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Preface

When I began using artificial intelligence tools in quantitative financial
research, I could not find a comprehensive introductory text focusing on
financial applications. Neural network libraries like TensorFlow, PyTorch,
and Caffe had made tremendous contributions in the rapid development,
testing, and deployment of deep neural networks, but I found most
applications restricted to computer science, computer vision, and robotics.
Having to use reinforcement learning algorithms in finance served as
another reminder of the paucity of texts in this field. Furthermore, I found
myself referring to scholarly articles and papers for mathematical proofs of
new reinforcement learning algorithms. This led me to write this book to
provide a one-stop resource for Python programmers to learn the theory
behind reinforcement learning, augmented with practical examples drawn
from the field of finance.

In practical applications, reinforcement learning draws upon deep
neural networks. To facilitate exposition of topics in reinforcement
learning and for continuity, this book also provides an introduction to
TensorFlow and covers neural network topics like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).

Finally, this book also introduces readers to writing modular, reusable,
and extensible reinforcement learning code. Having worked on developing
trading strategies using reinforcement learning and publishing papers,

I felt existing reinforcement learning libraries like TF-Agents are tightly
coupled with the underlying implementation framework and do not

xiii



PREFACE

express central concepts in reinforcement learning in a manner that is
modular enough for someone conversant with concepts to pick up
TF-Agent library usage or extend its algorithms for specific applications.
The code samples covered in this book provide examples of how to write
modular code for reinforcement learning.

Xiv



Introduction

Reinforcement learning is a rapidly growing area of artificial intelligence
that involves an agent learning from past experience of rewards gained

by taking specific actions in certain states. The agent seeks to learn a
policy prescribing the optimum action in each state with the objective of
maximizing expected discounted future rewards. It is an unsupervised
learning technique where the agent learns the optimum policy by past
interactions with the environment. Supervised learning, by contrast, seeks
to learn the pattern of output corresponding to each state in training

data. It attempts to train the model parameters in order to get a close
correspondence between predicted and actual output for a given set of
inputs. This book outlines the theory behind reinforcement learning

and illustrates it with examples of implementations using TensorFlow.
The examples demonstrate the theory and implementation details of the
algorithms, supplemented with a discussion of corresponding APIs from
TensorFlow and examples drawn from quantitative finance. It guides
areader familiar with Python programming from basic to advanced
understanding of reinforcement learning algorithms, coupled with a
comprehensive discussion on how to use state-of-the-art software libraries
to implement advanced algorithms in reinforcement learning.

Most applications of reinforcement learning have focused on robotics
or computer science tasks. By focusing on examples drawn from finance,
this book illustrates a spectrum of financial applications that can benefit
from reinforcement learning.



CHAPTER 1

Overview

Deep neural networks have transformed virtually every scientific human
endeavor - from image recognition, medical imaging, robotics, and self-
driving cars to space exploration. The extent of transformation heralded
by neural networks is unrivaled in contemporary human history, judging
by the range of new products that leverage neural networks. Smartphones,
smartwatches, and digital assistants - to name a few - demonstrate the
promise of neural networks and signal their emergence as a mainstream
technology. The rapid development of artificial intelligence and machine
learning algorithms has coincided with increasing computational power,
enabling them to run rapidly. Keeping pace with new developments in
this field, various open source libraries implementing neural networks
have blossomed. Python has emerged as the lingua franca of the artificial
intelligence programming community. This book aims to equip Python-
proficient programmers with a comprehensive knowledge on how to use
the TensorFlow library for coding deep neural networks and reinforcement
learning algorithms effectively. It achieves this by providing detailed
mathematical proofs of key theorems, supplemented by implementation of
those algorithms to solve real-life problems.

Finance has been an early adopter of artificial intelligence algorithms
with the application of neural networks in designing trading strategies
as early as the 1980s. For example, White (1988) applied a simple
neural network to find nonlinear patterns in IBM stock price. However,
recent cutting-edge research on reinforcement learning has focused

© Samit Ahlawat 2023 1
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predominantly on robotics, computer science, or interactive game-
playing. The lack of financial applications has led many to question

the applicability of deep neural networks in finance where traditional
quantitative models are ubiquitous. Finance practitioners feel that the
lack of rigorous mathematical proofs and transparency about how neural
networks work has restricted their wider adoption within finance. This
book aims to address both of these concerns by focusing on real-life
financial applications of neural networks.

1.1 Methods for Training Neural Networks

Neural networks can be trained using one of the following three methods:

1. Supervised learning involves using a training
dataset with known output, also called ground
truth values. For a classification task, this would
be the true labels, while for a regression task, it
would be the actual output value. A loss function
is formulated that measures the deviation of the
model output from the true output. This function is
minimized with respect to model parameters using

stochastic gradient descent.

2. Unsupervised learning methods use a training
dataset made up of input features without any
knowledge of the true output values. The objective
is to classify inputs into clusters for clustering or
dimension reduction applications or for identifying
outliers.

3. Reinforcement learning involves an agent that
learns an optimal policy within the framework of
a Markov decision problem (MDP). The training
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dataset consists of a set of actions taken in different
states by an agent, followed by rewards earned and
the next state to which the agent transitions. Using
the history of rewards, reinforcement learning
attempts to learn an optimal policy to maximize the
expected sum of discounted future rewards. This

book focuses on reinforcement learning.

1.2 Machine Learning in Finance

Machine learning applications in finance date back to the 1980s with the
use of neural networks in stock price prediction (White, 1988). Within
finance, automated trading strategies and portfolio management have
been early adopters of artificial intelligence and machine learning tools.
Allen and Karjalainen (1999) applied genetic algorithms to combine
simple trading rules to form more complex ones. More recent applications
of machine learning in finance can be seen in the works of Savin et al.
(2007), who used the pattern recognition method presented by Lo et al.
(2000) to test if the head-and-shoulders pattern had predictive power;
Chavarnakul and Enke (2008), who employed a generalized regression
neural network (GRNN) to construct two trading strategies based on
equivolume charting that predicted the next day’s price using volume-
and price-based technical indicators; and Ahlawat (2016), who applied
probabilistic neural networks to predict technical patterns in stock
prices. Other works include Enke and Thawornwong (2005), Li and Kuo
(2008), and Leigh et al. (2005). Chenoweth et al. (1996) have studied the
application of neural networks in finance. Enke and Thawornwong (2005)
tested the hypothesis that neural networks can provide superior prediction
of future returns based on their ability to identify nonlinear relationships.
They employed only fundamental measures and did not consider
technical ones. Their neural network provided higher returns than the
buy-and-hold strategy, but they did not consider transaction costs.
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There are many other applications of machine learning in finance
besides trading strategies, perhaps less glamorous but equally significant
in business impact. This book gives a comprehensive exposition of several
machine learning applications in finance that are at cutting edge of
research and practical use.

1.3 Structure of the Book

This book begins with an introduction to the TensorFlow library in
Chapter 2 and illustrates the concepts with financial applications that
involve building models to solve practical problems. The datasets for
problems are publicly available. Relevant concepts are illustrated with
mathematical equations and concise explanations.

Chapter 3 introduces readers to convolutional neural networks
(CNNs), and Chapter 4 follows up with a similar treatment of recurrent
neural networks (RNNs). These networks are frequently used in building
value function models and policies in reinforcement learning, and a
comprehensive understanding of CNN and RNN is indispensable for
using reinforcement learning effectively on practical problems. As before,
all foundational concepts are illustrated with mathematical theory,
explanation, and practical implementation examples.

Chapter 5 introduces reinforcement learning concepts: from Markov
decision problem (MDP) formulation to defining value function and
policies, followed by a comprehensive discussion of reinforcement
learning algorithms illustrated with examples and mathematical proofs.

Finally, Chapter 6 provides a discussion of recent, groundbreaking
advances in reinforcement learning by discussing technical papers and
applying those algorithms to practical applications.



CHAPTER 2

Introduction to
TensorFlow

TensorFlow is an open source, high-performance machine learning library
developed by Google and released for public use in 2015. It has interfaces
for Python, C++, and Java programming languages. It has the option of
running on multiple CPUs or GPUs. TensorFlow offers two modes of
execution: eager mode that can be run immediately and graph mode

that creates a dependency graph and executes nodes in that graph only
where needed.

This book uses TensorFlow 2.9.1. Older TensorFlow constructs from
version 1 of the library such as Session and placeholder are not covered
here. Their use has been rendered obsolete in TensorFlow version 2.0 and
higher. Output shown in the code listings has been generated using the
PyCharm IDE’s interactive shell.

2.1 Tensors and Variables

Tensors are n-dimensional arrays, similar in functionality to the numpy
library’s ndarray object. They are instances of the tf.Tensor object. A three-
dimensional tensor of 32-bit floating-point numbers can be created using
code in Listing 2-1. Tensor has attributes shape and dtype that tell the
shape and data type of the tensor. Once created, tensors retain their shape.

© Samit Ahlawat 2023 5
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Listing 2-1. Creating a Three-Dimensional Tensor

1
2
3
4
5

O 00 N O

10
11
12

import tensorflow as tf

tensor = tf.constant([[list(range(3))],
[list(range(1, 4))],
[list(range(2, 5))]1], dtype=tf.
float32)

print(tensor)

tf.Tensor(

[[[o0. 1. 2.]]
[[1. 2. 3.]]
[[2. 3. 4.]]], shape=(3, 1, 3), dtype=float32)

Most numpy functions for creating ndarrays have analogs in

TensorFlow, for example, tf.ones, tf.zeros, tf.eye, tf.ones_like, etc. Tensors

support usual mathematical operations like +, —, etc., in addition to matrix

operations like transpose, matmul, and einsum, as shown in Listing 2-2.

Listing 2-2. Mathematical Operations on Tensors

1
2
3
4
5
6
7
8
9

10

import tensorflow as tf

ar = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)
print(ar)

<tf.Tensor: id=1, shape=(2, 2), dtype=float32, numpy=
array([[1., 2.],

[2., 2.]], dtype=float32)>

# elementwise multiplication



11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
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print(ar * ar)

Out[8]:

<tf.Tensor: id=2, shape=(2, 2), dtype=float32, numpy=
array([[1., 4.1,

(4., 4.]], dtype=float32)>

# matrix multiplication C = tf.matmul(A, B) => cij =
sum_k (aik * bkj)
print(tf.matmul(ar, tf.transpose(ar)))

<tf.Tensor: id=5, shape=(2, 2), dtype=float32, numpy=

array([[5., 6.1,
[6., 8.]], dtype=float32)>

# generic way of matrix multiplication
print(tf.einsum("ij,kj->ik", ar, ar))

<tf.Tensor: id=23, shape=(2, 2), dtype=float32, numpy=

array([[5., 6.1,
[6., 8.]], dtype=float32)>

# cross product
print(tf.einsum("ij,k1->ijk1", ar, ar))

<tf.Tensor: id=32, shape=(2, 2, 2, 2),
dtype=float32, numpy=

array([[[[2., 2.1,

[2., 2.]],

[[2., 4.7,

(4., 4.111,

[[[2., 4.],
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4 [4., 4.]],
41 [[2., 4.],
42  [4., 4.111]1, dtype=float32)>

Tensors can be sliced using the usual Python notation with a
semicolon. For advanced slicing, use tf.slice that accepts a begin index
and the number of elements along each axis to slice. tf.strided_slice can
be used for adding a stride. To obtain specific indices from a tensor, use
tf.gather. To extract specific elements of a multidimensional tensor
specified by a list of indices, use tf.gather_nd. These APIs are illustrated
using examples in Listing 2-3.

Listing 2-3. Tensor Slicing Operations

1 import tensorflow as tf

2

3 tensor = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)

4

5 print(tensor[1:, :])

6 <tf.Tensor: id=37, shape=(1, 2), dtype=float32,
numpy=array([[2., 2.]], dtype=float32)>

7

8 print(tf.slice(tensor, begin=[0,1], size=[2, 1]))

9 tf.Tensor(

10 [[2.]

11 [2.]], shape=(2, 1), dtype=float32)

12

13 print(tf.gather nd(tensor, indices=[[0, 1], [1, 0]]))
14  Out[18]: <tf.Tensor: id=42, shape=(2,), dtype=float32,
numpy=array([2., 2.], dtype=float32)>

Ragged tensors are tensors with a nonuniform shape along an axis, as
illustrated in Listing 2-4.
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Listing 2-4. Ragged Tensors

import tensorflow as tf

print(jagged)

1
2
3 jagged = tf.ragged.constant([[1, 2], [2]])
4
5 <tf.RaggedTensor [[1, 2], [2]]>

TensorFlow allows space-efficient storage of sparse arrays, that is,
arrays with most elements as 0. The tf.sparse.SparseTensor API takes
the indices of non-zero elements, their values, and the dense shape of the
sparse array. This is shown in Listing 2-5.

Listing 2-5. Sparse Tensors

1 import tensorflow as tf

2

3 tensor = tf.sparse.SparseTensor(indices=[[1,0], [2,2]],
values=[1, 2], dense shape=[3, 4])

4  print(tensor)

5 SparseTensor(indices=tf.Tensor(

6 [[10]

7 [2 2]], shape=(2, 2), dtype=int64), values=tf.Tensor([1 2],

shape=(2,), dtype=int32), dense_shape=tf.Tensor([3 4],
shape=(2,), dtype=int64))

print(tf.sparse.to dense(tensor))
10 tf.Tensor(
11 [[0o 00 0]
12 [100 0]
13 [0 0 2 0]], shape=(3, 4), dtype=int32)
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In contrast to tf.Tensor that is immutable after creation, a TensorFlow
variable can be changed. A variable is an instance of the tf.Variable
class and can be created by initializing it with a tensor. Variables can be
converted to tensors using tf.convert_to_tensor. Variables cannot be
reshaped after creation, only modified. Calling tf.reshape on a variable
returns a new tensor. Variables can also be created from another variable,
but the operation copies the underlying tensor. Variables do not share
underlying data. assign can be used to update the variable by changing
its data tensor. assign_add is another useful method of a variable that
replicates the functionality of the += operator. Operations on tensors like
matmul or einsum can also be applied to variables or to a combination of
tensor and variable. Variable has a Boolean attribute called trainable that
signifies if the variable is to be trained during backpropagation. Operations
on variables are shown in Listing 2-6.

Listing 2-6. Variables

import tensorflow as tf

1

2

3 tensor = tf.constant([[1, 2], [3, 4]])

4 variable = tf.Variable(tensor)

5 print(variable)

6 <tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=
7 array([[1, 2],

8

9

(3, 4]])>

10  # return the index of highest element

11 print(tf.math.argmax(variable))

12

13 tf.Tensor([1 1], shape=(2,), dtype=int64)
14

15  print(tf.convert to_tensor(variable))

16  tf.Tensor(

10



17
18
19
20
21

22
23
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[[1 2]
[3 4]], shape=(2, 2), dtype=int32)

print(variable.assign([[1,2], [1, 1]]))

<tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32,
numpy=

array([[1, 2],

[1, 1]1)>

2.2 Graphs, Operations, and Functions

There are two modes of execution within TensorFlow: eager execution

and graph execution. Eager mode of execution processes instructions as

they occur in the code, while graph execution is delayed. Graph mode

builds a dependency graph connecting the data represented as tensors

(or variables) using operations and functions. After the graph is built, it is

executed. Graph execution offers a few advantages over eager execution:

1.

Graphs can be exported to files or executed in non-
Python environments such as mobile devices.

Graphs can be compiled to speed up execution.

Nodes with static data and operations on those
nodes can be precomputed.

Node values that are used multiple times can
be cached.

Branches of the graph can be identified for parallel
execution.

Operations in TensorFlow are represented using the tf.Operation class

and can be used as a node. Operation nodes are created using one of the

predefined operations such as tf.matmul, tf.reduce_sum, etc. To create a

11
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new operation, use the tf.Operation class. A few important operations are
enumerated in the following. All of them can be accessed directly using the
tf.operation_name syntax.

1. Operations defined in the tf.math library:
« tf.abs: Calculates the absolute value of a tensor.
o tf.divide: Divides two tensors.

o tf.maximum: Returns the element-wise maximum
of two tensors.

o tf.reduce_sum: Calculates the sum of all tensor
elements. It takes an optional axis argument to
calculate the sum along that axis.

2. Operations defined in the tf.linalg library:

(a). tf.det: Calculates the determinant of a
square matrix

(b). tf.svd: Calculates the SVD decomposition of a

rectangular matrix provided as a tensor
(c). tf.trace: Returns the trace of a tensor

Functions are defined using the tf.function method, passing the
Python function as an argument. tf.function is a decorator that augments
a Python function with attributes necessary for running it in a TensorFlow
graph. A few examples of TensorFlow operations and functions are
illustrated in Listing 2-7. Each TensorFlow function generates an internal
graph from its arguments. By default, a TensorFlow function uses a graph
execution model. To switch to eager execution mode, set tf.config.run_
functions_eagerly(True). Please note that the following output may not
match output from another run because of random numbers used.

12
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Listing 2-7. TensorFlow Operations and Functions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

import tensorflow as tf
import numpy as np

tensor = tf.constant(np.ones((3, 3), dtype=np.int32))
print(tensor)

<tf.Tensor: id=0, shape=(3, 3), dtype=int32, numpy=
array([[1, 1, 1],

[1, 1, 1],

[1, 1, 1]])>

print(tf.reduce sum(tensor))
<tf.Tensor: id=2, shape=(), dtype=int32, numpy=9>

print(tf.reduce sum(tensor, axis=1))
<tf.Tensor: id=4, shape=(3,), dtype=int32, numpy=
array([3, 3, 3])>

@tf.function

def sigmoid activation(inputs, weights, bias):
x = tf.matmul(inputs, weights) + bias
return tf.divide(1.0, 1 + tf.exp(-x))

inputs = tf.constant(np.ones((1, 3), dtype=np.float64))

weights = tf.Variable(np.random.random((3, 1)))
bias = tf.ones((1, 3), dtype=tf.float64)

13



CHAPTER 2  INTRODUCTION TO TENSORFLOW

27

28  print(sigmoid_activation(inputs, weights, bias))

29 <tf.Tensor: id=195, shape=(1, 3), dtype=float64,
numpy=array([[0.89564016, 0.89564016, 0.89564016]])>

Code shown in Listing 2-8 sets the default execution mode to
graph mode.

Listing 2-8. Running TensorFlow Operations in Graph
(Non-eager) Mode

import timeit

1
2
3  tf.config.experimental run functions eagerly(False)
4 t1 = timeit.timeit(lambda: sigmoid activation(inputs,
weights, tf.constant(np.random.random((1, 3)))),
number=1000)
print(t1)
0.7758807

2.3 Modules

TensorFlow uses the base class tf.Module to build layers and models. A
module is a class that keeps track of its state using instance variables and can
be called as a function. To achieve this, it must provide an implementation
for the method __call__. This is illustrated in Listing 2-9. Due to the use of
random numbers, output values may vary from those shown.

Listing 2-9. Custom Module

1 import tensorflow as tf
2 import numpy as np

3

4

14
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class ExampleModule(tf.Module):
def init (self, name=None):

super (ExampleModule, self). init (name=name)
self.weights = tf.Variable(np.random.random(5),
name="weights")
self.const = tf.Variable(np.array([1.0]),
dtype=tf.float64,
trainable=False, name="constant")

def call (self, x, *args, **kwargs):
return tf.matmul(x, self.weights[:, tf.newaxis]) +
self.const[tf.newaxis, :]

em = ExampleModule()
x = tf.constant(np.ones((1, 5)), dtype=tf.float64)
print(em(x))

<tf.Tensor: id=24631, shape=(1, 1), dtype=float64,
numpy=array([[2.45019464]])>

Module is the base class for both layers and models. It can be used as

amodel, serving as a collection of layers. Module shown in Listing 2-10

defers the creation of weights for the first layer until inputs are provided.

Once input shape is known, it creates the tensors to store the weights.

Decorator tf.function can be added to the __call__ method to convert it to

a graph.

15
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Listing 2-10. Module

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
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import tensorflow as tf

class InferInputSizeModule(tf.Module):

def

def

__init_ (self, noutput, name=None):
super(). init (name=name)

self.weights = None

self.noutput = noutput

self.bias = tf.Variable(tf.zeros([noutput]),
name="bias")

__call (self, x, *args, **kwargs):

if self.weights is None:
self.weights = tf.Variable(tf.random.
normal([x.shape[-1], self.noutput]))

output = tf.matmul(x, self.weights) + self.bias
return tf.nn.sigmoid(output)

class SimpleModel(tf.Module):

def

@tf.

def

__init_ (self, name=None):
super(). init (name=name)

self.layer1
self.layer2

InferInputSizeModule(noutput=4)
InferInputSizeModule(noutput=1)

function

__call (self, x, *args, **kwargs):
x = self.layer1(x)

return self.layer2(x)
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29

30 model = SimpleModel()

31 print(model(tf.ones((1, 10))))

32

33 <tf.Tensor: id=24700, shape=(1, 1), dtype=float32,
numpy=array([[0.632286]], dtype=float32)>

Objects of type tf.Module can be saved to checkpoint files. Creating a
checkpoint creates two files: one with module data and another containing
metadata with extension .index. Saving a module to a checkpoint and
loading it back from a checkpoint is illustrated in Listing 2-11.

Listing 2-11. Checkpoint a Model

import tensorflow as tf

1

2

3 path = r"C:\temp\simplemodel”

4  checkpoint = tf.train.Checkpoint(model=model)
5 checkpoint.write(path)
6
7
8
9

model2 = SimpleModel()
model orig = tf.train.Checkpoint(model=model2)
10 model orig.restore(path)

2.4 Layers

Layers are objects with tf.keras.layers.Layer as the base class. The Keras
library is used in TensorFlow for implementing layers and models. The
tf.keras.layers.Layer class derives from the tf.Module class and has
amethod call in place of the __call__ method in tf.Module. There are
several advantages to using Keras instead of tf.Module. For instance,
training variables of nested Keras layers are automatically collected for

17



CHAPTER 2  INTRODUCTION TO TENSORFLOW

training during backpropagation, whereas with tf.Module, variables have
to be collected explicitly by the programmer. Additionally, one can provide
an optional build method that gets called the first time Layer is invoked
using the call method to initialize layer weights or other state variables
based on input shape.

According to TensorFlow convention, input is always a two-
dimensional or higher tensor. The first dimension indicates the batches.
For example, if we have a set of N inputs, with each input comprised of one
feature, input shape will be (N, 1). Notice how TensorFlow requires the
first dimension to correspond to the number of batches. Similarly, the first
dimension of output is the number of batches.

TensorFlow layers are derived from base class tf.keras.layers.Layer.

A layer has the following noteworthy methods. For a full list, please check
the TensorFlow API reference:

1. The __init__(self) method to initialize layer weights
or other instance variables.

2. The build(self, input_shape) method is optional.
When provided, it gets called the first time Layer is
called with the input_shape parameter.

3. The call(self, inputs, *args, **kwargs) method
takes the input and produces the output. This
method takes two optional arguments listed in the
following:

e training: A Boolean argument if the call to Layer
is made during the training period or prediction
period. This argument may be used if the layer
needs to do special work during training or
prediction calls.

18
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o mask: A Boolean tensor indicating some mask. For
example, a layer could apply special logic to inputs
if their batch number is present in the mask, or a
recurrent neural network layer can use this to flag
special timesteps.

The get_config(self) method returns a dictionary
with layer configurations that need to be serialized
when saving a checkpoint.

weights is a property of the Layer class and cannot be
set in derived classes. Variables, that is, instances of
type Variable, that are assigned as instance attributes
become constituents of the weights property.

trainable_weights is also a property of the Layer
class that contains trainable weights of this layer.

add_loss: Add additional losses like a regularization
loss to the loss function.

add_metric: Add additional metrics for tracking
training performance.

get_weights: Get all the weights - both trainable and
non-trainable - of a layer as a list of numpy arrays.

set_weights: Set the weights of this layer to those
provided in the list of numpy arrays. The structure
of this list must be identical to the list returned by
get_weights.

Sample code shown in Listing 2-12 creates a custom Keras layer that

applies an upper bound of 0.9 on all its inputs. Before the first call to Layer,
the build method has not been called, and weights is empty. After the
first call to Layer, weights and trainable_weights properties have been
initialized as seen from the output.

19
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Listing 2-12. Writing a Customized Layer

import tensorflow as tf
from tensorflow.keras.layers import Layer

def init (self, neurons):
super(). init ()

1
2
3
4
5 class CustomDenselayer(Layer):
6
7
8 self.neurons = neurons
9

10 def build(self, input_shape):

11 # input_shape[-1] is the number of features for
this layer

12 self.wt = tf.Variable(tf.random.normal((input_
shape[-1], self.neurons), dtype=tf.float32),

13 trainable=True)

14 self.bias = tf.Variable(tf.zeros((self.neurons,),
dtype=tf.float32),

15 trainable=True)

16 self.upperBound = tf.constant(0.9, dtype=tf.
float32, shape=(input_shape[-1],))

17

18 def call(self, inputs):

19 return tf.matmul(tf.minimum(self.upperBound,
inputs), self.wt) + self.bias

20

21

22 layer = CustomDenselayer(5)

23 print(layer.weights)

24  print(layer.trainable weights)
25

20
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[]
[]

input = tf.random normal initializer(mean=0.5)
(shape=(2, 5), dtype=tf.float32)
print(layer(inputs=input))

<tf.Tensor: id=171, shape=(2, 5), dtype=float32, numpy=
array([[-1.1098292 , -0.2773003 , 0.24687909, 1.0952137 ,
1.221024 ],

[-1.116677 , -0.4057744 , 0.18726291, 1.0598873 ,
1.3692323 11,

dtype=float32)>

print(layer.weights)

[<tf.Variable 'custom dense layer 4/Variable:0' shape=(5, 5)
dtype=float32, numpy=

array([[-1.3313855 , -0.7012864 , -1.003786 , -0.6224709 ,
3.0700085 ],

[-0.1896328 , 1.156029 , 0.5904321 , 0.20901136,
-0.6205104 ],

[-0.13661204, -1.201732 , -0.08776241, 0.64640564,
-0.9309348 ],

[-0.6379096 , 0.43822217, -0.13019271, 0.4309327 ,
0.8983831 ],

[ 0.03697195, -0.30708486, 1.1169728 , 1.5509295 ,
0.3927749 1],

dtype=float32)>, <tf.Variable 'custom_dense layer 4/
Variable:0' shape=(5,) dtype=float32, numpy=

array([o0., 0., 0., 0., 0.], dtype=float32)>]
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46

47

48

49

50

51

52

53

54

55

print(layer.trainable weights)

[<tf.Variable 'custom dense layer 4/Variable:0' shape=(5, 5)

dtype=float32, numpy=

array([[-1.3313855 , -0.7012864 , -1.003786 , -0.6224709 ,

3.0700085 ],

[-0.1896328 , 1.156029 , 0.5904321 , 0.20901136,

-0.6205104 ],

[-0.13661204, -1.201732 , -0.08776241, 0.64640564,

-0.9309348 ],

[-0.6379096 , 0.43822217, -0.13019271, 0.4309327 ,
0.8983831 ],

[ 0.03697195, -0.30708486, 1.1169728 , 1.5509295 ,
0.3927749 1],

dtype=float32)», <tf.Variable 'custom dense layer 4/

Variable:0' shape=(5,) dtype=float32, numpy=

array([0., 0., 0., 0., 0.], dtype=float32)>]

Keras layers also provide the ability to add loss functions like a

regularization loss to the overall loss function and to track additional metrics.

Listing 2-13. Creating a Custom Layer for Lasso (L1) Regularization

1
2
3
4
5
6
7
8

22

import tensorflow as tf
from tensorflow.keras.layers import Layer

class LassolosslLayer(Layer):
def _init (self, features, neurons):
super(). init ()
self.wt = tf.Variable(tf.random.normal((features,
neurons), dtype=tf.float32),
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trainable=True)

self.bias = tf.Variable(tf.zeros((neurons,),
dtype=tf.float32),

trainable=True)

self.meanMetric = tf.keras.metrics.Mean()

def call(self, inputs):
# LASSO regularization loss
self.add loss(tf.reduce sum(tf.abs(self.wt)))
self.add loss(tf.reduce sum(tf.abs(self.bias)))
# metric to calculate mean of inputs
self.add metric(self.meanMetric(inputs))
return tf.matmul(inputs, self.wt) + self.bias

In practice, one rarely needs to create custom layers. TensorFlow provides

arange of layers useful in different neural networks. A few of them are

described in the following. For a complete list, refer to the TensorFlow API:

Average: Takes the average of inputs.

AveragePoolinglD: One-dimensional pooling layer
used in convolutional neural networks. It takes pooling
size and stride arguments. AveragePooling2D and
AveragePooling3D layers are also available.

BatchNormalization: Normalizes the input by
subtracting the batch mean and dividing by the batch
standard deviation during training. During prediction,
when the training argument is False, uses a moving
average of the mean and standard deviation computed
using the values from the training phase and the
current batch mean and standard deviation.
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e ConvlD: One-dimensional convolution layer with
provided number of filters (or number of channels),
kernel size, and stride. Two- and three-dimensional
convolution layers are also available.

e ConvlDTranspose: Deconvolution layer that produces
the inverse of a convolution layer.

o Dense: A layer that connects all neurons in the layer to
features (layer inputs).

¢ Dropout: Randomly sets the rate proportion of inputs
to zero during training while scaling up the remaining
inputs by fracll — rate so that the sum of inputs is
unchanged. This is helpful for preventing overfitting.
During prediction, this layer is a pass-through, sending
the inputs as outputs.

o Embedding: This layer takes an input of dimension
input_dim and returns a corresponding embedding of
dimension output_dim. input_dim and output_dim
are constructor arguments for this layer.

e MaxPoollD: Pool the inputs within the kernel, selecting
the maximum value of input. This layer is useful
in convolutional neural networks. Two- and three-
dimensional max pooling layers are also available.

and

o Softmax: Softmax layer that computes p, =

P;

ijj

of inputs x;. This layer has no trainable weights.

—X:

_e t

returns the normalized probability for a vector

Layer’s activation function can be provided as a constructor argument.
If the activation function is omitted, the unit activation function is applied
by default, thatis, y=W- X.
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2.5 Models

TensorFlow models have tf.keras.Model as the base class, which in
turn derives from the tf.keras.layers.Layer class. Models can serve as
a collection of layers. For example, a sequential model is a collection of
layers that applies the input to the first layer, passing its output to the
second layer as input, and so on. Because models have Layer as a base
class, all functionality of layers is available in models. Models can be saved
as a checkpoint, deriving this functionality from the tf.Module base class.
Models also have a method save to serialize the model to a file. A serialized
model can be loaded using the tf.keras.models.load_model command.
An example of a customized sequential layer is shown in code
Listing 2-14. The model has two layers: a dense layer with ReLU (rectified
linear unit) activation and a softmax layer. As can be seen, the outputs
from the softmax layer add to 1 for each row. Due to the use of random
numbers, output values may vary from those shown.

Listing 2-14. Writing a Customized Model

import tensorflow as tf
from tensorflow.keras import Model

def __init_ (self, name=None, **kwargs):
super(). init_ (name, **kwargs)
self.layer2 = tf.keras.layers.Softmax()
self.layerl = tf.keras.layers.Dense(10,

1
2
3
4
5 class CustomSequentialModel(Model):
6
7
8
9

activation=tf.keras.activations.relu)

10
11 def call(self, inputs, training=None, mask=None):
12 x = self.layeri(inputs)
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13 return self.layer2(x)

14

15 model = CustomSequentialModel()

16  output = model(tf.random.normal((2, 10), dtype=tf.float32))

17 print(output)

18  tf.Tensor(

19 [[0.07642513 0.25438178 0.06848245 0.0847797 0.06848245
0.10721327

20 0.06848245 0.07157873 0.10768385 0.09249022]

21 [0.0404469 0.0404469 0.0404469 0.0404469 0.0404469
0.06400955

22 0.0404469 0.60652715 0.0404469 0.04633499]], shape=(2, 10),
dtype=float32)

23
24 print(tf.reduce sum(output, axis=1))
25 tf.Tensor([1. 0.99999994], shape=(2,),

dtype=float32)

TensorFlow provides a sequential model tf.keras.Sequential. Layers
are added to a sequential model using the add method. The first layer to
a sequential model takes an optional argument input_shape specifying
the number of features. If input shape for the first layer is not specified,
the model must be built before compiling it. The build method of the
model class takes input shape as argument. Before a model can be fitted
to training data, it must be compiled, specifying the optimizer and loss
function. Once fitted, the model can be used for making predictions. Usage
of a sequential model is illustrated using an example shown in Listing 2-15.
The code creates a sequential model comprised of three dense layers. It is
then compiled and fitted to data using backpropagation. Once trained, it
can be used for predicting.
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A few important methods of the tf.keras.Sequential model class are

listed in the following:

1.

2.

add: Add a layer to the sequential model.

compile: Compile the model. This step is required
before the model can be trained. It specifies the
optimizer used, loss function, metrics, and if it
should run eagerly or in graph mode.

compute_loss: Calculates the loss given the
predicted outputs, the inputs, and the outputs using
the loss function supplied to the model. If predicted
outputs are not provided, the method first predicts
the output using the inputs. Calculates the loss
between predicted output and output.

evaluate: Evaluate the model in prediction mode.
Since this is not training mode, layers such as
dropout layers behave accordingly.

fit: Fit the model using provided inputs and

outputs using backpropagation. It accepts optional
arguments such as batch_size that specifies the
number of samples used in each stochastic gradient
step and epochs that specifies the number of
optimization iterations. Returns a history object
that can be used to track the evolution of loss and
metrics over training epochs.

predict: Predict the output from the model.

get_layer: Retrieve a layer from the model using an
index or name.

save: Saves the model to a file.
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9. summary: Prints a summary of input and output
shapes and trainable parameters in each layer.

10. to_json: Saves the model to a JSON file.

Use of these APIs is illustrated using an example shown in Listing 2-15.
In this code, data is generated by adding Gaussian white noise to function
4x + 2.5. Amodel is fitted to the dataset using no regularization first,
followed by using L2 regularization. Predicted results are plotted.

Listing 2-15. Sequential Model

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme(style="whitegrid")

# generate data

x = np.linspace(0, 5, 400, dtype=np.float32) # 400 points

spaced from 0 to 5

9 x = tf.constant(x)

10 y = 4*x + 2.5 + tf.random.truncated normal((400,),
dtype=tf.float32)

11 sns.scatterplot(x.numpy(), y.numpy())

12 plt.ylabel("y = 4x + 2.5 + noise")

13 plt.xlabel("x")

14 plt.show()

15

16  # create test and training data

17  x_train, y train = x[0:350], y[0:350]

0N OV WN R
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x_test, y test = x[350:], y[350:]

# create the model

seq model = tf.keras.Sequential()
seq_model.add(tf.keras.layers.Dense(5, input shape=(1,)))
seq_model.add(tf.keras.layers.Dense(10, activation=tf.
keras.activations.relu))
seq_model.add(tf.keras.layers.Dense(1))
print(seq_model.summary())

# Custom loss function with optional regularization
class Loss(tf.keras.losses.Loss):
def _init (self, beta, weights):
super(). init ()
self.weights = weights
self.beta = beta

def call(self, y true, y pred):
reg loss = 0
for i in range(len(self.weights)):
reg loss += tf.reduce mean(tf.square(self.
weights[i]))
return tf.reduce mean(tf.square(y pred - y true))
+ self.beta * reg loss

my loss = Loss(0, seq_model.get weights())
# compile the model

seq_model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=my loss,
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metrics=[tf.keras.metrics.
MeanSquaredError()])

# fit the model to training data
history = seq model.fit(x_train, y train, batch size=10,
epochs=10)

# plot the history
plt.plot(history.history[ "mean squared error"],
label="mean_squared error")

plt.ylabel("Mean Square Error")
plt.xlabel("Epoch")

plt.show()

# predict unseen test data

y pred = seq_model.predict(x_test)

plt.plot(x test, y test, '.', label="Test Data")
plt.plot(x_test, 4*x test+2.5, label="Underlying Data")
plt.plot(x_test, y pred.squeeze(), label="Predicted Values")
plt.legend()

plt.show()

Model: "sequential”

Layer (type) Output Shape Param #
dense (Dense) (None, 5) 10
dense_1 (Dense) (None, 10) 60
dense 2 (Dense) (None, 1) 11
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74

75 Total params: 81

76  Trainable params: 81

77 Non-trainable params: 0
78

79  None

The model is first fitted using no regularization, setting = 0 in the
argument to the loss function. Prediction results on testing data are shown
in Figure 2-1. As can be observed, predicted values are very close to the
underlying data-generating function, indicating good performance in
testing data. Figure 2-2 shows the history of mean square error over the
epochs. As can be seen from Figure 2-2, mean square error has converged.

Next, L2 regularization loss is introduced by setting /= 0.05 in the
argument to the loss function. Prediction results are plotted in Figure 2-3.
Regularization loss penalizes the higher value of the weight, forcing it
down. As a result, predicted values are lower than the underlying data-
generating function. Regularization is helpful in fitting a model to data
with outliers. The testing data has no outliers in this example.

*  TestData

== Underlying Data
23— Predicted Values
—==
22 == »..-?-r-r -
-- —T——:f-‘:‘:f-__
“‘.‘-‘_.('—:'—‘;":"— =

2‘ = ———-:f:"ﬁ-:.—:—- =¥

- e
2 >
19

4.4 45 48 - [ 4‘9 |

Figure 2-1. Predictions of the Model with No Regularization Against
Underlying Data
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—— mean_squared_emor

Mean Square Error

] 2 4 & ]
Epoch

Figure 2-2. History of Mean Square Error over Training Epochs

*  TestData
== Underlying Data
23 — Predicted Values

b4l

4.4 45 48 47 48 49 50

Figure 2-3. Predictions of the Model with L2 Regularization Against
Underlying Data
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2.6 Activation Functions

An activation function specifies the function applied to the dot product

of neuron weights and inputs to determine the neuron’s output. In

equation 2.1, grepresents the activation:

y=8(W-X+b) (2.1)

TensorFlow has a number of predefined activation functions in

module tf.keras.activations. A few of them are described in the following:

1.

ELU: This is the exponential linear unit defined in tf.
keras.activations.elu. Its activation function

is illustrated in equation 2.2. a > 0. For a large
negative value of x, ELU saturates to a small negative
value, —a. ELUs help address the vanishing gradient
problem because they do not saturate for large x:

_Jxif x>0
- a(eX—l) if x<0 (2.2)

exponential: Takes natural exponent e* of input.

GELU: Gaussian error linear unit that uses standard
normal Gaussian CDF to calculate its output as
shown in equation 2.3:

2

N
y—x;/;vge dv (2.3)

ReLU: Rectified linear unit activation produces
max(x, 0) as the output. It cuts off negative
values at 0.
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5. The LeakyReLU activation function gives an output
shown in equation 2.4. For positive values of x,
itis identical to ReLU. Unlike ReLU, the output
does not cut off to 0 for negative values of x. This
helps avoid zero activation and zero gradients for
negative values:

if x>
y:{ﬁXI x>0 (2.4)

Poxif x<0

6. SELU: Scaled exponential linear unit activation
scales the output of ELU activation by a scaling
parameter /. Its output is shown in equation 2.5:

{ﬁxifxzo

/Ba(e" —1)ifx<0 (2.5)

1
7. sigmoid: y =T . This activation function
—e

saturates for large and small values of input x, giving

rise to the vanishing gradient problem in deep
neural networks and recurrent neural networks.

8. softmax: Produces probability distribution from its
inputs as shown in equation 2.6. Being a probability
distribution, Z y;=1:

(2.6)
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9. tanh: Applies a hyperbolic tangent function as
shown in equation 2.7 to produce output. Like
the sigmoid function, it saturates for high and low
values of input x:

e —e”

=—— (2.7)
e‘+e

An activation function is provided as an argument to the layers object’s

constructor. Either the full name or a string can be used. TensorFlow keeps

a mapping of strings to predefined activation functions. The two methods

of specifying an activation function are shown in Listing 2-16. The

advantage of using a fully qualified object name is that default arguments

to the activation function can be changed.

Listing 2-16. Specifying an Activation Function

> W N R

O N O WU

10

import tensorflow as tf

input = tf.random.normal((1, 5), dtype=tf.float32)
(input < 0).numpy().sum()

layer = tf.keras.layers.Dense(10, activation="relu",
input_shape=(5,))

output = layer(input)

assert (output < 0).numpy().sum() == 0

layer2 = tf.keras.layers.Dense(10, activation=tf.keras.
activations.relu, input shape=(5,))

output2 = layer2(input)

assert (output2 < 0).numpy().sum() ==
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New activation functions can be added by defining a functor, that is,
a class that can be instantiated and called using operator (), as shown in
Listing 2-17. This example defines a new activation function y = min («, x)
where « is a configurable parameter set to 0.5. Inputs are all set to zero,
giving x = 0 and output y = a.

Listing 2-17. Customizing an Activation Function

import tensorflow as tf

1

2

3 class MyActivation(object):

4 def init (self, alpha):
5 self.alpha = alpha
6
7
8
9

def call (self, x):
return tf.where(x < self.alpha, self.alpha, x)

10 layer = tf.keras.layers.Dense(1,
activation=MyActivation(0.5), input_shape=(2,))

11 input = tf.constant([[0, 0]], dtype=tf.float32)

12 output = layer(input)

13 print(output)

14

15 tf.Tensor([[0.5]], shape=(1, 1), dtype=float32)
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2.7 Loss Functions

A loss function defines a measure of difference between output and

predicted output. Training a model involves adjusting the model’s

parameters to minimize the loss over a training dataset.

Loss functions have tf.keras.losses.Loss as their base class and

override the method call(y_true, y_pred). Predefined loss functions in

TensorFlow can be found in module tf.keras.losses. A few loss functions

from that module are described in the following:

1.

BinaryCrossentropy: Calculates loss between
predicted labels and true labels in a binary
(two-class) classification problem. Definition

of the loss function is shown in equation 2.8.

The constructor of this loss takes an argument
from_logits indicating if the predicted outputs are
true probabilities or un-normalized probabilities.
The default value of from_logits is false. If true,
Petasso + Peiasst = 1.0 must hold. In equation 2.8, I() is
the indicator function. p(i) denotes the predicted
probability of observation i belonging to class 0:

L==3" [ (Vi (1) = 0)108(Putaso (1)) + I (Vire (1) =1)108 (1= P (1)) ]| (2:8)

CategoricalCrossentropy: Calculates loss between
predicted labels and true labels in a multiclass
classification problem. Like its two-class cousin
BinaryCrossentropy, it takes a from_logits
argument indicating if the predicted outputs are
true probabilities or un-normalized probabilities.
Definition of this loss is shown in equation 2.9.
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Paass(i) denotes the predicted probability of
observation i belonging to class j. True values must
be provided as one-hot vectors:

L= _ZiZjeclassesI(ylrue (l) = j)log(pclussj (l)) (29)

3. CategoricalHinge: This loss function is defined
in equation 2.10. It is applicable to classification
problems. p,,; (i) depicts the normalized
probability of observation i belonging to class j.
A model using this loss must produce normalized
probabilities. This can be done by adding a softmax
layer as the last layer:

L =max 0;1+Z Z (I(J’zme(i)¢j)ﬁclassj(i)_I(J’nue(i)zj)ﬁclassj(i)) (2.10)

i jeclasses

Use of this loss function is illustrated using an example in Listing 2-18.

4. CosineSimilarity: Dot product of prediction and
ground truth vectors normalized by L2 norm. The
loss value is between -1 and 1, with -1 indicating
perfect match between prediction and ground truth.
Definition for this loss is shown in equation 2.11:

vy
,zuy )|| ||y() _—

5. Hinge: Hinge loss is applicable to binary
classification problems and is defined in equation
2.12. y(i) is the ground truth and (i) is the
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prediction. This loss function assumes y(i) is either 1
or -1 instead of the usual 0 and 1 binary class labels:

L=max(0,1-y(i)-y(i)) (2.12)

Huber: This loss function is helpful in problems
with outliers. Mean square error grows quadratically
with deviation between actual and predicted values
and can lead to poor convergence when outliers are
present. Huber loss addresses this problem because
it grows linearly for large deviations between
actual and predicted values. This loss is defined in
equation 2.13:

1 N

L =NZL(i)

i=1

L5050 11540 5(0) <0 1)

Ho- 3(1(0)-¥(9)1- 33 Jotherwise

MeanSquaredError: This is perhaps the most
widely used error function. It takes the mean of
square deviations between observed and true
values, as shown in equation 2.14:

L=—=>(3(1)-y(0)) (2.14)

SparseCategoricalCrossentropy: This loss function
is functionally similar to CategoricalCrossentropy.
It optimizes memory usage by relaxing the
requirement of the CategoricalCrossentropy loss
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function for its true values to be one-hot vectors.
Using SparseCategoricalCrossentropy, true values
(ground truth) should be integers indicating the
class number of the output. Indices begin from 0.

As an example, let us create a model to classify points into one of four
clusters. Each cluster has its mean x and y coordinates and a standard
deviation. Training data is constructed using 1000 random draws from
Gaussian distribution centered around each cluster’s mean with that
cluster’s standard deviation. This process gives a total of 4000 data points,
1000 points belonging to each cluster. The points are plotted in Figure 2-4.
The code is shown in Listing 2-18. The example uses five features: x, y,

xy, X%, y2.

]
W e

-5

=5 1] 5 10 15 20

Figure 2-4. 4000 Points Drawn from Four Clusters

Listing 2-18. Classifying a Point into One of Four Clusters

import tensorflow as tf
import numpy as np
import seaborn as sns

A W N R

import matplotlib.pyplot as plt
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class ClassifyCluster(object):

def

def

__init_ (self):

self.meansX = [-5, -2.5, 7, 12]
self.meansY = [5, -3, -4, 6]
self.stddevs = [1, 1.5, 2.7, 2]
self.nCluster = 4
self.nTraining = 4000
self.nTesting = 80
self.nFeature = 5

self.nnet = self.buildModel()

trainModel(self):

# generate training data: 4 clusters with 1000
points each

pts = self.nTraining // self.nCluster

randvals = np.random.standard _normal((pts, 2,
self.nCluster)).astype(np.float32)

x =[]

y =[]

for i in range(4):
x.append(self.meansX[i] + self.
stddevs[i]*randvals[:, 0, i])
y.append(self.meansY[i] + self.
stddevs[i]*randvals[:, 1, i])

labels = np.repeat(np.arange(self.nCluster,
dtype=np.int32), randvals.shape[0])
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30 points order = np.array(range(len(labels)),
dtype=np.int32)

31 np.random.shuffle(points order)

32

33 x_col = np.concatenate(x)

34 y _col = np.concatenate(y)

35

36 sns.scatterplot(x=x_col, y=y col, hue=labels)

37 plt.show()

38

39 xy _col = np.multiply(x col, y col)

40 x2_col = np.multiply(x col, x_col)

41 y2_col = np.multiply(y col, y col)

42

43 xy _data = np.concatenate((x _col[:, np.newaxis],
y col[:, np.newaxis], xy col[:, np.newaxis],

44 x2_col[:, np.newaxis], y2 col[:, np.newaxis]),
axis=1)

45 xy data_tf = tf.constant(xy data[points order, :])

46 labels tf = tf.constant(labels[points order,
np.newaxis])

47 history = self.nnet.fit(xy data_tf, labels tf,
batch size=20, epochs=15)

48 plt.plot(history.history["loss"])

49 plt.xticks(range(len(history.history["loss"])))

50 plt.xlabel("Epochs")

51 plt.ylabel("Categorical Crossentropy Loss")

52 plt.grid()

53 plt.show()

54

55 # find the accuracy on test data
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result = self.nnet.predict(xy data)
predicted class = np.argmax(result, axis=1)

accuracy = (predicted class == labels).sum() /

float(labels.shape[0])
print(f"Model accuracy on training data =
{accuracy}")

def buildModel(self):

# build the neural network model and train
nnet = tf.keras.models.Sequential()
nnet.add(tf.keras.layers.Dense(5, input_
shape=(self.nFeature,)))
nnet.add(tf.keras.layers.Dense(15))
nnet.add(tf.keras.layers.Dense(4))
nnet.add(tf.keras.layers.Dense(4,
activation="sigmoid"))
nnet.compile(optimizer=tf.keras.optimizers.
Adam(learning rate=0.005),
loss=tf.keras.losses.
SparseCategoricalCrossentropy())

return nnet

testModel(self):

# generate 80 points of testing data
randvals = np.random.standard normal((self.
nTesting, 2)).astype(np.float32)

test labels = np.random.choice(self.nCluster,
self.nTesting)

xy_test = np.ndarray((self.nTesting, self.
nFeature), dtype=np.float32)

for i, label in enumerate(test labels):
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xy _test[i, 0] = self.meansX[label] + self.

[label] * randvals[i, 0]

[i, 1] = self.meansY[label] + self.
stddevs[label] * randvals[i, 1]
xy test[i, 2] = xy test[i, 0] * xy test[i, 1]

[i, 3]

[i, 4]

xy test[i, 0] * xy test[i, 0]
xy test[i, 1] * xy test[i, 1]

result = self.nnet.predict(xy test)

predicted class = np.argmax(result, axis=1)
accuracy = (predicted class == test labels).sum() /
float(test labels.shape[0])

print(f"Model accuracy on testing data =
{accuracy}")

__name__ == "' main__
classify = ClassifyCluster()
classify.trainModel()
classify.testModel()

A neural network model is constructed and trained using this test data,

using the sparse categorical cross entropy loss function. The loss function

plot over training epochs is shown in Figure 2-5. Accuracy on training data

is around 99%. Testing data is constructed by randomly drawing 80 points

from the clusters. Testing accuracy obtained is 97%.
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Figure 2-5. Categorical Cross Entropy Loss History During Training

To create a new loss function, derive a class from base class tf.keras.
losses.Loss and override the method call(y_true, y_pred). An example is
shown in Listing 2-19.

Listing 2-19. Customizing a Loss Function

1 class CustomLoss(tf.keras.losses.Loss):
2 def call(self, y true, y pred):
return tf.reduce mean(tf.abs(y true - y pred))
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2.8 Metrics

Metrics are functions used to track the goodness of fit for a trained
model. There are several ways to track the goodness of fit. For regression
models, mean square error is a good metric. For models predicting a
parametric probability density function, Kullback-Leibler divergence

is a good candidate. For classification problems, a range of metrics are
available depending upon the nature of data and prediction. Accuracy is
the percentage of correct predictions. For binary classification problems,
precision, recall, and F1 score are relevant metrics. Precision is the
proportion of correct predictions for all the predictions in class “1”.
Recall is the proportion of correct predictions when the actual class is “1”.
Precision and recall typically move in opposite directions. Increasing the
precision reduces the recall and vice versa. F1 score is a combination of
precision and recall. To understand precision, recall, and F1 score, let us
look at the confusion matrix of a binary classification problem shown in

Figure 2-6.
Prediction
Positive
Positive | positive Recall = TP/(TP + FN)
Actual

Negative
Negative

Precisio
TP/[TP+FP)

Figure 2-6. Confusion Matrix of a Binary Classification Problem
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L. . TruePositive . )
Precision is defined as , while recall is

TruePositive + FalsePositive

TruePositive . .
defined as . Accuracy is defined as

TruePositive + FalseNegative

TruePositive + TrueNegative
AllData

predicts a given class, while recall measures how well a model performs

. Precision measures how well a model

predicting a given outcome. For example, when using a cancer detector
in a medical image, we want the detector to perform well for patients who
have cancer, that is, predicting a given outcome. It is likely that the number
of patients with cancer is small. In this case, true negatives may constitute
the bulk of predictions. A model that assigns a negative outcome (i.e., no
cancer) to all data points will achieve high accuracy and high precision but
low recall. This is an example of imbalanced data within classes where one
must use the appropriate metric.

TensorFlow has a number of predefined metrics available in module
tf.keras.metrics. A few of them are listed in the following:

1. AUC: This represents area under the curve of ROC
(receiver operating characteristic) curve for binary
classification problems. ROC curve plots true
positive rate (TPR) vs. false positive rate (FPR).

P
R=——— is also known as recall.
TP+ FN
R=——— where TP, TN, FP, FN are true
FP+TN

positive, true negative, false positive, and false
negative, respectively. We want to increase true
positive rate while reducing false positive rate. As
the threshold in binary classification is increased,
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true positive rate increases because true positives
increase, while false negatives decrease. This

also increases false positive rate because false
positives increase, while true negatives reduce or
remain the same. The AUC metric is independent
of threshold value that can be tweaked. A better
model will have higher AUC. The AUC metric
takes an optional argument curve. By setting it to
“PR’, area under the precision-recall curve can be
calculated. Area under the precision-recall curve
measures precision vs. recall performance of a
binary classifier. In order to understand the plots,
let us consider a binary classification problem
shown in Figure 2-7. Data points shown with “-”
are negatives, while data points shown with “+”

are positives. An example distribution of data is
shown in Figure 2-7. The dotted vertical line shows
the classification threshold: points to its left are
classified as negative, and points to its right or on
it are classified as positive. Threshold is increased
from 0 to 1. With the threshold line at 0, all points
are classified as positive. This results in all positive
points getting classified correctly. Since there are
no negative label predictions, false negatives = 0
and true negatives = 0. This gives high recall (or true
positive rate) = 1, high false positive rate = 1, but low

TP
precision = N where N is the number of points and

low false negative. This point is located in the top-
right corner of the AUC-ROC curve in Figure 2-8 and
the top left of the AUC-PR curve in Figure 2-9. As
threshold moves to the right, more negative points
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are classified correctly, increasing true negative and
false negative. TP + FN remains constant, equal to
the number of positive samples. Similarly, FP + TN
remains constant, equal to the number of negative
samples. The number of true positives reduces,
causing recall to fall. TP + FP falls faster than TP
because FP is also falling. This causes precision =
JracTPTP + FP to increase, leading to movement
toward the lower-right corner of the AUC-PR curve
in Figure 2-9. False positives reduce in number with
FP + TNremaining the same, causing false positive
rate to fall. This leads to movement toward the
lower-left corner of the AUC-ROC curve.

TP, FP reduce

l——» TN, FN increase
I TP + FN remains same

| TN + FP remains same e Nega_t:ve
I + : Positive
|
- = - -++--|+____+_ - - + + + 4+ + + + +++
L]
0 Classification Threshold 1

Y > threshold: positive
Y < threshold: negative

Figure 2-7. Binary Classification: Changing Precision, Recall, and
FPR as Threshold Moves

2. Accuracy: This metric represents the proportion of
data items classified correctly.

3. BinaryloU: The binary intersection-over-union
metric is defined as shown in equation 2.15. Its
constructor takes two optional arguments: target_
class_ids indicating the labels of the two classes
in actual output and threshold that applies to
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predicted values and considers values falling below
it as one class and those falling on or above it as
second class:

TP

Binary loU=————— 2.15
v TP+ FP+ FN ( )

4. CategoricalCrossentropy: Similar to the categorical
cross entropy loss function described in the
previous section.

Threshold =0
A <
1 -— —
True Positive Rate (TPR) )
or Recall -"'I'i'andom
Classifier
Threshold =1 )
" Ao X
False Positive Rate (FPR) 1

Figure 2-8. Area Under the Curve, AUC

5. FalsePositives: This metric is equal to the number
of false positive data points.

6. KLDivergence: Calculates Kullback-Leibler
y

divergence as ylog(Tj where y is the known

output and y is the predicted output. Sample code
showing a calculation is illustrated in Listing 2-20.
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Listing 2-20. Kullback-Leibler Divergence Metric
1 import tensorflow as tf
2
3 metric = tf.keras.metrics.KLDivergence()
4 metric.update state([[1, o], [0, 1]], [[0.3, 0.7],

[0.5, 0.5]])
print(metric.result().numpy())

A U

0.94855845

7. MeanSquaredError: Mean square error between
actual and predicted values.

Threshold=0 _ -

1
True Positive Rate (TPR)
or Recall

Randon;"*-\
Classifier

0 Precision 4 4

Threshold = 1

Figure 2-9. Area Under the Precision-Recall Curve, AUC-PR

TP
TP+ FP
measures the accuracy of predicting true. It is also

8. Precision: Precision is defined as and

called positive predictive value.
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9. PrecisionAtRecall: Calculates highest precision
when recall is > a threshold.

10. Recall: Recall is defined as l and is
TP+ FN

also known as sensitivity or true positive rate
(TPR) for a binary classification problem. For a
multiclass classification problem, recall can be
defined separately for each label by converting the
multiclass problem to a binary class problem for
each label (output class is that label or not).

Let us look at an example of predicting fraudulent credit card
transactions. The dataset is hosted on Kaggle and has a total of 284,807
transactions, out of which 0.17% or 492 transactions are fraudulent. This
is an example of an imbalanced dataset. Financial institutions have an
incentive to detect fraud and also to avoid flagging authentic transactions
as fraud in order to ensure customer satisfaction, that is, the predictor
should have high recall and high precision. The data is downloaded from
Kaggle’s credit card fraud detection dataset (Kaggle, 2022). In order to
safeguard data privacy, dataset columns have been anonymized and
are reported as “V1” through “V28” “Amount” denotes the transaction
amount, and “Class” denotes if the transaction is legitimate (0) or fraud (1).

This example illustrates a few general recommendations for effective
neural network modeling:

1. Normalize the inputs so that they are neither too
high nor too low. Machine learning models learn
faster if the inputs are comparable. For example, if
all input features are in the [-1, 1] range, training will
be faster than for the case where input features have
widely dispersed ranges. For a standard Gaussian
distribution, 95% of probability density lies between

52



CHAPTER 2  INTRODUCTION TO TENSORFLOW

[-1.95, 1.95]. Normalizing input features using

xX-u
20
mean and standard deviation of the feature value

where x is the feature value and (u, c) are the

over the training dataset gives a simple method of
normalizing inputs. Outliers present a challenge;
outliers will show up as data points with large
normalized feature values. A few solutions to deal
with outliers are

o Using aloss function that is robust to outliers, such
as Huber loss

o Applying L1 or L2 regularization that prevents
model weights from becoming too large in
absolute value

o Usinginput feature normalization and clipping the
value of outliers

Only the training dataset should be used to calculate
these normalizing hyper-parameters. During
testing, hyper-parameter values should be frozen.
For example, the BatchNormalization layer in
TensorFlow normalizes inputs using equation 2.16.
a represents momentum for the moving average:

x_
xnormalized :y6+/: +ﬁ
po— ot (1-a) g, (X) (2.16)

0’ «ac’+(1-a)o ., (¥)
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Count

In the implementation shown in Listing 2-21, input
X—H
20
two input features are plotted after normalization for

. The first

features have been normalized using

legitimate and fraudulent transactions in the training
dataset in Figures 2-10 to 2-13.

V1, Legit Trx

14000 A
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8000 -

6000
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-16 -14 -12 -10 -8 -6 -4 -2 0
V1

Figure 2-10. Normalized Feature V1 in Legitimate Transactions,
Training Dataset

54

As can be seen from Figures 2-10 and 2-11,
normalized V1 is more than -2 for legitimate
transactions, whereas it can be as small as -8 for
fraudulent transactions. This indicates feature V1
will likely be important in classification.
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Features that show identical distributions between
classes (legitimate and fraudulent transactions)
can be dropped from input because they will have

marginal predictive power.

Reduce the number of input features to those that
are necessary for classification. Examining the
distribution of normalized inputs against output can
be helpful. Inputs that have identical distribution
across all output classes can be dropped.
Parsimonious models do not have surplusage; they
only have features relevant for the classification task.
This improves model training because there are
fewer model parameters to learn, avoids overfitting,
and improves performance on a testing dataset.
Increasing the number of redundant input features
will add more free parameters, leading to overfitting
on a training dataset and poor performance on a
testing dataset.
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V1, Fraud Trx
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Figure 2-11. Normalized Feature V1 in Fraudulent Transactions,
Training Dataset

3. Training-testing split of 80%-20% is used.

4. Use model checkpointing to promote
reproducibility of results across different runs.
Without using a checkpoint, TensorFlow will
randomly initialize the network weights, and results
will differ across runs for initial training epochs
before convergence.

5. Initialize output layer bias: Output layer bias
should be initialized to a value that makes network
output close to average output observed in testing
data. For example, a neural network that predicts
a binary class label and has sigmoid function
activation in the final layer can be initialized so as to
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set the final layer bias using equation 2.17. p denotes
the number of data points in the positive class, while
n denotes the data points in the negative class:

1 _p
l+e”™  pin
P (2.17)
bias =ln(£}
n
V2, Legit Trx
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Figure 2-12. Normalized Feature V2 in Legitimate Transactions,
Training Dataset

6. Ensure data distribution is consistent across the
training dataset. For example, if one is building a
neural network model to predict income based on
features such as age, education, and years in the

workforce and profession, one must ensure that
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entire data is from identical probability distribution.
Sex and country may be important determinants

of income. If those two features are excluded and
the dataset contains data from different sexes

and countries, data will likely be from different
distributions, leading to a poor model performance.

V2, Fraud Trx

60

Figure 2-13. Normalized Feature V2 in Fraudulent Transactions,
Training Dataset

7. Avoid information leakage or in-sample bias.
This will lead to the model producing deceptively
good predictions in the training dataset but failing
to live up to expectations in the testing dataset.
Information leakage can occur in several ways.
Hyper-parameter selection must use the training
dataset. Feature normalization should use values
from the testing dataset.
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8. For imbalanced class data, identify the primary
objective of the model. If one plans to achieve high
accuracy and high precision at the cost of lower
recall, training using cross entropy loss should work.
If high recall value is required, model precision will
typically reduce. As can be seen from precision-
recall curves in Figure 2-14, there is a trade-off
between these two metrics. Figure 2-14 also shows
a similar model performance in training and
validation datasets.

DataSet
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o0 0.2 o4 0.6 o8 10 0.0 0.z LB o6 o8 Lo
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Figure 2-14. Area Under the Curve (AUC) for ROC and Precision-
Recall Curves

To increase recall in an imbalanced class dataset,
one must either assign class weights to mitigate
class imbalance or perform resampling by drawing
additional samples from the class with lower
frequency. Both of these methods are described in
the following.
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S
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o Class weights for the classes can be set using

equation 2.18. A class with less data will get a

higher weight, and the one with more data will get

a lower weight. The weights are used as multipliers

with loss contributions from the two classes. Class

weights need to be provided as a dictionary to the

fit method:

(2.18)

Figure 2-15 shows area under the curve for ROC and

precision-recall curves for training and validation

datasets. Area under the precision-recall curve is

higher using class weights, with higher precision

and recall values.
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Figure 2-15. Area Under the Curve (AUC) for ROC and Precision-
Recall Curves with Class Reweighing
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Figure 2-16. Area Under the Curve (AUC) for ROC and Precision-

CHAPTER 2

e Upsample the class with lower frequency.

Upsampling augments data points of the less

frequent class, thereby removing the class

imbalance. Figure 2-16 shows area under ROC and
precision-recall curves for training and validation

datasets using upsampling for the positive class

(fraudulent transactions). As with class reweighing,

resampling improves precision and recall. An

example of upsampling is shown in the code in

Listing 2-21.
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Plot confusion matrices for testing data to visualize

the accuracy, precision, and recall of the model in

out-of-sample testing data. This gives an indication

of the model’s performance. Confusion matrices

using a threshold value of 0.5 are plotted for the

original model, the model with class weights, and
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the model with resampling in Figures 2-17, 2-18,
and 2-19, respectively. Because the model produces
a probability, we need to provide a threshold. A
probability value below the threshold is assigned the
negative class and above the threshold is assigned
the positive class. The original version of the

=60%,

model (Figure 2-17) has recall =
30+45

precision =

~81.8% , and accuracy
10+45

56876+ 45

" 56876 +45+10+30
accuracy is good, but recall is low. With class

~99.9% . Out-of-sample

weighing (Figure 2-18), out-of-sample recall

increases to

~88%, but precision

66
drops to ———~4.24%. Accuracy falls to
1492 + 66

55394 + 66
55394 +66 +1492+9

~97.4%. This indicates the

precision-recall trade-off observed earlier. With
resampling (Figure 2-19), out-of-sample recall is

63 ~84%, and precision is L ~5.06%.
12+63 1182 +63

55394 + 66
Accuracy is ~97.9%.

55394 +66 +1492+9

10. Plot the metrics and loss function to ensure model
training has converged. As seen from Figures 2-20,
2-21, and 2-22 for the original model, the model
with class weighing, and the model with resampling,
metrics and loss functions have converged by 20
epochs for training and validation datasets.
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Listing 2-21. Predicting Credit Card Fraud

1 import numpy as np

2 import pandas as pd

3 import tensorflow as tf

4  import os

5 import matplotlib.pyplot as plt

6  import seaborn as sns

7  from sklearn.metrics import confusion matrix, roc_curve,
precision_recall curve

8 from typing import List

9

10

11 class FraudDetector(object):

12 def _init (self, inputdir, checkpoint=True):

13 self.inputDir = inputdir

14 self.featureColumns = ["Amount"] + [f"V{i}" for i
in range(1, 29)]

15 self.resultColumn = "IsFraud"

16 self.normalize = {}

17 self.dataDf = pd.read csv(os.path.join
(self.inputDir, "creditcard.csv"))

18 self.dataDf.loc[:, "IsFraud"] = (self.dataDf.
Class == 1)

19 self.batchSize = 1024

20 self.nEpoch = 20

21 self.testingDataSize = 0.2

22 self.validateDataSize = 0.1

23 self.trainDf, self.validateDf, self.testDf =
self.splitTrainValTestData()

24 self.calcNormalizingConst(self.trainDf)
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25 self.metrics = [tf.keras.metrics.
TruePositives(name="TP"),
26 tf.keras.metrics.False
Negatives(name="FN"),
27 tf.keras.metrics.False
Positives(name="FP"),

28 tf.keras.metrics.Binary
Accuracy(name="Acc"),

29 tf.keras.metrics.Precision
(name="Prec"),

30 tf.keras.metrics.Recall
(name="Recall"),

31 tf.keras.metrics.AUC
(name="aucroc"),

32 tf.keras.metrics.AUC(curve="PR",
name="aucpr")]

33 self.plotMetrics = ["TP", "FN", "FP", "Acc",

"Prec", "Recall", "aucroc", "aucpr"]
34 self.plotMetricsLabels = ["True Pos", "False

Neg", "False Pos", "Accuracy", "Precision”,
"Recall”, "AUC ROC", "AUC PR"]

35 self.checkpoint = checkpoint

36 self.nnet = self.model()

37 if checkpoint:

38 self.nnet = self.checkpointModel(self.nnet)
39

40 def plotNormalizedVars(self):

41 data = {}

42 for column in self.featureColumns:

43 mean, sd = self.normalize[column]

44 transformedCol = (self.trainDf.loc[:,

column].values - mean) / sd

64



45
46
47

48
49
50

51
52

53
54
55

56

57

58
59
60

61
62
63
64
65

CHAPTER 2  INTRODUCTION TO TENSORFLOW

data[column] = transformedCol

data[self.resultColumn] = self.trainDf.loc[:,

self.resultColumn].values

df = pd.DataFrame(data)

for plotcol in self.featureColumns:
sns.histplot(data=df.loc[~df.loc[:,
self.resultColumn], :], x=plotcol).
set(title=plotcol + ", Legit Trx")
plt.show()
sns.histplot(data=df.loc[df.loc[:,
self.resultColumn], :], x=plotcol).
set(title=plotcol + ", Fraud Trx")
plt.show()

def plotConfusionMatrix(self, labels: np.ndarray,
predictions: np.ndarray, thresh=0.5) -> None:
cm = confusion matrix(labels, predictions >

thresh)

sns.heatmap(cm, annot=True, fmt="d",
linewidths=0.25)

plt.xticks([o0, 1, 2])

plt.yticks([o, 1, 2])
plt.title(f"Confusion Matrix,
Threshold={thresh}")
plt.ylabel('Actual’)
plt.xlabel('Predicted")

plt.show()

def plotAUC(self, labels: List[np.ndarray],
predictions: List[np.ndarray]) -> None:
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66 fp _train, tp train, other = roc_curve(labels[0],
predictions[0])
67 df train = pd.DataFrame({'False Positive':

fp_train, 'True Positive': tp_train, "DataSet":
["Training"] * len(fp_train)})

68 fp_test, tp test, other = roc_curve(labels[1],
predictions[1])
69 df test = pd.DataFrame({'False Positive':

fp_test, 'True Positive': tp test, "DataSet":
["Testing"] * len(fp_test)})

70 df = pd.concat((df train, df test), axis=0,
ignore_index=True)

71

72 axs = plt.subplot(1, 2, 1)

73 sns.lineplot(x="False Positive", y="True
Positive", data=df, hue="DataSet", ax=axs)

74

75 precision_train, recall train, other = precision_
recall curve(labels[0], predictions[0])

76 df train = pd.DataFrame({'Precision': precision_
train, 'Recall’: recall train, "DataSet":
["Training"] * len(precision train)})

77 precision test, recall test, other = precision_
recall curve(labels[1], predictions[1])

78 df test = pd.DataFrame({'Precision’: precision_

test, 'Recall': recall test, "DataSet":
["Testing"] * len(precision test)})

79 df = pd.concat((df train, df test), axis=0,
ignore_index=True)

80

81 axs = plt.subplot(1, 2, 2)
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sns.lineplot(x="Precision", y="Recall", data=df,
hue="DataSet", ax=axs)
plt.show()

testTrainSplit(self, df, test size):

ntest = int(test size * df.shape[0])

ntrain = df.shape[0] - ntest

return df.loc[0:ntrain, :].reset
index(drop=True), df.loc[ntrain:, :].reset
index(drop=True)

splitTrainValTestData(self):

Returns training, validation and testing
datasets as dataframes """

train, test = self.testTrainSplit(self.dataDf,
test _size=self.testingDataSize)

train, validation = self.testTrainSplit(train,
test size=self.validateDataSize/self.
testingDataSize)

return train, validation, test

model(self):

npos = self.trainDf.loc[:, self.
resultColumn].sum()

nneg = self.trainDf.shape[0] - npos

initBias = tf.keras.initializers.Constant(np.
log(npos/float(nneg)))

nnet = tf.keras.models.Sequential()
nnet.add(tf.keras.layers.Dense(20,
activation="relu", input_shape=(len(self.
featureColumns),)))
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102 nnet.add(tf.keras.layers.Dropout(0.2))
103 nnet.add(tf.keras.layers.Dense(1,
activation="sigmoid", bias_initializer=initBias))
104 nnet.compile(optimizer=tf.keras.
optimizers.Adam(),
105 loss=tf.keras.losses.
BinaryCrossentropy(),
106 metrics=self.metrics)
107 return nnet
108
109 def checkpointModel(self, nnet):
110 checkpointFile = os.path.join(self.inputDir,
"checkpoint_init wt")
111 if not os.path.exists(checkpointFile):
112 nnet.predict(np.ones((20, len(self.
featureColumns)), dtype=np.float32))
113 tf.keras.models.save model(nnet,
checkpointFile, overwrite=False)
114 else:
115 nnet = tf.keras.models.load
model (checkpointFile)
116 return nnet
117
118 def resampleData(self, trainFeatures, trainClass):
119 posData = trainClass[:, 0]
120 npos = posData.sum()
121 nneg = posData.shape[0] - npos
122 ids = np.where(posData)[0]
123 choice = np.random.choice(ids, nneg)
124 resample = np.concatenate((choice,

np.where(~posData)[0]))
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np.random.shuffle(resample)

trainFeatures = trainFeatures[resample, :]
trainClass = trainClass[resample, :]
return trainFeatures, trainClass

def trainModelAndPredict(self, useClassWeights=False,
resamplePosData=False):

cols = []

validationCols = []

testCols = []

for column in self.featureColumns:
mean, sd = self.normalize[column]
transformedCol = (self.trainDf.loc[:,
column].values - mean) / sd
cols.append(transformedCol[:, np.newaxis])
valCol = (self.validateDf.loc[:, column].
values - mean) / sd
validationCols.append(valCol[:, np.newaxis])
testCol = (self.testDf.loc[:, column].
values - mean) / sd
testCols.append(testCol[:, np.newaxis])

trainFeatures = np.concatenate(cols, axis=1)

validationFeatures = np.concatenate

(validationCols, axis=1)

trainClass = self.trainDf.loc[:, self.

resultColumn].values[:, np.newaxis]

validationClass = self.validateDf.loc[:, self.

resultColumn].values[:, np.newaxis]

testFeatures = np.concatenate(testCols, axis=1)

testClass = self.testDf.loc[:, self.

resultColumn].values
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148 classhts = None
149 assert not (useClassWeights and resamplePosData),
"useClassWeights and resamplePosData cannot both
be True"
150 if useClassWeights:
151 npos = trainClass.sum()
152 nneg = trainClass.shape[0] - npos
153 classWts = {True: (1.0/npos) * trainClass.
shape[0]/2.0,
154 False: (1.0/nneg) * trainClass.
shape[0]/2.0}
155 if resamplePosData:
156 trainFeatures, trainClass = self.
resampleData(trainFeatures, trainClass)
157 history = self.nnet.fit(trainFeatures,

trainClass, batch size=self.batchSize,
epochs=self.nEpoch,

158 validation_
data=(validationFeatures,
validationClass),

159 class _weight=classhts)

160 self.plotHistory(history)

161 resTrain = self.nnet.predict(trainFeatures)

162 res = self.nnet.predict(testFeatures)

163 self.plotConfusionMatrix(testClass, res[:, 0])

164 labels = [trainClass[:, 0], testClass]

165 predic = [resTrain[:, 0], res[:, 0]]

166 self.plotAUC(labels, predic)

167

168 def plotHistory(self, history):

169 for n, metric in enumerate(self.plotMetrics):
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plt.subplot(4, 2, n+1)
plt.plot(history.epoch, history.
history[metric], label="Training")
plt.plot(history.epoch, history.
history[f"val {metric}"], linestyle="--",
label="Validation")
plt.xlabel("Epoch")
plt.ylabel(self.plotMetricsLabels[n])
plt.legend()

plt.show()

def calcNormalizingConst(self, testDf):
for column in self.featureColumns:
mean, sd = np.mean(testDf.loc[:, column].
values), np.std(testDf.loc[:, column].values)
self.normalize[column] = (mean, 2*sd)

self.plotNormalizedVars()

def main():

fdetect = FraudDetector(r"C:\prog\cygwin\home\
samit 000\RLPy\data\book", True)
fdetect.trainModelAndPredict()

# use class weights
fdetect.trainModelAndPredict(useClassWeights=True)
# use resampling of positive class data
fdetect.trainModelAndPredict(resamplePosData=True)

main()
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Figure 2-17. Confusion Matrix for the Testing Dataset with

Theshold 0.5
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Confusion Matrix, Threshold=0.5
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Figure 2-18. Confusion Matrix for the Testing Dataset with Class
Reweighing
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Figure 2-19. Confusion Matrix for the Testing Dataset with
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In order to define a new metric, derive a class from tf.keras.metric.
Metric and provide implementation of methods __init__, update_state,
and result. F1 score is a metric composed of precision and recall. Precision
and recall typically move in opposite directions - improving one reduces
the other. This metric incorporates both of these metrics into one measure
and is defined as shown in equation 2.19. An implementation of this

metric is shown in Listing 2-22:

F=— - (2.19)
+

recall precision

Listing 2-22. Creating the F1 Score Metric

1 import tensorflow as tf
2
3
4  class FiScore(tf.keras.metrics.Metric):
5 def _init (self, thresholds=0.5, name="F1Score",
**kwargs):
6 super(). init_ (name=name, **kwargs)
7 self.recall = tf.keras.metrics.
Recall(thresholds=thresholds)
8 self.precision = tf.keras.metrics.Precision(thresh
olds=thresholds)
9 self.fiscore = self.add weight(name="f1",
initializer="zeros")
10
11 def update_state(self, y true, y pred, sample_
weights=None):
12 self.recall.update state(y true, y pred, sample_
weights)
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13 self.precision.update state(y true, y pred,
sample weights)

14 self.fiscore.assign add(1.0/(1.0/self.recall.
result() + 1.0/self.precision.result()))

15

16 def result(self):

17 return self.fiscore

18

19 f1 = F1Score()

20 fi.update_state([[0], [1], [1]], [[2], [o], [1]])
21 print(f1.result().numpy())

22

23 0.25

2.9 Optimizers

Optimizers are classes used to perform gradient descent in training neural
network models using backpropagation. Stochastic gradient descent is
used to search for a local optimum (minimum) of a loss function using a
randomly drawn batch of inputs. Optimizers perform gradient descent
and calculate change in network parameters. Speed of convergence can
vary a lot depending upon the type of optimizer and learning rate. Neural
networks use gradient descent for optimization because the initial point
may not be in the neighborhood of the local minimum. Gradient descent
has linear convergence as shown in equation 2-20. By contrast, a Newton
step shown in equation 6.35 has quadratic convergence, but needs to be in
the neighborhood of the optimum. In order to speed up the convergence
rate of gradient descent, many algorithms have been proposed. TensorFlow
optimizers implement some of the more popular optimization algorithms.
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The base class of TensorFlow optimizers is tf.keras.optimizers.
Optimizer. TensorFlow optimizers are available in module tf.keras.
optimizers.

AO=-aV, (2.20)
-1
AO=—(V,V,L) "V, (2.21)

1. Adadelta: This optimizer adapts the learning
rate based on the exponentially decaying moving
average of gradients and past parameter updates.
It is based on research work by Zeiler (2012).
Parameter update rule applied by Adadelta is
shown in equation 2.22. § represents the network’s
trainable parameters, and V,L is the gradient of loss
function L with respect to parameters 0:

8 =Vl
E[g'] =pE[g!,]+(1-p)g’
E[Ax! | =pE[Ax], |+(1-p)Ax]
RMS,, =\E[4x,] +¢ (2:22)
RMS, =[E[g} |+e
_RMS,,
RMS, ©

&

A0 =

2. Adam: This is one of the more widely used
optimizers introduced by Kingma and Ba (2014).
It uses an adaptive estimate of gradient and
gradient square. Square of gradients serves as an
approximation to the second-order derivative.
Update rule applied by the Adam optimizer is
shown in equation 2.23.
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In equation 2.23, « is the learning rate, and f, and

f, are exponential decay rates for the first- and
second-order terms, respectively. The algorithm

takes a Newton algorithm like step without explicitly
calculating the second derivative (Hessian). To do this,
it uses the exponentially decaying moving average

of gradient square. m, and v, are the bias-corrected
moving average of gradient and gradient square:

8 :VeLz

m, = ﬁlmt—l +(1_ﬁ1)gt

vy =ﬂ2v[71+(1—ﬂ2)gf

m, =%

S (2.23)
v, =t

C1-p,

A =—a e

7 t
W, +e
Nadam: Nadam is an acronym for Nesterov
momentum with Adam. As the name suggests,
it applies the Nesterov momentum term to the
Adam optimizer. It was introduced by Dozat (2016).
Equation 2.24 shows the additional Nesterov
momentum applied to gradient, V,L. After applying
momentum, remaining update equations are
identical to the Adam update shown in equation 2.23:

8 =18 —aV,L (2.24)

RMSProp: RMSProp was proposed by Hinton
(2012). It keeps a moving average of square of
gradients and uses it as an approximation to Hessian
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in performing a Newton-like step. Parameter update
equations of the RMSProp optimizer are shown in
equation 2.25:

8 =Vl
E[g! | =pE[g!, |+(1-p)g; (2.25)
A =——2

JE[g e

5. SGD: This is a general-purpose implementation of
the stochastic gradient descent (SGD) algorithm
that provides the ability to add momentum. It
supports three modes:

e Simple stochastic gradient descent with no
momentum as shown in equation 2.20.

o Applying momentum to gradient. Update rule for
this version of SGD is shown in equation 2.26, with
4 representing momentum:

v[ = uvtfl _aVGL (2.26)
AO =v,
o Applying Nesterov momentum to the update
equation, as shown in equation 2.27. As before, y is
momentum:
8 =Vol,
v, =H,,—ag, (2'27)
A = HU, —C 8,
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Let us compare the performance of optimizers using deep neural

networks for classification. The data consists of 13,611 instances of dry

bean features such as bean dimensions and shape forms. The objective is

to classify the bean into one of seven classes: Seker, Barbunya, Bombay,

Cali, Dermason, Horoz, or Sira. The dataset is hosted at the UCI Machine

Learning Repository website, “Dry Bean Dataset” (UCI, Dry Bean Dataset).

Koklu et al. (2020) created the dataset using computer vision techniques

to extract 16 features. All 16 features are numeric, and the resultis a

categorical variable identifying the bean as one of seven classes.

A neural network model is built and trained for this task. The following

observations are noteworthy:

1.

2.

Result column “Class” is converted to an integer.
Testing/training data partition of 80%/20% is used.

Examine the distribution of input features in
different classes to make sure all input features are
relevant to the classification task. Distributions

of four features - perimeter, major axis length,
eccentricity, and compactness - are shown as

a stacked histogram for the seven classes in

Figures 2-23, 2-24, 2-25, and 2-26. As can be seen,
all features seem pertinent to the classification task.
For example, the “Dermason” class has the lowest
perimeter.
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Figure 2-23. Distribution of Feature Perimeter Across Classes

4. Identify any input features with similar distributions
across classes. This can be done by calculating the
correlation matrix between normalized features.
Figures 2-23 and 2-24 show similar distributions.
Intuitively, perimeter and major axis length are
likely to be correlated because perimeter is a
function of major axis length. A joint plot of these
two features shown in Figure 2-27 confirms the
hypothesis: notice the elongated shape of the joint
distribution. Therefore, one of the input features can
be excluded.
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Figure 2-24. Distribution of Feature Major Axis Length
Across Classes

5. Numeric feature columns are normalized using
- X—
training data as x,,,,,, = 5 =
c

6. This is a multiclass classification problem with

seven classes. Sparse categorical cross entropy loss
should be used for this problem to conserve space
and avoid representing output as a 7-length one-
hot vector.

7. Checkpoint the model for comparable results.
Checkpointing assigns initial network weights
from a checkpoint file promoting reproducibility of
results.

83



CHAPTER 2

8.

INTRODUCTION TO TENSORFLOW

For a multiclass classification problem, a bias

initializer for the final sigmoid activation layer
should be set using equation 2.28. It calculates
npos,
nneg,
npos, is the number of positive samples of class k

the minimum of loge( J over all classes k.

in the training dataset, and nneg; is the number of

remaining samples:
e . npos
bias initializer = min log, 11PO%
keclasses nneg, (228)
nneg, =N ,,, —npos, where N is number of training data items
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Figure 2-25. Distribution of Feature Eccentricity Across Classes

9. Seven optimizers are considered: Adadelta, Adam,
Nadam, RMSProp, simple SGD with no momentum,
SGD with momentum, and SGD with Nesterov
momentum. The model is fitted over 20 epochs. Loss
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function evolution and sparse categorical accuracy are
plotted using the seven optimizers in Figures 2-28 and
2-29. As can be seen from the plots, Adam, Nadam,
and RMSProp optimizers perform the best. They

are followed by the three variants of SGD. Of these
three, SGD with no momentum (SGD_simple in the
figure) converges the slowest. This shows the benefit
of using a momentum term in optimization. Finally,
Adadelta performs the worst, indicating that its hyper-
parameters need to be tweaked for this problem.
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Figure 2-26. Distribution of Feature Compactness Across Classes

10.

In a multiclass classification problem, the traditional
AUC-ROC curve is not directly applicable. Instead,
one must look at each class separately and construct
an AUC-ROC curve for a binary classification
problem of that class vs. the rest.
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11. A confusion matrix for this problem is plotted
for training and testing data in Figures 2-30 and
2-31. Since the Adam optimizer gives best-of-class
performance, these plots are obtained using the
Adam optimizer.
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Figure 2-27. Strongly Correlated Features: Perimeter and Major
Axis Length

Code for this example is presented in Listing 2-23.

Listing 2-23. Multiclass Classification Problem Comparing
Convergence of Optimizers

import logging
import os

import numpy as np

1
2
3
4  import matplotlib.pyplot as plt
5
6  import pandas as pd

7

import seaborn as sns
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import tensorflow as tf

logging.basicConfig(level=1ogging.DEBUG)

class BeanClassifier(object):

Classify beans into 1 of 7 classes. Compare

different optimizers
LOGGER = logging.getlLogger( name )

def init (self, datadir: str, filename: str =
"Dry Bean_Dataset.csv", trainingData: float = 0.8,
batchsize: int = 10, epochs: int = 20) -> None:
Initialize
:param datadir: Directory name containing
data file
:param filename: dataset file name
:param trainingData: Proportion of data to use
for training
:param batchsize: Batch size for gradient descent
:param epochs: number of training epochs
df = pd.read csv(os.path.join(datadir, filename))
self.inputDir = datadir
self.resultCol = "Class"
self.featureCols = list(df.columns)
self.featureCols.remove(self.resultCol)
self.normalizeCols = {}
ntraining = int(trainingData * df.shape[0])
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34 indextrg = np.random.choice(df.shape[0],
ntraining, replace=False)

35 indextest = np.array([i for i in range(df.
shape[0]) if i not in set(indextrg)])

36 self.trainDf = df.loc[indextrg, :].reset
index(drop=True)

37 self.testDf = df.loc[indextest, :].reset
index(drop=True)

38 self.classes = ["Seker", "Barbunya", "Bombay",
"Cali", "Dermason", "Horoz", "Sira"]

39 self.nClass = len(self.classes)

40 self.classToInt = {k.upper(): i for i, k in
enumerate(self.classes)}

41 self. normalizeNumericCols(self.trainDf)

42 self.trainDf = self. applyNormalization(self.
trainDf)

43 self.testDf = self. applyNormalization
(self.testDf)

44 self.trainDf.loc[:, self.resultCol] = self.
trainDf.loc[:, self.resultCol].map(self.
classTolInt)

45 self.testDf.loc[:, self.resultCol] = self.testDf.
loc[:, self.resultCol].map(self.classToInt)

46 self.metrics = [tf.keras.metrics.
SparseCategoricalAccuracy()]

47 self.batchSize = batchsize

48 self.nEpoch = epochs

49 self.optimizers = [tf.keras.optimizers.
Adadelta(),

50 tf.keras.optimizers.Adam(),

51 tf.keras.optimizers.Nadam(),
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tf.keras.optimizers.RMSprop(),
tf.keras.optimizers.SGD(name="SGD simple"),
tf.keras.optimizers.SGD(momentum=0.1,
name="SGD_mom"),
tf.keras.optimizers.SGD(momentum=0.1,
nesterov=True, name="SCGD_nest_mom")]

def normalizeNumericCols(self, trainingDf:
pd.DataFrame) -> None:
Calclate normalizing params for numeric columns
:param trainingDf:
:return: None
for col in self.featureCols:
mean = trainingDf.loc[:, col].mean()
sd = trainingDf.loc[:, col].std()
self.normalizeCols[col] = (mean, 2*sd)

def applyNormalization(self, df: pd.DataFrame) ->
pd.DataFrame:
Apply normalization as col = (x-mean)/(2*sd)
:param df:
:return: df
for col in self.featureCols:
mean, sd2 = self.normalizeCols[col]
df.loc[:, col] = (df.loc[:, col].values -
mean) / sd2
return df
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def getInitializer(self) -> tf.keras.initializers.
Constant:
Get initializer of final layer
:return:
minval = 0
for i in range(self.nClass):
npos = (self.trainDf.loc[:, self.resultCol]
== 1).sum()
nneg = self.trainDf.shape[0] - npos
if nneg != 0:
initval = np.log(npos / float(nneg))
if (minval == 0) or (minval > initval):
minval = initval
return tf.keras.initializers.Constant(minval)

def model(self, optimizer: tf.keras.optimizers.
Optimizer) -> tf.keras.Model:
Create a neural network model for classification
and initialize weights from a
saved checkpoint
:param optimizer: Optimizer to use in the model
:return: Neural network model
nnet = tf.keras.models.Sequential()
initializer = self. getInitializer()
nnet.add(tf.keras.layers.Dense(10,
activation="relu", input shape=(len(self.
featureCols),)))
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nnet.add(tf.keras.layers.Dense(20,
activation="relu"))
nnet.add(tf.keras.layers.Dense(self.
nClass, activation="sigmoid", bias_
initializer=initializer))
nnet.compile(optimizer=optimizer,
loss=tf.keras.losses.
SparseCategoricalCrossentropy(),
metrics=self.metrics)
self.checkpointModel (nnet)

return nnet

checkpointModel(self, nnet):
checkpointFile = os.path.join(self.inputDir,
"checkpoint _dbean wt")
if not os.path.exists(checkpointFile):
nnet.predict(np.ones((20, len(self.
featureCols)), dtype=np.float32))
tf.keras.models.save model(nnet,
checkpointFile, overwrite=False)
else:
nnet = tf.keras.models.load
model (checkpointFile)
return nnet

optimizerConvergence(self):

histDict = {}

for opt in self.optimizers:
nnet = self.model(opt)
nnet, history = self.trainModel(nnet)
histDict[opt. name] = history
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127 if opt. name == "Adam":

128 self.testModel(nnet)

129 for metric in self.metrics:

130 self.plotConvergenceHistory(histDict,
metric. name)

131 self.plotConvergenceHistory(histDict, "loss")

132

133 def plotConvergenceHistory(self, histDict,

metricName):

134 for name, history in histDict.items():

135 plt.plot(history.epoch, history.
history[metricName], label=name)

136

137 plt.xlabel("Epoch")

138 plt.ylabel(metricName)

139 plt.grid(True)

140 plt.legend()

141 plt.show()

142

143 def plotConfusionMatrix(self, labels: np.ndarray,

predictions: np.ndarray) -> None:

144 predictedlLabels = np.argmax(predictions, axis=1)

145 fig, ax = plt.subplots()

146 cm = np.zeros((self.nClass, self.nClass),

dtype=np.int32)

147 for i in range(labels.shape[0]):

148 cm[labels[i], predictedlLabels[i]] += 1

149 sns.heatmap(cm, annot=True, fmt="d",

linewidths=0.25, ax=ax)
150 ax.set xticks(range(1+self.nClass))
151 ax.set_yticks(range(1+self.nClass))
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ax.set xticklabels(["0"] + self.classes)
ax.set_yticklabels(["0"] + self.classes)
ax.set_ylabel('Actual')

ax.set xlabel('Predicted')

plt.show()

testModel(self, nnet):

for df in [self.trainDf, self.testDf]:
features = df.loc[:, self.featureCols].values
actClass = df.loc[:, self.resultCol].values
predictClass = nnet.predict(features)
self.plotConfusionMatrix(actClass,
predictClass)

trainModel(self, nnet):

trainFeatures = self.trainDf.loc[:, self.
featureCols].values

trainClass = self.trainDf.loc[:, self.
resultCol].values

history = nnet.fit(trainFeatures, trainClass,
batch size=self.batchSize, epochs=self.nEpoch)
return nnet, history

_main__":

bclassify = BeanClassifier(r"C:\prog\cygwin\home\
samit_000\RLPy\data\book\DryBeanDataset")
bclassify.optimizerConvergence()
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Figure 2-28. Evolution of Loss for Seven Optimizers in Multiclass
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2.10 Regularizers

Regularization prevents overfitting of model parameters to the training
dataset. Regularization adds another component to the loss function
so that optimization does not focus solely on reducing the difference
between actual outputs and predicted outputs. By reducing overfitting,
regularization may improve model performance in the testing dataset.

In TensorFlow, regularization is applied to layers because a model’s
trainable parameters are stored in layers. There are two kinds of regularization:
weight regularization and activity regularization. Because TensorFlow
layers keep bias weights and neuron connection weights separately, weight
regularization is subdivided into two types: kernel regularization and bias
regularization. These three regularizations are described in the following and
illustrated with an example later in this section.

1. Kernel regularization: Applies a regularization
penalty to layer weights excluding the bias weight.
This is specified using the kernel_regularizer
argument to a layer’s constructor.

2. Biasregularization: Applies a regularization
penalty to bias weights using the bias_regularizer
argument to a layer’s constructor.

3. Activity regularization: A regularization penalty is
applied to the layer’s output after normalizing the
term by batch size. This can be specified using the
activity_regularizer argument to a layer’s constructor.

TensorFlow has the following regularizers available for use, all defined
in module tf.keras.regularizers:

1. tf.keras.regularizers.L1: Applies L1 regularization
as Z lw, | over weights w;. The constructor takes a

regularization penalty weight.
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2. tfkeras.regularizers.L2: Applies L2 regularization
as Zw,z over weights w;. The constructor takes a

1

regularization penalty weight.

3. tf.keras.regularizers.L1L2: Applies a weighted sum
of L1 and L2 regularizations with the constructor
specifying the weights.

In order to define a custom regularization, derive a class from base
class tf.keras.regularizer.Regularizer and provide an implementation
ofthe __call _method that takes weights as an argument. An example
is shown in Listing 2-24 that defines a custom regularizer as a weighted
sum of L4 and L1 regularizations. There is one data point in input with
five features. The layer has two neurons (units). With a multiplier of 0.01
for both L1 and L2 terms, this should give a loss of 0.01 10 + 0.01 * 10 or
0.2, as is seen in the output. Method get_config is used in serialization/
deserialization of a regularizer.

Listing 2-24. Custom L1L4 Regularizer

1 import tensorflow as tf

2

3

4  class LilL4Regularizer(tf.keras.regularizers.Regularizer):

5 def init (self, 11=0.01, 14=0.01):

6 self.11 = 11

7 self.14 = 14

8

9 def call (self, weights):

10 sq = tf.math.square(weights)

11 return self.11 * tf.math.reduce sum(tf.math.
abs(weights)) + \

12 self.14 * tf.math.reduce sum(tf.math.square(sq))

97



CHAPTER 2  INTRODUCTION TO TENSORFLOW

13

14 def get config(self):

15 return {"11": self.11, "14": self.l4}
16

17  layer = tf.keras.layers.Dense(2, input shape=(5,), kernel
regularizer=L1L4Regularizer(),

18  kernel initializer="ones")

19  input = tf.ones(shape=(1, 5))

20 output = layer(input)

21 print(layer.losses)

22

23 [<tf.Tensor: id=121, shape=(), dtype=float32,
numpy=0.19999999> ]

In the following example, let us look at the “Auto MPG Dataset”
available in the UCI Machine Learning Repository (2022). The dataset
was used by Quinlan (1993). It is a regression problem of predicting an
automobile’s MPG (miles-per-gallon) fuel consumption. It has eight
input features and 398 data points. A neural network model is built for the

regression task as follows:

1. Ofthe input features, three are categorical:
cylinders, model year, and origin. Since they are
integers, they do not need to be normalized.

2. Input feature car name is a string. This feature is
particularly prone to data errors and misformatting.
For example, automobile manufacturer occurs
as mercedes benz and mercedes-benz for two
different cars. A careful data processing module
is needed to process this feature. In this model, a
simplistic approach is adopted: only the first two
words of the string are considered and converted to
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lowercase. This two-word string is then processed
as a categorical variable. The reasoning behind

this approach is that car name consists of car
manufacturer followed by model and other optional
qualifiers, like toyota corolla 1200. The model uses
toyota corolla as a categorical feature.

Feature horsepower has missing values that are
replaced with 0.

A training-testing split of 80%-20% is used. This
gives 314 training data points.

Training data consists of relatively few points -
314. Due to this, the model should have as few
parameters as possible. The features are plotted
against the result (MPG) to ascertain they are all
relevant for the regression task.

Correlation of numeric features displacement,
horsepower, weight, and acceleration against
output mpg is shown in Figure 2-32. The plot shows
that all numeric columns are relevant for regression;
there is no feature with a small absolute correlation
coefficient. If a feature with a small absolute
correlation against output is found, it should be
dropped to keep the model parsimonious.
X—H
20
w1 and o are the mean and standard deviation of

Numeric features are normalized using where

feature x in training data, as before.

A correlation matrix of numeric input features is
calculated. As seen from the heatmap in Figure 2-33,
no correlation coefficient between input features
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is too high - for example, about 0.8. If two input
features are highly correlated, consider dropping
one of them.

0.4

0.2 1

0.0

-0.2 1

Correlation

-0.4 1

—0.6 A

-0.8 1

displacement horsepower weight acceleration
Feature

Figure 2-32. Correlation of Numeric Input Features Against the
Output Variable

9. Ahistogram of the output variable mpg is plotted as
a histogram for categorical feature values as shown
in Figures 2-34, 2-35, 2-36, and 2-37. The first three
categorical variables seem relevant for regression.
For example, mpg is lower for a higher number of
cylinders (Figure 2-34) . Similarly, mpg is higher
for later years (Figure 2-35). However, there seems
to be no clear relation between car name and mpg
(Figure 2-37). Therefore, categorical variable car

name is dropped.
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10. A neural network model is built for three cases:
no regularization, L1 regularization, and L2
regularization applied to neuron weights in all
layers (kernel_regularizer). Loss evolution and
metric (mean absolute error) evolution is plotted
for test data for the three cases. As can be seen from
Figures 2-38 and 2-39, there is a small benefit to
including regularization - though not much for this

regression problem.
ne
?\'eﬂ-“"“\e -
- 0.20
o - 0.15
qse? - 022
0.10
0.05
W@ - 023 0.21
- 0.00
- —0.05
-0.11
- —0.10
-—0.15

« e :
et et e\ at” -
aC

ent
02 yors

Figure 2-33. Correlation Matrix of Numeric Input Features - No
Highly Correlated Features
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11. Predicted vs. actual results for training and testing
datasets for the three runs (no regularizer, L1
regularizer, and L2 regularizer) are shown in
Figures 2-40 to 2-45. The model performs a decent
task of predicting the mpg of a car.

The code for this example is shown in Listing 2-25.

Listing 2-25. Regression Problem of Predicting Automobile MPG
Fuel Consumption and Comparing Regularizers

import numpy as np
import pandas as pd
import tensorflow as tf
import logging

import matplotlib.pyplot as plt
import seaborn as sns
import copy

1
2
3
4
5 import os
6
7
8
9 from typing import List

10

11 logging.basicConfig(level=1logging.DEBUG)

12

13

14  class AutoMPG(object):

15 "Neural network model for regression. Predict
automobile MPG"

16 LOGGER = logging.getLogger("AutoMPG")

17

18 def init (self, datadir: str, filename: str =
"auto-mpg.data", trainingData: float = 0.8,

19 batchSize: int = 10, epochs: int = 20):
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self.columns = ["mpg", "cylinders",
"displacement”, "horsepower", "weight",
"acceleration”, "model year",

"origin", "car name"

df = pd.read csv(os.path.join(datadir, filename),

header=None, names=self.columns, sep="\s+")
self.inputDir = datadir

self.batchSize = batchSize

self.nEpoch = epochs

df = self. preprocessData(df)

self.resultCol = "mpg"

self.categoricalCols = ["cylinders", "model
year", "origin", "car name"]

exclude = set(self.categoricalCols)
self.numericCols = [c for c in df.columns if c

not in exclude]
self.featureCols

self.numericCols + self.
categoricalCols
self.featureCols.remove(self.resultCol)
self.normalizeCols = {}

self.categoricalMap = {}

ntrain = int(trainingData * df.shape[0])
trainIndex = np.random.choice(df.shape[0],
ntrain, replace=False)

testIndex = np.array([i for i in range(df.
shape[0]) if i not in set(trainIndex)])
self.trainDf = df.loc[trainIndex, :].reset
index(drop=True)

self.testDf = df.loc[testIndex, :].reset
index(drop=True)

self. normalizeNumericCols(self.trainDf)
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41 self.trainDf = self. applyNormalization(self.
trainDf)

42 self.testDf = self. applyNormalization
(self.testDf)

43 corrl = self. correlWithOutput(self.trainDf)

44 cov = self. correlWithinInputs(self.trainDf)

45 self. processCategoricalCols(df)

46 self.trainDf = self. applyCategoricalMapping
(self.trainDf)

47 self.testDf = self. applyCategoricalMapping
(self.testDf)

48 self.metrics = [tf.keras.metrics.
MeanAbsoluteError()]

49 self.featureCols.remove("car name")

50 self.categoricalCols.remove("car name")

51

52 def processCategoricalCols(self, df: pd.DataFrame)

-> None:

53 e

54 Process categorical columns by creating a mapping

55 :param df: training dataframe

56 :rtype: None

57 e

58 for col in self.categoricalCols:

59 unique = np.sort(df.loc[:, col].unique())

60 self.categoricalMap[col] = {u:i for i,u in

enumerate(unique)}
61
62 def correlWithOutput(self, df: pd.DataFrame) ->
np.ndarray:
63 output = df.loc[:, self.resultCol].values
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mu = output.mean()

sd = output.std()

x = (output - mu)/sd

ncols = copy.copy(self.numericCols)
ncols.remove(self.resultCol)

correl = np.zeros(len(ncols), dtype=np.float32)

for i, col in enumerate(ncols):

x1 = df.loc[:, col].values

correl[i] = np.sum(2 * x * x1)/df.shape[0]
plotdf = pd.DataFrame({"Feature": ncols,
"Correlation": correl})
sns.barplot(x="Feature", y="Correlation",
data=plotdf)
plt.show()

mean, sd = self.normalizeCols[self.resultCol]

mpg = df.loc[:, self.resultCol].values *

sd + mean

for col in self.categoricalCols:
sns.histplot(data=df, x=mpg, hue=col)
plt.show()

return correl

def correlWithinInputs(self, df: pd.DataFrame) ->
np.ndarray:

ncols = copy.copy(self.numericCols)
ncols.remove(self.resultCol)

cov = np.cov(df.loc[:, ncols].values.T)

mask = np.triu(np.ones_like(cov, dtype=bool))
fig, ax = plt.subplots()
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90 sns.heatmap(cov, mask=mask, annot=True,
linewidths=0.25, ax=ax)

91 ax.set xticks(0.5 + np.arange(cov.shape[0]+1))

92 ax.set_yticks(0.5 + np.arange(cov.shape[0]+1))

93 ax.set xticklabels(ncols + [" "], rotation=20)

94 ax.set_yticklabels(ncols + [" "], rotation=20)

95 plt.show()

96 return cov

97

98 def preprocessData(self, df: pd.DataFrame) ->

pd.DataFrame:

99 df.loc[:, "horsepower"] = df.loc[:,
"horsepower"].replace("?", 0).astype(np.float32)

100 func = lambda x: x.lower().split(" ", 3)[0]

101 df.loc[:, "car name"] = df.loc[:, "car name"].
map (func)

102 return df

103

104 def normalizeNumericCols(self, trainingDf:

pd.DataFrame) -> None:

105 e

106 Calclate normalizing params for numeric columns

107 :param trainingDf:

108 :return: None

109 e

110 for col in self.numericCols:

111 mean = trainingDf.loc[:, col].mean()

112 sd = trainingDf.loc[:, col].std()

113 self.normalizeCols[col] = (mean, 2*sd)

114
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def _applyNormalization(self, df: pd.DataFrame) ->
pd.DataFrame:
Apply normalization as col = (x-mean)/(2*sd)
:param df:
:return: df
for col in self.numericCols:
mean, sd2 = self.normalizeCols[col]
df.loc[:, col] = (df.loc[:, col].values -
mean) / sd2
return df

def _applyCategoricalMapping(self, df: pd.DataFrame)
-> pd.DataFrame:
Apply mapping to convert categorical columns to
integers
:rtype: pd.DataFrame with mapped
categorical columns
for col in self.categoricalCols:
df.loc[:, col] = df.loc[:, col].map(self.
categoricalMap[col])
return df

def testRegularizers(self, regularizers: List[tf.
keras.regularizers.Regularizer], names: List[str])
-> None:

histDict = {}
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137 for regularizer, name in
zip(regularizers, names):
138 self.nnet = self.
model(regularizer=regularizer)
139 history = self.trainModel()
140 histDict[name] = history
141 self.testModel(name)
142
143 for metric in self.metrics:
144 self.plotConvergenceHistory(histDict,
metric. name)
145 self.plotConvergenceHistory(histDict, "loss")
146
147 def model(self, regularizer: tf.keras.regularizers.
Regularizer = None) -> tf.keras.Model:
148 nfeature = len(self.featureCols)
149 nnet = tf.keras.models.Sequential()
150 nnet.add(tf.keras.layers.Dense(12,

activation="sigmoid", input_shape=(nfeature,),
kernel regularizer=regularizer))

151 nnet.add(tf.keras.layers.
Dense(3, activation="relu", kernel
regularizer=regularizer))

152 nnet.add(tf.keras.layers.Dense(1, kernel
regularizer=regularizer))

153 nnet.compile(optimizer=tf.keras.optimizers.
Adam(learning rate=0.002),

154 loss=tf.keras.losses.

MeanSquaredError(),
155 metrics=self.metrics)
156 nnet = self.checkpointModel(nnet)
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return nnet

def checkpointModel(self, nnet):
checkpointFile = os.path.join(self.inputDir,

"checkpoint_autompg wt")

if not os.path.exists(checkpointFile):

nfeature = len(self.featureCols)

nnet.predict(np.ones((20, nfeature),
dtype=np.float32))
tf.keras.models.save model(nnet,

checkpointFile, overwrite=False)

else:

nnet = tf.keras.models.load model

(checkpointFile)
return nnet

def trainModel(self, trainDf: pd.DataFrame = None)
tf.keras.callbacks.History:

if trainDf is None:

trainDf = self.trainDf
X = trainDf.loc[:, self.featureCols].values

y = trainDf.loc[:, self.resultCol].values
history = self.nnet.fit(X, y, batch size=self.
batchSize, epochs=self.nEpoch)

return history

def testModel(self, title: str) -> None:
loss = tf.keras.losses.MeanSquaredError()
for df in [self.trainDf, self.testDf]:
features = df.loc[:,

actVals = df.loc|

)

INTRODUCTION TO TENSORFLOW

->

self.featureCols].values

self.resultCol].values
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182 predictVals = self.nnet.predict(features)

183 lossval = loss(actVals[:, np.newaxis],
predictVals)

184 self.LOGGER.info("Loss for regularizer

%s, number of data points %d: %f", title,
df.shape[0], lossval)

185 self.plotActualVsPredicted(actVvals,
predictVals.squeeze(), title=title)

186

187 def plotActualVsPredicted(self, actualvals:
np.ndarray, predictedVals: np.ndarray, title: str =
None) -> None:

188 mean, sd = self.normalizeCols[self.resultCol]

189 y = actualvals * sd + mean

190 x = predictedVals * sd + mean

191 plt.scatter(x, y, c="red")

192 p1 = max(max(x), max(y))

193 p2 = min(min(x), min(y))

194 plt.plot([p1, p2], [p1, p2], 'b-")

195 plt.xlabel("Predicted Values")

196 plt.ylabel("Actual Values")

197 if title:

198 plt.title(title)

199 plt.show()

200

201 def plotConvergenceHistory(self, histDict: dict,
metricName: str) -> None:

202 for name, history in histDict.items():

203 plt.plot(history.epoch, history.

history[metricName], label=name)
204 plt.xlabel("Epoch™)
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205 plt.ylabel(metricName)

206 plt.grid(True)

207 plt.legend()

208 plt.show()

209

210

211 if _name__ == "_ main_ ":

212 mpg = AutoMPG(r"C:\prog\cygwin\home\samit 00O0\RLPy\
data\book", batchSize=1)

213 regularizers = [None, tf.keras.regularizers.
L1L2(11=0.1, 12=0), tf.keras.regularizers.L1L2(11=0,
12=0.1)]

214 names = ["None", "L1", "L2"]

215 mpg.testRegularizers(regularizers, names)
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Figure 2-34. Distribution of Output MPG Against Cylinders
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Figure 2-36. Distribution of Output MPG Against Origin
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Figure 2-37. Distribution of Output MPG Against Car Name
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Figure 2-38. Evolution of Mean Square Error Loss with Epochs
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Figure 2-39. Evolution of Mean Absolute Error Metric with Epochs
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Figure 2-40. Actual vs. Predicted MPG Without Regularization,
Training Set
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Figure 2-41. Actual vs. Predicted MPG Without Regularization,
Testing Set
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Figure 2-42. Actual vs. Predicted MPG with L1 Regularization,
Training Set
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Figure 2-43. Actual vs. Predicted MPG with L1 Regularization,
Testing Set
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Figure 2-44. Actual vs. Predicted MPG with L2 Regularization,
Training Set
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2.11 TensorBoard

TensorBoard is a visualization tool for working with TensorFlow models,
providing a comprehensive toolkit for profiling, visualizing metrics, and
analyzing layers of a deep neural network. It is loaded as an extension into
Jupyter Notebook using the command %load_ext tensorboard. Once
loaded, the TensorFlow neural network model is compiled. Before calling
fit, a callback is provided as an argument to method fit. The callback will
record training history in a log directory. After model training is complete,
TensorBoard is launched from Jupyter Notebook using the command
%tensorboard -logdir logs/fit. TensorBoard can also be launched
as a standalone utility outside Jupyter Notebook using the command
tensorboard -logdir logs/fit.

Using Jupyter Notebook, the steps for using TensorBoard are
summarized in the following and illustrated in Listing 2-26:

1. Load the TensorBoard extension into Jupyter
Notebook.

2. Create a log directory for writing logs.

3. Create a TensorBoard callback and specity the log
directory.

4. Pass the callback as an argument to the fit method.

5. Once training is complete, launch the TensorBoard
user interface using %tensorboard -logdir log_dir.
Specify the log directory.

Listing 2-26. Using TensorBoard

1 import tensorflow as tf
2 import numpy as np
3  import datetime
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import shutil

# load tensorboard extension
%load ext tensorboard

# specify base logs dir
base log dir = "logs\\fit\\"

# clear previous logs
try:
shutil.rmtree(base log dir)
except OSError as e:
pass

# create some data
nfeature = 10
nsample = 100
nsampletest = 20

X

y

1 + np.random.random((nsample, nfeature))
2*X.sum(axis=1) + 4

Xtest = 1 + np.random.random((nsampletest, nfeature))
ytest = 2*Xtest.sum(axis=1) + 4

nnet = tf.keras.models.Sequential()
nnet.add(tf.keras.layers.Dense(4, input
shape=(nfeature,)))

nnet.add(tf.keras.layers.Dense(10, activation="relu"))
nnet.add(tf.keras.layers.Dropout(0.2))
nnet.add(tf.keras.layers.Dense(1))
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34

35
36
37

38
39
40

41
42
43

nnet.compile(optimizer="adam", loss="MSE", metrics=[tf.
keras.metrics.MeanAbsoluteError()])

# specify log directory
log dir = base log dir + datetime.datetime.now().
strftime("runiYumid %H®M%S")

# create TensorBoard callback
tb_callback = tf.keras.callbacks.TensorBoard(log dir=log
dir, histogram freqg=1)

# provide the callback to fit method
nnet.fit(X, y, epochs=10, callbacks=[tb callback])

2.12 Dataset Manipulation

TensorFlow provides APIs for creating datasets, creating batches,

processing input features, applying mapping, and shuffling items in the

module tf.keras.Dataset. This module can be used to create an input

pipeline for a neural network model. It can work with large datasets that do

not fit in memory all at once by streaming the data as needed.

A dataset can be created using different data sources. A few commonly

used data sources are shown in the following:

122

1. From Python list or numpy array objects using

from_tensor_slices as shown in Listing 2-27.

2. From file(s), a dataset can be created using tf.data.
TextLineDataset.

3. Range using tf.data.Dataset.range.
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Listing 2-27. Creating a Dataset

O 60N O U1 B W N B

L O = N N =)
i D W N B O

16

17
18
19
20
21
22
23

import numpy as np
import tensorflow as tf
import pandas as pd

def create dataset():
# from list and numpy array
1st = [4] * 4
ar = np.ones(1, dtype=np.int32) * 4
dsetl = tf.data.Dataset.from tensor slices(lst)
dset2 = tf.data.Dataset.from tensor slices(ar)
for e1, e2 in zip(dset1, dset2):
assert el == e2

# from csv file
df = pd.DataFrame({"a": [1, 2, 3], "b": ["r1",
"r2", "13'1})
filename = r"C:\prog\cygwin\home\samit 000\RLPy\data\
book\test.csv"
df.to_csv(filename, index=False)
dataset = tf.data.TextLineDataset([filename])
for row in dataset:
print(row)

if name_ ==" main_":
create dataset()
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Useful methods of the Dataset class are described in the following:

1. from_tensor_slices: Creates a dataset from an
iterable along the first dimension. For example,
from_tensor_slices(arr) where arr is a numpy
array of shape (2, 4, 5) will create a dataset of two
tensors of shape (4, 5) each. This method accepts
multiple iterable objects.

2. from_tensors: Creates a dataset from provided
tensors.

3. map: Apply a mapping function to each tensor
within the dataset.

4. batch: Creates a set of batches each with a specified
number of elements from the dataset. The last batch
can have fewer elements if the dataset size is not
divisible by batch size. This is shown in Listing 2-28.

Listing 2-28. Batching

1
2
3
4
5
6
7
8
9

124

import tensorflow as tf

dset = tf.data.Dataset.range(5)

batches = dset.batch(2)

for batch in batches:
print(batch)

tf.Tensor([0 1], shape=(2,), dtype=int64)
tf.Tensor([2 3], shape=(2,), dtype=int64)
tf.Tensor([4], shape=(1,), dtype=int64)

5. concatenate: Concatenates a dataset with another
dataset.
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6. shard: Gives a dataset containing a subset of
elements such thatimod N = 0 where i is the
element’s index and N is the argument to the shard
method. An example is shown in Listing 2-29.

Listing 2-29. Sharding a Dataset

1
2
3
4
5
6
7
8
9

10

import tensorflow as tf
dset2 = tf.data.Dataset.range(10)
shard = dset2.shard(num_shards=3, index=0)
for element in shard:
print(element)

tf.Tensor(0, shape=(), dtype=int64)
tf.Tensor(3, shape=(), dtype=int64)
tf.Tensor(6, shape=(), dtype=int64)
tf.Tensor(9, shape=(), dtype=int64)

7. shuffle: Shuffles the elements of a dataset by
selecting buffer_size number of elements randomly
from the dataset, randomly drawing elements from
the buffer, and replacing the drawn elements with
new elements from the dataset. To ensure that the
dataset is shuffled in a uniform random fashion, that
is, with the probability of any element being selected
as —, buffer size must be greater than or equal to
the number of elements in dataset, N.

8. repeat: Concatenate a specified number of copies of
a dataset.
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2.13 Gradient Tape

Gradient tape is used in TensorFlow to perform automatic differentiation
of the loss function with respect to tensors. In backpropagation, the loss
function is differentiated with respect to output layer weights first, followed
by the next layer and so on. This is because the loss function is defined in
terms of network output and actual output. Network output is produced
by the output layer. Gradients are computed from the output layer and
propagated backward toward the input layer using the chain rule. Gradient
tape is instrumental in backpropagating the gradients automatically across
the layers of a neural network.

Gradient tape remembers operations on tensors during forward pass,
as input is fed to the input layer and gets propagated through the network
layers, producing a network output. During backpropagation, the loss
function is calculated and differentiated with respect to trainable layer
weights that are stored as tf.Variable.

Most neural network problems do not require a programmer to use
GradientTape explicitly; it is implicitly used inside the neural network’s
fit method. However, there are cases where one needs to write a custom
loss function that depends on other neural networks. In such cases,
GradientTape must be used.

By default, GradientTape watches all trainable tf.Variable objects.

The neural network’s trainable weights, being the constituent layers’
trainable weights, are objects of type tf.Variable and are watched by
GradientTape. Any mathematical calculation involving watched variables
is recorded by the tape for subsequent differentiation. Mathematical
calculations must use TensorFlow functions whose derivatives are known.
To disable the default behavior of watching tf.Variable objects, the
watch_accessed_variable argument of GradientTape’s constructor can
be set to False. To watch a tensor, use the watch method of GradientTape.
Using GradientTape to calculate gradients requires a programmer to be
cognizant of the following features:
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1. To calculate gradients, use GradientTape’s gradient
method. This method returns gradients of the same
shape as variables with respect to which gradient is
calculated. This is illustrated in Listing 2-30.

Listing 2-30. Shape of Gradient

import tensorflow as tf
tf.constant(tf.random.normal((5, 4)))
tf.Variable(tf.ones((4, 6), dtype=tf.float32))
watched by default
= tf.constant(tf.ones(6, dtype=tf.float32))
not watched by default
with tf.GradientTape() as tape:

tape.watch(b)

y = tf.matmul(X, W) + b
vars = [W, b]
grads = tape.gradient(y, vars)

H O H = X

O 00 N O U

10 for i, grad in enumerate(grads):

11 print(f"Variable shape: {vars[i].shape},
gradient shape: {grad.shape}")

12

13  Variable shape: (4, 6), gradient shape: (4, 6)

14  Variable shape: (6,), gradient shape: (6,)

2. Tensors are not watched by default and must
be explicitly added to the variables watched by
GradientTape, as seen in Listing 2-30.

3. Targets that do not have functional dependence on a
variable will give None as gradient.

4. Toupdate a tf.Variable, use the assign method of
tf.Variable.
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5. Perform calculations using TensorFlow math library
functions and not external library functions (such
as numpy).

6. Gradients must be computed with respect to
floating-point variables that are watched by
GradientTape. Using string or integer variable types
will give a None gradient.

Let us apply these principles on a practical classification problem.
tf.keras.datasets.fashion_mnist is a dataset of 70,000 clothing item
images belonging to a set of ten classes: top, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, and boot. Each image has size of 28 by 28 pixels.
Of the 70,000 images, 60,000 are in the training dataset, and 10,000 are
in the testing dataset. A few salient features of the model are noted in the
following:

1. Images are converted into a decimal format by
dividing by 255, which is the maximum pixel value.

2. Asimple neural network model is trained on this
dataset using gradient tape. The model first flattens
the image from 28 by 28 pixels to an array of 784
input features.

3. The model uses the sparse categorical cross entropy
loss function to conserve space. This loss allows
actual output to be specified as an integer class label
instead of a one-hot vector of size 10.

4. Flattening of an image destroys the spatial
relationship between input features. The model
learns these relationships from the flattened one-
dimensional vector. We will see later how CNNs
(convolutional neural networks) can be used to
overcome this shortcoming.
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5. Loss and metric (sparse categorical accuracy) are
plotted in Figures 2-46 and 2-47.
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Figure 2-46. Evolution of Sparse Categorical Cross Entropy Loss
with Epochs

6. The model achieves about 95% accuracy as can be
seen from the confusion matrix for training data in
Figure 2-48. The confusion matrix for testing data is
shown in Figure 2-49. The plots show that the model
classifies the vast majority of images correctly.
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Figure 2-47. Evolution of Sparse Categorical Accuracy Metric
with Epochs

The complete code for fashion MNIST image classification is shown in
Listing 2-31.

Listing 2-31. Classifying Images from the Fashion MNIST Dataset

1 import numpy as np

2 import tensorflow as tf

3 import matplotlib.pyplot as plt
4  import logging

5 import os

6  import seaborn as sns

7

8 logging.basicConfig(level=1logging.DEBUG)
9

10

11 class History(object):
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def init (self):
self.history = {}
self.epoch = None

class FashionMNistClassify(object):
LOGGER = logging.getLogger("FashionMNistClassify")

def init (self, datadir: str, batchsize: int = 10,
epochs: int = 20, useGradTape: bool = True) -> None:
(trainx, trainy), (testx, testy) = tf.keras.

datasets.fashion mnist.load data()

self.classes = ["Top", "Trouser", "Pullover",

"Dress", "Coat", "Sandal", "Shirt", "Sneaker",
"Bag", "Boot"]

self.nClass = len(self.classes)

trainx = trainx/255.0

testx = testx/255.0

self.trainingData = (trainx, trainy)

self.testingData = (testx, testy)

self.inputDir = datadir

self.batchSize = batchsize

self.nEpoch = epochs

self.useGradientTape = useGradTape

self.nnet = self.model()

def checkpointModel(self, nnet):
checkpointFile = os.path.join(self.inputDir,
"checkpoint fmnist wt")
if not os.path.exists(checkpointFile):
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38 nnet.predict(np.ones((20, 28, 28), dtype=np.
float32))
39 tf.keras.models.save model(nnet,
checkpointFile, overwrite=False)
40 else:
41 nnet = tf.keras.models.load
model (checkpointFile)
42 return nnet
43
44 def model(self):
45 nnet = tf.keras.models.Sequential()
46 nnet.add(tf.keras.layers.Flatten(input_shape=
(28, 28)))
47 nnet.add(tf.keras.layers.Dense(80,
activation="relu"))
48 nnet.add(tf.keras.layers.Dense(20, activation=
"relu"))
49 nnet.add(tf.keras.layers.Dense(10))
50 self.loss = tf.keras.losses.SparseCategoricalCros
sentropy(from logits=True)
51 self.optimizer = tf.keras.optimizers.Adam
(learning_rate=0.005)
52 self.metric = tf.keras.metrics.SparseCategorical
Accuracy()
53 nnet.compile(optimizer=self.optimizer,
54 loss=self.loss,
55 metrics=[self.metric])
56 nnet = self.checkpointModel(nnet)
57 return nnet
58
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def plotConfusionMatrix(self, labels: np.ndarray,
predictions: np.ndarray) -> None:

predictedLabels = np.argmax(predictions, axis=1)

fig, ax = plt.subplots()

cm = np.zeros((self.nClass, self.nClass),

dtype=np.int32)

for i in range(labels.shape[0]):
cm[labels[i], predictedlLabels[i]] += 1

sns.heatmap(cm, annot=True, fmt="d",

linewidths=0.25, ax=ax)

ax.set_xticks(range(1+self.nClass))

ax.set_yticks(range(1+self.nClass))

ax.set xticklabels(["0"] + self.classes,

rotation=20)

ax.set_yticklabels(["0"] + self.classes,

rotation=20)

ax.set_ylabel('Actual')

ax.set xlabel('Predicted')

plt.show()

def plotConvergenceHistory(self, history,
metricName):
plt.plot(history.epoch, history.
history[metricName])
plt.xlabel("Epoch")
plt.ylabel(metricName)
plt.grid(True)
plt.legend()
plt.show()

def testModel(self):
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83 for X, y in [self.trainingData, self.
testingData]:
84 predictClass = self.nnet.predict(X)
85 self.plotConfusionMatrix(y, predictClass)
86
87 def gradTapeTraining(self):
88 trainDataset = tf.data.Dataset.from tensor
slices(self.trainingData)
89 trainDataset = trainDataset.batch(self.batchSize)
90 totallLoss = np.zeros(self.nEpoch, dtype=np.
float32)
91 count = 0
92 for X, y in trainDataset:
93 for epoch in range(self.nEpoch):
94 with tf.GradientTape() as tape:
95 predictedY = self.nnet(X)
96 loss = self.loss(y, predictedY)
97
98 grads = tape.gradient(loss, self.nnet.
trainable weights)
99 self.LOGGER.info("Epoch %d, loss %f",
epoch, loss)
100 totalloss[epoch] += loss
101 self.optimizer.apply gradients(zip(grads,
self.nnet.trainable weights))
102 count += 1
103 totalloss = totalloss / count
104 history = History()
105 history.history["loss"] = totalloss
106 history.history[self.metric. name] =

np.zeros(self.nEpoch)
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history.epoch = np.arange(self.nEpoch)
return history

def trainModel(self):
if self.useGradientTape:
history = self.gradTapeTraining()
else:
history = self.nnet.fit(self.trainingData[0],
self.trainingData[1],
batch size=self.
batchSize,
epochs=self.nEpoch)
self.plotConvergenceHistory(history, self.
metric. name)
self.plotConvergenceHistory(history, "loss")
return history

if _name__ == " main_ ":
dname = r"C:\prog\cygwin\home\samit 00O0\RLPy\
data\book"
fmnist = FashionMNistClassify(dname, batchsize=10000,
epochs=60)
fmnist.trainModel()
fmnist.testModel()
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Training Dataset
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CHAPTER 3

Convolutional Neural
Networks

Convolutional neural networks (CNNs) are a category of neural networks
that can be used to identify spatial patterns in a robust manner. They
achieve this robustness by a parsimonious use of parameters and by
systematic identification of simple patterns that are aggregated into
complex specifications using subsequent layers. They are able to recognize
features in a translation-invariant fashion. Their use in modern digital
imaging technology is ubiquitous, with most cameras programmed to pick
out faces and objects automatically using CNNs.

The development of CNNs was inspired by the human visual cortex.
The human eye can recognize an object at different positions in its field
of view. In 1959, David Hubel and Torsten Wiesel proposed a theory to
account for the spatial invariance of the human eye’s object detection
ability by surmising that the human eye has simple and complex cells, with
simple cells tracking the presence of an object at a particular location and
complex cells aggregating the output of simple cells. In 1980, Dr. Kunihiko
Fukushima implemented a neural network model (neurocognitron model)
to simulate the functioning of the human eye as described by Hubel and
Weisel. The first notable application of convolutional neural networks
to the task of pattern recognition came in 1998, when LeCun, Bottou,
Bengio, and Haffner used a CNN to identify handwritten digits from the
MNIST database. The convolutional neural network designed by LeCun
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et al. was called LeNet. The next major breakthrough in the field came in
2012 when a group of researchers from the University of Toronto, led by
Alex Krizhevsky, created an image recognition algorithm that achieved
85% accuracy. The adoption of CNNs gained further traction in the field of
image recognition with access to ever-growing computational resources. In
the past few years, CNNs have been used for face recognition, fingerprint
recognition, medical image analysis, and motion detection with increasing

accuracy.

=)

Convolution Neuron

FEwyjx5)

Input Gray Region Represents Application of Neuron Once

Two-Dimensional 3X3 Convolution Neuron with Stride 3X3 Applied to 6X9 Input to get 2X3 Output

Figure 3-1. Application of a CNN Neuron to Inputs

3.1 A Simple CNN

A convolutional neural network consists of one or more convolution layers.
A convolution layer is comprised of a set of neurons. What distinguishes a
neuron in a convolution layer from a neuron in a dense layer is the shape
of its input and the method of applying inputs to activate the neuron.

A convolution neuron is applied repeatedly to different sections of the
input in order to obtain the output. For example, Figure 3-1 shows a
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two-dimensional convolution neuron with size 3 by 3, applied to a two-

dimensional input. The output of this neuronis f (ZW X+ b] , where

[
i,j

[is the activation function, W, ; represents neuron weights, X; ; is the input,
and b is the bias. Let us look at an example using TensorFlow.

Listing 3-1. Example of a 2D Convolutional Neural Network

from tensorflow.keras import layers, models

model = models.Sequential()

model.add(layers.Conv2D(10, (3, 3), activation="relu",
input_shape=(20, 20, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(20, (3, 3), activation="relu"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(20, (3, 3), activation="relu"))
model.add(layers.Flatten())

10 model.add(layers.Dense(16, activation="relu"))

11 model.add(layers.Dense(1, activation="sigmoid"))

12 print(model.summary())

> W N R

O 0 N O WU

A sequential neural network is built by adding layers. In the example
shown in Listing 3-1, the first layer is a two-dimensional convolution layer
that has ten neurons, each having a two-dimensional kernel of length and
width 3. Each neuron uses a ReLU activation function (given in equation
3.1). The rectified linear unit or ReLU activation function does not get
saturated for large or small activation values, unlike sigmoid or hyperbolic
functions that asymptotically saturate to a value of 1 for large activation
and 0 or -1 for small activation. Being the first layer of the network,
the convolution layer also needs input shape specification. For a two-
dimensional convolution layer, the shape must have three dimensions:
length, width, and height. In this example, the convolution neuron accepts
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an input of size (3, 3, 1). The last 1 comes from the last dimension of

the input. For example, if we were using RGB images as input, the last
dimension of input would be 3. Consequently, for an input shape of (20,
20, 3), the convolution neuron would accept an input of size (3, 3, 3). In
general, for a two-dimensional convolution layer shown in the following
with N neurons or filters, each with a filter size of L by W, applied on an
input shape of I, by Iy by H, each neuron will accept an input of dimension
L by Wby H. The default activation function for a layer is identity, that is,
an output equal to the input.

y=max(0,x) (3.1)

Listing 3-2. 2D Convolution Layer

1 from tensorflow.keras import layers

2 layers.Conv2D(N, (L, W), strides=(strideX, strideY),

3 activation="relu",

4 input_shape=(iL, iW, H) )

The default stride length of a two-dimensional convolution neuron
is 1 by 1. In the example shown in Listing 3-1, applying stride of 1 to
input of length 20, with filter length 3, will give 20 — 3 + 1 = 18 outputs.
The same convolution neuron is applied to different portions of the
input, yielding an output array of shape 18 by 18. Because there are ten
neurons in the first layer, output shape is 18 by 18 by 10. For the generic
example shown in Listing 3-2, output shape is given by equation 3.2.
The number of parameters in this layer is given by equation 3.3, where
Nis the number of neurons in the convolution layer, L by Wis the filter
size, and H is the height. A neuron has a weight for each of the L by W
by H inputs in addition to bias. For the first layer in Listing 3-1, it has
(3x3x1+1)x10=100 parameters.
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I, —L
=—%L +1

 stride X

P=(LxWxH+1)xN

(3:2)

(3.3)

TensorFlow follows the convention of using the first dimension as the

number of batches. For example, if the data being fed to a CNN has 50

specimens, the first dimension of the input would be 50. This allows the

input to be sent in one shot and facilitates greater execution efficiency due

to batch processing. The output shapes of layers shown by the summary

command show the first output dimension as None, signifying it is the

number of specimens from the input, as shown in Listing 3-3.

Listing 3-3. Model Summary

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Model: "sequential 2"

Layer (type) Output Shape Param #
conv2d_3 (Conv2D) (None, 18, 18, 10) 100
max_pooling2d (MaxPooling2D) (None, 9, 9, 10) 0
conv2d_4 (Conv2D) (None, 7, 7, 20) 1820
max_pooling2d 1 (MaxPooling2 (None, 3, 3, 20) 0
conv2d 5 (Conv2D) (None, 1, 1, 20) 3620
flatten (Flatten) (None, 20) 0
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17  dense (Dense) (None, 16) 336
18
19 dense_1 (Dense) (None, 1) 17
20

21 Total params: 5,893

22 Trainable params: 5,893
23 Non-trainable params: 0
24

A three-dimensional convolution layer is created using layers.
Conv3D. Similar to its two-dimensional counterpart, this layer takes
the number of neurons and a three-dimensional filter size as shown
in Listing 3-4. Input shape must be a four-element tuple. Each neuron
accepts input of shape L by Wby H by N4 Similarly, a one-
dimensional convolution layer takes a one-dimensional filter size, one-
dimensional stride, and two-dimensional input, as shown in Listing 3-5.

Listing 3-4. 3D Convolution Layer

1 from tensorflow.keras import layers

2 layers.Conv3D(N, (L, W, H),

3 strides=(strideX, strideY, stridez),

4 activation="relu",

5 input_shape=(I L, I W, I H, nChannels) )

Listing 3-5. 1D Convolution Layer

1 from tensorflow.keras import layers

2 layers.ConviD(N, (L), strides=(strideX),

3 activation="relu",

4 input_shape=(I L, nChannels) )
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The next layer in Listing 3-1 is a pooling layer and aggregates
information from neighboring cells. A max pooling layer takes the
maximum value of its constituent cells and has no parameters. It is applied
in a nonoverlapping fashion over the input. The input for this layer is the
previous layer’s output, having a shape of (None, 18,18,10). Since this is a
two-dimensional pooling layer with shape 2 by 2, it produces an output of
shape (None, 9,9, 10), with the length and width of the output reduced by a
factor corresponding to the pooling layer’s length and width.

The third layer is another two-dimensional convolution layer. This
layer recognizes features from the aggregated output of the max pooling
layer. By progressively recognizing complex patterns from simpler building
block patterns, a convolutional neural network can identify complex
features. This layer has 20 neurons, each with a filter size of 3 by 3. Using
equation 3.2, this gives an output of size (None, 7, 7,20). The number of
parameters is (3 x 3 x 10 + 1) x 20 = 1820, using equation 3.3.

The next two layers follow a similar pattern: a max pooling layer
followed by a two-dimensional convolution layer. The max pooling layer
has no free parameter, and the shape of its output is (None, 3, 3, 30). The
max pooling layer operates on an input of shape (None, 7,7, 20) from the
last layer. The filter size of the max pooling layer is (2, 2), but the input
shape (7,7) is odd. This causes the last row and column of the input to
be discarded. This situation is not ideal, as it leads to information loss.

In order to fix the issue, a modified CNN is shown in Listing 3-6. An
alternative fix for this problem would be to use padding. Padding appends
additional rows or columns to the input with value —o for a max pooling
layer and 0 for an average pooling layer. The Padding argument accepts
one of two values: valid or same. valid padding is the default selection for
padding and ignores sections of input not covered by a complete pooling
layer’s span. ‘same’ applies padding to the input, so that no section of
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input is ignored by the pooling layer. For a max pooling layer, it applies
—oo padded values so that the padded output has no impact on actual
output. Similarly, an average pooling layer applies a padding of 0, leaving
the output unaltered by padded values. The pooling layer also takes an
optional argument specifying the stride. It defaults to the filter size.

The next convolution layer has (3 x 3 x 20 + 1) x 20 = 3620 free
parameters and output of shape (None, 1, 1,20). Finally, output from this
layer is fed into a flatten layer that changes the input to a one-dimensional
input of shape (None, 20). Following the convention, the first dimension
is reserved for batch size, and the second dimensionis 1 x 1 x 20 = 20,
from the output shape of the last layer. The output from the flatten layer
is fed to a dense layer with 16 neurons. This layer has (20 + 1) x 16 = 336
free parameters. In general, the number of parameters of a dense layer is
shown in equation 3.4, where N, is the number of inputs to the layer and
N is the number of neurons in the layer. 1 accounts for bias weight.

The final layer in Listing 3-1 is a one-neuron dense layer with a
sigmoid activation function. This layer produces a scalar output between 0
and 1 and can be interpreted as the probability of belonging to a class. The
number of free parameters for this layer is (16 + 1) x 1 = 17, with the output
shape being (None, 1).

P=(N,,, +1)xN (3.4)

input

Listing 3-6. Example of a 2D Convolutional Neural Network with
No Data Loss in the Max Pooling Layer

import tensorflow as tf
from tensorflow.keras import layers, models

model = models.Sequential()
model.add(layers.Conv2D(10, (5, 5), activation="relu",
input_shape=(20, 20, 1)))

Ui » W N R
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

model.add(layers.
model.add(layers.
model.add(layers.
model.add(layers.
model.add(layers.
model.add(layers.
model.add(layers.
model. summary()
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MaxPooling2D((2, 2)))

Conv2D(20, (3, 3), activation="relu"))

MaxPooling2D((2, 2)))

Conv2D(20, (3, 3), activation="relu"))

Flatten())

Dense(16, activation="relu"))
Dense(1), activation="sigmoid")

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 16, 16, 10) 260
max_pooling2d (MaxPooling2D) (None, 8, 8, 10) 0
conv2d 1 (Conv2D) (None, 6, 6, 20) 1820
max_pooling2d 1 (MaxPooling2 (None, 3, 3, 20) 0
conv2d 2 (Conv2D) (None, 1, 1, 20) 3620
flatten (Flatten) (None, 20) 0

dense (Dense) (None, 16) 336
dense 1 (Dense) (None, 1) 17

Total params: 6,053
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36 Trainable params: 6,053
37 Non-trainable params: 0
38

3.2 Neural Network Layers Used in CNNs

In order to identify spatial patterns, convolutional neural networks
frequently use the following layers. For all convolution layers, the depth of
input matches the depth of the filter:

1. One-dimensional convolution layer: In
TensorFlow, this is defined in class tf.keras.layers.
ConvlD. It takes the number of filters and kernel
size as arguments. Stride along one dimension can
be specified. Kernel size is an integer representing
the length of the filter or a tuple containing filter
length and depth.

2. Two-dimensional convolution layer: Defined
in TensorFlow class tf.keras.layers.Conv2D, this
layer takes the number of filters and kernel size as
arguments. Stride along two dimensions can be
specified as a tuple. Kernel size is a tuple specifying
the length and the width of the filter. The height of
the filter matches the height (depth) of the input.
This is the fourth dimension of input.

3. Three-dimensional convolution layer: Defined
in TensorFlow class tf.keras.layers.Conv3D, this
layer takes the number of filters and kernel size as
arguments. Stride along three dimensions can be
specified as a tuple. Kernel size is a tuple specifying
the length, width, and height of the filter.
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4. One-dimensional convolutional transpose
layer: This layer applies inverse convolution
(deconvolution) transformation, taking the output
of a one-dimensional convolution layer as input
and producing an output with shape corresponding
to the original input to the convolution layer. In
TensorFlow, this is defined in class tf.keras.layers.
ConvlDTranspose.

5. Two-dimensional convolutional transpose layer:
This layer is defined in TensorFlow class
tf.keras.layers.Conv2DTranspose and is the two-
dimensional equivalent of the ConvlDTranspose
layer. A code example illustrating its use is shown in
Listing 3-7. In this example, input height is 3 and is
also the filter height.

Listing 3-7. Example of a 2D Convolutional Transpose Layer

import tensorflow as tf
convLayer = tf.keras.layers.Conv2D(10, (4, 4),
strides=(2, 2), kernel initializer="ones",
3 bias initializer=
"ones", input_shape=(8,8,3))
4  deconvLayer = tf.keras.layers.Conv2DTranspose(3, (4, 4),
strides=(2,2),
5 kernel initializer=tf.keras.
initializers.Constant(1.0/(49*4)),
bias_initializer="ones"
input = tf.constant(tf.ones((1, 8, 8, 3), dtype=tf.
float32))
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outl = convlLayer(input)
out2 = deconvLayer(out1)
10 assert out2.shape == input.shape

6. Three-dimensional convolutional transpose
layer: Defined in TensorFlow class tf.keras.layers.
Conv3DTranspose, this layer applies three-

dimensional deconvolution.

3.3 Output Shapes and Trainable
Parameters of CNNs

Having familiarized ourselves with CNN terminology, we are now in a
position to formulate mathematical expressions for output shape and
number of trainable parameters of a CNN layer.

Let us consider a general three-dimensional CNN and denote the
number of filters (neurons) by N, filter shape by (L, W, D), input shape
by (B, I, I, I, H), and stride as (S;, Sw, Sp). D represents the depth, L
length, and Wwidth of the filter. B is the number of batches in input, I;
is input length, I, is input width, and I, is input depth. H is input height
and is equal to filter height. Filter height is not provided as an input in
filter shape because it is automatically set to match input height. Let us
assume a padding of shape (P;, Py, Pp) on both sides of length, width, and
depth of input. Output shape of the CNN layer is shown in equation 3.5.
The expression can be understood as moving a filter of length L along I;
padded with P; on both sides with stride S; will result in the top-left corner
of the filter traveling from 0 to I, — L + 2P, + 1 with stride of S; giving the
output length (B, Oy, Oy, Op, N) as shown in equation 3.5:
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B =number of batches

0, _IL-L+2p,
SL

0, :wﬂ (3.5)
Sy

o0, =lb=D*2b
SD

N =number of filters

The number of trainable parameters of a CNN layer is determined
by its filter size, inclusive of filter height, and bias. Since filter height is
the same as input height, the number of trainable parameters is given by
equation 3.6. 1 accounts for bias weight:

N LxWxDxH+1)N (3.6)

param = (

Similarly, for a two-dimensional CNN, output shape and number of
trainable parameters are given by equations 3.7 and 3.8, respectively:

B =number of batches

0, - I, -L+2P, 41
St 37)
0, - I, -W+2P, ‘1
SW
N =number of filters
N ppyam =(LXW xH +1)N (3.8)

One can write analogous expressions for output shape and number of
trainable parameters for a one-dimensional CNN layer.
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3.4 Classifying Fashion MNIST Images

In Chapter 2, a simple neural network model using dense layers was built
to classify images in the fashion MNIST dataset with ~95% accuracy on
training data. In this section, let us build a CNN-based network to improve
the performance of the image classifier. The complete code is shown in
Listing 3-8. The directory specified on line 91 should be changed to a
writable directory and is used for creating a model checkpoint.

1. Two-dimensional convolution layers are used to
detect spatial features in an image. As seen from
code in Listing 3-8, a first CNN layer must specify
input shape as a three-element tuple: image length,
image width, and image depth. In this example,
images use gray scale, and there is no RGB channel.
So depthis 1.

2. A max pooling layer is used to aggregate patterns.

3. Output from a convolution layer is flattened and
sent to a dense layer.

4. Afinal dense layer has ten units, each predicting the
unnormalized probability of an image belonging to
that class. To recall, this problem has ten classes.
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Figure 3-2. Evolution of Sparse Categorical Cross Entropy Loss with
Epochs Using CNN

5. Plots for evolution of loss and accuracy shown in
Figures 3-2 and 3-3 demonstrate that training has

converged.

6. The CNN-based model has accuracy of 99.5% in the
training dataset and 90.6% in the testing dataset.
Confusion matrices plotting actual labels (Y axis)
vs. predicted labels (X axis) for training and testing
datasets can be seen in Figures 3-4 and 3-5.

Listing 3-8. Classifying Images from the Fashion MNIST Dataset
Using CNN

1 import numpy as np
2 import tensorflow as tf
3 import matplotlib.pyplot as plt
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import logging

import os
import seaborn as sns

logging.

basicConfig(level=1logging.DEBUG)

class FashionMNistCNNClassify(object):
LOGGER = logging.getLogger("FashionMNistCNNClassify")

def

__init_ (self, datadir: str, batchsize: int = 10,

epochs: int = 20) -> None:

def

(trainx, trainy), (testx, testy) = tf.keras.

datasets.fashion mnist.load data()

self.classes = ["Top", "Trouser", "Pullover",

"Dress", "Coat", "Sandal", "Shirt", "Sneaker",
"Bag", "Boot"]

self.nClass = len(self.classes)

trainx = trainx/255.0

testx = testx/255.0

self.trainingData = (trainx, trainy)

self.testingData = (testx, testy)

self.inputDir = datadir

self.batchSize = batchsize

self.nEpoch = epochs

self.nnet = self.model()

checkpointModel(self, nnet):

checkpointFile = os.path.join(self.inputDir,
"checkpoint_fmnist _cnn_wt")

if not os.path.exists(checkpointFile):
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nnet.predict(np.ones((20, 28, 28, 1),
dtype=np.float32))
tf.keras.models.save model(nnet,
checkpointFile, overwrite=False)
else:
nnet = tf.keras.models.load
model (checkpointFile)
return nnet

model(self):

nnet = tf.keras.models.Sequential()
nnet.add(tf.keras.layers.Conv2D(filters=100,
kernel size=(2, 2), padding="same", input_
shape=(28, 28, 1)))
nnet.add(tf.keras.layers.MaxPooling2D(pool
size=(2, 2)))
nnet.add(tf.keras.layers.Conv2D(filters=60,
kernel size=(2, 2), padding="same",
activation="relu"))
nnet.add(tf.keras.layers.Flatten())
nnet.add(tf.keras.layers.Dense(50,
activation="relu"))
nnet.add(tf.keras.layers.Dense(10))

self.loss = tf.keras.losses.SparseCategoricalCross

entropy(from_logits=True)

self.optimizer = tf.keras.optimizers.

Adam(learning rate=0.002)

self.metric = tf.keras.metrics.

SparseCategoricalAccuracy()

nnet.compile(optimizer=self.optimizer,
loss=self.loss,
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50 metrics=[self.metric])

51 nnet = self.checkpointModel(nnet)

52 return nnet

53

54 def plotConfusionMatrix(self, labels: np.ndarray,

predictions: np.ndarray) -> None:

55 predictedlLabels = np.argmax(predictions, axis=1)

56 fig, ax = plt.subplots()

57 cm = np.zeros((self.nClass, self.nClass),
dtype=np.int32)

58 for i in range(labels.shape[0]):

59 cm[labels[i], predictedlLabels[i]] += 1

60 sns.heatmap(cm, annot=True, fmt="d",
linewidths=0.25, ax=ax)

61 ax.set xticks(range(1+self.nClass))

62 ax.set_yticks(range(1+self.nClass))

63 ax.set xticklabels(["0"] + self.classes,
rotation=20)

64 ax.set_yticklabels(["0"] + self.classes,
rotation=20)

65 ax.set_ylabel('Actual')

66 ax.set xlabel('Predicted")

67 plt.show()

68

69 def plotConvergenceHistory(self, history, metricName):

70 plt.plot(history.epoch, history.
history[metricName])

71 plt.xlabel("Epoch™")

72 plt.ylabel(metricName)

73 plt.grid(True)

74 plt.legend()
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plt.show()

def testModel(self):
for X, y in [self.trainingData, self.testingData]:
predictClass = self.nnet.predict(X[...,
np.newaxis])
self.plotConfusionMatrix(y, predictClass)

def trainModel(self):
history = self.nnet.fit(self.trainingData[o0][...,
np.newaxis], self.trainingData[1],
batch _size=self.batchSize,
epochs=self.nEpoch)
self.plotConvergenceHistory(history, self.
metric. name)
self.plotConvergenceHistory(history, "loss")
return history

if name_ ==" main_":
dname = r"C:\prog\cygwin\home\samit 00O0\RLPy\
data\book"
fmnist = FashionMNistCNNClassify(dname, batchsize=100,
epochs=40)
fmnist.trainModel()
fmnist.testModel()
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Figure 3-3. Evolution of Sparse Categorical Accuracy Metric with
Epochs Using CNN
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Figure 3-5. Confusion Matrix of CNN Model Predictions (X) Against
Actual Labels (Y) on the Testing Dataset

3.5 Ildentifying Technical Patterns
in Security Prices

This section applies convolutional neural networks to the task of pattern
recognition in security prices. Technical patterns are widely used in
securities markets for arbitrage and risk management. Trading firms track
the moving averages of security prices to figure out when to initiate a
long position in a stock. Cup-and-handle, moving average crossover rule,
head-and-shoulders, rising wedge, and falling wedge are a few examples
of widely used technical patterns to predict the future course of price
movements. Pattern recognition shares similarities and differences with
image recognition. Like images, patterns are graphical representations
whose essential features need to be learned by a network. Unlike image
recognition, their presence may be obscured by daily price fluctuations.

159



CHAPTER 3  CONVOLUTIONAL NEURAL NETWORKS

While one level of smoothing may reveal a pattern to the eye in one period,
another level of smoothing may be needed to detect its existence in
another period. Furthermore, technical analysts may differ in their opinion
on occurrence or non-occurrence of a pattern depending upon feature
sizes. For example, some technical analysts insist that the length of the
handle in the cup-and-handle pattern should be at least one — third the
length of the entire pattern, while other analysts disagree.

In financial applications, data is finite, and models must account for
available training data when deciding the number of model parameters.
Judicious selection of the number of model parameters is critical for
another reason - to avoid overfitting. We want the model to learn
underlying features of a pattern, without learning the noise. With these
considerations in mind, let us use CNNs to detect the occurrence of the
cup-and-handle price pattern in the security prices of five stocks from 2000
to 2020. The CNN used for pattern identification is shown in Listing 3-9.

Listing 3-9. 2D Convolutional Neural Network for Identifying the
Cup-and-Handle Pattern

1 from tensorflow.keras import layers, models

2

3 model = models.Sequential()

4  model.add(layers.Conv2D(10, (3, 3), activation="relu",
input_shape=(20, 20, 1)))

5 model.add(layers.AveragePooling2D(pool size=(2, 2)))

6 model.add(layers.Conv2D(5, (4, 4), activation="relu"))

7 model.add(layers.Flatten())

8 model.add(layers.Dense(2, activation="relu"))

9 model.add(layers.Dense(1, activation="sigmoid"))

10  print(model.summary())
11
12 Model: "sequential 1"
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13

14  Layer (type) Output Shape Param #
15

16  conv2d 2 (Conv2D) (None, 18, 18, 10) 100
17

18  average pooling2d 1 (Average (None, 9, 9, 10) 0
19

20 conv2d 3 (Conv2D) (None, 6, 6, 5) 805
21

22 flatten 1 (Flatten) (None, 180) 0
23

24  dense_2 (Dense) (None, 2) 362
25

26  dense_3 (Dense) (None, 1) 3
27

28 Total params: 1,270

29 Trainable params: 1,270
30 Non-trainable params: 0
31

A known cup-and-handle pattern in the price of a security was
identified. This pattern manifested itself in the price of BIDU from
February 1, 2007, to May 3, 2007. The price plot is illustrated in Figure 3-6.
In order to generate a sufficient number of testing samples containing
both occurrences and non-occurrences of this pattern for training the
CNN with 1,270 parameters, more testing data is required. Furthermore,
manual identification and confirmation of the occurrence or non-
occurrence of the pattern would be too cumbersome. In order to overcome
this problem, small random noise was added to the price of this security
in the period of interest when it showed a confirmed occurrence of the
cup-and-handle pattern. The random disturbance was produced using a
Gaussian distribution with 0 mean and standard deviation 0.2. Since the
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cup-and-handle pattern spans a price range of around $3.5, the noise has
a small enough standard deviation, and it’s addition to the price is unlikely
to negate the occurrence of the cup-and-handle pattern. With a certainty
0f99.73%, the disturbance will be between three standard deviations, or
between [—0.6,0.6]. And in this range, none of the essential features of the
cup-and-handle pattern will be obscured.

Cup-and-handle Pattern
12.5 \/

11.5 A

Price

10.5

10.0 -

9.5 H

2007-02 2007-03 2007-04 2007-05
Date

Figure 3-6. Cup-and-Handle Pattern

Finding data with no cup-and-handle pattern is easier. The price of
a security was considered in a span of 3 months and tested for essential
features of the cup-and-handle pattern. If the pattern is not detected,
which is a fairly common occurrence, it is added to the training data as a
negative sample.

Armed with sufficient data comprising both positive and negative
samples for training the CNN, the network was trained and validated. The
trained network was used to identify the occurrences of the cup-and-handle
pattern in prices of securities. A few positive occurrences are displayed in
Figures 3-7 and 3-8. As can be seen, the network can identify the pattern.
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The full code for cup-and-handle pattern recognition in stock prices of
30 Dow Jones components is presented in Listing 3-10.

Listing 3-10. Cup-and-Handle Pattern Recognition in Prices of 30
Dow Jones Components

1 import numpy as np
2 import pandas as pd
3  import tensorflow as tf
4  from tensorflow.keras import layers, models
5 import os
6
7  import matplotlib.pyplot as plt
8  from matplotlib.dates import (YEARLY, DateFormatter,
9 YearLocator, MonthLocator,
DayLocator)
10
11
12 class DatePlotter(object):
13 def _init (self):
14 self.majorLocator = MonthLocator()
#YearLocator() # every year
15 self.minorLocator = DaylLocator() # every month
16 self.formatter = DateFormatter('%m/%d/%y")
#DateFormatter('%Y")
17
18 def plot(self, df, datecol, valcols, xlabel='date',
ylabel=None, labels=None, round='Y'):
19 if not labels:
20 labels = valcols
21
22 fig, ax = plt.subplots()
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for val,lb in zip(valcols, labels):
ax.plot(datecol, val, data=df, label=1b)
plt.xlabel(xlabel)
if ylabel:
plt.ylabel(ylabel)

# format the ticks

ax.xaxis.set major locator(self.majorLocator)
ax.xaxis.set major formatter(self.formatter)
ax.xaxis.set minor locator(self.minorlLocator)

# round to nearest years.

datemin = np.datetime64(df[datecol].

values[0], round)

nr = df.shape[0]-1

datemax = np.datetime64(df[datecol].values[nr],
round) + np.timedelta64(1, round)

ax.set xlim(datemin, datemax)

# format the coords message box

ax.format xdata = DateFormatter('%Y-%m-%d")
ax.format_ydata = lambda x: "$%1.2f"' % x #
format the price.

handles, labels = ax.get legend handles labels()
ax.legend(handles, labels, loc='upper left')
ax.grid(True)

# rotates and right aligns the x labels, and
moves the bottom of the

# axes up to make room for them

fig.autofmt xdate()

165



CHAPTER 3  CONVOLUTIONAL NEURAL NETWORKS

50 return plt
51
52
53 def plotData(price data dir, output dir):
54 df = pd.read csv(os.path.join(output dir, "ch_
out.csv"))
55 df.loc[:, "Begin"] = pd.to_datetime(df.loc[:,
"Begin"])
56 df.loc[:, "End"] = pd.to datetime(df.loc[:, "End"])
57 last_stock = None
58 stock_df = None
59 cnt = 0
60 for rownum in range(df.shape[0]):
61 stock = df.loc[rownum, "Stock"]
62 begin = df.loc[rownum, "Begin"]
63 end = df.loc[rownum, "End"]
64 if stock != last stock:
65 stock _df = pd.read csv(os.path.join(price
data_dir, "%s.csv" % stock))
66 stock_df.loc[:, "Date"] = pd.to_
datetime(stock df.loc[:, "Date"])
67 cnt =0
68
69 ibeg = stock df.loc[stock df.loc[:, "Date"].
eq(begin), :].index[0]
70 iend = stock df.loc[stock df.loc[:, "Date"].
eq(end), :].index[0]
71
72 dplt = DatePlotter()
73 plt = dplt.plot(stock df.loc[ibeg:iend, :],

‘Date’, ["Adj Close"], xlabel='Date',
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ylabel="Price', labels=[stock],
round='D")
plt.title("Cup-and-Handle in %s" % stock)
# plt.show()
filename = os.path.join(output dir, "%s %d.png" %
(stock, cnt))
plt.savefig(filename)
cnt = cnt + 1

def buildModel():

model = models.Sequential()
model.add(layers.Conv2D(10, (3, 3),
activation="relu", input shape=(20, 20, 1)))
model.add(layers.AveragePooling2D(pool size=(2, 2)))
model.add(layers.Conv2D(5, (4, 4),
activation="relu"))
model.add(layers.Flatten())
model.add(layers.Dense(2, activation="relu"))
model.add(layers.Dense(2))
model. summary()
loss fn = tf.keras.losses.SparseCategoricalCrossentro
py(from_logits=True)
model.compile(optimizer="adam",

loss=loss_fn,

metrics=["accuracy'])
return model

def trainModel(model, df, training rows):

data = np.transpose(df.reset index(drop=True).values)
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y actual = np.array([int(c.startswith("t")) for c in
df.columns], dtype=np.int)
train_data = data[o0:training rows, :]
train _data_final = np.zeros((training rows, 20, 20,
1), dtype=np.float32)
for i in range(training rows):
for j in range(20):
pixel = int(train data[i, j] * 20)
if pixel == 20:
pixel = 19
train data final[i, j, pixel, 0] = 1
train output = y actual[o:training rows]
model.fit(train data final, train output, epochs=5)

validation_data = data[training rows:, :]
validation dt = np.zeros((validation data.shape[0],
20, 20, 1), dtype=np.int)
for i in range(training rows, validation_
dt.shape[0]):
for j in range(20):
pixel = int(train data[i, j] * 20)
if pixel == 20:
pixel = 19
validation dt[i, j, pixel, 0] =1
validation output = y actual[training rows:]
model.evaluate(validation dt, validation output,
verbose=2)
#predictions = model(x_train[:1]).numpy()
# this is a probabilistic model, add a softmax layer
at the end
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new_model = tf.keras.Sequential([model, tf.keras.

layers.Softmax()])
return new_model

rescaleXDimension(ar, xsize):
if ar.shape[0] == xsize:
return ar

if ar.shape[0] > xsize:
pX = ar
px2 = np.zeros(xsize, dtype=np.float64)
px2[0] = px[0]
px2[-1] = px[-1]
delta = float(ar.shape[0])/xsize
for i in range(1, xsize-1):
k = int(i*delta)
facl = i*delta - k
fac2 = k + 1 - i*delta
px2[i] = fac1 * px[k+1] + fac2 * px[k]

return px2
raise ValueError("df rows are less than required
price array elements")

identify(model, df stock, ndays, stock, res df):
px_arr = df stock.loc[:, "Adj Close"].values
date arr = df stock.loc[:, "Date"].values
days_identified = set(res df.loc[res df.loc[:,
"Stock"].eq(stock), "Begin"])
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151 inp = np.zeros((1, 20, 20, 1), dtype=np.float32)

152 for i in range(df_stock.shape[0] - ndays):

153 if date_arr[i] in days identified:

154 continue

155 inp[:, :, :, ] =0

156 px = px_arr[i:i+ndays]

157 mn = px.min()

158 mx = px.max()

159 transform px = np.divide(np.subtract(px,
mn), mx-mn)

160 transform = rescaleXDimension(transform px, 20)

161 for j in range(20):

162 vl = int(transform[j] * 20)

163 if vl == 20:

164 vl = 19

165 inp[o0, j, vl, 0] =1

166

167 outval = model(inp).numpy()

168 if outval[o, 1] >= 0.9:

169 print("%s from %s - %s dates" % (stock, date_

arr[i], date arr[i+ndays-1]))
170 res df = res df.append({"Stock":stock,

"Begin": date arr[i], "End": date_
arr[i+ndays-1]},
171 ignore_index=True)
172 return res df
173
174
175 def processData(stock list, input dir, price data dir,
output _dir):

170
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res_df = pd.DataFrame(data={"Stock":[], "Begin":[],
"End":[]})

df = pd.read csv(os.path.join(input dir,
"train.csv"))

df.drop(columns=["Day"], inplace=True)
obs = len(df.columns)

training_perc = 0.95

train_rows = int(obs * training perc)
model = buildModel()

model = trainModel(model, df, training_
rows=train_rows)

# predict
period begin = 40
period end = 70
for stock in stock list:
df stock = pd.read csv(os.path.join(price data_
dir, "%s.csv"%stock))
for period in range(period begin, period end):
res df = identify(model, df stock, period,
stock, res df)
res_df.to csv(os.path.join(output dir, "ch out.csv"),
index=False)

main_ ":
input_dir = r"C:\prog\cygwin\home\samit_000\value _
momentum_new\value momentum\data"
price data_dir = r"C:\prog\cygwin\home\samit 000\
value momentum new\value momentum\data\price"
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198 output_dir = r"C:\prog\cygwin\home\samit_000\value
momentum_new\value _momentum\output\pattern"

199 df = pd.read table(os.path.join(input dir, "dow.
txt"), header=None)

200 stocks = ["TRV", "IBM"] # df.loc[:, 0].values

201 processData(stocks, input dir, price data dir,
output_dir)

202 plotData(price data dir, output dir)

3.6 Using CNNs for Recognizing
Handwritten Digits

Identifying handwritten digits and characters is an essential component

of automated tools like mobile check deposit processors and digital
assistants. Mobile check deposits are now a ubiquitous feature of most
mobile banking apps for smartphones. At its heart, these tools recognize
digits and characters and convert them to their digital counterparts.
Recognizing digits is related to shape recognition - an objective well suited
for CNNs.

In this example, let us build a CNN model for recognizing handwritten
digits. The MNIST dataset of handwritten digits comprises a training set
with 60,000 images and a testing set with 10,000 images. It is available from
the tf.keras.datasets.mnist dataset. Digits can be from 0 to 9, that is, ten
classes. Each image is a 28 by 28-pixel grayscale image. The digits have
been centered and normalized in size to fit a 28 by 28-pixel window.

Due to the similarity of the MNIST handwritten digit dataset with the
fashion MNIST dataset, all we need to do is change the code to read the
MNIST dataset and change the classes, that is, change lines 15 and 16 of
code in Listing 3-8 to code from Listing 3-11. During training, the CNN
learns to detect images as digits from 0 to 9, without any more code changes.
This illustrates the generality and elegance of CNNs in computer vision.
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Listing 3-11. 2D Convolutional Neural Network for Identifying
Handwritten Digits - Change Two Lines from Fashion MNIST Code

1

2 (trainx, trainy), (testx, testy) = tf.keras.datasets.mnist.
load data()

3 self.classes = list(range(10))

The CNN model finds this classification task simpler than the fashion
MNIST problem. This can be seen from the plots of accuracy and loss in
Figures 3-10 and 3-9. Sparse categorical accuracy begins at 95% in the
first epoch on the training dataset and quickly reaches 99.7% by the tenth
epoch on the training dataset. By contrast, the fashion MNIST model’s
accuracy begins at around 86% in the first epoch and reaches 99% by
the 20th epoch. For this problem, 20 epochs are sufficient for training to
converge.
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Figure 3-9. Evolution of Sparse Categorical Cross Entropy Loss with
Epochs Using CNN
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Figure 3-10. Evolution of Sparse Categorical Accuracy Metric with
Epochs Using CNN

Confusion matrices for training and testing dataset predictions
are shown in Figures 3-11 and 3-12 and depict the performance of the
classifier. The classifier attains 99.9% accuracy on the training dataset and
98.4% accuracy on the testing dataset.
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Figure 3-11. Confusion Matrix of CNN Model Predictions (X)
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Figure 3-12. Confusion Matrix of CNN Model Predictions (X)
Against Actual Labels (Y) on the Testing Dataset
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CHAPTER 4

Recurrent Neural
Networks

A recurrent neural network (RNN) is applied to inputs recurrently, with
the network output from one time step sending an additional input to
the next time step, augmenting the input for that time step. Inputs can be
observations recorded at different time steps. Recurrent application of
the network enables such networks to detect temporal relationships in
input data that have a material impact in modeling output. The network’s
output from one time step is passed as an input to the same network at
the next time step, along with inputs for that time step. This enables RNNs
to pass information learned from one time step to subsequent ones. This
chapter illustrates the use of recurrent neural networks by focusing on
gated recurrence unit (GRU), long-short-term memory (LSTM) cell, and
customized recurrent neural network layers. RNNs are trained using
backpropagation through time (BPTT), which involves unrolling the
network through time and using backpropagation. Vanishing gradients
pose a challenge to training RNNs, as the examples will demonstrate.
A LSTM network was proposed by Hochreiter and Schmidhuber in 1997.
In 2007, it was applied to speech recognition with outstanding results.
TensorFlow supports three layers for building RNNs as described in the
following. Each of these layers is discussed in the following sections:

© Samit Ahlawat 2023 177
S. Ahlawat, Reinforcement Learning for Finance,
https://doi.org/10.1007/978-1-4842-8835-1_4


https://doi.org/10.1007/978-1-4842-8835-1_4

CHAPTER 4  RECURRENT NEURAL NETWORKS

1.

tf.keras.layers.SimpleRNN consists of a simple
recurrent neural network cell that accepts output
from the previous time step’s simple RNN cell,

a bias, and inputs from the current time step to
generate an output. Let f denote the cell’s activation
function, X; denote the input vector of length n at
time t, and b denote bias. The cell’s output is shown
in equation 4.1. This cell has n + 2 free parameters.

Y: :fLZVViXt,i +Wbb+vvcyt—1J

tf.keras.layers.LSTM comprises of long-short-
term memory cells. These cells have the additional
capability of forgetting previous cell outputs.

tf.keras.layers.GRU consists of a simple

gated recurrence unit cell as compared with
LSTM. However, it has all the essential features
of LSTM.

tf.keras.layers.RNN layer is useful for the definition
of customized RNN layers.

4.1 Simple RNN Layer

In its simplest form, an RNN consists of a neuron applied recurrently to

(4.1)

inputs. This is illustrated in Figure 4-1. In TensorFlow, this can be written

as shown in Listing 4-1 using SimpleRNN. TensorFlow’s SimpleRNN layer

consists of a set of neurons applied recurrently to input. It has hyperbolic

tangent as the default activation function. By default, SimpleRNN returns

the final output corresponding to the last time step as the network

178



CHAPTER 4  RECURRENT NEURAL NETWORKS

output. This behavior can be changed by using the argument return_
sequences=True, so that it returns the cell output from each time step.
Model summary is shown in Listing 4-2. It is instructive to study the shapes
of input and output vectors in order to understand the SimpleRNN layer.
Input shape is (None, 4, 4), representing four time steps each with four
inputs. According to TensorFlow convention, the first dimension of input
represents the number of batches. Trainable parameters are six, four
corresponding to input weights and one each for bias and the previous
time step’s cell output.

Yer1 = fEwixt+ D +wyy)

ye =fEw®) | |

Xo(t) | ... Xn(t) XO(t+1) | ... Xn(t+1) XO(T) | .. | Xn(T)

Recurrent Neural Network with a Single Cell, Applying Activation f{.)

Figure 4-1. Simple RNN Cell

Listing 4-1. Example of a Recurrent Neural Network with One Cell

import tensorflow as tf
from tensorflow.keras import layers, models

model = models.Sequential()
lyr = tf.keras.layers.SimpleRNN(1, return_sequences=True)
model.add(1lyr)

S UV AW N
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7 input_shape = (None, 4, 4)
model.build(input_shape)
print(model.summary())

10 model.compile(optimizer="adam", loss=tf.keras.losses.
MeanSquaredError(), metrics=["mse"])

Listing 4-2. Model Summary for a Network with the
SimpleRNN Layer

1 Model: "sequential"

2

3 Layer (type) Output Shape Param #
4

5 simple rnn (SimpleRNN)  (None, 4, 1) 6
6

7

8 Total params: 6

9 Trainable params: 6

10 Non-trainable params: 0

11

The example shown in Listing 4-3 shows a sequential layer built with
the SimpleRNN layer. The input_shape argument of the SimpleRNN layer
is a tuple comprising of the number of recurrent steps the layer is applied
and the number of features accepted by the SimpleRNN cell. The number
of recurrent steps is different from the number of batches, which can be
left as None. Actual input to this layer is three-dimensional: number of
batches, number of recurrent time steps, and number of features, which
is (2, 4, 5) in Listing 4-3. The number of trainable parameters for the
SimpleRNN layer is the sum of the number of features, number of cells,
and a bias multiplied by the number of cells, as shown in equation 4.2.
The simple RNN cell sends a cell state from one time step to the next, and
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there are N,;; number of cells, giving N, outputs from one time step sent
to the next one. There is one bias term. For the example in Listing 4-3, the
SimpleRNN layer has 160 trainable parameters (5 + 10 + 1)10.

NSimpleRNN = (Nfeatures + Ncells + ]‘)Ncells (42)

Listing 4-3. Simple RNN Layer Inside a Sequential Model

1 import tensorflow as tf

2 model = tf.keras.Sequential()

3 model.add(tf.keras.layers.SimpleRNN(10, input
shape=(None, 5)))

4 model.add(tf.keras.layers.Dense(6))

5 print(model.summary())

6

7 input = tf.constant(tf.ones((2, 4, 5)))

8 output = model(input)

9  print(output.shape)

10

11

12 Layer (type) Output Shape Param #

13

14  simple rnn_1 (SimpleRNN) (None, 10) 160

15

16  dense_1 (Dense) (None, 6) 66

17

18

19  Total params: 226

20

21 (2, 6)

Output of the SimpleRNN layer has shape (Nyuenes Neens) if return_
sequences is set to False and has shape (Nyuces Niteps Neens) Otherwise.
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4.2 LSTM Layer

A LSTM (long-short-term memory) cell is more complex than a simple
RNN cell. LSTM transmits cell state in addition to cell output to the next
time step. It has four internal gates to control the flow of inputs: forget gate
to control transmission of cell state from the last time step, update gate

to control the update to cell state, tanh gate that is used along with the
update gate, and output gate that controls the output of the cell. Like all
RNNs, LSTM is applied recurrently to inputs from successive time steps.

A LSTM cell is shown in Figure 4-2. The flow of information along with
transformations applied in LSTM is described in the following:

1. Cellstate C,_, and cell activation a;_, from time step
t — 1 flow as inputs to the cell at time ¢.

2. Cell output is denoted by y, and is only returned
for the cell corresponding to final time step T by
default. Outputs from all time steps can be returned
by passing the argument return_sequences=True.

3. Input for time step tis denoted by X,. This could
be a vector. As an example, the simple RNN cell in
Listing 4-1 has four components in the input at each
time step.

4. The forget gate is applied to input vector X, and
cell activation from the last time step, a,_,. It uses a
sigmoid function as the default activation function,
as shown in equation 4.3:
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P

at
at-1

§

Figure 4-2. LSTM Cell

v = (WS X, +W/a,, +W/b')
1 (4.3)
o(x) = l+e™*

This gate has N + 2 free parameters, where N denotes the dimension of
X.. Output from this gate is multiplied by cell state from the previous time
step. This gate is called the forget gate because if y/*" is 0, cell state from
the previous step will have no impact on the output and will in effect be
forgotten.
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5.

184

Output from the forget gate is multiplied by cell state
from the previous time step as shown in equation
4.4 to obtain ¢, :

~ forget
6= Cz—lyt

The update gate applies the sigmoid activation
function to input vector X, and activation a,_, from
the last time step, as shown in equation 4.5:

yre o (WX, +Wia, , +W,'b")

The hyperbolic tangent (tanh) gate applies the tanh
activation function to input from the current time
step X; and cell activation a,_, from the last time
step, as shown in equation 4.6:

ytmnh — tanh(Wxtunh 'Xt + I/Val,‘anhat_1 + Wbmnhbt )

tanh(x) _ete

e’ —e™”

Output from the update gate and tanh gate is
multiplied to get ¢, as shown in equation 4.7:

C~2 — ytmnh ytupdate
Cell state output is obtained by adding ¢, and ¢, as
shown in equation 4.8. This cell state is sent to the
next time step:

~

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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10. The output gate applies sigmoid activation to input
X, and cell activation from the previous time step
a,_,, as shown in equation 4.9:

1 = (We X, +Wa, , +W;b") (4.9)

t
11. Cell activation a, is calculated using equation 4.10:
a, =tanh(C,)y"™" (4.10)

12. Cell output is calculated by applying an activation
function to a;. If no activation function is specified,
TensorFlow takes it to be a unit transformation, that
is, it returns the same input as output, y; = a,. If an
activation function fis specified, cell output would

be y[ :f(d[).

The number of trainable parameters of a LSTM cell is given by
equation 4-11. 4 corresponds to the number of gates in a LSTM cell.
Output of the LSTM layer has shape (Nyueiy Niteps Neenis) when return_
sequences is set to True and shape (N, Neois) When it is False.

(4.11)

features cells cells

Ny = 4(N s + N T1)N,
Example of a LSTM layer in a neural network is shown in Listing 4-4.

Listing 4-4. LSTM Layer Inside a Sequential Model

1 import tensorflow as tf
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(10, input_shape=(None, 5),
return_sequences=True))
model.add(tf.keras.layers.Dense(6))

5 print(model.summary())
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7 Model: "sequential 2"

Layer (type) Output Shape Param #
10
11 1lstm (LSTM) (None, None, 10) 640
12
13 dense 2 (Dense) (None, None, 6) 66
14
15

16 Total params: 706

17  Trainable params: 706
18 Non-trainable params: 0
19

20

21

22 input = tf.constant(tf.ones((2, 4, 5)))
23 output = model(input)
24 print(output.shape)

25

26 (2, 4, 6)

4.3 GRU Layer

Gated recurrent unit (GRU) is a simplified version of LSTM that sends only
one output k, to the next time step and has three gates - reset gate, update
gate, and activation gate. Recall that a LSTM cell sends output y, and cell
state C, to the cell at the next time step and has four gates.

Output produced by GRU can be understood by looking at output of
cell gates. At time step £, a GRU cell receives output /,_, from GRU at the
previous time step and input X,.
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The update gate uses previous time step output
h,_, and input X, to compute activation, as shown in
equation 4.12. The activation function is sigmoid by
default:

z, =o(W!-X,+W'h_ +W,'D,)
1 (4.12)

a(y) B 1+e™”

The reset gate similarly applies the activation
function to a dot product of weights and /,_, and X,
as shown in equation 4.13:

r,=c(W, X, +W,h_, +W,b,) (4.13)

The activation gate takes a product of output from
the reset gate and previous time step output ki, _,
along with a dot product of weights and input vector
X, to get activation flt after applying the hyperbolic
tangent activation function as shown in equation
4.14. The role of the reset gate is illustrated in
equation 4.14. If reset gate output r, is zero, output
from the last time step’s GRU cell is ignored:

h, =tanh(W!-X,+Wr,h_ +W,'D')

e (4.14)

tanh(x) =———
e’ —e
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4. The final cell state h, is calculated by interpolating
between previous time step’s cell state /;_, and this
cell’s output ﬁl using output z, from the output gate
as interpolation factor, as shown in equation 4.15:

A

h,=zh,+(1-z,)h,, (4.15)

t [

GRU was first introduced by Cho et al. in 2014 in an application of an
RNN encoder-decoder model applied to language translation.

4.4 Customized RNN Layers

Customized RNN layers can be created in TensorFlow by first defining a
customized RNN cell and passing it to the constructor of class tf.keras.
layers.RNN. Let us create an RNN cell that takes the cell outputs from
previous two time steps as input, in addition to the input features from the
current time step, to produce an output. The code for this cell is shown

in Listing 4-5. Due to random weight initializers, actual output may differ
from the one shown in Listing 4-5.

Listing 4-5. Using an RNN Layer to Create Customized RNN Layers

import tensorflow as tf

1

2

3 class CustomRNN(tf.keras.layers.Layer):

4 def _init (self, units, **kwargs):
5 self.nunit = units

6 self.state _size = units

7 self.prev20utput = None

8 super(). init (**kwargs)

9

10 def build(self, input shape):
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12

13
14

15

16
17

18

19
20
21
22
23
24

25
26

27
28
29
30

def
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self.xWt = self.add weight(shape=(input_
shape[-1], self.nunit),
initializer=tf.
keras.initializers.
RandomNormal(),
name="xWt")
self.hiWt = self.add weight(shape=(self.nunit,
self.nunit),
initializer=tf.
keras.initializers.
RandomNormal(),
name="h1")
self.h2Wt = self.add weight(shape=(self.nunit,
self.nunit),
initializer=tf.
keras.initializers.
RandomNormal(),
name="h2")
self.built = True

call(self, inputs, states):

prevOutput = states[0]

output = tf.matmul(inputs, self.xWt) +

tf.matmul(prevOutput, self.hiWt)

if self.prev20utput is not None:
output += tf.matmul(self.prev20utput,
self.h2Wt)

self.prev20utput = prevOutput

return output, [output]

cell = CustomRNN(5)
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31 layer = tf.keras.layers.RNN(cell)

32 input = tf.ones((2, 6, 5))

33 y = layer(input)

34 print(y)

35 print(y.shape)

36

37 <tf.Tensor: shape=(2, 5), dtype=float32, numpy=

38 array([[-0.13667805, 0.11874562, -0.03024731,
-0.04962897, 0.0992294 ],

39 [-0.13667805, 0.11874562, -0.03024731,
-0.04962897, 0.0992294 1],

40 dtype=float32)>

41

42 (2, 5)

4.5 Stock Price Prediction

Stock price prediction is a cornerstone financial modeling problem that
has drawn keen research interest over decades. The problem involves
predicting stock price at future time intervals given a history of predictor
variables. Researchers have used a variety of predictor variables in
myriad modeling methodologies to predict stock price. For example,
Campbell and Schiller (1988) used dividend yield to predict stock returns,
Lakonishok et al. (1994) investigated the predictive power of value
measures such as price-to-earnings and book-to-market value in stock
price prediction, Chan et al. (1996) applied momentum measure of stock
price return to predict future returns, and Fama and French (2015) applied
a five-factor model that includes market return, return on small market

capitalization minus return on big market capitalization stocks, return on
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high minus low book-to-market value stocks, return on high minus low
investment firms, and return on high-profitability stocks minus return
on low-profitability stocks. On the methodology side, there is an equally
diverse spectrum of models applied to this problem: from simple linear
regression used by Fama and French (2015) and simple technical trading
rules (Brock et al., 1992) to genetic algorithms (Allen et al., 1999) and
probabilistic neural networks (Ahlawat, 2016).

Stock price returns display varying degrees of autocorrelation.
Intuitively, one would expect a stock that has positive return over 1 day
to have positive return the next day. Many stocks, including the S&P
500 index, for example, have a high degree of mean reversion, meaning
that a high positive return on a day is followed by a negative return the
following day. While daily returns have more volatility, monthly returns
have less volatility, implying higher predictability. Because recurrent
neural networks transmit information from one period to the next, they are
a natural tool to employ for capturing stock price return autocorrelation.
This section applies RNNs to predict monthly price return of the S&P
500 index.

S&P 500 is an index comprising of 500 publicly traded large-
capitalization stocks in the United States. It is one of the most widely
tracked market indices, serving as a gauge for market performance. In this
section, let us use an RNN to predict 1-month return on the S&P 500 index.
Data consists of daily closing price and traded share volume of SPY - an
S&P 500 tracking ETF - from January 2000 to July 2022. A recurrent neural
network is built to predict 1-month return of SPY, and its prediction
accuracy is compared against a baseline predictor that uses last month’s
return as 1-month return prediction. RNN layers SimpleRNN, GRU,
and LSTM are compared with each other to see which layer gives better
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prediction accuracy in training and testing datasets. Feature selection,

considerations for model building, and results are discussed in the

following.

1.

192

Four features are used in the model. Data is
available for trading days only. One month is
defined as 21 trading days because a month has 21
trading days on average. Likewise, a year is defined
as 252 trading days:
Pt _l)t—Zlda s

e Last 1-month return r, calculated as ———— .

t-21days

A month has 21 trading days on average.

o Momentum factor m, that represents the price
momentum. It is calculated using prior 1-month
return r, and prior 3-month return 7, as shown in
equation 4-16. Three months equate to 63 trading
days on average:

~ I)I _B—G3days
rl =
I)l—63days (4 16)
h
m[ =—
|71+,

Volatility factor v, that describes the extent of volatility
observed in price returns. It is defined as the ratio of
variance in price return observed over the last 1 month
(21 days) and the average 1-month variance of returns
observed over the last year (or 252 trading days), as
shown in equation 4.17:
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I_ZZIII”H.
M = 21
2 2
o2 = Zi:ll(rl’i _'ut)
2=
21 (4.17)
520,
2 i=1 t—i
o =
(o) 252
2
c
v, =—*—
u(or)
Volume factor v, defined as the ratio of traded shares
on a day to the average volume of traded shares over
the last month (last 21 trading days), as shown in
equation 4.18:
2
~ 1Volume, ,;
p(Volume, ) = ==
21 (4.18)
Volume,

s p(Volume, )

A boxplot of features is shown in Figure 4-3. As
seen in the figure, all input features are in the
range of around 5 to -1. This means that feature
normalization is not required.
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-1 - .

Last1MoReturn Momentum VolatRatio VolumeRatio

Figure 4-3. Boxplot of Input Features in the Training Dataset

3. Atrain-test split of 70%-30% is used.

4. The number of recurrent timesteps N, is selected
as 10 trading days. State information flows only in
N, days. This means that the RNN can only identify
autocorrelations and other temporal relationships
over N, or 10 trading days. Increase N, to enable
the RNN to identify temporal relationships over a
longer period.

5. Input data for the RNN model is converted to a
three-dimensional matrix of dimensions (N ees
N, Nanres)- In this example, the number of features
Neatures 18 4.

6. The mean square error loss function is used.
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7. Aplotofloss history (Figure 4-4) shows that training
converges after about 30 epochs.

0.00240 -
0.00238 -
0.00236 -
n
n
2

0.00234 4

0.00232 4

0.00230 4

0 10 20 30 40 50 60 70 80
Epoch

Figure 4-4. History of Mean Square Error Showing Convergence

8. To compare the performance of RNN models, a
baseline model that predicts 1-month return as the
last 1-month return is added.

9. Results show that LSTM performs the best in
training and testing datasets, followed by GRU and
SimpleRNN layers. All three RNN models perform
significantly better than the baseline model. Loss
function values for the four models on training and
testing datasets are shown in Table 4-1.
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Table 4-1. Comparison of Standard Deviation Between Predicted

and Actual Returns

Dataset LSTM GRU SimpleRNN Baseline
Training 0.002296 0.002345 0.002312 0.004782
Testing 0.002233 0.002255 0.002873 0.004938

10. Using predicted return values, predicted stock price
is calculated and plotted against actual stock price.
Using the LSTM layer, predicted vs. actual stock
price of SPY is shown in Figure 4-5 for training data
and in Figure 4-6 for testing data. As can be seen, the
fitis generally good, except when prices witness a
steep decline. Predicted vs. actual price plots for the
last 2 years in training and testing datasets illustrate
this point more clearly, as seen in Figures 4-7
and 4-8.
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Training Data
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Figure 4-5. Predicted vs. Actual SPY Price in the Training Dataset

Testing Data

|
500 1 — Aactual '
——- Predicted

450 |

400 A

350 A

Price

300 A

250

200

150 |

2016 2017 2018 2019 2020 2021 2022
Date

Figure 4-6. Predicted vs. Actual SPY Price in the Testing Dataset
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Figure 4-7. Predicted vs. Actual SPY Price for the Last 2 Years in the

Training Dataset
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Figure 4-8. Predicted vs. Actual SPY Price for the Last 2 Years in the

Testing Dataset
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The complete code for this example is shown in Listing 4-6.

Listing 4-6. Predict the S&P 500 Tracking ETF's Price Using RNN

OW 00N OO U1 B W N B

[ N
w N B O

14
15
16

17
18
19
20
21
22
23
24
25
26

import
import
import
import
import
import
import

numpy as np
pandas as pd

tensorflow as tf
matplotlib.pyplot as plt
seaborn as sns

0s

logging

logging.basicConfig(level=1logging.DEBUG)

class ReturnPredictor(object):
def init (self, dirname, trainTestSplit=0.7,

nunit=15, ntimestep=10, batchSize=10, nepoch=40):

filename = os.path.join(dirname, "SPY.csv")
self.inputDir = dirname

self.logger = logging.getlLogger(self.
class . name_ )

df = pd.read _csv(filename)

self.nUnit = nunit

self.nTimestep = ntimestep

self.dateCol = "Date"

self.priceCol = "Adj Close"

self.volCol = "Volume"
self.volatilityCol = "VolatRatio"
self.volumeCol = "VolumeRatio"
self.momentumCol = "Momentum"
self.returnCol = "LastiMoReturn"
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27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43

44

45
46

47
48

200

self.resultCol = "FwdiMoReturn"

self.daysInMonth = 21

df = self.featureEngineer(df)

ntrain = int(trainTestSplit * df.shape[0])
self.trainDf = df.loc[14*self.
daysInMonth+1:ntrain, :].reset_index(drop=True)
self.testDf = df.loc[ntrain:, :].reset
index(drop=True)

self.featureCols = [self.returnCol, self.
momentumCol, self.volatilityCol, self.volumeCol]
#self.plotData(self.trainDf)
#self.plotData(self.testDf)

self.nnet = self.model()

self.rnnTrainData = self.prepareDataForRNN(self.
trainDf)

self.rnnTestData = self.prepareDataForRNN
(self.testDf)

self.batchSize = batchSize

self.nEpoch = nepoch

self.cellType = None

def featureEngineer(self, df: pd.DataFrame) ->
pd.DataFrame:

df.loc[:, self.dateCol] = pd.to datetime(df.
loc[:, self.dateCol])

# 1 Month lagged returns

returns = np.zeros(df.shape[0], dtype=np.
float32)

nrow = df.shape[0]
returns[self.daysInMonth+1:] = np.divide(df.
loc[self.daysInMonth:nrow-2, self.
priceCol].values,
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50
51
52

53

54

55
56

57
58
59
60
61
62

63
64
65
66
67

68
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df.loc[0:nrow-self.
daysInMonth-2, self.
priceCol].values) - 1
df.loc[:, self.returnCol] = returns
# momentum factor
momentum = np.zeros(df.shape[0], dtype=np.
float32)
returns3Mo = np.divide(df.loc[3*self.
daysInMonth:nrow-2, self.priceCol].values,
df.loc[0:nrow-3*self.
daysInMonth-2, self.
priceCol].values) - 1
num = returns[3*self.daysInMonth+1:]
momentum[3*self.daysInMonth+1:] = np.divide(num,
np.abs(num) + np.abs(returns3Mo))
df.loc[:, self.momentumCol] = momentum

# volatility factor

df.loc[:, self.volatilityCol] = 0

volatility = np.zeros(nrow, dtype=np.float32)

rtns = returns[self.daysInMonth+1:2*self.

daysInMonth+1]

sumval = np.sum(rtns)

sumsq = np.sum(rtns * rtns)

for i in range(2*self.daysInMonth+1, nrow):
mean = sumval / self.daysInMonth
volatility[i] = np.sqrt(sumsq / self.
daysInMonth - mean*mean)
sumval += returns[i] - returns[i-self.
daysInMonth]
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69

70
71
72

73

74
75
76
77
78
79

80
81
82
83

84
85
86
87
88

89

90

202

def

sumsq += returns[i] * returns[i] -
returns[i-self.daysInMonth] * returns[i-
self.daysInMonth]

oneyr = 12 * self.daysInMonth

df.loc[:, self.volatilityCol] = 0.0

for i in range(oneyr+2*self.

daysInMonth+1, nrow):
df.loc[i, self.volatilityCol] =
volatility[i] / np.mean(volatility[i-
oneyr:i])

# volume factor

df.loc[:, self.volumeCol] = 0

volume = df.loc[:, self.volCol].values

for i in range(self.daysInMonth, nrow-1):
df.loc[i+1, self.volumeCol] = volume[i] /
np.mean(volume[i-self.daysInMonth:i])

# result column

df.loc[:, self.resultCol] = 0.0
df.loc[0:nrow-self.daysInMonth-1, self.
resultCol] = df.loc[self.daysInMonth:, self.
returnCol].values

return df

prepareDataForRNN(self, df):

nfeat = len(self.featureCols)

data = np.zeros((df.shape[0]-self.nTimestep,
self.nTimestep, nfeat), dtype=np.float32)
results = np.zeros((df.shape[0]-self.nTimestep,
self.nTimestep), dtype=np.float32)

raw_data = df[self.featureCols].values
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raw_results = df.loc[:, self.resultCol].values
for i in range(0, data.shape[0]):
data[i, :, :] = raw data[i:i+self.
nTimestep, :]
results[i, :] = raw results[i:i+self.
nTimestep]
return data, results

plotData(self, df: pd.DataFrame) -> None:

df = df.set_index(keys=[self.dateCol])

fig, axs = plt.subplots(nrows=len(self.

featureCols)+1, ncols=1, figsize=(12, 16))

axs[0].plot(df.index.values, df.loc[:, self.

priceCol].values)

axs[0].set ylabel("Price")

for i, col in enumerate(self.featureCols):
axs[i+1].plot(df.index.values, df.loc[:,
col].values)
axs[i+1].set ylabel(col)

plt.show()

boxplot = df[self.featureCols]
sns.boxplot(data=boxplot)
plt.show()

checkpointModel(self, nnet):

checkpointFile = os.path.join(self.inputDir,

"checkpoint_spricernn %s wt" % self.cellType)

if not os.path.exists(checkpointFile):
nnet.predict(np.ones((20, self.nTimestep,
len(self.featureCols)), dtype=np.float32))
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115 tf.keras.models.save model(nnet,
checkpointFile, overwrite=False)
116 else:
117 nnet = tf.keras.models.load
model (checkpointFile)

118 return nnet

119

120 def model(self):

121 nnet = tf.keras.Sequential()

122 nfeat = len(self.featureCols)

123 self.cellType = "LSTM"

124 nnet.add(tf.keras.layers.LSTM(self.nUnit, input_
shape=(None, nfeat)))

125 #nnet.add(tf.keras.layers.GRU(self.nUnit, input_
shape=(None, nfeat)))

126 #nnet.add(tf.keras.layers.SimpleRNN(self.nUnit,
input_shape=(None, nfeat)))

127 nnet.add(tf.keras.layers.Dense(5,
activation="relu"))

128 nnet.add(tf.keras.layers.Dense(1))

129

130 self.loss = tf.keras.losses.MeanSquaredError()

131 self.optimizer = tf.keras.optimizers.
Adam(learning rate=0.005)

132 nnet.compile(optimizer=self.optimizer,

133 loss=self.loss)

134 nnet = self.checkpointModel(nnet)

135 return nnet

136

137 def plotConvergenceHistory(self, history,

metricName):
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plot(history.epoch, history.

history[metricName])

plt.
plt.
plt.

xlabel("Epoch™)
ylabel(metricName)
grid(True)

#plt.legend()

plt.

show()

trainModel(self):
history = self.nnet.fit(self.rnnTrainData[0],
self.rnnTrainData[1],

batch _size=self.
batchSize,
epochs=self.nEpoch)

self.plotConvergenceHistory(history, "loss")

return history

testModel(self):

mse
cnt
for

tf.keras.losses.MeanSquaredError()
=0
X, y in [self.rnnTrainData, self.

rnnTestData]:

predict = self.nnet.predict(X)

loss = mse(y[:, -1], predict[:, 0]).numpy()
self.logger.info("final loss = %f", loss)

# baseline model prediction that uses

last month's return as prediction for 1
month return

loss = mse(y[:, -1], X[:, -1, 0]).numpy()
self.logger.info("baseline loss = %f", loss)
# plot predicted vs actual vs baseline
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self.plotPredictedReturn(y, predict[:, 0],
cnt == 0)
cnt += 1

def plotPredictedReturn(self, yActual: np.ndarray,
yPred: np.ndarray, isTrain: bool) -> None:

pxActual = np.zeros(yActual.shape[0], dtype=np.
float32)

pxPred = np.zeros(yActual.shape[0], dtype=np.
float32)

dts

= [None] * yActual.shape[0]

df = self.trainDf
if not isTrain:

for

plt.
plt.
plt.
plt.
plt.

df = self.testDf

i in range(pxActual.shape[0]):

px = df.loc[i+self.nTimestep, self.priceCol]
pxActual[i] = px*(1.0 + yActual[i, -1])
pxPred[i] = px*(1.0 + yPred[i])

dts[i] = df.loc[i+self.nTimestep, self.
dateCol]

plot(dts, pxActual, label="Actual")
plot(dts, pxPred, "--", label="Predicted")
xlabel("Date")

ylabel("Price")

grid(True)

title = "Training Data" if isTrain else

"Testing Data"

plt.
plt.
plt.

title(title)
legend()
show()
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188

189 plt.plot(dts[-252*2:], pxActual[-252*2:],
label="Actual")

190 plt.plot(dts[-252*2:], pxPred[-252*2:], "--",
label="Predicted")

191 plt.xlabel("Date")

192 plt.ylabel("Price")

193 plt.grid(True)

194 title = "Training Data" if isTrain else
"Testing Data"

195 plt.title(title)

196 plt.legend()

197 plt.show()

198

199

200 if _name_ == " main_ ":

201 sp500file = r"C:\prog\cygwin\home\samit 0OO\RLPy\

data\book"

202 rpred = ReturnPredictor(sp500file, nepoch=80)

203 rpred.trainModel()

204 rpred.testModel()

4.6 Correlation in Asset Returns

Let us use LSTM cells to identify correlation in asset returns. S&P 500
stocks have been divided into 11 diversified sectors. It is well known that
some of these sectors have high correlation with market movements (e.g.,
financials), while other sectors that are considered conservative have
lower correlations (such as utility). In this section, let us build a time-series
model to predict sector returns and compare it with a neural network that
has a LSTM layer.
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Let us build a model to predict sector returns that depends on
concurrent period market returns and lagged sector returns. Concurrent
period market returns are predicted using an autoregressive model that
depends on lagged market returns, in addition to the last period’s market
volatility and volume. The models are described briefly in the following.

First, let us build a model to predict market (S&P 500 index) weekly
returns. Autocorrelation plots of weekly returns (Figure 4-9) show that
taking the first five lagged returns would be sufficient. In addition, market
volume observed over the past week (5 days) divided by the average
volume observed during the training period and market return volatility
observed over the last week are used as independent variables in the
linear regression model. It can be verified that all independent variables
are stationary. The fitted market model is shown in equation 4.19. Data
from 2000-2015 is used for fitting the model. Weekly S&P 500 returns are
negatively correlated with last week’s returns, known as mean reversion.

ry(£) =5.7179x107 —=4.762x107°r,, (£ —1)+3.36x107r,, (£ —2)
-1.891x107°r,, (£ -3)—5.867x10r,, (- 4)
-8.538x107’r,, (£—5)—5.05x10° MVol(z-1) (4.19)
+1.193x107 MVol(t 1) +¢,,
ey ~N(0,07%)
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AR Model Identification
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Figure 4-9. Partial Autocorrelation Function of Market Returns

The sector return model is built by regressing 1-week sector returns
on concurrent market returns and lagged 1-week sector returns. The fitted
coefficients are shown in Table 4-2 and equation 4.20. As can be seen,
utilities have a smaller coefficient for market return than financials.
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Table 4-2. Sector Return Linear Regression Model Coefficients

Name Sector const MktReturn LaggedReturn

Communication Services  XLC 0.000050  0.909338 -0.027703
Consumer Discretionary ~ XLY 0.000716 1.064655 —0.009689

Consumer Staples XLP 0.000769  0.530273 0.000682
Energy XLE -0.000030 1.091086  0.028018
Financials XLF -0.000083 1.318176  0.012530
Healthcare XLV 0.000740  0.778489  -0.038654
Industrials XLl 0.000303  1.080460  0.010503
Information Technology XLK 0.000027 1.144972 —0.014580
Materials XLB 0.000359  1.083251  -0.015964
Real Estate XLRE ~ —-0.000463 0.906196  0.002108
Utilities XLU 0.000785  0.643267  -0.001537
Too (B) =+ By (£) + 77 (£ —1)+egeg ~ N(0,6§ ) (4.20)

Next, we build a neural network model using a LSTM layer. The model
definition is shown in Listing 4-7. An eight-cell LSTM layer is used in the
network, followed by two dense layers. The model is trained on data from
2000 to 2015, just like the linear regression model.

Listing 4-7. LSTM Model for Predicting Sector Returns

import numpy as np

import pandas as pd

import os.path

import statsmodels.tsa.stattools
import matplotlib.pyplot as plt

Vi A WwN R
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import statsmodels.api as sm

import statsmodels.regression.linear model as lm

import tensorflow as tf

from tensorflow.keras import layers, models

import itertools

from matplotlib.dates import DateFormatter, YearlLocator,
MonthLocator

class ColumnConfig(object):
def init (self):
self.CLOSE_PRICE = 'Adj Close'
self.VOLUME = 'Volume'
self.DATE = 'Date’
# Date is index

class TransformedRiskMeasure(object):
def init (self, name):
self.name = name

def calculateEMA(self, data arr, ema=10):
ema_arr = np.zeros(data arr.shape[0])

# for elements [0, 1, 2, ... ema-1] fill 1
element, 2 element, ... averages
for i in range(ema):

ema_arr[i] = np.mean(data_arr[0:(i+1)])

ema_arr[ema] = np.mean(data_arr[O:ema])
for i in range(ema, data_arr.shape[0]):
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ema_arr[i] = ((ema-1)*ema_arr[i-1] + data_
arr[i])/float(ema)
if np.isnan(ema_arr[i]):

ema_arr[i] = np.mean(data arr[i-ema:i])

return ema_arr

class MktModel(object):
DAYS_IN WEEK = 5

def

def

__init_ (self, dr):

mkt file = os.path.join(dr, "SP500.csv")
self.df = pd.read csv(mkt file)
self.df.loc[:, "Date"] = pd.to datetime(self.
df.loc[:, "Date"])

self.confVal = 0.95

self.df = self.calculateVars()

calculateVars(self):

df = self.df

px = df.loc[:, "Adj Close"].values

rows = df.shape[0]

ret = np.log(np.divide(px[self.DAYS IN_
WEEK-1:-1], px[0:rows-self.DAYS IN WEEK]))
df.loc[:, "MktReturn"] = 0.0
df.loc[self.DAYS IN WEEK:, "MktReturn"] = ret
# volatility of returns

df.loc[:, "MktVolatility"] = 0.0

mvolat = np.zeros(df.shape[0], dtype=np.float64)
mvol = np.zeros(df.shape[0], dtype=np.float64)
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avgVol = np.mean(df.Volume.
values[0:int(rows*0.7)])

for i in range(self.DAYS_ IN WEEK, df.shape[0]):
mvolat[i] = np.std(df.loc[i - self.DAYS IN_

WEEK:i - 1, "MktReturn"])

mvol[i] = np.sum(df.loc[i - self.DAYS IN_

WEEK:i - 1, "Volume"].values) / avgVol
df.loc[:, "MktVolatility"] = mvolat
df.loc[:, "MktVolume"] = mvol
return df

buildModel(self, fname=None):

df = self.df

ret = df.loc[self.DAYS IN WEEK:,
"MktReturn"].values

# build a AR model

pacf, confint = statsmodels.tsa.stattools.
pacf(ret, alpha=0.05)

# plot pacf, confint

fig, ax = plt.subplots()

#fig.suptitle("AR Model Identification")

y _err = np.subtract(confint, np.reshape(np.
repeat(pacf, 2), confint.shape))

xpos = np.arange(len(pacf))
ax.bar(xpos[1:], pacf[1:], yerr=y err[1:, 1],
alpha=0.5, ecolor="black", capsize=2)
ax.set_title("AR Model Identification")
ax.set(ylabel="PACF")
ax.set(xlabel="0rder")

#ax.set xticks(xpos)

ax.yaxis.grid(True)
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87 #axs[1].set(ylabel="Conf Int")

88 plt.tight layout()

89 plt.show()

90 plt.close(fig)

91 self.df = df

92 mod = self.buildOrder5Model (df)

93 return mod, pacf, confint

94

95 def buildOrder5Model(self, df):

96 vals = df.loc[self.DAYS IN WEEK:,
"MktReturn"].values

97 laggedvals = [vals[0:-i*self.DAYS_IN WEEK] for i
in range(1, 6)]

98

99 x_data = sm.add _constant(np.
vstack([laggedvals[0][4*self.DAYS IN WEEK:],

100 laggedvals[1][3*self.DAYS IN WEEK:],

101 laggedvals[2][2*self.DAYS IN WEEK:],

102 laggedvals[3][1*self.DAYS IN WEEK:],

103 laggedvals[4],

104 df.MktVolatility.values[5*self.DAYS IN WEEK:-self.DAYS

IN_WEEK],
105 df.MktVolume.values[5*self.DAYS IN WEEK:-
self.DAYS IN WEEK]]).T)

106 Im model = Im.OLS(vals[5*self.DAYS IN_
WEEK:], x data)

107 result = 1m model.fit()

108 # check p values for significance

109 print("R*2 = %f" % result.rsquared adj)

110 for pval in result.pvalues:

111 if pval > (1 - self.confval):
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print("Values are not significant at 95%
significance level")

self.df = df

return result

class SectorModel(object):

def

def

__init_ (self, dir_name, sector, mkt df):
sct_file = os.path.join(dir_name, "%s.
csv"%sector)

self.df = self.readData(sct file, mkt df)
self.mktDf = mkt_df

self.confVal = 0.95

readData(self, sct file, mkt df):

df = pd.read csv(sct file)

df.loc[:, "Date"] = pd.to datetime(df.loc[:,
"Date"])

vals = df.loc[:, "Adj Close"].values

ret = np.log(np.divide(vals[MktModel.DAYS IN_
WEEK-1:-1], vals[0:-MktModel.DAYS IN WEEK]))
df.loc[:, "Return"] = 0.0
df.loc[MktModel.DAYS IN WEEK:, "Return"] = ret

config = ColumnConfig()

ema_10 = TransformedRiskMeasure('PxEMA10")
df.loc[:, ema_10.name] = ema_10.
calculateEMA(df[config.CLOSE PRICE].
values, ema=10)

ema_20 = TransformedRiskMeasure('PxEMA20")
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def

df.loc[:, ema_20.name] = ema_ 20.
calculateEMA(df[config.CLOSE PRICE].

values, ema=20)

df.loc[:, "ShortMLong"] = np.where(df.loc[:,
ema_10.name].values > df.loc[:, ema_20.name].
values, 1, 0)

df.loc[:, "ActReturn"] = 0.0
df.loc[0:df.shape[0]-MktModel.DAYS IN WEEK-1,
"ActReturn"] = ret

mkt_df.rename(columns={"Adj Close": "MktPx"},
inplace=True)

df = pd.merge(df, mkt df[["Date", "MktReturn",
"MKtPx", "MktVolume", "MktVolatility"]],
on=["Date"], how="inner")

return df

buildModel(self):

df = self.df

ret = df.loc[:, "Return"].values

mktret = df.loc[:, "MktReturn"].values

laggedret = ret[MktModel.DAYS IN WEEK:-MktModel.
DAYS_IN WEEK]

df.loc[:, "LaggedReturn"] = 0.0
df.loc[2*MktModel.DAYS IN WEEK:, "LaggedReturn"]
= laggedret

x_data = sm.add_constant(np.vstack([mktret
[3*MktModel.DAYS IN WEEK:],
laggedret[0:-MktModel.DAYS IN WEEK]]).T)
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Im _model = 1m.OLS(ret[3*MktModel.DAYS IN_
WEEK:], x data)
result = 1m model.fit()
# check p values for significance
print("R*2 = %f" % result.rsquared adj)
for pval in result.pvalues:

if pval > (1 - self.confval):

print("Values are not significant at 95%

significance level")

return result

class LSTMModel(object):
def init (self, df, training data perc=0.70,
validation data_perc=0.05, symbol="",
return_sequences=True):

self.symbol = symbol
self.returnSequences = return_sequences
self.nTimeSteps = 4
rows = df.shape[0]
trg begin = 0
trg end = int(training data perc * rows)
validation_begin = trg end + 1
validation end = int((training data perc +
validation data perc) * rows)
self.df = df
x_train, y train = self.getTrainingData(df.
loc[trg begin:trg end, :].reset_
index(drop=True))
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180 x_valid, y valid = self.getValidationData(df.
loc[validation begin:validation end, :].reset
index(drop=True))

181 self.lstm = self.buildLSTMModel(x train,

y train, x valid, y valid)

182

183 def getTrainingData(self, df):

184 data_arr = df.loc[:, ["MktVolatility",
"MktReturn", "MktVolume", "Return"]].values

185 actret arr = df.loc[:, "ActReturn"].values

186 input_arr = np.zeros((data arr.
shape[0]-5*MktModel.DAYS IN WEEK, self.
nTimeSteps, 4), dtype=np.float64)

187 if self.returnSequences:

188 output_arr = np.zeros((input_arr.shape[0],

self.nTimeSteps))

189 else:

190 output_arr = np.zeros(input arr.shape[0])

191 debug df = pd.DataFrame(data={"Date": df.Date})

192 lcols = ["L%d"%i for i in range(self.
nTimeSteps-1, -1, -1)]

193 cols = list(itertools.product(lcols,
["MktVolatility", "MktReturn", "MktVolume",
"Return"]))

194 cols = [c[0]+c[1] for c in cols]

195 cols2 = ["L%dActReturn"%i for i in range(self.
nTimeSteps-1, -1, -1)]

196 for cl1 in cols + cols2:

197 debug df.loc[:, cl1] = 0.0

198 offset = 4*MktModel.DAYS IN WEEK
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for i in range(offset, data_arr.shape[0]-
MktModel.DAYS IN WEEK):
for j in range(self.nTimeSteps):
input_arr[i-offset, j, :] = data_arr[i-
(self.nTimeSteps-1-7j)*MktModel.DAYS IN
WEEK, :]
debug_df.loc[i, cols] = input arr[i-offset,
:, :].flatten()
if self.returnSequences:
for j in range(self.nTimeSteps):
output_arr[i-offset, j] =
actret arr[i-(self.nTimeSteps-1-
j)*MktModel.DAYS IN WEEK]
debug df.loc[i, cols2] = output arr[i-
offset, :]
else:
output_arr[i - offset] = actret arr[i]
df final = pd.merge(df, debug df, on=["Date"],
how="1eft")
return input_arr, output arr

def getValidationData(self, df):
data_arr = df.loc[:, ["MktVolatility",
"MktReturn", "MktVolume", "Return"]].values
actret arr = df.loc[:, "ActReturn"].values
if data_arr.shape[0] <= 5*MktModel.DAYS IN WEEK:

return None, None

input_arr = np.zeros((data arr.shape[0] -
5*MktModel.DAYS IN WEEK, self.nTimeSteps, 4),
dtype=np.float64)
if self.returnSequences:
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output_arr = np.zeros((input_arr.shape[0],
self.nTimeSteps))
else:
output_arr = np.zeros(input arr.shape[0])
offset = 4*MktModel.DAYS IN WEEK
for i in range(offset, data_arr.shape[0] -
MktModel.DAYS IN WEEK):
for j in range(self.nTimeSteps):
input_arr[i - offset, j, :] = data_
arr[i - (self.nTimeSteps-1-j)*MktModel.
DAYS_IN WEEK, :]
if self.returnSequences:
for j in range(self.nTimeSteps):
output_arr[i - offset, j] =
actret arr[i - (self.nTimeSteps-1-
j)*MktModel.DAYS IN WEEK]
else:
output_arr[i - offset] = actret arr[i]
return input_arr, output_arr

def buildLSTMModel(self, x_train, y train, x valid,
y_valid):

model = models.Sequential()

lyr = layers.LSTM(8, return_sequences=self.
returnSequences)

#lyr = tf.keras.layers.SimpleRNN(8, return_
sequences=self.returnSequences)
model.add(lyr)

model.add(layers.Dense(4))
model.add(layers.Dense(1))

input_shape = (None, self.nTimeSteps, 4)
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model.build(input_shape)
model. summary()
model.compile(optimizer="adam", loss=tf.keras.
losses.MeanSquaredError(), metrics=["mse"])
if x_valid is not None:
model.fit(x_train, y train, validation_
data=(x_valid, y valid), epochs=5)
else:
model.fit(x _train, y train, epochs=5)
return model

predict(self, df, begin):
lcols = ["L%d" % i for i in range(self.
nTimeSteps - 1, -1, -1)]
cols = list(itertools.product(lcols,
["MktVolatility", "MktReturn", "MktVolume",
"Return"]))
cols2 = ["L%dActReturn"%i for i in range(self.
nTimeSteps-1, -1, -1)]
if self.returnSequences:
cols3 = ["L%dPrReturn"%i for i in
range(self.nTimeSteps-1, -1, -1)]
else:
cols3 = ["LOPrReturn”]
cols = [c[0] + c[1] for c in cols]
data_arr = df.loc[begin:, ["MktVolatility",
"MktReturn", "MktVolume", "Return"]].values
actret_arr = df.loc[begin:, "ActReturn"].values
results df = pd.DataFrame(data={"Date":
df.loc[begin:, "Date"]})
for cl1 in cols+cols2+cols3:
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results df.loc[:, cl1] = 0.0
input_arr = np.zeros((1, self.nTimeSteps, 4),
dtype=np.float64)
output_arr = np.zeros((1, self.nTimeSteps),
dtype=np.float64)
for i in range(begin + 3*MktModel.DAYS IN_WEEK,
df.shape[0]-MktModel.DAYS IN WEEK):
for j in range(self.nTimeSteps):
input_arr[o, j, :] = data arr[i -
begin - (self.nTimeSteps-1-j)*MktModel.
DAYS_IN WEEK, :]
results df.loc[i, cols] = input arr[o, :,
:].flatten()
for j in range(self.nTimeSteps):
output_arr[o, j] = actret arr[i -
begin - (self.nTimeSteps-1-j)*MktModel.
DAYS_IN WEEK]
results df.loc[i, cols2] = output arr[o, :]
outl = self.lstm.predict(input_arr)
results df.loc[i, cols3] = outl.flatten()
results df = pd.merge(results df, df,
on=["Date"], how="left")
return results df

@staticmethod
def plot(df, begin, secname, fname=None):

fig, ax = plt.subplots(nrows=1, ncols=3)
fig.set_size inches((30, 7), forward=True)
column = "Adj Close"

ylabel = "Price"

end = df.shape[0] - MktModel.DAYS IN WEEK
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dates = df.Date[begin:end+1].values
majorLocator = YearlLocator() # every year
minorLocator = MonthLocator() # every month
formatter = DateFormatter('%Y')

ax[0].plot(dates, df.loc[begin:end,
column].values)

ax[0].set _ylabel(ylabel)

.Xaxis.set_major_ locator(majorLocator)
.Xaxis.set _major formatter(formatter)
.xaxis.set minor locator(minorLocator)
.format_xdata = DateFormatter('%Y-%m")
.set_xlabel("Date")

.grid(True)

columns = ["LOPrReturn", "ActReturn"]

ylabels = ["Pr. Return", "Ac. Return"]

for i in range(1, 3):
ax[i].bar(dates, df.loc[begin:end,
columns[i-1]].values, alpha=0.5,
ecolor="black")
ax[i].set_ylabel(ylabels[i-1])
ax[i].xaxis.set major locator(majorLocator)
ax[i].xaxis.set major formatter(formatter)
ax[i].xaxis.set minor locator(minorLocator)
ax[i].format xdata = DateFormatter('%Y-%m")
ax[i].set xlabel("Date")
ax[i].grid(True)

plt.title(secname)
#plt.tight layout()
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plt.show()
plt.close(fig)

class RegressionModelPredictor(object):

def

def

__init_ (self, dir name, sector):

mkt_coeff = os.path.join(dir_name, "mkt.csv")
self.mktDf = pd.read csv(mkt coeff)

sector _coeff = os.path.join(dir name,

"coeff.csv")
self.sectorDf = pd.read csv(sector coeff)
self.sectorDf = self.sectorDf.loc[self.sectorDf.

Sector.eq(sector), :].reset index(drop=True)

predict(self, df, begin):
mkt_lags = len(self.mktDf.columns) - 3
mkt x = np.zeros(mkt_lags + 2, dtype=np.float64)
mktret = df.MktReturn.values
mktvolat = df.MktVolatility.values
mktvolume = df.MktVolume.values
secret = df.Return.values
df.loc[:, "RegPrReturn"] = 0.0
cols = ["const"] + ["L%d" % i for i in range(1,
mkt lags + 1)] + ["MktVolatility", "MktVolume"]
mkt coeff = self.mktDf.loc[0, cols].values
sec_x = np.zeros(2, dtype=np.float64)
sec_coeff = self.sectorDf.loc[0, ["const",
"MktReturn", "LaggedReturn"]].values
for i in range(begin + 3 * MktModel.DAYS IN_
WEEK, df.shape[0] - MktModel.DAYS IN WEEK):

for j in range(mkt_lags):
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mkt x[j] = mktret[i - j * MktModel.DAYS
IN_WEEK]
mkt x[mkt lags] = mktvolat[i]
mkt x[mkt lags+1] = mktvolume[i]
pred ret = mkt_coeff[0] + np.dot(mkt
coeff[1:], mkt x)
sec_x[0] = pred ret

sec_x[1] = secret[i]

pred sec_ret = sec_coeff[0] + np.dot(sec_

coeff[1:], sec x)

df.loc[i, "RegPrReturn"] = pred sec_ret
df, rms _reg, rms lstm = self.sqDiff(df, begin)
return df, rms_reg, rms_lstm

@staticmethod
def plot(df, begin, fname=None, sec='"):

fig, ax = plt.subplots(nrows=3, ncols=1)

end = df.shape[0] - MktModel.DAYS IN WEEK
dates = df.Date[begin:end + 1].values
majorLocator = YearlLocator() # every year
minorLocator = MonthLocator() # every month
formatter = DateFormatter('%Y')

cols = ["RegPrReturn”, "SqRegDiff",

"SqLSTMDiff"]

ylabels = ["Reg. Pr. Return", "Sq. Diff.",

"Sq. Diff."]

for i in range(3):
ax[i].bar(dates, df.loc[begin:end, cols[i]].
values, alpha=0.5, ecolor="black")
ax[i].set_ylabel(ylabels[i])
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def

ax[i].xaxis.set _major locator(majorLocator)
ax[i].xaxis.set major formatter(formatter)
ax[i].xaxis.set minor locator(minorLocator)
ax[i].format xdata = DateFormatter('%Y-%m')
ax[i].set xlabel("Date")

ax[i].grid(True)

#ax[i].title.set text(sec)

fig.suptitle(sec)
plt.show()
plt.close(fig)

sqDiff(self, df, begin):

df.loc[:, "SqRegDiff"] = 0.0
df.loc[:, "SqLSTMDiff"] = 0.0

nr = df.shape[0]

diff = np.subtract(df.loc[begin:,
"RegPrReturn”].values, df.loc[begin:,
"ActReturn"].values)

df.loc[begin:, "SqRegDiff"] =
np.multiply(diff, diff)

diff = np.subtract(df.loc[begin:, "LOPrReturn"].
values, df.loc[begin:, "ActReturn"].values)
df.loc[begin:, "SqLSTMDiff"] =
np.multiply(diff, diff)

avg_rmsreg = np.sqrt(np.sum(df.loc[begin:nr -
MktModel.DAYS IN WEEK, "SqRegDiff"].values) /
(nr - begin - MktModel.DAYS IN WEEK))
avg_rmslstm = np.sqrt(np.sum(df.loc[begin:nr -
MktModel.DAYS IN WEEK, "SqLSTMDiff"].values) /
(nr - begin - MktModel.DAYS IN WEEK))
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return df, avg rmsreg, avg rmslstm

def trade(self, df, begin):

sgs = ["RegSignal", "LSTMSignal"]

cols = ["RegPrReturn”, "LOPrReturn”]

for signal, col in zip(sgs, cols):
df.loc[:, signal] = 0
skip = 0
last pos = 0
for i in range(begin, df.shape[0] -
MktModel.DAYS IN WEEK):

if skip > i:
continue
if last pos ==
if df.loc[i, col] > o:
last pos = 1
df.loc[i, signal] =1
elif last_pos == 1:
if df.loc[i, col] < o:
last pos = 0
df.loc[i, signal] = -1

else:
raise ValueError("Invalid value of
last pos: %d"%last _pos)
if last_pos ==
df.loc[df.shape[0] - MktModel.DAYS IN_
WEEK, signal] = -1
return df

def regression(input dir, output dir):

227



CHAPTER 4  RECURRENT NEURAL NETWORKS

414
415
416
417
418
419
420
421
422
423

424

425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

228

dir_name = input dir

model = MktModel(dir name)

pacf file = os.path.join(output dir, "mkt pacf.png")
vals = model.buildModel(pacf file)

mkt_params = vals[0].params

sfilename = os.path.join(output dir, "summary.txt")
sfile = open(sfilename, "w")

sfile.write(vals[0].summary().as text())

df1 = pd.DataFrame(data={"const": [mkt params[0]],

"L1": [mkt params[1]], "L2": [mkt params[2]],
"L3": [mkt_params[3]],
"L4": [mkt params[4]],
"L5": [mkt_params[5]],
"MktVolatility": [mkt_
params[6]], "MktVolume":
[mkt_params[7]]})

coeff file = os.path.join(output dir, "mkt.csv")

df1.to csv(coeff file, index=False)

Communication services: XLC

Consumer Discretionary: XLY

Consumer Staples: XLP

Energy: XLE

Financials: XLF

Healthcare: XLV

Industrials: XLI

Information Technology: XLK

Materials: XLB

Real Estate: XLRE

Utilities: XLU
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sectors = ["XLC", "XLY", "XLP", "XLE", "XLF", "XLV",
"XLI", "XLK", "XLB", "XLRE", "XLU"]
results = pd.DataFrame(data={"Sector": sectors})
results.loc[:, "const"] = 0.0
results.loc[:, "MktReturn"] = 0.0
results.loc[:, "LaggedReturn"] = 0.0
for sec in sectors:
smodel = SectorModel(dir name, sec, model.df)
res = smodel.buildModel()
sfile.write("\n" + sec + "\n")
sfile.write(res.summary().as text())
params = res.params
row = results.Sector.eq(sec)
results.loc[row, "const"] = params[0]
results.loc[row, "MktReturn"] = params[1]
results.loc[row, "LaggedReturn"] = params[2]
coeff file = os.path.join(output dir, "coeff.csv")
results.to csv(coeff file, index=False)
sfile.close()

runLSTM(input_dir, output dir):

dir _name = input dir

model = MktModel(dir name)

sectors = ["XLC", "XLY", "XLP", "XLE", "XLF", "XLV",

"XLI", "XLK", "XLB", "XLRE", "XLU"]

return_seq = False

for sec in sectors:
smodel = SectorModel(dir name, sec, model.df)
avg_vol = np.mean(smodel.df.Volume.
values[0:int(0.75 * smodel.df.shape[0])])
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1stm = LSTMModel(smodel.df, symbol=sec, return_
sequences=return_seq)

begin = int(0.75 * smodel.df.shape[0])
result df = lstm.predict(smodel.df, begin)
result df.to csv(os.path.join(output dir, "%s_
1stmpredict.csv"%sec))

plot file = os.path.join(output dir, "%s plots.
png" % sec)

1stm.plot(result df, 0, sec, plot file)

def plotLSTMResults(input dir, output dir):
dir_name = input_dir
sectors = ["XLC", "XLY", "XLP", "XLE", "XLF", "XLV",
"XLI", "XLK", "XLB", "XLRE", "XLU"]
rmsDf = pd.DataFrame(data={"Sector": sectors,
"RMSReg": [0]*1len(sectors), "RMSLSTM":
[0]*1en(sectors)})
for sec in sectors:
sec_file = os.path.join(dir name, "%s.csv"%sec)
df = pd.read csv(sec_file)
avg_vol = np.mean(df.Volume.values[0:int(0.75 *
df.shape[0])])
fl = os.path.join(output dir, "%s lstmpredict.
csv'"%sec)
df = pd.read csv(fl)
plot file = os.path.join(output dir, "%s plots.
png"%sec)
LSTMModel.plot(df, 0, sec, plot file)
rpred = RegressionModelPredictor(output_
dir, sec)
df, rms1, rms2 = rpred.predict(df, 0)
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print("Sector: %s, RMSReg %f, RMSLSTM %f" %
(sec, rms1, rms2))
rmsDf.loc[rmsDf.Sector.eq(sec), "RMSReg"] = rmsi
rmsDf. loc[rmsDf.Sector.eq(sec),

"RMSLSTM"] = rms2

df = rpred.trade(df, 0)

reg plot = os.path.join(output dir, "reg %s_
plots.png"%sec)

rpred.plot(df, 0, reg plot, sec)

rmsDf.to _csv(os.path.join(output dir, "rmserr.csv"))
print(rmsDf.to latex(index=False))

main_ ":
input_dir = r"C:\prog\cygwin\home\samit_000\value _
momentum_new\value _momentum\data\sectors"
output_dir = r"C:\prog\cygwin\home\samit_000\value_
momentum_new\value momentum\output\sector"
regression(input_dir, output dir)
runLSTM(input dir, output dir)
plotLSTMResults(input dir, output dir)

Once trained, the two models are used to predict 1-week returns from

2015 to 2020 for each sector. To compare their performance, let us look at

plots of standard deviation of weekly returns predicted by the model from

the actual returns observed. The plots show that the two models produce

similar results. Standard deviation of predicted returns from the actual

returns for the two models has been shown in Table 4-3. As can be seen,

the values for the two models are close, with the regression model showing

marginally better prediction. For XLE, the LSTM model gives a better
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prediction (in minimum root-mean-square sense). This demonstrates the
effectiveness of the LSTM model in identifying correlations in data. The
actual numbers obtained for the LSTM model may vary slightly across runs

due to random weight initialization.

Table 4-3. Comparison of Root Mean Square Error
Between Predicted and Actual Returns

Sector RMS Error (Reg.) RMS Error (LSTM)
XLC 0.043592 0.099679
XLY 0.024379 0.026290
XLP 0.018359 0.024590
XLE 0.037844 0.037125
XLF 0.031782 0.040148
XLV 0.022252 0.022622
XLI 0.026149 0.026444
XLK 0.025065 0.031712
XLB 0.026835 0.028032
XLRE 0.043028 0.045240
XLU 0.024322 0.025932
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CHAPTER 5

Reinforcement
Learning Theory

This chapter lays out basic reinforcement learning theory. It introduces the
notation used in reinforcement learning literature and provides detailed
explanation and proofs of underlying concepts. It provides the foundation
for reinforcement learning algorithms introduced in the next chapter.
Richard Bellman pioneered the development of reinforcement
learning in the 1950s (Dreyfus, 2002) with the formulation of the Bellman
equation governing the optimal state-action selection in a Markov decision
problem (MDP). Most researchers applied dynamic programming for
solving the Bellman equation - an approach that suffered from the curse
of dimensionality and the fact that it required a model of system dynamics.
Due to intractability of this approach and unavailability of a model
governing system dynamics for most problems, approximation methods
began to emerge. In 1989, in a seminal paper titled “Sequential Decision
Problems and Neural Networks,” Andrew G. Barto, Richard S. Sutton, and
Chris Watkins advocated the use of TD (temporal difference) learning
methods as a means of combining learning and optimal selection in
the Bellman equation. With the development of sophisticated networks
over the following two decades, neural networks began to be used as
policy and value functions in reinforcement learning. After 2010, several
groundbreaking applications of reinforcement learning emerged where
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a reinforcement learning agent was able to outperform human actors.
DDQN, A3C, DDPG, and dueling DDPG - to name just a few - are
examples of algorithms that have achieved great success in their fields of
application.

5.1 Basics

Reinforcement learning is a category of learning algorithms within
artificial intelligence that learn from a history of rewards earned by taking
an action prescribed by a policy with the objective of maximizing the sum
of expected discounted future rewards. Unlike supervised learning, it does
not require a set of labels (classification) or true values (regression) for
learning. It learns from prior experience of rewards with the objective of
maximizing the sum of expected future discounted rewards. Furthermore,
many algorithms within reinforcement learning do not require a model

of the environment. Intuitively, reinforcement learning is akin to a child
learning complex actions like how to be successful at school from rewards
and punishments for simple actions like doing homework on time. In a
supervised learning framework, one would have to teach a child on how
to be successful by showing them examples of other children who did
things a certain way and achieved success. As one can readily observe,
the number of examples (training data) required for such a training effort
to be effective would be impractically large. Consider all the desirable
qualities (independent variables) that have a bearing on academic success
such as attending classes, being punctual, higher education, and so on
and their permutations. No parent or educator would keep such extensive
records of students. This is an illustration of the problem of the curse of
dimensionality. However, even if the problem of training data paucity

is surmountable, the child would quickly lose interest in attempting to
learn from examples because they may question the relevance of those
examples. Different circumstances of certain students in the training data
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items may render those data points inapposite. This illustrates the problem
of unavailability of model dynamics: the child is unsure which factors are
the primary drivers of academic success in their circumstances.

A reinforcement learning problem consists of an environment, an
agent, and a policy. It is formulated as a Markov decision problem (MDP).
All dynamics within a Markov decision problem are governed by the
current state and action. Historical states and actions have no bearing on
system dynamics. An environment is an abstraction for the process that
monitors the state of the agent, accepts actions, distributes a reward, and
transitions to a next state. An agent represents the learner that seeks to
learn a policy. A policy is a generic rule that prescribes which actions to
take in a certain state. A policy can be stochastic, in which case there is
a probability distribution for each action in a given state. The objective
of reinforcement learning is to make the agent learn a policy in order to
maximize the sum of expected future discounted rewards. MDP is a tuple
(S, A, P, R, 7). Let us use the following notation to describe the MDP:

1. Let S denote the set of states and A denote the set
of actions. These sets can be continuous or discreet.

2. Lets,denote the state of the environment at time
t,with s, € S.

3. a;denotes the action of the agent at time
twith a, € A.

4. R(S,.1,5,,a,) denotes the reward process. In
general, it could be a function of the next state,
current state, and action. For environments with a
deterministic state transition function, that is, where
s;and a, determine s,, ;, Ris a function of s, and
a,only.

5. r,denotes the reward at time ¢.
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y is the discount factor for weighing future rewards.
For applications where future rewards are less
valuable than immediate rewards, this factor is

less than 1. This factor needs to be less than 1 for
applications with infinite time horizon and non-
zero rewards. For problems with finite time horizon,
y can be 1. In general, y € [0, 1].

Let P(s,,,[s,,a,)eR denote the state transition
function. For a stochastic state transition function,

this is a real number with 27) (5¢+1|3t a, ) =1 Fora

Sta1
deterministic state transition function,
73(st+1 |s,a, ) = 55Hl s, where ¢, ;is the Kronecker delta
symbol with the property shown in equation 5.1. §
is the deterministic state that follows the occurrence
of action a, in state s

1, ifi=j,
5;" = e
700, ifi=].

Let py(s) denote the probability of the agent being in

state s at initial time #,. We have Z po(s)=L1.
ses

nt(als,) € R denotes the policy prescribing the
action to take in state s,. This could be stochastic.
A deterministic policy prescribes one action for
a given state. Hence, deterministic policies are
represented as 7t(s;).

(5.1)
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10. The total discounted reward following a policy is
given by equation 5.2:

J* =iytr(st a,)
= 24" (s) 2 n(als)r(s,a)

seS§ acA

(5.2)

d"(s| s,) is the discounted stationary probability
distribution of states under policy ®(a,s;) and the state
transition function p(s,, 1| s, a.). In other words, d*(s| s,)
is the discounted probability of being in a state s at any
time, starting from state s,. It can be written as the sum
of combined probabilities of visiting a state s at any
time step, as shown in equation 5.3:

" (sls,) ZytP s, —s|s0,7r)

t=0

:po +7/Z Zpo a olSo ) (SI|SO’a0)+

ageAsyeS (53)

4 Z Z ZZPO a olSo ) (sl|so,a0)

ageAaeAsyeSs eS

(a)s,)P(s,ls,,a, )+

11. The state-action value function (Q function) for a
policy = is the reward obtained by taking an action
in a state and following the policy in subsequent
steps, as shown in equation 5.4:

Q" (s,,a,)= Z:S[HEsP(St+1 |S,,a)r(S,.,,S, a,)+
Y o D a P8 18,8)m(a,, 18, )27 (8,010,
=B, [150r5,0)+7Y, 7(018.:)Q"(S,000,.0)
=E, |r(s.1,5,a)+7E, [7(a,,18.,)Q (S, a,.) ] (5.4)
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For environments with a deterministic state transition
function, state s, and action a, determine the next
state s, ;. For such environments, the state-action
value function Q"(s, a,) can be written as shown in
equation 5.5:

Qﬂ (St ’at ) = r(sl ’at ) + yEaHl I:ﬂ(aHllsHl )Q” (St+1 ’at+1)]

It is often convenient to sample from the model in
order to get an expected value instead of taking the
actual expectation over the state transition function.
In case a model is unavailable, we assume that the
sampled episode gives a sample from the underlying
but unknown Markov model. In this setting, the Q
function can be written as shown in equation 5.6:

Q" (s,a,)=r(s,a,)+ YEq, x(is) [Q” (Si11/@1 )]

The state value function of a policy is the average
reward earned in a state by following a policy, as
shown in equation 5.7:

Vi(s) =2 a(als,)Q"(s.a,)

a,eA

=E o a0 [Qﬂ (s, )]

Using the state value function, equation for the state-
action value function Q*(s, a,) can be simplified to
equation 5.8:

Q" (5,a,)=E, [ (50180, )+ 7V" (5]

(5.5)

(5.6)

(5.7)

(5.8)
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Substituting equation 5.8 in equation 5.7, we obtain
equation 5.9:

V(s,) = 2a(als,)E, [1(Srsa)+ 7V (s,0) ]

a,eA

= Ea,,s,+1 [r(SHl S0y ) + yvﬂ (SHI ):I
= Eal 1814108441 1Spa0 |:r(st+1 'St ’at ) + yr(st+2 'St+1 ’at+1) +

2
7/ r(st+3 'St+2 ’at+2 ) +-- :|

(5.9)

Equation 5.9 illustrates why V'is the average sum

of rewards obtained by following a policy z. For a
deterministic policy, an action is fully prescribed by the
policy as a function of state, and equation 5.9 can be
simplified to equation 5.10:

VdZt.Policy (St ) = ES,H SSeiz I:I‘(SM St ’ﬂ(s‘ )) (5.10)
+7T(SH2 rst+1 4 (SHI )) + 72"(5”3 ’St+2 30 (SHZ )) t :'

13. An advantage function represents the improvement
in the state-action value over the value function
in a state by following an action, as shown in
equation 5.11:

A" (s,,a,)=E, [Q” (s,a,)-V™ (s, )] (5.11)

14. When using stochastic sampling from distribution
prescribed by the state transition function, an
advantage function can be written as shown in
equation 5.12:

A" (5,,a,) =1 (801,50, )+ 7V (5,,) -V (s,) (5.12)
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5.2 Methods for Estimating the Markov
Decision Problem

Markov decision problem (MDP) estimation can be done using supervised
learning or reinforcement learning. Supervised learning methods learn the
state transition function P(s,, | s, a,) and the reward function R(s,, ,, s, @)
using methods such as the hidden Markov model (HMM). These methods
represent the state transition function and reward function using
parametric functions and then learn the model parameters. The second
method of estimating MDP is reinforcement learning. Since this book
focuses on reinforcement learning, we will only look at the latter category
of estimation methods.

Reinforcement learning methods for estimating MDP can be grouped
into value function approximation methods, policy approximation
methods, and actor-critic methods. We look at each of these methods
in the following sections. A pictorial depiction of categorization of
reinforcement learning algorithms can be seen in Figure 5-1.
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Reinforcement Learning

L 4 S

v v
Value Function Learning Policy Learning Actor-Critic
—— r L 3
‘ . 4 4
On-Policy Off-Policy Stochastic Natlral
Gradient Actor-Critic

Oll'ﬁina Ofﬂina Orﬁine offline

v v v

TD LSTD Q-Learning  Q-Learning
SARSA LSPE Double Q-  Q-iteration
Expected  LSPI Learning

SARSA

Categorization of Reinforcement Learning Algorithms

Figure 5-1. Reinforcement Learning Algorithms

5.3 Value Estimation Methods

These methods learn the state-action value function from the reward
experience. The goal of reinforcement learning is to learn an optimal
policy for the agent. An optimal policy in these methods is inferred from
the state-action value function. The Bellman equation for both the state
value function and state-action value function must be satisfied for a

consistent value function, as shown in equation 5.13:

V*(s)=E, . [r(s', s,a)+yV” (s')]

a'eA

(5.13)
Q" (s,a)=E, {r(s', s,a)+y Y n(a'lshQ (s, a’)}
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For an optimal policy z*, the Bellman equation in equation 5.14
must be satisfied. Q * (s, a,) denotes the state-action value function
corresponding to the optimal policy. With this function at hand, a
deterministic optimal policy can be obtained using equation 5.15. Using
the optimal policy, an optimal value function can be written as shown in
equation 5.16:

Q' (5,8)=E, [1(5.8,8,)+ ymaxQ’(s,.,.a) | (5.14)
n*(sz)zarggax Q' (s,,a") (5.15)
V'(s,)=E,, [r(st+1 SO (8, ) +7V (s, )] (5.16)

There are three general methods for solving the Bellman equation:
dynamic programming, Monte Carlo methods, and TD learning. While
dynamic programming requires a model of the environment, Monte Carlo
and TD learning are model-free methods and do not require a model of
the environment. Let us look at each of these methods.

5.3.1 Dynamic Programming

Dynamic programming solves a problem by partitioning it into smaller
ones, recursively solving the smaller ones and putting the solutions
together to solve the original problem. The Bellman equation shown in
equation 5.14 is amenable to solution by dynamic programming if we have
the model of the environment. Specifically, we require the state transition
function P(s,,,|s,, a,) and the reward function R(s,,,,s,,a, ). The state
transition function is required to calculate the expectation, and the reward
function gives the reward. However, for most problems, a model of the
environment is not available.
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Finding the Optimal Path in a Maze

Let us look at an example of solving the Bellman equation using dynamic
programming. We have a maze, as shown in Figure 5-2. The objective is to
enable the agent to find the shortest path from the entry to the exit square.
The squares shown in black represent walls and cannot be traversed.

At each step, the agent can move up, down, left, or right subject to the
condition that the landing square is not a wall or outside the maze.

Figure 5-2. Maze

In this problem, state is the current position of the agent. The state
transition function is deterministic and is completely determined by the
existing state (position) and action of the agent. Action space is discreet
with four choices: left, right, up, or down for the next move, subject to the
constraints.

Let us formulate a reward function. Upon reaching the exit square, the
agent gets a reward of 1. In order to ensure that the selected policy picks
the shortest path from entry to exit, moves to all squares other than the exit
have a reward of -1. Reward for moving into walls can be assigned a value
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of -co to ensure that the agent never steps on them. The objective of the
problem is to find a policy for the agent that maximizes the total reward.
The discount factor has a value of 1, since future rewards are as valuable as
present rewards.

To ensure that the agent does not cross the boundary, let us create
two additional rows and columns of squares bounding the maze and
consider them as walls. A table for Q*(s, a,) is created with dimensions (12
x 12, 4). Size of state space, S, is 12 x 12 because there are 10 + 2 rows and
10 + 2 columns in the maze, and there are four actions for each square,
subject to constraints. Q * (wall, a) =—oo for all actions a. Let us also set

Qx (exit, a) =1. All other Q* values for admissible states are initialized to a
large negative number, signifying that they have not been calculated yet.
The initial values are shown in equation 5.17. Now the problem is fully
formulated and is amenable to solving using dynamic programming:

Q (wa.ll, a)=-o (5.17)
Q" (exit,a)=1
The Bellman equation is applied to calculate the value of the state-
action value function Q* for each state and action combination. If the
calculation encounters a state-action pair whose Q* value has not been
calculated yet, a recursive call is made. It is important to detect cycles in
this process. This is done using a set, seenSet in the code shown. Once we
have obtained Q*(s, a), we can find the optimal policy, that is, the shortest
path from any square to the exit square using equation 5.15. The full
code is shown in Listing 5-1, and the selected path is shown in Figure 5-3.
The time complexity of the algorithm is ©(12 x 12 x 4 x 4), and the space
complexity is (12 x 12 x 4).

244



CHAPTER 5  REINFORCEMENT LEARNING THEORY

Listing 5-1. Solving the Maze Problem Using Dynamic

Programming
1 import numpy as np
2 from enum import Enum, unique
3  import logging
4
5 logging.basicConfig(level = logging.INFO)
6 logger = logging.getlLogger( name )
7
8 @unique
9 class Actions(Enum):
10 LEFT = 0
11 RIGHT = 1
12 UP =2
13 DOWN = 3
14
15
16  class MazeSolver(object):
17 NEG_INFTY = float(-1E10)
18 NOT_SET = float(-1E8)
19
20 def init (self, entry, exit):
21 self.gamma = 1.0
22 self.mazeSize = (12, 12)
23 self.nActions = len(Actions)
24 self.entry = entry
25 self.exit = exit
26 self.walls = {(5,1), (5,2), (5,3), (5,4), (5,5),
27 (7,3), (7,4), (7,5), (7,6),
28 (2’7)) (317)) (4’7)1 (5)7)’ (617)1

(7,7), (8,7),
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29 (4,9), (5,9), (6,9), (7,9), (8,9),
(9,9), (10,9),
30 (9,4), (10,4)}
31 self.actionMap = {Actions.LEFT : (-1, 0),
32 Actions.RIGHT : (1, 0),
33 Actions.UP : (0, -1),
34 Actions.DOWN : (0, 1)}
35 # add bounding walls
36 for i in range(self.mazeSize[0]):
37 self.walls.add((i, 0))
38 self.walls.add((i, self.mazeSize[1]-1))
39
40 for j in range(self.mazeSize[1]):
41 self.walls.add((o, j))
42 self.walls.add((self.mazeSize[0]-1, j))
43 if self.entry in self.walls:
44 raise ValueError("Entry square is
inadmissible")
45 if self.exit in self.walls:
46 raise ValueError("Exit square is
inadmissible")
47 self.QStar = np.ndarray((self.mazeSize[0], self.
mazeSize[1], self.nActions), dtype=np.float)
48 self.initQStar(self.QStar)
49
50 def transitionFunc(self, stateo, action):
51 increments = self.actionMap[action]
52 return stateo[0] + increments[0], stateo[1] +
increments[1]
53
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rewardFunc(self, stateo, action):
statel = self.transitionFunc(stateo, action)
if statel in self.walls:
return MazeSolver .NEG_INFTY
elif statel == self.exit:
return 1
return -1

initQStar(self, Q):
for i in range(self.mazeSize[0]):
for j in range(self.mazeSize[1]):
square = (i,j)
if square in self.walls:
for action in Actions:

Q[i, j, action.value]
MazeSolver .NEG_INFTY
else:
for action in Actions:
0[i, j, action.value]
MazeSolver .NOT SET

for action in Actions:
Q[self.exit[0], self.exit[1], action.
value] = 0

dpBellman(self, state, action, seenSet=None):
# returns Q(state, action)
if self.QStar[state[0], state[1], action.value]
= MazeSolver.NOT SET:
return self.QStar[state[0], state[1],
action.value]
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if seenSet is None:
seenSet = {(state[0], state[1],
action.value)}
elif (state[0], state[1], action.value) in
seenSet:
# cycle detected, backtrack, so other paths
can be explored
return MazeSolver .NEG INFTY

reward = self.rewardFunc(state, action)

if reward == MazeSolver.NEG INFTY:
self.QStar[state[0], state[1], action.value]
= MazeSolver .NEG_INFTY
return MazeSolver .NEG INFTY

seenSet.add((state[0], state[1], action.value))
nextstate = self.transitionFunc(state, action)
maxval = MazeSolver .NEG_INFTY
for aprime in Actions:
val = self.dpBellman(nextstate, aprime,
seenSet)
if val > maxval:
maxval = val
if maxval == MazeSolver.NEG INFTY:
self.QStar[state[0], state[1], action.value]
= MazeSolver .NEG_INFTY
return MazeSolver.NEG_INFTY

self.QStar[state[0], state[1], action.value] =
reward + self.gamma * maxval
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return self.QStar[state[0], state[1],
action.value]

def optPolicy(self):
for action in Actions:
self.dpBellman(self.entry, action)

optpath = [self.entry]
sq = self.entry
while sq != self.exit:
maxval = MazeSolver.NEG_INFTY
bestaction = None
for action in Actions:
if maxval < self.QStar[sq[o0], sq[1],
action.value]:
bestaction = action
maxval = self.QStar[sq[0], sq[1],
action.value]

if bestaction is None:

return optpath
sq = self.transitionFunc(sq, bestaction)
optpath.append(sq)

return optpath

if _name__ == " main_ ":
entry = (1, 3)
exit = (10, 6)
maze_solver = MazeSolver(entry, exit)
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132 path = maze_solver.optPolicy()

133 if path[-1] != exit:

134 logger.info("No path exists")

135

136 logger.info("->".join([str(p) for p in path]))

Shortest Path Selected y naic roraming

Figure 5-3. Optimal Path to Exit

The output path produced by the code is shown in Listing 5-2.

Listing 5-2. Maze Path to Exit

1 (1: 3)_>(1J 4)'>(1J 5)'>(1: 6)_>(1J 7)'>(1: 8)'>(2: 8)'>
(31 8)_>(4J 8)'>(5: 8)_>(6J 8)_>(7J 8)'>(8: 8)_>(9J 8)'>
(10, 8)->(10, 7)->(10, 6)

European Call Option Valuation

A European call option is a financial instrument that gives the holder
the right but not the obligation to buy a specific asset at strike price K at
maturity T of the contract. The option can only be exercised at maturity.
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Let us denote the underlying asset’s price at time ¢ by S,, risk-free rate by
1, and volatility of the underlying asset by o. If the volatility of asset c and
risk-free rate r;are assumed to be constant, the asset is assumed to not
pay the dividend, and the asset price is assumed to follow log-normal
dynamics as shown in equation 5.18. Price of a European call option V,
is given by the Black-Scholes formula shown in equation 5.19. The price
does not depend on the asset’s rate of return y, because one can create

a risk-free portfolio comprised of the call option and ——-= units of the

underlying asset. !

ds, = uS,dt+ocS,dw,

AW, =edt (5.18)
¢ ~Standard Normal Distribution

b SeoVE

Pd Sl‘ e_a.\'lﬁF
Figure 5-4. Stock Price Recombining Grid
V,=N(d,)S, - N(d,)Ke""™

A
N(x)= J.Le 2dy

2
) (5.19)
lnf{“{rf +C;J(T ~1)
d =
! o~NT —t

d,=d —oNT -t
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Let us use dynamic programming to compute the price of a European
call option. Let us first discretize the state space. State space consists of
stock price on the Y axis and time steps on the X axis. At each time step,
stock price can move up to e ith probability P, or it can fall down
to Se "V yith probability P, as shown in Figure 5-4.

In order to keep the grid recombining, we must ensure that going up
at time ¢ followed by going down at time ¢ + 1 ends up in the same node
as going down at ¢ followed by going up at ¢ + 1. A recombining grid is
more tractable computationally because it has a linearly growing number
of states, whereas a non-recombining grid has an exponentially growing
number of states. For option pricing, the asset is assumed to have a drift
equal to the risk-free rate r. The underlying asset’s price equation satisfies
the log-normal equation, whose solution is shown in equation 5.20:

ds, =r,S,dt +oS,dW,

Pl v (5.20)
Sy :Ste[f : ](T t)e"Jﬂe

The time step must be chosen small enough so that the expected

VA and Se° M

price of an asset at time ¢ + At is between Se , as shown in

equation 5.21:

2
= o< rf+%]\/At£0' (5.21)
2
= At< i 5
ro+o
2
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Probabilities of moving up P, and down P, are chosen to match the
expected stock price at time # + At as shown in equation 5.22:

P +P =1
PSe™™ +PSe ™ =E[S,,, ]
rf+iJAt

= Ste[ ’

(5.22)

e+
A

2At
[ J L oln
P:e e

u —
oo _ ot

P,=1-P

u

Having discretized the stock price-time domain, let us define the value
function as the price of the option at node (S, t) to be V(S,, ). This can be
written as a function of the price at nodes at time step ¢ + At as shown in

equation 5.23:

V(S,,t)=e (P V(S,,t+At)+ PV (S, t+At)) (5.23)

At maturity, option price is 0 if the stock price is below strike price K
and S;— K if it is above the strike price, as shown in equation 5.24:

S,-K ifS, >K

V(ST,T)={0

. (5.24)
otherwise

Let us consider a European call option on a publicly traded stock with
time to maturity T of 2 months, risk-free rate r,0f 0.5% per annum, volatility
of stock o to be 20% per annum, moneyness or ratio of strike price to stock

. K . .
price 5 to be 1.1, and current stock price S, to be $20. Using the Black-

0

Scholes formula, the price of this option is 0.1048.

Using dynamic programming as described previously, this option’s
price can be calculated using code shown in Listing 5-3. As seen from
the output, the calculated option value of 0.103 is close to the Black-
Scholes price.
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Listing 5-3. Calculating a European Call Option’s Price Using

Dynamic Programming

O 60N O U1 B W N -

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
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import numpy as np
import logging
from scipy.stats import norm

logging.basicConfig(level=1logging.DEBUG)
logger = logging.getlLogger("root")

class EuropeanOption(object):
def _init (self, so, strike, maturity, rf,
volatility, minsteps=20):
Initialize
:param sO: Initial price of underlying asset
:param strike: Strike price
:param maturity: Maturity in years
:param rf: Risk free rate (per annum)
:param volatility: expressed per annum
:param minsteps: Minimum number of time steps
self.s0 = sO
self.strike = strike
self.maturity = maturity
self.rf = rf
self.vol = volatility
self.minSteps = minsteps
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self.deltaT = min(self.calculateDeltaT(),
maturity/minsteps)

self.df = np.exp(-rf * self.deltaT)
self.sqrtTime = np.sqrt(self.deltaT)

expected = np.exp((rf +
volatility*volatility/2.0)*self.deltaT)

self.up = np.exp(volatility * self.sqrtTime)
self.down = np.exp(-volatility * self.sqrtTime)
self.pUp = (expected - self.down)/(self.up -
self.down)

self.pDown = 1.0 - self.pUp

self.ntime = int(np.ceil(maturity / self.deltaT))
self.grid = np.zeros((2*self.ntime, self.ntime),
dtype=np.float32)

evaluate(self):
# values at time T
grid = self.grid
val = self.s0 * np.exp(-volatility * self.sqrtTime
* self.ntime)
for i in range(2*self.ntime):
grid[i, -1] = max(val - self.strike, 0)
val *= self.up

for j in range(self.ntime-1, 0, -1):
for i in range(self.ntime-j, self.ntime+j, 1):
grid[i, j-1] = self.df * (self.pUp *
grid[i+1, j] + self.pDown * grid[i-1, j])

return grid[self.ntime, 0]
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52 def calculateDeltaT(self):
53 val = self.vol / (self.rf + self.vol*self.vol/2.0)
54 return val*val
55
56 def blackScholes(self):
57 d1 = (np.log(self.so/self.strike) +
58 (self.rf + self.vol*self.vol/2.0)*self.
maturity)/(self.vol * np.sqrt(self.
maturity))
59 d2 = d1 - self.vol * np.sqrt(self.maturity)
60 return self.s0 * norm.cdf(d1) - self.strike *
np.exp(-self.rf * self.maturity) * norm.cdf(d2)
61
62
63 if _name__ == " main_"
64 price = 20.0
65 strike = 22.0
66 maturity = 2.0/12.0
67 volatility = 0.2
68 rf = 0.005
69 eoption = EuropeanOption(price, strike, maturity, rf,
volatility, minsteps=25)
70 bsPrice = eoption.blackScholes()
71 simPrice = eoption.evaluate()
72 logger.info("Black Scholes price: %f, simulated price:

%f", bsPrice, simPrice)

Output from the code can be seen in Listing 5-4.

Listing 5-4. Computed Option Price

1 Black Scholes price: 0.104751, simulated price: 0.103036
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Valuation of a European Barrier Option

Barrier options are a class of exotic options whose payoff depends on

the price of the underlying asset hitting a barrier. There are two classes

of barrier options, each of which is further subdivided into two types, as
described in the following:

1.

A knock-in barrier option is worthless unless the
asset price reaches or crosses a barrier value. This
option is subdivided into the following two types:

a. An up-and-in barrier option acquires value only

if the underlying asset price crosses the barrier
from below, that is, the price becomes equal or
exceeds the barrier prior to the option’s maturity.

. A down-and-in barrier option has a non-zero

value only if the underlying asset price reaches
or falls below a barrier prior to the option’s
maturity.

A knock-out barrier option becomes worthless if the
underlying asset price reaches or crosses a barrier
value. Like its knock-in counterpart, this option also
has two subtypes:

a. An up-and-out option becomes worthless if the

underlying asset’s price reaches or exceeds a
barrier.

. A down-and-out option becomes worthless if the

underlying asset’s price reaches or falls below a
barrier.
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A European barrier option can only be exercised at maturity and is
similar in other respects to its American counterpart. Barrier options were
discussed in an earlier section. A European option is less valuable than
its corresponding American option. Because there is no early-exercise
feature, we do not need to use the state-action value function.

As before, represent the state value function using a two-dimensional
(price, time) grid. Let us consider a European knock-in barrier call option
on a publicly traded stock with barrier B of $23, time to maturity T of 2
months, risk-free rate r,0f 0.5% per annum, volatility of stock ¢ to be 20%

. . . . K
per annum, moneyness or ratio of strike price to stock price — tobe 1.1,

and current stock price S, to be $20. This implies the strike prif:e Kis $22.

Let P,(S, t) denote the probability of stock price hitting the barrier
from below and reaching price S, at time ¢. This can be written as shown in
equation 5.25. P, and P, are the probabilities of stock price moving up or
down from the current price obtained from equation 5.22. Equation 5.25
can be understood as follows: If the underlying asset’s price S, is greater
than or equal to the barrier price B, P,(S, t) = 1. If not, P,(S, t) is equal to
the probability of hitting the barrier en route to the previous upper node
and moving down or the previous lower node and moving up to reach the
current node at time £.

1if S, > B

P,(S,t)= ( S j ( S j (5.25)
P,p| ——,t—At |+ PP | ——,t — At |otherwise
da*h e—m/E h eU\/E

Value of the option is the probability weighted discounted price at
nodes in the next time step as shown in equation 5.26. There is no early-
exercise feature in a European option. Because the option has value only if
it has hit the barrier from below, equation 5.26 has a multiplier P,(S, ) to
account for this condition. Similarly, the barrier hitting probability must
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be backed out of the value function at (S,, t + Af) and (S, ¢ + At) nodes
because those nodes are being visited from the (S, f) node.

. V (S, t+At V(S,,t+At
V(S,,t)=e "™ B,(S,t) P, (S, )+ ; (S, ) (5.26)
P,(S,t+At)  “P,(S,t+At)
At maturity, option price is given by equation 5.27. P,(Sy, T) is the
probability of the price having hit the barrier from below as calculated
using equation 5.25.

V(S;,T)=P,(S;, T)max(S, —K,0) (5.27)

The dynamic programming code for valuing this option is shown in
Listing 5-5. The option price is around 0.0041 - less than the price of the
plain vanilla European call option computed in the previous section. The
reduction in price is due to the additional barrier constraint that may
cause the option to expire worthless.

Listing 5-5. Calculating a European Barrier Up-and-In Call Option's
Price Using Dynamic Programming

1 import numpy as np

2 import logging

3 import matplotlib.pyplot as plt

4  from mpl toolkits.mplot3d import Axes3D
5

6 logging.basicConfig(level=logging.DEBUG)
7 logger = logging.getlLogger("root")

8

9

10 class EuropeanKnockInCallOption(object):
11 def _init (self, so, strike, maturity, rf,

volatility, barrier, minsteps=20):
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12 e

13 Initialize

14 :param sO: Initial price of underlying asset

15 :param strike: Strike price

16 :param maturity: Maturity in years

17 :param rf: Risk free rate (per annum)

18 :param volatility: expressed per annum

19 :param barrier: Barrier for this knock-in option

20 :param minsteps: Minimum number of time steps

21 e

22 self.s0 = sO

23 self.strike = strike

24 self.barrier = barrier

25 self.maturity = maturity

26 self.rf = rf

27 self.vol = volatility

28 self.minSteps = minsteps

29

30 self.deltaT = min(self.calculateDeltaT(),
maturity/minsteps)

31 self.df = np.exp(-rf * self.deltaT)

32 self.sqrtTime = np.sqrt(self.deltaT)

33 expected = np.exp((rf +
volatility*volatility/2.0)*self.deltaT)

34 self.up = np.exp(volatility * self.sqrtTime)

35 self.down = np.exp(-volatility * self.sqrtTime)

36 self.pUp = (expected - self.down)/(self.up -
self.down)

37 self.pDown = 1.0 - self.pUp

38 self.ntime = int(np.ceil(maturity / self.deltaT))
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self.grid = np.zeros((2*self.ntime, self.ntime),
dtype=np.float32)

self.price = None

self.hitProb = self.calcBarrierHitProb()

calcBarrierHitProb(self):

# calculate probability for t=0

hitprob = np.zeros((2*self.ntime, self.ntime),
dtype=np.float32)

price = np.full(self.ntime*2, self.up, dtype=np.
float32)

price[0] = self.s0 * (self.down ** self.ntime)
price = np.cumprod(price)

self.price = price

hitprob[:, -1] = np.where(price >= self.barrier,
1.0, 0.0)

# for t =1, 2, ... ntime-1
for j in range(self.ntime-2, -1, -1):
for i in range(self.ntime-j, self.ntime+j+1):
if price[i] »>= self.barrier:
hitprob[i, j] = 1.0
else:

hitprob[i, j] = self.pUp *
hitprob[i+1, j+1] + self.pDown *
hitprob[i-1, j+1]

return hitprob

evaluate(self):
# values at time T
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64 grid = self.grid
65 val = self.s0 * np.exp(-volatility * self.
sqrtTime * self.ntime)
66 for i in range(2*self.ntime):
67 grid[i, -1] = self.hitProb[i, -1] * max(val -
self.strike, 0)
68 val *= self.up
69
70 for j in range(self.ntime-1, 0, -1):
71 for i in range(self.ntime-j, self.
ntime+j, 1):
72 valt = 0
73 if self.hitProb[i+1, j] > o:
74 vall = grid[i+1, j]/self.
hitProb[i+1, j]
75 val2 = 0
76 if self.hitProb[i-1, j] > o:
77 val2 = grid[i-1, j]/self.
hitProb[i-1, j]
78 grid[i, j-1] = self.df * self.hitProb[i,

j-1] * (self.pUp * vall + self.
pDown * val2)

79

80 return grid[self.ntime, 0]

81

82 def calculateDeltaT(self):

83 val = self.vol / (self.rf + self.vol*self.
vol/2.0)

84 return val*val

85

86 def plotPrice(self):
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price = self.price

time = np.full(self.ntime, self.deltaT, dtype=np.
float32)

time[0] = O

time = np.cumsum(time)

X, y = np.meshgrid(price, time)
plt.figure()

fig.add subplot(111, projection='3d")
axs.plot _surface(x.T, y.T, self.grid)
axs.set xlabel('Stock Price')
axs.set_ylabel('Time (Yrs)')

axs.set _zlabel('Option Price')

plt.show()

tig
axs

fig, axs = plt.subplots(1, 1, constrained_
layout=True)

cs = axs.contourf(x.T, y.T, self.grid)
fig.colorbar(cs, ax=axs, shrink=0.85)
axs.set title("European Barrier Knock-In Call
Option™)

axs.set _ylabel("Time to Maturity (yrs)")
axs.set xlabel("Initial Stock Price")
axs.locator params(nbins=5)

axs.clabel(cs, fmt="%1.1f", inline=True,
fontsize=10, colors='w")

plt.show()

_main_ ":

2.0
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maturity = 2.0/12.0
barrier = 23.0
volatility = 0.2

rf = 0.005

eoption = EuropeanKnockInCallOption(price, strike,
maturity, rf, volatility, barrier, minsteps=25)
simPrice = eoption.evaluate()
logger.info("simulated price: %f", simPrice)
eoption.plotPrice()

sy 4B

22 .
20 Y grlce
0.00 W 1% 18 Sroc

Figure 5-5. Option Price Surface for a European Barrier Up-and-In

Call Option

The option price surface is shown in Figure 5-5 against stock price and
time to maturity (in years). Contour plot of the option price is shown in
Figure 5-6. As seen in the plots, the price of the knock-in option is close to
0 near option maturity and below the barrier at $23.

264



CHAPTER 5  REINFORCEMENT LEARNING THEORY

5.3.2 Generalized Policy Iteration

If a model of the environment is available, generalized policy iteration can
be used to find an optimal policy. Generalized policy iteration involves
value function estimation using an initial policy followed by greedy
improvement of the policy. The process is repeated using the improved
policy until it converges to an optimal policy. Before delving into policy
iteration, let us look at the policy improvement theorem, which provides
the foundation for establishing convergence of policy iteration.

European Barrier Knock-In Call Option

‘

0.15

0.10

Time to Maturity (yrs)

0.00

15 20 25
Initial Stock Price

Figure 5-6. Option Price Contour Plot for a European Barrier Up-
and-In Call Option
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Policy Improvement Theorem

According to the policy improvement theorem, any two deterministic
policies 7 and z* that satisfy the condition in equation 5.28 for all states
s€S, r* are a better policy than 7

Q" (s,a:n*(s))ZV” (s)forallseS (5.28)

If a policy 7* is better than 7, it necessarily implies that the value
function obtained using z* has a higher value than that obtained using =
for all states se S.

%48 (s)=V”(s)forallseS (5.29)

In order to prove the policy improvement theorem, let us expand the
action value function in condition 5.28 using equation 5.8. The policy
being deterministic, action is prescribed by the policy at each step. It
should be noted that the state transition function can be stochastic and
need not be deterministic.

[r(s 8,7 (8)+7Q" (s, " (s ’))]

Q
=E, [r ss, () +yV7(s )J
E, (
E, [r(s 8,7 (8))+yr(s",s',m" (s '))+;/2V”(s")] (5.30)

Es,’s,,’sm,_._[r(s',s,fr*(s))err(s",s’ " (s")+yr(s",s", 7" (s "))+...]

v (s)

The last equation in equation 5.30 follows as a result of the expression

for the state value function for a deterministic policy, as shown in
equation 5.10. Finally, V" (s)<V™ (s) for all states s e S implies that 7* is
a better policy (or at least, as good a policy for the case of equality) than 7.

266



CHAPTER 5  REINFORCEMENT LEARNING THEORY

Policy Evaluation

Policy evaluation is the evaluation of the state value function or
state-action value function using a specified policy. If the model of
the environment is known, one can explicitly use equation 5.9 and
equation 5.4 to calculate the state value function and action value
function, respectively. An iterative algorithm for calculating these
functions is illustrated below. The underlying principle of the algorithms
is that as the value function converges to the true value function, iterative
corrections will become zero.

Let us look at an iterative calculation of the state value function.
Equation 5.31 is used to iteratively update the state value function for each
state. The algorithm is shown in pseudo-code 1.

V*(s,)=E, . [r(s[+1 )8, )+ YV (s, )] (5.31)

Algorithm 1 Iterative Policy Evaluation Algorithm for Computing the
Value Function

Require: Policy 77(s,a) and model of environment p(s'l s,a) and
r(s',s,a

1: Initialize s) to O, for all seS.
2: repeat

3 A0

4: foreach sesS do

o Ve WS

6 V() Trlsa)Tp(sts.a)r(sss.a)+rv(s)]

s'eS
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7 A« max(A,[v-V(s)])
8: end for
9:until A <e

The state-action value function can be evaluated for a specific policy
using a similar approach. Equation 5.32 is used to update the action value
function, Q(s, a). The full algorithm is presented in pseudo-code 2.

a'eA

Q" (s,a)=E, {r(s', s,a)+y Y. m(ashQ" (s, a’)} (5.32)

Algorithm 2 Iterative Policy Evaluation Algorithm for Computing the
State-Action Value Function

Require: Policy 71(s, a) and model of environment p(ss,a) and
r(s's,a)

—h

- Initialize ((s,a) = 0,forall seS and acA.
;repeat A — 0 g < (Q(s,a)
for each ses do
for each ac A do

2
3
4
5 q < Qs,a

B Qlsa)e Tplelsa) rlsa) s Talal)ls,a)|
7

8

9

s'eS a'eA
A« max(A,lg—-Q(s,a)|)
end for
end for

10: until A < €
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Policy Improvement

Policy improvement involves using a state-action value function to
improve the policy that generated it. Policy improvement is achieved by
using greedy action selection at each state giving the maximum value of
the action function, as shown in equation 5.33:
' T '
n'(s)=argmax Q" (s,a’)VseS
el (5.33)

7(s) being a deterministic policy, equation 5.34 necessarily follows
from equation 5.33:

Q" (s,a:ﬂ’(s))ZQ” (s,a)forallac A (5.34)

7 selected using equation 5.33 satisfies the condition of the policy
improvement theorem in equation 5.28, with the proof sketched in
equation 5.35. We have used ) 7(a|s)=1 and equation 5.34:

acA
V*(s)=E,., [Q” (s,a)]
=2 7 (als)Q"(s,a)

acA

<Q"(s,a=x'(s))> = (als) (5.35)

=Q%(s,a :n’(s)) forallse S

Therefore, the policy improvement theorem implies that 7 is a better
policy than .

Generalized policy iteration involves starting with an initial policy
(e.g., could be random), calculating the value function using policy
evaluation, and using policy improvement to get a better policy, followed
by repetition of the process of policy evaluation and improvement. This is
repeated until we get to a stable policy. That policy is a local optimum. In
finite state spaces, the process is guaranteed to converge because there are
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a finite number of policies and we are achieving monotonic improvement
until we reach a local maximum. The generalized policy iteration
algorithm is shown in algorithm listing 3.

Algorithm 3  Generalized Policy Iteration

Require: Initial policy 77(s, a) and model of environment p(s' s, a)
and r(s',s,a

1: Initialize m < .
2:repeat A < 0

3:  Evaluate the action value function for policy 7', Q" (s,a).

4:  Using policy improvement on Q" (s,a), formulate an improved
policy 7™,
5: Evaluate the action value function for the improved

policy, Q™" (s,a).
6 A(_maxses,ae/l |inmp (S,d)—Qﬂ’(S,a)D

7: T«

8:until A < e

When using generalized policy iteration to find an optimal policy, one
must be cognizant of the exploration vs. exploitation trade-off. A greedy
policy like the one shown in equation 5.33 relies on exploitation of values
in the state-action value function, selecting the action corresponding
to the highest state-action value function. However, for the generalized
policy iteration algorithm where policy evaluation is followed by policy
improvement, it is possible that certain actions in states have not been
explored yet. A greedy policy will only exploit the actions that have been
explored, ignoring the ones that have not been visited, thereby leading it
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to a suboptimal policy. To avoid this situation, exploitation is mixed with
exploration in an e-greedy policy, shown in equation 5.36. This policy
resorts to exploiting the known state-action value function with probability
1 — e and picks the action yielding the highest value, but also explores the
selection of random action with probability e:

v (5)= {argmaxaQ(s,a) with probability 1—¢ (5.36)

random(ae A) with probability e

Generalized policy iteration can be applied to the previous problem
of finding the shortest path from entry to exit in a maze. The code is
illustrated in Listing 5-6, and the optimal policy (shortest path) is shown in
Figure 5-3.

Listing 5-6. Solving the Maze Problem Using Generalized Policy

Iteration
1 import numpy as np
2 from enum import Enum, unique
3  import logging
4  import time
5
6 logging.basicConfig(level = logging.INFO)
7 logger = logging.getlLogger(__name_ )
8
9 @unique
10 class Actions(Enum):
11 LEFT = 0
12 RIGHT = 1
13 UP = 2
14 DOWN = 3
15
16
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18
19
20
21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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class EpsGreedyPolicy(object):

def

def

__init_ (self, eps):

self.epsilon = eps
np.random.seed(50)

nextAction(self, state, Q):
if np.random.random() < self.epsilon:
return Actions(np.random.choice(4))

maxval = MazeSolver .NEG_INFTY
act = None
for action in Actions:
if maxval < Q[state[0], state[1],
action.value]:
maxval = Q[state[0], state[1],
action.value]
act = action

if act is None:
act = action
return act

class MazeSolver(object):

NEG_

INFTY = float(-1E10)

EPSILON = 0.1

def _init (self, entry, exit):

self.gamma = 1.0
self.maxIter = 5000
self.mazeSize = (12, 12)
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50
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
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self.nActions = len(Actions)
self.entry = entry
self.exit = exit
self.walls = {(5,1), (5,2), (5,3),
(5,4), (5,5),
(7)3)) (7)4)’ (715)) (7’6))
(2,7), (3,7), (4,7), (5,7),
(6,7), (7,7), (8,7),
(4)9)) (5)9)’ (619)) (7’9))
(8,9), (9,9), (10,9),
(9,4), (10,4)}
self.actionMap = {Actions.LEFT : (-1, 0),
Actions.RIGHT : (1, 0),
Actions.UP : (0, -1),
Actions.DOWN : (0, 1)}
# add bounding walls
for i in range(self.mazeSize[0]):
self.walls.add((i, 0))
self.walls.add((i, self.mazeSize[1]-1))

for j in range(self.mazeSize[1]):
self.walls.add((0, j))
self.walls.add((self.mazeSize[0]-1, j))
if self.entry in self.walls:
raise ValueError("Entry square is
inadmissible")
if self.exit in self.walls:
raise ValueError("Exit square is
inadmissible")
self.QStar = np.ndarray((self.mazeSize[0], self.
mazeSize[1], self.nActions), dtype=np.float64)
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71 self.initQStar(self.QStar)

72 self.policy = EpsGreedyPolicy(0.1)

73

74 def policyEvaluationAndImp(self):

75 # Using a greedy policy with updated Q implies an

implicit policy improvement

76 itercount = 0

77 while itercount < self.maxIter:

78 itercount += 1

79 for i in range(self.mazeSize[0]):

80 for j in range(self.mazeSize[1]):

81 state = (i,j)

82 if state in self.walls:

83 continue

84 action = self.policy.
nextAction(state, self.QStar)

85 reward = self.
rewardFunc(state, action)

86 nextstate = self.
transitionFunc(state, action)

87 if nextstate not in self.walls:

88 nextaction = self.policy.

nextAction(nextstate, self.QStar)
89 nextq = self.QStar[nextstate[0],
nextstate[1], nextaction.value]
90 newval = reward + self.

gamma * nextq
91 self.QStar[state[0], state[1],
action.value] = newval
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else:
self.QStar[state[0], state[1],
action.value] = reward

transitionFunc(self, stateo, action):
increments = self.actionMap[action]

return stateo[0] + increments[0], stateo[1] +
increments[1]

rewardFunc(self, stateo, action):
statel = self.transitionFunc(stateo, action)
if statel in self.walls:
return MazeSolver .NEG_INFTY
elif statel == self.exit:
return 1
return -1

initQStar(self, Q):
for i in range(self.mazeSize[0]):
for j in range(self.mazeSize[1]):
square = (i,j)
if square in self.walls:
for action in Actions:
Q[i, j, action.value]
MazeSolver .NEG_INFTY

else:
for action in Actions:

1
o

0[i, j, action.value]
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119 def optPolicy(self):

120 # run generalized policy iteration

121 self.policyEvaluationAndImp()

122

123 optpath = [self.entry]

124 sq = self.entry

125 while sq != self.exit:

126 bestaction = self.policy.nextAction(sq,
self.QStar)

127 if bestaction is None:

128 return optpath

129 sq = self.transitionFunc(sq, bestaction)

130 optpath.append(sq)

131

132 return optpath

133

134

135 if _name__ == " main_":

136 entry = (1, 3)

137 exit = (1, 12)

138 maze_solver = MazeSolver(entry, exit)

139 path = maze_solver.optPolicy()

140 if path[-1] != exit:

141 logger.info("No path exists")

142

143 logger.info("->".join([str(p) for p in path]))

The output path can be seen in Listing 5-7.

Listing 5-7. Computed Path Using Generalized Policy Iteration

1 (1; 3)'>(1) 4)'>(1J 5)'>(1) 6)'>(1) 7)'>(1J 8)'>(1) 9)'>(1)
10)->(1, 11)->(1, 12)
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5.3.3 Monte Carlo Method

The Monte Carlo method for estimating the value function is based on
sampling episodes using a policy. This method can be used for cases
where a model of the environment is not available but individual episodes
are available. An episode is a sequence of state, action, reward, and next
state tuples starting from an initial state and ending in a terminal state. It
can also be used for cases where a model of the environment is available -
in this case one can simulate experiences using the model.

There are two versions of Monte Carlo methods used in reinforcement
learning - first-visit Monte Carlo and every-visit Monte Carlo. The first-visit
Monte Carlo method considers the first time a state is visited in an episode,
whereas the every-visit Monte Carlo method considers all visits in an
episode. The pseudo-code for first-visit Monte Carlo is shown in algorithm
listing 4.

Similarly, the pseudo-code for calculating the state-action value
function Q(s, a) using first-visit Monte Carlo is shown in algorithm listing
5. This algorithm uses the state value function calculated using algorithm
listing 4.

Algorithm 4 Calculate the State Value Function Using the First-Visit
Monte Carlo Method

Require: Initial policy 71(s, @) and discount factor y
1:V(s)=0forall seS.

2: V' (s)<—empty list for all seS.

3: repeat

4:  Get an episode: a sequence of tuples (S, a;, r St 1)-
5: Initialize R,=0for t=0,1,..., T—1.
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6: Ri_1<rr_q

7. Create a dictionary D to keep track of unique states within
an episode. Add states in the episode to dictionary D, that is,
D« s, 8, -+, Sr_1.

8. foreachte[T—2,T-3,---0] do
9: Rt(— i+ th+1
10: end for

11:  foreach s; € [$y,S:,++,Sr_4] do

12: if s;is in dictionary D then

13: Append R;to V(s).

14: Remove s; from dictionary D.
15: end if

16:  end for

17: until All episodes have been processed
18: for each seS do

19:  Us)<average of rewards in list V{s).
20: end for

Algorithm 5 Calculate the State-Action Value Function Using the
First-Visit Monte Carlo Method

Require: Initial policy 71(s, @) and discount factor y
1. Q(s,a=0forall seS andall ac A.
2: 4(s,a«< empty listforall seS and all ac A.
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3: Calculate the value function {s) using the algorithm for computing
the state value function and all episodes.

4: repeat
5. Get an episode: a sequence of tuples (S; a;, I, S 1)

6: Create a dictionary D to keep track of unique (state, action)
tuples within an episode, D « (Sy, &), (S1,a), -*+(Sr_1,8r_1).

7. foreach (s, a,r, S:. 1) in the episode do

8: if (s, a) is in dictionary D then

9: Append r; + yV(S;, 1) to Q'(s, @).
10: Remove (s;, a) from dictionary D.
11: end if

12:  end for

13: until All episodes have been processed
14: for each seS do
15: foreach ac A do

16: (s, a)« average of rewards in list Q1s, a).
17:  end for
18: end for

The asymptotic convergence rate for the first-visit Monte Carlo method

is T where N is the number of times a state is visited in all episodes (for
N

first-visit Monte Carlo, a state cannot be visited more than once in each
episode).

To illustrate an application of the first-visit Monte Carlo method, let us
apply the method to evaluate the price of an American put option.
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Pricing an American Put Option

An American put option gives the holder the right but not the obligation to
sell an underlying asset at the strike price at any time until the expiration
of the option. For a non-dividend-paying stock, this could occur if the
option is in the money at a certain time before expiration and the price is
expected to go higher from that point onward.

Let us assume the stock price follows a geometric Brownian motion
with constant volatility, given by equation 5.37. The solution of this
equation is shown in equation 5.38. The put option matures in time 7 and
is written on an underlying asset (e.g., a stock) with constant volatility
o. Since the option can be hedged with the underlying asset, the rate of
return, y, in the option pricing framework is the risk-free rate of return, ;.
Let us assume the term structure of risk-free rates to be flat, so that ryis a
constant. We assume that the stock pays no dividend.

2
Sin =S, exp[[y —%jAt+G\/A_te J

e~N(0,1)

(5.38)

The state space consists of the stock price and time. In this problem,
we are guaranteed that no state will be visited twice in an episode because
time only moves forward and it is a part of the state. At each time step,
the stock price can move governed by equation 5.38 with y = r. Action
space is discrete, with two actions at each step: exercise the option or not.
Exercising the option terminates it and consequently the episode.

—rIp AL

Reward is the time-discounted value of final payoff. Hence, y =e /" . Let
T
us partition total time T into N equal partitions with At = N With this

choice of rewards and discount factor, the state value function V(S, ) gives

the present value of the option. The strike price of the option is K.
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The optimum policy, 7% in this example would be to exercise the
option if its immediate exercise value is greater than the holding value of
the option, or yV(S;,,, t + 1). This policy is shown in equation 5.39, with
the boundary condition shown in equation 5.40. We generate Monte Carlo
paths for the stock price using equation 5.38 and evaluate the state value
function V* (S,t) using the first-visit Monte Carlo algorithm. Since the
policy depends on the state value function, we must evaluate the policy on
the path backward from time T down to 0. The boundary condition gives
the value of V™ (S;,T) at expiration, T. Finally, %43 (S,,0) gives the value
of the American option.

7 (S,1)= Exercise, ifK—S.[ >yV(S,, t+1) (5.39)
Hold, otherwise
V™ (S,,T)=max(K -S,,0) (5.40)

The full code is shown in Listing 5-8. Since we are only interested
in Q(s,, t,), the algorithm dispenses with keeping track of the full state-
action value function. The state space in stock price is continuous, but we
discretize it.

Listing 5-8. Valuation of an American Put Option Using the First-
Visit Monte Carlo Method

import numpy as np
from enum import Enum, unique
import logging

logging.basicConfig(level = logging.INFO)
logger = logging.getlLogger(_name )

O N O U1 bW N R

@unique

281



CHAPTER 5  REINFORCEMENT LEARNING THEORY

9 class Actions(Enum):

10 HOLD = 0

11 EXERCISE = 1

12

13

14  class AmericanPutOption(object):

15

16 def init (self, So, volat, strike, maturity, rf,

time steps=2000, npaths = 10000):

17 e

18 S0: initital stock price

19 volat: volatility of stock

20 strike: strike price

21 maturity: maturity of the option in years

22 rf: risk free rate (assumed constant) annual rate

23 time_steps: Number of time steps from 0 to
maturity

24 e

25 self.nSamples = npaths

26 self.S0 = SO

27 self.volat = volat

28 self.K = strike

29 self.T = maturity

30 self.rf = rf

31 self.timeSteps = time_steps

32 self.gamma = np.exp(-rf/float(time_steps))

33 self.nPartSUp = time steps*volat*np.sqrt(1.0/
time steps)

34 fac = volat*np.sqrt(1.0/time_steps)

35 self.probUp = (np.exp(rf/time steps) -

np.exp(-fac))/(np.exp(fac) - np.exp(-fac))
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generatePath(self):
path = [None] * (self.timeSteps + 1)
state = (0, np.log(self.S0))
path[0] = state
t=0
incr = 1.0/self.timeSteps
stockval = np.log(self.S0)
incrS = self.volat*np.sqrt(1.0/self.timeSteps)
for i in range(self.timeSteps):
val = np.random.random()
if val <= self.probUp:
stockval += incrS
else:
stockval -= incrS
t += incr
path[i+1] = (t, stockval)
return path

valueOnPath(self, path):
val = max(0, self.K - np.exp(path[-1][1]))
for i in range(len(path)-2, -1, -1):
exercise val = self.K - np.exp(path[i][1])
val = max(self.gamma*val, exercise val)
return val

optionValue(self):

value = 0.0

for i in range(self.nSamples):
path = self.generatePath()
value += self.valueOnPath(path)
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67 return value/self.nSamples

68

69

70 if _name_ == " main_":

71 put_option = AmericanPutOption(20, 0.3, 21, 1, 0.005)

72 logger.info("Put option price: %f", put option.
optionValue())

Computer option price produced by the code is shown in Listing 5-9.

Listing 5-9. Computed American Put Option Price

1 Put option price: 5.261670

5.3.4 Temporal Difference (TD) Learning

Temporal difference learning is an online algorithm for learning the value
function of a policy using the experience of rewards. Like Monte Carlo
methods, TD learning does not require a model of the environment.
However, unlike Monte Carlo methods, it does not require a full episode of
experience from the initial state to the terminal state in order to update the
value function. It can use the observed reward value after a certain number
of time steps, coupled with an existing estimate of the value function, to
update the value function. In this sense, it is a bootstrapping method since
it uses the current estimate of the value function to calculate an update to
it. In practice, it is found to converge faster to the true value function than
Monte Carlo methods primarily because it does not postpone learning
until the end of the episode.

TD(0) learning uses observed reward and an estimate of the value
function at the ensuing state to update the value function at the current
state. The update rule for TD(0) learning is shown in equation 5.41. a is
the learning rate and is typically chosen with a small value between 0 and
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1 to ensure stability. TD(n) learning uses rewards from n states following
the initial state along with the value function estimate at the last state to
update the value function at the current state, as shown in equation 5.42.
TD(n) learning has less bias but greater variance than TD(0) learning.

Ve (s) V7 (s)+al (r(s)s,a)+ 7V (s)-V7(s) | (5.41)

Vi(s,) «<V™(s,)+a [(r(sl,so,a0)+ yr(s,,s,,a,)+...+

1 (5.42)
;/"7 r(s’”l 1Snrly ) + y"V” (Sn+1 )) -V (SO ):|

SARSA

TD learning can be used to find an optimal policy starting with a
nonoptimal policy using the SARSA algorithm, with the acronym SARSA
standing for state, action, reward, and next state followed by a choice of
action using an e-greedy policy shown in equation 5.36. The algorithm is
shown in pseudo-code 6. It is essentially a combination of a TD update
to the action value function followed by using an e-greedy policy and the
updated action value function to find the next action.

Valuation of an American Barrier Option

An American option can be exercised any time prior to or at maturity.

By contrast, a European option can only be exercised at maturity. Other
aspects of American barrier options are identical to their European
counterparts, as described in a previous section. In this section, let us use
SARSA to evaluate the fair market price of an American up-and-in barrier
call option.
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Algorithm 6 SARSA Algorithm for Finding the Optimal Policy
Require: Discount factor y, learning rate a
1:Q(s,a=0forall seS andall ac A.

2: repeat

3. foreach (s,a;,r;, S:.. 1) in an episode do

4: S« S

5:  Find action a* prescribed by an epsilon greedy policy using the
state-action value function @(s, d) as shown in equation 5.43:

. argmax ,Q(s,a") with probability 1—e
a = , . . (5.43)
random(a' € A)with probability e
6: repeat
7 Take action a* and observe reward r* and next state s*.
8: Find action a** prescribed by an epsilon greedy policy using

the state-action value function Q(s*,a) and equation 5.43
starting at state s*.

9: Update the action value function using
As a) < Qs a) + al(r + yQs,a) — Qs,a)).
10: S« S, a « a*
11: until s is terminal state
12:  end for

13: until All episodes have been processed
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As before, the state space consists of a two-dimensional grid with
stock price along the X axis and time along the Y axis. Asset price moves
up or down from a node, as shown in Figure 5-4. Let us assume the asset
price follows log-normal dynamics shown in equation 5.18. There are two
actions at each state: exercise the option or hold on to it. Let the state value
function V(S, f) denote the option price at state (S, f). The state-action value
function Q(S, t, a,) can be written using the state value function as shown
in equation 5.44. P,(S, t) denotes the probability of reaching or exceeding
barrier B on a path to node (S, t) and is computed using equation 5.25. P,
and P, are the probabilities of moving to up and down nodes, respectively,
from the current node, as given by equation 5.22. At a node where the
option is exercised, its price is equal to max(S; — K, 0) conditional on the
price hitting the barrier en route to that node. If the option is not exercised,
its price is the expected discounted price at the next two nodes after taking
barrier hitting probability into account, similar to equation 5.26 for a
European option.

Q(S,t,a, =exercise)=Ph(5,t)maX(S_K’0)
QS:t.a, =h01d)=e"’”Ph(st,t)(P V(Sptrat) o, V(Set+Al)

"B (S, t+At)  “P(S,t+At)
V(S,t) :max(Q(S,t,a[ =exercise),Q(S,t,a, :hold))

] (5.44)

Using these definitions, let us price an American knock-in call option
on a publicly traded stock with barrier B of $23, time to maturity T of 2
months, risk-free rate r,0f 0.5% per annum, volatility of stock o to be 20%

. . . . K
per annum, moneyness or ratio of strike price to stock price — to be 1.1,

0
and current stock price S, to be $20. This implies the strike price Kis $22.
These parameters are identical to the ones used to price the European
knock-in call option.
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The code for computing the option price using SARSA is shown in

Listing 5-10. It uses a relatively high learning rate of 0.1, ¢ of 0.1 (for an

e-greedy policy), and 2000 epochs. The calculated option price is $0.005

and is higher than its European counterpart.

Listing 5-10. Calculating an American Barrier Up-and-In Call
Option's Price Using the SARSA Algorithm

1
2
3
4
5
6
7
8
9

10
11

12

13
14
15
16
17
18
19
20
21
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import numpy as np

import logging

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

logging.basicConfig(level=logging.DEBUG)
logger = logging.getlogger("root")

class AmericanKnockInCallOption(object):
def init (self, so, strike, maturity, rf,
volatility, barrier, minsteps=20,
epsilon=0.1, epochs=2000, learning_
rate=0.1):
Initialize
:param sO: Initial price of underlying asset
:param strike: Strike price
:param maturity: Maturity in years
:param rf: Risk free rate (per annum)
:param volatility: expressed per annum
:param barrier: Barrier for this knock-in option
:param minsteps: Minimum number of time steps



22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40

41
42
43

44
45
46

CHAPTER 5  REINFORCEMENT LEARNING THEORY

:param epsilon: Epsilon defining the epsilon-
greedy policy

:param epochs: Number of training epochs
:param learning rate: Rate of learning
self.s0 = sO

self.strike = strike

self.barrier = barrier

self.maturity = maturity

self.rf = rf

self.vol = volatility

self.minSteps = minsteps

self.epsilon = epsilon

self.nepoch = epochs

self.alpha = learning rate

self.deltaT = min(self.calculateDeltaT(),
maturity/minsteps)

self.df = np.exp(-rf * self.deltaT)

self.sqrtTime = np.sqrt(self.deltaT)

expected = np.exp((rf +
volatility*volatility/2.0)*self.deltaT)

self.up = np.exp(volatility * self.sqrtTime)
self.down = np.exp(-volatility * self.sqrtTime)
self.pUp = (expected - self.down)/(self.up -
self.down)

self.pDown = 1.0 - self.pUp

self.ntime = int(np.ceil(maturity / self.deltaT))
self.stateValFunc = np.zeros((2*self.ntime, self.
ntime), dtype=np.float32)
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47 self.actionStateValFunc = np.zeros((2*self.ntime,
self.ntime, 2), dtype=np.float32)

48 self.price = None

49 self.hitProb = self.calcBarrierHitProb()

50

51 def calcBarrierHitProb(self):

52 # calculate probability for t=0

53 hitprob = np.zeros((2*self.ntime, self.ntime),
dtype=np.float32)

54 price = np.full(self.ntime*2, self.up, dtype=np.
float32)

55 price[0] = self.s0 * (self.down ** self.ntime)

56 price = np.cumprod(price)

57 self.price = price

58

59 hitprob[:, -1] = np.where(price >= self.barrier,
1.0, 0.0)

60

61 # for t =1, 2, ... ntime-1

62 for j in range(self.ntime-2, -1, -1):

63 for i in range(self.ntime-j, self.ntime+j+1):

64 if price[i] »>= self.barrier:

65 hitprob[i, j] = 1.0

66 else:

67 hitprob[i, j] = self.pUp *

hitprob[i+1, j+1] + self.pDown *
hitprob[i-1, j+1]

68 return hitprob

69

70 def maturityCondition(self):
71 # values at time T
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72
73

74
75

76
77
78
79
80
81

82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97

def

def
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valFunc = self.stateValFunc
val = self.s0 * np.exp(-volatility * self.
sqrtTime * self.ntime)
for i in range(2*self.ntime):
valFunc[i, -1] = self.hitProb[i, -1] *
max(val - self.strike, 0)
val *= self.up

epsilonGreedy(self, priceIndex, timeIndex):
if np.random.random() < self.epsilon:

return np.random.choice(2)
return np.argmax(self.
actionStateValFunc[priceIndex, timeIndex, :])

sarsalters(self):
self.maturityCondition()
# generate episodes, perform epsilon greedy step
gFunc = self.actionStateValFunc
vFunc = self.stateValFunc
for iter in range(self.nepoch):
for j in range(self.ntime - 1, 0, -1):
for i in range(self.ntime - j, self.ntime
+ 3, 1):
# action = 0 -> Hold

# action = 1 -> Exercise

action = self.epsilonGreedy(i, j)
if action == 0:
valli = 0
if self.hitProb[i + 1, j] > o:
vall = vFunc[i + 1, j] /
self.hitProb[i + 1, j]

291



CHAPTER 5  REINFORCEMENT LEARNING THEORY

98 val2 = 0

99 if self.hitProb[i - 1, j] > o:

100 val2 = vFunc[i - 1, j] /
self.hitProb[i - 1, j]

101 newval = self.df * self.

hitProb[i, j - 1] * (self.pUp *
vall + self.pDown * val2)

102 else:

103 newval = self.hitProb[i, j -
1] * max(self.price[i] - self.
strike, 0)

104 qFunc[i, j - 1, action] += self.

alpha * (newval - vFunc[i, j-1]) #
SARSA update

105 vFunc[i, j-1] = np.max(qgFunc[i,
j -1, ])

106

107 return vFunc[self.ntime, 0]

108

109 def calculateDeltaT(self):

110 val = self.vol / (self.rf + self.vol*self.
vol/2.0)

111 return val*val

112

113 def plotPrice(self):

114 price = np.full(self.ntime * 2, self.up,
dtype=np.float32)

115 price[0] = self.s0 * (self.down ** self.ntime)

116 price = np.cumprod(price)

117 time = np.full(self.ntime, self.deltaT, dtype=np.
float32)
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125
126
127
128
129

130
131
132

133
134
135
136

137
138
139
140
141
142
143
144
145
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time[0] = O

time = np.cumsum(time)

X, y = np.meshgrid(price, time)

fig = plt.figure()

axs = fig.add subplot(111, projection="3d")
axs.plot surface(x.T, y.T, self.stateValFunc)
axs.set xlabel('Stock Price')
axs.set_ylabel('Time (Yrs)')

axs.set _zlabel('Option Price')

plt.show()

fig, axs = plt.subplots(1, 1, constrained_
layout=True)

cs = axs.contourf(x.T, y.T, self.stateValFunc)
fig.colorbar(cs, ax=axs, shrink=0.85)
axs.set_title("American Barrier Knock-In Call
Option™)

axs.set_ylabel("Time to Maturity (yrs)")
axs.set xlabel("Initial Stock Price")
axs.locator params(nbins=5)

axs.clabel(cs, fmt="%1.1f", inline=True,
fontsize=10, colors='w")

plt.show()

if name_ ==" main_":
price = 20.0
strike = 22.0
maturity = 2.0/12.0
barrier = 23.0

volatility = 0.2
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146 rf = 0.005

147 eoption = AmericanKnockInCallOption(price, strike,
maturity, rf, volatility, barrier, minsteps=25)

148 simPrice = eoption.sarsalters()

149 logger.info("simulated price: %f", simPrice)

150 eoption.plotPrice()

Computed option price produced by the code is shown in Listing 5-11.

Listing 5-11. American Barrier Option Price Output from the Code
1 simulated price: 0.004923

The option price surface is shown in Figure 5-7 against stock price and
time to maturity (in years). Contour plot of the option price is shown in
Figure 5-8. As seen in the plots, the price of the knock-in option is close to
0 near option maturity and below the barrier at $23.

Least Squares Temporal Difference (LSTD)

The least squares temporal difference algorithm combines temporal
difference learning with gradient descent search to update the parameters
of a value function. Like TD learning, it is an on-policy method. However,
unlike TD learning, it is an offline algorithm because it requires data
from all episodes to be available in order to perform a least squares
minimization of the loss function. The algorithm was first proposed by
Steven Bradtke and Andrew Barto in 1996.

The LSTD algorithm requires a parameterization of the value function.
In prior examples, the state value function V(s) has been represented
as a table, with one value for each state. In most applied problems, the
size of the state space renders explicit storage of the value function for
each state intractable. For problems with continuous state space, storing
explicit values for each state is clearly infeasible. Let us represent the value
function using a parametric function, as shown in equation 5.45. ¢(s)
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denotes a function of state written as a column vector, and @ denotes a

column vector of parameters. " denotes the transpose of a column vector.

(5.45)

2oud uond0

30
Sy o8

. 24

is 18 20 crock Fice

14

Figure 5-7. Option Price Surface for an American Barrier Up-and-In
Call Option

The algorithm learns the value of parameters by minimizing the mean

square error loss function shown in equation 5.46 using the TD(0) target
shown in equation 5.47:
L1 2
rneln?Z(Esm,a,wr |:r(sz+1' St 4 at ) + yV(sHl ):I - V(st ))
t=1

St41

. , (5.46)
4 (Zﬂ (at |St )Z p(3t+1|5z ) Gy )[r(st+l 1S118, ) + yV(sHl ):| - V(St )]

V(st );rget =

a, ~T,8;,, ':r(st+l 'st ’at )+ yvn (st+1 ):|

(5.47)
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American Barrier Knock-In Call Option

0.15

0.10

Time to Maturity (yrs)

0.00
15 20 25

Initial Stock Price
Figure 5-8. Option Price Contour Plot for an American Barrier Up-
and-In Call Option

Using Monte Carlo draws from policy z, the loss function can be
written as shown in equation 5.48. Substituting the parametric expression
for the value function from equation 5.45 into the loss function, we can
rewrite the loss function as shown in equation 5.49:

mm—Z( S1S0a, ) +3/V(sm)—V(st))2 (5.48)

mln—Z( SiS0a, )+ 79( ,+1)'9—¢(8,)'9)2 (5.49)

Differentiating the parameterized loss function in equation 5.49 with
respect to parameters 6 yields a system of equations 5.50 that can be solved
using ordinary least squares (OLS) regression:
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T

; ( S50, ) +YP(s Hl)'0—<;13(s) )(7/4,( S0 )-0(s t))=0

T

%Zr (SerSoom, )(79(s,0)—9(s,))+ (5.50)

1 T

7 219(sa)-9( 5.) (19(s.a)-9(s,))0 =0

Equation 5.50 can be recast as shown in equation 5.51 to show more
clearly that it is a system of ordinary linear regression equations A0 — b =0
with A and b shown in equation 5.51:

AO-b=0

3 (8(5)-0(5) (8l -9(5)  G)

t=1
1 T

b= (5,050, (7(500)-9(s,))

t=1

LSTD can also be written as a gradient descent rule as shown in
equation 5.52. Here, 6" refers to the value of € in the previous iteration:

0=0m + a3 ((5.005,0)+ 18(5,.) 0 (5, 0" Jo(s,) (552)

t=1

Least Squares Policy Evaluation (LSPE)

The LSPE algorithm evaluates the state-action value function for a
specified policy using the least squares method. Like LSTD, LSPE is an on-
policy and offline algorithm. It uses a parameterization of the state-action
value function shown in equation 5.53. ¢(s, a) is an assumed function, and
0; represents parameters. The parameterization is a practical approach

to representing the state-action value function because explicit tabular
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representation of the state-action value function by state-action pairs can
quickly become unwieldy with increasing size of state and action spaces.

Q(s,a):Zejqﬁj(s,a):qﬁ(s,a)re (5.53)

LSPE(0) uses TD(0) to calculate the target action value for a state, as
shown in equation 5.54. If we had a tabular representation, equation 5.54
would give a set of (S, A ) equationsin (S, A ) unknowns, giving
a unique solution to the system. Plugging the parameterization in
equation 5.53 into equation 5.54, we get the system of equations shown in
equation 5.53. This equation has d free variables in w and can be solved
using the least squares method.

Qt,rrzrget (S,ﬂ) = Es' |:r(S',S,d) + 727[(&,'3,)(2” (S',a,):|
“ (5.54)

- Zp(s’|s,a)[r(s’,s,a)+ yZn(a’|s’)Q” (s’,a’)}

w'o(s,a)= Zp(s’|s,a)r(s’,s,a)+ yZp(s’Ls,a)Zn(a’|s’)w’¢(s’,a')

{q’)(s,a) - 7/2p(s'|s,a)27r(a’|s’)¢(s',a’)} w= Z‘])(s'|s,a)r(s',s,a) (5.55)

g

S

Aw=>b
w=[A'A]" A'b

As was the case with LSTD, these expressions can be simplified if
Monte Carlo draws are used.
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Least Squares Policy Iteration (LSPI)

The least squares policy iteration algorithm uses LSPE followed by e-
greedy policy improvement in an iterative cycle until an optimum policy
is attained. This is the same framework described in generalized policy
iteration.

Q-Learning

Q-learning is an off-policy, online learning algorithm that learns the
state-action value function of an optimal policy. The algorithm selects the
next action, @, using an e-greedy policy in equation 5.36 using the update
shown in equation 5.56 for a one-step update:

Q' (s,a)«Q'(s,a)+a [r(s’,s,a)+ yQ(s',a") —Q*(s,a)]
, |argmax,Q"(s',@) with probability1—¢ (5.56)
a =
random(ae A)  with probability e

An n-step Q-learning update is shown in equation 5.57. Q* denotes the
state-action value function for the optimal policy. An e-greedy policy is
used at each of the n steps to determine the action. If following a stochastic
update rule, sampled actions can be used for a,, a,, ... aywith the last
action determined using an e-greedy policy.

Q' (s,a)«Q'(s,a)+a [r(s1 $,a)+yr(S,,8,a,)+7°r(s;,8,,a,)+
+yNQ” (SNH;a,)_Q*(Sra):I

{argmax 2Q"(s,,a@) with probability 1—¢
a, =

random(aeA)  with probability e (5.57)

, |argmax,Q"(sy,,,d) with probability 1-e
random(ae A) with probability e
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Q-learning performs an update shown in equation 5.56 for each time
step of an episode following the ¢-greedy policy until the terminal state
is reached. Hence, it is off-policy because it does not use a model of the
underlying policy to determine the next action. It only requires the initial
state. The Q-learning algorithm is sketched in pseudo-code 7.

Double Q-Learning

The Q-learning algorithm is plagued by two shortcomings: the updates
performed are correlated in state space, and the action value updates are
prone to overshooting beyond the optimal value. Correlation in state space
arises because we are performing an update on states visited during an
episode. Q-learning updates Q*(s, a*) first, thereupon following the e-
greedy policy until hitting the terminal state. The states visited are based
upon knowledge of an existing Q* function, but this function has only
been updated for states visited during an episode. This gives rise to the
problem of serial correlation - exploration of correlated states followed by
exploitation of existing Q* function values.

Algorithm 7  Q-Learning for Finding the State-Action Value Function
for an Optimal Policy

Require: Discount factor y, learning rate a
1: Q(s,a =0forall s€S and all a€ A,
2: repeat

3.  foreach (s, ---) in an episode do

4: S« &
2. repeat
6: Get the action a* prescribed by the e-greedy policy in
state s.
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7 Take action g* and observe reward r* and next state s.
8: Q*(s,a*)<—Q*(s,a*)+a[r(s*,s,a*)+ymaxdeA Q(s*,ﬁ)—Q*(s,a*)]
9: S« &

10: until s is terminal state

11:  end for

12: until All episodes have been processed

The problem associated with overshooting or overestimation of the
correction term arises because the same Q* function is used for finding
the optimal action and for evaluating the state-action value function. This
can be seen more clearly from the update equation used in Q-learning
(equation 5.56) rewritten as shown in equation 5.58, assuming the
e-greedy policy has selected the condition with probability 1 — ¢ as will
usually be the case for small . If Q*(s, @) is high for some action g, it will
cause overshoot in corrected values for all Q*(s, a) where s state follows s.

acA

Q' (s,a)«<Q (s,a)+a {r(s’,s,a) +yQ"(s',argmax Q" (s',a)) —Q*(s,a)} (5.58)

Double Q-learning addresses the problem of correlation by storing
the individual transitions from each episode in a replay buffer, R, and
selecting a random mini-batch of state transitions from this buffer for
Q-learning. As Q-learning proceeds and the algorithm uncovers new
transitions from states, each transition is added back to the replay buffer.
The default replay buffer has a fixed capacity and drops oldest transitions
to make room for new ones. There are several versions of the replay buffer
in use: some prioritized by advantage functions and others by rank. These
flavors of Q-learning will be discussed more thoroughly in the next chapter
that delves into individual algorithms.
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The problem of correction overestimation is addressed by using two Q
functions: one Q function is used to calculate the target value - called the
target value function Q.. - and the other Q function is used to evaluate
the optimum action, called the learned action value function Q,,,,,, -
Updates are applied at each iteration to the learned action value function,
while the target action value function is updated periodically by copying
the learned action value function. This is shown in equation 5.59. Even
if Qp,..a OVershoots for a certain state-action combination, those values
are not propagated in updates because the target value function is used
to calculate the value of the target and that function only changes to the
learned action value function Qy,,,., with a delay.

Ql*earned (S,a) <~ Ql*earngd (S,a)+a [I‘(S',s,a)+

. , . . . (5.59)
}/Qtarget (S ’argmaxdeAQleamed (S ’a )) - Qlearned (S,a):|

Eligibility Trace

Eligibility trace is a mechanism for implementing N-step TD learning
efficiently. One-step TD learning (equation 5.41) expands one state, using
the existing value of the value function at the next state. N-step TD learning
(equation 5.42) gives faster convergence because it can assign credit for a
move N steps into the episode. As an example, if a high (or low) reward is
earned after following N steps, TD(0) learning will have to wait until the
value function of the next state has been updated with this information.
This process is going to require several iterations because TD(0) learning
propagates updated values one time step at a time. Equation 5.60
illustrates this numerically by writing the error from a TD(n) update. It
can be seen that the TD(n) update reduces the error at each state by y” for
each update:
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Vi (80) < Vi (s,)+a [(r(s1 10,00 )+ YT(8,,8,,8,)+..+
ynilr(sm-l ’sn ’an )+ y"Vaile (sn+1 )) _Vailrd (SO ):I
Voil[d (SO ) = E|:r(sl 'SO 'aO )+}’r(52 ,51 'a1)+"‘+yn71r(sn+1 'Sn 'an)+ynVa7lrd (Sn+1 ):|

Vrz:w (so )_Voilrd (so ) =a7n (VJd (Sn+1 )_E[V;l[d (Sn+1 ):|)

(5.60)

Explicit unrolling of a policy for N steps at each state is inefficient
due to the duplication of effort involved once we are in a specific state.
Eligibility trace is a mechanism to implement N-step updates more
efficiently. In order to derive the updates required for implementing
TD(n) using eligibility trace, let us consider a constant A with the property
0<i<l.Let G (V” (s, )) denote the n-step expansion of the value
function, as shown in equation 5.61. This is the target used by the TD(n)
algorithm. We want to write an expression for V(s,) using different n-step
target values, assuming the chain of states has infinite length. This can be
written as shown in equation 5.62, which corresponds to the expansion of
the value function for all the states until the terminal state is reached:

GtHn (V” (st+n+1 )) = r(st+1 ’st ’at ) + }/T(SH_Z ’St+1 ’at+1 ) +..+

(5.61)
y"*Ir(anﬂ 7sz+n ’aHn )+ y”V” (St+n+1 )
V()= (-2 227G (V7 (5))
=(1-2)[ Gy (V" (5,))+ 2G5 (V™ (55)) -]
(5.62)
=(1—)L)[r(sl,so,cz())(1+/’L+A2 +...)+Ar(sz,sl,al)(l+).+/12 +)+]

r(8,,80,a, )+ Ar(s,,8,,a, )+ A%r(s;,8,,a, )+ ...

Gy (V™ (s.))
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We want to write the TD(n) update rule in terms of TD(0) updates for
different states. To do this, consider the correction in the update rule for
TD(o0). Denoting the one-step TD correction at any state by ds; and using
equations 5.63 and 5.62, we can write TD(o0) correction using one-step
corrections as shown in equation 5.64:

os, = r(st+1 1S4, ) +V7 (St+l ) -V (st ) = TDBW@C“'O” (sf) (5.63)
TD::)rrection = G[T (Vﬂ(sw))_vﬂ (so)
=r(s,,$8,,a,)+ Ar(s,, s, a,)+ A°r(s,, s,,a,) +...— V7 (s,)
=A-2)Y ATGV(s,.,)-A=2)" A"V (s,)
== AG (VT (s,,,)) =V (s,)
== G (V7 (5,))= V" (5,)+ MGy (V™ (5,)) - V" (S,)) + ... |
= (1 _A)[ro + }/V” (51)_‘/7r (so)+ )V(ro Trn+ 72V” (32)_ (ro + }/V” (Sl)) + :'
= (= 2)[ 85, + A0y (5 +7V7(5,) =7V () +-- |
=(1-A)[ 85, + Ay3s, + A’y 85, +... | (564)

Since the update rule in equation 5.60 has a factor a outside the
correction, we merge the factor 1 — 1 from equation 5.64 with a to write the
update rule as shown in equation 5.65:

Vi (8.)= Vi (s,)=a [530 +Ay8s, + A2y?S8s, +- ] (5.65)

Equation 5.65 is an explicit expression relating the TD(oo) update to
individual TD(0) corrections at different states. It's implementation is
illustrated in pseudo-code 8 and is referred to as eligibility trace.

Eligibility traces can also be utilized in the evaluation of the state-
action value function for a policy, as sketched in pseudo-code 9.

Eligibility traces can also be adapted for algorithms involving
optimization of action value functions such as Q-learning or SARSA. For
such algorithms, eligibility trace of a (state, action) pair is multiplied by Ay

304



CHAPTER 5  REINFORCEMENT LEARNING THEORY

if the action corresponds to the greedy action giving the maximum action
value function at that state. For an e-greedy policy, a random action is
selected with a probability e. The Q-learning algorithm using eligibility
traces is shown in pseudo-code 10.

5.3.5 Cartpole Balancing

Cartpole balancing is a benchmark reinforcement learning problem

that seeks to balance a pole mounted on a slider that can slide along a
frictionless rod as shown in the schematic in Figure 5-9. There are two
actions available: applying a unit force (1 Newton) to the right or left,
denoted as 1 or -1, respectively. The slider must remain within specific
bounds on the rod, and its angle from the vertical line must likewise
remain within bounds. The rod’s length, mass, initial angle, initial angular
velocity, and initial position are known.

Algorithm 8 Evaluating the Value Function Using Eligibility Trace
Require: Policy 7, discount factor y, factor A, and learning rate
1: Us)=0forall sesS.
2: repeat
3. foreach (s; ---) in an episode do
S« S
Initialize set S,= 10 empty set.

Initialize £(s) = 0 for all sesS.

Add sto S,ites-

4
5
6
7 repeat
8
9 Get the action a prescribed by policy 77in state s.
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10: Take action g and observe reward rand next state s".
11: o« r+yUs)— U9

12:

13: Ks) < 1

14:

15: for each state s, € S50 dO

16: Us) < Us) + aEs)s

17: Es) < AyEs)5 s« §

18: end for

19: S« s

20: until s is terminal state
21:  end for

22: until All episodes have been processed

Algorithm 9 Evaluating the State-Action Value Function Using
Eligibility Trace

Require: Policy 7, discount factor y, factor 4, and learning rate «
1. Q(s,a=0forall seS and aecA.
2: repeat
3: foreach (s ---) in an episode do
4: S« S

5: Get the action a prescribed by policy 7in state s.
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Initialize set S~ t0 empty set.

Initialize Es,a)=0forall seS and acA.

6

7

8:  repeat
9 Take action a and observe reward rand next state s.
0

1

10: Add (s,a) to Sysites-

11: 6« r+yQs,a =ms")— Qsa
12

13: Es,a) < 1

14:

15: for each state (s, a) € Syiires dO
16: Qs,a) < Qs,a)+ akEs,a)d
17: Es,a) < AyEs,a)o

18: end for

19: S<—s\a<a

20: until sis terminal state
21: end for

22: until All episodes have been processed

Algorithm 10  Using Eligibility Trace in Q-Learning
Require: Discount factor y, factor 4, and learning rate «
1:Q(s,a=0forall ses and ac A.

2: repeat

307



CHAPTER 5  REINFORCEMENT LEARNING THEORY

3. foreach (s, ---) in an episode do

4 S &

o Get the action a' prescribed by an e-greedy policy in state s.

6 Calculate the indicator variable Lo =1 if ar8max,Q(s,a)=a’
and 0 otherwise.

7 Initialize set S,i= 10 empty set.

8: Initialize £(s,a) = 0 forall s€S and a€ A,

9: repeat

10: Take action a'and observe reward rand next state s'.

11: Add (s,a’) pair to Syites-

12: o« r+yQs'a’)— Qs,a

13:

14: Es,a) < 1

15:

16: for each state (s, a) € Syiires dO

17: As,a) < Qs,a)+ akEs,a)d

18: if I, ==1 then

19: Es,a) < AyEs,a)o

20: else

21: Ks,a) < 0

22: end if

23: end for

24: S<S8,a<a
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25: until sis terminal state
26: end for

27: until All episodes have been processed

Omin : Pole Omax

Figure 5-9. Balancing a Cartpole by Applying a Series of Unit Forces
on the Slider

The motion of the slider and rod is governed by the laws of kinematics.
There are four variables in kinematic laws describing this system - position
and velocity of the slider and angle and angular velocity of the rod relative
to the slider. The aigym Python library has an environment that simulates
the cartpole’s motion by implementing the laws of motion. Code in
Listing 5-12 shows how to load the cartpole environment using aigym and
examine its state space. The code shows that the slider can move between
[-4.8, 4.8] and have vertical angle between [-4.19, 4.19] degrees. It can have
any velocity and angular velocity.

Listing 5-12. Loading the Cartpole Environment in AIGym

1 import gym
2 env = gym.make("CartPole-v0")
3 print(env.observation space)
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4 Out[9]: Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-
01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38
4.1887903e-01 3.4028235e+38], (4,), float32)

print(env.action space)
Out[10]: Discrete(2)

The following observations will be helpful in understanding the code
given in Listing 5-13:

1. The environment gives a reward of 1 for each time
step the pole remains upright and within the spatial
and angular bounds. When the pole strays out of
these bounds, the episode is terminated.

2. The AIGymEmulator class encapsulates the
cartpole environment provided by the AIGym
library.

3. The Episode class represents an episode as a
collection of samples. Each sample (represented as
an instance of class Sample) is a tuple containing

state, action, reward, and next state.

4. The state-action value function Q(s, a) is
represented using a neural network. Class
QNeuralNet is used to represent the state-action
value function. This class derives from the abstract
base class QFunction.

5. A three-layer sequential neural network is created
using TensorFlow and passed to QNeuralNet.
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Since Q-learning is an off-policy method, it only
uses the first state of an episode followed by an
e-greedy policy derived from an existing state-
action value network. Because of this feature, one-
sample episodes are generated for training using
initial slider position between -2 and 2, initial rod
angle between -0.4 and 0.4 radians, initial velocity
between -0.5 m/s and 0.5 m/s, and initial angular
velocity between -0.5 rad/s and 0.5 rad/s.

After training the agent, its performance is
compared against a random agent that applies
arandom force on the slider. The length of an
episode is restricted to 50 time steps. As seen in
Table 5-1, the deep Q-network (DQN)-based agent
outperforms the random agent. The table displays
the total reward earned by each of the agents in

50 trials. The DQN agent reaches 50 time steps for
all trials at which point the episode is terminated.
Actual results obtained may differ slightly from
those shown due to the use of random numbers in
network weight initialization.
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Table 5-1. Total Rewards Earned by the DQN Agent
and Random Agent in 50 Trials with Maximum

Episode Length of 50

DQN Agent Random Agent
50.0 26.0
50.0 15.0
50.0 28.0
50.0 44.0
50.0 16.0
50.0 13.0
50.0 18.0
50.0 27.0
50.0 27.0
50.0 20.0
50.0 41.0
50.0 35.0
50.0 8.0
50.0 440
50.0 23.0
50.0 15.0
50.0 14.0
50.0 10.0
50.0 12.0
50.0 50.0

(continued)
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Table 5-1. (continued)

DQN Agent Random Agent
50.0 13.0
50.0 23.0
50.0 22.0
50.0 12.0
50.0 22.0
50.0 13.0
50.0 17.0
50.0 14.0
50.0 16.0
50.0 39.0
50.0 36.0
50.0 50.0
50.0 20.0
50.0 13.0
50.0 20.0
50.0 20.0
50.0 19.0
50.0 20.0
50.0 27.0
50.0 17.0
50.0 15.0
50.0 12.0

(continued)
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Table 5-1. (continued)

DQN Agent Random Agent
50.0 40.0
50.0 19.0
50.0 34.0
50.0 12.0
50.0 29.0
50.0 47.0
50.0 32.0
50.0 32.0

Listing 5-13. Balancing a Cartpole Using a Deep Q-Network in

Q-Learning
1
2
3
4
5
6
7
8 from
9 from
10 from
11 from
12 from
13 from
14
15

314

import time

import gym

import numpy as np
import pandas as pd
import tensorflow as tf

SIC
SIC
SIC
SIC
SIC
SIC

.learner.DON import DQN

.lib.Emulator import AIGymEmulator

.lib.Episode import Episode

.lib.QFunction import QNeuralNet

.lib.Sample import Sample

.lib.ReplayBuffer import MostRecentReplayBuffer

tf.random.set _seed(10)



16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

32

33

34
35
36
37
38

CHAPTER 5  REINFORCEMENT LEARNING THEORY

np.random.seed(10)

class CartpoleVoDQN(object):

def

def

def

name(self):

name = self. class . name _

if name.startswith("Cartpolevo"):
name = name[10: ]

return name

gfuncnetwork(self):
optimizer = tf.keras.optimizers.Adam()

#loss = tf.keras.losses.Huber(reduction=tf.keras.

losses.Reduction.SUM)
loss = tf.keras.losses.MeanSquaredError ()

gnet = tf.keras.models.Sequential()
gnet.add(tf.keras.layers.Dense(10,
activation="relu', input shape=(self.
nfeatures,)))
gnet.add(tf.keras.layers.Dense(50,
activation="relu'))
gnet.add(tf.keras.layers.Dense(self.nactions,
activation="linear"))
gnet.compile(optimizer=optimizer, loss=loss)
return gnet

createAgent(self):
replay buf = MostRecentReplayBuffer(2*self.
minibatchSize)
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39 return DON(self.qfunc, self.emulator,
self.nfeatures, self.nactions, replay
buffer=replay buf,

40 discount_factor=self.
discountFactor, minibatch_
size=self.minibatchSize, epochs_
training=20)

41

42 def _init (self):

43 self.nfeatures = 4

44 self.nactions = 2

45 self.testEpisodes = 50

46 self.maxTimeStepsInEpisode = 50

47 self.discountFactor = 1

48 self.minibatchSize = 20

49 gnet = self.qgfuncnetwork()

50 self.qfunc = QNeuralNet(gnet, self.nfeatures,
self.nactions)

51 # create emulator

52 self.envName = "CartPole-v0"

53 self.env = gym.make(self.envName)

54 self.emulator = AIGymEmulator(env_name=self.
envName)

55 self.agent = self.createAgent()

56 self.train()

57

58 def generateTrainingEpisodes(self):

59 pos = np.arange(-2.0, 2.0, 4.0/10, dtype=np.
float32)

60 vel = np.array([-0.5, 0, 0.5], dtype=np.float32)
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63
64
65
66
67
68

69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

def

def
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angle = np.array([-0.4, -0.3, 0, 0.3, 0.4],
dtype=np.float32)
angvel = np.array([-0.5, 0, 0.5], dtype=np.
float32)
episodes = []
for p in pos:
for v in vel:
for a in angle:
for aa in angvel:
state = np.array([p, v, a, aa]l,
dtype=np.float32)
sample = Sample(state, O,
1, None)
episode = Episode([sample])
episodes.append(episode)
return episodes

train(self):
episodes = self.generateTrainingEpisodes()
return self.agent.fit(episodes)

balance(self):
test env = self.env
rewards = []
for i in range(self.testEpisodes):
obs0 = test env.reset()
tot_reward = 0
fac = 1
for j in range(self.maxTimeStepsInEpisode):
action, qval = self.agent.predict(obso0)
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87 obs1, reward, done, info = test env.
step(action)

88 if done:

89 break

90 tot reward += fac * reward

91 obso = obs1

92 fac *= self.discountFactor

93 rewards.append(tot reward)

94

95 random_agent rewards = []

96 for i in range(self.testEpisodes):

97 test_env.reset()

98 tot reward = 0

99 fac = 1

100 for j in range(self.maxTimeStepsInEpisode):

101 action = test env.action space.sample()

102 obs1, reward, done, info = test env.
step(action)

103 if done:

104 break

105 tot reward += fac * reward

106 fac *= self.discountFactor

107 random agent rewards.append(tot_reward)

108

109 result df = pd.DataFrame({self.name(): rewards,

"RandomAgent”: random agent rewards})
110 print(result df)
111 assert (np.mean(rewards) > np.mean(random agent
rewards))
112
113
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114 if _name__ == " main_":
115 cartpole = CartpoleVODQN()
116 cartpole.balance()

5.4 Policy Learning

Algorithms that optimize value functions (such as Q-learning) learn an
optimal policy from the state-action value function Q(s, a) using a greedy
approach. The value function approach suffers from two disadvantages: a
greedy approach produces a deterministic policy, and a small change in the
action value function for an action can cause it to be selected or not selected,
giving discontinuous jumps in action space. Many problems in reinforcement
learning require a stochastic policy. An adversary can beat a deterministic
policy with a knowledge of the policy. Policy learning learns a policy directly,
without using a state-action value function, and does not suffer from the twin
drawbacks for value function-based policy optimization. The foundational
theory underpinning policy learning methods was formally introduced by
Sutton et al. in a seminal paper published in 1999: “Policy Gradient Methods
for Reinforcement Learning with Function Approximation.” Let us look at the
central concept of the paper - the policy gradient theorem.

5.4.1 Policy Gradient Theorem

Let the policy # be parameterized by 6, that is, let us denote the policy
being learned by z(a|s, #). The expected discounted sum of rewards
earned by following policy # beginning from state s, is given by V"(s,), as
shown in equation 5.66:

V” (SO ) = Eu~7z,sl,sz,“. |:Z yzr(sHl ’ St’ at ):|
t=0
- Zﬂ(cdso,e)Q” (s0,a)

acA

(5.66)
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The policy gradient theorem expresses the derivative of the value
function with respect to the policy function’s parameters 6. It is a
foundational theorem because the derivative is used to update the
policy function parameters € using stochastic gradient ascent in order
to maximize the expected discounted rewards or V*(s) as seen in
equation 5.66. The policy gradient theorem is shown in equation 5.67.
d"(s) denotes the discounted probability of landing in state s, as shown in
equation 5.3.

ov™( s0 (a|s 0)

Zd” sls, Z

seS acA

Q" (s,a) (5.67)

In practice, Q"(s, a) in the policy gradient theorem 5.67 is often
replaced by advantage, A"(s, a), from equation 5.11. We will see the
benefit of working with the advantage function in the following sections.
Equation 5.68 shows why the replacement of the action value function with
the advantage function is an equivalent statement of the policy gradient
theorem:

PINCACIEN) SR
-3, @61, T (5, 0)-ve ()
I INACEN) I RO

- 1) Y, ey

_5Vﬂ(so) p P ZaeA n(als,0)
Sy @ (sls V()

se§

_oV7(s) " o 0L
Y D4 (sls,)V (3)69

oV
=% (5.68)
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The proof of the policy gradient theorem is sketched in equation 5.69:

ov” (s
00

on(als,,0) ..
:zaeA%Q (Sorﬂ)JrZaeAﬂ(mso,O)

0Pl (s, 50, @)+ 1), m(@']5,0)Q" (5,.2)))
00

:ZaGAMQ”(So’a)+yza€Azs€Sﬂ(a|8010)p(slsora)
Za’eAMQ (s,a)+...

=>4 (s] SO)ZM%'S’Q) Q*(s,a) (5.69)

) ZaeAaﬂ(alsore)Q (Sora)"'z 7r(a|so,9)aQ (So,d)

Because policy learning does not explicitly learn the state-action
value function Q"(s, a), this value needs to be estimated. Algorithms
differ in their approach to estimating the state-action value function:
some use a simple TD(0) expansion, while others such as actor-critic
methods maintain a separate model for the value function that is learned
concurrently with the policy.

5.4.2 REINFORCE Algorithm

The REINFORCE algorithm was proposed by R. J. Williams in 1992. It is a
stochastic gradient descent algorithm that approximates the action value
function Q"(s, @) in equation 5.67 using the rewards observed in a sample
episode. Using a policy z(als, 6), it samples an episode and calculates the
sum of expected discounted rewards R"(s,, a,) as a proxy for Q"(s,, a,) as
shown in equation 5.70. The update rule used in the algorithm is shown in
equation 5.71 and is performed once for each state in the episode. Factor
_ is required because of an implicit z(a| s, #) introduced due to
n(als,0)

sampling using policy 7.
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R™ (80,8, ) =1(58,,8,80 ) +77(8,,8,,a, )+ 7’1 (83,8,,0, ) + ... (5.70)

) aﬂ(a0|80;901d ) R” (so,ao )J
TR

enew <« eold + a(

(5.71)

|
= Qnew A Qold +a ( a Ogﬂ(gglso ,QOM ) Rﬂ (SO 7“0 )]

The complete REINFORCE algorithm is sketched in pseudo-code 11.

Algorithm 11 REINFORCE Algorithm for Policy Learning

Require: Parameterized policy mal s, 6), discount factor y, and
learning rate «

1: repeat
2: Generate an episode by sampling from the environment.

3: foreach (s,a,r; St 1) in an episode do

4 S« S
5: a< a
6 Start in a state s, take the action a sampled from m(al s,6),
transition to s’, and repeat until the terminal state is reached.
7 R'(s,a) = ns',s,a) + yns,s,a) + y’ns., s,a) + -
8: 00+ 1 87r(a|s,9)R” (S,a)]
n(als,0) 00
9: end for

10: until All episodes have been processed
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5.4.3 Policy Gradient with State-Action Value
Function Approximation

The state-action value function Q"(s, a) is often represented as a
parameterized function (e.g., using a neural network) in contrast to the
REINFORCE method that uses the reward experience from an episode.
According to the theorem of policy gradient with function approximation,
we can replace Q7(s, a) in the policy gradient theorem with the learned
approximation to the state-action value function as shown in equation 5.72:

Zd” ds,) z:67t(cz| ,51,0)

seS acA 9

aV” f(s,a,w) (5.72)

In order to understand the theorem, let us denote the learned state-
action value function as f{s, 2, w) where w denotes the vector of parameters
of the state-action value function approximation. Let é” (s,a) denote an
unbiased approximation to the state-action value function such as TD(0)

target r+y Z a |s (s’,a’,w) or the discounted sum of rewards from an
a'inA
episode R*(s, a) used by the REINFORCE algorithm. The parameters w are

updated using a gradient descent rule shown in equation 5.73:

m“%n(Q” (s,a)—f(s,a,w))2
F (sam) (5.73)

W, W, +a(Q” (s,a)—f(s,a,w)) P

Once the updates to w have converged, condition 5.74 is satisfied:

Zd” Zrc $,a) ( (s,a)—f(s, a,w))%:o (5.74)

seS acA
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The proof of this assertion is shown in equation 5.75 and uses the fact
that Q" (s,a) is an unbiased estimator of Q(s, a):

AW = oc( Q" (s,a )f(sa,w))M

Upon convergence, Aw =0

( ( ) f(s, a,w))M 0Vs,Va ~7r(s,a) (5.75)
;dn {;47[(8 ,a ( s a) f(s,a w))w:

The action value function approximator f{s, a, w) is said to be
compatible with policy parameterization if the condition in equation 5.76
is satisfied:

of (s,a,w) 0n(s,a,0) 1
ow 80 x(sa0)

(5.76)

If the action value function approximator is compatible with policy
parameterization and we optimize the weights w of the value function
approximator using equation 5.74 until convergence, the policy gradient
theorem can be rewritten as shown in equation 5.72 by substituting
equation 5.76 in equation 5.75.
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L dT®) S ms,a)(Q7 (s,a) = f(s,a,W)) === =0

6f(s a, w)

of (s,a,w)
Oow

=Y d®)Y _ w(s,a)Q" (s,a) 22—

Zsesd”(s)za w(s,a) f(s,a,w)———"—=

77 i on(s,a,0) 1
= ZseSd (S)ZaeA m(s,a)Q" (s, a) 00 7(s,a,0) a

] on(s,af) 1
Zsegd (S)ZQQAW(S’a)f(S’a’W) ﬂgea (s,a,0)

izesd"(s)z Q (s,a aﬂ'(s a@)
YIS f(s,a,w)%

V™ (s, " 9 4
:a—fg”: dT(s|s)) W(als OGS0 r(s.a,m) (5.77)

(9f(s a,w)
Ow

5.4.4 Policy Learning Using Cross Entropy

The cross entropy method can be used instead of gradient ascent in order
to optimize a policy. An advantage of using the cross entropy method

over gradient ascent is that it does not get trapped in local maxima. This
benefit comes at a cost of greater time complexity. The cross entropy
method seeks to iteratively improve a policy by sampling actions from a
distribution centered around actions giving high rewards. The algorithm is

sketched pseudo-code 12.
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Algorithm 12  Policy Optimization Using the Cross Entropy Method

Require: State-action value function @(s, @) on continuous action
space A, state s, percentile K

1.0« 0,6 <1

2: repeat

3: A< a with a,sampled from Gaussian distribution My, 6?).

4:  Normalize action values A<« a, using & =tanh(a,) so that a,
lies between —1 and 1.

5 Qeqi:qi:Q(s’dl’)

6: Sort Q in descending order of action values and keep the top
K percentile of values I «sort(Q), ,k€[1,2,---kN],

: €
7. p< kN;ai

8. o%« varca

9: Keep the action that gave the best value g; that is, the action
corresponding to the first element of the sorted array /. a'< a,.

10: until y and a have stopped changing

11: Return myd9) = 4.

5.5 Actor-Critic Algorithms

Policy learning methods address a major shortcoming of value function-
based methods for reinforcement learning. Value function methods are
susceptible to the curse of dimensionality: as the dimensions of state and
action spaces grow, the number of state-action pairs grows exponentially.
Policy learning methods circumvent this problem by learning the policy
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directly using policy gradient coupled with a parametric representation of
the policy. This approach has one shortcoming: policy parameter updates
prescribed by policy gradient in equation 5.67 display a high variance due
to stochastic sampling of paths. In order to reduce the variance, a baseline
function b(s) is subtracted from Q(s, a) to get the update rule shown in
equation 5.78. Any function that depends only on state s can be used as a
permissible baseline b(s). As before, @ denotes policy function parameters.

V™ (s,)

00 on(als0) (5.78)
0«0 +a2d” (sls, );%(Q” (s,a)—b(s))

seS

0«—0+a

Subtracting a baseline function b(s) is permissible because of
equation 5.79:

on(als,0)

247 (slsy) 2, =75 b(s)

or(als,0)

=S (sl )b(5)

seS
aZaEAﬂ(als’g) (5.79)

= A" (sls,)b(s) 20

seS

- 3 (s, )bls) o5

se§S
=0
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If the baseline is chosen to be the value function in that state V*(s), the
parameter updates have minimum variance as shown in equation 5.80:

Variance =Y. s d"(s|5,) 2,4 7(s,@)[Q" (s,a) — b(s)]

minimize variance = >_ o d" (5| 5y) >, T(s,a)[Q" (s,a) —b(s)]=0
=2 s d (]8)) 2 pen T(s,0)07 (s,a) =22 s d"(5]50) 2,4 (S, a)b(s)
=2 s d (s]8)) 2 e T(s,0)07 (5,a) =22 s d"(5]5))b(5) 2,4 7(s,a)
=2 s d (S| s)IVT(s) =2 csd"(s]5,)b(5)

= V7 (s) = b(s) (5.0

Using the value function as a baseline poses a problem because it is
not available while we are still learning the policy z. Actor-critic methods
surmount this problem by keeping two agents: critic that is responsible
for evaluating the current policy to update the value function and actor
that updates the policy using the value function predicted by the critic as
a baseline using equation 5.68. Actor and critic learning needs to proceed
in lockstep because both are dependent on each other: actor relying on
critic to provide an updated baseline (value function) and critic relying
on actor to update the policy, which will be reflected in the updated value
function.

To summarize, in actor-critic methods, the actor optimizes the policy
using equation 5.81, which the critic uses to update the action value
function by minimizing the sum of square deviations of the action value
function from a given target, such as a TD target as shown in equation 5.82.
The actor uses the value function as a baseline to enhance numerical
stability of policy learning and depends on the critic to provide an estimate
of the value function, while the critic depends upon the actor to provide
the updated policy. The policy function used by the actor has been
parameterized with ¢, and the value function used by the critic has been
parameterized with v.

328



CHAPTER 5  REINFORCEMENT LEARNING THEORY
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%

5.5.1 Stochastic Gradient—Based
Actor-Critic Algorithms

Stochastic gradient-based actor-critic algorithms take an episode and
update actor and critic parameters based on stochastic gradient ascent/
descent using the episode. This gives the following parameter update
equations for the actor (equation 5.83) and critic (equation 5.84):

Policy 7 (als,0)
ologr(als,0)
¢ 00

(5.83)
0., <0, +co

new (Qﬂ (S’a)_‘fir (S))
Value function V* (s)=V"(s,v)
v (s,v) (5.84)

Voow < Vou + €, [T(S’,S,d)-f' yVe(s")-V~ (s)]a—
%
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5.5.2 Building a Trading Strategy

In this section, let us apply an actor-critic algorithm to build a trading
strategy for trading two stocks: Microsoft (MSFT) and Boeing (BA). The
actor-critic strategy’s performance is compared against the baseline buy-
and-hold strategy. The portfolio holding period is 1 month - or 21 trading
days. To make the comparison realistic, transaction cost of 0.1% of traded
notional amount is added. Each day in the 21-day period, the actor-

critic strategy has a chance to rebalance its two-stock portfolio, incurring
transaction cost in the process.

Both strategies are given $2 worth of capital. On the first day, $1 is
invested in each of the two stocks, assuming fractional shares. The buy-
and-hold strategy holds this portfolio for 21 days and sells it on the 22nd
day, booking a PNL due to price change and transaction cost. The actor-
critic strategy rebalances the portfolio each day, incurring daily PNL and
transaction costs. We also impose a no-shorting constraint that ensures
position size does not become negative.

Details regarding the construction of the actor-critic strategy,
training, testing, and comparison against the buy-and-hold strategy are
provided below.

1. Daily log returns are computed using closing prices

for each stock as shown in equation 5.85:

r, =log it (5.85)

t-1

2. State of the actor-critic strategy is comprised of
seven components:

— Variance ratio of daily log returns. This is
calculated by computing lagged variance of log
returns over the last 21 days for each stock using
equation 5.86:
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t
Zk:t—ﬂrk

21

2 _ Z;c:t—Zl(rk —H )2

21

I8 =
(5.86)

Variance ratio is computed by dividing the
variance calculated for a day by the variance
calculated on the previous day as shown in
equation 5.87:

L (5.87)

This has two values for each day, corresponding
to each stock in the portfolio.

Correlation coefficient p, of log returns for the
stocks in the portfolio. Because we have two
stocks, this is a scalar field calculated using
equation 5.88, where r; and 7, refer to log returns
for the two stocks on day k:

Z;:t—zl(rk —H )(Fk - ljt)

P, = — (5.88)
21yo, 0,

Two-day log return for each stock calculated
using equation 5.89:

P
L (5.89)
sz

t

R, =log
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This quantity has two components, one for
each stock.

— Relative weights of each of the two stocks. The

weights sum to 1. Due to the no-shorting con-
straint, the weights must be positive.

Action is defined as the new portfolio weights.

To enforce the no-shorting constraint and the
requirement that weights add to 1, define an actor
network as a softmax layer with two outputs as the
final layer.

Reward is defined as shown in equation 5.90 for

a non-terminal time step. This consists of daily
PNL corresponding to portfolio rebalancing and
transaction costs. Terminal reward on the 21st day
is the value of the portfolio computed using closing
prices on that day and transaction costs involved
in liquidating the portfolio, as shown in equation
5.91. As before, P,and P. refer to the closing prices
of the two stocks. AN; and AN, refer to the shares
transacted for the two stock positions at time t:

VVt :(R_R—I)AN1+(E_E—I)AN2_5W(RAN1+ISL‘AN2)
w, :(Pt_Pt‘—l)AN1+(ﬁt_pt—l)ANZ_étr(NlPt—i_szt)

Transaction costs are assumed to be 0.1% of the
traded amount.

75% of data is used for training and remaining 25%
for testing. Training data runs from year 2000 to the
beginning of 2016, and testing data runs from 2016
to 2022.

(5.90)

(5.91)
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During training, each day the actor-critic strategy
interacts with the environment, rebalancing its
holdings as prescribed by the actor and earning

areward.
Discount factor y is 1.

During testing, the two strategies begin with the
same portfolio value. After 21 days, their PNL

is recorded. The two strategies are then traded
beginning from the 22nd day to simulate real-world

conditions.

Strategy PNL is added. Profits are not reinvested - a
strategy that can boost returns for winners.

Total PNL for the two strategies is plotted in

Figure 5-10. As can be seen, the actor-critic
strategy’s final PNL of $3.72 is higher than that of the
buy-and-hold strategy’s final PNL of $3.35.

The actor-critic strategy has a higher annualized
Sharpe ratio of 1.4339 as compared with 1.0115
for the buy-and-hold strategy. The Sharpe ratio
measures risk-adjusted average returns.

The actor-critic strategy outperforms buy-and-hold
during COVID downturn, incurring a smaller loss as
seen from Figure 5-10.
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—— Actor-Critic PNL
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Figure 5-10. Cumulative PNL for Actor-Critic and Buy-and-Hold
Strategies on the Testing Dataset

The code for this example is shown in Listing 5-14. Actual outputs for
the actor-critic strategy may very slightly from those shown due to random
weight initializers for network parameters.

Listing 5-14. Actor-Critic Trading Strategy Against the Buy-and-
Hold Strategy

import os
from typing import List, Tuple

import matplotlib.pyplot as plt

import pandas as pd
import seaborn as sns

1

2

3

4

5 import numpy as np
6

7

8 import tensorflow as tf
9
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from src.learner.ActorCriticlLearner import

AdvantageActorCriticlearner

from src.lib
from src.lib
from src.lib
from src.lib

.ActorCriticNetwork import ACNetwork
.Emulator import StateAndRewardEmulator
.Episode import Episode

.Sample import Sample

class PortfolioEmulator(StateAndRewardEmulator):
def init (self, dfs, var, covar, trx cost, price

col, return col, max_days, nstocks):

self.dfs = dfs
self.nStock = nstocks
self.var = var
self.covar = covar
self.iVar = 0
self.iCvar = nstocks

self.

iRet = nstocks + nstocks*(nstocks - 1) // 2

self.ilWeight = self.iRet + nstocks
self.priceCol = price col
self.retCol = return col
self.trxCost = trx_cost
self.maxDays = max_days

self. begin = 0

self. index = 0

self. state = None

def step(self, state, action):

pass

def setInitialState(self, state):

self

._state = state
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def

def

def

setBeginIndex(self, value):
self. begin = value
self. index = value

getReward(self, state, action, index, begin):
weights = state[self.ilWeight:]
begin price = np.array([df.loc[begin, self.
priceCol] for df in self.dfs])
price = np.array([df.loc[index, self.priceCol]
for df in self.dfs])
if index - begin == self.maxDays:
nshares = np.divide(weights, begin price) *
self.nStock
pnl = (1 - self.trxCost) * np.sum(nshares * price)
else:
new_position = action
pos_change = new_position - weights
nshares = np.divide(pos_change, begin price)
* self.nStock
price change = np.array(
[df.loc[index, self.priceCol] -
df.loc[index - 1, self.priceCol] for df
in self.dfs])
pnl = np.sum(price change * nshares) - self.
trxCost * np.sum(nshares * price)

return pnl

tfEnvStep(self, action: tf.Tensor) -> List[tf.

Tensor]:

self. index += 1
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index = self. index
action = tf.squeeze(action)
weights = self. state[self.ilWeight:]
price = [df.loc[index, self.priceCol] for df in
self.dfs]
done = False
if index - self. begin == self.maxDays:
pnl = (1 - self.trxCost) * tf.reduce_
sum(weights * price)
self. begin += 1
self. index = self. begin
done = True
else:
new_position = action
pos_change = new_position - weights
price change = [df.loc[index, self.
priceCol] - df.loc[index - 1, self.priceCol]
for df in self.dfs]
pnl = tf.reduce sum(price change * pos_
change) - self.trxCost * tf.reduce sum(pos_
change * price)

new cvar = self.covar[index, :]

new var = self.var[index, :]

new ret = [df.loc[index, self.retCol] for df in
self.dfs]

next _state = tf.concat((new var, new cvar, new_

ret, action), axis=0)
self. state = next state
return [next _state, pnl, done]
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88 class PortOptim(object):

89 def init (self, stocks, inputdir, transaction_
cost, training data=0.75):

90 self.stocks = stocks

91 self.transactionCost = transaction cost

92 self.nStock = len(stocks)

93 self.holdingPeriod = 21

94 self.dfs = []

95 self.priceCol = "Adj Close"

96 self.dateCol = "Date"

97 self.returnCol = "daily return”

98

99 for stock in stocks:

100 filename = os.path.join(inputdir, "%s.csv"
% stock)

101 df = pd.read csv(filename, parse dates=[self.
dateCol])

102 df = self.calculateReturns(df)

103 self.dfs.append(df)

104

105 dates = self.dfs[0].loc[:, self.dateCol]

106 self.nDate = dates.shape[0]

107 for i in range(1, self.nStock):

108 self.dfs[i] = pd.merge(dates, self.dfs[i],
on=[self.dateCol], how="left")

109 self.nTrain = int(training data * self.dfs[0].

shape[0])
110 self.var, self.covar = self.calculateCovar()
111 self.emulator = PortfolioEmulator(self.dfs, self.

var, self.covar, self.transactionCost,
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112 self.priceCol,
self.returnCol,
self.
holdingPeriod,
self.nStock)

113 self.acnet = self.createActorCritic()

114 self.aclearner = AdvantageActorCriticlearner(sel

f.acnet, discrete actions=False)

115

116 def calculateReturns(self, df: pd.DataFrame) ->

pd.DataFrame:

117 # 2 day return

118 price = df.loc[:, self.priceCol].values

119 df.loc[:, self.returnCol] = 0.0

120 logPrice = np.log(price)

121 logPriceDiff = logPrice[2:] - logPrice[0:-2]

122 df.loc[3:, self.returnCol] = logPriceDiff[0:-1]

123 return df

124

125 def calculateCovar(self) -> Tuple[np.ndarray,

np.ndarray]:

126 dfs = self.dfs

127 variances = np.zeros((self.nDate, self.nStock),

dtype=np.float32)

128

129 for index, df in enumerate(dfs):

130 ret = df.loc[:, self.returnCol].values

131 var = variances[:, index]

132 sum val = np.sum(ret[2:2+self.holdingPeriod])

133 sumsq_val = np.sum(ret[2:2+self.

holdingPeriod] * ret[2:2+self.holdingPeriod])
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mean_val = sum_val / self.holdingPeriod
var[2+self.holdingPeriod-1] = sumsq_val /

self.holdingPeriod - mean_val * mean_val

for i in range(2+self.holdingPeriod, var.
shape[0]):

sum val += ret[i] - ret[i-self.
holdingPeriod]

sumsq_val += ret[i] * ret[i] - ret[i-
self.holdingPeriod] * ret[i-self.
holdingPeriod]

mean_val = sum val / self.holdingPeriod
var[i] = sumsq_val / self.holdingPeriod -
mean_val * mean_val

ncvar = self.nStock * (self.nStock - 1) // 2
covar = np.zeros((self.nDate, ncvar), dtype=np.
float32)

count = 0

for i1 in range(self.nStock):
retl = self.dfs[i1].loc[:, self.
returnCol].values
for j in range(i1l+1, self.nStock):

ret2 = self.dfs[j].loc[:, self.
returnCol].values
cvar = covar[:, count]
for i in range(2 + self.holdingPeriod,
cvar.shape[0]):
begin = 1 - self.holdingPeriod
sum_vall = np.sum(reti[begin:begin +
self.holdingPeriod])
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sum_val2 = np.sum(ret2[begin:begin +
self.holdingPeriod])

mean_vall = sum_val1l / self.
holdingPeriod

mean_val2 = sum_val2 / self.
holdingPeriod

sumprod = np.sum((ret1[begin:i] -
mean_vall) * (ret2[begin:i] -
mean_val2))

cvar[i] = sumprod / (self.
holdingPeriod * variances[i, i1] *
variances[i, j])

count += 1

# calculate variance ratio
variances[2+self.holdingPeriod+1:-1, :] =
np.divide(variances[2+self.
holdingPeriod+1:-1, :],
variances[2+self.
holdingPeriod:-2, :])

return variances, covar

createActorCritic(self):

value network = tf.keras.models.Sequential()

# state: variance, cvar, ret, stock weights

ninp = self.nStock + self.nStock*(self.
nStock-1)//2 + self.nStock + self.nStock

value network.add(tf.keras.layers.Dense(4, input_

shape=(ninp,)))
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173 value network.add(tf.keras.layers.Dense(10,
activation="relu"))

174 value network.add(tf.keras.layers.Dense(1))

175

176 anet = tf.keras.models.Sequential()

177 anet.add(tf.keras.layers.Dense(4, input_
shape=(ninp,)))

178 anet.add(tf.keras.layers.Dense(10,
activation="relu"))

179 anet.add(tf.keras.layers.Dense(self.nStock,
activation="sigmoid"))

180 anet.add(tf.keras.layers.Softmax())

181

182 actor optim = tf.keras.optimizers.Adam()

183 critic optim = tf.keras.optimizers.Adam()

184

185 return ACNetwork(anet, value network, self.

emulator, 1.0, self.holdingPeriod, actor optim,
critic_optim)

186

187 def randomAction(self):

188 wts = np.random.random(self.nStock)

189 return np.divide(wts, wts.sum())

190

191 def getInitialWeights(self, day):

192 wts = [1.0/df.loc[day, self.priceCol] for df in
self.dfs]

193 return np.divide(wts, np.sum(wts))

194

195 def generateTrainingEpisodes(self):

196 episodes = []
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samples = [None]
begin = 0

for i in range(2 + self.holdingPeriod, self.
nTrain - self.holdingPeriod):
curr weights = self.getInitialWeights(begin)
rets = [df.loc[i, self.returnCol] for df in
self.dfs]
state = np.concatenate((self.var[i, :], self.
covar[i, :], rets, curr weights))
action = self.randomAction()
reward = self.emulator.getReward(state,

action, i, begin)

if i - begin == self.holdingPeriod:
begin = 1

samples[0] = Sample(state, action,

reward, None)

episode = Episode(samples)

episodes.append(episode)

return episodes

train(self):

# create episodes for training

episodes = self.generateTrainingEpisodes()
self.emulator.setBeginIndex(2+self.holdingPeriod)
self.aclearner.fit(episodes)

actorCriticPnl(self, day):
pnl = -self.nStock
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222 wts = np.full(self.nStock, 1.0/self.nStock,
dtype=np.float32)
223 for i in range(day+1, day+self.holdingPeriod+1):
224 new cvar = self.covar[i-1, :]
225 new var = self.var[i-1, :]
226 new ret = [df.loc[i-1, self.returnCol] for df
in self.dfs]
227 state = np.concatenate((new var, new cvar,
new ret, wts))
228 vals = self.aclearner.predict(state)
229 abs_change = np.sum(np.abs(wts - vals[0]))
230 if abs_change > 0.1:
231 wts[:] = vals[o0]
232 pnl += self.emulator.getReward(state,
wts, i, day)
233 return pnl
234
235 def buyAndHoldPnl(self, day):
236 nstocks = [1.0 / df.loc[day, self.priceCol] for
df in self.dfs]
237 price = [df.loc[day+self.holdingPeriod, self.
priceCol] for df in self.dfs]
238 return -self.nStock + (1 - self.transactionCost)
* np.sum(np.multiply(price, nstocks))
239
240 def test(self):
241 pnl data = []
242 pnl bh data = []
243 pnl diff = []
244 dates = []
245 self.emulator.setBeginIndex(self.nTrain)
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246 for i in range(self.nTrain, self.nDate-self.
holdingPeriod-2, self.holdingPeriod):

247 pnl = self.actorCriticPnl(i)

248 pnl bh = self.buyAndHoldPnl(i)

249 pnl diff.append(pnl - pnl_bh)

250 pnl data.append(pnl)

251 pnl bh data.append(pnl_bh)

252 dates.append(self.dfs[0].loc[i, self.

dateCol])

253

254

255 perf df = pd.DataFrame(data={"Actor-Critic PNL":
np.cumsum(pnl data),

256 "Buy-and-Hold PNL":

np.cumsum(pnl_
bh _data)},

257 index=np.array(dates))

258 final pnl = np.array([np.sum(pnl data),
np.sum(pnl_bh data)])

259 mean_pnl = np.array([np.mean(pnl data),
np.mean(pnl bh data)])

260 sd_pnl = np.array([np.std(pnl_data), np.std(pnl_
bh data)])

261 sT = np.sqrt(252.0/self.holdingPeriod) * mean_
pnl/sd _pnl

262 print("Actor-Critic: final PNL: %f, SR: %f" %
(final pnl[o], sr[o0]))

263 print("Buy-and-hold: final PNL: %f, SR: %f" %
(final pnl[1], sr[1]))

264 sns.lineplot(data=perf df)

265 plt.grid(True)
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266 plt.show()

267

268

269 if _name_ == " main_":

270 stocks = ["MSFT", "BA"]

271 inputdir = r"C:\prog\cygwin\home\samit OOO\RLPy\
data\stocks"

272 portopt = PortOptim(stocks, inputdir, 0.001)

273 portopt.train()

274 portopt.test()

5.5.3 Natural Actor-Critic Algorithms

Natural actor-critic algorithms address the problem of slow convergence
witnessed by many actor-critic algorithms that are based on stochastic
gradient descent. Gradient descent has a linear convergence rate. This can
be improved to quadratic convergence by using a Newton step as shown in

o’f

equation 5.92 that uses the Hessian —=-.
w

Natural actor-critic algorithms

are motivated by using a Newton step for updating the parameters instead
of relying upon gradient descent.

mwinf(w)

_[yfjlgi (5.92)

ow?* ) ow

w,, <w

nhew

More formally, natural gradient can be derived by minimizing the sum
of square deviations of the actual advantage function Q"(s, a) — V*(s) from
that predicted by the parameterized advantage function wy,, for all states.
The proofis illustrated in equation 5.94. We have also used the fact that the
advantage function is compatible as defined in equation 5.76. Using the
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parameterization for the advantage function, we can write equation 5.93,
which has been used in the derivation shown in equation 5.94:

of (s,a,w) _ on(s,a,0) 1

ow “ 00  n(s,a,0)

(5.93)
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G(6) in equation 5.94 is the Fisher information matrix.

5.5.4 Cross Entropy-Based
Actor-Critic Algorithms

A cross entropy-based actor-critic algorithm uses the cross entropy
method illustrated in the section “Policy Learning Using Cross Entropy”

to train a deterministic policy, called z¢gy. To train zcgy,, it uses the existing
state-action value function Q(s, a, 6,) in cross entropy optimization. The
actor uses the cross entropy policy z¢, to train the deterministic policy
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(s, 0) using supervised learning using equation 5.95. The critic uses 7z, to
update the parameters 6, of the state-action value function Q(s, a, 6,) using
equation 5.96:

min[nCEM (s)-=(s,0, )]2

(5.95)
01 =02 +1, [ 7 (5)~ (5,0, )]M

. ’ ' ' - 2

II})IIII:I‘(S 1$,a)+YQ(S", gy (8'),6, )—Q(s,a,@c)}

5 0 (5.96)
0" =0 +a, [r(s’,s,a)+yQ(s',7rCEM( $),0,)-Q(s,a,0 )]%

Instead of relying on an e-greedy policy to construct a target value for

the critic, the cross entropy-guided critic uses 7z¢, - the policy derived
using the cross entropy method. To ensure stability of the learning process,
one has to use a replay buffer and a target network in the critic, as was
described in the section “Double Q-Learning.”
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CHAPTER 6

Recent RL Algorithms

Reinforcement learning has taken some of its biggest strides in the past
few years, with innovative algorithms paving the way for reinforcement
learning to beat human opponents at many games and creating new
performance benchmarks. This chapter describes the recent advances in
reinforcement learning algorithm development, explaining the underlying
theory and elucidating it with additional examples. In doing so, it provides
valuable insights into the theory and implementation of these algorithms
and a window into using these algorithms in practical problems.

6.1 Double Deep Q-Network: DDQON

DDQN was proposed in 2016 by H. Hasselt, A. Guez, and D. Silver in a
paper titled “Deep Reinforcement Learning with Double Q-Learning.”
Q-learning suffers from overestimation of correction in stochastic gradient
descent. This overestimation occurs because the same Q-network is
employed for estimating the optimum action using a greedy approach
and evaluating the value function. If one action value becomes larger than
other action values for a specific state, a greedy policy will pick that action,
and parameter updates will further increase the state-action value. The
DDQN algorithm handles the problem of overestimation by using double
Q-learning. This algorithm generalizes double Q-learning by using deep
Q-networks.
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A deep Q-network represents the action value function as Q(s, a, 6),
where 6 is a set of parameters to be learned by the algorithm. The
Q-learning algorithm updates the parameter values using a TD(0) (or
TD(n)) target, as shown in equation 6.1:

0«0 +oc(Qm,get -Q(s,a, ,9))V9Q(st a,,0)

Qtarget = r(SHl ’st ’at ) + yQ(SHl ,argmaX Q(SHI ’a'e)’e) (61)

If there is an overestimation in Q(s;, ,, @, ) making its action value
bigger than that of other action values in that state, argmax,Q(s,,,,a,0)
will select that action, overestimating 6. Overestimated 6 will drive further
overestimation in action values in subsequent iterations.

Let us numerically establish the occurrence of overestimation in
Q-learning. Let us consider a state s with equal action values for all actions.
This implies that the state value function V(s) is equal to the state-action
value function Q(s, a) for that state, as shown in equation 6.2. We denote
the actual (true) action value function as Q(s, a) and estimated action value

function as é(s,a):
Q(s,a)=qforsomesandallaec.A
=>V(s)=2,..7(s5,a)Q(s,a) (6.2)
=qZ,.,7(s,a)=q=Q(s,a)
Let us assume that estimation errors e,(s) are unbiased (i.e., have a

zero mean) and are independent and identically distributed as a uniform
random number in the range [—1, 1], as shown in equation 6.3:

. (s)= é(s,a)—Q(s,a) = é(s,a)—q

e, (5)~U[11] 9

Even when individual errors ¢,(s) are small, E [maxa Q(s,a) - V(s)]
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can be large and close to 1. This can be seen from equation 6.4.

-1 . .
N can be close to 1 for large action spaces with large m, even when
m+

individual errors are small. This explains why Q-learning is prone to

overestimation errors:
m;axQ(s,a) -V(s)= maxe, (s)

m =number of actions
g,(s)~U[-11]

E[mfxé(s,a)—V(s)J = E[maaxga (s)]

Ple,(s)<x]= 1+Tx for uniformly distributed ¢, (s)

(6.4)

= P[maxga (s)< x} = P[gaj (s)= x]HPI:gak (s)<x]

“ k#j

m—1

= dx(”_xJ

2

1 m-1

= E[maxga (s)} = Ix(“—xj dx=""1

a b 2 m+1

Estimation error is directly related to the correction applied by
Q-learning, as shown in equation 6.5:
AG= a[r+ ymaxQ(s,,,a,0)-V(s, )}
:a[r+ymfxé(sm,a,@)—(rntyV(sM))J (65)

o maxQ(s,,0,0)-V(s..) |

= aymaxe, ($1)

Equation 6.4 shows that expected values of correction used in
Q-learning can be much larger than individual errors, and equation 6.5
shows that estimation errors result in overestimation of parameters.
We can also show that individual errors calculated by Q-learning are
susceptible to over-correction if some action value is overestimated.
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Double Q-learning solves the problem of overestimation by using
two networks: a learned network that is used for action evaluation and
update of weights and a target network that is updated only periodically
and is used for constructing the target value used in gradient descent. Let
us denote the parameters of the learned network by ¢ and the parameters
of target network by -, with the negative superscript indicating that the
target network parameters are updated with a lag. The update rule for
target and learned network parameters followed by double Q-learning is
illustrated in equation 6.6:

0 <—9+a[(r+yQ(sm,argmax Q(sHl,a,B),O‘)j—Q(st,at,0)}VGQ(st,a,,9)

0~ <0 with a delay, e.g.if mod T, 0 (6.6)

eriod

Instead of using a periodic update of target network parameters
from learned network parameters as shown in equation 6.6, one can
alternatively use an update rule shown in equation 6.7 where the target
parameters are updated periodically from learned parameters with a
weight. = 0.9 is commonly used in this update:

0« BO+(1-B)A0
A=l (6.7)
AO :a{(r+yQ(sm,argmax Q(sHl,a,Q),O))—Q(st,a,,e)}VQQ(st,a,,9)

Since the target network is updated periodically, any overestimates
coming from parameter update do not immediately affect the target value
function. To establish this numerically, let us examine the error for the
case where all action values in a state are equal, as shown in equation 6.8:

€, =Q(s[,argmaxQ(st,a,9),0)—V(s)

:Q(st,a,e')—V(s) (68)
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Since Q(s, a,07) is the action value network with an old value of 6,
€, is arandom number from a uniform distribution [—1, 1] according to
the assumed distribution for errors. Calculating the expected value of
this error, we see that it has a mean of zero and a standard deviation of
1/3 as shown in equation 6.9. This shows that Q-learning is able to avoid
overestimates from propagating. While the original error ¢, was uniformly
distributed with mean 0 and standard deviation of 1/~/3 , the expected
error propagated when using the double Q-network has mean 0 and a
standard deviation of 1/3:

€0 = Q(S,,argmax Q(S,,a,H),O)—V(s) ~Q(s,,07)-V(s)

E[Q(s,,.,@')—V(s)]:jx(Hijdx=0 (6.9)

-1

00 = {2 -]

-1

In order to ensure that the mini-batch of samples used to perform
gradient descent are uncorrelated, DDQN uses a replay buffer of
experiences. The DDQN algorithm is shown in pseudo-code 13.

6.2 Balancing a Cartpole Using DDQN

Let us apply double deep Q-network to solve the cartpole balancing problem
described in the last chapter. The only code change required is to instantiate
and use a DDQN agent instead of a DQN agent as shown in Listing 6-1.

Listing 6-1. Balancing a Cartpole Using DDQN

1 import numpy as np

2 import tensorflow as tf

3  from src.learner.DDQN import DDQN
4
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5 tf.random.set seed(10)
6 np.random.seed(10)
7
8
9 class CartpoleVODDQN(CarpoleVODQN):
10 def createAgent(self):
11 replay buf = MostRecentReplayBuffer(2 * self.
minibatchSize)
12 return DDON(self.qfunc, self.emulator, self.
nfeatures, self.nactions,
13 replay buffer=replay buf, discount_
factor=self.discountFactor,
14 minibatch_size=20, epochs training=20,
sync_period=2)
15
16
17 if _name_ == " main_":
18 cartpole = CartpoleVODDQN()
19 cartpole.balance()

Algorithm 13  Double Deep Q-Network Learning

Require: Action value function parameterized by 0. (s, a,0), replay
buffer B, batch size N, update frequency N, discount factor y, and
learning rate a

1: Create a target network (s, a,6) by copying the
parameters 0~ « 6.

2: for each episode in episodes do

3: Initialize the starting state s, using the episode’s starting state.
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count <0
foreacht=0; 1; 2; --- in the episode do
count < count +1

Select action a; using an e-greedy policy: with probability
€, a;1s a random action sampled from A with probability
1 — ¢, a, =argmax,Q(s,,a,0).

Take action a;, observe r; and transition to state s;, ;.
Add (s, a, r, St 1) to replay buffer 5.

Sample a random mini-batch of size N, from replay
buffer B.

descent < 0
for each (s, a, r, §) in the mini-batch do

Calculate the action
a = arg max, (s, a,0).a" =argmax,Q(s,a,0)

Take action a*, observe reward r, and transition to
state s*.

Add (s, &, r*, s*) to replay buffer 5.
Calculate target y = r + yQ(s*,a*,6") if sis non-
terminal or y = rif sis terminal.

descent < descent +(y — Q(s,a,0))V,Q(s, a,6)

end for

descent
descent <

b

0 — 0 + a descent
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21: 0~ < 0 if count mod N, =0
22: end for
23: end for

Results show that most cartpole balancing episodes reach the
maximum length of 50 samples using the DDQN agent, outperforming the

random agent.

6.3 Dueling Double Deep Q-Network

Dueling DDQN was introduced by Wang et al. (2016) in a paper titled
“Dueling Network Architectures for Deep Reinforcement Learning.” This
algorithm uses a new network architecture for calculating the action value
function Q(s, @) by simultaneously calculating the state value function V(s)
and advantage function A(s, f) = Q(s, t) — V(s). The action value function is
computed by adding the state value function and advantage function.

For a deterministic optimum policy, the value function is equal to the
action value function. This can be seen from equation 6.10:

Q*(s,a)= E[Zjioytrl ] =E, [r +YE o) [Qn (5"“,)]}
=E, [r +yV” (s’)]
Vi(s)= E, s [Q” (S'“)]

6.10
optimal Q" (s,a) =maxQ” (s,a) with a =argmax Q" (s,a) (6.10)

= V"(s)=Q’(s,a)for optimal,deterministic policy
= A’(s,a)=0

Dueling DDQN uses a network with a shared section for calculating

the value function and advantage function and a section that is not shared
between these two value functions. This can be written explicitly as shown
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in equation 6.11. Upon convergence to an optimum policy, advantage

A(s, a, 0, ) will be 0.  denotes the common parameters between value
function and advantage function networks.  and a denote the non-shared
parameters of value function and advantage function networks:

Q(s,a,0,a,8)=V(s,0,8)+A(s,a,0,a) (6.11)

In order to enhance the stability of the learning process, the authors
propose two alternatives A1 and A2 for calculating the advantage function
as shown in equation 6.12:

Al: Q(s,a,@,a,ﬂ):V(s,G,ﬂ)+(A(s,a,9,a)—maxA(s,a’,Q,a))

1 ] (6.12)

A2:Q(s,a,0,a,B) =V(s,9,ﬁ)+(A(s,a,9,a)—mﬁa,A(s,a”e,a)

6.4 Noisy Networks

Noisy networks for exploration were proposed in a paper titled “Noisy
Networks for Exploration” in 2017 by M. Fortunato et al. The authors
proposed adding noise to weights of a deep learning agent to facilitate
exploration of state space. The parameters of the noise-generating process
are learned along with network weights using gradient descent. Using this
approach, they found that a reinforcement learning agent can surpass
humans in playing Atari games.

Reinforcement learning presents an exploration vs. exploitation
dilemma. Exploiting the information learned so far would lead the learner
to take steps found to yield greatest rewards in past experiences. However,
it could also lead to the learner getting stuck in local optima because it
did not explore the entire state-action space. Exploring the state-action
space requires the learner to visit the previously unexplored state-action
space in order to get a more complete view of the rewards available,
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often taking actions that appear to be suboptimal because the estimate of
rewards is incomplete due to insufficient exploration of the state-action
space. Traditional approaches to dealing with this dilemma include using
an e-greedy policy and entropy regularization. An e-greedy policy resorts
to exploitation, but occasionally switches to exploration by selecting a
random action with some specified probability. Entropy regularization
adds an entropy term to the objective function of discounted future
rewards in order to visit unexplored regions of the state-action space.
Entropy H,, of a policy is given by equation 6.13:

zﬂ log( (:'at))
—-E,_, [log(”(st’“‘)ﬂ

(6.13)

Entropy of a policy is maximum when probabilities of taking different
actions in a state are equal, that is, when z(s, a,) = n(s;) for all a,. The
discounted reward function under entropy regularization is modified
to include the entropy term, as shown in equation 6.14, and is called
entropy-augmented discounted rewards, J;,, . 7 is a weighing factor
that determines the relative importance of the entropy regularization
term. When a learner has explored only a few action-state combinations,
probabilities of explored actions are non-zero, while the remaining actions
have zero probability resulting in a low entropy. This decreases the entropy
contribution to the discounted reward for that action-state combination,
favoring exploration of other actions. Policy gradient for entropy-
regularized discounted rewards is shown in equation 6.15:

]ENT 27’ [r +TH ( ):| (6.14)

a]ENT 71' 0 ,0 OH, x
Zd s|s, Z{ n(gl@s )+r 89(8)}1 (s,a) (6.15)

seS acA
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In many applications, an e-greedy policy and an entropy regularization
approach result in small changes to parameters that do not result in
efficient exploration of state-action space. Noisy networks address this
shortcoming by adding a noise generated by a parameterized process to
network weights and learning the network weights and noise parameters
using gradient descent.

6.5 Deterministic Policy Gradient

In the formulation of the policy gradient theorem in equation 5.67, the
policy is stochastic. Stochastic policy prescribes a probability of taking an
action in a given state, z(a|s, 6), where 6 is the set of policy parameters. For
continuous action spaces, this means we must discretize the action space
or work with integrals over the action space. Both of these alternatives
have disadvantages. Discretizing a continuous action space makes the
approach vulnerable to the curse of dimensionality for high-dimensional
action spaces. In addition, one must discretize the action space at a fine
enough level to be able to discriminate between different actions of
interest. Integrating over a continuous action space is often intractable,
necessitating the use of approximate numerical techniques. In practice,
one often discretizes a continuous action space and uses random sampling
with probability prescribed by the stochastic policy to select the next
action. Many practical problems are modeled more effectively by using a
continuous action space with deterministic policy.

In 2014, D. Silver et al. published a paper titled “Deterministic Policy
Gradient Algorithms” in which they proposed an algorithm for learning a
deterministic policy over continuous action spaces using policy gradient.
For a stochastic policy, equation 6.16 shows the policy gradient theorem
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(following directly from equation 5.67). J(7,) is the performance function
used in policy gradient:

( 7r9 Zdﬂ ds,) Zaﬂ(als'G)Q”(s,a)

s aca 00 (6.16)
=E_ . [Ve log(ﬂ(a|s, 9))Q” (s, a)}

In order to formulate an equation for deterministic policy gradient,
let us examine how an off-policy actor-critic algorithm updates network
parameters in the next subsection.

6.5.1 Off-Policy Actor-Critic Algorithm

Policy gradient can be estimated off-policy in an actor-critic algorithm. We
use a behavior policy, f, to generate samples over the state distribution
and use it to evaluate the value function of the target policy. For
continuous action space, the reward function used by the actor is given by
equation 6.17:

5(75) Hd s)my(als)Q” (s,a)dads (6.17)

A derivative of the reward function is used to update the policy
function parameters using a stochastic gradient ascent approach as shown
in equation 6.18. This is the update performed by the actor. Q"(s, a) is
not known and is replaced by the advantage function calculated using
the value function V,(s) from the critic. Policy f,(al s) is used to generate
episodes, and we are trying to learn the target policy z,(al s):

Vols(my)= :[:[Vgne (als)Q" (s,a)dads

L O R AT

0«0,+av,],(m,)
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The critic updates the parameters ¢ of the value function using
supervised learning. The target can be constructed using TD(0) expansion,
as shown in equation 6.19. Like in actor updates, we have to use the weight

,(als)
Bo (als )

S, which is different from the target policy z:

to account for the fact that we are sampling from behavior policy

¢ =argmin, 2{%(1’4—;/% (5'))_V¢(s)}

o(al ,
5 {Zezzlz;(rw%(s ))—Vm)} (6.19)
p<—p+a,dV,V,(s)

6.5.2 Deterministic Policy Gradient Theorem

For deterministic policy 7, the reward function J(r,) can be written as
shown in equation 6.20. Because the policy is deterministic, there is no
inner integral over the action space. Taking the derivative of the reward
function with respect to 4 gives the deterministic policy gradient:

J(7y)= :[d” (s)Q" (5,7, (s))ds
Vej(ﬂe):.[d” ($)Vomy (s)V,Q" (5,7, (s5))ds (6.20)

=E_ oo [ Vo7 (5)V,Q" (5,7, (s)) ]
Equation 6.20 can be used to derive gradient ascent-based parameter

update for the actor to formulate an actor-critic algorithm based on

deterministic policy.
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6.6 Trust Region Policy Optimization: TRPO

Trust region policy optimization optimizes a policy using policy iteration,
with the actual implementation relying on Monte Carlo samples from

the policy. It ensures guaranteed monotonic improvement of the policy
with each iteration. This algorithm was proposed by J. Schulman et al. in a
paper titled “Trust Region Policy Optimization” in 2015.

Let 7 represent a stochastic policy 7 : Sx.A —[0,1]. As before, J()
denotes the expected discounted reward. We can write the expected
discounted reward of policy z in terms of expected discounted reward of
another stochastic policy 7 as shown in equation 6.21. The proof of this
proposition is shown in equation 6.22:

](ﬂ-) = E‘so~p0,at~7r,st~P(s|sH ,a;) I:ytr(st ):‘

- (6.21)
J(#)= (=) + E, [z S A (s >}
A7(s,,8,) = Elr(s,)+ 7V (5,,)-V*(5,)]
= Ea~7?,so |:i7tAﬂ (Sz'at ):| = Ea~7z |:i7/t (r(st)+7/V” (sm)_vﬂ (Sz)):|
-E,,. {gwr(wgyfw(sm)—gyfw(st)} 62

= Ea~ﬁ,su |:iytr(sz ) -V (SO ):|
=J(#)-J(n)
=J(7)=J(n)+E,_; |:i7[Aﬁ (Sz'at ):|

t=0

Expected discounted reward of policy 7 can be rewritten as a
summation over states, as shown in equation 6.24. p7 denotes the
discounted state visitation frequency as shown in equation 6.23. From
equation 6.24, one can observe that a policy update 7 — 7 improves the
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expected discounted reward if the expected advantage Zﬁ (als)A™(s,a) is
acA
non-negative at every state:

p* =P(s,)+yP(s|a, ~7)+y*P(s,|a, ~7)+- (6.23)

J(7) =T Zp (s) Zﬂ' als)A (6.24)

seS acA

In order to render equation 6.24 amenable to use in updating initial
policy z to improved policy 7 with higher expected discounted reward,
it can be approximated as shown in equation 6.25 using discounted state
visitation frequency p". However, this approximation is only valid for small
changes to policy 7= — 7 . Schulman et al. proved the bound on expected
discounted reward of improved policy J(77) as shown in equation 6.26,
which is the foundation of the trust region policy optimization algorithm.
As before, 7 denotes the updated policy. Dy, (7,7 ) denotes the Kullback-
Leibler divergence between the old policy 7 and the new policy 7 :

(7)) =1(x)+ Xp7 (s) S(ais)a (s.e)

seS acA 625
Y0 (5) S(ak) A" (s.0) (6:29

(1-y)
e =max A" (s,a) (6.26)

s,a

D™ (m,7)= max Dy, (n(.|s) | 7?(.|s))

= max ¥ 7(als) log[ w(ak) ]

acA (a|s)
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A proof of the lower bound on expected discounted reward J(7)
is shown in equation 6.26. We use the fact that E, . ,A"(s,a) = 0. Let us
consider a policy 7 of the form 7 =(1-a)z +an . This implies that
P(a#a)=a .Inthe last step, ¢ has been used to denote o? and Dy,
denotes the Kullback-Leibler divergence.

E, |:§:}/[A” (st ', ):| =E; : ar |iiyt (A” (s.,a,)-A"(s,.a, )):|

t=0

= P((l # d)Ed~7f,a~7r |:§:7[ (Aﬂ (sz ’dt)_ A" (St ', )):|

=0

< P(a * d)Eu~ﬂ |:i}’t (A;Z (st,at)+A” (st'at)):l

t=0

<P(a+#a)E,, {i}/’ ZmSax A" (s,a)}

t=0

(6.27)

- 2
=P(a+ a)l—max A" (s,a)
—r sa

2a
=——maxmaxA” (s,a)
1-r 5 a
2

< (fr—a)zmax E, .|A"(s,a)|
_r s

_ dey max ~
=Gy DR 117 19)

This gives the policy iteration algorithm used by trust region policy
optimization, shown in pseudo-code 14.

Schulman et al. noted that the algorithm gives small step sizes. In order
to overcome the problem of small step sizes and to make the algorithm
more adaptable to practical applications, they introduced several
simplifications. They parameterized the policy by 8. Let us denote the
original policy as 7, ~and the improved policy as ;.
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Algorithm 14  Trust Region Policy Optimization Algorithm

Require: Discount factor y, initial policy estimate 7,

1:foreachi=0,1, 2, ... until convergence do

2. Calculate advantage values A" (s,a) forall seS and acA.
3:  Calculate L~ ( )+ p™ () m(als)A™ (s,a).
seS acA
4  Calculate c=—="
(1-7)
5: Calculate D™ (=;,7) using equation 6.28.
D () = max Y, (als log[ (“'S)J (6.28)

acA (alS) '

6: Calculate the improved policy for the next iteration using
equation r,,, =argmax, (L”" (7)-CDg™ (ﬂ'i,ﬂ')) :

7: end for

The point-wise condition on KL divergence is
replaced by an average condition as shown in
equation 6.29:
Bota Oota
max L (6) mapre > 7, (als) A% (s,a)

se§ acA (629)
subject to Dy, (6,,,,0)<6

Discounted state visitation frequency Ps,, is

approximated as shown in equation 6.30:

1
-7

(1+}/f+...)ﬁ—%ﬁ= (6.30)

$~Poya “ee
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366

3.

The importance sampling function is introduced in
estimation of the objective function. This function
should have support over the entire range of values
spanned by 7,.

The advantage function is rewritten as
Q% (s,a)—V™(s).Since V*(s) is not a function
of 0, it drops out of the objective function.

Finally, the optimization problem of the algorithm is
reformulated as shown in equation 6.31:

max E my(als) 0
0 $~Pbyq 2~4 (alS) 0ot

subjectto E, [ (7, (1) 7, (. |s))

Q,,, (5,a) is evaluated in a Monte Carlo framework
on a stochastically sampled path. This is done using
a single path or by sampling multiple paths and
selecting a subset of states along those paths. On
each state within that subset, an n-step rollout of
policy is performed. This latter method is called the
vine procedure.

Approximate the KL divergence constraint as a
. . — 1
quadratic function p,, ~ 5(9 -0,, )T A(Q -0, )

where A is the Fisher information matrix computed

as shown in equation 6.32:

(6.31)
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(6.32)

— 0,4 a”e ' 6”9 _ 0, ﬁin’
7, 00 80 m, 06,00, "

3
~ —9”2“ J" ] where J denotes the Jacobian matrix
Ty

Finally, using the conjugate gradient method,
equation 6.33 is solved to give the search direction
6 — 6,,4. ] denotes the Jacobian matrix computed
using backpropagation:

J(6-6,,)=. /5%0” (6.33)

Once search direction « is known, a few points along
this search direction are used to pick a new value

of 6. The value of € from this set that maximizes

the objective function is selected, as shown in
equation 6.34:

0.=0,,+axfori=0,1,..

T, (a|s) (6.34)
0= E : '
argmax $~Poyy ,a~q|: q(d|8) Qeuld (S a):|

6i
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6.7 Natural Actor-Critic Algorithm: NAC

The natural actor-critic reinforcement learning algorithm was first
proposed by Konda and Tsitsiklis (1999) in a paper titled “Actor-Critic
Algorithms” and further discussed by Kakade (2001) in his work “A Natural
Policy Gradient.” The policy gradient algorithm often gets stuck in local
maxima, and its speed of convergence near a local optimum is linear.

This is because gradient descent takes locally optimal actions and has

to compensate for this myopic behavior by taking small steps. Near an
optimum, one should take steps given by Newton’s method as shown

in equation 6.35. The natural actor-critic algorithm is inspired by this
approach for calculating policy gradient.

9new <_et)ld - VGf(G) (635)

Voo f(0)

Policy gradient optimizes the expected discounted reward obtained
by following a policy. The parameter update rule obtained by applying
gradient ascent on this objective function is shown in equation 6.36:

t

mé':lx](n') = Eso ~Po 4, ~7g 8, ~P(s|,5, ., ) I:y r(sl ):|

enew <~ eold +(XV9](7T9) (636)
Vol (my)=Yd"(s) Zven(a|s,0)(Q” (s,a)-Vv*® (s))

The compatible value function satisfies the condition shown in
equation 6.37. Using a compatible value function, gradient of discounted
reward J(z,) can be written as shown in equation 6.38:

Q" (s,a)-V™(s)=V, log(ﬂ(a|s,9))w (6.37)

Vol (m5)=2d"(s)Y.V,m(als,0)V,log(x(als,0))w
se§ acA . (638)
=E_, 4. [Ve log(7(als,0))V,log(x (als,0)) w}
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Natural policy gradient uses the inverse of Hessian to multiply with
Jacobian matrix, analogous to the Newton update step in equation 6.35.
Using a compatible value function, this simplifies to the correction shown
in equation 6.39:

Qnew A Qold +aG71 (Q)Vﬂl(ﬂﬂ)

G(0)=VyJ(m,)=V, 10g(7r(a|s,0))V9 log(n(a|s,9))T (6.39)
Onew A Hold +aw

6.8 Proximal Policy Optimization: PPO

Proximal policy optimization was proposed by J. Schulman et al. in

2017 in a paper titled “Proximal Policy Optimization Algorithms.” This
algorithm builds on the framework of trust region policy optimization

by modifying the objective function in a two-fold attempt to simplify

the model implementation and address the problem of small step sizes.
Proximal policy optimization simplifies the objective function used in
TRPO by using a clipped surrogate objective function. Motivation behind
using a clipped surrogate function is to remove an approximation made
in TRPO of optimizing the objective function and satisfying the constraint
separately. The unconstrained optimization that should be solved in TRPO
is shown in equation 6.40:

max E 7y (als)
0 7, (als)
Denoting . (a|s)

7o, (als)

constraint on KL divergence penalizes changes to 6 that move r(6) away

A-PDy (770”,,1 Il 7z, ) (6.40)

by r(6), it can be seen that r(6,,;) = 1. The

from one. To replicate this feature of the constraint, the objective function
is modified by introducing a clip function that first clips () to a range
between [1 — ¢, 1 + €] and then takes a minimum of unclipped r(#) and the
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clipped value of (). This is shown in equation 6.41. The PPO algorithm
optimizes the function shown in equation 6.41, with no other constraint.
This simplifies the implementation, and a judicious choice of ¢ gives a
faster learning rate than TRPO:

max () = E[(min(r(@),clipr(e)(l —€,l+€ )))AJ 641)
=E[(min(r(@),max(r(@),1+e)))A]

6.9 Deep Deterministic Policy
Gradient: DDPG

Deep deterministic policy gradient was proposed by Lillicrap et al. (2016)
in a paper titled “Continuous Control with Deep Reinforcement Learning.”
This algorithm adapts DQN (deep Q-network) to continuous action spaces
by using deterministic policy gradient formulated by D. Silver et al. It has
the following salient features:

1. It applies deterministic policy gradient in the actor
to maximize the expected discounted rewards, as
shown in equation 6.42:

VoI () =E, o | Voo )V, Q% (5,7, (5)) | (6.42)

2. Like DPG, this is an off-policy algorithm. However,
unlike DPG, the action space is continuous, and this
renders the use of an ¢-greedy policy intractable.
An e-greedy policy will have to resort to numerical
optimization of the action function at each state
to arrive at an optimal action, which is intractable
for highly nonlinear action functions such as deep
neural networks. To overcome this problem and to
ensure adequate exploration of action space, DDPG
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uses an exploration policy 4 (s|9,) derived by adding
a noise sampled from the Ornstein-Uhlenbeck
process to the policy being learned, y(s]6,). This is
shown in equation 6.43. N(m, v) denotes the normal
distribution with mean m and variance v:

/J'(St|9”)=/.l(st|9#)+N’(st)

N(sl)~N[sl,20-M(l—eZM )] (6.43)

M =0.15
c=0.2

Like DPG, DDPG uses a replay buffer to sample
mini-batches for training.

Like DPG, this algorithm uses target and learned
parameters for both the actor and critic networks.

Unlike DPG, DDPG uses soft target updates
instead of copying the learned parameters to target
parameters after a certain number of iterations.

The complete DDPG algorithm is shown in pseudo-code 15.

Algorithm 15 Deep Deterministic Policy Gradient Algorithm

Require: Discount factor y, soft update parameter z, initial
critic network Q(s, al 69), initial actor policy network (sl ¢¥), and
minibatch size N

1: Initialize the target network for critic Q" and actor y” with weights
09 «6? and 6" «06".

2: Initialize replay buffer R.
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3: for each episode = 1, M do

4:
5:
6:

10:

11:

12:

13:

372

Get initial state s;.
foreacht=0,1,2,...,T do

Select action @ =#(s,10" )+ N (s,) where A(s,) is an
OU process, as shown in equation 6.43.

Take action a;, get reward r;, and transition to next
state s, ;.

Store transition (s, a, 1;, S;.. 1) in replay buffer R.

Sample a random mini-batch of N transitions from the
replay buffer R.

Set the target for the critic
to be i =r+7Q (s (5,.410" )10%).

Update the critic network parameters 62 by minimizing
the loss function in equation 6.44:

%IZ(yi _Q(si’aileQ ))2 (6.44)

Update the actor network parameters by using
deterministic policy gradient shown in equation 6.45:

1 0 u = .
W(%):N;veu (sl )an(s,-,a—u(siIG )IGQ) (6.45)

Update the target network parameters using a soft update
rule shown in equation 6.46:
09 «10°+(1-7)6?

0" 10" +(1-7)0" (6.46)
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14: end for
15: end for

6.10 D4PG

Distributed distributional deep deterministic policy gradient, or D4PG,
is an enhancement to the deep deterministic policy gradient algorithm.
It was proposed by G. Barth-Maron et al. in a paper titled “Distributed
Distributional Deterministic Policy Gradients” in 2018. Modifications to
DDPG introduced in D4PG are listed in the following:

1. The state-action value function evaluated by the
critic is converted to a distributional form. The
output from the critic (state-action value function)
is fed to another output layer that produces the
parameters of a distribution as an output. To
understand this, let us denote Z,, (Q’Z (s ,a)) tobea
distribution that takes the output of the critic (i.e.,
a state-action value function evaluated at state s
and action a) and produces a distribution with
parameters w as output. Hence, Z; maps the set of
real numbers to a distribution with parameters w.

2. The authors considered three parameterized
distributions Z, : categorical distribution, Gaussian
mixture distribution, and a scalar value. Categorical
distribution consists of a set of N weights w; with
i=0,1, -, N— 1. The state-action value Q*(s, a) is
assumed to lie between [Qmm , max] , and this range
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374

Qmax — Qmin
N-1
Probability that Z =Q, =Q,,,, +IA is given by

equation 6.47:

is divided into N intervals with A=

Z=Q, =Q,,, +iA with probability o exp(®, ) (6.47)

Under the categorical distribution, the distance
between the two distributions is defined using cross
entropy loss as shown in equation 6.48. If the output
Z, does not lie between [Qmin ,Qmax] , the hat function
projection shown in equation 6.48 is applied to Z,, to
obtain Z”'7:

N exp(o,)

| 2y v TN
i-0 Z;V:Olexp(a)j)

(6.48)

forZ,<Q,.;.,i=0
w i-1
Zw_ Tl forz <Z,<Z,
Zproj — i i-1
w

v forZ,<Z,<Z,

1 forZ,>Q, .., i=N-1

A mixture of Gaussians distribution considers a set of
N Gaussians with parameters w, = (a)l. TR ) denoting
the weight, mean, and variance of the Gaussian
component i. The probability of Z = Q, is given by
equation 6.49:

N-1

p(z) > oN(zlu;,07) (6.49)

i=0
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The distance between the two distributions is defined
using KL divergence, as shown in equation 6.50. Since
z is a deterministic distribution and z,, is a mixture of
Gaussian distribution, only the part corresponding

to a non-zero value of z is retained. The expression

is evaluated using stochastically selected paths

(85 @y 1y 5141). 2= Q(s;, a;) denotes the state-action value:

d(z,z,)= Zzlog(%”]
:;log(p(zj))
= 2log(p(1; +72,. )

- N(r, o U,0l
:Zlog Nzl a)z (r_;+yzj+l :ut O-z)
J

N-1 N
i=0 Zkzoa)kN(rj +sz+1|fukr(7k)

(6.50)

Scalar value distribution is an identity distribution,
equivalent to applying no transformation to the

input. This corresponds to using the output of the
critic as the state-action value function. The distance
measure between Z and Z, in this case is the mean
square loss function. Using the scalar distribution
function is equivalent to not using distributional form,
giving distributed deep deterministic policy gradient
or D3PG.

The loss function minimized by the critic takes

the form shown in equation 6.48 or 6.50. The
discounted reward function maximized by the actor
takes the form shown in equation 6.51:

](0)=E[V97r9 (s)E[V,Z,(s.a=r, (s))ﬂ (6.51)

375



CHAPTER6  RECENT RL ALGORITHMS

4. TD error is estimated using n-step update in place of
the customary TDO update employed in DDPG.

5. Kactors explore the state-action space, adding
experiences to the replay buffer in parallel. This
step distributes the process of gathering experience
among K actors, accounting for the “distributed”
term in the D4PG acronym.

6. DA4PG uses a prioritized replay buffer as described
by T. Schaul et al. in their paper titled “Prioritized
Experience Replay.” Items are sampled from the
replay buffer with probability of selecting element
i given by equation 6.52 . rank(i) is the rank of
experience i when sorted in descending order by
TD error, ;. Another version of the prioritized replay
buffer sets p;= | 5;| +e€:

p(iy Pl
Y zflp J (6.52)
pi:rank(i)

The complete D4PG algorithm is sketched in pseudo-code 16.

6.11 TD3PG

Twin delayed deep deterministic policy gradient (TD3PG) was
introduced in 2018 by S. Fujimoto et al. in a paper titled “Addressing
Function Approximation Error in Actor-Critic Methods.” The algorithm
is an enhancement to DDPG for dealing with the overestimation bias
induced by function approximation in the critic coupled with parallel
policy learning in the actor, leading to high variance and, occasionally,
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divergence. The analogous method for handling the overestimation bias
in Q-learning is DDQN (double deep Q-network), which uses a target
network to minimize propagation of overestimation errors. TD3PG can be
viewed as a similar approach to deal with the overestimation bias in the
context of deterministic policies in continuous space using actor-critic
methods.

The TD3PG algorithm incorporates the following modifications to
DDPG in order to address the problem of the overestimation bias and
variance reduction:

Algorithm 16  Distributed Distributional Deep Deterministic Policy
Gradient Algorithm

Require: Discount factor , initial critic network Q(s, al 69), initial actor
policy network £(sl 64), mini-batch size M, trajectory length N, number
of actors K, replay buffer size R, exploration constant e, t time
period for updating target network parameters, t,.,, time period for
replicating parameters to actors, initial learning rates «, and $,, and
an annealing schedule for the learning rates

1: Initialize the target network for critic @ and actor 4/ with weights
0% «0? and 6" «6*.

2: Launch K actors and replicate network weights for each actor.
Each actor samples action a = m,(S) + o¢ with ¢ ~ MO0, 1). Execute
action a, obtain reward r, transition to state s, and store the
experience in the replay buffer.

3:foreacht=0,1,2,...,Tdo
4:  Sample Mtransitions each of size N from the replay buffer.

5. Construct the target distributions as shown in equation 6.53:
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N-1

Yvi = Zynr;'+n + }/Nzw' (si+N’7T0' (SHN )) (6'53)

n=0

6: Calculate the actor and critic updates using equation 6.54:
0, = iZVWLoss
M

5 =$12vm (s)E[V.Z,(s,a=m,(s,))] (6.54)

7 Update target networks from learned parameters after fi; e
timesteps, that is, if £=0mod¢,,,, .

8: If r=0modt,,replicate network parameters to actors.

actor )

9: end for

1. A clipped double Q-network is used for learning the
value function in the critic. The approach followed
by DDQN to address the overestimation problem by
using separate target and learned networks is found
to be insufficient in an actor-critic context because
the policy changes slowly causing the target and
learned networks in the critic to become similar. In
order to address this problem, TD3PG uses a single
policy 7, and two state-action value functions in the
critic, @y and Qp, . Like DDQN, the corresponding
networks used for calculating the target value are
Ty, Qe; , and Qgé . Targets used for learning the
value function are constructed using the minimum
value over the two target value functions as shown
in equation 6.55. It should be noted that both the
targets use the same policy 7, :
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Y=y, =r+yminQ, (s, (s")) (6.55)

To address the problem of high variance, the TD3PG
algorithm introduces two steps of delaying updates
to the target network. These two steps account

for the name “twin delayed” in the algorithm'’s
name. In the first step introducing a delay, actor
parameters are updated only once every d time
steps. This delay is added to learn the policy only
after the value function in the critic has undergone
a certain number of corrections. In the second
delay, the target function parameters are updated
gradually using a parameter 7 < < 1, as shown in
equation 6.56:

0, <160, +(1-71)0, fori=1,2

¢ < 1d+(1-7)¢' (6.56)

The actor adds noise while exploring the
action space.

The complete TD3PG algorithm is sketched in pseudo-code 17.

6.12 Soft Actor-Critic: SAC

The soft actor-critic algorithm was proposed by T. Haarnoja et al. in

a paper titled “Soft Actor-Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor” in 2018. The algorithm

seeks to address the problem of hyper-parameter non-generalization in

model-free deep reinforcement learning algorithms applied to different

problems. Problem-specific hyper-parameter selection is necessitated

379



CHAPTER6  RECENT RL ALGORITHMS

by the large size of the training dataset and non-robust convergence
properties of the algorithm. The algorithm’s convergence is intimately
tied to the size of the training dataset, and meticulous selection of hyper-
parameters is called for. The values of hyper-parameters differ markedly
across different problems, restricting the applicability of model-free deep
reinforcement learning algorithms.

Algorithm 17 Twin Delayed Deep Deterministic Policy Gradient
Algorithm

Require: Discount factor y, initial critic networks (s, al 6,),

(y(s, al 8,), initial actor policy network (sl ¢), mini-batch size M, d
time period for updating target network parameters, = soft update
weight, learning rates « and p.

1: Initialize the target networks for critic and actor with weights
6, «6,,0,«0,,and ¢ < ¢.

2: Initialize the replay buffer.
3:foreacht=0,1,2,....,T do

4:  Select an action a ~ m,(s) + e with exploration noise
e ~ MO, s?).

5. Observe reward, transition to the next state, and store the
experience in replay buffer.

6:  Sample a mini-batch of Mtransitions (s, a, r, s) from the
replay buffer.

7 Calculate the action a <z, (s")+e where
e ~ clip(M0, 6?), —c, ¢).
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8: Calculate the target value for training @ and @, as shown in
equation 6.57:

y=r+yming, (s.a) (6.57)
9:  Update learned networks in the critic using equation 6.58:

~0Q.(s,al0,))
9,-<—argminz(y Q(sal ’))
0,,i=1,2 M

(6.58)

10:  If t=0modd, perform a delayed update:

1. Update ¢ using deterministic policy gradient on @ as
shown in equation 6.59:

V,J(m,)= ZVan(s;)V¢n¢(s) (6.59)

2. Perform a soft update on target network parameters using
equation 6.56.

11: end for

The soft actor-critic algorithm augments the reward function by
adding entropy of the policy function, as shown in equation 6.60. It seeks
to maximize the total expected rewards and also maximize the policy
entropy. Maximizing the policy entropy means that the algorithm is not
forced to pick an arbitrary action from a set of actions that produce similar
rewards in order to converge. Maximizing total rewards ensures that
actions that yield greater total (discounted) rewards are selected by the
policy over less promising actions. Due to the entropy term (logarithm
of policy), the soft actor-critic algorithm is applicable to continuous
action spaces:
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maxJ" = max[r(st ;S0 ) YT(S 0 )Gy Sn) Foo e — log(ﬂ (s, ))J
=max[R(s[,az,sm)—log(n(.|s[))] (6.60)
= m;iX[Qﬂ (s,.a,)—log(z (s, ))]

The algorithm uses a state value function, V,(s,), and a state-action
value function, Q,(s, a,). The critic minimizes the state value function
using 6.61 and the state-action value function using equation 6.62. As can
be seen from equations 6.61 and 6.62, training the state value function
requires the state-action value function, and training the state-action value
function requires the state value function:

minJ, ()= E| (¥ (5)-E, .(Q, (s, a,)-log(a,ls))’

! (6.61)
V, 1y (¥)=V,Y, (5)(V, (5,)~E,-.(Q(s,,a)~logz(als)))

min o (0) =2 £](Q, (5.)~C5,8) 7Y, (5., ) |
Vol (0)=V,Q,(s,.a, )(Qo (s0,a,)=r(s,,a,) =7V, (s,., ))

(6.62)

In order to stabilize learning using gradient descent, the critic uses a
target state value function Vs that is updated gradually using soft update
equation 6.63 and a small value of 7 < < 1. Further, it uses two state-action
value functions, Q, (s,,a,) and Q, (s,,a, ), that are trained independently.
Q(s, a,) is then set to be minimum of Q, (s,,a,) and Q, (s,,a,):

W <1y +(1-7)y wherer <<1 (6.63)

The policy is updated by minimizing the KL divergence between the
exp(Qg (s,.a, ))
.[a, exp(Qo (s..a, ))dat

term is illustrated in equation 6.64. We are trying to maximize Q,(s, a) -

policy function z,(a/s;) and . Derivation of this
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representing the total discounted rewards - and also maximize the
entropy. In a stochastic gradient ascent framework, we sample one or a few
actions from the policy. This can be written using the action probability
density specified by the policy, as shown in equation 6.64. Finally, the last
term corresponds to KL divergence. Z,(s,) is a normalizing constant equal
to J. exp(Qg (st 4, ))dat . Let us assume the policy function is represented as
a daéep neural network, with a, = f{¢, s;), where ¢ represents the parameters
of the neural network. Gradient of this term is shown in equation 6.65:

m¢ax Eat~n¢ [Qe (St 'az) - lOg Ty (az | S )]
m¢aX7T¢ (dt | S )[Qe (st a4, ) _logngﬁ (at | S )]
maxr, (a, |s,)[log(expQ,(s,,a,))-logm,(a,|s,)]

eXpQ@ (St ra[):|

max7,(a, |s,)| log
o [ my(a,|s,)

exp(Q, (s,,a,)) } (6.64)
eXp(Q9 (st ’at))dm
exp(Q9 (s, ,a[))}

z,(s,)

max Dy, | T, (a,|s)Il
¢ L

maXDK{%(dt [s)]l
[
= me]” (9)
=min-J, ()]
V. (9)= (Vde, (s,,a,)-V , logm,(a, |s))V,f(,s,)-V,logn,(a,|s,) (6.65)

Policy training can be stabilized by adding an external source
of disturbance, e.g., € ~ N(0, 1), and constructing a random variable
Z = u + oe. Action can then be produced as an output from the
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policy network depending upon the value of € sampled, as shown in
equation 6.66. u and ¢ are additional network parameters that are learned
using stochastic gradient ascent:

a, = f(let ,¢,,u,0')

(6.66)
Z = u+oe

The complete soft actor-critic algorithm is sketched in pseudo-code 18.

6.13 Variational Autoencoder

Variational autoencoders were first introduced by Kingma and Welling
in 2014 in a paper titled “Auto-encoding Variational Bayes” at the
International Conference on Learning Representations. A variational
autoencoder, abbreviated as VAE, is a generative model that has the
ability to map a set of inputs to an underlying probability space of a
latent (hidden) variable and to sample from that space to generate new
observations. The distinction between generative models (like VAE, GAN)
and discriminative models (like CNN, SVM) is a key dichotomy in machine
learning. Discriminative models predict an output corresponding to an
input. For example, a classifier attempts to classify input data into classes,
and a regression model produces an output value. Generative models,
on the other hand, produce new samples of data, ostensibly similar to
the input data. In this sense, generative models learn the underlying
probability distribution of data in order to draw new samples from it.
Discriminative models, on the other hand, do not need to learn underlying
probability density governing the data distribution; it is sufficient for them
to identify certain discriminating features in order to classify input data
(classifier) or produce an output value (regressor).

At the outset, modeling the probability distribution space of input data
seems like a daunting task: not just because of multidimensional data but also
because of unavailability of a tool to model the underlying distribution space.
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A VAE learns a stochastic mapping between observed data, which is sampled
from an underlying multidimensional probability density, and a latent
variable z, which is assumed to have a relatively simple, low-dimensional
probability density. In this sense, it can be viewed as a tool for mapping a
high-dimensional input space to a low-dimensional latent space - a process
known as encoding. New samples are generated by sampling from the low-
dimensional latent space and applying an inverse mapping to generate an
input from the latent variable using a component called a decoder. Deep
neural networks are used for encoding the input to a latent variable (encoder)
and decoding the latent variable to a reconstructed input (decoder).

Algorithm 18  Soft Actor-Critic Algorithm

Require: Discount factor y, initial critic networks sly), Q(s, al 6),
initial actor policy network 71(al s, ¢), mini-batch size M, = soft update
weight, learning rates ay, aq, and o,

1: Initialize the replay buffer.
2: Initialize the target network for the critic with weights ¥ «<v .

3: Copy the state-action value network to (s, al 6;) and Q(s, al 9,).
91 <—9and92<—9

4: for each episode do
5. foreacht=0,1,2,..,Tdo
6:  Select an action a; ~ m,(a/ s).

7: Observe reward r;, transition to the next state s;, {, and store
the experience (S, a, I, S:.. 1) in the replay buffer.

8: foreachi=0,1do

9: Sample a mini-batch of Mtransitions (s, a, r, ) from the
replay buffer.
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10: Calculate the gradients using equations 6.61, 6.62, and
6.65. Use Q(s,,at)zmin(Q@1 (s,a,),Q, (st,at)).

11: Update the network parameters as shown in
equation 6.67:

Yy <y-o,V,J,(v)
0, «0,-a,V,], (9)

¢ <¢-a.V,J.(¢)

Vo ety (6:67)
12: end for
13:  end for
14: end for

Let us denote input data by X and assume that the input is generated
by a transformation of a low-dimensional latent variable. Let us denote
the underlying latent space by z. Using the Bayes theorem, probability
density of X can be written using posterior density P(X]z), as shown in
equation 6.68:

P(X)=[P(X|z)P(z)dz=]P(X,z)dz (6.68)

Let us use a model parameterized by € (e.g., a deep neural network) to
learn the mapping of the high-dimensional probability space of an input
variable to the probability space of a low-dimensional latent variable z, P,(z| X).
Let us select another model parameterized by ¢ for mapping the latent
variable back to the input variable. By the principle of maximum likelihood, we
want to select parameters 6 and ¢ that maximize the probability of observing
the data X. This is equivalent to maximizing the log probability. Input samples
are drawn from the unknown probability density of the input variable. We can
convert the sum of probabilities over inputs X to an expectation over the latent
variable’s probability density. This is shown in equation 6.69:
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logHP(,(X):ZlogP( )=ElogP,(X)
(e [ 1085 (X) ]

=E _lo l (X’Z)}

“CH| 7 P, (21X)

NS

P(X,z)q,(zX)
@) T8 g (2X) B, (2IX)

b [iogh Z)} Zx{wmq

9 (2 q¢ (zX)

(6.69)

I

—
I

=ELBO+Dy, (g,(2IX) P,(2X))

In equation 6.69, ELBO denotes evidence lower bound. It is also known
as variational lower bound. Dy; denotes Kullback-Leibler divergence
and is always non-negative. Equation 6.69 implies that E [logPe (X )] >
ELBO. Because of this inequality, maximizing ELBO also maximizes the
log likelihood of observing the data. We can rewrite ELBO using the Bayes
theorem, as shown in equation 6.70:

P(X,
ELBO=E, .., {10 l Z)}

5 (21X)

2)|-E 45(zIX) DOg% (zlx )]

)P(2) |~ E, 1084, (2IX) ] (6.70)
=E, ) [logP )] E, i) [logq¢(z|X) logP(z )]

=E%(Z|X) [logPQ X|z)]— KL(% (z1X) P(z))

=-reconstruction loss from decoder —regularization loss

=E, ) [logP (X
=E, (i) [logP (X|z
(X1

In equation 6.70, £, i) [logP » (Xlz )} represents the negative of
reconstruction loss from the decoder for reconstructing input X using the
latent variable z. In addition, we also want the modeled probability density
of latent variable z, g,(z| X), to be as close as possible to the unknown, true
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probability density of z, P(z). We want this probability to depend upon
input data samples; hence, we select posterior probability g,(z| X). This
term can be viewed as regularization loss. Finally, putting the expression of
ELBO from equation 6.70 back into equation 6.69, we get equation 6.71:

E,1ogP,(X) =Dy (4, (21X)|P, (21X)) =E,, .y, [log P, (X|z) |-

D, (q,(2X)|P(2)) (6.71)
=ELBO

Equation 6.71 states that maximizing ELBO will maximize the
probability of observing the data while also minimizing the distance
between the modeled probability density and true posterior probability
density of the latent variable, that is, between g,(z| X) and P,(z| X). In
order to achieve this, we must minimize the reconstruction loss from the
decoder while also minimizing the regularization loss.

The encoder network maps multidimensional probability density of
input variable X into low-dimensional probability density of latent variable
z, while the decoder samples from the learned probability density space
of z, q,(2] X), to reconstruct X. Let us assume the prior distribution of
latent variable z to be standard normal, i.e., N(0, 1). Further, let us assume
we restrict the space of posterior density of the latent variable to normal
distributions, i.e., g,(z] X) = N(u(X), 2(X)). Kullback-Leibler divergence
representing the regularization loss term can be simplified as shown in
equation 6.72. K represents the dimension of input X:

Dy (4, (2X)11P(2)) = Do (N(1(X),Z(X)) [ N(0,1))

:%[tr(Z(X))-k u(X)" u(X)-K ~logdet(3(X))] (672

The final loss function can be written as shown in equation 6.73. The
encoder maps the input X to mean p(X) and standard deviation X(X).
Using the reparameterization trick, we sample a random number from
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uniform normal distribution ¢ ~ N(0, 1) and construct a latent variable
sample Z = u(X) + eX(X). The decoder uses this latent variable sample Z
to reconstruct an output, f{Z). Reconstruction loss is || X — f{Z)||? from the
decoder, while regularization loss is Dy, (N(u(X), Z(X))||N(0, I)). € denotes
the parameters of the encoder network, and v denotes the parameters of
the decoder network. This is depicted in Figure 6-1.

min[[|X - £, (Z) I +Dy (N, (X).Z, (XDIN(O,D)]  (673)

6.14 VAE for Dimensionality Reduction

In this section, let us apply variational autoencoders for dimensionality
reduction. Multidimensional data, such as images, is easier to store and
classify using dimensionality reduction. The traditional approach for
image compression involved the use of SVD and decomposition of an
image into eigen-images. However, this approach still required storing
eigen-images. Let us use variational autoencoders for reducing image
dimensions to six: three dimensions each for storing the projected mean
and variance using VAE. Dimensionally reduced images can be used for
quick image recognition, for example, at an ATM.

Let us use a Kaggle dataset comprising of 6,899 images from eight
distinct categories as shown in Table 6-1.
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[IX-£2)]*

| f2

Decoder (v)

KLIN(u(X), Z(X) | | N(0, 1)]

- ; Z=p(X) + € Z(X)
/ 1
r(x) £(X) Sample € from N(0, 1)
Encoder (8)
X

Figure 6-1. Encoder and Decoder Within VAE

The model uses the LeakyReLU activation function to ensure that
the network does not get saturated for negative activation values. The
LeakyReLU activation function has been covered in Chapter 2. The
encoder uses a convolutional neural network (CNN) to encode the image
into a latent three-dimensional space of a normal distribution defined
by mean and variance. After training, images from the testing dataset
are projected onto the latent space using the encoder only. In order to
visualize the distribution of images in the three-dimensional latent space,
pairplots for mean and variance are shown in Figures 6-2 and 6-3.

As seen from the plot in Figure 6-2, images of flower and airplane begin
to cluster in distinct segments of the mean space, while the distinction
between other objects is not as clear-cut. The log variance pairplot of
projected images shows a similar result. On the YZ plane, images begin
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to cluster in distinct segments on a line. This example shows the ability

of a VAE to assign similar images to distinct subsections of a lower-

dimensional space and showcases its usefulness for dimensionality

reduction.

Table 6-1. Image Counts in Each Class

Object Count
airplane 727
car 968
cat 885
dog 702
flower 843
fruit 1000
motorbike 788
person 986

The code for projecting the images onto a lower-dimensional space

using a VAE is shown in Listing 6-2.

Listing 6-2. Projecting Images onto a Lower-Dimensional Space
Using a VAE

1
2
3
4
5
6
7

import
import

import
import
import
import

math
0s

PIL

PIL.Image
matplotlib.pyplot as plt
numpy as np
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8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

33
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import pandas as pd

import seaborn as sns

import tensorflow as tf

from tensorflow.keras import layers

from src.learner.VAE import VariationalAutoEncoder

tf.random.set seed(10)
np.random.seed(10)

class LeakyRelu(object):
def init (self, alpha):
self.alpha = alpha

def call (self, x):
return tf.nn.leaky relu(x, alpha=self.alpha)

class Encoder(tf.keras.Model):

""" Maps mnist digits to (z_mean, z_log var, z) """
def _init (self, latent dim, name="encoder",
alpha=0.1, **kwargs):

super (Encoder, self). init (name=name,

**kwargs)

self.convo = layers.Conv2D(8, 3, padding="same",

activation="relu")

self.convl = layers.Conv2D(32, 3, strides=2,

padding="same", activation=LeakyRelu(alpha))

self.conv2 = layers.Conv2D(64, 3, strides=2,
padding="same", activation=LeakyRelu(alpha))



34
35
36

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55

56

def

def
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self.flatten = layers.Flatten()

self.densel = layers.Dense(16)

self.mean = layers.Dense(latent_dim,
name="z_mean"

self.logvar = layers.Dense(latent dim, name="z_
log var")

call(self, inputs, **kwargs):
= self.convi(inputs)
self.conv2(x)
self.flatten(x)
self.dense1(x)

z mean = self.mean(x)

X
X
X
X

z_log var = self.logvar(x)
return z_mean, z_log var

class Decoder(tf.keras.Model):

Converts z back to readable digit
__init_ (self, name="decoder", alpha=0.1,

**kwargs):

super(Decoder, self). init (name, **kwargs)
self.densel = layers.Dense(25 * 25 * 64)
self.reshape = layers.Reshape((25, 25, 64))
self.convtl = layers.Conv2DTranspose(64,

3, activation=LeakyRelu(alpha), strides=2,
padding="same"

self.convt2 = layers.Conv2DTranspose(32,

3, activation=LeakyRelu(alpha), strides=2,
padding="same"
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57 self.convt3 = layers.Conv2DTranspose(3, 3,
activation="tanh", padding="same")

58

59 def call(self, inputs, **kwargs):

60 x = self.densel(inputs)

61 x = self.reshape(x)

62 x = self.convti(x)

63 x = self.convt2(x)

64 x = self.convt3(x)

65 return x

66

67

68 class VAEImages(object):

69 def _init (self, input_dir, obj names, img

size=(100, 100), batch size=100, epochs=30,

70 validation split=0.2, latent dim=2):

71 self.input dir = input dir

72 self.obj names = obj names

73 self.img_size = img size

74 self.batch size = batch size

75 self.epochs = epochs

76 self.latent_dim = latent dim

77 self.validation split = validation split

78 self.vae = None

79

80 def plotImgs(self):

81 counts = np.zeros(len(self.obj names),
dtype=np.int32)

82 nrow = 2

83 fig, axs = plt.subplots(nrow, math.ceil(len(self.

obj names) / nrow))
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94
95

96
97
98
99

100
101

102

103

104

105
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for i, obj in enumerate(self.obj names):
dname = os.path.join(self.input dir, obj)
obj list = os.listdir(dname)
counts[i] = len(obj list)
rand_img = PIL.Image.open(os.path.join(dname,
obj list[o0]))
col, row = divmod(i, nrow)
axs[row, col].imshow(np.array(rand_img))
axs[row, col].set xticks([])
axs[row, col].set yticks([])
axs[row, col].set title(obj)
plt.show()
df = pd.DataFrame({"Object": self.obj names,
"Count": counts})
print(df)

train vae(self):
encoder = Encoder(self.latent_dim)
decoder = Decoder()
vae = VariationalAutoEncoder(encoder, decoder,
from logits=True, cross entropy loss=False, kl_
loss_weight=0.1)
train_dataset = tf.keras.utils.image_ dataset
from_directory(self.input_dir, image size=self.
img_size,
batch size=self.batch size,
seed=10,
validation split=self.
validation split,
subset="training")
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106

107

108
109

110
111
112
113
114

115

116

117

118

119

120

121

122

123

124

125
126
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def

for batch_num, train batch in enumerate(train_
dataset):
img data = train_batch[0].numpy().astype(np.
float32) / 255.0
loss = vae.fit(img data, epochs=self.epochs)
print("Batch %d, final loss: %f" % (batch_
num+1, loss))
self.vae = vae

test vae(self):
assert self.vae, "VAE needs to be trained first"
valid dataset = tf.keras.utils.image dataset_
from directory(self.input dir, image size=self.
img size,
batch_size=self.batch_size,
seed=10,
validation split=self.
validation split,
subset="validation")
class names = valid dataset.class names
mean_x, mean_y, mean_z = [], [], []
lvx, lvy, lvz, label, r mimg, b_mimg, g mimg =
[1, 01, 11, 11, [1, [1, []
for batch num, valid batch in enumerate(valid
dataset):
img data = valid_batch[0].numpy().astype(np.
float32) / 255.0
labels = valid batch[1]
mean, log var = self.vae.encoder(img_data)
mean = mean.numpy()
log var = log_var.numpy()
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127 mean_x.extend(mean[:, 0])

128 mean_y.extend(mean[:, 1])

129 mean_z.extend(mean[:, 2])

130 lvx.extend(log var[:, 0])

131 lvy.extend(log var[:, 1])

132 lvz.extend(log var[:, 2])

133 label.extend([class names[1] for 1 in

labels])

134

135 df = pd.DataFrame({"Label": label, "Mean(X)":
mean_x, "Mean(Y)": mean_y, "Mean(Z)": mean_z,

136 "LogVar(X)": lvx, "LogVar(Y)":

lvy, "LogVar(z)": lvz,

137 1)

138

139 sns.pairplot(data=df[["Mean(X)", "Mean(Y)",
"Mean(Z)", "Label"]], hue="Label")

140 plt.show()

141

142

143 sns.pairplot(data=df[["LogVar(X)", "LogVar(Y)",
"LogVar(Z)", "Label"]], hue="Label")

144 plt.show()

145

146

147 if _name_ == " main_":

148 input_dir = r"C:\prog\cygwin\home\samit OOO\RLPy\

data\kaggle images\natural images"

149 objs = ["airplane", "car", "cat", "dog", "flower",
"fruit", "motorbike", "person"]

150 vae_imgs = VAEImages(input dir, objs, latent dim=3)
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151 vae_imgs.plotImgs()
152 vae_imgs.train vae()
153 vae_imgs.test vae()
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Figure 6-2. Images from the Testing Dataset Projected by the Encoder
on Three-Dimensional Mean Space
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Figure 6-3. Images from the Testing Dataset Projected by the Encoder
on Three-Dimensional Variance Space

6.15 Generative Adversarial Networks

Generative adversarial networks, or GANs, were introduced by Ian
Goodfellow et al. in an eponymous paper in 2014. As the name indicates,
GANs are generative models that learn the underlying probability
distribution of inputs, which can be used to generate new samples from
the distribution that are similar to inputs. They are different from VAEs in
the methodology adopted for learning the probability distribution of input,
X. While VAEs use a transformation to map the probability distribution of
input to a simple distribution, e.g., a Gaussian, GANs use a pair of actors
called generator and discriminator that play a min-max game to learn
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the probability distribution. The components analogous to generator and
discriminator of GANs are decoder and encoder in VAEs, respectively.

In VAEs, the link between the encoder and decoder is the latent variable
distribution, while the link between the discriminator and generator in
GANSs is the value function, V(D, G), where D and G are the outputs of the
discriminator and generator. Unlike the encoder in VAEs, the discriminator
in GANSs uses the input X and the output from the generator.

The generator generates a sample from the unknown probability
distribution of X. The discriminator reads two inputs: known input
sample, X, and the output from the generator to classify it as authentic (i.e.,
generated from the underlying probability distribution of input) or fake
(i.e., generated by the generator). The discriminator attempts to classify
the inputs correctly as fake or authentic, that is, reduce the loss function,
while the generator tries to produce samples that fool the discriminator,
i.e., samples that increase the loss function describing the discriminator’s
classification. From this min-max game, the generator learns to
generate samples that are indistinguishable from the real inputs by the
discriminator, at which point the generator is assumed to have learned the
probability distribution of input, X. The value function (negative of loss
function) is the binary cross entropy function for classification into two
classes, as shown in equation 6.74:

minmax Ey ) ;v |:10gD(X)+ log(l —D(G(Z)))} (6.74)

During early iterations of the algorithm, the discriminator has little
trouble classifying the input X and the output from the generator as authentic
or fake. Hence, the term log(l - D(G( Z ))) saturates, with D(G(Z) =0
with high probability, and the gradients become zero. During these early
iterations, it is helpful to modify the function used by the generator for
minimization to maxlog(D(G(Z ))) , as shown in equation 6.75:

minE, , |l0g(1-D(G(2)))|=maxE, [ log(D(G(2)))] (675)
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Using a batch size of M, the gradient used in stochastic gradient ascent
by the discriminator is shown in equation 6.76, while the gradient used in
stochastic gradient descent by the generator is shown in equation 6.77:

1 M-

v, i Z[log(DW (x=X, ))+10g(1—DW (x=G,(Z, )))} (6.76)

i=0

v, %?j[log(l—ﬂl, (x=G,(2)))] (6.77)

Upon convergence, the generator learns to map the Gaussian
distribution of Z to the underlying probability distribution of input X
and uses it to generate samples that are indistinguishable from the real
inputs by the discriminator. The complete algorithm for training a GAN is
sketched in pseudo-code 19.

Algorithm 19  Generative Adversarial Network Training Algorithm

Require: Initial generator network G(X 6, ¢), initial discriminator
network D(xly), mini-batch size M, training iterations N, discriminator
training steps per generator training step, K.

1:foreachn =0, 1,2,..,N-1 do

2. foreachk=0,1,2,.,K-1do

3 Sample M samples of Zfrom MO, 1).
4: Accept Minput samples.
5

Update the discriminator using stochastic gradient ascent
with the gradient shown in equation 6.76.
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6: end for

7. Update the generator using stochastic gradient descent
with the gradient shown in equation 6.77. In early
iterations, this can be replaced by using stochastic gradient
ascent on maxlog(D, (x=G,(2))).

8: end for
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multiclass classification exploration, 271
problem, 86 generalized policy
Nadam, 79 iteration, 269-271
neural network model, 81-86 greedy policy, 270
RMSProp, 79 maze problem, 271, 272,
SGD algorithm, 80 274,276
sparse categorical accuracy, 94 optimal policy, 270
Ordinary least squares (OLS), 296 output path, 276

state-action value
function, 269-271

P Policy learning
Padding argument, 145 baseline function, 327
Parametric functions, 240, 294 cross entropy method, 325, 326
Parsimonious models, 55 deterministic policy, 319
Pattern recognition method, 3, 139, minimum variance, 328
159, 164 reinforce algorithm, 322
Policy evaluation shortcoming, 327
definition, 267 stochastic policy, 319
iterative algorithm theory, 319
state-action value update rule, 327
function, 268 Portfolio management, 3
state value function, 267, 268 Precision, 47
model of the environment, 267 Predicted vs. actual stock price, 196
Policy gradient theorem Proximal policy optimization
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