinu-
ous jumps—we can still replicate a variance swap with a log contract and a
position in the underlying stock. No matter whether volatility changes over
time, or if returns are skewed or fat-tailed, we can still replicate a variance
swap, as shown next.

Assume that stock returns follow a general diffusion process described
by the following equation

dS
S

= 𝜇t dt + 𝜎t dZ (4.29)

where the drift, and especially the volatility, can be stochastic, and the riskless
rate r is not assumed to be zero. By Ito’s lemma, we have

dlnS =

(

𝜇t −
𝜎2

t

2

)

dt + 𝜎t dZ (4.30)

Subtracting Equation 4.30 from Equation 4.29, we have

dS
S

− dlnS = 1
2
𝜎2

t dt (4.31)

Rearranging terms, integrating over the life of our contract, and scaling, we
have

1
T ∫

T

0
𝜎2

t dt = 2
T

[

∫

T

0

1
S

dS − ln
(

ST

S0

)]

(4.32)

The left-hand side of Equation 4.32 is simply the average total future vari-
ance over the life of the contract, the object of our interest. This mathemati-
cal identity dictates the replication strategy for variance. The first term in the
brackets can be thought of as the net outcome of continuously rebalancing
a stock position so that it is always instantaneously long 1/S shares of stock
worth $1. The second term represents a static short position in a contract
that, at expiration, pays the logarithm of the total return. Following this
continuous rebalancing strategy captures the realized variance of the stock
from inception to expiration at time T. Note that no expectations or averages
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have been taken; Equation 4.32 guarantees that variance can be captured no
matter which path the stock price takes, as long as it moves continuously.2

Valu ing the Variance

We can use Equation 4.32 to value a variance swap in terms of the market
prices of securities by applying the standard result of options theory, that
is, taking the expected risk-neutral value of the right-hand side, so that the
expected cost of the variance replication is given by

𝜋
(
S0, S0, 0, T

)
= 2

T
E

[

∫

T

0

1
S

dS − ln
(

ST

S0

)]

(4.33)

where E[ ] denotes the expected value in a risk-neutral world.
The expected value in a risk-neutral world of the first term in the brack-

ets on the right-hand side of Equation 4.33 is given by

E

[

∫

T

0

1
S

dS

]

= rT (4.34)

Since no one markets an actual log contract, we now replace the payoff
of the future value of the log contract at expiration, for all values of ST, by
the terminal value of the payoff of a portfolio of puts and calls with known
market prices that replicate it. First we write

− ln
(

ST

S0

)
= −ln

(
S∗

S0

)
− ln

(
ST

S∗

)
(4.35)

to include the strike break point S∗. Then, substituting from Equation 4.16,
we obtain

−ln
(

ST

S0

)
= −ln

(
S∗

S0

)
− ST − S∗

S∗
+
∫

S∗

0

1
K2 P (K, T) dK

+
∫

∞

S∗

1
K2 C(K, T) dK

(4.36)

2 This section follows closely Kresimir Demeterfi, Emanuel Derman, Michael Kamal,
and Joseph Zou, “A Guide to Volatility and Variance Swaps,” Journal of Derivatives
4 (1999): 9–32.
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Here P(K, T) and C(K, T) denote the values at expiration time T of puts and
calls respectively with strike K, and (ST – S∗)/S∗ is the payoff of 1/S∗ forward
contracts on the stock with a delivery price of S∗.

In a risk-neutral world, the expected value of the right-hand-side of
Equation 4.36 at expiration is given by

−E
[
ln

(
ST

S0

)]
= −ln

(
S∗

S0

)
− S0erT − S∗

S∗
+
∫

S∗

0

1
K2 erTP (K, 0) dK

+
∫

∞

S∗

1
K2 erTC(K, 0) dK

(4.37)

where, by the usual results of risk-neutral valuation, C(K, 0) =
e−rTE[C(K, T)] and P(K, 0) = e−rTE[P(K, T)].

Substituting from Equation 4.34 and Equation 4.37 into Equation 4.33,
we obtain

𝜋(S0, S0, 0, T) = 2
T

[

rT − ln
(

S∗

S0

)
− S0erT − S∗

S∗
+ erT

∫

S∗

0

1
K2 P(K, 0) dK

+ erT
∫

∞

S∗

1
K2 C(K, 0) dK

] (4.38)

This result is independent of how volatilities vary between inception and
expiration, as long as geometric Brownian motion for the stock price still
holds. The final value depends only on the initial prices of the puts and calls,
which are taken directly from the market.

If we set S∗ to S0, the equation takes the simpler form

𝜋(S0, S0, 0, T) = 2
T

[

rT − (erT − 1) + erT
∫

S0

0

1
K2 P(K, 0) dK

+ erT
∫

∞

S0

1
K2 C(K, 0) dK

] (4.39)

For typical values of r and T, rT and (erT – 1) are extremely close in value.
The value of our variance replication is then

𝜋(S0, S0, 0, T) ≈ 2
T

[

erT
∫

S0

0

1
K2 P(K, 0) dK + erT

∫

∞

S0

1
K2 C(K, 0) dK

]

(4.40)
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The same logic we used to derive Equation 4.16, can be used to show
that the value of this variance replication at expiration is equal to

𝜋
(
ST , S0, T, T

)
= 2

T

[(
ST − S0

S0

)
− ln

(
ST

S0

)]
(4.41)

This is the same result we derived previously using the BSM pricing
formula.

Repl icat ion with a F in i te Number of Opt ions

If the market provided prices for options with every conceivable strike price,
we could use Equation 4.40 to calculate the market price of variance directly.
The calculated price would be independent of future volatility, based only
on the initial market prices. Unfortunately, financial markets provide only a
finite number of strike prices available for any underlier and expiration date.

A possible solution is to use the piecewise-linear replication strategy
outlined in the preceding chapter to approximate the payoff at expiration
of our infinite options portfolio described by Equation 4.41. Figure 4.6
demonstrates how we might approximate the payoff of this portfolio using
a piecewise-linear function.

The continuous function approaches infinity as ST approaches zero, and
is defined for all positive prices. In practice, it is enough to approximate most
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F IGURE 4.6 Piecewise-Linear Replication of a Variance Swap
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of the function. It turns out that we can approximate this function using only
puts and calls, as follows

V (t) = ⋯ +
(
𝜆P

1 − 𝜆P
0

)
P
(
K1

P

)
+ 𝜆P

0P
(
K0

)
+ 𝜆C

0 C
(
K0

)

+
(
𝜆C

1 − 𝜆C
0

)
C
(
K1

C

)
+⋯ (4.42)

where each 𝜆 represents the magnitude of the slope of a line segment as
shown in Figure 4.6. For more details on the derivation of Equation 4.42,
see Appendix C.

In this way, the market price of variance can be approximated using a
finite set of puts and calls. This result is independent of how volatility varies
in the future, and the prices of the options in the replicating portfolio can be
taken directly from the market. The following sample problem makes clear
how this might work in practice.

SAMPLE PROBLEM

Question:

Estimate the market price of one-year variance on the S&P 500.
Assume that the riskless rate is zero, and the current level of the S&P
is 2,000. The market prices of one-year options on the S&P 500 are
listed in the following table.

Ki Ci Pi

1,200 802.91 2.91
1,400 614.38 14.38
1,600 445.31 45.31
1,800 305.44 105.44
2,000 198.95 198.95
2,200 123.81 323.81
2,400 74.12 474.12
2,600 42.97 642.97
2,800 24.28 824.28

Answer:

We can use Equation 4.42 to approximate the market price of vari-
ance. We begin by calculating the value, 𝜋(Ki), of the replicating
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portfolio at each of the available strike prices Ki, setting K0 =
S0 and using Equation 4.41. Next we calculate the slopes for our
piecewise-linear function, [𝜋(Ki) − 𝜋(Ki–1)]/(Ki − Ki–1). We then use
the absolute value of the slopes, 𝜆i, to calculate the weights for the
options.

In the rightmost column of the following table, we multiply the
weights by the option prices. We use puts below the current market
level and calls at and above the current market level. By adding the
values in the rightmost column, we obtain our approximate price for
variance. Prices for variance swaps are typically quoted in terms of
volatility. Our final answer is then 𝜎2

K = 25.15%2.

Ki 𝜋(Ki) 𝜆i wi Ci Pi wi × Oi

1,000 0.386
1,200 0.222 0.000823 0.000282 2.91 0.0008
1,400 0.113 0.000542 0.000206 14.38 0.0030
1,600 0.046 0.000335 0.000157 45.31 0.0071
1,800 0.011 0.000178 0.000124 105.44 0.0131
2,000 0.000 0.000054 0.000054 198.95 0.0107
2,000 0.000 0.000047 0.000047 198.95 0.0093
2,200 0.009 0.000130 0.000083 123.81 0.0103
2,400 0.035 0.000200 0.000070 74.12 0.0052
2,600 0.075 0.000259 0.000059 42.97 0.0026
2,800 0.127 0.000310 0.000051 24.28 0.0012
3,000 0.189

Variance 0.0632
Vol 0.2515

In this example, we were fortunate to have an option with a strike
price at S∗ = Ser𝜏 , but we used only nine options, with strikes extend-
ing just ±50% from the current market level. How accurate is the price
that we obtained? The option prices given at the start of the problem
were generated using the BSM formula with a constant implied volatil-
ity of 25%. We were not too far off, but in practice we would want to
use more points to approximate the curve.
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Note that our piecewise-linear approximation is biased: As you can see
in Figure 4.6, our approximation is almost always above the true curve.
This causes our piecewise-linear approximation to overestimate the value of
a variance swap. As we add more options, at adjacent strikes our approx-
imation more closely traces the true curve, and this bias decreases. The
only place where our linear approximation is below the curve is at either
extreme, where out-of-the-money option prices are likely to be negligible
and have little effect on the value of the fair variance. If the range of
options used in our replicating portfolio is too narrow, however, the absence
of these segments can cause us to underestimate the value of a variance
swap.

While it is very easy to add more options to the calculation, the market
may not provide us with a large number of liquid options. One potential
solution would be to interpolate prices between available options. Using data
from our sample problem: If the price of a call at 2,000 is $198.95 and the
price of a call at 2,200 is $123.81, then we might imagine that the price of a
call at 2,100 is $161.38. Option prices are not generally well approximated
by a function that is linear in the strike price. A potentially better solution is
to assume a certain structure for the volatility smile. For example, we could
assume that the implied volatility is linear in the strike price or the option
delta, and use the implied volatilities to calculate additional prices. Using this
approach, we could calculate option prices for any strike price as required by
Equation 4.40. Demeterfi et al. (1999) show how, if we are willing to assume
that implied volatility is linear in the strike or delta for all strikes, the value of
a variance swap can be calculated using very simple closed-form solutions.
For example, assume that the BSM implied volatility can be described by the
following equation:

𝜎(K) = 𝜎F − b
K − SF

SF
(4.43)

Here SF is the forward price of the stock at the expiration date of the variance
swap, 𝜎F is the implied volatility of an option with a strike price equal to SF,
and b is a constant. Demeterfi et al. show that the price of variance is then
well approximated by

𝜎2
K = 𝜎2

F (1 + 3Tb2) (4.44)

Additional terms can be added inside the parentheses to provide an even
better approximation.
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Errors in Repl icat ion

To perfectly value a variance swap by replication requires knowledge of
option prices at all possible strikes, an infinite number of them. Earlier in
the chapter we demonstrated how we could value variance swaps as if the
market provided options at all possible strikes. In the previous section we
showed how we might approximate a variance swap using a finite number of
options. This raises a general question: If valuation is based on a replication
strategy that is possible only in theory, how should the price of a variance
swap differ in practice? Unlike perfect theoretical replication, which allows
for riskless arbitrage, practical replication with a finite number of options
will necessarily entail risk and require a premium to the theoretical price.

The limited number of strikes causes two distinct problems: First,
because there are gaps between adjacent strike prices, we lack a continuum
of options; and second, because the overall range of strike prices is limited
in range, the replication will fail if the stock price moves outside the range
of strikes. In practice, the gaps between adjacent strike prices are not a seri-
ous difficulty. For example, if the market for options on an index is limited
to strike prices at 90, 95, 100, 105, and 110, we can do a reasonable job
of approximating the payoff of a variance swap near 102. But, if the index
moves significantly below 90 or above 110, there will be no options with
strikes that have adequate gamma to capture the variance of the index in
those regions. If we omit from the replicating portfolio options with strike
prices in some region, then we are gambling that the stock price will never
penetrate that region. This problem is also evident in Figure 4.4, where the
kappa of our 1/K2 portfolio of options is relatively flat in the region where
strikes are available, and steep and unstable outside this range.

As time goes by, extreme index or stock prices become more likely. The
longer the time to expiration of a variance swap, the broader the range of
strikes necessary for the replicating portfolio.

In deriving the formula for replication, we assumed that there were no
jumps in the underlying price. Jumps destroy the replication for two reasons.
First, because they are large, jumps can move the security price out of the
range of available strikes. Second, and perhaps more important, hedging a
log contract to replicate a variance swap captures not only the quadratic
contributions (dS/S)2 that define the variance of the underlying stock, but
also higher-order terms such as (dS/S)3. If we expand the log term in the
last line of Equation 4.25 in a Taylor series for small (ΔSi/Si), we will get
(dS/S)2 terms that match the variance captured by the variance swap, but
also higher-order terms such as (dS/S)3. We neglected these contributions in
Equation 4.26, assuming they were small. Such higher-order terms are indeed
negligible when diffusion is continuous, but they become important when
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large jumps can occur. In that case, the higher-order terms in the expansion
of the log function cause the hedged log contract to deviate in value from
the true variance. For more on the impact of jumps on variance swap prices,
and for more details on variance swap replication in general, see Demeterfi
et al. (1999).

THE VIX VOLATIL ITY INDEX

In 1993 the Chicago Board Options Exchange (CBOE) created a volatility
index, the VIX, which was meant to track the implied volatility of S&P 100
options. The index was based on a weighted average of various at-the-money
and out-of-the-money implied volatilities. This initial method, while simple
to understand, was somewhat arbitrary.

In 2003, the CBOE changed the underlying index for the VIX from the
S&P 100 to the S&P 500. At the same time, it changed the calculation of the
VIX, basing it on the square root of the fair delivery price of a variance swap,
using a valuation formula similar to Equation 4.38 (the formula the CBOE
uses included dividends). The precise formula for the variance involves a
finite sum over the market prices of traded options on the S&P 500 with a
range of strikes, one sum for options with expirations less than 30 days and
another sum for options with expirations greater than 30 days. The CBOE
then interpolates between the two variances to arrive at a 30-day volatility.

The VIX defined in this way has a number of advantages, the greatest
one being that it is defined in terms of the actual market prices of options on
the S&P 500. The same assumptions that underlie Equation 4.38 underlie
the VIX. Because of this, the VIX is relatively insensitive to model issues.
It does not assume the BSM formula, only that the returns of the S&P 500
are continuous. Because the value of the VIX is based on listed options, it
can be replicated, allowing traders to reasonably price and hedge forwards
and futures on the VIX. Options on the VIX can also be valued, though
that requires an assumption about the evolution of variance, in particular
knowledge of the volatility of volatility. The CBOE now offers listed futures
and options on the VIX.

END-OF-CHAPTER PROBLEMS

4-1. Using the BSM pricing formula, calculate the price and vega of a vanilla
European call option on the Nikkei 225 Index (NKY) with six months
to expiration and a strike price of 15,000. The current level of the
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NKY is also 15,000. Assume no dividends, a riskless rate of 0%, and
an implied volatility of 20%. If volatility increases to 21%, by how
much would you expect the price to change? How much does it actu-
ally change?

4-2. Your firm previously entered into a volatility swap on the Euro Stoxx
50 Index (SX5E) with €1 million notional, and a strike of 25%. Your
firm is long volatility and will profit if realized volatility is higher
than 25%. The volatility swap currently has one year to expiration.
Your firm wishes to hedge this exposure, but the only contracts that
counterparties are willing to offer are on variance swaps. Assuming
you can sell variance on the SX5E at a strike of 25%, use Equation
4.6 to determine the notional of the variance swap needed to hedge
the existing volatility swap. If realized volatility is 24%, what will
be the payoff of the hedged position? What if the realized volatility
is 30%?

4-3. Create a graph of kappa for five options with strikes at 80, 90, 100, 110,
and 120, all with three months to expiration, and 15% implied volatil-
ity. The x-axis of the graph, which represents the price of the underly-
ing stock, should range from 60 to 140. Assume BSM, zero dividends,
and zero interest rates. In addition to the individual options, create a
weighted average vega for the five options, using weights inversely pro-
portional to the squared strike, which sum to one.

4-4. Price a one-year variance swap on the shares of SOP Corp. (SOP).
Assume that the only strikes available in the market range from $5
to $15, and that, unusually, the price of one-year options on SOP can
be expressed as the following second-order polynomial over this strike
range

C(K) = 1
20

K2 − 1.5K + 11.25

P(K) = 1
20

K2 − 0.5K + 1.25

Assume that interest rates and dividend yields are zero, and that the
current price of SOP is $10 per share. What is the fair strike for the
one-year variance swap constructed out of strikes only in the available
range?

4-5. Price a six-month variance swap on the stock of Google Inc. (GOOG),
which is currently trading at $500 per share. Assume no dividends
and zero interest rates. Use piecewise-linear replication, with strikes
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confined to the range $350 to $650, to calculate the fair variance for
the swap. Assume a BSM implied volatility of 40% for all of the option
prices. You can find the option weights by calculating the value of the
replicating portfolio (Equation 4.41) at $300, $350, $450, . . ., $650,
$700.

4-6. Repeat the previous problem, extending the range of options to $250,
$300,… , $750.



CHAPTER 5
The P&L of Hedged Option

Strategies in a
Black-Scholes-Merton World

� A call option and its underlying stock can be combined to form an
instantaneously riskless portfolio.

� The Black-Scholes-Merton equation.
� Black-Scholes-Merton options pricing formula.
� You can hedge the risk of an option in a variety of ways.
� The profit and loss (P&L) from hedging an option depends on which

volatility you use to hedge.

THE BLACK-SCHOLES-MERTON EQUATION

Valuation by replication is the theoretical bedrock upon which the Black-
Scholes-Merton (BSM) options pricing formula is based. To derive the BSM
formula, we need to make several assumptions, namely:

� The movement of the underlying stock price is continuous, with constant
volatility and no jumps (one-factor geometric Brownian motion).

� Traders can hedge continuously by taking on arbitrarily large long or
short positions.

� No bid-ask spreads.
� No transaction costs.
� No forced unwinding of positions.

Consider at time t a stock with price S, a known constant volatility
𝜎S, and an expected return, 𝜇S, together with a riskless bond with price B

85
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that yields r, assumed constant through time. The stochastic evolution of the
stock and bond prices are given by

dS = 𝜇SSdt + 𝜎SSdZ

dB = Brdt
(5.1)

where dZ is a standard Wiener process. The price C of a call option on the
stock at time t is a function of the stock price and time. Using Itô’s lemma,
the evolution of C is given by

dC = 𝜕C
𝜕t

dt + 𝜕C
𝜕S

dS + 1
2
𝜕2C
𝜕S2

(𝜎SS)2dt

=
{

𝜕C
𝜕t

+ 𝜕C
𝜕S

𝜇SS + 1
2
𝜕2C
𝜕S2

(𝜎SS)2
}

dt + 𝜕C
𝜕S

𝜎SSdZ

= 𝜇CCdt + 𝜎CCdZ

(5.2)

where, by definition

𝜇C = 1
C

{
𝜕C
𝜕t

+ 𝜕C
𝜕S

𝜇SS + 1
2
𝜕2C
𝜕S2

(𝜎SS)2
}

𝜎C = S
C
𝜕C
𝜕S

𝜎S = 𝜕lnC
𝜕lnS

𝜎S

(5.3)

The risk of both the stock and the call in Equations 5.1 and 5.2 depend
only on the stochastic term dZ. We can create an instantaneously riskless
portfolio by combining positions in S and C so as to cancel their risk. Define
𝜋 = 𝛼S + C, where 𝛼 is the number of shares of stock required to hedge the
risk of the call at time t. Then

d𝜋 = 𝛼(𝜇SSdt + 𝜎SSdZ) + (𝜇CCdt + 𝜎CCdZ)

= (𝛼𝜇SS + 𝜇CC)dt + (𝛼𝜎SS + 𝜎CC)dZ
(5.4)

For the portfolio to be instantaneously riskless, the coefficient of the
stochastic term dZ must be zero. We require

𝛼𝜎SS + 𝜎CC = 0

𝛼 = −
𝜎CC

𝜎SS

(5.5)
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in which case

d𝜋 = (𝛼𝜇SS + 𝜇CC)dt (5.6)

Since this portfolio is instantaneously riskless at time t, then, by the law
of one price, it must earn the riskless rate r, so that

d𝜋 = 𝜋rdt (5.7)

For our hedged portfolio, this is equivalent to

𝛼𝜇SS + 𝜇CC = (𝛼S + C)r (5.8)

Rearranging the terms in Equation 5.8, we obtain

𝛼 = −
C(𝜇C − r)
S(𝜇S − r)

(5.9)

Combining Equation 5.5 and Equation 5.9, we deduce that

(𝜇C − r)
𝜎C

=
(𝜇S − r)

𝜎S
(5.10)

That is, the call option and its underlying stock must have the same instan-
taneous Sharpe ratios. If riskless arbitrage is impossible, then the stock and
the option must have equal expected excess returns per unit of volatility.
This is the argument by which Black and Scholes originally derived the BSM
equation.

Substituting from Equation 5.3 into Equation 5.10 for 𝜇C and 𝜎C, we
obtain

1
C

{
𝜕C
𝜕t

+ 𝜕C
𝜕S

𝜇SS + 1
2
𝜕2C
𝜕S2

(𝜎SS)2
}

− r

1
C
𝜕C
𝜕S

𝜎SS
=

(𝜇S − r)
𝜎S

(5.11)

which leads to

𝜕C
𝜕t

+ rS
𝜕C
𝜕S

+ 1
2
𝜎2

S S2 𝜕
2C
𝜕S2

= rC (5.12)

Equation 5.12 is the BSM equation. Note how the terms involving 𝜇SS can-
celed out of the equation, so that there is no dependence on the drift of the
stock price.
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We’ll look at the solution to this equation in more detail in subsequent
chapters. It’s good for a quantitative person to get very familiar with
manipulating the solution, its derivatives or so-called Greeks, and the
approximations to it via Taylor expansions when the option is close to
being at-the-money (i.e., S ≈ K). Some useful derivatives of the BSM solution
can be found in Appendix A.

Let’s now assume that the riskless rate r is independent of time, and let’s
denote the constant volatility of the stock by 𝜎. The solution to the BSM
equation at time t for a European call option with strike K that expires at
time T on a stock that pays no dividends takes the following form:

C(S, K, t, T, 𝜎, r) = e−r(T−t)[SFN(d1) − KN(d2)]

SF = er(T−t)S

d1 =
ln
(

SF

K

)
+
(
𝜎2

2

)
(T − t)

𝜎
√

T − t
d2 =

ln
(

SF

K

)
−
(
𝜎2

2

)
(T − t)

𝜎
√

T − t

N(z) = 1
√

2𝜋 ∫

z

−∞
e−

1
2

y2
dy

(5.13)

Here SF denotes the forward price at time T of the stock with price S at time
t, and N(z) is the cumulative normal distribution. Notice that except for
the r(T – t) term, time to expiration and volatility always appear together
in the combination 𝜎2(T – t). If you rewrite the solution in terms of the
prices of traded securities—the initial present value of the bond KPV and the
initial stock price S—then indeed time and volatility always appear together
in one expression. Define 𝜏 = (T – t) and define the total volatility over the
remaining life of the option, v, as v = 𝜎

√
𝜏. Then

C(S, K, 𝜏, v, r) = [SN(d1) − KPVN(d2)]

KPV = e−r𝜏K

d1 =
ln
(

S
KPV

)
+ 1

2
v2

v
d2 =

ln
(

S
KPV

)
− 1

2
v2

v

(5.14)

Smart users of the formula can enter their estimates of the total volatil-
ity over the remaining life of the option, taking account of the number of
business days and holidays during that time, knowing that volatility tends
to be smaller on weekends than on weekdays and even varies systematically
during the trading day, for example.
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Option traders get very familiar with the behavior of vanilla option
prices and hedge ratios because they watch their movement and deltas all day
long, and so get a feel for how option prices vary with stock price and time.
Theorists must do the same; they need to get familiar and gain intuition, but
they have to do it by playing with the formula, manipulating, understanding,
and approximating it, rather than by watching prices on a screen.

SAMPLE PROBLEM

Question:

According to analysts at your firm, the expected return on Microsoft
(MSFT) is 11%. MSFT is currently trading at $50. Three-month at-
the-money calls on MSFT have a delta of 0.52 and trade at $2.00 with
an implied volatility of 15%. For this question, assume that implied
volatility and realized volatility are equal and that option prices are
fairly determined by the BSM formula. What is the current expected
volatility of the call options?

Answer:

From Equation 5.3, we have

𝜎C = S
C
𝜕C
𝜕S

𝜎S

= 50
2

× 0.52 × 0.15

= 1.95

The current volatility of the option is 195%, much riskier than the
stock itself.

THE P&L OF HEDGED TRADING STRATEGIES

At any instant, as we have shown earlier in Chapter 3, a hedged option
position is a bet on future volatility. How much profit or loss do we make
as time passes and we continue hedging? We now derive a formula for the
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profit or loss that arises from dynamically hedging an option at regular time
intervals.1

Consider an option C on an underlying stock S. Imagine that the option
is hedged at discrete points in time, t0, t1, t2,… , tn, such that ti – ti−1 = 𝛿t and
with tn representing the expiration time of the option. We use the notation
Ci = C(Si, ti) to denote the market price of the option at time ti when the
stock price is Si, and we use Δi = Δ(Si, ti) to denote the number of shares of
the stock S that we short at the start of each period i. Any cash received is
invested at the riskless rate r, and any cash borrowed is funded at the same
rate. It is very important to remain aware that the function Δi is completely
arbitrary; it merely defines the hedged trading strategy—hedged in the sense
that some amount of stock is combined with the option—and is in principle
completely unrelated to the BSM hedge ratio ΔBS. The formula we are about
to derive holds for any arbitrary hedged trading strategy, though we may
later apply it to one that uses the BSM hedge ratio.

We begin by holding the option worth C0. Table 5.1 shows how the port-
folio changes in value over each time period, how the subsequent rehedging
is accomplished at the start of the next period, and what the net value of
the hedged position and the cash is. Whenever stock is shorted or bought
back, cash is received or paid, and the net cash balance always grows at the
riskless rate r during each period.

Looking at the last line of Table 5.1, you can see that the result of buying
the initial call at a price C0, shorting stock to rehedge it in each successive
period, and then investing any resultant cash in an interest-bearing account
leads, after n steps, to a final value given in the last column: Cn – ΔnSn +
Δ0S0enr𝛿t + (Δ1 − Δ0) S1e(n–1)r𝛿t + (Δ2 – Δ1) S2e(n–2)r𝛿t +⋯ + (Δn – Δn–1) Sn.

In the limit, as the number of periods n → ∞ with n𝛿t = tn − t0 ≡ T
remaining fixed, we can replace the sums by integrals to obtain the result

CT − ΔTST + Δ0S0erT +
∫

T

0
er(T−x)Sx[dΔx]b (5.15)

Here we have replaced the subscript n with T, to clearly indicate that these
are the values at expiration. The subscript b at the end of the formula denotes
a backward Itô integral2 in which the increment dΔx is the infinitesimal

1 The following sections are based on Riaz Ahmad and Paul Wilmott, “Which Free
Lunch Would You Like Today Sir?: Delta Hedging, Volatility, Arbitrage and Optimal
Portfolios” (2005). This chapter also owes a debt to Peter Carr, “Frequently Asked
Questions in Option Pricing Theory” (1999).
2 For a review of backward Itô integrals, see Appendix B.
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change in Δ that occurred just before the stock price S was evaluated, in
contrast to the usual forward Itô integral where dΔ occurs after S.

We see that an initial investment of C0, continuously hedged, leads to
an amount given by Equation 5.15 at expiration. According to Equation
5.15, for an arbitrary hedging strategy defined by Δ(S, t), the future value of
the profit and loss (P&L) will depend on the path the stock price takes to
expiration. Monte Carlo simulation over a variety of paths can be used to
generate a histogram of the P&L.

In the idealized BSM case, the option is perfectly hedged at every instant,
and therefore the final P&L is independent of the stock price path. Because
the instantaneously hedged option is riskless, the hedging strategy replicates
a riskless bond and therefore, by the law of one price, must have the same
final value. In that case, the fair value C0 of the option is the risklessly dis-
counted value of the final path-independent payoff, or, conversely, the future
value of C0 is equal to the payoff, so that the fair price C0 is given by

C0erT = CT − ΔTST + Δ0S0erT +
∫

T

0
er(T−x)Sx[dΔx]b (5.16)

Note that this formula for C0 holds only if the hedge is a perfect riskless
hedge. In that case the value for C0 is unambiguous. You can rewrite Equa-
tion 5.16 more transparently as

(C0 − Δ0S0)erT = (CT − ΔTST) +
∫

T

0
er(T−x)Sx[dΔx]b (5.17)

In other words, the future value of the initial hedged portfolio is equal to the
final value of the hedged portfolio plus the future value of all the incremental
hedges.

You can integrate the last term in Equation 5.17 by parts using the
relation

er(T−x)Sx[dΔx]b = d[er(T−x)SxΔx] + er(T−x)ΔxrSxdx − er(T−x)ΔxdSx (5.18)

to obtain

C0 = CTe−rT −
∫

T

0
Δ(Sx, x)[dSx − Sxrdx]e−rx (5.19)

Equation 5.19 provides a way to calculate the initial value of a con-
tinuously hedged option in terms of its final payoff and the hedging strat-
egy. Note that the right-hand side of both Equation 5.18 and Equation 5.19
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involve forward Itô integrals, not backward Itô integrals. Appendix B pro-
vides a simple account of the relationship between forward and backward
Itô integrals, and a schematic justification of the integration by parts. Note
that the formulas in Equation 5.17 and Equation 5.19 produce a unique
path-independent value for the call only if the option is continuously hedged
via the BSM delta. In that case, the only interest rate appearing in Equation
5.19 is the riskless rate r. Otherwise, the integrals on the right-hand side will
depend on the path the stock price takes to expiration, and different paths
of the stock price will lead to different values for C0. If you hedge perfectly
and continuously with the BSM hedge ratio ΔBS that exactly cancels out
the exposure of the option to the stock, the hedged portfolio is riskless at
every point in time, and therefore independent of the path the stock takes to
expiration.

So far, we have made no assumption about the dynamics of stock move-
ment. Now, assume that the underlying stock evolves according to general-
ized Brownian motion, and furthermore that stock drift is equal to the actual
riskless rate r, so that dS − Srdt = 𝜎SdZ. Then

C0 = CTe−rT −
∫

T

0
Δ(Sx, x)𝜎Sxe−rxdZx (5.20)

As mentioned earlier, the initial value of the call is path dependent, unless
the hedge ratio Δ = ΔBS. However, suppose we take the expected value of
the call over all stochastic innovations dZ of the stock price even when Δ ≠

ΔBS. Then

E[C0] = E[CT]e−rT (5.21)

since the expected value of each increment dZ is zero for a Wiener process.
Equation 5.21 reduces to the BSM formula when you take the expected value
over the lognormal distribution of the stock price at expiration.

We conclude that—provided that the stock undergoes geometric Brown-
ian motion with drift r, irrespective of what hedge ratio Δ is used, no matter
what hedging formula you use for delta, and even if you don’t hedge at all—
the expected value of the call is given by the BSM formula.

THE EFFECT OF DIFFERENT HEDGING STRATEGIES
IN THE BSM WORLD

We now analyze the P&L that results from hedging an option according to
the BSM formula, assuming geometric Brownian motion for the stock price.
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In the previous section, we rehedged the option at each intermediate time
ti between inception and expiration by shorting Δi shares of stock. The for-
mula for calculating the BSM hedge ratio Δi requires a value for the stock’s
volatility as an input. For pedagogical reasons, in order to explore the sub-
tleties of hedging, let’s pretend that we alone have certain knowledge of the
future realized volatility of the stock. Let’s also assume that other people
don’t have this information, so the market values the option at an implied
volatility that is different from its future realized volatility. (Of course, if
everyone knew the future certain volatility of the stock, and if the world
strictly obeyed the assumptions of BSM, this couldn’t happen.)3

So, knowing that there is a mismatch between the implied volatility
and the future realized volatility, should we calculate Δi using the option’s
implied volatility or the stock’s realized volatility? Or even some other value?
How will the P&L of a hedging strategy depend on the choice of delta?

In the following sections we examine the impact on the profits of hedging
an option with realized volatility, implied volatility, and an arbitrary constant
volatility in this idealized world.

The P&L When Hedging with Real i zed Volat i l i ty

Consider the idealized case where we know that the future realized volatil-
ity 𝜎R will be greater than current implied volatility 𝛴. How can we make
money as an options trader? We buy the option V at its implied volatility
and then replicate it perfectly by hedging at the known realized volatility.
The hedged portfolio at any time t is given by

𝜋(I, R) = VI − ΔRS (5.22)

where at any time t the option is valued at the implied volatility and the
hedge is computed at the realized volatility 𝜎R.

3 The real world doesn’t strictly satisfy the BSM assumptions. Realized volatility
changes from moment to moment. Implied volatility, a parameter extracted by match-
ing the BSM formula to a market price, can be plausibly regarded as the market’s
opinion of future realized volatility plus some premium for other unknowns (hedg-
ing costs, inability to hedge perfectly, uncertainty of future volatility, etc.). For these
reasons, implied volatility is usually greater than the market’s estimate of future real-
ized volatility. Implied volatility also tends to be greater than recent realized volatility.
(Immediately following periods of high market volatility, though, markets will often
expect a calmer future, leading to an implied volatility that is lower than recent real-
ized volatility.)
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Clearly, the present value of the total P&L generated over the life of the
option from this trade should be

PV[P&L(I, R)] = V(S, 𝜏, 𝜎R) − V(S, 𝜏,𝛴) (5.23)

where V(S, 𝜏, 𝜎R) is the value of the option based on actual volatility,
V(S, 𝜏, 𝛴) is the value of the option based on implied volatility, 𝜏 is the time
to expiration, and for brevity we have suppressed displaying the dependence
of nonessential variables such as interest rates and dividend yields. We will
sometimes write V(S, 𝜏, 𝜎R) as VR or VR,t, and V(S, 𝜏, 𝛴) as VI or VI,t.

How is this future known profit realized as the stock evolves through
time? Assume the stock price, S, evolves with drift 𝜇 and volatility 𝜎R,
so that

dS = 𝜇Sdt + 𝜎RSdZ (5.24)

where 𝜇 is not necessarily equal to the riskless rate r. Also, assume that the
stock pays a continuous dividend yield, D.

The BSM hedge ratio for a call with realized volatility 𝜎R, is given by

ΔR = e−D𝜏N(d1)

d1 =
ln
(

SF

K

)
+ 1

2
𝜎2

R𝜏

𝜎R

√
𝜏

SF = Se(r−D)𝜏
(5.25)

where SF denotes the forward price of the stock.
Now let’s examine the incremental profit dP&L(I, R) generated by this

hedging strategy during a subsequent time interval dt when the stock price
changes by dS. We see from Equation 5.22 that

dP&L(I, R) = dVI − ΔRdS − ΔRSDdt − (VI − ΔRS)rdt (5.26)

The first term is the increase in the value of the long position in the option, the
second is the decrease in the value of the short position in the stock, the third
term is the value of dividends that must be paid to the lender of the short
position, and the last term, (VI − ΔRS)rdt, represents the interest on the cost
of borrowing an amount (VI − ΔRS) used to set up the initial hedge portfolio.
We have assumed that we can borrow at the riskless rate to establish the
position.

The incremental P&L dP&L(I, R) in Equation 5.26 depends on both
the implied volatility implicit in the value of VI and the realized volatility
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implicit in the value of ΔR. We can regroup the implied and realized terms
to obtain

dP&L(I, R) = dVI − rVIdt − ΔR[dS − (r − D)Sdt] (5.27)

where the terms in square brackets in Equation 5.27 are the terms that
depend on realized volatility.

Equation 5.27 computes the incremental P&L when we value at I and
hedge at R. Had we valued at R and hedged at R, the hedging strategy would
have been the riskless one that leads to the BSM equation. With the riskless
hedging strategy, the increase in value of the hedge portfolio should be no
different from the interest earned on the position at the riskless rate, so that
dP&L(R, R) = 0, meaning that

dP&L(R, R) = 0 = dVR − VRrdt − ΔR[dS − (r − D)Sdt] (5.28)

All the terms in Equation 5.28, in contrast to those in Equation 5.27, depend
on 𝜎R.

We can similarly rewrite Equation 5.28 to obtain

ΔR[dS − (r − D)Sdt] = dVR − VRrdt (5.29)

Substituting Equation 5.29 in Equation 5.27, we arrive at

dP&L(I, R) = dVI − dVR − (VI − VR)rdt (5.30)

Using the product rule to take the derivative of e−rt(VI – VR) with respect to
t, we obtain

dP&L(I, R) = ertd
[
e−rt(VI − VR)

]
(5.31)

expressing the incremental P&L in terms of a complete differential, which
will make it easier to calculate the total P&L over the life of the option.

The present value of this profit is obtained by discounting to the initial
time t0, so that

PV[dP&L(I, R)] = e−r(t−t0)ertd
[
e−rt(VI − VR)

]

= ert0d[e−rt(VI − VR)]
(5.32)
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To obtain the present value of the entire P&L of our hedging strategy
over the life of the option, we integrate to obtain

PV[P&L(I, R)] = ert0
∫

T

t0

d
[
e−rt(VI − VR)

]

= ert0
[
e−rt(VI − VR)

]T
t0

(5.33)

At expiration, when t = T, the value of the option is simply its intrinsic value,
independent of volatility. For example, a vanilla call at expiration is worth
max[ST – K, 0], independent of volatility or indeed of any model; likewise
VI,T = VR,T. The final present value is then

PV[P&L(I, R)] = ert0
[
e−rT ⋅ 0 − e−rt0 (VI,t − VR,t)

]

= VR,t − VI,t
(5.34)

just as we conjectured in Equation 5.23. Provided we know the future real-
ized volatility and provided that we can hedge continuously, the final P&L
at the expiration of the option is known and deterministic and is equal to
the difference between the value of the option based on realized volatility
and the value of the option based on implied volatility.

How does the P&L vary on the way to its known value at expiration?
We will show that the P&L, while in sum total deterministic, has a stochas-
tic component that vanishes only as we reach expiration. This is somewhat
analogous to the value of a zero coupon bond, whose final payoff at expira-
tion is known but whose present value varies with the level of interest rates.

We showed in Equation 5.26 that the P&L over a short time interval dt
after hedging with implied volatility is given by

dP&L(I, R) = dVI − ΔRdS − ΔRSDdt − (VI − ΔRS)rdt (5.35)

To highlight the random component of the P&L, we can use Itô’s lemma
to expand dVI in Equation 5.35 in terms of the Wiener innovations dZ, and
use the BSM equation to simplify the result as follows

dP&L(I, R) =
[
ΘIdt + ΔIdS + 1

2
ΓIS

2𝜎2
Rdt

]
− ΔRdS − ΔRSDdt

−(VI − ΔRS)rdt

=
[
ΘI +

1
2
ΓIS

2𝜎2
R

]
dt + (ΔI − ΔR)dS − ΔRSDdt

−(VI − ΔRS)rdt

(5.36)
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where ΘI denotes the time decay of the option VI valued at implied volatility
𝛴, and ΓI is the convexity of VI.

The BSM equation for VI, valued at I and hedged at I, can be
written as

ΘI = −1
2
ΓIS

2𝛴2 + rVI − (r − D)SΔI (5.37)

Substituting Equation 5.37 into Equation 5.36, we obtain

dP&L(I, R) = 1
2
ΓIS

2 (𝜎2
R − 𝛴2) dt + (ΔI − ΔR)[(𝜇 − r + D)Sdt + 𝜎RSdZ]

(5.38)

Thus, even though we have shown that the final P&L is deterministic, the
increments in the P&L when you value at I and hedge at R have a random
component dZ proportional to the mismatch between ΔI and ΔR. Note that
Equation 5.38 is the nondiscounted P&L, not its present value. As we saw
earlier, the total present value of the P&L should equal the difference in
price between the option valued at implied volatility and valued at realized
volatility.

To illustrate this random behavior that nevertheless culminates in a
known final value, Figure 5.1 shows a plot of the cumulative discounted
P&L along 10 random stock paths, each generated with a realized volatility
different from that of implied volatility.
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F IGURE 5.2 Hedging with Realized Volatility: Cumulative
Discounted P&L of a Call with One Year to Expiration
Simulated with 10,000 Steps

The accuracy with which the simulated P&L converges to the known
value depends on how continuously the hedging is carried out, of course.
Our theoretical analysis assumed continuous hedging. Figure 5.1 uses only
100 discretely spaced hedges. Because of this, the final P&L is almost, but
not quite, path-independent.

Figure 5.2 shows a similar plot of the simulated cumulative discounted
P&L when we rehedge 10,000 times. With 10,000 steps, the final P&L is
virtually independent of the stock path.

Bounds on the P&L When Hedging at the
Real i zed Volat i l i ty

Notice the upper and lower bounds that seem to define the boundaries of
the P&L in Figure 5.1 and Figure 5.2. We can understand the location of
the bounds by integrating Equation 5.32 from the inception of the position
at time t0, when the stock price is S0, to an intermediate time m, when the
stock price is Sm, to obtain

PV[P&L(I, R)] = ert0
∫

m

t0

d
[
e−rt(VI − VR)

]

= ert0
[
e−rt(VI − VR)

]m
t0

= ert0
[
e−rm(VI,m − VR,m) − e−rt0 (VI,0 − VR,0)

]

= (VR,0 − VI,0) − e−r(m−t0)(VR,m − VI,m)

(5.39)
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Suppose that, as in the figures, 𝜎R > 𝛴. If this is the case, then both
parenthetical terms in the final line of Equation 5.39 are positive, because
standard option prices are monotonically increasing in volatility. Also, the
first term is the value at inception, and independent of the path. Therefore
the upper bound occurs when the second term is zero, which occurs at Sm =
0 when the call is worth zero independent of volatility, or at Sm = ∞ when
the call is worth intrinsic value independent of volatility. The upper bound
of the P&L is therefore the constant value (VR,0 − VI,0).

The lower bound to the P&L is given by differentiating the term (VR,m –
VI,m) in Equation 5.39 with respect to Sm and setting the derivative equal
to zero to find its maximum. Setting the dividend yield equal to zero for
simplicity here, the maximum occurs at

S = Ke−(r−0.5𝜎R𝛴)𝜏 (5.40)

at which the lower bound is

PV[𝜋(I, R)]L = (VR,0 − VI,0) − 2Ke−r𝜏
[
N

(
1
2

(𝜎R − 𝛴)
√
𝜏

)
− 1

2

]
(5.41)

These upper and lower bounds are shown in Figure 5.3 with heavy dashed
lines.
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The P&L When Hedging with Impl ied Volat i l i ty

In Chapter 3, we showed that when you delta-hedge an option with implied
volatility, the evolution of the P&L over an infinitesimally short time period
dt has no random component dZ. This occurs because, for a stochastic
move dS in the stock price during time dt, the resultant stochastic change in
the value of the option, valued at the implied volatility, is exactly canceled
by stochastic change in the value of the share position with the number of
shares determined by the delta evaluated at the same implied volatility. The
profit is

dP&L(I, I) = 1
2
ΓIS

2(𝜎2
R − 𝛴2)dt (5.42)

The change in the P&L is determined by the difference in the realized and
implied variance, multiplied by ΓIS

2, which we can treat as constant over dt.
But, even if we know for certain the values of 𝛴 and 𝜎R, ΓIS

2 will change
over the life of the option as the time to expiration decreases and S changes.
Because ΓI depends on S and S is random, the final value of the P&L is path
dependent, not deterministic. In fact, ΓI varies exponentially with ln(S/K),
making the final P&L highly path dependent.

The present value of this profit is obtained by discounting Equation 5.42
to t0 and integrating

PV[P&L(I, I)] = 1
2 ∫

T

t0

e−r(t−t0)ΓIS
2 (𝜎2

R − 𝛴2) dt (5.43)

Although the hedging strategy captures a value proportional to
(
𝜎2

R − 𝛴2
)

at each point in time, ΓIS
2 will be close to zero if the option is far in- or out-

of-the-money; therefore, the hedging strategy will be insensitive to volatility
in those regions.

Figure 5.4 is a plot of the cumulative discounted P&L(I, I) along 10
random stock paths generated with a realized volatility different from that
of implied volatility. Because we hedge using implied volatility, the P&L
depends on the path taken. Our example uses 100 hedging steps to expi-
ration and a stock drift 𝜇 of 10%.

Figure 5.5 shows a similar example, except here the stock growth rate
is much larger, 100%. With this drift, all future stock paths will rapidly tend
to move away from the strike, and ΓIS

2 over the life of the option will on
average be much smaller. When the stock price has risen so high that ΓIS

2

has become negligible, the P&L ceases to grow and the lines in the figure
become flat. The average cumulative P&L captured is therefore appreciably
lower, as displayed in the figure.
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Though these laboratory examples of hedging are enlightening, both
these hedging strategies are somewhat idealized. First, realized volatility can-
not be known in advance. Volatility keeps changing, and therefore you can-
not hedge at the known realized volatility. In practice, a trading desk would
most likely hedge at the prevailing implied volatility, which tends to move
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in synchronization with, but will not be exactly equal to, the recent real-
ized volatility. Furthermore, it is impossible to hedge in a truly continuous
fashion. We will investigate the impact of noncontinuous hedging shortly.
Finally, we remind the reader that we have thus far assumed the validity of
the BSM model and valuation formula, though the later parts of this book
are concerned with extensions of the BSM model. An increasing number of
traders do indeed use more advanced models to compute hedge ratios.

END-OF-CHAPTER PROBLEMS

5-1. In Chapter 4 we saw that the instantaneous volatility of an option C
on a stock S at any instant in the BSM framework is 𝜎C = |Δ|(S/C)𝜎S,
where Δ is the hedge ratio. Suppose economists at your firm believe
that the expected return for the Hang Seng Index (HSI) will be 12%
over the coming year. What is the instantaneous expected return for
a one-year call with a delta of 0.60? Assume that the riskless rate is
2.0%, the Hang Seng is currently at 25,000, and the price of the call is
2,500 HKD.

5-2. The current price of XYZ is 100. Assume that dividends and the riskless
rate are zero. You delta-hedge a six-month call option on XYZ with a
strike of 100 bought at an implied volatility of 20%. You believe that
realized volatility is equal to 25%, and you use this value to delta-hedge
the option. What would your profit or loss be over the next day if the
price of XYZ increased to 101? Assume 250 business days per year,
that you can buy and sell fractional shares of XYZ, and that options
trade in the market at prices consistent with BSM.

5-3. Using the same starting point and assumptions as in the previous ques-
tion, what is the expected P&L over the life of the option?

5-4. If we buy an option at an implied volatility 𝛴 and hedge it to expiration
at a constant hedge volatility 𝜎h, which is not necessarily equal to either
𝛴 or the constant future realized volatility 𝜎R, show that the present
value of the P&L at time t0 is then given by

PV[P&L(I, H)] = Vh − VI +
1
2 ∫

T

t0

e−r(t−t0)ΓhS2(𝜎2
R − 𝜎2

h

)
dt





CHAPTER 6
The Effect of Discrete

Hedging on P&L

� Hedging perfectly and continuously at no cost is a Platonic ideal.
� In real life, you can rebalance the hedge only a finite number of times.
� You are mishedged in the intervals, and the P&L picks up a random

component.
� The more often you hedge, the smaller the deviation from perfection.
� Transaction costs affect things, too, but that’s considered in the next

chapter.

REPLICATION ERRORS FROM DISCRETE
REBALANCING

No one can trade continuously. Some traders hedge at regularly spaced time
intervals; others hedge whenever the change in the delta or in the number
of dollars required to rehedge exceeds a certain threshold. In what follows
we will discuss only hedging at regular time intervals, and again assume that
the underlying stock price evolves with geometric Brownian motion, with
constant volatility and no jumps.

A Simulat ion Approach

We begin our investigation using Monte Carlo simulation to replicate an
option according to the Black-Scholes-Merton (BSM) recipe. We generate
Monte Carlo stock paths with a realized volatility 𝜎R, but replicate the
option at every successive instant of time using a weighted combination of a
riskless bond and ΔBSM(S, t, r, 𝜎H) shares of the underlying stock, where 𝜎H
denotes the so-called hedging volatility (i.e., the volatility used to calculate
the hedge used to rebalance the replicating portfolio as the stock evolves at

105
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volatility 𝜎R). This is the same number of shares that would be used to hedge
the option if one were trying to reduce its risk. Hedging is merely the other
side of replication. For notational simplicity, we henceforth write ΔBSM(S, t,
r, 𝜎H) as ΔBSM (𝜎H).

We start by considering an at-the-money call option with one month to
expiration, assuming that both the hedging and the realized volatility are
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20%, that the underlying stock pays no dividends and has a growth rate
equal to the riskless interest rate, and that both those rates are zero, so that
𝜇 = r = 0%.

If we had rebalanced the portfolio that replicates this option continu-
ously, according to the BSM model, with 𝜎H = 20% and equal to the realized
volatility, the simulated value of the profit and loss (P&L) of the replicated
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option would have turned out to be the BSM value under all stock price
scenarios. Instead, with discrete hedging, each path produces a slightly dif-
ferent value for the replicated option. Figure 6.1 shows a histogram of the
simulated P&L from two Monte Carlo simulations, each performed with a
different number of rebalancings. In the first simulation, we rebalance the
replicating portfolio using ΔBSM(20%) at 21 equally spaced time intervals
(once per business day, approximately). In the second we rebalance using
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ΔBSM(20%) at 84 equally spaced intervals (rehedging four times per day).
The P&L is measured relative to what would be the Black-Scholes-Merton
(BSM) fair value of the option if we replicated continuously at the realized
volatility.

Note that the mean P&L in both simulations is very close to zero and
that when we quadruple the number of rebalancings the standard deviation
of the P&L halves. We will see the reason for this a little later.
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In the case just presented, the hedging volatility and realized volatil-
ity were equal. Now let’s see what happens when they differ. As before,
assume that realized volatility is 20%, and that 𝜇 = r = 0%. Now, assume
that the hedging volatility is 40%—that is, that we use ΔBSM(40%) to calcu-
late the number of shares required to simulate the option. In Figure 6.2 both
of the P&L distributions are approximately symmetric, but there is no longer
the same reduction in standard deviation when the number of rebalancings
quadruples.

Next, consider the case when the drift 𝜇 is not equal to the riskless rate r,
while keeping the hedging and realized volatility both equal to 20%, that is,
using ΔBSM(20%) to rebalance the number of shares. Figure 6.3 shows that
the standard deviation of the P&L still approximately halves as the number
of rebalancings doubles.

Finally, for completeness, we look at the case where 𝜇 ≠ r, the hedg-
ing volatility of 40% is not equal to realized volatility of 20%, and we use
ΔBSM(40%) to rebalance. In this case, as can be seen in Figure 6.4, the dis-
tribution is very asymmetric.

These examples illustrate an important point: Unless we rebalance an
option at the realized volatility, increasing the frequency of replication will
not significantly diminish the replication error in the P&L. The reason is
evident from Chapter 5: If the option is not hedged at the realized volatility,
the incremental P&L dP&L(I, R) in Equation 5.35 of Chapter 5 contains
a term proportional to (ΔI − ΔR)dS. This dependence on dS introduces a
random noise into the P&L whose standard deviation does not diminish
with more frequent hedging.

Understanding the Hedging Error Analyt ica l ly

We have demonstrated that when the hedging volatility is equal to the
realized volatility, an increase in the hedging frequency results in more
accurate replication of the option. Four times as much hedging led to half
the replication error. We now justify this relation analytically.1

Assume that implied and realized volatility are identical. Suppose that
over a discrete time step dt the price of a stock evolves according to

dS
S

= 𝜇dt + 𝜎Z
√

dt (6.1)

where Z ∼ N(0, 1) is normally distributed with mean zero and standard devi-
ation 1. The value of the instantaneously delta-hedged option portfolio is
given by

𝜋 = C − 𝜕C
𝜕S

S (6.2)

1 This section benefited from unpublished work of Michael Kamal.
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where the option C is valued and hedged at the realized volatility. If the
option were to be hedged continuously, the value of the hedged portfolio
would grow at the riskless rate. The hedging error accumulated over a dis-
crete time dt owing to the mismatch between a continuous hedge ratio and
discrete time step is given by

HEdt = 𝜋 + d𝜋 − 𝜋erdt

≈ d𝜋 − r𝜋dt

≈
[
𝜕C
dt

dt + 𝜕C
𝜕S

dS + 1
2
𝜕2C
𝜕S2

𝜎2S2Z2dt − 𝜕C
𝜕S

dS
]
− rdt

[
C − 𝜕C

𝜕S
S
]

≈
[
𝜕C
dt

+ 1
2
𝜕2C
𝜕S2

𝜎2S2Z2 − r
(

C − 𝜕C
𝜕S

S
)]

dt (6.3)

Now from the BSM equation, Chapter 5, Equation 5.12, the last term in the
square brackets is given by

r
(

C − 𝜕C
𝜕S

S
)

= 𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2 (6.4)

Substituting into Equation 6.3, we obtain

HEdt ≈
1
2
𝜕2C
𝜕S2

𝜎2S2 (Z2 − 1
)

dt (6.5)

Because Z is a standard normal variable, we know that E[Z2] = 1. The
expected value of the hedging error is then zero, with a 𝜒2 distribution.

Over n steps to expiration, the total HE is

HE ≈
n∑

i=1

1
2
Γi𝜎

2
i S2

i

(
Z2

i − 1
)

dt (6.6)

Because the kurtosis E[Z4] of a normal variable is 3, it can be shown that
the variance of the hedging error is approximately

𝜎2
HE ≈ E

[
n∑

i=1

1
2

(
ΓiS

2
i

)2 (
𝜎2

i dt
)2
]

(6.7)

For an at-the-money option, integration over the normal distribution of
stock returns leads to the result that

E
[
ΓiS

2
i

]2 = S4
0Γ

2
0

√
T2

T2 − t2
i

(6.8)
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where S0 is the initial stock price at the start of the hedging strategy. Thus
for constant volatility,

𝜎2
HE ≈

n∑

i=1

1
2

S4
0Γ

2
0

√
T2

T2 − t2
i

(
𝜎2dt

)2

≈ 1
2

S4
0Γ

2
0

(
𝜎2dt

)2
n∑

i=1

√
T2

T2 − t2
i

≈ 1
2

S4
0Γ

2
0

(
𝜎2dt

)2 1
dt ∫

T

t

√
T2

T2 − 𝜏2
d𝜏

≈ S4
0Γ

2
0

(
𝜎2dt

)2 𝜋 (T − t)
4dt

≈ 𝜋

4
n
(
S2

0Γ0𝜎
2dt

)2

(6.9)

where n = T−t
dt

. Now from BSM we know that

S2
0Γ0 = 1

𝜎 (T − t)
𝜕C
𝜕𝜎

(6.10)

so that we can write

𝜎2
HE ≈ 𝜋

4
n
(

1
𝜎 (T − t)

𝜕C
𝜕𝜎

𝜎2dt
)2

≈ 𝜋

4
n
(
𝜎

1
n
𝜕C
𝜕𝜎

)2

≈ 𝜋

4n

(
𝜎
𝜕C
𝜕𝜎

)2

(6.11)

The volatility of HE is then

𝜎HE ≈
√

𝜋

4
𝜎
√

n

𝜕C
𝜕𝜎

(6.12)

Even more approximately, because the square root of 𝜋/4 is close to 1, we
have

𝜎HE ≈ 𝜎
√

n

𝜕C
𝜕𝜎

(6.13)



The Effect of Discrete Hedging on P&L 113

How can one interpret this attractive formula? Suppose we measure the
volatility of one path of a lognormal stock process by taking n discrete mea-
surements of the price (each time we rehedge). The statistical uncertainty
in the measurement of the volatility estimate is d𝜎 = 𝜎∕

√
n. We can regard

Equation 6.13 as stating that the hedging error can be viewed as arising from
the uncertainty dC in the BSM option value induced by the uncertainty in
d𝜎, the realized volatility. The uncertainty in the value of the option arising
from d𝜎 is a proxy for the hedging error

𝜎HE ≈ dC ≈ 𝜕C
𝜕𝜎

d𝜎 ≈ 𝜎
√

n

𝜕C
𝜕𝜎

(6.14)

Hedging discretely rather than continuously at the correct realized
volatility introduces uncertainty in the hedging outcome but does not bias
the final P&L—the expected value is zero. The hedging error decreases as
we increase the number of times that we rehedge the portfolio (i.e., as we
measure the volatility more accurately), but only with the square root of n.
In order to halve the hedging error, we need to quadruple the number of
rehedgings.

Equation 6.13 gives us a simple analytic rule for the standard deviation
of the hedging P&L. For an option struck close to the current price of the
underlying stock, there is a simpler version of the rule. Recall from Chapter
4 that when the riskless rate is zero and there are no dividends, the BSM
vega of a vanilla European call or put is

V = 𝜕C
𝜕𝜎

=
S
√
𝜏

√
2𝜋

e−
1
2

d2
1 (6.15)

When the underlying price of an option is close to the strike price, d1 is close
to zero, and vega can be approximated as

VS=K ≈
S
√
𝜏

√
2𝜋

(6.16)

The price of an at-the-money call for small volatility can then be approxi-
mated by

C ≈
S𝜎

√
𝜏

√
2𝜋

(6.17)
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Therefore, using Equations 6.12 and 6.14, we have

𝜎HE

C
≈
√

𝜋

4n
≈ 0.89

√
n

(6.18)

As before, the hedging error decreases with the square root of n.
Equation 6.18 shows that the hedging error as a fraction of the fair value

of the continuously hedged option is equivalent to the hedging error that
comes from the statistical sampling uncertainty in the value of the volatility
of the underlier.

For n = 100, this leads to a hedging error of approximately 9%, mean-
ing a profit or loss of 9% of the value of the option. This is quite large
for a market maker trying to make a profit by hedging, and note that we
were optimistically assuming that the future volatility was known with cer-
tainty. Imagine the hedging errors that could arise when you don’t know
future volatility and therefore your hedge ratio is incorrect not just because
it is carried out discretely, but also because you don’t know the appropriate
volatility to use. The sensible way to mitigate such large hedging errors is
to run a large book of options whose individual errors tend to cancel each
other, so that the hedging errors of the portfolio are a small fraction of a
much bigger book value.

AN EXAMPLE

As an example of what happens when hedging volatility and realized volatil-
ity differ, and you hedge continuously at the implied volatility, consider repli-
cating a call option that is initially at-the-money with one month to expira-
tion. Assume interest rates and dividend yields are zero, and that the realized
volatility of the stock price is 30%. The replication error (the standard devi-
ation of the present value of the distribution of the future value at expiration
of the cash flows and payoffs) when rebalancing at various hedge volatili-
ties is obtained by Monte Carlo simulation using 10,000 stock paths and
either 100 or 400 rebalancings. The y-axis of Figure 6.5 shows the factor
by which the replication error of the P&L decreases when the number of
rebalancings quadruples from 100 to 400. The x-axis shows the volatility
used to compute the hedge. Notice that when the hedge volatility equals
the realized volatility of 30%, the replication error decreases by a factor of
exactly 2. As the volatility used to rebalance increases from 30% to 40%,
the error in the P&L no longer diminishes as rapidly with the number of
rebalancings because of the imperfection of the hedge. The replication has a
random component proportional to (ΔI − ΔR)dS that doesn’t vanish as we
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rebalance more frequently. The greater the difference between realized and
hedge volatility, the greater the random component and the less effective the
increased frequency of rebalancing.

CONCLUSION: ACCURATE REPLICATION AND
HEDGING ARE VERY DIFF ICULT

In our theoretical BSM laboratory, we assumed that we could know future
realized volatility with certainty. In the real world, of course, this is impos-
sible; you know the implied volatility from the market price of the option,
but you can only try to predict future volatility. Therefore, when you hedge
an option, you usually have to choose between hedging at implied volatility
and hedging using a guess for the future realized volatility.

Assuming that the market respects the BSM assumptions, we can sum-
marize what we have found for a long option position:

� If you estimate future realized volatility correctly and hedge (or repli-
cate) continuously at that volatility, your P&L will capture the exact
value of the option.

� If you hedge discretely at the realized volatility, your P&L will have a
random component. You will get closer and closer to the exact BSM
value the more often you hedge, with the discrepancy decreasing pro-
portional to 1∕

√
n where n is the number of rehedgings.
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� If implied volatility is not equal to realized volatility and you hedge con-
tinuously at implied volatility, your P&L will be path-dependent and
unpredictable. The P&L will be a maximum when the gamma of the
option is a maximum, which occurs when the stock price stays close to
the strike price on its path to expiration.

� If you hedge discretely at implied volatility, not only will your P&L be
path-dependent and unpredictable, but in addition your P&L will pick
up a random component that occurs because the hedge is accurate only
instantaneously, but not during the intervals between rebalancing.

In practice, traders are most likely to hedge at implied volatility. The
more implied volatility differs from the realized volatility, the more they will
lose the benefit of increasing the number of rehedgings.

END-OF-CHAPTER PROBLEMS

6-1. The S&P 500 (SPX) is currently trading at 2,000. Assume that implied
and realized volatility are identical and equal to 20%, that the SPX
evolves according to geometric Brownian motion, and that interest
rates and dividends are zero. For a three-month at-the-money Euro-
pean call option, use Equations 6.12 and 6.15 to calculate the standard
deviation of the hedging error when rebalancing weekly, daily, or four
times per day. Assume 21 business days per month. Express the stan-
dard deviation as a percentage of the current call price calculated using
the BSM formula.

6-2. Recalculate the hedging error in the previous problem using the
approximation given in Equation 6.18.

6-3. Derive Equation 6.17, which provides an approximation for the value
of an at-the-money vanilla European call option based on the BSM
formula. You can assume that both dividends and the riskless rate are
zero. Hint: Use a first-order Taylor expansion of the cumulative normal
distribution around zero.



CHAPTER 7
The Effect of Transaction Costs

on P&L

� Transaction costs make a long position worth less, a short position more.
� The tension between the accuracy and cost of hedging.
� The effective volatility of a hedged option.

THE EFFECT OF TRANSACTION COSTS

Though the Black-Scholes-Merton (BSM) model assumes that you can buy
or sell stocks without incurring transaction fees, in the real world there are
both explicit and implicit costs to trading. Explicit costs are the taxes or
commission you may have to pay each time you trade. Implicit costs include
the bid-ask spread, the difference between where market participants are
willing to buy and sell prior to a trade. The spread tends to be narrower
for more liquid stocks, but all securities have a bid-ask spread that must
be crossed each time you trade. If we take the midpoint between the bid
and the ask as an estimate of the market price, then each time we trade we
incur an implicit transaction cost equal to half the bid-ask spread. Indirect
costs, which are harder to estimate—accounting fees, salaries for traders,
expenses associated with computer systems—may also increase as the num-
ber of transactions increases. Market makers who hedge options must take
account of all of these costs and more. One reasonable way they can do this
is to use heuristics, or rules of thumb, to adjust the implied volatility they
quote when trading options. This chapter is devoted to quantitative esti-
mates of how transaction costs affect the values of options and portfolios
of options.

It’s not difficult to guess the impact of transaction costs on an option’s
value if you hedge it: Whether you are long or short the option, you pay

117
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a positive fee for trading stock to carry out the hedge. That means that if
you buy the option, you will be required to spend some extra cash to hedge,
and therefore the option is worth less to you than the BSM value. If we use
the BSM formula to calculate the implied volatility of the option, this lower
price corresponds to a lower implied volatility than we would get without
transaction costs. If you are short the option, you will also have to spend
extra cash to hedge, and therefore you should have sold it for a greater price
than the pure BSM value. This corresponds to a greater implied volatility in
the BSM formula. Transaction costs, in short, introduce a natural bid-ask
spread into option valuation.

When there are no transaction costs, the value of a portfolio of two BSM
options is equal to the sum of their individual values. This is not true when
you have to pay a fee to buy or sell stocks. If you combine two options into a
portfolio, their hedge ratios may partially cancel, and hence the transaction
costs required to hedge two options together are not necessarily the sum of
the transaction costs required to hedge each option separately. The transac-
tion costs for a portfolio are nonlinear in the number of options, and you
cannot unambiguously isolate the transaction costs for a single option if that
option is part of a portfolio.

It’s important to understand that there is a natural tension in hedging
with transaction costs: The more often you hedge, the smaller the hedg-
ing error, but the more you hedge, the greater the cost and the smaller the
expected profit.

SAMPLE PROBLEM

Question:

Your firm owns 100 vanilla European call options on XYZ with a
strike of $100. XYZ pays no dividends, and the riskless rate is 0%.
Initially the options are at-the-money with one year to expiration. After
a week, the price of XYZ increases to $104. A week later XYZ falls
back to $100. What would the profit or loss from delta hedging be
if you rebalanced your hedge only at the end of each week? What if
you never rebalanced? How large would transaction costs have had to
be in order for the no-hedging strategy to be more attractive than the
rehedging strategy? Assume BSM and an implied volatility of 20% for
both valuation and hedging. Assume you can only buy and sell whole
shares, and that all options or shares are liquidated at the end of two
weeks.
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Answer:

The price of a call with one year to expiration is

C (S, K, v) = SN
(
d1

)
− KN

(
d2

)

= $100 × N (0.10) − $100 × N (−0.10)

= $7.9656

The delta of this call is

Δ (S, K, v) = N
(
d1

)
= 0.54

Initially, then you are long 100 options with a total value of $796.56
and short 54 shares with a total value of −$5,400.

After a week, when the stock has increased in value to $104, the
calls are each worth $10.2033. The change in the value of the hedged
position, your P&L, is

Profit1 = 100
(
$10.2033 − $7.9656

)
− 54

(
$104 − $100

)

= $223.78 − $216.00

= $7.78

The delta at the end of the first week is now 0.62. In the scenario where
you rebalance, you will need to short an additional 8 shares of XYZ,
to bring your total short position to 62 shares.

At the end of the second week, XYZ stock is back where it started,
Δ is approximately 0.54, but each call is worth only $7.8114. In the
scenario where you rebalanced, you need to buy back 8 shares and you
make an additional $8.80:

Profit2,rebal = 100
(
$7.8114 − $10.2033

)
− 62

(
$100 − $104

)

= −$239.20 + $248.00

= $8.80

In the scenario where you did not rebalance, you are still short 54
shares and you lose $23.20:

Profit2,norebal
= 100

(
$7.8114 − $10.2033

)
− 54

(
$100 − $104

)

= −$239.20 + $216.00

= −$23.20 (continued)
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(continued)

Over both periods, the rebalance strategy makes $16.58, while the no-
rebalance strategy loses $15.42.

In this case, the benefit of rebalancing was $32. Additional trans-
action costs associated with rehedging would have had to have been
more than $32 for the no-rebalancing strategy to be more attractive.
This amounts to $4 each for the 8 additional shares that were shorted.
These additional shares had to be shorted at the end of the first week
and then covered at the end of the second. If transaction costs were
proportional to the (absolute) dollar value traded, this would be equiv-
alent to 1.96% = $32/(8 × $104 + 8 × $100).

The Simplest Rebalancing Strategy: Rebalancing at
Regular Intervals

Note: In this section we simulate the effect of transaction costs on the repli-
cation of an option. It is important to remember that replicating an option
out of stock and a riskless bond is simply a rearranged version of hedging
an option with stock in order to replicate a riskless bond, as illustrated in
Figure 7.1. Therefore, the effects of transaction costs on option replication
will be similar to the effects of transaction costs on hedging.

In the examples that follow, we assume that the realized volatility 𝜎R
is known, and that we replicate the call using a number of shares equal to
the BSM hedge ratio ΔBSM(𝜎R). We will also assume that transaction costs
are proportional to the price of the shares traded, whether those shares
are bought or sold. As in Chapter 6, we consider the case of replicating a

Option

Delta Share of Stock Riskless Bond

(a)

Option

Delta Share of Stock Riskless Bond

(b)

F IGURE 7.1 (a) Replicating an Option Out of Delta Shares of Stock and a
Riskless Bond (b) Replicating a Riskless Bond by Hedging an Option with Delta
Shares of Stock
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vanilla European call option that is initially at-the-money with one year to
expiration.

To begin with, assume that we rebalance our hedge, consisting of
ΔBSM(𝜎R) shares, at the end of every time step, no matter how little or how
much additional stock must be traded. Suppose that every transaction cost
is 0.1% of the traded value of the additional shares. If we buy or sell $500
worth of stock, we will pay $0.50 in transaction costs. Figure 7.2 shows the
results of two Monte Carlo simulations. Each histogram shows the present
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value of hedged option payoffs, less the fair BSM value of the option, along
each simulated stock path, for two different rebalancing frequencies. In the
first, we rebalance 1,000 times. In the second, we rebalance only 10 times.
In each case, the option being hedged is a one-year at-the-money call option.
The underlying stock volatility is 20% per year. We assume a proportional
transaction cost of 0.1% of the traded stock value.

As expected, rebalancing more frequently has both positive and negative
consequences. The more frequently you rebalance, the more accurately you
replicate the option and the smaller the standard deviation (SD) of the profit
and loss (P&L) histogram. However, the more you rebalance, the more of
your profit you give away in transaction costs, so that the mean of the P&L
distribution decreases. Correspondingly, the less you rebalance, the less profit
you relinquish, but the less certain that profit is. Thus, the mean P&L is
higher in Figure 7.2b than in Figure 7.2a, but so is the standard deviation of
the P&L.

When you hedge in practice, you might want to figure out the optimal
rehedging frequency, the point where the cost and benefit of more frequent
rehedging balance. In this example, we assumed realized future volatility
was known, but in reality this, too, is subject to uncertainty. Optimization
in finance is unfortunately always an optimization over future probability
distributions that aren’t actually known.

A More Pract ica l Rehedging Strategy: Rehedging
Triggered by Changes in the Hedge Rat io

The hedge ratio for an option changes as the price of the underlying stock
fluctuates. However, it doesn’t make sense to rehedge after every minor price
fluctuation if you have to pay a transaction cost each time you rehedge. There
is always a chance that the hedge ratio will revert to an earlier value and that
the rehedging costs will then have been wasted. One way to rehedge more
efficiently is to do so only after a substantial change (a trigger) in the delta
of the option has occurred.

Figure 7.3 shows the results of a Monte Carlo simulation with a delta
trigger of 0.02. As before, the option being hedged is a one-year at-the-money
call option. As time passes after the initial hedge, we monitor the delta, which
lies between 0 and 1.00, and rehedge by purchasing or selling shares only
when the delta has changed by at least 0.02. The underlying stock volatility
is 20% per year. We assume a proportional transaction cost of 0.1% of the
traded stock value. Comparing this to the previous case where we rehedged
mechanically at 1,000 equal time internals, we see that both the loss owing
to the transaction costs and the standard deviation of the P&L are smaller
when we base our decision to rehedge on the delta trigger.
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ANALYTICAL APPROXIMATION OF THE EFFECT OF
TRANSACTION COSTS

In Chapter 6 we showed that when we rehedge every dt in the absence of
transaction costs, with the hedge volatility and the realized volatility identi-
cal, the hedging error was given by

HE ≈
n∑

i=1

1
2
Γi𝜎

2
i S2

i

(
Z2

i − 1
)
dt (7.1)

where Zi is a standard normal variable. As we saw in Chapter 6, the mean
hedging error is zero and the variance of each term in HE is O(dt2). If the
option has time T to expiration, then the total number of rehedgings is T/dt,
so that the variance in the total hedging error is of order

O
(

T(dt2)
dt

)
= O(T(dt)) (7.2)

which vanishes as dt → 0. Thus, consistent with what we have seen in our
simulation examples, hedging continuously at the realized volatility with no
transaction costs captures the value of the option exactly.
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Now let’s see what happens when you include transaction costs. To make
things simple, let’s consider the case where every time you trade the stock you
pay a fraction k of the cost of the shares traded. Assume that you rehedge
a long position in an option C at regular intervals dt. Then every time you
rehedge you have to trade a number of shares N equal to

N = Δ
(
S + dS, t + dt

)
− Δ (S, t) ≈ 𝜕2C

𝜕S2
dS + terms of order dt (7.3)

Assuming geometric Brownian motion, if we ignore terms of order dt and
higher, the stock move during time dt can be approximated as dS ∼ 𝜎S

√
dtZ.

In this case,

N ≈ 𝜕2C
𝜕S2

𝜎S
√

dtZ (7.4)

The value of the shares traded is simply NS, the number of shares multiplied
by the cost per share. The cost of rebalancing is the absolute value of the
shares traded, multiplied by the percentage transaction cost k. Therefore,
we have

Cost = |NS| k

=
||||
𝜕2C
𝜕S2

𝜎S2Z
√

dt
||||
k

=
||||
𝜕2C
𝜕S2

Z
||||
𝜎S2k

√
dt

(7.5)

where the absolute value reflects the fact that you pay a positive transaction
cost irrespective of whether you buy or sell shares.

To order (dt)1/2 the expected transaction cost over time dt is therefore

E
[||||
𝜕2C
𝜕S2

Z
||||
𝜎S2k

√
dt
]

(7.6)

Since the expected value of |Z| is not zero, the expected hedging cost is
nonzero, too. For an option with time to expiration T, the T/dt rehedgings
will have a total cost on the order of T/dt ×

√
dt = T∕

√
dt, which diverges

to infinity as the time between rehedging goes to zero. When there are trans-
action costs, you do not want to hedge continuously.
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A PDE Model of Transact ion Costs

Hoggard, Whalley, and Wilmott (1994) have developed an intuitively attrac-
tive treatment of transaction costs within the traditional BSM no-arbitrage
framework that provides a way to estimate the effect of transaction costs on
the option price by adjusting the BSM volatility. As usual, let

dS = 𝜇Sdt + 𝜎SZ
√

dt (7.7)

where Z is drawn from a standard normal distribution. The change in the
value of a hedged position when transaction costs are included is given by

d𝜋 = dC − ΔdS − [Transaction costs]

= 𝜕C
𝜕t

dt + 𝜕C
𝜕S

dS + 1
2
𝜎2S2 𝜕

2C
𝜕S2

Z2dt − ΔdS − |NS| k

= 𝜕C
𝜕t

dt +
(
𝜕C
𝜕S

− Δ
)(

𝜇Sdt + 𝜎SZ
√

dt
)
+ 1

2
𝜎2S2 𝜕

2C
𝜕S2

Z2dt − |NS| k

=
(
𝜕C
𝜕S

− Δ
)
𝜎SZ

√
dt +

(
1
2
𝜎2S2 𝜕

2C
𝜕S2

Z2 + 𝜇S
(
𝜕C
𝜕S

− Δ
)
+ 𝜕C

𝜕t

)
dt

− |NS|k (7.8)

If we choose our initial hedge so that Δ = 𝜕C/𝜕S, then

d𝜋 =
(

1
2
𝜎2S2 𝜕

2C
𝜕S2

Z2 + 𝜕C
𝜕t

)
dt − |NS| k (7.9)

Using Equation 7.5 for the transaction cost, we have

d𝜋 =
(

1
2
𝜎2S2 𝜕

2C
𝜕S2

Z2 + 𝜕C
𝜕t

)
dt −

||||
𝜕2C
𝜕S2

Z
||||
𝜎S2k

√
dt (7.10)

This is not a perfectly riskless hedge because it depends on Z and Z2. How-
ever, we can calculate its expected value. Using the fact that

E
[
Z2

]
= 1

E [|Z|] =
√

2
𝜋

(7.11)
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we have

E
[
d𝜋

]
=
(

1
2
𝜎2S2 𝜕

2C
𝜕S2

+ 𝜕C
𝜕t

)
dt −

√
2
𝜋

||||
𝜕2C
𝜕S2

||||
𝜎S2k

√
dt

=

(
1
2
𝜎2S2 𝜕

2C
𝜕S2

+ 𝜕C
𝜕t

−
√

2
𝜋dt

||||
𝜕2C
𝜕S2

||||
𝜎S2k

)

dt

(7.12)

We now assume, following Hoggard, Whalley, and Wilmott (1994), that
even though the portfolio is not riskless, the holder of this not-quite-hedged
portfolio would nevertheless expect to earn the riskless rate on average.1 In
that case, since the value of the hedged portfolio is C− S(𝜕C/𝜕S), the expected
change in value of the portfolio over time dt would be:

E
[
d𝜋

]
= r

(
C − S

𝜕C
𝜕S

)
dt (7.13)

Setting the right-hand sides of Equations 7.12 and 7.13 equal to each
other, we have

1
2
𝜎2S2 𝜕

2C
𝜕S2

+ 𝜕C
𝜕t

−
√

2
𝜋dt

||||
𝜕2C
𝜕S2

||||
𝜎S2k = r

(
C − S

𝜕C
𝜕S

)
(7.14)

which can be rewritten as

𝜕C
𝜕t

+ 1
2
𝜎2S2 𝜕

2C
𝜕S2

−
√

2
𝜋dt

||||
𝜕2C
𝜕S2

||||
𝜎S2k + rS

𝜕C
𝜕S

− rC = 0 (7.15)

This is a modification of the BSM partial differential equation by virtue of
the addition of a nonlinear term proportional to the absolute value of Γ =
𝜕2C/𝜕S2.

Because of the nonlinearity of the absolute value of Γ, the sum of two
solutions to the equation, where the Γ’s of the individual solutions have
opposite signs, is not itself a solution.

1 If you like, you can extend the model and the equation it leads to by assuming the
holder would expect to earn a premium over the riskless rate to reflect the extra risk.
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Γ is positive for a long position in a call or a put, so we can drop the
absolute value notation. Equation 7.15 then becomes

𝜕C
𝜕t

+ 1
2
𝜎̂2S2 𝜕

2C
𝜕S2

+ rS
𝜕C
𝜕S

− rC = 0 (7.16)

where

𝜎̂2 = 𝜎2 − 2𝜎k

√
2
𝜋dt

(7.17)

Equation 7.16 is the BSM equation with a reduced volatility, first derived
by Leland (1985). Because the volatility is lower, the option is worth less. If
you are long an option, you should pay less than the fair BSM value, since
the hedging cost will diminish your P&L. For a short position with Γ ≤ 0,
the effective volatility is enhanced, given by

𝜎̌2 = 𝜎2 + 2𝜎k

√
2
𝜋dt

(7.18)

When you sell an option, you must ask for more money in order to cover
your hedging costs.

For small k the effective volatility can be written as

𝜎̃ ≈ 𝜎 ± k

√
2
𝜋dt

(7.19)

Note that for both Equations 7.17 and 7.18, as dt becomes smaller and
one hedges more often, the adjustment increases in magnitude. For very small
dt the hedging cost diverges and the approximation becomes invalid.

SAMPLE PROBLEM

Question:

In the absence of transaction costs, the at-the-money implied volatility
for a one-year call on XYZ would be 16%. What would be the appro-
priate adjustment to the implied volatility for a long option position if
transaction costs were 1 basis point (1 bp or 0.01%) and the traders

(continued)
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(continued)

rebalanced their hedges weekly? Daily? Assume 256 business days per
year.

Answer:

Using Equation 7.19, for weekly rebalancing, we have:

𝜎̃ ≈ 𝜎 − k

√
2
𝜋dt

= 0.16 − 0.0001

√
2
𝜋

52
1

= 0.16 − 0.0001 × 5.75

= 0.16 − 0.0006

= 0.1594

The adjusted implied volatility is 15.94% for weekly rebalancing.
For daily rebalancing, we have

𝜎̃ ≈ 𝜎 − k

√
2
𝜋dt

= 0.16 − 0.0001

√
2
𝜋

256
1

= 0.16 − 0.0001 × 12.77

= 0.16 − 0.0013

= 0.1587

The adjusted implied volatility is 15.87% for weekly rebalancing.
If instead of Equation 7.19 we had used Equation 7.17, the answer

would have been the same to within ±0.01 percentage points.

This concludes our discussion of the practical difficulties associated with
rehedging and transaction costs. In the next chapter we begin to look at
properties of the implied volatility smile, its shape in a variety of markets,
and possible explanations for the structure of the implied volatility surface.
In the remainder of the book we will examine a number of extensions of the
BSM model that account for the volatility smile. Though we will concentrate
on the principles and theory of the extended models, in practice one must
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take account of the consequences of discrete hedging and transaction costs
when using them, just as we have in these past two chapters for the BSM
case.

END-OF-CHAPTER PROBLEMS

7-1. The S&P 500 (SPX) is currently trading at 2,000. Assume that in the
absence of transaction costs the implied and realized volatility are iden-
tical and equal to 20%, that the SPX evolves according to geometric
Brownian motion, and that interest rates and dividends are zero. Cal-
culate the price of a three-month at-the-money European call option
using the BSM formula and 20% implied volatility. Next, use Equa-
tion 7.19 to calculate an adjusted implied volatility for a long option
position and recalculate the price, still using the BSM formula. Assume
transaction costs are 1 basis point per trade and daily rebalancing.

7-2. Repeat the previous question, only for a short option position.
7-3. Repeat Problem 7-1 for the price for a long position in a three-month

European call option with a strike price of 2,200 rather than 2,000.





CHAPTER 8
The Smile

Stylized Facts and Their Interpretation

� In violation of the BSM model, the implied volatilities of options on a
single underlier vary with strike and expiration.

� Just as a bond market is defined by its yield curve, an option market is
defined by its smile.

� It’s convenient to plot the smile as a function of delta.
� A standard measure of the skew is the difference in implied volatility

between a 25% delta call and a –25% delta put.
� The equity index skew is negative. During crises, volatilities of all strikes

rise, and the short-term skew steepens sharply.
� Different markets have different smiles.

SMILE, TERM STRUCTURE, SURFACE, AND SKEW

The volatility parameter is different from all the other parameters in the
Black-Scholes-Merton (BSM) formula. Some parameters—the strike price
and the expiration date—are set by the terms of the contract; others—
the current riskless rate and the current underlier price—can be observed in
the market; the volatility, however, is the future volatility of the stock, and
is unknown.

Assume for the moment that we have an estimate for future volatility.
Inserting this number, along with the other (known) parameters into the BSM
formula, produces an option price. Conversely, if there is a liquid option
market, we can take an option’s market price and then calculate the market
implied future volatility that makes the BSM model price agree with the
market price.

131
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That implied volatility is the volatility that would be consistent with
the observed market price if the BSM model accurately described the option
market. But, even if the BSM model isn’t true, the BSM implied volatility
still allows us to reconstruct the corresponding market option price from
the formula. For non-European options, options on stocks with dividends,
or even exotic options, we would have to use extensions of the BSM model
to back out the corresponding implied volatilities, but the logic is the same.

We introduced the volatility smile in Chapter 1. A volatility smile for
a given underlier and expiration date is a function or graph that maps the
strikes of options to their BSM implied volatilities. We refer to the function as
a smile because when we graph implied volatility versus strike price, we often
find a curve somewhat like that in Figure 8.1, with lower implied volatilities
near the at-the-money (ATM) strike, and higher implied volatilities for both
lower and higher strikes. This terminology originated in the currency option
market where these features first became apparent.

While Figure 8.1 clearly resembles an actual smile, we saw in Chapter 1
that volatility smiles need not look anything like this. Volatility smiles can
be flatter or more curved; they often look like smirks, rarely like frowns. No
matter what their shape, it is common to refer to these functions and graphs
as smiles.

Figure 8.2 is a graph of the implied volatility smile for the S&P 500
for six-month expirations on two different dates, plotted as a function of
moneyness. In both cases it is more of a smirk than a smile.
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F IGURE 8.2 S&P 500 Six-Month Volatility Smile
Source: Bloomberg.

The existence of the smile poses a deep and interesting problem for
option valuation, in both theory and practice. In the BSM model, the volatil-
ity is the constant future volatility of a stock assumed to be undergoing geo-
metric Brownian motion. In the BSM model, therefore, a stock must have a
definite volatility. If the model accurately describes stocks and the options
written on them, all options should “see” the same volatility of the under-
lying stock. Thus, the implied volatilities deduced from market prices of all
options with the same underlier and expiration date should be the same, and
the volatility smile should be perfectly flat.

The nonflat smiles in Figure 8.2 tells us that actual option markets are
more complicated than we’ve been assuming, and that their prices violate the
BSM model. Nevertheless, traders everywhere use implied BSM volatilities
to quote option prices. The widespread use of BSM implied volatilities on
trading desks, even in the presence of a BSM-violating smile, is evidence of
the model’s enormous persuasive power and practical success. It’s strange
and mysterious that markets use a model that doesn’t work to quote prices
that deviate from it. Just as we have only language to describe language’s
flaws, so we have become accustomed to using the BSM language to describe
the violations of BSM.

Figures 8.1 and 8.2 illustrate how implied volatility varies with strike
price for a fixed expiration. Figure 8.3 illustrates its variation with time to
expiration for a fixed strike or moneyness, what we refer to as the implied
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volatility term structure. The shape of the term structure can vary widely. Just
as the long-term interest rate reflects what the market thinks about future
short-term rates, so the shape of the implied volatility term structure reflects,
in large part, how the market expects short-term volatility to evolve in the
future. In subsequent chapters we will discuss the forces that influence the
shape of both the volatility smile and term structure.

More generally, and especially if you are an option market maker deal-
ing in a variety of strikes and expirations, it is useful to describe how implied
volatility for a particular underlier varies with both strike and time to expi-
ration. The relationship of these three variables defines a surface. Figure 8.4
shows the implied volatility surface for the S&P 500 on December 31, 2015.
Just as the yield curve at a given time is a concise description of bond prices
and the bond market, so, for a particular underlier at a given time, the
implied volatility surface provides a summary description of its options mar-
ket. Whereas bonds are distinguished by their time to maturity, options are
distinguished by both a time to expiration and a strike, and so require a
surface rather than a curve.

As with the yield curve, describing a natural volatility surface math-
ematically can be challenging, especially because one has to worry about
how to interpolate from discrete observations to a continuous surface with-
out violating no-arbitrage constraints. When we extend the BSM model to
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incorporate the smile, we shall see that many of the approaches take their
inspiration from stochastic yield curve models.

It’s often convenient to be able to describe the characteristic shape of
a volatility surface in terms of one number, a spread, similar to the way
one characterizes the slope of the yield curve in terms of the 10-year–2-year
spread. A popular quotable spread for options is the so-called volatility skew,
the change in implied volatility between two different strike prices. Figure 8.5
shows two volatility smiles. One is steep as a function of strike price; the dif-
ference in implied volatility between a 25 strike option and a 50 strike option
is 17 volatility points. The other is relatively shallow, with a difference of
only 9 points.1 As we will see in the next section, rather than describing the

1 In financial markets and among traders, it is the convention to describe changes in
implied volatility in terms of volatility points. If implied volatility goes from 10%
to 20%, we say that implied volatility increased by 10 volatility points. One reason
for this convention is that it avoids ambiguity. If implied volatility was 10% and you
were told that it increased by 50%, you might reasonably wonder if implied volatility
was now 15% = 10% × (1 + 50%) or 60% = 10% + 50%. If, however, you were
told that implied volatility was 10% and increased by 50 volatility points, you would
know that it had increased to 60%.
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skew in terms of the spread between volatilities for definite strike prices, mar-
ket participants prefer to describe the spread between options with definite
deltas.

HOW TO GRAPH THE SMILE

Though the most logical way to specify the strike price in an option contract
is in dollars (or euro, or yen, etc.), it is difficult to compare implied volatil-
ities using dollar strikes when the underliers have very different prices. For
example, if the implied volatility of a $120 strike three-month call on XOM
is 18% and the implied volatility of a $600 strike three-month call on GOOG
is 15%, how can we meaningfully compare these values?

One time-honored solution is to use relative strike prices—that is, to
quote the implied volatility as a function of the option’s moneyness. If, say,
XOM is trading at $100 and GOOG is trading at $500, then both the $120
strike XOM option and the $600 strike GOOG option have strikes that are
120% of the current underlying price. Conveniently, moneyness is related to
the percentage the stock price has to move to reach the option’s strike.

Using moneyness K/S or forward moneyness K/SF allows us to compare
the values of different strikes at the same expiration. While moneyness is
useful for comparing options on different underliers with the same time to
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expiration, it is less useful for comparing options with different times to
expiration or significantly different volatilities. The reason is that the longer
an option has until expiration or the higher the volatility of the underlying
stock, the more likely the underlying price is to move further away from its
current level. We can normalize implied volatilities across strikes and expira-
tions by comparing them as a function of [ln(K/SF)/𝜎

√
𝜏], where 𝜏 is the time

to expiration and 𝜎 is the implied volatility typical of the underlying stock for
that expiration, usually the at-the-money volatility. It measures the number
of lognormal standard deviations between the forward price and the strike,
a natural viewpoint if the stock undergoes geometric Brownian motion.

Once you are familiar with the BSM formula, you quickly notice that
the BSM Δ is a function of the variable d1, which depends in a simple direct
way on [ln(K/SF)/𝜎

√
𝜏]. For that reason, practical traders often like to plot

implied volatility directly as a function of Δ, as shown in Figure 8.6. This
approach has several attractive features: (1) Every option, whatever its strike
or expiration, has a delta; (2) the x-axis of the plot is standardized—for a
vanilla call, delta always varies between 0 and 1, and for a put between 0
and −1; (3) the delta for a given implied volatility immediately indicates the
number of shares you need to hedge the option in the BSM model; and (4)
if 𝜎

√
𝜏 is small compared to 1, then, as we will show in Equation 8.3, Δ =

N(d1) is approximately equal to the risk-neutral probability N(d2) that the
vanilla option will expire in-the-money, an intuitively convenient number to
know. In brief, plotting implied volatility against delta embodies the notion
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that what matters for an option’s price is how likely it is to move into the
money from wherever it is now.

This approach also has some disadvantages. First, when you plot implied
volatility against delta, the formula for delta itself depends on the implied
volatility used to calculate it, a circularity. Second, since the validity of the
BSM model is questionable, it may seem perverse to specify the skew in
terms of its parameters. Still, as mentioned earlier, BSM implied volatilities
are widely used by market participants.

A standard measure of the skew in terms of delta is the difference in
implied volatility between an out-of-the-money call option with a delta of
25% and an out-of-the-money put option with a delta of −25%. Conve-
niently, these same options are a popular choice for constructing risk rever-
sals, trades in which an investor buys a put for protection on an index, and
funds the purchase by selling a call on the index’s upside.

Variab le Choice Can Matter

Which quoting convention—price, moneyness, forward moneyness, or
delta—is best? Our problem in choosing how to quote option prices is
similar to one in yield curve modeling, the area from which much of volatil-
ity modeling derives its inspiration. We observe at time t the zero coupon
T-maturity yields Y(t, T), and want to know what happens to them at a time
later than t. Y(t,T) is really also an implied variable: It is the implied future
constant discount rate that makes current bonds fairly priced. Similarly, in
the case of volatility, we observe 𝛴(S, t, K, T) when the stock price is S at time
t, and would like to know its dynamic behavior as a function of future S and
t. You could argue that the best quoting convention is the one that removed
the most variation in past implied volatility as t and S varied, and then hope
that this relatively constant value indicates future implied volatility.

Let’s illustrate this with a naive example involving interest rates. Sup-
pose that people always quote the yield to maturity on a bond using annual
compounding, so that the present value of a $100 payment delivered 𝜏 years
in the future is 100/(1 + ya)𝜏 , where ya is the annual yield. In addition, sup-
pose that the risk premium for longer-term bonds is such that people require
higher yield for longer maturity, with annual yield proportional to maturity.
In this case, the graph of annual yield versus maturity would be a straight
line, as shown by the solid line in Figure 8.7. Now suppose that we had
decided to record and track yields using a continuously compounded yield
to maturity. In that case, the present value of a $100 payment delivered 𝜏

years in the future is 100e−yct, where yc = ln(1 + ya). Using yc as the inde-
pendent variable in Figure 8.7, the graph of yield versus maturity becomes
nonlinear. In both cases, the relationship between yield and time to maturity
is described by an equation, but the relationship is harder to discern from
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inspection of the graph when we use the continuous compounding conven-
tion. With the linear model, we can easily estimate rates for any maturity,
possibly in our heads. This task is much harder for the nonlinear model
that results from a less intuitive quoting convention. Easy interpolation and
extrapolation can be extremely beneficial in the fast-paced environment of
a trading desk.

We can think of similar examples in modeling volatility. If volatility
follows one particular process and you plot it using a different quoting
convention, you can see spurious dynamics resulting from an unsuitable
choice of variables. Consider the hypothetical case where stock evolution
is described by arithmetic rather than geometric Brownian motion. The
lognormally quoted volatility of a stock undergoing arithmetic Brownian
motion with constant arithmetic volatility is not itself constant, but varies
inversely with the level of the stock price. Plotting the lognormal volatility
against stock price would lead to a mysterious and yet somewhat inessential
stock price dependence induced by viewing the actual motion through an
inappropriate lens.

Using the wrong quoting convention can distort the simplicity of the
underlying dynamics. Perhaps the BSM model uses the wrong dynamics
for stocks and therefore the smile looks peculiar only because we insist
on describing it using the inappropriate BSM implied volatilities. That’s the
underlying hope behind advanced models of the smile.
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DELTA AND THE SMILE

Because the BSM delta plays such a critical and ubiquitous role in options
valuation, beyond the validity of BSM itself, it’s important for practitioners
to develop a solid understanding of its properties.

Suppose that the price of an underlying security S follows geometric
Brownian motion, so that

dS
S

= 𝜇dt + 𝜎dZ (8.1a)

d(ln(S)) =
(
𝜇 − 𝜎2

2

)
dt + 𝜎dZ (8.1b)

where Z is a standard Brownian motion with mean 0 and standard deviation
1, with dZ2 = dt. Integrating Equation 8.1b from the initial stock price S0
to the terminal stock price ST, we get

ln
(

ST

St

)
=
(
𝜇 − 𝜎2

2

)
𝜏 + 𝜎

√
𝜏Z (8.2)

where 𝜏 = (T − t) is the time to expiration.
The risk-neutral (𝜇 = r) probability that ST > K is P[ST > K], given by

P[ln(ST) > ln(K)] = P
[
ln
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St

)
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Z < d2

]

= N
(
d2

)

(8.3)

When 𝜎
√
𝜏 is small, this is approximately equal to N(d1), the BSM delta

of a call, since d1 differs from d2 only by a term 𝜎
√
𝜏. Thus, if the square root

of the total variance to expiration is small, the BSM delta is approximately
equal to the risk-neutral probability that the option will expire in-the-money.



The Smile 141

The Relat ionship between Delta and Str ike

The most popular and liquid options are at-the-money options with deltas
near 0.50. On the day an at-the-money option is bought, it’s a convenient
bet that could go either way with roughly equal odds, and therefore attrac-
tive and relevant to current positions in the stock. Far out-of-the-money
options are also popular for buyers, because they’re like cheap lottery tick-
ets, but trading desks don’t like to sell them; they are illiquid because they
incorporate a small (and hard-to-estimate) probability of a very large loss in
exchange for very little payment. The head of a trading desk that one of us
(E.D.) worked on, when asked what price to quote to a potential client for an
option that, over a year, would pay off if the stock market dropped by 20%
or more on a single day, answered: “Ask him what he’d be willing to pay.”

To better understand the relationship between delta and strike, first
assume r = 0. Then the BSM price of a call option is

C(S, K, v) = SN(d1) − KN(d2) (8.4a)

d1,2 = 1
v
ln
(

S
K

)
± v

2
(8.4b)

where v = 𝜎
√
𝜏 is the standard deviation of the stock’s return over the life

of the option. The BSM delta is then given by

ΔATM = 𝜕C
𝜕S

= N(d1)

= 1
√

2𝜋 ∫

d1

−∞
e−

1
2

y2
dy

= 1
√

2𝜋

[

∫

0

−∞
e−

1
2

y2
dy +

∫

d1

0
e−

1
2

y2
dy

]
(8.5)

Now consider an at-the-money option with S = K, so that d1 = −d2 = 𝜈/2.

If 𝜈 is small, then e−
1
2

y2
≈ 1 and

ΔATM ≈ 1
2
+

d1√
2𝜋

≈ 1
2
+

𝜎
√
𝜏

2
√

2𝜋

(8.6)

As an example, for a typical volatility of 20% per year and an expiration of
𝜏 = 1 year, Δ ≈ 0.50 + 0.04 = 0.54. (Check for yourself on a BSM calculator
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that this is approximately the correct delta for an at-the-money option at
this volatility.)

Now suppose we move slightly out-of-the-money, so that K = S + dS
where dS is small. Then

ln
(

S
K

)
= ln

(
S

S + dS

)
= −ln

(
1 + dS

S

)
≈ −dS

S
(8.7)

Substituting into Equation 8.4, we have

d1 ≈ −1
v

dS
S

+ v
2
= v

2
−

J
v

(8.8)

where J = dS/S is the fractional move in the strike away from at-the-money.
For a slightly out-of-the-money option, a fraction J away from the at-

the-money level,

Δ ≈ 1
2
+

d1√
2𝜋

≈ 1
2
+ 1

√
2𝜋

(
v
2
−

J
v

)

≈ ΔATM − 1
√

2𝜋

J
v

(8.9)

In other words, the amount Δ moves is proportional to the ratio of two
dimensionless numbers, the percentage change in the strike divided by the
standard deviation of returns over the life of the option.

Let’s look at a real example. Suppose J = 0.01, a 1% move away from
being at-the-money. Also assume 𝜏 = 1 year and 𝜎 = 20%. Then 𝜈 = 0.20
and

Δ ≈ 0.54 − 1
2.5

J
0.20

≈ 0.54 − 2 × J

≈ 0.54 − 0.02

≈ 0.52

(8.10)

Thus, for a one-year 20%-volatility call option, Δ decreases by approx-
imately 2 percentage points for every 1% that the strike moves out-of-the-
money. The difference between a 50-delta and a 25-delta option therefore
corresponds to about a 12.5% move in the strike price.
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SAMPLE PROBLEM

Question:

Assume that a one-year at-the-money call has a delta of 0.54. By
approximately how much would the strike have to change in order
to decrease the delta to 0.25? Assume the riskless rate is zero.

Answer:

Starting with Equation 8.9:

Δ ≈ ΔATM − 1
√

2𝜋

J
v

and therefore,

J ≈ v
√

2𝜋
(
ΔATM − Δ

)

From before, we know that a one-year at-the-money call with implied
volatility of 20% has a delta of approximately 0.54, and that v =
𝜎
√
𝜏 = 0.20. We then have:

J ≈ 0.20 ×
√

2𝜋(0.54 − 0.25)

J ≈ 0.20 × 2.5 × 0.29

J ≈ 0.15

Thus, if the underlying stock is currently at 100, the strike of the
25-delta call should be close to 115. Actually, it’s closer to 117 if you
use the exact BSM formula to compute deltas. Our linear approxima-
tion is good, but it is an approximation.

Smi les in Di f ferent Opt ion Markets

Different types of securities (equities, foreign exchange rates, bonds, etc.)
have smiles with different characteristic shapes. In each case, these dif-
ferences hint at the difference between our idealized geometric Brownian
motion with constant volatility and the actual behavior of these securities in
markets, differences that need to be accounted for if we are going to value
options accurately. In subsequent chapters we will delve deeper into how
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to model smiles with different shapes, but for now we simply provide an
overview, focusing on the general shape of the smiles.

Equi ty Indexes As we mentioned briefly in Chapter 1, prior to the crash
of 1987, the volatility smile in equity index markets was almost flat in the
strike dimension, consistent with the BSM model, though there was often a
dependence on the time to expiration. Technically, the nonflat term structure
is also a violation of the BSM model’s assumption of constant volatility, but
a nonflat term structure can easily be reconciled with BSM by allowing for-
ward volatilities to vary with time, much like forward rates do for a yield
curve. There is nothing inconsistent about expecting high volatility this year
and low volatility next year.

Since the crash of 1987, in almost all equity index option markets
around the world, BSM implied volatilities have exhibited a persistent and
dramatically skewed structure in the strike dimension that cannot be rec-
onciled with the BSM model. Summarized next are six of the most salient
characteristics of the equity index smile.2

1. The most noteworthy feature of every index volatility smile is its nega-
tive slope as a function of strike. This slope, as illustrated in Figure 8.2,
tends to become less steep as strike prices increase. Implied volatilities
often, but not always, reach a minimum near the at-the-money strike
and then increase slightly for higher strike prices.

The negative skew is partially due to an asymmetry in the way equity
indexes move: Large negative returns are much more frequent than large
positive returns. The S&P 500 has experienced 20% downward moves
in one day, but never 20% upward moves; there are no “up crashes.”
Since crashes are difficult for option market makers to hedge, their like-
lihood tends to elevate the relative cost of far out-of-the-money puts.
There is also a demand component that contributes to the negative skew.
Investors who own equities may want to hedge against large losses. For
them, buying out-of-the-money puts is a form of insurance for which
they are willing to pay a premium.

2. The negative skew or slope with respect to the strike is generally steeper
for short expirations, as illustrated in the first graph in Figure 8.8. How-
ever, as we see in the second graph in Figure 8.8, when graphed versus
delta or [ln(K/SF)/𝜎

√
𝜏], the smiles at different expirations look much

more similar, and are actually steeper at longer expirations.

2 For more on the observed shape of the volatility smile, see Foresi and Wu (2005) or
Fengler (2012).
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Source: Bloomberg.

3. Unlike the strike structure, which almost always has a negative slope,
the term structure of the volatility surface can slope up or down.
Its shape is heavily influenced by the market’s expectation of future
volatility. During a crisis—and a crisis is always characterized by high
volatility—the term structure is likely to be downward sloping. The high
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short-term volatility and lower long-term volatility reflect market par-
ticipants’ belief that uncertainty in the near term will eventually give
way to more typical volatility.

4. For equity indexes, implied volatility and index returns are negatively
correlated. Equity index markets tend to drift up with low volatility, but
crash down. When an index moves down sharply, realized volatility by
definition increases, and this leads to a fearful increase in implied volatil-
ity. You can see this manifested in Figure 8.9, where implied volatility
appears to be highest after the market has fallen steeply.

We have to be careful not to read too much into Figure 8.9, and to
be precise about what we mean by an “increase in implied volatility.”
To understand why, take a look at Figure 8.10. Assume that the index
is currently at 70, and the preshock curve is the current volatility smile.
From the graph, we see that at-the-money volatility is approximately
15%. Suppose that the market falls to 50 and suppose that the implied
volatilities of all options increase, as reflected in the postshock curve.
The implied volatility of the 70 strike call increases from 15% to 17%,
but at-the-money volatility increases from 15% to 25%. As the market
falls, the option that is at-the-money changes. The smile shifts and we
move leftward along the smile at the same time, both of which increase
at-the-money volatility in a crash. In this example, at-the-money volatil-
ity increased by 10 percentage points, but the implied volatility of the 70
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F IGURE 8.10 Effect of a Shock on the Smile

strike option increased by only 2 percentage points. In summary, when
the market moves there are two effects on the smile: First, the volatil-
ity of every particular strike can (and usually will) change; second, the
at-the-money reference point changes.

If the postshock and preshock smiles were identical—if the index’s
negatively sloped smile hadn’t moved as time passed and the index level
changed—then at-the-money volatility would still have increased when
the index dropped, simply because of the characteristic negative slope
of the skew and the change of the at-the-money reference point. Thus,
some of the apparent correlation in Figure 8.9 would occur even if the
smile stayed completely stationary as the market dropped. How much
of the correlation is true comovement and not merely a consequence
of a negative skew? We will see later in the book that different models
produce different predictions.

Market participants often talk about how “volatility changed.”One
must be very precise in speaking about volatility changes because there
are so many different kinds of volatility: realized volatility, at-the-money
volatility, and the implied volatility of a particular strike. In option mar-
kets, the most commonly referred to volatility is current at-the-money
implied volatility. The VIX, which is widely quoted, is, as we saw in
Chapter 4, closely related.
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5. There are other persistent patterns of equity index implied volatility that
we briefly summarize.
� The volatility of implied volatility is greatest for short expirations,

analogous to the higher volatility of short-term Treasury rates.
� Stock prices, since they represent an asset, can increase indefinitely.

In contrast, like interest rates, implied volatility is a mean-reverting
parameter, tending to decrease when very high and to increase when
very low.

� Increases and decreases in implied volatility are often asymmetric.
Implied volatility increases rapidly in the wake of bad news, and then
declines more slowly.

� As with shocks to the yield curve, shocks across the implied volatility
surface are highly correlated, almost entirely characterized by a small
number of principal components or driving factors: the overall level
of the surface, the term structure, and the skew.

� Equity index implied volatility surfaces have three major characteris-
tics:
a. Most of the time, implied volatilities all move up or down together.
b. When markets are tranquil, short-term volatility is lower than long-

term volatility.
c. When the index moves sharply down, short-term implied volatil-

ity moves sharply up and the short-term negative skew steepens.
Long-term volatility and the long-term skew increase too, but less
so (Foresi and Wu, 2005).

6. Implied volatility tends to be greater than realized volatility. This is likely
due to market frictions and other factors, including hedging costs, our
inability to hedge perfectly, and uncertainty with regard to future volatil-
ity. We can think of implied volatility as the market’s expected future
volatility plus some premium associated with the cost of these factors.

Ind iv idual Equi t ies Single-stock smiles tend to be more symmetric than
index smiles. Figure 8.11 shows the volatility smile for Vodafone (VOD).
Unlike equity indexes, which tend to crash down but move up slowly, single-
stock prices can move sharply up or down. For example, if a quarterly earn-
ings announcement for a company is much better or worse than expected,
the company’s stock price can move up or down significantly. Because sin-
gle stocks can experience both large positive and large negative shocks, far
out-of-the-money options in both directions are more likely to generate large
payoffs. At the same time, hedging far out-of-the-money options is difficult.
Because of this, market makers demand an extra premium over at-the-money
options, a premium that corresponds to higher implied volatility for both
extremely high and low strike prices.
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F IGURE 8.11 Volatility Smiles for VOD as of 12/31/2015
Source: Bloomberg.

How is it that the smile of individual stocks is more symmetric than the
smile of the index, which is composed of individual stocks? Stock-specific
shocks tend to be relatively uncorrelated across stocks. Apple (AAPL) might
release positive news on the same day that Exxon Mobil (XOM) releases
negative news. Large economic shocks that impact all companies, though,
are more likely to be negative. Because of this, if we consider only large neg-
ative returns, stocks appear to have a higher correlation than if we consider
only positive returns. As a result, the returns of equity indexes tend to be
more negatively skewed than we would expect on the basis of the skewness
of the individual index components.

Foreign Exchange The smiles for foreign exchange (FX) options can be
index-like or single-stock-like. They tend to be roughly symmetric for
“equally powerful”currencies, less so for “unequal”ones. This can be under-
stood in part by the perceived likelihood of the exchange rate to move up
or down. The currencies of large developed countries or regions (e.g., USD,
EUR, JPY) tend to be relatively stable, with the exchange rates between these
currencies typically just as likely to move up as down. There is also sym-
metry on the demand side: There are investors for whom a move down in
the dollar is painful, but there are investors for whom a move down in the
yen (i.e., up in the dollar) is equally painful. Hence, for equally powerful
currencies, smiles tend resemble a symmetric smile, as illustrated in the
USD/JPY smile in Figure 8.12.
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F IGURE 8.12 Volatility Smiles for Foreign Exchanges Rates as of
12/31/2015
Source: Bloomberg.

Emerging market economies, on the other hand, tend to be less stable,
and their currencies are much more likely, periodically, to fall dramatically,
rather than rise, relative to major currencies. The Asian financial crisis in
1997 is a good example. During that crisis, exchange rates versus the U.S.
dollar for several emerging Asian currencies fell by more than 30%, and in
some cases by more than 80%. Smiles for exchange rates between emerging
market currencies and major currencies therefore tend to resemble an index
smile. The USD/MXN smile in Figure 8.12 is an example.
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Interest Rates The interest rate or swaption volatility smile, which we
will not consider much in this book, is more skewed and less symmetric,
with higher implied volatilities at lower interest rate strikes. This can be par-
tially understood by the tendency of interest rates to move normally rather
than lognormally as rates get low. Suppose that a rate r evolves under arith-
metic Brownian motion, so that dr = 𝜎adZ, where 𝜎a is the volatility of the
arithmetic process dZ. If you insist on viewing this as geometric Brownian
motion, then you must write

dr
r

=
𝜎a

r
dZ ≡ 𝜎gdZ (8.11)

where 𝜎g = 𝜎a/r is the geometric Brownian motion volatility of returns, and
is convex in r. A normal or arithmetic Brownian motion for some variable
therefore corresponds to a negatively skewed geometric Brownian motion,
and hence a negatively sloped volatility smile.

Expectations of changes in asset volatility as the market approaches
certain significant levels can also give rise to skew structure. For example,
investors’ perceptions of support or resistance levels in currencies and in
interest rates suggest that realized volatility and hence, presumably, implied
volatility will both decrease as those levels are approached.

CONSEQUENCES OF THE SMILE FOR TRADING

What are the consequences of the smile for traders and hedgers? Obviously,
the assumed dynamics of the underlier in the BSM model is inconsistent
with the existence of the smile, and this discrepancy manifests itself in both
hedging and pricing.

For very liquid options (e.g., vanilla index options), where an option
price is taken from the market and then used to generate an implied BSM
volatility that is then used to quote the price, the fact that the model is wrong
isn’t a major problem. The model is merely a quoting convention. The model
would matter if you wanted to generate your own idea of fair option values
and then arbitrage them against market prices (but that is a very risky long-
term business).

The model becomes critical for vanilla options, even liquid ones, when
you want to hedge them, because even if the option price is known, the
option’s hedge ratio is model-dependent. If you don’t get the hedge ratio
right, you cannot replicate the option and recoup its value accurately. As we
have seen in earlier chapters, in order to capture P&L reliably when trading
options, you need to use the right hedge ratio. The important question then
is: Which model should you use?
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The model is also critical if you want to trade illiquid exotic options,
whose prices are not obtainable from a listed market. In that case, you have
no choice but to use a model to estimate both the price and a hedge ratio.
The question again is: Which model?

END-OF-CHAPTER PROBLEMS

8-1. The current level of the S&P 500 is 2,000. The BSM implied volatil-
ity of an S&P 500 call option with a strike of 2,100 and one year to
expiration is 10%. What is the risk-neutral probability that the option
will be in-the-money at expiration? What is the delta of this option?
Assume that the riskless rate and dividend yield are both zero.

8-2. Repeat Problem 8-1, only this time assume that the implied volatility
is 20% and the riskless rate is 2.0%.

8-3. Assume that the NDX is currently at 4,000. At-the-money NDX calls
have a delta of 0.54. A hedge fund wishes to purchase a one-year 0.34
delta call option. Use Equation 8.9 to figure out the approximate strike
price of the desired call option. Assume the riskless rate is zero.

8-4. XYZ is currently trading at $100. The BSM implied volatilities for
one-year calls with strikes at 97, 98, 105, and 110 are 20.0%, 19.8%,
18.3%, and 17.2%, respectively. Assume the riskless rate and dividends
are zero. Calculate the deltas for all of these options in the BSM model
and then deduce a relationship between implied volatility and delta.

8-5. The current level of the S&P 500 is 2,000. Calculate the BSM delta for
a three-month call option with a strike corresponding to a +1 standard
deviation move in the index. Repeat this calculation for a one-year call
option. Assume that the riskless rate, actual drift, and dividend yield for
the index are all zero, and that implied volatility and future volatility
are equal to 20%.

8-6. ABC is currently trading at $100. Assume that implied volatility for
one-year call options is a linear function of Δ,

𝛴 = 0.20 + 0.30Δ

What is the implied volatility for a one-year call option with a
strike of $110? Assume the riskless rate and dividends are zero. (In
reality, implied volatility is unlikely to be a linear function of delta over
a large range of strikes, but this might not be a bad approximation for
small changes.)



CHAPTER 9
No-Arbitrage Bounds

on the Smile

� Constraints on option prices and the smile from the principle of no risk-
less arbitrage.

� The Merton inequalities for option prices.
� Inequalities for the slope of the smile.

NO-ARBITRAGE BOUNDS ON THE SMILE

No-arbitrage bounds occur throughout finance. As we’ve remarked before,
implied Black-Scholes-Merton (BSM) volatility is the parameter used to
quote option prices, just as yield to maturity is the parameter used to quote
bond prices. We begin, then, by looking at the bounds on bond yields due
to no-arbitrage constraints on bond prices. Consider, for example, two zero
coupon bonds, both with no risk of default and with notional value of $100.
The first, B1, matures in one year, and the second, B2, matures in two years.
The price of both is given by

BT = 100e−yTT (9.1)

where yT is the annual yield for a bond with maturity of T. Zero coupon
bonds sell at a discount, because most people prefer present consumption
over future consumption. From an arbitrage perspective, yT must be greater
than zero for all T: Why would you pay $101 for a bond that returns $100

153
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in the future, when you could just put $100 under your mattress and spend
the remaining $1 today?1

Taking this argument a step further, the price of a bond with two years
to maturity should be less than or equal to the price of a bond with one year
to maturity. If this were not the case, there would similarly be an arbitrage
opportunity. To see this, consider the contrary case where B1 = $90 and B2 =
$91. Both bonds then sell for less than $100, but we can construct a portfolio
that is long B1 and short B2 at no initial cost as follows:

V = 91
90

B1 − B2 (9.2)

At the end of one year, B1 will mature and produce a payoff of $100, so 91
90

B1

will be worth more than $100. You can hold on to this money, and at the end
of the second year, when your short position in B2 matures, you will have to
pay $100, leaving you with a net positive amount of dollars on an initial zero-
cost investment, a guaranteed riskless profit. Eliminating this riskless arbi-
trage requires that B2 ≤B1, which constrains the yield curve. In this example,
the constraint that the prices of zero coupon bonds decrease with maturity
is equivalent to the condition that forward rates always be greater than or
equal to zero. As we will see, there are similar constraints on the prices of
options, which lead to subsequent bounds on the shape of the smile.

The Merton Inequal i t ies for European Opt ion
Prices as a Funct ion of Str ike

For a European call on an underlier S that pays a dividend yield d, the price
of a call with strike K must be greater than or equal to the fair price of a
forward with delivery price K and the same time to expiration 𝜏; that is,

C ≥ Se−d𝜏 − Ke−r𝜏 (9.3)

At expiration, by the terms of the contracts, the forward will pay ST – K
while the call will pay max[ST – K, 0]. In other words, the option has the
same terminal value as the forward when ST ≥ K and is worth more when

1 You might pay more than $100 to store $100 if keeping $100 under your mattress
was dangerous or inconvenient and it was worth paying a fee to store your money
safely. That’s exactly what’s happened in recent years: The zero-interest-rate policy
(ZIRP) of central banks has led to a situation where investors are paying to lend their
money to the government for safekeeping, so yields on some short-term government
bonds have occasionally turned slightly negative. The possibility of negative rates has
required the reworking of many standard stochastic interest rate models.
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F IGURE 9.1 Value of a Call and Forward at Expiration

ST < K. In technical terms, the value of the option dominates (is always
greater than or equal to) the payoff of the forward at expiration, as can
be seen graphically in Figure 9.1. By the principle of no riskless arbitrage,
the value of the option must dominate the value of the forward at earlier
times, too.

By put-call parity, Equation 9.3 is equivalent to the requirement that the
corresponding European put have a nonnegative value.

There are also no-arbitrage constraints on option prices as a function of
strike. Figure 9.2 shows the payoff at expiration of a European call spread
consisting of a long position in a call with strike K, and a short position
in a call with a higher strike (K + dK), both with the same expiration. No
matter what values we choose for K and dK, the call spread will always have
a nonnegative payoff and therefore, by the principle of no riskless arbitrage,
must have a nonnegative value at all times prior to expiration. This means
that a call with a higher strike cannot be worth more than a call with a lower
strike. In the limit as dK goes to zero, this leads to the following constraint
on the first derivative of the call price with respect to strike:

𝜕C
𝜕K

≤ 0 (9.4)

If, for some economic reason, there is no probability of ST > K, then the
call spread will be worthless and the slope in Equation 9.4 will be zero. In
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F IGURE 9.2 Payoff of a Call Spread

all other cases, the call spread will have positive value and the slope will be
negative.

We can also find a constraint on the second derivative of a European
call price with respect to the strike price, namely

𝜕2C
𝜕K2

≥ 0 (9.5)

To see why this is the case, imagine a butterfly spread constructed from calls
whose payoff at expiration is shown in Figure 9.3.

The butterfly’s payoff is always greater than or equal to zero. The current
value of the butterfly is2

𝜋B = C
(
K − dK

)
− 2C (K) + C

(
K + dK

)

=
[
C
(
K + dK

)
− C (K)

]
−
[
C (K) − C

(
K − dK

)] (9.6)

2 For the sake of readability, we have omitted time and stock price arguments in
the call price function C(K). All calls are evaluated at the same time, have the same
expiration, and are contingent on the same underlying security.
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F IGURE 9.3 Butterfly Payoff at Expiration

Now imagine that instead of buying one call at (K − dK), selling two at K,
and buying one at (K + dK), we scale all of our trades by 1/dK2. The value
of the scaled position can be expressed as

𝜋B

dK2
=

[
C
(
K + dK

)
− C (K)

]
−
[
C (K) − C

(
K − dK

)]

dK2

=

[
C
(
K + dK

)
− C (K)

]

dK
−

[
C (K) − C

(
K − dK

)]

dK
dK

(9.7)

In the limit as dK → 0, the last line of Equation 9.7 is equal to the rate of
change in the slope of the call price function (i.e., the second derivative of
the call price with respect to the strike), so that

lim
dK→0

𝜋B

dK2
= 𝜕2C

𝜕K2
(9.8)

Since the payoff of the butterfly is always greater than or equal to zero,
by the principle of no riskless arbitrage, the current value of the butterfly
must also be greater than or equal to zero, and thus

𝜕2C
𝜕K2

≥ 0 (9.9)
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In Chapter 11 we will take the derivation of Equation 9.9 one step further in
order to derive the option implied risk-neutral probability density function.

For a European put option on a non-dividend-paying underlier, we can
similarly show that

𝜕P
𝜕K

≥ 0 (9.10a)

𝜕2P
𝜕K2

≥ 0 (9.10b)

Inequal i t ies for the Slope of the Smi le

The inequalities derived in the previous section were constraints on the mar-
ket price of puts and calls as a function of strike. These constraints do not
depend on Black-Scholes-Merton (BSM) or any other model. That said, since
we are accustomed to using the BSM formula as a quoting convention, it is
useful to convert these price constraints into constraints on the shape of
the BSM implied volatility smile. In particular, as we will see, the slope con-
straints, 𝜕C/𝜕K ≤ 0 and 𝜕P/𝜕K ≥ 0, set limits on the slope of the BSM implied
volatility smile.

If implied volatility is the same for all strikes, BSM call prices will always
decrease as the strike increases. On the other hand, for a given strike, the
BSM price of a call will increase as implied volatility increases. Now sup-
pose implied volatility varies with strike. As the strike increases, if implied
volatility were to increase too quickly, its effect on the call price might more
than offset the decline in the call price due to the increase in strike, and so
lead to a net increase in the call price. This would violate the requirement
that 𝜕C/𝜕K ≤ 0, and so leads to an upper bound on the rate at which implied
volatility can increase with strike.

Similarly, BSM put prices increase with increasing strike and decrease
with decreasing implied volatility. Therefore, if the implied volatility were to
decrease too quickly as the strike increased, the net price of the put could
decrease as the strike increased. This would violate the requirement that
𝜕P/𝜕K ≥ 0. There is therefore also a lower bound on the rate at which implied
volatility can decrease with strike.

Again, these bounds on the smile do not depend on any model. The BSM
implied volatilities are being used only as a price quoting convention. The
essential constraint is that market call prices not increase and put prices not
decrease as the strike increases.

Figure 9.4 shows how the slope constraints for call and put prices con-
strain the BSM implied volatility. To develop this idea more quantitatively,
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we write the market price of a call in terms of its BSM parameterization,
so that C(S, t, K, T) ≡ CBSM(S, t, K, T, 𝛴), where the implied volatility
𝛴 = 𝛴(K, T) is assumed to vary with strike. Equation 9.4 can then be rewrit-
ten as

𝜕C
𝜕K

=
𝜕CBSM

𝜕K
+

𝜕CBSM

𝜕𝛴

𝜕𝛴

𝜕K
≤ 0 (9.11)

Rearranging terms, we have

𝜕𝛴

𝜕K
≤

−
𝜕CBSM

𝜕K
𝜕CBSM

𝜕𝛴

(9.12)

Using the BSM Greeks for non-dividend-paying stocks, we obtain

𝜕𝛴

𝜕K
≤

e−r𝜏N(d2)

e−r𝜏K
√
𝜏N′(d2)

=
N(d2)

K
√
𝜏N′(d2)

(9.13)
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Now assume that volatility is small and the strike price is at-the-money for-
ward, so that SF = K. Then d2 ≈ 0, N(d2) ≈ 0.5 and N′(d2) ≈ 1∕

√
2𝜋, so that

𝜕𝛴

𝜕K
≤

√
𝜋

2
1

K
√
𝜏

≤

1.25

K
√
𝜏

(9.14)

For small changes in dK, then

d𝛴 ≤

1.25
√
𝜏

dK
K

(9.15)

For an option with 1 year to expiration, if the strike price increases by 1%,
the implied volatility cannot increase by more than 1.25 percentage points.
Remember, Equation 9.15 is a valid approximation only when volatilities
are small and strikes are near at-the-money forward.

For a European put, the equivalent of Equation 9.13 is

𝜕𝛴

𝜕K
≥

−e−r𝜏N(−d2)

e−r𝜏K
√
𝜏N′(d2)

=
−N(−d2)

K
√
𝜏N′(d2)

(9.16)

For small volatilities, at-the-money forward,−d2 is also approximately zero,
giving an approximate lower bound of

𝜕𝛴 ≥ −1.25
√
𝜏

dK
K

(9.17)

According to these approximations, for options with one year to expiration,
if the strike price increases by 1%, then implied volatility cannot decrease
by more than 1.25 percentage points.

For more on the bounds of implied volatility for European options, see
Hodges (1996).

SAMPLE PROBLEM

Question:

The Euro Stoxx 50 (SX5E) is currently trading at 3,000. The BSM
implied volatility for three-month at-the-money European call options
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is 10%. What is the upper bound for implied volatility for three-month
European calls with a strike of 3,030? Assume no dividends and a
riskless rate of 0%.

Answer:

We can use Equation 9.15 to get an approximate answer:

d𝛴 ≤

1.25
√
𝜏

dK
K

≤

1.25
√

0.25

3030 − 3000
3000

≤ 2 × 1.25 × 0.01

≤ 0.0250

Our approximation suggests that the upper bound should be
12.50% = 10.00% + 2.50%. If we calculate the BSM price of an at-
the-money call using 10.00% volatility, we get a price of €59.84. If we
calculate the BSM price for a 3,030 strike call using 12.50%, we get
€61.11. This is higher than the at-the-money price, and an arbitrage
opportunity. Clearly 12.50% is too high.

To get a better answer, we could use Equation 9.13. Equation 9.13
gives a slightly lower value in this case, 12.46%.

To get the exact answer, we could write a short program to home
in on the implied volatility that produces a price for the 3,030 strike
call that is exactly equal to the at-the-money price. Alternatively, using
12.50% as a starting point, a BSM calculator, and a little trial and
error, we can easily see that 12.29% produces a price that is slightly
too high, but 12.28% produces a price that is acceptable.

K 𝛴 C C − Catm

3,000 10.00% 59.84
3,030 12.00% 58.15 −1.69
3,030 12.25% 59.63 −0.20
3,030 12.28% 59.81 −0.03
3,030 12.29% 59.87 0.03
3,030 12.50% 61.11 1.28
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END-OF-CHAPTER PROBLEMS

9-1. ABC stock is currently trading at $100. Assume that ABC pays no
dividends and that the riskless rate is 0%. What is the price of an
at-the-money European call option with one year to expiration? Use
the BSM pricing formula and assume at-the-money implied volatility
is 20%. Next price a one-year European call option with a strike of
$101. What would the price of this option be if implied volatility was
20.00%, 21.00%, or 21.25%?

9-2. Using the same information as in Problem 9-1, calculate the price of
an at-the-money European put option with one year to expiration. Use
the BSM pricing formula and assume at-the-money implied volatility is
20%. Next, price a European put option with a strike of $101. What
would the price of this option be if implied volatility was 20.00%,
18.75%, or 18.50%?

9-3. The S&P 500 (SPX) is currently trading at 2,000. The BSM implied
volatility of one-year at-the-money European calls is 20%. The implied
volatility of one-year 2,200 European calls is 15%. What is the upper
limit on implied volatility for a one-year European call with a strike
price of 2,100? Assume no dividends and a riskless rate of 0%.



CHAPTER 10
A Survey of Smile Models

� An overview of models consistent with the smile.
� Local volatility models, stochastic volatility models, jump-diffusion

models.
� In the presence of a smile, the BSM model produces incorrect hedge

ratios and exotic option values.

AN OVERVIEW OF SMILE-CONSISTENT MODELS

As we have repeatedly stressed, the Black-Scholes-Merton (BSM) model is
inconsistent with observed smiles. Over the past three decades, quants have
employed three broad strategies in an attempt to produce models whose
BSM implied volatilities are consistent with the smile. The first strategy is to
move away from traditional geometric Brownian motion for the evolution
of the underlying asset. The second directly models the movements of the
BSM implied volatility surface 𝛴(S, t, K, T) rather than the underlying asset.
The third, more pragmatically, avoids formal models of either the underlying
asset or the BSM implied volatility, and instead tries to construct heuristics
for pricing and hedging.

The first approach is the most fundamental, but also the most ambitious.
It attempts to explicitly model the stochastic evolution of the stock price S via
a more general process than geometric Brownian motion. The advantage of
this approach is that arbitrage violations are more easily avoided, but finding
a stochastic process that accurately describes the evolution of a stock price
turns out to be very difficult. Such attempts typically involve more complex
stochastic differential equations with additional stochastic variables, such
as realized volatility or stock price jumps. But accurate statistics about such
variables are hard to obtain, and these models often end up resting on shaky
ground.
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The second approach directly models the behavior of the BSM implied
volatility 𝛴(S, t, K, T). Traders automatically think about options in terms
of 𝛴, which they observe every day as they make markets. For them it is
natural to describe the dynamics of 𝛴. Implied volatility statistics are easily
obtained and can be used to calibrate a model without too much difficulty,
but this approach has its own problems. First, one has to be very careful
in modeling the stochastic evolution of implied volatility directly, because
changing implied volatility changes all option prices, and it is difficult to
avoid violating the constraints imposed by the principle of no riskless arbi-
trage. Second, one must not forget the awkward fact that implied volatility
is a parameter of the BSM model itself, which fails to describe option val-
ues correctly, and that we are therefore trying, perhaps illogically, to model
the parameter of an inaccurate model. For readers familiar with interest rate
modeling, this approach is analogous to the Heath-Jarrow-Morton model
in which the entire yield curve is allowed to become stochastic while still
respecting the no-riskless-arbitrage constraints on bond prices. It is possible
to develop implied volatility models in the same spirit, but they are compli-
cated and computationally difficult.

As we saw in a previous chapter, different markets have very different
smiles. This wide variety of smiles is unlikely to be well described by one
grand theory-of-everything replacement for BSM. We are likely to end up
with different models for different markets.

The third approach, which avoids formal models, is extremely flexible.
Practitioners may value this flexibility, but without a solid theoretical foun-
dation it becomes difficult to avoid inconsistencies that lead to arbitrage
opportunities. A well-known and widely used example of this last approach
is the so-called vanna-volga model.

In this book we will concentrate predominantly on the more fundamen-
tal models of stock price evolution that can be made consistent with the
observed smile. In the remainder of this chapter we present a brief descrip-
tion of three classes of these models, which will be dealt with in more detail
in subsequent chapters.

Local Volat i l i ty Models

Local volatility models were the earliest consistent models of the smile. While
all smile models must deviate from the classic BSM model, local volatility
models depart minimally, just enough to allow consistency.

In the BSM model, the stock’s volatility 𝜎 is a constant, independent of
stock price and time. In local volatility models, the stock’s realized volatility
𝜎(S, t) is loosened up and allowed to vary deterministically as a function of
future time t and the future (random) stock price S. The function 𝜎(S, t) is
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called the local volatility function, and leads to an implied volatility function
𝛴(S, t, K, T) that can vary with strike and expiration. In these models, the
evolution of the stock price is given by

dS
S

= 𝜇(S, t)dt + 𝜎(S, t)dZ (10.1)

Note that 𝜎(S, t) is a deterministic function of a stochastic variable S.
Local volatility models have one factor—only the stock price is

stochastic—and so most of the standard Black-Scholes-Merton scheme for
perfect replication in terms of a riskless bond and stock still works. With
local volatility models, we can use risk-neutral valuation methods to obtain
unique arbitrage-free option values, just as we did for BSM. This is very
attractive from a theorist’s point of view, but as a realist one must still ask:
Does it actually describe the behavior of the underlying asset in the real
world?

In using any model, the first problem is that of calibration: In this case,
how do we choose 𝜎(S, t) to match the market values of 𝛴(S, t, K, T)? We’ll
show later how this can be done in principle. But one must be careful: Just
because you can fit the diffusive process of Equation 10.1 to match the smile,
doesn’t necessarily mean that the model is an accurate description of the
asset. The best model is presumably the one that most closely matches the
behavior of the underlying asset.

Right or wrong, local volatility models have become popular and ubiq-
uitous in modeling the smile. There is a lot we can learn from them, and
therefore we will spend an appreciable amount of time studying their fea-
tures and consequences.

The Leverage Ef fect What might account for local volatility being a func-
tion of the underlying price? One possibility is the so-called leverage effect
for stocks. As mentioned in Chapter 2, the total value of a firm, the com-
pany’s enterprise value, includes both the value of the company’s stock and
its debt. When some of the enterprise value is funded by debt, the stock or
equity is a leveraged investment in the enterprise. In that case, the volatility
of the enterprise value will be lower than the volatility of the stock.

Suppose a company raises $200 million by selling $100 million of stock
and $100 million of bonds. The enterprise value is $200 million. If, after
some time, the value of the firm falls to $150 million, the stockholders and
bondholders do not split the loss equally. By definition, the equity holders
take the entire loss. The equity is now worth only $50 million, and the bonds
are still worth $100 million. Only if the enterprise value falls below $100
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million will the bondholders begin to lose money. At that point, the company
is considered bankrupt and the equity is worthless.

In this example, a $20 million change in the value of the firm represents
a 10% change in the enterprise value, but a 20% change in the value of the
equity. If the enterprise value falls to $150 million, a subsequent $15 million
change in value would still represent a 10% change for the enterprise, but
a 30% change for the equity holders. As the enterprise value decreases, the
volatility of the equity increases relative to the volatility of the enterprise. If
the volatility of the enterprise value is constant, the volatility of the equity
will increase as the value of the equity decreases and leverage increases. This
is the leverage effect.

More formally, assume that the enterprise value of a firm V is equal to
the sum of the values of the firm’s stock S and its bonds B, and that return
volatility of the enterprise is constant and equal to 𝜎, so that

V = S + B

dV
V

= 𝜎 dZ
(10.2)

The return volatility of the stock, 𝜎S, is then given by

S = V − B

dS
S

= dV
S

= V𝜎 dZ
S

= 𝜎
S + B

S
dZ

𝜎S = 𝜎

(
1 + B

S

)
(10.3)

As the price of the stock decreases, stock volatility increases; the stock nat-
urally exhibits a local volatility.

Constant E last ic i ty of Variance (CEV) Another local volatility model, the
constant elasticity of variance (CEV) model, was developed by Cox and Ross
soon after the BSM model appeared (Cox 1975; Cox and Ross 1976). It is
the earliest local volatility model. In this model, volatility is proportional to
S𝛽 −1, where 𝛽 is a constant to be determined by calibration, so that

dS
S

= 𝜇(S, t)dt + 𝜎S𝛽−1 dZ (10.4)

If 𝛽 = 1, then the CEV model reduces to standard lognormal geometric
Brownian motion. When 𝛽 = 0, returns are normally distributed. In order to
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account for the observed skew in equity markets, 𝛽 needs to be negative and
large in magnitude.

As described here, the CEV and leverage models have too few param-
eters to fit an arbitrary smile. We will need a more complex local volatility
function if we want to match an observed smile exactly.

Stochast ic Volat i l i ty Models

One of the BSM assumptions that is certainly violated by actual underliers
is the assumption that the volatility of the underlier is constant over time.
Volatility fluctuates. In stochastic volatility models, there are two random
processes, one for the stock itself, and another for the volatility or vari-
ance of the stock. These two random processes may be correlated. Given
the volatility 𝜎 of a stock, we have

dS = 𝜇Sdt + 𝜎SdZ

d𝜎 = p𝜎dt + q𝜎dW

E[dWdZ] = 𝜌dt

(10.5)

where q is the volatility of volatility and 𝜌 is the correlation between the
stock price and its volatility.

A local volatility model, then, is a stochastic volatility model, but of a
limited kind. In a local volatility model the volatility is stochastic, but it is a
deterministic function of, and perfectly correlated with, the underlying stock.

If you are allowed to replicate options through dynamic trading only in
the stock and the bond markets, and volatility itself is stochastic, then perfect
replication of an option’s payoff will not be possible. Put differently, since
you cannot perfectly hedge the option with the stock and the bond alone, the
principle of no riskless arbitrage will not lead to a unique price. Instead, you
will need to know the market price of risk or invoke a utility function relating
risk to reward. Relying on the market price of risk or a utility function, both
of which require theoretical assumptions, is less reliable than either static or
dynamic hedging, but there are times when we may have to do that in order
to come up with a value estimate.

If, however, you can trade options, and if you know (or, rather, assume
that you know) the stochastic process for volatility in addition to the
stochastic process for stock prices, then you can hedge an option’s expo-
sure to volatility with another option. By doing this, you can derive an
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arbitrage-free formula for option values. We will do exactly this in a later
chapter.

The main problem with stochastic volatility models is that we don’t
really know the appropriate stochastic differential equation for volatility.
An additional objection is that, while volatility is stochastic, its correlation 𝜌

is assumed to be constant. In the real world, correlations are clearly stochas-
tic, too, with perhaps a greater variance than volatility. Assuming that 𝜌 is
constant may be too extreme.

Jump-Di f fus ion Models

Another feature of stock prices that BSM ignores is their discontinuous
movement (a.k.a. jumps). Jump-diffusion models were invented by Merton
shortly after the introduction of BSM (Merton 1976). These models sen-
sibly allow the stock to make an arbitrary number of jumps in addition to
undergoing the diffusion described by Brownian motion. The introduction of
jumps allows us to capture the fear of stock market crashes that was respon-
sible for the initial appearance of the smile. The jump-diffusion model is part
of a broader class of models known as mixture models that are probabilistic
combinations of simpler processes.

With a finite number of jumps of known size, you can replicate any pay-
off perfectly by dynamically trading in a finite number of options, the stock,
and riskless bonds, and so achieve risk-neutral pricing. If an infinite number
of jumps of variable size are allowed, then perfect replication is impossible.
As we will see, it is customary to use risk-neutral pricing to obtain a solution,
but this is not strictly correct.

A Pleni tude of Other Models

Since the development of local volatility models in 1994, many other smile
models have appeared in the literature. Most are variants of the ones just
described. In this book, which is intended to serve as an introduction, we
will focus mainly on the three classes of models described in this chapter.

PROBLEMS CAUSED BY THE SMILE

In the BSM framework, a derivative’s price is intimately related to our ability
to hedge its risk. If the BSM framework cannot accommodate the smile, then
using the BSM model to hedge liquid vanilla options will result in incorrect
hedge ratios and uncertain profits. Our valuation arguments based on the
construction of a riskless portfolio and the law of one price fall apart.
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Similarly, if we use the BSM model to value an illiquid exotic option
whose market price is unknown, then the value will be wrong. In Chapter 16
we will calculate both of these effects in particular smile models. For now,
we content ourselves with estimating the size of the disagreement with BSM.

Hedging Vani l la Opt ions

If markets do not obey the BSM assumptions and traders use the BSM
implied volatility for hedging, the portfolio they construct will be imper-
fectly hedged. We can make a rough estimate, based on the smile, of how
large an error this will cause in their P&L.

Suppose that the market price of a call option is quoted via the BSM
model as Cmkt(S, t, K, T) ≡ CBSM(S, t, K, T, 𝛴), where 𝛴 = 𝛴(S, t, K, T) is the
implied volatility of the option. Because of the smile, 𝛴 is a function of the
stock price, strike, and time to expiration. From the chain rule, the correct
hedge ratio is given by

Δ =
𝜕Cmkt (S, t, K, T)

𝜕S
=

𝜕CBSM

𝜕S
+

𝜕CBSM

𝜕𝛴

𝜕𝛴

𝜕S
= ΔBSM +

𝜕CBSM

𝜕𝛴

𝜕𝛴

𝜕S
(10.6)

This is in contrast to the BSM formula, where volatility is independent of
stock price and the second term on the right-hand side of Equation 10.6
vanishes.

Let’s make a naive estimate of the size of the second term, which is
responsible for the mismatch between the naive BSM hedge ratio and the
“correct” hedge ratio. Suppose that the S&P 500 level S is approximately
2,000 and 𝜏 = 1 year, and that both the realized volatility and implied volatil-
ity are 20%. Then, for an at-the-money option,

𝜕CBSM

𝜕𝛴
≈

S
√
𝜏

√
2𝜋

≈ 800 (10.7)

From Figure 8.2, for a typical S&P 500 smile, one can see that 𝜕𝛴/𝜕K ≈
−0.0001. Let’s guess, because K and S have similar values and ranges, that
because there is a skew, volatility will also depend on the stock price with
roughly the same magnitude of the slope with respect to strike, so that
𝜕𝛴/𝜕S ≈ ±0.0001. (In a later chapter, we will see that some models cor-
respond to a positive slope, others to a negative slope.) Then, from Equa-
tion 10.6,

Δ − ΔBSM ≈ 800 × ±0.0001 = ±0.08 (10.8)
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If we use the incorrect ΔBSM to hedge, rather than the correct Δ, how will this
impact our P&L? As we showed in Chapter 3, if we correctly delta-hedge an
option, the resultant P&L will be riskless and will not fluctuate. If we hedge
with the wrong delta, the resultant P&L will fluctuate.

For an S&P 500 realized volatility 𝜎 = 20%, a one standard deviation
daily move is

dS = S𝜎
√

dt = 2000 × 0.20
√

1∕252 ≈ 25 index points (10.9)

Equation 3.18 in Chapter 3 indicates that the change in the P&L of the
hedged position is given by

Profit = 1
2
ΓS2(𝜎2 − 𝛴2)dt

= 1
2
Γ(dS)2 − 1

2
ΓS2𝛴2 dt

(10.10)

where the first term represents the profit generated by convexity when the
stock price moves by dS, and the second term represents the loss from one
day’s time decay.

The size of the first term is

1
2
Γ(dS)2 = 1

2
N′(d1)

S𝛴
√
𝜏

(dS)2

≈ 1
2

0.40

2000 × 0.20
√

1
(25)2

≈ 0.31 index points

(10.11)

When 𝜎 = 𝛴, this gain from convexity is exactly canceled by the loss from
time decay, because the option was correctly hedged and priced.

Now let’s look at the contribution of the hedging error owing to the
incorrect delta. This is given by

(Δ − ΔBSM)dS = ±0.08 × 25 = ±2.0 index points (10.12)

This ±2.0-index point-error arising from the incorrect hedge ratio swamps
the 0.31 points of option value we are trying to capture from convexity, and
will badly distort the P&L of the hedged position. You can see why it is
important to have the correct hedge ratio when there is a smile.
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F IGURE 10.1 Payoff at Expiration of a Digital Option

Valu ing Exot ic Opt ions

As an example of how the existence of the smile can cause problems for the
valuation of exotic options, consider a digital European call option that pays
$1 only if ST ≥ K at expiration, and zero otherwise.

As shown in Figure 10.1, we can approximately replicate the payoff of
the digital option by means of a call spread. Specifically, we can buy 1/dK
calls with a strike of K and sell 1/dK calls with a strike of (K + dK).

Denoting the current value of the digital option by D, we have

D ≈
CBSM(S, K,𝛴(K)) − CBSM(S, K + dK,𝛴(K + dK))

dK
(10.13)

where CBSM (S, K,𝛴 (K)) denotes the current market price of a call option
with strike K and stock price S, and 𝛴(K) is the current implied volatility of
a call with strike K.

In the limit dK → 0,

D = lim
dK→0

CBSM (S, K,𝛴 (K)) − CBSM
(
S, K + dK,𝛴

(
K + dK

))

dK

= −
dCBSM(S, K,𝛴(K))

dK

(10.14)
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We can expand the total derivative on the right-hand side of Equation 10.14
to obtain

D = −
𝜕CBSM

𝜕K
−

𝜕CBSM

𝜕𝛴

𝜕𝛴

𝜕K
(10.15)

The value of D in Equation 10.15 does not depend on any model; it is the
result of accurately replicating the digital option with an infinite number of
call spreads. If the current smile describes how 𝛴(K) varies with K, we can
evaluate Equation 10.15 in terms of the BSM Greeks and the slope of the
smile.

Let’s assume that S = K = 2,000, 𝜏 = 1 year, an implied volatility
𝛴(K = 2, 000) = 20%, and a skew

𝜕𝛴

𝜕K

||||K=2,000
= −0.0001 (10.16)

Then, assuming no dividends and a riskless rate of 0%,

𝜕CBSM

𝜕K
= −N(d2)

= −N
(
−𝛴

2

)

≈ −

(

0.5 − 1
√

2𝜋

𝛴

2

)

≈ −0.46

(10.17)

and, as before, 𝜕C/𝜕𝛴 ≈ 800, so that

D ≈ 0.46 + 800(0.0001)

≈ 0.46 + 0.08

≈ 0.54

(10.18)

If instead there had been no skew, with 𝜕𝛴/𝜕K = 0, the value of the option
would have been 0.46. The skew adds roughly 17% to the value of the
option, a significant difference.

Why does skew add to rather than subtract from the value of the digi-
tal option? One can replicate the digital option with an infinite number of
infinitesimal call spreads. A long position in the digital option is short an
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infinite number of call options with infinitesimally higher strike. With a neg-
ative skew, the call options with the higher strike, which we are short, are
worth less than if there were no skew. Therefore, the digital option is worth
more.

END-OF-CHAPTER PROBLEM

10-1. Figure 10.2 shows a plot of S&P 500 call prices versus strikes. The
data is for calls with approximately 11 months to expiration, taken
intraday, February 12, 2015, when the S&P 500 was near 2,085.
The left half of the curve looks almost linear. In that limited range,
it’s tempting to propose a model of call prices that is linear in the
strike price. For example, the dashed line in the exhibit, C = 1,657 –
0.74K, provides a good fit between 1,700 and 2,100. Using this linear
approximation, calculate the price of a butterfly spread with strikes
at 1,800, 1,900, and 2,000.
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CHAPTER 11
Implied Distributions and

Static Replication

� European call and put prices can be used to determine the implied dis-
tribution of the terminal stock price.

� The implied distribution density is related to the market prices of but-
terfly spreads.

� You can replicate any exotic European payoff with a portfolio of zero
coupon bonds, a forward, and a portfolio of European puts and calls,
even in the presence of a skew.

IMPLIED DISTRIBUTIONS

The Black-Scholes-Merton (BSM) formula calculates the price of an option
as the discounted expected value of the option’s payoff over a lognormal
stock distribution in a risk-neutral world, and—trivially, because a lognor-
mal stock distribution has a single volatility—produces an implied volatility
skew that is flat, independent of strike level.

In the real world, the smile is almost never flat. We can therefore ask
the inverse question: In a risk-neutral world, for a given expiration, what
stock distribution would produce the observed smile? We refer to this dis-
tribution as the implied distribution. We will see that knowing this distri-
bution allows us, by means of replication, to calculate the fair value of any
European-style payoff in terms of market call and put prices, independent of
any model.

State-Cont ingent Securit ies

Imagine a security that pays $1 if a certain event happens. For example,
consider a security that pays $1 if it is sunny tomorrow or a security that pays

175
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N

Today i

1

F IGURE 11.1 A World with
N Possible Future States

$1 if the S&P 500 ends the year between 2,100 and 2,200. Such securities are
referred to as state-contingent claims, state-contingent securities, state-price
securities, or Arrow-Debreu securities.

Assume that at some future time T there are only N possible states,
i = 1, 2, 3,… , N, as shown in Figure 11.1. The N possible states are a com-
plete set of mutually exclusive events. At time T, the world will be in one
and only one of the N states. Define 𝜋i as the market price at time t of an
Arrow-Debreu security that pays $1 at time T in state i, and pays zero in all
other states.

The portfolio consisting of all N of the Arrow-Debreu securities effec-
tively replicates a riskless bond because it pays $1 in every future state of the
world, no matter what happens. By the principle of no riskless arbitrage, its
current value is therefore given by

N∑

i=1

𝜋i = 1 × e−r𝜏 (11.1)

where r is the continuously compounded riskless rate, and 𝜏 = (T − t)
is the time to maturity. Multiplying both sides by the discount factor,
we have

N∑

i=1

𝜋ie
r𝜏 = 1 (11.2)
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We then define the risk-neutral probability or pseudo-probability pi of the
state i as

pi ≡ 𝜋ie
r𝜏 (11.3)

so that

N∑

i=1

pi = 1 (11.4)

A pseudo-probability is not the real probability of an event occurring,
but it does share many of the properties of a real probability. Importantly,
as shown in Equation 11.4, for a complete set of mutually exclusive events,
the sum of the pseudo-probabilities must equal 1. If it can only be sunny
or cloudy tomorrow and the pseudo-probability for sunny is 60%, then the
pseudo-probability for cloudy must be 40%.

If there is one state-contingent security for every possible state in the
market at time T, then these securities provide a complete basis that spans
the space of possible future payoffs at time T, and the market is said to
be complete. We can replicate the payoff of any European-style security
V by means of a replicating portfolio if we know the security’s payoff
V(i, T) at time T in every state i. The present value of the replicating
portfolio is

V(t) =
N∑

i=1

𝜋iV(i, T)

=
N∑

i=1

pie
−r𝜏V(i, T)

= e−r𝜏
N∑

i=1

piV(i, T)

(11.5)

Because we can express the value of a security in terms of the pseudo-
probabilities, we will find it is convenient to think of the prices of options
in probabilistic terms, even when no actual probabilities are involved. The
pseudo-probabilities of events are determined from market prices. The actual
probabilities of human events are never truly known.
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SAMPLE PROBLEM

Question:

A dealer in state-contingent securities offers to let you buy or sell three
securities, each of which pays £1 in one year if the FTSE 100 Index is
in a certain range at that time. The ranges and the current prices of the
securities are:

� FTSE < 6800: £0.26
� 6800 ≤ FTSE ≤ 6900: £0.43
� FTSE > 6900: £0.17

The riskless rate is 4%. Calculate the pseudo-probabilities for each
of the securities. Are these securities correctly priced? If not, suggest an
arbitrage.

Answer:

Using Equation 11.3, we calculate the pseudo-probabilities as:

P[FTSE < 6800] = £0.26 × e0.04×1 = 27.06%
P[6800 ≤ FTSE ≤ 6900] = £0.43 × e0.04×1 = 44.75%
P[FTSE > 6900] = £0.17 × e0.04×1 = 17.69%

The three securities cover all possible states of the world: Either
the FTSE is below 6,800, it is between 6,800 and 6,900, or it is above
6,900. There are no other possibilities, yet the sum of the pseudo-
probabilities is just 89.51% (89.50% if you rounded in the first step),
not 100%. The securities are not correctly priced.

Assuming we can borrow at the riskless rate, we should borrow
£0.86 in order to buy all three securities. At the end of the year, one
of the securities will pay £1—we don’t know which one, but we know
one of them will. We then repay our loan with interest, £0.90. The
difference, £0.10, is our arbitrage profit.

In our sunny/cloudy example there were two possible states of the world.
In the FTSE sample problem, there were three possible states of the world.
We can continue to add state-contingent securities, describing increasingly
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precise states of the world. In the limit, as the number of state-contingent
securities approaches infinity, the state-contingent securities describe not dis-
crete probabilities, but a probability density function (PDF).

In more elegant continuous-state notation, we can write the current
value V(S, t) of a derivative in terms of its terminal payoffs V(ST, T) at
time T as

V(S, t) = e−r𝜏
∫

∞

0
p(S, t, ST , T)V(ST , T) dST (11.6)

where p(S, t, ST, T) is the risk-neutral probability density function for the
terminal stock price ST at time T, given that the stock had price S at time t.

Now consider a derivative that pays $1 at time T, no matter what the
value of ST. This security is equivalent to a riskless bond. If we denote the
present value of this derivative by B(S, t), it must be the case that

B(S, t) ≡ e−r𝜏 = e−r𝜏
∫

∞

0
p(S, t, ST , T) dST (11.7)

Therefore

∫

∞

0
p(S, t, ST , T) dST = 1 (11.8)

Just like a true probability density function, the risk-neutral probability
density function integrates to one. If we know the value of p(S, t, ST, T) for
all ST at time T, we can determine the value at time t of any derivative with
a European-style payoff at time T via Equation 11.6.

SAMPLE PROBLEM

Question:

Assume that the risk-neutral probability distribution for the price of
stock XYZ at the end of one year is uniform between $100 and $200,
and zero elsewhere, so that:

p(ST , T) = 1
100

for 100 ≤ ST ≤ 200
(continued)
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(continued)

This distribution is, of course, very unlikely in practice. Assume
that the riskless rate is 10%. What is the risk-neutral value of a security
that pays $1 if XYZ is between 140 and 151 in one year, and zero
otherwise?

Answer:

There is an 11% probability that the security will pay $1. Discounted
back at 10%, this potential payoff is worth approximately $0.10. For-
mally,

V = e−0.10×1
∫

151

140
(p(ST , T) × 1) dST

= e−0.10×1
∫

151

140

1
100

dST

= e−0.10×1 1
100

[ST]151
140

= e−0.10×1 11
100

≈ $0.10

THE BREEDEN-L ITZENBERGER FORMULA

If we know the value of p(S, t, ST, T) for all ST at time T, we can determine
at an earlier time t the value of any derivative with a European-style payoff
at time T. But, how can we determine p(S, t, ST, T)? The answer is that we
can find it if we know the value of standard European options expiring at
time T for all strikes K, as we now show.

Let’s apply Equation 11.6 to a standard call option with value
C(S, t, K, T) at time t whose payoff at expiration time T is max(ST − K, 0).
Then

C(St, t, K, T) = e−r𝜏
∫

∞

K
p(S, t, ST , T)(ST − K) dST (11.9)

where the integral begins at a terminal stock price K because the payoff of
the call is zero when ST < K. By differentiating this equation with respect to
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K, we can try to isolate the term p(S, t, ST , T). Taking account of K appearing
both in the lower bound of the integral range and in the argument inside the
integral, we find that

𝜕C(S, t, K, T)
𝜕K

= −e−r𝜏
∫

∞

K
p(S, t, ST , T) dST (11.10)

Differentiating one more time with respect to K leads to the result

𝜕2C(S, t, K, T)
𝜕K2

= e−r𝜏p(S, t, K, T) (11.11)

or

p(S, t, K, T) = er𝜏 𝜕
2C(S, t, K, T)

𝜕K2
(11.12)

In other words, the risk-neutral probability of making a transition from S at
time t to K at time T is proportional to the second partial derivative of the
call price with respect to strike.

There is an intuitive way to understand this result. In Chapter 9
we showed that the second derivative with respect to strike of the call
price function represents a butterfly spread. Figure 11.2, reproduced from

K ST

Payoff

K + dK

Butterfly:
C(K − dK) − 2·C(K) + C(K + dK) ≥ 0

K − dK

F IGURE 11.2 Butterfly Spread
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Chapter 9, shows the payoff profile of a butterfly. Here we have purchased
one call with a strike of (K − dK), sold two calls with strikes at K, and pur-
chased one call with a strike of (K + dK), all with the same expiration. Let’s
write this position more compactly

d2CK = CK+dK − 2CK + CK−dK = (CK+dK − CK) − (CK − CK−dK) (11.13)

which shows that the butterfly spread is the difference between two adjacent
ordinary spreads. The notation d2CK indicates the second differential of CK
with respect to K.

The maximum payoff of the butterfly d2CK is dK, and occurs when the
underlier ST is equal to K at expiration. By owning 1/dK2 butterfly spreads
d2CK (i.e., by owning the position d2CK/dK2), we obtain a portfolio whose
payoff is 1/dK at ST = K and has width 2dK. The integrated value of the pay-
off (a triangular shape) across all strikes is given by 1/2 × (2dK) × (1/dK) = 1.
In the limit dK → 0, 1/dK2 butterfly spreads pays off $1 only if ST = K and
zero otherwise, and therefore represents the payoff of a state-contingent

security. The value of 𝜕2C(S, t, K, T)
𝜕K2 is therefore the value at time t of the

state-contingent security that pays $1 if ST = K. Writing this value as the

risk-neutral probability times a discount factor, we obtain 𝜕2C(S, t, K, T)
𝜕K2 =

e−r𝜏p(S, t, K, T), which is precisely Equation 11.11.
The analysis leading to Equation 11.11 would have been equally valid

if we had used put prices instead of call prices. It must be the case that

𝜕2C(S, t, K, T)
𝜕K2

= 𝜕2P(S, t, K, T)
𝜕K2

and so we can also conclude that

p(S, t, K, T) = er𝜏 𝜕
2P(S, t, K, T)

𝜕K2
(11.14)

Equations 11.11 and 11.14 are each known as the Breeden-Litzenberger
formula, first published in 1978 (Breeden and Litzenberger, 1978). The
formula shows that, given the market prices of standard options of all
strikes K at a fixed expiration T, we can calculate the risk-neutral prob-
ability density function at expiration of the underlying price simply by
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calculating the second derivative of the market prices of options with respect
to strike.

The distribution p(S, t, ST, T) is called the implied distribution. It is the
risk-neutral distribution of the terminal stock price implied by the option
market. As we will see in the next section, the Breeden-Litzenberger for-
mula allows us to express the payoff of an arbitrary European derivative
as a combination of the payoffs of calls and puts of all strikes. The equiv-
alence of the two payoffs is an identity, independent of any model. As use-
ful as this equivalence is, it is important to remember that the distribution
p(S, t, ST, T) is not the true distribution of the stock price at time T, or
even the market’s expectation of the true distribution of stock prices; it
is a pseudo-probability function that integrates to one because its inte-
gral is equivalent to a zero coupon bond, but it is not a genuine proba-
bility density function (PDF). It cannot tell us the actual probability of any
event occurring.

It is also important to note that the implied distribution p(S, t, ST,
T) at expiration is insufficient for valuing any option other than a Euro-
pean option with the same expiration T. To value an arbitrary option
on a stock (say an American option) using the BSM method, one must
hedge it at every instant; to hedge it, one must hedge against the instan-
taneous change in value of the option caused by the stochastic process
driving the stock price; but the risk-neutral distribution at expiration
tells you nothing about the evolution of the stock price on its way to
expiration.

The first panel of Figure 11.3 shows the price of S&P 500 calls on
9/10/2014. The options had just over six months to expiration, and the
level of the S&P 500 at the time was just under 2,000. The bars in the
second panel show the discrete approximation to the risk-neutral PDF cal-
culated according to Equations 11.12 and 11.13. The call price function
may appear to be relatively smooth, but the approximation to the PDF is
not. The jaggedness of the PDF is most likely due to some of the quoted
option prices being stale (The S&P 500 options market is one of the most
liquid overall, but many of the options trade infrequently, especially if they
are deep in- or out-of-the-money.). For a revealing look at the market’s
perception of risk during the financial crisis of 2008 as revealed by the
behavior of the risk-neutral S&P 500 implied distribution, see Birru and
Figlewski (2012).

One strategy for producing a smoother distribution is to first approxi-
mate the call price function with a continuous function that is twice differ-
entiable. The following sample problem starts to suggest how this might be
done in practice.
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SAMPLE PROBLEM

Question:

Assume that the riskless rate is zero, and that the price of six-month
S&P 500 options can be described by the following equation between
1,725 and 2,300:

C(K) = −24020 + 53.06K − 4.161 × 10−2K2

+1.398 × 10−5K3 − 1.715 × 10−9K4

Derive the formula for the risk-neutral PDF of the S&P 500 in six
months. Based on this distribution, what is the risk-neutral probability
of the S&P 500 being between 2,000 and 2,050 in six months?

Answer:

Figure 11.4 shows C(K) overlaid on the actual call prices from Fig-
ure 11.3. Between 1,725 and 2,300, the prices are well approximated
by this fourth-order polynomial.
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F IGURE 11.4 Fourth-Order Approximation to the Call Price
Function

(continued)
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(continued)

To get the risk-neutral PDF, we calculate the second derivative of
C(K). Denoting the risk-neutral PDF by p(K), we have:

C′(K) = 53.06 − 8.322 × 10−2K + 4.194 × 10−5K2 − 6.860 × 10−9K3

p(K) = C′′(K) = −8.3220 × 10−2 + 8.388 × 10−5K − 2.058 × 10−8K2

To find the risk-neutral probability of the S&P 500 being between
2,000 and 2,050 in six months, we can integrate:

P[2000 ≤ ST ≤ 2050] =
∫

2050

2000
p(ST) dS

= [−8.322 × 10−2K + 4.194 × 10−5K2 − 6.860 × 10−9K3]2050
2000

= 0.11

The risk-neutral probability of the S&P 500 ending between 2,000
and 2,050 is 11%.

In the sample problem there was no theoretical reason for using a fourth-
order polynomial to approximate call price function. It was chosen mainly
for pedagogical convenience. Because of this choice, the risk-neutral p(K)
was a second-order polynomial, a parabola. For actual option prices, a
parabola will very rarely be a good approximation to the implied distri-
bution of the terminal price of a security. By using more realistic approxi-
mations to the call price function, we can produce more reasonable PDFs.

In a previous chapter we discussed why practitioners often prefer to
express the smile as a function of delta rather than strike. Similarly, rather
than expressing call prices as a function of the strike price, it may be eas-
ier and more practical to express call prices as a function of delta; see, for
example, Malz (1997).

The Breeden-Litzenberger formula does not depend on any model of
stock evolution. It depends only on the fact that an infinite number of
infinitesimal butterfly spreads at expiration pay out $1 only when the termi-
nal stock price equals the strike, which follows directly from the contractual
payoff of an option. As we will see in the next section, we can use a collection
of butterfly spreads to replicate any European option statically.
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STATIC REPLICATION: VALUING ARBITRARY
PAYOFFS AT A FIXED EXPIRATION USING
IMPLIED DISTRIBUTIONS

Combining Equations 11.6 and 11.12, we can write the value at time t of
an arbitrary European-style payoff at time T in terms of call prices at all
strikes as

V(S, t) =
∫

∞

0

𝜕2C(S, t, K, T)
𝜕K2

V(K, T) dK (11.15)

Note that the symbol K plays a dual role here: In the function 𝜕2C(S, t, K, T)
𝜕K2 , K

represents a strike, but in the function V(K, T) K represents a terminal stock
price. K is a dummy variable; it doesn’t matter what symbol we use for it—
we could equally have called it ST —since we integrate over it. Notice that
the riskless rate r does not appear explicitly in Equation 11.15. It is, however,
implicitly there within the call prices, which involve discounting.

Combining Equations 11.6 and 11.14, we can equally well write:

V(S, t) =
∫

∞

0

𝜕2P(S, t, K, T)
𝜕K2

V(K, T) dK (11.16)

We stress again that obtaining the state-contingent prices from call or
put option prices is model-free. It assumes only that we can obtain the second
derivative of European puts or calls with respect to strike. Equations 11.15
and 11.16 do not require us to assume geometric Brownian motion. They
are valid even if there is a smile or skew or there are jumps, as long as the
options payoffs are honored by the party that sold them.

Repl icat ion Using Standard Opt ions

Equations 11.15 and 11.16 involve the second derivatives of calls and puts.
We can use integration by parts to eliminate these derivatives to show that
any European payoff V can be converted into the payoff of a portfolio of
a zero coupon bond, a forward contract, and a series of puts and calls that
together replicate the payoff of V.

Consider an exotic European payoff V(K, T). We are free to use either
puts or calls to extract the state-contingent Arrow-Debreu prices. In general,
low-strike puts (strikes below the forward price) tend to be more liquid than
low-strike calls, and similarly, high-strike calls tend to be more liquid than
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high-strike puts. Because of this, we will replicate using puts below some
strike A and calls above it. Then, integrating by parts twice, we have

V(S, t) =
∫

A

0

𝜕2P(S, t, K, T)
𝜕K2

V(K, T) dK +
∫

∞

A

𝜕2C(S, t, K, T)
𝜕K2

V(K, T) dK

=
∫

A

0

𝜕2V(K, T)
𝜕K2

P(S, K) dK +
∫

∞

A

𝜕2V(K, T)
𝜕K2

C(S, K) dK

+
[
V(K, T)

𝜕P(S, K)
𝜕K

− P(S, K)
𝜕V(K, T)

𝜕K

]K=A

K=0

+
[
V(K, T)

𝜕C(S, K)
𝜕K

− C(S, K)
𝜕V(K, T)

𝜕K

]K=∞

K=A

(11.17)

where, given the current value of the stock S, P(S, K) is the current value
of a put with strike K and expiration T, and C(S, K) is the corresponding
call value.

We can evaluate the boundary terms as a function of strike K using the
following conditions for the current call and put prices:

P(S, 0) = 0

𝜕P(S, 0)
𝜕K

= 0

C(S,∞) = 0

𝜕C(S,∞)
dK

= 0

P(S, K) − C(S, K) = Ke−r(T−t) − S

𝜕P(S, K)
𝜕K

− 𝜕C(S, K)
𝜕K

= e−r(T−t)

(11.18)

The last two lines in Equation 11.18 follow from put-call parity. We
then obtain:

V(S, t) = V(A, T)e−r(T−t) + 𝜕V(K, T)
𝜕K

||||K=A
(S − Ae−r(T−t))

+
∫

A

0

𝜕2V(K, T)
𝜕K2

P(S, K) dK +
∫

∞

A

𝜕2V(K, T)
𝜕K2

C(S, K) dK
(11.19)
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Terminal Stock Price

Payoff V(S,T)

A

Linear payoff S – A
with slope V'(A,T)

Constant payoff
V(A,T)

F IGURE 11.5 Replication of Exotic European Payoff

If we conveniently choose A to be the forward price, A = Ser(T − t), the second
term on the right-hand side, which represents the value of a forward contract
with delivery price A, vanishes.

The successive terms in Equation 11.19 demonstrate that you can
decompose an arbitrary payoff at time T into a constant riskless payoff that
must be discounted like a zero coupon bond, a linear part that has the same
value as a forward contract with delivery price A, and a combination of puts
with strikes below A and calls with strikes above A.1

Figure 11.5 illustrates the replication of the payoff, where the constant
and linear parts of the payoff are replicated without any options, and the
curved parts make use of options.

Thus there are two complementary ways of regarding static replication:

1. If you know the risk-neutral density p(S, t, K, T), then you can write
down the value of V(S, t) as an integral over the terminal payoff
V(K, T), as in Equation 11.6.

2. Alternatively, if you know the derivatives 𝜕V(K, T)
𝜕K

and 𝜕2V(K, T)
𝜕K2 of the

payoff V(K, T), then you can write down the value of V(S, t) as an inte-
gral over call and put prices over a range of strikes, as in Equation 11.19.

Each equation is the complement of the other.

1 This result is based on Carr and Madan (1998).
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If you can buy every option in the strike continuum you need from some-
one who will never default on the payoff, then you have a perfect static
hedge. You can go home and come back to work only when V expires, con-
fident that the calls and puts that you bought will exactly match V’s payoff.
This replication does not depend on any theory of stock behavior or options
valuation; it relies only on mathematics that matches one payoff with the
sum of a series of different payoffs.

If, as in the real world, you cannot buy every single option in the con-
tinuum because only a finite number of strikes are available for purchase,
then you have only an approximate replicating portfolio whose value will
deviate from the value of the target option’s payoff. Picking a reasonable or
tolerable replicating portfolio is up to you. There is always some residual
unhedged risk.

The Heavis ide and Dirac Delta Funct ions

Many payoffs V(ST, T) that we will want to replicate are “hockey stick”
shaped, similar to the payoffs of standard options, with a discontinuity, and
are consequently not differentiable everywhere as a function of ST. To repli-

cate them using Equation 11.19, we will need to calculate 𝜕2V(ST , T)
𝜕S2

T

. The

mathematical manipulations of such functions can be made easier and more
mechanical by the use of the Heaviside and Dirac functions commonly used
in applied mathematics and physics.

We define the Heaviside or indicator function H(x) such that it is equal
to 0 when x is less than or equal to 0 and 1 otherwise:

H(x) =

{
0 x ≤ 0

1 x > 0
(11.20)

The derivative of the Heaviside function is the Dirac delta function 𝛿(x):

𝜕H(x)
𝜕x

= 𝛿(x) (11.21)

The Dirac delta function 𝛿(x) is a distribution, the mathematical name
for a very singular function that makes sense only when used within an inte-
gral; 𝛿(x) is zero everywhere except at x = 0, where its value is infinite. Fig-
ure 11.6 shows a graphical representation of the Heaviside and Dirac delta
functions. The spike in the middle of the Dirac delta function has zero width
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F IGURE 11.6 Heaviside and Dirac Delta Functions

but infinite height, with an area equal to 1, as you can confirm by integrating
Equation 11.21 from –∞ to ∞. You can think of the Dirac delta as the limit
of a normal distribution that has standard deviation 𝜎 and area 1; in the
limit 𝜎 → 0 it becomes infinitely high and infinitely narrow, but maintains
its area.

There are three key features of the delta function:

∫

∞

−∞
𝛿(x) dx = 1 (11.22a)

x𝛿(x) = 0 (11.22b)

∫

∞

−∞
f (x)𝛿(x) dx = f (0) (11.22c)

The first statement is part of the definition of the delta function, and
follows from Equation 11.21. The second holds formally because either x
or 𝛿(x) is zero for all values of x. The last statement shows how the delta
function can be used to isolate or select the value of another function. If you
think of 𝛿(x) as an infinitely narrow normal distribution with mean zero,
you can see that, in the limit all of the probability is concentrated at x = 0,
in effect selecting out just the value of f(x) at x = 0.

Using Stat ic Repl icat ion to Est imate the
Ef fect of a Skew

If you write the payoff of an exotic European option at time T as a
sum over the payoffs of vanilla options, and if you know the market’s
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current BSM implied volatilities Σ(K, T) for all K, then you can find the
fair market value of the exotic option in terms of the values of the vanilla
options.

Consider an exotic option with strike B and expiration T on a stock
with price S whose payoff gives you one share of stock for every dollar the
option is in-the-money. Making use of the Heaviside function, its payoff in
terms of the terminal stock price ST is

V(ST) = ST × max[ST − B, 0] = ST × (ST − B)H(ST − B) (11.23)

When it is in-the-money, this payoff is quadratic in the stock price, unlike
a vanilla call, whose payoff is linear. We can make use of Equation 11.19
to show that we can replicate the payoff of this option by adding together
a collection of vanilla calls with strikes beginning at B, and then adding
successively more calls with higher strikes to create a quadratic payoff, as
illustrated in Figure 11.7 for B = $100. That we need only calls should
be clear from the fact that the payoff in Figure 11.7 is zero everywhere
below B.

We now calculate the coefficients of the calls required in the last
term of Equation 11.19. Differentiating Equation 11.23 with respect to ST
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leads to

𝜕V(ST)
𝜕ST

= 𝜕

𝜕ST
[ST × (ST − B)H(ST − B)]

= (ST − B)H(ST − B) + ST × H(ST − B)+

ST × (ST − B)𝛿(ST − B)

= (ST − B)H(ST − B) + ST × H(ST − B)

(11.24)

For the last line we rely on the fact that x𝛿(x) = 0. Differentiating one
more time, we obtain

𝜕2V(ST)

𝜕S2
T

= (ST − B)𝛿(ST − B) + 2H(ST − B) + ST × 𝛿(ST − B)

= ST × 𝛿(ST − B) + 2H(ST − B)
(11.25)

Substituting these expressions into Equation 11.19 with A = B, we obtain
the current fair value of V at time t when the underlying stock price is S in
terms of the current value of call options C(S, K) of various strikes K:

V(S, t) =
∫

∞

B

𝜕2V(K, T)
𝜕K2

C(S, K) dK

=
∫

∞

B
K × 𝛿(K − B)C(S, K) dK + 2

∫

∞

B
H(K − B)C(S, K) dK

= BC(S, B) + 2
∫

∞

B
C(S, K) dK (11.26)

Equation 11.26 shows that the exotic quadratic payoff can be approx-
imated by a linear combination of call payoffs with strikes at B and above.
How well does this replication work in practice? Figure 11.7 shows the
quadratic payoff for B = $100, approximated by a portfolio of 20, 35, and
50 calls, respectively, with strikes equally spaced $1 apart, beginning at $100.
As the stock price increases beyond the last strike in the replication portfolio,
the replication becomes progressively more inaccurate.
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Now we examine the rate of convergence of the value of the replicat-
ing formula as we increase the number of strikes in the replicating formula,
assuming the smile is described by

𝜎(K) = 0.2
( K

100

)𝛽

(11.27)

A negative value of 𝛽 corresponds to a negative skew for which implied
volatility increases with decreasing strike; 𝛽 = 0 corresponds to no skew, the
BSM case; and a positive value of 𝛽 corresponds to a positive skew.

For B = $100 and 𝛽 = 0, the fair value of V when replicated by an
infinite number of calls is $1,033. Figure 11.8 illustrates the convergence
to fair value of the replicating portfolio as the number of calls with strikes
$5 apart included in the portfolio increases. With 10 strikes, the value has
almost converged to the fair value.

In Figure 11.9, for both positive and negative skews, 𝛽 = ±0.5, we illus-
trate three properties:

1. The implied volatility as a function of strike.
2. The implied distribution corresponding to the skew.
3. The convergence of the value of the replicating portfolio to its fair value

as a function of the number of calls included in the portfolio.
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As is evident, for a positive skew the replicating portfolio converges to
a fair value of $1,100, larger than in the BSM case. With a positive skew,
Figure 11.9 shows that the probability of large stock prices is greater than
for the BSM case. The value of high-strike options is therefore higher and
they contribute more to the fair value. Convergence is therefore corres-
pondingly slower.

For a negative skew, the probability of large stock prices is smaller than
in the BSM case, so the value of high-strike options is lower. The replicating
portfolio therefore converges to a fair value of $996 more rapidly.

THE BLACK-SCHOLES-MERTON RISK-NEUTRAL
PROBABIL ITY DENSITY

In this section, we once again derive the familiar BSM formula for a Euro-
pean call on a non-dividend-paying stock, now by using the BSM risk-neutral
probability density.

In the BSM model, the log returns ln(ST/St) of the stock are normally
distributed with a risk-neutral mean and standard deviation given by

Mean = r𝜏 − 1
2
𝜎2𝜏

s.d. = 𝜎
√
𝜏

where 𝜏 = (T – t), and r is the riskless rate. Here and in what follows, we
have assumed dividends are zero.

Therefore the random variable

x =
ln
(

ST

St

)
−
(

r𝜏 − 1
2
𝜎2𝜏

)

𝜎
√
𝜏

(11.28)

follows a standard normal distribution with mean 0 and standard deviation
1 whose probability density is given by

N′(x) = 1
√

2𝜋
e−

1
2

x2
(11.29)

The log returns, ln(ST/St), can range from –∞ to +∞.
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Solving Equation 11.28 for ST in terms of x, we have

ln
(

ST

St

)
= x𝜎

√
𝜏 +

(
r𝜏 − 1

2
𝜎2𝜏

)

ST = Ste
x𝜎

√
𝜏+

(
r𝜏 − 1

2
𝜎2𝜏

) (11.30)

Differentiating with respect to x, and rearranging, we have

dx = 1

𝜎
√
𝜏

dST

ST
(11.31)

The risk-neutral value of a call option is given by integrating over the normal
distribution of returns, so that

C(St, t) = e−r𝜏
∫

∞

−∞

1
√

2𝜋
e−

1
2

x2
H(ST − K)(ST − K) dx

= e−r𝜏 1

𝜎
√

2𝜋𝜏 ∫

∞

K
e−

1
2

x2 (ST − K)
ST

dST

(11.32)

From Equation 11.6 we know that the value of the call in terms of the implied
risk-neutral probability distribution is given by

C(St, t) = e−r𝜏
∫

∞

0
p(St, t, ST , T)C(ST , T) dST (11.33)

Therefore, the BSM risk-neutral probability density function is

p(St, t, ST , T) = e−
x2

2

𝜎ST

√
2𝜋𝜏

(11.34)

with x given by Equation 11.28.
The function p(St, t, ST, T) is plotted in Figure 11.10 for St = 100, 𝜏 =

1, r = 0, and 𝜎 = 0.2.
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F IGURE 11.10 BSM PDF p(St, t, ST , T) for St = 100, 𝜏 = 1,
r = 0, 𝜎 = 0.2

We can now evaluate the integral in Equation 11.32 by integrating over
the normal distribution x. At the lower integration limit, when ST = K, we
have

xmin =
ln
(

K
St

)
−
(

r𝜏 − 1
2
𝜎2𝜏

)

𝜎
√
𝜏

= −
ln
(

St
K

)
+
(

r𝜏 − 1
2
𝜎2𝜏

)

𝜎
√
𝜏

= −d2

(11.35)

Therefore from Equation 11.32,

C(St, t) = e−r𝜏
∫

∞

−d2

1
√

2𝜋
e−

1
2

x2
(ST − K) dx

=
∫

∞

−d2

1
√

2𝜋
e−

1
2

x2−r𝜏STdx − Ke−r𝜏
∫

∞

−d2

1
√

2𝜋
e−

1
2

x2
dx

(11.36)
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Using Equation 11.30 to replace ST by x, we have

C(St, t) = St
∫

∞

−d2

1
√

2𝜋
e−

1
2

x2+x𝜎
√
𝜏 − 1

2
𝜎2𝜏dx − Ke−r𝜏

∫

∞

−d2

1
√

2𝜋
e−

1
2

x2
dx

(11.37)

Now, complete the square in the exponent in the first term by defining y
such that

y = x − 𝜎
√
𝜏 (11.38)

Then

C(St, t) = St
∫

∞

−d2−𝜎
√
𝜏

1
√

2𝜋
e−

1
2

y2
dy − Ke−r𝜏

∫

∞
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1
√

2𝜋
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= St
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∫
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(11.39)

Both of the terms in Equation 11.39 are integrals over a normal distribution.
By a transformation of variables to a = –y and b = –x, we obtain

C(S, t) = St
∫

d1

−∞

1
√

2𝜋
e−

1
2

a2
da − Ke−r𝜏

∫

d2

−∞

1
√

2𝜋
e−

1
2

b2
db (11.40)

The integrals now reveal themselves as the standard cumulative normal dis-
tributions, so that

C(S, t) = StN(d1) − Ke−r𝜏N(d2) (11.41)

This is the BSM formula for a call option on a non-dividend-paying stock.

END-OF-CHAPTER PROBLEMS

11-1. A dealer in state-contingent securities offers to let you buy or sell three
securities. Each of the securities will pay $1 in one year, based on the
level of the NASDAQ-100 Index (NDX) at that time. The current
prices are:
1. NDX < 4000: $0.28
2. 4000 ≤ NDX ≤ 4500: $0.51
3. NDX > 4500: $0.20
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The riskless rate is 5%. Calculate the pseudo-probabilities for each of
the securities. Are these securities correctly priced? If not, suggest an
arbitrage.

11-2. A security that will pay $10.30 in six months if, at that time, the S&P
500 is greater than 2,500, and pay zero otherwise, is currently valued
at $1.00. What is the risk-neutral or pseudo-probability that the S&P
500 will be greater than 2,500 in six months? Assume an annually
compounded riskless rate of 6.09%.

11-3. Assume that the probability density function for the price of XYZ
stock in one year, ST, can be approximated by f(x) = (−75 + 20x –
x2)/200 between $6 and $14. What is the current fair value of a
European-style option that pays (ST − $10)3 if ST is between $10
and $12, and zero if ST is outside this range? Assume no dividends
and a riskless rate of 4%.

11-4. You trade options on a stock that pays no dividends. When the market
opens today, you notice that the prices of two-year-expiration Euro-
pean put options on the stock for any strike K satisfy the formula

P(K) =
(

20
21

)
K + 20

(
e−

K
21 − 1

)

What is the current value of the two-year annually compounded risk-
less rate?





CHAPTER 12
Weak Static Replication

� Dynamic replication of exotic options requires frequent and sometimes
expensive rebalancing.

� Weak static replication tries to match the payoffs of an exotic option on
all its boundaries using portfolios of standard options.

� The weights of the static replication portfolio depend on the model used
(as does the hedge ratio in dynamic replication).

� The portfolio often has to be unwound as the option approaches a bar-
rier.

� There is no unique static replication portfolio. It takes art and a knowl-
edge of valuation to find a good one.

SUMMARY OF THE BOOK SO FAR

The following five points have been described in the preceding chapters:

1. The most reliable way to value a security is to replicate it, and static
replication is best. If you cannot find a static replicating portfolio, use
dynamic replication. Finally, if you cannot replicate at all, there is no
choice but to incorporate your risk preferences, an approach whose
description lies mostly outside the scope of this book.

2. The Black-Scholes-Merton (BSM) model relies on continuous dynamic
replication. Even if the model were correct in principle, hedging errors
and transaction costs limit its practical implementation.

3. Even within the scope of the BSM model, we still need to pick a volatility
to use for hedging. Hedging with implied volatility leads to an uncertain
path-dependent total profit and loss (P&L); hedging with future real-
ized volatility leads to a theoretically deterministic final P&L, but might
involve large fluctuations in the P&L along the way to expiration. In
practice, since future volatility cannot be known, significant P&L losses

203



204 THE VOLATILITY SMILE

along the way might make it necessary to unwind the hedge before expi-
ration in order to limit potential future losses.

4. The BSM model makes a number of assumptions that are at odds with
reality. Though the model is extremely useful, it is imperfect. There is no
greater evidence of this imperfection than the volatility smile. We have
outlined three extensions of the BSM model, which attempt to account
for the smile: local volatility, stochastic volatility, and jump diffusion.

5. In Chapter 11, we showed that you can statically replicate any European
payoff with a portfolio of standard puts and calls, independent of any
valuation model. This is called strong replication, because it involves no
assumptions about the behavior of assets or markets except the absence
of credit risk. If you know the implied distribution from the prices of
standard puts and calls, you can calculate the value of any European
security whose payoff depends on the underlier’s price. While such per-
fect strong replication is possible in theory, it may require an infinite
number of options. In practice, therefore, one can create only approxi-
mate replicating portfolios whose mismatch with the payoff of the actual
security will lead to basis risk.

INTRODUCING WEAK STATIC REPLICATION

In Chapter 11, we used the implied distribution at expiration to match
the payoff of any European option whose payoff depended only on the
underlier’s price at expiration. We call this style of replication strong static
replication.

Path-dependent options, such as barrier options, have payoffs that
depend on the path the underlier’s price takes to expiration. Traditionally,
one uses dynamic replication to value such options. But there are three prac-
tical difficulties with dynamic hedging. First, it is impossible to continuously
rebalance the weights of a portfolio, so traders must adjust at discrete inter-
vals. This causes small replication errors that compound over the life of the
option. As shown previously, these errors decrease as we increase the fre-
quency of rebalancing. Second, there are transaction costs associated with
rebalancing the portfolio. These costs grow with the frequency of balancing
and can overwhelm the potential profit margin of the option. As a result,
traders have to compromise between the accuracy of replication and the
cost associated with more frequent rebalancing. Finally, the software sys-
tems needed to carry out dynamic replication for a portfolio of options are
sophisticated, costly, and prone to operational risk.

What can you do about this? In this chapter, we describe a method of
option replication that approximately bypasses some of these difficulties.
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Given some exotic target option, we show how to construct a portfolio of
standard liquid options, with static time-independent weights, which will
(as closely as we can manage) replicate the value of the target option for a
specified range of future times and market levels. This portfolio is known as
a weak static replicating portfolio, for reasons to be explained shortly. You
can therefore think of static replication as coming in two versions: strong
and weak.

Unlike dynamic replication, which follows the canon of the BSM method
with continuous rebalancing as the underlier’s price changes, weak static
replication relies on matching the boundary payoffs of the replication port-
folio to those of the target option. When the boundary comes into play only
at the expiration of the option, the match can be made perfect, as in strong
static hedging. But, when the boundary comes into play at earlier times, as is
the case, for example, of a knockout barrier option whose knockout bound-
ary is active at all times until expiration, the match typically involves the
value on the boundary of other nonexpiring options. These values depend
on the model being used to value them. That model could be BSM, or some-
thing that perhaps works better. Either way, the value and composition of the
replicating portfolio will depend on the model. The more closely the model
resembles the true dynamics of the underlier, the better the static replicating
portfolio will perform. To illustrate this, many examples involving barrier
options will be provided in the next section.

This form of replication is called weak because the matching is model-
dependent. While this forces us to operate under the theoretical assumptions
of the valuation model, the advantage is that many of the real-world costs
associated with replication will be embedded in the known market prices of
the options in the replicating portfolio. Though this approach can provide
reasonable approximate methods of valuation, the theoretical assumptions
behind the valuation model introduce a new set of risk factors that should
not be disregarded.

In general, a perfect static hedge can require an infinite number of stan-
dard options, though it is sometimes possible to find a portfolio consisting
of only a small number of options. In most cases, a static replicating portfo-
lio with only a few options will provide adequate replication over a range of
future times and underlier values, but the portfolio may have to be unwound
as the option approaches expiration or a barrier, which also increases the risk
of replication.

The replicating portfolio is generally not unique. As we will show, there
is an art in constructing it that benefits from both an understanding of option
valuation and a thorough knowledge of the behavior of option markets.

To illustrate weak static replication, in the remainder of this chapter we
will focus on a particular class of exotic options, namely, barrier options.
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F IGURE 12.1 Up-and-In Put with Barrier Equal to Strike

SOME INSIGHTS INTO THE STATIC REPLICATION OF
BARRIER OPTIONS

We begin to explain weak static hedging by considering a simple but exact
static hedge that works only in a special case, but illustrates clearly the gen-
eral principle.1 We have already done this once before in Chapter 3, where
we saw how to replicate the payoff of a down-and-out barrier option with
strike K equal to the barrier B, in the special case where the dividend yield
of the underlying security and the riskless rate were equal. Here we present
another example, this one involving an up-and-in European put.

A European Up-and- In Put with Barrier = Strike

Consider an up-and-in put with strike K set equal to the barrier B, as illus-
trated in Figure 12.1.

Assume interest rates and dividend yields are zero, and that the BSM
stock dynamics hold. If the stock trajectory hits the barrier B, as illustrated
by the dashed line in Figure 12.1, the put knocks in and becomes a standard
put with value denoted by P(S = K, K, 𝜎, 𝜏); if the stock trajectory avoids
the barrier, as illustrated by the solid line, the put expires worthless. Thus, to
replicate the up-and-in put we need to own a security that expires worthless
if the barrier is avoided, and has the value P(S = K, K, 𝜎, 𝜏) on the barrier.

1 An excellent paper on static hedging is Carr, Ellis, and Gupta, “Static Hedging of
Exotic Options” (1998).
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Now consider instead a standard call option with value C(S, K, 𝜎, 𝜏). It
will expire worthless for all values of the stock price below K at expiration,
and therefore matches the payoff of the up-and-in put if the barrier isn’t
penetrated. If the stock touches the barrier, then S = K = B. It is easy to
check from the BSM formula with zero interest rates and dividends that
C(S = K, K, 𝜎, 𝜏) = P(S = K, K, 𝜎, 𝜏). Therefore, if instead of the knock-
in put you buy a standard call, it will expire worthless if the barrier isn’t
penetrated, or, exactly when the barrier is touched, will provide just enough
cash, when sold, to purchase a standard put. This standard put at expiration
will provide the payoff of the knock-in put.

Thus, a standard call, C(S, K,𝜎, 𝜏), can replicate a down-and-in put when
B=K. We stress: When and if the stock price hits the barrier, you must sell the
standard call and immediately buy a standard put, which, theoretically, from
the argument in the previous paragraph, should have the same value. The
replication requires action on your part: If the stock touched the barrier and
you did not immediately trade out of the call and into the put, the replicating
portfolio would still own the call but the target knock-in option would have
become a put, and, from then on, the replication will fail.

This is weak replication because it depends on the dynamics of the model
(BSM with zero rates and dividends). If, for example, there is a smile when
the stock touches the barrier, put-call symmetry will fail and you will not be
able to exchange the call for the put at zero cost. That is what makes the
replication weak rather than strong. Similarly, if the stock can jump rather
than diffuse, it could leap across the barrier before you have a chance to
exchange the call for the put.

Having shown an elegant but Platonic example of how static replication
works, we will now turn to down-and-out call options. We will first derive
a mathematical formula for the value of a down-and-out call option in the
BSM framework. We will then see that the form of the solution suggests a
method of static replication in the BSM framework, and perhaps even more
generally.

Valu ing a Down-and-Out-Barrier Opt ion under
Geometric Brownian Mot ion with a Zero Riskless
Rate and Zero Div idend Yie ld

Consider a European down-and-out call option with strike K and barrier B
(now not equal to K) below the strike. If, on the path to expiration, the stock
touches or passes through the barrier B, the option knocks out and is worth
zero. If the stock never touches the barrier, the payoff at expiration is the
same as that of a standard call. In order to value the option, we will make
use of the method of images commonly used in electrostatics, a technique
that is roughly equivalent to the reflection principle in probability theory.
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To illustrate it, we initially make one more temporary simplification and
consider a stock that undergoes arithmetic Brownian motion.

The Method of Images for Arithmet ic Brownian Mot ion Consider a stock
S that undergoes arithmetic (rather than geometric) Brownian motion with
constant volatility and zero interest rates in a risk-neutral world. Now con-
sider its mirror image, an imaginary stock S′ that is a reflection of S across
the barrier B. S and S′ are the same distance from the barrier B, but on oppo-
site sides, so that S – B = B – S′, or S′ = 2B – S, as shown in Figure 12.2. For
example, if B = 100 and S = 120, then S′ = 80.

Now consider the risk-neutral distribution at a future time of the stock
price, starting from the initial value S at t = 0 (the solid trajectory in Fig-
ure 12.2), and compare it to the distribution of a stock starting at S′ (the
dashed trajectory). Because S and S′ are symmetrically situated about B, as
a consequence of arithmetic Brownian motion with zero rates and dividend
yields, both probability distributions have the same value at any time 𝜏 on
the boundary B.

The Black-Scholes partial differential equation (PDE) is linear, so that
the superposition of any two solutions is also a solution. If we therefore
subtract the probability distribution of the future stock price arising from S′

from the distribution arising from S, for future stock prices above the bar-
rier we obtain the resultant probability distribution of a stock that has zero
probability of hitting the barrier and continuing to evolve thereafter. This
is the appropriate distribution for a down-and-out knockout option. The

Time

K

S

Stock Price

B

S'

Expirationτ

F IGURE 12.2 The Stock S and Its Reflection S′ in B for
Arithmetic Brownian Motion; S′ = 2B − S
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discounted integral of the call’s payoff at expiration over this distribution is
the correct price for the down-and-out call, assuming arithmetic Brownian
motion. One can understand this pictorially, too: Any gray dashed path in
Figure 12.2 that emerges from the barrier and ends up in-the-money at expi-
ration could have arisen with equal probability from S or S′, and subtracting
their probability distributions produces a distribution that has zero proba-
bility of hitting the barrier and ending up in-the-money. The barrier acts like
a mirror, producing a reflected image S′ below the barrier that cancels the
contribution of those paths arising from S that end up above the barrier.

Thus, for arithmetic Brownian motion, we can find the correct risk-
neutral probability distribution for the terminal stock price of a barrier
option by subtracting the distribution of the reflected image from the dis-
tribution of the stock. With this understanding, we proceed to find a similar
approach for geometric Brownian motion.

The Method of Images for Geometric Brownian Mot ion In the BSM model
the stock undergoes geometric Brownian motion, which means that the log
of the stock price undergoes arithmetic Brownian motion. Therefore, by
analogy with the previous section, it is the log of the stock price that must
be reflected in the barrier, so that the position of the reflected stock S′ is
constrained by the log reflection

ln
(

S
B

)
= ln

(B
S′

)
(12.1)

and therefore,

S′ = B2

S
(12.2)

Now, if B = 100 and S = 120, then S′ = 83.33.
As before, assume that interest rates are zero. Let’s try to find a prob-

ability density N′
DO to represent the probability of reaching a terminal

stock price S𝜏 above the barrier at time 𝜏 without having touched the
barrier. Inspired by the arithmetic case, we attempt to write N′

DO as the
following superposition of the usual geometric Brownian density starting at
S and the density starting at S′:

N′
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(12.3)
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where N′(x) = 1√
2𝜋

e−
1
2

x2
is the standard normal probability density func-

tion, and 𝛼 is a ratio to be determined. We now demand that N′(B) vanish
when S𝜏 = B for all 𝜏, so that

N′
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= 0 (12.4)

We can solve this equation for 𝛼 to obtain

𝛼 = S
B

(12.5)

The proof of this last result is left as an exercise at the end of the chapter.
Note that 𝛼 is independent of 𝜏, so this cancellation will occur, as is necessary,
at all times on the barrier S𝜏 = B.

Using N′
DO in Figure 12.3 as the probability of reaching a terminal

stock price S𝜏 without having touched that barrier, we can integrate over the
terminal payoff [S𝜏 – K]+ of the down-and-out call with barrier B and strike
K to easily obtain

CDO(S, K, 𝜎, 𝜏) = CBS(S, K, 𝜎, 𝜏) − S
B

CBS

(
B2

S
, K, 𝜎, 𝜏

)
(12.6)
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F IGURE 12.3 Two Equally Probable Price Paths under
Geometric Brownian Motion
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There are several ways to check the reasonableness of this result. For a
start, we showed in Chapter 3 that the replicating portfolio for a down-and-
out call with B = K is a forward contract. When B = K in Equation 12.6,
it is not hard to show that the payoff of the right-hand side is equal to the
payoff of a call minus the payoff of a put with the same strike and hence, by
put-call parity, is equivalent to a forward.

You can also see that the down-and-out call formula in Equation 12.6
has the correct boundary conditions. Its value vanishes on the knockout
boundary S = B independent of the remaining time to expiration, as it should
for a knockout call. And at expiration, for S > K, because B < S, the second
term in Equation 12.6 is the payoff of a call that expires out-of-the-money
and is worth zero. The down-and-out call formula in Equation 12.6 also
satisfies the BSM partial differential equation. Since it satisfies the PDE and
has the correct boundary conditions, Equation 12.6 is the correct solution.

Valu ing a Down-and-Out-Barrier Opt ion under
Geometric Brownian Mot ion with a Nonzero
Riskless Rate

When the riskless rate is nonzero, the similarity of the probabilities of reach-
ing B from both S and S′ is less obvious, since the drift distorts the symme-
try. Nevertheless, the method still works with a slightly different value of 𝛼.
Defining 𝜇 = r – 𝜎2/2, we try the risk-neutral density

N′
DO = N′

⎛
⎜
⎜
⎜
⎜
⎝

ln
(

S𝜏
S

)
− 𝜇𝜏

𝜎
√
𝜏

⎞
⎟
⎟
⎟
⎟
⎠

− 𝛼N′

⎛
⎜
⎜
⎜
⎜
⎝

ln
(

S𝜏S

B2

)
− 𝜇𝜏

𝜎
√
𝜏

⎞
⎟
⎟
⎟
⎟
⎠
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As before, we would like this probability density function to vanish when
S𝜏 = B, so that
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We can solve this equation for 𝛼 to obtain

𝛼 =
(B

S

) 2𝜇
𝜎2

=
(B

S

) 2r
𝜎2 −1

(12.9)
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Notice again that 𝛼 is independent of the remaining time to expiration
𝜏, so that the density N′

DO vanishes on the boundary for all times, for a fixed
𝛼. The value of the down-and-out call is obtained by the integration of this
density over the payoff to yield

CDO(S, K) = CBS(S, K) −
(B

S

) 2𝜇
𝜎2

CBS

(
B2

S
, K

)
(12.10)

The Stat ic Hedge Suggested by the
Valuat ion Formula

Equations 12.6 and 12.10 represent the value of a down-and-out call as the
value of a long position in one European call on a stock with price S and a
short position in another European call on a stock with price B2/S. Although
this formula holds only in the BSM framework, it suggests a natural way of
decomposing a down-and-out call with a static hedge constructed out of two
simpler securities. Let’s illustrate this for Equation 12.6.

The value at 𝜏 = 0 of the first term on the right-hand side CBS(S, K) is
given by

CBS(S, K) = H(S − K)(S − K) (12.11)

where H(x) is the Heaviside function. The payoff of the second term of the
right-hand side is given by
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(12.12)

which is the payoff of K/B puts on the stock S struck at B2/K.
Thus, you can think of the payoff of the down-and-out call as being

equivalent to a long position in a call on S struck at K and a short position
in K/B puts on S struck at B2/K. Figure 12.4 illustrates the two payoffs.

This view suggests a static replicating portfolio that is long a standard
call struck at K and short K/B standard puts struck at B2/K. You can see
why this might be a reasonable replication portfolio at times before expira-
tion. The call with strike above the barrier has a positive expected payoff at
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F IGURE 12.4 A Down-and-Out Call Replicated by a Call
with Strike K and a Put with Strike B2/K

expiration. The puts with strike below the barrier have a negative expected
payoff at expiration. Weighted correctly, the call and the puts could have zero
net expected value when S is on the barrier B that lies between the upper and
lower strikes, and thus replicate the knockout value on the barrier as well as
at expiration.

Although this insight was derived from the formula for valuation in a
BSM world, this is a sensible way to think about replicating a down-and-
out barrier option in general. If you can go long a call with strike above the
barrier and short the right amount of puts with strike below the barrier, you
will have the correct payoff both at expiration and on the barrier:

� At expiration if the stock has never touched the barrier, the call with
strike K will have the correct payoff of a down-and-out call, and the put
will expire out-of-the-money.

� If the stock S does touch the barrier at B before expiration, then the net
value of the long call and short put positions will be close to zero. At
that point, you must close out the position to replicate the extinguishing
of the down-and-out call option.

The number of puts required is K/B only if the stock price undergoes geo-
metric Brownian motion with constant volatility. More generally, the num-
ber will depend on how you model the smile, but the general picture still has
validity even if we depart from a BSM world.
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TABLE 12.1 Up-and-Out Call Parameters and Value

Stock price $100
Strike $100
Barrier $120
Time to expiration 1 year
Implied volatility 20%
Riskless rate 0%

Up-and-out call value $1.10
Standard call value (BSM) $7.97

We will make use of this replicating portfolio when we examine the
effect of local volatility models on exotic options in Chapter 16.

ANOTHER APPROACH: STATIC REPLICATION OF AN
UP-AND-OUT CALL

Based on the idea that a weak static replicating portfolio must match the
payoffs of an exotic option under all scenarios, we now illustrate a more
general approach that doesn’t rely on the special insight about payoffs used
in the example directly before this.2

Consider an up-and-out call with a barrier B above the strike K; if the
stock touches the barrier on the way to expiration, the option knocks out
and is worthless. Since the strike is below the barrier, the call will be in-the-
money when the stock price S is just below the barrier. Since a small increase
in S can cause the option to knock out and become worthless, the up-and-
out call has a very large gamma in this region. As a result, dynamic hedging
is both expensive and hard to maintain, and static hedging is an attractive
alternative.

Let’s look at a specific up-and-out European-style call option with the
terms described in Table 12.1.

The value of the up-and-out call, which can be calculated analytically in
the BSM framework, is less than the value of a standard call option on the
same stock with the same strike, because a standard call still has value on
the knockout boundary.

To replicate the up-and-out call, we divide future stock price scenarios
into two general classes, as displayed in Figure 12.5: Either the stock hits

2 This section closely follows Emanuel Derman, Deniz Ergener, and Iraj Kani, “Static
Options Replication,” Journal of Derivatives (Summer 1995): 78–95. All option
prices in this example assume BSM dynamics.
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F IGURE 12.5 Two Scenarios for an Up-and-Out European Call

the barrier before expiration, in which case the option expires worthless, or
the stock does not hit the barrier, in which case the payoff of the up-and-out
option is equal to that of a standard European call with the same strike. Let’s
try to construct a portfolio of ordinary options that has the same payoff at
expiration and on the knockout boundary B, assuming a BSM world when
calculating all option values.

We begin by trying to use just one option in our static replicating portfo-
lio. If we can choose only one option, an obvious choice is a one-year Euro-
pean call with strike equal to $100. This portfolio, Portfolio 1, is shown
in Table 12.2. It replicates the payoff of the target up-and-out call for all
scenarios that do not hit the barrier prior to expiration.

On the barrier, though, things are bad. The value of replicating Portfolio
1 at a stock level of $120 one year prior to expiration is $22.15, much too
large when compared to the zero value of the actual up-and-out call on the
barrier. Consequently, its value at a stock level of $100 is $7.97, also much
greater than the appropriate value of the up-and-out call, $1.10.

TABLE 12.2 Values of the Static Replicating Portfolio 1 One Year
before Expiration

Value, 𝜏 = 1

Quantity Type Strike Expiration S = $100 S = $120

1 Call 100 1 year $7.97 $22.15
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TABLE 12.3 Values of the Static Replicating Portfolio 2 One Year
before Expiration

Value, 𝜏 = 1

Quantity Type Strike Expiration S = $100 S = $120

1.00 Call 100 1 year $7.97 $22.15
−2.32 Call 120 1 year −$4.98 −$22.15

Portfolio $2.99 $0.00

Portfolio 2 in Table 12.3 illustrates a better replicating portfolio that
uses two standard European options. The new portfolio uses the $100 strike
one-year call that we used in Portfolio 1, plus a short position in a one-year
European call with a strike of $120. By shorting just enough of this call, in
this case 2.32 contracts, we can ensure that the value of the portfolio one year
before expiration at S = $120 is zero, matching the value of the up-and-out
call on the knockout barrier one year before expiration (but nowhere else).
Because the $120 strike of this second option lies on the barrier, it produces
no replication-violating cash flows as long as the stock price stays below the
barrier, just like the actual up-and-out call option. At expiration, the payoff
for Portfolio 2 still matches the payoff for the up-and-out call in scenarios
where the barrier is not hit.

With one year to expiration, replicating Portfolio 2 matches the value
of the up-and-out call on the barrier, but, when the stock price is $100, its
value is $2.99, more than the $1.10 value of the actual up-and-out call at
that stock price. This extra value is a consequence of Portfolio 2 being more
valuable than the actual up-and-out call along the barrier at all other times
prior to expiration, as shown in Figure 12.6. At all other times, it fails to
match the zero payoff of the up-and-out call on the barrier.

With three options, we can construct a portfolio that does even better,
matching the zero payoff of the up-and-out call at a stock price of $120 at
both one year and six months prior to expiration. This three-option port-
folio, Portfolio 3, is shown in Table 12.4. In the sample problem at the end
of this section, we will show how to calculate the quantities for these static
replicating portfolios. For the moment, though, we simply want to show
that by utilizing more options in the static replicating portfolio we can bet-
ter replicate the barrier option.

The payoff of Portfolio 3 matches that of an up-and-out call if the barrier
is never crossed, or if it is crossed exactly at six months or one year before
expiration. As can be seen in Figure 12.7, this portfolio does a much better
job of matching the zero value of an up-and-out call on the barrier. For the
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F IGURE 12.6 Value of Portfolio 2 on the Barrier

first six months in the life of the option, the value of the replication portfolio
along the barrier remains fairly close to zero. Again, because the strike of the
six-month call lies on the barrier, it produces no cash flows as long as the
stock price remains below the barrier, correctly mimicking the behavior of
the actual up-and-out call. Had we chosen a call strike below the barrier,
this would have produced a possible payment at six months, violating the
replication of the actual up-and-out call.

By adding more options to the replicating portfolio, we can match the
value of the target option at more points on the barrier. Figure 12.8 shows
the value of a portfolio of seven vanilla European call options that matches
the zero value of the target up-and-out call on the barrier every two months.

TABLE 12.4 Values of the Static Replicating Portfolio 3 One Year or Six Months
before Expiration

Value, S = $120

Quantity Type Strike Expiration 𝜏 = 1.0 𝜏 = 0.5

1.00 Call 100 1 year $22.15 $20.72
−3.06 Call 120 1 year −$29.28 −$20.72

1.05 Call 120 6 months $7.13 $0.00

Portfolio $0.00 $0.00
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F IGURE 12.7 Value of Portfolio 3 on the Barrier

You can see that the match along the barrier between the target option and
the replicating portfolio is much improved.

If the stock hits the barrier, the value of the actual up-and-out call is
not only zero at that moment, but zero for all times thereafter; however, the
value of the replicating portfolio would continue to change as the stock price
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F IGURE 12.8 Value of Static Replicating Portfolio Containing
Seven Options on the Barrier
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F IGURE 12.9 Error for Seven-Option Replicating Portfolio

continues to evolve. Therefore, if the stock hits the barrier, we must immedi-
ately liquidate the replicating portfolio. Of course, this strategy brings with
it the risk that we might not be able to liquidate the portfolio close to the
model price. Furthermore, if the stock price were to move discontinuously
across the barrier, we would not be able to liquidate the portfolio at the
right moment, which would further decrease the accuracy of the weak static
replication strategy.

Repl icat ion Accuracy

As we add more options to our static replicating portfolio, we can match
the value of the up-and-out call along the barrier more and more precisely.
This strategy will also match the up-and-out option price more closely for
all stock prices and for all times. Figure 12.9 shows the error, that is, the
difference in price between the static replicating portfolio consisting of seven
vanilla call options and the price of the actual up-and-out call for a range of
times to expirations and stock prices, assuming the barrier has not been hit.

Near expiration and close to the barrier, replication is difficult. With
seven options, the value of our static replicating portfolio is still noticeably
greater than the value of the up-and-out call in this region. Away from the
barrier and up to one month prior to expiration, the replicating portfolio
does a relatively good job of approximating the value of the up-and-out call.
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The General i zed Approach

In the preceding section, the barrier of the up-and-out call was above the
initial stock price and the strike. By buying a standard call with the same
strike and expiration as the barrier option and then buying and selling stan-
dard calls struck along the barrier with varying expiration dates, we were
able to match the price of the up-and-out call at various times along the
barrier without producing intermediate replication-violating cash flows. If,
instead of being above the current stock price, the barrier had been below
the current stock price, we could have pursued a similar strategy by using
puts struck at or below the barrier.

For example, consider a down-and-out European call with the barrier
below the strike. We could buy a standard European call with the same strike
and expiration as the down-and-out call in order to replicate the payoff at
expiration, assuming the barrier is never struck, and then buy and sell puts
struck along the barrier in order to match the value of the down-and-out call
on the barrier at a number of particular dates. We use puts rather than calls
struck along this barrier because puts produce no payoff above the barrier
as they expire. If we had used calls struck at the barrier, they could produce
payoffs when the stock price is above the barrier at earlier times, and so
destroy the replication with the actual down-and-out call.

As illustrated in Figure 12.10, this general replicating strategy—using
calls for barriers above the current stock price, and using puts for barriers

S

t

Current
Price

Now

Use out-of-the-money calls for
boundary above

Use out-of-the-money
puts for boundary below

Use calls or puts
with appropriate
strike for fixed-time
boundary

F IGURE 12.10 General Strategy for Barrier Options
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below the current stock price price—can replicate the payoff even for options
with extremely complex barriers.

SAMPLE PROBLEM

Question:

Replicate the payoff of a one-year down-and-out European put with
a strike of 80 and a barrier at 60. The current stock price is 100.
The stock pays no dividends, and the riskless rate is zero. Assume
BSM and an implied volatility of 20%. Use three vanilla European
options to match the payoff of the down-and-out put today and at
six months to expiration. What is the price of the static replicating
portfolio?

Answer:

Let t = 0 denote the initial time. When the riskless rate is zero and the
stock pays no dividends, the BSM price of a European put at a time t
with expiration T is given by

P(S, t, K, T, 𝜎) = KN(−d2) − SN(−d1)

d1,2 = 1
v
ln
(

S
K

)
± v

2
v = 𝜎

√
T − t

To match the payoff of the down-and-out put at t = T = 1
year if the barrier hasn’t been struck, we buy a standard European
put with the same one-year expiration and strike 80. We denote this
put by P1.

We now move back six months in time to t = 0.5, and proceed
to match the value of the down-and-out put on the barrier with six
months to expiration. When S = 60 at t = 0.5, the value of P1 with
T = 1 is $20.08, as given by

v = 0.20
√

0.5 = 0.14

d1,2 = 1
0.14

ln
(

60
80

)
± 0.20

2
= −2.03 ± 0.07

P1(60, 0.5, 80, 1.0, 0.20) = 80 × N(2.10) − 60 × N(1.96) = 20.08
(continued)
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(continued)

To ensure that the value of the replicating portfolio is zero at the
barrier with six months to expiration, we sell short a quantity of addi-
tional puts with the same one-year expiration as P1, but with a strike
of 60 to match the barrier level. The BSM price of one of these puts,
denoted by P2, is 3.38, as given by

v = 0.20
√

0.5 = 0.14

d1,2 = 1
0.14

ln
(

60
60

)
± 0.20

2
= 0 ± 0.07

P2(60, 0.5, 80, 1.0, 0.20) = 60 × N(0.07) − 60 × N(−0.07) = 3.38

To perfectly cancel the value of P1 on the barrier with six months
to expiration, we must short 5.94= 20.08/3.38 puts P2. The replicating
portfolio is now 1 × P1 – 5.94 × P2.

Having matched the value of the down-and-out put at expira-
tion and six months earlier, we now move back another six months
in time, to t = 0, to match the value of the down-and-out put with one
year to expiration. With t = 0, T = 1, and S = 60, we find that P1 =
20.46 and P2 = 4.78. The replicating portfolio of the two puts is then
worth

20.46 − 5.94 × 4.78 = −7.90

(If you rounded the previous values to two decimal places, you
would have gotten –7.93. If you did not round in previous steps, you
should match this value of −7.90.)

To match the value of the down-and-out put on the barrier with
one year to expiration, we now buy a put P3 with a strike of 60 and
just six months to expiration (i.e., with T = 0.5 years). Because this
put will be worthless if the stock is above or at the barrier of 60 in
six months, it will not change the value of the portfolio at the barrier
in six months. The current value of P3 is again $3.38, so we need to
buy 2.34 = 7.90/3.38 contracts of P3 to cancel the value of the entire
replicating portfolio on the barrier.

The replicating portfolio at t = 0 is now 1 × P1 – 5.94 × P2 +
2.34 × P3, and its value is zero for S = 80, when P1 and P2 expire in
one year and when P3 expires in six months.
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For S = 100 and t = 0, the value of the replicating portfolio is 1.03:

Initial Value

Quantity Type Strike Expiration S = 60 S = 100

1.00 Put 80 1 year 20.46 1.19
−5.94 Put 60 1 year −28.37 −0.15

2.34 Put 60 6 months 7.90 0.00

Portfolio 0.00 1.03

This is worth less than a standard put with expiration of one year
and strike 80, whose BSM value is 1.19. It is cheaper because the possi-
bility of knockout reduces the value. In a BSM world, the value of the
down-and-out put is actually 0.93. Because we are using only three
puts in the replicating portfolio, which means our replication is merely
approximate, the theoretical value 1.03 of the replicating portfolio is
greater than 0.93. The reason is that the replicating portfolio knocks
out only a few times on the barrier, whereas the actual down-and-out
put knocks out all along the barrier.

Barrier Opt ion Parity

In Chapter 3 we reviewed put-call parity. We saw that a long position in a
European call and a short position in a European put with the same strike
and expiration generate the same payoff in all scenarios as a forward with
delivery price equal to the strike and delivery date equal to the expiration.

Barrier options have a similar parity relationship. A long position in a
European up-and-in call and a long position in a European up-and-out call
on the same underlier, with the same barrier, strike price, and expiration,
replicate a standard European call option with the same strike and expira-
tion. At expiration, the barrier will either have been hit or not have been
hit, and therefore one of the two barrier options will be worthless, but the
other will have the same payoff as the standard call. By the law of one price,
their combined value must be equal to that of a standard European call. This
assumes that there is no rebate paid when the out-barrier option expires, and
is valid only for European options. Analogous parity relationships hold for
both barrier calls and barrier puts no matter where the barrier is. As with
put-call parity, in-out parity is model-independent.
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SAMPLE PROBLEM

Question:

XYZ stock is currently trading at $60.00. A one-year European call
with a strike of $50 is currently valued at $10.45. A one-year European
down-and-in put with a strike of $50 is currently trading at $0.08.
How much is a one-year European down-and-out put with the same
barrier and strike worth? The implied volatility is 15%, the stock pays
no dividends, there are no rebates for either barrier option, and the
riskless rate is 0%.

Answer:

Given the price of a standard call, we can use put-call parity to find the
price of the corresponding standard put:

C(S, t) − P(S, t) = S − Ke−r(T−t)

P(S, t) = C(S, t) − S + Ke−r(T−t)

= 10.45 − 60.00 + 50.00 × e−0×1

= 0.45

Now we can use barrier option in-out parity:

P(S, t) = PDI(S, t) + PDO(S, t)

PDO(S, t) = P(S, t) − PDI(S, t)

= 0.45 − 0.08

= 0.37

The price of the one-year European down-and-out put with a
strike of $50 should be $0.37. Note that we did not need to know
the level of the barrier, only that it was the same for the down-and-in
and down-and-out options.

END-OF-CHAPTER PROBLEMS

12-1. With Brazil’s Bovespa Index (IBOV) currently trading at 5,000, a one-
year European up-and-out call option with a strike of 5,500 and a
barrier at 6,000 is valued at 1.79 BRL. Construct a portfolio using
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three European vanilla options, which matches: (1) the payoff of the
barrier option at expiration when the barrier has not been hit; (2) the
value of the barrier option one year prior to expiration, at the barrier;
and (3) the value of the barrier option six months prior to expiration,
at the barrier. Assume BSM, no dividends for IBOV, no rebates for the
barrier option, implied volatility of 40%, and a riskless rate of 0%.
What is the theoretical value of the portfolio?

12-2. Construct a portfolio that matches the payoffs of a one-year
European up-and-in call option with a strike of 5,500 and a barrier
at 6,000 under the same three conditions as in Problem 12-1. Assume
no rebate. What is the theoretical value of this portfolio?

12-3. With the S&P 500 (SPX) currently trading at 2,000, a one-year
European down-and-out put with a strike of 1,900 and a barrier at
1,600 is trading at $20.22. Construct a portfolio using seven vanilla
options, which matches: (1) the payoff of the barrier option at expira-
tion when the barrier has not been hit, and (2) the value of the barrier
option at the barrier two months prior to expiration and every two
months prior to that. What is the value of this replicating portfolio?
Assume BSM, no dividends for SPX, no rebates for the barrier option,
an implied volatility of 20%, and a riskless rate of 0%.

12-4. For Equation 12.4, reproduced here, prove that 𝛼 = S/B.
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CHAPTER 13
The Binomial Model and

Its Extensions

� The binomial model as framework for modeling stock price evolution.
� The binomial model for option evaluation.
� Equivalence to the Black-Scholes-Merton model.
� Extending the binomial model to accommodate more general stock price

evolution.

In this chapter we embark on our search for models of stock price evo-
lution that can account for the implied volatility smile. We begin our search
in the framework of the binomial model because it provides a clear way
to extend geometric Brownian motion to more general processes. We are
preparing for the next chapter, where we will extend the binomial model to
accommodate local volatility and the volatility smile.

THE BINOMIAL MODEL FOR STOCK EVOLUTION

In the Black-Scholes-Merton (BSM) framework, a stock with zero dividend
yield is assumed to evolve according to

d
(
ln (S)

)
= 𝜇dt + 𝜎dZ (13.1)

The expected log return of the stock per unit of time is 𝜇. From Itô’s lemma,
the expected return of the stock price is then 𝜇 + 𝜎2/2. The volatility of log
returns is 𝜎, so that the total variance of returns after time t is 𝜎2t.

Figure 13.1 illustrates the evolution of the stock price over an infinites-
imal instant of time dt on a one-period binomial tree. In this model, the
probability of a log return u is p, and the probability of a log return d is
(1 − p). The future evolution of the stock price is determined by the expected
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F IGURE 13.1 One Step in a Binomial Tree

drift and volatility, quantities that must be predicted based on past observa-
tions of the stock price. We have to calibrate the binomial approximation of
the evolution so as to be consistent with Equation 13.1, which means deter-
mining the parameters p, u, and d from 𝜇 and 𝜎. To begin, we are going to
assume that we are describing the actual evolution of the stock. The asso-
ciated probabilities, p and (1 − p), are actual probabilities, as opposed to
risk-neutral probabilities. To make the distinction clear, we often speak of
p as being the real-world probability. The set of probabilities corresponding
to actual events is often called the p-measure.

How do we choose p, u, and d to match the continuous-time evolution
of Equation 13.1, defined by 𝜇 and 𝜎, in the limit dt → 0? To match the mean
and variance of the return, we require that

pu + (1 − p)d = 𝜇dt (13.2a)

p(u − 𝜇dt)2 + (1 − p)(d − 𝜇dt)2 = 𝜎2dt (13.2b)

By substituting the expression for 𝜇dt in Equation 13.2a into Equation
13.2b, one can rewrite the equations as

pu + (1 − p)d = 𝜇dt (13.3a)

p(1 − p)(u − d)2 = 𝜎2 dt (13.3b)

Equations 13.3a and 13.3b provide us with only two constraints on the
three variables p, u, and d, so there are a variety of solutions to the equation,
and we have the freedom to specify one more constraint to pick a convenient
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one. Convenience here can mean “easy to think about” or “converges faster
to the continuous limit.”

F irst Solut ion: The Cox-Ross-Rubinste in Convent ion

To begin, let’s choose u+ d= 0 for convenience, so that the stock price always
returns to the same level after successive up and down moves, thereby keep-
ing the center of the tree fixed for all time. This is the Cox-Ross-Rubinstein
(CRR) convention (Cox, Ross, Rubinstein 1979). Then

(2p − 1) u = 𝜇dt (13.4a)

4p (1 − p) u2 = 𝜎2dt (13.4b)

Now we have two equations and two unknowns. If we square the first line
of Equation 13.4 and add it to the second, we quickly find that

u2 = 𝜇2dt2 + 𝜎2dt (13.5)

As dt → 0, the dt2 term becomes negligible relative to dt. In that limit

u = 𝜎
√

dt (13.6)

Since we chose d = −u,

d = −𝜎
√

dt (13.7)

Finally, we can substitute Equation 13.6 into Equation 13.4a to get

p = 1
2
+ 1

2
𝜇

𝜎

√
dt (13.8)

in terms of 𝜇 and 𝜎.
Equation 13.6, 13.7 and 13.8 together define the Cox-Ross-Rubinstein

version of the binomial model.
We can check that these choices lead to the correct drift and volatility

using Equation 13.3. The mean return of the binomial process is

pu + (1 − p)d =
(

1
2
+ 1

2
𝜇

𝜎

√
dt
)(

𝜎
√

dt
)
+
(

1
2
− 1

2
𝜇

𝜎

√
dt
)(

−𝜎
√

dt
)

= 𝜇dt (13.9)
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The variance is

p(1 − p)(u − d)2 =
(

1
2
+ 1

2
𝜇

𝜎

√
dt
)(

1
2
− 1

2
𝜇

𝜎

√
dt
)(

𝜎
√

dt + 𝜎
√

dt
)2

=
(

1 − 𝜇2

𝜎2
dt
)

(𝜎2dt)

= 𝜎2dt − 𝜇2dt2

(13.10)

As before, as dt → 0, the dt2 term becomes negligible. In this limit, as
required, Equation 13.10 converges to 𝜎2dt. For dt ≠ 0, the variance will
be slightly less than it should be, and the convergence to the continuous
limit is a little slower than if the variance matched exactly.

As dt → 0, the stock in the binomial tree will always have the possibility
of a loss relative to a riskless investment that returns r. This follows because
dt≫ dt2 for small dt, and so the up-return 𝜎

√
dt always lies above the riskless

return rdt, which always lies above the down-return −𝜎
√

dt. This precludes
the possibility of riskless arbitrage in the model.

SAMPLE PROBLEM

Question:

Suppose the annual volatility of Google Inc.’s stock (GOOG) is 16%,
the expected drift is 12.8%, and the current price of one share of
GOOG is $500. Set up a binomial tree with daily steps using the
Cox-Ross-Rubinstein convention. Assume 256 business days per year.
Determine the parameters of the model. Determine the prices for the
two nodes after the first time step.

Answer:

Using Equation 13.6, 13.7 and 13.8, we determine the parameters as:

u = 𝜎
√

dt = 0.16

√
1

256
= 0.16

16
= 0.01

d = −𝜎
√

dt = −u = −0.01

p = 1
2
+ 1

2
𝜇

𝜎

√
dt = 1

2
+ 1

2
0.128
0.16

√
1

256
= 1

2
+ 1

2
1
20

= 0.525
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If the current price is $500, then after the first step there is a 52.5%
probability that the stock will be $500 × e0.01 = $505.03 and a 47.5%
probability that the stock will be $500 × e−0.01 = $495.02.

Another Solut ion: The Jarrow-Rudd Convent ion

Another convenient solution, the Jarrow-Rudd convention, sets p = 1/2, so
that the up-moves and down-moves have equal probability. Then Equation
13.3 becomes

1
2

u + 1
2

d = 𝜇dt

(
1
2

)2

(u − d)2 = 𝜎2dt
(13.11)

and so

u + d = 2𝜇dt

u − d = 2𝜎
√

dt
(13.12)

giving

u = 𝜇dt + 𝜎
√

dt

d = 𝜇dt − 𝜎
√

dt
(13.13)

In the case of the Jarrow-Rudd convention, the mean return is exactly
𝜇dt and the volatility of returns is exactly 𝜎

√
dt. Because of this, convergence

to the continuum limit as dt → 0 is faster than in the Cox-Ross-Rubinstein
convention.

Let’s look at the evolution of the stock price. If the initial price of the
stock is S0, then the expected value of the stock after a brief time dt will be
E[Sdt] such that

E[Sdt] =
1
2

S0eu + 1
2

S0ed

= S0e𝜇dt 1
2

(
e𝜎

√
dt + e−𝜎

√
dt)

(13.14)
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Using a second-order Taylor expansion for each of the two terms in paren-
theses, we find

E[Sdt] ≈ S0e𝜇dt
(

1 + 𝜎2dt
2

)
(13.15)

which can be rewritten via a first-order Taylor expansion as

E[Sdt] ≈ S0e

(
𝜇+ 𝜎2

2

)
dt

(13.16)

As dt → 0, the expected continuously compounded return on the stock is
exactly 𝜇 + 𝜎2/2, as we would have expected from Itô’s lemma.

In the limit dt → 0, both the Cox-Ross-Rubinstein and the Jarrow-Rudd
conventions describe the same continuous process in Equation 13.1. In both
cases we are modeling purely geometric Brownian motion, which, when we
use it to value an option, will converge to the BSM formula. We will use
these binomial processes, and generalizations of them, as a basis for model-
ing more general stochastic processes that can perhaps explain the smile.

THE BINOMIAL MODEL FOR OPTIONS VALUATION

In this section we explain how we can use the binomial model to value a
stock option in terms of the underlying stock and a riskless bond. We then
show that this approach is consistent with the BSM model.

Opt ions Valuat ion

Throughout this section we use bold letters to signify securities and nonbold
letters to signify their prices or payoffs.

One can decompose a stock S and a riskless bond B into two primitive
state-contingent securities 𝚷u and 𝚷d that are more convenient to deal with,
since each pays off only in one of the two final states. We define 𝚷u such that
after a small amount of time dt has passed, 𝚷u pays $1 in the up state and
zero in the down state. Conversely, 𝚷d pays $1 in the down state and zero in
the up state. Denote $1 invested in a stock by the security 1S and $1 invested
in a riskless bond by the security 1B. We define the value of the stock in the
up and down states by SU and SD, respectively. If we denote the initial stock
price by S, then 1S will be worth U = SU/S ≡ eu in the up state, and D =
SD/S ≡ ed in the down state. One dollar invested in the riskless bond 1B is
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Stock 1S
U = SU /S

1

D = SD /S

Bond 1B

erdt

1

erdt

Security u
1

u

0

Security d

0

Π

Π

d

1

F IGURE 13.2 Stock, Bond, and State-Contingent
Securities during Time dt

worth erdt in both states, where r is the riskless rate. This is summarized in
Figure 13.2.

We can write the security 𝚷u as a linear combination of the securities 1S
and 1B, so that 𝚷u = 𝛼1S + 𝛽1B, where we will solve for 𝛼 and 𝛽 by requiring
that the payoff of the right-hand side in the up and down states matches the
payoffs of 𝚷u.

A portfolio containing both 𝚷u and 𝚷d is guaranteed to be worth $1
after time dt. Because this combined portfolio is riskless, the sum of the secu-
rities 𝚷u and 𝚷d form a riskless bond with face value $1 at time dt, so that
the portfolio

𝚷u +𝚷d = e−rdt1B (13.17)

and the initial values of the portfolio are given by

Πu + Πd = e−rdt (13.18)

Equation 13.17 allows us to determine Πu from Πd. It follows from Fig-
ure 13.2 for the evolution of 𝚷u that after the first time step the values in
the up and down state of 𝚷u are given by

𝛼U + 𝛽erdt = 1
𝛼D + 𝛽erdt = 0

(13.19)
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Solving for the weights 𝛼 and 𝛽, we obtain

𝛼 = 1
U − D

𝛽 = −e−rdtD
U − D

(13.20)

The securities can then be described by the linear combinations

𝚷u =
erdt1S − D1B

erdt (U − D)

𝚷d =
U1B − erdt1S

erdt (U − D)

(13.21)

The initial values of these state-contingent securities are

Πu = erdt − D
erdt (U − D)

≡ e−rdtq

Πd = U − erdt

erdt (U − D)
≡ e−rdt (1 − q)

(13.22)

where we define

q = erdt − D
U − D

(13.23a)

1 − q = U − erdt

U − D
(13.23b)

Equations 13.23a and 13.23b define the risk-neutral no-arbitrage up and
down probabilities.

Note that these probabilities do not depend on expected returns
or “actual” probabilities. The variables q and (1 – q) are pseudo-
probabilities. Just as with real-world probabilities, these up and down
pseudo-probabilities add to 1. We often refer to these pseudo-probabilities as
the q-measure, in contradistinction to the p-measure of actual probabilities.

The definition of q in Equation 13.23a can be more insightfully
rewritten as

qU + (1 − q) D = erdt (13.24)
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Substituting the definitions of U and D in Equation 13.24, we obtain
qSu + (1 − q)Sd = Serdt, which is equivalent to

S = e−rdt[qSu + (1 − q)Sd] (13.25)

In other words, in the q-measure, the present value of the stock is equal to
the risklessly discounted probability-weighted average of the future prices.

Any derivative security C that pays Cu in the up state and Cd in the
down state can be replicated by the portfolio C = Cu𝚷u + Cd𝚷d because it
has the same payoff as C in all future states one period later. Thus, by the
law of one price, the current value of C is given by

C = e−rdt [qCu + (1 − q) Cd
]

(13.26)

Equations 13.25 and 13.26 express the value of both the underlying
stock S and the derivative security C as the discounted expected value of
their terminal payoffs one period later using the risk-neutral q-measure. But
their semantics differ. One should regard Equation 13.25 as defining the
measure q, given the values of S, Su, and Sd from the binomial process for
the evolution of the underlying stock price. We then regard Equation 13.26
as specifying the value of C in terms of the option payoffs and the value
of q.

The Black-Scholes-Merton Part ia l D i f ferent ia l
Equat ion and the Binomia l Model

The BSM partial differential equation can be derived by taking the limit of
Equation 13.26 as dt → 0. We use the Cox-Ross-Rubinstein convention

u = 𝜎
√

dt

d = −𝜎
√

dt
(13.27)

to demonstrate this convergence. Remembering that U = eu and D = ed, we
can then rewrite Equation 13.23 as

q = erdt − e−𝜎
√

dt

e𝜎
√

dt − e−𝜎
√

dt

1 − q = e𝜎
√

dt − erdt

e𝜎
√

dt − e−𝜎
√

dt

(13.28)
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Substituting into Equation 13.26, we have

erdtC = 1

e𝜎
√

dt − e−𝜎
√

dt

[(
erdt − e−𝜎

√
dt
)

Cu +
(

e𝜎
√

dt − erdt
)

Cd

]
(13.29)

Now write C as a continuous function of S and t, so that C = C (S, t) and

Cu = C
(
Se𝜎

√
dt, t + dt

)

Cd = C
(
Se−𝜎

√
dt, t + dt

) (13.30)

Substituting into Equation 13.26 and performing a Taylor expansion to lead-
ing order in dt, and relying on the fact that q + (1 − q) = 1, we have

(
1 + rdt

)
C = q

[
C + 𝜕C

𝜕S
S
(
𝜎
√

dt + 1
2
𝜎2dt

)
+ 1

2
𝜕2C
𝜕S2

S2𝜎2dt + 𝜕C
𝜕t

dt
]

+ (1 − q)
[
C+ 𝜕C

𝜕S
S
(
−𝜎

√
dt+ 1

2
𝜎2dt

)
+ 1

2
𝜕2C
𝜕S2

S2𝜎2dt + 𝜕C
𝜕t

dt
]

= C + 𝜕C
𝜕S

S
[
(2q − 1) 𝜎

√
dt + 1

2
𝜎2dt

]
+ 1

2
𝜕2C
𝜕S2

S2𝜎2dt + 𝜕C
𝜕t

dt

(13.31)

Now we need to find (2q − 1). From Equation 13.28 we can show to leading
order in dt that

2q − 1 =

(
r − 1

2
𝜎2

)√
dt

𝜎
(13.32)

Substituting Equation 13.32 back into Equation 13.31 we obtain

(1 + rdt)C = C + 𝜕C
𝜕S

S
[(

r − 1
2
𝜎2

)
dt + 1

2
𝜎2dt

]
+ 1

2
𝜕2C
𝜕S2

S2𝜎2dt + 𝜕C
𝜕t

dt

= C + 𝜕C
𝜕S

Srdt + 1
2
𝜕2C
𝜕S2

S2𝜎2dt + 𝜕C
𝜕t

dt

(13.33)

Dividing by dt, we have

Cr = 𝜕C
𝜕S

rS + 1
2
𝜕2C
𝜕S2

S2𝜎2 + 𝜕C
𝜕t

(13.34)
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This is the BSM differential equation. Note that the expected growth rate
of the stock, 𝜇, appears nowhere in the equation. You can derive many of
the continuous-time partial differential equations for stochastic processes
(the mean time to reach a barrier, for example) as limits obtained from the
binomial framework in this way.

EXTENDING THE BLACK-SCHOLES-MERTON MODEL

Many of the extensions to BSM involve clever transformations of the cur-
rency or numeraire used to quote the stock price, or by transformations of
the time scale. To illustrate the approach, we begin with the simplest case,
that of a zero riskless rate and a zero dividend yield, and work our way up
to progressively more complex situations.

Base Case: Zero Div idend Yie ld , Zero Risk less
Rate, and the Risk less Bond as the Numeraire

From Chapter 4, when the dividend yield and the riskless rate are zero, we
can write the BSM price for a standard European call option as

C(S, K, v) = SN(d1) − KN(d2) (13.35a)

d1,2 = 1
v

ln
(

S
K

)
± v

2
(13.35b)

where v = 𝜎
√
𝜏 and 𝜏 is the time to expiration. At expiration, if the option

is in-the-money, we will receive (ST − K). We can then think of the call as
giving us the right to exchange a single bond B with a face value of K for a
single stock S.

Equation 13.35a produces a value for the call option in units of dollars
(or euros, or yen, etc.). If the market price of the call is $45, this means that
we must exchange $45 for 1 call option. Equation 13.35 seems to involve
three securities: the stock, the bond, and the dollars in which both securities
are quoted. But there are actually only two securities involved, the stock and
the bond. When we exercise, we are giving up the bond and receiving the
stock, and the fact that their prices are quoted in dollars adds an unnecessary
complexity. A sensible alternative would be to express the price of the stock
and the call in terms of the price of the bond—that is, to use the bond price
as the currency or numeraire.

Let’s define CB = C/B and SB = S/B, the respective prices of the securities
in units of riskless bonds. If the riskless rate is zero, then the present value,



238 THE VOLATILITY SMILE

future value, and face value of a riskless bond are all equal, and B = K and
BB = 1. We can then rewrite Equation 13.35 as

CB(SB, v) = SBN(d1) − N(d2)

d1,2 = 1
v

ln(SB) ± v
2

(13.36)

CB represents the price of an option to exchange the stock SB for one bond,
with all prices denominated in units of B. CB and SB are no longer valued
in dollars or euros or any other currency units, but are valued in terms of
units of another security, a riskless bond. There is no need to refer to dol-
lars or euros at all. We can use the approach of Equation 13.36, valuing
an option that exchanges one security for another, to extend the formula to
more general cases.

Extension to Nonzero Rates

When the interest rate on the bond is nonzero, the bond grows at the riskless
rate so that dB = rBdt. Rather than being constant, the price of the bond now
changes over time. If the face value of the bond is K, then, with time 𝜏 to
expiration, the price of the bond is equal to Ke–r𝜏 . As before, we denominate
all securities in units of the current value of B, so that BB = 1, and SB =
S/B = ertS/K.

As before, we obtain

CB(SB, v, r, 𝜏) = SBN(d1) − N(d2) (13.37)

where

d1,2 = 1
v

ln(SB) ± v
2

(13.38)

Now, with time 𝜏 to expiration, to get the call price in dollars, we multiply
this value by the prevailing value of the bond, B = Ke–r𝜏 , to obtain

C (S, K, 𝜏, 𝜎, r) = SN(d1) − Ke−r𝜏N(d2)

d1,2 = 1
v

[
ln
(

Sert

K

)
± 1

2
v2
] (13.39)

This is the standard BSM formula.
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SAMPLE PROBLEM

Question:

Assume Amazon.com (AMZN) is currently trading at $300. Use Equa-
tions 13.37 and 13.38 to value a six-month European call option with
a strike of $315, in terms of a $315 notional riskless bond with six
months to maturity. Assume zero dividends, a riskless rate of 5%, and
an implied volatility of 20%.

Answer:

The price of a riskless bond with six months to maturity is

B = e−0.5×0.05$315 = $307.22

The price of AMZN in terms of the bond is then

SB = S
B

= $300
$307.22

= 0.9765

Because v = 𝜎
√
𝜏 = 0.2

√
0.5 = 0.1414,

d1,2 = 1
v

ln(SB) ± v
2

= 1
0.1414

ln(0.9765) ± 0.1414
2

= −0.1682 ± 0.0707

Hence,

CB(SB, v, r, 𝜏) = SBN(d1) − N(d2)

= 0.9765 × N(−0.0975) − N(−0.2389)

= 0.9765 × 0.4612 − 0.4065

= 0.0447

The call option is worth 4.47% as much as the riskless bond with
a notional equal to the strike. We could check this answer against a

(continued)
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(continued)

standard BSM calculator by multiplying the answer by the price of the
bond, to get $13.75 = 0.0447 × $307.22.

When the riskless rate is not zero, the relevant volatility of the stock is
the volatility of the stock measured in units of the bond price. Implicitly, we
have been assuming that the bond price has zero volatility. If interest rates
are stochastic, then B will be stochastic, too. Fortunately, all that must be
changed in the preceding case is to use the correct return volatility

𝜎2
S∕B = 𝜎2

S + 𝜎2
B − 2𝜌SB𝜎S𝜎B (13.40)

In most circumstances you can ignore the volatility of the bond com-
pared to the volatility of the stock, because bond price volatilities are gen-
erally smaller than stock volatilities, and because the bonds we are typically
concerned with for short-term options have low durations. For example, if
B = Ke–yT, where y is the yield to maturity of the bond, then

dB
B

= −yT
dy
y

(13.41)

and so

𝜎B = yT𝜎y (13.42)

For a one-year option, with T = 1, 𝜎y = 0.1, and y = 0.05, we find that
𝜎B = 0.005 = 0.5%, much smaller than the typical 20% volatility of a
stock. In that case, the last two terms in Equation 13.40 will be small, and
𝜎2

S∕B
≈ 𝜎2

S
.

Stock with a Cont inuous Known Div idend Yie ld

A stock paying dividends at a known rate b per unit of time is analogous
to a dollar in the bank paying continuous interest r in its own currency.
Between now and expiration, just as one dollar will grow into er𝜏 dollars,
if we reinvest stock dividends one share will grow into eb𝜏 shares of stock.
Therefore, to get the payoff of a European call option on one share of stock,
which pays off max[ST – K, 0] at expiration, you can buy an option on e−b𝜏

shares today. Those shares will initially be worth Se−b𝜏 , but at expiration,
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Su

Sd

Se–bdt

dt

q

1 – q

F IGURE 13.3 Stock with Continuous
Dividend Yield = b

after reinvestment, they will be worth ST. You can therefore replace S with
Se−b𝜏 in Equation 13.39. The BSM formula then becomes

C(S, K, v, d, 𝜏) = Se−b𝜏N(d1) − Ke−r𝜏N(d2)

d1,2 = 1
v

ln
(

Se(r−b)𝜏

K

)
± v

2

(13.43)

You can derive the same result in the binomial model. If the stock pays
a dividend yield b, then e−b(dt) shares of stock worth S will grow to one
share, worth either Su or Sd. The appropriate risk-neutral tree is illustrated
in Figure 13.3.

Assuming a riskless interest rate r, the definition of the q-measure must
take account of the total return of the stock, which depends upon dividend
payoffs as well as the terminal stock value, so that the constraint on the
expected stock price a time dt later is given by

qSu + (1 − q)Sd = er(dt)
(

Se−b(dt)
)
= Se(r−b)dt

≡ F (13.44)

where F is the forward price of the stock, including dividend payments.
The risk-neutral q-measure is then defined by

q =
F − Sd

Su − Sd
(13.45)
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Since options pay no dividends, their expected payoffs are still discounted at
the riskless rate, so that

qCu + (1 − q) Cd = Cerdt (13.46)

Equations 13.45 and 13.46 are the appropriate binomial equations for a
stock with dividends.

Time-Dependent Determin ist ic Volat i l i ty : A
Volat i l i ty Smi le with Term Structure but No Skew

In the last few sections we have been progressively increasing the complex-
ity of our binomial model of stock evolution, but we have kept the stock’s
volatility constant. Suppose now that the future return volatility of the stock
is a function of time t. Then the stock evolves according to:

dS
S

= 𝜇dt + 𝜎(t)dZ (13.47)

How do we modify BSM or the binomial tree method when there is a term
structure of volatilities?

Suppose we try to build a Cox-Ross-Rubinstein tree with 𝜎1 in period
1 and 𝜎2 in period 2, as in Figure 13.4. As you can see, if dt is the same in
all periods, then the tree will not “close” or recombine in the second period
unless 𝜎1 equals 𝜎2—that is, unless 𝜎(t) is constant. Though it’s not strictly
necessary from a modeling point of view, it’s computationally convenient to
have the tree close, because then we can continue to use the same bino-
mial algorithms for valuing European or American options as we did in
the standard binomial model with constant volatility. Also, when the tree
closes, there are (n + 1) terminal states after n periods, much less than the
2n required when the tree does not close. With n = 10, a relatively modest
number of steps in practice, there will be almost 100 times as many terminal
nodes, 1,024 versus 11.

Fortunately, we can make the tree close without too much difficulty by
changing the time spacing between levels in the tree. From Figure 13.4, we
can see that the second level will close when

Se𝜎1
√

dt1−𝜎2
√

dt2 = Se−𝜎1
√

dt1+𝜎2
√

dt2

which requires that

𝜎1

√
dt1 = 𝜎2

√
dt2 (13.48)
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FIGURE 13.4 Two-Period Cox-Ross-Rubinstein Tree with
Variable Volatility

Rather than keeping the time between levels the same, we need the total
volatility between levels, 𝜎i

√
dti, to be the same. This new tree will look

the same from a topological point of view—the stock price at each node
will be the same as when the volatility is constant—but the interval will be
shorter when volatility is higher and longer when volatility is lower. The
same movement in stock price over a shorter time corresponds to a higher
volatility.

One minor difficulty with this approach is that you can’t easily know
how many time steps will be required to get to a particular expiration,
because the size of the time steps varies with volatility. As we will see, it
takes a little work, but once you know the term structure of volatilities, you
can solve for the number of time steps needed.

SAMPLE PROBLEM

Question:

Suppose we believe volatility will be 10% in year 1 and 20% in year
2. We want to create a binomial tree that spans both years, with one
step in the first year. How many time steps will we need in total?

(continued)
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(continued)

Answer:

For pedagogical purposes, we are describing a very coarse tree. An
accurate calculation would need many more periods.

As shown in Table 13.1, if the time step in year 1 is one year, then
the time step in year 2 must be 1/4 as long, or three months. This
produces equal values for 𝜎

√
dt in both periods.

TABLE 13.1 Binomial Tree Parameters

Period 1 Period 2

𝜎 10% 20%
dt 1 1/4√

dt 1 1/2

𝜎
√

dt 10% 10%

If we wanted to price a two-year security, we would need five peri-
ods, one in the first year and four in the second. Figure 13.5 shows
the recombining tree with five steps spanning two years with an initial
price of $100.

164.87

149.18

134.99134.99

122.14122.14

110.52110.52110.52

100.00100.00100.00

90.4890.4890.48

81.8781.87

74.0874.08

67.03

60.65

= 1dt = 1/4dt = 1/4dt = 1/4dt = 1/4dt
= 10%σ = 20%σ = 20%σ = 20%σ = 20%σ 

F IGURE 13.5 Two-Year, Five-Period Binomial Tree with
Variable Volatility
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In general, for a definite time to expiration T and a known sequence of
volatilities 𝜎i,

T =
N∑

i=1

dti = dt1

N∑

i=1

dti

dt1
= dt1

N∑

i=1

𝜎2
1

𝜎2
i

(13.49)

The number of periods necessary to span the time to expiration can be found
by solving for N.

There is one additional subtlety with time-dependent volatility: The
binomial no-arbitrage probability q will not necessarily be the same for
each time step, but may vary with time. Equation 13.28 with variable dti
becomes

qi =
erdti − e−𝜎i

√
dti

e𝜎i
√

dti − e−𝜎i
√

dti

1 − qi =
e𝜎i

√
dti − erdti

e𝜎i
√

dti − e−𝜎i
√

dti

(13.50)

Even though e𝜎i
√

dti is the same over all time steps, the factor erdti varies as
the size of the time step changes, so that q varies from level to level.

The value of a European option, of course, depends only on the distri-
bution of the price of the underlying stock at expiration. It doesn’t matter
how the stock got there, only what the final distribution is. In other words,
all that matters is the total variance of the stock over the life of the option.
That total variance is simply the sum of the variances in each period, given
by

(T − t) 𝜎2
Total

=
N∑

i=1

𝜎2
i dt (13.51)

where the annualized variance 𝜎2
Total

is the time average of the intermediate
variances. Notice that the order of the intermediate volatilities doesn’t mat-
ter. If we have 10% volatility in the first year and 20% in the second, or 20%
in the first and 10% in the second, the total variance will be the same. Both
are equivalent to a constant 15.81% volatility over two years, since 10%2 +
20%2 = 2× 15.81%2. (Don’t forget, though, that for an American option,
the order of intermediate volatilities will matter because of the possibility of
early exercise.)
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In the limit, for a continuous volatility process 𝜎(t), the value of a
European option computed via a binomial tree will converge to the BSM
formula with an implied volatility Σ(t, T), where

Σ2 (t, T) = 1
T − t

T

∫

t

𝜎2(s)ds (13.52)

and 𝜎(t) is the forward volatility of the underlier. Given a term structure
of implied volatilities, Equation 13.52 can be used to back out the forward
volatilities consistent with the implied volatilities.

Analogously, given a term structure of continuously compounded zero
coupon riskless rates Y(t, T), in the continuum limit the relevant forward
riskless rates r(t) to be used in each future period on the binomial tree can
be determined from the equation

Y (t, T) = 1
T − t

T

∫

t

r(s)ds (13.53)

END-OF-CHAPTER PROBLEMS

13-1. Assume the annual volatility of Wal-Mart Stores Inc.’s stock (WMT)
is 20%, the expected drift is 10%, and the current price of one share
of WMT is $75. Set up a binomial tree with daily steps using the
Cox-Ross-Rubinstein convention. Assume 256 business days per year.
Determine the parameters of the model. Determine the prices for the
two nodes after the first time step, and the three nodes after the second
time step.

13-2. Use the data and assumptions from the previous problem to determine
the parameters for a Jarrow-Rudd binomial tree. As before, calculate
the prices for the two nodes after the first time step, and the three
nodes after the second time step.

13-3. With the S&P 500 (SPX) currently trading at 2,000, use Equations
13.37 and 13.38 to value a three-month European call option with
a strike of 2,100, in terms of a riskless bond with three months to
maturity and face value equal to the strike of the option. Assume zero
dividends, a riskless rate of 4%, and an implied volatility of 16%.

13-4. Use the same information as in the previous problem, only this time
assume that the riskless rate is 0% and that the S&P 500 pays a
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continuous dividend at a rate of 4%. What is the value of the call
option in dollars?

13-5. Use the same information as in the previous two problems, only now
assume that the S&P 500 pays a continuous dividend at a rate of
4% and the riskless rate is 4%. What is the value of the three-month
European call option with a strike of 2,100, in units of a riskless bond
with three months to maturity and a face value equal to the strike of
the option?

13-6. You are given the following table, which contains riskless rates and
implied volatilities for various terms. Build a three-year Cox-Ross-
Rubinstein binomial tree, modified so that the branches recombine.
Start with 10 steps in the first year. How many steps will you need in
the second year and the third year? Calculate the size of the up and
down parameters, and show the probabilities in the q-measure.

Year 1 Year 2 Year 3

Riskless rate 5.00% 7.47% 9.92%
Volatility 20.0% 25.5% 31.1%





CHAPTER 14
Local Volatility Models

� In a local volatility model, the instantaneous stock volatility 𝜎(S, t) is a
function of stock price and future time.

� How to build and use a binomial tree with variable local volatility.
� The BSM implied volatility of a standard option in a local volatility

model is approximately the average of the local volatilities between the
initial stock price and the strike.

In the preceding chapter we extended the Black-Scholes-Merton (BSM)
model to accommodate a term structure of implied volatilities. In practice,
implied volatility varies not only with time but with the level of the under-
lier. In this chapter we extend the model to encompass a volatility that is a
function of both future time and underlier level.

MODELING A STOCK WITH VARIABLE VOLATIL ITY

In the previous chapter we extracted the forward volatilities 𝜎(t) of the stock
from the term structure of implied volatilities using the equation

𝛴2(t, T) = 1
T − t ∫

T

t
𝜎2(s)ds (14.1)

Just as we can imagine a volatility 𝜎(t) that varies with time, we can similarly
imagine a volatility 𝜎(S, t) that varies with future time and with stock price.
We refer to this instantaneous volatility 𝜎(S, t) as the local volatility, and to
option models based on it as local volatility models.

In local volatility models, the realized volatility over any time period
will depend on the path that the stock price takes over time. Ultimately we
will want to use the local volatility model to determine the value of options.

249
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Even if we assume that the local volatility model is an accurate representation
of realized volatility, we may still want to use the BSM model and its implied
volatility as a quoting convention.

In exploring local volatility models, these are some of the questions that
will concern us:

1. Can we find a unique local volatility function or surface 𝜎(S, t) to match
the observed implied volatility surface 𝛴(S, t, K, T)? If we can, that
means that we can explain the observed smile by means of a local volatil-
ity process for the stock.

2. But is the explanation meaningful? Does the stock actually evolve
according to an observable local volatility function? There are, as we
will see, many different models that can match the implied volatility
surface, but achieving a match doesn’t mean that model is “correct.”

3. What does the local volatility model tell us about the hedge ratios of
vanilla options and the values of exotic options? How do the results
differ from those of the classic BSM model?

We begin by constructing binomial local volatility models, assuming we
have been given a local volatility function. In a subsequent chapter we will
determine how to extract the local volatility function from the prices of stan-
dard options.

BINOMIAL LOCAL VOLATIL ITY MODEL ING

In the previous chapter, we were able to build a closed binomial tree with
time-dependent volatility by changing the size of the time steps. When the
level of volatility varies with both time and stock price, we can also build a
closed tree. There are a number of ways to do this, but this time we will find
it easier to use equal time steps.1

Assume the risk-neutral evolution of the stock price S(t) can be
described by

dS
S

= (r − b)dt + 𝜎(S, t)dZ (14.2)

1 This section and much of the chapter are based in part on Emanuel Derman and
Iraj Kani, “The Volatility Smile and Its Implied Tree,” Risk 7, no. 2 (February 1994):
32–39.
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Su

Sd

S

dt

q

F

1 − q

F IGURE 14.1 Binomial Model

where r is the riskless rate, b is the stock’s continuous dividend yield, dZ is
a standard Wiener process, and 𝜎(S, t) is the local volatility. It follows that
the variance of changes in the stock price at any time t is

(dS)2 = S2𝜎2(S, t)dt (14.3)

The expected value of S after a small interval dt is

F = Se(r−b)dt (14.4)

which is also the forward price of the stock.
Figure 14.1 shows a binomial approximation to the stochastic process

over time dt.
In our binomial approximation, the forward price is simply the

probability-weighted average of the two possible stock prices Su and Sd in
the q-measure, so that

F = qSu + (1 − q)Sd (14.5)

Solving for q, we obtain

q =
F − Sd

Su − Sd
(14.6)
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In our binomial approximation the variance of changes in S is then2

Var[dS] = q(Su − F)2 + (1 − q)(Sd − F)2 (14.7)

In the limit dt → 0, Equation 14.3 and Equation 14.7 must agree, so

S2𝜎2(S, t)dt = q(Su − F)2 + (1 − q)(Sd − F)2 (14.8)

Substituting the formula for q from Equation 14.6 into Equation 14.8, we
see that

S2𝜎2(S, t)dt = (Su − F)(F − Sd) (14.9)

We can rearrange Equation 14.9 to express the up and down prices relative
to the node with price S as

Su = F + S2𝜎2(S, t)dt
F − Sd

(14.10a)

Sd = F − S2𝜎2(S, t)dt
Su − F

(14.10b)

Thus, for any binomial step like that in Figure 14.1, with an initial node
S and two subsequent nodes Su and Sd relative to it, if we know S, F, and
Sd, we can calculate Su consistent with the volatility 𝜎(S, t); conversely, if we
know S, F, and Su, we can calculate Sd.

Figure 14.1 displays one step in a binomial tree. In order to create
additional steps, we will first construct the center of the tree, and then build
out the upper and lower branches of the tree in a way that is consistent with
the local volatility surface 𝜎(S, t) via Equation 14.10. This will produce a
tree with all the appropriate local volatilities. We can then go back to each
tree node and use Equation 14.6 to solve for the risk-neutral probabilities.
Once we have these, we can value any derivative security of the stock price
by the usual process of backward induction on the tree.

We start by making the central spine of the tree consistent with
the Cox-Ross-Rubinstein (CRR) approach as described in the preceding

2 Formally, for a discrete random variable x, the variance of x is Var[x] = E[(x −
E[x])2]. In our current model, E[dS] = q(Su − S) + (1 − q)(Sd − S) = F − S. The
variance of dS can then be found as Var[dS] = q{(Su − S) − E[dS]}2 + (1 − q){(Sd −
S) − E[dS]}2. For more on discrete random variables, variance, and expectations
operators, see Miller (2014).
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chapter. Starting with the initial node with price S0 at the root of the tree,
the central node S of every level with an odd number of nodes is chosen
to be equal to the initial price S0. For the other levels, those with an even
number of nodes, the two central nodes connected to the previous level’s
central node S are given by

Su = Se𝜎(S,t)
√

dt

Sd = Se−𝜎(S,t)
√

dt
(14.11)

where 𝜎(S, t) is the local volatility at the stock price S at future time t. This
procedure specifies the spine of the tree.

At each level, from these central nodes, we can sequentially build out
the up nodes above the spine by using Equation 14.10a, and the down nodes
below the spine by using Equation 14.10b.

This initial choice of S0 for the central spine of the tree is arbitrary.
We could, for example, have chosen the central spine to correspond to the
forward stock price at each level, or to any other price. Assuming that the
forward stock price at a level with an odd number of nodes is given by Ft,
Equation 14.11 for the subsequent level with an even number of nodes would
be replaced by

Su = Fte
𝜎(Ft,t)

√
dt

Sd = Fte
−𝜎(Ft,t)

√
dt

(14.12)

This guarantees that the local volatility at Ft is in fact 𝜎(Ft, t).
Let’s illustrate the method by building a simple tree.

SAMPLE PROBLEM

Question:

Suppose the current value of a stock is S0 = $100. Assume that the
local volatility is independent of future time t and varies only with the
stock price according to

𝜎(S) = max
[
0.1 −

S − S0

S0
, 0.01

]
(14.13)

(continued)
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(continued)

As shown in Figure 14.2a, near the current stock price local volatil-
ity decreases by one percentage point for every 1% increase in the
stock price. To ensure that volatility remains positive, we arbitrarily
set a minimum local volatility of 1%. Assume dividends and the risk-
less rate are zero. Construct the first three levels of a binomial tree with
Δt = 0.01.
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Stock Price

F IGURE 14.2a Price-Dependent Local Volatility

Answer:

Figure 14.2b shows a diagram of the tree.

S11

S10

S00

S22

S21

S20
(b)

q00

q11

q10

F IGURE 14.2b Local Volatility Tree
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We use the notation Sij to denote the absolute position of nodes
on the tree, and the notation S, Su, and Sd, to denote relative positions
on a binomial fork like that in Figure 14.1.

At the root of the tree at node S00, S = $100 and 𝜎(S) = 10%. At
the next level, the node S11 is up relative to S00, and the node S10 is
down relative to S00. Their prices are the same as they would be for a
standard Cox-Ross-Rubinstein tree:

S11 ≡ Su = Se𝜎(S,t)
√
Δt = 100e0.10

√
0.01 = 100e0.01 = 101.01

S10 ≡ Sd = Se−𝜎(S,t)
√
Δt = 100e−0.10

√
0.01 = 100e−0.01 = 99.00

Because dividends and the riskless rate are both zero, the forward
price for node S00 is equal to the initial price of $100. The risk-neutral
probability of an up move is

q00 =
F − Sd

Su − Sd
= 100.00 − 99.00

101.01 − 99.00
= 0.4975 (14.14)

At the third level there are three nodes, S22, S21, and S20. The cen-
tral node S21 at the third level is set equal to the initial price of $100.
Using Equation 14.10, we can find the stock prices at the nodes above
and below it.

Consider the node S11, whose local volatility is 0.09 and whose
forward price is F = S11 = 101.01. Its relative down node is the cen-
tral node S21. Its relative up node is S22, whose price, from Equation
14.10a, is

S22 ≡ Su = 101.01 + 101.012 × 0.092 × 0.01
101.01 − 100

= 101.83

The risk-neutral probability of going from S11 to S22 is then:

q11 = 101.01 − 100
101.83 − 100

= 0.5503
(continued)
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(continued)

Similarly, consider the node S10, whose local volatility is 11% and
whose forward price is F = S10 = 99.00. Its relative up node is the cen-
tral node S21. Its relative down node is S20, whose price, from Equation
14.10b, is given by

S20 ≡ Sd = 99.00 − 99.002 × 0.112 × 0.01
100 − 99.00

= 97.81

The risk-neutral probability of going from S10 to S21 is then

q10 = 99.00 − 97.81
100 − 97.81

= 0.5448

The tree of resultant prices and risk-neutral probabilities is therefore
as shown in Figure 14.2c.

101.01

99.00

100.00

101.83

100.00

97.81
(c)

0.4975

0.5503

0.5448

F IGURE 14.2c Local Volatility Tree

The unconditional risk-neutral probabilities for moving from the
root of the tree to the final three nodes are then

q22 = 0.4975 × 0.5503 = 0.2738

q21 = 0.4975 × (1 − 0.5503) + 0.5025 × 54.48 = 0.4975

q20 = 0.5025 × (1 − 0.5448) = 0.2287
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In this simple local volatility tree, because volatility increases as stock
prices decline, the down moves are larger than the up moves and the
terminal prices are negatively skewed.

As the preceding example makes clear, there is a systematic way to build
a binomial tree with a variable local volatility. Because of the clear intuition
they provide, binomial local volatility trees are a good way to understand
the principles and consequences of local volatility models, and we will use
them as our main pedagogical tool. For efficient numerical computation on a
trading desk, trinomial trees or other more general finite difference approx-
imation schemes for the numerical solution to partial differential equations
may converge faster to the continuum limit and be easier to calibrate.

THE RELATIONSHIP BETWEEN LOCAL VOLATIL ITY
AND IMPLIED VOLATIL ITY

We have demonstrated how to build a local volatility tree. Our longer-term
goal, though, is to find out what sort of local volatilities will produce a par-
ticular observed implied volatility smile.

To examine this, we must value options on a binomial local volatility
tree, and calculate their BSM implied volatilities. Consider a tree like the one
in the preceding sample problem, with the same local volatility function, but
extended to five levels instead of three.

Figure 14.3 shows the five-level price tree that results from the local
volatility, the corresponding local volatilities, the q-measure transition prob-
abilities between nodes, and the cumulative probabilities of reaching any
node, computed from the products of the q-measure transition probabilities.

What is the value of a European call option with strike $102 expiring
after five periods? Looking at the terminal levels of the tree, the only node
at which the option is in-the-money at expiration is the one with stock price
$103.34. At that node, the option is worth $1.34. With risk-neutral valu-
ation and an assumed riskless rate of zero, the present value of this payoff
is also $1.34. The risk-neutral expected value of this payoff is this present
value multiplied by the cumulative probability 7.52% of reaching that node,
$1.34 × 0.0752 = $0.10. Because the call expires worthless on all of the other
nodes, this $0.10 is also the value of the option at inception.

The value of the call option depends on the risk-neutral probability that
the stock price will be greater than $102 at expiration. That probability is,
in turn, related to the average local volatility the stock price experiences
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Local Volatility TreePrice Tree
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F IGURE 14.3 (a) Stock prices resulting from the local volatility function (b) The
corresponding local volatilities. (c) The q-measure transition probabilities. (d) The
cumulative probabilities of reaching any node.

between $100 and $102 as it makes its way to being in-the-money at expi-
ration. In Figure 14.2, the average local volatility between $100 and $102,
based on Equation 14.13, is (10% + 8%)/2 = 9%. We might therefore guess
that the value of a call option with strike $102 in the local volatility model
with variable local volatility is the same as on a binomial tree with a constant
volatility everywhere of 9%.

To test this, let’s construct a second binomial tree with a constant volatil-
ity equal to 9%, using the Cox-Ross-Rubinstein approach as shown in Fig-
ure 14.4. Note that the prices at each node and the probabilities of reaching
those nodes differ from those of the local volatility tree in Figure 14.3. As
before, for a call with strike $102, there is only one node at expiration that
results in a nonzero payoff, in this case one with a price of $103.67. The
value of that payoff is $1.67, and, with zero interest rates, its present value
is $1.67 × 0.0614 = $0.10, the same two decimal places as on the local
volatility tree.

We remind the reader that a tree with a constant volatility produces
an option value that converges to the BSM formula in the limit as the
spacing between tree levels approaches zero. In that sense, the constant
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Volatility TreePrice Tree
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F IGURE 14.4 Five-Level Tree with Constant Volatility

Cox-Ross-Rubinstein (CRR) volatility of 9% that matches the local volatil-
ity value of $0.10 can be regarded as the implied CRR volatility of the
option value. Just as the BSM implied volatility of an option is the volatility
you must insert into the BSM formula to produce that particular option’s
price, so we define the CRR implied volatility as the constant volatility that
produces the option’s price in the CRR model. In the limit of zero level
spacing, as we showed in Chapter 13, the CRR implied volatility approaches
the BSM implied volatility. From our example, then, we conclude that the
correct CRR implied volatility for valuing the option is approximately the
linear average of the local volatility between the current stock price level
and the strike price of the option. Similarly, in the continuum limit, we
conjecture that the correct BSM implied volatility is approximately the
average of the local volatility between stock price and strike.

Why should this be so? Figure 14.5 depicts various stock price paths.
The paths that contribute to positive option payoffs must traverse the region
between the initial stock price S and the strike price K in order to finish in-
the-money. The paths that finish in-the-money sample the local volatility in
this region. This leads to the implied volatility of a standard option being
approximately the linear average of the local volatilities between S and K.
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F IGURE 14.5 Various Paths to Expiration

COMMENT

The implied volatility 𝛴(S, t, K, T) for a given S and t has two
dimensions, one for the time to expiration T and one for the strike
K. If you think of the time direction as going forward, and the strike
direction as going sideways, then our conclusion above is that, when
the local volatility 𝜎(S) is a function of stock price alone, the implied
volatility for an option of strike K is the “sideways” average of the
local volatilities between S and K. This relationship between implied
and local volatilities is reminiscent of Equation 13.52 in Chapter 13,
which showed that when local volatility 𝜎(t) is a function of time
alone, the implied variance for expiration T is an average of forward
variances between the t and T. It also resembles Equation 13.53 of
Chapter 13, which relates the yield to maturity of a bond to the
average of forward rates.

When the local volatility 𝜎(S, t) is a function of both stock price
and time, from Figure 14.5, we conjecture that the implied volatility
will still be an average of the local volatility over the path from the
initial stock price to the terminal strike.

It’s not surprising that a yield is an exact average of forward rates,
because the relationship between continuously compounded yields and
forward rates is genuinely linear. It is somewhat surprising that the
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relationship between implied volatility and local volatility is approximately
a linear average, because the BSM option formula and the CRR binomial
tree both exhibit a nonlinear dependence on volatility. We will see in
subsequent chapters why this approximation is so surprisingly good.

It’s easy to see why the linear average approximation between implied
volatility and local volatilities should fail. In Figure 14.5, some paths that end
up in-the-money take the stock price below the initial price, whereas others
take the stock price above the strike price. Thus, the paths that contribute
to the option value sample the local volatility at many different stock price
levels, not just those between the current stock price and the strike. Never-
theless, for slowly varying local volatilities, most of the paths that end up
in-the-money at expiration will spend most of their time between the initial
stock price and the strike price, so it is the local volatilities between cur-
rent stock price and strike price that contribute predominantly to the option
value. That’s why the approximation works so well, and why the prices from
the two trees in our example were so similar.

Nevertheless, the linear average is only an approximation. There are
contributions to the option payoff from paths that go above the strike and
below the current price, but, because of the nature of geometric Brown-
ian motion, these paths have lower risk-neutral probabilities than the more
direct paths. In a subsequent chapter, we will discover a better averaging
approximation.

The Rule of Two: Understanding the Relat ionship
between Local and Impl ied Volat i l i t ies

We illustrated previously that the implied volatility 𝛴(S, K) of an option is
approximately the average of the local volatilities 𝜎(S) encountered over the
life of the option between the current underlying price and the strike. We
also remarked that this is analogous to regarding yields to maturity for zero
coupon bonds as an average over forward rates. For interest rates, because
of this averaging, it is common knowledge that forward short-term rates
grow twice as fast with future time as yields to maturity grow with maturity.
Similarly, if local volatilities 𝜎(S) are a function of stock price alone, then
one can show that local volatilities grow approximately twice as fast with
stock price as implied volatilities grow with strike. This relationship is often
called the rule of two.

In this section we provide another informal proof of the rule of two.3

Later we’ll prove it more rigorously. We restrict ourselves to the simple case

3 This proof follows the appendix of Emanuel Derman, Iraj Kani, and Joseph Z.
Zou, “The Local Volatility Surface,” Financial Analysts Journal (July–August 1996):
25–36.
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in which the value of local volatility of an index is independent of future
time, and varies linearly with index level, so that

𝜎(S) = 𝜎0 + 𝛽S (14.15)

Because we refer to the variation in future local volatility as the “forward”
volatility curve, we can call this variation with future index level the “side-
ways” volatility curve.

Consider the implied volatility 𝛴(S, K) of a slightly out-of-the-money
call option with strike K when the index is at S. Any paths that contribute to
the option value must pass through the region between S and K, as shown in
Figure 14.5. As we noted, the volatility of these paths is determined primarily
by the local volatility between S and K. Because of this, you can think of the
implied volatility for the option of strike K when the index is at S as the
average of the local volatilities over the shaded region, so that

𝛴(S, K) ≈ 1
K − S ∫

K

S
𝜎(S′)dS′ (14.16)

By substituting Equation 14.15 into Equation 14.16 you can show that

𝛴(S, K) ≈ 𝜎0 + 𝛽

2
(S + K) (14.17)

Comparing Equation 14.15 and Equation 14.17, we see that local volatility
varies with S at twice the rate that implied volatility varies with S. Equation
14.17 also shows that the rate of change of implied volatility with S is equal
to the rate of change with K.

You can also combine Equations 14.15 and 14.17 to write the relation-
ship between implied and local volatility more directly as

𝛴(S, K) ≈ 𝜎(S) + 𝛽

2
(K − S) (14.18)

DIFF ICULTIES WITH BINOMIAL TREES

As we have shown, the positions of the nodes of the local volatility tree
and the transition probabilities are uniquely determined by forward inter-
est rates, dividend yields, and the local volatility function. But if the local
volatility varies too rapidly with stock price or time, then, with finite spac-
ing between tree levels, some nodes may have stock prices that violate the
no-arbitrage condition and result in binomial transition probabilities greater
than one or less than zero.
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00 = 100
= 0.10

10 = 90.48
= 0.10

11 = 110.52
= 0.10

32 = 21
0.21

= 123.37

21 = 100.00
= 0.21

20

122.13

F IGURE 14.6 Binomial Tree That Violates No-Arbitrage
Condition

As an example, consider a tree with an initial stock price S00 = $100
and Δt = 1, as shown in Figure 14.6. We have assumed the riskless rate and
dividend yield are both zero. Further, assume that the local volatility is 10%
for the first two levels, but jumps to 21% on the third level when S21 = $100.
This is a very rapid increase in local volatility, and will cause an arbitrage
to occur at the next level. Specifically, because the local volatility at S21 is
so high, the relative up price from node S21 is S32 = $123.37. But S32 is the
down node relative to S22, and yet $123.37 = S32 > S22 = $122.13. Then S33
must lie even higher than S32, with the result that the up and down nodes
from S22 will both lie above S22, which, for zero interest rates, is equal to
the forward price of S22. When both the up and down prices from a node lie
above its forward price, there is an arbitrage opportunity.

These sorts of problems can be remedied by taking much smaller time
steps, but smaller time steps produce their own difficulties. For any given
stock or index there is only a finite number of options, and therefore a finite
number of observable implied volatilities. The implied volatility surface is
populated coarsely—it is really a grid rather than a surface. If we try to use
a coarse implied volatility grid to calibrate a finely grained local volatility
tree, we will find that we simply cannot extract enough information from
the implied volatilities unless we make assumptions about how to interpolate
and extrapolate the implied volatility grid smoothly.

FURTHER READING

There is a large literature on local volatility models. The following is a brief
list of suggested articles and books to get you started:
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� Derman, Emanuel, and Iraj Kani. “Riding on a Smile.” Risk 7, no. 2
(February 1994): 32–39.

� Derman, Emanuel, Iraj Kani, and Joseph Z. Zou. “The Local Volatility
Surface.” Financial Analysts Journal (July–August 1996): 25–36.

� Gatheral, Jim. The Volatility Surface: A Practitioner’s Guide. Hoboken,
NJ: John Wiley & Sons, 2006.

END-OF-CHAPTER PROBLEMS

14-1. The initial price of a stock is $100. Assume that annualized local
volatility is known, and varies only with the stock price according to

𝜎(S) = max
[
0.11 − 2 ×

(
S − S0

S0

)
, 0.01

]

Assume dividends and the riskless rate are zero. Construct the first
five levels of a binomial tree with Δt = 0.01 years. As in the sample
problem, use the Cox-Ross-Rubinstein model to construct the central
spine of the tree.

14-2. Using the same information as in the previous problem, calculate the
value of a European call option with a strike of $102, which expires
after four time steps. With the exception of constant volatility, assume
that all of the BSM assumptions hold.

14-3. Calculate the price of a European call option with strike $102 that
expires after four time steps. Use the same information as in the pre-
vious two problems, but assume that the riskless rate is 4%.

14-4. The initial price of a stock is $200. The riskless rate and dividends
are zero. Construct the first three levels of a binomial tree using the
Cox-Ross-Rubinstein model with time step, Δt = 0.01 years. Assume
that the local volatility is 20% for the first two levels. What is the
maximum local volatility for the center node of the third level in order
for the tree to have no arbitrage-violating nodes? As before, assume
that the central spine of the tree is constructed according to the Cox-
Ross-Rubinstein model.



CHAPTER 15
Consequences of Local

Volatility Models

� The Dupire equation expresses 𝜎(K, T), the stock’s local volatility when
the future stock price is K at time T, in terms of the partial derivatives of
standard option market prices with respect to expiration T and strike K.

� These mathematical derivatives represent the market prices of infinites-
imal strike spreads, calendar spreads, and butterfly spreads (i.e., the
prices of tradable option portfolios).

� One can calculate local volatility from derivatives of the implied volatil-
ity to rigorously justify the intuition that implied volatility is approxi-
mately the average of local volatilities.

DUPIRE ’S EQUATION FOR LOCAL VOLATIL ITY

In Chapter 11 we derived the Breeden-Litzenberger formula,

p(S, t, K, T) = er(T−t) 𝜕
2C(S, t, K, T)

𝜕K2
(15.1)

Here C(S, t, K, T) is the market price at time t of a standard call with strike K
and expiration T, 𝜕2C/𝜕K2 represents the price of an infinitesimal butterfly
spread, and p(S, t, K, T) is the risk-neutral probability density function of
the terminal stock price K at time T, evaluated at time t when the underlying
stock price is S. Note that on the right-hand side of Equation 15.1, K plays
the role of a strike. On the left-hand side, however, the same symbol plays the
role of a terminal stock price. Also, recall that the Breeden-Litzenberger for-
mula is model-independent. It does not require Black-Scholes-Merton (BSM)
or any other pricing model.

265
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In a similar fashion, the Dupire equation, which we will soon derive,
describes the relationship between the local volatility of the previous chapter
and the partial derivatives of the prices of standard options with respect to
strike K and expiration T. Because option prices are quoted using the BSM
formula and BSM implied volatility, the Dupire equation can also describe
the relationship between implied and local volatility.

For zero riskless rates and dividends, the Dupire equation can be writ-
ten as

𝜎2(K, T)
2

=

𝜕C(S, t, K, T)
𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

(15.2)

Here 𝜎(K, T) is the local volatility at future time T when the stock price is K,
evaluated at an earlier time t from a snapshot of option prices taken when
the stock price was at S. We could write the local volatility as 𝜎(S, t, K, T)
to make explicit the time t and stock price S when the snapshot of option
prices were taken, but we omit S, t, for the sake of brevity.

If the riskless rate r is not zero, the Dupire equation can be written as

𝜎2(K, T)
2

=

𝜕C(S, t, K, T)
𝜕T

+ rK
𝜕C(S, t, K, T)

𝜕K

K2 𝜕
2C(S, t, K, T)

𝜕K2

(15.3)

In order to compute 𝜎(K, T) on the left-hand side, the partial derivatives of
the call price with respect to strike and expiration must be known for all
strikes at all expirations. Unfortunately, market call or put prices are gener-
ally available for only discrete strikes and discrete expirations. As a result,
further assumptions are necessary to interpolate option prices from discrete
observations to continuous functions.

For the moment we’ll set aside this problem as we try to gain intuition
about the meaning of the Dupire equation. For simplicity we’ll also focus on
the case where the riskless rate is zero.

UNDERSTANDING THE EQUATION

For r = 0, the derivative in the denominator of Equation 15.2, 𝜕2C(S, t, K,
T)/𝜕K2, is the Breeden-Litzenberger risk-neutral density function p(S, t, K, T),
which we showed could be viewed as the limit of the price of an infinitesimal
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butterfly spread. In a similar way, the derivative 𝜕C(S, t, K, T)/𝜕T in the
numerator of Equation 15.2 can be viewed as the limit of 1/dT infinitesimal
calendar spreads, since

𝜕C(S, t, K, T)
𝜕T

= lim
dT→0

C(S, t, K, T + dT) − C(S, t, K, T)
dT

(15.4)

Let’s examine the behavior of the calendar spread, C(S, t, K, T + dT) –
C(S, t, K, T), at time T when the earlier call expires and the stock price S =
ST. There are three possibilities: ST ≪ K, ST ≈ K, and ST ≫ K. For ST ≪ K,
the earlier call is worth zero, and, for infinitesimal dT, the later call is worth
close to zero, because dT is too small to allow a significant probability of
the later call expiring in-the-money. Similarly, for ST ≫ K, both calls are far
in-the-money and both have about the same value. Thus, in both these cases,
the calendar spread is worth zero as dT → 0. For ST = K, the earlier call is
at-the-money at expiration and worth zero, while the later call has a positive
value to the extent that the local volatility 𝜎(K, T) can move the stock price
into the money, giving value to the calendar spread.

Therefore, in the limit dT → 0, the 1/dT calendar spreads will have value
only when ST ≈ K, and the relevant volatility that determines the value of the
spread is the local volatility 𝜎(K, T). In this limit, the value of the calendar
spread, evaluated at time t when the stock price is S, is proportional to the
risk-neutral probability p(S, t, K, T) that the stock price will evolve from
(S, t) to (K, T). Clearly, the value of the calendar spread also increases with
the local volatility 𝜎(K, T).

We will shortly show that the value of the infinitesimal calendar spread
is in fact proportional to the square of the volatility, 𝜎2(K, T). Taking this
on trust for now, we have

C(S, t, K, T + dT) − C(S, t, K, T) ∝ p(S, t, K, T)𝜎2(K, T)dT (15.5)

Now replacing p(S, t, K, T) with the Breeden-Litzenberger density in Equa-
tion 15.1, we have

C(S, t, K, T + dT) − C(S, t, K, T) ∝ 𝜕2C(S, t, K, T)
𝜕K2

𝜎2(K, T)dT (15.6)

Rearranging terms, in the limit,

𝜕C(S, t, K, T)
𝜕T

∝ 𝜕2C(S, t, K, T)
𝜕K2

𝜎2(K, T) (15.7)
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or, in other words,

𝜎2(K, T) ∝

𝜕C(S, t, K, T)
𝜕T

𝜕2C(S, t, K, T)
𝜕K2

(15.8)

It is an attractive feature of local volatility models that the local volatility
is closely related to the ratio of two of the most popular option trading
strategies. If the market provides us with enough data on the prices of traded
calendar and butterfly spreads, then we should be able to determine the local
volatility surface.

When the riskless rate is not zero, you can rewrite Equation 15.3 as

𝜕C(S, t, K, T)
𝜕T

+ rK
𝜕C(S, t, K, T)

𝜕K
− 𝜎2(K, T)

2
K2 𝜕C2(S, t, K, T)

𝜕K2
= 0 (15.9)

This looks much like the BSM equation with t replaced by T and S replaced
by K in the derivatives. But, very importantly, whereas the BSM equation
holds for any contingent claim on S if we make the usual BSM assumptions,
Equation 15.9 is much more restrictive, and holds only for vanilla European
calls or puts in a local volatility model, as we shall see in the derivation in
the following section. The BSM equation relates the value of any option at
(S, t) to the value of that same option at (S + dS, T + dT). Equation 15.9 by
contrast, relates the value of a standard option with strike and expiration at
(K, T) to a standard option with strike and expiration at (K + dK, T + dT),
keeping S and t fixed.

The value of the Dupire equation is that it tells you how to find a unique
local volatility function 𝜎(K, T) from the market prices of standard options.
Given the 𝜎(K, T) for all K and T, you can then construct an implied tree
that incorporates these local volatilities to value exotic options and to hedge
standard options. This single, theoretically unique implied tree will value
all standard options in agreement with their market prices, and consistently
within a single model, rather than having to use an inconsistent BSM frame-
work with different underlying volatilities for each standard option.

The local volatility surface calculated from market prices can also be
useful for volatility arbitrage trading. You can calculate future local volatil-
ities implied from option prices and then decide if they seem reasonable. If
these future volatilities seem unreasonably low or high, you might consider
buying or selling butterfly and calendar spreads, in effect betting on future
realized volatility at some future stock level and time. Derman and Kani
(1994) includes a discussion of gadgets, long positions in calendar spreads,
and short positions in butterfly spreads, whose net cost is zero, that allow
you to create forward contracts on local volatility.
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SAMPLE PROBLEM

Question:

Assume that the S&P 500 is currently trading at 2,000, that the riskless
rates and dividends are zero, and that BSM implied volatility for S&P
500 options varies with the strike K and time to expiration 𝜏 according
to the formula

𝛴(K, 𝜏) = (0.12 + 0.08𝜏)e
−
(

K
2000

−1
)

In other words, at-the-money implied volatility for options that are just
about to expire is 12%. The term structure is upward sloping with at-
the-money volatility increasing to 20% for options with one year to
expiration. The skew has a negative slope. At one year, implied volatil-
ity increases by approximately 0.20 percentage points of volatility for
every 1% decrease in the strike.

Approximate the at-the-money local volatility in one year using
Dupire’s equation by valuing a calendar spread and a butterfly spread.
Use dt = 0.01 and dK = 20.00 to calculate the approximate value of
the spreads. Assume dividends and the riskless rate are zero.

Answer:

The calendar spread is long a 2,000 strike call with 1.01 years to expi-
ration and short a 2,000 strike call with one year to expiration. The
butterfly contains three calls, all with one year to expiration: long one
call with a strike of 1,980, short two calls with strikes at 2,000, and
long one call with a strike at 2,020. The BSM prices for the options are:

S K 𝜏 𝜎I d1 d2 C(K, 𝜏)

2,000 1,980 1.00 20.20% 0.15 –0.05 170.30
2,000 2,000 1.00 20.00% 0.10 –0.10 159.31
2,000 2,020 1.00 19.80% 0.05 –0.15 148.72
2,000 2,000 1.01 20.08% 0.10 –0.10 160.74

The prices of the calendar and butterfly spreads are

Calendar = $160.74 − $159.31 = $1.43

Butterfly = $148.72 − 2 × $159.31 + $170.30 = $0.40

(continued)
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(continued)

Next we approximate the derivatives needed for Dupire’s equation

𝜕C(S, t, K, T)
𝜕T

≈ Calendar
dT

= $1.4302
0.01

= 143.02

𝜕2C(S, t, K, T)
𝜕K2

≈
Butterfly

dK2
= $0.3967

($20)2
= 0.0010

Substituting into Dupire’s equation, we have

𝜎2(K, T) =
2
𝜕C(S, t, K, T)

𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

𝜎2(2,000,1) = 2 × 143.02
2,0002 × 0.0010

= 0.0721

The local volatility is simply the square root of this, 27%.
Notice that the local volatility at one year and an S&P level of

2,000 is considerably higher than the implied volatility of 20%. We
can understand this result intuitively if we think of implied volatility
as the average of local volatilities between S and K. According to the
rule of two, in order for the implied volatility to increase from 12%
for options expiring immediately to 20% for options expiring in one
year—a rate of 8 percentage points per year—the local volatility needs
to increase at approximately twice that rate, or about 16 points per
year, which takes the local volatility from a current value of 12% to
approximately 28%. This is very close to the calculated value of 27%.
Looked at the other way, 20% is approximately the average of a local
volatility of 12% now and 27% one year from now.

A BINOMIAL DERIVATION OF THE DUPIRE EQUATION

We now show in detail how to derive the Dupire equation, reproduced here:

𝜎2(K, T)
2

=

𝜕C(S, t, K, T)
𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

For this derivation, we use the framework of the binomial model, assuming
zero interest rates and dividends. A more formal continuous-time derivation
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−

F IGURE 15.1 Jarrow-Rudd Tree

follows in the next section. Another derivation that uses the Fokker-Planck
equation is in the appendix of Derman and Kani (1994).

The Tree

We begin by constructing a Jarrow-Rudd tree. Recall from Chapter 13 that
an up move and a down move in a Jarrow-Rudd tree each have a probability
equal to 1/2. We construct the tree with time steps equal to dT/2, which will
make valuing a calendar spread more convenient. Assume that there is a
node corresponding to (K, T), as shown in Figure 15.1.

The Calendar Spread

The numerator of the Dupire equation is proportional to a calendar spread
that is long a call struck at (K, T + dT) and short another call struck at (K,
T). From our previous discussion, recall that almost all of the value in the
calendar spread is concentrated around (K, T). Let’s denote the risk-neutral
probability of arriving at (K, T) from (S, t) by pK,T.

Now let’s examine the contributions from nodes at time T in the tree to
the payoff of the (K, T + dT) call and to that of the (K, T) call.

� Any node with stock price S′
T

on the tree below level K at time T is out-
of-the-money for the (K, T) call, and furthermore produces transitions
to nodes S′

T+dT
at time T + dT that produce only a zero payoff for the

(K, T + dT) call. Thus any node below level K at time T contributes
nothing to the calendar spread.
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� Any single node with stock price S′
T

above K at expiration time T con-
tributes (S′

T
− K) to the (K, T) call payoff. This node transitions into

three at- or in-the-money nodes S′
T+dT

at time (T + dT), as shown in
Figure 15.1. Because all these nodes are at- or in-the-money, one can
show that the expected discounted value of the (K, T + dT) call pay-
offs (S′

T+dT
− K) across the three nodes at time (T + dT) is equal to the

value of the (K, T) call payoff (S′
T
− K) at the single node S′

T
at time T

that transitions to these three nodes. (This identity follows from the fact
that a risk-neutral tree preserves the value of a forward contract across
time.) Any node above K at time T therefore contributes nothing to the
calendar spread.

� Now consider the node (K, T) itself. This node is exactly at-the-money
for a call with strike K and expiration T, and results in zero payoff for
the (K, T) call. After two time steps, that node transitions into three
nodes at time (T + dT), as shown in Figure 15.1. For the call with strike
K and expiration (T + dT), the lower two nodes are respectively out-
of-the-money and at-the-money, and produce no payoff. The highest of

the three nodes, at Ke𝜎
√

2ΔT , generates a positive payoff for the call with
strike K, with probability 1/4 × pK,T, where the 1/4 corresponds to the
probability of two upward moves, 1/2 × 1/2, along the heavy line in
Figure 15.1.

Thus, it is only node (K, T) whose transitions deeper into the tree pro-
duce an extra payoff for the call (K, T+ dT) that isn’t matched by an identical
payoff for call (K, T). All other nodes contribute equal discounted expected
payoffs to both calls.

All the value of the calendar spread—the difference in value between the
longer call and the shorter call—therefore arises from the transition associ-
ated with the heavy line in Figure 15.1. We can calculate this contribution.
With a time step of dT/2, the up parameter is

u = 𝜎

√
dT
2

(15.10)

where 𝜎 is shorthand for the local volatility 𝜎(K, T). Starting at the node
(K, T) and moving up twice, the uppermost terminal node will then corre-
spond to a stock price

S = Ke2u = Ke𝜎
√

2dT (15.11)
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The payoff at this node of the call struck at (K, T + dT) is then the distance

between the two adjacent nodes K and Ke𝜎
√

2dT ; that is,

dK ≡ Ke𝜎
√

2dT − K ≈ K𝜎
√

2dT (15.12)

The value of the calendar spread at time (T + dT) is equal to dK. At time
t, assuming the riskless rate is zero, the risk-neutral value of the calendar
spread is just the value of this payoff multiplied by the risk-neutral proba-
bility of getting to this payoff, so that

C(S, t, K, T + dT) − C(S, t, K, T) = 1
4

pK,TdK (15.13)

Dividing both sides by dT,

𝜕C(S, t, K, T)
𝜕T

≈ C(S, t, K, T + dT) − C(S, t, K, T)
dT

= 1
4

pK,T
dK
dT

(15.14)

The Butterf ly Spread

The denominator in the Dupire equation is proportional to the infinitesimal
butterfly spread,

C(S, t, K − dK, T) − 2C(S, t, K, T) + C(S, t, K + dK, T) (15.15)

Figure 15.2 shows the payoff profile for this butterfly spread, which pays
an amount dK if the stock price lands at the node K at time T, and zero at
the adjacent nodes.

The discrete probability pK,T, as defined in an earlier chapter, pays $1
at the node (K, T), and is therefore equivalent to 1/dK infinitesimal butterfly
spreads, so that, in the limit dK → 0,

pK,T = C(S, t, K − dK, T) − 2C(S, t, K, T) + C(S, t, K + dK, T)
dK

= C(S, t, K + dK, T) − C(S, t, K, T)
dK

− C(S, t, K, T) − C(S, t, K − dK, T)
dK

≈ 𝜕C(S, t, K, T)
𝜕K

− 𝜕C(S, t, K − dK, T)
𝜕K

≈ 𝜕2C(S, t, K, T)
𝜕K2

dK (15.16)
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K ST

Payoff

K – dK K + dK

dK

F IGURE 15.2 Butterfly Spread Payoff Profile

Substituting Equation 15.16 into Equation 15.14, we obtain

𝜕C
𝜕T

= 1
4

pK,T
dK
dT

= 1
4
𝜕2C(S, t, K, T)

𝜕K2
dK2

dT
(15.17)

Using the approximation dK = K𝜎
√

2dT, we find

𝜕C(S, t, K, T)
𝜕T

= 1
2
𝜎2K2 𝜕

2C(S, t, K, T)
𝜕K2

(15.18)

and thus,

𝜎2(K, T)
2

=

𝜕C(S, t, K, T)
𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

(15.19)

This is Dupire’s equation for the local volatility when riskless rates are
zero. The local volatility depends only on the prices of traded options. Next,
in the more formal proof, we show that, even when the stock’s volatility
depends on more than just the stochastic variable S and the future time t,
even if the volatility has a random component, Equation 15.19 still provides
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a definition of local volatility, based on option prices, such that the local
volatility model’s option values match the market’s option prices.

A MORE FORMAL PROOF OF THE DUPIRE EQUATION

This proof relies on stochastic calculus rather than the more intuitive bino-
mial tree. First we write the stochastic partial differential equation for the
risk-neutral stock price as

dS
S

= rdt + 𝜎(S, t,…)dZ (15.20)

where 𝜎(S, t, …) is the instantaneous volatility of the stock price, which we
now allow to depend upon other variables in addition to S and t. Thus,
for example, in 𝜎(S, t, …) the “…” could signify a dependence on other
independent Brownian motions that make the volatility stochastic.

The value at time t of a vanilla European call with expiration T and
strike K is

C(S, t, K, T) = e−r(T−t)E[(ST − K)+] (15.21)

where E[…] denotes the risk-neutral (q-measure) expectation over ST and
all other stochastic variables, and (x)+ is shorthand for max[x, 0].

Using the Heaviside function H(x) and the Dirac delta function 𝛿(x), the
value of the call can be written as

C(S, t, K, T) = e−r(T−t)E[(ST − K)H(ST − K)] (15.22)

We now examine the partial derivatives of the call value that enter the
Dupire equation

𝜕C(S, t, K, T)
𝜕K

= −e−r(T−t)E[H(ST − K)] (15.23)

𝜕2C(S, t, K, T)
𝜕K2

= e−r(T−t)E[𝛿(ST − K)] (15.24)

To find the total derivative of C(S, t, K, T) with respect to T while keeping
K constant, we need to take account of both the direct change in C owing
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to a change in dT and the change in C induced by a stochastic change in ST,
as T increases in Equation 15.21. Thus,

dTC||K = E

[
𝜕C
𝜕T

dT + 𝜕C
𝜕ST

dST + 1
2
𝜕2C

𝜕S2
T

(
dST

)2

]

= E
[
−rCdT + e−r(T−t)H

(
ST − K

)
dST

+1
2

e−r(T−t)𝛿
(
ST − K

) (
dST

)2
]

= e−r(T−t)E
[
−rer(T−t)CdT + H

(
ST − K

)
dST

+1
2
𝛿
(
ST − K

) (
dST

)2
]

= e−r(T−t)E
[
−rer(T−t)CdT + H

(
ST − K

)
dST

+1
2
𝛿
(
ST − K

)
𝜎2 (ST , T,…

)
S2

TdT
]

(15.25)

Replacing ST with K in the last term, we obtain

dTC||K = e−r(T−t)E
[
−rer(T−t)CdT + H

(
ST − K

)
dST

+1
2
𝛿
(
ST − K

)
𝜎2 (ST , T,…

)
K2dT

] (15.26)

Substituting from Equation 15.22, we obtain

dTC||K = e−r(T−t)E
[
−r

(
ST − K

)
H

(
ST − K

)
dT + H

(
ST − K

)
dST

+1
2
𝛿
(
ST − K

)
𝜎2 (ST , T,…

)
K2dT

]
(15.27)

Then, using Equation 15.20 to replace dST,

dTC||K = e−r(T−t)E
[
−r

(
ST − K

)
H

(
ST − K

)
dT

+ H
(
ST − K

) (
STrdT + 𝜎

(
ST , T,…

)
dZ

)
(15.28)

+1
2
𝛿
(
ST − K

)
𝜎2 (ST , T,…

)
K2dT

]
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Gathering terms and recognizing that the expected value of the dZ is zero,
we have

dTC||K = e−r(T−t)E
[
rKH

(
ST − K

)
dT + 1

2
𝛿
(
ST − K

)
𝜎2 (ST , T,…

)
K2dT

]

(15.29)

We can now express the right-hand side of this equation in terms of the
partial derivatives of C with respect to K from Equation 15.23 and Equation
15.24, to obtain

dTC||K = −rK
𝜕C
𝜕K

dT + 1
2
𝜕2C
𝜕K2

E
[
𝜎2 (K, T,…)

]
K2dT (15.30)

Then the change in the value of C(K, T) when ST and T change is given by

𝜕C
𝜕T

||||K
= −rK

𝜕C
𝜕K

+ 1
2
𝜕2C
𝜕K2

E
[
𝜎2 (K, T,…)

]
K2 (15.31)

Rearranging terms, we obtain

E
[
𝜎2 (K, T,…)

]

2
=

𝜕C
𝜕T

||||K
+ rK

𝜕C
𝜕K

||||T

K2 𝜕2C
𝜕K2

||||T

(15.32)

We now define the generalized local variance 𝜎2(K, T) as the average of the
instantaneous future variance at K and T, over all other variables the vari-
ance could depend on, so that

𝜎2(K, T) = E
[
𝜎2 (K, T,…)

]
(15.33)

Equation 15.32 is the Dupire equation again. In order to ensure that the
equation produces positive variances, we need to prove that the denominator
and numerator on the right-hand side of Equation 15.32 have the same sign.
When deriving the Breeden-Litzenberger result, we showed that 𝜕2C/𝜕K2

in the denominator was equivalent to the payoff of a butterfly spread, and
hence always has positive value. You can use dominance arguments to show
that the value of the numerator is positive, too. The proof is left for a question
at the end of this chapter.
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AN EXACT RELATIONSHIP BETWEEN LOCAL AND
IMPLIED VOLATIL IT IES AND ITS CONSEQUENCES

For zero interest rates and dividend yields, we showed that

𝜎2(K, T)
2

=

𝜕C
𝜕T

||||K

K2 𝜕2C
𝜕K2

||||T

(15.34)

If option prices are quoted in terms of their BSM implied volatilities 𝛴, then
we can write

C(S, t, K, T) = CBSM (S, t, K, T,𝛴(S, t, K, T))

where we continue to assume zero rates and dividends for simplicity.
By applying the chain rule for differentiation and the formulas for the

BSM Greeks, one can show that

𝜎2(K, 𝜏) =
2𝜕𝛴
𝜕𝜏

+ 𝛴

𝜏

K2
⎡
⎢
⎢
⎣

𝜕2𝛴

𝜕K2
− d1

√
𝜏

(
𝜕𝛴

𝜕K

)2
+ 1

𝛴

(
1

K
√
𝜏
+ d1

𝜕𝛴

𝜕K

)2⎤
⎥
⎥
⎦

(15.35)

where 𝜏 = (T − t) and

d1 = 1

𝛴
√
𝜏

ln
(

S
K

)
+ 1

2
𝛴
√
𝜏 (15.36)

In deriving Equation 15.35, it is important to use the chain rule when
taking derivatives of C, since𝛴 is a function of S, t, K, and T too. We then find
that every term in both the numerator and the denominator is proportional
to N′(d2), which then cancels out and disappears in the final formula.

Equation 15.35 is a direct formula for the local volatility surface 𝜎(K, T)
in terms of the BSM implied volatilities rather than option prices. This for-
mula is the generalization of the notion of forward volatilities when there is
no skew to local (i.e., forward and sideways) volatilities in a skewed world,
where by forward we mean the volatility at some future time, and by side-
ways we mean the volatility at some other stock price. With this formula
we have completed our journey from a world where volatility is constant,
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through a world where volatility changes with time, and finally to a world
where volatility changes both with time and with the price of the stock.
We can now use this relation to justify some of our previous more intuitive
understanding of the relation between local and implied volatility.

Impl ied Variance Is the Average of Local Variance
over the L i fe of the Opt ion When There Is No Skew

If 𝛴 is independent of the strike K, then so is 𝜎(K, 𝜏), and we can reduce
Equation 15.35 to

𝜎2 (𝜏) = 2𝜏𝛴 𝜕𝛴

𝜕𝜏
+ 𝛴2 (15.37)

We can rewrite this as

𝜎2(𝜏) = 𝜕

𝜕𝜏

(
𝜏𝛴2) (15.38)

Integrating both sides, we have

∫

𝜏

0
𝜎2(u)du = 𝜏𝛴2(𝜏) (15.39)

Thus, as we derived previously, we see from a more general point of
view that when 𝛴 is independent of strike, the sum of the forward variances
is equal to the total implied variance.

SAMPLE PROBLEM

Question:

The local volatility for options on XYZ stock is independent of strike,
but varies with time to expiration according to

𝜎 (𝜏) = 0.1 + 0.05𝜏

What is the implied volatility for an option with one year to expiration?
(continued)
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(continued)

Answer:

Given the equation for the evolution of the local volatility, the local
variance must evolve according to

𝜎2 (𝜏) = (0.10 + 0.05𝜏)2

= 0.01 + 0.01𝜏 + 0.0025𝜏2

Using Equation 15.39,

𝜏𝛴2(𝜏) =
∫

𝜏

0
𝜎2(u)du

𝛴2(1) =
∫

1

0

(
0.01 + 0.01u + 0.0025u2)du

=
[
0.01u + 0.005u2 + 0.0025

3
u3

]1

0

= 0.01583

Taking the square root of both sides, we get our final answer:

𝛴(1) = 12.58%

Notice that the implied volatility at one year, 12.58%, is slightly more
than the average of the local volatility at zero and one year, 10% and
15% respectively.

The Rule of Two Revis i ted

Next, let’s consider the complementary case where local volatility is only a
function of strike and is independent of expiration:

𝛴 = 𝛴(K)
𝜕𝛴

𝜕𝜏
= 0 (15.40)

Furthermore, let’s assume that the skew has only a weak linear dependence
on K so that we need keep only the terms proportional to 𝜕𝛴/𝜕K, assuming
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that higher-order terms, such as (𝜕𝛴/𝜕K)2 and 𝜕2𝛴/𝜕K2, are negligible.
Then,

𝜎2(K, T) =

𝛴

𝜏

K2

𝛴

⎡
⎢
⎢
⎣

(
1

K
√
𝜏
+ d1

𝜕𝛴

𝜕K

)2⎤
⎥
⎥
⎦

= 𝛴2

(
1 + d1K

√
𝜏
𝜕𝛴

𝜕K

)2
(15.41)

or

𝜎(K, 𝜏) = 𝛴(K)

1 + d1K
√
𝜏
𝜕𝛴

𝜕K

(15.42)

Close to at-the-money, when K = S + ΔK, we then have

d1 ≈
ln
(

S
K

)

𝛴
√
𝜏

≈ − ΔK

S(𝛴
√
𝜏)

≈ − ΔK

K(𝛴
√
𝜏)

(15.43)

so that to leading order

𝜎(K) ≈ 𝛴(K)

1 − ΔK
𝛴

𝜕𝛴

𝜕K

≈ 𝛴(K)
(

1 + ΔK
𝛴

𝜕𝛴

𝜕K

)

≈ 𝛴(K) + (ΔK)
𝜕𝛴

𝜕K

(15.44)

where K = S + ΔK and ΔK is the distance from the at-the-money strike.
Therefore,

𝜎(S + ΔK) ≈ 𝛴 (S + ΔK) + (ΔK)
𝜕𝛴(S + ΔK)

𝜕K
(15.45)
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If we then perform a Taylor expansion on 𝜎(S + ΔK) and 𝛴(S + ΔK) about
S, we obtain

𝜎(S) +
𝜕𝜎(S)
𝜕S

ΔK ≈ 𝛴(S) + 2
𝜕𝛴(S)
𝜕S

ΔK

so that 𝜎(S) ≈ 𝛴(S) and

𝜕

𝜕S
𝜎(S) ≈ 2

(
𝜕𝛴

𝜕K

)||||K=S
(15.46)

In other words, as we conjectured more intuitively before, the local
volatility grows twice as fast with the stock price as the implied volatility
grows with the strike. This is another example of the rule of two, which we
introduced in the preceding chapter.

At Short Expirat ions, Impl ied Volat i l i ty Is a
Harmonic Average of Local Volat i l i ty between the
Current Stock Price and the Str ike

In this section, by looking at Equation 15.37 in the limit 𝜏 → 0, we show that
implied volatility can be viewed as a harmonic average of the local volatility
in the region between the current stock price and the strike.

Recall that for a set of positive numbers, x1, x2,…, xn, the harmonic
mean 𝜇H is defined as

1
𝜇H

=

1
x1

+ 1
x2

+⋯ + 1
xn

n
(15.47)

or

𝜇H = n
1
x1

+ 1
x2

+⋯ + 1
xn

(15.48)

For example, the harmonic mean of 10% and 40% is 16% = 2/(1/10%+
1/40%).
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For a continuous random variable with a normalized density function
f(x), the harmonic mean is given by

𝜇H = 1

∫

∞

0

1
x

f (x)dx
(15.49)

Now consider Equation 15.35. If we multiply the numerator and denomi-
nator of the right-hand side by 𝜏, we obtain

𝜎2(K, 𝜏) =
2𝜏 𝜕𝛴

𝜕𝜏
+ 𝛴

K2

[

𝜏
𝜕2𝛴

𝜕K2
− d1𝜏

√
𝜏

(
𝜕𝛴

𝜕K

)2
+ 1

𝛴

(
1
K

+
√
𝜏d1

𝜕𝛴

𝜕K

)2
] (15.50)

In the limit 𝜏 → 0,

lim
𝜏→0

𝜎2(K, 𝜏) = 𝛴

K2

[
1
𝛴

(
1
K

+
√
𝜏d1

𝜕𝛴

𝜕K

)2
]

= 𝛴2

(
1 + d1

√
𝜏K

𝜕𝛴

𝜕K

)2

(15.51)

where

d1

√
𝜏 = 1

𝛴
ln

(
S
K

)
+ 1

2
𝛴𝜏 (15.52)

For vanishingly short expirations,

lim
𝜏→0

d1

√
𝜏 = 1

𝛴
ln

(
S
K

)
(15.53)

Substituting this relationship into Equation 15.51 and taking the square root
of both sides, we obtain the ordinary differential equation

𝜎(K) = lim
𝜏→0

𝜎(K, 𝜏) = 𝛴

1 + K
𝛴

ln
(

S
K

)
d𝛴
dK

(15.54)

where in this limit the 𝜏-dependence of all the functions has now vanished.
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Define a new variable x = ln(K/S), so that

K
d𝛴
dK

= d𝛴
dx

(15.55)

We can then rewrite Equation 15.34 as

𝜎(K) = 𝛴

1 − x
𝛴

𝜕𝛴

𝜕x

(15.56)

Now, define V = 1/𝛴, then

d𝛴
dx

= − 1
V2

dV
dx

(15.57)

and

𝜎(K) = 1

V
[
1 + x

V
dV
dx

] (15.58)

This can be rewritten as

V + x
dV
dx

= 1
𝜎(K)

(15.59)

or

d
dx

(xV) = 1
𝜎(K)

(15.60)

Let us now parameterize the local volatility 𝜎(K) at the stock price K as
a function of ln(K/S) instead of as a function of K, so that henceforth when
we write 𝜎(x) we mean the same numerical volatility as before, but expressed
as a function of x = ln(K/S). It is important to recall that the variable K in
the implied volatility function represents a strike, but K in the local volatility
function represents a stock price. Equation 15.60 then becomes

d
dx

(xV) = 1
𝜎(x)

(15.61)
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Integrating both sides from x = 0 to x = ln(K/S), where K is the strike we are
interested in, we find

ln
(K

S

)
V (S, K) =

∫

ln
(

K
S

)

0

1
𝜎(x)

dx (15.62)

Replacing V with 1/𝛴, we obtain

ln
(K

S

)

𝛴

(K
S

) =
∫

ln
(

K
S

)

0

1
𝜎(x)

dx (15.63)

In other words, when the current stock price is S, as the time to expiration
approaches zero, the implied volatility of a standard option with strike K,
expressed as a function of ln(K/S) is the harmonic mean of the local volatility
at all stock prices S′ between S and K, where the local volatility is expressed
as a function of ln(S′/S) between 0 and ln(K/S).

To see why a harmonic mean makes more sense than an arithmetic mean,
suppose that we have an out-of-the-money call option with very little time
to expiration, and that somewhere between the current stock price and the
strike of the call option the local volatility becomes zero. The stock, under-
going geometric Brownian motion, will be unable to move beyond the point
where the local volatility first equals zero, and the call option should there-
fore be worthless. If the implied volatility is merely the arithmetic mean of the
local volatility, the implied volatility will be nonzero, implying a paradoxical
positive value for the call. The harmonic mean, however, will be zero, giv-
ing the correct value for the implied volatility. Based on the harmonic mean,
the call will be worthless, accurately reflecting the fact that the stock cannot
reach the strike price.

We can interpret Equation 15.63 even more intuitively in terms of the
total time the stock takes to diffuse from the initial stock price to the strike.
If we think of 𝜎2 as the diffusion speed of the log of the stock price under
geometric Brownian motion (the dimension of 𝜎2 is 1/time), then the time it
takes the stock to diffuse a certain distance should be proportional to 1/𝜎2,
similar to the way that a car moving at 20 meters per second takes 1/20th of
a second to move one meter. Looked at that way, the total diffusion time for
the log of the stock price to move from the current stock price to the strike
is the sum of the local diffusion times. Equation 15.63 is roughly equivalent
to this statement, except that it makes the statement for 1/𝜎 (the square root
of the diffusion times) rather than 1/𝜎2, the actual diffusion time. It is the
square root of the times that add up to the total.
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We can understand this in more detail using our car analogy. The total
time of a trip is equal to the sum of the times of each segment, but if the
car’s speed isn’t constant, the average speed for the entire trip will not be the
average of the speeds, because when the car travels faster it covers a given
distance in less time. If a car travels 100 miles per hour for 50 miles, and
then 25 miles per hour for 50 miles, the car will take 2.5 hours to travel
100 miles. The average speed for the trip is then 40 miles per hour = 100
miles/2.5 hours, and not 62.5 miles per hour = (100 mph + 25 mph)/2.

More formally, suppose the velocity v(s) of the car varies with position
s, and that the total distance travelled is D = ∫ ds. The total time taken to
travel is then

T =
∫

dt =
∫

ds
v(s)

(15.64)

and the average velocity is

V = D
T

= D

∫

ds
v(s)

(15.65)

which can be rewritten as

D
V

=
∫

ds
v(s)

(15.66)

showing that average velocity is the harmonic mean of instantaneous veloc-
ity, analogous to Equation 15.63.

END-OF-CHAPTER PROBLEMS

15-1. Stock ABC is currently trading at $1,000 per share. Assume that the
riskless rate and dividend yields are both zero, and that the BSM
implied volatility for ABC options varies only with strike according to

𝛴(K) = 0.10e
−
(

K
1000

−1
)

In other words, at-the-money implied volatility is equal to 10% and
increases by approximately 10 basis points for every 1% decrease in
the strike. Find an approximation for the local volatility, one year
from now when the stock price is $1,000, using Dupire’s equation by



Consequences of Local Volatility Models 287

valuing a calendar spread and a butterfly spread. Use dt = 0.01 and
dK = 10.00.

15-2. Using the same information as in the previous question, calculate the
local volatility at one year for a stock price of $900 (the current stock
price is still $1,000).

15-3. The analyst covering ABC made a mistake. The implied volatility
actually varies with both strike and time to expiration according to:

𝛴(K) = (0.10 + 0.05𝜏) e
−
(

K
1000

−1
)

where 𝜏 is the time to expiration. Using the same methodology as for
Problems 15-1 and 15-2, approximate the local volatility in one year
at stock prices of $1,000 and $900.

15-4. Consider European call options on a stock S that pays no dividends.
The annual interest rate r is compounded continuously. At time t let
the market price of a call on S with strike K and expiration T be
denoted by C(S, t, K, T), where S is the stock price at time t and K is
the strike at time T.

Now define the calendar spread that is short a call expiring at
T1 with strike Ker(T1−t), the strike price carried forward to time T1,
and long a call expiring at T2 with a strike at the corresponding for-
ward value Ker(T2−t), where T2 > T1. (After the calendar spread is
purchased at time t, the stock price S changes with t, but the strikes
and expirations of the options remain unchanged as t changes.) The
initial value of the calendar spread is

V
(
t, T1, T2

)
= C

(
S, t, Ker(T2−t), T2

)
− C

(
S, t, Ker(T1−t), T1

)

Prove that V(t, T1, T2) ≥ 0 purely from the constraint that no riskless
arbitrage can occur, independent of any model.

Note: The significance of the forward strikes Ker(T1−t) and
Ker(T2−t) for these options is that both options have the same forward
moneyness when the strike is divided by the stock’s forward price.

Hint: First consider the case where the first leg of the spread
V expires worthless, and then consider the case where the first leg
expires in-the-money. Use the fact that a call is always worth at least
as much as a forward with the same strike.

15-5. Using the same information and notation from the previous question,
consider what would happen if we parameterized market call prices
via the Black-Scholes-Merton (BSM) formula. This doesn’t mean we
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believe in BSM. We simply write every call in terms of its BSM implied
volatility, so that

C(S, t, K, T) = CBSM(S, t, K, T,𝛴(S, t, K, T))

This equates the left-hand side, a market price, to the BSM formula,
where 𝛴(S, t, K, T) is the implied volatility required to fit the market
price to the formula.

Define the total BSM implied variance to the “forward strike”
Ker(T−t) to be

v(S, t, Ker(T−t), T) = (T − t)𝛴2(S, t, Ker(T−t), T)

Show that the condition that the value of the calendar spread, V(t, T,
T + dT), is positive between time T and (T + dT) in the limit dT → 0
is equivalent to the condition

𝜕v
𝜕T

≥ 0

In other words, prove that no arbitrage requires that the BSM total
implied variance for any given forward strike does not decrease with
expiration. This is a constraint on the implied volatility surface as a
function of time to expiration, similar to the no-arbitrage conditions
on the slope of the smile as a function of strike that we derived in
Chapter 9. We stress again that this does not assume the BSM model
is correct. The model is being used only as a quoting convention.

Note that, for zero interest rates and dividend yields, the con-
straint reduces to

2𝜕𝛴
𝜕𝜏

+ 𝛴

𝜏
≥ 0

where 𝜏 is the time to expiration. This guarantees that the numerator
of the expression for the local volatility in Equation 15.35 is never
negative.



CHAPTER 16
Local Volatility Models

Hedge Ratios and Exotic Option Values

� In a local volatility model that is consistent with the smile defined by
standard option prices, the hedge ratios of standard options differ from
their BSM values.

� The values of exotic options differ from their BSM model values, too.
� The rule of two and the notion that implied volatility is the average of

local volatilities provide some intuitive rules of thumb to estimate the
effects without detailed calculation.

HEDGE RATIOS IN LOCAL VOLATIL ITY MODELS

We have shown that the Black-Scholes-Merton (BSM) implied volatility for
a standard option can be viewed as the approximate average of the local
volatility between the current stock price and the option’s strike at expi-
ration. If local volatility decreases as the stock price increases, then, all
else being equal, implied volatility will also decrease when the stock price
increases. The reverse is true if local volatility increases as the price of the
stock increases.

Let’s approximate the local volatility by a linear function of the underly-
ing stock price. If implied volatility is the average of the local volatility, then
the change in implied volatility for a small change in the stock price will be
approximately the same as for an equal change in the strike price, so that

𝜕

𝜕S
𝛴(S, t, K, T) ≈ 𝜕

𝜕K
𝛴(S, t, K, T) (16.1)

To see why this is true, let’s write the local volatility as

𝜎(S) = 𝜎0 − 2𝛽(S − S0) (16.2)

289
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where 𝜎(S) is independent of time, 2𝛽 is a small constant slope, and the local
volatility is 𝜎0 when the stock price is S0. Now let’s examine the implied
volatilities that follow from Equation 16.2.

The implied volatility 𝛴(S, K) for an option with strike K is approxi-
mately the average of 𝜎(S) between S and K, so that

𝛴(S, K) ≈ 1
2

[(𝜎0 − 2𝛽(S − S0)) + (𝜎0 − 2𝛽(K − S0))]

≈ 𝜎0 + 2𝛽S0 − 𝛽(S + K)
(16.3)

Taking the derivative with respect to both S and K, we have

𝜕

𝜕S
𝛴(S, K) = 𝜕

𝜕K
𝛴(S, K) ≈ −𝛽 (16.4)

Thus, if the local volatility has a slope of 2𝛽 with respect to the underly-
ing stock price, then the implied volatility will have a slope of 𝛽 with respect
to the strike and the stock price. Local volatility varies twice as rapidly with
respect to stock price as implied volatility varies with respect to strike. This
is another instance of the rule of two, which we saw in previous chapters.
Though we have derived this analytic relationship under various assump-
tions, in particular a small linear skew, numerical calculations show that the
rule of two is often reasonably accurate even when these assumptions are
only approximately true.

The Correct Hedge Rat io of a Vani l la Opt ion

We can find the correct hedge ratio Δ for an option in a local volatility model
by taking the total derivative of the option price as quoted by the BSM for-
mula CBSM(S, 𝛴):

Δ ≡

dCBSM

dS
=

𝜕CBSM

𝜕S
+

𝜕CBSM

𝜕𝛴

𝜕𝛴

𝜕S
(16.5)

Approximately, then,

Δ ≈ ΔBSM − VBSM𝛽 (16.6)

where ΔBS and VBSM are the BSM delta and vega, respectively, and 𝛽, as
before, is the magnitude of the negative skew of the implied volatility func-
tion. VBSM is positive for standard calls and puts; therefore, the correct hedge
ratios for standard options will be smaller than ΔBSM when the implied
volatility skew is negative.
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Take the example from Chapter 10, where we considered a one-year
S&P 500 call option with an implied volatility of 20% and a BSM hedge
ratio of 0.54. With S = 2,000, VBSM = 800, and 𝛽 = 0.0001, the correct
hedge ratio is approximately

Δ ≈ 0.54 − 800 × 0.0001

≈ 0.54 − 0.08

≈ 0.46 (16.7)

The hedge ratio Δ describes the rate at which the call price increases as
the stock price rises. Since local volatility in our example decreases as the
stock price increases, and since the stock price needs to rise in order for the
call to finish in-the-money, it makes intuitive sense that the call price will rise
less rapidly in a local volatility model as compared to BSM, and hence that
Δ is lower than ΔBSM.

SAMPLE PROBLEM

Question:

Assume that local volatility for the Euro Stoxx 50 Index (SX5E) is
given by

𝜎(S) = 𝜎0 − 2𝛽(S − S0)

= 0.2 − 2 × 0.00005 × (S − 3000)

The current level of the SX5E is S = S0 = 3,000. What is the correct
hedge ratio for a one-year SX5E vanilla European call with a strike of
3,300? Assume dividends and the riskless rate are zero.

Answer:

First we use Equation 16.3 to find the implied volatility for the option:

𝛴(S, K) = 𝜎0 + 2𝛽S0 − 𝛽(S + K)

= 0.2 + 2 × 0.00005 × 3000 − 0.00005(3000 + 3300)

= 0.2 + 0.00005(6000 − 6300)

= 0.2 − 0.00005(300)

= 0.2 − 0.015

= 0.185
(continued)
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(continued)

To calculate the BSM delta and vega, we first need to calculate d1:

v = 𝜎
√
𝜏 = 0.185

√
1 = 0.185

d1 = 1
v
ln
(

S
K

)
+ v

2

= 1
0.185

ln
(

3000
3300

)
+ 0.185

2
= −0.4227

The BSM Greeks are then

ΔBSM = N(d1) = 0.34

VBSM =
S
√
𝜏

√
2𝜋

e−
1
2

d2
1 = 1095

From Equation 16.6, we obtain

Δ ≈ ΔBSM − VBSM𝛽

≈ 0.34 − 1095 × 0.00005

≈ 0.28

The correct hedge ratio is approximately 0.28, considerably lower than
the BSM value of 0.34.

THE THEORETICAL VALUE OF EXOTIC OPTIONS IN
LOCAL VOLATIL ITY MODELS

In this section we illustrate the effect of local volatility models on the value
of exotic options, using barrier options and lookback options as examples.

Up-and-Out Cal l with Str ike = $100 and
Barrier = $110

Knockout barrier options are especially sensitive to the risk-neutral proba-
bility of the stock remaining in the region between the strike and the barrier,
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B ST

Payoff

KB2/K

F IGURE 16.1 Down-and-Out Call Replicated by a European
Call with Strike K and a European Put with Strike B2/K

and hence to the local volatility in that region. We will try to gain some intu-
ition by calculating the value of barrier options using local volatility models.

In Chapter 12, we showed that you can approximately replicate a down-
and-out call by means of a European payoff like that shown in Figure 16.1.
Analogously, Figure 16.2 illustrates a European payoff that approximately

B ST 

Payoff 

K B2/K 

F IGURE 16.2 Up-and-Out Call Replicated by a European
Payoff with Strikes at K, B, and B2/K
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replicates an up-and-out call, in the sense that on the barrier B at times prior
to expiration, the value of the European payoff is approximately zero. This
payoff has positive curvature at K, analogous to that of a long position in
a call option with strike K, and negative curvature at B2/K, like that of a
short put position with strike at the reflected value B2/K. In addition, it has
a sharp change from negative to positive curvature at the barrier B. In a
flat-volatility world, the value of this European payoff is determined by the
constant BSM volatility. In a skewed world, as we have shown, a standard
European option has an implied volatility that is approximately the aver-
age of the local volatilities between the current stock price and the strike.
The curvature of a standard European option is greatest in the vicinity of
the strike price. For more general European payoffs that don’t have a sin-
gle strike, we should take the average of the local volatility over the region
between the current stock price and the region where the curvature is large.
In this example, that means K, B, and B2/K.

For an up-and-out call with strike at $100 and barrier at $110, the
reflected strike B2/K is approximately at $120, a stock price greater than
the strike itself. Thus, in a local volatility model, the approximate value of
the BSM implied volatility for the up-and-out call should be the average
of the local volatilities between $100 and $120. In Figure 16.3, the local
volatility varies between 10% and 7% in this range, with an average of
approximately 8.5%. The value of a one-year up-and-out call calculated on
a local volatility binomial tree with 80 periods, when the riskless rate is 5%,
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F IGURE 16.3 Local Volatility as a Function of Underlying Price
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F IGURE 16.4 A Hypothetical Volatility Skew

is about $1.10, which does in fact correspond to a BSM implied volatility1

of about 8.5%, so this intuition about averaging works reasonably well.

An Up-and Out Cal l That Has No
Black-Scholes-Merton Impl ied Volat i l i ty

In some cases, the local volatilities can produce option values that cannot be
matched by any BSM implied volatility. Consider the following case, with
the current stock price and strike at $100, the barrier at $130, and the skew
as shown in Figure 16.4. We assume a riskless rate of 5%.

We can value a one-year up-and-out call by building an implied tree
calibrated to this skew. The resultant value of the barrier option in this local
volatility model is $6.46. What BSM implied volatility does this call price

1 Binomial models for the value of barrier options often need tens of thousands of
periods to converge accurately, because the barrier doesn’t fall exactly on the lattice.
In this example we have calculated the value of the barrier option in both the local
volatility model and the BSM model on a binomial tree with 80 periods, so that both
calculations incorporate the same type of inaccuracies. It wouldn’t make sense to
compare a local volatility option value calculated on a lattice with a BSM option
value calculated analytically.

With 80 periods, the binomial approximation to the BSM model is off by approx-
imately 10%. The BSM value of the up-and-out-call, calculated analytically with an
implied volatility of 8.5%, is $1.00.
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F IGURE 16.5 Up-and-Out Call Value as a Function of BSM
Implied Volatility

correspond to? As shown in Figure 16.5, the maximum BSM up-and-out call
value in a no-skew world is $6.00, corresponding to an implied volatility
of 9.5%. This value is smaller than the value in the local volatility model.
There is no BSM implied volatility that will give the correct local-volatility
option value.

The implied volatility that comes closest to producing the correct price
is about 9.5%. We can understand this as follows: The slope of the skew is
1 volatility point per 10 strike points. The rule of two then indicates that
the slope of the local volatility will be about 1 volatility point per 5 strike
points. Now, following Figure 16.2, you can think of an up-and-out call with
a strike of $100 and barrier of $130 as being replicated by a vanilla call with
strike of $100 and a reflected put with strike at B2/K = $169. Therefore,
the local volatility that is relevant to valuation is the local volatility between
stock prices $100 and $169. With a slope of approximately 1 volatility point
per 5 strike points, this corresponds to local volatilities of 15% to 1% ≈
15% – (69%/5). The average local volatility in this range is then about 8%,
which substantiates the claim that, even for this exotic option, the implied
volatility is approximately the average of the local volatilities between the
current underlying price and the strike. Note that an implied volatility of
8% or 9.5% is much lower than the BSM implied volatility of 12% at the
130 barrier.
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Lookback Cal l Opt ion

Path-dependent options effectively contain embedded strikes at multiple
market levels, and are consequently sensitive to local volatility in multiple
regions.2 When implied volatility varies with strike or expiration, no sin-
gle constant volatility is appropriate for valuing a path-dependent option.
One way to determine the fair value of a path-dependent option is to simu-
late the market evolution, taking into account the variation in local volatility.
We illustrate this approach for both a simple European-style lookback call
and a lookback put on an index. The method is general and can be applied
to Asian options and other path-dependent derivatives.

Let’s examine a lookback call that pays out the final value of an index
less the minimum value of the index between inception and expiration.
Define the minimum value of the index between inception and time t as Mt.
If the value of the option at time t is CLB(St, Mt, 𝜏), where 𝜏 is the time to
expiration, then the value at expiration is

CLB(ST , MT , 0) = max(ST − MT , 0) (16.8)

First, we show that a lookback call has a BSM delta of approximately
zero when the minimum is the current index level, St = Mt. Intuitively, when
St = Mt, a small increase in St should have the same impact on the option
value as a correspondingly small decrease in Mt, so that approximately

𝜕CLB

𝜕S

||||St=Mt

= −
𝜕CLB

𝜕M

||||St=Mt

(16.9)

Now, consider the next up or down infinitesimal move dS = S𝜎
√
𝜏 in the

index level as depicted in Figure 16.6. On the up move, Mt doesn’t change,
but on the down move Mt decreases by dS.

Then by backward induction in a risk-neutral world with zero interest
rates,

CLB(St, St, 𝜏) = 1
2

CLB(St + dS, St, 𝜏 + dt)

+1
2

CLB(St − dS, St − dS, 𝜏 − dt)
(16.10)

2 This section follows closely Derman, Kani, and Zou (1996).
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F IGURE 16.6 Evolution of a Lookback Option

Expanding the right-hand side of Equation 16.10 in a Taylor series, we
obtain

CLB(St, St, 𝜏) ≈ 1
2

[
CLB(St, St, 𝜏) +

𝜕CLB

𝜕S
dS +

𝜕CLB

𝜕M
0
]

+1
2

[
CLB(St, St, 𝜏) −

𝜕CLB

𝜕S
dS −

𝜕CLB

𝜕M
dS

]

≈ CLB(St, St, 𝜏) −
𝜕CLB

𝜕M
dS
2

(16.11)

Therefore, because dS is nonzero, it must be the case that

𝜕CLB

𝜕M
≈ 0 (16.12)

Thus when St = Mt, from Equation 16.9,

𝜕CLB

𝜕S

||||St=Mt

= −
𝜕CLB

𝜕M

||||St=Mt

≈ 0 (16.13)

That is, the delta of the lookback option is approximately zero under these
conditions.

Now consider a one-year lookback call and put, each with a three-month
lookback period on the strike. The call and put payoffs at expiration are



Local Volatility Models 299

Time

Smax

S

Index Level

Smin

End of
lookback period

Dominant path
for lookback
call

Dominant path
for lookback
put

Expiration

F IGURE 16.7 Dominant Paths Contributing to the Value of the
Lookback Options

max(ST – Smin, 0) and max(Smax − ST, 0), where Smin and Smax are, respec-
tively, the lowest and highest levels that the index reaches during the first
three months of the option’s life. We value the securities by simulating index
paths whose local volatilities are extracted from the relevant implied volatil-
ity smile. For each path we calculate the present value of the eventual payoff
of the lookback option, averaging over all paths to obtain the current value
of the option.

Figure 16.7 shows the dominant index paths—the paths that contribute
the most value—to the lookback call and put. A dominant path for a look-
back call sets a low strike during the first three months, and then rises to
achieve a high payoff. After the strike has been set in the first three months,
this lookback option behaves like a standard European call option. The the-
oretical value of the call is then determined by (1) the likelihood of setting a
low strike and (2) the subsequent volatility of the index. Similarly, a domi-
nant path for a lookback put sets a high initial strike and then drops. Its value
is determined by (1) the likelihood of a high strike and (2) the subsequent
index volatility.

In the implied tree model with a negative volatility skew, higher strikes
and index levels correlate with lower index volatility. Because of this, on the
dominant path for a lookback call, Smin will tend to be lower and subsequent
volatility will tend to be higher than it would be if there were no skew. Con-
versely, on the dominant path for a lookback put, Smax will tend to be less
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high and subsequent volatility will tend to be lower than it would be if there
were no skew. Therefore, in a negatively skewed world, lookback puts are
worth less than in a flat world, and lookback calls are worth more. When
option values are quoted in terms of their (unskewed) BSM implied volatili-
ties, lookback calls will have higher implied volatilities than lookback puts.

For illustration, we assume that the current level of the index is 100, with
a dividend yield of 2.5%, and the riskless rate is 6% per year. The index has
a negative skew, independent of expiration: At-the-money implied volatility
is 15%, and decreases by 3 percentage points for each increase of 10 index
strike points. Using Monte Carlo simulation, we find the fair value of the
lookback call to be 10.8% of the index, and the value of the lookback put
to be 5.8%. The unskewed BSM implied volatility for the lookback call is
15.6% and for the lookback put it is 13.0%.

You can use the same method to calculate the deltas of lookback options.
Figure 16.8 compares the implied-tree deltas with the BSM deltas for the one-
year lookback call just described, for a range of Smin, when the index level is
currently at 100. The BSM deltas are calculated at the BSM implied volatility
of 15.6% that matches the value obtained by Monte Carlo simulation over
the skewed local volatilities.

Note that the delta of the lookback call is always lower in the implied
tree model than in the BSM model, just as we would expect. The mismatch
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is greatest where volatility sensitivity is largest—that is, where Smin is close
to the current index level. The mismatch is smallest when Smin is much
lower than the current index level, at which point the lookback call is far
in-the-money and is effectively a forward contract with zero volatility sensi-
tivity. The fact that the theoretical delta of an at-the-money lookback call is
negative—to hedge a long call position you must actually go long the index—
is initially quite astonishing to market participants.

A similar effect holds for lookback puts, whose implied-tree deltas are
also always numerically lower (that is, negative and larger in magnitude)
than the corresponding BSM deltas.

END-OF-CHAPTER PROBLEMS

16-1. Assume that local volatility of the NASDAQ-100 Index (NDX) is:

𝜎(S) = 𝜎0 − 2𝛽(S − S0) = 0.25 − 2 × 0.00005 × (S − 4000)

where the current level of the NDX is S = 4,000. Assume a zero risk-
less rate and dividends. Estimate the correct hedge ratio for a one-year
NDX vanilla European call with a strike of 4,200.

16-2. Using the same local volatility function as in the previous problem,
determine the hedge ratio for a one-year NDX vanilla European put
with a strike of 4,200.





CHAPTER 17
Some Final Remarks on Local

Volatility Models

� A local volatility model can fit the smile and produce hedge ratios and
option values consistent with the market implied volatilities of standard
options.

� Like all financial models, a local volatility model requires frequent recal-
ibration, which means that it doesn’t reflect the behavior of the under-
lying market in a time-invariant way.

� For equity index options, the future skew in a local volatility model is
too flat.

� The hedge ratios of a local volatility model for equity index options are
likely better than those of the BSM model.

THE PROS AND CONS OF LOCAL
VOLATIL ITY MODELS

As we have seen in the last four chapters, the local volatility model offers a
number of clear advantages, but there are disadvantages as well.

Advantages

The local volatility model is the simplest extension of the Black-Scholes-
Merton (BSM) model that can accommodate the volatility smile. By
allowing the stock’s volatility to be a function of the underlying stock price
and time, we can calibrate 𝜎(S, t) to any market implied volatility surface
𝛴(S, t, K, T), replacing many different BSM implied volatilities with one
unified volatility process

dS
S

= 𝜇dt + 𝜎(S, t)dZ

303
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If 𝜎(S, t) is known, we can apply the principle of replication to derive
the following extension of the BSM partial differential equation for options
on the stock:

𝜕C
𝜕t

+ 𝜕C
𝜕S

rS + 1
2
𝜎(S, t)2S2 𝜕

2C
𝜕S2

= rC

This equation is the BSM partial differential equation with the constant
volatility 𝜎 replaced by the function 𝜎(S, t). The equation can be solved by
traditional numerical methods such as Monte Carlo simulation, the implied
binomial tree we developed in Chapter 14, and more sophisticated finite
difference methods.

Once calibrated, the local volatility model provides arbitrage-free option
values and hedge ratios for standard and exotic options, as demonstrated in
Chapter 16. A great advantage of the model is its closeness to the original
BSM model and its dynamics. The notion that the implied BSM volatility is
the average of the local volatilities from the initial stock price to the strike
leads to intuitive rules of thumb about how option values and hedge ratios
differ from their BSM values in the presence of a skew. For these reasons,
the model has become popular with both academics and practitioners.

The Big Quest ion

But do local volatility models produce a good approximation to reality? Are
the dynamics of the underlier and its volatility in the model a reasonable
facsimile of the actual dynamics of the market under consideration? Is the
behavior of the underlier well approximated by the following stochastic dif-
ferential equation?

dS
S

= 𝜇dt + 𝜎(S, t)dZ

To the extent that it is, the model’s result will be useful in valuing
and hedging actual options. The dynamics of various underlier markets
(equities, fixed income, commodities, etc.) have different degrees of overlap
with a local volatility model. We will discuss this more toward the end of
the book.

Disadvantages

There are two principal disadvantages to the local volatility model.
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The Necessity for Period ic Recal ibrat ion One general objection to local
volatility models is that they need to be frequently recalibrated. As time
passes and the underlying stock price or index level changes, the implied
volatility surface changes, and a new local volatility surface must be
extracted from the data. New hedge ratios and exotic option values must
then be calculated from this updated surface. The parameters of the model
are not stationary.

This is a legitimate objection to the use of the model, but it is one that
applies to all financial models. In particular, the BSM model itself must be
continually recalibrated by calculating new implied volatilities as the market
moves. This lack of stationarity is a reflection of the inadequate nature of
almost all financial modeling. In physics, the gravitational constant or the
charge of the electron is determined just once, from observation, after which
it can be used to calculate all future planetary or electron trajectories. Only
one calibration is necessary. In finance, unfortunately, there is as yet no model
that fits the market in a time-invariant way. That said, if more than one model
can be calibrated to the data, we will prefer models that are more stable and
contain fewer parameters.

Inab i l i ty to Match the Short-Term Skew Local volatility models tend to
have difficulty matching the future short-term skew. To understand why, first
consider the behavior of short-term interest rates in one-factor short-rate
term structure models.

A typical yield curve is upward sloping for short maturities and flattens
beyond about 20 years. As a result, in a one-factor term structure model (e.g.,
Black-Derman-Toy, 1990), the initial calibration requires that average short-
term rates in the interest rate tree increase in the near term and then stop
increasing beyond 20 years. This means that within the calibrated model, the
yield curve in 20 years becomes relatively flat rather than upward sloping.
It’s disturbing to have a term structure model that makes consistently biased
predictions of a relatively flat term structure in 20 years when yield curves
are generally upward sloping.

An analogous phenomenon occurs with the short-term skew in local
volatility models, but in the sideways rather than forward direction. The
implied volatility skew for equity indexes in the strike dimension is steep at
short expirations and flattens at longer expirations. When you calibrate a
local volatility model to this skew, this necessitates a flattening of the short-
term volatility skew in the future. It’s disturbing to have a model that con-
sistently predicts a flat short-term skew in the future when the prevailing
short-term skew is almost always steep. As we will see in a future chapter
when we discuss jump-diffusion models, one very likely reason for the steep
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short-term skew is the ever-present possibility of a downward jump in an
equity index. Indeed, the index skew first manifested itself in options mar-
kets after the 1987 stock market crash.

TESTING THE LOCAL VOLATIL ITY MODEL FOR
INDEX OPTIONS

Testing an option valuation model is not easy.1 One cannot simply com-
pare an option’s market price to the value predicted by a model, if the model
requires regular parameter recalibration. Since option models depend on cre-
ating riskless hedges, and since the profit or loss (P&L) of a riskless hedge has
zero variance, one criterion for a good model is that the use of its hedge ratio
minimizes the variance of the P&L of a hedged portfolio. If the replication
were exact, the variance of the P&L of a hedged portfolio would be zero.

The Impact of D i f ferent Market Regimes on the
Variance of the Hedged Portfo l io ’s P&L

Assume we are trying to delta-hedge a call option C by shorting the underly-
ing stock S. We can instantaneously hedge using either the BSM hedge ratio
ΔBSM or the local volatility hedge ratio Δloc. The values of the respective
hedged portfolios are

𝜋BSM = C − ΔBSMS

𝜋loc = C − ΔlocS
(17.1)

The difference between the local-volatility-hedged P&L and the BSM-
hedged P&L for a small move dS in the underlying stock is

d𝜋loc − d𝜋BSM = (ΔBSM − Δloc)dS ≡ 𝜀dS (17.2)

Here we rely on the fact that the change dC in the market value of the option
is the same in both cases. In Chapter 16, we used the chain rule to show that
Δloc was related to ΔBSM by

Δloc ≈ ΔBSM − VBSM𝛽 (17.3)

1 This section follows closely Stephane Crepey, “Delta-Hedging Vega Risk?” Quan-
titative Finance 4 (October 2004): 559–579.
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where VBSM is the BSM vega and 𝛽 is the magnitude of the negative
skew of the implied volatility function (𝛽 is positive). Because VBSM is also
positive, Δloc is less than ΔBSM when the skew is negative. Therefore, in
Equation 17.3

𝜀 = ΔBSM − Δloc > 0 (17.4)

From Chapter 3, we know that the P&L from delta-hedging over a short
time period dt depends on the realized volatility 𝜎R according to

d𝜋BSM = 1
2
ΓBSS2 (𝜎2

R − 𝜎2
BSM

)
dt (17.5a)

d𝜋loc = 1
2
ΓlocS

2 (𝜎2
R − 𝜎2

loc
(S, t)

)
dt (17.5b)

where 𝜎BSM is the BSM implied volatility of the option, and 𝜎loc(S, t) is the
local volatility at stock price S and time t on the implied tree. If the BSM
model is correct, then the change in the P&L in Equation 17.5a will vanish.
If the local volatility model is correct, the change in the P&L in Equation
17.5b will vanish. If neither is exactly correct, Crepey argues that we should
prefer the model whose change in the P&L—the hedging error—is smallest.

What happens when the stock price changes by dS and time increases
by dt? Combining Equation 17.2 and and Equation 17.5 we have

d𝜋BSM = d𝜋loc − 𝜀dS

= 1
2
ΓlocS

2[𝜎2
R − 𝜎2

loc
(S, t)

]
dt − 𝜀dS

(17.6)

The BSM hedging error is made up of two terms, the first related to the
imprecision in volatility forecasting, the second to the imprecision in delta-
hedging. The first term, due to volatility change, is quadratic and nondirec-
tional. Its sign depends only on the volatility mismatch

[
𝜎2

R − 𝜎2
loc

(S, t)
]
. The

second term, due to imperfect delta-hedging, is linear and directional. Since
𝜀 is positive, its sign depends only on the sign of dS.

Crepey (2004) applies Equation 17.6 to four different market regimes
grouped along two dimensions as shown in Table 17.1: At the next instant,
the index can move up or down, and realized volatility can be high or low
compared to the prevailing local volatility. We have emphasized the scenar-
ios that are typical of equity index markets when skew is negative: sharp
downward moves associated with high realized volatility, or smooth upward
moves accompanied by low realized volatility. In trader talk, equity index
markets tend to drift up or crash down.
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TABLE 17.1 Four Market Regimes for Equity Indexes

Realized Volatility

High Low

Market Direction Up 𝜎R > 𝜎loc, dS > 0 𝝈R < 𝝈loc, dS > 0

Down 𝝈R > 𝝈loc, dS < 0 𝜎R < 𝜎loc, dS < 0

For high-volatility down markets (a rapid sell-off), both terms on the
right-hand side of Equation 17.6 increase d𝜋BSM, so the hedging errors from
the change in volatility and the change in index level reinforce each other,
with the result that the BSM hedging error d𝜋BSM is positive. For nonvolatile
up markets (a slow rise), both terms decrease d𝜋BSM, so d𝜋BSM is negative.
For typical index markets, the BSM hedging error is therefore nonzero. In
contrast, for slow sell-offs or fast rises, the two contributions tend to cancel
and thereby diminish the hedging error. Unfortunately for the BSM model,
these behaviors—the slow sell-offs and fast rises in which the hedging errors
tend to cancel—are not typical of index markets. In summary, the BSM hedg-
ing strategy will likely perform worse—will have the more volatile hedged
P&L in typical equity index markets. We therefore expect the BSM model
to perform less well than the local volatility model for equity index markets.
Crepey (2004) includes an analysis of hedged P&L based on historical mar-
ket data that supports this conclusion. Using the model in this way, we stress,
obviously requires recalibration before hedging.



CHAPTER 18
Patterns of Volatility Change

� Local volatility models relate the slope of the current skew, 𝜕Σ
𝜕K

, to the

rate of change of volatility, 𝜕Σ
𝜕S

.
� There are various possible heuristic relationships between 𝜕Σ

𝜕K
and 𝜕Σ

𝜕S
.

� The sticky strike rule, the sticky delta rule, and the sticky local volatility
model are examples.

� Index option markets do not perfectly satisfy any one of these models
or rules.

HEURISTIC RELATIONSHIPS BETWEEN THE SLOPE
OF THE SKEW AND ITS DYNAMICS

In Chapter 16, Equation 16.3, we obtained the following equation for the
linear approximation for implied volatility for strikes close to at-the-money
(ATM), when using a local volatility model:

𝛴(S, K) ≈ 𝜎0 + 2𝛽S0 − 𝛽(S + K) (18.1)

From this equation it follows that

𝜕Σ
𝜕S

= 𝜕Σ
𝜕K

= −𝛽 (18.2)

In the local volatility model, with this approximation, knowing the current
skew slope, 𝜕Σ

𝜕K
, also tells you the rate 𝜕Σ

𝜕S
at which the implied volatility of an

option with strike K changes when the stock price S changes. A connection
between 𝜕Σ

𝜕K
and 𝜕Σ

𝜕S
is true more generally, even when the linear approxima-

tion doesn’t hold: The current skew in a local volatility model provides a
forecast of how volatility will change.
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In Equation 10.6 of Chapter 10 we derived the chain rule result

Δ = ΔBSM + 𝜕C
𝜕Σ

𝜕Σ
𝜕S

(18.3)

whereΔ is the correct hedge ratio. Therefore, knowing how implied volatility
will change with S is crucial for knowing how to hedge a standard option.

But more generally, beyond the validity of the local volatility model,
traders with experience in option markets have formulated several heuristics
to describe the incremental change in volatility when the index moves, that
is to estimate ( 𝜕Σ

𝜕S
), given the skew slope ( 𝜕Σ

𝜕K
). These heuristics are also useful

for developing our own intuition about how volatility might vary over time.
When specifying heuristics, it is often more useful to specify what

remains invariant rather than what changes. In physics, some of the deep-
est laws of nature are formulated as invariance principles. Einstein’s theory
of special relativity is a statement about invariance: The laws of mechanics
and electromagnetic theory should look the same in all reference frames that
move at constant velocity relative to each other. A more practical and less
general heuristic is that the static friction between one block laid on top of
another is proportional to the weight of the block, which is empirically more
or less true and a very useful fact. An example of an even less general heuris-
tic is that the maximum safe driving speed is 65 mph. It’s overly inflexible; it
suggests that a safe driving speed is always the same, always 65 mph, when
we know that in reality the weather, road conditions, and traffic, among
other variables, will affect what is safe. Though imperfect, it may be a good
approximation and serve as a starting point to more accurate estimates.

In this chapter we will examine three invariance heuristics related to the
implied volatility of standard equity index options: the sticky strike rule,
the sticky delta rule, and the sticky local volatility rule. On a day-to-day
basis, traders often prefer heuristics to complex mathematical models. These
heuristics will also be useful for developing our own intuition about how
volatility varies over time.

The St icky Str ike Rule

The sticky strike rule assumes that an option with a fixed strike will always
have the same implied volatility, that a particular implied volatility value
“sticks” to each strike, hence the “sticky strike.” Under this rule, options
with different strikes can still have different implied volatilities.

We can express the sticky strike rule mathematically as

𝛴(S, K) = f (K) (18.4)
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where f(K) is some arbitrary function of strike K, independent of the stock
price and time. Because the skew is often well approximated by a linear
function close to at-the-money, for an equity index option we can write a
linear approximation for the sticky strike rule as

𝛴(S, K) = 𝛴0 − 𝛽(K − S0) (18.5)

where 𝛽 is a constant determining the slope of the skew, and S0 is the value
of the stock price at which the at-the-money volatility is observed to be 𝛴0.

The sticky strike rule is an unsophisticated attempt to preserve the Black-
Scholes-Merton (BSM) model. Because the implied volatility of an individ-
ual option is constant, the sticky strike rule is consistent with a hedge ratio
equal to the BSM delta. It is unsophisticated in the sense that it permits dif-
ferent volatilities for the same underlier, which, as we’ve discussed before, is
illogical.

Given Equation 18.5, the at-the-money implied volatility is given by

𝛴ATM(S) = 𝛴(S, S) = 𝛴0 − 𝛽(S − S0) (18.6)

The sticky strike rule then requires that at-the-money implied volatility
decrease when the market goes up and increase when the market falls, a
consequence of the negative skew. You can think of this kind of pattern as
representing a kind of irrational exuberance, because it steadily lowers at-
the-money volatility as markets rise, as though nothing bad will ever happen
again. While the sticky strike rule may be a good approximation over short
time periods or in extremely calm markets, this behavior cannot be true in
the long run. Markets can continue to rise indefinitely, but volatility cannot
decline forever.

The St icky Delta Rule

It’s easier to begin by explaining the related concept of sticky moneyness.
Sticky moneyness means that an option’s volatility depends only on its mon-
eyness K/S. The linear approximation to this rule can be written as

𝛴(S, K) = 𝛴0 − 𝛽(K − S) (18.7)

The sticky moneyness rule is an attempt to shift the skew as the stock
price moves by adjusting for the option’s moneyness. It quantifies the idea
that at-the-money volatility—the volatility of the most liquid option—
should be the same, all else being equal, no matter what the stock price is.
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Similarly, an option that is 10% out-of-the-money should always have the
same implied volatility.

This rule, while sensible, ignores the time to expiration of an option,
which is also important. The longer the time to expiration, the more likely
the market is to move further away from its current level. The probability
of a 10% increase in the market over one year is much greater than the
probability of a 10% increase over one day.

As we saw in Chapter 8, assuming geometric Brownian motion, for small
𝛴
√
𝜏 the delta of a standard call option is approximately equal to the risk-

neutral probability of the option ending up in-the-money. Because of this, the
shape of the smile as a function of strike and expiration tends to be more
stable when viewed in terms of delta (which depends on log moneyness,
volatility, and time to expiration) rather than moneyness alone.

Sticky delta means that the implied volatility is purely a function of the
BSM delta, which is itself a function of ln(K∕S)∕[𝛴(S, K)

√
𝜏], the log mon-

eyness scaled by the square root of the total implied variance to expiration.
Mathematically, this heuristic can be written as

𝛴(S, K) = f

⎛
⎜
⎜
⎜
⎝

ln
(

K
S

)

𝛴(S, K)
√
𝜏

⎞
⎟
⎟
⎟
⎠

(18.8)

From this formula it follows that, in a sticky delta world, the implied volatil-
ity of an option depends on how many standard deviations of log returns,
under geometric Brownian motion, lie between the stock price and the strike.
Note that the function f(…) itself depends on 𝛴(S, K), so that Equation 18.8
is actually a nonlinear equation for 𝛴(S, K) that must be solved by iteration.

A linear approximation for the sticky delta rule is

𝛴(S, K) = 𝛴0 − 𝛽

ln
(

K
S

)

𝛴(S, K)
√
𝜏

(18.9)

Often, though, as an approximation, to keep the parameterization simpler,
practitioners replace 𝛴(S, K) on the right-hand side of Equation 18.9 with
the at-the-money volatility ΣATM(S) ≡ 𝛴(S, S). We will continue with this
approximation, so that

𝛴(S, K) = 𝛴0 − 𝛽

ln
(

K
S

)

𝛴ATM(S)
√
𝜏

(18.10)
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More generally, if we set 𝛴0 to the implied volatility when delta is 0.5,
then we can write

𝛴(S, K, t, T) = 𝛴0(t, T) − 𝛽′(t, T)[0.5 − Δ(S, K, t, T,ΣATM(S))] (18.11)

where Δ is the BSM hedge ratio for a standard European call. The first term
on the right-hand side,𝛴0(t, T), allows for the term structure of at-the-money
volatility, and the coefficient 𝛽′(t, T) accommodates a skew slope that varies
with expiration. Over short periods of time it is common to assume 𝛴0, 𝛽′,
and ΣATM(S) remain constant. In that case, for a fixed expiration, 𝛴(S, K, 𝜏)
becomes a function of K/S alone, but not K or S separately, so that

𝛴(S, K, 𝜏) = 𝛴0 − 𝛽′(0.5 − Δ(S, K, 𝜏,ΣATM)) (18.12)

where 𝜏 is the time to expiration.
For standard European calls, the delta in Equation 18.12 always

increases as S increases or K decreases. Thus, if 𝛽′ is positive, calls with lower
strikes will have higher deltas and higher implied volatilities corresponding
to a negative skew. Therefore, because of the negative skew, Equation 18.12
also requires that an increase in the stock price S, for any fixed strike K, will
increase the implied volatility, so that 𝜕Σ

𝜕S
> 0. It seems perhaps counterintu-

itive to think that a negative skew, which corresponds to an increase in risk
for low strikes, also implies that risk decreases as the stock price falls.

Because implied volatility rises with the stock price in the sticky mon-
eyness or sticky delta paradigm, the chain rule shows that the correct hedge
ratio for a standard option will be greater than the BSM delta. This is exactly
the opposite of what occurs in local volatility models.

SAMPLE PROBLEM

Question:

Assume the current price of XOM is $100. A one-year at-the-money
European call has an implied volatility of 25%. A one-year European
call with a strike of $120 has an implied volatility of 20%. If the price
of XOM increases to $120, estimate the implied volatility of the $120
strike call, assuming that implied volatilities obey the sticky delta rule.

(continued)
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(continued)

Answer:

From Equation 18.11 , assuming that 𝛴0(t, T), 𝛽′(t, T) and 𝛴(S, S, t, T)
remain constant as the price of XOM moves to $120, we estimate the
delta of the $120 strike call when XOM is $120 to be the same as the
delta of the $100 strike call when XOM was $100, namely 25%.

The Local Volat i l i ty Model

In the local volatility model, current option prices determine a single consis-
tent set of local volatilities that, in theory, should remain unchanged as time
passes and the stock price moves. An example is illustrated in Figure 18.1.

You can think of the local volatility model as a “sticky implied tree”
heuristic, in the sense that once you have calibrated the local volatility tree,
it should remain unchanged. Nevertheless, the model is more than a heuris-
tic; unlike sticky strike and sticky delta, which are heuristics that lack a con-
sistent theoretical foundation, the local volatility framework is a consistent
model of option values.
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F IGURE 18.1 The Implied Tree Corresponding to a Given Implied Volatility
Surface

Observing the implied tree for an index in Figure 18.1, we can see
that the local volatility model attributes the negative skew to the market’s
expectation of higher realized volatilities (and, consequently, higher implied
volatilities) when the index moves down, and lower volatilities when the
index moves up.

As we saw in Chapter 16, if we assume local volatility is a linear function
of the index level and strike, then implied volatility will also be a function
of the index level and strike. We can then write

𝛴(S, K) = 𝛴0 + 2𝛽S0 − 𝛽(S + K) (18.13)
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With this approximation, S and K enter into Equation 18.13 symmetrically,
with the same sign. Consequently, an increase in the index has the same
impact on implied volatility as an equal increase in the strike. This is exactly
the opposite of what was assumed for the sticky moneyness and sticky delta
models.

In the local volatility model, at-the-money volatility is given by

𝛴ATM = 𝛴(S, S) = 𝛴0 − 2𝛽(S − S0) (18.14)

In contrast to the sticky moneyness and sticky delta models, at-the-money or
fixed-delta volatility is not constant. Assuming a negative skew, we find that
𝜕ΣATM

𝜕S
< 0, in agreement with what we typically observe in index options

markets, where at-the-money volatility tends to increase as the index goes
down. As a result, as we saw in Chapter 16, in a local volatility world with
negative skew, the appropriate hedge ratio for a standard option is less than
the BSM delta. This is the opposite of what we concluded in the sticky mon-
eyness and sticky delta models.

Summary of the Rules

Table 18.1 provides a summary of the various sticky heuristics, assuming
a negative implied volatility skew with 𝛽 > 0. In the final column we also
indicate the models that produce these heuristics.

TABLE 18.1 Summary of Sticky Heuristics

General Linear
Functional Approximation Model with

Heuristic Form of 𝛴 of 𝛴 This Property

Sticky strike 𝛴(S, K) = f (K) 𝛴(S, K) = 𝛴0 − 𝛽(K − S0) Black-Scholes-
Mertona

Sticky
moneyness

𝛴(S, K) = f (K∕S) 𝛴(S, K) = 𝛴0 − 𝛽(K − S) Stochastic
volatility,b

jump-diffusion

Sticky delta 𝛴(S, K) = f (Δ) 𝛴(S, K) = 𝛴0 − 𝛽
ln( K

S )

𝛴(S, K)
√
𝜏

Local
volatility

𝛴(S, K)= f (K, S) 𝛴(S, K)=𝛴0 − 𝛽(K+ S− 2S0) Local volatility

aThe BSM model corresponds roughly to the sticky strike rule of thumb, but, strictly
speaking, it cannot accommodate a skew, because all implied volatilities are the same
irrespective of strike in the BSM model.
bIn stochastic volatility models, as we will show in the following chapters, there is
another stochastic variable, the volatility itself, so 𝛴(S, K) = f(K/S) only if the volatil-
ity hasn’t changed stochastically.
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St ick iness in the Real World

We can combine the linear approximations for sticky strike, sticky money-
ness, and sticky local volatility into the following more general equation for
a negative skew with slope 𝛽:

𝛴(S, K) = 𝛴0 − 𝛽(K − S) − B(S − S0) (18.15)

Here, to keep things simple, we assume that 𝛽 and B are constant over the
period of interest. The three rules then correspond to

1. Sticky strike: B = 𝛽

2. Sticky moneyness: B = 0
3. Sticky local volatility: B = 2𝛽

For at-the-money volatility, we then deduce that

𝛴ATM ≡ 𝛴(S, S) = 𝛴0 − B(S − S0) (18.16)

Kamal and Gatheral (2010) looked at the evolution of the smile for the
S&P 500. They focused on the ratio C defined by

𝜕𝛴ATM

𝜕S
= −B

𝜕𝛴(S, K)
𝜕K

= −𝛽

C =

𝜕𝛴ATM

𝜕S
𝜕𝛴(S, K)

𝜕K

= B
𝛽

(18.17)

C is the rate at which at-the-money volatility changes as time passes and the
index level changes, divided by the current slope of the skew, and hence it is
easy to observe in liquid markets.

The three heuristic rules then predict:

1. Sticky strike: C = 1
2. Sticky moneyness: C = 0
3. Sticky local volatility: C = 2

In their empirical study, Kamal and Gatheral find that C is approxi-
mately 1.5. Their study would seem to reject the sticky moneyness model as
an oversimplification, and suggests that reality is somewhere between sticky
strike and sticky local volatility.
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Crepey (2004), as we outlined earlier, argues that local volatility hedging
is best for options on equity indexes, in that it gets things right when the
market glides up or crashes down, which are the two modes we observe
most often for equity indexes.

TOWARD STOCHASTIC VOLATIL ITY MODELS

In a local volatility model, the volatility of the underlier is a function of
the underlier’s price, which is itself stochastic. The local volatility model is
therefore in fact a stochastic volatility model in which both the underlier
and its volatility are governed by the same stochastic process. But volatility
can also change for other reasons, independent of changes in the underlier.
In the next chapter, we will formally introduce stochastic volatility models,
which allow volatility to change independently.

END-OF-CHAPTER PROBLEMS

18-1. Assume that the sticky strike rule is true, and that implied volatility for
NASDAQ-100 Index (NDX) options can be described by the function

𝛴(K) = 0.25 − 0.00005(K − 4000)

The current level of the NDX is 4,000. What is the current at-
the-money implied volatility? What would the at-the-money implied
volatility be if the level of the NDX increased by 10%? Decreased by
10%?

18-2. Assume that the sticky delta rule is true, and that implied volatility
for Russell 2000 (RTY) options can be described by the equation

𝛴(S, K, 𝜏) = 0.18 − 0.02
ln
(

K
S

)

𝛴(S, K)
√
𝜏

If the RTY is currently at 1,000, calculate the implied volatility for
options with strikes at 1,000 and at 900, with one year and with three
months to expiration.

18-3. Using the same equation as in the previous problem, calculate the
implied volatility for options with strikes at 1,000 and at 900, with
one year and with three months until expiration, if the RTY falls to
900.





CHAPTER 19
Introducing Stochastic

Volatility Models

� There are a variety of ways to make volatility stochastic and produce a
skew.

� One can make the BSM volatility stochastic, or make the local volatility
stochastic.

� When volatility is stochastic, an option’s volga induces a symmetric
smile, and an option’s vanna induces an asymmetric skew.

� Volatility tends to revert to the mean.
� Risk-neutral valuation requires hedging the volatility exposure of one

option with another option.

INTRODUCTION TO STOCHASTIC VOLATIL ITY

The local volatility model we covered in previous chapters can be viewed as
a special case of a stochastic volatility model. The local volatility of a stock
varies with the stock price, and the stock price is itself stochastic. In local
volatility models, therefore, volatility is stochastic, but only because it is a
function of the stochastic stock price, with which it is 100% correlated. In
the real world, implied and realized volatility tend to be correlated with the
underlying stock price or index level, but the correlation is not 100%. In this
chapter we investigate stochastic volatility models where volatility can vary
independently of stock price.

Modeling stochastic volatility is much more complex than model-
ing local volatility. In the following sections and in several subsequent
chapters, we will explore specific versions of stochastic volatility, and see
how different assumptions affect the shape and evolution of the volatility
smile.
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Approaches to Stochast ic Volat i l i ty Model ing

The most obvious approach to stochastic volatility modeling is to make the
stock’s volatility depend on a stochastic factor that is independent of the
stock price changes. To do this, we must extend the one-factor models that
we have considered in previous chapters by adding a second stochastic factor.
The question then becomes how to introduce the second factor. There are
two general approaches:

1. Extended Black-Scholes-Merton. This approach begins with the geomet-
ric Brownian motion that underlies the Black-Scholes-Merton (BSM)
model, which has no implied volatility skew. We then allow the volatil-
ity of the stock to itself become independently stochastic (as opposed to
a constant or deterministic function of the stochastic stock price). In that
case, as we will show, it is the second stochastic factor, the volatility of
volatility, that is responsible for the existence of the smile. An example
is the Hull-White stochastic volatility model.

2. Extended local volatility. This approach begins with the local volatility
model, with the existence of the smile already a natural feature. We then
allow the local volatility to itself become stochastic by means of a second
stochastic factor, which is then responsible for the volatility of the smile.
An example of this approach is the SABR (stochastic alpha, beta, rho)
model (see Hagan, Kumar, Lesniewski, and Woodward 2002).

Which approach we adopt depends on where we start. Do we begin
with BSM and no skew, and perturb about that, or do we begin with local
volatility and a skew, and perturb about that? These are the main approaches
we will consider, and we will use both of them, as well as more heuristic
approaches, to understand the effects of stochastic volatility on the volatility
smile. By approaching stochastic volatility from different starting points, we
can learn much.1

1 There are (at least) two other approaches, which we now briefly mention, but will
not discuss in any detail. The first uses the BSM implied volatilities, which, as param-
eters, are analogous to the yields to maturity in so-called market models of interest
rates (e.g., Heath-Jarrow-Morton 1990; Brace-Gatarek-Musiela 1997), but allows
them to become stochastic. In these stochastic implied volatility models (e.g., Schon-
bucher 1999), we must place strong constraints on the evolution of implied volatility
in order to avoid arbitrages.

A second approach starts with an implied local volatility tree based on a snap-
shot of current option prices. We then allow the entire tree to vary stochastically.
These so-called stochastic implied tree models (see Derman and Kani 1998) begin
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This chapter and the following chapters on stochastic volatility focus
mainly on the first approach. At the end of Chapter 22 we have included a
list of further readings, some of which cover alternative approaches.

We begin with a heuristic examination of the effect of making the BSM
volatility stochastic.2 This treatment is not theoretically rigorous but is nev-
ertheless very useful for gaining intuition about the effects of stochastic
volatility models.

A HEURISTIC APPROACH FOR INTRODUCING
STOCHASTIC VOLATIL ITY INTO THE
BLACK-SCHOLES-MERTON MODEL

In this section we use the BSM formula to understand the qualitative behav-
ior of the smile in stochastic volatility models. We are moving beyond
the BSM assumptions, but its formalism can still allow us to see, in very
broad terms, how option prices are influenced by stochastic changes in other
variables.

Assume that the riskless rate and dividends are constant, but that the
stock price S and the stock volatility 𝜎 are both stochastic. Write the call
option price as a function C(S, t, K, T, 𝜎). We can then describe approximate
changes in the value of C using the Itô formula for two stochastic variables,
S and 𝜎, as

dC = 𝜕C
𝜕t

dt + 𝜕C
𝜕S

dS + 𝜕C
𝜕𝜎

d𝜎 + 1
2
𝜕2C
𝜕S2

dS2 + 1
2
𝜕2C
𝜕𝜎2

d𝜎2 + 𝜕2C
𝜕S𝜕𝜎

dSd𝜎

= 𝜕C
𝜕t

dt + 𝜕C
𝜕S

dS + 𝜕C
𝜕𝜎

d𝜎 + 1
2
𝜕2C
𝜕S2

𝜎2S2dt + 1
2
𝜕2C
𝜕𝜎2

d𝜎2 + 𝜕2C
𝜕S𝜕𝜎

dSd𝜎

=
(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt + 𝜕C
𝜕S

dS + 𝜕C
𝜕𝜎

d𝜎 + 1
2
𝜕2C
𝜕𝜎2

d𝜎2 + 𝜕2C
𝜕S𝜕𝜎

dSd𝜎

(19.1)

Now suppose that we construct a riskless hedge that is long the call
and short just enough stock S and enough volatility 𝜎 so that the hedged
portfolio is instantaneously riskless. Then, from Equation 19.1, the terms

with an initial tree that is arbitrage-free, but must also place strong constraints on
the evolution of the tree in order to avoid subsequent arbitrages.
2 This approach is inspired in part by a lecture given by Mark Higgins at Columbia
University in 2004.
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linear in dS and d𝜎 will not contribute to the profit and loss (P&L) of the
hedged portfolio, whose P&L is given by

dC =
(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt + 1
2
𝜕2C
𝜕𝜎2

d𝜎2 + 𝜕2C
𝜕S𝜕𝜎

dSd𝜎 (19.2)

We don’t know the value of the partial derivatives in Equation 19.2, since
we haven’t applied the methods of risk-neutral valuation to determine the
partial differential equation for the value C of the option when both volatility
and the stock price are stochastic. We will do this later. But for now, in order
to proceed further, we will replace the unknown partial derivatives 𝜕nC

𝜕anythingn

in Equation 19.2 by their values 𝜕nCBSM
𝜕anythingn that prevail in the BSM model,

hoping that these approximations capture much of the contribution to the
P&L from the stochastic volatility that induces nonzero values of d𝜎. These
approximations will work well when the volatility of volatility is small.

For pedagogical simplicity, we now assume zero rates and dividend
yields. In that case, the first bracket on the right-hand side of Equation 19.2
vanishes because of the BSM equation

𝜕CBSM

𝜕t
+ 1

2
𝜕2CBSM

𝜕S2
𝜎2S2 = 0 (19.3)

and we are left with the result that the expected change in the value of the
hedged P&L when volatility becomes stochastic is approximately given by

dC = 1
2
𝜕2CBSM

𝜕𝜎2
E
[
d𝜎2] +

𝜕2CBSM

𝜕S𝜕𝜎
E
[
dSd𝜎

]
(19.4)

The term 𝜕2C
𝜕𝜎2 , which is often referred to as volga, characterizes the con-

vexity of the call as a function of the volatility variable. The term 𝜕2C
𝜕S𝜕𝜎

is
often called vanna, DdeltaDsigma or DvegaDspot. For zero rates and divi-
dend yields, their values in the BSM model are given by

𝜕2CBSM

𝜕𝜎2
= V

𝜎

⎡
⎢
⎢
⎢
⎣

ln2
(

S
K

)

𝜎2𝜏
− 𝜎2𝜏

4

⎤
⎥
⎥
⎥
⎦

(19.5)



Introducing Stochastic Volatility Models 323

and

𝜕2CBSM

𝜕S𝜕𝜎
= V

S

(
1
2
− 1

𝜎2𝜏
ln
(

S
K

))
(19.6)

where

V =
𝜕CBSM

𝜕𝜎
=

√
𝜏

√
2𝜋

Se
− 1

2

(
ln
(

S
K

)

𝜎
√
𝜏

+ 𝜎
√
𝜏

2

)2

(19.7)

For typical values of 𝜎 and 𝜏, the BSM volga is positive everywhere
except close to at-the-money when ln(S/K) is close to zero. Figure 19.1 shows
a plot of BSM volga for a typical call option. Because E[d𝜎2] in Equation
19.4 is always positive, wherever volga is positive stochastic volatility will
increase the value of a call option above the BSM value. The same is true
for a put option. We conclude that, when volatility is stochastic, a hedged
standard option is long volatility of volatility by an amount related to its
convexity in volatility, volga.

Since volga peaks above and below the at-the-money strike, as shown in
Figure 19.1, the greatest difference between Equation 19.4 and the BSM
value of the call when volatility is not stochastic occurs for out-of-the-
money and in-the-money calls. This means that, if volatility is stochastic,
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then the convexity in the volatility adds value to the option away from at-
the-money. This adds value to out-of-the-money options relative to at-the-
money options, resulting in a U-shaped smile as shown in Figure 19.2.

Figure 19.3 shows a plot of BSM vanna versus K/S for a call option.
For typical values of 𝜎 and 𝜏, vanna will be positive when the call option is
out-of-the-money (K > S) and negative when the call option is in-the-money
(K< S). If E[dSd𝜎] is positive (if the stock price and its volatility are positively
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correlated), the vanna term in Equation 19.4 will enhance the value of a call
option relative to its BSM value at high strikes and reduce it at low strikes.
The opposite is the case if the correlation is negative. Since the equity index
skew is typically negative, with low strikes carrying greater implied volatility
than high ones, we can guess that in a stochastic volatility model we will
require a negative correlation between the index and its volatility in order
to reflect the observed skew.

With this intuition established, we now proceed to examine stochastic
volatility more rigorously.

The Extended Black-Scholes-Merton Model : A
Stochast ic Di f ferent ia l Equat ion for Volat i l i ty

We begin this section by exploring how we can model the evolution of
volatility. Just as with stock price evolution, we often use geometric Brow-
nian motion to model the evolution of volatility. The Hull-White stochastic
volatility model (Hull and White 1987) is one of the simplest and earliest
models. It describes the stochastic evolution of the variance V of the stock’s
returns using geometric Brownian motion by

dV
V

= 𝛼dt + 𝜉dW where V = 𝜎2 (19.8)

Here, the parameter 𝜉 is referred to as the volatility of variance.
One problem with Equation 19.8 as a model of volatility is that the dif-

fusion is unconstrained, so that over time volatility will tend to move farther
and farther away from its initial level. In reality we know that volatilities,
like interest rates, are range-bound. For example, from 2005 through 2014
the 30-day realized volatility for the S&P 500 was never below 5% or above
82%. We will therefore want to model both realized and implied volatility
as mean-reverting variables.

Adding Mean Reversion

Ornstein-Uhlenbeck processes are the traditional way to describe mean-
reverting stochastic variables. The Ornstein-Uhlenbeck stochastic differen-
tial equation for a mean-reverting process Y is

dY = 𝛼 (m − Y) dt + 𝛽dW (19.9)
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Here 𝛼, 𝛽, and m are nonnegative constants and dW is a Brownian motion,
which by definition has a mean of zero. The expected value of a change in Y
given the current level of Y is then

E[dY|Y] = 𝛼(m − Y)dt (19.10)

where m is the long-run mean of Y. When Y is greater than m, E[dY|Y] will
be negative and we expect Y to decrease. When Y is less than m, E[dY|Y] is
positive and we expect Y to increase.

To get a better idea of how Y evolves over time, first assume that there
is no stochastic term (i.e., that 𝛽 is zero), so that

dY = 𝛼(m − Y)dt (19.11)

The solution to this equation is

Yt = m + (Y0 − m)e−𝛼t (19.12)

where Y0 is the initial value of Y at t = 0. As t gets very large, e−𝛼t → 0, and
Yt moves toward m. In the absence of the stochastic term, in the long run,
no matter what its initial value, Y will converge to the long-run mean m.

We can calculate the half-life t1/2 of this process as the time it takes for
Y to move half the distance from Y0 to m. It must satisfy

Y0 − 1
2

(Y0 − m) = m + (Y0 − m)e−𝛼t1∕2

1
2

(Y0 − m) = (Y0 − m)e−𝛼t1∕2

(19.13)

with the result that

t1∕2 = 1
𝛼

ln (2) (19.14)

This is the half-life when there is no stochastic term, and it is inversely
proportion to alpha. The greater alpha is, the stronger the mean reversion.
When volatility is stochastic, it could take more or less time to move halfway
to the mean.

Equation 19.9 is not a completely realistic description of volatility, since
volatility tends to jump up sharply when markets crash, and then stay rel-
atively high for a long time, perhaps several weeks or longer. There is a
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stickiness or persistence to high and low volatilities that is not quite described
by the Ornstein-Uhlenbeck equation. For traders or hedge funds that trade
volatility as an asset, understanding the dynamics of volatility is very
important.

For the stochastic Ornstein-Uhlenbeck process (𝛽 ≠ 0), one can show
that the solution to Equation 19.9 is

Yt = m +
(
Y0 − m

)
e−𝛼t + 𝛽

∫

t

0
e−𝛼(t−s)dWs (19.15)

The last term in the equation shows that the sum of previous random incre-
ments to Y damps out exponentially with time, so that the contribution of
any previous random move to the long-term value of Yt eventually has no
effect on its current value.

Although we haven’t derived the solution, you can easily check that
Equation 19.15 satisfies the stochastic differential equation in Equation 19.9
by evaluating the differential of the right-hand side of Equation 19.15, as
follows:

dYt = −𝛼
(
Y0 − m

)
e−𝛼tdt + 𝛽dWt − 𝛽𝛼

∫

t

0
e−𝛼(t−s)dWs (19.16)

Now, from Equation 19.15,

(
Y0 − m

)
e−𝛼t = Yt − m − 𝛽

∫

t

0
e−𝛼(t−s)dWs (19.17)

Substituting this expression into the right-hand side of Equation 19.16, we
obtain

dYt = −𝛼
[
Yt − m − 𝛽

∫

t

0
e−𝛼(t−s)dWs

]
dt + 𝛽dWt − 𝛽𝛼

∫

t

0
e−𝛼(t−s)dWs

= 𝛼
[
m − Yt

]
dt + 𝛽dWt

(19.18)

To better understand the evolution of Y, let’s look at the behavior of Ȳt,
the mean of Y at time t, averaged over all increments dWs. From Equation
19.15, since each Brownian increment has a mean of zero, we see that

Ȳt = m +
(
Y0 − m

)
e−𝛼t (19.19)
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so that the mean of Y at time t is deterministic and identical to the solution
in Equation 19.15 with 𝛽 = 0.

We can also calculate the variance of Yt by making use of the fact that the
Brownian motion disturbances are independent increments across time. As
long as s ≠ u, dWsdWu = 0. When s and u are identical, though, dWsdWu is
proportional to du2. We can write this more succinctly using the Dirac delta
function:

dWsdWu = 𝛿(u − s)dsdu (19.20)

Therefore,

Var[Yt] = E
[(

Yt − Ȳt
)2
]

= 𝛽2
∫

t

0 ∫

t

0
e−𝛼(t−s)e−𝛼(t−u)dWsdWu

= 𝛽2
∫

t

0 ∫

t

0
e−𝛼(2t−s−u)𝛿(u − s)dsdu

= 𝛽2
∫

t

0
e−2𝛼te2𝛼udu

= 𝛽2

2𝛼

(
1 − e−2𝛼t)

(19.21)

When t is small, e−2𝛼t ≈ (1 − 2𝛼t), and the Var[Yt] ≈ 𝛽2t. In other words,
when t is small, the variance of Y increases approximately linearly with time,
just as it does in standard Brownian motion.

When t is not small, the variance of the Ornstein-Uhlenbeck process
behaves very differently. In the limit as t increases we have

lim
t→∞

Var
[
Yt
]
= 𝛽2

2𝛼
(19.22)

We see that the variance stops growing as t gets larger and converges to a
constant 𝛽2/2𝛼. The effect of mean reversion is to constrain the range of Y.
As the strength 𝛼 of the mean reversion increases, the range gets smaller.
Figure 19.4 shows the region encompassing ±1 standard deviation for an
Ornstein-Uhlenbeck process and Brownian motion.
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2
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F IGURE 19.4 Schematic Illustration of the Standard
Deviation of Yt

SAMPLE PROBLEM

Question:

Assume that volatility can be described by the following mean-
reverting discrete time series model:

d𝜎t = 𝜎t+1 − 𝜎t = 0.4
(
20% − 𝜎t

)
+ 𝜀t

where 𝜀t is a random variable with zero mean. Volatility is initially
24%, followed by an immediate +2% random shock. In the next
period there is a −2% random shock. What is the value of 𝜎t following
these two shocks? If there had been no shocks, what would the path
of volatility have been?

Answer:

Let’s rewrite our equation as follows:

𝜎t+1 = 𝜎t + 0.4
(
20% − 𝜎t

)
+ 𝜀t

(continued)
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(continued)

We have 𝜎0 = 24%, 𝜀0 = +2%, and 𝜀1 = −2%. Then,

𝜎1 = 𝜎0 + 0.4
(
20% − 𝜎0

)
+ 𝜀0

= 24% + 0.4 (20% − 24%) + 2%

= 24% − 1.6% + 2%

= 24.4%

We then feed this value back into our equation to get

𝜎2 = 𝜎1 + 0.4
(
20% − 𝜎1

)
+ 𝜀1

= 24.4% + 0.4 (20% − 24.4%) − 2%

= 24.4% − 1.76% − 2%

= 20.64%

In the initial step, the mean reversion is overwhelmed by the shock,
and volatility actually moves away from the long-run mean, 20%. In
the next period, both the shock and the mean reversion move volatility
toward the long-run mean.

If there had been no shocks, we would have had:

𝜎1 = 24% + 0.4 (20% − 24%)

= 24% − 1.6%

= 22.4%

𝜎2 = 22.4% + 0.4 (20% − 22.4%)

= 22.4% − 0.96%

= 21.44%

In the absence of shocks, volatility converges to the long-run mean
with decreasing speed. The first step is −1.6%, but the second step is
only −0.96%. Even though the shocks in the first part of this question
were symmetric, the final volatility is not the same as it is in the second
part. Symmetric shocks and no shocks are not necessarily equivalent
in a mean reversion model.
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A Survey of Some Stochast ic Volat i l i ty Models

Most stochastic volatility models assume traditional geometric Brownian
motion for the stock price:

dS
S

= 𝜇dt + 𝜎dZ (19.23)

If the volatility term 𝜎 is constant, then there will be no smile. The simplest
way of making the volatility both stochastic and mean reverting would be
to use a simple Ornstein-Uhlenbeck equation

d𝜎 = 𝛼 (m − 𝜎) dt + 𝛽dW (19.24)

One can write an analogous equation for the variance V:

dV = 𝛼 (m − V) dt + 𝛽dW (19.25)

The trouble with Equations 19.24 and 19.25 is that they allow the
volatility and variance to become negative. One way to avoid this is by hav-
ing the variance of variance decrease linearly as the variance approaches
zero, as in

dV = 𝛼 (m − V) dt + 𝛽VdW (19.26)

Another possibility is the Heston model (Heston 1993)

dV = 𝛼 (m − V) dt + 𝛽
√

VdW (19.27)

Here, the variance of variance decreases with the square root of the vari-
ance. This model has the advantage of being analytically soluble, which has
made it very popular. The square root factor in the stochastic behavior of
the variance was inspired by the Cox, Ingersoll, and Ross interest rate model
(Cox, Ingersoll, and Ross 1985). Analytic solutions and their derivations are
available in Heston’s original paper, as well as in the books of Lewis (2000)
and Gatheral (2011), among many others.

All these versions of a stochastic volatility model involve two stochastic
variables, S and 𝜎, driven by two Wiener processes, dZ and dW. In the stan-
dard BSM model, 𝜎 was independent of and uncorrelated with S. In local
volatility models, 𝜎 is a deterministic function of S, with ±100% correlation
between S and 𝜎. With stochastic volatility, S and 𝜎 can be more flexibly
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correlated. We can introduce this correlation through the Brownian motion
terms, expressing the correlation 𝜌 between dZ and dW through

dZdW = 𝜌dt (19.28)

where 𝜌 is assumed to be constant in almost all stochastic volatility models.
Obviously there is something more realistic about a model with stochas-

tic volatility. Furthermore, with only a few parameters—volatility of volatil-
ity and its correlation—one gets a structure that, while it may not exactly
fit the implied volatility surface, is capable of producing a broader range of
dynamics.

On the other hand, the evolution of volatility is even less well under-
stood than the evolution of stock prices, and these models are certainly not
perfect representations of volatility. In fact, one could argue that correla-
tion is at least as stochastic as volatility itself, so that choosing a constant
correlation to describe stochastic volatility already represents a significant
departure from reality.

One way or the other, there is much to learn from exploring stochastic
volatility, which we will begin to do in the next few chapters.

Risk-Neutral Valuat ion and Stochast ic Volat i l i ty
Models

In order to value an option using risk-neutral principles, we must be able
to hedge away all the risk of the option at any instant. We can do that only
if there are enough hedging securities to span all the possible states of the
world at each instant. If the option can be fully hedged, then the hedged
portfolio must instantaneously earn the riskless rate in order to avoid any
arbitrage opportunities.

In the standard binomial model, there are only two possible states at
each node: up and down. In the up state, the stock price goes to Su. In the
down state, the stock price goes to Sd. Under the BSM assumptions, when
only the underlying stock price is stochastic, we can then use the stock and
the riskless bond to create two state-dependent Arrow-Debreu securities,
𝚷u and 𝚷d, to span the space of payoff states. These securities are shown
in Figure 19.5. Knowing their current prices from the current prices of the
stock and the bond, one can then value any instrument with arbitrary payoffs
one period in the future; in particular, we can value a standard option. We
can replicate the option perfectly with a combination of the Arrow-Debreu
securities to guarantee the option’s payoff in both states of the world. As a
result, the expected return of the stock itself is irrelevant to the option value.
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F IGURE 19.5 Stock, Bond, and State-Contingent
Securities

Now let’s try to extend the binomial model to a world where both the
stock price and volatility are stochastic. In addition to the two possible stock
prices, Su and Sd, we now have two possible volatility levels, 𝜎u and 𝜎d. This
evolution is shown schematically in Figure 19.6. Because there are four pos-
sible paths emanating from each node, this representation is often referred
to as a quadrinomial model. To value an option in an arbitrage-free way, we
would seem to need four Arrow-Debreu securities, each of which pays $1 in
only one of the four states, and zero in the other three. The stock and the

Su, d

S, σ

σ

Su, uσ

Sd, dσ

Sd, uσ

F IGURE 19.6 Binomial Model Extended to Stochastic
Stock Price and Volatility
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riskless bond provide two securities. In addition, as you can see from Figure
19.6, we need to know the current value of the volatility, the volatility of
volatility, and its correlation with the stock price. If we knew all of this, we
could determine the present value of a $1 payoff in each of the four final
states, which would allow us to value and hedge options in the presence of
stochastic volatility.

Unfortunately, unlike the stock price, volatility is not a security with
a tradable price. You cannot simply go out and buy volatility; what you
can buy are securities, like standard options, that depend on the value of
volatility and its future behavior. You have to use options (or other volatility-
sensitive securities, variance swaps for example) to span the space. To put
it another way, if you want to create a riskless hedge for an option on a
stock whose price and volatility are stochastic, you must trade shares of the
stock to hedge the stock price variability, and you must trade another option
whose price is also sensitive to volatility in order to hedge the stochastic
volatility.

This situation is similar to the problem of hedging interest rate exposure
in the Vasiçek interest rate model. There, you cannot hedge the interest rate
exposure of a bond with interest rates, because interest rates don’t trade.
Instead, in order to create a riskless hedge you must hedge the interest rate
sensitivity of one bond with another bond. You cannot trade interest rates
themselves, but only things that depend on them.

If volatility is stochastic and we hedge an option only with shares of
stock, the partially hedged portfolio still contains some residual volatility
risk, and perfect replication of the option payoff is impossible. The principle
of no riskless arbitrage can no longer be applied, and one’s individual utility
or tolerance for risk will affect the option’s value.

If in addition to shares of stock you can also use other options to hedge
the stochastic volatility of the target option, and if you know the stochastic
process for option prices (i.e., volatility) as well as stock prices, then you can
hedge your option’s exposure to volatility with another option, and derive
an arbitrage-free formula for the option’s value, which we will do in the
following chapter.

In reality, we understand the stochastic process for option prices and
volatility even less well than we understand the stochastic process for stock
prices (which is to say, not very well at all). In the next chapter we will
nevertheless assume that we know both processes, and analyze the results.
As we will see, stochastic volatility models produce their own characteristic
smiles. We will also find that the solutions to stochastic volatility models can
often be written as averages over a distribution of BSM prices with a range
of volatilities, which makes analysis easier and more intuitive.
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END-OF-CHAPTER PROBLEMS

19-1. Assume that volatility can be described by the following mean-
reverting discrete time series model:

d𝜎t = 𝜎t+1 − 𝜎t = 0.4
(
20% − 𝜎t

)
+ 𝜀t

where 𝜀t is a random variable with zero mean. The initial volatility
𝜎0 is 16%. In the first period there is a +3% shock. In the next period
there is a −3% shock. What is the value of 𝜎t following these two
shocks? If the shocks had happened in the opposite order, what would
the path of volatility have been?

19-2. What would the path have been if the mean reversion parameter had
been 0.1 rather than 0.4?

19-3. Use Equation 19.14 to calculate the half-life for the time series models
in the previous two questions.

19-4. Assume the Standard & Poor’s 500 (SPX) is currently at 2,000 and
volatility is currently 20%. Construct the first step of a quadrinomial
tree with time step equal to 0.01 years. Assume that after that time
step, volatility will be either 25% or 15% and the stock price will be
either 1,900 or 2,100. Assume that the four risk-neutral probabilities
for the quadrinomial tree over this 0.01-year time step are:

P[1900, 25%] = 40%

P[2100, 15%] = 40%

P[1900, 15%] = 10%

P[2100, 25%] = 10%

Estimate the current price of a European call with 1.01 years
to expiration and a strike of 2,000 by calculating the risk-neutral
weighted average of the discounted values of a BSM one-year Euro-
pean call with one year to expiration and a strike of 2,000 at each
node of the quadrinomial tree. Compare this to the BSM price based
on the current SPX level and volatility. Assume zero dividends and
riskless rate.





CHAPTER 20
Approximate Solutions to Some

Stochastic Volatility Models

� Adding stochastic volatility to the local volatility model.
� A negative local volatility skew picks up convexity.
� The partial differential equation for options with stochastic stock

volatility.
� The mixing formula solution to the differential equation.

EXTENDING THE LOCAL VOLATIL ITY MODEL

In the previous chapter we made the volatility in Black-Scholes-Merton
(BSM) model stochastic and saw that it would induce a skew. But is the
observed skew really a consequence of volatility being stochastic?

Local volatility models can also produce a skew by making volatility a
function of the stock price, without making volatility independently stochas-
tic. In this section we begin with a local volatility model and a skew, and then
make the skew itself stochastic.

We illustrate this approach by beginning with a simple parametric model
for the evolution of the stock price and its volatility based on the SABR
model of Hagan et al. (2002). More specifically, assume that the stock price
S evolves according to

dS
S

= 𝛼S𝛽−1dW

d𝛼 = 𝜉𝛼dZ

dZdW = 𝜌dt

(20.1)

Here, W and Z are standard arithmetic Brownian motions, with corre-
lation 𝜌. The volatility of the log returns of S, 𝛼S(𝛽−1), is determined by the

337
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stock price S, the constant 𝛽, and a stochastic variable, 𝛼, with 𝜉 representing
the volatility of 𝛼. The parameter 𝛽 is a model parameter that lies between 0
and 1. If 𝜉 = 0 and 𝛽 = 1, the model reduces to the usual geometric Brownian
motion with no smile. For 0 ≤ 𝛽 < 1 and 𝜉 = 0, Equation 20.1 is a straight-
forward local volatility model that produces a skew. If 𝜉 differs from zero,
then it induces a volatility of volatility and a volatile skew. Using perturba-
tion theory, we are going to investigate the effect of small, but nonzero, 𝜉 on
the skewed BSM implied volatilities in the local volatility model.

To get a general sense of how this will work, let’s start by assuming that
𝜌 = 0 and 𝛽 is close to but less than 1, so that (1 – 𝛽) is small and positive,
inducing a small departure from the standard BSM model. If 𝜉 = 0, then we
know from our study of local volatility that the implied volatility is roughly
the average of the local volatilities between the current stock price and the
strike. It follows that the implied volatility 𝛴LV for 𝜉 = 0 is approximately
given by

𝛴LV(S, t, K, T, 𝛼, 𝛽) ≈ 1
2

(
𝛼S𝛽−1 + 𝛼K𝛽−1)

≈ 𝛼S𝛽−1 1
2

[
1 +

(K
S

)𝛽−1] (20.2)

where the subscript LV denotes local volatility.
We can approximate the second term inside the square brackets in Equa-

tion 20.2 using a first-order Taylor expansion around 𝛽 = 1:

(K
S

)𝛽−1
= e

(𝛽−1)ln
(

K
S

)

≈ 1 + (𝛽 − 1)ln
(K

S

)
(20.3)

Inserting this into Equation 20.2 for implied volatility, we find

𝛴LV(S, t, K, T, 𝛼, 𝛽) ≈ 𝛼S𝛽−1 1
2

[
1 + 1 + ln

(K
S

)
(𝛽 − 1)

]

≈ 𝛼

S1−𝛽

[
1 − (1 − 𝛽)

2
ln

(K
S

)] (20.4)

Equation 20.4 describes a skew that is linear in ln(K/S). Because
(1 – 𝛽) is positive, the skew is negative (as K increases, 𝛴 decreases) and
at-the-money implied volatility increases as the stock price drops. We leave
it as an exercise at the end of the chapter, but it is easy to show that 𝜕𝛴/𝜕K
≈ 𝜕𝛴/𝜕S for at-the-money options, as it is in any local volatility model.
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SAMPLE PROBLEM

Question:

Show that the SABR model approximation for implied volatility in
Equation 20.4 implies a negative slope and positive second derivative
for the implied volatility function, when 𝛼 > 0 and 0 ≤ 𝛽 < 1. Plot the
volatility smile for strikes of 80, 90, 100, 110, and 120 with 𝛼 = 0.30,
𝛽 = 0.90, and S = 100.

Answer:

We begin by rewriting Equation 20.4 as an identity rather than an
approximation:

𝛴 = 𝛼

S1−𝛽

[
1 − (1 − 𝛽)

2
ln
(K

S

)]

The first derivative with respect to K is

𝜕𝛴

𝜕K
= −𝛼(1 − 𝛽)

2S1−𝛽
1
K

The second derivative is

𝜕2𝛴

𝜕K2
= 𝛼(1 − 𝛽)

2S1−𝛽
1

K2

For all positive values of K, when 𝛼 > 0 and 0≤ 𝛽 < 1, the first derivative
of the smile is negative and the second is positive. For the values 𝛼, 𝛽,
and S given,

𝜕𝛴

𝜕K
= −

0.30(1 − 0.90)
2 × 1001−0.90

1
K

= − 0.015
1000.10

1
K

= −0.0095 1
K

𝜕2𝛴

𝜕K2
= 0.30(1 − 0.90)

2 × 1001−0.90
1

K2
= 0.0095 1

K2
(continued)
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(continued)

Next, we graph the smile. Given the values 𝛼, 𝛽, and S, Equation
20.4 simplifies to

𝛴 = 𝛼

S1−𝛽

[
1 − (1 − 𝛽)

2
ln

(K
S

)]

= 0.19
[
1 − 0.05 × ln

( K
100

)]

= 0.19 − 0.0095 × ln
( K

100

)

For the strike prices requested,

K ln(K/S) 𝛴

80 −0.22 19.14%
90 −0.11 19.03%

100 0.00 18.93%
110 0.10 18.84%
120 0.18 18.76%

18.6%

18.8%

19.0%

19.2%

80 90 100 110 120
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Because we have assumed a value of beta close to 1, the smile is
relatively flat over a wide range of strikes, varying only from 18.76%
to 19.14%.
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Now let’s switch on the stochastic volatility by letting 𝜉 be small but
nonzero. The stochastic volatility term 𝛼 in Equation 20.4 will now fluctu-
ate over time and make the skew stochastic. When the value of a security
depends on a parameter that varies over some range, we can get an approx-
imate value for the security by averaging the security value over the range
of the parameter. This is a useful rule of thumb that also describes the BSM
model itself, where the payoff of a call is convex in the stock price, and
the value of a call in the model is the weighted average of the payoffs over
the risk-neutral stock price distribution. Similarly, in this case we can get an
approximation for the call value owing to the variation in 𝛼 by averaging
the BSM price over all possible values of 𝛼. Denoting the density function of
𝛼 by f(𝛼), we write

CSLV ≈
∫

CBSM(𝛴LV(S, t, K, T, 𝛼, 𝛽))f (𝛼)d𝛼 (20.5)

where the subscript SLV stands for stochastic local volatility. We can expand
the right-hand side of Equation 20.5 about the mean of the distribution, 𝛼̄:

CSLV =
∫

CBSM(𝛴LV(S, t, K, T, 𝛼̄ + (𝛼 − 𝛼̄), 𝛽))f (𝛼)d𝛼

≈
∫

[
CBSM(𝛴LV(S, t, K, T, 𝛼̄, 𝛽)) +

𝜕CBSM

𝜕𝛼

||||𝛼̄
(𝛼 − 𝛼̄)

+ 1
2
𝜕2CBSM

𝜕𝛼2

|||||𝛼̄
(𝛼 − 𝛼̄)2

]

f (𝛼)d𝛼

≈ CBSM(𝛼̄) + 1
2

𝜕2CBSM

𝜕𝛼2

|||||𝛼̄
var(𝛼)

(20.6)

where the term linear in 𝛼 vanishes because the average value of 𝛼 over the
density function is precisely 𝛼̄. In Equation 20.6, var(𝛼) is the variance of 𝛼,
and we have assumed that the volatility of volatility is small enough to allow
us to cut off the Taylor series at the second term.

In order to see the approximate effect on the BSM implied volatility, we
define the implied volatility 𝛴SLV in this stochastic local volatility model, as
usual, as the value of BSM volatility that equates the model value to the BSM
value, so that

CSLV ≡ CBSM(𝛴SLV) (20.7)

Because the volatility of volatility has been assumed to be small,
𝛼 stays close to 𝛼̄ and thus 𝛴SLV should not differ by much from the
local volatility value 𝛴LV(S, t, K, T, 𝛼̄, 𝛽) for 𝛼 = 𝛼̄. We can then write the
implied volatility 𝛴SLV as 𝛴LV(S, t, K, T, 𝛼̄, 𝛽) plus a small correction due to 𝛼
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being stochastic, so that 𝛴SLV ≡ 𝛴LV(𝛼̄) + (𝛴SLV − 𝛴LV(𝛼̄)), where we denote
𝛴LV(S, t, K, T, 𝛼̄, 𝛽) for brevity as 𝛴LV(𝛼̄). Thus,

CSLV = CBSM(𝛴LV(𝛼̄) + (𝛴SLV − 𝛴LV(𝛼̄)))

≈ CBSM(𝛼̄) +
𝜕CBSM

𝜕𝛴LV
(𝛴SLV − 𝛴LV(𝛼̄))

(20.8)

where we used a first-order Taylor expansion in the implied volatility to
obtain the last line of Equation 20.8. Solving for 𝛴SLV by equating the right
hand sides of Equations 20.6 and 20.8, we obtain

𝛴SLV ≈ 𝛴LV(𝛼̄) +

1
2

𝜕2CBSM

𝜕𝛼2

|||||𝛼̄
var(𝛼)

𝜕CBSM

𝜕𝛴LV

(20.9)

When the total variance 𝜎2𝜏 is small and we are close to at-the-money,
𝛴LV(𝛼̄) ≈ 𝛼̄∕S1−𝛽 . We can then use the chain rule to show that

𝜕2CBSM

𝜕𝛼2

|||||𝛼̄
≈
(

1
S1−𝛽

)2
𝜕2CBSM

𝜕𝜎2

|||||𝜎=𝛴LV

≈
(
𝛴LV

𝛼̄

)2
𝜕2CBSM

𝜕𝜎2

|||||𝜎=𝛴LV

(20.10)

The right-hand side of Equation 20.10 is positive, which means that the
call option is convex in 𝛼. Furthermore, in the SABR model of Equation 20.1,
𝛼 undergoes geometric Brownian motion with a variance that increases with
time, so that var(𝛼) ≈ 𝛼̄2𝜉2𝜏. Thus the second term on the right hand side of
Equation 20.9 is approximately

1
2

𝜕2CBSM

𝜕𝛼2

|||||𝛼̄
var(𝛼)

𝜕CBSM

𝜕𝛴LV

≈ 1
2

⎡
⎢
⎢
⎢
⎢
⎣

(
𝛴LV

𝛼̄

)2
𝜕2CBSM

𝜕𝜎2

𝜕CBSM

𝜕𝜎

|||||||||𝜎=𝛴LV

(𝛼̄𝜉)2𝜏

⎤
⎥
⎥
⎥
⎥
⎦

≈ 1
2
𝛴2

LV

𝜕2CBSM

𝜕𝜎2

𝜕CBSM

𝜕𝜎

|||||||||𝜎=𝛴LV

𝜉2𝜏

(20.11)
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Using our formulas for vega and volga from Chapter 19,

𝜕2CBSM

𝜕𝜎2

𝜕CBSM

𝜕𝜎

= 1
𝜎

[
1

𝜎2𝜏

(
ln
(

S
K

))2

− 𝜎2𝜏

4

]

(20.12)

When the total variance 𝜎2𝜏 is small and the option is close to at-the-money,
so that [ln(S/K)]2 is itself comparable to 𝜎2𝜏, we can write

𝜕2CBSM

𝜕𝜎2

𝜕CBSM

𝜕𝜎

≈ 1
𝜎

[
1

𝜎2𝜏

(
ln
(

S
K

))2
]

≈ 1
𝜎3𝜏

(
ln
(

S
K

))2

(20.13)

Equation 20.11 then becomes

1
2

𝜕2CBSM

𝜕𝛼2

|||||𝛼̄
var(𝛼)

𝜕CBSM

𝜕𝛴LV

≈ 1
2

𝜉2

𝛴LV(𝛼̄)

(
ln
(

S
K

))2

(20.14)

Substituting Equation 20.14 into Equation 20.9, for short times to expira-
tion 𝜏, close to at-the-money, we have the approximation

𝛴SLV ≈ 𝛴LV

[

1 + 1
2

(
𝜉

𝛴LV(𝛼̄)

)2 (
ln
(

S
K

))2
]

(20.15)

Equation 20.15 demonstrates that when volatility becomes stochas-
tic, the local volatility smile is altered by the addition of a quadratic term
ln2(S/K), whose coefficient is related to the relative sizes of the stochas-
tic volatility term 𝜉 and the volatility 𝛼. Remember, Equation 20.15 is an
approximation that we are using to estimate the effect of the addition of a
small amount of stochastic volatility to a local volatility model. The addition
of this quadratic term causes the smile to turn up at both ends, as seen in
Figure 20.1.
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F IGURE 20.1 The Impact of Stochastic Volatility of Volatility on
the Smile in the SABR Model

Because we began with a local volatility smile, we do not require corre-
lation between 𝛼 and the stock price in order to obtain a skew. A correlation
between 𝛼 and the stock price will further modify the smile.

EXTENDING THE BSM MODEL: VALUING OPTIONS
WITH STOCHASTIC VOLATIL ITY VIA THE
REPLICATION PRINCIPLE

Having explored the qualitative features of stochastic volatility models, we
now examine these models in greater mathematical detail. We begin by deriv-
ing a partial differential equation for the value of an option in the presence of
stochastic volatility by extending the BSM riskless-hedging argument. This
section follows closely a derivation from Wilmott (1998).

Assume the following general stochastic evolution process for a stock
and its volatility:

dS = 𝜇Sdt + 𝜎SdW

d𝜎 = p(S, 𝜎, t)dt + q(S, 𝜎, t)dZ

dWdZ = 𝜌dt

(20.16)

where p(S, 𝜎, t) and q(S, 𝜎, t) are functions that can accommodate geomet-
ric Brownian motion, mean reversion, or more general behaviors. S is the
underlying stock price and 𝜎 is its volatility.
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Now consider an option that has value V(S, 𝜎, t) and another option
with value U(S, 𝜎, t), both derivatives of the same stock, but with different
strikes and/or expirations. We then create a portfolio that is short Δ shares
of S and short 𝛿 contracts of U: Π = V – ΔS – 𝛿U. From Itô’s lemma,

dΠ = 𝜕V
𝜕t

dt + 𝜕V
𝜕S

dS + 𝜕V
𝜕𝜎

d𝜎 + 1
2
𝜕2V
𝜕S2

𝜎2S2 dt + 1
2
𝜕2V
𝜕𝜎2

q2 dt

+ 𝜕2V
𝜕s𝜕𝜎

𝜎qS𝜌dt − ΔdS

−𝛿
(
𝜕U
𝜕t

dt + 𝜕U
𝜕S

dS + 𝜕U
𝜕𝜎

d𝜎 + 1
2
𝜕2U
𝜕S2

𝜎2S2dt

+1
2
𝜕2U
𝜕𝜎2

q2 dt + 𝜕2U
𝜕S𝜕𝜎

𝜎qS𝜌dt
)

(20.17)

Collecting the dt, dS, and d𝜎 terms together we get

dΠ =
[
𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌dt

−𝛿
(
𝜕U
𝜕t

+ 1
2
𝜕2U
𝜕S2

𝜎2S2 + 1
2
𝜕2U
𝜕𝜎2

q2 + 𝜕2U
𝜕S𝜕𝜎

𝜎qS𝜌
)]

dt

+
[
𝜕V
𝜕S

− 𝛿
𝜕U
𝜕S

− Δ
]

dS +
[
𝜕V
𝜕𝜎

− 𝛿
𝜕U
𝜕𝜎

]
d𝜎

(20.18)

In order that Π be riskless, we need to eliminate the dS and d𝜎 terms.
We therefore require that

𝜕V
𝜕S

− 𝛿
𝜕U
𝜕S

− Δ = 0

𝜕V
𝜕𝜎

− 𝛿
𝜕U
𝜕𝜎

= 0
(20.19)

which gives the hedge ratios

Δ = 𝜕V
𝜕S

− 𝛿
𝜕U
𝜕S

𝛿 =

𝜕V
𝜕𝜎

𝜕U
𝜕𝜎

(20.20)
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With these hedges in place, the change in value of the hedged portfolio
is given by

dΠ =
[
𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌

−𝛿
(
𝜕U
𝜕t

+ 1
2
𝜕2U
𝜕S2

𝜎2S2 + 1
2
𝜕2U
𝜕𝜎2

q2 + 𝜕2U
𝜕S𝜕𝜎

𝜎qS𝜌
)]

dt
(20.21)

The increase in the value of the riskless portfolio Π is now determinis-
tic, involving no dZ or dW terms. If there is to be no riskless arbitrage, an
investment in the riskless portfolio must return the riskless rate r, so

dΠ = rΠdt = r(V − ΔS − 𝛿U)dt (20.22)

Equating the right-hand sides of Equations 20.22 and 20.21, we find

𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌 − rV

−𝛿
(
𝜕U
𝜕t

+ 1
2
𝜕2U
𝜕S2

𝜎2S2 + 1
2
𝜕2U
𝜕𝜎2

q2 + 𝜕2U
𝜕S𝜕𝜎

𝜎qS𝜌 − rU
)
+ rΔS = 0

(20.23)

Next, we substitute in the values for the hedge ratios from Equation 20.20.
Substituting for Δ, we obtain

𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌 + 𝜕V
𝜕S

rS − rV

= 𝛿

(
𝜕U
𝜕t

+ 1
2
𝜕2U
𝜕S2

𝜎2S2 + 1
2
𝜕2U
𝜕𝜎2

q2 + 𝜕2U
𝜕S𝜕𝜎

𝜎qS𝜌 + 𝜕U
𝜕S

rS − rU
) (20.24)

Now inserting the value for 𝛿 leads to

𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌 + 𝜕V
𝜕S

rS − rV

𝜕V
𝜕𝜎

=

𝜕U
𝜕t

+ 1
2
𝜕2U
𝜕S2

𝜎2S2 + 1
2
𝜕2U
𝜕𝜎2

q2 + 𝜕2U
𝜕S𝜕𝜎

𝜎qS𝜌 + 𝜕U
𝜕S

rS − rU

𝜕U
𝜕𝜎

(20.25)
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Notice that the left-hand side of Equation 20.25 is a function only of the
option V, and the right-hand side is a function only of the option U. Because
U and V are securities with completely independent strikes and expirations,
the only way Equation 20.25 can hold for arbitrary U and V is if each side
of Equation 20.25 is independent of the option parameters. In other words,
both sides of Equation 20.25 should only be a function of S, 𝜎, and t.

Let’s specify an unknown function,𝜙(S, 𝜎, t), and set both sides of Equa-
tion 20.25 equal to −𝜙(S, 𝜎, t). We then obtain the valuation equation for
the option V:

𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌 + 𝜕V
𝜕S

rS − rV + 𝜕V
𝜕𝜎

𝜙(S, 𝜎, t) = 0

(20.26)

This is the partial differential equation for the value of an option with
stochastic volatility. It is significantly more complicated than the BSM partial
differential equation, involving the function 𝜙(S, 𝜎, t), as well as derivatives
and cross derivatives related to the stochastic volatility. It’s important to note
that at this point we have no idea what form 𝜙(S, 𝜎, t) takes. Let’s see if we
can better understand the meaning of this function.

The Meaning of 𝝓(S, 𝝈, t ) in Terms of
Sharpe Rat ios

Let’s begin by rewriting Equation 20.26 in order to understand what it
implies about the risk and return of an option with stochastic volatility. To
do this, we have to look at the expected risk and return of the option itself.
Using Itô’s lemma, we can express the change in value of the option as

dV = 𝜕V
𝜕t

dt + 𝜕V
𝜕S

dS + 𝜕V
𝜕𝜎

d𝜎 + 1
2
𝜕2V
𝜕S2

𝜎2S2dt + 1
2
𝜕2V
𝜕𝜎2

q2dt + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌dt

=
(
𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕𝜎2

q2 + 1
2
𝜕2V
𝜕S2

𝜎2S2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌
)

dt + 𝜕V
𝜕S

dS + 𝜕V
𝜕𝜎

d𝜎

(20.27)

Substituting for dS and d𝜎 from Equation 20.16, we obtain

dV =
(
𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕𝜎2

q2 + 1
2
𝜕2V
𝜕S2

𝜎2S2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌
)

dt

+𝜕V
𝜕S

(𝜇Sdt + 𝜎SdW) + 𝜕V
𝜕𝜎

(p(S, 𝜎, t)dt + q(S, 𝜎, t)dZ)
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=
(
𝜕V
𝜕t

+ 𝜕V
𝜕S

𝜇S + 𝜕V
𝜕𝜎

p(S, 𝜎, t) + 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2

+ 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌
)

dt + 𝜕V
𝜕S

𝜎SdW + 𝜕V
𝜕𝜎

q(S, 𝜎, t)dZ

≡ 𝜇VVdt + V𝜎V,SdW + V𝜎V,𝜎dZ (20.28)

where the expected return and volatility of the geometric Brownian motion
of V are

𝜇V = 1
V

(
𝜕V
𝜕t

+ 𝜕V
𝜕S

𝜇S + 𝜕V
𝜕𝜎

p(S, 𝜎, t) + 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌
)

𝜎V,S = 𝜕V
𝜕S

S
V
𝜎

𝜎V,𝜎 = 𝜕V
𝜕𝜎

q(S, 𝜎, t)
V

𝜎V =
√

𝜎2
V,S

+ 𝜎2
V,𝜎 + 2𝜌𝜎V,S𝜎V,𝜎

(20.29)

We can think of 𝜎V,S and 𝜎V,𝜎 as the partial volatilities of option V, which
has total volatility 𝜎V.

We can use the definitions in Equation 20.29 to rewrite our option val-
uation equation, Equation 20.26. Moving the last three terms from the left-
hand side to the right-hand side of Equation 20.26 to obtain

𝜕V
𝜕t

+ 1
2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌 = rV − 𝜕V
𝜕S

rS − 𝜕V
𝜕𝜎

𝜙(S, 𝜎, t)

(20.30)

Then add two additional terms to each side of the equation as follows

𝜕V
𝜕t

+
[
𝜕V
𝜕S

𝜇S + 𝜕V
𝜕𝜎

p(S, 𝜎, t)
]
+ 1

2
𝜕2V
𝜕S2

𝜎2S2 + 1
2
𝜕2V
𝜕𝜎2

q2 + 𝜕2V
𝜕S𝜕𝜎

𝜎qS𝜌

= rV − 𝜕V
𝜕S

rS − 𝜕V
𝜕𝜎

𝜙(S, 𝜎, t) +
[
𝜕V
𝜕S

𝜇S + 𝜕V
𝜕𝜎

p(S, 𝜎, t)
]

(20.31)

The left-hand side of Equation 20.31 is now equal to 𝜇VV, so that Equa-
tion 20.31 can be rewritten as

𝜇VV = rV − 𝜕V
𝜕S

rS − 𝜕V
𝜕𝜎

𝜙(S, 𝜎, t) +
[
𝜕V
𝜕S

𝜇S + 𝜕V
𝜕𝜎

p(S, 𝜎, t)
]

(20.32)
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Rearranging terms,

𝜇V − r = 1
V

(
𝜕V
𝜕S

𝜇S + 𝜕V
𝜕𝜎

p(S, 𝜎, t) − 𝜕V
𝜕S

rS − 𝜕V
𝜕𝜎

𝜙(S, 𝜎, t)
)

= 𝜕V
𝜕S

S
V

(𝜇 − r) + 𝜕V
𝜕𝜎

1
V

(p(S, 𝜎, t) − 𝜙(S, 𝜎, t))
(20.33)

Now, using the definitions of the partial volatilities in Equation 20.29, we
can rewrite Equation 20.33 as

𝜇V − r = 𝜎V,S
𝜇 − r
𝜎

+ 𝜎V,𝜎
p(S, 𝜎, t) − 𝜙(S, 𝜎, t)

q(St, 𝜎, t)
(20.34)

The left-hand side is the excess expected return of the option. To express this
as a Sharpe ratio, we need to divide by the option’s volatility, so that

𝜇V − r
𝜎V

=
𝜎V,S

𝜎V

(
𝜇 − r
𝜎

)
+

𝜎V,𝜎

𝜎V

(
p(S, 𝜎, t) − 𝜙(S, 𝜎, t)

q(S, 𝜎, t)

)
(20.35)

Equation 20.35 shows that the valuation equation for options under
stochastic volatility, assuming no riskless arbitrage, is equivalent to the state-
ment that the Sharpe ratio of the option is composed of two parts, the Sharpe
ratio of the stock and the Sharpe ratio of the volatility, weighted by their rel-
ative contributions to the overall volatility of the option.

In making this interpretation, you can see in Equations 20.26 and 20.35
that 𝜙 plays the same role for stochastic volatility that the riskless rate r
plays for a stochastic stock price. In the BSM partial differential equation,
the riskless rate r is the coefficient of V and SdV/dS, and represents the risk-
neutral rate at which the expected value of S and the expected value of the
option V appreciate through time in the risk-neutral world’s q-measure. In
the stochastic volatility world of Equation 20.26, r is again the coefficient
of V and SdV/dS, and 𝜙 is the coefficient of dV/d𝜎. Here 𝜙 is the required
drift of the volatility of the stock in the risk-neutral world, constrained to
make option and stock values grow at the riskless rate. Note that the drift
𝜙 is not equal to r because 𝜙 is not itself a traded security like stocks or
bonds, which are subject to no-arbitrage constraints. Instead, 𝜙 is merely a
parameter whose value is determined by the no-arbitrage constraints on the
option.

In order to calibrate our model to market option prices, we must choose
𝜙 so that option prices are equal to their expected payoffs discounted at
the riskless rate in the q-measure. If we know the market price of just
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S,σ

F IGURE 20.2 Quadrinomial Stock Price and Volatility
Evolution

one option, U, and we assume an evolution process for volatility, as in
Equation 20.16,

d𝜎 = p(S, 𝜎, t)dt + q(S, 𝜎, t)dZt (20.36)

then we can calibrate the effective drift of volatility by setting p = 𝜙, chosen
so that the value of U obtained from Equation 20.26 matches its market
price. We can then value all other options using the same partial differential
equation.

Figure 20.2 depicts a quadrinomial tree, where both volatility and stock
prices are stochastic. We could use the quadrinomial tree to value an option
by risklessly discounting the value of the option on the terminal nodes of
the quadrinomial tree. In order to calibrate the tree, we would first value an
option with a known market price by adjusting the drift of volatility, 𝜙, until
the option value returned by the model matches the price in the market.

Once we’ve calibrated the model to the market, all other options can
be valued risk-neutrally by discounting their expected payoffs in a similar
fashion. In practice, we may need more than one option to calibrate the
entire volatility evolution process. Of course, all of this implicitly assumes
that we have the correct model for volatility.

Note that even though the terminal payoffs of a standard option are the
same as in the BSM world, depending only on the terminal stock price and
the strike, the evolution process of the stock differs from the BSM evolution,
so the option price will be different, too. We didn’t change the option payoffs,
but we did change the world they inhabit.
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THE CHARACTERISTIC SOLUTION TO THE
STOCHASTIC VOLATIL ITY MODEL

Just as the solution to the BSM equation is the risk-neutral discounted
expected value of the option’s payoffs, so the solution to Equation 20.26
is the risk-neutral discounted expected value of the payoffs over all stock
price paths under stochastic volatility:

V = e−r(T−t)
∑

all paths

p(path) × payoff||path (20.37)

Here V is the value of any standard European option, and p(path) is the
risk-neutral probability for each path.

As shown by Hull and White (1987), one can characterize each path
by its terminal stock price ST and the average variance along that path. We
define the average variance along a path as

𝜎2
T
= 1

T ∫

T

0
𝜎2

t dt (20.38)

where the integral is taken along a particular stock path. We will henceforth
refer to 𝜎̄T as the path volatility to time T, though it is really the square root
of the average path variance.

We can then decompose Equation 20.37 into a double sum over all final
stock prices and all path volatilities, so that

V = e−r(T−t)
∑

all 𝜎T

∑

paths of ST
given 𝜎T

p(𝜎T , ST) × payoff||path (20.39)

where p(𝜎T , ST) is the probability of a particular terminal stock price and
particular path volatility. If the stock movements are uncorrelated with the
volatility changes (𝜌 = 0), then the probability in Equation 20.39 factorizes
into two independent probability distributions f and g, so that

p(𝜎T , ST) = f (𝜎T) × g(ST) (20.40)

Then,

V = e−r(T−t)
∑

all 𝜎T

f (𝜎T)
∑

paths of ST
given 𝜎T

g(ST) × payoff||path (20.41)

There is one further simplification. In our double Brownian model of
Equation 20.16 for zero correlation, the expected discounted value of the
sum of the payoffs over all stock prices, given a fixed path volatility, is
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equal to the expected value VBSM given by the BSM formula for that specific
volatility, so that

VBSM(S, t, K, T, r, 𝜎T) = e−r(T−t)
∑

paths of ST
given 𝜎T

g(ST) × payoff||path (20.42)

Substituting this into Equation 20.41, we obtain

V =
∑

all 𝜎T

f (𝜎T) × VBSM(S, t, K, T, r, 𝜎T) (20.43)

Thus, when the correlation is zero, the stochastic volatility solution for a
standard European option is the weighted sum over the BSM solutions for
different path volatilities. This intuitively pleasing result is often called the
mixing theorem and was first derived by Hull and White (1987).

It would be convenient if one could obtain a similar formula for nonzero
correlation. Unfortunately, in that case, the resultant formula takes the form

V = E
[
VBSM

(
S∗(𝜎T , 𝜌), K, r, 𝜎T

∗(𝜌), T
)]

(20.44)

where the asterisks denote “fake” values of the stock price and the path
volatility that are shifted away from their actual values by an amount that
depends on the correlation. Because the stock price is shifted, this is much
less useful.

You can find elaborations of these results in Fouque, Papanicolaou, and
Sircar (2000), and in a paper by Roger Lee, “Implied and Local Volatilities
under Stochastic Volatility” (2001).

END-OF-CHAPTER PROBLEM

20-1. For the SABR model approximation, Equation 20.4, when 𝜌 = 0, 𝜉 =
0, and 𝛽 is close to but less than 1, reproduced here,

𝛴(S, t, K, T, 𝛼, 𝛽) ≈ 𝛼

S1−𝛽

[
1 − (1 − 𝛽)

2
ln(K

S
)
]

show that, given Equation 20.4:

𝜕𝛴

𝜕K
= 𝜕𝛴

𝜕S

for at-the-money options.



CHAPTER 21
Stochastic Volatility Models

The Smile for Zero Correlation

� When the stock and its stochastic volatility are uncorrelated, the smile
is a symmetric function of the log moneyness ln(K/S).

� When the stock and its stochastic volatility are uncorrelated, the sticky
moneyness rule of thumb holds.

� For small volatility of volatility, the mixing theorem leads to approxi-
mate analytic expressions for the smile as a function of moneyness.

THE ZERO-CORRELATION SMILE DEPENDS
ON MONEYNESS

The Black-Scholes-Merton (BSM) formula is homogeneous in the underlying
price S and the strike K. If we multiply both the stock price and the strike by
any arbitrary constant, the BSM option price increases by the same multiple.
For an arbitrary constant 𝛼, we can write:

CBSM(𝛼S, 𝛼K, 𝜎, 𝜏, r) = 𝛼CBSM(S, K, 𝜎, 𝜏, r) (21.1)

Setting 𝛼 to 1/S and multiplying both sides by S, and rearranging,

CBSM (S, K, 𝜎, 𝜏, r) = SCBSM

(
1, K

S
, 𝜎, 𝜏, r

)
(21.2)

Note that if the volatility 𝜎 was a function of the stock price, the equa-
tion would become inhomogeneous and the previous argument would break
down.

In the preceding chapter we derived the mixing theorem, which says that
when the correlation between the underlying stock price and its volatility
is zero, the value of an option CSV in a stochastic volatility model is the

353
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weighted average of the BSM prices over the path volatility distribution.
Now let’s look at a simple case where the path volatility can be only one of
two values, either high (𝜎̄H) or low (𝜎̄L), with equal probability. Then, using
the mixing theorem,

CSV = 1
2

[CBSM(S, K, 𝜎̄H) + CBSM(S, K, 𝜎̄L)] (21.3)

where for brevity we have concealed the dependence of the BSM call price on
𝜏 and r. Using the result from Equation 21.2, we can rewrite Equation 21.3
in terms of moneyness:

CSV = S
1
2

[
CBSM

(
1, K

S
, 𝜎̄H

)
+ CBSM

(
1, K

S
, 𝜎̄L

)]

≡ Sf
(K

S

) (21.4)

In Equation 21.4, f (K
S

) is a function only of the ratio K/S rather than of K
and S separately.

Even though we have valued the option using a stochastic volatility
model, we traditionally use the BSM model to quote its price. The BSM
implied volatility 𝛴 for the call is the volatility that, when entered into the
BSM formula, matches the option value produced by the stochastic volatility
model, CSV, so that

CSV ≡ CBSM(S, K,𝛴) = SCBSM

(
1, K

S
,𝛴

)
(21.5)

Combining Equations 21.4 and 21.5,

CSV = Sf
(K

S

)
= SCBSM

(
1, K

S
,𝛴

)
(21.6a)

CBSM

(
1, K

S
,𝛴

)
= f

(K
S

)
(21.6b)

It follows that the BSM implied volatility in our stochastic volatility
world with zero correlation must be a function of moneyness, so that

𝛴 = g
(K

S

)
(21.7)
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While our example allowed for just two possible volatility paths, this
result is true more generally. In a stochastic volatility model with zero corre-
lation, if the distribution of possible future volatilities remains unchanged,
implied volatility will be a function of moneyness. Since we have a stochastic
volatility model, the volatility distribution could change too, independently,
but here we have assumed that doesn’t happen.

To find the relationship between the skew and the change in implied
volatility when the stock price moves, we begin by taking the partial deriva-
tive of Equation 21.7 with respect to both K and S:

𝜕𝛴

𝜕S
= − K

S2
g′

𝜕𝛴

𝜕K
= 1

S
g′

(21.8)

Therefore,

S
𝜕𝛴

𝜕S
+ K

𝜕𝛴

𝜕K
= 0 (21.9)

which is just Euler’s equation for a homogeneous function of degree zero.
As long as the distribution of possible future volatilities remains unchanged,
the current skew determines how implied volatility will change as the stock
price changes.

At-the-money or close to it, when S ≈ K,

𝜕𝛴

𝜕S
≈ −𝜕𝛴

𝜕K
(21.10)

which is precisely the opposite of what we got with local volatility models.
Approximately, for zero correlation, close to at-the-money, the effect of a
small change in S on the implied volatility is offset by an equal but opposite
change in K. To put it another way, near the at-the-money strike, the BSM
implied volatility is approximately a function of (S − K):

𝛴 ≈ 𝛴(S − K) (21.11)

In terms of the “sticky”categories of Chapter 18, the stochastic volatility
smile approximately satisfies the sticky moneyness rule. Equation 21.11 can
be viewed as a linear approximation to Equation 21.7, valid when the option
is close to at-the-money.
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F IGURE 21.1 Impact of a Drop in the Underlying Price

Figure 21.1 shows schematically the effect of a drop in stock price
on the smile in a stochastic volatility framework with zero correlation,
assuming that the future volatility distribution remains unchanged. Even
though the entire smile drops when the stock price drops, the shift in the
smile is perfectly offset by movement along the smile, so that the at-the-
money implied volatility remains unchanged.

THE ZERO CORRELATION SMILE IS SYMMETRIC

In the previous chapter we denoted the time average of the volatility along a
path between now and expiration by 𝜎̄T . This is the so-called path volatility
(which is actually the square root of the path variance). In this section, in
order to simplify the notation, we will drop the T subscript, and simply use
𝜎̄ for path volatility. In the continuum limit, as we increase the number of
possible volatility paths, the summation over the mixture transforms into an
integral. Denoting the probability density function of the path volatilities as
𝜙 (𝜎̄), we have

CSV =
∫

∞

0
CBSM(𝜎̄)𝜙(𝜎̄) d𝜎̄ (21.12)
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Let’s assume that the volatility of volatility is small, and then perform a
second-order Taylor expansion around the average path volatility ̄̄𝜎:

CSV =
∫

∞

0
CBSM

(
̄̄𝜎 + 𝜎̄ − ̄̄𝜎

)
𝜙(𝜎̄) d𝜎̄

≈
∫

∞

0

[

CBSM( ̄̄𝜎) +
𝜕CBSM

𝜕𝜎̄

|||| ̄̄𝜎
(𝜎̄ − ̄̄𝜎) + 1

2
𝜕2CBSM

𝜕𝜎̄2

||||| ̄̄𝜎
(𝜎̄ − ̄̄𝜎)2

]

𝜙(𝜎̄) d𝜎̄

≈ CBSM( ̄̄𝜎) + 0 + 1
2

𝜕2CBSM

𝜕𝜎̄2

||||| ̄̄𝜎
var[𝜎̄]

≈ CBSM
(
̄̄𝜎
)
+ 1

2
𝜕2CBSM

𝜕𝜎̄2

||||| ̄̄𝜎
var [𝜎̄]

(21.13)

where var[𝜎̄] is the variance of the path volatility 𝜎̄ of the stock over the life
of the option. We have assumed that the variance of the path volatility is
small and therefore that we are justified in truncating the Taylor series after
the second term.

Now, using the BSM equation as our quoting mechanism for options
prices, we can write this stochastic volatility solution, as usual, in terms of
the BSM implied volatility 𝛴, and, because the volatility of volatility is small,
we again assume that the difference between 𝛴 and ̄̄𝜎 is small. Then,

CSV = CBSM(𝛴)

= CBSM( ̄̄𝜎 + 𝛴 − ̄̄𝜎)

= CBSM( ̄̄𝜎) +
𝜕CBSM

𝜕𝜎̄

|||| ̄̄𝜎
(𝛴 − ̄̄𝜎) +…

≈ CBSM( ̄̄𝜎) +
𝜕CBSM

𝜕𝜎̄

|||| ̄̄𝜎
(𝛴 − ̄̄𝜎)

(21.14)

where, in the last line, we have kept only the leading order term in the Taylor
series because the variance of the path volatility is small. Then, equating the
right-hand sides of Equation 21.13 and Equation 21.14, we obtain

𝛴 ≈ ̄̄𝜎 +

1
2

𝜕2CBSM

𝜕𝜎̄2

||||| ̄̄𝜎
var [𝜎̄]

𝜕CBSM

𝜕𝜎̄

|||| ̄̄𝜎

(21.15)
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In Chapter 19, we calculated the following BSM derivatives for zero
dividend yield and a zero riskless rate:

V =
𝜕CBSM

𝜕𝜎
=

S
√
𝜏

√
2𝜋

e−
1
2

d2
1 (21.16)

and

𝜕2CBSM

𝜕𝜎2
= V

d1d2

𝜎
= V

𝜎

[(
1
v
ln
(

S
K

))2

− v2

4

]

(21.17)

Here v = 𝜎
√
𝜏 is the total volatility over the remaining life 𝜏 of the option.

Note the slightly negative convexity of vega in Equation 21.17 when S = K.
Substituting Equation 21.17 into Equation 21.15 with 𝜎 replaced by ̄̄𝜎, we
have:

𝛴 ≈ ̄̄𝜎 + 1
2

var [𝜎̄]
1
̄̄𝜎

[(
1
̄̄v
ln
(

S
K

))2

−
̄̄v2

4

]

(21.18)

where ̄̄v = ̄̄𝜎
√
𝜏. The right-hand side of Equation 21.18 is a quadratic

function of ln(S/K) and therefore produces a parabolic smile that varies
with (ln(S/K))2 = (ln(K/S))2. It is a sticky moneyness smile, a function of
K/S alone. Making a linear approximation in the moneyness (K – S), the
smile varies approximately as (K − S)2 as the strike moves away from the
current price.

Replacing ̄̄v with ̄̄𝜎
√
𝜏 in Equation 21.18, we obtain the following

expression for implied volatility in an uncorrelated stochastic volatility
model:

𝛴 ≈ ̄̄𝜎 + 1
2

var [𝜎̄]
1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(
ln
(

S
K

))2

−
̄̄𝜎

2
𝜏

4

]

(21.19)

where, we stress again, var [𝜎̄] is the variance of the path volatility of the
stock over the life of the option.

SAMPLE PROBLEM

Question:

Assume that the current level of the S&P 500 (SPX) is 2,000, that
its volatility is stochastic, and that the correlation between the index
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level and volatility is zero. Use Equation 21.19 to estimate the implied
volatility for one-year at-the-money options, and for one-year options
10% in-the-money and 10% out-of-the-money (measuring moneyness
in terms of log returns). Assume the average path volatility over the
next year will be 20%, and that the volatility of the path volatility is
15 volatility points.

Answer:

We set 𝜏 = 1, ̄̄𝜎 = 20%, and the volatility of path volatility to 15%, so
that var[𝜎̄] = 0.152 = 0.0225.

For ln(S/K) = 0.00,

𝛴ATM ≈ 0.2 + 1
2
× 0.0225 × 1

0.2

[(
1

0.20
× 0.00

)2

− 0.202

4

]

≈ 0.2 − 1
2
× 0.0225 × 1

0.2

[
0.202

4

]

≈ 0.2
(

1 − 1
8
× 0.0225

)

≈ 0.1994

This is slightly less than the average volatility of 20% because of
the negative convexity in Equation 21.17.

For the 10% in- and out-of-the-money options, (ln(S/K))2 = 0.102

in both cases; therefore,

𝛴±10% ≈ 0.2 + 1
2
× 0.0225 × 1

0.2

[
1

0.202
(0.10)2 − 0.202

4

]

≈ 0.2 + 0.05625[0.24]

≈ 0.2 + 0.0135

≈ 0.2135

Figure 21.2 shows the full smile for this problem.
(continued)
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(continued)
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F IGURE 21.2 Stochastic Volatility Smile, 𝜌 = 0

TWO-STATE STOCHASTIC PATH VOLATIL ITY:
AN EXAMPLE

Let’s return to our two-state stochastic volatility model from Equation 21.3,
reproduced here,

CSV = 1
2

[CBSM(S, K, 𝜎̄H) + CBSM(S, K, 𝜎̄L)]

and see how well Equation 21.19 approximates the exact solution.
Let 𝜎̄L = 20% and 𝜎̄H = 80%. The mean and variance of volatility over

the life of the option are then

mean[𝜎̄] = 1
2

(0.20 + 0.80) = 0.50

var[𝜎̄] = 1
2

[
(0.20 − 0.50)2 + (0.80 − 0.50)2]

= (0.30)2 = 0.09

(21.20)
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F IGURE 21.3 The Smile in a Two-State Stochastic Volatility
Model with 𝜌 = 0

In Figure 21.3 we show the implied volatility smile for three expirations,
computed from the exact mixing formula in Equation 21.3, together with
the approximation in Equation 21.19. In all three cases, you can see that the
approximate solution of Equation 21.19 works quite well. Notice that the
smile is symmetric in all cases.1

Notice the impact of time to expiration on the shape of the smile. The
long expiration smile is relatively flat, while the short expiration smile is
more curved. To better understand the decreasing curvature of the smile, we
rewrite Equation 21.19 to focus on the quadratic moneyness term:

𝛴 ≈ ̄̄𝜎 + 1
2

var[𝜎̄] 1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(
ln
(

S
K

))2

−
̄̄𝜎

2
𝜏

4

]

≡ f
(
̄̄𝜎, var[𝜎̄], 𝜏

)
+ c( ̄̄𝜎)

var[𝜎̄]
𝜏

(
ln
(

S
K

))2
(21.21)

1 To be precise, the smiles are perfectly symmetrical in log(K/S). In terms of K, the
smiles are almost, but not perfectly, symmetric.



362 THE VOLATILITY SMILE

where c
(
̄̄𝜎
)

is a function of the mean path volatility ̄̄𝜎. In this particular case
of only two states for the path volatility, ̄̄𝜎 and its variance var [𝜎̄] are inde-
pendent of 𝜏. As a result, the 𝜏−1 coefficient of ln(S/K)2 in Equation 21.21 will
cause the curvature of the smile to decrease as time to expiration increases.
Actual volatility smiles often do tend to become less convex as time to expi-
ration increases. Still, our two-state model is too simple. The two states have
the same range, 20% to 80%, no matter what the time to expiration. In
reality, the range of possible volatility paths is likely to increase as time to
expiration increases, so that var [𝜎̄] and ̄̄𝜎 vary with 𝜏. In the next section,
we’ll look more closely at how this affects the shape of the smile.

Finally, look at the impact of the time to expiration on at-the-money
implied volatility. At-the-money implied volatility is always below the mean
volatility, 50%, and decreases as time to expiration increases. We can see
why this happens from Equation 21.19 with S = K. At-the-money volatility
is then

𝛴atm ≈ ̄̄𝜎 − 1
8

var [𝜎̄] ̄̄𝜎𝜏 (21.22)

At-the-money implied volatility lies below the mean volatility because of the
negative convexity of BSM option prices near the at-the-money strike.

For 𝜏 = 1, var [𝜎̄] = 0.09 and ̄̄𝜎 = 0.50, Equation 21.22 gives

𝛴atm ≈ 0.50 − 1
8

0.09 × 0.50 × 1

≈ 0.50 − 0.005625

≈ 0.4944

This approximate value of 49.44% agrees remarkably well with the exact
value shown in Figure 21.3.

THE SMILE FOR GBM STOCHASTIC VOLATIL ITY
WITH ZERO CORRELATION

Now, rather than sticking with the simple two-state model for path volatili-
ties, let’s look at a more realistic continuous distribution of stochastic instan-
taneous volatilities of the stock price. We now assume that the volatility itself
undergoes geometric Brownian motion (GBM) according to

d𝜎 = a𝜎 dt + b𝜎 dZ (21.23)
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F IGURE 21.4 The Smile for a Variety of Expirations in a GBM
Stochastic Volatility Model with Zero Correlation, a = 0, b = 0.1

where a and b are constants representing the drift and the volatility of the
volatility, respectively. For now, we continue to assume that the correla-
tion between the stock price and volatility is zero. Equation 21.23 is very
similar to the stochastic volatility model of Hull and White (1987), who
described volatility with a stochastic partial differential equation similar to
Equation 21.23 but applied to the instantaneous variance 𝜎2, rather than the
instantaneous volatility 𝜎.

Figure 21.4 illustrates the one-year smile resulting from Equation 21.23
with an initial volatility of 20%, a = 0 and b = 0.1 (i.e., zero risk-neutral
drift of volatility and 10% volatility of volatility), calculated by straightfor-
ward Monte Carlo simulation of the volatility according to Equation 21.23,
and then using the mixing formula to determine the option values and their
implied BSM volatilities. The smile is still symmetric in ln(S/K). The level
of at-the-money volatility is now no longer monotonic with time to expira-
tion, but first increases and then later decreases with 𝜏. Note also that the
curvature of the smile skew seems insensitive to 𝜏.

An Analyt ic Approximat ion for the Smi le for GBM
Stochast ic Volat i l i ty with Zero Correlat ion

One should always try to understand the results of computations by
analysis. So, let’s try to tackle, at least approximately, why the smile in
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Figure 21.4 is no longer a monotonic function of time to expiration, in con-
trast to Figure 21.3. Initially, let’s look only at the at-the-money volatility.
We can rewrite Equation 21.22 as

𝛴atm ≈ ̄̄𝜎

(
1 − 1

8
var [𝜎̄] 𝜏

)
(21.24)

where ̄̄𝜎 is the average of the path volatility to expiration over all paths, and
var [𝜎̄] is the variance of the path volatility 𝜎̄ across all paths.

Let’s estimate the time-to-expiration dependence of these path-volatility
quantities when the instantaneous volatility 𝜎 evolves according to Equa-
tion 21.23. From Itô’s lemma, the instantaneous variance 𝜎2 therefore satis-
fies a similar stochastic differential equation with

drift[𝜎2] = 2a + b2

vol[𝜎2] = 2b
(21.25)

Thus 𝜎2 has roughly double the drift and exactly double the volatility. The
extra b2 term in the drift arises from Itô’s lemma for the square of a Wiener
process.

Now let’s consider the path variance 𝜎̄2 which is relevant to the mix-
ing formula. The path variance is an arithmetic average of the instanta-
neous variances to time T, but the instantaneous variance 𝜎2 itself evolves
according to geometric Brownian motion. As a result, there is no closed-
form expression for the path variance. Nevertheless, one can show that the
arithmetic average has approximately 1/2 the drift and 1∕

√
3 the volatility

of the nonaveraged variable. Thus, approximately, the drift and volatility of
𝜎̄2 are

drift[𝜎̄2] ≈ a + 1
2

b2

vol[𝜎̄2] ≈ 2b
√

3

(21.26)

But Equation 21.24 involves the square root of 𝜎̄2 (i.e., 𝜎̄), so we need
to know its drift and volatility. The volatility of the path volatility 𝜎̄ is
simply one-half the volatility of the path variance (i.e., b∕

√
3). Because
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of Itô’s lemma, the drift of 𝜎̄ is roughly one-half the drift of 𝜎̄2. More
precisely,

drift[𝜎̄] ≈ 1
2

(
a + 1

2
b2

)
− 1

8

(
2b
√

3

)2

≈ a
2
+ 1

12
b2

(21.27)

Thus, the path volatility 𝜎̄ in Equation 21.24 is not constant through time
but, because the instantaneous volatility 𝜎 is volatile, actually varies with a
drift given by

drift[𝜎̄] ≈ a
2
+ 1

12
b2

vol[𝜎̄] ≈

(
b
√

3

) (21.28)

In Equation 21.24 therefore, to leading order in a Taylor series in 𝜏, the
average path volatility (averaged over all paths) grows with time 𝜏 approxi-
mately according to

̄̄𝜎 (𝜏) ≈ 𝜎e

(
a
2
+ 1

12
b2

)
𝜏

≈ 𝜎

[

1 +
(

a
2
+ b2

12

)
𝜏 + 1

2

(
a
2
+ b2

12

)2

𝜏2

] (21.29)

The total variance of the path volatility to time 𝜏 is:

var [𝜎̄] ≈ b2

3
𝜎2𝜏 (21.30)

which grows linearly with time to expiration because of this standard prop-
erty of Brownian motion. Substituting these results into Equation 21.24 and
keeping terms to second order in 𝜏, we obtain
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𝛴atm ≈ ̄̄𝜎

(
1 − 1

8
var [𝜎̄] 𝜏

)

≈ 𝜎

[

1 +
(

a
2
+ b2

12

)
𝜏 + 1

2

(
a
2
+ b2

12

)2

𝜏2

](
1 − 1

8
b2

3
𝜎2𝜏2

)

≈ 𝜎

[

1 +
(

a
2
+ b2

12

)
𝜏 +

(
1
2

(
a
2
+ b2

12

)2

− b2

24
𝜎2

)

𝜏2

]

(21.31)

where we have kept only terms up to second order in the Taylor series.
We now apply this formula to the simulation in Figure 21.4, where we

had set a = 0, and both the volatility 𝜎 and the volatility of volatility b were
assumed to be small. For this case we obtain

𝛴atm ≈ 𝜎

[
1 + b2

12
𝜏 + b2

24

(
b2

12
− 𝜎2

)
𝜏2
]

(21.32)

This interesting formula contains one term that is linear in 𝜏 and a term
quadratic in 𝜏. The quadratic term has a coefficient that is negative if the
volatility of volatility, b, is less than

√
12 times the volatility squared itself,

which is the case in Figure 21.4. Therefore, as 𝜏 increases from zero, the
linear term causes an increase in the level of at-the-money volatility until,
as 𝜏 gets larger, the negative quadratic term overwhelms the linear term and
causes the at-the-money volatility to decrease again. This explains the behav-
ior observed in Figure 21.4.

With these approximations, the maximum value of the at-the-money
volatility occurs when

𝜏 = 1

𝜎2 − b2

12

(21.33)

which, for 𝜎 = 0.2 and b = 0.1, is about 25, a value not too far from where
the numerical simulation of the at-the-money volatility reaches its maximum
at about 18.5 years. If we repeat the simulation with b = 0.05, to make
the analytic approximation a closer match, the maximum occurs at about
21 years, closer to the value determined by Equation 21.33.

We can examine not just the level of at-the-money implied volatility but
also the curvature of the smile in this approximation. As we have remarked,



Stochastic Volatility Models: The Smile for Zero Correlation 367

var [𝜎̄] is expected to be proportional to 𝜏. Now when we rewrite Equa-
tion 21.19 to focus on the quadratic moneyness term, we have

𝛴 ≈ ̄̄𝜎 + 1
2

var[𝜎̄] 1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(
ln
(

S
K

))2

−
̄̄𝜎

2
𝜏

4

]

≈ ̄̄𝜎 + 1
2

var [𝜎̄]

̄̄𝜎
3
𝜏

(
ln
(

S
K

))2

−
var [𝜎̄] ̄̄𝜎𝜏

8

(21.34)

The K-dependent skewed part of the implied volatility function is

1
2

var [𝜎̄]

̄̄𝜎
3
𝜏

(
ln
(

S
K

))2

≈ 1
2

b2

3
𝜎2𝜏

̄̄𝜎
3
𝜏

(
ln
(

S
K

))2

≈ 1
6

b2

𝜎

(
ln
(

S
K

))2
(21.35)

to leading order in 𝜏. Thus we see that the curvature of the smile is approx-
imately independent of the time to expiration, as is evident in Figure 21.4.

We can use Equation 21.35 to calculate the size of the skew. For 𝜎 = 0.2
and b = 0.1, the approximate variation of the smile with strike K is given by

1
6

b2

𝜎

(
ln
(

S
K

))2

= 1
6

(0.1)2

0.2

(
ln
(

S
K

))2

= 0.0083
(
ln
(

S
K

))2

≈ 0.0083
(

K − S
S

)2

(21.36)

From S = 100 and K = 100 to S = 100 and K = 106, this result suggests
that the implied volatility should change by 0.00003. In Figure 21.4 for
𝜏 = 16 years, the implied volatility at K = 100 is about 0.20119, and at K =
106 is about 0.20122, a difference of 0.00003 that agrees with the degree of
curvature in Equation 21.36 fairly well. A more detailed discussion of this
model has been presented by Hull and White (1987).

The introduction of Brownian volatility has made our model more real-
istic and more complicated. As we discussed in Chapter 19, if volatility is
mean reverting, then the range of realized volatility tends to initially increase
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with time to expiration, but then stabilizes. In the next chapter we’ll explore
the impact of mean reversion on the shape of a smile. As we’ll see, not only
does mean reversion provide a more realistic picture of the evolution of
volatility, but it brings back the decreasing smile curvature that we found
in our simple two-state model.

END-OF-CHAPTER PROBLEM

21-1. Assume that the NASDAQ-100 Index (NDX) is currently trading at
4,000, and that its volatility is stochastic but uncorrelated with index
level. Over the next six months you expect the average path volatility
to be 20% and the standard deviation of average path volatility to
be 16 volatility points. What is the current implied volatility for six-
month at-the-money options? If the NDX increased to 4,400, what
would the implied volatility be for a six-month option with a strike of
4,000? What would the new six-month at-the-money implied volatil-
ity be? Graph the smile before and after the increase in the index
level. To answer this problem you can use the approximation given
by Equation 21.19.



CHAPTER 22
Stochastic Volatility Models

The Smile with Mean Reversion
and Correlation

� The behavior of the smile when stochastic volatility is mean reverting
and uncorrelated with the stock.

� The effect of nonzero correlations via Monte Carlo simulation.
� The best stock-only hedge in a stochastic volatility model produces a

hedge ratio similar to that of a local volatility model.
� Stochastic volatility models can produce a rich variety of smiles, but are

not the whole story.

MEAN-REVERTING VOLATIL ITY WITH
ZERO CORRELATION

In the previous chapter, we looked at two versions of the stochastic volatility
model with zero correlation. In the two-state model, the range of volatility
was constant over time. In the geometric Brownian motion model, the range
of volatility grew without bound. In this section we examine a more realistic
in-between case in which volatility is mean reverting.

The simplest1 mean-reverting model for volatility is

d𝜎 = 𝛼(m − 𝜎)dt + 𝛽𝜎dW (22.1)

1 The Heston model, whose stochastic differential equation we presented earlier in
Chapter 19, also incorporates mean reversion. In the Heston model, the stock’s vari-
ance V satisfies the stochastic differential equation dV = 𝛼(m – V)dt + 𝛽

√
V dW. The

solution is discussed in many textbooks (see, for example, Gatheral 2006).

369
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where, as we showed in Chapter 19, the half-life of the mean reversion is
proportional to 1/𝛼, 𝛽 is the volatility of volatility, and m is the long-term
volatility. In Chapter 21, we derived the following zero-correlation implied
volatility approximation:

𝛴 ≈ ̄̄𝜎 + 1
2

var[𝜎̄] 1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(
ln
(

S
K

))2

−
̄̄𝜎

2
𝜏

4

]

(22.2)

We can use this equation, together with some intuition about the way
mean-reverting volatility evolves, to understand how the smiles in stochastic
volatility models behave for very short and very long expirations.

Volat i l i ty versus Path Volat i l i ty

In standard Brownian motion, the diffusion process causes the variance or
range of possible outcomes to increase without bound over time. The range
of the average value along any path increases without bound, too, but not
as quickly. In our standard binomial tree, if we think of up as being +1
and down as being −1, then, starting at 0, after two steps there are four
possible paths, terminating at +2, 0, 0, and −2. The average value along the
four paths, however, is +1, +1/3, −1/3, and −1. The variance of the path
averages is much less than the variance of the terminal values, almost half as
much in this case. With mean reversion, the variance of possible outcomes
is even more constrained. Because of this, if we run our simulation long
enough, the average along any path tends to the same limit. As a result,
when there is mean reversion the variance of the path averages is zero. This
distinction between the variance of the variable and the variance of the paths
will be critical to understanding the impact of mean reversion on stochastic
volatility.

Short Expirat ions

In the limit 𝜏 → 0, Equation 22.2 reduces to

lim
𝜏→0

𝛴 ≈ ̄̄𝜎 + 1
2

var[𝜎̄] 1
̄̄𝜎

3
𝜏

(
ln
(

S
K

))2

(22.3)

where 𝜎̄ is the path volatility and ̄̄𝜎 is the mean path volatility.
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For expirations much smaller than 1/𝛼, the mean-reverting tendency of
volatility has a negligible effect, and the variance of the volatility in Equa-
tion 22.1 grows linearly with time, so that var[𝜎] ≈ 𝛽𝜏. The path volatility 𝜎̄

will have a similar time dependence with a different coefficient denoted by
𝛽′, so that var[𝜎̄] ≈ 𝛽′𝜏. Substituting this relation into Equation 22.3 leads
to the expression

lim
𝜏→0

𝛴 ≈ ̄̄𝜎 + 1
2
𝛽′

1
̄̄𝜎

3

(
ln
(

S
K

))2

(22.4)

The 𝜏-dependence has been canceled in Equation 22.4 and the smile is
quadratic with finite curvature as 𝜏 → 0.

Long Expirat ions

In the limit 𝜏 → ∞, the variance of the volatility 𝜎 ceases to grow, because
of mean reversion. As a result, as 𝜏 → ∞, Equation 22.2 becomes

lim
𝜏→∞

𝛴 ≈ ̄̄𝜎 − 1
8

var[𝜎̄] ̄̄𝜎𝜏 (22.5)

In general, when the underlying volatility process is stochastic, the average
path volatility ̄̄𝜎 over the life of the option, and its variance var[𝜎̄], will vary
with time. However, if, as here, the instantaneous volatility is mean reverting,
then, as pointed out earlier, all paths will tend to have the same path volatility
in the long run, and the variance of the path volatility, var[𝜎̄], will tend to
zero asymptotically as 𝜏 → ∞. It can be shown that var[𝜎̄] approaches zero
with a coefficient proportional to 1/𝜏, so that we can write var[𝜎̄] = const/𝜏.
As 𝜏 → ∞, we then have

lim
𝜏→∞

𝛴 ≈ ̄̄𝜎 − const
8

̄̄𝜎 (22.6)

At long expirations, the stochastic volatility model with mean reversion and
zero correlation converges to an implied volatility function that is indepen-
dent of moneyness. Asymptotically, there is no smile.

Why is the correction term in Equation 22.6 negative? Why does
stochastic volatility lower the implied volatility from the nonstochastic case?
The reason, as before, is that the option price CBSM(𝜎) is a concave function
of 𝜎 as 𝜏 →∞, and the average of a concave function is less than the function
of the average.
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The Smi le in Zero-Correlat ion
Mean-Revert ing Models

For zero correlation, from the preceding results, we expect to see stochastic
volatility smiles that follow the pattern in Figure 22.1. We can understand
this qualitatively as follows: In the short run, bursts of high volatility act
almost like jumps, both upward and downward, and induce fat tails that
contribute to higher implied volatilities at high and low strikes. In the long
run, though, because of mean reversion, all paths will have the same path
volatility so the long-term skew becomes flat.

Mean reversion describes a more realistic evolution of volatility than
ordinary geometric Brownian motion, and also restores the decreasing cur-
vature of the smile that we often see in actual markets.

Figure 22.2 shows the results of a Monte Carlo simulation for option
prices and the corresponding Black-Scholes-Merton (BSM) implied volatility
smiles. For the Monte Carlo simulation, we have assumed that volatility
evolves according to Equation 22.1, with zero correlation between the stock
price and its volatility. The initial volatility (20%), the time to expiration
(0.25 years), and the long-term volatility m (20%) are the same in all cases,
and only the mean reversion strength 𝛼 varies from 0 to 100.

Note the flattening of the smile as the mean reversion strength 𝛼

increases. When 𝛼 is higher, volatility is pulled back to the long-run mean of
20% more quickly, making both extreme positive and negative deviations in
volatility less likely, consistent with a flatter smile.

Σ

Strike

Short
expiration

Long
expiration 

F IGURE 22.1 The Smile for Stochastic Volatility Model with
𝜌 = 0
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F IGURE 22.2 The Smile for a Mean-Reverting Stochastic
Volatility Model with 𝜌 = 0 and Varying Mean Reversion Strength

SAMPLE PROBLEM

Question:

Assume that the Nikkei 225 (NKY) is currently at 16,000, that the
long-run average path volatility is 20% at all horizons, and that var[𝜎̄]
evolves according to

var[𝜎̄] = e−5𝜏0.06𝜏 + (1 − e−5𝜏 )0.01
𝜏

For 0.1-, 0.25-, and 1-year expirations, estimate the 90–100 strike
skew assuming that the correlation between the index and its volatility
is zero. For this problem, take “skew” to mean the implied volatility
of a 10% out-of-the-money put minus the implied volatility of an at-
the-money put. Assume the 10% means 10% in log returns. This is not
necessarily a popular way to quote skew, but it will make the calcula-
tions easier.

Answer:

Notice that the equation for the variance of the path volatility, var[𝜎̄],
behaves as we would expect if instantaneous volatility was mean

(continued)
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(continued)

reverting. When 𝜏 is small, it is proportional to 𝜏. When 𝜏 is large, it is
inversely proportional to 𝜏. For 0.1-, 0.25-, and 1-year expirations,

var[𝜎̄]0.10 = e−5×0.100.06 × 0.10 + (1 − e−5×0.10)0.01
0.10

= 0.0430

var[𝜎̄]0.25 = e−5×0.250.06 × 0.25 + (1 − e−5×0.25)0.01
0.25

= 0.0328

var[𝜎̄]1.00 = e−5×1.000.06 × 1.00 + (1 − e−5×1.00)0.01
1.00

= 0.0103

The 10% out-of-the-money put corresponds to ln(K/S) = −10%.
Using Equation 22.2 with ln(S/K) = 0.10 for the 10% out-of-the-
money put, we have

Skew = 𝛴10% − 𝛴atm

≈
(
̄̄𝜎 + 1

2
var[𝜎̄] 1

̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(0.10)2 − 𝜎̄2𝜏

4

])

−
(
̄̄𝜎 − 1

2
var[𝜎̄] 1

̄̄𝜎

[
𝜎̄2𝜏

4

])

≈ 1
2

var[𝜎̄] 1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(0.10)2
]

≈ 1
200

var[𝜎̄] 1
̄̄𝜎

3
𝜏

Since ̄̄𝜎 = 20%,

Skew ≈ 1
200

var[𝜎̄] 1
0.203𝜏

≈ 5
8

var[𝜎̄]1
𝜏

For the three expirations, then,

Skew0.10 ≈ 5
8
× 0.0430 × 1

0.10
= 0.27

Skew0.25 ≈ 5
8
× 0.0328 × 1

0.25
= 0.08

Skew1.00 ≈ 5
8
× 0.0103 × 1

1.00
= 0.01
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In other words, for a 10% drop in strike, implied volatility increases
significantly for short expirations, increases modestly for three-month
expirations, and barely increases for one-year expirations.

Notice that the current level of NKY never entered into the equa-
tions because of the sticky moneyness. The skew becomes less curved
as the time to expiration increases, but changes in the level of the index
have no impact on the 90–100 strike skew.

NONZERO CORRELATION IN STOCHASTIC
VOLATIL ITY MODELS

We’ve shown that stochastic volatility models lead to a symmetric smile
when there is no correlation between the stock price and its volatility. That’s
not a bad description for some currency option markets, but in general the
smile can be asymmetric. Equity index option markets, as we’ve seen, are
characterized by a pronounced negative skew. To achieve that in a stochas-
tic volatility model, we need to add a nonzero correlation.

When the correlation between the stock price and volatility is nonzero,
the smile will still have a term proportional to [ln(K/S)]2, which, by itself,
makes the smile convex and symmetric. In addition, though, the correlation
will introduce a linear, and therefore asymmetric, dependence on ln(K/S).
With a negative correlation, volatility is more likely to go up when the stock
moves down, and the skew becomes negatively sloped; with a positive cor-
relation, the reverse is true.

One way to see this is to think about the case when the correlation is −1.
Then the stock and its volatility move in tandem and we have a local volatil-
ity model with a skew that is negative. When the correlation increases from
−1, and the volatility is no longer a deterministic function of the stock price,
the volatility of volatility adds convexity to the negative skew. Figure 22.3
illustrates the effect of correlation on the smile, for the special case of zero
mean reversion. When mean reversion is active, the skews look similar in
shape but the range of volatilities is compressed. Thus, in order to gener-
ate the negative skew we observe in equity index markets using a stochastic
volatility model, we need a negative correlation between the stock price and
volatility.

The nine graphs arranged in a 3 × 3 table in Figure 22.4 illustrates the
combined effect of mean reversion, correlation, and time to expiration on
the smile, calculated via Monte Carlo simulation. For all graphs, the initial
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ρ

F IGURE 22.3 The Smile as a Function of Correlation in a
Stochastic Volatility Model with Zero Mean Reversion

volatility is 20%, the long-term volatility m is 20%, the volatility of volatil-
ity is 50%, and the correlation between the stock and its volatility is –30%.
Read horizontally across the table, the mean reversion strength 𝛼 in Equa-
tion 22.1 increases from 0 to 3 to 6. Read vertically, the time to expiration
increases from 0.25 years to one year to four years. The pattern is evident: As
the time to expiration and the mean reversion strength increase, the negative
skew flattens toward a volatility of 20%.

Figure 22.5 contains a similar table, except that the long-term volatility
m in Equation 22.1 is set to 40%. The skew is still negative, but now, as
the time to expiration and the mean reversion strength increase, the negative
skew rises toward a flatter skew at around 40%.

These extended BSM models rely on the stochastic nature of volatility
and its correlation with the stock price to generate a skew. Because of this, it
is very difficult to produce the steep short-term skew typical of equity index
option markets. Because Equation 22.1 describes a continuous diffusion, at
short expirations the volatility cannot have diffused too far from its initial
value. It would take a very high volatility of volatility to account for the
steep smiles at shorter expirations, and a very strong mean reversion to pro-
duce the flatter smiles at longer ones. For more on this topic, see Fouque,
Papanicolaou, and Sircar (2000).

In contrast, the extended local volatility model, which begins with a local
volatility skew, is more successful at describing this behavior. As we will see
in subsequent chapters, jumps in the stock price are another way to match
the steep short-term skew.
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COMPARISON OF HEDGE RATIOS UNDER
BLACK-SCHOLES-MERTON, LOCAL VOLATIL ITY,
AND STOCHASTIC VOLATIL ITY

We have now investigated two different models of the smile: local volatility
and stochastic volatility. If we were to calibrate both models, for example, to
an observed index volatility smile with negative skew, each would produce
a different evolution of volatility and a different forward skew. In addition,
though both models produce the same initial standard option prices, each
model would lead to different hedge ratios.

� BSM: There is no skew and implied volatility is independent of stock
price. The correct delta is the BSM delta.

� Local volatility: For a negative skew, local volatility decreases as the
market rises. As a result, the correct hedge ratio is smaller than the BSM
delta.

� Stochastic volatility: In an extended BSM stochastic volatility model,
implied volatility is a function of K/S and the instantaneous stochastic
volatility itself. When the skew is negative and S is held constant, implied
volatility increases as K decreases. As a result, the hedge ratio will be
greater than the BSM hedge ratio, the reverse of what happens in a local
volatility model.

It may seem strange that the local volatility model and the stochastic
volatility model should lead to different hedge ratios for the same skew.
Remember, though, that because volatility is by definition stochastic in a
stochastic volatility model, there are two hedge ratios in the model, one
for the stock and another for the volatility. If the instantaneous volatility
changes, then the option price and the stock hedge ratio can change even
if the stock price remains fixed. In the following section we show heuris-
tically how to reconcile the results of these two models by considering the
best hedge when one hedges only the change in the stock price, but not the
change in volatility.

BEST STOCK-ONLY HEDGE IN A STOCHASTIC
VOLATIL ITY MODEL

In a local volatility model, you hedge an option by taking a position in Δ
shares of stock. In a stochastic volatility model, you can calculate the option’s
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exposure to both the stock price and the volatility, and generate hedge ratios
for both these stochastic variables.2

Unfortunately, hedging the volatility exposure of an option is difficult
and expensive, because it involves trading a second option to cancel the
volatility exposure of the first, and options are typically less liquid and
involve greater transaction costs than stock. If we cannot hedge volatility,
then what is the best stock-only hedge ratio? As in previous chapters, by
“best” we mean the hedge ratio that minimizes the P&L volatility. We will
show heuristically that the best stock-only hedge in a stochastic volatility
model is smaller than the BSM hedge ratio when the skew is negative, and
thus qualitatively consistent with the local volatility results.

Consider a simplistic stochastic implied volatility model defined by

dS
S

= 𝜇dt + 𝛴dZ

d𝛴 = pdt + qdW

dZdW = 𝜌dt (22.7)

For simplicity, we have assumed that the stock evolves with a realized volatil-
ity equal to the implied volatility of the option being considered.

The stock-only hedged portfolio is long the call and short Δ shares of
stock:

𝜋 = CBSM − ΔS (22.8)

where CBSM = CBSM(S, t, K, T, r, 𝛴) denotes the market price of the call
expressed through the BSM formula and its implied volatility 𝛴. Over the
next instant the change in the portfolio value owing to changes in S and 𝛴 is

d𝜋 =
(
𝜕CBSM

𝜕S
− Δ

)
dS +

𝜕CBSM

𝜕𝛴
d𝛴

= (ΔBSM − Δ)dS + VBSMd𝛴 (22.9)

where the implied volatility 𝛴 guarantees that the BSM option price
matches the market price. Remember that we are not hedging the volatility
movements, but only the stock price movements.

The instantaneous variance of this portfolio is var[𝜋]dt = (d𝜋)2, where

var[𝜋] = (ΔBSM − Δ)2(𝛴S)2 + V2
BSMq2 + 2(ΔBSM − Δ)VBSM𝛴Sq𝜌 (22.10)

2 This section is based on an unpublished seminar by Andrew Matytsin.
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The value of Δ that minimizes P&L variance of this portfolio is given by

𝜕var[𝜋]
𝜕Δ

= −2(ΔBSM − Δ)(𝛴S)2 − 2VBSM𝛴Sq𝜌 = 0 (22.11)

or

Δ = ΔBSM + 𝜌
VBSMq

𝛴S
(22.12)

The second derivative of var[𝜋] with respect to Δ is 2(𝛴S)2 is always positive,
confirming that this value of Δ corresponds to a minimum of the variance.

Equation 22.12 shows that, under stochastic volatility in an extended
BSM model, the best hedge ratio depends on the correlation between the
stock price and volatility. Because q and VBSM are positive, when 𝜌 is neg-
ative, the skew is negative and the best hedge is less than ΔBSM, consistent
with a local volatility model. When 𝜌 is positive, the opposite is true. Finally,
when 𝜌 is zero and the smile is symmetric, the best hedge ratio is the BSM
hedge ratio.

CONCLUDING REMARKS

Stochastic volatility models can produce a rich variety of smiles from only
a few stochastic variables. There is some element of stochastic volatility in
all option markets, but it is unlikely to be the only cause of the skew. Such
models provide a reasonable description of currency option markets where
the dominant features of the smile are consistent with fluctuations in volatil-
ity. In contrast, equity index option markets involve steep short-term skews
that are difficult to fit in extended BSM stochastic volatility models. For
those markets, a stochastic local volatility model or a jump-diffusion model
may be more appropriate. We will begin to look at jump-diffusion models
in detail in the next chapter.

The details of the stochastic evolution of volatility are not well under-
stood, and modeling the process involves many assumptions that are at
present unverifiable.

FURTHER READING

� Wilmott, Paul. Derivatives: The Theory and Practice of Financial Engi-
neering. New York: John Wiley & Sons, 1998.

� Chapter 2 of Fouque, Jean-Pierre, George Papanicolaou, and Ronnie
Sircar. Derivatives in Financial Markets with Stochastic Volatility. Cam-
bridge: Cambridge University Press, 2000.



382 THE VOLATILITY SMILE

� Lewis, Alan. Option Valuation under Stochastic Volatility. Newport
Beach, CA: Finance Press, 2000.

� Hull, John, and Alan White. “The Pricing of Options on Assets with
Stochastic Volatilities.” Journal of Finance 42, no. 2 (1987): 281–300.

� Gatheral, Jim. The Volatility Surface: A Practitioner’s Guide. Hoboken,
NJ: John Wiley & Sons, 2006.

� Heston, Steven. “A Closed-Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options.” Review of
Financial Studies 6, no. 2 (1993): 327–343.

Wilmott is perhaps the easiest place to start. Gatheral’s compact book has
lots of details on the analytic solutions to these models and their properties.

END-OF-CHAPTER PROBLEMS

22-1. Assume that the S&P 500 (SPX) is currently at 2,000, and that one-
year at-the-money implied volatility is currently 16% and evolves
according to

d𝛴 = 0.25dW

for small changes in 𝛴, where W is standard Brownian motion.
Assume the correlation between implied volatility and the level of

SPX is −40%, and that the riskless rate and dividends are both zero.
What is the best stock-only hedge ratio for a one-year at-the-money
option? How does this differ from the BSM hedge ratio?

22-2. Assume that the Euro STOXX 50 (SX5E) is currently at 3,000, the
long-run average path volatility is 25% at all horizons, and that var[𝜎̄]
evolves according to

var[𝜎̄] = e−4𝜏0.08𝜏 + (1 − e−4𝜏 )0.02
𝜏

For 0.1-, 0.25-, and 1-year expirations, make a rough estimate of the
90–100 strike skew, using Equation 22.2 and assuming that the cor-
relation between the index and its volatility is zero. For this problem,
by the 90–100 strike skew we mean the implied volatility of a 10%
out-of-the-money put minus the implied volatility of an at-the-money
put, where 10% means 10% in log returns.



CHAPTER 23
Jump-Diffusion Models

of the Smile
Introduction

� Stock price jumps can explain the steep short-term skew.
� Modeling a jump.
� Calibrating jumps to the stock price distribution.
� The Poisson distribution of jumps.
� Option prices from jumps alone.

JUMPS

Why are we interested in jump models? Because we observe jumps in reality.
Most security prices don’t just diffuse smoothly as time passes; their move-
ments are punctuated by jumps. Stocks and indexes definitely jump. Curren-
cies sometimes jump. Commodity prices jump, too.

What separates a jump from normal diffusion? There is no precise, uni-
versally accepted definition of a jump, but it usually comes down to mag-
nitude, duration, and frequency. A jump is a large return that happens over
a very short time period. By “a very short time period” we almost always
mean intraday, and by “large” we mean a move that is large compared to
𝜎
√

t, the expected standard deviation over that time period. Really large
jumps happen rarely in equity index markets (the frequency is usually of the
order of one jump per several years), but when they do happen they have
important economic, financial, and especially psychological effects. In equity
markets, indexes mostly suffer negative jumps, while individual stocks tend
to undergo both positive and negative jumps.

As an explanation of the volatility smile, jumps are attractive because
they provide an easy way to produce the persistently steep short-term

383
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negative skew that we observe in equity index markets. In fact, this persis-
tent skew first appeared soon after the jump/crash of 1987. Toward the end
of this section we’ll discuss the qualitative features of the smile that appears
in jump models.

Unfortunately (from a theoretical point of view), jumps are inconsis-
tent with arbitrage-free risk-neutral pricing, the bedrock of all the model-
ing we’ve done up to this point. The inconsistency stems from our inabil-
ity to instantaneously hedge an option whose underlier can undergo many
different jumps of different sizes. The alternative to risk-neutral pricing—
economic models that depend on an individual’s subjective risk tolerance—
are unattractive in that they demand detailed behavioral modeling. To avoid
this, most jump-diffusion models simply assume risk-neutral pricing without
convincing justification.

Though they may be difficult to model, there have been and will be jumps
in asset prices. Even if we can’t fully hedge them, we still need to understand
how jumps impact option prices and the volatility smile.

–20% –10% 0% 10% 20%

Short Expiration

–20% –10% 0% 10% 20%

Medium Expiration

–20% –10% 0% 10% 20%

Long Expiration

F IGURE 23.1 Probability Distribution of the Index Price at
Expiration from Diffusion and One Jump
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A Simple Look at the Skew Aris ing from a Jump

Assume that there is some probability p of a single jump in the index level
of J% occurring between now, t = 0, and expiration, t = T. For the moment,
we will assume that there can be only one or zero jumps during this period.
If there is no jump, the volatility will be 𝜎0. Figure 23.1 shows a schematic
view of the probability distribution of the stock at a range of expirations.

There are two contributions to the stock’s terminal probability distribu-
tion, one from the diffusion and one from the jump. The standard deviation
at expiration of the lognormal diffusion has a standard deviation 𝜎0

√
𝜏,

which grows with 𝜏 = T – t, while the standard deviation of the jump
is always the same. For short expirations, the jump contribution consti-
tutes a very significant tail or bump above the diffusion distribution. For
longer expirations, the relative size of the standard deviation of the diffu-
sion increases and the modification owing to the jump becomes less and less
important. When we value options, the effect of the jump will be much more
significant for short expirations, and will become negligible for very long
expirations where the width of the continuous distribution overwhelms the
jump contribution.

Figure 23.2 shows an implied volatility surface generated from distri-
butions like those in Figure 23.1, assuming for simplicity that the diffusion
volatility has no term structure (i.e., that 𝜎0 is independent of time). Notice
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F IGURE 23.2 Implied Volatility Surface Resulting from Jumps
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that the smile is highly skewed for short times to expiration, but almost flat
for long expirations. This is not an unrealistic volatility surface for index
options, especially at short expirations, and can be made more realistic by
incorporating a term structure in the diffusion volatility.

SAMPLE PROBLEM

Question:

Imagine a very simple world where we believe that the probability of
a −10% jump in the market is 5%, and that there is zero probability
of any other jump size, positive or negative. What is the expected
volatility of the market over one month? Over one year? Assume the
probability of the jump is unaffected by the time to expiration. In the
absence of jumps, the diffusion mean and volatility are 0% and 16%,
respectively.

Answer:

First, note that under normal diffusion, the approximate daily standard
deviation is 1% = 16%∕

√
256. The −10% jump, assuming it happens

in a single day, therefore represents a −10 standard deviation move.
That is a very big jump!

Denoting the probability of a jump by p, and the size of a jump by J,
the expected return due to the jump process alone is simply pJ = 0.05 ×
−0.10 = −0.005, or −0.5%. The variance of the jump process is then

Var[jump] = p(J − pJ)2 + (1 − p)(0 − pJ)2

= p(1 − p)J2

The total realized variance between now and expiration is simply
the sum of the contributions from the jump and from the diffusion.
Denoting the volatility of the diffusion process by 𝜎, and the volatility
of the jump-diffusion process by 𝛴,

𝜏𝛴2 = p(1 − p)J2 + 𝜏𝜎2
0

Therefore,

𝛴2 = 1
𝜏

p(1 − p)J2 + 𝜎2
0

𝛴 =
√

1
𝜏

p(1 − p)J2 + 𝜎2
0
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For one month,

𝛴 =
√√√√

1
1

12

× 0.05 × 0.95 × (−0.10)2 + 0.162

= 0.1769

For one year,

𝛴 =
√

1
1
× 0.05 × 0.95 × (−0.10)2 + 0.162

= 0.1615

Notice that the jump has a significant impact on the one-month
volatility but very little impact on the one-year volatility.

The precise model described in this sample problem is extremely
crude, but we can already see why jumps might have a more signifi-
cant impact on short-term volatility. It is not hard to imagine how we
might slightly change the assumptions of this problem to create a more
realistic model, and still preserve these features.

Note, in this problem we have assumed that there can be only one
jump and the probability of that jump occurring is the same, regardless
of the time to expiration. In practice, there can be multiple jumps and
the longer we wait the more likely we are to see a jump. We explore
models with these features in the following sections.

MODELING PURE JUMPS

We’ve spent most of this book modeling pure diffusion processes. Now we’ll
look at pure jump processes as a preamble to examining the more realistic
mixture of jumps and diffusion.1

Stocks That Jump: Cal ibrat ion and Compensat ion

Figure 23.3 shows the familiar discrete binomial approximation to a diffu-
sion process for the log of the stock price S over time Δt.

1 This section follows closely the analysis of jumps in Černý (2009).
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F IGURE 23.3 Binomial Diffusion-Only
Model

The probabilities of both up and down moves are finite, but the moves
themselves are infinitesimal, of order

√
Δt. The total variance of ln(S/S0) over

the time step is 𝜎2Δt and the drift is 𝜇Δt. The equivalent continuous time
process is dln(S) = 𝜇dt + 𝜎dZ, or

dS
S

=
(
𝜇 + 1

2
𝜎2

)
dt + 𝜎dZ (23.1)

In a risk-neutral world with riskless rate r, one must calibrate the diffusion
process so that 𝜇 = r − 1

2
𝜎2.

A jump is fundamentally different from a diffusion. Figure 23.4 shows
a binomial tree model with a jump occurring on one of the branches. The
probability of the jump is small, of order Δt, but the jump J can be large.
This is a pure jump model with no diffusion. If we set J = 0, both the up and
down legs of the tree have the same drift, 𝜇′. In this model, the longer the
interval Δt, the higher the probability 𝜆Δt of observing a jump.

Let’s look at the mean and variance of ln(S/S0) in this process. The
mean is

E
[
ln
(

S
S0

)]
= 𝜆Δt(𝜇′Δt + J) + (1 − 𝜆Δt)𝜇′Δt

= (𝜇′ + 𝜆J)Δt

(23.2)
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F IGURE 23.4 Binomial Jump Model

The variance is

var
[
ln
(

S
S0

)]
= 𝜆Δt[𝜇′Δt + J − (𝜇′ + 𝜆J)Δt]2

+(1 − 𝜆Δt)[𝜇′Δt − (𝜇′ + 𝜆J)Δt]2

= 𝜆Δt[J(1 − 𝜆Δt)]2 + (1 − 𝜆Δt)[−𝜆JΔt]2

= J2𝜆Δt(1 − 𝜆Δt)2 + J2(1 − 𝜆Δt)(𝜆Δt)2

= J2𝜆Δt(1 − 𝜆Δt)(1 − 𝜆Δt + 𝜆Δt)

= J2𝜆Δt(1 − 𝜆Δt)

(23.3)

In the limit as Δt → 0,

lim
Δt→0

var
[
ln
(

S
S0

)]
= J2𝜆Δt (23.4)

Thus, this process has a drift 𝜇 = (𝜇′ + 𝜆J) and an observed volatility
𝜎 = J

√
𝜆.

If we observe a security with log drift 𝜇 and a volatility 𝜎, then we can
calibrate the parameters of the pure jump model to it using

J = 𝜎
√
𝜆

𝜇′ = 𝜇 − 𝜆J

= 𝜇 −
√
𝜆𝜎

(23.5)
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F IGURE 23.5 Binomial Jump Model for Price

Given 𝜇 and 𝜎, these two equations constrain the three parameters J, 𝜇′, and
𝜆. We are free to choose a value of J and determine 𝜆, or vice versa. The
process in Figure 23.4, iterated repeatedly, will mimic a security with drift 𝜇
and volatility 𝜎.

For a given J, there is only one unknown, 𝜆, the probability of a jump
per unit of time. If jumps are positive, then 𝜇′ will be less than 𝜇. Similarly,
if jumps are negative, then 𝜇′ will be greater than 𝜇. In each case we need to
adjust 𝜇′ to compensate for the jump, so that the weighted average return is
equal to 𝜇. The larger the jump or the higher the probability of a jump, the
greater the adjustment needs to be.

The preceding diagrams and equations described the log return ln(S/S0).
How does the price S evolve? Just as with a diffusion process, one must cal-
ibrate a jump model to the stock price’s drift and volatility. In the diffusion
process, this involved the Itô correction term 1

2
𝜎2. An analogous compensa-

tion is necessary for jumps, as we now show.
Figure 23.5 shows the binomial jump-only model for the stock price S.

The expected price after a small time Δt is

E[S] = 𝜆ΔtSe𝜇
′Δt+J + (1 − 𝜆Δt)Se𝜇

′Δt

= Se𝜇
′Δt[1 + 𝜆

(
eJ − 1

)
Δt] (23.6)

≈ Se(𝜇′+𝜆(eJ−1))Δt

where we have used the first-order Taylor series for the exponential func-
tion to write the last line of this equation. If we want to impose risk-neutral
pricing and set the growth rate of the stock to r, then r = 𝜇′ + 𝜆(eJ − 1) and
hence for the continuous time process we must choose

𝜇′ = r − 𝜆(eJ − 1) (23.7)



Jump-Diffusion Models of the Smile 391

1

0

0

1

Mean = 

−

F IGURE 23.6 Binomial Poisson Process

We have to compensate for the jump by adjusting the drift term in the model
to match the riskless rate.

In the limit as Δt → 0, the process in Figure 23.4 can be described by
the continuous time equation

dln(S) = 𝜇′dt + Jdq (23.8)

where dq is a jump or Poisson process. Figure 23.6 shows the binomial rep-
resentation of the pure Poisson process, with 1 corresponding to a jump and
0 corresponding to no jump.

Here dq takes the value 1 with probability 𝜆dt and the value 0 with
probability (1 – 𝜆dt). The expected value of dq is E[dq] = 𝜆dt.

The Poisson Distr ibut ion of Jumps

As before, let 𝜆 be the probability of a jump occurring per unit time. Rather
than limiting ourselves to one jump, we’ll assume there can be multiple jumps
in any period. If the probability that no jumps occur during a short interval
Δt is (1 – 𝜆Δt), then, assuming jumps occur independently, the probability
of no jumps occurring over two intervals is just (1 – 𝜆Δt)2. In general, the
probability of not seeing a single jump over N intervals is (1 – 𝜆Δt)N.

Define the probability of observing n jumps between t = 0 and t = T as
P(n, T), where dt = T/N; then the probability of observing no jumps over the
interval is P(0, T), and

P(0, T) = (1 − 𝜆dt)N

=
(

1 − 𝜆T
N

)N (23.9)
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In the limit as N → ∞ for fixed T, dt → 0, and, from the definition of the
exponential function,

lim
N→∞

P(0, T) = e−𝜆T (23.10)

More generally,

P(n, T) = N!
n!(N − n)!

(𝜆dt)n(1 − 𝜆dt)N−n (23.11)

Now, as N → ∞ for fixed T, one can show P(n, T) converges to the
Poisson distribution probability function

lim
N→∞

P(n, T) = (𝜆T)n

n!
e−𝜆T (23.12)

Note that

∞∑

n=0

P(n, T) = 1 (23.13)

There can be anywhere from zero to an infinite number of jumps, and the
probability of all possible outcomes is 1.

One can easily show that the mean number of jumps between t = 0 and
t = T is 𝜆T, consistent with the notion that 𝜆 is the probability per unit time
of one jump. One can also show that the variance of the number of jumps
between t = 0 and t = T is also 𝜆T.

SAMPLE PROBLEM

Question:

Assume that jumps follow a Poisson process, and occur at a rate of
four jumps per year. How many jumps do you expect to see over three
months? What is the probability of no jumps over three months? What
is the probability of exactly one jump?



Jump-Diffusion Models of the Smile 393

Answer:

Using the notation from this section, 𝜆 = 4/year, and T = 1/4 year. The
expected number of jumps is exactly one:

𝜇 = 𝜆T = 4
year

× 1
4

year = 1

Using Equation 23.12, the probability of n jumps is

P
(

n, 1
4

)
=

(
4 × 1

4

)n

n!
e−4× 1

4

= 1
n!

0.3679

The probability of no jumps is then

P
(

0, 1
4

)
= 1

0!
e−4× 1

4

= 0.3679

The probability of exactly one jump is

P
(

1, 1
4

)
= 1

1!
e−4× 1

4

= 0.3679

Interestingly, the expected number of jumps over three months is
1, but we are just as likely to observe 0 jumps as we are to observe 1.
The probability of each outcome is 36.79%.

Pure Jump Risk-Neutral Opt ion Pric ing

In a pure jump model, we can easily value a standard European option if
we are willing to assume risk-neutral pricing. The present value of an option
is the probability-weighted sum of all possible payoffs under all possible
scenarios from zero to an infinite number of jumps, discounted at the riskless
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rate. For example, the value of a European call option with strike K and
expiration T is

C = e−rT
∞∑

n=0

(𝜆T)n

n!
e−𝜆T × max[S0e𝜇

′T+nJ − K, 0] (23.14)

with 𝜇′ = r − 𝜆(eJ − 1) as demanded by risk neutrality.
As we remarked earlier, when jumps are possible the assumption of risk-

neutral pricing may not be valid. Even if we accept the risk-neutral assump-
tion, our current model is still too simple. In the next chapter, we will explore
a more realistic jump-diffusion model.

END-OF-CHAPTER PROBLEMS

23-1. Assume that jumps follow a Poisson process and occur at an average
rate of five jumps per year. What is the probability of seeing two or
more jumps over the course of a year?

23-2. Jumps for the stock JMP follow a Poisson process. The probability of
there being one and only one jump on any given day is 1.6%. What is
the frequency of jumps per year? Assume 256 business days per year.
Hint: You may need to use a first-order Taylor expansion.



CHAPTER 24
The Full Jump-Diffusion Model

� Merton’s equation for option prices in a jump-diffusion model.
� A trinomial version of jump-diffusion, and its calibration.
� A compensated drift to match the riskless rate.
� The value of a call in a jump-diffusion model.
� A qualitative description of the effect of jump-diffusion on the smile.
� A simple approximate analytic formula for the jump-diffusion smile.

JUMPS PLUS DIFFUSION

In this section we describe option valuation when the underlying stock
undergoes both jumps and diffusion. Following arguments similar to those
that we used to derive the Black-Scholes-Merton (BSM) formula, we will try
to construct a riskless portfolio by combining a call option with a short stock
position. If the underlying stock undergoes only a finite number of jumps of
known size, you can instantaneously hedge an option perfectly using the
stock and several other options. If there are an infinite number of possible
jumps—as there would be if the jumps followed a Poisson process—you can-
not perfectly hedge; you can only minimize the variance of the profit and loss
(P&L) of the hedged portfolio.

Merton’s Jump-Di f fus ion Model and Its Part ia l
D i f ference/Di f ferent ia l Equat ion

Merton introduced the jump-diffusion model in 1976 (Merton 1976). He
combined Poisson jumps with geometric Brownian diffusion by adding a
jump term Jdq to the BSM stock price evolution, as follows:

dS
S

= 𝜇dt + 𝜎dZ + Jdq (24.1)

395
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where

E[dq] = 𝜆dt

var[dq] = 𝜆dt
(24.2)

We’ll begin by assuming that the jump J has a fixed size, and later generalize
to a distribution of normally distributed jumps.

One way to view jumps is as random dividends. Unlike standard divi-
dends, which result in a cash payment to the stockholder, the “payout” from
a jump is added directly to the stock price. However, both jumps and div-
idends alter the expected return of a stock. As we’ll see, under risk-neutral
pricing, both require an adjustment to the risk-neutral drift of the stock.

You can derive a partial differential equation for option valuation under
this jump-diffusion process as follows. Let C(S, t) be the value of a call at
time t. We construct the usual hedged portfolio, long the option and short n
shares of stock, given by

𝜋 = C − nS (24.3)

Now,

dC =
(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt

+ 𝜕C
𝜕S

(𝜇Sdt + 𝜎SdZ) + [C(S + JS, t) − C(S, t)] dq

(24.4)

and

ndS = nS(𝜇dt + 𝜎dZ + Jdq)

= n(𝜇Sdt + 𝜎SdZ) + (nJS)dq
(24.5)

Thus

d𝜋 = dC − ndS

=
(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt +
(
𝜕C
𝜕S

− n
)

(𝜇Sdt + 𝜎SdZ)

+ [C(S + JS, t) − C(S, t) − nJS] dq

(24.6)

We cannot eliminate all the risk by choosing a value for n, so
we choose n to cancel just the diffusion part of the stock price by
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setting n = 𝜕C/𝜕S. The change in the value of the hedged portfolio then
becomes

d𝜋 =
(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt +
[
C(S + JS, t) − C(S, t) − 𝜕C

𝜕S
JS
]
dq (24.7)

The partially hedged portfolio depends on dq and is therefore still risky.
Is there any way to eliminate this remaining jump risk? Proponents of

jump-diffusion models like to argue that jumps are firm specific and uncor-
related with the market. In that case jumps are diversifiable, and we know
from Chapter 2 that diversifiable risk is not rewarded. Averaging over all
jump sizes therefore leads to the equation

E[d𝜋] = r𝜋dt
(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt + E
[
C(S + JS, t)−C(S, t)− 𝜕C

𝜕S
JS
]
E[dq]

= r
(

C − S
𝜕C
𝜕S

)
dt (24.8)

We don’t find this argument very compelling. Market-wide crashes are
the result of many stocks experiencing jumps in the same direction at the
same time, and are impossible to diversify away in practice. Nevertheless,
we are going to proceed with Equation 24.8, keeping in the back of our
minds the notion that that jump risk is probably not diversifiable and that
one is entitled to be somewhat skeptical about expecting the riskless return
on a jump-sensitive portfolio.

Using the mean of the Poisson process in Equation 24.2, we have

(
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2
)

dt + E
[
C(S + JS, t) − C(S, t) − 𝜕C

𝜕S
JS
]
𝜆dt

= r
(

C − S
𝜕C
𝜕S

)
dt (24.9)

or

𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕S2

𝜎2S2 + r
(

S
𝜕C
𝜕S

− C
)
+ E

[
C(S + JS, t) − C(S, t) − 𝜕C

𝜕S
JS
]
𝜆 = 0

(24.10)

This is a mixed difference/partial differential equation for a standard
call with terminal payoff CT = max[ST – K, 0]. A similar equation holds
for a standard put. For 𝜆 = 0 it reduces to the BSM equation. We will solve
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F IGURE 24.1 Binomial Model of Diffusion

it a little later by calculating the call value in a risk-neutral world as the
expected discounted value of the payoffs. For the time being we’ll assume
that we can use risk-neutral pricing, but, as we have said before, the justifica-
tion for risk-neutral pricing in the context of jump-diffusion models is weak
at best.

TRINOMIAL JUMP-DIFFUSION AND CALIBRATION

As we saw in the previous chapter, diffusion can be modeled binomially, as
in Figure 24.1, where the volatility 𝜎 of the log returns adds an Itô 𝜎2/2 term
to the drift of the stock price S. To compensate for this, the pure risk-neutral
drift of the lognormal diffusion must be 𝜇 = r − 𝜎2/2, where r is the riskless
rate.

We can add jumps to this picture by adding a third branch to the tree,
transforming from a binomial to trinomial tree as in Figure 24.2.

The expected log return after time Δt is

E
[
ln
(

S
S0

)]
= 1

2
(1 − 𝜆Δt)

(
𝜇Δt + 𝜎

√
Δt

)
+ 1

2
(1 − 𝜆Δt)

(
𝜇Δt − 𝜎

√
Δt

)

+ 𝜆Δt(𝜇Δt + J)

= (𝜇 + J𝜆)Δt

(24.11)
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F IGURE 24.2 Trinomial Tree with One Jump

The effective drift of the jump-diffusion process is therefore

𝜇JD = 𝜇 + J𝜆 (24.12)

The variance of the process is

var
[
ln

(
S
S0

)]
= 1 − 𝜆Δt

2

(
𝜎
√
Δt − J𝜆Δt

)2
+ 1 − 𝜆Δt

2

(
𝜎
√
Δt + J𝜆Δt

)2

+ 𝜆Δt[J(1 − 𝜆Δt)]2

= (1 − 𝜆Δt)(𝜎2 + J2𝜆)Δt

(24.13)

As Δt → 0, the variance of the jump-diffusion process becomes

𝜎2
JD = 𝜎2 + J2𝜆 (24.14)

Equations 24.12 and 24.14 are intuitively reasonable: The addition
of jumps to the diffusion modifies the drift by J𝜆, the expected size
of the jump, and the variance by J2𝜆. Notice that the drift and vari-
ance are both affected by the jump J and by its probability per unit of
time 𝜆.
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SAMPLE PROBLEM

Question:

Use the trinomial model in Figure 24.2, with 𝜇 = 1% and 𝜎 = 20%. If
J = −5% and 𝜆 = 8%, what are the values of 𝜇JD and 𝜎JD? Holding
J𝜆 constant, what would happen to 𝜇JD and 𝜎JD if you changed J to
−10%?

Answer:

Using Equations 24.12 and 24.14 with J = −5% and 𝜆 = 8%, we have:

𝜇JD = 𝜇 + J𝜆 = 0.01 − 0.05 × 0.08 = 0.006 = 0.6%

𝜎JD =
√

𝜎2 + J2𝜆 =
√

0.22 + (−0.05)2 × 0.08 = 0.2005 = 20.05%

If J𝜆 is constant, then when we change J to −10% we need to change
𝜆 to 4%, which gives

𝜇JD = 𝜇 + J𝜆 = 1% − 10% × 4% = 0.6%

𝜎JD =
√

𝜎2 + J2𝜆 =
√

0.22 + (−0.1)2 × 0.04 = 0.2010 = 20.10%

If J𝜆 is constant,𝜇JD remains unchanged, but 𝜎JD increases as the jumps
become larger with lower frequency.

Notice that neither of the jump-diffusion volatilities was very dif-
ferent from the diffusion-only volatility. Later we’ll see that jumps can
meaningfully impact the volatility smile, especially at short expirations,
but that may require jump sizes and probabilities that are significantly
greater in magnitude than what we estimate from the historical behav-
ior of index markets.

The Compensated Process

How do we calibrate the diffusion and jump parameters so that the expected
value of the stock grows at the riskless rate, that is, so that E[dS] = Srdt?
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First let’s compute the stock growth rate under the jump-diffusion of
Figure 24.2. We have

E
[

S
S0

]
= 1 − 𝜆Δt

2
e𝜇Δt+𝜎

√
Δt + 1 − 𝜆Δt

2
e𝜇Δt−𝜎

√
Δt + 𝜆Δte𝜇Δt+J

= e𝜇Δt
[

1 − 𝜆Δt
2

(
e𝜎

√
Δt + e−𝜎

√
Δt
)
+ 𝜆ΔteJ

] (24.15)

Keeping all terms in the Taylor expansion to order Δt, we can write

E
[

S
S0

]
= e

(
𝜇+ 𝜎2

2
+𝜆(eJ−1)

)
Δt

+ higher-order terms (24.16)

If we want the expected value of the stock to grow at the riskless rate, we
must set

r = 𝜇 + 𝜎2

2
+ 𝜆(eJ − 1) (24.17)

Thus, to achieve risk-neutral growth in the jump-diffusion process of Equa-
tion 24.1, we must set the drift of the diffusion process to

𝜇JD = r − 𝜎2

2
− 𝜆(eJ − 1) (24.18)

We can view the term 𝜎2/2 in Equation 24.18 as compensating for the
extra return produced by the volatility of the diffusion, and 𝜆(eJ − 1) as
compensating for the additional return due to jumps that we found in Chap-
ter 23. In other words, we have to modify the continuous diffusion drift in
order to compensate for both the effect of the diffusion volatility and the
jumps.

VALUING A CALL IN THE JUMP-DIFFUSION MODEL

In this section we will derive a formula for the value of a standard Euro-
pean call option under jump-diffusion. We begin by allowing only one jump
size J.
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If we assume risk-neutral valuation, then the value of a call option is
just the present value, discounted at the riskless rate, of the expected future
value of the option. Mathematically,

CJD = e−r𝜏E[max(ST − K, 0)] (24.19)

where r is the riskless rate, K is the strike, 𝜏 is the time to expiration, and ST
is the value of the stock price at expiration, given by

ST = S𝜇JD𝜏+Jq+𝜎
√
𝜏Z (24.20)

where 𝜇JD is given by Equation 24.18 when we impose risk-neutrality.
Remember, for the moment we are assuming that all jumps have the same
fixed size J, which describes the percentage size of the jump.

The expectation in Equation 24.19 is just the probability-weighted aver-
age of (ST − K) for all possible values of ST. The jumps arrive randomly
between the start date and the expiration date, but in computing the termi-
nal distribution of the stock price, only the number of jumps before expi-
ration matters, but (because they are percentage jumps) not their timing.
Figure 24.3 is the result of a Monte Carlo simulation of the jump-diffusion
process. You can see that the terminal distribution of the stock price corre-
sponds to a sequence of diffusion processes, shifted by an increasing number
of jumps with decreasing probability.

Following Figure 24.3, we can obtain all the possible values for ST by
grouping them by the number of jumps followed by all possible diffusion
paths, so that

CJD = e−r𝜏
∞∑

n=0

(𝜆𝜏)n

n!
e−𝜆𝜏E

[
max

(
Sn

T − K, 0
)]

(24.21)

where Sn
T

is the terminal lognormal distribution for the price of the stock
that underwent n jumps and any subsequent diffusion.

The effect of the jumps in each term in the sum is simply to shift the
lognormal diffusion distribution. In a risk-neutral world, the expected return
on a stock that originated at an initial price S and then suffered n jumps is

𝜇n = r − 𝜎2

2
− 𝜆(eJ − 1) +

nJ
𝜏

(24.22)

where the last term in the equation adds the drift corresponding to n jumps
to 𝜇JD from Equation 24.18. The last term is divided by 𝜏 because the shift in
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F IGURE 24.3 A Monte Carlo Simulation of the Log Stock Prices in the
Jump-Diffusion Model

the distribution caused by n jumps is independent of when the jump occurs,
but the drift is by definition the shift per unit of time.

Because ST is lognormal with a mean shifted by n jumps, we can express
the expected value in Equation 24.21 in terms of a BSM option price:

E
[
max

(
Sn

T − K, 0
)]

= ern𝜏CBSM(S, K, 𝜏, 𝜎, rn) (24.23)

where CBSM(S, K, 𝜏, 𝜎, rn) is the standard BSM formula for a call with strike
K, volatility 𝜎, and a discount rate rn, given by

rn ≡ 𝜇n + 𝜎2

2

= r − 𝜆(eJ − 1) +
nJ
𝜏

(24.24)
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The value of rn in Equations 24.23 and 24.24 no longer contains the
𝜎2/2 term because the BSM formula for a stock with volatility 𝜎 already
includes the 𝜎2/2 term in the N(d1,2) terms that are part of the definition of
CBSM.

Combining Equations 24.21, 24.23, and 24.24 we obtain:

CJD = e−r𝜏
∞∑

n=0

(𝜆𝜏)n

n!
e−𝜆𝜏ern𝜏CBSM(S, K, 𝜏, 𝜎, rn)

= e−r𝜏
∞∑

n=0

(𝜆𝜏)n

n!
e−𝜆𝜏e

(
r−𝜆(eJ−1)+ nJ

𝜏

)
𝜏
CBSM(S, K, 𝜏, 𝜎, rn)

= e−𝜆eJ𝜏

∞∑

n=0

(𝜆𝜏eJ)n

n!
CBSM

(
S, K, 𝜏, 𝜎, r − 𝜆(eJ − 1) +

nJ
𝜏

)

(24.25)

Writing 𝜆 = 𝜆eJ, we obtain

CJD = e−𝜆𝜏
∞∑

n=0

(𝜆𝜏)n

n!
CBSM

(
S, K, 𝜏, 𝜎, r − 𝜆(eJ − 1) +

nJ
𝜏

)
(24.26)

A MIXING FORMULA

We see that the jump-diffusion price is a weighted average of BSM option
prices, with the weights determined by a Poisson distribution with probabil-
ity 𝜆. Because of this we refer to 𝜆 as the effective jump probability. Equa-
tion 24.26 is a mixing formula, similar to the result obtained for stochastic
volatility models from the mixing theorem of Hull and White, which we
derived in a previous chapter. In the case of the stochastic volatility model,
we had to assume zero correlation between stock prices and volatility to
arrive at the mixing formula. In the case of jump-diffusion, we had to appeal
to the questionable diversification of jumps in order to justify risk-neutral
pricing.

This logic applies equally to standard European puts and calls. To price
a put, you would simply replace the CBSM on the right-hand side of Equa-
tion 24.26 with PBSM, the price of a put based on the BSM formula, using
the same parameters.
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SAMPLE PROBLEM

Question:

Find the value of a one-month, $110 strike call option on the stock
of JMP, which is currently trading at $100. Occasionally JMP’s price
jumps. Jumps happen on average once every three months. And when
a jump occurs, the log stock price increases by 10%. In the absence of
jumps, the diffusion volatility is 20%. Assume that riskless rates and
dividends are zero.

Answer:

From Equation 24.26, we can write

CJD =
∞∑

n=0

e−𝜆𝜏
(𝜆𝜏)n

n!
CBSM(S, K, 𝜏, 𝜎, rn)

≡

∞∑

n=0

wnCBSM(n)

where rn = r − 𝜆(eJ − 1) + nJ∕𝜏.
The BSM formula for the price of a call on a non-dividend-paying

stock is

C(S, K, 𝜏, 𝜎, rn) = SN(d1) − Ke−r𝜏N(d2)

where

d1,2 =
ln
(

S
K

)
+
(

rn ± 𝜎2

2

)
𝜏

𝜎
√
𝜏

We are given 𝜆 = (1 jump/3 months) = (4 jumps/year). For n = 0 we
have

rn = r − 𝜆(eJ − 1) +
nJ
𝜏

= 0 − 4(e0.1 − .) + 0 × (0.1)
1

12
= −0.4207 (continued)
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(continued)

and

d1,2 =
ln
(

100
110

)
+
(
−10.42070.22

2

)
1
12

0.2

√
1

12

d1 = −2.2292 d2 = −2.2869

The first call price in the series is then

CBS(0) = 100 × N(−12.2292) − 2.2 × e0.4207× 1
12 × N(−2.2869)

= 0.03

The effective jump probability is:

𝜆 = 𝜆eJ = 4 × e0.1 = 4.42

The weight for CBS (0) is then:

wn = e−𝜆𝜏
(𝜆𝜏)n

n!
= e−4.42× 1

12

(
4.42 × 1

12

)0

0!
= 0.6918

We can continue in this fashion for successive values of n. The follow-
ing table contains values of one to four jumps:

n rn CBS(n) wn CBS(n) × wn

0 −0.4207 0.03 0.6918 0.02
1 0.7793 1.11 0.2549 0.28
2 1.9793 7.04 0.0469 0.33
3 3.1793 15.61 0.0058 0.09
4 4.3793 23.63 0.0005 0.01
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The weights decline rapidly. It doesn’t appear that jumps beyond
n = 4 add much value. If we stop here, then the jump-diffusion
call value is just the sum of the value in the rightmost column:

CJD =
4∑

n=0

wnCBS(n)

= 0.02 + 0.28 + 0.33 + 0.09 + 0.01

= 0.73

The jump-diffusion value for the one-month, 110 strike call is $0.73.
What would the price have been without jumps? If we had simply cal-
culated the BSM price using 20% as the implied volatility, we would
have gotten $0.12. The jump-diffusion price is significantly greater for
the out-of-the-money call because the positive jumps make it more
likely that the option will finish in-the-money.

Stopping the calculation after n = 4 seems practical. You can check
that the remaining terms, even when summed, contribute a negligible
amount. The probability of five jumps in one month is 1 in 40,696, or
roughly one month in 3,000 years. If probabilities of this magnitude
did significantly impact the value of an option, we would feel much
less comfortable about the reliability of the model.

Until now we assumed a fixed jump size J. We can generalize, as Mer-
ton did, to jumps whose returns are normally distributed with mean 𝜇J and
standard deviation 𝜎J, so that

J ∼ N
(
𝜇J, 𝜎

2
J

)
(24.27)

Then,

E[eJ] = e
𝜇J+

1
2
𝜎2

J (24.28)

Incorporating the expectation over this distribution of jumps into Equa-
tion 24.26 has two effects: first, J gets replaced everywhere by 𝜇J + 0.5𝜎2

J ;

second, the variance of the jump process adds to the variance of the diffu-
sion process, so we must replace 𝜎2 with 𝜎2 + n𝜎2

J ∕𝜏. This additional term

is the amount of variance added by n jumps. We divide by 𝜏 because n𝜎2
J is
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the amount of variance added between now and expiration, but we want the
variance per year, consistent with the meaning of 𝜎2.

The general formula is therefore:

CJD = e−𝜆𝜏
∞∑

n=0

(𝜆𝜏)n

n!
CBSM

⎛
⎜
⎜
⎜
⎝

S, K, 𝜏,

√

𝜎2 +
n𝜎2

J

𝜏
, r

− 𝜆

(
e
𝜇J+

1
2
𝜎2

J − 1
)
+

n
(
𝜇J +

1
2
𝜎2

J

)

𝜏

⎞
⎟
⎟
⎟
⎟
⎠

(24.29)

where

𝜆 = 𝜆e
𝜇J+

1
2
𝜎2

J (24.30)

For the special case 𝜇J = −0.5𝜎2
J , so that E[eJ] = 1 and the jumps add

no drift to the process, we get the simple intuitive formula

CJD = e−𝜆𝜏
∞∑

n=0

(𝜆𝜏)n

n!
CBSM

⎛
⎜
⎜
⎜
⎝

S, K, 𝜏,

√

𝜎2 +
n𝜎2

J

𝜏
, r

⎞
⎟
⎟
⎟
⎠

(24.31)

in which we sum over an infinite number of BSM values, each based on the
same riskless rate but with different volatilities, the volatilities varying with
the number of jumps.

As with Equation 24.26, the logic for normally distributed jumps can
also be applied to standard European puts. To value a put, we would simply
replace the BSM calls with BSM puts in Equations 24.29 and 24.31 using
the same parameters.

A QUALITATIVE DESCRIPTION OF THE
JUMP-DIFFUSION SMILE

Jump-diffusion models can produce very steep short-term smiles, similar to
those observed in equity index option markets. Recall that extended BSM
stochastic volatility models, by contrast, have difficulty producing a very
steep short-term smile unless the volatility of volatility is extremely large.
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FIGURE 24.4 Multimodal Probability Density Function

The long-term smile in a jump-diffusion model tends to be flat. For very
long expirations, the impact of individual jumps on the terminal stock dis-
tribution is overwhelmed by the diffusion process whose variance grows lin-
early with time. Recall that mean-reverting stochastic volatility models also
produce flat long-term smiles.

As illustrated in Figure 24.3, a Poisson distribution of jumps superim-
posed on a diffusion process produces a series of BSM diffusion distributions
with shifted means and decreasing probabilities. Jumps of a fixed size there-
fore tend to produce multimodal densities as illustrated in Figure 24.4. If
the size of each jump is also stochastic—following a normal distribution, for
example—then the overall distribution for the stock will be even smoother.

All else being equal, a higher jump frequency increases the deviation of
the distribution from a pure diffusion distribution and therefore produces
a steeper smile. Furthermore, a higher frequency of small jumps results in a
smoother distribution of returns.

Andersen and Andreasen (2000) claim that a jump-diffusion model can
be fitted to the S&P 500 skew with a diffusion volatility of approximately
17.7%, a jump frequency of 𝜆 = 0.089 jumps per year, an expected jump size
of 45%, and a variance of the jump size of 4.7%. A jump this size and with
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this probability seems excessive when compared to real markets. The worst
one-day loss ever for the S&P 500, Black Monday in 1987, was only −20%.
This suggests that option buyers are paying a risk premium for protection
against crashes.

A SIMPLIF IED TREATMENT OF JUMP-DIFFUSION
WITH A SMALL PROBABIL ITY OF A LARGE
SINGLE JUMP

It’s enlightening to examine the way a simple mixing model for jumps cap-
tures crucial features of the equity index option smile. We begin with the
heuristic process of Figure 24.5, with J representing a large instantaneous
jump up (a positive jump) with a small probability p, and M representing a
small move down with a large probability (1 − p). J and M are related by
risk neutrality, as we will see, and if J is large then M is small and therefore
we will not consider it to be a jump. After either the jump J up or the move
M down, we assume that the stock undergoes pure diffusion with volatility
𝜎, and no more jumps. For simplicity, we will assume the riskless rate is zero.

In this simple model only one jump is possible. This is a gross simplifi-
cation, as it ignores the possibilities of multiple jumps or jumps of various
sizes, but it does allow us to see very clearly the qualitative impact of a jump
on the price of an option.

Given the current stock price S, risk neutrality with r = 0 dictates that

S = p (S + J) + (1 − p) (S − M) (24.32)

F IGURE 24.5 A Simple Jump-Diffusion Model
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From this it follows that

M =
p

1 − p
J (24.33)

For small p, we have

M ≈ pJ (24.34)

which is much smaller than J. Note that in this section J denotes a jump in
S rather than in ln(S), so that after a jump S becomes S(1 + J).

The jump-diffusion mixing formula we derived earlier allows us to
express the price of a call in terms of a mixture of BSM call prices. Rather
than mixing across an infinite number of BSM prices, because there are only
two possible states in this simplified model, our mixing formula will be a
weighted average of two prices. If CBSM(S, 𝜎) represents the BSM price of
an option with strike K, time to expiration 𝜏, and implied volatility 𝜎, when
the stock price is S, then from the mixing formula

CJD = p × CBSM(S + J, 𝜎) + (1 − p)CBSM(S − M, 𝜎)

≈ p × CBSM(S + J, 𝜎) + (1 − p)CBSM(S − pJ, 𝜎)
(24.35)

In order to make further useful approximations, we will assume that we
are in the regime where the three dimensionless numbers, p, 𝜎

√
𝜏, and J/S

satisfy

p ≪ 𝜎
√
𝜏 ≪

J
S

(24.36)

In other words, we are considering a regime where there is a small probability
p of a large jump J, where by a small probability we mean small relative to
the diffusion standard deviation 𝜎

√
𝜏 of returns over the life of the option,

and by a large jump we mean J/S is large in percentage terms relative to the
diffusion standard deviation of returns over the life of the option. Using these
assumptions, we can then make approximations that keep only the leading
order in p.

Let’s now look at Equation 24.35 in this regime. For the moment, we’ll
also assume that the option is initially close to at-the-money with K ≈ S.
Because J∕S ≫ 𝜎

√
𝜏, the positive jump J takes the call deep into-the-money,
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so that the first call in the mixture, C(S + J, 𝜎), is effectively a forward, with
value

C(S + J, 𝜎) ≈ S + J − Ke−r𝜏

≈ S + J − K
(24.37)

where, in the last line, we rely on our assumption that r = 0. Note that
in assuming that the call is effectively a forward, we have crucially assumed
that the jump J is positive, and therefore the equation we derive for the jump-
diffusion call price and smile will not be valid for negative jumps. It is not
difficult to repeat the present analysis for a put with negative jumps.

Under these circumstances, substituting Equation 24.37 into Equa-
tion 24.35, we obtain

CJD = p × (S + J − K) + (1 − p)CBSM(S − pJ, 𝜎) (24.38)

Because pJ is small, the second term in the mixture, CBSM(S − pJ, 𝜎), repre-
sents an option that is close to at-the-money. For call options close to at-the-
money, CBSM(S, 𝜎) ∼ S𝜎

√
𝜏 , so the term pCBSM(S − pJ, 𝜎) in Equation 24.38

is of order pS𝜎
√
𝜏, which is much smaller than the first term, pS. Disregard-

ing pCBSM, we therefore have the approximation

CJD ≈ p × (S + J − K) + CBSM(S − pJ, 𝜎)

≈ p × (S − K + J) + CBSM(S, 𝜎) − pJ
𝜕CBSM

𝜕S

≈ CBSM(S, 𝜎) + p ×
[
S − K + J

(
1 −

𝜕CBSM

𝜕S

)]

≈ CBSM(S, 𝜎) + p × [S − K + J(1 − N(d1))]

(24.39)

where we have expanded CBSM(S − pJ, 𝜎) in a first-order Taylor series for
small pJ.

Close to at-the-money,

N(d1) ≈ 1
2
+ 1

√
2𝜋

1

𝜎
√
𝜏

ln
(

S
K

)
(24.40)
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Therefore,

CJD ≈ CBSM(S, 𝜎) + p ×

[

(S − K) + J

(
1
2
− 1

√
2𝜋

1

𝜎
√
𝜏

ln
(

S
K

))]

(24.41)

Now close to at-the-money, the (S – K) term in Equation 24.41 is negligible
compared to J and can be dropped; ln(S/K) is also small when considered
alone, but it is multiplied by J∕𝜎

√
𝜏, which is large in the regime we are

examining, so we need to keep it. Formally, if 𝜎
√
𝜏 is small and J and K are

of similar magnitude, then

J

𝜎
√
𝜏

ln
(

S
K

)
=

J

𝜎
√
𝜏

ln
(

1 + S − K
K

)
≈

J
K

[
S − K

𝜎
√
𝜏

]

≈ O

(
S − K

𝜎
√
𝜏

)

≫ S−K

(24.42)

Therefore,

CJD ≈ CBSM (S, 𝜎) + pJ

(
1
2
− 1

√
2𝜋

1

𝜎
√
𝜏

ln
(

S
K

))

(24.43)

This is the approximate formula for the jump-diffusion call price close to
at-the-money in the case where only one positive jump is possible and p ≪

𝜎
√
𝜏 ≪ J∕S.
Someone using the BSM model to interpret a jump-diffusion price will

quote the price as a BSM implied volatility of 𝛴 where CBSM(S, 𝛴) = CJD.
In order to relate the implied volatility to the actual diffusion volatility, we
can use the approximation

CJD = CBSM(S,𝛴)

= CBSM(S, 𝜎 + 𝛴 − 𝜎)

≈ CBSM(S, 𝜎) +
𝜕CBSM

𝜕𝜎
(𝛴 − 𝜎)

(24.44)

Comparing Equations 24.43 and 24.44, we see that

𝛴 ≈ 𝜎 +

pJ

(
1
2
− 1

√
2𝜋

1

𝜎
√
𝜏

ln
(

S
K

))

𝜕CBSM

𝜕𝜎
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For options close to at-the-money,

𝜕CBSM

𝜕𝜎
= S

√
𝜏N′(d1) ≈

S
√
𝜏

√
2𝜋

(24.45)

so that

𝛴 ≈ 𝜎 + pJ

√
2𝜋

S
√
𝜏

(
1
2
− 1

√
2𝜋

1

𝜎
√
𝜏

ln
(

S
K

))

≈ 𝜎 +
pJ

S
√
𝜏

(√
𝜋

2
+ 1

𝜎
√
𝜏

ln
(K

S

))
(24.46)

We see that with these approximations the jump-diffusion smile is linear in
ln(K/S) when the option is close to at-the money. The BSM implied volatility
increases when the strike increases, as we would have expected given the
possibility of a large positive jump J.

We can examine this a little more closely for both small and large expi-
rations. In the Merton model we showed that the effective probability of n
jumps is

p(n) = e−𝜆𝜏
(𝜆𝜏)n

n!
(24.47)

The effective probability of one jump, p in Equation 24.47, is then
p = 𝜆𝜏e−𝜆𝜏 where 𝜆̄ = 𝜆eln(1+J) = 𝜆(1 + J) in terms of the definition of J in
Equation 24.26, and 𝜆 is the probability of a jump per unit of time. Inserting
this expression for p into Equation 24.46 leads to

𝛴 ≈ 𝜎 +
𝜆
√
𝜏e−𝜆𝜏J

S

(√
𝜋

2
+ 1

𝜎
√
𝜏

ln
(K

S

))

≈ 𝜎 + 𝜆e−𝜆𝜏
J
S

(√
𝜋𝜏

2
+ 1

𝜎
ln

(K
S

))
(24.48)

For short expirations, as 𝜏 → 0, the implied volatility smile becomes

𝛴(K, S) ≈ 𝜎 + 𝜆
J
S

1
𝜎

ln
(K

S

)
(24.49)
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F IGURE 24.6 Jump-Diffusion Smile with a Positive Jump

This is a finite smile that doesn’t vanish for small expirations. Its slope is
proportional to the percentage jump size and its probability, and linear in
ln(K/S). The greater the expected jump, the greater the skew. This model is
qualitatively appropriate for explaining the short-term equity index skew.

For long expirations, the approximations of Equation 24.36 may no
longer be valid. Nevertheless, as 𝜏 → ∞ in Equation 24.49, e−𝜆𝜏 goes to zero,
and the coefficient of the ln(K/S) term in Equation 24.48 vanishes. The long-
term smile is flat.

The preceding analysis suggests that asymmetric jumps produce a steep
short-term skew and a flat long-term skew. Figure 24.6 shows the smiles
produced from a jump-diffusion model with a fixed jump size for options
with 0.1 years to expiration, based on a jump frequency 𝜆 = 0.1 per year, a
jump size of 40%, and a diffusion volatility of 10%.

We can use Equation 24.48 to get the approximate formula for the smile
in Figure 24.6, which is

𝛴 ≈ 𝜎 +
𝜆
√
𝜏e−𝜆𝜏J

S

(√
𝜋

2
+ 1

𝜎
√
𝜏

ln
(K

S

))

≈ 0.102 + 0.56 × ln
(K

S

)
(24.50)

which is a good approximation to the exact results near at-the-money.
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FURTHER THOUGHTS AND READING

Merton’s model of jump-diffusion regards jumps as “abnormal” market
events that have to be superimposed upon “normal”diffusion. The view that
the market has two regimes of behavior, normal and abnormal, is regarded as
contrived both by Benoit Mandelbrot and by Eugene Stanley and his econo-
physics collaborators. To paraphrase their view, a single model rather than
a mixture of “normal” and “abnormal” models should ideally explain all
events.

END-OF-CHAPTER PROBLEMS

24-1. Estimate the price of a 24,000 strike put with two weeks to expiration
on the Hang Seng Index (HSI). Assume the Hang Seng is currently
trading at 25,000, but occasionally the level jumps. Imagine that when
a jump occurs, the log of the index always falls by 10%, and these
jumps happen on average five times per year. In the absence of jumps,
the diffusion volatility is 20%. Assume that the riskless rate is 2%
and dividends are zero. Calculate the value of the put option. If there
were no jumps and the diffusion was still 20%, what would the BSM
value of the put be?

24-2. Repeat the previous problem, only now rather than the jumps having
a fixed size, assume that the jumps are normally distributed with a
mean of −10% and a standard deviation of −5%.

24-3. You are interested in trading options with one week to expiration on
IBM. Assume IBM is currently trading at $100. Over the next week,
you believe that there is a 10% probability of a 15% jump upward in
the stock price. If there is no jump, the diffusion volatility will be 20%
(i.e., 20% per year). Using Equation 24.46 graph the approximate
BSM implied volatility smile for strikes from $80 to $120.



Epilogue

There is no logical path to these laws; only intuition, resting on sym-
pathetic understanding of experience, can reach them.

—Albert Einstein

I n 1994, when researchers began attempting to explain the volatility smile,
many of us hoped that there would be one better model that could replace

Black-Scholes-Merton. Instead, we have ended up with a plethora of models,
each of which, in its own way and under the right circumstances, can explain
some aspects of the volatility smile.

Some readers may find this lack of a single perfect model to be a dis-
appointment. They shouldn’t. As we stated at the beginning of the book,
financial markets reflect human behavior, and humans don’t follow strict
rules. Financial models are therefore bound to be imperfect.

As the economy changes, as market participants learn from experience,
as new technologies emerge, so new markets and products are created. Some
of this change is driven by our own attempts to better understand mar-
kets: Models not only change the pattern of trading in existing markets, but
make possible trading in new, previously unimagined markets. Thus, new
and improved models lead to new markets which lead to newer models, ad
infinitum.

Rather than be disappointed, we find the challenge of financial engineer-
ing to be both profound and inspiring. There is no approach to modeling
that avoids careful observation, hard work, common sense, and a sympa-
thetic understanding of market participants and the phenomena they cause.
Accepting that interesting and exciting challenge is the job of a financial
engineer. Go forth and model!
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APPENDIX A
Some Useful Derivatives of the

Black-Scholes-Merton Model

U nderstanding option sensitivities often involves taking derivatives of the
Black-Scholes-Merton (BSM) equations. We present some useful results

here. Even extensions of the BSM model often make use of these BSM deriva-
tives to estimate corrections to the BSM results.

The BSM solution for a call price on a non-dividend-paying stock is

C (S, K, 𝜏, 𝜎, r) = SN
(
d1

)
− Ke−r𝜏N

(
d2

)

d1 =
ln
(

SF

K

)
+ 𝜎2

2
𝜏

𝜎
√
𝜏

d2 =
ln
(

SF

K

)
− 𝜎2

2
𝜏

𝜎
√
𝜏

SF = er𝜏S

N (x) = 1
√

2𝜋

x

∫

−∞

e−
1
2

y2
dy

Useful derivatives:

� N′ (x) = 1
√

2𝜋
e−

1
2

x2

� KN′ (d2
)
= SFN′ (d1

)

�
𝜕d1,2

𝜕K
= −1

K𝜎
√
𝜏

�
𝜕d1,2

d𝜎
= −1

𝜎2
√
𝜏
ln
(

SF

K

)
± 1

2

√
𝜏

419



420 APPENDIX A: DERIVATIVES OF THE BLACK-SCHOLES-MERTON MODEL

� 𝜕C
𝜕𝜎

= 1
√

2𝜋
Se−

1
2

d2
1
√
𝜏

� 𝜕C
𝜕S

= N
(
d1

)

� 𝜕C
𝜕K

= −e−r𝜏N
(
d2

)



APPENDIX B
Backward Itô Integrals1

STANDARD INTEGRATION

Before getting to backward Itô integrals or any kind of stochastic integral,
let’s start by reviewing integration involving standard, or Riemann, integrals.
For a standard integral, integration is equivalent to finding the area under a
curve. Take, for example, the function in Figure B.1, f(x) = −x2 + 10x, for
0 ≤ x ≤ 10.

In order to determine the area under the curve, we simply integrate as
follows:

A =
∫

10

0
f (x)dx

=
∫

10

0
(−x2 + 10x)dx

=
[
−1

3
x3 + 5x2

]10

0

= 166.67

If there were no closed-form solution for the integral of the function, we
could approximate the integral using numerical integration. One of the
simplest and most popular numerical methods is to approximate the inte-
gral using a series of rectangles, where each rectangle has the same width,
and the rectangle’s height is determined by the height of the function at
its midpoint. Figure B.2 shows our sample function approximated using
10 rectangles.

1 Some parts of this appendix follows closely parts of the lecture notes, “A Quick In-
troduction to Stochastic Calculus,” prepared by Ward Whitt at Columbia University.
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F IGURE B.1 A Simple Function

Our midpoint numerical approximation based on n rectangles, AM(n),
can be written as

AM(n) =
n−1∑

i=0

(xi+1 − xi)f
(xi+1 − xi

2

)
(B.1)
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F IGURE B.2 Midpoint Numerical Integration
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In our current example, n = 10, and x0 = 0, x1 = 1, . . . , x10 = 10. With n =
10, the midpoint approximation sums to 167.5. Close, but not perfect.

As we add more rectangles, increasing n and decreasing the width of
each rectangle, the approximation will tend to improve. In the limit n → ∞,
the width of each rectangle goes to zero, and the approximation converges
to the true value of the integral:

lim
n→∞

AM(n) = A (B.2)

What would happen if, instead of the midpoint, we had evaluated the
function at the start of each interval? This method, which we will call the
forward approach, is depicted in Figure B.3. Mathematically:

AF(n) =
n−1∑

i=0

(xi+1 − xi)f (xi) (B.3)

With 10 rectangles, forward numerical integration produces a value
of 165.

Finally, we could evaluate the function at the end of every interval, what
we will call the backward approach, as depicted in Figure B.4. With 10 rect-
angles, backward numerical integration also produces an estimate of 165.

As n → ∞, just as with the midpoint method, both forward and back-
ward numerical integration converge to the true integral. In fact, we could
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F IGURE B.3 Forward Numerical Integration
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0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

f(
x)

x

F IGURE B.4 Backward Numerical Integration

choose any point within the interval—say 10% from the starting edge, or
even a randomly chosen point—and the approximation would still converge.
As the width of each rectangle gets smaller, the start, the end, the middle, and
all of the other points in the interval converge. In the limit our choice does
not matter.

STOCHASTIC INTEGRATION

With a stochastic integral, we can also use numerical integration, dividing
the integral into finer and finer parts, in an attempt to approximate the con-
tinuous case. Surprisingly, unlike with the Riemann integral, it turns out that
where we evaluate the function within the rectangle matters. The midpoint,
forward, and backward approaches do not converge to the same result. In
fact, there is no unique continuous result to converge to. In the case of Brow-
nian motion, the forward numerical integration converges to an Itô integral,
the backward approach converges to a backward Itô integral, and the mid-
point approach converges to a Fisk-Stratonovich integral. Let’s see why.

Denote a standard Brownian motion evaluated at time t by B(t), where

B(t0) = 0 (B.4a)

E[dB(t)] = 0 (B.4b)

E[dB(t)2] = dt (B.4c)
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Forward Approach

As an example, we would like to approximate the continuous stochastic Itô
integral

∫

t

0
B(s)dB(s)

We can approximate the continuous integral as a summation using our for-
ward approach as follows:

AF(n) =
n−1∑

i=0

[B(ti+1) − B(ti)]B(ti) (B.5)

Here, t0 = 0 and tn = t. It might seem counterproductive at first, but we can
rewrite each term in the summation as follows:

[B(ti+1) − B(ti)]B(ti) =
1
2

[
B(ti+1)2 − B(ti)

2] − 1
2

[B(ti+1) − B(ti)]
2 (B.6)

Substituting into Equation B.5 and rearranging, we obtain

AF(n) = 1
2

n−1∑

i=0

[
B(ti+1)2 − B(ti)

2] − 1
2

n−1∑

i=0

[B(ti+1) − B(ti)]
2 (B.7)

Most of the terms in the first summation cancel each other out, leaving

AF(n) = 1
2

[
B(tn)2 − B(t0)2] − 1

2

n−1∑

i=0

[B(ti+1) − B(ti)]
2

= 1
2

B(t)2 − 1
2

n−1∑

i=0

[B(ti+1) − B(ti)]
2

(B.8)

In the limit, as n increases and the width of each rectangle decreases,

lim
n→∞

E
[[

{B(ti+1) − B(ti)}
2]] = E[dB(t)2] = dt = ti+1 − ti (B.9)

In the limit, the remaining summation in Equation B.8 is then

lim
n→∞

n−1∑

i=0

[B(ti+1) − B(ti)]
2 =

n−1∑

i=0

ti+1 − ti (B.10)
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As before, most of the terms in the summation cancel, leaving us with

lim
n→∞

n−1∑

i=0

[B(ti+1) − B(ti)]
2 = tn − t0 = t (B.11)

Substituting back into Equation B.8, we now have:

lim
n→∞

AF(n) = 1
2

B(t)2 − 1
2

t (B.12)

The solution to our Itô integral is then:

∫

t

0
B(s)dB(s) = 1

2
B(t)2 − 1

2
t (B.13)

Throughout the rest of the book, unless noted otherwise, when we refer
to an Itô integral, or a standard Itô integral, we mean an Itô integral based
on the forward approach as shown here.

Backward Approach

Next, we examine what happens if we use our backward approximation
method. In the limit, we will denote the backward Itô integral as

∫

t

0
B(s)[dB(s)]b (B.14)

Our backward approximation is:

AB(n) =
n−1∑

i=0

[B(ti+1) − B(ti)]B(ti+1) (B.15)

We can reexpress each term in the summation as

[B(ti+1) − B(ti)]B(ti+1) = [B(ti+1) − B(ti)]B(ti) + [B(ti+1) − B(ti)]
2 (B.16)

where the first term on the right-hand side is equal to the term in the sum-
mation of our forward approximation, Equation B.5. This gives us

AB(n) = AF +
n−1∑

i=0

[B(ti+1) − B(ti)]
2 (B.17)
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In the limit, using Equation B.11, we have

lim
n→∞

AB(n) = lim
n→∞

AF + t

= 1
2

B(t)2 − 1
2

t + t

= 1
2

B(t)2 + 1
2

t

(B.18)

This is the solution to the backward Itô integral:

∫

t

0
B(s)[dB(s)]b = 1

2
B(t)2 + 1

2
t (B.19)

This is almost identical to the standard Itô integral, only now the sign of the
final term has changed.

We omit the proof, but it should not be too difficult to imagine what
would happen if we used our midpoint approximation: The final result
would be exactly between the standard and backward Itô integrals, equal to
(1/2)B(t)2. This flavor of stochastic integral is known as a Fisk-Stratonovich
integral.

Convert ing a Backward Integral into a Forward
Integral , or Integrat ion by Parts

In this section we provide a heuristic derivation of the formula for integration
by parts when integrating over stochastic variables.

First, we review integration by parts for functions of nonstochastic vari-
ables. If we have two functions, f(x) and g(x), then, in terms of differentials,

d(fg) = f (x + dx)g(x + dx) − f (x)g(x)

= (f + df )(g + dg) − fg

= fdg + gdf + df ⋅ dg

(B.20)

If x is an ordinary nonstochastic variable, and f(x) and g(x) are non-
stochastic, then dfdg is of order dx2, much smaller than dx, and therefore
negligible in the limit dx → 0. In that case we obtain the product rule

d(fg) = fdg + gdf (B.21)
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If we integrate both sides of this equation, we have

∫

d(fg) =
∫

fdg +
∫

gdf (B.22)

or, for a definite integral over x from a to b,

∫

b

a
fdg = [fg]b

a −
∫

b

a
gdf (B.23)

which is the usual equation for integration by parts.
If f and g are functions of a stochastic variable x that undergoes Brown-

ian motion, then df and dg in Equation B.20 are each of order
√

dx because
of the square root nature of Brownian motion. Therefore dfdg is itself of
order dx and not negligible compared to the drift dx of Brownian motion,
in contrast to the preceding nonstochastic case.

Figure B.5 illustrates schematically the full differential d(fg) between
(f + df)(g + dg) and fg. From the diagram, and from Equation B.20,

d(fg) = fdg + gdf + dfdg

corresponding to the areas A + B + C. As we explained, area B is not negli-
gible in the limit dx → 0.

f

B = dfdgA = fdg

f + df

g + dg

g

C = gdf

F IGURE B.5 A Schematic Illustration of Stochastic Integration by
Parts
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One way of decomposing the right-hand side of d(fg) is to write it as
(f + df )dg + gdf . In that case, (f + df ) is the magnitude of the function f(x)
after the change dg has occurred, so (f + df )dg is a backward term in a
stochastic integral, representing f [dg]B as explained earlier. Correspondingly,
the term gdf is a forward term in a stochastic integral, because g is the mag-
nitude before the change df occurs. Therefore, we can heuristically write

d(fg) = gdf + (f + df )dg = gdf + f [dg]B (B.24)

By instead grouping the right-hand side of d(fg) into the terms (g + dg)df +
fdg, one can similarly write

d(fg) = fdg + g[df ]B (B.25)

We can rewrite Equation B.25 as

fdg = d(fg) − g[df ]B (B.26)

Formally integrating over x from a to b, we obtain the integration by parts
result

∫

b

a
fdg = [fg]b

a −
∫

b

a
g[df ]B (B.27)

where the left-hand side is a forward stochastic integral and the right-hand
side involves a backward one.





APPENDIX C
Variance Swap Piecewise-Linear

Replication

I n Chapter 4 we described how to replicate variance by replicating the
derivative contract whose payoff is given by

𝜋
(
ST , S0, T, T

)
= 2

T

[(
ST − S0

S0

)
− ln

(
ST

S0

)]
(C.1)

Here T is the time to the expiration of the variance swap, ST is the price of
the stock at expiration, and S0 is the initial stock price at time t = 0. The
smooth curve in Figure C.1 represents this payoff function, which vanishes
at ST = S0.

The initial value of this derivative contract at time t = 0 is equivalent to
the value of the variance 𝜎2

K that would make a variance swap worth zero at
inception. Equation C.1 is just Equation 4.41 of Chapter 4, which assumes
that the riskless rate r is small and that rT is therefore negligible.

In this appendix we demonstrate how to approximately replicate the
payoff 𝜋(ST , S0, T, T) with a portfolio containing a finite number of options.
The initial value of the portfolio of options will therefore approximate the
market price of variance.

In Chapter 3, we demonstrated how you could replicate the payoff of
any piecewise-linear payoff function using riskless bonds, stock, calls, and
puts by starting at S(T) = 0, working from left to right, and adding securities
as needed at each inflection point. We could use the same approach here, but
instead in what follows we use an easier method that involves working from
the center out. The basic idea is nevertheless the same.

Let’s assume that you can trade call options with successively higher
strikes K0, K1c, K2c,… and put options with successively lower strikes
K0, K1p, K2p,…, and further assume that K0 = S0.

We can then approximate the payoff of the smooth curve in Figure C.1
by a series of piecewise linear segments with breaks in slope at the strikes
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F IGURE C.1 Piecewise-Linear Replication of a Variance Swap

defined earlier. The parameters 𝜆c,p
i in Figure C.1 represent the magnitude of

the slopes of successive lines in the approximation, and are therefore positive
by convention.

It is not too difficult to see that the first segment to the right of K0 is
equivalent to the payoff of 𝜆c

0 call options with strike K0. The second segment
to the right is equivalent to the payoff of 𝜆c

1 − 𝜆c
0 call options with strike K1c,

which, when added to the payoff of the first call, produces the correct slope.
Similarly, the first segment to the left of K0 is equivalent to the payoff of 𝜆p

0
put options with strike K0. The second segment to the left is equivalent to
the payoff of 𝜆p

1 − 𝜆
p
0 put options with strike K1p, which, when added to the

payoff of the first put, produces the correct slope there. The more segments
we allow in the approximation, the more closely the linear approximation
replicates the actual function.

The approximate market price of variance is given by the value of this
replicating portfolio at time t = 0, and is simply the sum of the values of the
following options:

V(0) = ⋯ +
(
𝜆

p
2 − 𝜆

p
1

)
P(K2p) +

(
𝜆

p
1 − 𝜆

p
0

)
C(K1p) + 𝜆

p
0P(K0) + 𝜆c

0C(K0)

+
(
𝜆c

1 − 𝜆c
0

)
C(K1c) +

(
𝜆c

2 − 𝜆c
1

)
C(K2c) +⋯ (C.2)

Here C(K) and P(K) respectively denote the prices at time t = 0 of standard
calls and puts with strike K.

Equation C.2 is Equation 4.42 in Chapter 4.



Answers to End-of-Chapter
Problems

CHAPTER 2

2-1. The information from the problem can be summarized in the follow-
ing table:

S1 S2

A $9 $11
B −$5 $5
Target $100 $100

The answer is to buy 10 units of A and short 2 units of B.

S1 S2

10 × A $90 $110
−2 × B $10 −$10
10 × A − 2 × B $100 $100

2-2. Because you can borrow at the riskless rate, the Sharpe ratio of your
portfolio P will be the same as for ABC stock. Using Equation 2.2 we
have:

𝜆P =
𝜇P − r
𝜎P

=
𝜇ABC − r
𝜎ABC

= 𝜆ABC

Rearranging terms,

𝜇P = 𝜆ABC𝜎P + r

= 0.60 ⋅ 10% + 2%
= 8%
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2-3. After you receive your initial investment of $100, you would either
borrow $100 or, equivalently, sell $100 of riskless bonds. You would
then invest $200 in the HSI ETF.

If the market goes up 10%, then your $200 position in HSI will
be worth $220. The net account value, though, is $120, $220 in HSI
less your $100 loan. Looked at another way, this is your initial $100
plus the $20 profit from the levered HSI position. The portfolio is
now levered only 1.83× ($220/$120 = 1.83). In order to bring the
portfolio back to 2× leverage, you borrow an additional $20 and buy
an additional $20 of HSI. Maintaining a constant level of leverage is
a form of dynamic replication.

CHAPTER 3

3-1. Using Equation 3.5 and put-call parity, we can re-create the collar by
buying a put with a strike at L, selling a put with a strike at U, and
buying an amount of riskless bonds, Ue−r(T−t).

Collar = S + PL(S, t) − CU(S, t)

= S + PL(S, t) −
[
PU(S, t) + S − Ue−r(T−t)

]

= PL(S, t) − PU(S, t) + Ue−r(T−t)

3-2. The payoff of this butterfly can be created by buying a call with a strike
at $10, selling two calls with a strike at $20, and buying a call with a
strike at $30. From Equation 3.7, the intercept and the initial slope are
both zero, so there is no need for riskless bonds or the underlying stock.
The slopes are then +1, −1, and 0, which gives changes in the slopes of
+1, −2, and +1, consistent with our answer.

3-3. To counteract the −0.40 delta of each option, you need to buy 0.40
shares. There are 100 options, so you need to buy 40 shares in total.

Equation 3.12 is true for both calls and puts. If the stock goes up
1%, then dS is $1, and if it goes down 1%, dS is −$1. Either way, dS2

is 1. For each hedged option, we have:

dV(S, t) = Θdt + 1
2
ΓdS2

= −7.3 1
365

+ 1
2

0.04 ⋅ 1

= −0.02 + 0.02

= 0
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The time decay and convexity perfectly cancel over one day for a 1%
move. For the entire position, the result is then 100 × $0 = $0.

The delta-hedged position would not make or lose anything if the
stock moved up or down 1%.

3-4. If the stock moves up 4%, then dS is $4 and dS2 is 16. For each hedged
put, then:

dV(S, t) = Θdt + 1
2
ΓdS2

= −7.3 1
365

+ 1
2

0.04 ⋅ 16

= −0.02 + 0.32

= 0.30

For the entire position of 100 puts, the profit is then 100 × $0.30 =
$30.

If the stock moved up 4%, the position would make $30.
3-5. Your firm is short $10,000 of GOOG, which, at $500 per share, is 20

shares. These 20 shares are delta-hedging 100 call options, so the delta
of each call must be 0.20 = 20/100.

Using put-call parity, Equation 3.4, and assuming interest rates are
zero, we have:

C(S, t) = P(S, t) + S − Ke−r(T−t)

= P(S, t) + S − K

We can replace each call by purchasing a put with the same strike and
time to expiration, purchasing a share of stock, and selling riskless zero
coupon bonds with face value equal to the strike price, $550. To replace
100 call options, we would need to buy 100 puts, buy $50,000 worth
of GOOG stock, and sell $55,000 of riskless bonds. The purchase of
$50,000 of GOOG stock, on top of our initial short position, will leave
us with $40,000 of GOOG stock, or 80 shares. The delta of each put
must be −0.80 = −80/100.

If dividends are zero, put-call parity for a call and put with the
same strike and expiration requires C(S, t) = P(S, t) + S − Ke−r(T−t)

at any time. Differentiating with respect to the stock price S leads to
the result ΔC = ΔP + 1. In our current example, 0.20 = −0.80 + 1.
This is strictly true for European puts on non-dividend-paying stocks.
If dividends are nonzero, the formula needs to be amended.
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3-6. From the graph, the slopes 𝜆 of the piecewise-linear payoff function are
given by the table:

S V(S) 𝜆 Change of Slope

0 20 −1.00
10 10 0.00 1.00
20 10 1.00 1.00
30 20
40 30

According to Equation 3.7, we therefore need to purchase $20 of risk-
less bonds (based on the intercept and a riskless rate of 0%), sell one
share of the underlying stock (based on 𝜆0), and buy one call with a
strike of 10 and one with a strike of 20 (based on the change in the
slopes). Multiplying the prices by these weights gives us the final cost:

Amount Unit Price Cost

Bonds 20.00 1.00 20.00
Stock −1.00 20.00 −20.00
C(10) 1.00 10.09 10.09
C(20) 1.00 3.17 3.17

13.26

3-7. We can similarly replicate the payoff by buying $10 worth of riskless
bonds, a put with a strike at 10, and a call with a strike at 20.

We can use put-call parity to determine the price of the put struck
at 10:

P(S, t) = C(S, t) − S + Ke−r(T−t)

= 10.09 − 20 + 10

= 0.09

Amount Unit Price Cost

Bonds 10 1.00 10
Stock 0.00 20.00 0.00
P(10) 1.00 0.09 0.09
C(20) 1.00 3.17 3.17

13.26
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The value of this new portfolio is $13.26, the same as before. Even
though they were constructed with different instruments, both portfo-
lios have the same payoff at expiration. By the law of one price, they
should have the same value.

CHAPTER 4

4-1. We can use Equations 4.2 and 4.3 to determine the price and vega of
the call option. When implied volatility is 20%, the price is ¥845.58
and the vega is ¥4,231.42. If the implied volatility increased to 21%,
we would expect the price to increase by ¥42.31 = ¥4,231.42 × 1%
to ¥887.89. The actual call price when implied volatility is 21% is
¥887.78.

4-2. To get the notional of the variance contract, we need to divide by twice
the strike volatility:

Nvar =
1

2𝜎K
Nvol

Nvar =
1

2(0.25)
1000000

Nvar = 2000000

The notional should be €2 million.
The payoff of the hedged position is:

𝜋 = Nvol(𝜎R − 𝜎K) − Nvar
(
𝜎2

R − 𝜎2
K

)

When realized volatility is 24%, the payoff is:

𝜋 = 1000000(0.24 − 0.25) − 2000000(0.242 − 0.252)
𝜋 = −10000 − (−9800) = −200

When the realized volatility is 30%, the payoff is:

𝜋 = 1000000(0.30 − 0.24) − 2000000(0.302 − 0.252)
𝜋 = 50000 − (55000) = −5000

Your firm will lose €200 if realized volatility is 24% and €5,000 if real-
ized volatility is 30%. The hedged position loses money if the realized
volatility is higher or lower than the strike.
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4-3. Because interest rates and dividends are assumed to be zero, we can
use Equation 4.3, with 𝜈 = 0.15 × 0.251/2 = 0.075. Table A4.1 shows
value of 𝜅 for the options and the weighted average portfolio for a
limited number of underlying prices. The chart is based on considerably
more points. The weighted average series displays a very stable region
around the strike price, but deteriorates quickly below 80 and above
120, where we have no option coverage.

0
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S

80 90 100 110 120 Wt avg

TABLE A4.1 Kappa for Five Options

S

K Wt 60 70 80 90 100 110 120 130 140

80 0.29 0.03 10.19 53.15 16.43 0.71 0.01 0.00 0.00 0.00
90 0.23 0.00 0.19 16.43 59.80 23.50 1.84 0.04 0.00 0.00

100 0.19 0.00 0.00 0.71 23.50 66.44 31.08 3.79 0.17 0.00
110 0.16 0.00 0.00 0.01 1.84 31.08 73.09 38.95 6.65 0.47
120 0.13 0.00 0.00 0.00 0.04 3.79 38.95 79.73 46.96 10.42
Wt

avg
1.00 0.01 3.04 19.57 23.42 23.48 22.72 17.19 7.20 1.43
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4-4. We start with Equation 4.39, setting r = 0 and T = 1:

𝜋
(
S0, S∗, 0, T

)
= 2

T

[

rT − (erT − 1) + erT
∫

S∗

0

1
K2

P(K)dK

+ erT
∫

∞

S∗

1
K2

C(K)dK
]

𝜋
(
S0, S∗, 0, 1

)
= 2

[

∫

S∗

0

1
K2

P(K)dK +
∫

∞

S∗

1
K2

C(K)dK

]

Setting S* to the current stock price, $10, we have

𝜋(10, 10, 0, 1) = 2

[

∫

10

5

1
K2

(
1

20
K2 − 0.5K + 1.25

)
dK

+
∫

15

10

1
K2

(
1

20
K2 − 1.5K + 11.25

)
dK

]

= 1
10

[

∫

10

5

(
1 − 10 1

K
+ 25 1

K2

)
dK

+
∫

15

10

(
1 − 30 1

K
+ 225 1

K2

)
dK

]

= 1
10

{[
K − 10 ln(K) − 25 1

K

]10

5

+
[
K − 30 ln(K) − 225 1

K

]15

10

}

= 1
10

[(
10 − 10 ln(10) − 25

10

)
−
(

5 − 10 ln(5) − 25
5

)

+
(

15 − 30 ln(15) − 225
15

)
−
(

10 − 30 ln(10) − 225
10

)]

= 1
10

(20 + 20 ln(2) − 30 ln(3))

= 2 + 2 ln(2) − 3 ln(3)

≈ 0.0905

The fair variance strike is approximately 0.0905, which is about 30%2.
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4-5. We can use Equation 4.42 to approximate the market price of variance.
We begin by calculating the value, 𝜋(Ki), of the replicating portfolio at
each of the available strike prices Ki, using Equation 4.41. Next we cal-
culate the absolute value of the slopes, 𝜆i, for our piecewise-linear func-
tion. We then use these slopes to calculate the weights for the options.

For example, for the first available option, with a strike at $350,
we calculate the slope of the replicating portfolio between $300 and
$350. For a strike of $300, we have

𝜋(K) = 2
T

[(
ST − S∗

S0

)
− ln
(

ST

S0

)]

𝜋(300) = 2
0.5

[(
300 − 500

500

)
− ln
(

300
500

)]

= 4
[
−2

5
− ln
(

3
5

)]

= 0.433

Similarly, for a strike of $350 we have

𝜋(350) = 0.227

The first slope is then

𝜆i =
||||

𝜋(Ki) − 𝜋(Ki−1)
Ki − Ki−1

||||

𝜆1 =
||||
0.227 − 0.443

350 − 300

||||
= 0.004332

The second slope can be found in the same way to be 0.002683. The
first weight is then

w1 = 𝜆1 − 𝜆2

= 0.004332 − 0.002683

= 0.001650

Repeating this process for each strike, and using Equation 4.42 to cal-
culate the weights, we obtain:
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Ki 𝜋(Ki) 𝜆i wi Ci Pi wi × Oi

300 0.443
350 0.227 0.004332 0.001650 5.81 0.0096
400 0.093 0.002683 0.001260 15.41 0.0194
450 0.021 0.001423 0.000994 32.06 0.0319
500 0.000 0.000429 0.000429 56.23 0.0241
500 0.000 0.000375 0.000375 56.23 0.0211
550 0.019 0.001039 0.000664 37.34 0.0248
600 0.071 0.001597 0.000557 24.15 0.0135
650 0.151 0.002071 0.000475 15.3 0.0073
700 0.254

Variance 0.1516
Vol 0.3893

The calculated fair variance is 38.93%2. The corresponding volatility
is less than the true volatility, 40%. In this case, because the range of
strikes used is so narrow, we have underestimated the fair variance.

4-6. If we proceed as we did in the previous question, we get the following
values:

Ki 𝜋(Ki) 𝜆i wi Ci Pi wi × Oi

200 1.265
250 0.773 0.009851 0.003266 0.23 0.0008
300 0.443 0.006586 0.002254 1.53 0.0034
350 0.227 0.004332 0.001650 5.81 0.0096
400 0.093 0.002683 0.001260 15.41 0.0194
450 0.021 0.001423 0.000994 32.06 0.0319
500 0.000 0.000429 0.000429 56.23 0.0241
500 0.000 0.000375 0.000375 56.23 0.0211
550 0.019 0.001039 0.000664 37.34 0.0248
600 0.071 0.001597 0.000557 24.15 0.0135
650 0.151 0.002071 0.000475 15.3 0.0073
700 0.254 0.002481 0.000409 9.53 0.0039
750 0.378 0.002837 0.000356 5.85 0.0021
800 0.520

Variance 0.1618
Vol 0.4022

The calculated fair variance is 40.22%2. This time, the corresponding
volatility is more than the true volatility, 40%. In this case, the upward
bias of the piecewise-linear method, which always overestimates the
payoff of the swap, dominates the downward bias caused by the limited
range of options.
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CHAPTER 5

5-1. According to the BSM model, the Sharpe ratios of the call option and
the stock must be equal. Starting with Equation 5.10, we have:

(𝜇C − r)
𝜎C

=
(𝜇S − r)

𝜎S

Rearranging:

𝜇C = (𝜇S − r)
𝜎C

𝜎S
+ r

= (𝜇S − r) S
C

|Δ|𝜎S

𝜎S
+ r

= (𝜇S − r) S
C
|Δ| + r

= (12% − 2%)25000
2500

|0.60| + 2%

= 62%

The expected return of the option is 62%.
Remember, this result is valid over only a small increment of time,

dt, over which we can treat Δ as a constant. Over the course of a year,
as the time to expiration and the underlying price change, the Δ of the
option will change. Options have built-in leverage, and their expected
returns can be very high. The leverage is equivalent to |Δ|(S/C), which,
in this case, gives 6× leverage. You should confirm that both the volatil-
ity and the excess return of the option are 6× that of the underlying
index.

5-2. Initially, the call is worth $5.64 (based on the implied volatility and
0.5 years to expiration) and increases to $6.16 (based on the implied
volatility, the change in the price of XYZ, and 0.496 years to expira-
tion). The profit on the option is then $0.52. At the same time, you short
$53.52 of XYZ (based on a delta of 0.5352, computed at the realized
volatility). When XYZ increases to $101, the hedge loses $0.54. The
net profit of the combined position is then a loss of $0.02.

5-3. Because the riskless rate is assumed to be zero, the value of the P&L
from hedging and the present value of the P&L from hedging are equal.
The value is equal to the difference in the value of an option valued with
the BSM formula using the realized volatility and the implied volatility,
that is, V(S, 𝜏, 𝜎R) − V(S, 𝜏,𝛴). In the preceding problem we calculated



Answers to End-of-Chapter Problems 443

that V(S, 𝜏,𝛴)= $5.64. Similarly, an option priced using the realized
volatility 25% would be V(S, 𝜏, 𝜎R) =$7.04. Our final answer is the
difference, $7.04 − $5.64 = $1.41. (The answer is not $1.40 because
of rounding.)

5-4. The change in P&L is given by

dP&L = dVI − ΔhdS − ΔhSDdt + [(ΔhS − Vh) + (Vh − VI)]rdt

= (dVh − dVh) + dVI − ΔhdS − ΔhSDdt + ΔhSrdt − Vhrdt

+ (Vh − VI)rdt

= dVh − ΔhdS + Δh(r − D)Sdt − Vhrdt + (dVI − dVh)

+ (Vh − VI)rdt

We know from Itô’s lemma that

(dVh − ΔhdS) =
(
Θh + 1

2
ΓhS2𝜎2

r

)
dt

Substituting this into our P&L equation, we obtain

dP&L =
(
Θh + 1

2
ΓhS2𝜎2

r

)
dt + Δh(r − D)Sdt − Vhrdt

+ (dVI − dVh) + (Vh − VI)rdt

=
(
Θh + Δh(r − D)S + 1

2
ΓhS2𝜎2

r − Vhr
)

dt

+ (dVI − dVh) + (Vh − VI)rdt

Now the Black-Scholes-Merton solution with the hedged volatility sat-
isfies

Θh + Δh(r − D)S + 1
2
ΓhS2𝜎2

h
− rVh = 0

Therefore,

dP&L = 1
2
ΓhS2
(
𝜎2

r − 𝜎2
h

)
dt + (dVI − dVh) + (Vh − VI)rdt

= 1
2
ΓhS2
(
𝜎2

r − 𝜎2
h

)
dt + ertd

[
e−rt (Vh − VI

)]
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Taking present values leads to

dPV[P&L] = e−r(t−t0) 1
2
ΓhS2
(
𝜎2

r − 𝜎2
h

)
dt + ert0d

[
e−rt(Vh − VI)

]

so, integrating over the life of the option, we have

PV[P&L(I, H)] = Vh − VI +
1
2 ∫

T

t0

e−r(t−t0)ΓhS2
(
𝜎2

R − 𝜎2
h

)
dt

Note that, in the limit, if the hedge volatility 𝜎h is set equal to either
the realized volatility 𝜎R or the implied volatility 𝛴, then this solution
reduces to our previous results.

CHAPTER 6

6-1. From Chapter 4, we know that the price of a European call option
when interest rates and dividends are zero is given by

C(S, K, v) = SN(d1) − KN(d2)

d1,2 = 1
v
ln
(

S
K

)
± v

2

where v = 𝜎
√
𝜏. We have

v = 0.20

√
1
4

= 0.10

then

d1,2 = 1
0.10

ln
(

2000
2000

)
± 1

2
0.10

= ±0.05

The price of the call is then

C(S, K, v) = 2000 × N(0.05) − 2000 × N(−0.05)

= 2000 × 0.52 − 2000 × 0.48

= 1039.88 − 960.12

= 79.76
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To calculate the hedging error, we first need to calculate the vega of the
call using Equation 6.15:

𝜕C
𝜕𝜎

=
S
√
𝜏

√
2𝜋

e−
1
2

d2
1

=
2000

√
1
4

√
2𝜋

e−
1
2

0.052

= 1000
√

2𝜋
0.999

= 398.44

So a one-percentage-point change in the implied volatility would
change the price of the call by approximately $4.

Now using Equation 6.12, the standard deviation of the hedging
error is approximately

𝜎HE ≈
√

𝜋

4
𝜎
√

n

𝜕C
𝜕𝜎

≈
√

𝜋

4
0.20
√

n
398.44

≈ 70.62 1
√

n

Assuming 21 business days per month, rebalancing weekly, daily, or
four times per day corresponds respectively to 63/5 = 12.6, 63, and 252
rebalancings. The standard deviation of the hedging errors in dollars is

𝜎HE(12.6) ≈ 19.90

𝜎HE(63) ≈ 8.90

𝜎HE(252) ≈ 4.45

As a percentage of the call price this corresponds to 24.95%, 11.16%,
and 5.58%:

19.90
79.76

≈ 24.95%

8.90
79.76

≈ 11.16%

4.45
79.76

≈ 5.58%
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6-2. Equation 6.18 gives an approximation for the standard deviation of
the hedging error as

𝜎HE

C
≈ 0.89
√

n

For 12.6, 63, and 252 rebalancings we have

𝜎HE

C
(12.6) ≈ 25.07%

𝜎HE

C
(63) ≈ 11.21%

𝜎HE

C
(252) ≈ 5.61%

These results are only slightly different from the results from the pre-
vious problem. Equation 6.18 provides a good approximation to the
standard deviation of the hedging error when the option is at-the-
money.

6-3. For a non-dividend-paying stock, if the riskless rate is zero, the BSM
price of a vanilla European call is

C(S, K, v) = SN(d1) − KN(d2)

d1 = 1
v
ln
(

S
K

)
+ v

2
d2 = 1

v
ln
(

S
K

)
− v

2

If the option is at-the-money, then S = K, so d1 = v/2 and d2 = −v/2
and

C(S, S, v) = S
[
N
(v

2

)
− N
(
−v

2

)]

C(S, S, v) = S
[
2N
(v

2

)
− 1
]

For the last line, we have used the fact that N(−x) = [1 – N(x)].
For small x,

N(x) ≈ N(0) + N′(0)x

≈ 1
2
+ 1
√

2𝜋
x

Setting x = v/2,

N (𝜈∕2) ≈ 1
2

(

1 + v
√

2𝜋

)
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and thus

C (S, S, v) ≈ Sv
√

2𝜋
=

S𝜎
√
𝜏

√
2𝜋

It is common to use the approximation

C (S, S, v) ≈ 0.4S𝜎
√
𝜏

CHAPTER 7

7-1. From Chapter 4, we know that the price of a European call option
when interest rates and dividends are zero is given by

C(S, K, v) = SN(d1) − KN(d2)

d1,2 = 1
v
ln
(

S
K

)
± v

2

where v = 𝜎
√
𝜏. We have

v = 0.20

√
1
4

= 0.10

and

d12 = 1
0.10

ln
(

2000
2000

)
± 1

2
0.10

= ±0.05

The price of the call is

C(S, K, v) = 2000 × N(0.05) − 2000 × N(−0.05)

= 2000 × 0.52 − 2000 × 0.48

= 1039.88 − 960.12

= 79.76

In the absence of transaction costs, the BSM price of the three-month
at-the-money call option is $79.76.
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Using Equation 7.19, with a transaction cost of 1 bp and daily
rebalancing, we have

𝜎̃ ≈ 𝜎 − k

√
2
𝜋dt

= 0.20 − 0.0001

√
2
𝜋

256
1

= 0.20 − 0.0001 × 12.77

= 0.20 − 0.0013

= 0.1987

Substituting into the BSM formula we get

d̃1,2 = ±0.04968

and

C̃(S, K, v) = 2000 × N(0.04968) − 2000 × N(−0.04968)

= 2000 × 0.52 − 2000 × 0.48

= 1039.62 − 960.38

= 79.25

The adjusted price for daily rebalancing is $79.25. Based on the
assumptions behind Equation 7.19, the call is worth $0.51 less, or
0.64% less than it would be in the absence of transaction costs.

Notice that the adjustment to the implied volatility does not
depend on the time to expiration, only on the frequency of rebalancing,
but that the impact on the price of the option will depend on the time
to expiration. All else being equal, the adjustment to the price will be
greater for options with more time to expiration.

7-2. The price of the call option in the absence of transaction costs is still
$79.76. For the short position in the option with a transaction cost of
1 bp and daily rebalancing, using Equation 7.19 we have

𝜎̃ ≈ 𝜎 + k

√
2
𝜋dt

= 0.20 + 0.0001

√
2
𝜋

256
1

= 0.20 + 0.0001 × 12.77

= 0.20 + 0.0013

= 0.2013
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Substituting into the BSM formula we get

d̃12 = ±0.0503

and

C̃(S, K, v) = 2000 × N(0.0503) − 2000 × N(−0.0503)

= 2000 × 0.52 − 2000 × 0.48

= 1040.13 − 959.87

= 80.26

The adjusted price for daily rebalancing is $80.26. For the short option
position, we would need to charge approximately $0.50 or 0.64%
more to make up for transaction costs. Note that even though the
adjustment to implied volatility in Equation 7.19 is symmetric for long
versus short positions, the BSM equation is not symmetric to changes
in volatility. The adjustment to the price for long and short positions
might be similar, but they are not equal.

The difference in the adjusted price for traders who are trying to
buy and those who are trying to sell is $80.26 − $79.25 = $1.01. This
is 1.28% of the midprice, a nontrivial bid-ask spread induced by a
transaction cost of only 1 bp.

7-3. In the absence of transaction costs, the BSM price of the three-month
call option with a strike of 2,200 is

C(S, K, v) = 2000 × N(−0.90) − 2200 × N(−1.00)

= 2000 × 0.18 − 2200 × 0.16

= 366.47 − 347.39

= 19.08

The adjustment to implied volatility does not depend on the moneyness
of the option, and is therefore the same as in Problem 7-1, that is, 𝜎̃ ≈
19.87%. Substituting into the BSM formula, we have

C(S, K, v) = 2000 × N(−0.91) − 2200 × N(−1.01)

= 2000 × 0.18 − 2200 × 0.16

= 363.06 − 344.32

= 18.74
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The difference between the unadjusted and adjusted prices is $0.34 or
1.77%. Compared to Problem 7-1, the adjustment is smaller in dollar
terms, but greater in percentage terms.

CHAPTER 8

8-1. Because the riskless rate is zero, we have:

C(S, K, v) = SN(d1) − KN(d2)

d1 = 1
v
ln
(

S
K

)
+ v

2
d2 = 1

v
ln
(

S
K

)
− v

2

With 𝜈 = 0.10,

d1 = 1
0.10

ln
(

2000
2100

)
+ 0.10

2
= −0.4379

d2 = 1
0.10

ln
(

2000
2100

)
− 0.10

2
= −0.5379

The risk-neutral probability of the call option expiring in the money is

N(d2) = 0.30

The delta of the call option is

N(d1) = 0.33

In this case, the delta is not exactly equal to the risk-neutral probability,
but it is a very good approximation to it.

8-2. Because the riskless rate is not zero, we have

C(S, K, 𝜏, 𝜎, r) = SN(d1) − Ke−r𝜏N(d2)

d1 =
ln
(

S
K

)
+
(

r + 𝜎2

2

)
𝜏

𝜎
√
𝜏

d2 =
ln
(

S
K

)
+
(

r − 𝜎2

2

)
𝜏

𝜎
√
𝜏
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With 𝜎 = 20%, 𝜏 = 1, and the r = 2.0%,

d1 =
ln
(

2000
2100

)
+
(

0.02 + 0.202

2

)
1

0.20
√

1
= −0.0440

d2 =
ln
(

2000
2100

)
+
(

0.02 − 0.202

2

)
1

0.20
√

1
= −0.2440

The difference between d1and d2 is larger than in the previous example
because the implied volatility is larger.

The risk-neutral probability of the call option expiring in the
money is

N(d2) = 0.40

The delta of the call option is:

N(d1) = 0.48

In this case, the delta, 0.48, is close to the probability of expiring in-
the-money, 40%, but not as close as in the previous problem.

8-3. Starting with Equation 8.9, we have

Δ ≈ ΔATM − 1
√

2𝜋

J
v

1
√

2𝜋

J
v
≈ ΔATM − Δ

J ≈ v
√

2𝜋
(
ΔATM − Δ

)

As in the sample problem, we know that a one-year at-the-money call
with implied volatility of 20% has a delta of approximately 0.54. For
this option, then, v = 𝜎

√
𝜏 = 0.2 ×

√
1 = 0.20. Thus,

J ≈ 0.20 ×
√

2𝜋(0.54 − 0.34)

J ≈ 0.20 × 2.5 × 0.20

J ≈ 0.10

We need to increase the strike by approximately 10%, which corre-
sponds to an index level of 4,400. If you use the exact BSM formula
to compute deltas, you’ll find that the 4,400 call actually has a delta of
0.35. To get a delta of 0.34, the strike would have to be closer to 4,430.
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8-4. The deltas for the calls are 0.60, 0.58, 0.43, and 0.32, respectively. If
you plot the implied volatilities versus the deltas, you will notice a
nearly perfect linear relationship (in this case, the implied volatilities
are nearly linear in the strike, too, but the fit with delta is slightly bet-
ter). We can specify the relationship as

𝛴 = 𝛼 + 𝛽Δ

Using the first and last call, we find the slope

𝛽 = 0.172 − 0.200
0.32 − 0.60

= −0.028
−0.28

= 0.10

We then use the first call to find the intercept

𝛼 = 0.20 − 0.10 × 0.60 = 0.20 − 0.06 = 0.14

The equation for implied volatility in terms of delta is then

𝛴 = 0.14 + 0.10Δ

We can check the accuracy of our linear approximation by substituting
the deltas and seeing that the original implied volatilities are returned.

8-5. If future annualized volatility is 20%, then, using the square root rule,
over three months a +1 standard deviation move corresponds to a
return of

0.20

√
1
4
= 0.10 = 10%

With the S&P 500 currently at 2,000, a +1 standard deviation move
corresponds to a strike of 2,200.

Because interest rates and the dividend yield are zero, the BSM
delta of a call option is given by

Δ = 𝜕C
𝜕S

= N(d1)

where,

d1 = 1
v
ln
(

S
K

)
+ v

2
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For the three-month call option, v = 𝜎
√
𝜏 =0.20

√
1
4
= 0.10 and

d1 = 1
0.10

ln
(

2000
2200

)
+ 0.10

2
= −1.0031

and the BSM delta is

Δ = N(−1.0031)

= 0.18

For the one-year call option, the strike corresponding to a +1 standard
deviation is 2,400 and d1 is

d1 = 1
0.20

ln
(

2000
2400

)
+ 0.20

2
= −1.0116

And the BSM delta is

Δ = N(−1.0116)

= 0.21

Notice that even though the strike prices are very different, the deltas
are very similar. If we assume constant future volatility, then the BSM
deltas will be similar for strikes corresponding to equally likely out-
comes. This is one reason that it is convenient to graph implied volatil-
ity as a function of delta.

8-6. In order to calculate the implied volatility of the $110 strike call option,
we need to know the delta of the $110 strike call option, but in order
to calculate the delta we need to know the implied volatility. This is
the circularity problem we referred to in the chapter when describing
implied volatility as a function of delta.

To find the solution to this problem, we need either to proceed
by trial and error or to use an optimization function. For pedagogical
reasons we proceed by trial and error, choosing different values of delta
and then calculating the corresponding strike. To do this, we first need
to express the strike as a function of delta. Taking the inverse of our
equation for the BSM delta of a call option, we have

Δ = N(d1)
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N−1(Δ) = d1

Expanding and rearranging,

N−1(Δ) = 1
v

ln
(

S
K

)
+ 1

2
v

ln
(

S
K

)
= v
(

N−1(Δ) − 1
2

v
)

S
K

= e
v
(

N−1(Δ) − 1
2

v
)

K = Se
−v
(

N−1(Δ) − 1
2

v
)

In this particular case, because we are dealing with one-year calls, v =
𝛴, and

K = Se
−𝛴
(

N−1(Δ) − 1
2
𝛴

)

Because 𝛴 is a function of delta, K is an explicit function of Δ (and the
current stock price).

The strike price that we are interested in is not too far out-of-the-
money, so a good starting point might be to try a delta of 0.50. For a
delta of 0.50, the implied volatility is

𝛴 = 0.20 + 0.30Δ
= 0.20 + 0.30 × 0.50

= 0.35

Substituting into our equation for the strike, with N−1(0.5) = 0, we find

K = Se
−𝛴
(

N−1(Δ) − 1
2
𝛴

)

= 100e
−0.35

(
N−1(0.50) − 1

2
0.35
)

= 106.32

So a delta of 0.50 corresponds to a strike of $106.32. Clearly, the delta
of the $110 call must be less than 0.50. Next, we try Δ = 0.40:

𝛴 = 0.20 + 0.30Δ
= 0.32
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and

K = 100e
−0.32

(
N−1(0.40) − 1

2
0.32
)

= 114.14

While Δ = 0.50 was too high, Δ = 0.40 is too low. For the next trial,
we might just split the interval and try 0.45, or if we want to be a bit
fancier, we can interpolate between our first two trial values:

Δnew = 0.50
(

114.14 − 110
114.14 − 106.32

)
+ 0.40

(
110 − 106.32

114.14 − 106.32

)

= 0.50 × 0.52 + 0.40 × 0.48

= 0.4529

Substituting into our formula, we find that this new Δ corresponds to
a strike of $110.09.

If we repeat this process, now interpolating between the 0.50 and
0.4529 values, we arrive at a new trial delta of 0.4541. Substituting,
we get an implied volatility of

𝛴 = 0.20 + 0.30Δ
= 0.20 + 0.30 × 0.4541

= 0.3362

and

K = 100e
−0.3362

(
N−1(0.4541)− 1

2
0.3362

)

= 110.00

This is the desired strike price. The implied volatility for the $110 strike
call is then approximately 33.62%.

CHAPTER 9

9-1. The price of the at-the-money call is $7.97. For implied volatility of
20.00%, 21.00%, and 21.25%, the price of the $101 strike call would
be $7.52, $7.91, and $8.01, respectively.

Recall from Equation 9.15 that for a 1% increase in the strike,
the upper bound on the increase in implied volatility is approximately
1.25%. When the implied volatility is unchanged, the $101 call price
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is lower, as expected. Even if volatility increases by 1%, the $101 price
is still lower than the at-the-money price. If we increase the implied
volatility by 1.25%, though, the $101 call price is just slightly higher.
Because of the principle of no riskless arbitrage, a call with a higher
strike must be worth no more than one with a lower strike; therefore,
an implied volatility of 21.25% is too high. In this case, the exact upper
bound is closer to 21.13%, just slightly less than our approximation
suggested.

9-2. The price of the at-the-money put is $7.97. For implied volatility of
20.00%, 18.75%, and 18.50%, the price of the $101 strike put would
be $8.52, $8.02, and $7.92, respectively.

When the implied volatility is held constant, the price of the put
increases as the strike increases, as expected. If the implied volatility
decreases by 1.25%, the price is still higher, but only slightly. If we
decrease the implied volatility by 1.50%, we have gone too far, and
violate the no-arbitrage constraint. In this case, the exact lower bound
is closer to a decrease of 1.38%, slightly lower than our approximation
suggested.

9-3. Using the at-the-money call and Equation 9.15, you might guess that
the upper bound is close to 26.25% = 20.00% + 6.25%, because

d𝜎 ≤ 1.25∕
√
𝜏dK∕K = 1.25 × 5% = 6.25%

If we calculate the BSM prices of the three calls, we see that 26.25%
is a little too high, in that it produces a price $167.73 for the 2,100
strike that is slightly higher than the price of the at-the-money call,
$159.31. With a little trial and error, we find that an implied volatility
of 25.19% gives us a call price of $159.29, just below the price of the
at-the-money call.

K 𝜎 C

2,000 20.00% 159.31
2,200 15.00% 50.00
2,100 26.25% 167.73
2,100 25.19% 159.29

Using 25.19%, the at-the-money-call is more expensive than the 2,100
call, which is more expensive than the 2,200 call. Using 25.19% does
not violate the slope rule for either option.

Though 25.19% does not violate the slope rule, it does violate the
curvature rule. You can see this by observing the change in price: from
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2,000 to 2,100, the call price decreases by $0.02 = $159.31 − $159.29,
but from 2,100 to 2,200 it decreases by $109.29 = $159.29 – $50.00.
The slope is getting more negative, but by Equation 9.9 the curvature
should be greater than or equal to zero, which means the slope should
get less negative. We can see the problem more clearly if we try to price
a butterfly using 25.19%:

𝜋 B = C(K − dK) − 2C(K) + C(K + dK)

= 159.31 − 2 × 159.29 + 50

= −109.26

By the principle of no riskless arbitrage, the butterfly cannot have a
negative value.

To find the upper bound that is consistent with the curvature rule,
we can search for the highest implied volatility that returns a butter-
fly price that is nonnegative. A volatility of 18.29% gives a price of
$104.64 for the 2,100 call. This gives a price for the butterfly of $0.04,
just slightly positive. A volatility of 18.30% would produce a nega-
tive value for the butterfly, so, to the nearest basis point, 18.29% is the
upper bound for the implied volatility.

CHAPTER 10

10-1. The linear model given in this problem provides a reasonable approx-
imation to call prices for 1,700 ≤ K ≤ 2,100. There are two reasons
to be wary of this model. The first is that if we try to extend the model
too far it will start to produce very unreasonable prices. In this par-
ticular case, past K = 2,239 the model will actually start to produce
negative call prices.

Another problem has to do with butterfly prices. If call prices are
linear in strike, then butterfly spreads will always be worth zero. If
C = 𝛼 + 𝛽K, then the price of a butterfly with strikes at (K – dK),
K, and (K + dK) is zero because the call prices have no curvature
with respect to strike. In this particular case, the price of the three
calls with strikes at 1,800, 1,900, and 2,000 were 325, 251, and 177,
respectively, and the price of the butterfly spread was 325 − 2 × 251 +
177 = 0.

Zero is the lower no-arbitrage limit for the price of a butterfly.
Technically this does not violate any of the restrictions discussed in
this chapter, but it is unusual. As we’ll see in the next chapter, the
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price of a butterfly option is related to the market price for a security
that pays $1 if the stock ends up between (K – dK) and (K + dK) at
expiration. A price of zero for this security suggests that the market
perceives a zero probability of the underlying index being between
(K – dK) and (K + dK) at expiration. If the S&P 500 call price function
was linear between 1,700 and 2,100, this would suggest that there was
no probability of the S&P 500 being between 1,700 and 2,100 in 11
months. There is no reason to believe that this should be the case.

CHAPTER 11

11-1. Using Equation 11.3, we calculate the pseudo-probabilities as fol-
lows:

P[NDX < 4000] = $0.28 × e0.05 = 29.44%

P[4000 ≤ NDX ≤ 4500] = $0.51 × e0.05 = 53.61%

P[NDX > 4500] = $0.20 × e0.05 = 21.03%

The three securities cover all possible states of the world: Either the
NDX is below 4,000, it is between 4,000 and 4,500, or it is above
4,500. There are no other possibilities, yet the sum of the pseudo-
probabilities is 104.08%, not 100%. The securities are not correctly
priced.

We should sell short all three of the securities for $0.99, and invest
the $0.99 at the riskless rate. At the end of the year, our $0.99 will be
worth $1.04. We can use $1 to cover the three securities (one will be
worth $1, and the other two will be worth $0), and keep the differ-
ence, $0.04, as our arbitrage profit.

11-2.

V(S, t) =
pV(K, T)

(1 + r)
1
2

p = V(S, t)
V(K, T)

(1 + r)
1
2

= 1.00
10.30

(1.0609)
1
2

= 1.00
10.30

(1.03)

= 1.03
10.30

= 10%
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11-3. Using Equation 11.6,

V(S, t) = e−r(T−t)
∫

12

10
f (K)V(K, T)dK

= e−0.04×1
∫

12

10
(−75 + 20K − K2) 1

200
(K − 10)3dK

= e−0.04×1

200 ∫

12

10
(75000 − 42500K + 9250K2 − 975K3

+ 50K4 − K5)dK

= e−0.04×1

200

[
75000K − 21250K2 + 9250

3
K3 − 975

4
K4

+ 10K5 − 1
6

K6
]12

10

= e−0.04×1

200
(104256 − 104167)

= 0.43

The fair present value is $0.43.
11-4. Denote the annually compounded riskless rate by r. Using the

Breeden-Litzenberger formula, as shown in Equation 11.14, the risk-
neutral probability density is given by

𝜌(S, t, K, T) = (1 + r)2
(

20
212

e−
K
21

)

Since we know the probability density for all payoffs, we can value
a riskless bond that pays $1 in every state of the world. The value
B is given by integrating the risk-neutral probability density over a
constant payoff:

B = 1
(1 + r)2 ∫

∞

0
1 ⋅ 𝜌(S, t, K, T)dK

= 1
(1 + r)2 ∫

∞

0
(1 + r)2

(
20
212

e−
K
21

)
dK

= 20
212 ∫

∞

0
e−

K
21 dK

= 20
21
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Thus, a zero coupon two-year bond is worth 20/21, which is the
present value of $1 discounted by (1 + r)2, which corresponds to a
riskless interest rate r = 2.47%.

CHAPTER 12

12-1. The portfolio constructed here is worth 18.69 BRL. This is consid-
erably higher than the price of the barrier option that knocks out at
any time along the barrier, because the portfolio knocks out only at
two discrete times. The constituents of the replicating portfolio are
specified in the following table:

Value t = 0 Months Value at t = 6 Months

Quantity Type Strike Expiration T S = 6,000 S = 5,000 S = 6,000 S = 5,000

1.00 Call 5,500 1 year 1,182.67 605.41 926.80 373.39
−1.37 Call 6,000 1 year −1,306.34 −630.99 −926.80 −331.74

0.18 Call 6,000 6 months 123.68 44.27 0.00 0.00
Portfolio 0.00 18.69 0.00 41.65

12-2. We can use barrier in-out parity to construct the replicating portfolio
for the up-and-in call. For European options, all else being equal, the
price of an up-and-in call should be equal to the price of a standard
call minus an up-and-out call. We can construct a replicating port-
folio for an up-and-in call by buying a standard call and selling the
replicating portfolio for the up-and-out call. Using the result from the
previous problem, we have:

Value at t = 0 Months Value at t = 6 Months

Quantity Type Strike Expiration T S = 6,000 S = 5,000 S = 6,000 S = 5,000

1.37 Call 6,000 1 year 1,306.34 630.99 926.80 331.74
−0.18 Call 6,000 6 months −123.68 −44.27 0.00 0.00
Portfolio 1,182.67 586.72 926.80 331.74

Notice that the standard call is perfectly canceled by the first call from
the original replicating portfolio, leaving us with just two options in
our new replicating portfolio.

Just as the value of the up-and-out replicating portfolio is equal
to zero on the barrier when t = 0 and t = 6 months, the value of the
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up-and-in replicating portfolio is equal to the value of the correspond-
ing standard call on the barrier, 1,182.67 BRL at t = 0 and 926.80
BRL at t = 6 months. You can verify this by using the BSM formula
with the appropriate volatility.

The current value of this replicating portfolio is 586.72 BRL. Its
value plus the value of the replicating portfolio for the up-and-out
call from the previous problem, 18.69 BRL, is equal to the value of a
standard call with the same strike and expiration, 605.41 BRL.

12-3. Let the current time be t = 0, and let T denote the expiration of any
option. We match the payoff at expiration if the barrier has not been
hit by a long position in a European put with a strike of 1,900 and
expiration T = 12 months.

We then proceed backward from expiration, matching payoffs
along the barrier. Two months prior to expiration at an index level
of 1,600 and t = 10 months, the T = 12 months 1,900 strike put is
worth $309.91. To offset this, we must be short a T = 12 months
1,600 strike put. Two months prior to expiration, this put is worth
$52.10 on the barrier. By shorting 5.78 = $300.91/$52.10 puts, we
get a portfolio worth $0 on the barrier at t = 10 months.

Next, at t = 8 months, our first two puts are worth −$119.38 on
the barrier. We need to have bought a T = 10 months 1,600 strike put
to cancel this value. One such put is worth $52.50, so we need 2.29 =
119.38/52.50 puts.

Continuing in this fashion, we end up with the static replicating
portfolio in the following table. The portfolio, which, based on BSM,
is worth $24.60, is only slightly more expensive than the actual down-
and-out put that knocks out anywhere along the barrier, $20.22. This
portfolio satisfies all of the constraints specified in the problem; in
particular, one can check that its value is zero at S = 1,600 at t = 0,
2, 4, 6, 8, and 10 months.

Value t = 0

Quantity Type Strike Expiration T S = 2,000 S = 1,600

1.00 Put 1,900 1 year 110.39 337.60
−5.78 Put 1,600 1 year −136.98 −736.05

2.29 Put 1,600 10 months 39.99 266.64
0.74 Put 1,600 8 months 8.55 77.40
0.35 Put 1,600 6 months 2.19 32.02
0.21 Put 1,600 4 months 0.43 15.27
0.14 Put 1,600 2 months 0.02 7.12

Portfolio 24.60 0.00
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12-4. Equation 12.4 required that

N′

⎛
⎜
⎜
⎜
⎝

ln
(B

S

)
+ 1

2
𝜎2𝜏

𝜎
√
𝜏

⎞
⎟
⎟
⎟
⎠

− 𝛼N′

⎛
⎜
⎜
⎜
⎜
⎝

ln
(

S
B

)
+ 1

2
𝜎2𝜏

𝜎
√
𝜏

⎞
⎟
⎟
⎟
⎟
⎠

= 0

Begin by defining two new variables, x and y:

x =
ln
(B

S

)
+ 1

2
𝜎2𝜏

𝜎
√
𝜏

y =
ln
(

S
B

)
+ 1

2
𝜎2𝜏

𝜎
√
𝜏

We then require that

1
√

2𝜋
e−

1
2

x2
− 𝛼

1
√

2𝜋
e−

1
2

y2
= 0

Write 𝛼 = e𝛽 . Then,

e−
1
2

y2+𝛽 = e−
1
2

x2

−1
2

y2 + 𝛽 = −1
2

x2

𝛽 = 1
2

(y2 − x2)

Substituting for x and y, we obtain

𝛽 = 1
2𝜎2𝜏

[(

ln
(

S
B

)2

+ ln
(

S
B

)
𝜎2𝜏 + 𝜎4𝜏2

)

−
(

ln
(B

S

)2
+ ln
(B

S

)
𝜎2𝜏 + 𝜎4𝜏2

)]

= 1
2𝜎2𝜏

[

ln
(

S
B

)2

− ln
(B

S

)2
+ ln
(

S
B

)
𝜎2𝜏 − ln

(B
S

)
𝜎2𝜏

]

= 1
2

[
ln
(

S
B

)
− ln
(B

S

)]
= ln(S∕B)

Thus, since 𝛼 = exp(𝛽),

𝛼 = S
B
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CHAPTER 13

13-1. Using Equation 13.6, 13.7, and 13.8, we determine the parameters
to be

u = 𝜎
√

dt = 0.2

√
1

256
= 0.2

16
= 0.0125

d = −𝜎
√

dt = −u = −0.0125

p = 1
2
+ 1

2
𝜇

𝜎

√
dt = 1

2
+ 1

2
0.1
0.2

√
1

256
= 1

2
+ 1

2
1

32
= 0.516

If the current stock price is $75, then after the first step there is a
51.6% probability that the stock price will be $75.94 = $75 × e0.0125,
and a 48.4% probability that the stock price will be $74.07 = $75 ×
e−0.0125.

After the second step, there is a 26.6% probability that the stock
price will be $76.90 = $75.94 × e0.0125, a 50.0% probability that the
stock price will be $75 = $75.94 × e−0.0125 = $74.07 × e0.0125, and
a 23.5% probability that the stock price will be $73.15 = $74.07 ×
e−0.0125. The probabilities appear to add up to 100.1%, but this is
only due to rounding. In fact, the stock price must end up at one of
these three nodes, and the sum of the probabilities is exactly 100%.
Notice that the tree closes: that up-down and down-up lead to the
same price. Also notice that the up-down and down-up points return
to the initial price, $75. This is one of the defining features of the
Cox-Ross-Rubinstein (CRR) model.

13-2. Using Equation 13.13, we have:

u = 𝜇dt + 𝜎
√

dt = 0.1 1
256

+ 0.2

√
1

256
= 0.0004 + 0.0125

= 0.0129

d = 𝜇dt − 𝜎
√

dt = 0.1 1
256

− 0.2

√
1

256
= 0.0004 − 0.0125

= −0.0121

In the Jarrow-Rudd convention, q = (1 − q) = 1/2. If the current price
is $75, then after the first step there is a 50% probability that the
stock will be $75.97 = $75 × e0.0129, and a 50% probability that the
stock will be $74.10 = $75 × e−0.0121.

After the second step, there is a 25% probability that the stock
price will be $76.96 = $75.97 × e0.0129, a 50.0% probability that the
stock price will be at $75.06 = $75.97 × e−0.0121 = $74.10 × e0.0129,
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and a 25% probability that the stock price will be $73.21 = $74.10 ×
e−0.0121. As with the Cox-Ross-Rubinstein model, the tree closes, but
in this case the price at the central node is no longer the same as the
initial price.

13-3. The price of a riskless bond with three months to maturity is

B = e−0.25×0.04$2,100 = $2,079.10

The price of SPX in terms of the bond is then

SB = S
B

= 2000
2079.10

= 0.96

To find d1 and d2, we start with v = 𝜎
√
𝜏 = 0.16

√
0.25 = 0.08. Then,

d1,2 = 1
v
ln(SB) ± v

2

= 1
0.08

ln(0.96) ± 0.08
2

= −0.48 ± 0.04

Finally,

CB(SB, v, r, 𝜏) = SBN(d1) − N(d2)

= 0.96 × N(−0.44) − N(−0.52)

= 0.96 × 0.33 − 0.30

= 0.0159

The call option is worth 1.59% as much as the riskless bond with
a face value equal to the strike. We can check this answer against a
standard BSM calculator by multiplying CB by the price of the bond
to get 0.0159 × $2,079.10 = $33.02.

13-4. From Equation 13.43 with v = 𝜎
√
𝜏 = 0.16

√
0.25 = 0.08, we have

d1,2 = 1
v
ln
(

Se−b𝜏

K

)
± v

2

= 1
0.08

ln
(

2000e−0.04×0.25

2100

)
± 0.08

2

= −0.73 ± 0.04
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Then

C(S, K, v, b, 𝜏) = Se−b𝜏N(d1) − KN(d2)

= 2000 × e−0.04×0.25N(−0.69) − 2100 × N(−0.77)

= 2000 × 0.99 × 0.24 − 2100 × 0.22

= $21.95

13-5. In order to solve this problem, we need to combine the techniques
used in the previous two problems.

From Equation 13.39 for the value of a European option with
zero dividends,

CB(SB, v, r, 𝜏) = SBN(d1) − N(d2)

d1,2 = 1
v
ln(SB) ± v

2

where B = Ke−r𝜏 and SB = S/B. Because of the nonzero dividend yield,
our problem is equivalent to valuing an option on e−b𝜏 shares of S, so
we must replace SB with e−b𝜏SB in the previous equations. This leads
to the value

CB(SB, v, r, b, 𝜏) = e−b𝜏SBN(d1) − N(d2)

d1,2 = 1
v
ln
(

e−b𝜏SB

)
± v

2
= 1

v

[
ln(SB) − b𝜏 ± 1

2
v2
]

As in Problem 13-3, the riskless bond with three months to maturity
has a price of $2,079.10, the price of SPX in terms of the bond is 0.96,
and v = 0.08. Substituting into these equations, we have

d1,2 = 1
v

[
ln(SB) − b𝜏 ± 1

2
v2
]

= 1
0.08

[
ln(0.96) − 0.04 × 0.25 ± 1

2
0.082

]

so that

d1 = −0.57 and d2 = −0.65
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Then,

CB(SB, v, r, b, 𝜏) = e−b𝜏SBN(d1) − N(d2)

= e−0.04×0.250.9620N(−0.57) − N(−0.65)

= e−0.04×0.250.9620 × 0.2844 − 0.2579

= 0.2708 − 0.2579

= 0.0130

The value of the call option is 1.30% of the value of the riskless bond.
We can multiply this value by the value of the bond to get the price
of the call option in dollars:

C(SB, v, r, b, 𝜏) = 0.0130 × $2,079.10 = $26.93

You can check that this is the correct price in dollars by using a stan-
dard BSM calculator.

13-6. The first thing we need to do is calculate the forward rates in each
year. If the one-year riskless rate is 5% and the two-year riskless rate
is 7.47%, then the forward rate in year 2 is 10%, because

(1 + 0.05)(1 + 0.10) = (1 + 0.0747)2

Similarly, the forward rate in year 3 is 15%, because

(1 + 0.05)(1 + 0.10)(1 + 0.15) = (1 + 0.0992)3

Next, we calculate the forward volatilities. The total variance over
two years is equal to the variance in year 1 plus the forward variance
in year 2. The forward volatility in year 2 is then 30%, because

20.0%2 + 30.0%2 ≈ 2(25.5%2)

We can calculate the forward volatility in the third year in a similar
fashion. Putting it all together, we have:

Year 1 Year 2 Year 3

Riskless rate 5.00% 7.47% 9.92%
Volatility 20.00% 25.50% 31.10%
Forward rate 5.00% 10.00% 15.00%
Forward volatility 20.00% 30.00% 40.00%

In the first year, each time step is dt1 = 0.10. Here the subscript corre-
sponds to the year, not the step. In each of the years, we want 𝜎i

√
dti

to be the same, so that
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𝜎i

√
dti = 𝜎1

√
dt1

dti =
𝜎2

1

𝜎2
i

dt1

Therefore,

dt2 = 0.202

0.302
0.10 = 0.044

dt3 = 0.202

0.402
0.10 = 0.025

This corresponds to roughly 23 steps to span year 2 and 40 steps to
span year 3. Unfortunately, with this method we are not guaranteed
to get an integer number of steps. As we use smaller and smaller steps,
this rounding error becomes less of a problem.

Because 𝜎i

√
dti is equal in each year, the up and down parameters

in the CRR tree will be the same at every time step. Using Equations
13.6, 13.7, and 13.8,

u = 𝜎
√

dt = 0.2
√

0.10 = 0.0632

d = −𝜎
√

dt = −u = −0.0632

Finally, using Equations 13.28, the q-measure probability in each
year is

q = erdt − e−𝜎
√

dt

e𝜎
√

dt − e−𝜎
√

dt

q1 = e0.05×0.10 − e−0.20
√

0.10

e0.20
√

0.10 − e−0.20
√

0.10
= 0.5238

q2 = e0.10×0.04 − e−0.30
√

0.04

e0.30
√

0.04 − e−0.30
√

0.04
= 0.5194

q3 = e0.15×0.02 − e−0.40
√

0.02

e0.40
√

0.02 − e−0.40
√

0.02
= 0.5139

In this case, the q value changes each year not only because the time
step is changing, but because the riskless rate is changing, too.
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CHAPTER 14

14-1. A graph of the local volatility as a function of stock price is shown
here:
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The price tree for the first five levels is:

Price Tree
103.05

102.61
101.82 101.82

101.11 101.11
100.00 100.00 100.00

98.91 98.91

97.35 97.35

95.73

93.57

Time 0.01 0.02 0.03 0.04

Compared to the sample problem, the local volatility starts
out higher, but decreases more quickly as the stock price increases.
Because of this, the highest node on the fifth level is only $103.05,
compared to $103.34 in the sample problem. Likewise, the local
volatility increases more quickly as prices decline, and the lowest
node, $93.57, is lower than $95.22 in the sample problem.
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14-2. Four time steps get us to the fifth level. There is only one price at that
level that is greater than the strike price, the uppermost node, $103.05.
At this node, the call will be worth $1.05. To find the probability of
reaching this node, we first construct the q-measure transition prob-
ability tree:

Risk-Neutral Transition Probabilities

63.72%
47.56%

60.78% 60.78%
49.73% 49.73%

58.71% 58.71%
51.00%

57.17%

Time 0.01 0.02 0.03

The uppermost terminal node can be reached only by moving up
in each period. The cumulative probability of reaching the uppermost
node is then 49.73% × 60.78% × 47.56% × 63.72% = 9.16%.

We don’t need the cumulative probabilities of reaching the other
nodes, but calculating these other probabilities can serve as a useful
check. For each level the probabilities must add up to 100%. The
cumulative probabilities for all of the nodes on the tree are:

Risk-Neutral Cumulative Probabilities
9.16%

14.37%
30.22% 29.66%

49.73% 40.22%
100.00% 49.02% 36.46%

50.27% 35.23%
20.76% 20.36%

10.17%
4.36%

Time 0.01 0.02 0.03 0.04

Because the riskless rate is zero, the present value and future value
of the option are the same, equal to 9.16% × $1.05 = $0.10. This is
the same price that we obtained in the sample problem. Even though
the price of the uppermost node is less than in the sample problem,
the probability of reaching that node is higher. If you calculate to a
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few more decimal places, you will see that the price of the option
in this problem is actually slightly less than in the sample problem
($0.0966 versus $0.1009). The average local volatility between the
current price and the strike price is the same in this problem as in the
previous problem, 9%, but the rate of change is twice as fast.

14-3. In the Cox-Ross-Rubinstein convention the central spine of the tree
remains same, but the riskless rate does affect the outer nodes and the
transition probabilities.

The price tree is now

Price Tree
103.08

102.60

101.84 101.84

101.11 101.11

100.00 100.00 100.00

98.91 98.91

97.33 97.33

95.72

93.53

Time 0.01 0.02 0.03 0.04

The risk-neutral transition probabilities are

Risk-Neutral Transition Probabilities

64.69%

51.54%

62.48% 62.48%

51.54% 51.54%

60.48% 60.48%

51.76%

58.71%

Time 0.01 0.02 0.03

As in the previous problem, at expiration only the uppermost
price node, $103.05, will be in the money. The probability of reaching
this node is now 51.54% × 62.48% × 51.54% × 64.69% = 10.74%.
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The value of the option is then the discounted probability-weighted
value of the final uppermost node:

C = e−4×0.01×0.04 × 10.74% × (103.08 − 102.00) = $0.12

Compared to the previous problem, the value of the call option
is higher. Because of the positive riskless rate, the forward prices are
greater than before, the expected value of the stock price drifts up over
time and the probability of getting to that uppermost node is therefore
higher. This is consistent with the fact that increasing the riskless rate
increases the value of a call option because the short position in the
bond that replicates it is worth less.

14-4. For the first two levels,

u = 0.20 × 0.10 = 0.02

d = −u = −0.02

At the second level, the up price is $200 × eu = $204.04, and the
down price is $200 × ed = $196.04. Continuing in this fashion, the
first three levels are:

Price Tree

V4,3

208.16
204.04 V4,2

200.00 100.00
196.04 V4,1

192.16
V4,0

Time 0.01 0.02 0.03

We now need to find the maximum local volatility 𝜎M for the
center node of the third level. As we increase 𝜎M, V4,2 will increase and
V4,1 will decrease. V4,2 cannot be greater than the uppermost node of
the third level, $208.16 = $200 × e2u. If it were, the node with value
$208.16 would make a transition to two nodes that both have higher
prices, which would allow a riskless arbitrage. Similarly, V4,1 cannot
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be lower than the lowermost node of the third level, $192.16 = $200
× e2d. We have:

V4,2 = $200e𝜎M

√
0.01

≤ $200 × e2u = $208.16

V4,1 = $200e−𝜎M

√
0.01

≥ $200 × e2d = $192.16

Thus,

𝜎M

√
0.01 ≤ 2u

−𝜎M

√
0.01 ≥ 2d

Substituting our initial values for u and d, we see that both constraints
reduce to

𝜎M ≤ 2 × 20% = 40%

The maximum local volatility for the center node of the third level is
40%.

CHAPTER 15

15-1. The calendar spread is long a $1,000 strike call with 1.01 years to
expiration and short a $1,000 strike call with one year to expiration.
The butterfly contains three calls, all with one year until expiration:
long one call with a strike of $1,010, short two calls with strikes at
$1,000, and long one call with a strike at $990. The BSM prices for
the options are:

S K 𝜏 𝛴(K) d1 d2 C(K, 𝜏)

1,000 990 1.00 10.10% 0.1500 0.0490 45.27
1,000 1,000 1.00 10.00% 0.0500 −0.0500 39.88
1,000 1,010 1.00 9.90% −0.0510 −0.1500 34.88
1,000 1,000 1.01 10.00% 0.0502 −0.0502 40.08

The prices of the butterfly and calendar spreads are:

Butterfly = $45.28 − 2 × $39.88 + $34.88 = $0.40

Calendar = $40.08 − $39.88 = $0.20
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Next we approximate the derivatives needed for Dupire’s equation:

𝜕C(S, t, K, T)
𝜕T

≈ Calendar
dT

= $0.20
0.01

= 19.87

𝜕2C(S, t, K, T)
𝜕K2

≈
Butterfly

dK2
= $0.40

($10)2
= 0.0040

From Dupire’s equation we therefore have

𝜎2(K, T) =
2
𝜕C(S, t, K, T)

𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

𝜎2(1,000,1) = 2 × 19.87
10002 × 0.0040

= 0.0100

The local volatility, to the accuracy we are computing, is simply the
square root of this or 10%. Notice that the at-the-money local volatil-
ity is almost exactly equal to the at-the-money implied volatility, 10%.
This is typical when implied volatility varies only with the strike.

15-2. The relevant call prices are:

S K 𝜏 𝛴(K) d1 d2 C(K, 𝜏)

1,000 890 1.00 11.16% 1.0998 0.9881 118.06
1,000 900 1.00 11.05% 1.0086 0.8981 109.53
1,000 910 1.00 10.94% 0.9166 0.8072 101.22
1,000 900 1.01 11.05% 1.0041 0.8931 109.66

The prices of the butterfly and calendar spreads are:

Butterfly = $118.06 − 2 × $109.53 + $101.22 = $0.22

Calendar = $109.66 − $109.53 = $0.13

Next we approximate the derivatives needed for Dupire’s equation to
obtain

𝜕C(S, t, K, T)
𝜕T

≈ Calendar
dT

= $0.13
0.01

= 13.25

𝜕2C(S, t, K, T)
𝜕K2

≈
Butterfly

dK2
= $0.22

($10)2
= 0.0022
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From Dupire’s equation we therefore have

𝜎2(K, T) =
2
𝜕C(S, t, K, T)

𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

𝜎2(900,1) = 2 × 1.325
9002 × 0.0022

= 0.0149

The local volatility is the square root of this, 12.2%. Notice that while
the at-the-money local volatility and implied volatility were equal, the
local volatility at a stock price of $900, 12.2%, is significantly higher
than the implied volatility at a strike of $900, namely 11.1%. Intu-
itively, because the implied volatility is an average of the local volatil-
ity, the local volatility must change more quickly than the implied
volatility. In this case, the local volatility has changed almost twice
as quickly. This is another example of the rule of two: 11.1% is the
linear average of 10% and 12.2%.

15-3. The relevant call prices at one year near the strike price of $1,000 are:

S K 𝜏 𝛴(K) d1 d2 C(K, 𝜏)

1,000 990 1.00 15.15% 0.1421 −0.0094 65.21
1,000 1,000 1.00 15.00% 0.0750 −0.0750 59.79
1,000 1,010 1.00 14.85% 0.0073 −0.1413 54.62
1,000 1,000 1.01 15.05% 0.0756 −0.0756 60.28

The prices of the butterfly and calendar spreads are:

Butterfly = $54.62 − 2 × $59.79 + $65.22 = $0.27

Calendar = $60.28 − $59.79 = $0.50

As before, we approximate the derivatives needed for Dupire’s equa-
tion by

𝜕C(S, t, K, T)
𝜕T

≈ Calendar
dT

= $0.50
0.01

= 49.75

𝜕2C(S, t, K, T)
𝜕K2

≈
Butterfly

dK2
= $0.27

($10)2
= 0.0027
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From Dupire’s equation, we have

𝜎2(K, T) =
2
𝜕C(S, t, K, T)

𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

𝜎2(1000, 1) = 2 × 49.75
10002 × 0.0027

= 0.0375

The local volatility at one year and $1,000 is the square root of this,
19.4%.

The relevant call prices at one year near a strike price of $900 are:

S K 𝜏 𝛴(K) d1 d2 C(K, 𝜏)

1,000 890 1.00 16.74% 0.7797 0.6122 132.68
1,000 900 1.00 16.58% 0.7184 0.5527 124.98
1,000 910 1.00 16.41% 0.6567 0.4926 117.47
1,000 900 1.01 16.63% 0.7139 0.5467 125.41

The prices of the butterfly and calendar spreads are:

Butterfly = $117.47 − 2 × $12.50 + $13.27 = $0.19
Calendar = $125.41 − $124.979 = $0.43

As before, we approximate the derivatives needed for Dupire’s equa-
tion by

𝜕C(S, t, K, T)
𝜕T

≈ Calendar
dT

= $0.427
0.01

= 42.67

𝜕2C(S, t, K, T)
𝜕K2

≈
Butterfly

dK2
= $0.19

($10)2
= 0.0019

From Dupire’s equation, we have

𝜎2(K, T) =
2
𝜕C(S, t, K, T)

𝜕T

K2 𝜕
2C(S, t, K, T)

𝜕K2

𝜎2(900,1) = 2 × 42.67
9002 × 0.0019

= 0.0562
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The local volatility at one year and $900 is the square root of this,
23.7%.

We can regard the implied volatility at a strike of $1,000 as the
approximate average of the local volatilities across time at a stock
price of $1,000. At zero time to expiration and S = K = $1,000, the
implied volatility and local volatility are both 10%. At an expiration
of one year, the implied volatility for K = $1,000 is 15%. Regarding
15% as an average of the local volatility at 𝜏 = 0, S = 1,000, and 𝜏 =
1, S = 1,000, we see that the local volatility at 𝜏 = 1 must be about
20%, not far from the more precise value of 19.4% found earlier.

Similarly, we can still regard the implied volatility at 𝜏 = 1 and K =
$900 as approximately the average of (1) the local volatility of 10% at
𝜏 = 0 and S = $1,000, and (2) the local volatility of 23.7% at 𝜏 = 1 and
S = $900, since this is the path the stock has to take from its initial
value to the terminal strike price. This average, (10% + 23.7%)/2
= 16.8%, is our guesstimate for the implied volatility of a one-year
option struck at $900, which, from the formula for implied volatility
in Problem 15-3, is 16.6%, impressively close to our intuitive estimate.
Again, we see that the implied volatility is well approximated by the
average of local volatilities over the path between the underlying price
at inception and strike at expiration.

15-4. In the case where ST1
≤ Ker(T1−t), the first leg expires worthless, so

the value of the calendar spread at time T1 is equal to the value of
the second leg, that is, the value of a single call option, which must be
greater than or equal to zero.

Next consider the value of the calendar spread V(t, T1, T2) at time
t = T1, when ST1

> Ker(T1−t). The first-leg option is in-the-money and
not worthless. Then,

V(T1, T1, T2) = C
(

ST1
, T1, Ker(T2−t), T2

)
− C
(

ST1
, T1, Ker(T1−t), T1

)

We now use the fact that a call is always worth at least as much as
a forward with the same strike to show that V(T1, T1, T2) is always
greater than or equal to zero, and hence that V(t, T1, T2) ≥ 0.

Because the first call expires in-the-money with ST1
≥ Ker(T1−t),

V(T1, T1, T2) = C
(

ST1
, T1, Ker(T2−t), T2

)
−
(

ST1
− Ker(T1−t)

)

Because a call is always worth more than a forward with the same
delivery price,

C
(

ST1
, T1, Ker(T2−t), T2

)
≥ ST1

− e−r(T2−T1)
(

Ker(T2−t)
)

≥ ST1
− Ker(T1−t)
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Thus,

V(T1, T1, T2) ≥
(

ST1
− Ker(T1−t)

)
−
(

ST1
− Ker(T1−t)

)

≥ 0

When the first leg expires, therefore, the value of the calendar spread
is always greater than or equal to zero. Therefore, at any time earlier,
the same must be true, and V(t, T1, T2) must be greater than or equal
to zero, or else there would be an arbitrage.

15-5. We begin by expressing the price of the calendar spread in terms of
the BSM implied volatility:

V(t, T, T + dT) = C
(

S, t, Ker(T+dT−t), T + dT
)
− C(S, t, Ker(T−t), T)

Notice that in the limit dT → 0, the right-hand side of this equation
is related to the total derivative with respect to T, so that

V(t, T, T + dT) = d
dT

[C(S, t, Ker(T−t), T)]dT

= d
dT

[CBSM(S, t, Ker(T−t), T, r,𝛴(S, t, Ker(T−t), T))]dT

It is easy to show by substitution in the BSM formula that

CBSM

(
S, t, Ker(T−t), T, r,𝛴

(
S, t, Ker(T−t), T

))
= f (S, K, v)

= SN(d1) − KN(d2)

where, as we have defined v in this problem,

d1,2 = 1
√

v
ln
(

S
K

)
±
√

v

2

and v = (T − t)𝛴2 is the total variance to the forward strike as defined
in the question. By the chain rule, since all the T-dependence of CBSM
is in the single variable v,

dCBSM

dT
= 𝜕

𝜕v
f (S, K, v) 𝜕v

𝜕T

The first term on the right-hand side is simply proportional to the
BSM vega, which we know to be positive from previous chapters;
therefore, the requirement that V(t, T, T + dT) ≥ 0 is equivalent to
the requirement that 𝜕v/𝜕T ≥ 0.
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CHAPTER 16

16-1. First we use Equation 16.3 to estimate the implied volatility for the
option:

𝛴(S, K) = 𝜎0 + 2𝛽S0 − 𝛽(S + K)

= 0.25 + 2 × 0.00005 × 4000 − 0.00005(4000 + 4200)

= 0.25 + 0.00005(8000 − 8200)

= 0.25 − 0.00005(200)

= 0.25 − 0.01

= 0.24

To calculate the BSM delta and vega, we first need to calculate d1:

v = 𝜎
√
𝜏 = 0.24

√
1 = 0.24

d1 = 1
v
ln
(

S
K

)
+ v

2

= 1
0.24

ln
(

4000
4200

)
+ 0.24

2
= −0.0833

The BSM Greeks are then given by

ΔBSM = N(d1) = 0.47

VBSM =
S
√
𝜏

√
2𝜋

e−
1
2

d2
1 = 1590

Substituting into Equation 16.6,

Δ ≈ ΔBSM − VBSM𝛽

≈ 0.47 − 1590 × 0.00005

≈ 0.39

The correct hedge ratio is approximately 0.39. This is considerably
lower than the BSM value of 0.47.

16-2. There are two ways we can approach this problem. The first is to go
through the same calculations as in the previous problem. Because



Answers to End-of-Chapter Problems 479

the strike of the put is the same as the strike of the call in the previ-
ous problem, the correct implied volatility is still the same, 24%. The
BSM vega of a call and put with the same expiration and same strike
are also equal, so the BSM vega of the put is also 1,590. The only
difference is the BSM delta. For a put,

ΔBSM = −N(−d1) = −0.53

Substituting this into Equation 16.6, which is valid for both calls and
puts, we have

Δ ≈ ΔBSM − VBSM𝛽

≈ −0.53 − 1590 × 0.00005

≈ −0.61

The correct hedge ratio is approximately −0.61.
The other way that we could have approached this is to use put-

call parity, which must hold independently of any model, so that

C − P = S − Ke−r𝜏

𝜕C
𝜕S

− 𝜕P
𝜕S

= 1

ΔC − ΔP = 1

Using the local volatility call delta from the previous problem, 0.39,
we have

ΔP = ΔC − 1

= 0.39 − 1

= −0.61

This is exactly the same answer that we arrived at before. Our adjust-
ment equation, Equation 16.6, preserves this relationship because
VBSM is the same for both the call and the put.

CHAPTER 18

18-1. We can find the current at-the-money implied volatility as follows:

𝛴(K) = 0.25 − 0.00005(K − 4000)

= 0.25 − 0.00005(4000 − 4000)

= 0.25
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If the level of the NDX increased by 10%, the level would be 4,400,
and the at-the-money implied volatility would be

𝛴(K) = 0.25 − 0.00005(4400 − 4000)

= 0.25 − 0.00005(400)

= 0.25 − 0.02

= 0.23

Similarly, if the level of the NDX decreased by 10% to 3,600:

𝛴(K) = 0.25 − 0.00005(3600 − 4000)

= 0.25 − 0.00005(−400)

= 0.25 + 0.02

= 0.27

Notice that with the sticky strike rule, as specified, we did not need
to know the time to expiration or the index level in order to calculate
the implied volatility.

18-2. We start by solving the given equation for 𝛴ATM when S = K = 1,000:

𝛴ATM = 0.18 − 0.02
ln
(K

S

)

𝛴
√
𝜏

= 0.18

𝛴ATM is 18% when S = K = 1,000 for options with both one-year
and with three-months to expiration.

For other strikes, we need to solve for 𝛴 using the quadratic equa-
tion, as follows:

𝛴 = 0.18 − 0.02
ln
(K

S

)

𝛴
√
𝜏

𝛴2 = 0.18𝛴 − 0.02
ln
(K

S

)

√
𝜏

𝛴2 − 0.18𝛴 + 0.02
ln
(K

S

)

√
𝜏

= 0
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so that

𝛴 =

0.18 ±

√√√√√0.182 − 4 × 0.02
ln
(K

S

)

√
𝜏

2

= 0.09 ± 1
2

√√√√√0.182 − 0.08
ln
(K

S

)

√
𝜏

For a strike of 900 with one year to expiration,

𝛴 = 0.09 + 1
2

√√√√√√0.182 − 0.08
ln
(

900
1000

)

√
1

= 0.09 + 0.1010

= 0.1910

where only the positive square root in the quadratic equation solution
gives a positive volatility.

Similarly, for a strike of 900 with three months to expiration,

𝛴 = 0.09 + 1
2

√√√√√√0.182 − 0.08
ln
(

900
1000

)

√
0.25

= 0.09 + 0.1110

= 0.2010

Notice that for the sticky delta rule, as specified here, implied volatil-
ity increases more quickly at shorter expirations for an equal point
drop in the strike (but correspondingly greater number of standard
deviations).

18-3. The at-the-money equation is still the same, only now it applies to
900 strike options, not 1,000 strike options. The implied volatility for
options with strikes of 900 is 18%, irrespective of time to expiration.
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For a strike of 1,000 with one year to expiration,

𝛴 = 0.09 + 1
2

√√√√√√0.18 − 0.08
ln
(

1000
900

)

√
1

= 0.09 + 0.0774

= 0.1674

For a strike of 1,000 with three months to expiration,

𝛴 = 0.09 + 1
2

√√√√√√0.182 − 0.08
ln
(

1000
900

)

√
0.25

= 0.09 + 0.0623

= 0.1523

The following table summarizes the results of this problem and the
preceding problem:

𝛴

K 𝜏 S = 1,000 S = 900

1,000 1.00 18.00% 16.74%
900 1.00 19.10% 18.00%

1,000 0.25 18.00% 15.23%
900 0.25 20.10% 18.00%

Contrary to what we might expect, the implied volatility surface
shifted down, not up, when the index dropped. This is a feature of
the sticky delta rule with a negative skew.

CHAPTER 19

19-1. We start by rewriting the time series equation as

𝜎t+1 = 𝜎t + 0.4(20% − 𝜎t) + 𝜀t
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With 𝜎0 = 16%, 𝜀0 = +3%, and 𝜀1 = −3%,

𝜎1 = 𝜎0 + 0.4(20% − 𝜎0) + 𝜀0

= 16% + 0.4(20% − 16%) + 3%

= 16% + 1.6% + 3%

= 20.6%

We then feed this value back into the time series equation to get

𝜎2 = 𝜎1 + 0.4(20% − 𝜎1) + 𝜀1

= 20.6% + 0.4(20% − 20.6%) − 3%

= 20.6% − 0.24% − 3%

= 17.36%

Interestingly, in this problem the first shock causes volatility to over-
shoot the long-run mean.

With the shocks reversed, we have

𝜎1 = 𝜎0 + 0.4(20% − 𝜎0) + 𝜀0

= 16% + 0.4(20% − 16%) − 3%

= 16% + 1.6% − 3%

= 14.6%

and

𝜎2 = 𝜎1 + 0.4(20% − 𝜎1) + 𝜀1

= 14.6% + 0.4(20% − 14.6%) + 3%

= 14.6% + 2.16% + 3%

= 19.76%

With the shocks reversed, we first move away from the mean, and
then back toward it. In the sample problem we saw that symmetric
shocks did not necessarily produce the same outcome as no shocks.
Comparing the results of this problem to the previous problem, we
see that the order of the shocks can also affect the final volatility.
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19-2. With a mean-reversion parameter of 0.1, in the first case with 𝜀0 =
+3%, and 𝜀1 = −3%, we have

𝜎1 = 𝜎0 + 0.1(20% − 𝜎0) + 𝜀0

= 16% + 0.1(20% − 16%) + 3%

= 16% + 0.4% + 3%

= 19.4%

and, feeding this value back into the time-series equation,

𝜎2 = 𝜎1 + 0.1(20% − 𝜎1) + 𝜀1

= 19.4% + 0.1(20% − 19.4%) − 3%

= 19.4% + 0.06% − 3%

= 16.46%

With the shocks reversed, with 𝜀0 = −3%, and 𝜀1 = +3%, we have

𝜎1 = 𝜎0 + 0.1(20% − 𝜎0) + 𝜀0

= 16% + 0.1(20% − 16%) − 3%

= 16% + 0.4% − 3%

= 13.4%

and

𝜎2 = 𝜎1 + 0.1(20% − 𝜎1) + 𝜀1

= 13.4% + 0.1(20% − 13.4%) + 3%

= 13.4% + 0.66% + 3%

= 17.06%

As in the previous problem, the order of the shocks matters. In con-
trast to the previous problem, because the mean-reversion parame-
ter is lower (0.1 compared to 0.4), volatility does not move as far
toward its long-run mean of 20%, and stays closer to its initial value
of 16%.
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19-3. Our half-life formula Equation 19.14 is

t = 1
𝛼
ln(2)

When 𝛼 = 0.4,

t(0.4) = 1
0.4

ln(2)

= 2.5 × 0.69

= 1.73

When 𝛼 = 0.1,

t(0.1) = 1
0.1

ln(2)

= 10.0 × 0.69

= 6.93

The half-lives are 1.73 and 6.93 periods, respectively. Dividing 𝛼 by 4
leads to a quadrupling of the half-life.

In the mean reversion sample problem with 𝛼 = 0.4 and a long-
run mean of 20%, when there were no shocks volatility moved from
24.00% to 22.40% and then to 21.44%. It passed the halfway mark,
22% = 0.5(24% − 20%), somewhere between the first and second
steps, consistent with a half-life of 1.73.

19-4. Assuming no dividends and a zero riskless rate, the price of a Euro-
pean call option is

C(S, K, 𝜎, 𝜏) = SN(d1) − KN(d2)

d1,2 = 1
v
ln
(

S
K

)
± v

2

where v = 𝜎
√
𝜏.

Based on the current level (2,000) and volatility (20%) of the SPX,
the price of a European call with a strike of 2,000 and 1.01 years to
expiration is

C(2000, 2000, 0.20, 1.01) = 2000N(0.1005) − 2000N(−0.1005)

= 160.10
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At the four nodes after the first time step:

C(1900, 2000, 0.15, 1.00) = 1900N(−0.2670) − 2000N(−0.4170)
= 73.32

C(2100, 2000, 0.15, 1.00) = 2100N(0.4003) − 2000N(0.2503)
= 178.97

C(1900, 2000, 0.25, 1.00) = 1900N(−0.0802) − 2000N(−0.3302)
= 148.03

C(2100, 2000, 0.25, 1.00) = 2100N(0.3202) − 2000N(0.0702)
= 257.78

Because the riskless rate is zero, we calculate the present value of the
option as the weighted average of these four possible outcomes. The
value of the call in our quadrinomial model is then

0.1 × $73.32 + 0.4 × $178.97 + 0.4 × $148.03 + 0.1 × $257.78

= $163.91

This is greater than the BSM value without stochastic volatility.

CHAPTER 20

20-1. We start by rewriting Equation 20.4 assuming it is exactly rather than
approximately true:

𝛴 = 𝛼S𝛽−1
[
1 + (𝛽 − 1)

2
ln
(K

S

)]

= 𝛼S𝛽−1 + 𝛼

2
(𝛽 − 1)S𝛽−1 ln(K) − 𝛼

2
(𝛽 − 1)S𝛽−1ln(S)

Now take the derivative with respect to K:

𝜕𝛴

𝜕K
= 𝛼

2
(𝛽 − 1)S𝛽−1 1

K

For at-the-money options, K = S, so

𝜕𝛴

𝜕K
= 𝛼

2
(𝛽 − 1)S𝛽−2
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Now take the derivative with respect to S:

𝜕𝛴

𝜕S
= 𝛼(𝛽 − 1)S𝛽−2 + 𝛼

2
(𝛽 − 1)2S𝛽−2 ln(K)

− 𝛼

2
(𝛽 − 1)2S𝛽−2 ln(S) − 𝛼

2
(𝛽 − 1)S𝛽−2

= 𝛼

2
(𝛽 − 1)S𝛽−2 + 𝛼

2
(𝛽 − 1)2S𝛽−2 ln

(K
S

)

For at-the-money options, when K = S, the last term is zero, and

𝜕𝛴

𝜕S
= 𝛼

2
(𝛽 − 1)S𝛽−2

This is the same as the derivative with respect to K, which completes
our proof. For at-the-money options, given Equation 20.4,

𝜕𝛴

𝜕K
= 𝜕𝛴

𝜕S
= 𝛼

2
(𝛽 − 1)S𝛽−2

CHAPTER 21

21-1. Equation 21.19, reproduced here, is

𝛴 ≈ ̄̄𝜎 + 1
2

var[𝜎̄] 1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(
ln
(

S
K

))2

−
̄̄𝜎

2
𝜏

4

]

Initially, S = 4,000, K = 4,000, ̄̄𝜎 = 20%, and 𝜏 = 0.5. Because the
standard deviation of path volatility is 16 volatility points, var[𝜎̄] =
0.162 = 0.0256. The initial at-the-money volatility is then

𝛴 ≈ 0.2 + 1
2
× 0.0256 × 1

0.2

[
1

0.22 × 0.5

(
ln
(

4000
4000

))2

− 0.22 × 0.5
4

]

≈ 0.2 + 1
2
× 0.0256 × 1

0.2

[
−0.22 × 0.5

4

]

≈ 0.2 − 1
8
× 0.0256 × 0.1

≈ 0.2 − 0.0003

≈ 0.1997
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When the NDX increases to 4,400, six-month volatility for 4,000
strike options becomes

𝛴 ≈ 0.2 + 1
2
× 0.0256 × 1

0.2

[
1

0.22 × 0.5

(
ln
(

4400
4000

))2

− 0.22 × 0.5
4

]

≈ 0.2 + 0.064[0.4542 − 0.005]

≈ 0.2 + 0.0287

≈ 0.2287

For the new six-month at-the-money implied volatility, S/K is the same
as in the first part of the problem, and because all of the other param-
eters are the same, the at-the-money volatility is 19.97%, the same as
before. This is an example of sticky moneyness.

The before and after smiles are shown in the following chart:
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CHAPTER 22

22-1. When the riskless rate and dividends are zero, the Black-Scholes-
Merton (BSM) hedge ratio is

ΔBSM = N(d1)
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At-the-money, when S = K,

d1 = 1

𝛴
√
𝜏
ln
(

S
K

)
+ 1

2
𝛴
√
𝜏

= 1
2
× 0.16 ×

√
1

= 0.08

The BSM hedge ratio is then N(0.08) = 0.53.
Under stochastic volatility, the approximate best stock-only hedge

is given by Equation 22.12:

Δ = ΔBSM + 𝜌
VBSq

𝛴S

When the riskless rate and dividends are zero,

VBSM =
𝜕CBSM

𝜕𝜎
=

S
√
𝜏

√
2𝜋

e−
1
2

d2
1

The volatility process specifies q = 0.25, and 𝜌 = −40%. Therefore,

Δ = ΔBSM + 𝜌

√
𝜏

√
2𝜋

e−
1
2

d2
1

q
𝛴

= 0.53 − 0.40

√
1

√
2𝜋

e−
1
2

0.082 0.25
0.16

= 0.53 − 5
8

1
√

2𝜋
e−0.0032

= 0.53 − 0.25

= 0.28

The best stock-only hedge ratio, 0.28, is significantly lower than the
BSM hedge ratio, 0.53, because volatility is stochastic, and the index
level and implied volatility are negatively correlated.

22-2. This problem is similar to the sample problem. Notice that the equa-
tion for the variance of the path volatility, var[𝜎̄], behaves as we would
expect if instantaneous volatility was mean reverting. When 𝜏 is small,
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it is proportional to 𝜏. When 𝜏 is large, it is inversely proportional to
𝜏. For 0. 1-, 0.25-, and 1-year expirations,

var[𝜎̄]0.10 = e−4×0.100.08 × 0.10 + (1 − e−4×0.10)0.02
0.10

= 0.0713

var[𝜎̄]0.25 = e−4×0.250.08 × 0.25 + (1 − e−4×0.25)0.02
0.25

= 0.0579

var[𝜎̄]1.00 = e−4×1.000.08 × 1.00 + (1 − e−4×1.00)0.02
1.00

= 0.0211

The 10% out-of-the-money put corresponds to ln(K/S) = −10%, or
ln(S/K) = 10%. Using Equation 22.2,

Skew = 𝛴10% − 𝛴ATM

≈
(
̄̄𝜎 + var[𝜎̄] 1

̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(0.10)2 − 𝜎̄2𝜏

4

])

−
(
̄̄𝜎 − 1

2
var[𝜎̄] 1

̄̄𝜎

[
𝜎̄2𝜏

4

])

≈ 1
2

var[𝜎̄] 1
̄̄𝜎

[
1
̄̄𝜎

2
𝜏

(0.10)2
]

≈ 1
200

var[𝜎̄] 1
̄̄𝜎

3
𝜏

Since ̄̄𝜎 = 25%,

Skew ≈ 1
200

var[𝜎̄] 1
0.253𝜏

≈ 8
25

var[𝜎̄]1
𝜏

For the three expirations, then,

Skew0.10 ≈ 8
25

× 0.0713 × 1
0.10

= 0.23 = 23 volatility points

Skew0.25 ≈ 8
25

× 0.0579 × 1
0.25

= 0.07 = 7 volatility points

Skew1.00 ≈ 8
25

× 0.0211 × 1
1.00

= 0.01 = 1 volatility point
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In other words, for a 10% drop in strike, implied volatility increases
significantly for short expirations, modestly for three-month expira-
tions, and barely at all for one-year expirations.

Notice that the current level of SX5E never entered into the calcu-
lation, because of the sticky moneyness. The skew becomes less steep
as the time to expiration increases, but, in this model, changes in the
level of the index have no impact on the 90–100 strike skew.

CHAPTER 23

23-1. To calculate the probability of two or more jumps, it is tempting to
think that we need to calculate the probability of two jumps, three
jumps, four jumps, … up to infinity jumps, and add up all of the
values. The easier way to calculate the probability of two or more
jumps is to realize that there will be either 0 or 1 jumps next year, or
two or more:

P[n = 0] + P[n = 1] + P[n ≥ 2] = 1

P[n ≥ 2] = 1 − P[n = 0] − P[n = 1]

Using Equation 23.12 with 𝜆 = 5/year and T = 1 year,

P(n, T) = (𝜆T)n

n!
e−𝜆T

= (5)n

n!
e−5

Then,

P(n ≥ 2,1) = 1 − P(0,1) − P(1,1)

= 1 − (5)0

0!
e−5 − (5)1

1!
e−5

= 1 − (1 + 5)e−5

= 1 − 6e−5

= 1 − 0.0404

= 0.9596

The probability of seeing two or more jumps over the coming year is
95.96%.
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23-2. The probability of exactly one jump on any given day is 1.6%. For a
Poisson process, the probability of n jumps is

P(n, T) =
(𝜆T)n

n!
e−𝜆T

If we define p = P(1, T) and z = 𝜆T, then the probability of exactly
one jump is

p = 𝜆Te−𝜆T = ze−z

We could solve this equation for z numerically, but if z is small,

p ≈ z(1 − z)

z2 − z + p ≈ 0

By the quadratic formula,

z =
1 ±
√

1 − 4 ⋅ 1 ⋅ p

2
=

1 ±
√

1 − 4p

2

Substituting in p = 1.6%, we get z is 0.9837 or 0.0163. The second
solution is the one that corresponds to a small probability of a jump.
We can verify this by substituting back into the probability equation:

ze−z = p

0.0163e−0.0163 = 0.0160 = 1.6%

We then have z = 0.0163 for T = 1 day. In other words, we have:

𝜆T = 0.0163 = 0.0163
day

(1 day)

The daily frequency is 0.0163 jumps per day. To get the annual fre-
quency x from the daily frequency, we simply multiply the frequency
per day by the number of days per year, so that

x = 0.0163 × 256 = 4.16

The frequency is 4.16 jumps per year.
Note, if we had simply multiplied 1.6% by 256, we would have

gotten 4.10, which is a very close to 4.16. Just as the Taylor expansion
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was a good approximation for small values of p, the probability of a
single jump is a good approximation to the daily frequency when p is
small; therefore, multiplying the probability of one jump per day by
the number of days per year will also be a good approximation to the
annual frequency when p is small.

CHAPTER 24

24-1. Because the jumps are of fixed size, we can use Equation 24.26, replac-
ing the BSM call function CBSM with the BSM put formula PBSM. As
before, we express the formula as a weighted average sum:

PJD = e−𝜆̄𝜏
∞∑

n=0

(𝜆̄𝜏)n

n!
PBSM

(
S, K, 𝜏, 𝜎, r − 𝜆(eJ − 1) +

nJ
𝜏

)

=
∞∑

n=0

wnPBSM(n)

where:

wn = e−𝜆̄𝜏
(𝜆̄𝜏)n

n!
PBSM = PBSM(S, K, 𝜏, 𝜎, rn)

rn = r − 𝜆(eJ − 1) +
nJ
𝜏

The arguments to the function are S = 25,000; K = 24,000; 𝜏 = 2/52;
𝜎 = 20%; r = 2%; 𝜆 = 5/year; and J = −10%.

The BSM formula for the price of a put is

P(S, K, 𝜏, 𝜎, r) = Ke−r𝜏N(−d2) − SN(−d1)

where:

d1,2 =
ln
(

S
K

)
+
(

r ± 𝜎2

2

)
𝜏

𝜎
√
𝜏

The value of the drift-adjusted puts and the corresponding weights
for n = 1, 2, … , 6 are:



494 ANSWERS TO END-OF-CHAPTER PROBLEMS

n rn PBS(n) wn PBS(n) × wn

0 0.4958 26.22 0.8403 22.03
1 −2.1042 1,102.91 0.1462 161.26
2 −4.7042 3,760.00 0.0127 47.83
3 −7.3042 6,784.67 0.0007 5.01
4 −9.9042 10,127.49 0.0000 0.33
5 −12.5042 13,821.88 0.0000 0.02
6 −15.1042 17,904.82 0.0000 0.00

One jump takes the index well past the strike, substantially increasing
the value of the put. After one jump, the put differs little from a
forward contract. Each additional jump adds to the value of the put.
At the same time, the weights are decreasing rapidly. Beyond four
jumps, the probabilities are extremely low, and beyond six jumps
there is almost no value added. Adding the values for jumps 0–6, we
get 236.47.

Without jumps, and with the same diffusion, the BSM value of
the put would have been 71.22. The jumps add considerably to the
value of the put.

24-2. Because the jumps are normally distributed, we can use Equa-
tion 24.29, replacing the BSM call function CBSM with the BSM put
formula PBS. As before, we express the formula as a weighted average
sum:

PJD = e−𝜆̄𝜏
∞∑

n=0

(𝜆̄𝜏)n

n!
PBSM

⎛
⎜
⎜
⎜
⎝

S, K, 𝜏,

√

𝜎2 +
n𝜎2

J

𝜏
, r

− 𝜆

(
e
𝜇J+

1
2
𝜎2

J − 1
)
+

n
(
𝜇J +

1
2
𝜎2

J

)

𝜏

⎞
⎟
⎟
⎟
⎟
⎠

=
∞∑

n=0

wnPBS(n)

Here,

wn = e−𝜆̄𝜏
(𝜆̄𝜏)n

n!
PBS = PBS(S, K, 𝜏, 𝜎∗, r∗)
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𝜎∗ =

√

𝜎2 +
n𝜎2

J

𝜏

r∗ = r − 𝜆

(
e
𝜇J+

1
2
𝜎2

J − 1
)
+

n
(
𝜇J +

1
2
𝜎2

J

)

𝜏

The parameters are S = 25,000; K = 24,000; 𝜏 = 2/52; 𝜎 = 20%; r =
2%; 𝜆 = 5/year; 𝜇J = −10%; and 𝜎J = 5%.

The value of the drift- and volatility-adjusted puts and the corre-
sponding weights for n = 1, 2, … , 6 are now:

n 𝜎* r* PBS(n) wn PBS(n) × wn

0 0.2000 0.4902 26.56 0.8401 22.31
1 0.3240 −2.0773 1,262.87 0.1464 184.84
2 0.4123 −4.6448 3,733.55 0.0128 47.60
3 0.4848 −7.2123 6,678.15 0.0007 4.95
4 0.5477 −9.7798 9,960.69 0.0000 0.32
5 0.6042 −12.3473 13,588.51 0.0000 0.02
6 0.6557 −14.9148 17,593.52 0.0000 0.00

The sum of the values in the last column of the table is 260.04, some-
what higher than the value in the previous problem.

24-3. We use Equation 24.46

𝛴 ≈ 𝜎 +
pJ

S
√
𝜏

(√
𝜋

2
+ 1

𝜎
√
𝜏

ln
(K

S

))

with the parameters S = 100; p = 10%; J = 15%; 𝜏 = 1/52; and 𝜎 =
20%. Then,

𝛴 ≈
(
𝜎 +

pJ
S

√
𝜋

2𝜏

)
+

pJ
S𝜎𝜏

ln
(K

S

)

≈
(

0.2 + 0.1 × 0.15
100

√
26𝜋
)
+ 0.1 × 0.15 × 52

100 × 0.2
ln
(K

S

)

≈ 0.2014 + 0.039 × ln
(K

S

)

≈ 0.2014 + 0.039 × ln
( K

100

)
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The following exhibit shows the volatility smile. Notice that because
the potential jump is positive, higher prices have higher BSM implied
volatilities and the smile is positively sloped.
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If jumps were negative, rather than positive, we would expect the
volatility smile to be negatively sloped. Unfortunately, we cannot sim-
ply use Equation 24.46 for a negative value of J, since, in deriving the
equation, we assumed that large positive jumps would render a call
equivalent to a forward (Equation 24.37). To describe the volatility
smile in the presence of negative jumps, we could use similar reason-
ing applied to a put that, after the jump, would have a value close to
that of a short position in a forward contract.
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of a collar, 40f
of down-and-out barrier options, 212–213
generalized, 40–42
quadratic, 192–193
in quadrinomial trees, 350
and value, of butterfly spread, 156–157
of vanilla call option, 45
of variance swaps, 63
of volatility swaps, 63

PDE (partial differential equation), 395–398
PDE (partial differential equation) model,

125–128
PDF (probability density function), 179,

194f, 409
P/E (price-earnings) ratio, 10
Piecewise-linear replication strategy, 77–78
P&L, see Profit and loss (P&L)
Poisson distribution of jumps, 391–393
Portfolios:

delta-hedged, 47
hedged, see Hedged portfolios
rebalancing of, 71–73
replicating, see Replicating portfolios

stock-only hedge, 381
variance sensitivity of call options,

65–67
Price(s):

of calls, 45–46
of European options, 154–158
implied, 9–10
of stock, see Stock price(s)
of strike, see Strike price
of underliers, 70
value vs., 8
volatility and option, 4, 127

Price-earnings (P/E) ratio, 10
Principle of no riskless arbitrage, 14, 155
Probability density function (PDF), 179,

194f, 409
Profit and loss (P&L):

effects of discrete hedging on, 106–110
effects of rebalancing on, 121–122
of hedged option strategies, 89–90, 91t,

92–93
and hedging error, 113
from implied vs. realized volatility, 53f
incremental, 95–96
local volatility model for variance of,

306–308
with positive convexity, 48f
selection of proper hedge ratio for, 170
selection of volatility for hedging,

203–204
in stochastic volatility models, 321–322
in stock-only hedge portfolios, 381
when hedging with implied volatility,

101–103
when hedging with realized volatility,

94–100
Pseudo-probability:

in implied distributions, 177
in options valuation, 234–235

Pseudo-probability function, 183
Pure jump risk-neutral option pricing,

393–394
Put-call parity:

and no-arbitrage bounds, 155
static replication, 37–38, 39f
in static replication, 188

Quadratic payoff, 192–193
Quadrinomial tree, 350
Quantifiable uncertainty, 19
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Random dividends, jumps as, 396
Realized future variance, 71–82
Realized variance, 64
Realized volatility:

and equity indexes, 146, 148
hedged option strategies with, 94–100
hedging vs., 105–110
implied vs., 50–51, 94, 115–116

Rebalancing, of portfolios, 71–73
Recalibration, for local volatility models, 305
Rehedging, triggered by changes in hedge

ratio, 122, 123f
Relative strike price, 136
Relative valuation, 11, 12
Replicating portfolios:

construction of, 17
selecting appropriate securities for, 41
with state-contingent securities, 177

Replication, 13–35
accurate, and discrete hedging, 115–116
and avoidable investment risks, 25–26
and derivatives, 35
dynamic, see Dynamic replication
and efficient market hypothesis, 17–18
errors in, 81–82
examples of, 27–34
with a finite number of options, 77–80
and law of quantitative finance, 13–15
limits of, 16–17
reliability of, 203
riskless bonds, 23–24
static, see Static replication
and stock risks, 21–23
strong, 204
styles of, 15–16
uncertainty, risk, and return in, 18–20
valuation with, 15
of variance swaps, 64–67
of variance when volatility is stochastic,

74–75
of volatility swaps, 62–63

Return(s):
binomial trees for future, 21–22
relationship between risk and, 26
in replication, 18–20

Riemann integrals, 421
Risk(s):

relationship between returns and, 26
in replication, 18–20
replication and stock, 21–23

of underliers, modeling, 17–18
Riskless bonds:

and correlated stocks, 31–34
replication with, 23–24
and uncorrelated stocks, 27–31

Riskless security(-ies), 23–24
Risk management, 5
Risk-neutral option pricing, 393–394
Risk-neutral probability, 177, 179–180
Risk-neutral valuation, 332–334
Ross, Stephen, 2, 33, 166
Rule of two, 261–262, 280–282

SABR (stochastic alpha, beta, rho) model,
337–344

Scenarios, identifying all possible, 15
Scholes, Myron, 16
Science, financial engineering as, 6–7
Security(-ies):

pricing, with financial models, 9–10
ranking, with financial models, 10
riskless, 23–24
state-contingent, see State-contingent

securities
Sentiment, market influenced by, 21
Sharpe, William, 28
Sharpe-Lintner-Mossin capital asset pricing

model, 33–34
Sharpe ratio:

in dilution, 28–29
in diversification, 31
in hedged options, 87
in stochastic volatility models, 347–350

Shocks:
effect of, 146–147
in equity indexes, 148
to individual equities, 148, 149

Short expirations:
implied volatility in, 282–286
jump-diffusion smile with, 414–415
jumps effects on, 384f, 385–386
and mean-reverting volatility, 370–371

Short-term government bonds, 154n.1
Short-term skew, 305–306
Skew:

arising from jumps, 384–387
and delta, 138
in equity indexes, 144
estimation of effects of, 191–194,

195f–196f, 197
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in interest rate volatility, 151
in jump-diffusion models, 415
local volatility model’s inability to match,

305–306
of lookback options, 299–300
and moneyness, 311
and nonzero correlation, 375
of options with no implied volatility, 296
and stochastic volatility models, 355
term structure with no, 242–246
in up-and-out call, 295
in valuation of exotic options, 172–173
variance in options with no, 279–280
in volatility change patterns, 309–310
and volatility smile, 135–136

Slope:
of smile, inequalities for, 158–160
and strike, 144–145
of term structure, 145–146
in volatility change patterns, 309–310

Smile models, 163–173
hedging vanilla options with, 169–171
jump-diffusion models, 168. See also

Jump-diffusion models
local volatility models, 164–167. See also

Local volatility models
stochastic volatility models, 167–168. See

also Stochastic volatility models
valuing exotic options with, 171–173

S&P 500, and implied distribution, 183,
184f

Spread:
bid-ask, 117
butterfly, see Butterfly spread
calendar, see Calendar spread
call, 155–156
option-adjusted, 10

Standard integration, 421–424
Standard options. See also Vanilla options

Dupire’s equation for, 268
static replication using, 187–190
valuing, with jump-diffusion model,

401–404
State-contingent securities. See also

Arrow-Debreu securities
and implied distribution, 175–180
in options valuation, 232–234
in stochastic volatility models, 332–334

Static hedge, 212–214
Static replication, 37–44, 187–200

Black-Scholes-Merton risk-neutral
probability density, 197–200

of a collar, 38–40
defined, 15–16
estimation of skew effects with, 191–194,

195f–196f, 197
for European down-and-out call, 42–44
generalized payoffs, 40–42
Heaviside and Dirac delta functions,

190–191
put-call parity, 37–38, 39f
strong, 204
using standard options, 187–190
weak, see Weak static replication

Statistic, realized volatility as, 50
Stickiness, in the real world, 316–317
Sticky delta rule, 311–315
Sticky local volatility, 314–315
Sticky moneyness, 311–313, 315
Sticky strike rule, 310–311, 315
Stochastic, volatility as, 74–75
Stochastic calculus, 275–277
Stochastic differential equation, 325
Stochastic integration, 424–429
Stochastic stock evolution, 163
Stochastic volatility, 362–368
Stochastic volatility models, 167–168,

319–382
adding mean reversion to, 325–330
approaches to, 320–321
best stock-only hedge in, 379–381
in Black-Scholes-Merton model,

321–325
characteristic solution to, 351–352
extending Black-Scholes-Merton model to,

344–350
extending local volatility models to,

337–344
geometric Brownian motion stochastic

volatility with zero correlation, 362–368
hedge ratios in, 379
mean-reverting volatility with zero

correlation, 369–375
nonzero correlation in, 375–376,

377f–378f
and risk-neutral valuation, 332–334
survey of, 331–332
two-state stochastic path volatility,

360–362
and volatility change patterns, 317
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Stochastic volatility models (Continued)
zero correlation smile and moneyness,

353–356
zero correlation smile as symmetric,

356–360
Stock(s):

with continuous known dividend yield,
240–242

jumps in, 387–391
modeling, with variable volatility, 249–250
replication and behavior of, 20–21
riskless bonds and uncorrelated, 27–31
risks of, 21–23

Stock evolution:
attempting to model stochastic, 163
in binomial local volatility modeling,

250–252
in binomial model, 227–232
in local volatility models, 165
volatility in, 7–8

Stock market crash of 1987:
unlikelihood of, 7
volatility charts before and after, 3–5
and volatility smile, 144

Stock-only hedge, 379–381
Stock price(s):

behavior of, in actual markets, 3
in Black-Scholes-Merton formula, 353
in equity indexes, 148
and harmonic average, 282–286
jumps in, 383
in local volatility models, 165

Strike:
and barrier, 206–207, 217, 292–295
in Black-Scholes-Merton formula, 353
and delta, 141–143
and harmonic average, 282–286
Merton inequalities as function of,

154–158
and slope, 144–145, 158
sticky strike rule, 310–311

Strike price:
and implied volatility, 132
relative, 136

Strong replication, 204
Strong static replication, 204
Swaption volatility smile, 151

Taylor series expansion:
of the call price, 45–46

in Jarrow-Rudd convention, 232
in jump-diffusion models, 401, 412
in jump modeling, 390
for path volatilities, 357, 365, 366
in stochastic volatility models, 338, 342
for variance swaps, 73

Term structure:
with no skew, 242–246
slope of, 145–146
and volatility smile, 133–134

Theta (Θ), 46
Time decay, loss from, 52
Time-dependent deterministic volatility,

242–246
Time to expiration:

in equity index implied volatility, 148
and implied volatility, 134
and moneyness, 137
and replicating portfolios, 81
short, and implied volatility behavior,

282–286
Time to maturity, 138–139
Trading consequences, of volatility smile,

151–152
Trading desks, relative valuation used by, 12
Transaction costs, 117–129

analytical approximation of, 123–124
effects of, 117–120
partial differential equation model of,

125–128
rebalancing, at regular intervals, 120–122
rehedging triggered by changes in hedge

ratio, 122, 123f
Trinomial jump-diffusion, 398–401
Two-state stochastic path volatility, 360–362

Unavoidable investment risks, 34
Uncertainty, in replication, 18–20
Uncorrelated stocks, 27–31
Underliers:

in local volatility model, 317
modeling risk of, 17–18
removing sensitivity to price of, 70

U.S. dollar (USD), 149–150
Unquantifiable uncertainty, 19
Up-and-out barrier calls:

in local volatility models, 292–296
weak static replication of, 214–219

USD (U.S. dollar), 149–150
USD/JPY smile, 149, 150f
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USD/MXN smile, 150f
Utility functions, 17

Valuation:
absolute, 11–12
of calls, in jump-diffusion models,

401–404
of down-and-out barrier options, with

nonzero riskless rate, 211–212
of down-and-out barrier options with zero

riskless rate and zero dividend yield,
207–211

of exotic options, with smile models,
171–173

of options, with binomial model, 232–237
relative, 11, 12
with replication, 15
risk-neutral, 332–334
of standard options, 401–404
of the variance, 75–77

Value(s):
of call option, 46
enterprise, 165–166
of European options, 37–38
and payoff, of butterfly spread, 156–157
price vs., 8

Vanilla European options:
Dupire’s equation for, 268
rebalancing of hedged, 120–122
vega of, 113

Vanilla options. See also Standard options
as bet on volatility, 70
correct hedge ratio for, 290–292
delta of, 137
hedging, with smile models, 169–171
payoff at expiration of, 45
producing log payoffs, 67–71
replicating exotic options with, 192–194,

195f–196f, 197
and variance swaps, 65

Vanna, 324–325
Vanna-volga model, 164
Variables:

discrete random, 252n.2
implied, notation for, 51–52
selection of, 138–139

Variable volatility, 249–250
Variance:

fixed, 64
implied, 279–280

instantaneous, 364, 380
in jump modeling, 389
local, 279–280
notional, 61
in options with no skew, 279–280
path, 364
realized, 64
realized future, 71–82

Variance sensitivity, 65–67
Variance swaps, 57–82

defined, 61
errors in replication, 81–82
log contracts and realized future variance,

71–82
replication of volatility swaps, 62–63
replication with a finite number of options,

77–80
valuation of the variance, 75–77
vanilla options producing log payoffs,

67–71
VIX volatility index, 82
and volatility, 60–62
volatility sensitivity of options, 57–60
when volatility is stochastic, 74–75

Vasiçek interest rate model, 334
Vega:

of European option, 58, 59f
in stochastic volatility models, 343
of vanilla European options, 113

Velocity, 286
VIX volatility index, 82
VOD (Vodafone), 148, 149f
Vodafone (VOD), 148, 149f
Volatility:

instantaneous, 364
and option price, 4, 127
of path volatility, 364–365
path volatility vs., 370
selection of, for hedging, 203–204
stochastic, 362–368
as stochastic, 74–75
stochastic differential equation for,

325
and variance swaps, 60–62

Volatility change patterns, 309–317
and local volatility model, 314–315
rules for, 315
slope and skew in, 309–310
stickiness in the real world, 316–317
sticky delta rule, 311–314
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Volatility change patterns (Continued)
sticky strike rule, 310–311
and stochastic volatility models, 317

Volatility paths, 355
Volatility points, 135
Volatility sensitivity, of options, 57–60
Volatility smile, 131–152

and delta, 140–143
in equity indexes, 144–148
in foreign exchange options, 149–150
graphing of, 136–139
in individual equities, 148–149
of interest rates, 151
jump-diffusion smile, 408–410, 414–415
parameters of, 131–136
trading consequences of, 151–152
in zero-correlation mean-reverting models,

372–375
Volatility surface(s):

in equity indexes, 148
finding, with Dupire’s equation, 268
resulting from jumps, 385–386
and volatility smile, 134–135

Volatility swaps:
defined, 60–61
replication of, 62–63

Volcker, Paul, 1–2
Volga, 322–323, 343

Weak static replication, 203–224
accuracy of, 219
and barrier option parity, 223–224
of barrier options, 206–214

generalized approach to, 220–223
of up-and-out calls, 214–219

Whalley, A. E., 125, 126
White, Alan, 325, 351, 352, 363
Wilmott, Paul, 8, 125, 126

Yields:
and forward rates, 260–261
negative, of short-term government bonds,

154n.1
Yield curves, 134–135
Yield to maturity:

as bond metric, 10
time to maturity vs., 138–139

Zero correlation:
mean-reverting volatility with, 369–375
stochastic volatility with, 362–368

Zero correlation smile:
and moneyness, 353–356
as symmetric, 356–360

Zero dividend yield:
in Black-Scholes-Merton model, 237–238
valuing down-and-out barrier option

under geometric Brownian motion with
zero riskless rate and, 207–211

Zero-interest-rate policy (ZIRP), 154n.1
Zero riskless rate:

in Black-Scholes-Merton model, 237–238
valuing down-and-out barrier option

under geometric Brownian motion with
zero dividend yield and, 207–211

ZIRP (zero-interest-rate policy), 154n.1
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