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Foreword

After a few early isolated cases in the 1980s, since the mid-1990s hundreds of pa-
pers dealing with economics and finance have invaded the physics preprint server
xxx.lanl.gov/cond-mat, initially devoted to condensed matter physics, and now
covering subjects as different as computer science, biology or probability theory.
The flow of paper posted on this server is still increasing – roughly one per day –
addressing a range of problems, from financial data analysis to analytical option-
pricing methods, agent-based models of financial markets and statistical models
of wealth distribution or company growth. Some papers are genuinely beautiful,
others are rediscoveries of results known by economists, and unfortunately some
are simply crazy.

A natural temptation is to apply the tools one masters to other fields. In the
case of physics and finance, this temptation is extremely strong. The sophisticated
tools developed in the last 50 years to deal with statistical mechanics and quantum
mechanics problems are often of immediate interest in finance and in economics.
Perturbation theory, path integral (Feynman–Kac) methods, random matrix and
spin-glass theory are useful for option pricing, portfolio optimization and game
theoretical situations, and many new insights have followed from such transfers of
knowledge.

Within theoretical physics, quantum field theory has a special status and is re-
garded by many as the queen of disciplines, that has allowed one to unravel the
most intimate intricacies of nature, from quantum electrodynamics to critical phe-
nomena. In the present book, Belal Baaquie tells us how these methods can be
applied to finance problems, and in particular to the modelling of interest rates.
The interest rate curve can be seen as a string of numbers, one for each maturity,
fluctuating in time. The ‘one-dimensional’ nature of these randomly fluctuating
rates imposes subtle correlations between different maturities, that are most natu-
rally described using quantum field theory, which was indeed created to deal with
nontrivial correlations between fluctuating fields. The level of complexity of the
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xii Foreword

bond market (reflecting the structure of the interest rate curve) and its derivatives
(swaps, caps, floors, swaptions) requires a set of efficient and adapted techniques.
My feeling is that the methods of quantum field theory, which naturally grasp
complex structures, are particularly well suited for this type of problems. Belal
Baaquie’s book, based on his original work on the subject, is particularly useful
for those who want to learn techniques which will become, in a few years, un-
avoidable. Many new ideas and results improving our understanding of interest
rate markets will undoubtedly follow from an in-depth exploration of the paths
suggested in this fascinating (albeit sometimes demanding) opus.

Jean-Philippe Bouchaud
Capital Fund Management and CEA-Saclay



Preface

Financial markets have undergone tremendous growth and dramatic changes in the
past two decades, with the volume of daily trading in currency markets hitting over
a trillion US dollars and hundreds of billions of dollars in bond and stock markets.
Deregulation and globalization have led to large-scale capital flows; this has raised
new problems for finance as well as has further spurred competition among banks
and financial institutions.

The resulting booms, bubbles and busts of the global financial markets now
directly affect the lives of hundreds of millions of people, as was witnessed during
the 1998 East Asian financial crisis.

The principles of banking and finance are fairly well established [16,76,87] and
the challenge is to apply these principles in an increasingly complicated environ-
ment. The immense growth of financial markets, the existence of vast quantities of
financial data and the growing complexity of the market, both in volume and so-
phistication, has made the use of powerful mathematical and computational tools
in finance a necessity. In order to meet the needs of customers, complex financial
instruments have been created; these instruments demand advanced valuation and
risk assessment models and systems that quantify the returns and risks for investors
and financial institutions [63, 100].

The widespread use in finance of stochastic calculus and of partial differen-
tial equations reflects the traditional presence of probabilists and applied mathem-
aticians in this field. The last few years has seen an increasing interest of theor-
etical physicists in the problems of applied and theoretical finance. In addition to
the vast corpus of literature on the application of stochastic calculus to finance,
concepts from theoretical physics have been finding increasing application in both
theoretical and applied finance. The influx of ideas from theoretical physics, as
expressed for example in [18] and [69], has added a whole collection of new math-
ematical and computational techniques to finance, from the methods of classical
and quantum physics to the use of path integration, statistical mechanics and so

xiii



xiv Preface

on. This book is part of the on-going process of applying ideas from physics to
finance.

The long-term goal of this book is to contribute to a quantum theory of finance;
towards this end the theoretical tools of quantum physics are applied to problems in
finance. The larger question of applying the formalism and insights of (quantum)
physics to economics, and which forms a part of the larger subject of econophysics
[88, 89], is left for future research.

The mathematical background required of the readership is the following:

� A good grasp of calculus
� Familiarity with linear algebra
� Working knowledge of probability theory

The material covered in this book is primarily meant for physicists and mathe-
maticians conducting research in the field of finance, as well as professional theo-
rists working in the finance industry. Specialists working in the field of derivative
instruments, corporate and Treasury Bonds and foreign currencies will hopefully
find that the theoretical tools and mathematical ideas introduced in this book broad-
ens their repertoire of quantitative approaches to finance.

This book could also be of interest to researchers from the theoretical sciences
who are thinking of pursuing research in the field of finance as well as graduates
students with the required mathematical training. An earlier draft of this book was
taught as an advanced graduate course to a group of students from financial engi-
neering, physics and mathematics.

Given the diverse nature of the potential audience, fundamental concepts of fi-
nance have been reviewed to motivate readers new to the field. The chapters on ‘In-
troduction to finance’ and on ‘Derivative securities’ are meant for physicists and
mathematicians unfamiliar with concepts of finance. On the other hand, discus-
sions on quantum mechanics and quantum field theory are meant to introduce spe-
cialists working in finance and in mathematics to concepts from quantum theory.



Acknowledgments

I am deeply grateful to Lawrence Ma for introducing me to the subject of theoret-
ical finance; most of my initial interest in mathematical finance is a result of the
patient explanations of Lawrence.

I thank Jean-Philippe Bouchaud for instructive and enjoyable discussions, and
for making valuable suggestions that have shaped my thinking on finance; the
insights that Jean-Philippe brings to the interface of physics and finance have been
particularly enlightening.

I would like to thank Toh Choon Peng, Sanjiv Das, George Chacko, Mitch
Warachka, Omar Foda, Srikant Marakani, Claudio Coriano, Michael Spalinski,
Bertrand Roehner, Bertrand Delamotte, Cui Liang and Frederick Willeboordse for
many helpful and stimulating interactions.

I thank the Department of Physics, the Faculty of Science and the National Uni-
versity of Singapore for their steady and unwavering support and Research Grants
that were indispensable for sustaining my trans-disciplinary research in physics
and finance.

I thank Science and Finance for kindly providing data on Eurodollar futures, and
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1

Synopsis

Two underlying themes run through this book: first, defining and analyzing the
subject of quantitative finance in the conceptual and mathematical framework of
quantum theory, with special emphasis on its path-integral formulation, and, sec-
ond, the introduction of the techniques and methodology of quantum field theory
in the study of interest rates.

No attempt is made to apply quantum theory in re-working the fundamental
principles of finance. Instead, the term ‘quantum’ refers to the abstract mathemati-
cal constructs of quantum theory that include probability theory, state space, opera-
tors, Hamiltonians, commutation equations, Lagrangians, path integrals, quantized
fields, bosons, fermions and so on. All these theoretical structures find natural and
useful applications in finance.

The path integral and Hamiltonian formulations of (random) quantum processes
have been given special emphasis since they are equivalent to, as well as indepen-
dent of, the formalism of stochastic calculus – which currently is one of the cor-
nerstones of mathematical finance. The starting point for the application of path
integrals and Hamiltonians in finance is in stock option pricing. Path integrals are
subsequently applied to the modelling of linear and nonlinear theories of inter-
est rates as a two-dimensional quantum field, something that is beyond the scope
of stochastic calculus. Path integrals have the additional advantage of providing a
framework for efficiently implementing the mathematical procedure of renormal-
ization which is necessary in the study of nonlinear quantum field theories.

The term ‘Quantum Finance’ represents the synthesis of the concepts, meth-
ods and mathematics of quantum theory, with the field of theoretical and applied
finance.

To ease the reader’s transition to the mathematics of quantum theory, and of
path integration in particular, the presentation of new material starts in a few
cases with well-established models of finance. New ideas are introduced by first
carrying out the relatively easier exercise of recasting well-known results in the
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2 Quantum Finance

formalism of quantum theory, and then going on to derive new results. One unex-
pected advantage of this approach is that theorists, working in the field of finance –
presently focussed on notions drawn from stochastic calculus and partial differen-
tial equations – obtain a formalism that completely parallels and mirrors stochastic
calculus, and prepares the ground for a (smooth) transition to the mathematics of
quantum field theory.

All important equations are derived from first principles of finance and, as far
as possible, a complete and self-contained mathematical treatment of the main re-
sults is given. A few of the exactly soluble models that appear in finance are closely
studied since these serve as exemplars for demonstrating the general principles of
quantum finance. In particular, the workings of the path-integral and Hamiltonian
formulations are demonstrated by concretely working out, in complete mathemat-
ical detail, some of the more instructive models. The models themselves are in-
teresting in their own right, thus providing a realistic context for developing the
applications of path integrals to finance.

The book consists of the following three major components:1

Fundamental concepts of finance

The standard concepts of finance and equations of option theory are reviewed in
this component.

Chapter 2 is an ‘Introduction to finance’ that is meant for readers who are unfa-
miliar with the essential ideas of finance. Fundamental concepts and terminology
of finance, necessary for understanding the particular set of equations that arise in
finance, are introduced. In particular, the concepts of risk and return, time value of
money, arbitrage, hedging and, finally, Treasury Bonds and fixed-income securities
are briefly discussed.

Chapter 3 on ‘Derivative securities’ introduces the concept of financial deriva-
tives and discusses the pricing of derivatives. The classic analysis of Black and
Scholes is discussed, the mathematics of stochastic calculus briefly reviewed and
the connection of stochastic processes with the Langevin equation is elaborated. A
derivation from first principles is given of the price of a stock option with stochas-
tic volatility. The material covered in these two chapters is standard, and defines
the framework and context for the next two chapters.

Systems with finite number of degrees of freedom

In this part Hamiltonians and path integrals are applied to the study of stock options
and stochastic interest rates models. These models are characterized by having

1 The path-integral formulation of problems in finance opens the way for applying powerful computational al-
gorithms; these numerical algorithms are a specialized subject, and are not addressed except for a passing
reference in Section 5.16.



Synopsis 3

finite number of degrees of freedom, which is defined to be the number of inde-
pendent random variables at each instant of time t . Examples of such systems
are a randomly evolving equity S(t) or the spot interest rate r(t), each of which
have one degree of freedom. All quantities computed for quantum systems with
a finite number of degrees of freedom are completely finite, and do not need the
procedure of renormalization to have a well-defined value.

In Chapter 4 on ‘Hamiltonians and stock options’, the problem of the pric-
ing of derivative securities is recast as a problem of quantum mechanics, and
the Hamiltonians driving the prices of options are derived for both stock prices
with constant and stochastic volatility. The martingale condition required for risk-
neutral evolution is re-expressed in terms of the Hamiltonian. Potential terms in
the Hamiltonian are shown to represent a class of path-dependent options. Barrier
options are solved exactly using the appropriate Hamiltonian.

In Chapter 5 on ‘Path integrals and stock options’, the problem of option pricing
is expressed as a Feynman path integral. The Hamiltonians derived in the previous
chapter provide a link between the partial differential equations of option pricing
and its path-integral realization. A few path integrals are explicitly evaluated to il-
lustrate the mathematics of path integration. The case of stock price with stochastic
volatility is solved exactly, as this is a nontrivial problem which is a good exemplar
for illustrating the subtleties of path integration.

Certain exact simplifications emerge due to the path-integral representation of
stochastic volatility and lead to an efficient Monte Carlo algorithm that is discussed
to illustrate the numerical aspects of the path integral.

In Chapter 6 on ‘Stochastic interest rates’Hamiltonians and path integrals’, some
of the important existing stochastic models for the spot and forward interest rates
are reviewed. The Fokker–Planck Hamiltonian and path integral are obtained for
the spot interest rate, and a path-integral solution of the Vasicek model is presented.

The Heath–Jarrow–Morton (HJM) model for the forward interest rates is recast
as a problem of path integration, and well-known results of the HJM model are
re-derived using the path integral.

Chapter 6 is a preparation for the main thrust of this book, namely the applica-
tion of quantum field theory to the modelling of the interest rates.

Quantum field theory of interest rates models

Quantum field theory is a mathematical structure for studying systems that have
infinitely many degrees of freedom; there are many new features that emerge for
such systems that are beyond the formalism of stochastic calculus, the most im-
portant being the concept of renormalization for nonlinear field theories. All the
chapters in this part treat the forward interest rates as a quantum field.
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In Chapter 7 on ‘Quantum field theory of forward interest rates’, the formalism
of path integration is applied to a randomly evolving curve: the forward interest
rates are modelled as a randomly fluctuating curve that is naturally described by
quantum field theory. Various linear (Gaussian) models are studied to illustrate
the theoretical flexibility of the field theory approach. The concept of psychologi-
cal future time is shown to provide a natural extension of (Gaussian) field theory
models. The martingale condition is solved for Gaussian models, and a field the-
ory derivation is given for the change of numeraire. Nonlinear field theories are
shown to arise naturally in modelling positive-valued forward interest rates as well
as forward rates with stochastic volatility.

In Chapter 8 on ‘Empirical forward interest rates and field theory models’, the
empirical aspects of the forward rates are discussed in some detail, and it is shown
how to calibrate and test field theory models using market data on Eurodollar fu-
tures. The most important result of this chapter is that a so-called ‘stiff’ Gaussian
field theory model provides an almost exact fit for the market behaviour of the for-
ward rates. The empirical study provides convincing evidence on the efficacy of
the field theory in modelling the behaviour of the forward interest rates.

In Chapter 9 on ‘Field theory of Treasury Bonds’ derivatives and hedging’, the
pricing of Treasury Bond futures, bond options and interest caps are studied. The
hedging of Treasury Bonds in field theory models of interest rates is discussed,
and is shown to be a generalization of the more standard approaches. Exact results
for both instantaneous and finite time hedging are derived, and a semi-empirical
analysis of the results is carried out.

In Chapter 10 on ‘Field theory Hamiltonian of the forward interest rates’ the
state space and Hamiltonian is derived for linear and nonlinear theories. The
Hamiltonian formulation yields an exact solution of the martingale condition for
the nonlinear forward rates, as well as for forward rates with stochastic volatility. A
Hamiltonian derivation is given of the change of numeraire for nonlinear theories,
of bond option price, and of the pricing kernel for the forward interest rates.

All chapters focus on the conceptual and theoretical aspects of the quantum
formalism as applied to finance, with material of a more mathematical nature be-
ing placed in the Appendices that follow each chapter. In a few instances where
the reader might benefit from greater detail the derivations are included in the
main text, but in a smaller font size. The Appendix at the end of the book con-
tains mathematical results that are auxiliary to the material covered in the book.
The reason for including the Appendices is to present a complete and compre-
hensive treatment of all the topics discussed, and a reader who intends to carry out
some computations would find this material useful. In principle, the Appendices
and the derivations in smaller type can be skipped without any loss of continuity.
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Fundamental concepts of finance





2

Introduction to finance

The field of economics is primarily concerned with the various forms of productive
activities required to sustain the material and spiritual life of society. Real assets,
such as capital goods, management and labour force, and so on, are necessary for
producing goods and services required for the survival and prosperity of society.

The term capital denotes the economic value of the real assets of a society. In
most developed economies, economic assets have a monetized form, and capital
can be given a monetary value or paper form, called the money form of capital.

Finance is a branch of economics that studies the money (paper) form of capital.
Uncertainty and risk are of fundamental importance in finance [87].

The main focus in this book is on financial assets and financial instruments.
Financial assets, in contrast to real assets, are pieces of paper that entitle its holder
to a claim on a fraction of the real assets, and to the income (if any) that is generated
by these real assets. For example, a person owning a stock of a company is entitled
to yearly dividends (if any), and to a pro rata fraction of the assets if the company
liquidates.

What distinguishes finance from other branches of economics is that it is pri-
marily an empirical discipline due to the demands of the finance industry. Vast
quantities of financial data are generated every day, in addition to mountains of
accumulated historical data. Unlike other branches of economics, the empirical
nature of finance makes it closer to the natural sciences, since the financial mar-
kets impose the need for practical and transparent quantitative models that can be
calibrated and tested.

A financial asset is also called a security, and the specific form of a financial
asset – be it a stock or a bond – is called a financial instrument. A financial as-
set is at the same time a financial liability for the issuing party, since its profit
and assets are to be divided amongst all the stockholders. Stocks and bonds are in
positive net supply. Derivatives in contrast are in zero net supply since the num-
ber of people holding the derivative exactly equals the number of people selling

7



8 Introduction to finance

these derivatives – and hence derivatives amount to a zero-sum game. The payoff
to the holder of a derivative instrument equals minus the payoff for the seller of
the instrument.

An investor can invest in financial assets as well as in real assets, such as real
estate, gold or some other commodity [54].

The following are the three primary forms of financial instruments.

� Equity, or common stocks and shares represent a share in the ownership of a company.
The possession of a share does not guarantee a return, but only a pro rata fraction of
the dividends, usually declared if the company is profitable. The value of a share may
increase or decrease over time, depending on the performance of the company, and hence
the owner of equity is exposed to the risks faced by the company. The holder of a stock
has only a limited liability of losing the initial investment. Hence, the value of a stock is
never negative, with its minimum value being zero. Equity is a form of asset since the
holder of equity is a net owner of capital.

� Fixed income securities, also called bonds, are issued by corporations and governments,
and promise either a single fixed payment or a stream of fixed payments. Bonds are
instruments of debt, and the issuer of a bond in effect takes a loan from the buyer of the
bond, with the repayment of the debt usually being scheduled over a fixed time interval,
called the maturity of the bond. There is a great variety of bonds, depending on the
different periods of maturity and provisions for the repayment stream. For example, the
holder of a five-year coupon US Treasury Bond is promised a stream of interest payments
every six months, with the principal being repaid at the end of five years, whereas a holder
of a zero coupon US Treasury Bond receives a single cash flow on the maturity of the
bond. The risk in the ownership of a fixed-income security is often considered to be less
than the ownership of equity since – short of the issuer going bankrupt – the owner of a
fixed-income security is guaranteed a return as long as the owner can hold the instrument
till maturity. However, due to interest rate risk, credit risk and currency risk for the bonds
that are issued in a foreign currency, a bond portfolio can lose as much value, or even
more, than a portfolio of equities.

� Derivative securities are, as the term indicates, financial assets that are derived from
other financial assets. The payoff of a derivative security can depend, for example, on
the price of a stock or another derivative.

The three primary forms of financial instruments can be combined in an almost
endless variety of ways, leading to more complex instruments. For example, a
preferred stock combines features of equity and debt instruments by entitling
the investor to a fraction of the issuer’s equity, and at the same time – similar to
bonds – to a stream of (fixed) payments.

Theoretical finance takes as its subject the money (paper) form of capital, and is
primarily concerned with the problems of the time value of money, risk and return,
and the valuation of securities and assets. The creation and arbitrage-free pricing
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of new financial instruments to suit the myriad needs of investors is of increasing
importance. The design, risk-return analysis and hedging of these instruments are
issues that are central to finance, and comprise the field of financial engineering.

2.1 Efficient market: random evolution of securities

A financial market is where the buyer and seller of a financial asset meet to enact
the transaction of buying and selling. If one buys (or agrees to buy) a financial
asset, one is said to have a long position or is said to be going long. On the other
hand, if one is selling a financial asset, one is said to be shorting the asset, or,
equivalently, have a short position. If one sells an asset without actually owning
it, one is said to be engaged in short selling; the repurchase date for short selling
is usually some time in the future.

There are various forms in which any market is organized, with the primary
ones being the following. A direct market is based on a direct search of the buyer
and seller, the brokered market is one in which the brokers – for fees – match
the buyer with the seller, and, lastly, the auction market is one in which buyers
and sellers interact simultaneously in a centralized market [100]. Financial assets
and instruments are traded in specialized markets known as the financial markets,
which will be discussed in the next section.

The concept of an efficient market is of great importance in the understanding
of financial markets, and is tied to the concept of the ‘fair price’ of a security. One
expects that for a market in equilibrium, the security will have its fair price, and
that investors will consequently not trade in it any further. When in equilibrium, an
efficient market is one in which the prices of financial instruments have only small
and temporary deviations from their fair price.

Efficient market is closely related to the concept of market information. What
differentiates the various players in the market is the amount of market informa-
tion that is available to each of them. Market information in turn consists of three
components, namely: (a) historical data of the prices and returns of financial assets,
(b) public domain data regarding all aspects of the financial assets and (c) informa-
tion known privately to a few market participants. Based on these three categories
of information, the concept of ‘weak’, ‘semi-strong’ and ‘strong’ forms of market
efficiency can, respectively, be defined [23].

Intuitively speaking, an efficient market in effect means most of the buyers and
sellers in the market have equal wealth and information, with no collection of
buyers or sellers having any (unfair) advantage over the others. A precise statement
of the efficient market hypothesis is the following

For a financial market that is in equilibrium, none of the players, given their
endowment and information, want to trade any further. For efficient markets,
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prices reveal available market information. The inflow of new information
comes in randomly – in bits and pieces – causing random responses from
the market players, due to the incomplete nature of the incoming informa-
tion, and results in random changes in the prices of the various financial
instruments.

It is worth emphasizing that a far-reaching conclusion of the efficient market
hypothesis is that, once the market is in equilibrium, changes in the prices of
all securities, upto a drift, are random [23]. The reason being that in an efficient
market the prices of financial instruments have already incorporated all the market
information, and resulted in equilibrium prices; any departures of the prices from
equilibrium should be uncertain and unpredictable, with changes being equally
likely to be above and below the equilibrium price.

Hence changes in the prices of financial instruments should be represented by
random variables. Suppose the value of an equity at time t is represented by S(t);
then the change in the value of an equity is random, that is, d S/dt is modelled as
a random variable; this in turn implies the security S(t) itself is also a random
variable, with its initial (deterministic) condition specified at some time t0. The
extent to which a security S(t) is random is specified by a quantity called the
volatility of the security, and is usually denoted by σS , or simply by σ . The greater
the volatility of a security, the greater are the random fluctuations in the price of
the security. A volatility of σ = 0 consequently implies that the security has no
uncertainty in its future evolution.

The risk that all investors face is a reflection of the random evolution of finan-
cial instruments, and is ultimately a reflection of the manner in which (financial)
markets incorporate all the relevant features of the underlying real economy.

The efficient market hypothesis does not imply that new information or impor-
tant events do not move the market; rather, the hypothesis implies that unexpected
or unanticipated new information disturbs the equilibrium of the market prices
of various securities, and systematically moves them to a new set of equilibrium
prices. Once equilibrium is reached, ordinary information will be available to al-
most all participants and hence will lead to random changes in the revealed prices
of the financial instruments.

Is the efficient market hypothesis empirically testable? As pointed out in [23],
there are two hypotheses implicit in the existence of an efficient market, namely
the hypothesis of efficiency together with the hypothesis that the market is in a par-
ticular equilibrium. It is only this joint hypothesis – namely of market efficiency
and equilibrium – that can be empirically tested and which often leads to spirited
academic debates regarding the efficiency of financial markets.
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The concept of market equilibrium is similar to the idea of equilibrium for a
thermodynamic system. The positions and velocities of individual particles, anal-
ogous to the prices of financial instruments, are random even though the system
itself is in equilibrium. Furthermore, the efficiency of the market is analogous to
the efficiency of a thermodynamic heat engine. No one expects an actual heat en-
gine to have 100% efficiency, and an efficiency of say 60–70% is fairly common.
Similarly, even if a financial market is not fully efficient, it is often still justified to
apply mathematical models based on this concept.

2.2 Financial markets

The financial markets are organized to trade in various forms of financial instru-
ments. The major segmentation of the financial markets is into the capital markets
and the money markets. Capital markets are structured to trade in the primary
forms of financial instruments, namely in instruments of equity, debt and deriv-
atives. Indexes are a part of the capital markets and are equal to the weighted
average of a basket of securities of a particular market; given their importance
and depth, indexes are treated as entities distinct from the capital markets. Money
markets, properly speaking, belong to the debt market, but since money market
instruments trade in highly liquid and short-term debt, cash and cash equival-
ents, foreign currency transactions and so on, a separate market is set up for such
transactions.

The following is a breakdown of the main forms of the financial markets:

1 Capital markets
� Equity market: common stocks; preferred stocks.
� Debt market: treasury (government) notes and bonds; corporate and municipal bonds;

mortgage-backed securities (MBS)
� Derivative market: options; forwards and futures

2 Indexes
� Equity indexes: Dow Jones and Standard and Poor’s Indexes; Nikkei index; DAX In-

dex; STI Index etc.
� Debt indexes: bond market indicators

3 Money markets
� Cash time deposits
� Treasury bills
� Certificates of deposit
� Commercial paper
� Eurodollar deposits: refers to US$ deposits in non-US banks, or in overseas branches

of US banks.
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MBS (14%)

Treasury (26%)

Equity (36%)

High yield (2%)

Municipal (11%)

Corporate (11%)

Figure 2.1 The 1993 US capital markets worth US$11.3 trillion. The debt mar-
kets consist of corporate, municipal Treasury and high-yield bonds and MBS
(mortgage-backed securities) making up 64% of the capital markets, with 36%
being in the equity markets.

Data for the 1993 US capital market are given in Figure 2.1. The equity com-
ponent is only 36% of the capital market; if one takes into account the money
market, the share of equity is even lower. The global debt market was worth
US$14.08 trillion in 1993 and Figure 2.1 [100] shows the main international
borrowers.

The GDP of the USA in 2001 was about US$10 trillion. The size of the credit
market in the US for 2002 was about US$29 trillion (with financial sector borrow-
ing making up US$9 trillion). In comparison, the total equity (market capitaliza-
tion) in the US for 2002 was about US$12 trillion.

Derivatives can be traded in two ways: on regulated exchanges or in unregulated
over-the-counter (OTC) markets The size of the derivatives markets are typically
measured in terms of the notional value of contracts. Recent estimates of the size
of the exchange-traded derivatives market, which includes all contracts traded on
the major options and futures exchanges, are in the range of US$13 trillion to
$14 trillion in notional amount. OTC derivatives are customized for specific cus-
tomers. The estimated notional amount of outstanding OTC derivatives as of year
end 2000 was US$95.2 trillion, and experts consider even this amount as being
most likely on the lower side.
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US (46%)Germany (10%)

Japan (18%)

UK (8%)

Italy (5%)

France (5%)

Others (8%)

Figure 2.2 Breakdown of the 1993 US$14.8 trillion global debt markets

2.3 Risk and return

For any investor, two considerations are of utmost importance, namely, the return
that can be made, and the risk that is inherent in obtaining this return. The trade-
off between return and risk is the essence of any investment strategy. Clearly, all
investors would like to maximize returns and minimize risk. What constitutes re-
turn is quite simple, but the definition of risk is more complex since it involves
quantifying the uncertainties that the future holds.

Suppose one buys, at time t , a stock at price S(t), holds it for a duration of
time T with the stock price having a terminal value of S(t + T ) and during this
period earns dividends worth d. The (fractional) rate of return R for the period T
is given by

R = S(t + T ) + d − S(t)

S(t)

where R/T is the instantaneous rate of return.
What are risks involved in this investment? The future value of the stock price

may either increase on decrease, and it is this uncertainty regarding the future
that introduces an element of risk into the investment. There are many possible
scenarios for the stock price. One scenario is that there is a boom in the market
with stock prices increasing; or there is a downturn and stock prices plummet;
or that the market is in the doldrums with only small changes in the stock price.
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Table 2.1 Possible scenarios for the annual change in the price of a security S(t)
with current price of $100

s Scenario S p(s):Likelihood R(s):Annual Return Average R̄ Risk σ

1 Doldrum $100 p(1) = 0.70 R(1) = 0.00
2 Downturn $85 p(2) = 0.20 R(2) = −0.15 −0.025 0.06
3 Boom $105 p(3) = 0.10 R(3) = 0.05

One can assign probabilities for each scenario, and this in turn gives the investor a
way of gauging the uncertainties of the market. A typical example of the various
scenarios for some security S(t) are shown in Table 2.1.

Label each scenario by a discrete variable s, its probability by p(s), and its
return by R(s). The expected return for the investment is the average (mean) value
of the return given by

R̄ = expected return =
∑

s

p(s)R(s) ≡ E[R]

where the notation E[X ] denotes the expectation value of some random quan-
tity X .

The risk inherent in obtaining the expected return is clearly the possibility that
the return may deviate from this value. From probability theory it is known that
the standard deviation indicates the amount the mean value of any given sample
can vary from its expected value, that is

actual return = expected return ± standard deviation (with some likelihood)

The precise amount by which the actual return will deviate from the expected
return – and the likelihood of this deviation – can be obtained only if one knows the
probability distribution p(S) of the stock price S(t). Standard deviation, denoted
by σ , is the square root of the variance defined by

σ 2 =
∑

s

p(s)
(
R(s) − R̄

)2 ≡ E[(R − R̄
)2]

The risk inherent in any investment is given by σ – the larger risk the greater σ ,
and vice versa. In the example considered in Table 2.1, at the end of one year the
investor with an initial investment of $100 will have an expected amount of cash
given by $100 × [1 + R̄] ± 6 = $97.50 ± 6.
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For some cases, such as a security obeying the Levy distribution, the value of
σ is infinite, and a more suitable measure for risk then is what is called ‘value at
risk’ [18].

Instruments such as fixed deposits in a bank and so on are taken to be risk free.
The rate of return of a risk-free instrument at time t is the amount earned on an
instantaneous deposit in a risk-free bank; the rate is called the spot interest rate, or
overnight lending rate, and is denoted by r(t). Hence, for a risk-free instrument

σrisk-free = 0

risk-free rate of return = spot interest rate = r

A risk-neutral investor expects a return equal to the spot interest rate r . However,
for risky investments σ > 0, and clearly to induce investors to take a high risk,
there have to be commensurate high rewards. To facilitate the flow of capital to-
wards high-risk investments, the capital market holds out a premium for undertak-
ing high risk with the prospect of high returns. This risk premium is the amount
by which the rate of return on high-risk investment is above the risk-free rate. For
an investment with an average annual rate of return R̄, the risk premium – also
called the Sharpe ratio – is given by (R̄ − r)/σ .

A speculator would invest in high-risk securities if an analysis shows that the
potential return on that investment has a sufficient risk premium. A speculator in
this sense is different from a gambler who takes a high risk even in the absence of
a risk premium.

A fundamental principle of finance is the principle of no arbitrage which states
that no risk-free financial instrument can yield a rate of return above that of the
risk-free rate. In other words there is no free lunch – if one wants to harvest high
returns one has to take the commensurate high risks. The mathematical implica-
tions of the principle of no arbitrage is discussed in Section 2.5.

2.4 Time value of money

The money form of capital represents real productive assets of society that can
erode over time; furthermore, other factors like inflation, currency devaluations and
so on make the value represented by financial assets dependent on time. Financial
assets represent the ability to initiate or facilitate economic activities, opportunities
which are tied to changing circumstances. For these and many other reasons, the
effective value of money is strongly dependent on time.

How does one estimate the time value of money? From economic theory, the
sum total of all the endogenous and exogenous effects on the time value of money
are contained in the spot interest rate. Money invested in other risky instruments
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are more complicated to value, as risk premiums are involved that may differ be-
tween investors. Ultimately, the time valuation of money involves a discounting of
the future value of money to obtain its ‘expected’ present-day value.

Suppose one has $1 at time t0, and invests this sum in a risk-free instrument such
as a fixed deposit; furthermore, suppose one compounds the investment by rein-
vesting the returns in the same fixed deposit. Since the rate of return on risk-free
instruments is r(t), at some future time t∗ the risk-free value of the investment
becomes

t0 < t∗ : $1 at time t0 = $ e
∫ t∗

t0
dtr(t)

at time t∗: augmented value of cash

Equivalently, one discounts the future value of money to obtain its present value

$1 at time t∗ = $ e
− ∫ t∗

t0
dtr(t)

at time t0: discounted value of cash

The time value of money essentially means that the correct unit to use for money
is not $1 – since its effective value is subject to constant variations over time – but
instead the correct units for measuring risky instruments, such as a stock, or risk-
free instruments, such as cash, is the discounted quantity. The present-day value
of a future cash flow should be discounted by a factor exp{− ∫ t∗

t0
dtr(t)}, and sim-

ilarly, the future value of a current cash flow should be augmented by its inverse.
To determine the function r(t) from first principles one has to study the mac-

roeconomic fundamentals of an economy, the supply and demand of money, and
so on. The interest rate reflects the marginal utility of consumption, that is, the rate
at which people are enticed to forgo current consumption and save (invest) their
money for future consumption. It will be seen later, when spot interest rate mod-
els are studied, that r(t) is considered to be a stochastic (random) variable. The
discounting is then obtained by taking the average of the discounting factor over
all possible values of the random function r(t). Hence the discounting factor is
given by

t0 < t∗ : $1 at time t∗ = $ E

[
e
− ∫ t∗

t0
dtr(t)

]
at time t0 (2.1)

: discounted value of cash

2.5 No arbitrage, martingales and risk-neutral measure

Arbitrage – an idea that is central to finance – is a term for gaining a risk-
free (guaranteed) profit by simultaneously entering into two or more financial
transactions – be it in the same market or in two or more different markets. Since
one has risk-free instruments, such as cash deposits, arbitrage means obtaining
guaranteed risk-free returns above the risk-less return that one can get from the
money market.
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For example, suppose that at some instant the share of a company is traded at
value US$1 on the New York stock exchange, and at value S$1.8 in Singapore,
with the currency conversion being US$1 = S$1.7. A broker can simultaneously
buy 100 shares in New York and sell 100 shares in Singapore making a risk-less
profit of S$10. Transaction costs tend to cancel out arbitrage opportunities for
small traders, but for big brokerage houses – which have virtually zero transaction
cost – arbitrage is a major source of profits. One can also see that the price of the
share in Singapore will tend to move to a value close to S$1.7 due to the selling of
shares by the arbitrageurs.

In an efficient market there are no arbitrage opportunities. Arbitrage is one of the
mechanisms by which the capital market in practice functions as an efficient mar-
ket, and determines the equilibrium (‘correct’) price of any financial instrument.
The existence of an efficient market is a sufficient but not a necessary condition
for the principle of no arbitrage to hold. In equilibrium no arbitrage opportunities
exist. No arbitrage is a robust concept since it expresses the preference of all in-
vestors to have more wealth over less wealth. Most models of market equilibrium
are based on more restrictive assumptions about investor behaviour.

An important result of theoretical finance is the following: for the price of a fi-
nancial instrument to be free from any possibility of arbitrage, it is necessary to
evolve the discounted value of the financial instrument using a martingale pro-
cess [23, 40, 100]. The real market evolution of a security, for example a stock,
does not follow a martingale process since there would then no risk premium for
owning such a security. Instead, the martingale evolution of a security is a conve-
nient theoretical construct to price derivative instruments such that their price is
then free from arbitrage opportunities.

The concept of a martingale in probability theory (discussed in Appendix A.1)
is the mathematical formulation of the concept of a fair game. In an efficient mar-
ket the risk-free evolution of a security is equivalent to its evolution obeying the
martingale condition. Since real investors are not risk neutral and demand a risk
premium, their evolution requires a change of measure from the risk-neutral one.

Suppose one has a stochastic process given by a collection of N + 1 ran-
dom variables Xi ; 1 ≤ i ≤ N + 1, with a joint probability distribution function
given by p(x1, x2, . . . , xN+1). As discussed in Eq. (A.2), a martingale process is
defined by the following conditional probability

E
[
Xn+1|x1, x2, . . . , xn

] = xn : martingale (2.2)

The left-hand side is the expected probability of the random variable Xn+1, condi-
tioned on the occurrence of x1, x2, . . . , xn for random variables X1, X2, . . . , Xn .
In finance, at time t the random variables are the future prices of a stock
S1, S2, . . . , SN+1 at the times t1, t2, . . . , tN+1 respectively. To apply the martingale
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condition to the evolution of stock prices, the stock price needs to discounted since
the prices of stocks are being compared at two different times. It is shown in Ap-
pendix A.6 that for a complete market there exists a unique risk-neutral measure
with respect to which the discounted evolution of all derivatives of an asset obey
the martingale condition [40, 42].

Let the value of an equity at future time t be S(t). Assume that there exists a
risk-free evolution of the discounted stock price

e− ∫ t
0 r(t ′)dt ′ S(t) (2.3)

such that it follows a martingale process [42]. From Eq. (A.40) it follows that the
conditional probability of the discounted value of the equity at time t , is its present
value S(0). In other words

S(0) = E
[
e− ∫ t

0 r(t ′)dt ′ S(t)|S(0)
]

(2.4)

The result above is of great generality, as it holds for any security; the impor-
tance of martingales in financial modelling is discussed [80].

In summary, if there exists a measure such that the evolution of a discounted
financial instrument obeys the martingale condition, then it is guaranteed that the
prices of all of its derivative instruments are free from arbitrage opportunities.
The converse is also true: if a discounted financial instrument’s price is free from
arbitrage opportunities, then there exists a martingale measure. The existence of a
martingale measure is called by some authors [42] the fundamental theorem of
finance, and is briefly discussed in Appendix A.6.

Most of the models that are analyzed in this book are evolved with a martingale
measure, thus ensuring that the price of all (derivative) financial instruments are
free from arbitrage opportunities.

2.6 Hedging

Given that the evolution of financial instruments is stochastic, the question nat-
urally arises as to whether one can create a portfolio from risky financial assets
that is risk free? In other words, can one cancel the random fluctuations of one
instrument with the random fluctuations of another instrument? Can the cancella-
tion be made exact so that the composite instrument becomes risk free? In addition
to reducing risk, hedging has another major role: between two portfolio’s giving
the same return, the one that is hedged has a lower risk, and hence in general is a
superior portfolio.

Hedging is the general term for the procedure of reducing the random fluctu-
ations of a financial instrument by including it in a portfolio together with other
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related instruments. A perfectly hedged portfolio is free from all random fluctua-
tions: the random fluctuations in the price of the financial instrument being hedged
are exactly cancelled by the compensating fluctuations in other instruments in the
portfolio. In practice, however, the best that is usually possible is to have a partially
hedged instrument.

Hedging is analogous to buying insurance. The cost of hedging is the transaction
costs incurred in buying and selling the needed securities – and, similar to insur-
ance, is the price that one has to pay for reducing risk. High transaction costs make
it more costly to hedge, but it is still effective in combating risk. Often, hedging
leads to the unwanted result of lowering future payoffs. For example, one can use
short positions in futures contracts (futures contracts cost nothing to enter into) in
order to hedge a bond. If interest rates increase, the hedge works (gain on futures
contracts offset losses on the bond’s value); however, if interest rates decrease the
bond price increases, but the futures contracts lose money and in doing so lower
the net profit. Thus, eliminating fluctuations also eliminates the possibility of some
‘good’ fluctuations in the process. Options, though not costless to enter, often allow
investors to manage risks without having to accept reduced payoffs in the future.

In short, the hedging strategy depends on the objectives of the investor.
There is in general no guarantee that all the fluctuations in the price of a financial

instrument can be hedged. For a complete market there exist, in principle, assets
that can be used to hedge every risk of a specific instrument. In practice whether an
instrument can be perfectly hedged or not depends on the other instruments that are
actually available in the market; a major impetus for the development of derivative
instruments stems from the need to hedge commonly used financial instruments.

To hedge a financial instrument, one needs to have at least a second instru-
ment so that a cancellation between the fluctuations of the two instruments can be
attempted. The second instrument clearly has to depend on the instrument one in-
tends to hedge, since only then can one expect a connection between their random
fluctuations. For example, to hedge a primary instrument, what is often required is
a derivative instrument, and vice versa. Since the derivative instrument is driven
by the same random process as the primary instrument, the derivative instrument
has the important property that its evolution is perfectly correlated with the fun-
damental underlying instrument, and hence allowing for perfect hedging.

Consider the case of a security, say a common stock, that is represented by the
stochastic variable S(t). Suppose a reduction in the risk of holding a stock is sought
by attenuating the fluctuations in the value of S(t); one needs to consequently hold
a second instrument, a derivative of S(t) – denoted by D(S) – such that taken to-
gether the portfolio will have fewer fluctuations. Suppose that S(t) can be perfectly
hedged, and denote the hedged portfolio by �(S, t). The portfolio for example can
consist of the investor going long (buying) on a single derivative D(S), and short
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selling �(S) worth of the underlying stock S. The portfolio at some instant t is
then given by

�(S, t) = D(S) − �(S)S

Since value of the security S(t) is known at time t , the portfolio �(S, t) is perfectly
hedged if its time evolution has no random fluctuations, and is in effect a determin-
istic function. In other words

d�(S, t)

dt
: no randomness → perfectly hedged

Since there are no random fluctuations in the value of d�(S, t)/dt it is a risk-free
security; the principle of no arbitrage then requires that the rate of return on the
perfectly hedged portfolio must be equal to risk-free spot rate r(t). Hence

d�(S, t)

dt
= r(t)�(S, t)

This, in short, is the procedure for hedging a financial asset.
In practice there are many conditions that need to be met for hedging to be

possible.

� The market must trade in the derivative instrument D(S); otherwise one cannot create a
hedged portfolio. There are many financial instruments that cannot be hedged because
the appropriate derivative instruments are not traded in the market, as, for example, is
the case with the volatility of a security.

� It needs to be ascertained whether the hedging parameter �(S) exists, and what is its
functional dependence on the stock price S. For this the precise relation of the derivative
D(S) with the stock price S(t) needs to be known, as well as the detailed description of
the (random) dynamics of S(t).

� Since the portfolio �(S, t) depends on time, hedging needs to be done continuously; for
this to be possible the market has to have enough liquidity and this in turn determines
the transaction costs involved in hedging.

The concept of hedging an equity is discussed in Chapter 3 on derivatives, and
in Chapter 9 where the hedging of Treasury Bonds is discussed in some detail.

2.7 Forward interest rates: fixed-income securities

Forward interest rates and fixed-income securities are fundamental to the debt
market [58].

An instantaneous loan at time t costs the borrower a spot interest rate r(t), and
is usually quoted as an annual percentage; spot interest rates typically vary from
0.1% to 20% per year.
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It is often the case that a borrower may need to borrow money at some spe-
cific time in the future, for example to buy and sell a commodity a year in the
future; such a borrower would like to lock-in the interest rate needed for the ex-
pected transaction. The capital market has an instrument for such a borrower called
the forward interest rates, or forward rates, and is denoted by f (t, x). From a
mathematical point of view, both the spot interest rate and the forward rates are
the instantaneous cost of borrowing money, that is of borrowing money for an
infinitesimal time ε.

The forward rate f (t, x) is the instantaneous interest rate agreed upon (in the
form of a contract) at an earlier time t < x , for a borrowing between future times
x and x + dx . The forward rates constitute the term structure of the interest
rates, and is related to the interest rate yield curve.

From its definition, that the spot interest rate r(t) for an overnight loan at some
time t , is given by

r(t) = f (t, t) (2.5)

Bonds are financial instruments of debt that are issued by governments and
corporations to raise money from the capital market. Bonds entail a financial obli-
gation on the part of the issuer to pay out a predetermined and fixed set of cash
flows, and hence the generic term fixed-income securities is used for the various
categories of bonds.

A Treasury Bond is an instrument for which there is no risk of default in receiv-
ing the payments, whereas for corporate, municipal bonds and sovereign bonds of
certain countries – such as Russia, Argentina, and so on – there is in principle such
a risk. Due to the risk-free nature of the US Treasury Bond the US government is
able to engage in large-scale international borrowing at the lowest possible interest
rates.

A zero coupon Treasury Bond is a risk-free financial instrument which has a
single cash flow consisting of a fixed payoff of say $1 at some future time T ; its
price at time t < T is denoted by P(t, T ), with P(T, T ) = 1.

From the time value of money, for a bond maturing at time T its value P(t, T )

before maturity is given by discounting P(T, T ) = 1 to the time t by the spot in-
terest rate. For the general case when interest rates are considered to be stochastic,
Eq. (2.1) gives

P(t, T ) = E
[
e− ∫ T

t dt ′r(t ′) P(T, T )
]

= E
[
e− ∫ T

t dt ′r(t ′)
]

(2.6)

: discounted value of P(T, T ) = 1
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where the expectation value is taken with respect to the stochastic process obeyed
by r(t). Eq. (2.6) shows that the Treasury Bond is a function of only the initial
value r(t) of the spot rate.

A coupon Treasury Bond B(t, T ) has a series of predetermined cash flows that
consist of coupons worth ci paid out at increasing times Ti , with the principal
worth L being paid on maturity at time T . Using the principle that two financial
instruments are identical if they have the same cash flows, it can be shown [58]
that B(t, T ) is given in terms of the zero coupon bonds as

B(t, T ) =
K∑

i=1

ci P(t, Ti ) + L P(t, T ) (2.7)

From above it can be seen that a coupon bond is equivalent to a portfolio of zero
coupon bonds. Hence, any model of the zero coupon bonds automatically provides
a model for the coupon bonds as well.

Municipal, corporate and high-yield bonds are more complex to model due to
taxation rules, liquidity, and so on, have a finite likelihood of default, and hence
carry an element of risk not present in Treasury Bonds. Risky bonds consequently
pay a risk premium over and above that of Treasury Bonds.

The price of a zero coupon Treasury Bond P(t, T ) can be written in terms of
the forward rates, which recall are defined only for instantaneous future borrowing.
Since a zero coupon bond is a loan taken by the issuer for a finite duration, one
has to iterate the discounting by the forward rates to obtain the present value of the
Treasury Bond.

At maturity P(T, T ) = $1; hence, P(t, T ) is obtained by successively discount-
ing $1 from future time T to the present time t . For this purpose, discretize time
into a set of instants with time interval ε; the set of forward rates f (t, xn) are then
defined for future times xn = t + nε ; n = 0, 1, . . . [(T − t)/ε].

The discounting of an instantaneous loan from future time xn to time xn−ε is
given by e−ε f (t,xn). Successively discounting the deterministic payoff of $1 at time
T to present time t , gives

P(t, T ) = e−ε f (t,x0)e−ε f (t,x1) . . . e−ε f (t,xN−1)e−ε f (t,xN )1

Taking the limit of ε → 0 yields

P(t, T ) = e− ∫ T
t dx f (t,x) (2.8)

⇒ − ∂

∂T
ln P(t, T ) = f (t, T ) (2.9)

The expression obtained for the Treasury Bonds in terms of the forward rates is an
identity, and can be taken as the definition of the forward rates. Moreover, from
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Eqs. (2.8) and (2.9), once the value of P(t, T ) is known, the value of the forward
rate f (t, T ) is also known, and vice versa.

The martingale condition, given in Eq. (2.4), when applied to the evolution of the
forward rates states the following. Suppose that a zero coupon Treasury Bond that
matures at time T has a price P(t0, T ) for some t0 < T , and a price of P(t∗, T )

at time t0 < t∗ < T . To satisfy the martingale condition the price of the bond at
t∗, evolved backward to time t0 – and continuously discounted by the risk-free
spot rate r(t) – must be equal to the price of the bond at time t0. The martingale
condition for the zero coupon bond, from Eq. (2.4), has the following very general
and model-independent expression given by

P(t0, T ) = E[t0,t∗]
[

e
− ∫ t∗

t0
r(t)dt

P(t∗, T ) | P(t0, T )

]
(2.10)

where the notation E[t0,t∗][X ] denotes the average of the stochastic variable X over
the time interval (t0, t∗].

There are two definitions of the zero coupon bonds, one in terms of the spot rate
given in Eq. (2.6) and the other in terms of the forward rates given in Eq. (2.8).
The two expressions are very different.

One can in principle take the spot interest rate as being fundamental, as is
the case in Eq. (2.6), and the forward rates as derived quantities. The advantage
of this approach is its simplicity, and it is adequate for addressing questions di-
rectly related to the behaviour of only the spot rate. The disadvantage of this ap-
proach is that the spot rate must be consistent with observed bond prices of many
maturities.

Writing P(t, T ) in terms of the forward interest rates as given in Eq. (2.8) is a
more general expression than the one given by the spot rate as in Eq. (2.6). The
reason being that the forward rates can in principle be directly determined from the
market. In the modelling of the forward rates across all maturities, an entire initial
term structure is used as an input. Hence, the model will not generate arbitrage
opportunities based on observed bond prices.

Of course, the trade-off is that forward rates f (t, x) depend on two variables,
namely t, x whereas the spot interest rate r(t) depends only on time t . In spite of
its greater complexity, considering the forward interest rates as fundamental, and
regarding the spot rate as just one point of the forward rates curve, is nevertheless
a very productive approach to the modelling of forward rates.

2.8 Summary

Some of the key ideas of finance were reviewed, and which will repeatedly appear
in later discussions.
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The random evolution of financial instruments forms the basis for the entire
exercise of modelling the evolution of these instruments using random variables.
It is the random time evolution of financial instruments that provides the crucial
and far-reaching connection with quantum theory, and with path integration.

The concept of risk is at the center of the notion of hedging. The generalization
of the concept of risk for the infinite-dimensional case will play a key role in
defining the quantum field theory of hedging for Treasury Bonds.

The time value of money leads one naturally to the concept of the martingale
measure, which is defined by demanding that the discounted future value of a
traded instrument be equal to its present-day value. A lot of effort will be expended,
specially for the case of nonlinear forward interest rates, in finding the appropriate
martingale measure.

The concepts of hedging and options form a cornerstone of the theory of fin-
ancial derivatives, and the pricing of options is the focus of the first half of this
book.

The second half of the book addresses the subject of forward interest rates and
fixed-income securities. In particular, the study of the forward rates naturally leads
to its formulation as a quantum field, which is the main thrust of this book.
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Derivative securities

Derivative securities, or derivatives in short, are important forms of financial in-
struments that are traded in the financial markets. As the name implies, derivatives
are derived from underlying financial instruments: the cash flows of a derivative
depend on the prices of the underlying instruments.

Derivatives have many uses from being an ingredient in the hedging of a port-
folio, to their use as instruments for speculation.

Given the uncertainties of the financial markets, there is a strong demand from
the market for predicting the future behaviour of securities. Derivative instruments
are a response to this need, and contain information for estimating the behaviour
of a security in the future. There are three general categories of derivatives, namely
forwards, futures and options.

3.1 Forward and futures contracts

Suppose a corporation needs to import steel one year in the future, denoted by T .
Since the price of steel can vary over time, the corporation would like to guard
against the risk of the price of steel increasing by locking-in the price of steel
today, denoted by t .

Let the price of steel per ton at time t be denoted by S(t). The forward contract
is a contract between a buyer of steel – who is said to have a long position, and
a seller – who is said to have a short position. The seller agrees, at time t , to
provide steel at future time T , at the forward price F(t, T ) that reflects the current
prevailing price and interest rates. The contract is entered into at time t , and there
is no initial cash transaction; the value of the forward contract is chosen such that
its initial value is zero; the value of the forward contract fluctuates till its maturity
at time T . On maturing (at time T ) the value of the forward contract is

S(T ) − F(t, T ) if long

F(t, T ) − S(T ) if short

25



26 Derivative securities

There is a single cash flow at the maturity of contract worth F(t, T ); this value can
be either positive or negative depending of the price of steel at time T .

A futures contract, denoted by F(t, T ), is similar to a forward contract in the
sense that it is an agreement between a buyer and seller, entered into at some
present time t , for the delivery of a specified quantity, of say steel, at a fixed time
T in the future. Futures contracts are highly regulated and have a standard format.
There is always a third party, usually a clearing house, that acts as a middle man in
the contract, and imposes margin payments on both the seller and buyer to increase
liquidity, and reduce owner party risk, creating a series of cash flows from the time
the contract is initiated until it matures.

One needs to draw a distinction, at time t , between the value and the price of
a futures contract.1 On initiating the contract, neither party pays any cash amount
and hence the value of the contract is zero. However, a notional fair price is as-
signed to the futures contract at time of writing the contract, namely F(t0, T ) �= 0.
An initial margin is paid on initiating the contract. There is a daily maintenance
margin if the price moves from its initial value, and is called marking-to-market: if
the price of steel deviates overnight, depending on the direction of the movement,
money is either paid into the margin account, or withdrawn from it. Since the price
of an asset fluctuates randomly, the value of the futures contract also fluctuates
randomly.

When the contract matures the value of the futures contract converges to the
value of S(T ) due to pressure from arbitrage. If the value of F(T, T ) > S(T ), the
seller can short the futures contract and buy the stipulated amount from the market
at price S(T ), thus making a risk-less profit; on the other hand, if F(T, T ) < S(T ),
companies interested in buying steel will arbitrage by entering into a long futures
contract and acquire the asset below market price. Hence

F(T, T ) = S(T )

During its duration, the futures contract F(t, T ) can be above or below S(t), the
spot price for steel as shown in Figure 3.1.

Both the forward and futures contracts are designed to meet the needs of the
corporation. Forward contracts are customized to serve the needs of the buyer and
seller, whereas futures contracts are standardized, being traded in the exchange
market, and hence are more liquid. An important difference between the two is
that for the forward contract, there is only one cash flow at the maturity of the
contract, whereas for the futures contract there is a series of cash flows generated
by the procedure of marking-to-market.

1 In general, there is no need to draw a distinction between the value and price of a financial instrument, and
these two terms will usually be used interchangeably.
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T t

S(t)

Futures(t)

Figure 3.1 Possible futures prices. The dashed line is the price of the security.

3.2 Options

Options have been widely studied in finance [15, 51, 77], and are a fertile ground
for the application of quantitative methods [27, 92, 105].

Options are derivatives that can written on any security, including other deriva-
tive instruments. In the case of the forward and futures derivatives, the seller is
obliged by the contract to take delivery of the asset in question. In contrast, an
investor may be more interested in the profit than can be made by entering into a
contract, rather than actually possessing the asset.

An option C is a contract to buy or sell (called a call or a put) that is entered
into by a buyer and a seller. For a European call option the seller of the option
is obliged to provide the stock of a company S at some pre-determined price K
and at some fixed time in the future; the buyer of the option, on the other hand has
the right to either exercise or not exercise the option. If the price of the stock on
maturity is less than K , then clearly the buyer of a call option should not exercise
the option. If, however, the price of the stock is greater than K , then the buyer
makes a profit by exercising the option. Conversely, the holder of a put option has
the right to sell or not sell the security at a pre determined price to the seller of the
put option.

In general a European option is a contract with a fixed maturity, and in which
the buyer has the option to either buy or sell a security to the seller of the option
at some pre-determined (but not necessarily fixed) strike price [51]. The precise
form of the strike price is called the payoff function of the option. There are a
great variety of options, and these can be broadly classed into path-independent
and path-dependent options.
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Most of the options are traded in the derivatives market, which is a growing and
a highly diversified market.

3.2.1 Path-independent options

Path-independent options are defined by a payoff function that only depends of the
value of the underlying security at the time of maturity. In other words, the payoff
function is independent of how the security arrives at its final price.

The most widely used path-independent options are the European options, and
these come in two varieties, the call and the put options.

Consider an underlying security S. The price of a European call option on S(t)
is denoted by C(t) = C(t, S(t)), and gives the owner of the instrument the option
to buy the security at some future time T > t for the strike price of K .

At time t = T , when the option matures the value of the call option C(t, S(t))
is clearly given by

C(T, S(T )) =
{

S(T ) − K , S(T ) > K
0, S(T ) < K

= g(S)

where g(S) is the payoff function.

g(S )

K S

Figure 3.2 Payoff for call option. The dashed line is possible values of the option
before maturity.

The price of an European put option, denoted by P(t) is the same as above,
except that the holder now has the option to sell a security S at a price of K .
Suppose the spot interest rate is given by r , and is a constant. A simple no-arbitrage
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argument [51] shows that

C(t) + K e−r(T −t) = P(t) + S(t); t ≤ T

and is called put–call parity.
Clearly, the European call and put options are path independent since the payoff

function depends only on the final price of the security.

g (S )

SK

Figure 3.3 Payoff for put option. The dashed line is possible values of the option
before maturity.

3.2.2 Path-dependent options

Path-dependent options [51] are defined by payoff functions that depend on the
(entire) path that the security takes before the option expires. The most well-known
such option is the American option, which is the same as the European option
except that it can be exercised at any time before the expiry of the contract.

The American option is clearly path dependent, since the choice of an early
exercise depends on the value of the security for the entire duration before expiry
of the option. No-arbitrage arguments [51] show that for a security that does not
pay a dividend, the American call option has the same value as a European call
option. On the other hand, an American put option in general has a higher price
than a European put option.

Another path-dependent option is the Asian option. It has a payoff function
that depends on the average value of the security during the whole period of its
duration, namely from the time it is written at time t till the time it expires at T .

A class of path-dependent options are the barrier options, for which a pre-
specified barrier is set for the value of the stock price. The knock-out barrier
European call option is the same as the European one, except that the barrier option
becomes valueless the moment the security price S(t) exceeds the barrier.
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There is also a knock-in barrier option similarly defined, and various combina-
tions of knock-in and knock-out options [51].

More exotic options such as the look-back option, quanto option, basket option,
hybrid option, dual-strike option and so on are designed to serve the specific needs
of investors. There are also OTC (over-the-counter) options that are customized
for the specific needs of investors [27, 51].

3.3 Stochastic differential equation

Let C stand for the price of a typical option. The fundamental problem of option
pricing is the following: given the payoff function g(S) of the option maturing at
time T , what should be the price of the option C , at time t < T , if the price of
the security is S(t)? Clearly C = C(t, S(t)) with the final value of C(T, S(T )) =
g(S(T )).

If the payoff function depends only on the value of S at time T , then the pricing
of the option C(t, S(t)) is a final value problem since the final value of C at
t = T , namely g(S), has been specified, and the value of C at an earlier time t
needs to be evaluated.

The present-day price of the option depends on the future value of the security;
clearly, the price of the option C will be determined by how the security S(t)
evolves to its future value of S(T ). In theoretical finance it is common to model the
stock price S(t) as a (random) stochastic process that is evolved by a stochastic
differential equation [81, 92] given by2

d S(t)

dt
= φS(t) + σ S R(t) (3.2)

where φ is the expected return on the security S, σ is its volatility and R is a
Gaussian white noise with zero mean. Following the Black–Scholes analysis [15]
consider, for now, σ to be a constant. σ is a measure of the randomness in the
evolution of the stock price; for the special case of σ = 0, the stock price evolves
deterministically with its future value given by S(t) = eφt S(0).

Gaussian white noise is discussed in Appendix A.4. Since white noise is as-
sumed to be independent for each time t , the Dirac delta function correlator is
given by3

E[R(t)] = 0; E[R(t)R(t ′)] ≡< R(t)R(t ′) >= δ(t − t ′). (3.3)

2 A stochastic differential equation is known in physics as the Langevin equation [106], and in probability theory
as an Ito–Wiener process [65, 104].

3 The Dirac delta-function is discussed in Appendix A.2, and a brief discussion on the Langevin equation is given
in Appendix A.5.
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Both the notations E[X ] and <X> are used for denoting the expectation value of
a random variable X .

White noise R(t) has the following important property. On discretizing time t =
nε, R(t) → Rn , the probability distribution function of the white noise is given by

P(Rn) =
√

ε

2π
e− ε

2 R2
n (3.4)

For random variable R(t) it is shown in Appendix A.4, using the equation above,
that

R2
n = 1

ε
+ random terms of 0(1) (3.5)

In other words, to leading order in ε, the square of white noise (random variable),
namely R2(t), is in fact deterministic. This property of white noise leads to a
number of important results, and goes under the name of Ito calculus in probability
theory.

3.4 Ito calculus

The application of stochastic calculus to finance is discussed in great detail in [65],
and a brief discussion is given to relate Ito calculus to the Langevin equation. Due
to the singular nature of white noise R(t), functions of white noise, such as the
security S(t) and the option C(t), have new features. In particular, the infinitesimal
behaviour of such functions, as seen in their Taylor expansions, acquire new terms.

Let f be some arbitrary function of white noise R(t). From the definition of a
derivative

d f

dt
= lim

ε→0

f (t + ε, S(t + ε)) − f (t, S(t))

ε

or, using Taylors expansion

d f

dt
= ∂ f

∂t
+ ∂ f

∂S

d S

dt
+ ε

2

∂2 f

∂S2

[
d S

dt

]2

+ 0(ε1/2) (3.6)

The last term in Taylors expansion is order ε for smooth functions, and goes to
zero. However, due to the singular nature of white noise[

d S

dt

]2

= σ 2S2 R2 + 0(1)

= 1

ε
σ 2S2 + 0(1) (3.7)
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Hence, from Eqs. (3.2), (3.6) and (3.7), for ε → 0

d f

dt
= ∂ f

∂t
+ ∂ f

∂S

d S

dt
+ σ 2

2
S2 ∂2 f

∂S2

= ∂ f

∂t
+ 1

2
σ 2S2 ∂2 f

∂S2
+ φS

∂ f

∂S
+ σ S

∂ f

∂S
R (3.8)

Suppose g(t, R(t)) ≡ gt is another function of the white noise R(t). The abbrevi-
ated notation δgt ≡ gt+ε − gt yields

d( f g)

dt
= lim

ε→0

1

ε
[ ft+εgt+ε − ft gt ]

= lim
ε→0

1

ε
[δ ft gt + ftδgt + δ ftδgt ]

Usually the last term δ ftδgt is of order ε2 and goes to zero. However, due to the
singular nature of white noise

d( f g)

dt
= d f

dt
g + f

dg

dt
+ d f√

dt

dg√
dt

: Ito′s chain rule (3.9)

Since Eq. (3.8) is of central importance for the theory of security derivatives a
derivation is given based on Ito calculus. Rewrite Eq. (3.2) in terms differentials as

d S = φSdt + σ Sdz ; dz = Rdt (3.10)

where dz is a Wiener process. Since from Eq. (3.5) R2(t) = 1/dt

(dz)2 = R2
t (dt)2 = dt + 0(dt3/2)

and hence

(d S)2 = σ 2S2dt + 0(dt3/2)

From the equations for d S and (d S)2 given above

d f = ∂ f

∂t
dt + ∂ f

∂S
d S + 1

2

∂2 f

∂S2
(d S)2 + 0(dt3/2)

=
(

∂ f

∂t
+ 1

2
σ 2S2 ∂2 f

∂S2

)
dt + σ S

∂ f

∂S
dz + φS

∂ f

∂S
dt

and Eq. (3.8) is recovered using dz/dt = R. Similar to Eq. (3.9), in terms of infin-
itesimals, the Ito chain rule is given by

d( f g) = d f g + f dg + d f dg
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Stock price a lognormal random variable

To illustrate stochastic calculus, the stochastic differential equation Eq. (3.2) is
integrated. Consider the change of variable and the subsequent integration

x(t) = ln[S(t)] ; ⇒ dx

dt
= φ − σ 2

2
+ σ R(t) (3.12)

⇒ x(T ) = x(t) +
(

φ − σ 2

2

)
(T − t) + σ

∫ T

t
dt ′ R(t ′) (3.13)

The random variable
∫ T

t dt ′ R(t ′) is a sum of normal random variables and is
shown in Eq. (A.29) to be equal to a normal N (0,

√
T − t) random variable. Hence

S(T ) = S(t)e(φ− σ2
2 )(T −t)+(σ

√
T −t)Z with Z = N (0, 1) (3.14)

The stock price evolves randomly from its given value of S(t) at time t to a whole
range of possible values S(T ) at time T . Since the random variable x(T ) is a
normal (Gaussian) random variable, the security S(T ) is a lognormal random vari-
able. Campbell et al. [23] discuss the results of empirical studies on the validity of
modelling security S as a lognormal random variable.

Geometric Mean of Stock Price

The probability distribution of the (path-dependent) geometric mean of the stock price can
be exactly evaluated. For τ = T − t and m = x(t) + 1

2 (φ − σ 2

2 )τ , Eq. (3.13) yields

Sgeometric mean = eG

G ≡ 1

τ

∫ T

t
dt ′x(t ′) = m + σ

τ

∫ T

t
dt ′
∫ t ′

t
dt ′′ R(t ′′)

= m + σ

τ

∫ T

t
dt ′(T − t ′)R(t ′)

From Eq. (A.29) the integral of white noise is a Gaussian random variable, which is com-
pletely specified by its means and variance. Hence, using E[G] = m and Eq. (3.3) for
E[R(t)R(t ′)] = δ(t − t ′) yields

E[(G − m)2] =
(σ

τ

)2
∫ T

t
dt ′(T − t ′)

∫ T

t
dt ′′(T − t ′′)E[R(t ′)R(t ′′)]

=
(σ

τ

)2
∫ T

t
dt ′(T − t ′)2 = σ 2τ

3

Hence

G = N

(
m,

σ 2τ

3

)
(3.15)
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The geometric mean of the stock price is lognormal with the same mean as the stock price,
but with its volatility being one-third of the stock price’s volatility.

3.5 Black–Scholes equation: hedged portfolio

How can one obtain the price of the option C? The option price has to primar-
ily obey the condition of no arbitrage. Black and Scholes made the fundamental
observation that if one could perfectly hedge an option, then one could price it
as well. The reason being that a perfectly hedged portfolio has no uncertainty,
and hence has a risk-free rate of return given by the spot interest rate r . In order
to form a perfectly hedged portfolio, the time evolution of the option has to be
analyzed.

The fundamental idea of Black and Scholes [15,76] is to form a hedged portfolio
such that, instantaneously, the change of the portfolio is independent of the white
noise R. Such a portfolio is perfectly hedged since it has no randomness.

Consider the portfolio

� = C − ∂C

∂S
S (3.16)

� is a portfolio in which an investor holds an option C and short sells ∂C/∂S
amount of security S. Hence, from Eqs. (3.8) and (3.2)4

d�

dt
= dC

dt
− ∂C

∂S

d S

dt

= ∂C

∂t
+ 1

2
σ 2S2 ∂2C

∂S2
(3.17)

At time t , since S(t) is known, the price C(t, S(t)) is deterministic and hence from
above the change in the value of the portfolio � is deterministic. Since the ran-
dom term coming from d S/dt has been removed, due to the choice of the port-
folio, d�/dt is consequently free from the risk that comes from the stochastic
nature of the security. This technique of cancelling the random fluctuations of one
security (in this case of C) by another security (in this case S) is a key feature of
hedging.

Since the rate of (change) return on � is deterministic, it must equal the risk-free
return given by the short-term risk-free interest rate r , since otherwise one could
arbitrage [51,60]. Hence, based on the absence of arbitrage opportunities the price

4 The term (∂2C/∂S∂t)S is considered to be negligible.
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of the portfolio has the following evolution

d�

dt
= r�

which yields from Eq. (3.17) the famous Black–Scholes equation [15, 75, 77]

∂C

∂t
+ r S

∂C

∂S
+ 1

2
σ 2S2 ∂2C

∂S2
= rC (3.18)

The parameter φ of Eq. (3.2) has dropped out of Eq. (3.18) showing that a risk-
neutral portfolio � is independent of the investor’s expectation as reflected in φ; or,
equivalently, the pricing of the security derivative is based on a risk-free process
that is independent of the investor’s risk preferences.

The hedging of an instrument in effect implies that for the hedged portfolio,
there exists a risk-neutral evolution of the security S(t) – also called the risk-
neutral or risk-free measure.

The Black–Scholes framework for the pricing of options hinges on the concept
of a risk-less, hedged portfolio – something that can never be achieved in practice.
Generalizations of the Black–Scholes have been made [20,27,28], as well as other
approaches to option pricing are considered in [17,60,64,93,94,98]. The work by
Bouchaud and Potters [18] takes a more realistic approach by pricing options using
imperfectly hedged portfolios that always have a finite amount of residual risk. A
similar approach is taken in the quantum field theory of hedging of Treasury Bonds
in Chapter 9 in that there is a finite amount of risk for the hedged bond portfolio,
called the residual variance, that cannot be removed.

3.5.1 Assumptions in the derivation of Black–Scholes

The following assumptions were made in the derivation of the Black–Scholes
equation.

� The portfolio satisfies the no-arbitrage condition.
� To form the hedged portfolio � the stock is infinitely divisible, and that short selling of

the stock is possible.
� The stock price has a continuous-time evolution. If the stock price follows a more gen-

eral stochastic process that includes discontinuous jumps, it can be shown that the port-
folio cannot be perfectly hedged, and the Black–Scholes analysis is no longer applicable
[18, 75].

� The spot interest rate r is constant (this can be generalized to a stochastic spot interest
rate).
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� The portfolio � can be re-balanced continuously.
� There is no transaction cost.

The conditions above are not fully met in the financial markets. In particular, trans-
actions costs are significant. In spite of this, the market uses the Black–Scholes
option pricing as the industry standard, and which forms the basis for the pricing
of more complex options.

3.5.2 Risk-neutral solution of the Black–Scholes equation

There are several ways of solving the Black–Scholes equation. One can directly
solve the Black–Scholes equation as a partial differential equation; other ap-
proaches will be given in Sections 4.6.1 and 5.2 using techniques based on the
Hamiltonian and path integration respectively.

An elegant and simple solution is obtained by using the principle of risk-neutral
valuation. Since this principle is used extensively in pricing Treasury Bond op-
tions, the price of a European call option is solved for the purpose of illus-
trating risk-neutral valuation. Recall from Eq. (3.14) that, for remaining time
τ = T − t

S(T ) = ex(T ) ; x(T ) = N

(
ln S(t) +

(
φ − σ 2

2

)
τ, σ

√
τ

)
(3.19)

The principle of risk-neutral valuation implies that the present value of the
European call option is the expected final value E[max(S − K , 0)], discounted
by the risk-free interest rate. This risk-neutral probability distribution, also
called the martingale measure, satisfies the martingale condition Eq. (A.40)
given by

S(t) = E[e−rτ S(T )|S(t)] =
∫ +∞

−∞
ex Pm(x)dx (3.20)

Using the lognormal probability distribution for the stock price given in Eq. (3.19)
to solve the martingale condition yields that φ = r . Hence the martingale proba-
bility distribution, for ln S(t) = x(t) and x(T ) = x , is given by

Pm(x) = 1√
2πσ 2τ

e
− 1

2σ2τ
[x−x(t)−(r− σ2

2 )τ ]2

(3.21)

φ in Eq. (3.19) has been replaced by r to obtain the probability distribution func-
tion Pm(x), in accordance with the principle of risk-neutral valuation.
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The present-day price of the option is its future value, discounted to the present
using the martingale measure. Hence

C = e−rτ E[max(S − K , 0)] = e−rτ

∫ +∞

ln K
(ex − K )Pm(x)dx (3.22)

The value of the integral (3.22) is derived in Eq. (3.25) below, and the price of the
European call option is given by [51]

C(τ, S, K , r) = SN (d+) − K e−rτ N (d−) (3.23)

where the cumulative distribution for the normal random variable N (x), from
Eq. (A.22), is defined by

N (x) = 1√
2π

∫ x

−∞
e− 1

2 z2
dz ; d± =

ln
( S

K

)+
(

r ± σ 2

2

)
τ

σ
√

τ
(3.24)

How well does the option price given in Eq. (3.23) describe the actual observed
option price? The answer is: not very well. The empirical analysis of the Black–
Scholes option pricing equation is a vast subject, and is discussed in [27]. There are
two important limitations of the Black–Scholes option price given in Eq. (3.23).

� The volatility parameter σ needs to be estimated in principle σ is independent of the
strike price K , but this is not consistent with the data. Hence, instead of predicting the
option price using Eq. (3.23), practitioners and traders fit the observed price of an option,
for each strike price K , by adjusting the volatility [53]. This gives a strike-price depen-
dent volatility σ(K ), called the implied volatility, that is not a constant as predicted by
the Black–Scholes analysis, and which in turn is used by the traders as a guide for their
trading strategy.

� For the Gaussian distribution, given in Eq. (3.21), the probability that the stock price will
have values x(T ) different from its value initial value x(t) falls off sharply5 once the dif-
ference is greater than σ

√
T − t . However, in practise it is observed that the difference is

much greater than is predicted by the Gaussian distribution, and is known as the ‘fat tail’
phenomenon. Other non-Gaussian distributions, such as the Levy probability distribu-
tion, have been suggested to explain this feature of the stock price’s evolution [18,68,69].

Black–Scholes price for the European call option

Due to its widespread usage, an explicit derivation is given of the call option price.

Let S(T ) = ex , x0 = ln S + τ(r − σ 2

2 ). The option price, from Eqs. (3.22) and (3.21),

5 The drift term is being ignored as it makes no difference to the argument.
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is given by

C = e−rτ

∫ +∞

−∞
dx√

2πτσ 2
(ex − K )+e

− 1
2τσ2 (x−x0)

2

= e−rτ

∫ +∞

−∞
dx√

2πτσ 2
(ex+x0 − K )+e

− 1
2τσ2 x2

= e−rτ

∫ +∞

ln K−x0

dx√
2πτσ 2

(ex+x0 − K )e
− 1

2τσ2 x2

= S

[∫ +∞

ln K−x0

dx√
2πτσ 2

e
− 1

2τσ2 (x+τσ 2)2
]

− e−rτ K N (d−)

= SN (d+) − e−rτ K N (d−) (3.25)

3.6 Stock price with stochastic volatility

Consider the more complex case for which the security and its volatility are both
stochastic. As in the case of constant volatility, an attempt will be made to form
a (risk-less) hedged portfolio for pricing the stock option. However, since the
volatility of a stock is not traded in the capital market, there are not enough
financial instruments to perfectly hedge the volatility of the stock. The market
is hence incomplete and there is no unique risk-neutral measure for evolving
stochastic volatility, but, rather, the evolution depends on the risk preferences of the
investors.

Various stochastic processes for the volatility of a stock price have been con-
sidered. For example, Hull and White [49, 50], Heston [45] and others [13, 59, 78,
85, 96] have considered the following process

dV

dt
= a + bV + ξV 1/2 Q ; σ 2 ≡ V

where Q is white noise. Baaquie [5], Hull and White [50] and others have
considered

dV

dt
= µV + ξV Q

while Stein and Stein [99] consider

dσ = −δ(σ − θ)dt + kdz (3.26)

where δ and θ are constants representing the mean reversion strength and the mean
value of the volatility respectively.
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All the processes above except for (3.26)6 are special cases of the following
general form [51]

dV

dt
= λ + µV + ξV α Q (3.27)

The choice of λ and µ is restricted by the condition that V > 0. The complete
coupled process is

d S

dt
= φSdt + S

√
V R1 (3.28)

dV

dt
= λ + µV + ξV α R2 ; V ≡ σ 2 (3.29)

where R1 and R2 are Gaussian white noises with correlation −1 ≤ ρ ≤ 1

<R1(t)R1(t
′) >=< R2(t)R2(t

′) >= δ(t − t ′) = 1

ρ
< R1(t)R2(t

′)> (3.30)

and φ, λ, µ and ξ are constants. On discretizing time yields, to leading order in ε,
the following

R2
1(t) = 1

ε
= R2

2(t) ; R1 R2(t) = ρ

ε
(3.31)

The generalization of Eq. (3.8) is obtained by considering an arbitrary function f
of the white noise R1, R2 for the case of stochastic volatility. This yields

d f

dt
= ∂ f

∂t
+ φS

∂ f

∂S
+ (λ + µV )

∂ f

∂V
+ σ 2S2

2

∂2 f

∂S2
+ ρV 1/2+αξ

∂2 f

∂S∂V

+ ξ2V 2α

2

∂2 f

∂V 2
+ σ S

∂ f

∂S
R1 + ξV α ∂ f

∂V
R2

= � + �R1 + � R2 (3.32)

where Eq. (3.32) has been written in a form that separates the stochastic and non-
stochastic terms.

3.7 Merton–Garman equation

To obtain the price of the option, similar to the Black–Scholes case, consider two
different options, C1 and C2 on the same underlying security with strike prices and
maturities given by K1, K2, T1 and T2 respectively. Form a portfolio

� = C1 + �1C2 + �2S

6 This process can be included if a term of the form γ V 1/2 is added to the drift term.
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so that

d�

dt
= �1 + �1�2 + �2φ + (�1 + �1�2 + �2σ S)R1 + (�1 + �1�2)R2

As in the case of constant volatility, to ensure perfect hedging the stochastic terms
have to be eliminated from the change in the value of the portfolio. Hence, fix �1

and �2 by setting the random terms in the hedged portfolio to zero, and obtain

�1 + �1�2 + �2σ S = 0

�1 + �1�2 = 0

which yields

�1 = −�1

�2
= −∂C1/∂V

∂C2/∂V

�2 = �1

�2

∂C2

∂S
− ∂C1

∂S
= ∂C1/∂V

∂C2/∂V

∂C2

∂S
− ∂C1

∂S

Since the portfolio is now risk-less, it must increase at the risk-free interest rate by
the principle of no arbitrage. In other words

d�

dt
= r�

Simplifying �, and after a separation of variables, yields

1

∂C1/∂V

(
∂C1

∂t
+ (λ + µV )

∂C1

∂V
+ r S

∂C1

∂S
+ V S2

2

∂2C1

∂S2

+ρV 1/2+αξ
∂2C1

∂S∂V
+ ξ2V 2α

2

∂2C1

∂V 2
− rC1

)

= 1

∂C2/∂V

(
∂C2

∂t
+ (λ + µV )

∂C2

∂V
+ r S

∂C2

∂S
+ V S2

2

∂2C2

∂S2
(3.33)

+ρV 1/2+αξ
∂2C2

∂S∂V
+ ξ2V 2α

2

∂2C2

∂V 2
− rC2

)
≡ β(S, V, t, r)

β is not a function of K1, K2, T1 or T2 since the first expression is dependent only
on K1 and T1 while the second depends only on K2 and T2.

The term β is referred to as the market price of volatility risk. This is because
the higher is the value of β, the more averse are the investors to volatility risk. The
reason this parameter is needed to price options with stochastic volatility, and not
for Black–Scholes pricing formula, is that volatility is not traded in the market,
and hence there are not enough instruments to perfectly hedge against volatility.
The investors’ risk preferences, as expected, have to be taken into account when
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considering stochastic volatility or, in other words, risk-neutral valuation can be
applied directly to volatility, but is no longer unique.

The parameter β is difficult to estimate empirically and there is some evidence
that it is non-zero [66]. In the Cox, Ingersoll and Ross [28] model, consumption
growth has constant correlation with the spot-asset return, and this gives rise to a
risk premium that is proportional to volatility. This model is assumed for simplicity
since the only the effect it has is of redefining λ in the above equation.

Henceforth, it is assumed that the market price of risk has been included in the
Merton–Garman equation by redefining λ. Therefore, the Merton–Garman equa-
tion [35, 77] is

∂C

∂t
+ r S

∂C

∂S
+ (λ + µV )

∂C

∂V
+ 1

2
V S2 ∂2C

∂S2
+ ρξV 1/2+α S

∂2C

∂S∂V

+ ξ2V 2α ∂2C

∂V 2
= rC (3.34)

3.8 Summary

The main forms of derivative instruments were discussed, namely forward, futures
and options contracts. Various forms of options were briefly discussed and Ito cal-
culus was reviewed. The concept of a hedged portfolio was introduced to derive
the Black–Scholes equation using the Langevin formulation of stochastic differen-
tial equations. The ideas developed in the analysis of the Black–Scholes equation
were applied to the case of a stock price having stochastic volatility, leading to the
Merton–Garman equation for the pricing of an option.

3.9 Appendix: Solution for stochastic volatility with ρ = 0

Although the stock price process as given in Eq. (3.28) depends on the volatility
V , the process for volatility given in Eq. (3.29) is independent of the stock price S
for ρ = 0; hence for this case the evolution of volatility can be treated independent
of the stock price.

A theorem of Merton [70,75,96] states that the solution for a stochastic volatil-
ity process is the Black–Scholes price, but with the volatility variable replaced by
the average volatility. If the volatility follows, independent of S, the generic pro-
cess V (t) (where V may be stochastic), the option price is given by the following
generalization of Eq. (3.23) (τ = T − t)

C =
∫ ∞

0
[SN (d+(V̄ )) − K e−rτ N (d−(V̄ ))]PM(V̄ )

dV̄

V̄
(3.35)

V̄ = 1

τ

∫ T

t
dt ′V (t ′)
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where PM is the probability distribution function for the mean of the volatility
V̄ =, and d±(V̄ ), as in Eq. (3.24), is given by

d± = ln(S/K ) + τ(r ± 1
2 V̄ )√

V̄ τ

and K is the strike price.
An independent derivation of Eq. (3.35), together with a formal expression for

PM , is given in Eq. (5.115) using the path-integral formulation of option pricing
for stochastic volatility.

Consider two simple examples to illustrate this result [70], starting with a deter-
ministic process

V = V0eµt , 0 ≤ t ≤ T

In this case, the probability distribution function of the mean of the volatility is
given by (τ = T )

VM = δ

(
V − V0

eµτ − 1

µτ

)

giving the Black–Scholes result with σ replaced by
√

V0
eµτ −1

µτ
.

For a stochastic volatility process, choose7λ = µ = α = 0 in Eq. (3.29) to
obtain

dV

dt
= ξ R(t), V (0) = V0, 0 ≤ t ≤ T

where R(t) represents white noise. The distribution of the mean of V during the
time interval (0, T ) is given, from Eq. (3.15), by

PM = N

(
V0,

ξ2τ

3

)

Hence, the option price is given by

f =
√

3

2πξ2τ

∫ ∞

0
[SN (d+(V )) − K e−rτ N (d−(V ))] exp

(
−3(V − V0)

2

2ξ2τ

)
dV

V
.

7 This is not a realistic process as P(V < 0) > 0, while V is obviously non-negative. However, it might be a
reasonable approximation for relatively short times for which P(V < 0) is negligible.
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Systems with finite number of degrees of freedom





4

Hamiltonians and stock options

In this chapter the concept of the Hamiltonian is introduced in the pricing of op-
tions. Hamiltonians occur naturally in finance; to demonstrate this the analysis of
the Black–Scholes equation is recast in the formalism of quantum mechanics. It
is then shown how the Hamiltonian plays a central role in the general theory of
option pricing.

The Hamiltonian formulation provides new tools for obtaining solutions for op-
tion pricing; two key concepts related to the Hamiltonian are (a) eigenfunctions
and (b) potentials. Knowledge of all the eigenfunctions of a Hamiltonian yields an
exact solution for a large class of path-dependent and path-independent options.
For example, barrier options can be modelled by placing constraints on the eigen-
functions of the Hamiltonian. The potentials are a means for defining new financial
instruments, and for modelling path-dependent options.

4.1 Essentials of quantum mechanics

It is shown in this chapter that option pricing in finance has a mathematical de-
scription that is identical to a quantum system; hence the key features of quantum
theory are briefly reviewed.

Quantum theory is a vast subject that forms the bedrock of contemporary
physics, chemistry and biology [39]. Only those aspects of quantum mechanics
are reviewed that are relevant for the analysis of option pricing.

In classical mechanics the position of a particle at time t , denoted by xt , is
a deterministic function of t , and is given by Newton’s law of motion. Classi-
cal mechanics is analogous to the case of the evolution of a stock price with
zero volatility (σ = 0) that yields a deterministic evolution of the stock price.
In contrast, in quantum mechanics, the particle’s evolution is random, analo-
gous to the case of the evolution of a stock price having non-zero volatility
(σ �= 0).

45
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The quantum particle’s position at each instant t , namely xt , is called a de-
gree of freedom in physics; the role of time t is that of a parameter that labels
the independent random variables xt for different instants. The allowed config-
urations for the particle’s random position xt are all of the points on the real
line R. The probability distribution of the quantum particle’s position x , at some
fixed time t , is given by |ψ(t, x)|2 ≡ ψ∗(t, x)ψ(t, x), where ∗ stands for complex
conjugation.

Note the system that is being considered has only one degree of freedom,
namely xt , since a degree of freedom is a random variable that the system has
at a given instant; if one collects all the degrees of freedom (random variables)
over time, one would obtain a collection of random variables {xt } that is called a
stochastic process in probability theory.

The function ψ is called the state vector of the quantum system, and is an el-
ement of a linear vector space – called a state space and denoted by V – that
consists of functions of the allowed configurations.1 The dual space of V – de-
noted by Vdual – consists of all linear mappings from V to the complex numbers,
and is also a linear vector space.

In Dirac’s bracket notation for the state vectors, an element of V is denoted by
the ket vector |g > and an element of Vdual by the dual bra vector <p|. The scalar
product is defined for any two vectors from the state space and its dual, and is
given by the bracket <p|g> = <g|p>∗, which is a complex number. Both V and
its dual VDual will be referred to as the state space of the system.

In quantum mechanics, physically measurable quantities such as energy, posi-
tion and so on are represented by Hermitian operators that map the linear vector
space on to itself. For Hermitian operators, the state space V and its dual VDual are
isomorphic.

In Appendix 4.11 the simplest possible quantum system is analyzed, namely a
quantum system that has only two possible states, called a two-state system.

In summary the fundamental mathematical structure of quantum mechanics has
two independent ingredients (a) a linear vector state space and its dual, namely V
and Vdual and (b) (linear) operators that are linear mappings of the state space V
on to itself. Hence

� A system in quantum mechanics is described by a state vector |ψ > that is an element of
a state space V .

� All properties of a quantum system are represented by linear operators acting on the state
vector |ψ > of the system.

1 For the case of a quantum particle moving on R, the space V consists of all possible functions ψ(x), with
x ∈ R such that

∫
R dx |ψ(x)|2 = 1.
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4.2 State space: completeness equation

The state space in quantum mechanics, and in option pricing, is one of the funda-
mental ingredients in the description of a quantum system. A complete description
of the state space consists of enumerating a collection of (basis) vectors so that any
arbitrary vector can be represented as a linear combination of these basis states.
The completeness equation is a statement that one has a complete set of (linearly
independent) basis vectors. Although the analysis of this section may seem for-
mal and mathematical, it is of central importance in many of the derivations and
calculations.

An important conclusion of Appendix 4.11 is to concretely illustrate, in
Eqs. (4.55) and (4.58), the concept of the completeness equation for a two-state
system. For all the applications that will be studied, the ‘particle’ moves on a con-
tinuous line R; each point on the continuous line is a possible state for the system,
and hence the particle requires continuously infinitely many independent basis vec-
tors for its description. The completeness equation of a two state consequently is
generalized to an N -state system, and then the limit of N → ∞ is taken.

Consider an electron moving in space, with its position denoted by x , but with
the restriction that it can only hop on a lattice of discrete points with lattice spacing
of distance a; the lattice points are given by x = na. The basis states are labelled
by |n >, and can be represented by an infinite column vector with the only non-
zero entry being unity in the nth position. Hence

n = 0, ±1, ±2, . . . ± ∞

|n >=




. . .

0
1
0
. . .


 : nth position ; < n| = [. . . 0 1 0 . . .]

< m|n >= δn−m ≡
{

1 n = m
0 n �= m

+∞∑
n=−∞

|n >< n| = J : completeness equation

where J above is the infinite-dimensional unit matrix. The completeness is also
referred to as the resolution of the identity since only a complete set of basis
states can, taken together, construct the identity operator on state space.

The allowed configurations for the particle are all the various positions x ∈ R,
and hence the limit of a → 0 needs to be taken. The state vector for the particle
is given by the ‘ket vector’ |x >, with its dual given by the ‘bra vector’ < x |. In
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terms of the underlying lattice (x = na)

|x >= lim
a→0

1√
a
|n > ; − ∞ ≤ x ≤ ∞

with the scalar product, from Eq. (A.13), given by the Dirac delta function

< x |x ′ >= δ(x − x ′) ≡
{∞ x = x ′

0 x �= x ′

The completeness equation is given by

+∞∑
n=−∞

|n >< n| → a
+∞∑

n=−∞
|x >< x |

⇒
∫ ∞

−∞
dx |x >< x | = J : completeness equation

where J is the identity operator on (function) state space.
A more direct derivation of the completeness equation is to consider the scalar

product of two functions, namely

< ψ |g > ≡
∫

dxψ∗(x)g(x)

= < ψ |
{∫ ∞

−∞
dx |x >< x |

}
|g >

and this yields the completeness equation

J =
∫ ∞

−∞
dx |x >< x | (4.2)

The completeness equation given by Eq. (4.2) is a key equation in the analysis
of the state space. For the case of two quantum particles with positions x, y, the
completeness equation is given by

J =
∫ ∞

−∞
dxdy|x, y >< x, y| (4.3)

where |x, y >≡ |x > ⊗|y >. The generalization to many quantum particles is
straightforward.

The bra and ket vectors < x | and |x > are the basis vectors of the Vdual and
V respectively. An element of the state space V is the ket vector |ψ >, which
can be thought of as an infinite-dimensional vector with components given by
ψ(x) =< x |ψ >. The vector |ψ > in quantum mechanics can be mapped to a
unique dual vector denoted by < ψ | ∈ Vdual. In components ψ∗(x) =< ψ |x >.
The vector |ψ > and its dual < ψ | have the important property that they define
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the ‘length’ < ψ |ψ > of the vector. The completeness equation Eq. (4.2) yields
the following2

< ψ |ψ > = < ψ

∫ ∞

−∞
|x >< x |ψ >

=
∫ ∞

−∞
ψ(x)∗ψ(x) ≥ 0

4.3 Operators: Hamiltonian

An operator is defined as a linear mapping of the state space V on to itself, and is
an element of the tensor product space V ⊗ Vdual. For a two-state system discussed
in Appendix 4.11, operators are 2 × 2 matrices. Consider a state space that con-
sists of all functions of single (real) variable x , namely V = {ψ(x)|x ∈ �}, where
< x |ψ >= ψ(x); operators on this state space are infinite-dimensional general-
izations of N × N matrices, with N → ∞.

One of the most important operators is the co-ordinate operator x̂ that simply
multiplies ψ(x) ∈ V by x , that is x̂ψ(x) ≡ xψ(x). Another important operator is
the differential operator ∂/∂x that maps ψ(x) ∈ V to its derivative ∂ψ(x)/∂x . All
the operators that will be studied are functions of a combination of the operators x̂
and ∂/∂x .

Similar to a N × N matrix M that is fully specified by its matrix elements
Mi j , i, j = 1, . . . , N , an operator is also specified by its matrix elements. For the
operators x̂ and ∂/∂x , in the notation of Dirac

x̂ψ(x) = xψ(x)

⇒< x |x̂ |ψ > = x < x |ψ >= xψ(x)

< x | ∂

∂x
|ψ > = ∂ψ(x)

∂x

In other words, the matrix element < x |x̂ |ψ > of the operator x̂ is given by xψ(x).
Choosing the function |ψ >= |x ′ > yields

< x |x̂ |x ′ > = x < x |x ′ >= xδ(x − x ′)

Pursuing the analogy with matrices further, it is known that a matrix M has a
Hermitian conjugate defined by M†

i j ≡ M∗
j i . Similar to a matrix, the Hermitian

2 In quantum mechanics, only the subspace of V consisting of state vectors that have unit norm, defined by
< ψ |ψ >= 1 is allowed, and is called a Hilbert space. In finance the state space is larger than a Hilbert space
since many financial instruments are represented by state vectors, such as the price of a stock given by ex , that
do not have a finite length.
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conjugate of an arbitrary operator O is defined by3

< f |O†|g >≡< g|O| f >∗ (4.4)

Furthermore, similar to matrices, the Hermitian adjoint of a sum of operators is
given by (A + B + . . .)† = A† + B† . . . , and that of a product of operators is
given by (AB . . .)† = . . . B† A†.

Hermitian adjoint of x̂ and ∂/∂x

The completeness Eq. (4.2) and Eq. (4.4) yield the following expression for x̂†

< f |x̂†|g > ≡ < g|x̂ | f >∗=
[∫ ∞

−∞
dx < g|x >< x |x̂ | f >

]∗

=
[∫ ∞

−∞
dxxg∗(x) f (x)

]∗
=
∫ ∞

−∞
dxxg(x) f ∗(x)

= < f |x̂ |g >

⇒ x̂† = x̂ : Hermitian

For the differential operator ∂/∂x , from Eq. (4.4), and doing an integration by parts gives

< f | ∂

∂x

†

|g >≡< g| ∂

∂x
| f >∗=

[∫ ∞

−∞
dx < g|x >< x | ∂

∂x
| f >

]∗

=
[∫ ∞

−∞
dxg∗(x)

∂ f (x)

∂x

]∗
= −

[∫ ∞

−∞
dx

∂g∗(x)

∂x
f (x)

]∗

= −
∫ ∞

−∞
dx

∂g(x)

∂x
f ∗(x) = − < f | ∂

∂x
|g >

⇒ ∂

∂x

†

= − ∂

∂x
: anti-Hermitian (4.5)

The co-ordinate operator x̂ is Hermitian. The differential operator is anti-Hermitian, and
can be made Hermitian by multiplying it by i = √−1, yielding the Hermitian operator
∂/ i∂x . Moreover (

∂2

∂x2

)†

= ∂2

∂x2
: Hermitian (4.6)

An important point for future reference is that in all the matrix elements, for example
< x |∂/∂x | f >, the operators acts on the left, that is on the dual space. This point occurs
in a number of derivations.

The fact the operators and the state space are two independent structures in quantum
mechanics can be seen from the properties of the differential operator ∂/∂x . This operator
has very different properties acting on a state space that consists of all functions x , with x

3 The reason for studying Hermitian conjugation is because one needs to know the space that an operator acts
on, namely whether it acts on V or on its dual Vdual. For non-Hermitian operators, and these are the ones that
occur in finance, the difference is important.
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taking values on the real line �, from the case of the state space consisting of functions of
x with a fixed periodicity.

The Hamiltonian operator, denoted by H , evolves the system in time, and hence
is the most important operator in option pricing. In finance, the operator H in
general is non-Hermitian.

There are special states, called eigenstates, that are of particular importance for
all operators. For the co-ordinate operator, Eq. (4.4) can be re-written as

x̂ |x >= x |x > (4.7)

The equation above shows that the state vector |x >, under the action of the co-
ordinate operator x̂ , has the special property that it is only multilpied by a real
number x . The state vector |x > is called an eigenstate of the co-ordinate opera-
tor x̂ with real eigenvalue x since x̂ is Hermitian. The eigenvalue equation for a
non-Hermitian Hamiltonian H is given by a generalization of Eqs. (4.59) and
(4.7), since for non-Hermitian Hamiltonians the eigenvalues E are complex.4 The
equations for the eigenvalues and eigenfunctions are given by

H |ψE >= E |ψE > : E complex

< ψ̃E |H = E < ψ̃E | ⇒ H†|ψ̃E >= E∗|ψ̃E >

< ψ̃E |ψE ′ >= 1

µ(E)
δ(E − E ′)

where µ(E) is the density of states for eigenvalue E defined by

µ(E) = trace δ(H − E) ≡
∫ +∞

−∞
dx < x |δ(H − E)|x > (4.8)

From above equations, since E is complex, for a given E , the left and right eigen-
functions are not dual to one another; in other words, < ψ̃E | �=< ψE |. To obtain
the completeness equation, a subset of the eigenenergies, and their corresponding
eigenfunctions |ψE >, have to be selected so that the collection yields a complete
basis for the state space; denote this subset by D. The completeness equation is
then ∫

D
d Eµ(E)|ψE >< ψ̃E | = J (4.9)

More explicitly, the completeness equation yields∫
D

d Eµ(E)ψE (x)ψ̃E (x ′) =< x |J |x ′ >= δ(x − x ′) (4.10)

4 A solution of a barrier option is given in Appendix 4.13 using a non-Hermitian Hamiltonian
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In general the Hamiltonian is an operator H = H(x, ∂/∂x). The eigenfunction
equation, for example, is then written as

< x |H
(

x,
∂

∂x

)
|ψE >= H

(
x,

∂

∂x

)
ψE (x) = EψE (x)

As mentioned earlier, the Hamiltonian operator, like all other operators, acts on the
basis state to the left. If, for example, one evaluates <ψ |H(x, ∂/∂x)|x>, one is in
effect computing <x |H†(x, ∂/∂x)|ψ>∗.

4.4 Black–Scholes and Merton–Garman Hamiltonians

The Black–Scholes derivation is reinterpreted in the formalism of quantum mech-
anics. The time-evolution equation for the Black–Scholes and the Merton–Garman
equations is analyzed so as to obtain the underlying Hamiltonians that drive the
option prices.

The Black–Scholes equation (3.18) for option price with constant volatility is
given by

∂C

∂t
= −1

2
σ 2S2 ∂2C

∂S2
− r S

∂C

∂S
+ rC (4.11)

Consider the change of variable

S = ex ; − ∞ ≤ x ≤ ∞
This yields the Black–Scholes–Schrodinger equation

∂C

∂t
= HBSC (4.12)

with the Black–Scholes Hamiltonian given by

HBS = −σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − r

)
∂

∂x
+ r (4.13)

Viewed as a quantum mechanical system, the Black–Scholes equation has one
degree of freedom, namely x , with volatility being the analog of the inverse of
mass, the drift term a (velocity-dependent) potential, and with the price of the
option C being the analog of the Schrodinger state function.

Eqs.(4.5) and (4.6) yield

H†
BS = −σ 2

2

∂2

∂x2
−
(

1

2
σ 2 − r

)
∂

∂x
+ r �= HBS (4.14)

Hence, the Black–Scholes Hamiltonian is non-Hermitian due to the drift term.
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In Dirac’s notation, the Black–Scholes equation is written as

< x |HBS|C >= HBS

(
∂

∂x

)
< x |C >= HBS

(
∂

∂x

)
C(x) (4.15)

Recall from Eq. (3.34) that the Merton–Garman equation for the price of an option
on an equity with stochastic volatility is

∂C

∂t
+ r S

∂C

∂S
+ (λ + µV )

∂C

∂V
+ 1

2
V S2 ∂2C

∂S2
+ ρξV 1/2+α S

∂2C

∂S∂V
+ ξ2V 2α ∂2C

∂V 2

= rC

Since both S and V are positive-valued random variables, define variables x
and y by

S = ex , − ∞ < x < ∞
σ 2 = V = ey , − ∞ < y < ∞

In terms of these variables, the Merton–Garman equation is [5, 70]

∂C

∂t
+
(

r − ey

2

)
∂C

∂x
+
(

λe−y + µ − ξ2

2
e2y(α−1)

)
∂C

∂y
+ ey

2

∂2C

∂x2

+ρξey(α−1/2) ∂2C

∂x∂y
+ ξ2e2y(α−1) ∂

2C

∂y2
= rC (4.16)

The above equation can be re-written as the Merton–Garman–Schrodinger equa-
tion given by

∂C

∂t
= HMGC (4.17)

and Eq. (4.16) yields the Merton–Garman Hamiltonian

HMG = − ey

2

∂2

∂x2
−
(

r − ey

2

)
∂

∂x
−
(

λe−y + µ − ξ2

2
e2y(α−1)

)
∂

∂y

− ρξey(α−1/2) ∂2

∂x∂y
− ξ2e2y(α−1)

2

∂2

∂y2
+ r (4.18)

The Merton–Garman Hamiltonian is a system with two degrees of freedom,
and is a formidable one by any standard. The only way of solving it for general
α seems to be numerical. The special case of α = 1/2 can be solved exactly us-
ing techniques of partial differential equations [45], and α = 1 will be seen to be
soluble using path-integral methods [5].
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4.5 Pricing kernel for options

The (risk-free) evolution equation for the option pricing is analyzed, so as to
extract – from the pricing formula – the conditional probability that expresses
the random evolution of the security in question. The conditional probability is
the pricing kernel as it carries all the information required to price any path-
independent option.

Consider for the sake of generality the random evolution of a stock price having
stochastic volatility. Suppose a path-independent option matures at time T with
g(x, y) being the payoff function. The price of the option at time t < T needs to
be determined.

Let p(x, y, T − t; x ′, y′) be the (risk-neutral) conditional probability that, given
security price x and volatility y at time t , it will have a value of x ′ and volatility
y′ at time T . The final value condition at t = T is given by Dirac delta functions,
namely

p(x, y, 0; x ′, y′) = δ(x ′ − x)δ(y′ − y) (4.19)

The derivative price is given, for t ≤ T , by the Feynman–Kac formula (τ = T − t)
[31]

C(τ ; x, y) =
∫ +∞

−∞
dx ′dy′ p(x, y, τ ; x ′, y′)g(x ′; y′) (4.20)

The expression p(x, y, τ ; x ′, y′) is the pricing kernel since it is the kernel of the
transformation that evolves the payoff function g(x ′, y′) backwards in time to its
current value at time t , and yields the price of the option C(τ ; x, y).

It follows from Eq. (4.19) that, as required, C(τ ; x, y) given in Eq. (4.26) satis-
fies the final value condition

C(0, x, y) = g(x, y) (4.21)

If the payoff function has a special form, the pricing kernel can be further simpli-
fied. For example, in the case of a stock price with stochastic volatility the payoff
function depends only on the stock price, and is independent of final volatility; that
is g(x ′, y′) = g(x ′). Final volatility can be consequently integrated out, and yields

C(τ ; x, y) =
∫ +∞

−∞
dx ′ pMG(x, y, τ ; x ′)g(x ′) (4.22)

where the Merton–Garman pricing kernel is given by

pMG(x, y, τ ; x ′) =
∫ +∞

−∞
dy′ p(x, y, τ ; x ′, y′) (4.23)
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For the simpler Black–Scholes case, only the stock price is evolving, and the pric-
ing kernel yields the price of the options as

C(τ ; x) =
∫ +∞

−∞
dx ′ pBS(x, τ ; x ′)g(x ′) (4.24)

Digital options

The pricing kernel is the price of the difference of two digital options. The payoff function
D(x) has a non-zero value only if the stock price has a final value around a narrow range
of the stock price, say, the value x0. More precisely

D(x − x0) = lim
ε→0

{
1
ε

−ε/2 ≤ (x − x0) ≤ ε/2
0, Otherwise

= δ(x − x0)

Hence, for the Black–Scholes case

C(t; x) =
∫ +∞

−∞
dx ′ pBS(x, τ ; x ′)δ(x ′ − x0)

= pBS(x, τ ; x0) (4.26)

In other words, the pricing kernel itself can be thought of as the price of a combination of
digital options.

4.6 Eigenfunction solution of the pricing kernel

The pricing kernel is determined by the Hamiltonian. Only the Black–Scholes
case will be analyzed, as its extension to many variables is straightforward. From
Eq. (4.12)

∂C

∂t
= HC (4.27)

with a formal solution given by

C(t, x) = et H C(0, x) (4.28)

where C(0, x) is the initial condition.
Explicitly putting in the dependence of C(t, x) on the time variable, Eq. (4.27)

is, in Dirac’s notation

< x | ∂

∂t
|C, t > = < x |H |C, t >

∂

∂t
|C, t > = H |C, t >

|C, t >= = et H |C, 0 >
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with the final value condition given in Eq. (4.21)

|C, T > = eT H |C, 0 >= |g >

⇒ |C, 0 > = e−T H |g >

Hence

|C, t >= e−(T −t)H |g >

Remaining time τ = T − t runs backwards, that is when τ = 0, real time t = T
and when τ = T , real time t = 0. Hence

C(t, x) = < x |C, t > (4.29)

= < x |e−τ H |g >

and using completeness equation (4.2)

C(t, x) =
∫ ∞

−∞
dx ′ < x |e−τ H |x ′ > g(x ′)

yields a formal solution for the pricing kernel in terms of the Hamiltonian
given by

p(x, τ ; x ′) =< x |e−τ H |x ′ > (4.30)

The option price C seems to be unstable in Eq. (4.28), being represented by a
growing exponential. However, expressed in terms of remaining time τ = T − t
the option price is given by a decaying exponential as in Eq. (4.30). This is because
the boundary condition for C is given at final time T , and Eq. (4.28) is converted
to a decaying exponential in terms of remaining time τ .

It can be see from Eq. (4.30) that the pricing kernel is the matrix element of the
differential operator e−τ H . The role of the Hamiltonian in option pricing is not to
evolve the system forward in time, as is the case in quantum mechanics, but rather
to discount the future payoff function by evolving it backwards in time.

The completeness equation for the eigenfunctions of the Hamiltonian, given in
Eqs. (4.9) and (4.10), yields a formal and explicit expression for the pricing kernel
since

p(x, τ ; x ′) = < x |e−τ H |x ′ >

= < x |e−τ H
∫
D

d Eµ(E)|ψE >< ψ̃E |x ′ >

=
∫
D

d Eµ(E)e−τ EψE (x)ψ̃E (x ′) (4.31)
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The expression above is useful if one can evaluate all the eigenfunctions of H , and
for studying the formal properties of the pricing kernel.

4.6.1 Black–Scholes pricing kernel

To evaluate the price of the European call option with constant volatility, the
Feynman–Kac formula yields

C(t, x) =
∫ ∞

−∞
dx ′ < x |e−τ HBS |x ′ > g(x ′)

where recall from Eq. (4.13)

HBS = −σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − r

)
∂

∂x
+ r

The Hamiltonian can be used to compute the pricing kernel

pBS(x, τ |x ′) =< x |e−τ HBS |x ′ > ; τ = T − t (4.32)

Hamiltonian derivation of the Black–Scholes pricing kernel

The first step is to find the eigenfunctions of HBS . This can be done efficiently by going to
the ‘momentum’ basis in which HBS is diagonal. The Fourier transform of the |x > basis
to momentum space, from Eq. (A.11), is given by

< x |x ′ >= δ(x − x ′) =
∫ ∞

−∞
dp

2π
eip(x−x ′)

=
∫ ∞

−∞
dp

2π
< x |p >< p|x ′ >

that yields, for momentum space basis |p > the completeness equation∫ ∞

−∞
dp

2π
|p >< p| = J (4.34)

with the scalar product

< x |p >= eipx ; < p|x >= e−i px . (4.35)

From the definition of the Hamiltonian given in Eqs. (4.13) and (4.15)

< x |HBS|p > ≡ HBS < x |p >= HBSeipx

=
{

1

2
σ 2 p2 + i

(
1

2
σ 2 − r

)
p + r

}
eipx (4.36)



58 Hamiltonians and stock options

For reference Eq. (4.14) yields5

< p|HBS|x > = < x |H†
BS|p >∗= [H†

BSeipx ]∗
=
{

1

2
σ 2 p2 + i

(
1

2
σ 2 − r

)
p + r

}
e−i px

It can be seen from Eq. (4.36) that functions eipx are eigenfunctions of HBS , labelled by
the ‘momentum’ index p. Eq. (4.34) shows that the eigenfunctions of HBS are complete.
Hence

pBS(x, τ ; x ′) = < x |e−τ HBS |x ′ > (4.37)

=
∫ ∞

−∞
dp

2π
< x |e−τ HBS |p >< p|x ′ >

= e−rτ

∫ ∞

−∞
dp

2π
e− 1

2 τσ 2 p2
eip(x−x ′+τ(r−σ 2/2)) (4.38)

Performing the Gaussian integration in Eq. (4.38) above gives the pricing kernel
for the Black–Scholes equation

pBS(x, τ ; x ′) ≡ pBS(x, τ ; x ′; σ) =< x |e−τ HBS |x ′ >

= e−rτ 1√
2πτσ 2

e
− 1

2τσ2 {x−x ′+τ(r−σ 2/2)}2

(4.39)

A derivation of the Black–Scholes pricing kernel is given in [7] using the method
of Laplace transforms.6

Equation (4.39) states that x ′ has a normal distribution with mean equal to
log(S(t)) + (r − σ 2/2)τ and variance of σ 2τ , as is expected for the Black–
Scholes case with constant volatility.

In general for a more complicated (nonlinear) Hamiltonian, such as the one
given in Eq. (4.18) for stochastic volatility, it is usually not possible to exactly
diagonalize H , and consequently to exactly evaluate the matrix elements of e−τ H .
The Feynman path integral is an efficient theoretical tool for analytic and numerical
studies of such nonlinear Hamiltonians.

5 One might be tempted to consider evaluating the matrix element < p|HBS |x > by directly differentiating
on |x >; but < p|∂/∂x |x > �= ∂/∂x < p|x > and hence this would give an incorrect answer. The operators
∂/∂x and HBS are defined by their action on the dual co-ordinate basis < x | and not on the basis |x >; for a
Hermitian Hamiltonian this distinction is irrelevant since both procedures give the same answer – and hence
this issue is ignored in quantum mechanics – but this is not so for the non-Hermitian case. In fact, it is precisely
the non-Hermitian drift term that comes out with the wrong sign if one acts on the basis |x > with HBS .

6 Recall x ′ = log(S(T )), x = log(S(t)) and τ = T − t , and the earlier derivation of the pricing kernel given in
Eq. (3.21) has been obtained using the martingale condition.
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4.7 Hamiltonian formulation of the martingale condition

Consider an option on a security S = ex that matures at time T and has a payoff
function given by g(x). As discussed in Eq. (4.26), the risk-free evolution of the
security is given by the Hamiltonian H , with the value of the option at time t < T
being given by

C(t, x) =
∫ ∞

−∞
dx ′ < x |e−(T −t)H |x ′ > g(x ′) (4.40)

The martingale condition for the risk-free evolution of the security is that the
price of the security at some future time, say t∗, when discounted by a martingale
measure, is equal, on average, to the price of the security at earlier time t . The
equation for the martingale condition, from Eq. (A.40), states that

S(t) = E
[
e−(t∗−t)r S(t∗)|S(t)

]
(4.41)

and is explicitly expressed in Eq. (3.20). Clearly, the martingale condition is an
instantaneous condition since it is valid for any t∗.

From Eq. (4.40), if g(x) = S(x), then evolving this back in time must yield S
as required by the martingale condition given in Eq. (4.41). Hence

S(x) =
∫ ∞

−∞
dx ′ < x |e−(t∗−t)H |x ′ > S(x ′)

Or, in Dirac’s notation

< x |S > =
∫ ∞

−∞
dx ′ < x |e−(t∗−t)H |x ′ >< x ′|S > (4.42)

Using the completeness equation for a single security given by

J =
∫ ∞

−∞
dx ′|x ′ >< x ′|

yields from Eq. (4.42), the (eigenstate) equation

|S >= e−(t∗−t)H |S >

Since time t∗ is arbitrary, the instantaneous expression of the martingale condition
is given by [3]

H |S >= 0 (4.43)

Hence it can be seen that the security S = ex is a very special eigenstate of H ,
namely having a zero energy eigenvalue; the equity is an element of the state space
that is not normalizable. The equity having zero eigenenergy means, under a mar-
tingale evolution driven by H , the underlying security does not change.
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One can easily verify that both the Black–Scholes and Merton–Garman Hamil-
tonians, given in Eqs. (4.13) and (4.18) respectively, satisfy the martingale condi-
tion given by Eq. (4.43). For the case of the stock price with stochastic volatility,
all the volatility dependent terms in the Merton–Garman Hamiltonian appear only
through terms containing ∂/∂y, and these terms automatically annihilate S(t).

The result given in Eq. (4.43) shows that the existence of a martingale measure
is equivalent to a risk-free Hamiltonian that annihilates the underlying security
S. The existence of a risk-neutral Hamiltonian in turn implies that all the deriva-
tives of the underlying security that are priced with this Hamiltonian are free from
arbitrage.

4.8 Potentials in option pricing

From Eq. (4.60) a typical quantum mechanical Hamiltonian is written as

H = − 1

2m

∂2

∂x2
+ V (x)

In contrast, all the terms in the Black–Scholes and Merton–Garman Hamiltoni-
ans depend only on derivatives of x, y; there seems to be no analog of the potential
V (x) that depends on the stock price x .

Can one, in principle, include a potential term in the option-pricing Hamilto-
nian? The answer is yes: one can in fact include a potential term in the Black–
Scholes formalism, and the potential can be used to represent a certain class of
path-dependent options, as has been considered by Linetsky [67]. In particular,
some of the barrier options can be expressed as a problem with a potential.

Path-dependent options, such as the barrier options, are all evolved by the
Black–Scholes Hamiltonian HBS; the entire effect of barrier options (discussed
in Section 4.9), and of some path-dependent options can be effectively realized by
a potential V (x) that is added to the Black–Scholes Hamiltonian HBS , and yields
an effective Hamiltonian given by

Heff = HBS + V

The Lagrangian given in Eq. (5.21) for a class of path-dependent options yields

Hpath-dependent option = HBS + ig f (x)

where the function f (x) encodes the path-dependent option. In particular, from
Eq. (5.22) for the (path-dependent) Asian option, its non-Hermitian Hamiltonian
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is given by

HAsian option = HBS + igex

and has been discussed in [7].
The Black–Scholes Hamiltonian can be generalized so as to include a

security-dependent potential V (x). Recall from Eq. (4.13) that the Black–Scholes
Hamiltonian is given by

HBS = −σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − r

)
∂

∂x
+ r

From the derivation of the martingale condition, it can be seen that the form of
the Hamiltonian in option pricing is constrained by the requirement of annihilating
the stock price S(t), so as to fulfil the martingale condition given in Eq. (4.43). A
straightforward generalization of the Black–Scholes Hamiltonian that fulfils the
martingale condition is

HV = −σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − V (x)

)
∂

∂x
+ V (x) (4.44)

where the potential V (x) is an arbitrary function of x .
One can easily verify that this Hamiltonian HV annihilates the security S = ex .

A security evolving with this Hamiltonian will yield a risk-free measure and
hence can be used for pricing options. The interpretation of the potential V (x)

is that the security is discounted with a security-dependent discounting factor
exp{− ∫ T

t V (x(t ′))dt ′} [7]; for example, for a European option maturing at time
T , this discounting factor would give the value of the option at time t < T as

E[t,T ]
[
e− ∫ T

t V (x(t ′))dt ′(ex − K )+
]

(4.45)

with an evolution driven by the Hamiltonian −(σ 2/2)∂2/∂x2 + [(1/2)σ 2 −
V (x)]∂/∂x . The discounting is chosen to be equal to the drift term in the Hamil-
tonian so that the martingale condition can be fulfilled.

The interpretation of the potential V (x) needs to be understood from the point
of view of finance. The usual discounting of a security using the spot interest rate
r is determined by the argument of no arbitrage involving fixed deposits in the
money market account. Whether the discounting by V (x) can be realized by the
market, and is consistent with the principles of finance, needs to be studied further.

The non-Hermiticity of HV is of a particularly simple nature, and it can be
shown that, for arbitrary V , HV is equivalent via a similarity transformation to a
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Hermitian Hamiltonian Heff
7 given by [7]

HV = es Heffe
−s (4.46)

where

Heff = −σ 2

2

∂2

∂x2
+ 1

2

∂V

∂x
+ 1

2σ 2

(
V + 1

2
σ 2
)2

; s = 1

2
x − 1

σ 2

∫ x

0
dyV (y)

Heff is Hermitian and hence its eigenfunctions form a complete basis; from this it
follows that the Hamiltonian HV can also be diagonalized using the eigenfunctions
of Heff. In particular

Heff|φn >= En|φn > ⇒ HV |ψn >= En|ψn >

where

|ψn >= es |φn > ; < ψ̃n| = e−s < φn| �=< ψn|
The Black–Scholes Hamiltonian HBS has V (x) = r and hence

HBS = es Heffe
−s = eαx

[
−σ 2

2

∂2

∂x2
+ γ

]
e−αx (4.47)

where

γ = 1

2σ 2

(
r + 1

2
σ 2
)2

; α = 1

σ 2

(
1

2
σ 2 − r

)
(4.48)

The effective Black–Scholes Hamiltonian will be used to solve the double bar-
rier problem.

4.9 Hamiltonian and barrier options

To illustrate the workings of the Hamiltonian HBS + V for the case of path-
dependent options, barrier options are analyzed. For both the cases studied, namely
the down-and-out barrier option and the double-knock-out barrier option, the fun-
damental idea is that since the option becomes worthless the moment the stock
price equals the barrier value, the boundary conditions are imposed on the
eigenfunctions – that they must vanish outside the barrier. Potentials are intro-
duced for imposing the appropriate boundary conditions on the eigenfunctions.

7 For more complex Hamiltonians such as the Merton–Garman HMG the equivalent Hermitian Hamiltonian Heff
is far from obvious.
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4.9.1 Down-and-out barrier option

Consider the down-and-out barrier European call option, which is a European op-
tion with the additional constraint that the stock price S(t) must always be greater
than a preset barrier eB . If the stock price equals or drops below the barrier eB , the
option becomes worthless.

The price of the barrier option is determined by the set of paths taken by S(t)
such that for all points on the path S(t) > eB . To implement this constraint, for
S = ex introduce the barrier potential V (x)

V (x) =
{∞, x ≤ B

r, x > B

and is shown in Figure 4.1.

V

xB

r

Figure 4.1 The potential V (x) for the down-and-out barrier option

The Hamiltonian for the down-and-out barrier option is given by

HDO ≡ HBS + V (x)

= −σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − r

)
∂

∂x
+ V (x) (4.49)

The potential ensures that only those paths that survive the barrier contribute to the
pricing kernel. In effect the potential imposes the boundary condition on all the
eigenfunctions ψE (x) of HBS that they vanish outside the barrier, namely that
ψE (x) = 0 ; x ≤ B.

The derivation of the pricing kernel is given in Appendix 4.13 using tech-
niques that directly address the non-Hermitian property of the Black–Scholes
Hamiltonian. Let the price of the stock at (remaining time) τ be given by x > B,
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and at τ = 0 be x ′. The pricing kernel for the barrier option is then given
by Eq. (4.65) as

pDO(x, x ′; τ) = < x |e−τ HDO |x ′ > (4.50)

=
{

pBS(x, τ ; x ′) −
(

ex

eB

)2α

pBS(2B − x, τ ; x ′), x, x ′ > B

0, x > B; x ′ < B

For x, x ′ > B the pricing kernel pDO(x, x ′; τ) is always positive, as indeed it must
be, and is set to be zero in the range x > B, x ′ < B.

The pricing kernel for an up-and-out barrier, shown in Figure 4.2, for which
the option is valid only if x, x ′ < B, has a pricing kernel identical to pDO(x, x ′; τ)

for the range of x, x ′ < B (for which it has positive values), and is zero for
x < B, x ′ > B.

r

V

xB

Figure 4.2 Potential barrier for up-and-out barrier option

4.9.2 Double-knock-out barrier option

A double barrier option confines the value of the stock to lie between two barriers,
denoted by ea and eb as in shown in Figure 4.3, with the value of the option being
zero if the stock price takes a value outside the barrier.

The double-knock-out barrier’s Hamiltonian is

ĤDB = ĤBS + V (x) = es[Heff + V (x)]e−s (4.51)
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V

xba

Figure 4.3 Potential barrier for double-knock-out barrier option

The Black–Scholes Hamiltonian, from Eq. (4.47), is given by

ĤBS = −σ 2

2

∂

∂x2
+
(

σ 2

2
− r

)
∂

∂x
+ r

= es Heffe
−s

= eαx
[
−σ 2

2

∂2

∂x2
+ γ

]
e−αx (4.52)

and the potential V (x) is

V (x) =




∞ x ≤ a

0 a < x < b

∞ x ≥ b

(4.53)

The potential is accounted for by choosing eigenfunctions that vanish on both
of the boundaries. This is the well-known problem of a particle in an infinitely
deep quantum well. The Hamiltonian Heff has (normalized) eigenfunctions |φn >,
vanishing at both boundaries, with eigenenergies En + γ given by

φn(x) =< x |φn >=
√

2

b − a
sin[pn(x − a)]

pn = nπ

b − a
; En = σ 2

2
(pn)

2 ; n = 1, 2, . . .∞
Since energy eigenvalues for the double barrier option are discrete, the complete-
ness equations, (4.9) and (4.10), yield, as shown in Appendix 4.14

+∞∑
n=1

|φn >< φn| = J ⇒
+∞∑
n=1

< x |φn >< φn|x ′ >= δ(x − x ′)
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Hence the pricing kernel is given by

< x |e−τ HDB |x ′ > = < x |ese−τ [Heff+V ]e−s |x ′ >

= e−τγ eα(x−x ′)
∞∑

n=1

e−τ Enφn(x)φn(x ′) (4.54)

The explicit answer for the pricing kernel and the price of a barrier European
call option is worked out in Appendix 4.14.

The pricing of other barrier options such as the down-and-in, up-and-out, the
soft barrier options, exotic options and so on can be defined by appropriate choices
of V (x).

4.10 Summary

The formalism of quantum mechanics was reviewed, and the problem of option
pricing was seen to have a natural representation in the language of quantum me-
chanics. In particular, the Hamiltonian driving the evolution of the option price for
the case of constant and stochastic volatility was obtained. It was shown that the
pricing kernel, which in turn is determined by the Hamiltonian, contains all the
information required to price a path-independent option.

The martingale condition was given a Hamiltonian formulation, and the Black–
Scholes Hamiltonian was generalized by including a potential in a manner that
automatically satisfies the martingale condition. It was shown how a class of op-
tions can be represented by a adding a security-dependent potential to the Black–
Scholes Hamiltonian. It was further demonstrated how various barrier options can
be modelled by imposing the requisite boundary conditions on the eigenfunctions
of the Black–Scholes Hamiltonian, and the pricing kernels for a number of barrier
options was thus obtained.

The Hamiltonian and the completeness equation are two essential ingredients in
making the transition from the partial differential equation formulation of the op-
tion pricing to its path-integral representation; this transition is discussed in detail
in the next chapter.

4.11 Appendix: Two-state quantum system (qubit)

For simplicity, consider a quantum system that has only two possible states, say
an electron with its spin pointing up or down along some fixed axis. Since there
are only two possible configurations for the system, one can choose the following
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two-dimensional vectors as the basis states of the system, namely

|up > =
[

1
0

]
; |down >=

[
0
1

]
< up| = [1 0

]; < down| = [0 1
]

< up|up > = 1 =< down|down >

< up|down > = 0 =< down|up >

A key feature of the basis states is that they are complete, that is, they span the
entire state space V . In general, the completeness equation is given by taking the
tensor product of the basis state with its dual state and summing over all the basis
states. For the two-state system this yields the following

|up >< up| + |down >< down| =
[

1
0

] [
1 0
]+

[
0
1

] [
0 1
]

=
[

1 0
0 1

]
= J (4.55)

Due to the completeness equation any two-dimensional vector can be represented
by a linear combination of the |up > and |down > vectors. That is, an arbitrary
state of the electron’s spin is given by

|ψ >= a|up > +b|down > ; a, b : complex numbers

The interpretation of the state vector |ψ > is that the electron’s spin has the prob-
ability |a|2 of being in the |up > state and probability |b|2 of being in the |down >

state. State |ψ > is also known as a qubit in the field of quantum computation.
Since total probability must equal unity

< ψ |ψ >= |a|2 + |b|2 = 1 (4.56)

From Eq. (4.56), since a, b are complex numbers, it can be seen that the state space
V of the qubit is isomorphic to a three-dimensional sphere S3; there is however a
redundancy in this description since the qubit can be re-scaled by a constant phase
without there being any change in its description; in other words states linked by
a global phase, namely |ψ >→ eiφ|ψ >, are equivalent. The phase forms a space
isomorphic to a circle S1. Hence, one needs to ’divide out’ S3 by S1 to form
equivalence classes of qubits, which constitute the state space of the qubit [101].

The state space of a qubit is V ≡ S3/S1 = S2; this space is called the Bloch
sphere, and is equal to the two-dimensional sphere S2. To prove this result, one
needs to construct S3 by a Hopf fibration, using the mathematics of fibre bundles,
by fibrating the base manifold S2 with fibres given by S1.
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In summary, every point of the state space V = S2 corresponds to a unique two-
dimensional (state) vector of the two-state system.

The two-state Hermitian Hamiltonian for a typical system is given by a 2 × 2
Hermitian matrix

H =
[

α β

β∗ γ

]
= H† ; α, γ : real ; β : complex (4.57)

In particular, the matrix elements of H are hence given by

< up|H |up >= α ; < down|H |down >= γ

< up|H |down >= β ; < down|H |up >= β∗

The (normalized) eigenstates of the two-state Hamiltonian are given by

|ψ+ > = N+

[
1
γ−E+

β∗

]
; |ψ− >= N−

[
γ−E−

β∗
1

]

E± = 1

2
(α + γ ) ±

√
1

4
(α − γ )2 + |β|2 : real

N± =
√

|β|2
(γ − E±)2 + |β|2

< ψ±|ψ± > = 1 ; < ψ+|ψ− >= 0

The completeness equation, analogous to Eq. (4.55), is given by

|ψ+ >< ψ+| + |ψ− >< ψ−| =
[

1 0
0 1

]
= J (4.58)

4.12 Appendix: Hamiltonian in quantum mechanics

The most important operator in quantum mechanics, and in option pricing – since
it evolves the system in time – is the Hamiltonian, the energy operator, denoted
by H . The matrix elements of H are complex numbers; more precisely, its ma-
trix elements between an arbitrary vector |g > and a dual vector < f |, given by
< f |H |g>, is a complex number. In particular, for a Hermitian Hamiltonian HR

< f |HR|g >∗ ≡ < g|H†
R| f >

= < g|HR| f > : Hermitian

The time evolution of the state function |ψ(t) > is given by the Schrodinger
equation

∂

∂t
|ψ(t) >= − i

h̄
HR|ψ(t) > ; |ψ(0) > : specified
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where i = √−1, h̄ is Planck’s constant, and |ψ(t) > is the Schrodinger wavefunc-
tion or state function. It is seen from above that the Hamiltonian is the infinitesimal
generator of time translations. The Schrodinger equation is an initial value prob-
lem, with the value of the state function |ψ(t) > specified at t = 0, and its future
behaviour being determined by the evolution equation.

In quantum mechanics, all physical systems are described by Hermitian
Hamiltonians HR . There are special quantum states, called energy eigenstates,
with real energy eigenvalues, that form a complete set of states,8 and are
given by

HR|ψE >= E |ψE > ; E∗ = E

< ψE |H†
R =< ψE |HR =< ψE |E∫

E
d Eµ(E)|ψE >< ψE | = J (4.59)

where the density of states is defined in Eq. (4.8). From the above equations, since
the eigenenergy E is real, the right and left eigenstates of HR are dual to each other;
this is not the case for Hamiltonians in finance that as a rule are non-Hermitian.

The time evolution for an energy eigenstate is particularly simple, and is
given by

|ψE (t) >= e−i Et/h̄|ψE >

The Hamiltonian for a quantum particle with mass m, moving in a potential V (x),
is given by

HR

(
x,

∂

∂x

)
= − h̄2

2m

∂2

∂x2
+ V (x) = H†

R (4.60)

The derivative term in HR is a kinetic term since it constrains any change in po-
sitions x of the particle; for this reason the Hermitian operator h̄∂/ i∂x is referred
to as the ‘velocity’ of the particle; the term V (x) is the potential as it affects the
energy of the particle as a function of its position.

4.13 Appendix: Down-and-out barrier option’s pricing kernel

The pricing kernel is solved by directly analyzing the non-Hermitian Hamiltonian
and illustrates the new features that arise in a non-Hermitian Hamiltonian. From

8 One of the most important property of a Hermitian operator is that its eigenfunctions form a complete basis.
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(4.49) the Hamiltonian for the down and out options is given by

HDO ≡ HBS + V (x)

= σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − r

)
∂

∂x
+ V (x)

The eigenfunctions of HDO , namely ψE (x) satisfy

x > B :
HDO |ψE >= E |ψ >

< ψ̃E |HDO = E < ψ̃E |
x ≤ B :
|ψE >= 0 =< ψ̃E |

Note ψ̃E (x) �= ψ∗
E (x) since HDO �= H†

DO . To meet the requirement of the bound-
ary condition, one constructs eigenfunctions similar to the Black–Scholes case,
except that these must satisfy the condition ψE (B) = 0.

Define the quantities

iλ± = α ± i p

p =
√

2E

σ 2
− β

α = σ 2/2 − r

σ 2
; β = (σ 2/2 + r)2

σ 4

The eigenfunctions for the down-and-out barrier option are given by

x > B

< x |ψE > = eiλ+(x−B) − eiλ−(x−B) (4.61)

= 2ieα(x−B) sin
[

p(x − B)
]

< ψ̃E |x > = e−iλ+(x−B) − e−iλ−(x−B) (4.62)

= −2ie−α(x−B) sin
[

p(x − B)
]

< ψ̃E |ψE ′ > =
[

2πσ 2
√

2E/σ 2 − β

]
δ(E − E ′)

x ≤ B

< x |ψE > = 0 =< ψ̃E |x >

The physical interpretation of the wavefunction ψE (x), as shown in Figure 4.4, is
that a travelling wave eiλ+(x−B) comes in moving from right to the left, hits the
the barrier at x = B and is reflected, causing a phase shift from λ+ to λ−, and
propagates back towards the right. A similar interpretation, with the phases and
signs switched, can be given for ψ̃E (x).
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λ−

λ+

B

V

x

Figure 4.4 Reflection of ψE (x) at the barrier

There is no time dependence in the problem, and one should think of the incident
and reflected waves as a stationary problem with a steady flux of particles being
incident and reflected at the barrier.

The completeness equation is given by∫ ∞

σ 2β/2

d E

2πσ 2
√

2E
σ 2 − β

< x |ψE >< ψ̃E |x ′ >= δ(x − x ′) (4.63)

Although the eigenvalues E can take any complex value, in writing the complete-
ness equation the domain D of the eigenvalues E has been taken to be only the
real eigenvalues, with σ 2β/2 ≤ E ≤ +∞.

To prove the completeness equation one has

dp = d E
1

σ 2
√

2E
σ 2 − β

; 0 ≤ p ≤ ∞

Hence, from above and Eqs. (4.61) and (4.62), the left-hand side of Eq. (4.63)
is given by

eα(x−x ′)
∫ ∞

0

dp

2π

[
eip(x−x ′) + e−i p(x−x ′) − eip(x+x ′−2B) − e−i p(x+x ′−2B)

]

= eα(x−x ′)
∫ ∞

−∞
dp

2π

[
eip(x−x ′) − eip(x+x ′−2B)

]
= δ(x − x ′) + eα(x−x ′)δ(x + x ′ − 2B)

= δ(x − x ′) since x, x ′ > B (4.64)

The eigenfunctions can be used to evaluate the pricing kernel since they
satisfy the completeness equation. Working with the p variable, for remaining time
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τ = T − t and E = σ 2(p2 + β)/2, performing the Gaussian integration and after
some simplifications

pDO(xτ ; x ′) = < x |e−τ HDO |x ′ >

= e− τβσ2

2 +α(x−x ′)
∫ ∞

0

dp

2π
e− 1

2 τσ 2 p2

×
[
eip(x−x ′) + e−i p(x−x ′) − eip(x+x ′−2B) − e−i p(x+x ′−2B)

]
= pBS(x, τ ; x ′) − 1√

2πτσ 2
e− τβσ2

2 −α(x−x ′)e
− 1

2τσ2 (x+x ′−2B)2

= pBS(x, τ ; x ′) −
( ex

eB

)2α

pBS(2B − x, τ ; x ′) ; x, x ′ > B

(4.65)

where, recall from Eq. (4.39) that

pBS(x, τ ; x ′) = < x |e−τ HBS |x ′ >

= e−r(T −t) 1√
2πτσ 2

e
− 1

2τσ2 {x−x ′+τ(r−σ 2/2)}2

The result Eq. (4.65) for the pricing kernel of the down-and-out option has been
obtained in [105] using a method of images.

The result for the pricing kernel for the down-and-out option is what one intuit-
ively expects; its price should be less than the corresponding European call option
since its value is non-zero over a more restricted set of paths for the security. The
potential V (x) implements the constraint on the allowed paths for the barrier op-
tion by restricting the eigenstates of HDO to be zero outside the barrier.

Similar to the reflection interpretation of the eigenfunctions, one can also give
a similar interpretation to the pricing kernel. Every path that is eliminated from
the allowed paths for the pricing kernel has to hit the barrier, and hence can
be put into a one-to-one correspondence with a path that originates in the for-
bidden domain of x < B. The way one does this, as shown in Figure 4.5, is
to associate with every path that originates at x > B, and hits the barrier for
the first time at some point, a ‘mirror image’ that reaches x ′, but which origi-
nates from forbidden region of 2B − x < B, and crosses the barrier at the same
point in time as the eliminated path. These mirror-image paths completely ac-
count for all the forbidden paths, including paths with multiple crossings of the
barrier.

The pricing kernel for the barrier option is then given by the unrestricted Black–
Scholes pricing kernel, but now with a subtraction performed for all the paths that
are eliminated. The pre-factor of (ex/eB)2α in the subtraction comes from the drift
of the stock price ex .
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x ′

xB2B -- x

Figure 4.5 Pricing kernel from mirror image

4.14 Appendix: Double-knock-out barrier option’s pricing kernel

A double barrier option is an option whose value is non-zero only if the price of the
underlying instrument lies within the lower and upper barriers, which are denoted
by ea and eb respectively [7].

The price, at time t , of a double-knock-out barrier European call option expiring
at time T and with strike price K – provided it has not already been knocked out –
is given by

e−r(T −t)E
[
(ex(T ) − K )+1a<x(t ′)<b, t<t ′<T

]
(4.66)

where 1 stands for the indicator function that is non-zero only if the path is within
the barrier. The probability distribution of x(T ) needs to be obtained for only those
paths that do not go outside the barriers.

The restriction on the paths is equivalent to infinite potential barriers since they
effectively prohibit the paths from entering the forbidden region (outside the bar-
riers). Hence, the problem can be solved by using the Black–Scholes Hamiltonian
with the barrier as a boundary condition on the eigenfunctions of the Hamiltonian.

In the Schrodinger formulation, the problem is to find the pricing kernel for a
system with the Hamiltonian

Ĥ = ĤBS + V (x) (4.67)

where the Black–Scholes Hamiltonian is given by

ĤBS = −σ 2

2

∂

∂x2
+
(

σ 2

2
− r

)
∂

∂x
+ r (4.68)
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and the potential V (x) is given by

V (x) =




∞ x ≤ a

0 a < x < b

∞ x ≥ b

(4.69)

The problem has been shown in Section 4.9 to be identical to that of a quan-
tum mechanical particle of mass 1/σ 2 (in units where h̄ = 1) in an infinite po-
tential well. For the allowed momenta pn = nπ/(b − a), the eigenfunctions are
orthonormal since

〈φn | φn′ 〉 = 2

b − a

∫ b

a
sin pn(x − a) sin pn′(x − a)dx = δn−n′ (4.70)

and form a complete basis since

∞∑
n=1

〈x | φn〉〈φn | x ′〉 = 2

b − a

∞∑
n=1

sin pn(x − a) sin pn(x ′ − a)

= 1

2(b − a)

∞∑
n=−∞

(
exp

inπ

b − a
(x − x ′) − exp

inπ

b − a
(x + x ′ − 2a)

)

= π

b − a

(
δ

(
π(x − x ′)

b − a

)
− δ

(
π(x + x ′ − 2a)

b − a

))
= δ(x − x ′) given that a < x, x ′ < b

(4.71)

The pricing kernel is hence, from Eq. (4.54), given by

< x |e−τ H |x ′ >= e−γ τ+α(x−x ′)
∞∑

n=1

e−τ En < x |φn >< φn|x ′ >

= 1

2(b − a)
e−γ τ+α(x−x ′)

∞∑
n=−∞

e− τσ2 p2
n

2

(
eipn(x−x ′) − eipn(x+x ′−2a)

)
(4.72)

In the equation above remaining time τ appears inside the summation in a manner
unsuitable for studying the limit of τ → 0. The inversion τ → 1/τ can be done
using the Poisson summation formula

δ(y − n) =
∞∑

n=−∞
e2π iny (4.73)
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and yields

〈x |e−τ H |x ′〉
= 1

2(b − a)
exp

(−γ τ + α(x − x ′)
)

×
∞∑

n=−∞

∫ +∞

−∞
dyδ(y − n) exp

(
− y2π2τσ 2

2(b − a)2

)

×
(

exp
iyπ(x − x ′)

b − a
− exp

iyπ(x + x ′ − 2a)

b − a

)

=
√

1

2πτσ 2
exp

(−γ τ + α(x − x ′)
)

×
∞∑

n=−∞

(
exp −(x − x ′ + 2n(b − a))2

2τσ 2
− exp −(x + x ′ − 2a − 2n(b − a))2

2τσ 2

)

where recall from Eq. (4.48) that

γ = (r + σ 2/2)2

2σ 2
; α = σ 2/2 − r

σ 2

The pricing kernel (apart from the drift terms) is given by an infinite sum of
Gaussian distributions. The result can be checked by verifying that it reduces to
the two solved cases, namely that of a single barrier and the Black–Scholes case
of no barrier.

The limits b → ∞ with a finite a, and a → −∞ with b finite are taken. In
the former case, only the n = 0 term contributes and in the latter, only the n = 0
and n = 1 terms contribute. It is easy to see that, in both cases, the result reduces
to the solution for the single-knock-out barrier propagator. When both limits are
simultaneously active, only the first term in the n = 0 term exists and it is easily
seen that it gives rise to the Black–Scholes result.

The price of a double barrier European call option can now be evaluated using
the pricing kernel from (4.72). The result is seen to be [7]

C(S, K ; τ) =
∞∑

n=−∞

(
e−2nα(b−a)

(
e2n(b−a)SN (dn1) − K e−rτ N (dn2)

)

− S2αe−2α(n(b−a)−a)

(
e2n(b−a) e2a

S
N (dn3) − K e−rτ N (dn4)

))
(4.74)
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where

dn1 =
ln
( S

K

)+ 2n(b − a) + τ
(

r + σ 2

2

)
σ
√

τ

dn2 =
ln
( S

K

)+ 2n(b − a) + τ
(

r − σ 2

2

)
σ
√

τ
= dn1 − σ

√
τ

dn3 =
ln
(

e2a

SK

)
+ 2n(b − a) + τ

(
r + σ 2

2

)
σ
√

τ

dn4 =
ln
(

e2a

SK

)
+ 2n(b − a) + τ

(
r − σ 2

2

)
σ
√

τ
= dn3 − σ

√
τ (4.75)

and agrees with the result given in [41].

4.15 Appendix: Schrodinger and Black–Scholes equations

The following are some of the general properties of Black–Scholes and
Schrodinger equation.

� In quantum mechanics, the position of a quantum particle is a random variable. In fi-
nance, the price of a security is a random variable.

� The price of the option |C > is analogous to the state function |ψ(t) >; however, unlike
|ψ(t) >, the option price |C > is directly observable and does not need a probabilistic
interpretation. Hence, unlike the condition < ψ |ψ >= 1 required by the probabilistic
interpretation in quantum mechanics, the value of < C |C > is arbitrary.

� The Schrodinger equation requires a complex state function |ψ(t) >, whereas the Black–
Scholes equation is a real partial differential equation that always yields a real valued
expression for the option price C . One can think of the Black–Scholes equation as the
Schrodinger equation for imaginary time.

� All Hamiltonians in quantum mechanics are Hermitian as this ensures that all the eigen-
values are real. The Black–Scholes and other Hamiltonians determining the option price
are not Hermitian, and this leads to eigenvalues that are complex.

� Complex eigenvalues of Hamiltonians in finance lead to a more complicated analysis
than one encountered in quantum mechanics; in particular, there is no well-defined pro-
cedure applicable to all Hamiltonians for choosing the set of eigenfunctions that yield
the completeness equation. The special cases where a similarity transformation leads
to an equivalent Hermitian Hamiltonian yields a natural choice for the set of complete
eigenfunctions.
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� The Schrodinger equation is an initial value problem, whereas the Black–Scholes equa-
tion is a final value problem since the price of the option on maturity – the payoff
function – is specified in advance.

� The Schrodinger equation is time reversible due to the fact that the Hamiltonian is Her-
mitian and its time-evolution is given by e−i t H/h̄ . In contrast, the Black–Scholes process
is time-irreversible due to its Hamiltonian being non-Hermitian, and also because the
pricing kernel is determined by the time-irreversible semi-group e−τ H .
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Path integrals and stock options

Only a few problems in finance are directly tractable using the Hamiltonian, since
in general nonlinear systems such as the Merton–Garman Hamiltonian are too dif-
ficult to solve analytically. One is hence led to recasting the problem in the formal-
ism of path integration; this allows for a different approach and point of view to
attack otherwise intractable problems, and in some cases leads to simplifications
that are easy to implement analytically and numerically.

The main focus of this chapter is to develop the Feynman Path Integral [30,
33, 62, 90, 106] for the pricing of options as it has proven to be a powerful tool for
analytical and computational studies of random systems. This entails a shift away
from studying the Hamiltonian operator to the study of the Lagrangian. Similar to
the role played by the Hamiltonian in the previous chapter, the Lagrangian L is the
fundamental mathematical structure in the path-integral formulation of quantum
mechanics [30, 33, 90].

This chapter is an introduction to the growing field of the applications of path
integrals to option pricing [5, 7, 25, 67, 79, 82, 91].

5.1 Lagrangian and action for the pricing kernel

Recall the pricing kernel is sufficient for solving the problem of pricing a class of
options. For a single security with remaining time τ = T − t , Eq. (4.30) gives

p(x, τ ; x ′) = 〈x | e−τ H | x ′〉

Feynman’s approach to quantum mechanics rests on the fact that even though it
may not be possible to evaluate the matrix elements of e−τ H , what one can evaluate
exactly are the matrix elements of e−εH , where ε → 0. For a Hamiltonian of the
form H = T + V , where T , the kinetic term, is a differential operator, and V is
a potential term, in general T V − V T ≡ [T, V ] �= 0. Since e−τ H �= e−τT e−τ V ,

78
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to compute e−τ H is usually quite intractable.1 However, for τ = ε one obtains to
leading order that e−εH � e−εT e−εV , and this is the fundamental reason for going
over to the path-integral formulation.

To determine the pricing kernel, discretize time so that there are N time steps
to maturity, with each time step equal to ε = τ/N . The continuous-time label of
the variables x(t) is discretized to xi , where t = iε and 0 ≤ i ≤ N . The matrix
element <x |e−τ H |x ′ > can then be written as an N -fold product of e−εH in the
following manner

p(x, τ ; x ′) = lim
N→∞ < x |[e−εH ]N |x ′ >

= lim
N→∞ < x |e−εH · · · e−εH |x ′ > (5.1)

The limit of N → ∞ will be eventually taken in most calculations.
Recall the completeness equation for |x > is given by Eq. (4.3)

J =
∫ ∞

−∞
dx |x >< x | (5.2)

Inserting the completeness equation (N − 1) times in Eq. (5.1) yields

p(x; τ |x ′) =
(

N−1∏
i=1

∫
dxi

)
N∏

i=1

< xi |e−εH |xi−1 > (5.3)

with boundary conditions

xN = x, x0 = x ′ (5.4)

The Lagrangian for the system is defined by Feynman’s formula

<xi |e−εH |xi−1> ≡ Ni (ε)e
εL(xi ;xi−1;ε) (5.5)

and from Eqs. (5.3) and (5.5)

p(x; τ, x ′) ≡
∫

DXeS (5.6)

where the action is given by

S = ε

N∑
i=1

L(xi ; xi−1; ε) (5.7)

1 In general, for non-commuting operators A and B such that [A, B] �= 0, the following infinite expansion is
given by the Campbell–Baker formula exp(A) exp(B) = exp(A + B + [A, B]/2 + . . .) [39].
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and the path-integration measure is given by2

∫
DX = NN (ε)

N−1∏
i=1

∫
Ni (ε)dxi

Eq. (5.6) is the discrete-time Feynman path integral.
In many cases, the normalization Ni is independent of the integration variable

xi ; in such cases the normalization constant Ni can be ignored, and the limit of
N → ∞ then exists. For boundary conditions x(τ ) = x ; x(0) = x ′, one obtains
the continuous-time Feynman path integral

p(x; τ, x ′) =
τ∏

t=0

∫ +∞

−∞
dx(t)eS

⇒ 〈x | e−τ H | x ′〉 ≡
∫

DXeS (5.8)

with boundary conditions given by Eq. (5.4), and with

S =
∫

L

(
x,

dx

dt

)
dt

One can see from equation (5.7) that at a given instant of time t = iε, the system
has only one degree of freedom given by xi ; furthermore from Eq. (5.8) the path
integration entails performing infinitely many integrations, one integration over
xt for each instant of time t ∈ [0, τ ]. The path integral is known as the Wiener
integral [24, 104] in probability theory.

For the case where there are many independent variables, for example a stock
price having stochastic volatility, the path integral can be extended in a straightfor-
ward manner.

Path-integral quantum mechanics is briefly reviewed in Appendix 5.9.

5.2 Black–Scholes Lagrangian

Consider the case of risk-neutral evolution of a stock price given by the Black–
Scholes equation [5]. In this case there is only one independent variable, namely
the stock price S = ex , which yields the following

〈xi | e−εHBS | xi−1〉 = NBS(ε)e
εL BS

where NBS(ε) is a normalization constant. The function L BS is the Black–Scholes
Lagrangian. The pricing kernel for the Black–Scholes process given in Eq. (4.39)

2 Note there there are N normalization factors and only N − 1 number of xi integrations.
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is exact, and setting τ = ε yields

〈xi | e−εHBS | xi−1〉 = e−rε

√
2πεσ 2

e
− 1

2εσ2 {xi −xi−1+ε(r−σ 2/2)}2

= e−rε

√
2πεσ 2

e
− ε

2σ2 { δxi
ε

+(r−σ 2/2)}2

= NBS(ε)e
εL BS

where δxi = xi − xi−1. Hence

L BS(i) = − 1

2σ 2

(
δxi

ε
+ r − σ 2

2

)2

− r (5.9)

SBS = ε

N∑
i=1

L BS(i) (5.10)

NBS(ε) = 1√
2πεσ 2

Keeping in mind that the index i in xi labels remaining time with Nε = τ = T − t ,
where t is real time, the boundary conditions are given by

xN = x, x0 = x ′ (5.11)

The completeness equation yields for the integration measure

∫
BS

DX =
[

1

2πεσ 2

]N/2 N−1∏
i=1

∫ +∞

−∞
dxi (5.12)

The Black–Scholes pricing kernel is given by the path integral

pBS(x, τ ; x ′) =
∫

BS
DX eSBS (5.13)

5.2.1 Black–Scholes path integral

The path integration for the Black–Scholes pricing kernel is explicitly performed.
From Eq. (5.10) the action is given by

SBS = − 1

2εσ 2

N∑
i=1

(
xi − xi−1 + ε(r − σ 2

2
)

)2

− rεN
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Define the following change of variables

ζi = xi − xi−1 + ε

(
r − σ 2

2

)
(5.14)

dζi = dxi ; i = 1, . . . , N

There are only N − 1 original xi integration variables, whereas N -independent in-
tegration variables have been defined for the ζi ’s. Hence, one needs to introduce
a constraint on the ζi variables, and this will be done by implementing the bound-
ary conditions given in Eq. (5.11). The boundary condition at x0 is automatically
fulfilled, as can be seen in Eq. (5.70), and to implement the boundary condition at
xN impose the following constraint on the ζi variables

xN = x0 − Nε

(
r − σ 2

2

)
+

N∑
i=1

ζi

⇒ m −
N∑

i=1

ζi = 0 ; m ≡ x − x ′ + τ

(
r − σ 2

2

)
(5.15)

Implementing the boundary condition above as a delta-function inside the
∫

Dζ

path integral, yields from Eq. (5.13)

pBS(x, τ ; x ′) = 〈x | e−τ HBS | x ′〉 =
∫

BS
DXeSBS

= e−rτ

[
1

2πεσ 2

]N/2 N∏
i=1

∫ +∞

−∞
dζi e

− 1
2εσ2

∑N
i=1 ζ 2

i δ

(
m −

N∑
i=1

ζi

)

Using the integral representation of the delta function given in Eq. (A.11) factor-
izes the ζi integrations into uncoupled Gaussian integrations, and hence

pBS(x, τ ; x ′) = e−rτ

[
1

2πεσ 2

]N/2

×
∫ +∞

−∞
dp

2π

N∏
i=1

∫ +∞

−∞
dζi e

− 1
2εσ2

∑N
i=1 ζ 2

i eip[m−∑N
i=1 ζi ]

= e−rτ

[
1

2πεσ 2

]N/2 ∫ +∞

−∞
dp

2π
eipm

N∏
i=1

∫ +∞

−∞
dζi e

− 1
2εσ2 ζ 2

i +i pζi

= e−rτ

∫ +∞

−∞
dp

2π
eipme− Nεσ2

2 p2

= e−rτ 1√
2πτσ 2

e
− 1

2τσ2 {x−x ′+τ(r−σ 2/2)}2

(5.16)
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where Nε = τ has been used to obtain the expected Black–Scholes pricing kernel
given in Eq. (4.39).

Black–Scholes velocity correlation functions

The velocity correlators are evaluated using the discretized Black–Scholes Lagrangian
defined on the time lattice t = nε; since ε is expressed in terms of remaining time
τ = T − t = Nε, all time derivatives with respect to t pick up a negative sign when ex-
pressed in terms of remaining time τ = T − t .

The expectation value of some function B of the stock price S = ex is given by

< B > = 1

Z BS

∫
BS

DXeSBSB ; Z BS =
∫

BS
DXeSBS (5.17)

where, since < 1 > = 1, division by Z BS is necessary to obtain a probability measure
eSBS /Z BS .

Consider a path integral more general than the one evaluated in Eq. (5.16), in that the
path integral is performed in the presence of an external current ji that is coupled to the ζi ,
and yields the moment-generating partition function

Z BS[ j] =
∫

BS
DXeSBS e

∑N
i=1 ji ζi

= e−rτ

[
1

2πεσ 2

]N/2 N∏
i=1

∫ +∞

−∞
dζi e

− 1
2εσ2

∑N
i=1 ζ 2

i δ

(
m −

N∑
i=1

ζi

)
e
∑N

i=1 ji ζi

Similar to the result obtained in Eq. (5.16), Gaussian integrations yield (N is a normaliza-
tion constant)

Z BS[ j] = N eF[ j]

F[ j] = 1

2
εσ 2

N∑
i=1

j2
i − m2

2εσ 2 N
+ m

N

N∑
i=1

ji − ε

2N
σ 2

(
N∑

i=1

ji

)2

where m = x − x ′ + τ(r − σ 2/2) is defined in Eq. (5.15). The generating function yields,
keeping in mind that time derivatives have an extra negative when taken with respect to
remaining time, the following

1

ε
< ζn > = 1

ε

∂ F[ j]
∂ jn

∣∣∣
j=0

= m

εN
(5.18)

⇒<
dx

dt
> = − x − x ′

τ
= x ′ − x

T − t

The reason that the average velocity does not depend on σ is because in the limit of
σ → 0, the random velocity reduces to a deterministic value given by the classical
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velocity (x − x ′)/(T − t). Furthermore, for t = nε, t ′ = iε

1

ε2
< ζiζn > = 1

ε2

∂2 F[ j]
∂ ji∂ jn

∣∣∣
j=0

= 1

ε
σ 2δn−i − σ 2

εN
+
( m

εN

)2
(5.19)

⇒ <
dx(t)

dt

dx(t ′)
dt

> = σ 2δ(t − t ′) − σ 2

T − t
+
(

x ′ − x

T − t

)2

A measure of the fluctuations of the velocity that depart from its average value is given by

<

[
dx(t)

dt
− <

dx(t)

dt
>

] [
dx(t ′)

dt
− <

dx(t)

dt
>

]
> = σ 2δ(t − t ′) − σ 2

T − t

The result shows that all departures of the velocity from its deterministic value are due to
σ �= 0, as expected.

Continuum limit

The
∫

BS DX path integral for the Black–Scholes case, from Eq. (5.12), has an
integration measure that is essentially the measure for the flat space RN; the limit
of N → ∞ for DX can consequently be taken and a well-defined continuous-time
path integral is obtained. From Eqs. (5.10) and (5.12), taking the continuum limit
of ε → 0, yields the following

SBS =
∫ τ

0
dt L BS = − 1

2σ 2

∫ τ

0
dt

(
dx

dt
+ r − 1

2
σ 2
)2

with boundary conditions x(0) = x ′ and x(τ ) = x .
It can be seen from above that the Black–Scholes case of constant volatility

corresponds to the evolution of a free quantum mechanical particle with mass given
by 1/σ 2. Up to an irrelevant constant, the continuous-time path integral for the
Black–Scholes pricing kernel is the following

pBS(x, τ |x ′) = < x |e−τ HBS |x ′ > =
∫

BS
DXeSBS (5.20)

∫
BS

DX =
τ∏

t=0

∫ +∞

−∞
dx(t)

Similar to the quantum mechanical case, Eq. (5.20) for the Black–Scholes pricing
kernel is a continuous functional integration over all the stock price variables x(t),
and can be graphically represented – as shown in Figure (5.1) of Appendix 5.9 –
by a summation over all possible values that the stock price takes in its evolution
from x to x ′.
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5.3 Path integrals for path-dependent options

Path-dependent options come in many varieties. The two main categories are op-
tions that are typically like barrier options that restrict the values of the stock price
to take values within a pre-specified range for the option to have a non-zero value.
The other category is options with payoff functions that depend on the all the val-
ues of the stock price from its initial value till the maturity of the option.

Consider for concreteness the pricing kernel of the double-knock-out barrier
option considered in Appendix 4.14; the value of the stock price leads to the re-
striction that a ≤ x(t ′) ≤ b ; t ≤ t ′ ≤ T , where t is current time and T is the time
for the maturity of the option. The path-integration is over the domain DB which
similar to Eq. (5.12), is given by

∫
DB

DX =
[

1

2πεσ 2

]N/2 N−1∏
i=1

∫ b

a
dxi

and, similar to the Black–Scholes case, the pricing kernel for the double-knock-out
option is given by

pDB(x, τ ; x ′) =
∫

DB
DXeSBS

Note the important fact that the action for the double-knock-out option is given
by the Black–Scholes action SBS , and only the domain of integration DB for the
path-integral changes to account for the barrier option. The path integral for the
barrier option is evaluated more efficiently using the Hamiltonian, and the pricing
kernel pDB(x, τ ; x ′) is given in Eq. (4.54).

The payoff function for a large class of path-dependent options is given by (τ =
T − t)

g[x, K ] = max

(
K ,

1

τ

∫ τ

0
ds f (x(s))

)
+

For the Asian option f (x(s)) = ex(s). Matacz [72] has treated a number of such
path-dependent options using a path-integral representation.

The price of the option at present time t is given by the Black–Scholes path
integral, namely that

C(x0; τ ; K ) =
∫

BS
DXeSBS g(x, K )

=
∫ +∞

−∞
dξg(ξ, K )

[∫
BS

DXδ

[
ξ − 1

τ

∫ τ

0
ds f (x(s))

]
eSBS

]

mixed boundary conditions : x(τ ) = x0 ; dx(0)

dt
= 0
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Using the Fourier representation of the delta function given in Eq. (A.11) yields

C(x0, τ ; K ) =
∫ +∞

−∞
dξdp

2π
eipξ Z(p)g(ξ, K )

⇒ Z(p) =
∫

BS
DXeSeff(p)

where Seff(p) = SBS − i
p

τ

∫ τ

0
ds f (x(s)) (5.21)

In particular for the Asian option

LAsian option = L BS − i
p

τ
ex (5.22)

5.4 Action for option-pricing Hamiltonian

Recall that the Hamiltonian with an arbitrary potential V (x) is given by

HV = −σ 2

2

∂2

∂x2
+
(

1

2
σ 2 − V (x)

)
∂

∂x
+ V (x) (5.23)

It can be shown, similar to the analysis for the Black–Scholes case, that

pV (x, τ |x ′) = < x |e−τ HV |x ′ >

=
∫

BS
DXeSV

where

SV = −
∫ τ

0
dt

[
1

2σ 2

(
dx

dt
− V (x) + 1

2
σ 2
)2

+ V (x)

]
(5.24)

5.5 Path integral for the simple harmonic oscillator

The path integral for the simple harmonic oscillator is one of the simplest – as
well one of the most useful – models in quantum mechanics. The simple harmonic
oscillator is exactly soluble, and is a special case of infinite-dimensional Gaussian
integration.

Consider a quantum particle, with random position given by variable x , moving
in a potential V (x) = 1

2ω2x2; this corresponds to a restoring force on a particle that
is proportional to its displacement from the origin at x = 0, namely Hooke’s law.
Let the particle have mass m and spring constant ω, and be subject to an external
force j ; the particle’s Lagrangian and action, from initial time and position ti , xi
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to final time and position t f , x f , is given by

S =
∫ t f

ti
dt L

[
x,

dx

dt

]

L = −1

2
m

(
dx

dt

)2

− 1

2
mω2x2 + j x (5.25)

The transition amplitude is given by

p(x; ti ; x f , t f ) = < x f |e−(t f −ti )H |xi > =
∫

BS
DXeS

Consider the case when the initial and final positions xi , x f are random. Then

Z(ti , t f ; j) =
∫ +∞

−∞
dxi dx f p(xi , ti ; x f , t f ) (5.26)

The integration over the initial and final positions that results in Z(ti , t f ; j) has
a simple expression in terms of the boundary conditions imposed on the path-
integration measure

∫
DX . Instead of the initial and final positions being fixed,

the paths x(t) now have

dx(ti )

dt
= 0 = dx(t f )

dt
: Neumann B.C.’s. (5.27)

The Neumann boundary conditions allow one to do an integration by parts of the
action given in Eq. (5.25) and yields the following action

S = −1

2
m
∫ t f

ti
dt x(t)

[
− d2

dt2
+ ω2

]
x(t) +

∫ t f

ti
dt j (t)x(t) (5.28)

The generating functional3 is given by the path integral

Z(ti , t f ; j) =
∫

N
DXeS (5.29)

where the subscript N denotes the Neumann boundary condition on the path
integral. The formal solution for Z can be read off from Eqs. (A.19) and (A.20).
Defining

m

[
− d2

dt2
+ ω2

]
D(t, t ′; ti , t f ) = δ(t − t ′) : Neumann B.C.’s

3 The term-generating functional is used instead as a generating function as in Eq. (A.16) to indicate that one is
considering a system with infinitely many variables.
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gives from Eq. (A.20) that

Z(ti , t f ; j) = e
1
2

∫ t f
ti

dtdt ′ j (t)D(t,t ′;ti ,t f ) j (t ′) (5.30)

The function D(t, t ′; ti , t f ) is the propagator for the simple harmonic oscillator.

The simple harmonic path integral: Fourier expansion

The path integral
∫

DXeS is performed over all paths (functions) x(t) that satisfy the
Neumann boundary conditions given in Eq. (5.27). All such functions can be expanded in
a Fourier cosine series as follows

x(t) = a0 +
∞∑

n=1

an cos

[
nπ

(t − ti )

τ

]
; τ ≡ t f − ti

∫
N

DX = N
∞∏

n=0

∫ +∞

−∞
dan : infinite multiple integral

(N is a normalization constant). The orthogonality equations

∫ t f

ti
dt cos

[
nπ

(t − ti )

τ

]
cos

[
mπ

(t − ti )

τ

]
=
∫ t f

ti
dt sin

[
nπ

(t − ti )

τ

]
sin

[
mπ

(t − ti )

τ

]

= τ

2
δm−n ; m, n ≥ 1 (5.31)

yields for the action given in Eq. (5.28) the following

S = − 1

2
mω2τ

{
a2

0 + 1

2

∞∑
n=1

[
1 +

(nπ

ωτ

)2
]

a2
n

}

+
∫ t f

ti
dt j (t)

{
a0 +

∞∑
i=1

an cos

[
nπ

(t − ti )

τ

]}

= − 1

2

∞∑
n=0

κna2
n +

∞∑
n=0

jnan (5.32)

where

κ0 = mω2τ ; κn = 1

2
mω2τ

[
1 +

(nπ

ωτ

)2
]

; n ≥ 1

jn =
∫ t f

ti
dt j (t) cos

[
nπ

(t − ti )

τ

]
; n = 0, 1, . . . ∞

All the Gaussian integrations over the variables an have decoupled in the action S given
in Eq. (5.32). The path integral has been reduced to an infinite product of single Gaussian
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integrations, each of which can be performed using Eq. (A.16). Hence, from Eqs. (5.29)
and (5.32)

Z(ti , t f ; j) =
∫

DXeS

= N
∞∏

n=0

[ ∫ +∞

−∞
dane− 1

2 κna2
n+ jnan

]

= e
1
2

∑∞
n=0 jn

1
κn

jn (5.33)

Using Eq. (5.30) to factor out the j (t)’s from above equation yields

D(t, t ′; ti , t f ) = 1

mω2τ

{
1 + 2

∞∑
n=1

cos

[
nπ

(t − ti )

τ

][
1

1 + ( nπ
ωτ

)2
]

cos

[
nπ

(t ′ − ti )

τ

]}

(5.34)

Let θ = t − ti > 0 and θ ′ = t ′ − ti > 0; then

2
∞∑

n=1

cos(nπθ/τ) cos(nπθ ′/τ)

1 + ( nπ
ωτ

)2
=
(ωτ

π

)2 ∞∑
n=1

cos(nπ(θ + θ ′)/τ) + cos(nπ(θ − θ ′)/τ)

(ωτ
π

)2 + n2

(5.35)

The summation over integer n is performed using the identity4

∞∑
n=1

cos(nθ)

a2 + n2
= π

2a

cosh(π − |θ |)a
sinh πa

− 1

2a2
(5.36)

and yields the result

D(t, t ′; ti , t f ) = cosh ω
{
τ − |θ − θ ′|}+ cosh ω

{
τ − (θ + θ ′)

}
2mω sinh ωτ

(5.37)

Hence, from Eq. (5.37) and since τ = t f − ti , the propagator is given by

D(t, t ′; ti , t f ) = cosh ω
{
(t f − ti ) − |t − t ′|}+ cosh ω

{
(t f − ti ) − (t + t ′ − 2ti )

}
2mω sinh ω(t f − ti )

(5.38)

Given the importance of the propagator for field theory of the forward interest
rates, and for field theory in general, the derivation of the propagator is studied
in some detail in Appendix A.7 for various boundary conditions. The propagator

4 The formula given in Eq. (5.36) is valid for any complex number a, and will be applied in later discussions for
a case where a is indeed a complex number. The branch of the square root of a2 that is taken on the right-hand
side need not be specified since the right-hand side is a function of a2.
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with Neumann boundary conditions is evaluated using eigenfunctions discussed in
Appendix A.7.1, and a Greens function derivation given in Appendix A.7.2.

The result given in Eq. (5.38) for the propagator D(t, t ′; ti , t f ) – from a seem-
ingly artificial example of quantum mechanics – is of fundamental importance in
the analysis of the quantum field theory model of the forward rates discussed in
Chapters 7–10.

The case of infinite time for Eq. (5.38) is obtained by taking the limit of ti →
−∞ , t f → +∞, and yields

D(t, t ′) = 1

2mω
e−ω|t−t ′| (5.39)

and which is derived in Eq. (A.3.3) using a different method.

5.6 Lagrangian for stock price with stochastic volatility

So far, in the path-integral solution of the Black–Scholes pricing kernel, and of
the simple harmonic oscillator, only linear theories have been treated, which can
be solved exactly using Gaussian integration. The problem of solving nonlinear
systems with actions S that have cubic or higher powers in the random vari-
ables is notoriously difficult, and only a handful of such systems can be exactly
solved.

For this reason, the case of a stock price with stochastic volatility [5] is ana-
lyzed in some detail as it can be exactly solved using path integration. This system
consists of two degrees of freedom (two random variables at each instant of time),
namely the random stock price S(t) and its volatility V (t). This example is impor-
tant in its own right, and is also sufficiently complex to serve as an exemplar for
demonstrating the mathematical derivations that arise in the path-integral approach
to option pricing.

Recall that the Merton–Garman Hamiltonian in Eq. (3.34) is valid for a process
with an arbitrary value for the parameter α. Analysis of data from option prices [8]
shows that it is quite insensitive to the precise value of α, and in fact any value of
1
2 ≤ α ≤ 1 fits data equally well.

Only the special case of α = 1 will be considered as this considerably simpli-
fies all the calculations, and also yields an efficient numerical algorithm [8, 70].
Consider the case of λ = 0 in the stochastic equation driving volatility as given in
Eq. (3.27); the fundamental stochastic equation for stock price S(t) and its volatil-
ity V takes the form

dV

dt
= µV + ξV Q ; d S

dt
= φS + σ S R (5.40)
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The Merton–Garman Hamiltonian for α = 1, λ = 0 is given by Eq. (3.34) as

HMG = −ey

2

∂2

∂x2
+
(

1

2
ey − r

)
∂

∂x
− ξρey/2 ∂2

∂x∂y
− ξ2

2

∂2

∂y2
+
(

1

2
ξ2 − µ

)
∂

∂y
(5.41)

Derivation of the Merton–Garman Lagrangian

To obtain the Merton–Garman Lagrangian from its Hamiltonian HMG (henceforth, in this
derivation, the subscript on the Hamiltonian is dropped for simplicity) one needs to use the
momentum basis introduced in Section 4.6.1; from Eq. (4.34)

< x, y|e−εH |x ′, y′ > =
∫ ∞

−∞
dpy

2π

dpy

2π
< x, y|e−εH |px , py >< px , py |x ′, y′ >

=
∫ ∞

−∞
dpx

2π

dpy

2π
eipx (x−x ′)eipy(y−y′)e−εH(x,y,py ,py) (5.42)

and from Eq. (5.41) the matrix elements of the Hamiltonian are given by

H(x, y, px , py) = ey

2
p2

x +
(

1

2
ey − r

)
i px + ξρey/2 px py + ξ2

2
p2

y +
(

1

2
ξ2 − µ

)
i py

Re-writing Eq. (5.42) in matrix notation yields

< x, y|e−εH |x ′, y′ >

=
∫ ∞

−∞
dpx

2π

dpy

2π
exp

{
−ε

2

[
px py

]
M
[

px

py

]
+ i
[

A B
] [ px

py

]}
(5.43)

where

A = x − x ′ + εr − ε

2
ey

B = y − y′ + εµ − ε

2
ξ2

and

M =
[

ey ξρey/2

ξρey/2 ξ2

]

To perform the Gaussian integrations over py and py one needs

detM = ξ2ey(1 − ρ2)

and

M−1 = 1

ξ2(1 − ρ2)

[
ξ2e−y −ξρe−y/2

−ξρe−y/2 1

]
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Performing the two-dimensional Gaussian integrations in Eq. (5.43) using Eq. (A.18), and
extending Eq. (5.5) to the case of stock price with stochastic volatility, one obtains

< x, y|e−εH |x ′, y′ > = 1

2πε
√

detM
eεL (5.44)

where

L MG = − 1

2ε2(1 − ρ2)

(
e−y A2 + 1

ξ2
B2 − 2

ρ

ξ
e−y/2 AB

)
+ O(ε) (5.45)

Simplifying Eq. (5.45) above, and for δx = x − x ′ and δy = y − y′, the (nega-
tive definite) Merton–Garman Lagrangian for α = 1 is given by

L MG = − 1

2ξ2

(
δy

ε
+ µ − 1

2
ξ2
)2

− e−y

2(1 − ρ2)

[
δx

ε
+ r − 1

2
ey − ρ

ξ
ey/2

(
δy

ε
+ µ − 1

2
ξ2
)]2

+ O(ε)

≡ L0 + L X (5.46)

For ε → 0, one recovers the expected result that

lim
ε→0

< xi , yi |e−εH |xi−1, yi−1 > = δ(xi − xi−1)δ(yi − yi−1) + O(e) (5.47)

and the pre-factors to the exponential on the right-hand side of Eq. (5.44) ensure
the correct limit.

The action S is

S = ε

N∑
i=1

L(i) + O(e)

≡ S0 + SX (5.48)

S is quadratic in xi and non-linear in the yi variables, and hence in principle the
path integral over the stock prices xi can be done exactly.

Collecting results from Eqs. (5.6) and (5.48), the Merton–Garman pricing kernel
is given by the following path integral

p(x, y, τ ; x ′) =
∫ ∞

−∞
dy′ p(x, y, τ ; x ′, y′)

= lim
N→∞

∫
DX DY eS (5.49)

where, for ε = τ/N∫
DX = e−yN /2√

2πε(1 − ρ2)

N−1∏
i=1

∫ ∞

−∞
dxi e−yi /2√
2πε(1 − ρ2)

(5.50)
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and

∫
DY =

∫ ∞

−∞
dy0

N−1∏
i=1

∫ ∞

−∞
dyi√
2πεξ2

. (5.51)

An extra dy0 = dy′ integration has been included in
∫

DY given in Eq. (5.51)
due to the integration over y′ in Eq. (5.49).

Eq. (5.49) is the path integral for stochastic stock price with stochastic volatility
with α = 1; the path integral for arbitrary α in its full generality is treated in the
Appendices 5.14–5.13.

To evaluate expressions such as the correlation of S(t) with V (t ′), the path
integral in Eq. (5.49) has to be used.

5.7 Pricing kernel for stock price with stochastic volatility

An exact solution for the Merton–Garman pricing kernel is obtained by performing
all the integrations that appear in the path integral for the pricing kernel. The solu-
tion is given in the form of an infinite series expansion that requires some residual
integrations, all of which can also be carried out exactly. Hence the problem can
be considered to have been formally solved.

Eq. (5.81) provides a mathematically rigorous basis for taking the N → ∞
limit for the case of stochastic volatility. On exactly performing the

∫
DX

path integral, the remaining
∫

DY path integral has a measure, namely DY =
[ 1

2πεξ2 ]N/2∏N
i=1 dyi that is, just as in the Black–Scholes case, essentially the

measure for the flat space RN (and unlike the nonlinear expression in Eq. (5.50));
hence the N → ∞ limit for

∫
DY and for S0 + S1 can be taken, and results in a

well-defined continuous-time path integral.
Taking the limit of ε → 0 yields t = iε , ε

∑N
i=1 eyi → ∫ τ

0 dtey(t) ≡ τw, and
δyi/ε → dy/dt . Hence, from Eqs. (5.82) and (5.83)

S = S0 + S1 (5.52)

where

S0 = − 1

2ξ2

∫ τ

0
dt

(
dy

dt
+ µ − 1

2
ξ2
)2

S1 = − 1

2(1 − ρ2)w

{
x − x ′ + rτ − 1

2

∫ τ

0
dtey(t)

+ 2ρ

ξ

(
ey(0)/2 − ey/2

)
− ρ

ξ

(
µ − ξ2

2

)∫ τ

0
dtey(t)/2

}2

(5.53)
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with boundary value

y(τ ) = y

and the pricing kernel is given by

p(x, y, τ ; x ′) =
∫

DY
eS√

2π(1 − ρ2)τw
. (5.54)

Taking the continuum limit is possible only after the discrete
∫

DX path inte-
gration has been performed, since the nonlinear measure given by Eq. (5.50) does
not have a finite continuum limit.

For ρ �= 0,5 it can be seen from Eq. (5.54) that p(x, y; τ, x ′) depends on w as
well as on u = 1

τ

∫ τ

0 ey(t)/2dt and ey(0)/2. Hence, from Eq. (5.54)

p(x, y, τ ; x ′) =
∫ ∞

0
dw du dv

eS1(u,v,w)√
2π(1 − ρ2)τw

g(u, v, w) (5.55)

where

S1(u, v, w) =

− 1

2(1 − ρ2)τw

[
x − x ′ + rτ − τ

2
w + 2ρ

ξ
(v − ey/2) − ρ

ξ

(
µ − ξ2

2

)
u

]2

with

u = 1

τ

∫ τ

0
ey(t)/2dt ; v = ey(0)/2

w = 1

τ

∫ τ

0
ey(t)dt

and g(u, v, w) is the probability distribution for the moments given by the path
integral

g(u, v, w)

=
∫

DY eS0δ
{
v − ey(0)/2

}
δ

{
u − 1

τ

∫ τ

0
ey(t)/2dt

}
δ

{
w − 1

τ

∫ τ

0
ey(t)dt

}
(5.56)

From Eq. (5.56) above it can be seen that g(u, v, w) is the probability den-
sity for u, v, and w and p(x, y, τ ; x ′) is the weighted average of the integrand
eS1(u,v,w)/

√
2π(1 − ρ2)τw with respect to g(u, v, w).

5 For the case of ρ = 0 to recover the Black–Scholes formula, set w = σ 2, where σ = ey/2 is the volatility at
time t = 0. For the case of ρ = 0, as has been noted earlier in the discussion on Merton’s theorem in Appendix
3.9, and also by Hull and White [49], the pricing kernel depends on stochastic volatility y(t) only through the
combination w = 1

τ

∫ τ
0 ey(t)dt .
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The path integral for g(u, v, w) is nonlinear and cannot be performed exactly.
The function g(u, v, w) has the remarkable property that it is independent of

ρ. Following Hull and White [49] one can expand the integrand in Eq. (5.55) in
an infinite power series in u, v, w and reduce the evaluation of p(x, y, τ ; x ′) to
finding all the moments of u, v and w; in other words one needs to evaluate

< unwmv p > ≡
∫ ∞

0
du dw un wm v p g(u, v, w) (5.57)

=
∫

DY

[
1

τ

∫ τ

0
ey(t)/2dt

]n [1

τ

∫ τ

0
ey(t)dt

]m

epy(0)/2eS0

The path integral for < unwmv p > can be performed exactly. Rewrite
Eq. (5.57) as

< unwmv p > = 1

τ n+m

∫ τ

0
dt1 · · · dtndtn+1 · · · dtn+m Z( j, y, p) (5.58)

where

Z( j, y, p) =
∫

DY exp

[∫ τ

0
dt j (t)y(t)

]
eS0 (5.59)

and from Eqs. (5.57)–(5.59)

j (t) = 1

2

n∑
i=1

δ(t − ti ) +
n+m∑

i=n+1

δ(t − ti ) + p

2
δ(t)

≡
n+m∑
i=1

aiδ(t − ti ) + p

2
δ(t). (5.60)

The path integral for Z( j, y, p) is evaluated exactly in Appendix 5.12 and yields6

< unwmv p > = σ p ey
∑

i ai

τ n+m

[
n+m∏
i=1

∫ τ

0
dti

]
eF

: α = 1 exact solution (5.61)

where from Eqs. (5.60), (5.93) and (5.94), and after some simplifications7

F =
(

µ − 1

2
ξ2
) n+m∑

i=1

ai ti + ξ2
n+m∑
i, j=1

ai a j�(ti − t j )t j + F ′ (5.62)

6 For m + n = 0
∏n+m

i=1

∫ τ
0 dti = 1 and

∑n+m
i=1 = 1.

7 In obtaining Eq. (5.62) the identity
∫ τ

0 dtδ(t − τ) = 1
2 has been used, which follows from Eq. (A.9).
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with

F ′ = 1

8
p2ξ2τ + 1

2
pτ

(
µ − 1

2
ξ2
)

+ 1

2
pξ2

n+m∑
i=1

ai ti

Eq. (5.61) constitutes an exact solution for the α = 1 case; all the ti integrations
can be performed exactly since the exponent is linear in all the ti ’s as in Eq. (5.62).
Some of the moments of stock price and its stochastic volatility are evaluated in
Appendix 5.13.

5.8 Summary

The path-integral formulation of option pricing is a natural complement to the
Hamiltonian-based differential calculus approach of the earlier Chapter 4. The
main motivation for introducing path integrals is to enlarge the mathematical tools
for studying option pricing theory.

To illustrate the general features of the path integral, three important cases
were studied in some detail. Firstly, the path integral for the well-known Black–
Scholes pricing kernel was solved exactly by a change of the path-integration vari-
ables. Secondly, the path integral for the simple harmonic oscillator with Neumann
boundary conditions was solved using a Fourier expansion of the path-integration
variables. And lastly, for the pricing kernel of stock price with stochastic volatility,
a perturbation expansion of the nonlinear path integral was obtained.

The three techniques used, namely a change of variables, Fourier expansion
(or more generally a ‘normal mode expansion’) and perturbation expansion are
important methods that are useful for solving a wide class of path integrals.

All three cases were eventually reduced to performing Gaussian integrations.
There are many techniques for performing path integrals that go beyond Gaussian
integrations, but nevertheless Gaussian path integrals, appropriately generalized,
remain one of the bedrocks of path integration.

5.9 Appendix: Path-integral quantum mechanics

Consider the position of a particle x(t) as a function of time t . Let the particle be
experimentally observed to be at position xi at time ti , allowed to evolve without
any measurement till time t f and then again observed to be at position x f .

How does one describe the evolution of the particle in quantum mechanics?
There are three independent and equivalent descriptions of quantum

mechanics.8

8 The quantum evolution is discussed for physical Minkowski time, and to make the connection with finance one
has to analytically continue physical time in the pure imaginary direction, called Euclidean time.
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In the Schrodinger representation of quantum mechanics [39], the probability
for the particle to be found in the interval [x0, x0 + dx] at time t0 ∈ [ti , t f ] is
given by9

P(x0 < x < x0 + dx, t0) = |ψ(x0, t0)|2dx

and is shown in Figure 5.1.
The second quantum description is provided by the Heisenberg operator equa-

tions [39] in which the position, momentum, energy and so on of the particle
are considered to be non-commuting Hermitian operators acting on the Hilbert
space of physical states, and operator evolution equations define the dynamics
of the system. The fundamental commutation equation for quantum mechanics is
given by

[x, p] = i h̄ (5.63)

where Hermitian operator x represents the quantum particle’s position and p is its
momentum.

The third description of the quantum particle is given by the Feynman path in-
tegral [33, 106]. In this representation, the position of the particle x(t) at each
instant t ∈ [ti , t f ] is considered to be an independent random variable. The
probability amplitude for making a transition from its initial to its final position
is given by the square of the absolute value of the transition amplitude, namely
| < x f |e−(i/h̄)(t f −ti )H |xi > |2, where H is the Hamiltonian operator driving the
evolution of the quantum particle.10 The transition amplitude is obtained by in-
tegrating over all possible values of all the random variables x(t), and yields the
Feynman path integral [33, 106]

< x f |e− i
h̄ (t f −ti )H |xi >= N

∏
ti <t<t f

∫ +∞

−∞
dx(t)eSQM (5.64)

with the boundary condition x(ti ) = xi and x(t f ) = x f . The (functional) integra-
tion given in Eq. (5.64) can be thought of as summing over all possible virtual
paths that the quantum particle takes between points xi and x f , and hence the term
path integration.11 One can think of the quantum particle simultaneously taking,
in a virtual sense, all the possible paths from xi to x f .

9 Recall the complex valued function ψ(x, t) is the Schrodinger wavefunction, which obeys the Schrodinger
equation.

10 The transition amplitude in quantum mechanics is analogous to the pricing kernel in option pricing.
11 A path in space is mathematically speaking a function of time; hence, path integration can also be thought of

as integrating the exponential of the action, namely eS , over all possible functions that start at x(ti ) = xi and
end at x(t f ) = x f . The mathematical term of functional integration is also used for path integration.
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(x f , t f )

t

ψ(x, t0)

0

P(x0 ≤ x ≤ x0 + dx) = |ψ(x0, t)|2dx

(xi , ti )

x

Figure 5.1 Quantum particle simultaneously taking all possible virtual paths from
(xi , ti ) to (x f , t f )

The quantum virtual paths are figuratively shown in Figure 5.1, together with
the interpretation of the Schrodinger wavefunction as determining the probability
for the particle to be found near some point x .

The action S is a functional of the paths, and can be constructed from the
Hamiltonian H . A general form for the action, corresponding to the Hamiltonian
given in Eq. (4.60), is

SQM = i

h̄

∫ t f

ti
dt

[
1

2
m

(
dx

dt

)2

+ V (x)

]

where m is the mass of the particle and V (x) is the potential it is moving in.
The formalism of quantum mechanics is based on conventional mathematics of

partial-differential equations and functional analysis. The infinite-dimensional in-
tegration measure given by

∏
ti <t<t f

∫ +∞
−∞ dx(t) can be given a rigorous, measure

theoretic, definition as the integration over all continuous, but nowhere differen-
tiable, paths running between points xi and x f .

In Feynman’s formulation of quantum mechanics, one computes the matrix
elements of operators using functional integration, and hence the structure of the
Hilbert space of states, the non-commuting operator algebra acting on this space
and so on, are present in an implicit manner in the path integral.

Only the quantum mechanical evolution of a single particle has been discussed,
and it is not too difficult to see that the formalism extends without much change to
that of N particles.



5.10 A: Heisenberg’s uncertainty principle 99

5.10 Appendix: Heisenberg’s uncertainty principle in finance

Almost synonymous with quantum mechanics is the Heisenberg uncertainty prin-
ciple that follows from the Heisenberg commutation equation. It is shown how
Heisenberg’s results emerge in finance.

The random evolution of the stock price S(t) implies that if one knows the value
of the stock price, then one has no information regarding its velocity; in terms of
x = ln S, the random evolution states that once x is observed, one cannot sim-
ultaneously observe the value of dx/dt . In the formalism of operators and state
space, if one represents the logarithm of the value of a stock price and its velocity
by operators on state space (hat is to emphasize the operator nature of the sym-
bols) x̂ and dx̂/dt ≡ ˆ̇x , then the random evolution of stock price implies, similar
to Eq. (5.63), the following commutation equation

[x̂(t), ˆ̇x(t)] ≡ x̂(t) ˆ̇x(t) − ˆ̇x(t)x̂(t) �= 0 (5.65)

In the path-integral formulation the commutation equation is represented by tak-
ing the expectation value of both sides of Eq. (5.65); if one naively takes the
expectation value, the left-hand side of Eq. (5.65) apparently seems to be zero.
However, following Feynman [33], one needs to first discretize time t = nε to
take the expectation value. The expectation value of Eq. (5.65) is evaluated using
the option-pricing Lagrangian; hence ε is expressed in terms of remaining time
τ = T − t = Nε, and consequently all time derivatives pick up a negative sign
when expressed in terms of remaining time. The commutation equation is inter-
preted to mean that the operator on the left-hand side is at later real time, and
therefore for remaining time the operator on the left-hand side is at an earlier re-
maining time. Hence one obtains the following representation

< [x̂(t), ˆ̇x(t)] > → − < xn

(
xn+1 − xn

ε

)
−
(

xn − xn−1

ε

)
xn > ≡ < C > (5.66)

The Black–Scholes Lagrangian together with a potential is given from
Eq. (5.10) as

SV = − 1

2εσ 2

N∑
i=1

(
xi − xi−1 + ε

(
r − σ 2

2

))2

− rεN − ε

N−1∑
i=1

V (xi ) (5.67)

To evaluate < C >, note that eSV is zero for xi = ±∞ and yields the identity [33]

0 =
∫

BS
DX

∂

∂xn

(
xneSV

)

⇒ 1 = − 1

ZV

∫
BS

DX xn
∂SV

∂xn
eSV ;

(
ZV =

∫
BS

DXeSV

)

≡ − < xn
∂SV

∂xn
> (5.68)
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From Eq. (5.67)

∂SV

∂xn
= − 1

εσ 2

(
2xn − xn−1 − xn+1

)− ε
∂V (xn)

∂xn

Hence from above and Eq. (5.68)

σ 2 = < C > +εσ 2 < xn
∂V (xn)

∂xn
>

→ < C > (5.69)

The above result shows that the potential, which in finance represents some (path-
dependent) option, has only a vanishingly small O(ε) effect on the commutation
equation, and with no contribution from the boundary conditions on SV .

The result for the commutation equation can also be obtained from the earlier
derivation of the velocity correlation functions of the Black–Scholes Lagrangian
given in Section 5.2.1. Eq. (5.14) yields the following change of variables

ζi = xi − xi−1 + ε

(
r − 1

2
σ 2
)

xn = x0 − nε

(
r − σ 2

2

)
+

n∑
i=1

ζi (5.70)

⇒ C = −
[

x0 − nε

(
r − σ 2

2

)
+

n∑
i=1

ζi

] [
ζn+1 − ζn

]
Eqs. (5.18) and (5.19) yield

< C > = − 1

ε

N∑
i=1

< ζi (ζn+1 − ζn) > = σ 2 (5.71)

and hence yields the commutation equation12

[x̂(t), ˆ̇x(t)] = σ 2 : Heisenberg’s commutation equation (5.72)

One realization of the commutation equation is given by

⇒ x̂ = x; ˆ̇x = −σ 2 ∂

∂x

where x̂ is a Hermitian operator and ˆ̇x is anti-Hermitian.

12 In quantum mechanics, the operator x̂ represents the position of a quantum particle with mass m, and with the
Heisenberg commutation equation given by [x̂(t), ˆ̇x(t)]QM = i h̄/m; in finance one is working with Euclidean

time and hence there is no factor of i , and σ 2 = h̄/m.



5.11 A: Path integration over stock price 101

The commutation equation is independent of the boundary conditions on the
path integral, and of any potential that the Lagrangian may have. The commutation
equation is also independent of the drift terms in the Black–Scholes Lagrangian,
and hence does not depend of the martingale condition. The commutation equa-
tions holds for any Lagrangian that has a kinetic term containing the square of
the first-order time derivative; this is the reason the Black–Scholes Lagrangian is
sufficient to derive a result that is of great generality.

Define the uncertainty of x by �x = √< f |x2| f > − < f |x | f >2 for any
state vector | f >, and similarly for ẋ . For any two positive normed state vectors the
relationship < f | f >< g|g> ≥| < f |g > |2 follows from the Cauchy–Schwartz
inequality. Applying this inequality to Eq. (5.72),13 it can be shown that [39]

�x�ẋ ≥ σ 2

2
: Heisenberg’s uncertainty principle (5.73)

5.11 Appendix: Path integration over stock price

The path integration over the x(t) variables in Eq. (5.49) can be done exactly since
recall the action S is quadratic in the x(t) variables.

From Eq. (5.49)

p(x, y; τ, x ′) =
∫

DY eS0

[∫
DXeSX

]
≡
∫

DY eS0 Q (5.74)

⇒ Q =
∫

DXeSX (5.75)

where from Eq. (5.46) the x-dependent term of the Lagrangian L MG = L0 + L X

is given by

L X (i) = − e−yi

2(1 − ρ2)

[
δxi

ε
+ r − 1

2
eyi − ρ

ξ
eyi /2

(
δyi

ε
+ µ − 1

2
ξ2
)]2

+ O(ε)

(5.76)

Let

ci = r − 1

2
eyi − ρ

ξ
eyi /2

(
δyi

ε
+ µ − 1

2
ξ2
)

Then

SX = − 1

2ε(1 − ρ2)

N∑
i=1

e−yi (xi − xi−1 + εci )
2 (5.77)

13 The simplest way to proceed is to multiply Eq. (5.72) by i and define the Hermitian operator p = i ˆ̇x , thus
making Eq. (5.72) equivalent to Eq. (5.63); one can then follow the standard proof given in [39].
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with boundary values given by

x0 = x ′, xN = x

Make a change of variables

xi = zi − ε

i∑
j=1

c j , dxi = dzi , i = 1, 2, . . . , N − 1

with boundary values

z0 = x ′; zN = x + ε

N∑
j=1

c j

Hence, from Eq. (5.77)

SX ≡ SZ = − 1

2ε(1 − ρ2)

N∑
i=1

e−yi (zi − zi−1)
2 (5.78)

and, from Eqs. (5.75) and (5.78)

Q = e−yN /2√
2πε(1 − ρ2)

N−1∏
i=1

∫ +∞

−∞
dzi e−yi /2√

2πε(1 − ρ2)
eSZ

All the zi integrations can be performed exactly; one starts from the boundary
by first integrating over z1, and then over z2, . . . and finally over zN−1. The z1

integration yields∫ +∞

−∞
dz1e−y1/2√
2πε(1 − ρ2)

exp

{
− 1

2ε(1 − ρ2)

[
e−y2(z2 − z1)

2 + e−y1(z1 − z0)
2
]}

= ey2/2

√
ey1 + ey2

exp

{
− 1

2ε(1 − ρ2)

1

ey1 + ey2
(z2 − z0)

2
}

(5.79)

Repeating this procedure (N − 1) times yields

Q = eS1√
2πε(1 − ρ2)

∑N
i=1 eyi

where

S1 = − 1

2ε(1 − ρ2)
∑N

i=1 eyi
(zN − z0)

2

= − 1

2ε(1 − ρ2)
∑N

i=1 eyi

{
x − x ′ + ε

N∑
i=1

ci

}2

(5.80)
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For the case of constant volatility ξ = 0 = ρ and eyi = σ 2 = constant for all i ;
Eq. (5.80) then reduces to the Black–Scholes given in Eq. (4.39).

From Eqs. (5.80) and (5.74)

p(x, y, τ ; x ′) =
∫

DY
eS0+S1√

2πε(1 − ρ2)
∑N

i=1 eyi

(5.81)

where the first term in Eq. (5.48) gives

S0 = − ε

2ξ2

N∑
i=1

(
δyi

ε
+ µ − ξ2

2

)2

(5.82)

and S1 is the result of the DX path integration given by Eq. (5.80) as

S1 = − 1

2
(
1 − ρ2

)
ε
∑N

i=1 eyi

(
x − x ′ + ε

N∑
i=1

(
r − 1

2
eyi

)

− ρ

ξ

N∑
i=1

eyi /2
[
δyi + ε

(
µ − ξ2

2

)])2

(5.83)

Based on Eqs. (5.81)–(5.83), extensive numerical studies of the pricing of
European call options are discussed in [8], and the algorithm used in the study
is discussed in Appendix 5.16.

5.12 Appendix: Generating function for stochastic volatility

The following partition function is evaluated

Z( j, y, p) =
∫

DY exp

[∫ τ

0
dt j (t)y(t)

]
epy(0)/2eS0 (5.84)

From Eq. (5.53)

S0 = − 1

2ξ2

∫ τ

0
dt

(
dy

dx
+ µ − 1

2
ξ2
)2

with boundary condition

y(τ ) = y (5.85)

Consider Z( j, y, y′) that is given by the path-integral in Eq. (5.84), but with the
boundary conditions

y(0) = y′, y(τ ) = y (5.86)
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Then, from Eq. (5.84)

Z( j, y, p) =
∫ ∞

−∞
dy′Z( j, y, y′)epy′/2 (5.87)

Define new path-integration variables z(t) by

z(t) = y(t) − y′ + t

τ
(y′ − y) (5.88)

which, due to Eq. (5.88), have boundary conditions

z(0) = 0 = z(τ ). (5.89)

Hence

Z( j, y, y′) = eW0

∫
DZeSZ (5.90)

with

W0 = − 1

2τξ2

(
y′ − y − µτ + 1

2
ξ2τ 2

)2

+ y′
∫ τ

0
dt j (t)

− y′ − y

τ

∫ τ

0
dt j (t)t (5.91)

and

SZ =
∫ τ

0
dt j (t)z(t) − 1

2ξ2

∫ τ

0
dt

(
dz

dt

)2

(5.92)

To perform the path integral over z(t), the boundary conditions Eq. (5.89) yield
the following Fourier sine expansion

z(t) =
∞∑

n=1

sin(πnt/τ)zn

From Eqs. (5.89) and (5.92)

SZ = − π2

4τξ2

∞∑
n=1

n2z2
n +

∞∑
n=1

[∫ τ

0
dt j (t) sin(πnt/τ)

]
zn

The path integration over z(t) factorizes into infinitely many Gaussian integra-
tions over the zns and hence∫

DZeSZ = C ′
∫ ∞

−∞
dz1dz2dz3 · · · dz∞eSZ

= C(τ )eW
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where

W = ξ2τ

π2

∫ τ

0
dtdt ′ j (t)D0(t, t ′) j (t ′)

= ξ2

τ

∫ τ

0
dt
∫ t

0
dt ′ j (t)(τ − t)t ′ j (t ′)

since

D0(t, t ′) =
∞∑

n=1

1

n2
sin(πnt/τ) sin(πnt ′/τ)

= π2

2τ

[
t ′�(t − t ′) + t�(t ′ − t) − t t ′

τ

]

where the step function is given by Eq. (A.7). In Eq. (A.46) the propagator, up to
a normalization, has been derived using the method of Greens functions.

The normalization function C(τ ) can be evaluated by first considering the dis-
crete and finite version of the DZ path integral. The result is given [33] by

C(τ ) = 1√
2πξ2τ

Collecting the results yields

Z( j, y′, y) = eW0+W√
2πξ2τ

and performing the y′ Gaussian integration in Eq. (5.87) finally yields

Z( j, y, p) = eF

with

F = y
∫ τ

0
dt j (t) +

(
µ − 1

2
ξ2
)∫ τ

0
dt (τ − t) j (t)

+ ξ2
∫ τ

0
dt j (t)(τ − t)

∫ t

0
dt ′ j (t ′) + F ′ (5.93)

where

F ′ = 1

2
yp + 1

2
ξ2 p

∫ τ

0
dt (τ − t) j (t) + 1

2
pτ

(
µ − 1

2
ξ2
)

+ 1

8
p2ξ2τ (5.94)

5.13 Appendix: Moments of stock price and stochastic volatility

The expression Eq. (5.61) for < unwmv p > generalizes the result of Hull and
White [49] since it is an exact expression for all the moments of u, v and w as well
as for all their cross correlators.
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The first few moments are evaluated using Eq. (5.61).

< w > = ey

τ

∫ τ

0
dteµt

= V

µτ
(eµτ − 1) (5.95)

where V = ey

< w2 > = 2e2y

τ 2

∫ τ

0
dt1

∫ t1

0
dt2eµ(t1+t2)eξ2t2

= 2V 2

τ 2

[
e(2µ+ξ2)τ

(ξ2 + µ)(2µ + ξ2)
− eµτ

µ(µ + ξ2)
+ 1

µ(2µ + ξ2)

]
(5.96)

< w3 > is evaluated for the case of µ = 0; from Eq. (5.61)

< w3 > = 6e3y

τ 3

∫ τ

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3eξ2(t2+2t3)

= V 3

3ξ6τ 2

(
e3ξ2τ − 9eξ2τ + 8 + 6ξ2τ

)
(5.97)

Eqs. (5.95), (5.96) and (5.97) agree exactly with the results stated (without
derivation) in Hull and White [49].

It is reassuring to see that two very different formalisms agree exactly and this
increases ones confidence in the path-integral approach.

A few more moments are computed (recall σ = ey/2).

< u >= ey/2

τ

∫ τ

0
dte(µ/2−ξ2/8)t = 2σ

τ(µ − ξ2/4)

[
e(µ/2−ξ2/8)τ − 1

]

Furthermore

< u2 > = 2ey

τ 2

∫ τ

0
dt1

∫ t1

0
dt2eµ(t1+t2)/2e−ξ2(t1−t2)/8

= 4V

τ 2

[
e(µ/2−ξ2/8)τ

(µ2 + ξ2/4)(µ − ξ2/8)
− 2e(µ/2−ξ2/4)τ

(µ + ξ2/4)(µ − ξ2/2)

− 1

(µ − ξ2/2)(µ − ξ2/8)

]
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and, lastly, for a1 = 1
2 , a2 = 1 in Eq. (5.62)

< uw > = 2e3y/2

τ 2

∫ τ

0
dt1

∫ t1

0
dt2eµ(t1/2+t2)eξ2(t1−6t2)/8

= 4σ V

τ 2

[
e(3µ/2+3ξ2/8)τ

3(µ + ξ2/2)(µ + ξ2/4)
− e(µ/2−ξ2/8)τ

(µ + ξ2/2)(µ2 − ξ2/4)
+ 1

3(µ − ξ4/16)

]

All the other moments < unwmv p > can similarly be evaluated from Eq. (5.61),
and which in turn yields an infinite series solution for p(x, y, τ ; x ′) in Eq. (5.55).

5.14 Appendix: Lagrangian for arbitrary α

The value for α that is chosen by the market is not à priori known. Hence, one
needs to repeat the calculations carried out for the case of α = 1 for arbitrary α,
and then calibrate α from the market. Recall market data show that all values of
α ∈ [1

2 , 1] are equally valid.
For stochastic volatility with arbitrary α [8, 70]

N (ε)eεL = 〈x, y | e−εH | x ′, y′〉
=
∫ ∞

−∞
dpx

2π

∫ ∞

−∞
dpy

2π
〈x, y | e−εH | px , py〉〈px , py | x ′, y′〉

The Hamiltonian in the momentum basis is given by (δx = x − x ′; δy = y − y′)

H = ey

2
p2

x + ξρey(α−1/2) px py + ξ2e2y(α−1)

2
p2

y

+
(

ey

2
− r − δx

ε

)
i px +

(
ξ2e2y(α−1)

2
− λe−y − µ − δy

ε

)
i py

Hence

N (ε)eεL =
∫ ∞

−∞
dpx

2π

∫ ∞

−∞
dpy

2π
exp −ε

(
ey

2
p2

x + ξρey(α−1/2) px py

+ ξ2e2y(α−1)

2
p2

y −
(

δx

ε
+ r − ey

2

)
i px

−
(

δy

ε
+ λe−y + µ − ξ2e2y(α−1)

2

)
i py

)

Performing the Gaussian integrations over px , py yields

N (ε) = ey(1/2−α)

2πεξ
√

1 − ρ2
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with

L = − e−y

2(1 − ρ2)

(
δx

ε
+ r − ey

2
− ρey(3/2−α)

ξ

(
δy

ε
+ λe−y + µ − ξ2e2y(α−1)

2

))2

− e2y(1−α)

2ξ2

(
δy

ε
+ λe−y + µ − ξ2e2y(α−1)

2

)2

The above Lagrangian is exact in the limit N → ∞.

5.15 Appendix: Path integration over stock price for arbitrary α

Recall the action is defined as S = ∫ Ldt . The discretized version of the action is
given by S = ε

∑N
i=1 Li + O(ε) where Li is the Lagrangian at time step i . Hence,

the pricing kernel can be written in terms of the action as

〈x, y | e−Ĥτ | x ′〉 =
∫ ∞

−∞
dy′〈x, y | e−Ĥτ | x ′, y′〉

= lim
N→∞

∫
DX DY eS

where

DX = e−yN /2√
2πε(1 − ρ2)

N−1∏
i=1

∫ ∞

−∞
dxi e−yi /2√
2πε(1 − ρ2)

DY =
∫ ∞

−∞
dy0

(
N−1∏
i=1

∫ ∞

−∞
dyi eyi (1−α)

√
2πεξ

)

(again x0 = x ′, xN = x, y0 = y′ and yN = y). The action is quadratic in x . This
enables one, similar to the case of α = 1, to integrate over the stock price. As in
Eq. (5.75) define

Q =
∫

DXeSx = e−yN /2√
2πε(1 − ρ2)

N−1∏
i=1

∫ ∞

−∞
dxi e−yi /2√
2πε(1 − ρ2)

eSx

which is the integral of the action over the stock price. Q can be evaluated by
re-tracing the steps taken for α = 1. The x-dependent term in the Lagrangian is

L X (i) = − e−yi

2(1 − ρ2)

(
δxi

ε
+ r − eyi

2
− ρeyi (3/2−α)

ξ

×
(

δyi

ε
+ λe−yi + µ − ξ2e2yi (α−1)

2

))2
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Let

ci = r − eyi

2
− ρeyi (3/2−α)

ξ

(
δyi

ε
+ λe−yi + µ − ξ2e2yi (α−1)

2

)

Hence

Sx = − 1

2ε(1 − ρ2)

N∑
i=1

e−yi (xi − xi−1 + εci )
2

which is identical to Eq. (5.77) obtained earlier for the case of α = 1. Integrating
over all the variables zi yields

Q = eS1√
2πε(1 − ρ2)

∑N
i=1 eyi

where, from Eq. (5.80)

S1 = − 1

2ε(1 − ρ2)
∑N

i=1 eyi
(zN − z0)

2

= − 1

2ε(1 − ρ2)
∑N

i=1 eyi

(
x − x ′ + ε

N∑
i=1

ci

)2

= − 1

2ε(1 − ρ2)
∑N

i=1 eyi

(
x − x ′ + ε

N∑
i=1

(
r − eyi

2
− ρeyi (3/2−α)

ξ

×
(

δyi

ε
+ λe−yi + µ − ξ2e2yi (α−1)

2

)))2

(5.98)

On taking the limit of N → ∞14

S1 = − 1

2(1 − ρ2)ω

(
x − x ′ + rτ − ω

2

− ρ(ey(τ )(3/2−α) − ey(0)(3/2−α))

(3/2 − α)ξ
− ρλ

ξ
θ − ρµ

ξ
η + ρξ

2
ζ

)2

(5.99)

14 For α �= 3/2 the term ey(0)(3/2−α) arises from the fact that
∫ τ

0 dtey(3/2−α)(dy/dt) = ∫ y(τ )
y(0)

dyey(3/2−α) and
it can be easily seen that when α = 3/2, that term in the action is replaced by (ρ/ξ)(y(τ ) − y(0)).
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Similar to the α = 1 case, one has the following

ω =
∫ τ

0
eydt =

∫ τ

0
V dt (5.100)

θ =
∫ τ

0
ey(1/2−α)dt =

∫ τ

0
V 1/2−αdt (5.101)

η =
∫ τ

0
ey(3/2−α)dt =

∫ τ

0
V 3/2−αdt (5.102)

ζ =
∫ τ

0
ey(α−1/2)dt =

∫ τ

0
V α−1/2dt (5.103)

when V follows the random process (3.27).
For the case of α = 1, λ = 0, the quantity θ is decoupled from the problem;

furthermore ω → w, with η = ζ → u, and f (ω, θ, η, ζ, ν) → g(u, v, w).
Similar to the case of α = 1, if one can find the joint probability density func-

tions for ω, θ, η, ζ and ν = ey(0)(3/2−α) one can obtain an analytic solution for
the problem that will be given by

〈x, y | e−Ĥτ | x ′〉 =
∫ ∞

0
dωdθdηdζdν

eS1(ω, θ, η, ζ,ν)√
2πε(1 − ρ2)ω

f (ω, θ, η, ζ, ν)

(5.104)
where f is the joint probability distribution function, similar to g(u, v, w) given
in Eq. (5.56). The equation above is the analog of the expression obtained in
Eq. (5.55) for the case of α = 1. However, unlike the α = 1 case, for the gen-
eral case of α it has not been possible to solve for the joint probability distribution
function f (ω, θ, η, ζ, ν).

The discrete solution finally gives

〈x, y | e−τ H | x ′〉 =
∫

DY
eS0+S1√

2πε(1 − ρ2)
∑N

i=1 eyi

(5.105)

where S1 is given in Eq. (5.99) and

S0 = − ε

2ξ2

N∑
i=1

e2yi (1−α)

(
δyi

ε
+ λe−yi + µ − ξ2e2yi (α−1)

2

)2

(5.106)

∫
DY =

∫
dy0

(
N−1∏
i=1

∫
dyi eyi (1−α)

√
2πεξ

)
(5.107)

For α �= 1 case, the result of performing the functional integration over the stock
price x(t) yields a nontrivial measure term for the remaining y(t) integrations; this
is the reason that the N → ∞ limit cannot be taken.
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Fortunately, it is possible to derive a Monte Carlo algorithm to calculate op-
tion prices with the volatility performing the stochastic process (3.27) with −1 ≤
ρ ≤ 1, and having almost the same efficiency as the straightforward solution
when ρ = 0. However, the method has a disadvantage in that it cannot handle
lumpy dividends (for a continuous dividend yield q, one can simply replace r by
r − q).

5.16 Appendix: Monte Carlo algorithm for stochastic volatility

The path-integral formulation of option pricing is well known in finance, and
Monte Carlo methods useful for solving these path-integrals numerically are
widely used [55]. Familiarity with these techniques is assumed, and the numer-
ical advantages that a path-integral approach may provide in some problems is
discussed in this appendix. Only the Monte Carlo algorithm is discussed, and no
numerical results based on this algorithm will be presented. The numerical results
are extensively discussed in [8, 70].

The reasons for discussing the Monte Carlo algorithm for the case of stochastic
volatility are (a) the problem is sufficiently complex to illustrate the general char-
acteristics of a numerical evaluation of the path integral and (b) due to the exact
integration over the stock price path integral, the unique advantages of the path
integral can be illustrated.

The main result of this appendix is that numerically solving the volatility path
integral using Monte Carlo methods is a few hundred times faster than solving it
using the defining stochastic differential equations.

The algorithm for the path-independent European call option only is considered,
as the large number of parameters make the study of other path-dependent options
more computationally intensive.

The Monte Carlo algorithm that is discussed is valid for any system driven by
a Langevin stochastic differential [44, 92], be it a stock price or the spot rate or a
Treasury Bond. The algorithm is quite generic in nature, and could be applied for
numerically studying a wide variety of stochastic processes.

The Monte Carlo algorithm solves for the option prices when the stock price
and the volatility are undergoing the following stochastic processes, given by
Eqs. (3.28) and (3.29), as

d S = (φS + σ SW )dt (5.108)

dV = (λ + µV + ξV α Q)dt (5.109)

where φ, λ, µ and ξ are constants, V = σ 2 and W and Q are white noise pro-
cesses whose correlation is given by −1 < ρ < 1. As required by the principle
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of risk-neutral valuation, assume that the expected growth rate of all securities is
given by the risk-free interest rate r , and hence this replaces φ in Eq. (5.108).

From Eqs. (5.105) and (5.98) the pricing kernel is given by the volatility path
integral

p(x, y, τ ; x ′) =
∫

dy0

(
N−1∏
i=1

∫
dyi eyi (1−α)√

2πεξ2

)
eS0+S1√

2πε(1 − ρ2)
∑N

i=1 eyi

(5.110)

For this problem, choose the following probability density function

p(Y ) =
(

N−1∏
i=1

eyi (1−α)

√
2πεξ

)
eS0 (5.111)

where Y is the set of variables yi (and is hence N − 1 dimensional) and S0 is given
in (5.106). Hence for S1 given in (5.98) and

g(Y ) = eS1√
2πε(1 − ρ2)

∑N
i=1 eyi

(5.112)

the integral that is being performed is

∫
DY

(
N−1∏
i=1

eyi (1−α)

)
eS0+S1√

2πε(1 − ρ2)
∑N

i=1 eyi

=
∫

DY p(Y )g(Y )

with

DY = dy0

N−1∏
i=1

dyi√
2πεξ

One needs to produce configurations Y with the probability distribution p(Y ).
While p(Y ) looks rather complicated, it has a simple interpretation. Since only
the path integration over the stock price was performed, the volatility is, as expec-
ted, the probability distribution for a discretized random walk performed by y. To
see this, using Ito’s lemma for the stochastic differential equation

dV = (λ + µV )dt + ξV α Qdt ; V = ey

yields the following process for y

dy =
(

λe−y + µ − ξ2e2y(α−1)

2

)
dt + ξey(α−1)Qdt (5.113)
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Discretize the process using Euler’s method to obtain

δyi =
(

λe−yi + µ − ξ2e2yi (α−1)

2

)
ε + ξeyi (α−1)Z

√
ε

where δyi = yi − yi−1, ε is the time step and Z = N (0, 1) is the standard nor-
mal random variable. Since τ = T − t is the time variable, the time step is ac-
tually −ε. Hence, δyi is a normal random variable with mean (−λe−yi − µ +
ξ2e2yi (α−1)/2)ε and variance ξ2e2yi (α−1)ε, with its probability density function
given by

fi = eyi (1−α)

√
2πεξ

exp


−εe2yi (1−α)

2ξ2

(
δyi

ε
+ λe−yi + µ − ξ2e2yi (α−1)

2

)2



Hence, the joint probability density function for the discretized process is
given by

f =
N−1∏
i=1

fi =
(

N−1∏
i=1

eyi (1−α)

√
2πεξ

)
eS0

which is the same as (5.111).
In the simulation Euler’s discretization is used for derivatives as this is suffi-

ciently accurate for generating the volatility paths.
The algorithm to find a Monte Carlo estimate of the pricing kernel p =

〈x, y | e−Ĥτ | x ′〉 is as follows [70]

1. p : = 0 (Initialization)
2. For i : = 1 to N
3. Generate a path Y for y using (5.113)
4. p : = p + g(Y )/N (where g(Y ) is defined in (5.112))
5. End For

The paths must be generated backwards starting from yN which is the initial value
of ln V to obtain all the yi ending at y0. This can be done by reversing the drift
terms since the equations are time symmetric. The end point y0 is allowed to be
arbitrary, and this procedure in effect automatically ends up performing the

∫
dy0

integration. This will have to be repeated for all the points x ′ that will be integrated
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over. During implementation it is found to be more advantageous to generate the
paths only once, storing the following terms (t = Nε)

t1 =
N∑

i=1

eyi

t2 =
N∑

i=1

eyi (3/2−α)

(
δyi

ε
+ λe−yi + µ − ξ2e2yi (α−1)

2

)

which are sufficient to determine S1 once x ′ is given, namely

S1 = − 1

2ε(1 − ρ2)t1

(
x − x ′ + (r − q)t − ε

(
t1
2

+ ρ

ξ
t2

))2

(5.114)

That S1 can be computed using this limited information is fortunate as storing
all the paths explicitly would require a very large memory (10MB for 10,000 con-
figurations as compared with 160kB when storing only the essential combinations
of terms). The alternative of generating paths for each value of x ′ from the coupled
Langevin equation given in Eq. (5.108) is inefficient due to the very large run time
required.

The pricing kernel must finally be multiplied by the payoff function g(x ′), and
integrated over the variable x ′, to obtain the option price. The accuracy of this
numerical quadrature depends on the spacing h between successive values of x ′.
This means that one has to find the pricing kernel for several values of x ′ to ob-
tain reasonable accuracy, which is computationally very expensive. In [8, 70] the
pricing kernel was determined using the above Monte Carlo method for only about
100 equally spaced values of x ′ over the range of the quadrature and cubic splines
were used to interpolate it at the other quadrature points. This produces excellent
results as the pricing kernel is seen to be an extremely smooth function of x ′.

Hence, the algorithm to generate the option price is of the following form.

1. For i : = 1 to N
2. Generate a path Y for y using (5.113)
3. Store t1 and t2 for the path
4. End For
5. For x ′ : = beginning of range to end of range
6. Find the Monte Carlo estimate for the pricing kernel at large intervals of x ′ using t1

and t2 from the paths.
7. End For
8. For x ′ : = beginning of range to end of range
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9. Find the pricing kernel at small intervals of x ′ using cubic spline interpolation over
the values of the pricing kernel found previously and integrate over the final payoff
function

10. End For
11. Return the option price

In summary, the path-integral framework allows for introducing efficient algo-
rithms into option pricing. The simple manner in which the correlation parameter
ρ appears in the volatility path integral yields an efficiency that is a few hundred
times faster than the standard Langevin-based algorithms [8, 70].

5.17 Appendix: Merton’s theorem for stochastic volatility

The case ρ = 0 is considered, and the result that was stated earlier in Appendix
3.9 is derived. For ρ = 0 the Hamiltonian and Lagrangian are given by

H = −
(

r − ey

2

)
∂

∂x
−
(
λe−y + µ − ξ2e2y(α−1)

2

)
∂

∂y
− ey

2

∂2

∂x2
− ξ2e2y(α−1)

2

∂2

∂y2

L̂ = −e−y

2

(
δx

ε
+ r − ey

2

)2

− e2y(1−α)

2ξ2

(
δy

ε
+ λe−y + µ − ξ2e2y(α−1)

2

)2

Integrating out the stock price yields, from Eq. (5.98)

S = S0 + S1

S1 = − 1

2ε
∑N

i=1 eyi

(
x − x ′ + ε

N∑
i=1

(
r − eyi

2

))2

where S0 is given in Eq. (5.106).
The expression for S1 is what finally determines the option price, and is the same

as that for the Black–Scholes case with ε
τ

∑N
i=1 eyi replacing σ 2 = ey . In other

words, one needs to replace the constant volatility in the Black–Scholes equation
by the average volatility during the time period under consideration, and average
it over its probability of occurrence.

More precisely, inserting

1 =
∫ +∞

−∞
dηδ

(
eη − ε

τ

N∑
i=1

eyi

)
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into the pricing kernel given in Eq. (5.105), yields for the p = 0 case

〈x, y | e−τ H | x ′〉 =
∫

DY
∫ +∞

−∞
dηδ

(
eη − ε

τ

N∑
i=1

eyi

)
eS0+S1√

2πε
∑N

i=1 eyi

=
∫ +∞

−∞
dη pBS(x; τ, x ′; σ = eη/2)PM(η)

where the Black–Scholes pricing kernel pBS(x; τ, x ′; σ) is given by Eq. (4.39).
The probability distribution for average volatility has been defined in Eq. (3.35),
and an explicit expression for it is given by

PM(η) =
∫

DY δ

(
eη − ε

τ

N∑
i=1

eyi

)
eS0 (5.115)

This is the content of Merton’s theorem [75]. Although a specific process for the
volatility has been assumed, the final result does not depend on the process as long
as S0 is independent of x, x ′.
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Stochastic interest rates’ Hamiltonians
and path integrals

All stochastic models of spot and forward interest rates are based on a finite num-
ber of degrees of freedom, and are precursors of the more general modelling of
interest rates based on quantum field theory, which forms the subject of all the
subsequent chapters.

The formalism of quantum field theory requires one to make a fairly large tran-
sition in the level of mathematical complexity. The path-integral and Hamiltonian
analysis of stochastic interest rate models is undertaken to smoothen this transi-
tion, as well as for its intrinsic importance. The key ideas that will be later given
a field theory generalization are introduced in stochastic models that have, at each
instant, only a finite number of independent random variables.

6.1 Spot interest rate Hamiltonian and Lagrangian

The spot interest rate r(t) is the interest rate for an overnight loan at time t . Spot
rate models are useful for modelling the short time behaviour of the interest rates’
yield curve [51], as well as in the study of the stock market [21]. Furthermore,
since central bank policies intervene in determining the spot rate, jumps and dis-
continuities in the spot rate are particularly important, and need to be considered
separately from the remaining yield curve.

We consider only the arbitrage-free, and not the empirical, martingale time evo-
lution of the spot interest rate, as is required for pricing its derivatives. The interest
spot rate models can hence be directly modelled using the Langevin equation.

Similar to a security, the spot rate is driven by a Langevin equation

dr

dt
= a(r, t) + σ(r, t)R(t) : R(t) : white noise ; t0 ≤ t ≤ T (6.1)

with either the initial or final value of the spot rate specified as follows

EITHER r(t0) = r0 : initial condition OR r(T ) = R : final condition (6.2)

117
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where in general the function a and volatility σ can be arbitrary functions of the
spot rate r and of time t . The spot rate can be evolved either forward or backward
in time using the Langevin equation, and hence two distinct boundary conditions
are given in Eq. (6.2). Note at each instant in time the system has only one random
variable R(t), and hence has only one degree of freedom.

The evolution of the conditional probability that results from the Langevin equa-
tion yields the Fokker–Planck forward and backward equations, with their respec-
tive Hamiltonians.

Let PF (r, t; r0) be the forward conditional probability that the spot rate has
value r at time t , given that the value of r0 occurred at an earlier time t0 < t . The
forward Fokker–Planck Hamiltonian HF is given from Eq. (6.65) by1

∂

∂t
PF (r, t; r0) = −HF PF (r, t; r0)

⇒ HF = −1

2

∂2

∂r2
σ 2(r) + a(r)

∂

∂r
+ ∂a(r)

∂r
(6.3)

where HF is the non-Hermitian forward Fokker–Planck Hamiltonian, and from
Eq. (6.68)

PF (r, t; r0) = < r |e−(t−t0)HF |r0 > (6.4)

r(t0) = r0 : initial condition (6.5)

The backward conditional probability PB(R, t; r) is similarly defined as the prob-
ability that the spot interest rate will have the value of r at time t given that it
has the value of R at some future time T > t . Eq. (6.70) yields the backward
Fokker–Planck Hamiltonian (the time variable t has the opposite sign in the fol-
lowing equation compared with Eq. (6.3), indicating that time is −t and hence is
flowing backwards)

∂

∂t
PB(R, t; r) ≡ +HB PB(R, t; r) (6.6)

HB = −1

2
σ 2(r)

∂2

∂r2
− a(r)

∂

∂r
(6.7)

= H†
F

where, from Eq. (6.71)

PB(r, t; r0) = < r |e−(T −t)HB |R > (6.8)

r(T ) = R : final condition

The forward Fokker–Planck equation is required when the initial value of the
spot rate is specified. The backward Fokker–Planck Hamiltonian needs to be used

1 The detailed derivations of the forward and backward Fokker–Planck Hamiltonians are given in Appendix 6.8.
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for any problem involving the present value of an option on the spot interest rate,
with the payoff function being specified in the future.

The generalized option pricing Hamiltonian HV given in Eq. (4.44) can
be seen to be equivalent to a backward Fokker–Planck Hamiltonian given
by −(σ 2/2)∂2/∂x2 + [(1/2)σ 2 − V (x)]∂/∂x , with the important additional fea-
ture that the discounting of the payoff function needs to have a nontrivial factor
containing the potential as in Eq. (4.45).

Black–Scholes Hamiltonian

Suppose that one has no knowledge of the Black–Scholes equation, and instead starts with
the generalized backward Hamiltonian, given in Eq. (6.7),2 for pricing options on a stock
given by S = ex . The evolution of the option price has to satisfy the martingale condition
given in Eq. (4.43), and hence (the superscript label is to indicate that HB refers to the
evolution of a stock price driven by the Black–Scholes process)

[Hbs
B + r ]ex = 0 ; ⇒ a(x) = r − 1

2
σ 2(x)

Hence the Black–Scholes Hamiltonian is shown to be given by

HBS = Hbs
B + r

= −1

2
σ 2(x)

∂2

∂x2
−
(

r − 1

2
σ 2(x)

)
∂

∂x
+ r

The martingale condition allows stochastic volatility to be an arbitrary function of the stock
price ex , a result that can also be obtained from the Black–Scholes analysis discussed in
Section 3.5.

The reason that one does not start the Black–Scholes analysis from the backward
Fokker–Planck Hamiltonian is that, in order to complete the analysis, one needs to first
have a Hamiltonian formulation of the martingale condition. The martingale condition re-
quires the introduction of the spot rate r into the Hamiltonian, a quantity that is not con-
tained in the stochastic differential equation, but instead is something that results from the
concepts of hedging and of no arbitrage.

6.1.1 Stochastic quantization

The forward Fokker–Planck Lagrangian, action and partition functions are given
from Eq. (6.73) by

L F = − 1

2σ 2

(
dr

dt
− a(r)

)2

− ∂a(r)

∂r

Z F =
∫

Dre
∫ T

t0
L F P dt

(6.9)

2 From Eq. (3.12), the Black–Scholes stochastic differential equation is a special case of the Langevin equation
given in Eq. (6.1) with a = φ − σ 2/2.



120 Stochastic interest rates’ Hamiltonians and path integrals

The backward Lagrangian can be obtained from the backward Hamiltonian HB ,
but a procedure known as stochastic quantization [29] is employed to illustrate
another approach to the path integral for stochastic systems.

In stochastic quantization the partition function is defined by a path integral over
both the spot rate r(t) and white noise R(t). The fact that these two stochastic
processes are connected by the Langevin equation is realized by a functional delta
function constraint in the path integral. Hence the path integral gives the backward
Fokker–Planck partition function as follows

Z B =
∫

DRDr
T∏

t=t0

δ

[
dr

dt
− a(r, t) − σ(r, t)R(t)

]
e
− 1

2

∫ T
t0

R2(t)dt

=
∫

DreSB (6.10)

where to obtain Eq. (6.10) the path integration over the white noise R(t) has been
performed. The backward Fokker–Planck action is hence given by

SB = −1

2

∫ T

t0
dt

1

σ 2(t)

(
dr

dt
− a(r, t)

)2

(6.11)

Since the propagation for the action SB is backwards in time as given in Eq. (6.6),
it is more transparent to write the action SB in terms of remaining time τ = T − t ;
this results in changing the sign of the drift term a(r, t) in the action. Hence

SB = −1

2

∫ T −t0

0
dτ

1

σ 2(τ )

(
dr

dτ
+ a(r, τ )

)2

; τ = T − t (6.12)

The forward and backward Fokker–Planck Lagrangians differ by the term
∂a(r)/∂r , and which results from the manner in which the path integral

∫
DR

is carried out. For the forward Lagrangian, if one repeats the calculation expressed
in Eq. (6.10), the path integration over R(t) yields an extra Jacobian term that
gives precisely the extra term, namely ∂a(r)/∂r , which is absent in the backward
Lagrangian [106].

6.2 Vasicek model’s path integral

The Vasicek model [47, 51, 102] can be solved exactly, with an exact path-integral
solution being given by Otto [82]. The Vasicek model provides a prototypical ex-
ample on how to apply path integrals to the spot interest rate.

Consider a zero coupon bond P(t0, T ). Recall from Eq. (2.6) that the time value
of money yields the relation between the zero coupon bond and the spot interest
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rate as given by

P(t0, T ) = E

[
e
− ∫ T

t0
dtr(t)|r(t0) = r0

]
(6.13)

The Vasicek model for the spot rate is given by [51, 102]

dr

dt
= a(b − r) + σ R(t)

r(t0) = r0 : initial condition ; t0 ≤ t ≤ T

Since the present value of a Treasury Bond is obtained by discounting its future
value, the spot rate is specified at the future time T , and which propagates back-
wards so as to have the value of r0 at time t0. Hence the backward Fokker–Planck
action is used for evolving the spot rate r(t), and from Eq. (6.73) the quadratic
(Gaussian) action is given by

SV = − 1

2σ 2

∫ T

t0
dt

[
dr

dt
− a(b − r)

]2

(6.14)

Using the action functional given in Eq. (6.14), one can evaluate the expectation
value in Eq. (6.13) for P(t0, T ); the class of functions of r(t) over which the path
integration is to be performed needs to be specified.

Since the spot rate evolves over the finite time interval t0 ≤ t ≤ T , one needs
to specify the boundary conditions on r(t) at the two end points. At initial time
t = t0, the interest rate is fixed to r0. The final value of the spot interest rate at
t = T , namely r(T ), is free to take all possible values and yields the Neumann
boundary condition dr(T )/dt = 0. Hence the probability distribution for the spot
rate is given by

eSV /Z ; probability distribution

Z =
∫

DreSV ;
∫

Dr ≡
∫ +∞

−∞

T∏
t=t0

dr(t)

boundary conditions r(t0) = r0 ,
dr(T )

dt
= 0 (6.15)

The denominator Z is necessary to correctly normalize the probability distribution,
and is also the reason that the overall constants in SV can ignored as they cancel
out.

The zero coupon bond is given by averaging the discount factor over the proba-
bility distribution given in Eq. (6.15), and yields

P(t0, T ) = 1

Z

∫
DreSV e

− ∫ T
t0

r(t)dt
(6.16)
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Path-integral solution for the Treasury Bond in Vasicek’s model

From Eqs. (6.16) and (6.14)

P(t0, T ) = 1

Z

∫
DreS (6.17)

S ≡ SV −
∫ T

t0
r(t)dt

= − 1

2σ 2

∫ T

t0
dt

[
dr

dt
− a(b − r)

]2

−
∫ T

t0
r(t)dt

Similar to Eq. (5.14), the Vasicek path integral is solved by a change of variables. The
continuum formulation is used for notational simplicity. Since the path-integral measure∫

Dr is invariant under the translation r(t) → r(t) + b

S = − 1

2σ 2

∫ T

t0
dt

[
dr

dt
+ ar

]2

−
∫ T

t0
[r(t) + b]dt (6.18)

Define new variables v(t) by

v(t) = dr

dt
+ ar (6.19)

⇒ r(t) = e−a(t−t0)r0 + e−at
∫ t

t0
dt ′eat ′v(t ′) (6.20)

∫ T

t0
dtr(t) = B(t0, T )r0 +

∫ T

t0
dt B(t, T )v(t) (6.21)

where B(t, T ) ≡ 1 − e−a(T −t)

a

The initial condition at t = t0 is fulfilled by Eq. (6.20); for the final condition at t = T ,
since dr(T )/dt = 0, which is equivalent to r(T ) being arbitrary, one can see from
Eq. (6.19)3 that v(T ) is free to take all possible values. Hence the boundary conditions are
satisfied by integrating over all variables v(t) for t0 ≤ t ≤ T .4 Hence, from Eqs. (6.16),
(6.18), (6.19) and (6.21)

P(t0, T ) = e−b(T −t0)−B(t0,T )r0
1

Z

∫
Dve

− 1
2σ2

∫ T
t0

dt[v2(t)+2σ 2 B(t,T )v(t)]

= e−b(T −t0)−B(t0,T )r0 e
σ2
2

∫ T
t0

dt B2(t,T )
(6.22)

The v(t) integrations that have been performed to obtain Eq. (6.22) are decoupled Gaussian
integrations, with the overall normalization being cancelled by the factor of Z . The result

3 If, for example, a = 0 in Eq. (6.19), then v(T ) = dr(T )/dt = 0 and hence one would need to constrain the
variable v(T ) to be zero in the

∫
Dv path integral; the a = 0 case can be recovered from a → 0 since the limit

is uniform.
4 The change of variables in Eq. (6.19) yields Dv = det( d

dt + a)Dr , and the Jacobian J = det( d
dt + a) is can-

celled in the expression for P(t0, T ) by the denominator Z in Eq. (6.16).
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agrees with the one obtained in [82], where a different method has been used to do the path
integral.

Simplifying Eq. (6.22), and for notational simplicity defining future time θ =
T − t0, yields Vasicek’s result [51, 102]

P(t0, T ) = A(θ)e−B(θ)r0 (6.23)

where recall r(t0) = r0, and

B(θ) = 1 − e−aθ

a
(6.24)

A(θ) = exp

[(
σ 2

2a2
− b

) (
θ − B(θ)

)− σ 2

4a
B2(θ)

]
(6.25)

The forward interest rates are given, from Eqs. (2.9) and (6.23), by

f (t0, T ) = − ∂

∂T
ln P(t0, T ) (6.26)

= r0 + (b − r0)(1 − e−aθ ) − σ 2

2a2
(1 − e−aθ )2 (6.27)

The financial interpretation of the forward rates obtained above is discussed
in [18].

6.3 Heath–Jarrow–Morton (HJM) model’s path integral

The industry standard HJM model [43], and has been studied extensively both
analytically and empirically [34]. The HJM model is reformulated in the language
of path integration [4, 25]. The reason for the path-integral re-formulation is two
fold, namely to understand the HJM model in the formalism of path integration,
and, secondly, to be able to generalize the model and construct a quantum field
theory of the forward interest rates.

From Eq. (2.9) the collection of zero coupon bonds P(t, T ) yield all the forward
rates f (t, x) for the interval t ≤ x ≤ T . Since the spot interest rate model yields
an expression for P(t, T ), for example as in the Vasicek model, why should there
be any need to directly model the forward rates [56]?
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The reasons for modelling the forward rates are the following:

� As discussed in Appendix 6.9, most spot interest rate models yield an affine expression
for the zero coupon bonds. However, it is known from the market that zero coupon bonds
do not follow an affine behaviour.

� The forward rates have a complicated behaviour and it is unlikely that any reasonably
simple spot rate model can generate such complex forward rates.

� The debt market directly trades in the forward rates and provides an enormous amount
of data on these. It is sensible to create models that take the forward rates as the primary
instrument so as to match the behaviour of the market.

� Spot rate models can in principle produce the initial forward rate curve,5 but the evolu-
tion of the spot rate models cannot maintain the condition of no arbitrage on the future
evolution of the forward rates.

� The HJM model takes the initial forward rate f (t0, x) as the input to be determined from
the market, instead of trying to derive it from a model of the spot rate. A distinct advan-
tage of the HJM approach is that it, consequently, fully incorporates all the information
on the forward rates that is available from the market.

� The HJM approach yields, once the discounting factor has been fixed, a unique arbitrage-
free evolution of the forward rate curve.

Recall from Eq. (2.8) that the zero coupon Treasury Bond is given by

P(t, T ) = e− ∫ T
t dx f (t,x) (6.28)

The time evolution of the forward rates is modelled to behave in a stochastic
manner, and is given by generalizing the stochastic differential equation for equity
as discussed in Section 3.3. In the K-factor HJM model [43, 58, 86] the time evo-
lution of the forward rates is driven by K-independent white noises Wi (t), and is
given by

∂ f

∂t
(t, x) = α(t, x) +

K∑
i=1

σi (t, x)Wi (t) (6.29)

where α(t, x) is the drift velocity term and σi (t, x) are the deterministic volatilities
of the forward rates.

Note that although the HJM model evolves an entire curve f (t, x), at each in-
stant of time t it is driven by K random variables given by Wi (t), and hence has
only K degrees of freedom. The term stochastic interest rates models is used for
any forward or spot interest rate models that are driven by a finite number of white
noises, to distinguish them from models based on quantum field theory.

5 For example, Hull and White [51] have proposed an extension of the Vasicek model in which the parameters a
and b in Eq. (6.26) are made time dependent, and are adjusted to fit the entire initial curve f (t0, T ) taken from
the market.
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From Eq. (6.29)

f (t, x) = f (t0, x) +
∫ t

t0
dt ′α(t ′, x) +

∫ t

t0
dt ′

K∑
i=1

σi (t
′, x)Wi (t

′) (6.30)

The initial forward rate curve f (t0, x) is determined from the market, and so are
the volatility functions σi (t, x). Similar to the Black–Scholes analysis discussed
in Section 3.5, the drift term α(t, x) is fixed to ensure that the forward rates have a
martingale time evolution, which makes it a function of the volatilities σi (t, x).

For every value of time t , the stochastic variables Wi (t), i = 1, 2, . . . , K are
independent Gaussian random variables given by

E(Wi (t)W j (t
′)) = δi jδ(t − t ′)

The forward rates f (t, x) are driven by random variables Wi (t) which give
the same random ‘shock’ at time t to all the future forward rates f (t, x) , x > t .
To bring in the maturity dependence of the random shocks on the forward rates,
the volatility function σi (t, x), at given time t , weighs this ‘shock’ differently for
each x .

White noise for the HJM model

The salient properties of white noise are discussed in Appendix A.4, and are reviewed
for completeness. To write the probability measure for Wi (t), note that t takes values in
a finite interval depending on the problem of interest; as usual, discretize t → mε, with
m = 1, 2, . . . , M , and with Wi (t) → Wi (m). The probability measure is given by

P[W ] =
M∏

m=1

K∏
i=1

e− ε
2

∑K
i=1 W 2

i (m) (6.31)

∫
dW =

M∏
m=1

K∏
i=1

√
ε

2π

∫ +∞

−∞
dWi (m)

The limit of ε → 0 is taken for notational simplicity; for purposes of rigor, the contin-
uum notation is simply a short-hand for taking the continuum limit of the discrete multiple
integrals given above. Hence, for t1 < t < t2

P[W, t1, t2] → eS (6.32)

S ≡ S[W, t1, t2] = −1

2

K∑
i=1

∫ t2

t1
dtW 2

i (t) (6.33)

∫
dW →

∫
DW (6.34)

The action functional S0 is ultra-local with all the variables being decoupled; generically,∫
DW stands for the (path) integration over all the random variables W (t) which appear in
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t

t0

t∗

W (t)

Figure 6.1 Independent W (t) ≡ {Wi (t)|i = 1, 2, . . . , K } random variables in the
HJM model

the problem. The integration variables Wi (t) are shown in Figure 6.1, where each point t
in the interval t ∈ [t0, t∗] represents the independent random variables Wi (t).

A useful formula is the generating functional for W given, from Eq. (A.20), by
the path integral

Z [ j, t1, t2] =
∫

DW e
∑K

i=1
∫ t2

t1
dt ji (t)Wi (t)eS[W,t1,t2]

= e
1
2

∑K
i=1
∫ t2

t1
dt j2

i (t) (6.35)

6.4 Martingale condition in the HJM model

From the discussion in Section 2.5, to obtain a risk-neutral measure for the forward
interest rates, one needs to impose the martingale condition on the evolution of the
forward rates. All derivatives of the forward rates priced using the risk-neutral mar-
tingale measure, according to the fundamental theorem of finance [40] discussed
in Appendix A.6, are free from arbitrage opportunities.

From Eq. (2.10), the martingale condition for the HJM model is given by

P(t0, T ) = E[t0,t∗]
[

e
− ∫ t∗

t0
r(t)dt

P(t∗, T )

]

⇒ P(t0, T ) =
∫

DW e
− ∫ t∗

t0
r(t)dt

P(t∗, T )eS[W,t0,t∗] (6.36)

where the last equation has been obtained by writing out Eq. (2.10) using
Eq. (6.33).
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Domains of integration T , �0 and R

The domains of integration, namely T , �0 and R, appear in calculations for options and
other derivatives in any model that one is using for the Treasury Bonds. These domains
are discussed here in the specific context of fixing the drift velocity using the martingale
condition.

From Eq. (6.36), for the HJM model

P(t0, T ) =
∫

DW e−X eS[W,t0,t∗] (6.37)

where

X =
∫ t∗

t0
dtr(t) +

∫ T

t∗
dx f (t∗, x) (6.38)

Recall from Eq. (6.30)

f (t, x) = f (t0, x) +
∫ t

t0
dt ′α(t ′, x) +

∫ t

t0
dt ′

K∑
i=1

σi (t
′, x)Wi (t

′)

Hence, from equation above, and using r(x) = f (x, x), yields

X =
∫ t∗

t0
dx

[
f (t0, x) +

∫ x

t0
dtα(t, x) +

∫ x

t0
dt

K∑
i=1

σi (t, x)Wi (t)

]

+
∫ T

t∗
dx

[
f (t0, x) +

∫ t∗

t0
dtα(t, x) +

∫ t∗

t0
dt

K∑
i=1

σi (t, x)Wi (t)

]

For example ∫ t∗

t0
dx
∫ x

t0
dtα(t, x) +

∫ T

t∗
dx
∫ t∗

t0
dtα(t, x)

=
∫ t∗

t0
dt
∫ t∗

t
dxα(t, x) +

∫ t∗

t0
dt
∫ T

t∗
dxα(t, x)

=
∫ t∗

t0
dt
∫ T

t
dxα(t, x)

The last two equations can be written more graphically as∫
�0

α(t, x) +
∫
R

α(t, x) =
∫
T

α(t, x) (6.39)

where the domains of integration �0 and R are shown in Figure 6.2. The integration over
the domain �0 arises from the discounting by the spot rate and that over domain R arises
from the Treasury Bond P(t∗, T ). As shown in Figure 6.3, the two domains of the triangle
and a rectangle combine to give T

T = �0 ⊕ R
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where the trapezoidal domain T is given in Figure 6.4. Simplifying the other terms in
Eq. (6.38) in a similar manner yields

X =
∫ T

t0
dx f (t0, x) +

∫
T

α(t, x) +
∑

i

∫
T

σi (t, x)Wi (t) (6.40)

0

t0

t

t∗

X

(t0, t∗)

t∗

(t∗, t∗)

T

(t∗, T )

(t0, T )(t0, t0)

Figure 6.2 Domain R is shaded and domain �0 is the empty triangle

Hence, for the HJM model, from Eqs. (6.36), (6.37), (6.38) and (6.40)

P(t0, T ) = P(t0, T )e− ∫T α(t,x)

∫
DW e−∑i

∫
T σi (t,x)Wi (t)eS[W,t0,t∗] (6.41)

On performing the W integrations yields, from Eqs. (6.35) and (6.41)

e
∫
T α(t,x) = e

1
2

∫ t∗
t0

dt
∑

i [
∫ T

t dxσi (t,x)]2

(6.42)

= +

Figure 6.3 Domain T = domain �0 ⊕ domain R
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X0 t0

t0

T

t

t∗

t∗

(t∗, T )

(t0, T )

(t∗, t∗)

(t0, t0)

Figure 6.4 Trapezoidal domain T for the martingale condition

Dropping the integration over t one obtains [58]

∫ T

t
dxα(t, x) = 1

2

K∑
i=1

[∫ T

t
dxσi (t, x)

]2

(6.43)

or equivalently, the drift velocity in the HJM model is given by

α(t, x) =
n∑

i=1

σi (t, x)

∫ x

t
dyσi (t, y) (6.44)

: condition for martingale measure

As expected, the martingale condition leads to the well-known [58] no-arbitrage
condition that expresses the drift velocity of the forward rates in terms of its
volatility.

Consider the two-factor HJM model with volatilities given by

σ1(t, x) = σ1; σ2(t, x) = σ2e−λ(x−t) (6.45)

The no-arbitrage condition given in Eq. (6.44) yields

α(t, x) = σ 2
1 (x − t) + σ 2

2

λ
e−λ(x−t)

(
1 − e−λ(x−t)

)
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6.5 Pricing of Treasury Bond futures in the HJM model

A general discussion of forward and futures contracts was given in Section 3.1,
and these concepts are now applied to the specific case of Treasury Bonds.

The future and forward contracts on a zero coupon coupon bond are instruments
that are traded in the capital market. Both the forward and futures contracts are
entered into at time t0 for a zero coupon bond, maturing at time T , to be delivered
to the buyer at the conclusion of the contract at time t∗, where t0 < t∗ < T . The
forward price of a Treasury Bond P(t, T ) is denoted by F(t0, t∗, T ), and, since
there is only one cash flow, it can be shown that [52, 58]

F(t0, t∗, T ) = P(t0, T )

P(t0, t∗)
= e− ∫ T

t∗ dx f (t0,x)

The forward price of a Treasury Bond is independent of any models for the time
evolution of the Treasury Bonds.

The futures price of P(t, T ) is denoted by F(t0, t∗, T ). The difference in the
forward and futures price, as was discussed in Section 3.1, is that for a forward
contract there is only a single cash flow at t∗: at the expiry date of the contract. For
a futures contract on the other hand there is a continuous cash flow from time t0
to t∗ such that all variations in the price of P(t + dt, T ) away from P(t, T ), for
t0 < t < t∗, are settled continuously between the buyer and the seller, with a final
payment of P(t∗, T ) at time t∗. If the time evolution of P(t, T ) was deterministic,
it is easy to see that the forward and futures price would be equal.

It can be shown that the price of the futures F is given by [58]

F(t0, t∗, T ) = E[t0,t∗][P(t∗, T )] (6.46)

The result is model independent, and of great generality, since the expression ap-
plies to any model for the time evolution of the Treasury Bonds.

For the HJM model, from Eqs. (6.30) and (6.32)

F(t0, t∗, T ) =
∫

DW e− ∫ T
t∗ dx f (t∗,x)eS[W,t0,t∗] (6.47)

= F(t0, t∗, T ) exp �F (6.48)

Since there is no discounting by the spot interest rate in Eq. (6.47), the futures
price is defined by an integration of the forward rates over only the rectangular
domain R, given in Figure 6.2, where recall from Eq. (6.39)

∫
R

≡
∫ t∗

t0
dt
∫ T

t∗
dx
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Hence

exp �F = e�e− ∫R α(t,x) (6.49)

with

e� =
∫

DW e−∑K
i=1
∫
R σi (t,x)Wi (t)eS (6.50)

= exp

{
1

2

K∑
i=1

∫ t∗

t0
dt

[∫ T

t∗
dxσi (t, x)

]2}
(6.51)

where Eq. (6.51) has been obtained by performing the path integration over the W
variables using Eq. (6.35).

Using the martingale condition given in Eq. (6.44), and after some simplifica-
tions, one obtains from Eq. (6.49) that

�F (t0, t∗, T ) = −
K∑

i=1

∫ t∗

t0
dt
∫ t∗

t
dxσi (t, x)

∫ T

t∗
dx ′σi (t, x ′) (6.52)

As is expected, the future and forward prices of the zero coupon bond are
equal if the volatility is zero, that is, the evolution of the zero coupon bond is
deterministic.

Consider the two-factor HJM model with volatilities given in Eq. (6.45).
Eq. (6.52) yields

�F (t0, t∗, T ) = −σ 2
1 (T − t∗)(t∗ − t0)

2

− σ 2
2

2λ3

(
1 − e−λ(T −t∗)

) (
1 − e−λ(t∗−t0)

)2

which is the result given in [52, 65].

6.6 Pricing of Treasury Bond option in the HJM model

Suppose one needs the price, at time t0, of a derivative instrument of a zero coupon
Treasury Bond P(t, T ) for a contract that expires at t∗ < T . For concreteness con-
sider the price of a European call option on a zero coupon bond [58, 86], namely
C(t0, t∗, T, K ); the option has a strike price of K and exercise time at t∗ > t0.

The (final) value of the option at maturity, namely at t0 = t∗ is, as required by
the contract, given by

C(t∗, t∗, T, K ) = (P(t∗, T ) − K )+
≡ max((P(t∗, T ) − K ), 0)
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For t0 < t∗, the price of C is given by the expectation value of the discounted
value of the payoff function, namely

C(t0, t∗, T, K ) = E[t0,t∗]
[

e
− ∫ t∗

t0
dtr(t)

(P(t∗, T ) − K )+
]

(6.53)

The expectation value in Eq. (6.53) is taken by evolving the payoff function
(P(t∗, T ) − K )+ backward from t∗ to t0, continuously discounted by stochastic
spot rate r(t) = f (t, t).

The payoff function is re-written in a form that is more suited to path integral
calculations using the following identity given in Eq. (A.11)

δ(z) = 1

2π

∫ +∞

−∞
dpeipz (6.54)

Hence, since P(t∗, T ) = exp(− ∫ T
t∗ dx f (t∗, x)), one has the following

(P(t∗, T ) − K )+ =
∫ +∞

−∞
dGδ

[
G +

∫ T

t∗
dx f (t∗, x)

]
(eG − K )+

=
∫ +∞

−∞
dG

dp

2π
eip(G+∫ T

t∗ dx f (t∗,x))
(eG − K )+ (6.55)

Re-write Eq. (6.53) as

C(t0, t∗, T, K ) =
∫ +∞

−∞
dG�(G, t∗, T )(eG − K )+ (6.56)

where

�(G, t∗, T ) =
∫ +∞

−∞
dp

2π
E[t0,t∗]

[
e
− ∫ t∗

t0
dt f (t,t)

eip(G+∫ T
t∗ dx f (t∗,x))

]
(6.57)

= P(t0, t∗)
∫ +∞

−∞
dp

2π
e�eip�0 (6.58)

with

�0 = G +
∫ T

t∗
dx f (t0, x) +

∫
R

α(t, x)

Similar to the derivation of Eq. (6.41), one has the following

e� = e
− ∫�0

α(t,x)
∫

DW e
− ∫�0

σi (t,x)Wi (t)+i p
∑K

i

∫
R σi (t,x)Wi (t)eS (6.59)
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The interplay of the sub-domains �0 and R in Eq. (6.59) determines the price of
the option.6

Using (6.35) to perform the integrations over W yields, after considerable
simplifications7 and using the martingale condition given in Eq. (6.43), that

� = −q2

2
p2 (6.60)

with

q2 =
K∑

i=1

∫ t∗

t0
dt

[∫ T

t∗
dxσi (t, x)

]2

(6.61)

= 2
∫
R

α(t, x)

where the last equation is derived in Eq. (9.9). Eqs. (6.56)–(6.61) yield the result

�(G, t∗, T ) = P(t0, t∗)
∫ +∞

−∞
dp

2π
e− q2

2 p2
eip�0

= P(t0, t∗)

√
1

2πq2
exp − 1

2q2

(
G +

∫ T

t∗
dx f (t0, x) + q2

2

)2

(6.62)

Hence, from the equation above and (6.56) the well-known result [22, 57] is
obtained that the European option on a Treasury Bond has a Black–Scholes like
formula with volatility given by q2.

For the two-factor HJM model given in Eq. (6.45) [22]

q2 = σ 2
1 (T − t∗)2(t∗ − t0)

+ σ 2
2

2λ3

(
1 − e−λ(T −t∗)

)2 (
1 − e−2λ(t∗−t0)

)
(6.63)

6.7 Summary

The martingale evolution of the spot interest rate was modelled using the stochas-
tic Langevin equation, and the Fokker–Planck Hamiltonians that determine the

6 It will be seen in Section 7.7 that a change of numeraire greatly simplifies the calculation. In the field theory
calculation for the option price done in Section 9.2 only the domain R appears, with no reference being made
to the domain �0.

7 The identity

∫ t∗

t0
dt


∫ T

t∗
dxα(t, x) −

K∑
i=1

∫ t∗

t
dxσi (t, x)

∫ T

t∗
dyσi (t, y)


 = 1

2
q2

has been used to obtain Eq. (6.60).
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evolution of its conditional probabilities were obtained. The asymmetry in the for-
ward and backward evolution of the Langevin equation was reflected in the back-
ward and forward Fokker–Planck Hamiltonians. Since the evolution of the spot
rate is assumed to satisfy the martingale condition, the analysis is simpler than the
derivation of the Black–Scholes Hamiltonian.

The action and path integral for spot interest rate models were obtained using
both the Fokker–Planck Hamiltonian and the procedure of stochastic quantization.
The path integral for the Vasicek model was exactly solved using a change of vari-
ables slightly more complicated than the one needed to solve the Black–Scholes
path integral. The various affine models for forward interest rates, and the gener-
alization to non-affine models, were briefly discussed.

The reasons for modelling the forward interest rates as the primary and funda-
mental instrument of the debt market, instead of the spot rate, were enumerated.

The industry-standard HJM model of forward interest rates was re-formulated in
terms of path integration, and which was then used to compute various quantities
of the model. The path-integral formulation of the HJM model is important in its
own right, and provides a new perspective on the model. The martingale measure
and Treasury Bond option were shown to be calculable in a straightforward manner
using path integration.

The main motivation for re-deriving the well-known results of the HJM model
in Section 6.6 was, firstly, to understand the path integral formulation of interest
rate derivatives, and, secondly, to prepare the framework for generalizing these
quantities to the case of quantum field theory.

The remaining chapters of this book are all focussed on modelling the forward
rates using quantum field theory, and it will be seen with hindsight that many of the
features of the path integral that first appear in the context of the HJM model are
simplified expressions of much more complex and involved derivations. Hence, in
this sense, the HJM model is a useful preparation for the material that is covered
in the subsequent chapters.

6.8 Appendix: Spot interest rate Fokker–Planck Hamiltonian

The spot rate r(t) is the interest rate for an overnight loan at time t . The spot rate
is driven by a Langevin equation given in Eq. (6.1) with boundary condition given
in Eq. (6.2), and hence

dr

dt
= a(r, t) + σ(r, t)R(t) : R(t) white noise t0 ≤ t ≤ T

EITHER r(t0) = r0 : initial condition OR r(T ) = R : final condition
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where in principle the function a and volatility σ are arbitrary functions of the spot
rate r and of time t .

The derivations employ the following properties of white noise R(t)

<R(t)> = 0 ; <R2(t)> = 1

ε
; t = nε

Let P(r, t; r0) be the conditional probability that the spot rate has value r at time t ,
given that the value of r0 occurred at an earlier time t0 < t . The forward conditional
probability requires the propagation of the spot rate forward in time.

The conditional probability at time t + ε is given by the following. Discretizing
the spot rate equation yields, in simplified notation

r(t + ε) = r(t) + ε[a + σ R(t)]
⇒ r = r ′ + ε[a(r ′) + σ(r ′)R(t)] (6.64)

The forward conditional probability P(r, t; r0) is given by evolving the spot rate
into the future using the Langevin equation, and averaging over the white noise.
Hence, Taylor expanding the argument of the δ-function yields

P(r, t + ε; r0) ≡
∫

dr ′ < δ
(
r − r ′ − ε{a(r ′) + σ(r ′)R(t)}) > P(r ′, t; r0)

�
∫

dr ′ < δ(r − r ′) + ε{a(r ′) + σ(r ′)R(t)} ∂

∂r ′ δ(r − r ′)

+ 1

2
ε2{a(r ′) + σ(r ′)R(t)}2 ∂2

∂r ′2 δ(r − r ′) > P(r ′, t; r0)

Since < R2(t) >= 1/ε the term of O(ε2) in the equation above, which would be
zero for ordinary functions, now yields a non-zero contribution. This is the manner
in which the results of Ito calculus, discussed in Section 3.4, appear in derivations
based on the Langevin equation. Hence

P(r, t + ε; r0) = P(r, t; r0) +
∫

dr ′
[
εa(r ′) ∂

∂r ′ δ(r − r ′)

+ 1

2
ε2σ 2(r ′) × 1

ε
× ∂2

∂r ′2 δ(r − r ′)
]

P(r ′, t; r0)

= P(r, t; r0) − ε

[
∂

∂r
a(r) − 1

2

∂2

∂r2
σ 2(r)

]
P(r, t; r0)

Taking the limit of ε → 0 yields the forward Fokker–Planck equation for the
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conditional probability

∂

∂t
P(r, t; r0) =

[
1

2

∂2

∂r2
σ 2(r) − ∂

∂r
a

]
P(r, t; r0) (6.65)

≡ −HF P(r, t; r0) (6.66)

⇒ HF = −1

2

∂2

∂r2
σ 2(r) + ∂

∂r
a

= −1

2

∂2

∂r2
σ 2(r) + a(r)

∂

∂r
+ ∂a(r)

∂r
(6.67)

where HF is the non-Hermitian forward Fokker–Planck Hamiltonian.
It can be recognized that the conditional probability is nothing but the pricing

kernel for the spot interest rate, and in fact

PF (r, t; r0) = < r |e−(t−t0)HF |r0 > (6.68)

r(t0) = r0 : initial condition

The backward Fokker–Planck equation is required in the pricing of options,
since the payoff function is propagated backwards in time. Hence one needs to
propagate the final value of the interest at time T , namely R, to its value at an
earlier time t with the value of r , and time consequently flows backwards.

The backward conditional probability PB(R, t; r ′) is defined as the probability
that the spot rate will have the value of r ′ at time t given that the value of R
has occurred at some future time T > t . Hence, for r = r(t + ε) and r ′ = r(t),
Eq. (6.64) yields

PB(R, t; r ′) =
∫

dr < δ
[
r − r ′ − ε{a(r ′) − σ(r ′)R(t)}] > P(R, t + ε; r)

(6.69)

The coefficients a(r ′), σ (r ′) have the argument of the spot rate of the earlier time
t , and which cannot be changed to r , with an error that is of O(ε), due to the
singular nature of white noise. This is the fundamental reason why the forward
and backward Fokker–Planck Hamiltonians are different. Similar to the derivation
for the forward case, the backward Fokker–Planck Hamiltonian is given by

∂

∂t
PB(R, t; r) ≡ +HB PB(R, t; r)

HB = −1

2
σ 2(r)

∂2

∂r2
− a(r)

∂

∂r
(6.70)

= H†
F

In the defining Eq. (6.70) for PB(R, t; r) the evolution equation has the opposite
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sign compared with Eq. (6.66) for the forward evolution. Since for the backward
case the time variable is −t and hence running backward, the backward evolution
equation has a negative sign compared with the forward equation. The backward
conditional probability PB(R, t; r) is hence driven by the operator et HB .

To write out PB(R, t; r) as a matrix element, as has been written in Eq. (6.68)
for the forward case, one needs to discuss the Dirac notation for representing
backward time evolution. The convention is that the ket vector always represents
|starting state > and the bra (dual) vector always represents < ending state|. In the
case of backward time evolution, one starts from the final value |R >, and using
HB evolves this value backwards in time (hence time is given by −t) to the initial
value of < r |. The final value is expressed by the final condition that at time t = T
one must have r(T ) = R. Collecting these facts gives

PB(R, t; r) = <r |e−(T −t)HB |R > (6.71)

r(T ) = R : final condition

The forward Fokker–Planck Lagrangian

Recall from Eq. (5.5) that the relation between the Lagrangian and the Hamiltonian
is given by

〈x | e−εH | x ′〉 ≡ N (ε)eεL(x;x ′;ε) (6.72)

Hence for the forward Fokker–Planck Hamiltonian, using the completeness equa-
tion in the momentum basis given in Eq. (4.34), the Lagrangian is given by
(a′ ≡ ∂a(r)/∂r )

eεL F [r,r̃ ] = < r |e−εHF |r̃ >

=
∫

dp

2π
< r |e−εHF |p >< p|r̃ >

=
∫

dp

2π
e−ε
(

σ2
2 p2+iap+a′)

eip(r−r̃)

= 1√
2πεσ 2

e
− ε

2σ2 [(r−r̃−εa)2−εa′]

Taking the limit of ε → 0 gives (r − r̃)/ε → dr/dt and yields the forward
Fokker-Planck Lagrangian

L F = − 1

2σ 2

(
dr

dt
− a(r)

)2

− ∂a(r)

∂r
(6.73)
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6.9 Appendix: Affine spot interest rate models

The result obtained in Eq. (6.23) is generic to a wide class of spot rate models –
called affine models – all of which have an exponential dependence of the Trea-
sury Bond on the spot rate that is linear; in other words [46, 47, 51]

P(t, T ) = α(t, T )e−β(t,T )r : affine models

Given below are some of the affine spot rate models [51]

� Vasicek model

dr

dt
= a(b − r) + σ R(t)

� The Rendelman and Barter model

dr

dt
= µr + σr R(t)

� The Ho and Lee model

dr

dt
= θ(t) + σ R(t)

� The Cox–Ingersoll–Ross (CIR) model

dr

dt
= a(b − r) + σ

√
r R(t)

� The Hull and White model

dr

dt
= θ(t) − ar + σ R(t)

All these models have been extensively discussed in the literature, as well as tested
empirically [26], and yield path integrals that can be used for analytical and nu-
merical studies.

One can also consider a multi-factor affine model in which the spot interest rate
is driven by N white noises, and is given by

dr

dt
= a(r, t) +

N∑
n=1

σn(t)Rn(t)

Although the multi-factor model may look more powerful, its major disadvantage
is that the volatility functions implied by the models can be very different in the
future than from what is determined from existing market data, and hence cannot
be used effectively in pricing spot interest rate derivatives and so on.
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6.10 Appendix: Black–Karasinski spot rate model

One of the most important non-affine spot interest rate models is the Black–
Karasinski model given by a lognormal distribution for the spot rate. Consider
the general process

r(t) = r0eφ(t) > 0
dφ

dt
= α(φ, t) + σ(φ, t)R(t) (6.74)

Black–Karasinski : α(φ; t) = θ(t) − a(t)φ(t) ; σ(φ; t) = σ(t)

where the salient property of this model is that the spot rate r(t) is always positive.
In the market, interest rates are always positive, and hence this is a major advantage
of the Black–Karasinski (and of the CIR) model.

As discussed in Section 6.2 for the Vasicek model, the backward Lagrangian for
the generalized Black–Karasinski model is required for determining the Treasury
Bond, and is given by

Sbk
B = −1

2

∫ T

t0
dt

1

σ 2(φ; t)

[
r0

dφ

dt
− α(φ)

]2

(6.75)

Consider the zero coupon bond given by

P(t0, T ) = E

[
e
−r0

∫ T
t0

dteφ(t) |φ(t0) = 0

]
(6.76)

Similar to the analysis of the Vasicek model, the zero coupon bond is given by
averaging the discount factor over the probability distribution, and yields

P(t0, T ) = 1

Z

∫
DφeSbk

B e
−r0

∫ T
t0

eφ(t)dt
(6.77)

Z =
∫

DφeSbk
B ;

∫
Dφ ≡

∫ +∞

−∞

T∏
t=t0

dφ(t) (6.78)

boundary conditions φ(t0) = 0 ; dφ(T )

dt
= 0

The denominator cancels all the terms independent of r0. The resulting zero
coupon bond is known from numerical simulations to be non-affine.

Recall from Eq. (6.74) that the Black–Karasinski model is specified by

r(t) = r0eφ(t)

dφ = (θ(t) − a(t)φ)dt + σ(t)dz

where dz is a Wiener process.
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The simulation for the spot rate can be performed by generating random con-
figurations starting from the Langevin equation using the Euler approximation for
time derivatives. For simplicity, θ and a are chosen to be zero. The variable φ is
updated according to

φ(t + ε) = φ(t) + Z
√

ε

where Z = N (0, 1) is the standard normal random variable.
In order to investigate the non-affine nature of the Black–Karasinski model, the

price of a ten-year zero coupon bond with different initial interest rates is numeri-
cally calculated. The simulation was carried out for σ = 1.0/year; 128 time steps
were used for the discretization of the rate process and 100 000 configurations were
used to calculate the price of the bond. The error in the bond prices is negligible.
The result [97] is shown in Figure 6.5, displaying a small but significant departure
from affine behaviour.
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Figure 6.5 The logarithm of the bond price plotted against the initial interest rate
for the Black–Karasinski model with σ = 1.0/year.

6.11 Appendix: Black–Karasinski spot rate Hamiltonian

The primary focus of this Appendix is pedagogical. The Fokker–Planck Hamilto-
nians have been derived using the properties of white noise in Appendix 6.8, and
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of which the Black–Karasinski Spot Rate Hamiltonian is a special case. The La-
grangians were then deduced from the Hamiltonians, similar to other derivations
of the Lagrangian for other systems.

The question naturally arises that if the Lagrangian is known, how would
one derive its Hamiltonian; the purpose of this Appendix is to carry out this
derivation using quantum mechanical techniques. The reason for choosing the
Black–Karasinski Hamiltonian for this exercise is because it has some similari-
ties with the much more complex derivation, in Chapter 10, of the forward interest
rates Hamiltonian from its Lagrangian. This appendix is a preparation for handling
the more complex case.

From the general result derived in Eq. (6.12), the Black–Karasinski backward
action for spot rate r(τ ) = r0eφ(τ), for remaining time τ = T − t and τ0 = T − t0,
is given by

Sbk
B = −1

2

∫ τ0

0
dτ

1

σ 2(τ )

(
r0

dφ

dτ
+ α(r, τ )

)2

(6.79)

Suppose for greater generality that the volatility depends on the spot rate, namely,
that σ = σ0eνφ .

The path integral for the Black–Karasinski model is given by the following gen-
eralization of Eq. (6.78)

Z =
∫

Dφe−νφeSbk
B (6.80)

∫
Dφe−νφ ≡

τ0∏
τ=0

∫ +∞

−∞
dφ(t)e−νφ(t)

boundary conditions φ(τ0) = φ0 ; φ(τ = 0) = φT

To obtain the Hamiltonian, recall from the discussion of the pricing kernel in
Section 5.1 that the path integral is related to the Hamiltonian by Eq. (5.8), namely

Z =
∫

Dφe−νφeSbk
B = <φ0|e−τ0 Hbk

B |φT > (6.81)

One needs to extract the Hamiltonian Hbk
B from the left-hand side. Since the

Hamiltonian propagates the system through infinitesimal (backward) time, time is
discretized into a lattice of spacing ε, with τ = nε and N = τ0/ε. The path integral
reduces to a finite (N − 1)-fold multiple integral, analogous to what was obtained
in Section 5.1, and in particular in Eq. (5.3). Discretizing the time derivative by



142 Stochastic interest rates’ Hamiltonians and path integrals

dφ/dτ → (φn+1 − φn)/ε gives

< φ0|e−εN Hbk
B |φN > =

N−1∏
n=1

∫
dφne−νφn eSbk

B (6.82)

Sbk
B → ε

N−1∑
n=0

Lbk
B (n)

Lbk
B (n) = − 1

2εσ 2
n

(
r0(φn+1 − φn) + εαn

)2

As in Section 5.1, the completeness equation
∫

dφ|φ >< φ| = I is used N − 1

times to write out the expression for e−εN Hbk
B , and the Hamiltonian is identified as

< φn+1|e−εHbk
B |φn > = e−νφn eεLbk

B (n)

= e−νφn e
− 1

2εσ2
n

(
r0(φn+1−φn)+εαn

)2

(6.83)

and one has recovered Eq. (5.5), with a normalization that depends on the ran-
dom variable φ. But unlike Eq. (5.5) where the Hamiltonian is known and the
Lagrangian is derived from it, in Eq. (6.83) one needs to derive the Hamiltonian
from the known Lagrangian.

The key feature of the Lagrangian that in general allows one to derive its Hamil-
tonian is that the Lagrangian contains only first-order time derivatives, and hence
on discretization involves only nearest neighbours in time, thus allowing it to be
represented as the matrix element of e−εHbk

B , as in Eq. (6.83). Secondly, the time
derivatives appears in a quadratic form; one can therefore use Gaussian integration
to re-write the right-hand side of Eq. (6.83) in the following manner

<φn+1|e−εHbk
B |φn> = e−νφn

∫ +∞

−∞
dp

2π
e− ε

2 p2
exp

{
i p

(
r0(φn+1 − φn) + εαn

σn

)}

= σ0

r0

∫ +∞

−∞
dp

2π
e
− εσ2

n
2r2

0
p2

e
ip
(
φn+1+φn+ε

αn
r0

)
(6.84)

where the pre-factor of e−νφn has been cancelled by re-scaling the integration vari-
able p by σn/r0, with σn = σ0eνφn .

The Hamiltonian Hbk
B = Hbk

B (φ, ∂/∂φ) is a differential operator acting on the
dual co-ordinate φn+1. Recall from the discussion at the end of Section 4.3 that
the reason this choice is made is because the wavefunction |ψ > is taken to be an
element of the state space, and the Hamiltonian acts on the dual basis state < x |,
and yields <x |H |ψ> = H(x, ∂/∂x)ψ(x). For this reason one has the following
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representation

<φn+1|e−εHbk
B |φn> = e−εHBK (φn+1,∂/∂φn+1) < φn+1|φn >

= e−εHbk
B (φn+1,∂/∂φn+1)

∫ +∞

−∞
dp

2π
eip(φn+1−φn) (6.85)

since <φn+1|φn> = δ(φn+1 − φn).8 Hence, ignoring overall constants, and using
the property of the exponential function under differentiation, one can re-write
Eq. (6.84) as

<φn+1|e−εHbk
B |φn> = exp

{
εσ 2

2r2
0

∂2

∂φ2
n+1

+ εαn

r0

∂

∂φn+1

}∫ +∞

−∞
dp

2π
eip(φn+1−φn)

(6.86)

Comparing the above equation with Eq. (6.85), and writing φn+1 ≡ φ, yields the
Black–Karasinski Hamiltonian as

Hbk
B = − σ 2

2r2
0

∂2

∂φ2
− α

r0

∂

∂φ
(6.87)

and is equal to the expected result given in Eq. (6.70).
The Hamiltonian is fairly general since both σ and α can be functions of the

random variable φ, and can be used, for example, to model spot interest rates with
stochastic volatility.

6.12 Appendix: Quantum mechanical spot rate models

The Black–Karasinski model is a nonlinear model, and difficult to analyze ana-
lytically. One can make a modification of the Black–Karasinski model by drop-
ping the boundary terms from the action SBK given in Eq. (6.75), and obtain the
quantum mechanical model given by

L1 = − 1

2σ 2

[(
dφ

dt

)2

+ a2(φ − θ)2

]
(6.88)

S1 =
∫ T

t0
L1dt

The modified Black–Karasinski model is similar to the simple harmonic oscillator
of quantum mechanics, and can be used to generate an approximate expansion of

8 From Eq. (4.35), the convention for scalar product is <p|φn> = exp(−i pφn), and the sign of the exponential
in Eq. (6.85) reflects this choice. The definition of HBK requires it to act on the dual state vector < φn+1|;
if one chooses to write the Hamiltonian as acting on the state vector |φn >, H†

BK is then obtained. Since HBK
is not Hermitian, this would lead to an incorrect result.
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the zero coupon bonds that exhibit non-affine behaviour for the zero coupon bond.
One can also make a quantum mechanical nonlinear generalization of the

Vasicek model given in Eq. (6.14) by defining the Lagrangian

S2 = − 1

2σ 2

∫ T

t0
dt

{[
dr

dt
− a(b − r)

]2

+ λ(r − b)4

}

and the zero coupon bond is then given by Eq. (6.77), with S2 being the appropriate
action.

Both the spot rate actions given by S1 and S2 yield non-affine models for the
zero coupon bonds, and are possible models for the spot interest rate.
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Quantum field theory of interest rates models
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Quantum field theory of forward interest rates

The complexity of the forward interest rates, or forward rates, is far greater than
that encountered in the study of stocks and their derivatives; the reason being that a
stock at a given instant in time is described by only one degree of freedom that is
undergoing random evolution, whereas in the case of the interest rates it is the en-
tire yield curve that is randomly evolving and requires infinitely many degrees of
freedom for its description. The theory of quantum fields [106] has been devel-
oped precisely to study problems involving infinitely many (independent) degrees
of freedom, and so one is naturally led to its techniques in the study of the interest
yield curve.

The most widely used model of the forward rates is the HJM model [43]. The
fundamental limitation of the HJM model is that all the forward rates are ex-
actly correlated, leading, for instance, to the unreasonable possibility of hedging a
30-year Treasury Bond with a six-month Treasury Bill. Models in which the for-
ward rates have nontrivial correlation are more general, and it will be seen later
from the empirical studies of the forward rates that such nontrivial correlations in
fact exist in the financial markets.

Field theory models are able to incorporate correlation between forward rate
maturities in a parsimonious manner that is well suited to analytical and computa-
tional studies as well as to empirical implementation. This is the main motivation
for studying the forward interest rates from the point of view of quantum field
theory.

Treating all the forward interest rates as independent random variables has been
studied in [38, 61, 95]. In references [61] and [38] a correlation between forward
rates with different maturities was introduced. In [95] the forward rate was mod-
elled as a stochastic string, and a stochastic partial differential equation in infinitely
many variables was obtained. A detailed discussion of the various generalizations
of the HJM model, and their relation to the field theory model of the forward rates,
is given in [97].

147
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In the approach based on quantum field theory all financial instruments are for-
mally given as a path (functional) integral and hence is complementary to the ap-
proach based on stochastic partial differential equations. The advantages of the
approach based on quantum field theory are that it offers a different perspective on
financial processes, offers a variety of computational algorithms, and nonlinearities
in the forward interest rates as well as its stochastic volatility can be incorporated
in a fairly straightforward manner.

Quantum field theory models of the forward rates are based on taking the for-
ward rates as a strongly correlated system with independent fluctuations for all
maturities [4].

The outline of this chapter is the following. Quantum mechanics and its relation
to quantum field theory is briefly reviewed for readers from disciplines other than
physics. The HJM model is extended to the case with independent fluctuations
of the forward rates for each maturity; the theory is seen to consist of a two-
dimensional quantum field theory. For simplicity the linear case is studied first –
which is a free (Gaussian) quantum field. The field theory model has new pa-
rameters that determine how strongly it deviates from the HJM model, and hence
the HJM model can be obtained by setting these parameters to zero. A number
of Gaussian models for the forward rates are studied, including the ‘stiff’ case
that provides the best fit to the market data. A Gaussian path integration is used
to derive the risk-neutral martingale measure for the linear forward interest rates
models.1

Nonlinear generalizations of the Gaussian model are discussed, and stochastic
volatility that is a function of the forward rates is introduced. The theory is further
generalized to the case of linear forward rates, with nonlinear stochastic volatility
being an independent quantum field.

7.1 Quantum field theory

The concept of a quantum field is introduced, and shown to be a natural general-
ization of the concept of a particle in quantum mechanics.

Suppose one is interested in studying how an extended object undergoes quan-
tum evolution. How does one describe the quantum dynamics of such an object?
Consider for example a non-relativistic (one-dimensional) string, and let its dis-
placement from equilibrium at time t and at position x in space be denoted by
φ(t, x), as shown for a particular instant t0 in Figure 7.1.

Let the initial string position at time t1 be given by φ1(x) = φ(t1, x), and the
final position at time t2 be given by φ2(x) = φ(t2, x). Suppose the string has mass

1 The terms linear, Gaussian and free quantum fields are used interchangeably.
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x

φ(t0, x)

Figure 7.1 A typical string configuration

per unit length given by ρ, and string tension (energy per unit length) given by T .
A general expression for the action2 of the string is given by [106]

Sstring = −1

2

∫ t2

t1
dt
∫ +∞

−∞
dxρ

(
∂φ

∂t

)2

−1

2

∫ t2

t1
dt
∫ +∞

−∞
dx

[
T

(
∂φ

∂x

)2

+ V (φ)

]

≡ Skinetic + Spotential (7.1)

where V (φ) is the potential energy of the field φ. In analogy with quantum mech-
anics, all possible string positions are allowed to occur at each instant of the
string’s evolution. Hence one needs to integrate over all possible values for the
string’s position at each point x and for each instant t .

Let the dynamics of the field be determined by the Hamiltonian of the string
given by Ĥstring, and which can be derived from the string action Sstring. In analogy
with Eq. (5.64) of quantum mechanics, the quantum field theory for the transition
amplitude (partition function) of the string field φ(t, x) is defined by the Feynman
path integral [106]

Z ≡ < φ2|e−τ Ĥstring |φ1 > (7.2)

=
∏

t1<t<t2

∏
−∞<x<+∞

∫ +∞

−∞
dφ(t, x) exp(Sstring) (7.3)

with boundary conditions given by φ1(x) = φ(t1, x) and φ2(x) = φ(t2, x). The
collection of infinitely many random variables {φ(t, x)} is called a boson quan-
tum field. Unlike a classical string that has a determinate and fixed value for every
x and t , the boson quantum field takes all possible values for each x and t .

2 Physical time t is replaced by t → −i t , and the theory is then said to be defined in Euclidean time.
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Eqs. (5.64) and (7.2) that define quantum mechanics and quantum field theory
respectively look deceptively similar. At every instant t0 there is only one degree
of freedom x(t0) in quantum mechanics, whereas for a quantum field, there are
infinitely many degrees of freedom, since for each point of space x that is occu-
pied by the string, the string co-ordinate φ(t0, x) is an independent random
variable.

In the Hamiltonian formulation the state space of a single particle in quan-
tum mechanics depends on one variable, namely is given by |x >, whereas for
a single field φ, the field’s state space depends on infinitely many indepen-
dent variables given by the infinite tensor product |φ >=⊗−∞<x<+∞ |φ(x) >.
Hence the initial and final quantum state vectors of the (string) field in the tran-
sition amplitude in Eq. (7.2) are given by |φ1 >=⊗−∞<x<+∞ |φ(t1, x) > and
|φ2 >=⊗−∞<x<+∞ |φ(t2, x) > respectively.3

One can see that quantum mechanics is a system with a finite number degrees of
freedom, whereas quantum field theory is a system that has infinitely many inde-
pendent degrees of freedom. This, in essence, is the difference between quantum
mechanics and quantum field theory.

From a more mathematical point of view there is no measure theoretic interpre-
tation of the expression

∏
t1<t<t2

∏
−∞<x<+∞

∫ +∞
−∞ dφ(t, x). A rigorous defini-

tion of Eq. (7.3) is to limit spacetime to a finite volume, and then discretize space-
time into a lattice so that the infinite-dimensional integration given in Eq. (7.3) is
reduced to an ordinary finite-dimensional multiple integral

∏
m,n

∫
dφm,n . The lat-

tice field theory of forward rates, defined on a two-dimensional lattice, is discussed
in Appendix 7.18.

A (finite) continuum limit of a nonlinear field theory defined on a finite and
discrete spacetime is in general possible only if the action S defines a theory that
is renormalizable [106]. Moreover, only by studying the properties of nonlinear
field theories under renormalization can one decide how to construct a consist-
ent perturbation expansion for the theory. The procedure of renormalization has
as yet no mathematically rigorous definition, and, in general, the entire formal-
ism of quantum field theory lies beyond the scope of conventional and rigorous
mathematics, including stochastic calculus [65, 92].

If the action S is only a quadratic function of the quantum field φ, the theory is
said to be a free (Gaussian) quantum field, and one can take the continuum limit
without having to address the problem of renormalization. The linear (Gaussian)
case for the forward interest rates is analysed in some detail since the simplicity of
the model allows many important features of the theory to be studied analytically.

3 To rigorously define the tensor product over a continuous index x , one first needs to discretize the index x = na,
where a is an infinitesimal, and limit the range of integer n = 0,±1,±2, . . . ± N . The tensor product is then
over a finite number of state spaces, and the limit of this system is taken for N → ∞ followed by the limit
a → 0. The discretized version of the field theory model is discussed in Appendix 7.18.
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For the more complex case of nonlinear forward rates and of linear forward rates
with stochastic volatility, the problem of renormalization needs to be addressed.

7.2 Forward interest rates’ action

In the HJM model, as discussed in Section 6.3, the fluctuations in the forward
rates at a given time t are given by ‘shocks’ that are delivered to the entire curve
f (t, x) by random variables Wi (t), which do not depend on the maturity direc-
tion x . Clearly, a more general evolution of the instantaneous forward rates would
be to let the whole curve evolve randomly, that is to let all the forward rates –
that is, f (t, x) for each x and t – fluctuate independently. The only constraint
imposed on the random evolution of the forward rates is that, at every instant, the
evolution be driven by a risk-neutral martingale measure, and which can be used
to price financial instruments that are free from arbitrage opportunities.

At any instant t , there exist in the market forward interest rates for a duration
of TF R in the future. The forward rates at any instant t , namely f (t, x), exists for
all t < x < t + TF R .4 Viewed as a function of the maturity variable x , the forward
rates are called the forward rate curve. It is important to note that the label x
stands for future time, and not for a point of space.

Figure 7.2 shows the market data on the forward interest rates for the US$ ob-
tained from the Eurodollar futures for 1990–1996,5 and will be used extensively
to empirically study the various models of the forward rates.

Figure 7.2 plots the daily traded values of forward rates for only eight maturities,
namely for maturities of three months, and yearly maturities from one to seven.
The forward interest rates’ time evolution for eight maturities has the appearance
of eight points randomly evolving in time, but in a very correlated manner; for
example, all the lines move up and down together and they never cross. The full
forward rate curve consists of infinitely many maturities, all of which evolve ran-
domly in a highly correlated manner.

Since at any instant t there are infinitely many forward rates, an infinite number
of independent variables are required to describe its random evolution. As dis-
cussed in Section 7.1, the generic quantity describing such a system is a quantum
field [106]. The forward interest rates is hence considered to be a boson quan-
tum field; that is, f (t, x) is taken to be an independent random variable for
each x and each t . For notational simplicity both t and x are kept continuous.
In Appendix 7.18 the lattice theory of the forward rates is studied when both t and
x are made discrete and range over a finite set, and the continuum limit is then
discussed in some detail.

4 TFR is greater than 30 years.
5 See discussion in Section 8.1 on the Eurodollar market.
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Figure 7.2 Eurodollar futures from 1990–1996, for the forward interest rates
f (t ,7 years), f (t , 6 years), . . . f (t , 1 year), and f (t , 0.25 years).

For the sake of concreteness, consider the evolution of the forward rates starting
from some initial time Ti to a future time T f . Since all the forward rates f (t, x)

are always for the future, it is always true that x > t ; hence the quantum field
f (t, x) is defined on a domain consisting of a parallelogram P that is bounded
in the maturity direction by parallel lines x = t and x = TF R + t , and in the time
direction by the horizontal lines t = Ti and t = T f as shown in Figure 7.3. Every
point inside the domain P represents an independent integration variable f (t, x),
and shows the enormous increase over the HJM random variables Wi (t) given in
Figure 6.1. For modelling the forward rates and Treasury Bonds, one needs to
study a two-dimensional quantum field on a finite (Euclidean) domain.6

To define a Lagrangian L, one needs a kinetic term, denoted by Lkinetic, to de-
scribe the time evolution of the forward rates. Since it is known from the HJM
model that the forward interest rates have a drift velocity α(t, x) and volatility
σ(t, x), these have to appear directly in the Lagrangian. The important insight of
HJM [43] consists in recognizing that the combination of forward rates that occurs
in finance is of the form [∂ f (t, x)/∂t − α(t, x)]/σ(t, x); this HJM combination

6 The field theory interpretation of the evolution of the forward rates, as expressed in the domain P , is that of a
(non-relativistic) quantum string moving with unit velocity in the x (maturity) direction.
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Figure 7.3 Domain P of the forward interest rates

of forward rates, drift velocity and volatility continues to appear throughout the
treatment of the forward rates, including the linear and nonlinear cases, as well as
when the volatility of the forward rates is rendered stochastic.

Another term needs to be introduced in the Lagrangian L for constraining the
change of shape of the forward rates in the maturity direction. The analogy of
this term in the case of an ordinary string is a tension term in the Lagrangian
which attenuates sharp changes in the shape of the string, since the shape of the
string stores potential energy. To model a similar property for the forward rates one
cannot use a simple tension-like term (∂ f/∂x)2 in the Lagrangian, since, as will
be shown in Section 10.7.1, this term is ruled out by the (risk-neutral) martingale
condition for the forward rates.

7.3 Field theory action for linear forward rates

The existence of a martingale measure requires that the forward rates Lagrangian
contain higher-order derivative terms, essentially a term of the form (∂2 f/∂x∂t)2;
such string systems have been studied in [83] and are said to be strings with
finite rigidity. Rigidity yields a term in the forward rates Lagrangian, namely
Lrigidity, with a new parameter µ; the rigidity of the forward rates is given by 1/µ2

and quantifies the strength of the fluctuations of the forward rates in the time-to-
maturity direction x .

The simplest action that meets all the requirements discussed above is a linear
(Gaussian) model for the forward rates given by

S[ f ] =
∫ T f

Ti

dt
∫ t+TF R

t
dxL[ f ] (7.4)

≡
∫
P
L[ f ] (7.5)
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with the Lagrangian density L[ f ] given by

L[ f ] = Lkinetic[ f ] + Lrigidity[ f ] (7.6)

= −1

2


{ ∂ f (t,x)

∂t − α(t, x)

σ (t, x)

}2

+ 1

µ2

{
∂

∂x

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)}2



−∞ ≤ f (t, x) ≤ +∞ (7.7)

The presence of the second term in the action given in Eq. (7.6) is not ruled out
by the existence of a risk-neutral measure, and an empirical study [19] provides
strong evidence for this term in the evolution of the forward rates.

In summary, the forward rates behave like a quantum string, with a time- and
‘space-dependent’ drift velocity α(t, x), an effective mass given by 1/σ 2(t, x),
and string rigidity proportional to 1/µ2. In the limit of µ → 0, it will be shown
that one can recover (up to a re-scaling) the HJM model, which corresponds to an
infinitely rigid string.

The drift term α(t, x) is completely determined by the requirement of obtaining
a martingale evolution of the forward rates, with the Lagrangian having as free
parameters the function σ(t, x), and constants such as µ2. Unlike the HJM model
where a functional form is usually assumed for the volatility function σ(t, x), in
the field theory approach volatility can be kept completely arbitrary and deter-
mined from the market.

Since the field theory is defined on a finite domain P as shown in Figure. 7.3, to
complete the definition of the model the boundary conditions need to be specified
on all the four boundaries of the finite parallelogram P .

� Fixed (Dirichlet) initial and final conditions
The initial and final (Dirichlet) conditions in the time direction are given by

t = Ti ; Ti < x < Ti + TF R : f (Ti , x) (7.8)
: specified initial forward rate curve

t = T f ; T f < x < T f + TF R : f (T f , x) (7.9)
: specified final forward rate curve

� Free (Neumann) boundary conditions
To specify the boundary condition in the maturity direction, one needs to impose the con-
dition on the action given in Eq. (7.4) that it has no surface terms. The term

∫
P Lrigidity[ f ]

in the action can be integrated by parts with respect to x , and the requirement that there
are no boundary terms yields the following Neumann boundary condition

Ti < t < T f ,
∂

∂x

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)
= 0 (7.10)

: x = t or x = t + TF R (7.11)
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The Neumann boundary conditions are also necessary for obtaining a Hamil-
tonian for the forward rates, as will be clear from the discussion in Chapter 10.
Doing an integration by parts in the maturity direction using the Neumann bound-
ary conditions yields, from Eqs. (7.5) and (7.6), the action

S = −1

2

∫
P

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)[
1 − 1

µ2

∂

∂x2

]( ∂ f (t,x)
∂t − α(t, x)

σ (t, x)

)
(7.12)

The quantum field theory of the forward rates is defined by the partition function
Z , which is obtained by integrating over all configurations of f (t, x), and yields
the Feynman path integral

Z =
∫

D f eS[ f ] (7.13)∫
D f ≡

∏
(t,x)εP

∫ +∞

−∞
d f (t, x) (7.14)

eS[ f ]/Z is the probability for different field configurations to occur when the
functional integral over f (t, x) is performed.

The forward rates starting from some time t0 can in principle be defined into
the infinite future, that is with T f = ∞. Since the forward rates f (t, x) are only
defined for the future, one always has x > t . The domain P of the forward rates
can be extended, as shown in Figure 7.4, to a semi-infinite parallelogram that is

0 t0

t0

t

(t0, t0)

xt0 + TF R

(t0, t0 + TF R)

Figure 7.4 Domain of the forward rates defined for infinite future time
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bounded by parallel lines x = t and x = TF R + t in the maturity direction, and by
the line t = t0 in the time direction.

7.4 Forward interest rates’ velocity quantum field A(t, x)

The action given in Eq. (7.4) is suitable for studying the formal properties of the
forward rates, and is the basis, in Chapter 10, for defining the Hamiltonian of the
forward interest rates. For studying the Feynman path integral, which is the focus
of this chapter, it is simpler for computational purposes to change variables from
the quantum field f (t, x) to another quantum field A(t, x).

Let A(t, x) be a two-dimensional quantum field; the HJM change of variables
expresses A(t, x) in terms of the forward rates f (t, x) as follows, namely

∂ f

∂t
(t, x) = α(t, x) + σ(t, x)A(t, x) (7.15)

f (t, x) = f (t0, x) +
∫ t

t0
dt ′α(t ′, x) +

∫ t

t0
dt ′σ(t ′, x)A(t ′, x)) (7.16)

The quantum field A(t, x) is the drift-less velocity field of the forward interest
rates.

The Jacobian of the above transformation is a constant and, hence, up to a
constant ∫

D f →
∫

D A (7.17)

The action in terms of the A(t, x) field, from Eqs. (7.6) and (7.15), is given by

S[A] = −1

2

∫ ∞

t0
dt
∫ t+TF R

t
dx

{
A2(t, x) + 1

µ2

(
∂ A(t, x)

∂x

)2
}

(7.18)

=
∫
P
L[A] (7.19)

with Neumann boundary conditions, from Eq. (7.10), given by

∂ A(t, x)

∂x

∣∣∣
x=t

= 0 = ∂ A(t, x)

∂x

∣∣∣
x=t+TF R

(7.20)

The quantum field variables at the boundary x = t and x = t + TF R , namely
A(t, t) and A(t, t + TF R) take all possible values, and this results in the Neumann
boundary conditions given above.

The quantum field theory is defined by a functional integral over all variables
A(t, x); in particular, the values of A(t, x) on the boundary of P are unconstrained
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and are independent integration variables; this yields the partition function

Z =
∫

D AeS[A] (7.21)

Due to Neumann boundary conditions, repeating the derivation leading to
Eq. (7.12) one has the action of velocity quantum field

S = −1

2

∫
P

A(t, x)

(
1 − 1

µ2

∂2

∂x2

)
A(t, x) (7.22)

The action S[A] given in Eq. (7.22) has no derivative coupling in the time direction.
The velocity quantum field A(t, x) is effectively a quantum mechanical system
in the maturity x direction, and, for each t , is identical to the quantum mechanical
system discussed in Section 5.5.

Scaling symmetry

The change of variables from f (t, x) to A(t, x) has the following symmetry. Con-
sider the transformation σ(t, x) → ζ(t, x)σ (t, x); then a corresponding change
of A(t, x) → ζ(t, x)−1 A(t, x) leaves the defining Eq. (7.16) for A(t, x) invari-
ant. The change of variables from A(t, x) → ζ(t, x)−1 A(t, x) ≡ B(t, x) yields an
identical theory to the one written above in terms of the A(t, x) field. This sym-
metry implies that the volatility function σ(t, x) does not have an invariant signif-
icance, and the symmetry needs to be fixed in order to uniquely determine σ(t, x)

from market data.

7.5 Propagator for linear forward rates

Quantum fields, such as f (t, x) or A(t, x), themselves cannot be directly observed
as they are degrees of freedom (integration variables) that are fluctuating and
have no fixed value. What are observable and measurable are the average val-
ues of quantities that are functions of the quantum field. In particular, the mea-
surable quantities of a quantum field are the correlation functions that encode
the effect of the field’s fluctuations at one point on the field’s fluctuations at other
points.

The most important correlation function for finance – the field theory analog of
the variance of a single random variable – is the correlation function between the
field’s fluctuations at two different points. More precisely, the two-point correlator
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of the field A(t, x) is given by

< (A(t, x)A(t ′, x ′) > = E[A(t, x)A(t ′, x ′)]
= 1

Z

∫
D A A(t, x)A(t ′, x ′)eS[A]

≡ δ(t − t ′)D(x, x ′; t, TF R) (7.23)

where the δ(t − t ′) has been factored out for future convenience. D(x, x ′; t, TF R)

is called the propagator and is a measure of the effect that the fluctuations of the
field A(t, x) at point t, x has on the fluctuations of A(t ′, x ′) at another point t ′, x ′.

It is convenient to evaluate the moment generating functional for the quantum
field theory, given by

Z [J ] = 1

Z

∫
D Ae

∫∞
t0

dt
∫ t+TF R

t dx J (t,x)A(t,x)
eS[A] (7.24)

Any correlation function can be evaluated from Z [J ] by functional differentiation
by J (t, x) (discussed in A.15) and then setting J (t, x) = 0. In particular

< A(t, x)A(t ′, x ′) >= δ2

δ J (t, x)δ J (t ′, x ′)
Z [J ]

∣∣∣
J=0

(7.25)

The generating functional Z [J ] for constant rigidity µ has already been evaluated
in Section 5.5. From Eq. (5.30)

Z [J ] = exp
1

2

∫ ∞

t0
dt
∫ t+TF R

t
dxdx ′ J (t, x)D(x, x ′; t, TF R)J (t, x ′) (7.26)

where the propagator D(x, x ′; t, TF R) is given in Eq. (5.38).7 From Eq. (7.26)
one sees that for the Gaussian model, similar to the normal random variable, the
correlation functions between any number of fields at different points can all be
expressed in terms of the propagator. This simple property of the linear (Gaussian)
field theory does not extend to nonlinear theories, where it can be shown that one
needs all the correlation functions between fields at an arbitrary number of points
to fully describe the theory [106].

7 The propagator D(x, x ′; t, TF R) depends only on the variables x − t and x ′ − t since the Lagrangian, the
domain P and the Neumann boundary conditions are all only functions of x − t . This property of the propagator
implies that, if the volatility function is also a function only of x − t , that is σ(t, x) = σ(x − t), then all the
properties of the future interest rates depend not on instant t but only on how far into the future one is looking
at. This property is only partly realized in the financial market; see Figure 8.2.
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From Eq. (5.38) the propagator is given by8

D(x, x ′; t, TF R) = µ
cosh µ

{
TF R − |x − x ′|}+ cosh µ

{
TF R − (x + x ′ − 2t)

}
2 sinh µTF R

= D(x ′, x; t, TF R) : symmetric function of x, x ′ (7.27)

From Eqs. (7.22), (7.24) and (7.26), the following is a formal expression for the
propagator

D(x, x ′; t, TF R; µ) = < x | 1

1 − 1
µ2

∂2

∂x2

|x ′ > : Neumann B.C.’s. (7.28)

The symmetry of the theory under the transformation A(t, x) →
ζ(t, x)−1 A(t, x) is used to fix the propagator’s diagonal value to be unity, that is
D(x, x ′; t, TF R; µ) → D̃(x, x ′; t, TF R; µ) such that D̃(x, x; t, TF R; µ) = 1.

For most applications TF R → ∞, and yields

D(x, x ′; t) = lim
TF R→∞ D(x, x ′; t, TF R)

= µ

2

[
e−µ(x+x ′−2t) + e−µ|x−x ′|] ; x, x ′ > t (7.29)

The first exponential in the propagator given in Eq. (7.29) is due to the boundary at
x = t , and the second exponential is due to x taking values on an infinite interval.

The propagator has the following interpretation. If the field A(t, x) has some
value at point x , then the field at ‘distances’ x − µ−1 < x ′ < x + µ−1 will tend
to have the same value, whereas for other values of x ′ the field will have arbitrary
values. Hence the fluctuations in the time-to-maturity x direction are correlated
within maturity time µ−1, which is the correlation time of the forward interest
rates.

‘Kink’ in the propagator

An undesirable feature of the constant rigidity propagator is that – along the diago-
nal direction – the slope of the propagator perpendicular to the diagonal direction
is discontinuous. The discontinuity of the slope appears as a ‘kink’ when the prop-
agator is plotted against its arguments as can be seen in Figure 8.8. To analytically
identify the kink, define new variables θ± = θ ± θ ′ ; θ = x − t , θ ′ = x ′ − t . The
propagator is given by

D(θ+; θ−) = µ

2

[
e−µθ+ + e−µ|θ−|] (7.30)

8 To make the connection with Eq. (5.38) given in Section 5.5, compare the simple harmonic oscillator action
given in Eq. (5.28) with the action given in Eq. (7.22) for the velocity quantum field. This yields the following
identification of the parameters: m = 1/µ2, ω = µ, ti = t , t f = t + TF R , and x = t, x ′ = t ′.
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θ− = 0 defines the diagonal line θ = θ ′ in the plot of D(θ, θ ′). The slope of the
propagator perpendicular to θ− = 0 (see Figure 8.10) is defined as follows

m = ∂ D(θ+; θ−)

∂θ−

∣∣∣
θ−=0

≡ ∂ D(θ+; 0)

∂θ−
(7.31)

Expanding the propagator about θ− = 0 yields

D(θ+; θ−) � µ

2

[
e−µθ+ + 1 − µ|θ−| + O(θ2−)

]
(7.32)

Hence the slope m is discontinuous about θ− = 0 since9

m = −µ2

2

∂|θ−|
∂θ−

= µ2

2

{−1 θ− > 0
+1 θ− < 0

The discontinuity in m is equal to µ2, and can be seen in Figure 8.8.
It is shown in Chapter 8 that the field theory model with constant rigidity, while

explaining some features of the market correlation of the forward rates, does not
predict the correlation very well.

The basic model with constant rigidity can be generalized in various ways. The
simplest generalization is to continue with the Gaussian model, but with propaga-
tors that have more structure. In Appendices 7.14 to 7.15 the following variants of
the free field (Gaussian) model are studied.

1. Forward interest rates with a constraint on A(t, t) arising from the special role of the
spot rate f (t, t) = r(t).

2. Forward interest rates with a non-constant (maturity dependent) rigidity parameter
µ = µ(θ).

3. Forward interest rates with a fourth-order derivative in maturity time given by
a ‘stiffness’ term (∂2 A(t, x)/∂x2)2 being added to the Lagrangian with constant
rigidity.

4. Forward rates with (nonlinear) psychological future time given by z = z(θ) replacing θ .

Cases 1 and 2 are related to the propagator for constant rigidity. Case 3 yields a
stiff propagator that is the most important for empirical purposes, giving the best
fit to market data. Case 4 introduces nonlinear psychological future time in the
theory; this concept is very general, and can be applied to both linear and nonlinear
theories.

All the above linear models only modify the propagator D(x, x ′; t; TF R). All
the formulae that are derived for the linear models, such as the martingale measure

9 From its definition

|θ−| =
{

θ− θ− > 0
−θ− θ− < 0
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and pricing of forward rates derivatives, are valid for any Gaussian model. It will
be seen in Chapter 8 that the empirical predictions of the Gaussian field theory
models hinge on the propagator D(x, x ′; t, TF R), and only in the empirical studies
of the forward interest rates is any reference made to the explicit form of these
propagators.

7.6 Martingale condition and risk-neutral measure

The risk-neutral evolution for the forward interest rates is obtained using the
martingale condition for the action S[A]. The general martingale condition for
Treasury Bonds is given in Eq. (2.10) as

P(t0, T ) = E[t0,t∗][e− ∫ t∗
t0

r(t)dt
P(t∗, T )] (7.33)

and has the following explicit expression in field theory

P(t0, T ) = 1

Z

∫
D f e

− ∫ t∗
t0

r(t)dt
P(t∗, T )eS[ f ] (7.34)

Repeating the steps followed in the HJM model for deriving Eqs. (6.41) and
(6.42) yields the field theory generalization that

exp
∫
T

α(t, x) = 1

Z

∫
D Ae− ∫T σ(t,x)A(t,x)e

∫
P L[A] (7.35)

= exp
1

2

∫ t∗

t0
dt
∫ T

t
dxdx ′σ(t, x)D(x, x ′; t, TF R)σ (t, x ′) (7.36)

where the last equation follows from the generating functional given in Eq. (7.26).
The trapezoidal domain T determining the risk-neutral measure is nested inside

the domain of the forward rates P , as shown in Figure 7.5.
Dropping the time integration in Eq. (7.36) yields

∫ T

t
dxα(t, x) = 1

2

∫ T

t
dxdx ′σ(t, x)D(x, x ′; t, TF R)σ (t, x ′) (7.37)

Differentiating above expression with respect to T yields the following general-
ization of Eq. (6.44) for the drift velocity

α(t, x) = σ(t, x)

∫ x

t
dx ′D(x, x ′; t, TF R)σ (t, x ′) (7.38)
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t0 + TFR

t0
(t0,T )

t0

t*

t*

(t*,T )

0

t

x

(t*,t*)

(t0,t0)

T

Figure 7.5 Trapezoidal domain T for the martingale condition contained in the
domain of the forward rates

For constant volatility σ(t, x) = σ1, and the exact result is10

α(t, x) = lim
TF R→∞

σ 2
1

2

[
1 + e−2µ(TF R−x+t) − e−2µ(x−t)

1 − e−2µTF R

]

= σ 2
1

2

(
1 − e−2µ(x−t)

)
Eqs. (7.15) and (7.38) yield

f (t, x) = f (t0, x) +
∫ t

t0
dt ′σi (t

′, x)

∫ x

t ′
dy D(x, y; t ′, TF R)σi (t

′, y)

+
∫ t

t0
dt ′σ(t ′, x)A(t ′, x) (7.40)

7.7 Change of numeraire

In obtaining the risk-neutral measure in Section 7.6, the martingale measure was
defined by discounting the Treasury Bond by the money market account B(t0, t∗)

10 The drift has the limiting behaviour

α(t, x) �
{ 1

2TF R
σ(t, x)

∫ x
t dx ′σ(t, x ′) µ → 0

1
2 σ 2(t, x) µ → ∞

(7.39)

The equation for α(t, x) for the case for µ = ∞ is quite dissimilar from that of the HJM model given in
Eq. (6.44), which, upto a rescaling by TF R , is given by µ = 0.
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in Eq. (7.33), where

B(t0, t∗) ≡ e
∫ t∗

t0
r(t)dt

(7.41)

B(t0, t0) = 1

The quantity P(t, T )/B(t0, t) is a martingale [see Eq. (A.2)], since from Eq. (7.33)
the conditional expectation is

P(t0, T ) = E[t0,t∗]
[

e
− ∫ t∗

t0
r(t)dt

P(t∗, T )

]

⇒ P(t0, T )

B(t0, t0)
= E

[
P(t∗, T )

B(t0, t∗)

∣∣∣ P(t0, T )

B(t0, t0)

]

where E[t0,t∗][. . .] ≡ E[. . .].
It has been shown by Geman et al. [31,36,37,42] that any positive valued secu-

rity can be used for discounting the Treasury Bond. In particular, one can use other
Treasury Bonds with different maturities as a discounting factor instead of using
the spot interest rate. The martingale condition for the changed discounting factor
leads only to a change in the drift term for the action [36].

For concreteness, suppose that at time t0 all Treasury Bonds are discounted by
another Treasury Bond that matures at some fixed time t∗, that is, by P(t0, t∗). The
martingale condition is now defined by

P(t0, T ) = P(t0, t∗)E∗[P(t∗, T )] (7.42)

≡ P(t0, t∗)
∫

D A P(t∗, T )eS∗ (7.43)

where E∗[. . .] denotes taking the expectation value with respect to the new risk-
neutral measure S∗.

After the change of numeraire P(t, T )/P(t, t∗) is a martingale, since from
Eq. (7.42)

P(t0, T )

P(t0, t∗)
= E∗

[
P(t∗, T )

P(t∗, t∗)

∣∣∣ P(t0, T )

P(t0, t∗)

]
(7.44)

= E∗[P(t∗, T )]
Denote by α∗(t, x) the drift that corresponds to the martingale condition when
discounting by the Treasury Bond P(t0, t∗). A straightforward calculation using
the martingale condition determines that the drift velocity,11 similar to Eq. (7.38),

11 A Hamiltonian derivation is given in Eq. (10.71).
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is given by

α∗(t, x) = σ(t, x)

∫ x

t∗
dx ′D(x, x ′; t, TF R)σ (t, x ′) (7.45)

The relation of the risk-neutral probability measures eS/Z and eS∗/Z∗, obtained
by discounting using the spot interest rate and a Treasury Bond respectively, can
be explicitly obtained for Gaussian forward rates; a derivation is given in Appen-
dix 7.19 using the techniques of quantum field theory. From Eq. (7.104)

S = S[α] ; S∗ = S[α∗]

eS∗ = e
− ∫ t∗

t0
r(t)dt

P(t0, t∗)
eS (7.46)

The factor relating the two actions is evaluated in the finance literature using the
Radon–Nikodyn derivative [31, 36].

Eq. (7.46) is particularly useful in evaluating European options for Treasury
Bonds. From Eq. (6.53), for t0 < t∗ the price of a call option C is given by

C(t0, t∗, T, K ) = E[e− ∫ t∗
t0

dtr(t)
(P(t∗, T ) − K )+] (7.47)

= P(t0, t∗)E∗[(P(t∗, T ) − K )+] (7.48)

where Eq. (7.46) has been used in obtaining Eq. (7.48) above. To compute the call
option using Eq. (7.48) is much simpler than doing the calculation using Eq. (7.47),
since the discounting term, after a change in numeraire, is the deterministic func-
tion P(t0, t∗).12

7.8 Nonlinear forward interest rates

In the field theory of forward interest rates discussed so far, the forward rates were
taken to be Gaussian random fields with a finite probability of being negative. As
long as interest rates are well above zero, the negative valued fluctuations of the
forward rates are negligible. However, if the forward rates are near zero, as has
been the case for Japanese Yen since the 1990s and for the US$ since the early
2000s, it becomes important that the forward rates be a strictly positive-valued
quantum field, that is f (t, x) > 0 for all t, x . The forward rates can then be mod-
eled as exponential fields, and hence essentially nonlinear. Having f (t, x) > 0 is
a major advantage of any model, since in the financial markets forward rates are
always positive.

Market data discussed in Section 8.5.1 show that the volatility of volatility
is small but significant, and consequently considering volatility as a stochastic

12 The bond call option is computed in Sections 9.2 and 10.13 using discounting by a Treasury Bond.
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quantity needs to be addressed. Volatility by its very definition is the standard
deviation of the forward rates and hence is always strictly positive. The modelling
of the fluctuations of volatility of the forward rates is closely tied to the posi-
tivity of the forward rates. Once the forward rates are considered to be positive-
valued quantum fields, the simplest model for stochastic volatility is to consider
it to be some function of the forward rates – which is consistent only if the
forward rates themselves are strictly positive. Volatility can be also be gener-
alized to a stochastic quantity by considering it to be an independent quantum
field.

In the remainder of this chapter the field theory of the forward rates is exten-
ded, following the treatment given in [3], to a nonlinear theory of positive-valued
forward rates, and to a theory with linear forward rates with stochastic volatility.

The following cases are analyzed

1. Nonlinear forward rates with deterministic volatility.
2. Nonlinear forward rates, with stochastic volatility a function of the forward rates.
3. Linear forward rates with an independent nonlinear quantum field for stochastic

volatility.

For brevity of discussion cases 1 and 2 will sometimes be combined. The most
general case of nonlinear forward rates coupled to a nonlinear stochastic volatility
quantum field is not discussed.

The Lagrangians for the nonlinear forward rates discussed in this chapter are
incomplete because the drift term α(t, x) is left undetermined. The reason be-
ing that a Gaussian integration was performed in obtaining the drift term given
in Eq. (7.36) from its definition in Eq. (7.35); this can no longer be carried out
for nonlinear forward rates. To fix the drift term it will be necessary to have a
Hamiltonian formulation of the theory, which is discussed in Chapter 10.

7.9 Lagrangian for nonlinear forward rates

The forward rates are strictly positive, that is f (t, x) > 0. Hence, in contrast to
Eq. (7.7), the forward rates are modelled as an exponential quantum field

f (t, x) = f0eφ(t,x) > 0 ; − ∞ ≤ φ(t, x) ≤ +∞

How should the Lagrangian given in Eq. (7.6) be generalized to case where the
forward rates are always positive? For starters consider the volatility to be deter-
ministic and given by some function σ0(t, x) that is determined from the financial
markets.
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The Lagrangian given in Eq. (7.6) is interpreted to be an approximate one that
is valid only if all the forward rates are close to some fixed value f0. Note

∂ f (t, x)

∂t
= f0eφ(t,x) ∂φ(t, x)

∂t

� f0
∂φ(t, x)

∂t
+ O(φ2)

Hence the following mapping is made13

∂ f (t, x)

∂t
→ f0

∂φ(t, x)

∂t

Eq. (7.6) then generalizes to

L[φ] = Lkinetic[φ] + Lrigidity[φ] (7.49)

= −1

2


{ f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)

}2

+ 1

µ2

{
∂

∂x

(
f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)

)}2



The partition function of the theory is given by the Feynman path integral

Z =
∫

DφeS[φ] (7.50)∫
Dφ ≡

∏
(t,x)εP

∫ +∞

−∞
dφ(t, x) (7.51)

with Dirichlet condition for initial and final time as in Eq. (7.8), and Neumann
boundary condition, similar to Eq. (7.10), given by

Ti < t < T f ,
∂

∂x

(
f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)

)
= 0 (7.52)

: x = t or x = t + TF R

The Lagrangian for the nonlinear forward rates given in Eq. (7.49) is the gener-
alization of the Black–Karasinski spot interest rate Lagrangian given in Eq. (6.75).
The Lagrangian is nonlinear due to the behaviour of the drift term α(t, x), as given
in Eq. (10.66). Nonlinearities are also contained in the financial instruments that
depend on the forward interest rates.

13 This is a standard mapping in the study of Lie group valued quantum fields, with its kinetic terms being
determined in a similar manner [106].
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7.9.1 Fermion path integral

The case of nonlinear forward rates with deterministic volatility is analyzed to
illustrate the new features of the nonlinear case. The Neumann boundary condi-
tions given in Eq. (7.52) necessitates a change of variables from φ(t, x) to A(t, x),
with the velocity field satisfying the Neumann boundary conditions. This change
of variables gives rise to a nontrivial Jacobian. Define the change of variables by

f0
∂φ(t,x)

∂t − α(t, x)

σ0(t, x)
= A(t, x) (7.53)

From the analysis for the martingale condition in Chapter 10, for the special case
of σ0(t, x) = σ0 = constant, one obtains from Eq. (10.65)

α(t, x) = − σ 2
0

2 f0
D(x, x; t) + σ 2

0

∫ x

t
dx ′D(x, x ′; t)eφ(t,x ′)

On solving Eq. (7.53), one obtains the following

φ(t, x) = ψ[t, x; A]

Hence, the differentials are given by

dφ(t, x) =
∫

dt ′dx ′J (t, x; t ′, x ′)d A(t ′, x ′)

where J (t, x; t ′, x ′; A) = δψ[t, x; A]
δA(t ′, x ′)

⇒ Dφ = J [A] D A where J = det
∣∣∣J (t, x; t ′, x ′)

∣∣∣
In field theory, a determinant is represented by a path integral over fermion

quantum fields c†(t, x), c(t ′, x ′) (integration variables) [106] such that

J [A] =
∫

Dc† DceSF [c†,c,A]

SF =
∫
P

dtdxdt ′dx ′c†(t, x)J (t, x; t ′, x ′; A)c(t ′, x ′) (7.54)

Fermions are anti-commuting integration variables that are well-defined mathe-
matical objects, and path integrals for fermion quantum fields are discussed in
[106]. Quantum fields such as the forward interest rates f (t, x), φ(t, x) and so on
that take real or complex values are called boson quantum fields to distinguish
them from fermionic fields.
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The nonlinear forward rates has a partition function given by

Z =
∫

DφeS[φ]

=
∫

D AJ [A]eS[A] =
∫

D ADc† Dc eS[A]+SF [c†,c,A] (7.55)

with
∫

D ADc† Dc ≡
∏

(t,x)∈P

∫ +∞

−∞
d A(t, x)

∫
dc†(t, x)dc(t, x)

The action S[A] is quadratic in the field variable A(t, x), and hence contains no
nonlinearities. The sum total effect of the nonlinearity of the forward interest rates
is seen to be contained in the fermion path integral that generates nonlinear terms
for the A(t, x) field.

Nonlinear quantum field theories are notoriously difficult to analyze due to the
divergences that are inherent in such theories; only those field theories that are
renormalizable can be given a consistent and meaningful interpretation [106]. The
renormalization of nonlinear forward interest rates has yet to be addressed and
solved.

7.10 Stochastic volatility: function of the forward rates

For forward interest rates that are positive valued, volatility can be modelled
as a stochastic quantity by considering it to be a function of the forward rates
[1, 2, 103]. The standard models using this approach consider that volatility is
given by14

σ(t, x, f (t, x)) = σ0(t, x)eνφ(t,x) (7.56)

σ0(t, x) : deterministic function

In the limit of zero rigidity µ → 0, the following variants of the HJM models
are special cases of Eq. (7.56), and have been discussed from an empirical point of
view in [2].

1. Ho and Lee (1986) Model : σ(t, x, f (t, x)) = σ0 : deterministic

2. CIR (1985) : σ(t, x, f (t, x)) = σ0 f
1
2 (t, x)

3. Courtadon (1982) : σ(t, x, f (t, x)) = σ0 f (t, x)

4. Vasicek (1977) : σ(t, x, f (t, x)) = σ0 exp(−λ(x − t)) : deterministic
5. Linear proportional HJM (1992) : σ(t, x, f (t, x)) = [σ0 + σ1(x − t)] f (t, x)]

14 Using no arbitrage arguments, it can be shown that ν ≥ −1/2 [2, 97].
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The following is a straightforward generalization of the nonlinear Lagrangian
given in Eq. (7.49)

L[φ] = Lkinetic[φ] + Lrigidity[φ] (7.57)

= −1

2


{ f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)eνφ(t,x)

}2

+ 1

µ2

{
∂

∂x

(
f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)eνφ(t,x)

)}2



with Dirichlet condition for initial and final time as in Eq. (7.8), and Neumann
boundary condition, similar to Eq. (7.10), given by

Ti < t < T f ,
∂

∂x

(
f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)eνφ(t,x)

)
= 0 (7.58)

: x = t or x = t + TF R

The quantum field theory is defined by

Z =
∫

Dφe−νφeS[φ]

∫
Dφe−νφ =

∏
(t,x)∈P

∫ +∞

−∞
dφ(t, x)e−νφ(t,x) (7.59)

The parameter ν is a measure of the extent to which volatility is stochastic, and
has a natural ν → 0 limit to the case of the nonlinear theory of forward rates with
deterministic volatility σ0(t, x).

The parameter ν can in principle be determined from data. In the fortunate cir-
cumstance that ν is a small parameter, one can do a perturbative expansion of the
nonlinear theory about the Gaussian theory, a procedure that is well studied and
understood in field theory, and use perturbation theory to self-consistently estimate
ν from market data.

7.11 Stochastic volatility: an independent quantum field

Consider the case where volatility σ(t, x) is stochastic and modelled as an
independent quantum field.15 Since one can only measure the behaviour of the
forward rates, all effects of stochastic volatility are manifested only through the
observed properties of the forward rates.

15 The HJM model [43] has been developed by [1, 103] (and references cited therein) to account for stochastic
volatility. Amin and Ng [2] studied the market data of Eurodollar options to obtain the implied forward rates
volatility; they concluded that many features of the market, and in particular of the (stochastic) volatility of
the forward rates curve, could not be fully explained in the HJM framework.
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For simplicity, consider the forward interest rates as a linear quantum field, and
from Eq. (7.7)

f (t, x) : − ∞ ≤ f (t, x) ≤ +∞
Since the volatility function σ(t, x) > 0 is always positive, introduce another
boson quantum field h(t, x) such that

σ(t, x) = σ0eh(t,x), − ∞ ≤ h(t, x) ≤ +∞
The system now consists of two interacting quantum fields, namely f (t, x) and
h(t, x). The interacting system’s Lagrangian should have the following features.

� A parameter ξ that quantifies the extent to which the field h(t, x) is stochastic. A limit
of ξ → 0 would, in effect, ‘freeze’ all the fluctuations of the field h(t, x), and reduce it
to a deterministic function.

� A parameter κ to control the fluctuations of h(t, x) in the maturity direction similar to
the parameter µ that controls the fluctuations of the forward rates f (t, x) in the maturity
direction x .

� A parameter ρ with −1 ≤ ρ ≤ +1 that quantifies the correlation of the forward rates’
quantum field f (t, x) with the volatility quantum field h(t, x).

� A drift term for volatility, namely β(t, x), which is analogous to the drift term α(t, x)

for the forward rates.

The Lagrangian for the interacting system is not unique; there is a wide variety
of choices that one can make to fulfil all the conditions given above. A possible
Lagrangian for the interacting system, written by analogy with the Lagrangian for
the case of stochastic volatility for a single security [5], is given by

L = − 1

2(1 − ρ2)

(
∂ f
∂t − α

σ
− ρ

∂h
∂t − β

ξ

)2

− 1

2

(
∂h
∂t − β

ξ

)2

− 1

2µ2

(
∂

∂x

(
∂ f
∂t − α

σ

))2

− 1

2κ2

(
∂

∂x

(
∂h
∂t − β

ξ

))2

(7.60)

with action

S[ f, h] =
∫
P

L

One needs to specify the boundary conditions for the interacting system. The
initial and final conditions for the forward rates f (t, x) given in Eq. (7.8) continue
to hold for the interacting case. The volatility quantum field’s boundary conditions
are the following.
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Fixed (Dirichlet) initial and final conditions

The initial value is specified from data, that is

Ti < x < Ti + TF R, σ (Ti , x)

: specified initial volatility curve

T f < x < T f + TF R, σ (T f , x)

: specified final volatility curve

The boundary condition in the x-direction for the forward rates f (t, x) – as given
in Eq. (7.10) – continues to hold for the interacting case, and for the volatility field
is similarly given by the Neumann boundary condition.

Free (Neumann) boundary conditions

Ti < t < T f :
∂

∂x

(
∂h(t, x)

∂t
− β(t, x)

) ∣∣∣
x=t

= 0 = ∂

∂x

(
∂h(t, x)

∂t
− β(t, x)

) ∣∣∣
x=t+TF R

(7.61)

On quantizing the volatility field σ(t, x) the boundary condition for the forward
rate f (t, x) given in Eq. (7.10) is rather unusual. The martingale measure yields
that the drift velocity α is a (quadratic) functional of the volatility field σ(t, x);
hence the boundary condition Eq. (7.10) for the case of stochastic volatility is a
form of interaction between the f (t, x) and σ(t, x) fields.

The requirement that the system have a well-defined Hamiltonian dictates that
path-integration measure for the quantum field h(t, x) needs to be defined as
follows ∫

D f Dhe−h =
∏

(t,x)εP

∫ +∞

−∞
d f (t, x)dh(t, x)e−h(t,x) (7.62)

The partition function for the forward interest rates with stochastic volatility is
defined by the Feynman path integral as

Z =
∫

D f Dhe−heS[ f,h] (7.63)

Similar to nonlinear forward interest rates, the problem of renormalization has
to be solved for the field theory of forward rates with stochastic volatility to be
mathematically consistent [106].

The (observed) market value of a financial instrument, say O[ f, h], is expressed
as the average value of the instrument – denoted by < O[ f, h] > – taken over
all possible values of the quantum fields f (t, x) and h(t, x), with the probability
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density given by the (appropriately normalized) exponential of the action. In
symbols

< O[ f, h] >= 1

Z

∫
D f Dhe−h O[ f, h]eS[ f,h] (7.64)

Stochastic volatility is reduced to a deterministic function in the following limit:
ξ, ρ and κ → 0. The 1/ξ2 kinetic term of the h(t, x) field in the action given in
Eq. (7.61) has the limit (up to irrelevant constants)

lim
ξ→0

∏
t,xεP

exp


−1

2

∫
P

(
∂h
∂t − β

ξ

)2

→

∏
t,xεP

δ

(
∂h

∂t
− β

)

which implies that

< σ(t, x) > = σ0 < eh(t,x) >

⇒ σ0 exp

{∫ t

t0
dt ′β(t ′, x)

}
+ O(ξ, κ, ρ)

7.12 Summary

The quantum field theory of the forward interest rates is based on each forward
interest rate being an independent degree of freedom; in particular, the correlation
of fluctuations in the field theory of the forward rates typically have a finite range,
whereas in the HJM model all the fluctuations are exactly correlated. The finite
correlations in the time-to-maturity direction that exist for the forward rates can be
efficiently captured using a variety of field theory models.

Gaussian models of the forward rates have the important property of being ana-
lytically tractable. Five different variations of the Gaussian model were discussed,
showing the flexibility and versatility of the Gaussian models.

The field theory model was further developed to account for nonlinear forward
rates. The nonlinearities give rise, for the first time in financial modelling, to a fer-
mion path integral that results from a nonlinear change of variables. Stochastic
volatility of the forward rates was firstly considered as a nonlinear function of the
forward rates, and was then introduced as an independent quantum field. In both
cases, the path integral has natural extensions that account for nonlinear forward
rates, and for their stochastic volatility.

For the case of deterministic volatility with linear forward rates, it was shown
in Section 7.4 that, in effect, the two-dimensional quantum field theory reduced
to a one-dimensional quantum mechanical problem due to the specific nature of
the Lagrangian. However, the quantum field theory of nonlinear forward rates was
seen to be irreducibly two dimensional.
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Although the formalism of stochastic calculus can be extended to the case of free
Gaussian quantum fields, it cannot be extended to account for nonlinear quantum
field theories. The concept of renormalization, that is essential for understanding
nonlinear field theories, has no counterpart in stochastic calculus.

The methodology of quantum field theory provides a computationally tractable
and independent perspective for studying and understanding the (nonlinear) ran-
dom processes that drive the forward interest rates.

7.13 Appendix: HJM limit of the field theory

The action S[A] given in (7.18) allows all the degrees of freedom of the field
A(t, x) to fluctuate independently and can be thought of as a ‘string’ with string
rigidity equal to 1/µ2; in this language the forward rate curve in the HJM model
is a string with infinite rigidity.

From Eq. (7.29) the constant rigidity propagator has the following limits

D(x, x ′; t) →
{

µ + O(µ2) µ → 0
1
2µe−µ|x−x ′| → δ(x − x ′) µ → ∞ (7.65)

As expected, in the limit of µ → 0 all the fluctuations in the x direction are
‘frozen’ in that they are exactly correlated; in other words the values of A(t, x)

for different maturities are all the same, and this is the limit that reproduces the
HJM model. The ‘freezing’ of all quantum fluctuations can be directly seen from
the action given in Eq. (7.18); when µ = 0 any configuration of A(t, x) with vari-
ations in the x direction gives an infinite negative contribution to the action, and
hence is eliminated from the path integral; the only random configurations that
survive are the ones for which all the variables A(t, x) have the same value in the
x direction, and yield the HJM model.16

For Eq. (7.65) the limits of TF R → ∞ and µ → 0 cannot be interchanged since
the convergence is not uniform. When µ → 0, the simplest procedure to obtain the
HJM model is to set the field theory propagator to unity. In other words

lim
QFT→HJM

D(x, x ′; t, TF R) → 1

Define

j (t) = 1√
TF R

∫ t+TF R

t
dx J (t, x) (7.66)

16 The other limit of µ → ∞ corresponds to all the fluctuations of the A(t, x) being completely de-correlated.
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From Eqs. (7.26) and (7.66) the HJM limit of the propagator yields

lim
µ→0

Z [ j] = exp
1

2

∫ ∞

t0
dt j2(t)

which is the result obtained earlier, in Eq. (6.35), for the HJM model.
The K-factor HJM model is

∂ f (t, x)

∂t
= α(t, x) +

K∑
i=1

σi (t, x)Wi (t)

with white noise given by < Wi (t)W j (t ′) >= δi− jδ(t − t ′). The forward rates
correlator is hence given by

<

[
∂ f (t, x)

∂t
− α(t, x)

] [
∂ f (t ′, x ′)

∂t
− α(t ′, x ′)

]
>= δ(t − t ′)H(t, x, x ′)

where

H(t, x, x ′) =
K∑

i=1

σi (t, x)σi (t, x ′)

The Lagrangian describing the random process of a K-factor HJM model is hence
given by

L[A] = −1

2
A(t, x)H−1(t, x, x ′)A(t, x ′)

where H−1(t, x, x ′) denotes the inverse of the function H(t, x, x ′). For the
K-factor HJM model, the expression H−1(t, x, x ′) is singular, and one has to
introduce a vanishingly small rigidity parameter to obtain a well-defined field
theory.

7.14 Appendix: Variants of the rigid propagator

The constant rigidity model of the forward interest rates is based on the term in the
Lagrangian of the form

(
∂ A(t, x)/∂x

)2 which constrains the fluctuations of the
field A(t, x) in the maturity direction. Various generalizations of this constant
rigidity can be made, and two of these are considered below.

7.14.1 Constrained spot rate

All the forward rates have been treated on par in defining the constant rigidity
model. However, it is known that the spot interest rate r(t) = f (t, t) has a special
role in the financial markets, since central banks frequently intervene to change the



7.14 A: Variants of the rigid propagator 175

spot rate to suit changes in government policies. Hence, it is reasonable to assume
that the spot interest rate f (t, t) should be treated in a special manner.

Since what is meaningful is the rate of change of spot rate r(t), it is con-
strained to fluctuate about some arbitrary value c. Eq. (7.38) shows that α(t, t) = 0,
and hence (∂ f/∂t)(t, t) = σ(t, t)A(t, t). In other words, constraining the rate of
change of the spot rate is equivalent to constraining the velocity field A(t, t).

The propagator for constant rigidity µ, namely D(x, x ′; t, TF R), is modified to
incorporate the special behaviour of the spot rate. Introduce a new term in the
action to constrain the boundary field variable A(t, t), namely

eS → 1√
2πa

exp

{
− 1

2a

∫ ∞

t
dt
(

A(t, t) − c
)2}

eS

The parameter a controls the degree of randomness of the variable A(t, t), and
in the limit of a → 0, the value A(t, t) is fixed at c. The constrained propagator
DC (x, x ′; t, TF R) does not depend on the parameter c as it only changes the value
of α(0). For calculational purposes it is easiest to assume that c = 0.

The constraint can be implemented by modifying the action to

eS →
∫ ∞

−∞
dξeSeiξ A(t,t)e−a2ξ2/2 (7.67)

Using Gaussian integrations, one can derive that the constrained propagator is
given by

DC(x, x ′; t, TF R) = D(x, x ′; t, TF R) − D(t, x; t, TF R)D(t, x ′; t, TF R)

D(t, t; t, TF R) + a
(7.68)

The constrained propagator is only a function of θ = x − t since the constraint is
imposed at θ = 0. In the limit of a → +∞, as expected DC → D(x, x ′; t, TF R).

7.14.2 Non-constant rigidity

Another modification of the correlation structure is to make µ a function of the
maturity time θ [9, 97]. The dependence of µ on maturity has a direct physical
meaning; if one imagines that the forward rates’ rigidity increases with increasing
maturity, this in turn implies that µ decreases as a function of θ . The analytically
tractable function µ = µ0/(1 + kθ) is chosen for rigidity as it declines to zero as
θ becomes large, and contains constant rigidity µ0 as a limiting case. The action
is given by

SM = −1

2

∫ t1

t0
dt
∫ TF R

0
dθ

(
A2 +

(
1 + kθ

µ0

∂ A

∂θ

)2
)

(7.69)



176 Quantum field theory of forward interest rates

This is a quadratic action, and is simplified by performing integration by parts
and setting the boundary term to zero, since Neumann boundary conditions are
assumed. The propagator for this action is found to be [9, 97]

DM(θ, θ ′; TF R) = µ2
0α

2λα(α + 1/2)(1 − (1 + kTF R)−2α)

×
(

α + 1/2

α − 1/2
(1 + kTF R)−2α(1 + kθ)α−1/2 + (1 + λθ)−α−1/2

)

×
(

α + 1/2

α − 1/2
(1 + kTF R)−2α(1 + kθ ′)α−1/2 + (1 + kθ ′)−α−1/2

)
(7.70)

where α =
√

1
4 + µ2

0
4k2 . The bound on the θ variable is explicitly kept at TF R . To

compare this model with the HJM model the limit of µ0 → 0 has to be taken
before the limit of TF R → ∞, and the limits cannot be interchanged since the
convergence of the limits is not uniform.

The following are two of the expected limits

DM(θ, θ ′; TF R) =
{

D(θ, θ ′; TF R; µ0) k → 0
1

TF R
µ0 → 0

(7.71a)

If the limit TF R → ∞ is taken first, the propagator becomes, for θ > θ ′

DM1(θ, θ ′) = µ2
0(α − 1/2)

2kα(α + 1/2)
(1 + kθ)−α−1/2

×
(

α + 1/2

α − 1/2
(1 + kθ ′)α−1/2 + (1 + kθ ′)−α−1/2

)
(7.72)

which exhibits a θ dependence in the non-HJM limit of µ0 → 0. Hence,
DM1(θ, θ ′) cannot be made equivalent to HJM model since the limit of TF R → ∞
has been taken before the limit of µ0 → 0 in DM(θ, θ ′; TF R).

7.15 Appendix: Stiff propagator

It was shown in the last paragraph of Section 7.5 that the constant rigidity propaga-
tor shows a ‘kink’ around its diagonal co-ordinates.17 All the variants of the prop-
agator based on a rigidity term, including the propagators discussed in Appendices
7.14.1 and 7.14.2 continue to show the same ‘kink’.

However, as can be seen from Figure 8.4, the surface of the empirical propaga-
tor is extremely smooth and showing no such kinks. The shape of the empirical

17 Recall a ‘kink’ in the θ, θ ′ plot of the propagator D(θ, θ ′) is a discontinuity, along the diagonal, in the deriva-
tive of the propagator along the direction orthogonal to the diagonal axis .
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propagator is taken to be an indication in [6] that the evolution of the forward rates
curve needs to be attenuated by a higher power of the derivative of the forward
rates in the maturity direction than the second-order derivative provided by the
constant rigidity model. The higher power of the derivative stiffens the fluctua-
tions of the forward rates curve, and produces the desired smooth behaviour of the
empirical propagator, as is demonstrated in this Appendix.

A stiffness term of the form (∂2 A(t, x)/∂x2)2 is added to the Lagrangian18 that
strongly constrains any fluctuations of the forward rates in the maturity direction.
Hence, extending Eq. (7.18), the following is an action, called the stiff action and
Lagrangian, with both the rigidity and stiffness terms (µ, λ > 0)

SQ[A] = −1

2

∫ ∞

t0
dt
∫ t+TF R

t
dx

{
A2(t, x) + 1

µ2

(
∂ A(t, x)

∂x

)2

+ 1

λ4

(
∂2 A(t, x)

∂x2

)2}

=
∫
P
LQ[A] (7.73)

with A(t, x) satisfying Neumann boundary conditions as in Eq. (7.20), and which
yields, on integrating by parts – similar to Eq. (7.22) – the following

SQ = −1

2

∫
P

A(t, x)

(
1 − 1

µ2

∂2

∂x2
+ 1

λ4

∂4

∂x4

)
A(t, x) (7.74)

Stiffness λ(�= ∞) introduces a quartic derivative term in the action that attenu-
ates, even more strongly than the µ rigidity term, all the high-frequency fluctua-
tions of the forward rates in the maturity direction. The propagator is now given
by19

G(x, x ′; t) = λ4 < x | 1

λ4 + (λ2/µ)2 p2 + p4
|x ′ > : Neumann B.C.’s. (7.75)

where p2 ≡ − ∂2

∂x2

Note that

λ4 + (λ2/µ)2 p2 + p4 = (p2 + α+)(p2 + α−)

with α± = λ4

2µ2

[
1 ±

√
1 − 4(

µ

λ
)4

]

18 Given the need to have a positive term in the Lagrangian, a third-order derivative is ruled out.
19 Henceforth TF R → ∞.
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Hence

1

λ4 + (λ2/µ)2 p2 + p4
=
(

1

α+ − α−

)[
1

p2 + α−
− 1

p2 + α+

]
(7.76)

Recall from Eq. (7.28) that

< x | 1

p2 + α±
|x ′ > = 1

α±
D(x, x ′; t; √

α±)

Define new variables

θ± = θ ± θ ′

θ = x − t ; θ ′ = x ′ − t (7.77)

Hence, from Eqs. (7.75), (7.76) and (7.77)

G(θ+; θ−) =
(

λ4

α+ − α−

)[
1

α−
D(θ+; θ−; √

α−) − 1

α+
D(θ+; θ−; √

α+)

]
(7.78)

and, from Eq. (7.29)

D(θ+; θ−; √
α±) =

√
α±
2

[
e−√

α±θ+ + e−√
α±|θ−|] (7.79)

λ → ∞ gives the limiting behaviour of α+ � λ4/µ2 and α− � µ2. Hence the
propagator has the following limit

lim
λ→∞ G(θ+; θ−; µ, λ) → D(θ+; θ−; µ)

and, as expected, reduces to the case of constant rigidity.
The solution for α± yields three distinct cases, namely, when α± is real, complex

or degenerate. Note for all three cases λ �= ∞, and giving rise to a qualitatively
different propagator than the variants based on the rigidity term.

Case I: µ <
√

2λ ; α± real

Choose the following parametrization

α± = λ2e±b

e±b = λ2

2µ2

[
1±
√

1 − 4
(µ

λ

)4
]

; b ≥ 0
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In this parametrization, from Eqs. (7.78) and (7.79)

Gb(θ+; θ−) = λ

2 sinh(2b)

[
e−λθ+ cosh(b)} sinh{b + λθ+ sinh(b)}

+ e−λ|θ−| cosh(b) sinh{b + λ|θ−| sinh(b)}
]

(7.80)

The limit of µ << λ corresponds to eb � λ2/µ2.

Case II: λ < µ/
√

2 ; α± complex

Use the parametrization

α± = λ2e±iφ

e±iφ = λ2

2µ2

[
1±i

√
4
(µ

λ

)4 − 1

]

Hence

Gφ(θ+; θ−) = λ

2 sin(2φ)

[
e−λθ+ cos(φ) sin{φ + λθ+ sin(φ)}

+ e−λ|θ−| cos(φ) sin{φ + λ|θ−| sin(φ)}
]

(7.81)

where cos(φ) > 0.

Case III: α± = λ2: degenerate

Case I and Case II are separated by the degenerate case of α± = λ2 corresponding
to µ = √

2λ, which is equivalent to b = 0 = φ. The propagator is

Gd(θ+; θ−) = λ

4

[
e−λθ+{1 + λθ+} + e−λ|θ−|{1 + λ|θ−|}

]
(7.82)

For |θ−| � 0, due to a nontrivial cancellation of the terms linear in |θ−|, the prop-
agator given in Eq. (7.82) has the limit Gd(θ+; θ−) � −(1/2)λ2θ2− + O(θ3−)+
function of θ+, showing that the kink that was encountered for the constant (and
non-constant) rigidity propagator has disappeared. This result is now proven in
general.

Absence of ‘kink’ in the stiff propagator

The derivations carried out for the kink in Section 7.5 is repeated for the propagator
G(θ+; θ−), with the result being valid for all three cases; the explicit expression
from Case I is used for convenience. The slope orthogonal to the line θ− = 0, as
shown in Figure 8.10, is defined as

m Q = ∂Gb(θ+; θ−)

∂θ−
|θ−=0 ≡ ∂Gb(θ+; 0)

∂θ−
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Expanding the propagator G(θ+; θ−) about θ− = 0 yields20

Gb(θ+; θ−) � λ

2 sinh(2b)

(
1 − λ|θ−| cosh(b) + 1

2
λ2θ2− cosh2(b) + O(θ3−)

)

×
(

sinh(b){1 + λ|θ−| cosh(b)} + 1

2
λ2θ2− sinh2(b) + O(θ3−)

)
(7.83)

= λ

2 sinh(2b)

[
sinh(b) − 1

2
λ2θ2− sinh(b)

(
cosh2(b) − sinh(b)

)]+ O(θ3−)

The nontrivial cancellation of the term linear in |θ−| in Eq. (7.83) gives a final
result that is a function of θ2− and consequently has a continuous derivative in the
limit of |θ−| → 0; hence

m Q = rQθ−
→ 0 as θ− → 0

showing that there is no kink for the stiff propagator; in fact m Q = 0 also implies
that along the full length of line defined by θ− = 0 the propagator has a maxima.
The curvature orthogonal to the diagonal line θ− = 0 is given by

rQ = ∂2Gb(θ+; θ−)

∂θ2−
|θ−=0

= λ

2 sinh(2b)

[
−λ2 sinh(b)

{
cosh2(b) − sinh(b)

}]
(7.84)

rQ < 0 follows from the fact that b ≥ 0, confirming that the value of the propaga-
tor along θ− = 0 is a maximum.

In the limit of λ → ∞, since one can no longer carry out the Taylors expansion
around θ− = 0, the cancellation of the term linear in |θ−| becomes invalid, and the
propagator G(θ+; θ−) develops the expected kink.

7.16 Appendix: Psychological future time

The forward interest rates model can be further improved by noting that the pre-
dicted correlation structure for field theory models depends only on variable θ =
x − t , where t is present time and x is future time. The variable θ is a measure of
how far in the future is future time x . If one is studying nature, then there is no am-
biguity in what is meant by future time – θ must grow linearly for any parametriza-
tion of the future. But in finance ‘future time’ is determined by how investors

20 Up to a function of θ+ that does not affect the singularity structure of the propagator near θ− = 0.
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and fund managers view the future. Based on their subjective and personal views
about how the financial system will perform in the future, practitioners of finance
form their views – in the present – as to what the future holds, such as the risks
inherent in future lending and borrowing, the present price of a futures contract
and so on.

It is well known that one can predict very little about the very long-term be-
haviour of the market; the best that one can do is have some credible models for
the next year or two. Hence it is expected that in taking positions far from the im-
mediate future, the sense of future time should grow more slowly than calendar
time. For instance, the future time interval between say the next four years and 12
years is eight calendar years, but in the minds of the investors and brokers, this
could appear to be equal to the interval between the present and two years in the
immediate future.

Future time θ is replaced by some nonlinear function z = z(θ) [9, 97], to be
determined from the market. The nonlinear maturity variable z = z(θ) measures
psychological future time in an investor’s minds that corresponds to calendar fu-
ture time given by θ . The specification of psychological future time z(θ) is an
independent ingredient of the field theory model, and needs to be specified in
conjunction with the Lagrangian. Some general features of function z(θ) is that
it is invertible, namely θ = θ(z) is well defined, and that z(0) = 0 ; z(∞) = ∞.
The independent variables are now t, z(θ) instead of t, x . The forward rates from
the market are always given for f (t, θ), and so both future calendar time θ as
well as psychological future time z(θ) are necessary to connect with the mar-
ket. The defining equation for psychological future time, similar to Eq. (7.15), is
given by

∂ f

∂t
(t, θ) = α(t, z(θ)) + σ(t, z(θ))A(t, z(θ)) ; θ = x − t (7.85)

where f (t, θ) depends only on calendar time θ = x − t . An important feature of
the defining equation above is that both future times, namely θ = x − t and psy-
chological time z(θ) occur in the theory.21

The stiff Lagrangian for psychological future time is written as

Sz = −1

2

∫ t1

t0
dt
∫ z(∞)

z(0)

dz

(
A2 + 1

µ2

(
∂ A

∂z

)2

+ 1

λ4

(
∂2 A

∂z2

)2)
(7.86)

21 The field theory for psychological future time can be defined entirely in terms of forward rates f̃ (t, z(θ)).
However, for imposing the martingale condition, one needs to apply the functional differential operator
δ/δ f̃ (t, z(θ)) on Treasury Bonds P(t, T ) = exp(− ∫ T −t

0 dθ f (t, θ)) as given in Eq. (10.60). Hence it is nec-

essary to specify the relation between f̃ (t, z(θ)) and f (t, θ), and in effect one would recover Eq. (7.85).
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The propagator for Sz is G(z, z′; µ, λ) as in Eq. (7.78) and the martingale condition
for psychological future time is given by Eq. (10.61) as

α(t, z) = σ(t, z)
∫ z

z(0)

dz′G(z, z′)σ (t, z′)

For the case of constant rigidity, as expected, the propagator is given by
D(z, z′; µ) = (µ/2)(e−µ|z−z′| + e−µ(z+z′)).

Introducing psychological future time z(θ) is different from giving a maturity
dependence to the rigidity µ = µ(θ). To see this, write the action, for rigidity
function µ(θ) ≡ µ0(dg(θ)/dθ), as

SM = −1

2

∫ t1

t0
dt
∫ ∞

0
dθ

(
A2 + 1

µ2
0

(
∂ A

∂g

)2
)

With a change of variables from θ to g the action is given by

SM = −1

2

∫ t1

t0
dt
∫ g(∞)

g(0)

dg

(
dθ

dg

)(
A2 + 1

µ2
0

(
∂ A

∂g

)2
)

�= Sz

Hence, unlike the case of psychological future time z(θ), the Lagrangian for non-
linear variable g(θ) has an additional Jacobian factor dg(θ)/dθ .

Examples for the possible choices for psychological future time are (i) z =
tanh β(θ − θ0), (ii) z = θν and so on.

The introduction of nonlinear future time z(θ) is a new way of thinking of the
interest rates models. In the framework of field theory, empirical data can be used
to gain an insight into market psychology that results in the formation of z(θ), and
which constitutes subjective future time for the market players.

7.17 Appendix: Generating functional for forward rates

All the financial instruments are expressed in terms of the forward rates f (t, x),
and not in terms of the velocity field A(t, x), which has been introduced primarily
as an efficient tool for computations. The generating functional of the forward rates
is directly computed, and is useful for evaluating various financial instruments.

The generating functional for the forward rates is defined by

Z f [J ] = 1

Z

∫
D f e

∫∞
t0

dt
∫ t+TFR

t dx J (t,x) f (t,x)
eS[ f ] (7.87)

with the path integral defined over the semi-infinite domain given in Figure 7.4.
Change integration variables from f (t, x) to the velocity field A(t, x) in Eq. (7.87)
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for evaluating Z f [J ]. Recall from Eq. (7.16) that

f (t, x) = f (t0, x) +
∫ t

t0
dt ′α(t ′, x) +

∫ t

t0
dt ′σ(t ′, x)A(t ′, x)

The equation above, after some simplifications, gives the following∫ ∞

t0
dt
∫ t+TF R

t
dx J (t, x) f (t, x) = F0

+
∫ ∞

t0
dt
∫ ∞

t
dτ

∫ τ+TF R

τ

dx J (τ, x)σ (t, x)A(t, x)

with F0 =
∫ ∞

t0
dt
∫ t+TF R

t
dx J (t, x) f (t0, x)

+
∫ ∞

t0
dt
∫ t+TF R

t
dx J (t, x)

∫ t

t0
dt ′α(t ′, x)

Since
∫

D f → ∫
D A, from the generating functional Z [A] given in Eq. (7.26)

and the equation above

Z f [J ] = eF0
1

Z

∫
D Ae

∫∞
t0

dt
∫∞

t dτ
∫ τ+TF R
τ dx J (τ,x)σ (t,x)A(t,x)

eS[A] = eF0eW

⇒ W = 1

2

∫ ∞

t0
dt

[∫ ∞

t
dτ

∫ τ+TF R

τ

dx J (τ, x)σ (t, x)

]

×
[∫ ∞

t
dτ ′
∫ τ ′+TF R

τ ′
dx ′ J (τ ′, x ′)σ (t, x ′)

]
D(x, x ′; t) (7.88)

Eq. (7.88) is useful for directly evaluating the forward interest rates’ various Libor
options and other derivatives.

7.18 Appendix: Lattice field theory of forward rates

A rigorous treatment of the quantum field theory of the forward interest rates that
is defined over a continuous domain P is presented. The main idea is to truncate
the full functional integral, that requires an independent integration for every point
of the continuous domain P , into a finite-dimensional multiple integral. The con-
tinuous domain P is replaced by a finite set of lattice points constituting a discrete
domain P̂ that is obtained by discretizing the continuous variables t, x into a finite
lattice. One can then rigorously discuss the continuous field theory as the limit of
the lattice theory.

Discretize the domain P into a lattice of discrete points. Let (t, x) → (mε, na),
where ε is an infinitesimal time step and a is an infinitesimal in the future maturity
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time direction. The semi-infinite domain P given in Figure 7.3 is truncated into a
finite discretize domain P̂ , with an upper limit in the time direction given by Mε.
Let N = TF R/a and m0 = t0/ε as shown in Figure 10.1.

The discrete and finite domain P̂ is bounded in the time direction by m = m0

and m = M , and in the maturity direction by na = mε and na = mε + Na. The
integers take values in the discrete domain P̂ , and are given by

P̂ = {m = m0, m0 + 1, . . . , M − 1; na = mε, mε + a, . . . , mε + Na}

The forward rates and velocity field yield on discretization

f (t, x) → f (mε, na) ≡ fmn

A(t, x) → A(mε, na) ≡ Amn

and similarly for α and σ . The functional integral yields

∫
D A →

M−1∏
m=m0

N+m∏
n=m

∫ +∞

−∞
d Amn (7.89)

Boundary conditions on Amn variables

The Amn variables are always chosen, both for the linear and nonlinear forward
rates, such that they satisfy the Neumann boundary conditions in the maturity di-
rection; this in turn implies, as discussed in Eqs. (5.26) and (5.27), that the Amn

variables at the maturity boundaries are integration variables. In the time direction,
the initial condition on the forward rates, namely f (t0, x) is specified, and hence
does not constrain the Amn variables; the future values of the forward rates, as
in the case of pricing the value of an option, are integrated over, hence again do
not constrain any of the Amn variables. In summary, all the lattice variables Amn ,
for every point on the lattice, are independent integration variables. The velocity
quantum field A(t, x) is the natural set of variables for any numerical study of the
forward rates’ path integral.

The functional integral over the field A(t, x) has been reduced to a finite-
dimensional multiple integral over the Amn variables, which in the case above
consists of N (M − m0)-independent variables; hence all the techniques useful for
evaluating finite-dimensional integrals can be used for performing the integration
over Amn , both for the linear and nonlinear cases.

To achieve the correct normalization, one in fact need not keep track of the
constants that correctly normalize

∫
D A in (7.89). Instead, one simply redefines
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the action by

eS[A] → eS[A]/Z

Z ≡
∫

D AeS[A] (7.90)

All the constants in
∫

D A cancel out; and, more importantly, the expression eS/Z
is correctly normalized to be interpreted as a probability distribution, and hence
can be used for Monte Carlo studies of this theory. The lattice action is the start-
ing point for any of the simulations that are required of the model, including the
pricing of path-dependent derivatives; there are well-known numerical algorithms
developed in physics for numerically studying quantum fields [44].

Linear forward rates

Discretizing Eq. (7.15) yields the lattice change of variables from fmn to Amn

∂ f

∂t
(t, x) = α(t, x) + σ(t, x)A(t, x)

⇒ fm+1n = fmn + εαmn + εσmn Amn

fm0,n : n = m0, m0 + 1, . . . , N + m0 : initial forward rate curve

Consider the action for the case of constant rigidity given in Eq. (7.18)

S[A] = −1

2

∫ ∞

t0
dt
∫ t+TF R

t
dx

{
A2(t, x) + 1

µ2

(
∂ A(t, x)

∂x

)2
}

(7.91)

Using finite differences to discretize derivatives in the action yields

Slattice[A] = −ε2

2

M−1∑
m=m0

{
N+m∑
n=m

A2
mn + 1

(εµ)2

N+m−1∑
n=m

(Amn+1 − Amn)
2

}
(7.92)

Discretizing the path-integration measure yields∫
D A =

∏
(t,x)εP

∫
d A ≡ lim

ε→0,a→0,M→∞
∏
mn

∫
d Amn

and the lattice partition function is given by

Z lattice =
∫

D AmneSlattice[A]

All the variations of the Gaussian models that are discussed in Appendices 7.14–
7.16 can be similarly analyzed.
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HJM limit

To get some idea of the lattice theory, the case of µ → 0 is studied to see how the
HJM model emerges. For µ → 0, the second term in the lattice action in Eq. (7.92)
gives a product of δ functions, and hence

lim
µ→0

eS[A] = eS0

M−1∏
m=m0

N+m−1∏
n=m

δ(Amn+1 − Amn)

S0 = −ε

2

M−1∑
m=m0

N+m∑
n=m

A2
mn (7.93)

Consider evaluating a typical expression like Z in (7.26). For each m, there
are N integration variables Amn; from Eq. (7.93) it can be seen that there are only
(N − 1) δ functions, leaving, for every m, only one variable, say Amm unrestricted.
For simplicity, take ε = a; performing the Amn integrations yields

Z =
M−1∏

m=m0

∫
d AmmeS0

S0 = −ε

2
(N + 1)

M−1∑
m=m0

A2
mm

Defining W (m) = √
N + 1Amm , one can see from Eq. (6.32) that the HJM

model is recovered. For the HJM limit take the continuum limit by letting µ →
0, M → 0 limit, and hence

S0 → −1

2

∫ ∞

t0
dtW 2(t)

W (t) = 1√
TF R

∫ t+TF R

t
dx A(t, x) (7.94)

Nonlinear field theories: Fermion path integral

The change of variables from the nonlinear variable φ(t, x) to A(t, x), as in
Section 7.9.1, is made for the purpose of satisfying the Neumann boundary con-
ditions; in fact the fundamental utility of the velocity field A(t, x), and both in its
continumm and lattice versions, results from the Neumann boundary conditions.
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The nonlinear path integral is given from Eq. (7.55) as

Z =
∫

D ADc† DceS[A]+SF [c†,c,A]

∫
D ADc† Dc ≡

∏
(t,x)εP

∫ +∞

−∞
d A(t, x)

∫
dc†(t, x)dc(t, x)

where c†(t, x), c(t, x) are fermionic quantum fields.
The nonlinear lattice path integral is given on the two-dimensional lattice as

Z =
∏

(mn)∈P̃

∫
d Amndc†

mndcmneS[A]+SF [c†,c,A] (7.95)

with the action S[A] given by Eq. (7.92); SF [c†, c, A] is obtained by discretizing
the action given in Eq. (7.54). One can generalize S[A] to the case of the stiff
action as well as to the nonlinear psychological time variable z(θ).

For simulating nonlinear forward rates given in Eq. (7.95), since the action S[A]
involves only derivatives it can be treated like other similar local quantum fields.
The fermion path integral is nonlocal and nonlinear in the field variable A(t, x),
and needs special algorithms similar to the ones used for simulation of fermions in
lattice gauge theory [106].

Path-dependent options

The payoff function of an Asian option at time t0 on a zero coupon bond P(t, T )

with exercise time t∗ is given by

g[P(∗, T )] =
[

1

t∗ − t0

∫ t∗

t0
dt P(t, T ) − K

]
+

Another example is the price of a European call option on a coupon bond B(t, T )

given in (2.7); the payoff function is given by

g[B] = (B(t∗, T ) − K )+

The payoff function g[A] in both the cases above is path dependent. Expressing
all the zero coupon bonds in terms of the quantum field A(t, x), the prices of such
path-dependent options at time t0 are given by

C(t0, t∗, T, K ) = 1

Z

∫
D Ae

− ∫ t∗
t0

dtr(t)
g[A]eS[A]

The computation above can be performed numerically [44], and requires the
lattice formulation of functional integral over A(t, x).
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7.19 Appendix: Action S∗ for change of numeraire

A field theory derivation is given of the result quoted in Eq. (7.46), namely that

eS∗ = e
− ∫ t∗

t0
r(t)dt

P(t0, t∗)
eS (7.96)

Recall from Eq. (7.12) that the action is given by22

S ≡ S[α] = −1

2

∫
P

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)
D−1(x, x ′; t)

(
∂ f (t,x ′)

∂t − α(t, x ′)
σ (t, x ′)

)

(7.97)

and

S∗ ≡ S[α∗] = −1

2

∫
P

(
∂ f (t,x)

∂t − α∗(t, x)

σ (t, x)

)
D−1(x, x ′; t)

(
∂ f (t,x ′)

∂t − α∗(t, x ′)
σ (t, x ′)

)

(7.98)

where (
1 − 1

µ2

∂

∂x2

)
D(x, x ′; t) = δ(x − x ′) : Neumann B.C.’s.

⇒ D−1(x, x ′; t) =
(

1 − 1

µ2

∂

∂x2

)
δ(x − x ′) (7.99)

The drift velocities, from Eqs. (7.38) and (7.45), are

α(t, x) = σ(t, x)

∫ x

t
dx ′D(x, x ′; t)σ (t, x ′)

α∗(t, x) = σ(t, x)

∫ x

t∗
dx ′D(x, x ′; t)σ (t, x ′) (7.100)

Define

δα ≡ α − α∗ = σ(t, x)

∫ t∗

t
dx ′D(x, x ′; t)σ (t, x ′)

⇒
(

δα

σ

)
(t, x) =

∫ t∗

t
dx ′D(x, x ′; t)σ (t, x ′) (7.101)

22 Without loss of generality take TF R → ∞, and hence∫
P

=
∫ t∗

t0
dt
∫ ∞

t
dx
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Hence

S∗ = −1

2

∫
P

(
∂ f (t,x)

∂t − α(t, x) + δα

σ(t, x)

)
D−1(x, x ′; t)

(
∂ f (t,x ′)

∂t − α(t, x ′) + δα

σ(t, x ′)

)

= S −
∫
P

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)
D−1(x, x ′; t)

(
δα

σ

)
(t, x ′)

−1

2

∫
P

(
δα

σ

)
(t, x)D−1(x, x ′; t)

(
δα

σ

)
(t, x ′) (7.102)

Eqs. (7.101) and (7.99) yield the following simplification(
1 − 1

µ2

∂

∂x2

)(
δα

σ

)
(t, x) =

(
1 − 1

µ2

∂

∂x2

)∫ t∗

t
dx ′D(x, x ′; t)σ (t, x ′)

=
∫ t∗

t
dx ′δ(x − x ′)σ (t, x ′)

=
{

σ(t, x); x ∈ [t, t∗]
0; x /∈ [t, t∗]

= σ(t, x)�(x − t∗)

Hence, from above and Eq. (7.102)

S∗ = S −
∫ t∗

t0
dt
∫ ∞

t
dx

{
∂ f (t, x)

∂t
− α(t, x)

}
�(x − t∗)

−1

2

∫ t∗

t0
dt
∫ ∞

t
dx

[∫ t∗

t
dx ′D(x, x ′; t)σ (t, x ′)

]
σ(t, x)�(x − t∗)

(7.103)

= S −
∫ t∗

t0
dt
∫ t∗

t
dx

∂ f (t, x)

∂t

since the last two terms in Eq. (7.103) cancel out exactly.
From the identity∫ t∗

t0
dt
∫ T

t
dx

∂ f (t, x)

∂t
=
∫ t∗

t0
dt f (t, t) +

∫ T

t∗
dx f (t, x) −

∫ T

t0
dx f (t, x)

and using f (t, t) = r(t) gives the expected result

S∗ = S −
∫ t∗

t0
dtr(t) +

∫ t∗

t0
dx f (t, x)

⇒ eS∗ = e
− ∫ t∗

t0
r(t)dt

P(t0, t∗)
eS (7.104)
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The derivation given above goes through unchanged for a general quadratic
(Gaussian) forward rates’ action, given by generalizing Eq. (7.97) to

S = S[α] (7.105)

= −1

2

∫
P

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)
G−1(x, x ′; t)

(
∂ f (t,x ′)

∂t − α(t, x ′)
σ (t, x ′)

)

where G−1(x, x ′; t) is any arbitrary function of the future maturities with∫ ∞

t
dx ′′G−1(x, x ′′; t)G(x ′′, x ′; t) = δ(x − x ′)
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Empirical forward interest rates and field theory models

The validity of any model of the forward rates is ultimately an empirical question
[26, 34], and whether the model is useful depends on it being computationally
tractable. The computational and empirical aspects are closely related, since only
computationally tractable models can produce testable results.

In this chapter, an empirical study of the forward interest rates is undertaken, and
due to its computational simplicity only the Gaussian field theory models that have
been discussed in Chapter 7 will be analyzed. Nonlinear theories of the forward
rates will not be discussed and are left for future studies.

The empirical study of the field theory model of the forward rates is based on
data from Eurodollar futures. A brief review of the empirical properties of the
forward rates based on the findings in [19, 73, 74] will be presented. The rest of
this chapter is focussed on the correlation structure of the instantaneous changes
in forward interest rates as a function of maturity [6, 9, 11].

The theoretical framework for the empirical study is the formulation of the for-
ward rates as a two-dimensional Gaussian quantum field theory. Recall the key
feature of the field theory models is that the forward rates f (t, x) are strongly cor-
related in the maturity direction x > t . To fully calibrate the field theory models,
all parameters in the Lagrangians need to be fixed, which consists of numerical
quantities like the parameters µ and λ that control the fluctuations in the maturity
direction, and the (complete) volatility function σ(t, x) that is a measure of the
degree to which the forward rates are stochastic.

In the field theory approach, σ(t, x) is fixed from the market.1 In gen-
eral, to fix an arbitrary function from data is a difficult exercise. It will turn
out that due to a special property of Gaussian field theories, σ(t, x) can be

1 In the HJM model, the volatility function σ(t, x) is assumed to have a specific mathematical form that is taken
to reflect the expected behaviour of the forward rates.
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determined independently of all the Gaussian models, and hence will give a model-
independent result.

The main conclusion of the study of the Gaussian models is that only the stiff
propagator, together with an appropriate psychological future time variable, fits all
aspects of the market behaviour of the forward rates. The reason for studying the
other Gaussian models is primarily pedagogical.

8.1 Eurodollar market

All the empirical analysis is exclusively based on data from the Eurodollar futures
market, and hence the main features of this market are briefly discussed [63, 100].

Eurodollars refer to US$ bank deposits in commercial banks outside the
US. These commercial banks are either non-US banks or US banks outside the
US. The deposits are made for a fixed time, the most common being 90- or
180-day time deposits, and are exempt from certain US government regulations
that apply to time deposits inside the US.

The Eurodollar deposit market constitutes one of the largest financial markets.
The Eurodollar market is dominated by London, and the interest rates offered for
these US$ time deposits are often based on Libor, the London Interbank Offer
Rate. The Libor is a simple interest rate derived from a Eurodollar time deposit
of 90 days. The minimum deposit for Libor is a par value of $1 000 000. Libor are
interest rates for which commercial banks are willing to lend funds in the interbank
market. The Libor spot market is active in maturities ranging from a few days to
ten years, with the greatest depth in the three- and six-months time deposits. Libor
contracts are commercial, not sovereign, and as such better reflect the term struc-
ture available for corporations. The Libor is the benchmark for many derivatives
markets in interest rates, as well as in the hedging of Treasury Bonds.

In the Eurodollar time deposit market, cash deposits are traded between com-
mercial banks, with varying maturities, principal and interest rates. On the con-
tract’s initiation date the principal is sent by lender to borrower, and on the maturity
date the principal plus interest is sent by the borrower to lender.

Eurodollar futures

Eurodollar futures contracts are amongst the most important instrument for short-
term contracts and have come to dominate this market. The Eurodollar futures
contract, like other futures contracts, is an undertaking by participating parties
to loan or borrow a fixed amount of principal at an interest rate fixed by Libor
and executed at a specified future date. Eurodollar deposits are non-transferable
and preclude any delivery. Hence the Eurodollar futures is settled entirely by cash
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payments with no delivery of an actual good. Once the final settlement price has
been determined, traders with open positions settle with cash through the standard
marking-to-market procedure, and the contract expires.

Since 1981, the Eurodollar futures cash settlement price has been determined in
the following manner.

� Contracts are settled by cash, with no transfer of time deposits.
� There is no flexibility in delivery or timing for either investor who is long or short.
� The expiration date is the second London business day before the third Wednesday of

the maturity month.
� On expiration, the clearing house determines the Libor for a 90-day deposit at two

times – termination of trading and at a randomly chosen time 90 minutes before closing.
The clearing house randomly selects 12 reference banks from a list of 20 participating
banks. Each bank provides a quote to the clearing house for the 90-day Eurodollar de-
posit. The clearing house automatically eliminates the two highest and the two lowest
bids, and takes the arithmetic mean of the remaining eight quotes to be the Libor at that
time.

� The average of the computation performed at the two times is taken to be the three-
month Libor, and is finally determined by rounding off to the nearest basis point (100
basis points equal an annual interest of 1%).

� At maturity, the Eurodollars futures converges to 100(1-Libor).

Eurodollar futures contracts extends from a few days up to ten years in the fu-
ture. The contract is extensively used for hedging, interest rate swaps, Forward
Rate Agreements (FRAs) and other interest rate derivatives. The open positions on
Eurodollar futures in 1999 was nearly 750 000, representing a par value of $750
billion. The liquidity in the Eurodollar market has grown since then.

The Eurodollar futures trade on the International Monetary Market (IMM) of
the Chicago Mercantile Exchange (CME), and on SIMEX (Singapore International
Monetary Exchange), LIFFE (London International Financial Futures Exchange)
and on TIFFE (Tokyo International Financial Futures Exchange). Contracts en-
tered in one exchange can be offset by those in other exchanges.

Libor resolution

The Eurodollar futures prices are in percentages of $1 million face value on a
90-day time deposit. The market has a resolution of 1 basis point, and this is worth
(1 year = 360 days)

1 000 000 × 1

100
× 1

100
× 90

360
= $25
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8.1.1 Libor forward rates curve

Eurodollar futures as expressed by Libor extends to up to ten years into the fu-
ture, and hence there are underlying forward interest rates driving all Libors with
different maturities. The interest earned on a Eurodollar time deposit is a simple
interest based on Libor. For a futures contract entered into at time t for a 90-day
deposit of $1 million from future time T to T + τ (τ = 90/360 year), the principal
plus simple interest that will accrue – on the maturity – to an investor long on the
contract is given by

P + I = 1 + τ L(t, T ) (8.1)

where L(t, T ) is the (annualized) three-month (90-day) Libor. Let the forward
interest rates for the three-month Libor be denoted by f (t, x). One can express
the principal plus interest based on the compounded forward interest rates and
obtain

P + I = e
∫ T +τ

T dx f (t,x) (8.2)

Hence the relationship between Libor and its forward rates is given by

1 + τ L(t, T ) = e
∫ T +τ

T dx f (t,x)

⇒ L(t, T ) = e
∫ T +τ

T dx f (t,x) − 1

τ
(8.3)

Given the data on Libor obtained from the Eurodollar futures contracts, the Li-
bor forward rates can be extracted. Since Libor is determined on a daily basis, the
data for the forward rates are discrete in time and are given daily. Future time is
also discrete with the Libor given at 90-day intervals.

Libor forward interest rates contain the risk inherent in commercial lending, and
have a spread above the interest rates that are determined by risk-free Treasury
Bonds; in the finance literature this is known as the TED (Treasury Eurodollar)
spread [63, 100].

8.2 Market data and assumptions used for the study

A key feature in the empirical testing of the forward rates’ field theory models is
to obtain evidence for the nontrivial correlation of the forward rates. The market
price of the Eurodollars futures provides data that is ideally suited for this purpose.

The empirical analysis in this and later chapters uses the daily data for the Libor
forward rates from 1990 to 1996 that are plotted in Figure 7.2. Significant historical
data for contracts on deposits up to seven years into the future were used in the
empirical analysis. This is the same data set used in [19] and [9, 11].
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It is assumed that the Eurodollar futures Libor prices are equal to the forward
rates. More precisely, from Eq. (8.3)

L(t, T ) = e
∫ T +τ

T dx f (t,x) − 1

τ
(8.4)

� f (t, T ) + O(τ ) (8.5)

The errors in setting Libor equal to the forward interest rates are negligible, given
the other errors that arise in the empirical study; the justification for this assump-
tion is discussed in [19]. In sum, the Libor is identified with the instantaneous
forward interest rates.

Market data on the Libor are given for daily time t in the form of L(t, Ti − t),
and have fixed dates of maturity Ti (March, June, September and December).
The shortest maturity time is θmin = 3 months, and the spot rate is taken to be
r(t) = f (t, θmin). Consider a future time falling within these fixed maturity times,
say θ = x − t , with Ti − t ≤ θ ≤ Ti+1 − t ; to obtain f (t, θ) with fixed θ , a sim-
ple linear interpolation2 between the values of the Libor [9, 11, 73, 74] at the two
neighbouring maturities is carried out, resulting in the values of f (t, θ) for fixed
θ as shown in Figure 8.1. The linear interpolation is necessary, since the forward
rate data are provided for maturity times Ti − t , whereas for the empirical study
the data for the forward rates are required for constant θ .

θ0

θ0f (t, )

x = t+ x

t

Figure 8.1 Forward rates on lines of constant θ obtained by linear interpolation
from Libor forward rates specified at constant maturity time.

It is assumed in the empirical study that the volatility function, as well as the
correlation functions of the forward rates, depend only on the variable θ and do

2 It is assumed that the Libor rates are smooth; the assumption is reasonable as one would intuitively expect that
the forward rate, say three years into the future would not be too different from that of three years and one
month into the future. The loss in accuracy due to linear interpolation is unimportant if the time interval of t
between specifications of the forward rates is small, since the random changes that are being studied have much
larger errors than those introduced by the linear interpolation.
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not have any explicit dependence on the time parameter t . In other words, it is as-
sumed that σ(t, θ) = σ(θ) with no explicit dependence on t , and similarly for the
correlation functions. This assumption is made only for simplicity, since carrying
out an analysis when these quantities are subject to changes in time is more diffi-
cult and does not add much to the understanding of the models. Furthermore, the
limit of TF R → ∞ will always be assumed.

The empirical analysis consists of taking averages over the time series data for
the various combinations of the forward rates. One fundamental assumption in the
empirical analysis is to treat these time averages as being equivalent to averag-
ing over the stochastic fluctuations of the forward rates. This assumption is called
the ergodic hypothesis in statistical physics. In particular, all the correlation func-
tions of the forward rates will be calculated by computing the corresponding time
averages.

It should be noted that in full generality one expects time-dependent behaviour
in the market for σ(t, θ), as can be seen from Figure 8.2. There are periods during
which the assumption of dependence on only θ is valid, and the market can then
change its behaviour and enter another regime where all the quantities are changed
to new values and so on; this is further discussed in Section 8.4.

Treasury Bond data

One can also use Treasury Bond tick data from the GovPx database to study the forward
rates. The problem in doing so is the lack of accuracy of the forward rates obtained from the
Treasury Bond data. The main reason for this is that, while one can obtain reasonably ac-
curate yields for a few maturities, the differentiation required to get the forward rates from
the yields introduces too many inaccuracies. This is somewhat unfortunate since Trea-
sury Bonds represent risk-free instruments while a small credit risk exists for Eurodollar
deposits.

8.3 Correlation functions of the forward rates’ models

Since all data on the forward interest rates are available only at discrete moments
the parameter of time t needs to be discretized for empirically studying the field
theory models.

Recall, from Eq. (7.15), the fundamental relation

∂ f

∂t
(t, x) = α(t, x) + σ(t, x)A(t, x) (8.6)

where, from Eq. (7.38), the martingale condition yields for the drift

α(t, x) = σ(t, x)

∫ x

t
dx ′D(x, x ′; t)σ (t, x ′) (8.7)
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Discretize time into a lattice of points with spacing ε, with t = nε. Hence, from
Eq. (8.6)

δ f (t, x) ≡ f (t + ε, x) − f (t, x)

= εα(t, x) + εσ (t, x)A(t, x) (8.8)

Recall from Eq. (7.23) that

E(A(t, x)) = 0 (8.9)

E(A(t, x)A(t ′, x ′)) = 1

Z

∫
D AeS[A] A(t, x)A(t ′, x ′) (8.10)

= δ(t − t ′)D(x, x ′; t) (8.11)

Henceforth, all correlators will be expressed in co-ordinates θ = x − t, θ ′ = x − t
as these are the requisite ones for the empirical study. On discretizing time, the
equal time expectation value of the fields at two maturities is, for δ(0) = 1/ε,
given by

E(A(t, θ)A(t, θ ′)) ≡< A(t, θ)A(t, θ ′) >= 1

ε
D(θ, θ ′) (8.12)

Hence, from Eqs. (8.8) and (8.12)

< δ f (t, θ) > = εα(θ)

< δ f (t, θ)δ f (t, θ ′) >c ≡ < δ f (t, θ)δ f (t, θ ′) > − < δ f (t, θ) >< δ f (t, θ ′) >

= ε2σ(θ)σ (θ ′) < A(t, θ)A(t, θ ′) >

= εσ (θ)σ (θ ′)D(θ, θ ′) (8.13)

⇒< δ f 2(t, θ) >c = εσ 2(θ)D(θ, θ) (8.14)

using the notation < δ f 2(t, θ) >c≡< [δ f (t, θ)]2 >c

The drift velocity in the market is not the one given by the martingale measure
(see Section 8.5 for a discussion on this point); hence α(t, x) cannot be deter-
mined from the empirical evolution of the forward rates, but instead can only be
determined from the prices of interest rate derivatives. The connected correlation
function < δ f (t, θ)δ f (t, θ ′) >c, on the other hand, is completely independent of
drift velocity α(θ), and consequently directly models the actual market evolution
of the forward rates; for this reason the connected correlator can be used to test the
field theory model’s validity by comparing it with the observed behaviour of the
forward rates.

8.4 Empirical correlation structure of the forward rates

The correlator given in Eq. (8.14), namely < δ f 2(t, θ) >c= εσ 2(θ)D(θ, θ), is the
defining equation for the volatility, except for the factor of εD(θ, θ) that depends
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on the model for the propagator. To be able to compare the volatilities of different
Gaussian models, its determination has to be made model independent. The scaling
symmetry discussed at the end of Section 7.4 allows the field A(t, θ) to be re-
scaled so that D(θ, θ ′) → D̃(θ, θ ′) such that D̃(θ, θ) = 1/ε. The re-scaled frame
yields the usual definition of volatility of the forward rates, given as follows

< δ f 2(t, θ) >c= σ 2(t, θ) (8.15)

The kurtosis for a single maturity time is defined by

κ(t, θ) = <
[
δ f (t, θ)

]4
>

σ 4(t, θ)
− 3 (8.16)

The normalization of kurtosis has been chosen so that it is zero if the forward rates
are completely Gaussian.
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Figure 8.2 Empirically determined volatility function σ(θ) = √
< δ f 2(t, θ) >c

and kurtosis κ(t, θ) =< [δ f (t, θ)]4 > /σ 4(t, θ) − 3 of the forward rates. The
functions are given for two distinct time periods showing a gradual change in
their values. (Source: J.-P. Bouchaud and M. Potters, Theory of Financial Risks.)

The volatility and kurtosis of forward rates observed in the Eurodollar market
for the period of 1990–1996 are shown Figure 8.2. Data show that kurtosis is far
from zero, providing evidence that the empirical forward rates are non-Gaussian.
The data in the figure have been broken up into two periods, namely 1990–1996
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and 1994–1996, and show that both the volatility and kurtosis functions gradually
change from period to period. Within a given period, one can assume that σ de-
pends only on future time, that is σ(t, θ) = σ(θ), but this assumption cannot be
indefinitely extended.

The value of σ for the period 1990–1996 is used in all the computations dis-
cussed in this chapter.
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Figure 8.3 Empirical covariance < δ f (t, θ)δ f (t, θ ′) >c

The empirical covariance of the forward rates is given by <δ f (t, θ)δ f (t, θ ′)>c,
and is plotted in Figure 8.3. An important quantity in the analysis of forward rates
f (t, θ) is the normalized correlation (or scaled covariance) between the instanta-
neous changes in the forward rates for different maturities θ, θ ′, and is defined by

C(θ, θ ′) = 〈δ f (t, θ)δ f (t, θ ′)〉c√〈δ f 2(t, θ)〉c

√〈δ f 2(t, θ ′)〉c

(8.17)

The normalized empirical correlation function, also called the empirical propa-
gator, is estimated from the market using the Eurodollar futures data, and is shown
in Figure 8.4, with another perspective given in Figure 8.5.

The figures clearly show that the normalized correlator has an extremely smooth
surface with no discontinuities or ‘kinks’. Furthermore the normalized corre-
lation function everywhere has a value greater than about 0.65, showing that
all the forward rates are highly correlated, with no two forward rates being
de-correlated – no matter how large is their separation in maturity time. It is to
explain this smooth and highly correlated behaviour of the forward rates that the
stiff Gaussian interest rate model was introduced in [6].
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: a different view.

8.4.1 Gaussian correlation functions

Due to the manner in which volatility appears in the Gaussian field theory models,
as expressed in Eqs. (8.13) and (8.14), the entire volatility function can be com-
pletely factorized out of the normalized correlation functions. Hence, the Gaussian
field theory models yield for the correlator

CQ FT (θ, θ ′) = D(θ, θ ′)√
D(θ, θ)D(θ ′, θ ′)

(8.18)
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Since for free (Gaussian) quantum fields the normalized correlation is indepen-
dent of σ(θ), no assumption of the form of volatility needs to be made. This
is the reason for using the scaled covariance rather than the covariance itself to
perform the empirical study. Parameters such as µ, λ and so on, that need cali-
bration in the Gaussian models, can be fitted from data, independent of the value
of σ(θ).

HJM correlation functions

The covariance for the two factor HJM model is given by

δ f (t, θ) = εα(θ) +
2∑

i=1

σi (θ)Wi (t)

⇒ C(θ, θ ′) = < δ f (t, θ)δ f (t, θ ′) >c

= σ1(θ)σ1(θ
′) + σ2(θ)σ2(θ

′) (8.19)

The functional form for σ1 and σ2 needs to be obtained from the data, which is impractical
as it is not possible to numerically estimate an entire function. The usual specification of
σ1(θ) = σ0 and σ2(θ) = σ1e−λθ is seen to be unable to explain many features of the co-
variance in Figure 8.3 such as the peak at one year or the sharp reduction in the covariance
as the maturity goes to zero.

For the one factor HJM model, the normalized correlation structure is constant as all
changes in the forward rates are perfectly correlated. In other words, D(θ, θ ′) = 1. For the
two-factor HJM model, the predicted correlation structure, from Eq. (8.19) is given by

CH J M (θ, θ ′) = σ1(θ)σ1(θ
′) + σ2(θ)σ2(θ

′)√
σ 2

1 (θ) + σ 2
2 (θ)

√
σ 2

1 (θ ′) + σ 2
2 (θ ′)

= 1 + g(θ)g(θ ′)√
1 + g2(θ)

√
1 + g2(θ ′)

(8.20)

The normalized correlation structure requires the empirical determination of the function
g(θ) = σ1(θ)/σ2(θ), something which is quite impractical.

In conclusion, the one-factor HJM model is insufficient to characterize the data, while
the two-factor HJM model has too much freedom.

8.5 Empirical properties of the forward rates

In a series of publications [18,19,73,74] Bouchaud and collaborators have uncov-
ered a number of regularities in the behaviour of the forward interest rates. They
have analyzed the forward rates for the US$ [19,73] and other currencies [74], and
the discussion in this section is largely drawn from these references.

The two key properties of the forward interest rates that need to be explained are
(i) its average value < f (t, x) > and (ii) its volatility σ 2(t, x) ≡< δ f 2(t, x) >c.
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Average value of the forward interest rates

Extensive analysis of the data shows that [19, 73, 74]3

< f (t, x) >= r(t) + constant
√

θ ; θ = x − t (8.21)

It is shown in [19, 73, 74] that all models of the forward rates based on a martin-
gale measure are unable to explain the square root behaviour of the forward rates’
average. Recall from Eq. (7.40) that for Gaussian models the martingale measure
yields, using < A(t, x) >= 0, the following

< f (t, x) >= f (t0, x) +
∫ t

t0
dt ′σi (t

′, x)

∫ x

t ′
dy D(x, y; t ′, TF R)σi (t

′, y)

The expectation value of f (t, x) for a martingale evolution is equal to a quadratic
function of its volatility. It is shown in [19, 74] that a quadratic term such as σ 2 is
too small to account for the observed behaviour of < f (t, x) >; moreover, it is not
possible to produce the square root law from the expression above.4 This result is
not unexpected, since the martingale measure is an evolution that is risk free, and
this is not what transpires in the market. The forward rates encode all forms of
risks that are inherent in the borrowing and lending of money, and hence the drift
velocity of the forward rates in the financial market is not expected to be given by
the no arbitrage requirement.5

It is shown in [19,73,74] that the concept of value at risk offers a possible expla-
nation of the square root behaviour of the forward rates. Money lenders dominate
short-term lending and borrowing in the money market. Money lenders agree, at
time t , to loan money at the forward rate f (t, θ) for a loan that will run from time
t + θ to t + θ + dθ . These money lenders themselves will borrow money from
banks at the prevailing short-term rate at time t + θ , namely at r(t + θ). Money
lenders who loan out money at rate f (t, θ) bet that that at time t + θ the spot rate
r(t + θ) is going to be below f (t, θ), since they lose money if r(t + θ) > f (t, θ).

The money lender is willing to be on the losing side of the bet with likelihood
of p; one expects that p � 0.1; in other words the money lender is willing to
lose only about 10% of the time. With this risk analysis, the money lender will
fix the forward rate f (t, θ) to have a value such that the likelihood of the spot
rate r(t + θ) having a value greater than < f (t, θ) > is only p. This procedure

3 One may think that having a prediction on how the forward rates will evolve allows for the possibility of
arbitrage. However the square root law only holds for the average of the forward rates and hence profit is not
certain [19].

4 One can include a term linear in the volatility σ to represent the market premium for risk, but this does not
change the conclusions [73].

5 The rationale for evolving the forward rates with a risk-free martingale measure is that it can be used for pricing
derivative instruments of forward rates that are free from arbitrage possibilities. The martingale measure is not
supposed to predict the actual evolution of the forward rates that takes place in the debt markets.
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for valuing the forward interest rates reflects the value at risk for the money
lender.

Let the conditional probability that the spot interest rate r at time t has a value
r ′ at t ′ be given by P(r ′, t ′; r, t). The value at risk is then expressed by [19,73,74]∫ ∞

< f (t,θ)>

dr ′ P(r ′, t + θ; r, t) = p (8.22)

For small time periods non-Gaussian effects are important in the evolution of the
spot interest rate. However, for durations on the scale of months, one has [18]

P(r ′, t ′; r, t) = 1√
2πσ 2

r (t ′ − t)
e
− 1

2σ2
r (t ′−t)

(r ′−r)2

Hence from Eq. (8.22) and above, defining ξ = (r ′ − r)/σ 2
r

√
θ , yields6

1√
2π

∫ ∞

(< f (t,θ)>−r)/σr
√

θ

dξe− 1
2 ξ2 = p = 1√

2π

∫ ∞

A
dξe− 1

2 ξ2

⇒< f (t, x) >= r(t) + Aσr
√

θ ; A = √
2erfc−1(2p) (8.23)

The formula above is plotted against data in Figure 8.6, and is seen to match the
market data quite well for p � 0.16, and with σr being the empirical volatility of
the spot rate [18,19]; Figure 8.6 also shows that the HJM model gives an incorrect
result. The result derived above is valid for many of the major currencies such as
the British, Japanese and Australian, with the appropriate spot rate volatility σr .
Further refinements of the square root behaviour of the forward rates are consid-
ered in [74].

Forward rates’ volatility ‘hump’ and anticipated trends

Recall the volatility of the forward rates is defined by σ 2(t, x) ≡< δ f 2(t, x) >c.
The volatility for all periods have a characteristic hump (a gradual maxima) at
about one year in the future as can be seen from Figure 8.2. A similar volatil-
ity hump also occurs in the implied volatility for caps and floors on interest
rates [51].

Intuitively, the volatility hump can be seen to arise from the anticipated evolu-
tion of the spot rate r(t). Money lenders estimate the future evolution of the spot
interest rate based on averaging over its past behaviour. Any small change in the
value of the spot rate triggers a change in the market’s expectation of the future
evolution of the spot interest rate. The future volatility of the spot rate gets mul-
tiplied by the maturity time, enhancing its anticipated value [73, 74]. The money

6 The erfc function is the related to function defined in Eq. (3.24).
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Figure 8.6 Empirically determined average value of the forward rates curve
(FRC) < f (t, θ) − f (t, θmin)> as a function of future time θ = x − t . (Source:
J.-P. Bouchaud and M. Potters, Theory of Financial Risks.)

lenders do not project their expectations for more than a year as this is beyond the
horizon of their lending and borrowing – spot rates far into the future being fixed
by policy makers and macroeconomic considerations. Hence the volatility peaks at
about a year in the future. For future time, of greater than about a year and a half,
volatility slowly decreases to a constant value, reflecting the anticipated risks in
long-term borrowing and lending. This qualitative discussion has been made more
rigorous in [19, 73, 74].

A good fit to the empirical value of the volatility for US$ forward rates for the
period of 1994–1999 is as follows [73]

σ(θ) = 0.061 − 0.014e−1.55(θ−θmin) + 0.074(θ − θmin)e
−1.55(θ−θmin) (8.24)

where the linearly increasing term results from the projection of the anticipated
trends of the spot rate.

8.5.1 The Volatility of volatility of the forward rates

The volatility of the forward rates is a central measure of the degree to which the
forward rates fluctuate. The question naturally arises as to whether the volatility
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Figure 8.7 The volatility of volatility of the forward rates, denoted by std in the
diagram, is based on a 30-day moving average.

itself should considered to be a randomly fluctuating quantity. The volatility of
volatility is an accurate measure of the degree to which volatility is random. Market
data for the Eurodollar futures provide an estimate of the forward rates for the US
dollar, and also yield the volatility of volatility of the forward rates.

Figure 8.7 plots the 30-day moving average of the volatility of volatility for
the forward rates, and shows that it contributes about 0.0006–0.0007 per year to
the forward rates, as well as the characteristic peak at one and a half years that
occurs for volatility itself. The volatility of the forward rates is approximately
0.01 per year; hence the fluctuations in the volatility of volatility are about 6–
7% of the volatility. Although this number may look insignificant, one needs to
remember that the effective volatility is given by the square of volatility being
multiplied by the square root of the duration of a contract, and hence the effec-
tive volatility of volatility for contracts with a long maturity period could become
significant.

It can be concluded from data that the volatility of the forward rates should be
treated as a fluctuating quantum (stochastic) field.

8.6 Constant rigidity field theory model and its variants

This section summarizes the results of an empirical study of the models that are
derived from the underlying constant rigidity model, based on the (∂ A(t, x)/∂x)2
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term in the Lagrangian. In particular, these models are

1. Constant rigidity
2. Psychological future time for constant rigidity
3. Constrained constant rigidity
4. Non-constant rigidity

Although all these models have similar shortcomings, studying them gives in-
sight into the flexibility of Gaussian field theories, and prepares the ground for
studying the more complex stiff Lagrangian model. The common features of all
the rigidity-based models are the following [11].

� The parameters of all the models are fitted to the market using the Levenberg–Marquardt
method [71, 84], and the best fit is obtained by minimizing the square of the error.

� The error of the fit for these models range from about 4.2% to 2.4%. The lower figures for
the error are achieved at the cost of more parameters and more complicated propagators.

� To estimate the error bounds, the data were split into 346 data sets of 500 contiguous
days of data and the estimation done for each of the sets.

� For the constrained propagator, the Levenberg–Marquardt method shows that the fitted
values of µ and a are very small, of the order of 10−7/year for µ and 10−13/year2 for a;
the fit of both the parameters is very unstable but the ratio a/µ2 is stable.

� For the non-constant (maturity-dependent) rigidity case it is found that µ0 is very unsta-
ble but always very small (less than 10−2/year), while the 90% confidence interval for k
is (0.099, 0.149)
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Table 8.1 Summary of constant and non-constant rigidity models of the
forward rates (µ,

√
a, λ, β are all measured in units of (year)−1)

Model µ a/µ2 k β
√

Error

Constant rigidity µ 0.06 – – – 4.23%
Constrained spot rate – 9.4 – – 3.54%
µ(θ) = µ/(1 + kθ) 0.011 – 0.1 – 3.35%
µ ; z = tanh(βθ) 0.48 – – 0.31 2.46%

The summary of the best fit for these models is given in Table 8.1.
The major shortcomings of all the rigidity-based models are the following.

1. The main problem can be seen from a comparison between the best fit for the constant
rigidity µ given in Figure 8.8 with the market’s correlation structure in Figure 8.4.
The constant rigidity model has an artificial ‘kink’ along the diagonal values of the
normalized correlation function that is absent in the market; this problem persists for all
the cases considered, and is somewhat alleviated when µ is combined with nonlinear
psychological time. The kink is due to the term (∂ A(t, x)/∂x)2 in the Lagrangian.

2. Another shortcoming is that the correlator is largely independent of the value of θ ,
being dominated by |θ − θ ′|; this is inconsistent with the empirical correlator given
in Figure 8.5 that increases as θ increases. The nonlinear variable partly corrects this
problem, but not fully.

3. Due to the kink along the diagonal, a major feature of the correlation function, namely
the curvature of the correlation function that determines how rapidly the correlation
falls off as one moves orthogonal to the diagonal, cannot be studied. It will be seen in
the next section that curvature plays a crucial role in the behaviour of the correlation
function, providing a fairly precise measure of psychological future time.

Constant rigidity

From Eq. (7.29)

D(θ, θ ′) = µ

2

(
e−µ(θ−θ ′) + e−µ(θ+θ ′)

)
= µe−µθ cosh µθ ′ ; θ > θ ′ (8.25)

The predicted correlation structure for this model follows from (8.25) and is
given by

CR(θ, θ ′) =
√

e−µθ cosh µθ ′
e−µθ ′ cosh µθ

; θ > θ ′ (8.26)

The best fit for constant rigidity is shown in Figure 8.8.
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Figure 8.9 Fitted correlation CRZ (θ, θ ′) =
√
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with z(θ) = tanh βθ

Psychological future time

A psychological future (maturity) time variable z(θ) that is close to θ for θ small,
and converges to 1 for large θ , is given by z(θ) = tanh βθ [11]. This choice is a
bit extreme since for θ >> β−1 the nonlinear maturity time variable becomes a
constant (z � 1) and hence psychological time ceases to flow. The variable z(θ)

nevertheless shows the dramatic effect that a nonlinear maturity variable has on
the correlation function. The correlation function is given, from Eq. (8.27), by

CRZ (θ, θ ′) =
√

e−µz(θ) cosh µz(θ ′)
e−µz(θ ′) cosh µz(θ)

; θ > θ ′ (8.27)

The shape of the fitted function is shown in Figure 8.9, and is the best fit for the
models that are variations of the constant rigidity Lagrangian.

Constrained spot rate

The propagator D(θ, θ ′) for this model is given by

D(θ, θ ′) = µe−µθ

(
cosh µθ ′ − µe−µθ ′

µ + a

)
; θ > θ ′ (8.28)
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The normalized correlation function is given by

CC (θ, θ ′) =

√√√√√e−µθ
(

cosh µθ ′ − µe−µθ ′
µ+a

)
e−µθ ′( cosh µθ − µe−µθ

µ+a

) ; θ > θ ′ (8.29)

The graph of the best-fit propagator is almost identical to the constant rigidity
case shown in Figure 8.8 [11].

Non-constant rigidity

The normalized correlation function for a rigidity that depends on the maturity
variable θ , from Eq. (7.72), is given by

CM(θ, θ ′) =
(

(α + 1/2)(1 + kθ ′)2α + α − 1/2

(α + 1/2)(1 + kθ)2α + α − 1/2

)1/2

; θ > θ ′ (8.30)

The correlation structure has a limit of µ0 → 0 given by the following

lim
µ0→0

CM(θ, θ ′) =
√

1 + kθ ′
1 + kθ

; θ > θ ′

and due to the very small value of µ0 for the fitted function, this is a very good
approximation for the fit.7 The obtained fit for the correlation function [11] look
almost identical to the constant rigidity case given in Figure 8.8.

8.7 Stiff field theory model

The stiff propagator based on a quartic derivative term in the forward rates’ La-
grangian yields a very smooth propagator, and, as discussed in Appendix 7.15, is
free from the ‘kink’ along the diagonal that has plagued the rigid Gaussian mod-
els. It is consequently to be expected that this model should give the best empirical
results [6]. The normalized correlation function is given by

CQ(θ, θ ′) = G(θ, θ ′)√
G(θ, θ)G(θ ′, θ ′)

(8.31)

The propagator has three branches, as shown in Appendix 7.15, and the real branch
is given, from Eq. (7.80), as follows

Gb(θ+; θ−) ≡ λ

2 sinh(2b)
[g+(θ+) + g−(θ−)] (8.32)

7 The normalized correlator given by CM (θ, θ ′) does not belong to the HJM class of models, since in the limit of
µ0 → 0 it does not go to a constant.
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where

g+(θ+) = e−λθ+ cosh(b) sinh{b + λθ+ sinh(b)} (8.33)

g−(θ−) = e−λ|θ−| cosh(b) sinh{b + λ|θ−| sinh(b)} (8.34)

θ± = θ ± θ ′ (8.35)

In this representation

CQ(θ+; θ−) = g+(θ+) + g−(θ−)√[g+(θ+ + θ−) + g−(0)][g+(θ+ − θ−) + g−(0)] (8.36)

The diagonal axis is a line of maxima for the correlator since

∂CQ(θ+; θ−)

∂θ−

∣∣∣
θ−=0

≡ ∂CQ(θ+; 0)

∂θ−
= 0 (8.37)
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Figure 8.10 For θ− = θ − θ ′, the figure shows that the diagonal axis is given by
θ− = 0. The direction of change in θ− for constant θ+, namely δθ−, is orthogonal
to the diagonal, as shown in the figure.

The propagator Gb(θ+; θ−) has a finite curvature perpendicular to the diagonal,
as shown in Eq. (7.84), and hence one can compute the curvature of CQ(θ, θ ′) and
compare it with the data. The curvature orthogonal to the diagonal axis is defined
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as follows

RQ(θ+) = −∂2CQ(θ+; θ−)

∂θ2−

∣∣∣
(θ−=0)

≡ −∂2CQ(θ+; 0)

∂θ2−
(8.38)

The calculation is performed in Appendix 8.9, and Eq. (8.47) shows that

RQ(θ+) = |g′′−(0)|
g+(θ+) + g−(0)

− |g′′+(θ+)|[g+(θ+) + g−(0)] + [g′+(θ+)]2

[g+(θ+) + g−(0)]2

(8.39)

|g′′−(0)| is, up to an irrelevant scale, the curvature of the stiff propagator that was
shown in Eq. (7.84) to be a finite constant. For all propagators with a kink, |g′′−(0)|
is infinite along the diagonal, and hence would invalidate the curvature calculation.

The expression for RQ(θ+) shows that as θ+ increases, which in effect means
that one is moving on the diagonal axis away from the origin, the curvature
(slowly) increases because the denominator of the first term decreases, while at
the same time the second (negative) term becomes smaller; this behaviour of the
curvature is plotted as the dashed line in the inset of Figure 8.11 and is seen to
slope upwards.
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Figure 8.11 Fitted stiff correlation

CQ(θ+; θ−) = g+(z+) + g−(z−)√[g+(z+ + z−) + g−(0)][g+(z+ − z−) + g−(0)]
with nonlinear psychological time variable z±(θ+; θ−) ≡ z(θ) ± z(θ ′). The inset
shows a plot of log (θ+) versus (a) dashed line showing curvature log(RQ(θ+))
with an (incorrect) upwards slope and (b) the curvature with the nonlinear future
(maturity) time log([z′(θ+)]2 RQ(2z(θ+/2)) correctly sloping downwards.
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The curvature calculation predicts that the model’s normalized correlator should
fall off more rapidly as one moves on the diagonal away from the origin. If one
looks carefully at Figures 8.4 and 8.5, one can see that the empirical correlator
shows the opposite behaviour. As one moves away from the origin on the diag-
onal axis the curve flattens out, showing that the curvature is decreasing as θ+
increases. Hence, as it stands, the stiff correlator cannot explain the empirical be-
haviour of the forward rates.

8.7.1 Psychological future time

On empirically studying the curvature, one finds a power law fall-off for the cur-
vature given by CQ(θ+) � 1/θ1.3+ . Since the curvature for the stiff propagator in-
creases very slowly, one could try and rectify the problem by multiplying the prop-
agator with a pre-factor that cancels the gradual rise in curvature and instead makes
it fall off with a power law. Psychological future time variable z(θ) plays precisely
this role.

The defining equation for psychological maturity time z(θ) is given by
Eq. (7.85) as

∂ f

∂t
(t, θ) = α(t, z(θ)) + σ(t, z(θ))A(t, z(θ)) ; θ = x − t

that yields for the normalized correlator

CQz(θ, θ ′) = G(z(θ), z(θ ′))√
G(z(θ), z(θ))G(z(θ ′), z(θ ′))

(8.40)

The co-ordinates of the correlator of the forward rates CQz(θ, θ ′) do not change
when going to psychological future time. Instead, only the description of this cor-
relator by the field theory model changes, and, consequently, the left-hand side
of above equation depends only on the calendar time variables θ, θ ′, whereas the
right-hand side depends only on the psychological time variables z(θ), z(θ ′). Writ-
ing the correlator more explicitly, similar to Eq. (8.41), gives

CQz(θ+; θ−) = g+(z+) + g−(z−)√[g+(z+ + z−) + g−(0)][g+(z+ − z−) + g−(0)] (8.41)

z±(θ+; θ−) ≡ z(θ) ± z(θ ′) (8.42)

It is shown in Eq. (8.49) that the curvature in the nonlinear variable is

−∂2CQz(θ+; 0)

∂θ2−
= [z′(θ+)]2 RQ(2z(θ+/2)) (8.43)

The curvature with psychological future time is exactly factored into the result of
the original model multiplied by a factor of [z′(θ+)]2; hence any model with a
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Figure 8.12 Figure showing the fitted propagator with the inset showing the
empirical values and theoretical curve for the curvature [z′(θ+)]2 RQ(2z(θ+/2)).

kink along the diagonal, such as all variants based on rigidity, will always give a
divergent result for curvature that cannot be rendered finite by any non-divergent
choice of psychological future time.

Since one expects a power law to fall off for the curvature, the ansatz z(θ) = θη

is used for fitting the data. Using the fact that RQ(2z(θ+/2)) varies very slowly as
a function of θ+, one can make the following approximation

[z′(θ+)]2 ∝ 1

θ1.3+

⇒ θ
2η−2
+ ∝ 1

θ1.3+
⇒ η � 0.35 (8.44)

The best fit yields η = 0.34 showing that the psychological time variable almost
completely dominates the curvature of the correlator.8 What is striking is that the
psychological future time variable yields a curvature for the stiff Gaussian model
that matches the curvature of the empirical correlator over the entire range of the
data, as shown in Figure 8.12 [6].

8 One can verify that if one uses nonlinear maturity time z(θ) = θ0.34 in the constant rigidity model, the curvature
orthogonal to the diagonal still remains infinite, and, consequently, leads to no significant improvement.
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Psychological future time z(θ) = θ0.34 is significantly different (slower) than
calendar time, and influences all financial instruments. Psychological future time
may have regimes similar to volatility in that η changes over a long period of
calendar time, since it is affected by market sentiment.

η is a scaling exponent and is always dimensionless. The units for λ and µ are
fixed in Eq. (7.86) so that λz and µz are dimensionless; since z = θη, define λz =
[λ̃θ ]η, µz = [µ̃θ ]η so that new constant λ̃, µ̃ always have dimensions of (time)−1.
θ is measured in years, and the result of the empirical study is summarized below.
[µ̃ = λ̃/(2 cosh(b))1/2η = 0.403/year]

Best Fit of the Stiff Propagator’s Parameters
λ̃ = 1.790/year; µ̃ = 0.403/year; b = 0.845; η = 0.34
Root mean square error for the entire fit: 0.40%

The stiff propagator, together with nonlinear psychological future time, matches
data with a root mean square error of only 0.40%, and graphically looks identical
to the empirical correlator given in Figure 8.4. Figure 8.11 shows a plot of the
model’s correlator on the diagonal line that is orthogonal to the θ− = 0 diagonal –
this is the longest stretch for comparing the model’s correlator with its empirical
value; the agreement with the data is almost exact. What is noteworthy is that,
even though the nonlinear maturity variable z(θ) was introduced to address the
behaviour of the correlator in the neighbourhood of the diagonal axis, it contin-
ues to give the correct behaviour for the correlator even far from the diagonal
region.

The existence of the boundary at x = t , or θ = 0, is reflected in the θ+ term in
the propagator; if one removes this term, and in effect assumes that the forward
rates exist for all −∞ ≤ x ≤ +∞, then the fit deteriorates with the root mean
square error increasing from 0.40% to 0.53%. The existence of the boundary at
x = t can hence be seen to have an important effect on the correlation of the for-
ward rates.

8.8 Summary

A detailed analysis of data on the forward interest rates shows that the quantum
field theory model of correlated forward rates agrees quite well with the market.
All the variants of the constant rigidity model are seen to be inadequate for explain-
ing the behaviour of the forward rates. The main result of the empirical study is that
the forward rates evolve with a rigidity and a stiffness term in the Lagrangian, and
together with psychological future time, provide an excellent fit to the observed
correlation functions of the forward interest rates.
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The empirical study focussed on only the two point correlation function, namely
the normalized covariance of the forward rates. For Gaussian (linear) field theo-
ries, all the higher correlation functions involving changes in forward rates with
three or more different maturities can be expressed in terms of the propagator. The
empirical result given for the forward rates kurtosis in Figure 8.2, and preliminary
calculations [97] show that the forward rates are in fact nonlinear. The empirical
methods employed in this chapter need to be extended to nonlinear theories of
forward interest rates that are discussed in Chapter 7.

8.9 Appendix: Curvature for stiff correlator

From Eq. (8.41) the normalized correlator is

CQ(θ+; θ−) = g+(θ+) + g−(θ−)√[g+(θ+ + θ−) + g−(0)][g+(θ+ − θ−) + g−(0)]
From Eq. (8.38) the curvature orthogonal to the diagonal axis is defined by

RQ(θ+) = −∂2CQ(θ+; 0)

∂θ2−

A straightforward but tedious calculation shows that

RQ(θ+) = − g′′−(0)

g+(θ+) + g−(0)
+ g′′+(θ+)[g+(θ+) + g−(0)] − (g′+(θ)

)2
[g+(θ+) + g−(0)]2

(8.45)

where

g′+(θ) = −λe−λθ+ cosh(b) sinh[λθ+ sinh(b)] < 0

g′′+(θ+) = −λ2e−λθ+ cosh(b) sinh[λθ+ sinh(b) − b] < 0

Eq. (7.84) gives

g′′−(0) = −λ2 sinh(b)
(

cosh2(b) − sinh(b)
)

< 0 (8.46)

Hence

RQ(θ+) = |g′′−(0)|
g+(θ+) + g−(0)

− |g′′+(θ+)|[g+(θ+) + g−(0)] + (g′(θ)
)2

[g+(θ+) + g−(0)]2

(8.47)
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Psychological future time

Note that

∂CQz(θ+; θ−)

∂θ−
= ∂z−

∂θ−
∂CQ(θ+; θ−)

∂z−
+ ∂z+

∂θ−
∂CQ(θ+; θ−)

∂z−+
= ∂z−

∂θ−
∂CQ(θ+; θ−)

∂z−
since

∂z+
∂θ−

= 0 (8.48)

Furthermore

∂2CQz(θ+; θ−)

∂θ2−

∣∣∣
(θ−=0)

=
[
∂z−
∂θ−

]2 ∣∣∣
(θ−=0)

∂2CQz(θ+; θ−)

∂z2−

∣∣∣
(z−=0)

since, from Eq. (8.37) ∂CQz(θ+; 0)/∂z− = 0. Using that [∂z−/∂θ−]|(θ−=0) =
z′(θ+), the curvature in the nonlinear co-ordinate from Eq. (8.38) is given by

∂2CQz(θ+; 0)

∂θ2−
= [z′(θ+)]2 ∂2CQz(θ+; θ−)

∂z2−

∣∣∣
(z−=0)

= [z′(θ+)]2 ∂2CQz(z+; 0)

∂z2−
Since the correlator CQz(z+; z−) is the same function of z+, z− as the correlator
CQ(θ+; θ−) is of θ+, θ−, the result is given by

−∂2CQz(θ+; 0)

∂θ2−
= [z′(θ+)]2 RQ(z+)

∣∣∣
(z−=0)

= [z′(θ+)]2 RQ(2z(θ+/2)) (8.49)

since z+|z−=0 = 2z(θ+/2), and RQ(z) is given by Eq. (8.39).
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Field theory of Treasury Bonds’ derivatives
and hedging

The quantum field theory of forward interest rates developed in Chapter 7 is ap-
plied to the pricing of futures and options on Treasury Bonds. The ‘Greeks’ for the
European option on Treasury Bonds are derived to highlight the new features that
emerge from the field theory of forward rates.

For Gaussian field theory models of the forward rates all the formulae derived
for futures and options are similar to the HJM model; the main difference lies
in the volatility of the derivatives, which now contains new couplings due to the
nontrivial correlation of the forward rates.

The concept of hedging of Treasury Bonds is generalized to the case of field
theory; a hedged port folio is defined to be one for which the variance of its final
random value is a minimum; a more precise definition will be given in Section 9.7.
The special case of the HJM-model is shown to emerge in the limit of zero rigidity.
Due to its computational tractability, all derivations are carried out only for the
Gaussian models.

9.1 Futures for Treasury Bonds

Let F(t0, t∗, Ti ) denote the price at time t0 of a futures contract that matures at time
t∗ on a zero coupon bond maturing at time T , with t0 < t∗ < T . From Eqs. (6.46),
(6.48) and (6.49)

F(t0, t∗, T ) ≡ E[t0,t∗][P(t∗, T )]
= F(t0, t∗, T )e�F ; e�F = e�e− ∫R α(t,x) (9.1)

where the domain R over which the drift velocity is integrated is given in
Figure 9.1. The drift velocity for field theory has been computed in Eq. (7.38),
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and using Eq. (7.26) to compute � yields

e� = 1

Z

∫
D Ae− ∫R dxσ(t,x)A(t,x)e

∫
P L[A] (9.2)

= exp

{
1

2

∫ t∗

t0
dt
∫ T

t∗
dxdx ′σ(t, x)D(x, x ′; t, TF R)σ (t, x ′)

}
(9.3)

The drift velocity in Eq. (7.38) yields the generalization of (6.52)

�F (t0, t∗, T ) = � −
∫
R

α(t, x)

= −
∫ t∗

t0
dt
∫ t∗

t
dxσ(t, x)

∫ T

t∗
dx ′D(x, x ′; t, TF R)σ (t, x ′) (9.4)

where the integration for evaluating �F (t0, t∗, T ) is the trapezoidal domain T
given in Figure 7.5.

t0 + TFR

t0
(t0,T )

t0

t*

t*

(t*,T )

0

t

x

(t*,t*)

(t0,t0)

T

Figure 9.1 Domain R for the futures and option prices

For exponential volatility function σ2e−λ(x−t) the expression for �F (t0, t∗, T )

can be obtained exactly. For constant volatility σ1 �= 0 (TF R → ∞)

�F (t0, t∗, T ) = − σ 2
1

4µ2

(
1 − e−µ(T −t∗)

) {
e−2µ(t∗−t0) − 1 + 2µ(t∗ − t0)

}
(9.5)

9.2 Option pricing for Treasury Bonds

The European bond option price, from Eq. (6.53), is given by

C(t0, t∗, T, K ) = E[t0,t∗]
[

e
− ∫ t∗

t0
dtr(t)

(P(t∗, T ) − K )+
]

(9.6)
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Since the European bond option is one of the most important derivatives of the
Treasury Bond, a field theory derivation of its price is given below.

Field theory derivation of European bond option price

Recall from Eq. (6.55) that the payoff function can be written as

(P(t∗, T ) − K )+ = 1

2π

∫ +∞

−∞
dGdpeip(G+∫ T

t∗ dx f (t∗,x))
(eG − K )+

=
∫ +∞

−∞
dG�(G, t∗, T )(eG − K )+

Following the discussion in Section 7.7, the price of the option is computed with the action
S∗ obtained by discounting the future value of the payoff function with the bond P(t0, t∗).
From Eq. (7.48), the current price of the option is given by

C(t0, t∗, T, K ) = P(t0, t∗)E∗[(P(t∗, T ) − K )+] (9.7)

For domain R defined in Figure 9.1∫ T

t∗
dx f (t∗, x) =

∫
R

α∗(t, x) +
∫ T

t∗
dx f (t0, x) +

∫
R

σ(t, x)A(t, x)

From the expression above and the payoff function given in Eq. (9.7) one needs to compute

E∗[eip
∫
R σ(t,x)A(t,x)] = 1

Z

∫
D Aeip

∫
R σ(t,x)A(t,x)eS∗ = e− q2

2 p2

⇒ q2 =
∫ t∗

t0
dt
∫ T

t∗
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) (9.8)

Using the expression given in Eq. (7.45) for α∗(t, x), one obtains∫
R

α∗(t, x) =
∫ T

t∗
dx
∫ t∗

t0
dtα∗(t, x)

=
∫ T

t∗
dx
∫ t∗

t0
dtσ(t, x)

∫ x

t∗
dx ′ D(x, x ′; t)σ (t, x ′) = q2

2
(9.9)

Collecting the results yields

�(G, t∗, T ) = 1

2π

∫ +∞

−∞
dpeip(G+ q2

2 +∫ T
t∗ dx f (t0,x))− q2

2 p2

Performing the Gaussian integration over p yields the desired result.

The computation above gives the result that

�(G, t∗, T ) = 1√
2πq2

e
− 1

2q2

(
G+∫ T

t∗ dx f (t0,x)+ q2

2

)2

(9.10)
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with volatility q2 given in Eq. (9.8).1 For field theory model with constant volatility

q2 = σ 2
1

4µ2

[
4µ(t∗ − t0){e−µ(T −t∗) − 1 + µ(T − t∗)}

+ (1 − e−2µ(t∗−t0))(1 − e−µ(T −t∗))2
]

For the European bond option given by

C(t0, t∗, T, K ) =
∫ +∞

−∞
dG�(G, t∗, T )(eG − K )+ (9.11)

the final answer can be read off by a direct comparison of Eq. (9.10) with the
case of the option price for a single equity given in Eq. (3.23). The bond option is
given by

C(t0, t∗, T, K ) = P(t0, t∗)[F(t0, t∗, T )N (d+) − K N (d−)] (9.12)

F ≡ F(t0, t∗, T ) = exp

{
−
∫ T

t∗
dx f (t0, x)

}
; d± = 1

q

[
ln

F

K
± q2

2

]

The expression for the price of the European option for a zero coupon bond is very
similar to the one for equity derived by Black and Scholes.

9.3 ‘Greeks’ for the European bond option

The hedging parameters for bond options obtained from the field theory model, the
so-called ‘Greeks’, are studied in some detail. The major difference in the price of
the option arises in the expression for the volatility q. Hence all the ‘Greeks’ are
similar to options on equities, except for the theta and vega of the option price,
since these measure the change in the option price when the volatility changes.

For evaluating the hedging parameters the following identities are useful (the
prime stands for differentiation)

N ′(d±) = 1√
2π

exp

{
−1

2
d2±
}

; F N ′(d+) = K N ′(d−) (9.13)

Delta

The delta of the option is given by the variation of its value with a change in the
underlying security. In the case of a bond, the underlying security is the the forward
price of the bond, namely F and hence

� ≡ ∂C

∂ F
= P(t0, t∗)N (d+)

1 One recovers the result given for the HJM model given in Eq. (6.61) by setting D(x, x ′; t) → 1.
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Gamma

The second variation of the option price with respect to the underlying security
yields gamma, which is given by

� ≡ ∂2C

∂ F2
= 1

q F
N ′(d+)

Theta

The sensitivity of the option with respect to the changes in present time t0 is
given by

� ≡ ∂C

∂t0
= f (t0, t0)C + P(t0, t∗)F N ′(d+)

∂q

∂t0

Eq. (9.8) yields

∂q

∂t0
= − 1

2q

∫ T

t∗
dxdx ′σi (t0, x)D(x, x ′; t0)σi (t0, x ′)

and since r(t0) = f (t0, t0)

� = r(t0)C − 1

2q
F N ′(d+)

∫ T

t∗
dxdx ′σi (t0, x)D(x, x ′; t0)σi (t0, x ′)

Vega

Vega is the variation of the option price with respect to changes in the forward
rates’ volatilities σ(t0, x). There are infinitely many volatilities at time t0, one for
each x , namely σ(t0, x), and each volatility can be varied independently. Conse-
quently vega, for each x , is given by

V(t0, x) ≡ δC

δσ (t0, x)
= δq

δσ (t0, x)

∂C

∂q
= P(t0, t∗)

δq

δσ (t0, x)
F N ′(d+) (9.14)

The concept of functional differentiation is discussed in Eq. (A.15), and yields

δσ (t ′, x ′)
δσ (t, x)

= δ(t − t ′)δ(x − x ′)

Hence, from Eq. (9.8)

δq

δσ (t0, x0)
= 2

q

∫ t∗

t0
dt
∫ T

t∗
dxdx ′D(x, x ′; t)σ (t, x ′)δ(t − t0)δ(x − x0)

= 1

q

∫ T

t∗
dx D(x, x0; t0)σ (t0, x)

where
∫ t∗

t0
dt f (t)δ(t − t0) = 1

2 f (t0).
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In practice one hedges against only a finite number of volatilities; for this pur-
pose, discretize future time x into a finite number of points x = nε spaced by a
time interval ε equal to one month or three months. One then has a finite collec-
tion of volatilities σn for which one computes the vegas.

The option price also varies with changes in the parameters of the Lagrangian
for the forward rates, namely the rigidity parameter µ, and the other parameters
such as a, β, λ introduced for the modified propagators. Generically denote all the
parameters by µi where i is an integer that ranges over some finite interval. Note
all these parameters enter into the pricing of the option only through the volatility
parameter q, and hence, similar to Eq. (9.14), there are a new set of vegas given by

Vi (t0) ≡ ∂C

∂µi
= ∂q

∂µi

∂C

∂q
= P(t0, t∗)

∂q

∂µi
F N ′(d+) (9.15)

where

∂q

∂µi
= 1

q

∫ t∗

t0
dt
∫ T

t∗
dxdx ′σ(t, x)

∂ D(x, x ′; t; µ1, µ2, . . .)

∂µi
σ(t, x ′)

Constant volatility field theory model

Consider the simplest case of constant volatility, where σ(x, t0) = σ0 = constant.
For the case of the stiff propagator, vega depends on three parameters, namely σ0,
the rigidity parameter µ and the stiffness parameter λ. The vega computed for the
change in the option price under the variations of σ0, µ, λ is

Vσ (t0) = ∂C

∂σ0
; Vµ(t0) = ∂C

∂µ
; Vλ(t0) = ∂C

∂λ

9.4 Pricing an interest rate cap

A cap is an interest rate option for reducing a borrowers exposure to interest rate
fluctuations, and guarantees a maximum interest rate for borrowing over a fixed
time. Interest rate caps are fixed using Libor, discussed in Section 8.1. Recall,
from Eq. (8.3), that the relation between the forward interest rates and Libor is
given by (recall τ = 90 days)

L(t, t∗) = e
∫ t∗+τ

t∗ dx f (t,x) − 1

τ
(9.16)

A cap gives its holder the option to fix the maximum (simple) interest equal to
K for a fixed period from t∗ to t∗ + τ if the Libor L∗ ≡ L(t∗, t∗) is greater than
the cap rate K . The interest rate cap is similar to a put option on a Treasury Bond
(as will be shown later), and an interest rate floor is similar to call option on a
Treasury Bond; the price of a floor can be obtained from the expression for the
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price of a cap using put–call parity arguments [51]. A cap over a duration longer
than τ is made from the sum of caps Cap(t0, tn, Kn) over a series of times tn to
tn + τ with cap rate Kn , where tn = t0 + nτ with n = 1, 2, . . . , N .

Let the principal amount be V . The cap is exercised at time t∗, and the payments
are made, in arrears, at time t∗ + τ ; hence the payoff function at time t∗ + τ is
given by

g(t∗ + τ) = τ V (L∗ − K )+ (9.17)

Recall from Section 8.1.1 that Libor is a simple interest rate, and L∗ is fixed at time
t∗ for a duration of τ . Hence, by discounting the payoff with L∗ for an interval τ ,
the payoff function at time t∗ is given by [51, 52], from Eq. (9.16)

g(t∗) = τ V

1 + τ L∗
(L∗ − K )+ = V

(
1 − 1 + τ K

1 + τ L∗

)
+

(9.18)

= Ṽ
(

X − e− ∫ t∗+τ
t∗ dx f (t∗,x)

)
+

where Ṽ = V (1 + τ K ) and X ≡ 1

1 + τ K

The result above states that an interest rate cap is equivalent to a European put
option on a Treasury Bond P(t∗, t∗ + τ) = exp{− ∫ t∗+τ

t∗ dx f (t∗, x)} [51].
Similar to the case of the European call option given in Eq. (9.6), the price of the

cap at time t0 < t∗ is given by the average value of the discounted payoff function

Cap(t0, t∗, X) = Ṽ E[t0,t∗]
[

e
− ∫ t∗

t0
dtr(t)

(
X − e− ∫ t∗+τ

t∗ dx f (t,x)
)

+

]

= Ṽ P(t0, t∗)
∫ +∞

−∞
dG�cap(G, t∗)(X − eG)+ (9.19)

where, similar to Eq. (9.10)

�cap(G, t∗) = 1√
2πq2

cap(t∗ − t0)
e
− 1

2q2
cap(t∗−t0)

(G+∫ t∗+τ
t∗ dx f (t0,x)+ q2

cap(t∗−t0)

2 )2

and q2
cap is given, similar to Eq. (9.8), by2

q2
cap = 1

t∗ − t0

∫ t∗

t0
dt
∫ t∗+τ

t∗
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) (9.20)

The domain of integration for q2
cap, with T = t∗ + τ , is R as in Figure 9.1.

2 qcap has been defined to match the conventional definition by scaling out remaining time t∗ − t0 [51].
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Similar to Eq. (9.12) for the call option, the price of a cap is given by

Cap(t0, t∗, X) = Ṽ P(t0, t∗)[X N (−d−) − Fcap N (−d+)] (9.21)

with

Fcap = exp

{
−
∫ t∗+τ

t∗
dx f (t0, x)

}
; d± = 1

qcap
√

t∗ − t0

[
ln

Fcap

X
± q2

cap(t∗ − t0)

2

]

The price of the cap at money is given by X = Fcap, and which yields d± =
±qcap

√
t∗ − t0/2. Hence, at the money

Cap(t0, t∗)
∣∣∣
At the money

= Ṽ P(t0, t∗)[N (−d−) − N (−d+)]
= Ṽ P(t0, t∗)[N (d+) − N (d−)]
= Ṽ P(t0, t∗)

[
N

(
1

2
qcap

√
t∗ − t0

)

− N

(
−1

2
qcap

√
t∗ − t0

)]
(9.22)

9.4.1 Black’s formula for interest rate caps

Black’s model for interest caps is briefly reviewed in order to compare it with the
field theory model. Black’s formula is based on the assumption that the spot inter-
est rate is a log normal random variable [51, 52]. The payoff function for Black’s
formula at time t∗, similar to Eq. (9.18), is

gB(t∗) = τ V

1 + τ f∗
(R(t∗) − RX )+; f∗ =

∫ t∗+τ

t∗
dx f (t∗, x) (9.23)

R(t∗) is the spot interest rate at time t∗, and RX is the cap strike price on the interest
rate.

Black’s formula for the value of the cap at time t0 < t∗ is [52]

CapB(t0, t∗, RX ) = V τ

1 + τ f0
P(t0, t∗)[ f0 N (d B+) − RX N (d B−)] (9.24)

f0 =
∫ t0+τ

t0
dx f (t0, x); d B± = 1

σB
√

t∗ − t0

[
ln

f0

RX
± σ 2

B(t∗ − t0)

2

]

Clearly the price of a cap derived from an arbitrage free model, as in Eq. (9.22),
and Black’s formula do not agree in general. However, at the money, Black’s
formula is

CapB(t0, t∗)
∣∣∣
ATM

= V τ f0

1 + τ f0
P(t0, t∗)

[
N (

1

2
σB

√
t∗ − t0) − N

(
−1

2
σB

√
t∗ − t0

)]
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Comparing the equation above with Eq. (9.22) yields the result that the price of
the option, at the money, for both Black’s and the field theory model, shows that
the volatility of Black’s model is precisely the same as the one computed from the
field theory model. In other words

qcap = σB (9.25)

The result given in Eq. (9.25) is central to any analysis of data on caps and floors.
The price of a cap is quoted in the market by specifying its effective volatility
based on Black’s formula, and, hence, due to Eq. (9.25), one can directly equate the
volatility obtained from the field theory model with the volatility of Black’s model.

9.5 Field theory hedging of Treasury Bonds

The pricing of derivatives is only meaningful if a strategy for hedging these instru-
ments is also provided. All forms of financial instruments are subject to risks due
to the unpredictable behaviour of the financial markets. There are many ways of
defining risk [18]. Recall from the discussion in Section 2.6 that hedging is a gen-
eral term for the procedure of reducing, and if possible completely eliminating,
the risk to the future value of a financial instrument – due to its random fluctua-
tions – by including the instrument being hedged in a portfolio together with other
related instruments.

For bonds, the main risks are changes in interest rates and the risk of default. In
this chapter, all bonds are taken to be default free so that the only source of risk is
taken to be the (random) changes in the interest rates.

The risk of an instrument, evolving over some time interval [t0, t∗] is defined to
be the variance of its final value, at time t∗. This definition of risk is valid for both
finite and instantaneous hedging. Hence, when a certain instrument is hedged, one
is trying to create a portfolio of the hedged and hedging instruments that minimizes
the final variance of the portfolio. A perfectly hedged portfolio in this formulation
is one with zero final variance.

In the HJM model the forward rates are perfectly correlated; one can therefore
hedge a 30-year Treasury Bond with a six month Treasury Bill – clearly some-
thing that the market does not support. In the case of a K -factor HJM model, per-
fect hedging (i.e., a zero variance portfolio) is achievable once any K -independent
hedging instruments are used. However, the difficulties introduced by an infinite
number of factors in the HJM models has resulted in very little literature on this
important subject [14].

The primary focus of the next two sections is on hedging (the fluctuations of)
zero coupon Treasury Bonds, and a hedged portfolio will be formed that will in-
clude either other bonds with different maturities or futures contracts on bonds.
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Field theory models address the theoretical limitations of finite factor term struc-
ture models by allowing nontrivial correlations between forward rates of every
maturity. In principle, since every forward rate fluctuates independently, one can
hedge against the fluctuations of any number of forward rates.

The field theory model offers computationally expedient hedge parameters for
fixed-income derivatives and provides a methodology for uniquely fixing the num-
ber and maturity of bonds to be included in a hedged portfolio.

In the One Factor HJM model – at some instant t – all the forward rates are
driven by a single stochastic variable, and hence, as discussed in [52], a Treasury
Bond can be exactly hedged. In contrast, in the field theory of the forward rates,
since at each instant t there are infinitely many degrees of freedom (random vari-
ables) driving the yield curve, exact hedging is not possible; the best that one can
do is to hedge against the fluctuations of a finite number of forward rates, say
f (t, x1), f (t, x2), . . . , f (t, xN ).

9.6 Stochastic delta hedging of Treasury Bonds

Consider the hedging of a zero coupon Treasury Bond P(t, T ) against fluctua-
tions in the spot rate r(t). A portfolio �(t) that is composed of P(t, T ) and other
instruments needs to be formed so that the fluctuations in the value of the portfo-
lio can ideally be made exactly zero, or at least made substantially less than the
fluctuations in the instrument that one is hedging, namely P(t, T ).

The simplest case is if P(t, T ) is hedged with another bond P(t, T1) with ma-
turity T1 �= T [52]. Form the portfolio

�(t) = P(t, T ) + n1(t)P(t, T1) (9.26)

where n1 is the hedging parameter. Note the portfolio needs to be re-balanced
every instant since the values of the bonds are changing with time.

For a change in time t by a finite amount δt , during which the spot rate changes
by an amount δr , the change in the value of the portfolio is given by

δ�(t) = ∂�(t)

∂t
δt + ∂�(t)

∂r
δr + 1

2

∂2�(t)

∂r2
(δr)2 + . . .

For the portfolio to be free from the risk of losing value, due to a change in the
spot interest rate, the portfolio is required to be independent of small changes in
the spot rate r . Delta hedging of this portfolio requires setting the coefficient of
the δr term above to zero, namely

∂

∂r
�(t) = 0 (9.27)
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which yields for the hedge parameter, from Eq. (9.26)

n1 = −∂ P(t, T )

∂r

/
∂ P(t, T1)

∂r
(9.28)

In the HJM model [52] the Treasury Bond can be expressed directly as a function
of the spot rate r(t); this is possible because there is only one random variable
for each time t that is driving the forward rates. [These and related questions are
addressed in Appendices 9.13 and 9.14.] Jarrow and Turnbull [52] further assume
an exponential form for the volatility, namely σ(x, t) = σ2 exp −β(x − t), and
solve Eq. (9.28) to obtain the hedging parameter n1.

In field theory, for each time t , there are infinitely many degrees of freedom driv-
ing the forward rates, and hence one can never delta hedge by satisfying Eq. (9.27).
The best that can be done is to satisfy delta hedge only on average, and this scheme
is called stochastic delta hedging. To implement stochastic delta hedging one
needs to form the conditional expectation value of the portfolio �(t), keeping the
spot rate r(t) fixed – namely E

[
�(t)|r(t)

]
. Define the conditional probability of a

Treasury Bond by

B(r; t; T ) = E
[
P(t, T )|r] (9.29)

with the mathematical expression being given in Eq. (9.48). Eq. (9.26) gives

E
[
�(t)|r(t)

] = B(r; t, T ) + n1(t)B(r; t, T1) (9.30)

Stochastic delta hedging is defined by generalizing Eq. (9.27) to

∂

∂r
E
[
�(t)|r(t)

] = 0 (9.31)

Hence, from Eqs. (9.31) and (9.30) stochastic delta hedging yields

n1 = −∂ B(r; t, T )

∂r

/
∂ B(r; t, T1)

∂r
(9.32)

As can be seen from above, changes in the hedged portfolio �(t), for delta hedging
in field theory, are only on the average insensitive to the fluctuations in the spot
rate r .

The hedging weight n1 is evaluated explicitly for the field theory of forward
rates in Appendix 9.13, and the result, from Eq. (9.57), is given by

n1 = −
[ ∫ T

t dx D(t, x; t, TF R)σ (x, t)∫ T1
t dx D(t, x; t, TF R)σ (x, t)

]
B(r; t, T )

B(r; t, T1)
(9.33)

For T1 = T the hedging coefficient is given by n1 = −1, as indeed one expects,
since the best way to hedge a bond is to short it, leading to zero fluctuations.
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However, since this is a trivial solution to hedging, one always assumes that
T1 �= T .

To hedge against the � = ∂2�(t)/∂r2 fluctuations, one needs to form a portfolio
with two hedging bonds

E
[
�(t)|r(t)

] = B(r; t, T ) + n1(t)B(r; t, T1) + n2(t)B(r; t, T2)

and to minimize the change in the value of E
[
�(t)|r(t)

]
with respect to both delta

and gamma fluctuations.
Finite time delta hedging can be defined by hedging against the fluctuations

of the spot rate r(t∗) at some finite future time t∗ > t . One would then need to
compute B(r; t∗, T ) as has been done in Appendix 9.13.

Suppose a Treasury Bond needs to be hedged against the fluctuations of N
forward rates, namely f (t∗, xi ); i = 1, 2, . . . , N . The conditional probability for
P(t∗, T ) given in Eq. (9.49), with the N forward rates fixed at f (t∗, xi ) = fi ; i =
1, 2, . . . , N is

B( f1, f2, . . . , fN ; t∗, T ) = E
[
P(t∗, T )| f1, f2, . . . , fN

]
A hedged portfolio with bonds of varying maturities Ti �= T is

�(t) = P(t, T ) +
N∑

i=1

ni P(t, Ti )

and the stochastic delta hedging conditions are given by

∂

∂ f j
E
[
�(t∗)| f1, . . . , fN

] = 0; j = 1, 2, . . . , N

⇒ ∂ B( f1, f2, . . . , fN ; t∗, T )

∂ f j
+

N∑
i=1

ni
∂ B( f1, f2, . . . , fN ; t∗, Ti )

∂ f j
= 0

One can solve the above system of N simultaneous equations to determine the N
hegding parameters ni . The volatility of the hedged portfolio can be reduced by
increasing N .

Stochastic delta hedging against N forward rates for large N tends to be com-
plicated, and a closed-form solution is difficult to obtain.

9.7 Stochastic hedging of Treasury Bonds: minimizing variance

The main shortcoming of stochastic delta hedging is that one does not have any
control on the effectiveness of the hedging procedure, which is determined by the
variance of the instantaneous change in the value of the hedged portfolio.



9.7 Stochastic hedging of Treasury Bonds 229

The value of the portfolio itself is deterministic at time t , and a measure of of the
effectiveness of hegding is given by the volatility of the instantaneous change in
the portfolio, namely by Var[d�(t)/dt].

Recall that in the Black–Scholes analysis for the price of an option on a secu-
rity, one forms a hedged portfolio �BS = C − (∂C/∂S)S such that d�BS/dt is
deterministic, and which implies that there are no fluctuations in its value. In other
words, for the Black–Scholes portfolio

Var

[
d�BS

dt

]
= 0 (9.34)

Since for the field theory case one cannot set the variance of d�(t)/dt to be exactly
zero due to the infinity of degrees of freedom (random variables at each instant),
the next best thing is to minimize the variance. Stochastic hedging is hence de-
fined by demanding that the variance of the instantaneous change in the value of
the hedged portfolio be a minimum – to be made more precise later – and this will
yield a procedure for uniquely fixing all the hedging parameters. The discussion
on stochastic hedging of Treasury Bonds is based on the results of [12].

The hedged portfolio �(t) at time t is given by

�(t) = P(t, T ) +
N∑

i=1

�i P(t, Ti ) (9.35)

where �i are the hedging weights and denote the amount of the i th bond P(t, Ti )

that is included in the hedged portfolio. The value of bonds P(t, T ) and P(t, Ti )

are determined by observing their market values at time t , and hence are not
stochastic. As mentioned earlier, it is the instantaneous change in the portfolio
value that is stochastic.

Often it is more convenient to hedge the zero coupon bond using futures con-
tracts as these are more liquid. Let Fi denote the price, at time t , of a futures
contract F(t, tF , Ti ), expiring at time tF , on a zero coupon bond maturing at time
Ti and given in Eq. (9.1). The hedged portfolio in terms of the futures contract is
given by

�(t) = P +
N∑

i=1

�iFi (9.36)

Fi ≡ F(t, tF , Ti ) = e− ∫ Ti
tF

dx f (t,x)e�F

where the Fi s are the observed market prices.
Stochastic hedging of a zero coupon bond P(t, T ) is accomplished by minimiz-

ing the variance d�(t)/dt of the hedged portfolio, which in turn uniquely fixes
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the hedging weights �i .3 The hedging strategy is hence given by

Var

[
d�(t)

dt

]
: minimize

∂

∂�i
Var

[
d�(t)

dt

]
= 0 ⇒ fixes �i ’s

For the instantaneous case, the computation will always minimize the value of
Var[d�(t)/dt].

For ε → 0

Var

[
d�(t)

dt

]
� 1

ε2
Var[�(t + ε) − �(t)]

= 1

ε2
Var[�(t + ε)]

since the initial value of the portfolio �(t) is deterministic. In other words, in
stochastic hedging the variance of the final value of the portfolio is minimized.
This procedure holds even if ε is a finite quantity, and is the basis for finite time
hedging. In summary

Instantaneous hedging Var[�(t + ε)] : minimize

Finite time hedging Var[�(t∗)] : minimize ; t∗ >> t

The minimum value of the variance of the final value of the portfolio, for both
instantaneous and finite time hedging, is called the residual variance and is de-
noted by

V = minimum of Var

[
d�(t)

dt

]
: instantaneous hedging

V∗ = minimum of Var [�(t∗)] : finite time hedging

The detailed calculation for determining the hedge parameters and portfolio vari-
ance is carried out in Appendices 9.15 and 9.16 and is summarized in the Table 9.1.
The result depends on the hedging matrix Mi j consisting of the correlation of
the bonds or futures being used to hedge, and a hedging vector Li which is the
correlation of the bond being hedged with the other hedging bonds or futures.

For N = 1, the hedge parameter, from Eq. ( 9.72), reduces to

�1 = − L1

M11
= −

[ ∫ T
t dx

∫ T1
t dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R)∫ T1

t dx
∫ T1

t dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R)

]
P(t, T )

P(t, T1)

(9.37)

3 In stochastic models of interest rates, Gaussian models do not yield a unique solution for the hedging
weights [18].
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Table 9.1 Residual variance and hedging weights for the instantaneous hedging
of a zero coupon bond P(t, T ) ≡ P using other hedging bonds P(t, Ti ) ≡ Pi ,

and futures contracts F(t, tF , Ti ) ≡ Fi with maturity at time tF .
[θ = x − t; θ ′ = x ′ − t].

Portfolio
�(t)

Residual variance
V = Min

(
Var[d�(t)/dt]) Weights

�i

P
V0 = P2

∫ T −t

0
dθ

∫ T −t

0
dθ ′σ(θ)σ (θ ′)D(θ, θ ′) 0

P +
N∑

i=1

�i Pi
V = V0 − LT M−1L

Li = P Pi

∫ T −t

0
dθ

∫ Ti −t

0
dθ ′σ(θ)D(θ, θ ′)σ (θ ′)

Mi j = Pi Pj

∫ Ti −t

0
dθ

∫ Tj −t

0
dθ ′σ(θ)D(θ, θ ′)σ (θ ′)

−
N∑

j=1

L j M−1
j i

P +
N∑

i=1

�iFi
V = V0 − L̃T M̃−1 L̃

L̃i = PFi

∫ Ti −t

tF −t
dθ

∫ T −t

0
dθ ′σ(θ)D(θ, θ ′)σ (θ ′)

M̃i j = FiF j

∫ Ti −t

tF −t
dθ

∫ Tj −t

tF −t
dθ ′σ(θ)D(θ, θ ′)σ (θ ′)

−
N∑

j=1

L̃ j M̃−1
j i

When T1 = T , the hedge parameter equals minus one and is a trivial result that
reduces residual variance in Eq. (9.70) to zero as �1 = −1, since P = P1 implies
L1 = M11. Empirical results for nontrivial hedging strategies are discussed in the
next section.

On comparing Eqs. (9.33) and (9.37) for the value of the hedging parameters n1

and �1, it is seen that the strategies of stochastic delta hedging and minimization
of variance give very different results. It is shown in Section 9.17 that these two
expressions become equal in the HJM limit if the volatility parameter is taken to
be ∝ exp −β(x − t).

9.8 Empirical analysis of instantaneous hedging

The empirical results for hedging of a bond follows the treatment of [12]. For sim-
plicity the analysis will be done only for the constant rigidity field theory model as
well as for the empirical propagator.4 The best-fit propagator for constant rigidity

4 All the empirical analysis uses data from the Eurodollar futures market.
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given in Figure 8.8 and the empirical propagator given in Figure 8.4 are used in
the calculations, as well as the volatility function given in Figure 8.2.

Reduction of residual variance to zero is not feasible in practice; the best one
can do is to decide the level of risk one is prepared to live with, and then include
as many hedging instruments as is required to achieve this level of risk.

The hedging of a five-year zero coupon bond with other zero coupon bonds and
futures contracts is the focus of this section. The current forward rates’ curve is
taken to be flat and equal to 5% throughout. The initial forward rates curve does
not affect any of the qualitative results. N indicates the number of innstruments
being used to hedge the bond P(t, T ).

Hedging with other Treasury Bonds

The N = 1 residual variance for the hedged bond portfolio is shown in Figure 9.2;
as expected, the residual variance drops to zero when the same bond is used to
hedge itself – since one is eliminating the original position in the process. The
hedge ratio �1 is shown in Figure 9.3.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 1 2 3 4 5 6 7 8
Time to maturity/year

Figure 9.2 Residual variance V = V0 − L2
1/M11 for a five-year bond versus the

maturity of the bond being used for hedging; note the residual variance is zero for
a five-year maturity hedging bond, as expected.

The parabolic nature of the residual variance is because µ is constant. A more
complicated function could produce a residual variance that does not deviate
monotonically as the maturity of the underlying bonds increases. The parabolic
nature of the graphs, however, does appeal to ones economic intuition, which sug-
gests that the correlation between forward rates should decrease monotonically as
the distance between them increases.

The N = 2 case, when a Treasury Bond is hedged using two other bonds, has
sharp ‘ridges’ in the residual variance, as shown in Figure 9.4, for both the empir-
ical propagator as well as for the constant rigidity model. The ridges in residual
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Figure 9.3 Hedging weight �1 = −L1/M11 for a five-year bond hedged with
another bond with varying maturity.

variance become more pronounced when a short duration one-year bond is hedged
with two other bonds, as shown in Figure 9.5, displaying a greater sensitivity to
the fluctuations of the underlying forward rates. These ridges are typical for all
such portfolios and emerge for finite time hedging as well. The existences of these
‘ridges’ point to potential instabilities in the values of vega for these portfolios.
The causes of these ridges from the principles of finance is not clear.
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Figure 9.4 Residual variance V = V0 − LT M−1L for five-year bond versus two
bond maturities being used for hedging

Hedging with futures

The residual variance is calculated for hedging a five-year zero coupon bond with
futures contracts, all expiring in one year, on zero coupon bonds with various ma-
turities. The residual variance is shown in Figure 9.6, and, as expected, is never
zero.
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Figure 9.5 The residual variance V = V0 − LT M−1L when a one year bond is
hedged with two other bonds.

The futures contracts required for the optimal hedging of a five-year bond are
shown in Table 9.2. Observe from Table 9.2 that, when using only one contract, the
five-year zero coupon bond is best hedged by selling a futures contracts on a 4.5-
year bond; this is explained by the fact that the futures contract depends only on the
variation in the forward rate curve from tF to T but the zero coupon bond depends
on the variation of the forward rate curve from t to T that is not fully covered by
the fluctuations in the futures contract. Hence, a shorter underlying bond maturity
is chosen for the futures contract to compensate for the forward rates curve from t
to tF .

A similar result is seen when hedging a bond with two futures contracts both
expiring in one year. In this case, optimal hedging is obtained when futures con-
tracts on the same bond as well as one on a bond with the minimum possible
maturity (1.25 years) are shorted. The use of a futures contract on a short maturity
bond is consistent with the high volatility of short maturity forward rates as dis-
played in Figure 8.2. Data show a dramatic reduction in the residual variance – by
three orders of magnitude – when futures contracts are used for hedging a Trea-
sury Bond. Table 9.2 further shows that hedging with three other instruments, be
it other bonds or futures contracts, does not significantly lower the residual vari-
ance, showing that hedging with only two other instruments seems to be the best
hedging strategy.

The expiry of the futures contracts is fixed to be one year from the present. This
is long enough time to clearly show the effect of the expiry time as well as short
enough to make practical sense (since long-term futures contracts are illiquid and
unsuitable for hedging purposes).
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Table 9.2 Residual variance and hedging weights for a five-year bond hedged
with one-year futures contracts on one, two or three bonds – the maturities of the
bonds are indicated in the second column. Hedging with two futures contracts is

seen to be the best strategy.

Number of
contracts

Futures contracts (hedge ratios) for hedging a five-year
Treasury Bond

Residual
variance

�i = −∑N
j=1 L̃ j M̃−1

j i V = V0 −
L̃T M̃−1 L̃

0 none 1.82 × 10−3

1 4.5 years (−1.288) 5.29 × 10−6

2 5 years (−0.9347), 1.25 years (−2.72497) 1.58 × 10−6

3 5 years (−0.95875), 1.5 years (1.45535), 1.25 years
(−5.35547)

1.44 × 10−6

0
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0.0008

0.001
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0.0014
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Figure 9.6 Residual variance V = V0 − L2
1/M11 for a five-year bond hedged with

a one-year futures contract on a bond whose maturity is plotted on the horizontal
axis.

9.9 Finite time hedging

Finite time hedging of bonds with other bonds is considered. The calculations
for minimizing variance can be done exactly. The hedging for finite time follows
the treatment given by [10]. The hedging of bonds with futures contracts will not
be considered – even though this can also be solved exactly by minimizing the
variance – as it does not give any new insight for the finite time case. To see this,
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consider hedging with a futures contract on a zero coupon bond of duration that
matures at the same as the hedging horizon. This gives exactly the same result as
hedging with a bond on which the futures contract is written, since one receives a
Treasury Bond on the maturity of the futures contract.

Denote initial time by t , and the hedging horizon by t∗. Consider the hedging of
one bond maturing at T with N other bonds maturing at Ti , 1 ≤ i ≤ N . Assume
for nontrivial solutions that Ti �= T ∀i .

Recall from Eq. (9.35) that a hedged portfolio is given by

�(t) = P(t, T ) +
N∑

i=1

�i P(t, Ti ) (9.38)

The portfolio �(t∗), for t∗ > t , is not a log normal (Gaussian) random variable;
however, its final variance is nevertheless taken to be a suitable measure of the
risk in the portfolio’s value. The weights of the bonds P(t, Ti ) with maturities Ti ,
namely �i , are chosen so that the variance of the portfolio �(t∗) (at the future
time t∗) is a minimum. Hence the variance

Var[�(t∗)] ≡ E[�2(t∗)] − {E[�(t∗)]
}2 (9.39)

is minimized to determine the coefficients �i .
The covariance between the prices P(t∗, Ti ) and P(t∗, Tj ) is given by

Mi j = E[P(t∗, Ti )P(t∗, Tj )] − E[P(t∗, Ti )]E[P(t∗, Tj )] (9.40)

and yields [10]

Mi j = F(t, t∗, Ti )F(t, t∗, Tj )

×
{

exp

(∫ t∗

t
dt
∫ Ti

t∗
dx
∫ Tj

t∗
dx ′σ(t, x)D(x − t, x ′ − t)σ (t, x ′)

)
− 1

}
(9.41)

The covariance between the hedged bond of maturity T and the hedging bonds of
maturity Ti is similarly given by [10]

Li = F(t, t∗, T )F(t, t∗, Ti )

×
{

exp

(∫ t∗

t
dt
∫ T

t∗
dx
∫ Ti

t∗
dx ′σ(t, x)D(x − t, x ′ − t)σ (t, x ′)

)
− 1

}
(9.42)
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Minimization of the residual variance of the hedged portfolio is straightforward,
and the hedging weights are given by

�i = −
N∑

j=1

L j M−1
j i (9.43)

The hedged portfolio is hence given by

�(t) = P(t, T ) +
N∑

i=1

�i P(t, Ti ) (9.44)

with the portfolio’s minimized residual variance being given by

V∗ = Var[�(t∗)]
∣∣∣
Minimum

= Var[P(t∗, T )] − LT M−1L (9.45)

The residual variance enables the effectiveness of the hedged portfolio to be
assessed. In the next section, residual variance of hedged portfolios that include
bonds of different maturities is analyzed. It can be shown that, up to rescaling by
ε, the results of finite time hedging for the hedging weights and residual variance
reduce to the instantaneous case in the limit of t∗ → t + ε [10].

Finite time hedging depends on the market value of the drift velocity αM(t, x).
The reason is that if one is not hedging continuously, then the portfolio is exposed
to market risks, and therefore risk premiums encoded in αM(t, x) appear in the
formulae for finite time hedging.

In the calculation above, the risk-neutral drift velocity α(t, x) was used. How-
ever the market does not follow the risk-neutral measure, as discussed in Sec-
tion 8.5, and it is better for applications to use a market estimate for the value of
αM(t, x). For the case of instantaneous hedging, since only short time scales are
important, the stochastic term dominates making the drift term inconsequential.
This, of course, is not the case for the finite time case where the importance of the
drift velocity grows with an increase in the hedging time horizon.

9.10 Empirical results for finite time hedging

The calculation of Li and Mi j are carried out using simple trapezoidal integration
as the data itself are not very accurate. Volatility σ is assumed to be a function
of only θ = x − t so that all the integrals over x are replaced by integrals over θ .
The bond to be hedged is chosen to be a five-year zero coupon bond and the time
horizon t∗ is chosen to be one year.
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Figure 9.7 Residual variance V∗ = Var[P(t∗, T )] − L2
1/M11 when a five-year

bond is hedged with one other bond using the empirical propagator. The hedg-
ing time horizon is one year.
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Figure 9.8 Hedging weight ratio �1 = −L1/M11 when a five-year bond is
hedged with one other bond with the best fit for the empirical propagator. Time
horizon of hedging of one year

The errors involved largely cancel themselves out, and hence the residual vari-
ances obtained are still quite accurate.

The residual variance and hedging weight for the hedged portfolio when hedg-
ing with one bond, using the empirical propagator, is shown in Figures 9.7 and
9.8. The residual variance for hedging with two bonds is shown in Figure 9.9,
and has ‘ridges’ when the maturity of the two bonds being used for hedging
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Figure 9.9 Residual variance V∗ = Var[P(t∗, T )] − LT M−1L for a five-year
bond hedged with two other bonds, using the empirical propagator. The time hori-
zon of hedging is one year.

have nearby maturities, as has already been noted for the case of instantaneous
hedging [12].

The residual variance using the field theory model for constant rigidity µ is
shown in Figure 9.10, and is qualitatively the same as the result for the em-
pirical propagator. A general feature of residual variance is that it is lower
for the empirical propagator compared with the constant rigidity propagator, as
can be seen by comparing Figures 9.9 and 9.10. This is to be expected since
the errors in the fit of the constant rigidity model also appear in the hedging
exercise.

One interesting result of finite time hedging is that the actual residual variance
of the hedged portfolio, when hedging over a finite time horizon, is less than the
value one obtains if one naively extrapolates the infinitesimal hedging result. This
seems to be due to the fact that the domain of the forward rates that contributes
to the variance of the bonds being used to hedge reduces as the time horizon
increases. This is very clear if the maturity of the bond is close to the hedging
horizon, since the volatility of bonds rapidly drop to zero as the time to matu-
rity approaches. Apart from this reduction, the results look very similar to the
infinitesimal case. This is probably due to the fact that the volatility is quite small
so the nonlinear effects in the covariance matrix Mi j given in Eq. (9.41) are not
apparent.

If very long time horizons (ten years or more) and long-term bonds are consid-
ered, the results is expected to be quite different.
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Figure 9.10 Residual variance V∗ = Var[P(t∗, T )] − LT M−1L when a five-year
bond is hedged with two other bonds using the best-fit constant rigidity field the-
ory model. The time horizon of hedging is one year.

9.11 Summary

The results of this chapter show that the quantum field theory of forward interest
rates is quite suitable for calculating the futures and options of Treasury Bonds, and
other interest rate derivatives. In particular, the formulae for the interest rate caps
as well as for futures and options of Treasury Bonds, derived using Gaussian path
integration, involve nontrivial correlations in the volatility of the model arising
from the correlation of the forward interest rates in the maturity direction.

The concept of hedging in field theory was shown to be a natural generalization
of conventional approaches, and correctly reproduces the limiting results of the
HJM model. Despite the infinite-dimensional nature of the quantum field, it was
shown that a low-dimensional hedge portfolio effectively hedges interest rate risk
by exploiting the correlation between forward rates. Therefore, field theory models
address the theoretical dilemmas of finite factor term structure models and offer a
practical alternative to these models.

The study of derivatives, and the hedging of Treasury Bonds, demonstrates the
far-reaching significance of the nontrivial correlation between forward interest
rates with differing maturities.

9.12 Appendix: Conditional probabilities

The most important forward interest rate is the spot interest rate, namely f (t∗, t∗)
at some future time t∗ ∈ [t0, T ]. The case of hedging a Treasury Bond against the
fluctuations in the spot rate is considered.
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The basic idea in forming the conditional expectation value of a bond is to
integrate out all the forward rates except the rate being hedged against, in this
case the spot rate f (t∗, t∗). In other words, one needs to compute∫

D f δ( f (t∗, t∗) − r)P(t∗, T )eS (9.46)

This naive prescription is however not completely correct. One is computing the
conditional expectation value5 of the Treasury Bond, given the occurrence of a
specific value for the spot rate. Hence the integration over the forward interest rates
has to be performed with a properly normalized probability distribution.

The conditional expectation of the Treasury bond, for spot rate f (t∗, t∗) ≡ r(t∗)
fixed at some value r , is denoted by B(r; t∗, T ). Hence

B(r; t∗; T ) = E
[
P(t∗, T )|r] (9.47)

=
∫

D f δ[ f (t∗, t∗) − r ]P(t∗, T )eS∫
D f δ[ f (t∗, t∗) − r ]eS

(9.48)

For hedging against the fluctuations of N -forward rates, the conditional probability
is given by

B( f1, f2, . . . , fN ; t∗, T ) =
∫

D f
∏N

i=1 δ[ f (t∗, xi ) − fi ]P(t∗, T )eS∫
D f
∏N

i=1 δ[ f (t∗, xi ) − fi ]eS
(9.49)

The probability distribution of r is given by

P(r) = 1

Z

∫
D f δ[ f (t∗, t∗) − r ]eS; Z =

∫
D f eS (9.50)

Eqs. (9.48) and (9.50) yield the expected result as follows

E[P(t∗, T )] =
∫

dr E
[
P(t∗, T )|r]P(r)

=
∫

dr B(r; t∗; T )P(r)

= 1

Z

∫
D f
∫

drδ[ f (t∗, t∗) − r ]P(t∗; T )eS

= 1

Z

∫
D f P(t∗, T )eS

There are similar expressions for conditional probabilities holding N -forward rates
fixed.

5 Conditional probability is discussed in Appendix A.1.



242 Field theory of interest rates’ derivatives

9.13 Appendix: Conditional probability of Treasury Bonds

The case of the conditional probability of a Treasury Bond, given a fixed value
of the interest rate at some future time, namely for fixed r(t∗), is fully worked out.
The derivation shows a number of important features of the Gaussian model of the
forward rates, and all the detailed derivations crucially hinge on the path-integral
formulation of the forward rates.

To understand the detailed nature of the conditional value of a bond B(r; t∗, T )

it is expressed in terms of P(η|r), the conditional probability distribution – given
r – of the zero coupon bond P(t∗, T ), given by

B(r; t∗; T ) =
∫ +∞

−∞
dηe−η P(η|r; t∗; T ) (9.51)

P(η|r; t∗; T ) =
∫

D f δ[ f (t∗, t∗) − r ]δ[η − ∫ T
t∗ dx f (t∗, T )]eS∫

D f δ[ f (t∗, t∗) − r ]eS

A straightforward but tedious calculation gives P(η|r; t∗; T ). Using the results of
the Gaussian models discussed in Chapter 7, yields the following result6

P(η|r; t∗; T ) = 1√
2πσ 2

η|r
exp

[
− 1

2σ 2
η|r

(η − η0)
2

]
(9.52)

η0 =
∫
R

α(t, x) +
∫ T

t∗
dx f (t0, T ) + B

A

[
(r − f (t0, t∗)) −

∫ t∗

t0
dtα(t, t∗)

]

σ 2
η|r = C − B2

A

A =
∫ t∗

t0
dtσ 2(t, t∗)D(t∗, t∗; t, TF R)

B =
∫ t∗

t0
dt
∫ T

t∗
dxσ(t, t∗)D(t∗, x; t, TF R)σ (t, x)

C =
∫ t∗

t0
dt
∫ T

t∗
dxdx ′σ(t, x)D(x, x ′; t, TF R)σ (t, x ′)

Note that all the integrations in the formulae above are over the rectangular domain
R given in Figure 9.1.

The unconditional probability distribution for the zero coupon bond yields a
volatility of σ 2

η = C and hence the conditional expectation reduces the volatil-
ity of the bond by B2/A. This is to be expected since the constraint imposed by

6 For Gaussian field theories, P(η|r; t∗; T ) is also Gaussian, and hence the simplest way to compute it is to find
the mean and variance of the random variable η.
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the requirement of conditional probability reduces the allowed fluctuations of the
Treasury Bond. This reduction of variance is generalized in Eq. (9.45) to the case
of hedging with N -instruments.

The largest reduction of the conditional variance σ 2
η|r that is possible depends

on the properties of the volatility function σ(t, x), and it could be the case that
hedging not against the spot rate r(t∗) = f (t∗, t∗) but against some other forward
rate, namely f (t∗, x) (x > t∗), may lead to a greater reduction in the conditional
variance. The answer can only be found by empirically studying the properties
of σ(t, x). Furthermore, an N -fold constraint on the bond would clearly further
reduce the variance of the conditional value of the bond.

From Eq. (9.51)

B(r; t∗; T ) =
∫ +∞

−∞
dηe−η P(η|r; t∗; T ) = e−η0+ 1

2 σ 2
η|r (9.53)

Hence the final result is given by

B(r; t∗; T ) = P(t0, T )

P(t0, t∗)
exp

{
− X (t∗, T )

[
r − f (t0, t∗)

]− a(t∗, T )
}

(9.54)

with

X (t∗, T ) = B

A
=
∫ t∗

t0
dt
∫ T

t∗ dxσ(t, t∗)D(t∗, x; t, TF R)σ (t, x)∫ t∗
t0

dtσ 2(t, t∗)D(t∗, t∗; t, TF R)
(9.55)

and

a(t∗, T ) = 1

2A

[
B2 − 2B

∫ t∗

t0
dtα(t, t∗)

]
− �F (t0, t∗, T )

where �F is given by Eq. (9.4).
The result obtained for B(r; t∗; T ) is quite different from a similar equation

given in [52]. Equation (9.54) is an identity for P(t, T ) in the HJM model with an
exponential volatility function, whereas in the field theory case, recall it is only the
conditional expectation value of the Treasury Bond, given a value of r(t∗) for the
spot rate.

Recall the hedging parameter is given by Eq. (9.28), and using Eq. (9.54) yields

n1 = −∂ B(r; t, T )

∂r

/
∂ B(r; t, T1)

∂r

= −
[

X (t, T )

X (t, T1)

]
B(r; t, T )

B(r; t, T1)
(9.56)
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Setting t0 = t and t∗ = t + ε gives from Eq. (9.55)

X (t, T ) =
∫ T

t dxσ(t, t)D(t, x; t, TF R)σ (t, x)

σ (t, t)D(t, t; t, TF R)

and hence for (instantaneous) stochastic delta hedging

n1 = −
[ ∫ T

t dx D(t, x; t, TF R)σ (x, t)∫ T1
t dx D(t, x; t, TF R)σ (x, t)

]
B(r; t, T )

B(r; t, T1)
(9.57)

9.14 Appendix: HJM limit of hedging functions

To recover the HJM limit for the hedging functions given in [52], set the propagator
D(t∗, x; t, TF R) → 1. Choose volatility function

σhjm(t, x) = σ0e−β(x−t) (9.58)

It can be shown that the results in Appendix 9.13 yield

Ahjm = σ 2
0

2β

[
1 − e−2β(t∗−t0)

]

Bhjm = σ 2
0

2β2

[
1 − e−2β(t∗−t0)

] [
1 − e−β(T −t∗)

]

Chjm = σ 2
0

2β3

[
1 − e−2β(t∗−t0)

] [
1 − e−β(T −t∗)

]2 = B2
hjm

Ahjm
(9.59)

It follows that

Xhjm(t∗, T ) = Bhjm

Ahjm
= 1 − e−β(T −t∗)

β
(9.60)

and an exact cancellation yields

ahjm(t∗, T ) = B2
hjm

2Ahjm

= σ 2
0

4β3

[
1 − e−2β(t∗−t0)

] [
1 − e−β(T −t∗)

]2
(9.61)

and agrees with the result given in [52].
The exponential volatility function given in Eq. (9.58) has a remarkable property

that, from Eq. (9.59)

σ 2
η|r (hjm) = Chjm − B2

hjm

Ahjm
≡ 0
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Hence Eqs. (9.52) and (A.10) yield

Phjm(η|r; t∗; T ) = δ(η − η0)

In other words, the conditional probability for the zero coupon bond is determin-
istic, and once the spot rate r is fixed leads to the identity

Bhjm(r; t∗; T ) ≡ P(t∗, T ) (9.62)

Hence, for the volatility function given by σ2e−β(x−t) the zero coupon bond for
the HJM model is exactly determined by the spot interest rate. The derivation of
the Treasury Bond as a function of r given in [52] for Eqs. (9.60) and (9.61) is ob-
tained by a change of variables, and not by evaluating the conditional probability.
This change of variables is possible because in the HJM-model there is only one
random variable at every instant t driving the forward rates, and for the specific
form of volatility given in Eq. (9.58) this random variable can be reduced to the
spot rate r(t).

9.15 Appendix: Stochastic hedging with Treasury Bonds

The hedged portfolio and its rate of change are

�(t) = P(t, T ) +
N∑

i=1

�i P(t, Ti ); d�(t)

dt
= d P

dt
+

N∑
i=1

�i
d Pi

dt

For notational simplicity, the bonds P(t, Ti ) and P(t, T ) are denoted Pi and P
respectively. Hence,7 one has

Var

[
d�(t)

dt

]
= Var

[
d P

dt

]
+ Var

[
N∑

i=1

�i
d Pi

dt

]

+
N∑

i=1

�i

[
<

d P

dt

d Pi

dt
> − <

d P

dt
><

d Pi

dt
>

]
(9.63)

For starters, consider the variance of an individual bond in the field theory model.
The definition P(t, T ) = exp (− ∫ T

t dx f (t, x)) for the zero coupon bond implies

7 Recall notation < . . . > stands for the expectation value of random variables.
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that

d P

dt
=
[

f (t, t) −
∫ T

t
dx

∂ f (t, x)

∂t

]
P

=
[

r(t) −
∫ T

t
dxα(t, x) −

∫ T

t
dxσ(t, x)A(t, x)

]
P

= <
d P

dt
> −P

∫ T

t
dxσ(t, x)A(t, x) (9.64)

since P = P(t, T ) is deterministic and < A(t, x) > = 0. Therefore

d P

dt
− <

d P

dt
>= −P

∫ T

t
dxσ(t, x)A(t, x) (9.65)

Squaring this expression and using the result that

< A(t, x)A(t, x ′) > = δ(0)D(x, x ′; t, TF R) = 1

ε
D(x, x ′; t, TF R) (9.66)

yields the instantaneous bond price variance

Var

[
d P

dt

]
= 1

ε
P2
∫ T

t
dx
∫ T

t
dx ′σ(t, x)D(x, x ′; t, TF R)σ (t, x ′) (9.67)

For a portfolio of bonds, �̂(t) =∑N
i=1 �i Pi , similar to the case of the bond, the

following result holds

d�̂(t)

dt
− <

d�̂(t)

dt
> = −

N∑
i=1

�i Pi

∫ Ti

t
dxσ(t, x)A(t, x) (9.68)

and the correlation of the bonds being used to hedge yields

Var

[
d�̂(t)

dt

]
= 1

ε

N∑
i=1

N∑
j=1

�i� j Mi j

with the hedging matrix given by

Mi j = Pi Pj

∫ Ti

t
dx
∫ Tj

t
dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R) (9.69)

The cross correlation between the bond being hedged and the hedging bonds is

N∑
i=1

�i

[
<

d P

dt

d Pi

dt
> − <

d P

dt
><

d Pi

dt
>

]
= 2

ε

N∑
i=1

�i Li
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with the hedging vector given by

Li = Pi P
∫ T

t
dx
∫ Ti

t
dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R)

The (residual) variance of the hedged portfolio

�(t) = P(t, T ) +
N∑

i=1

�i P(t, Ti )

may now be computed in a straightforward manner. From equation (9.63) the in-
stantaneous change in the variance of the hedged portfolio equals the following
(ignoring the overall factor of 1/ε)

P2
∫ T

t
dx
∫ T

t
dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R)

+ 2
N∑

i=1

�i Li +
N∑

i=1

N∑
j=1

�i� j Mi j (9.70)

The hedge parameters �i that minimize the residual variance in equation (9.70)
are obtained by differentiating equation (9.70) with respect to �i , and setting the
result to zero; this is subsequently solved for �i and yields

�i = −
N∑

j=1

M−1
i j L j (9.71)

and represents the optimal amounts of P(t, Ti ) to include in the hedge portfolio
when hedging P(t, T ).

For N = 1, the hedge parameter in Eq. (9.71) reduces to

�1 = − L1

M11
= −

( ∫ T
t dx

∫ T1
t dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R)∫ T1

t dx
∫ T1

t dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R)

)
P

P1
(9.72)

Substituting the value of �i given in Eq. (9.71) into Eq. (9.70) yields the vari-
ance of the hedged portfolio (ignoring the overall factor of 1/ε)

V = P2
∫ T

t
dx
∫ T

t
dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R) −

N∑
i=1

N∑
j=1

Li M−1
i j L j

(9.73)

and which declines monotonically as N increases.
The residual variance in Eq. (9.73) enables the effectiveness of the hedge port-

folio to be evaluated. Therefore, Eq. (9.73) is the basis for studying the effect of
including different bonds in the hedge portfolio.
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9.16 Appendix: Stochastic hedging with futures contracts

The material in (previous) Appendix 9.15 allows the hedging properties of futures
contracts on bonds to be studied. Proceeding as before, the appropriate hedge pa-
rameters for futures contracts expiring at time tF (taken to be one year in the empir-
ical study) are computed. The futures price F(t, tF , T ), from Eq. (9.1), is given by

F(t, tF , T ) = F(t, tF , T )e�F = e
− ∫ T

tF
dx f (t,x)

e�F

where F(t, tF , T ) is the forward price and �F (t, tF , T ) is a deterministic quantity.
The dynamics of the futures price F(t, tF , T ) is given by

dF(t, tF , T )

dt
=
[

d�F (t, tF , T )

dt
−
∫ T

tF

dx
∂ f (t, x)

∂t

]
F(t, tF , T ) (9.74)

which implies

dF(t, tF , T )

dt
− <

dF(t, tF , T )

dt
> = − F(t, tF , T )

∫ T

tF

dxσ(t, x)A(t, x)

(9.75)
since < A(t, x) >= 0. Squaring both sides leads, from Eq. (9.66), to the instanta-
neous variance of the futures price

Var

[
dF(t, tF , T )

dt

]
= 1

ε
F2(t, tF , T )

∫ T

tF

dx
∫ T

tF

dx ′σ(t, x)D(x, x)σ (t, x ′)

(9.76)
The following definitions are the futures contracts analogs of the results of the
hedging by bonds. Let Fi denote the futures price F(t, tF , Ti ) of a contract expir-
ing at time tF on a zero coupon bond maturing at time Ti . The hedged portfolio in
terms of the futures contract is given by

�(t) = P +
N∑

i=1

�iFi (9.77)

where Fi represent observed market prices. For notational simplicity, define the
following terms

L̃i = PFi

∫ Ti

tF

dx
∫ T

t
dx ′σ(t, x)D(x, x ′; t, TF R)σ (t, x ′)

M̃i j = FiF j

∫ Ti

tF

dx
∫ Tj

tF

dx ′σ(t, x)D(x, x ′; tF , TF R)σ (t, x ′)

The hedge parameters and the residual variance, when futures contracts are used
as the underlying hedging instruments, have identical expressions to those in
Eqs. (9.71) and (9.73) but are based on Eq. (9.77).
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Hedge parameters, similar to the case of hedging with bonds, are given by [12]

�i = −
N∑

j=1

M̃−1
i j L̃ j

while the residual variance of the hedged portfolio equals [12]

V = P2
∫ T

t
dx
∫ T

t
dx ′σ(t, x)σ (t, x ′)D(x, x ′; t, TF R) −

N∑
i=1

N∑
j=1

L̃i M̃−1
i j L̃ j

for L̃i and M̃i j given in Eq. (9.78).
The proof follows directly from repeating the derivations for the hedging with

Treasury Bonds.

9.17 Appendix: HJM limit of the hedge parameters

The HJM limit of the hedge parameters �1 and n1 is analyzed for the specific
exponential volatility function that is considered by Jarrow and Turnbull [52].

The HJM limit is taken by D(x, x ′; t, TF R) → 1. Hence, Eq. (9.57) gives n1 as

n1 → −
[ ∫ T

t dxσ(x, t)∫ T1
t dxσ(x, t)

]
B(r; t, T )

B(r; t, T1)

For the hedge parameter �1, Eq. (9.72) reduces to

�1 → −
[∫ T

t dx
∫ T1

t dx ′σ(t, x)σ (t, x ′)( ∫ T1
t dxσ(t, x)

)2
]

P

P1
= −

[ ∫ T
t dxσ(t, x)∫ T1
t dxσ(t, x)

]
P

P1
(9.78)

�1 is similar to n1 except that the ratio P/P1 appears in �1 instead of B/B1.
For the exponential volatility function σ(t, x) = σ2e−β(x−t) Eq. (9.62) leads to
B(r; t, T ) = P(t, T ), and hence �1 = n1.

The reason that stochastic delta hedging and minimization of residual variance
give the same result for the exponential volatility HJM model is because for this
choice of volatility the variance of the conditional probability is zero; hence the
minimum for the residual volatility is automatically satisfied by stochastic delta
hedging.

The following explicit calculation shows how the field theory result encoded in
�1 is equivalent to stochastic delta hedging in the HJM model. Under the assump-
tion of exponential volatility, Eq. (9.78) becomes

�1 = −
(

1 − e−β(T −t)

1 − e−β(T1−t)

)
P

P1
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In terms of the function Xhjm(t, T ) = (1 − e−β(T −t))/β given in Eq. (9.60), the
following holds

�1 = −
(

Xhjm(t, T )

Xhjm(t, T1)

)
P(t, T )

P(t, T1)
(9.79)

For emphasis, note that the following delta hedging equation holds in a one factor
HJM model

∂ [P(t, T ) + �1 P(t, T1)]

∂r(t)
= 0 (9.80)

The equation above can be verified using equation Eqs. (9.79) and (9.54) (recall
for the HJM model with exponential volatility B(r; t, T ) = P(t, T ) as shown in
Eq. (9.62)) since

∂ [P(t, T ) + �1 P(t, T1)]

∂r(t)
= −P(t, T )Xhjm(t, T ) − �1 P(t, T1)Xhjm(t, T1)

= −P(t, T )Xhjm(t, T ) + P(t, T )Xhjm(t, T ) = 0
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Field theory Hamiltonian of forward interest rates

The Hamiltonian formulation of quantum field theory is equivalent to, and inde-
pendent of, its formulation based on the Feynman path integral and the Lagrangian.
There are many advantages of having multiple formulations of the same theory,
since for some calculations the Hamiltonian formulation may be more transparent
and calculable than the Lagrangian formulation.

The path-integral formulation of the forward interest rates, discussed in some
detail Chapter 7, is useful for calculating the expectation values of the quantum
fields. To study questions related to the time evolution of quantities of interest, one
needs to derive the Hamiltonian for the system from its Lagrangian. This route is
the opposite to the one taken in Chapter 5 where the Lagrangian for option pricing
was derived starting from the Hamiltonian formulation [5].

Many of the derivations in Chapter 7 that are feasible for Gaussian field the-
ories cannot be replicated for nonlinear field theories, but which, in some cases,
are nevertheless tractable in the Hamiltonian formulation. In particular, the risk-
neutral martingale measure for the linear theory of the forward rates was derived
by performing a Gaussian path integral, and this derivation is no longer tractable
for nonlinear forward rates.

A rather remarkable result for the theory of nonlinear forward rates is that the
martingale condition can be solved by generalizing the infinitesimal formulation
of the condition for the martingale measure that was discussed for the case of a
single security in Section 4.7.

The generator of infinitesimal time evolution of the forward interest rates,
namely the Hamiltonian, is obtained for both the linear and nonlinear forward
interest rates, as well as for the case of stochastic volatility. To obtain the
Hamiltonian it is necessary to first define the underlying state space of the for-
ward rates’ quantum field. The state space of the forward rates is shown to be time
dependent – moving with a constant ‘velocity’ – and this in turn yields a time-
dependent Hamiltonian for the forward interest rates.

251
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The Hamiltonian formulation of the martingale condition for the forward in-
terest rates yields an exact solution of the risk-neutral measure for the case of
nonlinear forward rates, and for the case of forward rates with stochastic volatility.

The change of numeraire for nonlinear forward rates is solved using the forward
rates’ Hamiltonian. The pricing kernel for the forward rates as well as the European
bond option price is derived to illustrate the utility of the Hamiltonian.

10.1 Forward interest rates’ Hamiltonian

The following are a number of general features of the Hamiltonian’s derivation
from a Lagrangian that were discussed in Appendix 6.11, and that are also valid
for the derivation of the forward rates’ Hamiltonian.1

� Implicit in going from Lagrangian to the Hamiltonian for the Black–Karasinski model,
as seen in Eqs. (6.82) and (6.83), is the use of the completeness equation for the φ

degree of freedom, namely that
∫

dφ|φ >< φ| = I. This feature will turn out to be
more complicated for the forward rates.

� The representation of eεL(n) by means of a Gaussian integration is a necessary step for
the derivation, but will be more complicated for the forward rates.

� The integration measure term e−νφn in Eq. (7.59) is included in the definition of the
nonlinear forward rates’ path integral, similar to Eq. (6.83), and is necessary for obtaining
a well-defined Hamiltonian.

� The Hamiltonian and the state space of the forward rates are two independent ingre-
dients of the quantum theory, as was discussed in general terms in Section 4.1; taken
together they reproduce the various forward rates’ linear and nonlinear actions discussed
in Chapter 7.

One would like to represent the forward rates’ path integral given in Eq. (7.50),
in analogy with Eq. (6.81), as the matrix element of the Hamiltonian in the follow-
ing manner

Z =
∫

D f eS[ f ] =? =< finitial|e−(T f −Ti )H| ffinal > : incorrect (10.1)

where

S[ f ] =
∫
P
L[ f ]∫

D f ≡
∏

(t,x)εP

∫ +∞

−∞
d f (t, x)

Recall the domain P of the forward rates is given in Figure 7.3.

1 It would be useful for a reader unfamiliar with the derivation of a Hamiltonian from a Lagrangian to review
Appendix 6.11.
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The expression for H in Eq. (10.1) is valid only for Hamiltonians that do not
explicitly depend on the parameter of time t . This condition of time independence
does not hold for the forward rates’ Hamiltonian due to the parallelogram shape of
the domain P on which the theory is defined; the shape of the domain P imposes
the condition that for every instant of time t the state space changes; there is a dif-
ferent state space for each instant t , and a different (time-dependent) Hamiltonian
H(t) acting on this time-dependent state space.

Hence one cannot mechanically follow the procedure used in deriving the
Black–Karasinski Hamiltonian, since in that case both the Hamiltonian HBK and
the completeness equation are time–independent. Instead, in order to derive the
forward rates Hamiltonian H(t) from the action S[ f ] one first needs to examine
the state space of the forward rates before one can proceed any further.

10.2 State space for the forward interest rates

The Lagrangian for the forward rates given in Eq. (7.60) has derivatives in time of
the form (∂ f (t, x)/∂t)2, and hence an infinitesimal generator, namely the Hamil-
tonian H exists for it. As discussed in Section 10.1, in order to obtain the Hamil-
tonian for the forward rates, one needs to specify the state space on which it acts,
and the rest of this section will be spent in deriving this state space.

This section is rather technical, but the final result is quite intuitive and simple.
For notational brevity, the forward rates quantum field f (t, x) is taken to rep-

resent both the forward rates’ quantum fields f (t, x) and the stochastic volatility
quantum field h(t, x).

The state space of a field theory, similar to all quantum systems as discussed in
Section 4.1, is a linear vector space – denoted by V – that consists of functionals
of the field configurations at some fixed time t . From Section 4.1 the dual space
of V – denoted by VDual – consists of all linear mappings from V to the complex
numbers, and is also a linear vector space. Recall that the Hamiltonian H is an
operator – the quantum analog of energy – that is an element of the tensor product
space V ⊗ Vdual.

Obtaining the Hamiltonian for the forward rates will turn out to be a complicated
exercise due to the non-trivial structure of the underlying domain P given, as in
Figure 7.4, with x ≥ t . In particular, it will be seen that the forward rates’ quantum
field has a distinct state space Vt for every instant t .

For greater clarity, discretize both time and maturity time into a finite lattice,
with lattice spacing in both directions taken to be ε. 2 On the lattice the minimum
time for futures contract is time ε; for most applications ε =one day. The points
comprising the discrete domain P̃ are shown in Figure 10.1.

2 For a string moving with ‘velocity’ v, the maturity lattice would have spacing of vε; for the forward rates v = 1.
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x

t

Figure 10.1 Lattice in time and maturity directions

The (discrete) lattice domain P̃ has been discussed Appendix 7.18, and is
given by

(t, x) → ε(n, l) ; n, l : integers

(Ti , T f , TF R) → ε(Ni , N f , NF R)

Lattice P̃ = {(n, l)|Ni ≤ n ≤ N f ; n ≤ l ≤ (n + NF R)} (10.2)

f (t, x) → fn,l

∂ f (t, x)

∂t
� fn+1,l − fn,l

ε
; ∂ f (t, x)

∂x
� fn,l+1 − fn,l

ε
(10.3)

The partition function is now given by a finite multiple integral, namely

Z =
∏

(n,l)εP̃

∫
d fn,l e

S[ f ] (10.4)

S[ f ] =
∑

n

S(n) (10.5)

Consider two adjacent time slices labelled by n and n + 1, as shown in
Figure 10.2. S(n) is the action connecting the forward rates of these two time
slices.

n

n+1

Figure 10.2 Two consecutive time slices for t = nε and t = (n + 1)ε
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As can be seen from Figure 10.2, for the two time slices there is a mismatch
of the two-lattice sites on the edges, namely, lattice sites (n, n) at time n and
(n + 1, n + 1 + NF R) at time n + 1 are not in common. Isolating the un-matched
variables yields the following

Variables at time n :
{ fn,n, Fn} ; Fn ≡ { fn,l |n + 1 ≤ l ≤ n + NF R}

Variables at time (n + 1) :
{Fn+1, fn+1,n+1+NF R } ; Fn+1 ≡ { fn+1,l |n + 1 ≤ l ≤ n + NF R} (10.6)

The variables Fn refer to time n, and variables Fn+1 refer to later time n + 1. From
Figure 10.2 it can be seen that both sets of variables Fn+1 and Fn cover the same
lattice sites in the maturity direction, namely n + 1 ≤ l ≤ n + NF R , and hence
have the same number of forward rates, namely NF R − 1. It will be shown that the
Hamiltonian is expressible solely in terms of these variables.

From the discretized time derivatives defined in Eq. (10.3) the discretized action
S(n) contains terms that couple only the common points in the lattice for the two
time slices, namely the variables belonging to the sets Fn; Fn+1. Hence the action
is given by the following Langrangian density Ln

S(n) = ε
∑
{l}

Ln[ fn,l , fn+1,l] (10.7)

= ε
∑
{l}

Ln[Fn; Fn+1] (10.8)

As shown in Figure 10.3, the action for the entire domain P̃ shown in
Figure 10.1 can be constructed by repeating the construction given in Figure 10.2
and summing over the action S(n) over all time Ni ≤ n ≤ N f .

Figure 10.3 Reconstructing the lattice from the two time slices
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The Hamiltonian of the forward rates is an operator that acts on the space of
states of the forward rates; one hence needs to determine the co-ordinates of the
state space.

Consider again the two consecutive time slices n and n + 1 given in
Figure 10.2. The forward rates for two adjacent instants, namely { fn,n, Fn} and
{Fn+1, fn+1,n+1+NF R } given in Eq. (10.6) are interpreted as the co-ordinates of
the state spaces Vn and Vn+1 respectively.

For every instant of time n there is a distinct state space Vn , and its dual VDual,n .
The co-ordinates of the state spaces Vn and Vn+1 are given by the tensor product
of the space of state for every maturity point l, namely

< fn| =
⊗

n≤l≤n+NF R

< fn,l | ≡< fn,n| < Fn|

: co-ordinate state of Vdual,n

| fn+1 >=
⊗

(n+1)≤l≤n+1+NF R

| fn+1,l >≡ |Fn+1 > | fn+1,n+1+NF R >

: co-ordinate state of Vn+1 (10.9)

The state space Vn consists of all possible functions of NF R forward rates
{ fn,n, Fn}. The state spaces Vn differ for different n by the fact that a different
set of forward rates comprise their set of independent variables.

Although the state spaces Vn and Vn+1 are not the identical, there is an inter-
section of these two spaces, namely Vn ∩ Vn+1 that covers the same interval in
the maturity direction, and is coupled by the action S(n). The intersection yields
the physical state space, namely Fn , on which the Hamiltonian evolution of the
forward rates takes place.

The choice of what constitutes the state space, and what is its dual, will deter-
mine the direction of propagation. In the discussion (in a simpler setting) for the
Fokker–Planck Hamiltonian in Appendix 6.8, it was pointed out that in Dirac’s no-
tation the ket vector represents |starting state > and the bra (dual) vector represents
< ending state|.

The choice that is made for the forward rates’ state space and Hamiltonian is
dictated by the fact that in finance time evolution is primarily for the purpose of
discounting the value of an instrument from the future to its present day value.
Hence evolution should go backwards; in keeping with this interpretation of the
Hamiltonian, the later time state space Vn+1 is chosen to contain |starting state >

and the earlier time state space is chosen to be the dual VDual,n containing the
< ending state|. This choice of the state space yields an interest rates backward
Hamiltonian propagating the system backwards in time, from the future into the
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past.3 In symbols

Vn+1 = Fn+1 ⊗ | fn+1,n+1+NF R >

VDual,n = < fn,n| ⊗ Fdual,n

Hn : Fn+1 → Fn+1 ⇒ Hn ∈ Fn+1 ⊗ Fdual,n+1

The Hamiltonian Hn is an element on the tensor product space spanned by
the operators |Fn+1 >< Fn+1|, namely the space of operators given by Fn+1 ⊗
FDual,n+1. The state spaces Fn and Fn+1 are isomorphic (identical), and the in-
dex n is required to track where in the domain P̃ they are located. Hence both
states |Fn+1 > and < Fn| belong to the same state space Fn and its dual. Note
as one proceeds to different values of n the state space changes, and hence Fn is
time-dependent.

The vector spaces Vn and the Hamiltonian Hn acting on these spaces is shown
in Figure 10.2.

Hn

Hn+1

Vn

Vn+1

Vn+2

Figure 10.4 Hamiltonians Hn propagating the space of forward rates Vn

As one scans through all possible values for the forward rates { fnl |n ≤ l ≤
n + NF R}, one obtains a complete basis for the state space Vn . In particular, the
resolution of the identity operator for Vn – denoted by In – is a reflection that the
basis states are complete, and is given by [3]

In =
∏

n≤l≤n+NF R

∫
d fn,l | fn >< fn|

≡
∫

d fn,n DFn | fn,n; Fn >< fn,n; Fn| (10.10)

The Hamiltonian of the system Hn is defined by the Feynman formula (up to a
normalization), from Eq. (10.7), as

ρneε
∑

{l} Ln[ fn,l , fn+1,l ] = < fn,n, Fn|e−εHn |Fn+1, fn+1,n+1+NF R > (10.11)

3 Making the other choice for the state space and its dual will lead to a Hamiltonian that is the Hermitian conju-
gate of what is obtained, and in effect would reverse the sign of the drift velocity.
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where in general ρn is a field-dependent measure term. In the discrete action given
in Eq. (10.8) that connects the two time slices, as shown in Figure 10.2, the un-
matched forward rates fn,n and fn+1,n+1+NF R are decoupled from the action, and
therefore

ρneε
∑

{l} Ln[Fn,Fn+1] = < fn,n, Fn|e−εHn |Fn+1, fn+1,n+1+NF R > (10.12)

= < Fn|e−εHn |Fn+1 > (10.13)

Equation (10.13) is the main result of this section.
It is worth emphasizing that Eq. (10.13) follows from Eq. (10.12) because the

action S(n) connecting time slices n and n + 1 does not contain the variables fn,n

and fn+1,n+1+NF R respectively. This leads to the result that the Hamiltonian Hn

consequently does not depend on these variables.
The interpretation of Eq. (10.13) is that the Hamiltonian Hn propagates the ‘ini-

tial’ state |Fn+1 > backward through time interval ε to the ‘final’ state < Fn|. The
relation

< fn,n, Fn|e−εHn |Fn+1, fn+1,n+1+NF R >=< Fn|e−εHn |Fn+1 > (10.14)

shows that there is an asymmetry in the time direction, with the Hamiltonian be-
ing independent of the earliest forward rate fn,n and of the latest forward rate
fn+1,n+1+NF R . It is this asymmetry in the propagation of the forward rates which
yields the parallelogram domain P given in Figure 10.1, and reflects the asymme-
try that the forward rates f (t, x) exist only for x > t .

Putting in the co-ordinates of stochastic volatility, Eq. (10.13) gives the
following

ρneS(n) = ρneε
∑

{l} Ln[Hn+1,Hn;Fn+1,Fn] (10.15)

= < Fn; Hn|e−εHn |Fn+1; Hn+1 > (10.16)

where the volatility quantum field h(t, x) has been explicitly included in the equa-
tion above.

A general expression for the Hamiltonian has been obtained in terms of the
action S as given in Eq. (10.13), and this formula needs to be applied to the case
of a specific Lagrangian of the forward interest rates to obtain the expression for
its Hamiltonian H.

Continuum notation

For notational simplicity, consider the maturity direction x to be continuous, and
let the time direction be discrete. In the continuum notation, the subtleties of the
variables at time t and t + ε are accounted for by carefully analyzing the variables
appearing on the boundaries of the interval [t ≤ x ≤ t + TF R]. The action S(n)
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for time t = nε, is given by the following

S(n) = ε

∫
x
Ln(t, x) (10.17)∫

x
≡
∫ t+TF R

t
dx (10.18)

In continuum notation the state space is labelled by Vt , and state vector by | ft >.
The elements of the state space of the forward rates Vt includes all possible finan-
cial instruments that are traded in the market at time t . In continuum notation, from
Eq. (10.9)

| ft > =
⊗

t≤x≤t+TF R

| f (t, x) >

|Ft > =
⊗

t≤x<t+TF R

| f (t, x) > (10.19)

The only difference between state vectors | ft > and |Ft > is that, in
Eq. (10.19), the point x = t + TF R is excluded in the continuous tensor product
for |Ft >.

The partition function Z given in Eq. (10.4) can be reconstructed from the
Hamiltonian and state space by recursively applying the procedure discussed for
the two time slices. In continuum notation, this yields

Z =
∫

D f eS[ f ]

= < finitial|T
{

exp −
∫ T f

Ti

H(t) dt

}
| ffinal > (10.20)

where the symbol T in the equation above stands for time ordering the time-
dependent state space and Hamiltonian operator in the argument, with the earliest
time being placed to the left.

To recapitulate: the time-dependent Hamiltonian H(t) propagates the interest
rates backwards in time, taking the final state | ffinal > given at time T f backwards
to an initial state < finitial| at the earlier time Ti . The Hamiltonian propagates the
system backwards in time due to the choice made for the forward interest rates’
state space and its dual.

Although Eq. (10.20) looks superficially similar to Eq. (10.1), the two are very
different. Eq. (10.1) is an appropriate expression for a Hamiltonian that is defined
on a time-independent state space that corresponds to a rectangular domain R,
given in Figure 9.1, for the corresponding path integral, whereas Eq. (10.20) gen-
erates the trapezoidal domain T , given in Figure 7.3, as the domain of its path
integral.
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10.3 Treasury Bond state vectors

The coupon and zero coupon bond are important state vectors in the theory of
forward interest rates.

Consider a risk-free zero coupon Treasury Bond that matures at time T with a
payoff of $1. Recall from Eq. (2.8) that the price of a zero coupon bond at time
t < T is given by

P(t, T ) = e− ∫ T
t f (t,x)dx ≡ P[ f ; t, T ]

The ket state vector |P(t, T ) > is an element of the state space Vt . The bond
state vector is written as follows

P(t, T ) ≡< ft |P(t, T ) >= e− ∫ T
t f (t,x)dx (10.21)

The coupon bond |B > is a state vector, with fixed payoffs of amount cl at time Tl ,
and with a final payoff of L at time T , and is represented by a linear superposition
of the zero coupon bonds given by

|B(t) >=
∑

l

cl |P(t, Tl) > +L|P(t, T ) >

10.4 Hamiltonian for linear and nonlinear forward rates

To derive the Hamiltonian for the linear (Gaussian) forward rates one needs to
repeat all the steps discussed in Appendix 6.11. For simplicity, the case of constant
rigidity is analyzed. From Eq. (7.6) the Lagrangian density L[ f ] is given by

L[ f ] = Lkinetic[ f ] + Lrigidity[ f ] (10.22)

= −1

2


{ ∂ f (t,x)

∂t − α(t, x)

σ (t, x)

}2

+ 1

µ2

{
∂

∂x

(
∂ f (t,x)

∂t − α(t, x)

σ (t, x)

)}2



−∞ ≤ f (t, x) ≤ +∞ (10.23)

On discretizing the Lagrangian, and using the Neumann boundary conditions given
in Eq. (7.10) yields

S(n) = ε

∫
x
Ln = − 1

2ε

∫
x

A

(
1 − 1

µ2

∂2

∂x2

)
A (10.24)

A = σ−1(t, x)( ft+ε − ft − εαt )(x) (10.25)

where f (t, x) ≡ ft (x) has been written to emphasize that time t is a parameter in
the Hamiltonian formulation of the forward rates.
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Eq. (10.24) is re-written using Gaussian integration and (ignoring henceforth
irrelevant constants), using notation

∏
x

∫
dp(x) ≡ ∫ Dp, yields

eS(n) =
∫

Dpe− ε
2

∫
x,x ′ p(x)D(x,x ′;t)p(x ′)+i

∫
x p(x)A(x) (10.26)(

1 − 1

µ2

∂2

∂x2

)
D(x, x ′; t) = δ(x − x ′) ; Neumann B.C.’s

with the propagator D(x, x ′; t) given in Eq. (7.27). Re-scaling the variable p(x)

by p(x) → σ(t, x)p(x) gives (up to a constant)

eS(n) =
∫

Dpei
∫

x p(x)( ft+ε− ft−εαt )(x)− ε
2

∫
x,x ′ σ(t,x)p(x)D(x,x ′;t)σ (t,x ′)p(x ′) (10.27)

Recall from Eq. (10.13) that the Hamiltonian is defined by

ρneS(n) = < ft |e−εH f | ft+ε > (10.28)

= e−εHn(δ/δ ft )

∫
Dpei

∫
x p( ft− ft+ε) (10.29)

where for linear forward rates ρn = 1. The Hamiltonian is written as a (functional)
derivative in the co-ordinates of the dual state space variables ft for reasons dis-
cussed in the derivation of Eq. (6.86). Since there are infinitely many independent
forward rates (degrees of freedom) for each instant of time, represented by the col-
lection of variables ft (x), x ∈ [t, t + TF R] one needs to use functional derivatives,
discussed in Eq. (A.15), to represent the Hamiltonian as a differential operator.

The degrees of freedom f (x) (or equivalently f (θ)) refer to time t only through
the domain on which the Hamiltonian is defined. Unlike the action S[ f ] that spans
all instants of time from the initial to the final time, the Hamiltonian is an infinites-
imal generator in time, and refers only to the instant of time at which it acts on
the state space. This is the reason that in the Hamiltonian the time index t can be
dropped for the variables ft (x), with f (x) , t ≤ x ≤ t + TF R . Hence, the Hamil-
tonian for the linear forward rates, similar to Eq. (6.86), is given by

H f (t) = −1

2

∫ t+TF R

t
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) δ2

δ f (x)δ f (x ′)

−
∫ t+TF R

t
dxα(t, x)

δ

δ f (x)
(10.30)

The Hamiltonian is non-Hermitian, as is typical for the the case of finance. The
European bond option and pricing kernel are derived in Appendix 10.13 using this
Hamiltonian.
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Psychological future time

For psychological future time given by nonlinear maturity variable z = z(θ) ; θ =
x − t = θ(z), the Hamiltonian is given by

H f,z(t) = −1

2

∫ z(TF R)

z(0)

dzdz′σ(t, z)G(z, z′)σ (t, z′) δ2

δ f (θ(z))δ f (θ(z′))

−
∫ z(TF R)

z(0)

dzα(t, z)
δ

δ f (θ(z))
(10.31)

It can be shown that the Hamiltonian above corresponds to the action given in
Eq. (7.86). The θ = θ(z) variable continues to be the label of the forward rates
functional derivative δ/δ f (θ), but is otherwise replaced everywhere in the action
by the nonlinear variable z(θ). These features of the Hamiltonian are a reflection
of the defining equation (7.85) for psychological future time.

Hamiltonian for nonlinear forward rates

For the case of positive forward rates f (t, x) = f0eφ(t,x), the derivation proceeds
exactly in the same manner as the linear case discussed in this section. The only
differences are the following.

� One starts from Eq. (7.57) with the action for the nonlinear forward rates given by

L[φ] = −1

2


{ f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)eνφ(t,x)

}2

+ 1

µ2

{
∂

∂x

(
f0

∂φ(t,x)
∂t − α(t, x)

σ0(t, x)eνφ(t,x)

)}2



� The quantity A in Eq. (10.25) is now defined by

Aφ = f0σ
−1
0 e−νφ(φt+ε − φt − ε f −1

0 α)

� The measure term is defined as

ρn =
∏

x

e−νφ(nε, x)

� The re-scaling of p(x) is as follows

p(x) → f −1
0 σ0eνφ p(x)

and cancels the measure term on the right-hand side of Eq. (10.28),
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The Hamiltonian for nonlinear forward rates with stochastic volatility, similar to
Eq. (10.30), is given by

Hφ(t) = − 1

2 f 2
0

∫
dxdx ′σ0eνφ(x)D(x, x ′; t)σ0eνφ(x ′) δ2

δφ(x)δφ(x ′)

− 1

f0

∫
dxα(t, x)

δ

δφ(x)
(10.32)

The case of nonlinear forward rates for deterministic volatility σ0 is given by set-
ting ν = 0, and gives

Hφ(t)
∣∣∣
ν=0

= − 1

2 f 2
0

∫
dxdx ′σ0(t, x)D(x, x ′; t)σ0(t, x ′) δ2

δφ(x)δφ(x ′)

− 1

f0

∫
dxα

δ

δφ(x)
(10.33)

The Hamiltonian given above for nonlinear forward interest rates with determinis-
tic volatility (ν = 0) is a generalization of the Black–Karasinski Hamiltonian for
the spot interest rate that was obtained in Eq. (6.87).

10.5 Hamiltonian for forward rates with stochastic volatility

Consider the case when both the forward interest rates and its volatility fluctu-
ate independently, and are represented by separate quantum fields. To obtain the
Hamiltonian the following Lagrangian given in Eq. (7.60) needs to be examined

L(t, x) = − 1

2(1 − ρ2)

(
∂ f
∂t − α

σ
− ρ

∂h
∂t − β

ξ

)2

− 1

2

(
∂h
∂t − β

ξ

)2

− 1

2µ2

(
∂

∂x

(
∂ f
∂t − α

σ

))2

− 1

2κ2

(
∂

∂x

(
∂h
∂t − β

ξ

))2

(10.34)

where recall

σ(t, x) = σ0eh(t,x); −∞ ≤ f (t, x), h(t, x) ≤ +∞
Discretizing time, and for notational simplicity suppressing the time (and some-
times) the maturity labels, the Lagrangian L in matrix notation is as follows

S(n) = − 1

2ε

∫
x,x ′

[
σ−1 A ξ−1 B

]
(x)M(x, x ′; t)

[
σ−1 A
ξ−1 B

]
(x ′) (10.35)
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where

M(x, x ′; t) =

 1

1−ρ2 − 1
µ2

∂2

∂x2 − ρ

1−ρ2

− ρ

1−ρ2
1

1−ρ2 − 1
κ2

∂2

∂x2


 δ(x − x ′) (10.36)

and

A ≡ f̃t+ε − ft − εα

B ≡ h̃t+ε − ht − εβ

In obtaining Eq. (10.35) for S(n) the Neumann boundary conditions on the fields
given in Eqs. (7.10) and (7.61) have been used.

Eq. (10.35) is re-written using Gaussian integration and yields (ignoring irrele-
vant constants)

eS(n) =
∫

DpDqe
− ε

2

∫
x,x ′
[

p q
]
M−1


 p

q


+i

∫
x

[
p q

]σ−1 A
ξ−1 B




(10.37)

Define the measure term by

ρn ≡
∏

x

e−h(x) (10.38)

and rescale the p and q variables in Eq. (10.37) for each x as

p → σ p

q → ξq

Eq. (10.37) yields

ρneS(n) =
∫

DpDqe
− ε

2

∫
x,x ′
[
σ p ξq

]
M−1


σ p

ξq


+i

∫
x

[
p q

] f̃ − f − εα

h̃ − h − εβ




showing that the measure term cancels out. Hence from above

ρneS(n) = < f ; h|e−εHn | f̃ ; h̃ > (10.39)

= e−εHn(δ/δ f,δ/δh)

∫
DpDqei

∫
x [p( f − f̃ )+q(h−h̃)]

and which yields the following Hamiltonian for forward rates and volatility quan-
tum fields

H(t) = 1

2

∫
x,x ′

[
σ δ

iδ f ξ δ
iδh

]
M−1

[
σ δ

iδ f

ξ δ
iδh

]
−
∫

x

{
α

δ

δ f
+ β

δ

δh

}
(10.40)
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It is shown in Eq. (10.73) that the inverse of matrix in Eq. (10.36) is given by

M−1(x, x ′; t) =

C


D− − D+ + 1−ρ2

κ2 (r+D+ − r−D−) ρ(D− − D+)

ρ(D− − D+) D− − D+ + 1−ρ2

µ2 (r+D+ − r−D−)




(10.41)

where constants C, r± and functions D± = D±(x, x ′; t) are given in
Appendix 10.11.

For obtaining the forward interest rates’ martingale measure the following ma-
trix element will be needed

E(x; x ′, t) ≡ M−1
11 (x, x ′; t) (10.42)

= µ2√
(κ2 − µ2)2 + 4ρ2µ2κ2

[
κ2(D− − D+) + (1 − ρ2)(r+D+ − r−D−)

]

10.6 Hamiltonian formulation of the martingale condition

The existence of a risk-neutral measure is central to the theory of arbitrage-free
pricing of financial instruments, and a path-integral formulation of this princi-
ple has been discussed in Section 7.6. The Gaussian Lagrangians discussed in
Chapter 7 are quadratic in the fields, and hence the martingale condition could be
solved exactly as in Section 7.6 by performing a Gaussian path integration.

For the cases of nonlinear forward interest rates and their stochastic volatility,
the Lagrangian is nonlinear and hence the evaluation of the risk-neutral measure
cannot be done explicitly using the path integral; for this reason the derivation of
the risk-neutral measure is reformulated using the Hamiltonian. The Hamiltonian
formulation provides an exact solution for the martingale measure of the nonlinear
theory of the forward rates with stochastic volatility.

The result given in Eq. (4.43) shows that the existence of a martingale measure
is equivalent to a risk-free Hamiltonian that annihilates the underlying security S.
It will be seen that a similar condition holds for the Hamiltonian of the forward
rates, but with a number of complications arising from the nontrivial domain of
the forward rates, and the fact that the spot interest rate r(t) = f (t, t) is itself a
stochastic quantity.

The martingale condition given in Eq. (2.10) states that the price of the bond
P(t∗, T ) at some future time T > t∗ > t is equal to the price of the bond at time
t∗, discounted by the risk-free interest rate r(t) = f (t, t). In other words

P(t, T ) = E[t,t∗][e− ∫ t∗
t r(t)dt P(t∗, T )] (10.43)
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Figure 10.5 Domains for risk-neutral measure based on Treasury Bonds

where, as before, E[t,t∗][X ] denotes the average value of X over all the stochastic
variables in the time interval (t, t∗).

In terms of the Feynman path integral, Eq. (10.43) yields (for measure ρ)

P(t, T ) =
∫

D fρ[ f ]e− ∫ t∗
t r(t)dt P(t∗, T )eS[ f ] (10.44)

There are two domains involved involved in the path integral given in Eq. (10.44),
namely the domain for the Treasury Bonds that is nested inside the domain of the
forward rates. These domains are shown in Figure 10.5.

Although written in an integral form, the martingale condition given in
Eq. (10.44), similar to the case of a single security – is clearly a differential con-
dition since it holds for any value of t∗. Hence take t∗ = t + ε. The reason that
one needs to consider an infinitesimal change in the forward rates is due to the
time-dependent nature of the state space Vt . For an infinitesimal evolution in time,
the functional integral in Eq. (10.44) collapses to an integration over the final time
variables f̃t+ε defined on time slice t∗ = t + ε. Hence

P(t, T ) =
∫

D f̃t+ερt+ε e−ε f (t,t)eε
∫
L[ f, f̃ ] P[ f̃ ; t + ε, T ] (10.45)

The above equation is re-written in the language of state vectors, namely that

< ft |P(t, T ) >=
∫

D f̃t+ε < ft |e−ε f (t,t)e−εH| f̃t+ε >< f̃t+ε |P(t + ε, T ) >

(10.46)
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The completeness equation given in Eq. (10.10) is

It+ε =
∫

D f̃t+ε | f̃t+ε >< f̃t+ε | (10.47)

Hence from Eq. (10.46)

< ft |P(t, T ) > = < ft |e−ε f (t,t)e−εH(t)|P(t + ε, T ) > (10.48)

⇒ |P(t, T ) > = e−ε f (t,t)e−εH(t)|P(t + ε, T ) > (10.49)

It can be verified, using the explicit representation of the zero coupon bond given
in Eq. (10.21), that

e+ε f (t,t)|P(t, T ) >= |P(t + ε, T ) > (10.50)

Hence

|P(t + ε, T ) > = e−εH(t)|P(t + ε, T ) > (10.51)

⇒ H(t)|P(t + ε, T ) > = 0 (10.52)

Since there is nothing special about the bond that is being considered, one ar-
rives at the differential formulation of the martingale measure, namely that all zero
coupon bonds – and consequently all coupon bonds – are eigenfunctions of the
Hamiltonian H that are annihilated by H, that is, have zero eigenvalue4

H(t)|P(t, T ) >= 0 for all t, T (10.53)

or more explicitly

< ft |H(t)|P(t, T ) >= H(t)e− ∫ T
t dx f (t,x) = 0 (10.54)

The above equation is the field theory generalization of the case of a single security
given in Eq. (4.43).

The role of the discounting factor is very different for a security that it is for a
bond. The spot rate r is a constant for the case of a security, and is introduced into
the Hamiltonian ‘by hand’ using hedging arguments. In contrast, for the case of the
forward rates the spot interest rate is part of the forward rates and is essential in ob-
taining the martingale condition. In particular, due to the difference in the domain
for the state space at two different instants, the discounting by the spot rate, namely
e−ε f (t,t), is precisely the factor required to transform the Treasury Bond at a
later time P(t + ε, T ) to a bond at an infinitesimally earlier time, namely P(t, T ).

The transformation from the initial bond state to the later time final bond state, as
in Eq. (10.50), is essential in obtaining the equivalence of the martingale condition
with the (eigenfunction) condition that the forward rates Hamiltonian annihilates

4 Similar to the case of the stock price in Section 4.7, the bonds are not normalizable state vectors of the forward
rates’ state space.
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the Treasury Bond; the fact that the initial and final bond state vectors are defined
on unequal maturity time intervals is compensated by the discounting factor.

In a Hamiltonian derivation of the change of numeraire, discussed in Section
10.9, discounting by a Treasury Bond P(t, t∗) replaces discounting by the money
market account exp{− ∫ T

t dt ′r(t ′)}; it is seen in this case as well that the discount-
ing factor makes the initial and final bond state vectors equivalent.

10.7 Martingale condition: linear and nonlinear forward rates

The martingale condition obtained in Eq. (10.53) is applied to evaluate the martin-
gale evolution equation for the linear and nonlinear forward rates.

Linear Hamiltonian

Recall the Hamiltonian for the linear (Gaussian) forward interest rates is given is
Eq. (10.30) by

H f (t) = −1

2

∫ t+TF R

t
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) δ2

δ f (x)δ f (x ′)

−
∫ t+TF R

t
dxα(t, x)

δ

δ f (x)

From Eq. (10.21) the zero coupon bond is given by

P(t, T ) = exp

(
−
∫ T

t
dx f (t, x)

)
(10.55)

and which yields

δn

δ f (t, x)n
P(t, T ) =

{
(−1)n P(t, T ), t < x < T
0, x > T

= (−1)n P(t, T )�(T − x) (10.56)

The martingale condition requires that

H f (t)|Pt (T ) >= 0 (10.57)

and hence, from above equation and Eqs. (10.30) and (10.56)[
−1

2

∫ T

t
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) +

∫ T

t
dxα(t, x)

]
|Pt (T ) >= 0

⇒ α(t, x) = σ(t, x)

∫ x

t
dx ′D(x, x ′; t)σ (t, x ′) (10.58)

: condition for martingale measure
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The expression for the drift velocity given in Eq. (7.38), that was obtained using
Gaussian path integration, has been recovered from the Hamiltonian approach.

The effective Hermitian Hamiltonian for the linear forward interest rates is de-
rived in Appendix 10.12.

Linear Hamiltonian: psychological future time

From Eq. (10.21) the zero coupon bond is given by

P(t, T ) = exp

(
−
∫ T −t

0
dθ f (t, θ)

)
(10.59)

Hence, similar to Eq. (10.56), for psychological future time

δn

δ f (t, θ(z))n
P(t, T ) = (−1)n P(t, T )�(θ − T + t) (10.60)

Imposing the martingale condition for the psychological future time Hamiltonian
given in Eq. (10.31) leads to

H f,z(t)P(t, T ) = 0

=
[
−1

2

∫ z(T −t)

z(0)

dzdz′σ(t, z)G(z, z′)σ (t, z′) +
∫ z(T −t)

z(0)

dzα(t, z)

]
P(t, T )

⇒ α(t, z) = σ(t, z)
∫ z

z(0)

dz′G(z, z′)σ (t, z′) (10.61)

Nonlinear Hamiltonian

For the nonlinear forward rates, the zero coupon bond is given by

P(t, T ) = exp

(
− f0

∫ T

t
dxeφ(x)

)
(10.62)

and which yields

δ

δφ(x)
P(t, T ) = − f0eφ(x) P(t, T )�(T − x)

δ2

δφ(x)φ(x ′)
P(t, T ) = [− f0δ(x − x ′)eφ(x)�(T − x)

+ f 2
0 eφ(x)eφ(x ′)�(T − x)�(T − x ′)

]
P(t, T ) (10.63)
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The Hamiltonian for nonlinear forward rates given by Eq. (10.32)

Hφ(t) = − 1

2 f 2
0

∫
dxdx ′σ0eνφ(x)D(x, x ′; t)σ0eνφ(x ′) δ2

δφ(x)δφ(x ′)

− 1

f0

∫
dxα(t, x)

δ

δφ(x)

and the martingale condition Hφ(t)P(t, T ) = 0 yields from Eq. (10.63)[
−1

2

∫ T

t
dxdx ′σ0e(ν+1)φ(x)D(x, x ′; t)σ0e(ν+1)φ(x ′)

+ 1

2 f0

∫ T

t
dx D(x, x; t)σ 2

0 e(2ν+1)φ(x) +
∫ T

t
dxα(t, x)eφ(x)

]
P(t, T ) = 0

Hence the drift velocity is obtained as

α(t, x) = −σ 2
0 e2νφ(t,x)

2 f0
D(x, x; t)

+ σ0eνφ(t,x)

∫ x

t
dx ′D(x, x ′; t)σ0eνφ(t,x ′)eφ(t,x ′) (10.64)

where the time index for the field, namely φ(t, x) has been restored in the expres-
sion for α.5 For the case of nonlinear fields with deterministic volatility ν = 0.
The simplest nonlinear theory of the forward rates has σ0 =constant, and the drift
velocity is given by

αν=0(t, x) = − σ 2
0

2 f0
D(x, x; t) + σ 2

0

∫ x

t
dx ′D(x, x ′; t)eφ(t,x ′) (10.65)

For the nonlinear forward rates, the exponential variable eφ(t,x) appears in the ac-
tion only through the drift term αν=0(t, x). All studies of the nonlinearities of the
forward rates have a natural starting point in studying this simplest and irreducible
nonlinear model.

The martingale measure for the nonlinear forward interest rates obtained above
is not contained in the class of solutions for which the drift velocity is a quadratic
function of the volatility functions (fields) [2], as is the case for linear field the-
ories as well as the HJM model. The appearance of the forward rates f (t, x)

directly in the drift velocity emerges naturally in the field-theoretic formulation,
and is a reflection of the kinetic term (∂ f/∂t)2 in the Lagrangian for the case of
f ∈ [−∞, +∞], being replaced for the case of positive forward rates f ≥ 0 by
(∂ ln( f/ f0)/∂t)2 .

5 The first term in Eq. (10.64) was inadvertently omitted in [3].
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The derivation of the martingale condition for the linear theory of the forward
interest rates can be carried out for any of the Gaussian propagators, and the result
is obtained by replacing the propagator D(x, x ′; t) by the appropriate one; in par-
ticular, the result for the stiff Lagrangian is obtained by replacing D(x, x ′; t) with
G(x, x ′; t).

10.7.1 General form of the action

The following general result for the action S[φ] is proven for the case of when
(stochastic) volatility is a function of the forward rates. A general form for the
Lagrangian can be written as

Lgeneral = L
[(

f0
∂φ(t,x)

∂t − α(t, x)

σ0(t, x)eνφ(t,x)

)]
+
∫

U (t, x)
∂φ

∂t
+
∫

W (t, x)

U, W : arbitrary local functions of f (t, x)

It can be shown that the martingale condition yields [3]

U (t, x) = W (t, x) = 0

In particular, a string tension term in the Lagrangian of the form

W (t, x) ∝
(

∂ f

∂x

)2

is excluded by requiring a martingale measure.

10.8 Martingale condition: forward rates with stochastic volatility

From the Hamiltonian given in Eq. (10.40) it can be seen that δ/δh yields zero in
Eq. (10.54) since the zero coupon bond does not depend explicitly on the volatility
field. Hence, from Eqs. (10.54), (10.40) and (10.63)[

− 1

2

∫ T

t
dxdx ′σ(t, x)E(x, x ′; t)σ (t, x ′) +

∫ T

t
dxα(t, x)

]
P(t, T ) = 0

⇒ α(t, x) = σ(t, x)

∫ x

t
dx ′E(x, x ′; t)σ (t, x ′) (10.66)

: condition for martingale measure

Incorporating the expression for α(t, x) given in Eq. (10.66) into the Lagrangian
yields the final result. For notational convenience define the following non-local
function of the volatility field

v(t, x) =
∫ x

t
dx ′E(x, x ′; t)σ (t, x ′) (10.67)
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One the obtain the Lagrangian given below that is a complete description of the
theory of linear forward rates with an independent stochastic volatility quantum
field

L(t, x) = − 1

2(1 − ρ2)

(
σ−1 ∂ f

∂t
− v − ρ

∂h
∂t − β

ξ

)2

− 1

2

(
∂h
∂t − β

ξ

)2

− 1

2µ2

(
∂

∂x

(
σ−1 ∂ f

∂t
− v

))2

− 1

2κ2

(
∂

∂x

(
∂h
∂t − β

ξ

))2

(10.68)

All the parameters in the theory, namely the function β(t, x) and the parameters
µ, κ, ξ and ρ need to be determined from market data. Due to the presence of the
field v(t, x) the Lagrangian is non-local, with the function E(x, x ′; t) containing
all the information regarding the risk-neutral martingale measure.

Since at present there is no instrument in the financial markets that trades in
volatility of the forward rates, one cannot apply the condition of martingale to the
volatility field, and, in particular, one cannot fix the drift velocity of the volatility
field, namely β(t, x), to be a function of the other fields and parameters of the
theory. For this reason β has to be determined empirically from the market. To
obtain the limit of deterministic volatility, the limit of ξ, ρ and κ → 0 has to be
taken, and this yields

ξ, ρ, κ → 0

r+ → µ

r− → 0

E(x, x ′; t) → D(x, x ′; t)

with propagator D(x, x ′; t) given by Eq. (7.27).
There are two further generalizations that can made for the Lagrangian obtained

in Eq. (10.68), namely (a) the propagator E(x, x ′; t) can include more complex
effects such as stiffness, psychological future time z = z(x − t) etc., and (b) the
forward rate can be made nonlinear and positive, that is, f > 0.

10.9 Nonlinear change of numeraire

The martingale condition that was obtained in Section 10.6 is based on dis-
counting the Treasury Bond P(t, T ) with the money market account given by
B(t0, t) = exp

∫ t
t0

r(t ′)dt ′, where r(t) is the spot interest rate. The requirement
that the discounted instrument P(t, T )/B(t0, t) is a martingale led to the equation
H(t)P(t, T ) = 0, which in turn fixes the drift velocity α.
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As discussed in Section 7.7 one can choose to discount a Treasury Bond by
any positive-valued instrument, and then choose the new drift velocity α∗ to make
the discounted Treasury Bond a martingale. In particular, one can discount the
Treasury Bond P(t, T ) by another Treasury Bond P(t, t∗) so that P(t, T )/P(t, t∗)
is a martingale.

The drift velocity α∗ is fixed by demanding that the Hamiltonian H(t) should an-
nihilate the instrument P(t, T )/P(t, t∗). In other words, analogous to Eq. (10.54),
by repeating the derivation given in Section 10.6, one derives the martingale con-
dition as

H(t)

[
P(t, T )

P(t, t∗)

]
= 0

⇒< ft |H(t)| P(t, T )

P(t, t∗)
>= H(t) exp

{
−
∫ T

t∗
dx f (t, x)

}
= 0 (10.69)

The only effect of the discounting factor P(t, t∗) is to change, on the right-hand
side of Eq. (10.69), the lower limit of integration of the forward rates f (t, x) from
t to t∗. This in turn yields, for example similar to Eq. (10.56), that

δn

δ f (t, x)n

[
P(t, T )

P(t, t∗)

]
= (−1)n P(t, T )

P(t, t∗)
�(T − x)�(x − t∗) (10.70)

In all the derivations for the drift velocity α when discounting by the spot rate, the
Hamiltonian H(t) was defined for all future time x > t , and forward time x for
the drift velocity was restricted to the range of [t, T ], due to martingale condition
satisfied by the Treasury Bond P(t, T ). However, with the change of numeraire,
due to Eq. (10.70), in the derivations of drift velocity α∗, forward time x is now
restricted to lie in the range [t∗, T ]. Hence, to obtain α∗ from α, one needs to only
change the lower limit of integration for x from t to t∗, which yields the following
modified drift velocities.

� Linear forward rates. Analogous to Eq. (10.58)

α∗(t, x) = σ(t, x)

∫ x

t∗
dx ′ D(x, x ′; t)σ (t, x ′) (10.71)

� Nonlinear forward rates. From Eq. (10.64)

α∗(t, x) = −σ 2
0 e2νφ(t, x)

2 f0
D(x, x; t)

+ σ0eνφ(t, x)

∫ x

t∗
dx ′ D(x, x ′; t)σ0e(ν+1)φ(t, x ′)
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� For stochastic volatility. From Eq. (10.66)

α∗(t, x) = σ(t, x)

∫ x

t∗
dx ′E(x, x ′; t)σ (t, x ′)

10.10 Summary

The Hamiltonian and state space of the forward interest rates provide an indepen-
dent formulation of the quantum field theory of the forward rates, and can lead to
new insights on the behaviour of the forward rates.

The Hamiltonian of the forward rates was derived for both the linear and nonlin-
ear theory. The Hamiltonian is a time-dependent differential operator in infinitely
many independent degrees of freedom that requires the machinery of quantum field
theory for its mathematical description. A key step in obtaining the Hamiltonian
was to first derive the underlying time-dependent state space of the forward rates –
and which turned to be quite an involved derivation due to the trapezoidal structure
of the underlying manifold.

The Hamiltonian generates infinitesimal translations in time, and due to
the choice made for the state space, the forward rates’ Hamiltonian propagates
the interest rates backwards in time. Since the Hamiltonian is non-Hermitian, the
forward and backward Hamiltonians – similar to the case for the Fokker-Planck
Hamiltonian – are inequivalent.

One can model the forward rates starting with a Hamiltonian, and obtain the
Lagrangian following a procedure similar to the followed in the earlier studies of
the Black–Scholes equation and of spot interest rates. This route looks deceptively
simple, since to obtain the Lagrangian one also needs to know the state space on
which the Hamiltonian acts.

It was shown that many crucial properties of the time-dependent state space are
encoded in the action S[ f ] – and a considerable amount of effort was spent in
decoding it. Without knowledge of the full action, it would be difficult to obtain
the state space starting only from the Hamiltonian, since the state space of the
forward rates is an independent quantity that needs to be specified in addition to
the Hamiltonian.

The non-Hermiticity of the Hamiltonian always arises due to the drift term that
is required for having a martingale time evolution, and a similarity transformation
for the linear case makes the forward rates Hamiltonian equivalent to a Hermitian
Hamiltonian.

The model for nonlinear forward rates, and the case of linear forward rates with
stochastic volatility could be fully analyzed for its martingale measure due to the
Hamiltonian formulation of the martingale condition.
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There are a number of free parameters in the action for nonlinear forward in-
terest rates and stochastic volatility that need to be determined from the market.
Hence the empirical procedures followed in Chapter 8 need to be extended to the
case of nonlinear forward rates with stochastic volatility.

The pricing kernel and European call option for a Treasury Bond were derived
for the linear Hamiltonian to illustrate a few concrete calculations using the field
theory Hamiltonian.

10.11 Appendix: Propagator for stochastic volatility

The inverse of the matrix operator given in Eq. (10.36) is derived in this appendix.

M(x, x ′; t) =

 1

1−ρ2 − 1
µ2

∂2

∂x2 − ρ

1−ρ2

− ρ

1−ρ2
1

1−ρ2 − 1
κ2

∂2

∂x2


 δ(x − x ′) (10.72)

All the elements of the matrix operator M(x, x ′; t) commute, and hence it can be
inverted as an ordinary 2 × 2 matrix leading to the following result

M−1(x, x ′; t) =

 1

1−ρ2 − 1
κ2

∂2

∂x2
ρ

1−ρ2

ρ

1−ρ2
1

1−ρ2 − 1
µ2

∂2

∂x2


 1

detMδ(x − x ′)

The inverse of the determinant, using notation ∂2/∂x2 = ∂2, can be written as

1

detMδ(x − x ′) = (1 − ρ2)C

[
1

−∂2 + r−
− 1

−∂2 + r+

]
δ(x − x ′)

= (1 − ρ2)C
[
D−(x, x ′; t) − D+(x, x ′; t)

]
where

C = µ2κ2√
(κ2 − µ2)2 + 4ρ2µ2κ2

r± = 1

2(1 − ρ2)

[
µ2 + κ2 ±

√
(κ2 − µ2)2 + 4ρ2µ2κ2

]
(

− ∂2

∂x2
+ r±

)
D±(x, x ′; t) = δ(x − x ′) : Neumann B.C.’s
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Collecting results derived above yields

M−1(x, x ′; t) =

C


D− − D+ + 1−ρ2

κ2 (r+D+ − r−D−) ρ(D− − D+)

ρ(D− − D+) D− − D+ + 1−ρ2

µ2 (r+D+ − r−D−)




(10.73)

which is the result quoted in Eq. (10.41). The identity

−∂2[D−(x, x ′; t) − D+(x, x ′; t)
] = −r−D−(x, x ′; t) + r+D+(x, x ′; t)

simplifies the diagonal terms of M−1(x, x ′; t) in Eq. (10.73).

10.12 Appendix: Effective linear Hamiltonian

Recall that the Hamiltonian for the linear forward rates is given by Eq. (10.30) by

H f (t) = −1

2

∫ t+TF R

t
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) δ2

δ f (x)δ f (x ′)

−
∫ t+TF R

t
dxα(t, x)

δ

δ f (x)

The drift velocity, from Eq. (10.58), is given by

α(t, x) = σ(t, x)

∫ x

t
dx ′D(x, x ′; t)σ (t, x ′)

Similar to the transformation carried out for option pricing Hamiltonians in
Eq. (4.46), one can write the field theory Hamiltonian as

H f (t) = e−O(t)Heff(t)e
O(t) (10.74)

Using the notation that δx ≡ δ/δ f (x) gives

e−Oδxδx ′eO = δxOδx ′O + δxδx ′O + δxOδx ′ + δx ′Oδx + δxδx ′

Using the notation
∫ t+TF R

t dx ≡ ∫x , choose the following transformation

O(t) =
∫

x
β(t, x) f (x) ; δxO = β(t, x)

β(t, x) =
∫

y,z
σ(t, y)D(y, z; t)θ(z − y)θ(y − t)D−1(z, x; t)σ−1(t, x)
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To obtain Heff(t) the coefficient β has been chosen to exactly cancel the drift term
in the Hamiltonian. 6 Hence∫

x,x ′
σ(t, x)D(x, x ′; t)σ (t, x ′)δx ′Oδx =

∫
x,x ′

σ(t, x)D(x, x ′; t)σ (t, x ′)β(t, x ′)δx

=
∫

x
σ(t, x)

∫
y
σ(t, y)D(x, y; t)θ(x − y)θ(y − t)δx =

∫ t+TF R

t
dxα(t, x)

δ

δ f (x)

The effective Hermitian Hamiltonian is hence given by

Heff(t) = H0(t) + �(t) = H†
eff(t)

H0(t) = −1

2

∫
x,x ′

σ(t, x)D(x, x ′; t)σ (t, x ′) δ2

δ f (x)δ f (x ′)

�(t) = 1

2

∫
x,x ′

σ(t, x)β(t, x)D(x, x ′; t)σ (t, x ′)β(t, x ′)

The effective Hamiltonian can be used to price barrier and other options on
Treasury Bonds.

10.13 Appendix: Hamiltonian derivation of European bond option

The main focus in the analysis of the Hamiltonian has been on obtaining the mar-
tingale measure for nonlinear forward rates. To illustrate other useful features of
the Hamiltonian, the price of a European bond option C(t0, t∗, T, K ) given in
(6.53) is derived using the field theory Hamiltonian.

For calculating the price of options, as discussed in Eqs. (7.47) and (7.48), it is
more convenient to discount the future price of the option by the discount factor
P(t, t∗) that yields, for t0 < t∗, the price of option

C(t0, t∗, T, K ) = P(t0, t∗)E∗[(P(t∗, T ) − K )+] (10.75)

For numeraire given by P(t, t∗), from Eq. (10.71), the drift velocity is

α∗(t, x) = σ(t, x)

∫ x

t∗
dx ′D(x, x ′; t)σ (t, x ′)

6 In Section 10.9 a change of the discounting factor (numeraire) is considered. For the new drift velocity given
by α∗, the β∗ for obtaining the effective Hamiltonian is given by β∗(t, x) = ∫y,z σ(t, y)D(y, z; t)θ(z − y)θ

(y − t∗)D−1(z, x; t)σ−1(t, x).
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The Hamiltonian for the linear forward rates, from Eq. (10.30), is

H∗
f (t) = −1

2

∫ t+TF R

t
dxdx ′σ(t, x)D(x, x ′; t)σ (t, x ′) δ2

δ f (x)δ f (x ′)

−
∫ t+TF R

t
dxα∗(t, x)

δ

δ f (x)

To make the content of the payoff function g[ f∗] ≡ (P(t∗, T ) − K )+ more ex-
plicit, consider the dual basis states

< f∗| ≡
∏

t∗≤x≤t∗+TF R

< f (x)| ; < f0| ≡
∏

t0≤x≤t0+TF R

< f (x)| (10.76)

Hence

< f∗|g > =
{

(P(t∗, T ) − K )+, t∗ ≤ x ≤ T
0 , x > T

(10.77a)

≡ g[ f∗] (10.77b)

From above, it can be seen that the payoff function |g > has non-zero components
in the future direction x only in the interval t∗ ≤ x ≤ T .

The call option price at time t0 is given by propagating, backwards in time, the
payoff function |g > that matures at time t∗ > t0 to present time t0, as given in
Eq. (10.20), discounted by the numeraire P(t0, t∗). Hence

C(t0, t∗, T, K ) = P(t0, t∗)E∗[(P(t∗, T ) − K )+]
= P(t0, t∗) < f0|T

{
exp −

∫ t∗

t0
dtH∗

f (t)
}
|g > (10.78)

Using the completeness equation
∫

D f∗| f∗ >< f∗| = I

< f0|T
{

exp −
∫ t∗

t0
dtH∗

f (t)
}
|g >

=
∫

D f∗ < f0|T
{

exp −
∫ t∗

t0
dtH∗

f (t)
}
| f∗ >< f∗|g > (10.79)

In the matrix element of the Hamiltonian above, due to the nontrivial nature of
the time-ordering symbol T , the bra vector < f0| is an element of state space
of functions on the interval [t0, t0 + TF R] and the ket vector < f∗| is an element
of the state space of functions on the interval [t∗, t∗ + TF R]. Eq. (10.79) can be
simplified further. The overlap of < f∗| with |g >, that is < f∗|g > is non-zero
only in the interval x ∈ [t∗, T ]; therefore the non-zero overlap of the the basis state
< f0| with |g > is also only in the interval x ∈ [t∗, T ].
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Hence the domain R that is involved in computing the matrix element in
Eq. (10.79) is the one given in Figure 9.1. The domain R has the important feature
that the subspace of the state space Vt that enter the matrix element in Eq. (10.79)
are all fixed in time and identical for all t ∈ [t0, t∗], being spanned by variables
f (x) , x ∈ [t∗, T ]; moreover, on domain R, the Hamiltonian is also time indepen-
dent and hence [H∗

f (t),H∗
f (t

′)] = 0.
For these reasons the time ordering T in Eq. (10.79) is no longer necessary, and

can be ignored.7 Hence restrict H∗
f (t) to the domain R by limiting the range of

x ∈ [t∗, T ]. Defining
∫ T

t∗ dx ≡ ∫∗x yields

H∗
f (t)|R = −1

2

∫
∗x,x ′

σ(t, x)D(x, x ′; t)σ (t, x ′) δ2

δ f (x)δ f (x ′)

−
∫

∗x
α∗(t, x)

δ

δ f (x)

Since there is no longer any time ordering for the Hamiltonian, the operator driving
the option price is given by

W ≡
∫ t∗

t0
dtH∗

f (t)|R

= −1

2

∫
∗x,x ′

q2(x, x ′) δ2

δ f (x)δ f (x ′)
−
∫

∗x
j (x)

δ

δ f (x)

⇒ q2(x, x ′) =
∫ t∗

t0
dtσ(t, x)D(x, x ′; t)σ (t, x ′) ; j (x) =

∫ t∗

t0
dtα∗(t, x)

(10.80)

The matrix element given in Eq. (10.79) is hence (g[ f∗] ≡< f∗|g >)

< f0|T
{

exp −
∫ t∗

t0
dtH∗

f (t)
}
| f∗ >< f∗|g >=< f0|e−W | f∗ >

∣∣∣
R

g[ f∗]
(10.81)

Recall from Eq. (6.55) that a representation of the payoff function is given by

(P(t∗, T ) − K )+ =
∫ +∞

−∞
dG

dξ

2π
eiξ(G+∫∗x dx f (t∗,x))(eG − K )+

7 If the discounting factor is exp(− ∫ t∗
t0

dtr(t)), the domain for evaluating the matrix element in Eq. (10.79) is
the trapezoidal domain given in Figure 6.4. This is because the discounting factor extends the non-zero overlap
of the basis state < f0| with exp(− ∫ t∗

t0
dtr(t))|g > to the interval x ∈ [t, T ]; furthermore, the time-ordering

symbol T cannot be ignored, since the underlying state space and Hamiltonian are now time dependent, and
lead to a separate calculation for each t ∈ [t0, t∗].
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The matrix elements of e−W are evaluated in the domain R, and hence from
Eqs. (10.78), (10.79) and (10.81)

C(t0, t∗, T, K ) = P(t0, t∗)
∫

D f∗ < f0|e−W | f∗ >

∣∣∣
R

g[ f∗]

= P(t0, t∗)
∫ +∞

−∞
dG

dξ

2π
(eG − K )+eiξG

∫
D f∗ < f0|e−W | f∗ >

∣∣∣
R

eiξ
∫
∗x f (t∗,x)

To further simplify the matrix element, the field theory generalization of the mo-
mentum basis given in Eq. (4.34) is useful. Hence, similar to the Black–Scholes
case given in Eq. (4.38), it follows that8

Z ≡
∫

D f∗ < f0|e−W | f∗ >

∣∣∣
R

eiξ
∫
∗x f (t∗,x)

=
∫

D f∗Dp < f0|e−W |p >

∣∣∣
R

< p| f∗ > eiξ
∫
∗x f (t∗,x)

=
∫

D f∗Dp e− 1
2

∫
∗x,x ′ q2(x,x ′)p(x)p(x ′) ×

ei
∫
∗x p(x) j (x)ei

∫
x p(x)[ f (t0,x)− f (t∗,x)]eiξ

∫
∗x f (t∗,x) (10.82)

Performing the final forward rates integrations
∫

D f∗, where f∗(x) ≡ f (t∗, x),
yields a product of delta functions that constrains all the momentum integrations.
Hence

Z =
∫

Dpe− 1
2

∫
∗x,x ′ q2(x,x ′)p(x)p(x ′)ei

∫
∗x p(x)[ f (t0,x)+ j (x)] ∏

t∗≤x≤T

δ
(

p(x) − ξ
)

= e− q2

2 ξ2
eiξ

∫
x [ f (t0,x)+ j (x)] with q2 =

∫
∗x,x ′

q2(x, x ′)

and from Eq. (9.9)∫
∗x

j (x) =
∫ T

t∗
dx
∫ t∗

t0
dtα∗(t, x) =

∫
R

α∗(t, x) = q2

2

Collecting all the results gives

C(t0, t∗, T, K ) = P(t0, t∗)
∫ +∞

−∞
dG

dξ

2π
(eG − K )+e− q2

2 ξ2
eiξ(G+∫ T

t∗ dx f (t0,x)+ q2

2 )

which, on doing the Gaussian integration on ξ , yields Eq. (9.10) as
expected.

8 Recall that the derivatives in Hamiltonian, namely δ/δ f (x), act on the dual basis and are, consequently, inside
the matrix element, equal to δ/δ f0(x).
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10.13.1 Forward interest rates’ pricing kernel

The pricing kernel, similar to the case for stocks as in Eq. (4.39), can be evaluated
for the forward rates and is sufficient for pricing any path-independent option if
the discounting is done with a bond P(t0, t∗). It is defined, from Eq. (10.78) for
remaining time τ = t∗ − t0 as follows

p[ f0, f∗; τ ] = < f0|T
{

exp −
∫ t∗

t0
dtH∗

f (t)
}
| f∗ >

= < f0|e−W | f∗ >

∣∣∣
Rpk

The non-lap overlap of < f0| with | f∗ > is for values of the maturity variable x in
the interval [t∗, t0 + TF R], and the path integral for the pricing kernel is over the
rectangular domain Rpk : (t, x) ∈ [t0, t∗] × [t∗, t0 + TF R]. A calculation similar
to the one carried out in Eq. (10.82) yields the result (

∫
pk:x ≡ ∫ t0+TF R

t∗ dx)

p[ f0, f∗; τ ]
=
∫

Dp e− 1
2

∫
pk:x,x ′ q2(x,x ′)p(x)p(x ′)ei

∫
pk:x p(x) j (x)ei

∫
pk:x p(x)[ f (t0,x)− f (t∗,x)]

= N exp
{

− 1

2

∫
pk:x,x ′

[ f (t0, x) − f (t∗, x) + j (x)]q−2(x, x ′)

[ f (t0, x ′) − f (t∗, x ′) + j (x ′)]
}

where N is a normalization constant. q2(x, x ′) is given by Eq. (10.80) and∫
pk:x ′

q2(x, x ′)q−2(x ′, y) = δ(x − y)

with

j (x) =
∫ t∗

t0
dtα∗(t, x) =

∫ t∗

t0
dtσ(t, x)

∫ x

t∗
D(x, x ′; t)σ (t, x ′)
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Conclusions

A wide range of topics have been covered, from stock options to forward in-
terest rates. The definition, valuation and hedging of financial instruments have
been formulated in the mathematics of quantum theory. Most of the models
used in mathematical finance are based on stochastic calculus, and have been
shown to belong to the class of problems that require only a finite number
of degrees of freedom. Path integrals for systems with a finite number of de-
grees of freedom are completely finite, and can be used to compute all quan-
tities of interest. In particular it was shown that for stock options the pric-
ing kernel (conditional probability) can be efficiently computed using path
integrals.

The Hamiltonian formulation of random systems yields many new results and
insights. Barrier options, as well as path-dependent stock options, can be mod-
elled using the concept of potentials and eigenfunctions, and the pricing kernel
can be evaluated using concepts such as the completeness equation. The Hamil-
tonian provides a formulation of the concept of a martingale that is indepen-
dent of stochastic calculus. The field theory Hamiltonian and state space were
essential in obtaining the exact martingale measure for nonlinear forward interest
rates.

New financial instruments, in particular path-dependent stock options, can be
designed and hedged based on the Hamiltonian approach to option pricing.

Quantum field theory is required for studying systems with infinitely many de-
grees of freedom. In a completely general theory of the forward interest rates, at
a given instant t , the forward rate f (t, x) for each x is an independent random
variable, yielding a system with infinitely many degrees of freedom. The forward
interest rates, considered as a randomly fluctuating curve, is consequently a two-
dimensional quantum field. The field theory of the forward rates yields many re-
sults on the fundamental properties of the forward interest rates, some examples of
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which are the following:

� Gaussian field theory models can accurately describe the empirical behaviour of the for-
ward rates

� Nonlinear forward rates with stochastic volatility can be mathematically modelled using
quantum field theory

� The hedging of Treasury Bonds can be carried out effectively for field theory models of
the interest rates

� The martingale condition and change of numeraire for nonlinear forward rates can be
solved exactly using the techniques of quantum field theory

The topics covered convincingly show that quantum field theory provides a suit-
able mathematical structure for studying the forward interest rates.

All calculations, as well as empirical analysis, of forward interest rates were car-
ried out for linear (Gaussian) theories. Market data show an excellent agreement of
the Gaussian ‘stiff’ field theory results with the observed behaviour of the forward
rates.

The encouraging results obtained for linear theory provide strong motivation for
studying the much more complicated and relatively intractable nonlinear theories
of forward interest rates. The infinitely many degrees of freedom of a quantum
field lead to potential divergences for nonlinear field theories. The procedure of
renormalization that has been mentioned earlier is the manner in which these di-
vergences are studied. Only renormalizable theories are consistent, and the main
challenge in the study of nonlinear forward interest rates is to devise (analytical
and numerical) computational techniques to determine whether the nonlinear the-
ories are renormalizable. In case the nonlinear theories are renormalizable, one
needs to develop empirical methods for testing and applying such nonlinear for-
ward interest rates theories to the debt market.



Appendix A

Mathematical background

The subjects discussed in this appendix are all primarily of a mathematical nature, and
constitute background material for the main text. The topics are included for the readers
easy reference.

A.1 Probability distribution

The notation for probability theory is discussed, and in particular the definition of condi-
tional probability. The concept of a martingale is discussed as this has important applica-
tions in finance.

Random variables are real- or discrete-valued variables that take values in some pre-
specified range determined by their probability distributions. Random variables are desig-
nated by either upper case such as X or lower case such as r . A stochastic process refers
to a collection of random variables. The stochastic process can be (a) a continuous process
with an independent random variable r(t) for every t , with the continuous label t in some
range t ∈ [t0, t∗], or can be (b) a discrete process with a collection of random variables
Zn with n: integer. Degrees of freedom, in the terminology of physics, refer to the num-
ber of independent random variables at a given instant, and hence each degree of freedom
corresponds to a independent stochastic process.

Consider a collection of N + 1 random variables Zi ; 1 ≤ i ≤ N + 1 , with joint proba-
bility distribution functions given by p(z1, z2, . . . , zN+1). The expectation value of some
arbitrary function of the random variables f (z1, z2, . . . , zN+1) is given by

E[ f ] =
∫

dz1dz2, . . . , dzN+1 f (z1, z2, . . . , zN+1)p(z1, z2, . . . , zN+1)

E[1] = 1 =
∫

dz1dz2, . . . , dzN+1 p(z1, z2, . . . , zN+1)

The joint probability distribution functions given by p(z1, z2, . . . , zN+1) generates the
so-called marginal probability distributions

p(N+1)(z1, z2, . . . , zN ) =
∫

dzN+1 p(z1, z2, . . . , zN+1)

. . . . .

p(N+1,N ,...,2)(z1) =
∫

dz2, . . . , dzN dzN+1 p(z1, z2, . . . , zN+1)

The conditional expectation for the outcome of some function f (zN+1), given that the
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fixed values zi occur for the random variable Zi ; 1 ≤ i ≤ N , is given by

E
[

f (zN+1)|z1, z2, z3, . . . , zN
] =

∫
dzN+1 f (zN+1)p(z1, z2, . . . , zN+1) (A.1)

A.1.1 Martingale

A martingale refers to a special category of stochastic processes. An arbitrary discrete
stochastic process Xi is a martingale if it satisfies

E
[
Xn+1|x1, x2, . . . , xn

] = xn : Martingale (A.2)

In other words, the expected value of the random variable Xn+1, conditioned on the occur-
rence of x1, x2, . . . , xn for random variables X1, X2, . . . , Xn , is simply xn itself.

One can think of the martingale as describing a gambling game; the given condition
xn is the amount of money that the gambler has on the conclusion of the nth game, and
the random variable Xn+1 represents the various possible outcomes of the n + 1th game.
The martingale condition states that the expected value of the gamblers money at the
end of the n + 1th game is equal only to the money with which he enters the n + 1-th
game, namely xn , and not on his history of wins or loses. A martingale is a mathematical
representation of a fair game. Using Eq. (A.2) one can prove the following result.

E
[
Xn+1

] =
∫

dx1dx2, . . . , dxndxn+1 E
[
Xn+1|x1, x2, . . . , xn

]
p(x1, x2, . . . , xn+1)

=
∫

dx1dx2, . . . , dxndxn+1 xn p(x1, x2, . . . , xn+1)

= E[Xn]
⇒ E

[
Xn+1

] = E
[
Xn
] = E

[
Xn−1

] = . . . = E
[
X1
]

⇒ E
[
Xn
] = E

[
X1
]

(A.3)

From above it is seen that in a (fair) game obeying the martingale condition, the gambler,
on average, neither loses or wins, and leaves with the money he comes in with.

Random stopping time: Wald’s Equation

An important application of the concept of a martingale is in the stopping time problem.
Consider a discrete stochastic process denoted by X1, X2, . . . , X N , where all the random
variables are independent and identically distributed. In other words, the stochastic process
starts, in appropriate units, at time 1 and stops at time N . The stopping N itself is a discrete
random variable and hence the stopping time is random.

One can think of the above process as representing the position of a particle doing a
random walk, with Xi its position after i steps. One can ask the question: what is the
average position of the particle when it stops – given by the expectation of

∑N
i=1 Xi ?

The concept of a martingale provides the following solution.
Suppose E[X ] = µ; then the stochastic process defined by

Zn =
n∑

i=1

(Xi − µ)
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is a martingale. The following is a proof.

E[Zn+1|z1, z2, . . . , zn] = E

[
n+1∑
i=1

(Xi − µ)|z1, z2, . . . , zn

]

= E

[{
Xn+1 − µ +

n∑
i=1

(Xi − µ)

}∣∣∣∣∣ z1, z2, . . . , zn

]

= E[(Xn+1 − µ)|z1, z2, . . . , zn] + E[Zn|z1, z2, . . . , zn]
= E(Xn+1 − µ) + E[Zn|z1, z2, . . . , zn]
= zn : martingale

For random stopping time N

E
[
Z N
] = E

[
N∑

i=1

(Xi − µ)

]
= E

[
N∑

i=1

Xi − Nµ

]

= E

[
N∑

i=1

Xi

]
− E[N ]µ (A.4)

But from Eq. (A.3)

E
[
Z N
] = E

[
Z1
] = E(X1 − µ) = 0

Hence from Eq. (A.4) and above, the average final position of the particle doing a random
walk – with random stopping time given by random integer N– is given by

E

[
N∑

i=1

Xi

]
= E[N ]µ : Walds equation

A.2 Dirac Delta function

The Dirac Delta function is useful in the study of continuous spaces, and some of its prop-
erties are reviewed. Dirac Delta functions are not ordinary Lebesgue measureable functions
since they have support on a set that has zero measure; rather they are generalized func-
tions also called distributions. The Dirac Delta function is the continuum generalization of
the discrete Kronecker delta function.

Consider a continuous line labelled by co-ordinate x such that −∞ ≤ x ≤ +∞, and
let f (x) be an infinitely differentiable function. The Dirac Delta function, denoted by
δ(x − a), is defined by

δ(x − a) = δ(a − x) : even function

δ(c(x − a)) = 1

|c|δ(x − a)∫ +∞

−∞
dx f (x)δ(x − a) = f (a) (A.5)

∫ +∞

−∞
dx f (x)

dn

dxn
δ(x − a) = (−1)n dn

dxn
f (x)|x=a

(A.6)
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The Heaviside step function �(t) is defined by

�(t) =



1 t > 0
1
2 t = 0
0 t < 0

(A.7)

From its definition �(t) + �(−t) = 1. The following is a representation of the δ function.∫ b

−∞
δ(x − a) = �(b − a) (A.8)

⇒
∫ a

−∞
δ(x − a) = �(0) = 1

2
(A.9)

where last equation is due to the Dirac Delta function being an even function. From
Eq. (A.8)

d

db
�(b − a) = δ(b − a)

A representation of the δ-function based on the Gaussian distribution is

δ(x − a) = lim
σ→0

1√
2πσ 2

exp

{
− 1

2σ 2
(x − a)2

}
(A.10)

Moreover

δ(x − a) = lim
µ→∞

1

2
µ exp

{− µ|x − a|}
From the definition of Fourier transforms

δ(x − a) =
∫ +∞

−∞
dp

2π
eip(x−a) (A.11)

To see the relation of the Dirac Delta function with the discrete Kronecker Delta, recall for
n, m integers

δn−m =
{

0 n �= m
1 n = m

Discretize continuous variable x into a lattice of discrete points x = nε, and let a = mε;
then f (x) → fn . Discretizing Eq. (A.5) gives

∫ +∞

−∞
dx f (x)δ(x − a) → ε

+∞∑
−∞

fnδ(x − a) = fm

⇒ δ(x − a) → 1

ε
δn−m (A.13)

Hence, taking the limit of ε → 0 in the equation above

δ(x − a) = lim
ε→0

1

ε
δn−m =

{
0 x �= a
∞ x = a
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A.2.1 Functional derivatives

The concept of partial derivatives has a natural generalization for the case of infinitely
many independent variables. Consider n independent variables Xn , with the index running
over all integers, namely n = 0,±1,±2,±3, . . . ,±∞. Hence

∂ Xm

∂ Xn
= δn−m

Suppose t = nε, t ′ = mε, and consider the limit of ε → 0; this yields an infinite collection
of independent variables X (t); the functional derivative δ/δX (t) is defined by

δX (t ′)
δX (t)

≡ lim
ε→0

1

ε

∂ Xm

∂ Xn

= lim
ε→0

1

ε
δn−m

⇒ δX (t ′)
δX (t)

= δ(t − t ′) (A.15)

For example

δ

δX (t)

∫ +∞

−∞
ds f (s)X (s) = f (t)

A.3 Gaussian integration

Gaussian integration permeates all of theoretical finance, as well as forming one of the
foundations of quantum theory. One-dimensional and multi-dimensional Gaussian integra-
tion are briefly reviewed. Gaussian integrals have the remarkable property that they can be
generalized to infinite dimensions, and is briefly discussed.

A.3.1 One-dimensional Gaussian integral

Consider the one-dimensional Gaussian integral

Z [ j] = N
∫ +∞

−∞
e− 1

2 λx2+ j x dx

All the moments of x can be obtained by

E
[
xn] = dn Z [ j]

d jn

∣∣∣
j=0

and hence Z [ j] is called the moment generating function for the Gaussian distribution.
The normalization constant N is chosen so that Z(0) = 1. Squaring Z [0], and convert-

ing to polar coordinates, gives

Z2[0] = N 2
∫ +∞

−∞

∫ ∞

−∞
e− 1

2 λ(x2+y2)dxdy = N 2
∫ ∞

0

∫ 2π

0
re− 1

2 λr2
drdθ

1 = N 22π

∫ ∞

0
dξe−λξ = N 2 2π

λ
⇒ N =

√
λ

2π
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Shifting x → x − j

λ
leaves the integration measure invariant, and hence yields the final

result

Z [ j] = e
1

2λ
j2N

∫ +∞

−∞
e− 1

2 λx2
dx

= e
1

2λ
j2

(A.16)

A.3.2 Higher-dimensional Gaussian integral

The general n-dimensional Gaussian integral, with variables x1, x2, . . . , xn , can be written
as

Z [J ] = N
∫ +∞

−∞
eSdx1dx1dx2 . . . dxn

S = −1

2

n∑
i, j=1

xi Ai j x j +
n∑

i=1

Ji xi

with normalization constant chosen so that Z(0) = 1. In quantum theory, S is called the
action.

Let A be a n × n symmetric matrix which can be diagonalized by an orthogonal matrix
M and yields

A = MT diag(λ1, λ2, . . . , λn)M

M MT = Jn×n

where Jn×n is a n × n unit matrix, and MT is the transpose of M .
Only matrices A with positive eigenvalues λi ≥ 0 are considered. A change variables

gives

xi =
n∑

j=1

Mi j z j

n∏
i=1

dxi = det(M)

n∏
i=1

dzi =
n∏

i=1

dzi

and hence the n-dimensional Gaussian integral is given by

Z [J ] = N
n∏

i=1

[ ∫ +∞

−∞
dzi e

− 1
2 λi z2

i + J̃i zi
]

J̃i ≡
n∑

j=1

J j MT
ji

The n-dimensional Gaussian integral has completely factorized into a product of one-
dimensional Gaussian integrals, all of which can be evaluated by the result given in
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Eq. (A.16). Hence

Z [J ] = N
n∏

i=1

[√
2π

λi
e

1
2λi

J̃ 2
i

]
(A.17)

In matrix notation

N
n∏

i=1

√
2π

λi
= N (2π)n/2 1√

detA
= 1

n∑
i=1

1

λi
J̃ 2

i = J
1

A
J ≡ J A−1 J

Hence, the final result can be written as

Z [J ] = exp

(
1

2
J A−1 J

)
(A.18)

A.3.3 Infinite-dimensional Gaussian integration

Consider a continuum number of integration variables x(t), with −∞ ≤ t ≤ +∞, and
with the ‘action’ given by

S = −1

2

∫ +∞

−∞
dtdt ′x(t)D−1(t, t ′)x(t ′) +

∫ +∞

−∞
dt J (t)x(t) (A.19)

By discretizing the variable t , following the steps taken in the derivation of n × n case, and
then taking the limit of n → ∞ yields

Z [J ] = N
+∞∏

t=−∞

∫ +∞

−∞
dx(t)eS = exp

{
1

2

∫ +∞

−∞
dtdt ′ J (t)D(t, t ′)J (t ′)

}
(A.20)

∫ +∞

−∞
ds D−1(t, s)D(s, t ′) = δ(t − t ′)

The normalization N is now a divergent quantity, and ensures the usual normalization
Z(0) = 1. In discussions on quantum theory, Eq. (A.20) plays a central role.

The fundamental reason why Gaussian integration generalizes to infinite dimensions is
because the measure is invariant under translations, that is under x(t) → x(t) + ξ(t); one
can easily verify that this symmetry of the measure yields the result obtained in A.20.

Example

Consider the infinite time action of the ‘harmonic oscillator’ given by

S = −m

2

∫ +∞

−∞
dt

[(
dx(t)

dt

)2

+ ω2x2(t)

]

= −m

2

∫ +∞

−∞
dtx(t)

(
− d2

dt2
+ ω2

)
x(t)

⇒ D−1(t, t ′) = m

(
− d2

dt2
+ ω2

)
δ(t − t ′)
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where an integration by parts was done, discarding boundary terms at ±∞. The propagator
D(t, t ′) is given by

D(t, t ′) = 1

2πm

∫ +∞

−∞
dp

eip(t−t ′)

p2 + ω2

= 1

2m|ω|e−|ω||t−t ′|

The result above can be verified by using Eq. (A.11).

A.3.4 Normal random variable

The Normal, or Gaussian, random variable – denoted by N (µ, σ ) – is a variable x that has
a probability distribution given by

P(x) = 1√
2πσ 2

exp

{
− 1

2σ 2
(x − µ)2

}

From Eq. (A.16)

E[x] ≡
∫ +∞

−∞
x P(x) = µ : mean

E[(x − µ)2] ≡
∫ +∞

−∞
(x − µ)2 P(x) = σ 2 : variance

Any normal random variables is equivalent to the N (0, 1) random variable via the follow-
ing linear transformation

X = N (µ, σ ) ; Z = N (0, 1)

⇒ X = µ + σ Z

All the moments of the random variable Z = N (0, 1) can be determined by the generating
function given in Eq. (A.16); namely

E[zn] = dn

d jn
Z [ j]| j=0 ; Z [ j] = eµj+ 1

2 σ 2 j2
(A.21)

The cumulative distribution for the normal random variable N (x) is defined by

Prob(−∞ ≤ z ≤ x) = N (x) = 1√
2π

∫ x

−∞
e− 1

2 z2
dz (A.22)

A sum of normal random variables is also another normal random variable

X1 = N (µ1, σ1); X2 = N (µ2, σ2); . . . , Xn = N (µn, σn)

⇒ X =
n∑

i=1

αi Xi = N (µ, σ ) with µ =
n∑

i=1

αiµi ; σ 2 =
n∑

i=1

α2
i σ 2

i

The result above can be proven using the generating function given in Eq. (A.21).



292 Appendices

A.4 White noise

The fundamental properties of Gaussian white noise are that

< R(t) >= 0; < R(t)R(t ′) >= δ(t − t ′)

Discretize time, namely t = nε, with R(t) → Rn . The probability distribution function of
white noise is given by

P(Rn) =
√

ε

2π
e− ε

2 R2
n (A.23)

Hence, Rn is a Gaussian random variable with zero mean and 1/
√

ε variance denoted by
N (0, 1/

√
ε). The following result is essential in deriving the rules of Ito calculus

R2
n = 1

ε
+ random terms of 0(1) (A.24)

To prove result stated in Eq. (A.24), it is shown that the generating function of R2
n can be

derived from a R2
n that is deterministic. All the moments of R2

n can be determined from its
generating function, namely

E
[
(R2

n)k] = dk

dtk
E
[
et R2

n
]∣∣∣

t=0

Note one needs to evaluate the generating function E
[
et R2

n
]

only in the limit of t → 0.
Hence, for ε small but fixed

lim
t→0

E
[
et R2

n
] =

∫ +∞

−∞
d Rnet R2

n

√
ε

2π
e− ε

2 R2
n

= 1√
1 − 2t

ε

∼ exp

(
t

ε

)
+ O(1)

The probability distribution function for R2
n which gives the above generating function is

given by

P(R2
n) = δ

(
R2

n − 1

ε

)

In other words, although Rn is a random variable, the quantity R2
n , to leading order in ε, is

not a random variable, but is instead fixed at the value of 1/ε.
To write the probability measure for R(t), with t1 ≤ t ≤ t2 discretize t → nε, with n =

1, 2, . . . , N , and with R(t) → Rn . White noise R(t) has the probability distribution given
in Eq. (A.23). The probability measure for the white noise random variables in the interval
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t1 ≤ t ≤ t2 is given by

P[R] =
N∏

n=1

P(Rn) =
N∏

n=1

e− ε
2 R2

n (A.25)

∫
d R =

N∏
n=1

√
ε

2π

∫ +∞

−∞
d Rn

For notational simplicity take the limit of ε → 0; for purposes of rigor, the continuum
notation is simply a short-hand for taking the continuum limit of the discrete multiple
integrals given above. For t1 < t < t2

P[R, t1, t2] → eS (A.26)

S = −1

2

∫ t2

t1
dt R2(t) (A.27)∫

d R →
∫

DR (A.28)

The ‘action functional’ S is ultra-local with all the variables being decoupled.

A.4.1 Integral of white noise

Consider the following integral of white noise

I =
∫ T

t
dt ′ R(t ′) ∼ ε

M∑
n=0

Rn ; M =
[

T − t

ε

]

where ε is an infinitesimal. For Gaussian white noise

Rn = N

(
0,

1√
ε

)
⇒ εRn = N (0,

√
ε)

The integral of white noise is a sum of normal random variables and hence, from Eq. (A.23)
and above, is also a Gaussian random variable given by

I ∼ N (0,
√

εM) → N (0,
√

T − t) (A.29)

In general, for

Z =
∫ T

t
dt ′a(t ′)R(t ′) ⇒ Z = N (0, σ 2) ; σ 2 =

∫ T

t
dt ′a2(t ′)

A.5 The Langevin equation

A physical formulation of stochastic processes is given by the Langevin equation. Langevin
considered the equation of motion of a particle in a fluid which is classically given by

M
dv

dt
+ γ v + �(v) = 0

where γ is the coefficient of friction, and �(v) is a potential that can be an arbitrary func-
tion of the velocity v.
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For large objects the trajectory followed is very smooth, and hence the equation is ade-
quate. However, for tiny particles the size of a grain of pollen, it is known that they undergo
more than 109 collisions per second, and so it is not very meaningful to talk of a smooth
trajectory. To describe the motion of a tiny speck of pollen, Langevin proposed that the
medium the tiny particle is moving in be replaced by a random force that continuously
acts on the particle, randomly changing the magnitude and direction of its velocity. The
random force in effect makes the particle’s velocity random, and thus making the particle’s
path random.

Langevin generalized the deterministic equation of motion to the following stochastic
differential equation1

M
dv

dt
+ γ v + �(v) = F(t) (A.30)

where F(t) is a random (stochastic) force with zero mean and covariance given by

E[F(t)] = 0; E[F(t)F(s)] = 2Dδ(t − s)

Equation (A.30), for �(v) = 0, can be written as

dv

dt
= −γ v

M
+

√
2D

M
R

where R is white noise.
The formal solution for the Langevin equation gives

v = v0e−γ t/M + 1

M

∫ t

0
e− γ

M (t−τ)F(τ )dτ

so that

E[v(t)] = v0e−γ t/M + 1

M

∫ t

0
e

γ
M (t−τ)E[F(τ )]dτ = v0e−γ t/M

and hence

E
[(

v(t) − v0e−γ t/M)2] =
(

1

M

)2 ∫ t

0

∫ t

0
e− γ

M (t−η)e− γ
M (t−τ)E[F(η)F(τ )]dη dτ

= D

γ M

(
1 − e−2γ t/M)

A similar derivation, for v0 = 0, gives the unequal and equal time velocity correlators as

E[v(t)v(t ′)] = D

γ M

[
e− γ

M (t−t ′) − e− γ
M (t+t ′)

]
; t > t ′

⇒ lim
t→∞ E[v2(t)] = D

γ M

1 A differential equation is called stochastic if it includes a random function; for the case of the Langevin equa-
tion, the random force F(t) is an arbitrary function of time; viewed as a deterministic differential equation, a
stochastic differential equation has infinitely many solutions, one solution for each of the random configurations
that is possible for F(t).
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As t → ∞, the particle attains equilibrium with its surroundings. Hence, the velocity dis-
tribution should be Maxwellian

P(v) =
(

M

2πkT

)1/2

exp

(
− Mv2

2kT

)
⇒ E[v2(t)] = kT

M

which when compared with the solution above yields D = kT γ , which is the Einstein
relation.

Let the position of the randomly evolving particle be x(t) so that v = dx/dt . Integrating
the Langevin equation, and ignoring the effects of the initial condition on the long time
evolution of the particle gives

E[x(t)x(t ′)] = 2D

γ 2
t ′ + DM

γ 3

[
−2 + 2e− γ

M t + 2e− γ
M t ′ − e− γ

M |t−t ′| − e− γ
M (t+t ′)

]
; t > t ′

which yields the equal time correlator

E[x2(t)] = 2D

γ 2
t + DM

γ 3

[
−3 + 4e− γ

M t − e− γ
M (t+t ′)

]

lim
t→∞

√
E[x2(t)] →

√
2D

γ 2
× √

t

This is an important result: for a particle undergoing random motion, the average dispersal
from its starting point, namely

√
E[x2(t)] is proportional to the

√
t . Recall that the average

(expected) value of the particle’s position is always zero since E[x(t)] = 0; what the result
states is that the distance travelled away from the origin is proportional to the square root
of time. This fact is encountered in a more abstract setting in Ito calculus.

Consider the stochastic differential equation for the logarithm of the stock price, given
by Eq. (3.12) as

dx

dt
= r − σ 2

2
+ σ R(t)

Changing variables to v = x − (r − σ 2/2)t yields the Langevin equation with γ = 0 and
white noise R(t).

The main importance of the Langevin equation is that it gives a different formulation of
stochastic processes, and can sometimes lead to different methods for solving the stochastic
differential equation.

A.5.1 Martingale condition

The martingale condition for a continuous stochastic processes v(t) states that, given the
occurrence of the value v(t) at time t , the conditional expectation at the next instant is the
following: E[v(t + ε)|v(t)] = v(t).

The martingale condition can be discussed using the Langevin equation. A stochastic
process v(t) for which γ v + �(v) = 0 has

M
dv

dt
= F(t) ⇒ E

[
dv

dt

]
= 0 : no drift (A.31)
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The conditional expectation value can be evaluated by discretizing time, and yields

M

ε
E[v(t + ε) − v(t)|v(t)] = E[F(t)] = 0

⇒ E[v(t + ε)|v(t)] = v(t) : Martingale

In other words, any stochastic process that does not have a drift term, or more generally a
potential term, is a martingale.

A.6 Fundamental theorem of finance

Consider a financial market that is (a) a complete market and (b) in which the condition of
no arbitrage holds. The fundamental theorem of finance states that conditions (a) and (b)
are equivalent to the evolution of financial instruments obeying the martingale condition.
Furthermore, once the discounting factor is fixed, for such a financial market there exists
a unique risk-free, or risk-neutral, probability measure for which the evolution of all the
financial instruments obey the martingale condition [40].

Suppose one has m securities, namely Si (t), with drift velocities µi (t) and that are driven
by n white noise R j (t) and volatilities σ i

j (t), with i = 1, 2, . . . , m and j = 1, 2, . . . , n.
One obtains the following m coupled Langevin equations

d Si (t)

dt
= µi (t)Si (t) + Si (t)

n∑
j=1

σ i
j (t)R j (t) (A.32)

E[R j (t)Rk(t
′)] = δ j−kδ(t − t ′) ; ⇒ R j (t)Rk(t

′) ∼ 1

ε
δ j−k

(Unless necessary, all dependence on time t will henceforth suppressed.) Completeness of
the market implies that the volatility functions σ i

j (t) are linearly independent for each i .
Consider a portfolio designed to cancel all the fluctuations in the securities Si (t), namely

� =
m∑

i=1

θi Si

such that
m∑

i=1

θi Siσ
i
j = 0 for each j

Since all terms with white noise are cancelled out in d�/dt , the principle of no arbitrage
gives the following result

d�

dt
=

m∑
i=1

θiµi (t)Si (t) : deterministic

no arbitrage ⇒ d�

dt
= r� = r

m∑
i=1

θi Si (A.33)

Hence, from Eqs. (A.32) and (A.33)

µi = r +
n∑

j=1

λ jσ
i
j (A.34)
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where λ j has the important property that it is independent of all the securities Si .
λ j is the market premium for obtaining a profit above the risk-free return r that the

market offers to risk takers, and is valid for all securities. The fact that all the λ j ’s are
independent of the securities reflects the condition of no arbitrage, which requires that the
market premium must be the same for all securities.

From Eqs. (A.32) and (A.34)

d Si (t)

dt
= r Si + Si

n∑
j=1

σ i
j [R j + λ j ] (A.35)

Define the money market account by

B(t) = e
∫ t

0 r(s)ds

and define the discounted security by

Xi (t) ≡ e− ∫ t
0 r(s)ds Si (t)

Hence, from Eq. (A.35)

d Xi (t)

dt
= Xi

n∑
j=1

σ i
j [R j + λ j ] (A.36)

The λi term above is a drift term, and hence Xi (t) is not a martingale; to obtain a martingale
process introduce the random variable

ρ(t) = exp


−

n∑
j=1

∫ t

0
λ j (s)R j (s)ds − 1

2

n∑
j=1

∫ t

0
λ2

j (s)ds


 (A.37)

By its construction ρ(t) satisfies the martingale condition

E(s,t)[ρ(t)|ρ(s)] = ρ(s) ; s < t (A.38)

as can be seen by performing the integrations over white noise using Eq. (A.27).
Using Ito’s chain rule given in Eq. (3.9), and from Eqs. (A.36) and (A.37) [42]

d(ρXi )

dt
= ρXi

n∑
j=1

[σ i
j − λ j ]R j : martingale (A.39)

Since Eq. (A.39) has no drift term, it follows from Appendix A.5.1 that ρXi is a martingale
condition, namely

E(s,t)[ρ(t)X (t)|ρ(s)X (s)] = ρ(s)X (s) ; s < t : martingale

One can redefine the probability measure for white noise R(t) given in Eq. (A.27) to in-
corporate the exponential martingale ρ(t), and the new measure is called the ‘risk-neutral’

martingale measure, and with respect to which the instrument X (t) = e− ∫ t
0 r(s)ds Si (t)

obeys the martingale condition. In other words, denoting the expectation with respect to
the martingale measure by E M [. . .], yields the following

E M
(t∗,t)[e− ∫ t

0 r(s)ds Si (t)|X (t∗)] = e− ∫ t∗
0 r(s)ds Si (t∗) ; t∗ < t : martingale
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In particular, for t∗ = 0

S(0) = E M
(0,t)

[
e− ∫ t

0 r(t ′)dt ′ S(t)|S(0)
]

(A.40)

It can further be shown that the risk-neutral martingale measure is a unique measure for a
given complete and arbitrage-free financial market.

A.7 Evaluation of the propagator

Given the importance of the propagator, it is evaluated using two different methods. The
eigenfunction expansion is essentially the same derivation given in Section 5.5, whereas the
Greens function approach is a different and powerful method for solving for the propagator
with a more complex structure.

A.7.1 Eigenfunction expansion

The propagator D(x, x ′; t, TF R) is evaluated using the eigenfunctions. From Eq. (5.30)[
1 − 1

µ2

∂2

∂x2

]
D(x, x ′; t, TF R) = δ(x − x ′) ; t ≤ x ≤ t + TF R (A.41)

The Neumann boundary conditions yield

∂

∂x
D(x, x ′; t, TF R)

∣∣∣
x=t

= 0 = ∂

∂x
D(x, x ′; t, TF R)

∣∣∣
x=t+TF R

(A.42)

The normalized eigenfunctions on the interval [t, t + TF R] that satisfy the Neumann con-
dition of vanishing derivatives at x = t and x = t + TF R , from Eq. (5.31), are given by

ψ0(x) = 1√
TF R

; ψm(x) = 2√
TF R

cos

{
mπ(x − t)

TF R

}
m = 1, 2, 3, . . . ,∞

that satisfy the eigenvalue equation(
− 1

µ2

∂2

∂x2
+ 1

)
ψm(x)=

[(
mπ

µTF R

)2

+ 1

]
ψm(x)≡λmψm(x) ; m = 0, 1, 2, 3, . . . ,∞

It can be shown that any arbitrary function f (O) of an operator O can be expressed in
terms of the eigenvalues and eigenfunctions of operator O as follows

< x | f (O)|x ′ >=
∞∑

m=0

ψm(x)ψm(x ′) f (λm)

Hence, since the propagator is the inverse of Hermitian differential operator as given in
Eq. (A.41), one has the following expansion

D(x, x ′; t, TF R) =
∞∑

m=0

ψm(x)ψm(x ′)
λm
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The summation above has been performed in Eqs. (5.34)–(5.37) and yields

D(x, x ′; t, TF R) = µ

2 sinh µTF R
[cosh{µTF R − µ|x − x ′|)

+ cosh(µTF R − µ(x + x ′ − 2t)}] (A.43)

A.7.2 Greens function

The method of Greens function is used to evaluate the propagator. From Eqs. (A.41), for
x �= x ′, the propagator satisfies the equation[

1 − 1

µ2

∂2

∂x2

]
D(x, x ′; t, TF R) = 0 ; x �= x ′ (A.44)

Consider the associated equation

∂2

∂x2
u(x) = µ2u(x)

which has the general solution

u(x) = aeµx + be−µx

Let u<(x), u>(x) be solutions that satisfy the boundary condition at x = t and t + TF R
respectively.

The Greens function (propagator) is then given by

D(x, x ′; t, TF R) = u<(x)u>(x ′)�(x − x ′) + u<(x ′)u<(x)�(x ′ − x)

= D(x, x ′; t, TF R) : symmetric in x, x ′

To produce the correct coefficient for the δ(x − x ′) in Eq. (A.41), the (Wronskian of the)
solution for D(x, x ′) must obey

du<(x)

dx
u>(x) − u<(x)

du>(x)

dx
= µ2

Neumann and Dirichlet Boundary Conditions

Suppose the propagator satisfies the Neumann boundary conditions at the two boundaries
as given in Eq. (A.42), namely at x = t and at x = t + TF R . Choose solutions that satisfy
the Neumann conditions, as in Eq. (A.42), at only one of the boundaries, namely

u<(x) = A cosh µ(x − t)

u>(x) = B cosh µ(TF R + t − x)

Hence

du<(x)

dx
u>(x) − u<(x)

du>(x)

dx
= µ2

⇒ AB = µ

sinh µTF R
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The propagator is hence given by

D(x, x ′; t, TF R) = µ
cosh µ(x − t) cosh µ(TF R + t − x ′)

sinh µTF R
�(x ′ − x)

+µ
cosh µ(x ′ − t) cosh µ(TF R + t − x)

sinh µTF R
�(x − x ′)

and can be shown to be equal to the result obtained in Eq. (A.43).
The mixed Dirichlet–Neumann boundary conditions are given by

D(x, x ′; t, TF R)

∣∣∣
x=t

= 0 = ∂

∂x
D(x, x ′; t, TF R)

∣∣∣
x=t+TF R

(A.45)

and the Dirichlet–Dirichlet boundary conditions are given by

D(x, x ′; t, TF R)

∣∣∣
x=t

= 0 = D(x, x ′; t, TF R)

∣∣∣
x=t+TF R

The propagator for the various boundary conditions can be obtained by the same procedure
as used for the Neumann–Neumann boundary conditions. The results are summarized in
Table A.7.2, with the full propagator being obtained by using its symmetry under x, x ′.

Table A.1 Summary of the propagators for the different
boundary conditions

Boundary conditions Propagator D(x, x ′; t, TF R) : x > x ′

Neumann–Neumann µ
cosh µ(x−t) cosh µ(TF R+t−x ′)

sinh µTF R

Dirichlet–Dirichlet µ
sinh µ(x−t) sinh µ(TF R+t−x ′)

sinh µTF R

Dirichlet–Neumann µ
sinh µ(x−t) cosh µ(TF R+t−x ′)

cosh µTF R

Taking the limit of µ → 0 for the propagator with Dirichlet–Dirichlet boundary condi-
tions yields

DDD(x, x ′; t, TF R) = µ

[
(x − t)�(x ′ − x) + (x ′ − t)�(x − x ′)

− (x − t)(x ′ − t)

TF R

]
(A.46)

where �(x) + �(−x) = 1 has been used.



Brief Glossary of Financial Terms

Arbitrage. Gaining a risk-free profit above the spot interest rate by simultaneously
entering into two or more financial transactions.

Bond. An instrument of debt.
Capital. Economic value of society’s real assets.
Capital market. A market that trades in the primary forms of financial instruments,

namely in instruments of equity, debt and derivatives.
Coupon bond. A financial instrument of debt that promises a pre-determined series of

cash flows.
Derivative securities. Financial assets that are derived from other financial assets,

including other derivatives. The main forms of derivatives are forward, futures and
option contracts.

Discounting. The process that yields the factor relating the future value of money to its
present value.

Equity. A share in the ownership of a real asset, like a company.
Efficient market hypothesis. For a financial market in equilibrium, changes in the prices

of all securities are random.
Financial assets. Pieces of paper that entitle its holder to the ownership of (a fraction of)

real assets, and to the income (if any) that is generated by the underlying real assets.
Financial market. Market where trade in financial assets and instruments is conducted.
Financial instrument. A specific form of a financial asset – be it a stock or a bond.
Fixed income securities. Instruments of debt issued by corporations and governments

that promise either a single fixed payment or a stream of fixed payments. Also called
corporate and sovereign bonds, respectively.

Forward contract. A contract between a buyer and a seller, in which the seller agrees to
provide the commodity or financial instrument at some future time for a price fixed at
present time, with only a single cash flow when the contract matures.

Forward interest rates. The forward interest rate, also called the forward rate, f (t, x) is
the agreed upon, at time t < x , future interest rate for an instantaneous loan at a future
time x .

Futures contract. A contract similar to a forward contract; a major difference is that,
unlike a forward contract, for a futures contract there is a series of cash flows for the
duration of the contract.

Hedging. A general term for the procedure of reducing the random fluctuations in the
value of a financial instrument, and hence reducing the risk to its future value.

Interest rates. The cost of borrowing money. See spot and forward interest rates.
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Ito–Wiener process. A continuous stochastic process, usually indexed by the time
variable t .

Market equilibrium. For a market in equilibrium, all information has been assimilated
leading to all securities having their fair price. Theoretically, it is expected that all
trading ceases for a market in equilibrium.

Martingale process. A mathematical formulation of a fair game. A martingale is a
stochastic process such that it’s expectation value at present, conditioned on the
occurrence of x1, x2, . . . , xn values of the stochastic process at n previous steps, is
equal to it’s value at the nth step. The mathematical definition of a martingale process is

E
[
Xn+1|x1, x2, . . . , xn

] = xn : Martingale

Money market. Market for trading in money market instruments such as short-term debt,
cash and cash equivalents, foreign currency transactions and so on.

Numeraire. The discounting factor used in computing the present value of a financial
instrument from its (pre-fixed) future value.

Option. A contract with a fixed maturity, and in which the buyer has the right to – but is
not obliged to – either buy a security from, or sell a security to, the seller of the option
at some pre-determined (but not necessarily fixed) strike price. Options are written on
underlying financial instruments such as stocks, bonds and derivatives.

Pricing kernel. The conditional probability for the occurrence of the final value of a
financial instrument, given its present value.

Principle of no arbitrage. No risk-free financial instrument can yield a rate of return
above that of the (risk-free) spot interest rate.

Random variables. A numerical variable that has no fixed value, and instead takes values
in a whole range, with the probability of its various outcomes given by a probability
distribution.

Real assets. Capital goods, skilled management and labour force, and so on, that are
necessary for producing goods and services in the real economy.

Return. The profit obtained from an investment.
Risk. The uncertainty is obtaining a return on investment.
Security. A financial instrument.
Spot interest rate. The spot rate r(t) is the interest rate for an instantaneous loan at

time t .
Stochastic process. A (time ordered) collection of random variables with outcomes

governed by a joint probability distribution. The collection of random variables is given
by Xs , where s is a continuous (discrete) index for a continuous (discrete) stochastic
process.

Stocks and shares. Financial instruments representing (part) ownership of equity.
Treasury Bond. A zero coupon Treasury Bond is an instrument of debt that has no risk of

default, also called a risk-free bond. Coupon Treasury Bonds are similarly risk-free
coupon bonds.

Volatility. The standard deviation of any random variable (including financial
instruments).

Zero coupon bond. A financial instrument of debt that promises a pre-determined single
cash-flow consisting of say a $1 payoff at some future time T .



Brief Glossary of Physics Terms

Action. The time integral of the Lagrangian.
Bra and ket vectors. The ‘bra’ vector < d| represents an element of the dual state space

and the ‘ket’ vector |v > representing a vector from the state space, and with the
bracket < d|v > being a complex number.

Completeness equation. A statement that the basis states for the state space form a
complete basis by linearly spanning the entire state space.

Dual state space. A space associated with a vector space, consisting of all mappings of
the state space into the complex numbers.

Degree of freedoms. The number of independent random variables that the system has at
a given instant of time. Each degree of freedom corresponds to a unique stochastic
process.

Eigenfunctions. Special state vectors that are associated with an operator such that under
the action of the operator, the eigenfunctions are only changed up to a multiplicative
constant, called the eigenvalues of the respective eigenfunctions.

Feynman path integral. See path integral.
Field. A function of two or more variables, denoted by say f (t, x, y, . . .); the field is

different from a path in that in addition to dependence on time t , it also depends in
general, on other variables x, y, . . .

Fluctuation. One possible configuration of the quantum field, or one possible path for a
randomly evolving particle.

Functional. A quantity that depends on a complete function. For example, the integral of
a function is a functional of the integrand.

Gaussian distribution. Generic term for probability distributions that are given by an
exponential of the quadratic function of the random variables. The normal distribution
is the simplest example.

Generating functional. A functional from which all the moments of a collection of
(infinitely many) random variables can be produced by differentiation.

Hamiltonian. A differential operator that evolves the system in time. In finance the
Hamiltonian’s primary role is to discount the future value of a financial instrument to
yield its present value by evolving the system backwards in time.

Hermitian conjugation. The transposition and complex conjugation of the elements of
an operator.

Lagrangian. A functional that assigns probabilities for the occurrence in, the path
integral, of the various random paths or random field configurations.
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304 Brief glossary of physics terms

Linear field theory. Theories such that the Lagrangian is a quadratic function of the
fields. Linear theories are also called free, or Gaussian, field theories.

Nonlinear field theory. Theories with Lagrangian that have terms that are cubic or higher
powers of the quantum fields. Also called interacting, or non-Gaussian, field theories.

Operators. The infinite-dimensional generalization of matrices that act on the elements of
a state space. Empirically observable quantities are represented by operators, the most
important being the energy, position and momentum operators for a quantum particle.

Path. One possible trajectory followed by a particle evolving in time, denoted by x(t),
where t is usually time.

Path integral. A functional integral, also called the Feynman path integral; over all the
possible random paths taken by a random (stochastic) process. For a quantum field that
takes random values on say a plane, the path integral is an integral over all possible
functions on the plane.

Partition function. The functional integral of the exponential of the action over all
possible configurations for the system in question.

Quantum mechanics. The mechanics of quantum particles that evolve randomly in time,
with physically measurable quantities being represented by state vectors and operators.

Quantum field. The collection of all possible configurations of a field. For a
two-dimensional plane, a quantum field is the collection of all possible functions on the
plane.

Quantum field theory. The theory of modelling (empirical) systems with quantum fields.
Empirically observed quantities are realized by correlation functions of the quantum
field, obtained by averaging over all possible configurations of the quantum field,
weighted by the (appropriately normalized) exponential of the action.

Rigidity. A term in the action that yields a propagator for the forward interest rates
f (t, x) with a second-order derivative in the forward direction.

State space. A linear vector space, the generalization of a finite-dimensional vector space,
that is used to describe the state of a quantum (random) system.

Stiffness. An action for the forward rates that yields a propagator with up to fourth-order
derivatives in the forward future direction.

White Noise. A continuous set of random variables that at every instant has a probability
distribution given by the normal distribution.



Main symbols

Only new symbols introduced in a chapter are listed. A consistent system of notation has
been used as far as possible.

Chapter 2 Introduction to finance

R return on portfolio
≡ definition; identity
E[X ] expectation value of random variable X
σ volatility of a stock or of a portfolio
E
[
Xn+1|x1, . . . , xn

]
expectation of Xn+1 conditioned on x1, . . . , xn

D(S) value of a derivative of S
�(S, t) portfolio for stock price S
r(t) spot interest rate
P(t, T ) value of a Treasury Bond, at time t , maturing at T
B(t, T ) value of a coupon Treasury Bond
f (t, x) forward interest rates, at time t , for an instantaneous loan at

future time x

Chapter 3 Derivative securities

F(t, T ) value of a forward contract at time t , maturing at T
F(t, T ) value of a futures contract at time t , maturing at T
C(t, S(t)) value of a call option at time t
P(t) value of a put option at time t
S(t) stock price at time t
σ volatility of the stock
R(t) white noise
< X > expectation value of random variable X
P(rn) probability distribution for discretized white noise
ε infinitesimal quantity
x(t) logarithm of the stock price S(t)
τ = T − t time remaining till maturity at time T
Pm(x) martingale probability distribution for Black–Scholes
N (d±) cumulative distribution for the normal random variable
V = σ 2 variance of the stock price
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306 List of main symbols

ρ correlation of white noises
λ,µ, ξ parameters for stochastic volatility

Chapter 4 Hamiltonians and stock options

V linear vector space
Vdual dual linear vector space
|g > ket vector belonging to V
< p| bra vector belonging to Vdual
|x > ket basis vector for the real line
ψ(x) components of ket vector |ψ > equal to < x |ψ >
H Hamiltonian
|ψE > eigenfunction of H
E eigenvalue of |ψE >
HBS Black–Scholes Hamiltonian
HMG Merton–Garman Hamiltonian
p(x, y, T − t, x ′, y′) pricing kernel for stock price with stochastic volatility
|C, t > option price ket vector
C(t, x) components of option price ket vector < x |C, t >
pBS(x, T − t, x ′) Black–Scholes pricing kernel
|p > momentum ket basis vector
Heff effective option pricing Hamiltonian
V (x) potential representing path-dependent option
HV Hamiltonian with potential
HDO , HDB barrier option Hamiltonians
< x |φn > eigenfunction for double barrier option

Chapter 5 Path integrals and stock options

L Lagrangian
S action∫

DX,
∫

DY path-integration measure
L BS Black–Scholes Lagrangian
g[x, K ] path-dependent payoff function
Z(ti , t f ; j) generating functional for harmonic oscillator
D(t, t ′; ti , t f ) propagator
L MG Merton–Garman Lagrangian
S0, S1 stochastic volatility action
Z(i, y, p) generating function for moments of stock and volatility
F, F ′ solution for generating function Z(i, y, p)

Chapter 6 Stochastic interest rates’ Hamiltonians and path integrals

a(r, t), σ (r, t) drift and volatility of spot rate
PF (r, t : r0) forward conditional probability for r
HF , HB forward and backward Hamiltonians
L F , SF forward Lagrangian and action
Z B, SB backward partition function and action
SV Vasicek action
x future time
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α(t, x) drift velocity for forward rates
σi (t, x) volatility functions for forward rates
Z [ j, t1, t2] generating functional for HJM model
t0 present time
t∗ future time > t0, usually maturity time for options
E[t0,t∗][X ] expectation value of X over all random variables in [t0, t∗]
T ,�0,R domains of integration for forward interest rates
F(t0, t∗, T ) futures price on a Treasury Bond
�, �F functions in the bond futures price
C(t0, t∗, T, K ) call option (maturity t∗) on a Treasury Bond (maturity T )
q2 volatility in bond call option
�(G, t∗, T ) function appearing in price of bond option
Sbk

F , Sbk
B Black–Karasinski forward and backward actions

Lbk
B , Hbk

B Black–Karasinski backward Lagrangian and Hamiltonian

Chapter 7 Quantum field theory of forward interest rates

SString string action
Z forward rates’ partition function
TF R maximum value for future time
S[ f ],L[ f ] forward rates’ action and Lagrangian
t time variable
x future time > t
σ(t, x) forward rates’ volatility∫

D f functional integration over all forward rates f (t, x)
A(t, x) forward rates’ velocity quantum field
Z [J ] generating function of velocity field
δ/δ J (t, x) functional derivative with respect to J (t, x)
µ rigidity parameter in the forward rates’ Lagrangian
D(x, x ′; t) constant rigidity forward rates’ propagator
θ future time co-ordinate x − t
θ± future time co-ordinates θ ± θ ′
m slope of curve orthogonal to propagator’s diagonal axis
B(t0, t∗) numeraire for money market account
S∗ forward rates’ action with numeraire P(t, T∗)
α∗(t, x) drift of forward rates for numeraire P(t, T∗)
φ(t, x) (nonlinear) logarithm ln( f (t, x)/ f0) of forward rates
ψ[t, x; A] φ(t, x) as a function of the A(t, x) field
J (t, x; t ′x ′; A) matrix for the change of variables from φ(t, x) to A(t, x)
c†(t, x), c(t, x) fermion quantum fields
ν exponent for forward rates’ stochastic volatility
ρ, ξ, κ parameters for forward rates’ stochastic volatility
DC (θ, θ ′) constrained forward rates’ propagator
DM (θ, θ ′) non-constant rigidity forward rates’ propagator
λ stiffness parameter in forward rates’ action
G(θ, θ ′) forward rates’ stiff propagator
rQ curvature orthogonal to propagator’s diagonal axis
z(θ) psychological future time
Z f [J ] forward rates’ generating functional
fmn, Amn lattice forward rates and velocity quantum fields
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Chapter 8 Empirical forward rates and field theory models

L(t, T ) Libor simple interest rate
τ time interval of 90 days
< δ f (t, θ) > forward rates average rate of change
< δ f (t, θ)δ f (t, θ ′) >c forward rates’ velocity correlation functions
κ(t, θ) kurtosis of forward rates
C(θ, θ ′) normalized correlation function
< f (t, x) > expectation value of forward rates
σr volatility of spot interest rate
CR(θ, θ ′) correlation function for constant rigidity
CC (θ, θ ′) correlation function for constrained spot rate
CM (θ, θ ′) correlation function for non-constant rigidity
CQ(θ, θ ′) correlation function for stiff propagator
CQz(θ, θ ′) correlation function: stiff propagator and psychological time
RQ curvature orthogonal to normalized propagator’s diagonal axis
z± combination of psychological future times z(θ) ± z(θ ′)
η scaling exponent for psychological future time

Chapter 9 Field theory of Treasury Bonds’ derivatives and hedging

�,�,� hedging parameters for Treasury Bond option
V,Vi ,Vσ ,Vµ hedging parameter for variance of Treasury Bond option
Cap(t0, t∗, τ, X) interest rate cap
L∗ Libor L(t∗, t∗, τ )
qcap volatility of interest rate cap
CapB(t0, t∗, τ, X) Black’s formula for interest rate cap
Fcap Forward contract for the interest rate cap
n1(t) hedging weight for delta hedging of bonds
B(r; t; T ) conditional expectation of a Treasury Bond, given r
�i hedging weights for minimization of variance
Var[�(t∗)] variance of bond portfolio at future time t∗
V0 variance of (an un-hedged) Treasury Bond
V minimum of the residual variance of the hedged portfolio
V∗ minimum of the residual variance for finite time hedged portfolio
Pi equal to P(t, Ti )
Mi j hedging matrix for Treasury Bond
Li hedging vector for Treasury Bond
Fi equal to F(t, tF , Ti )
X (t∗, T ) function appearing in the expression for B(r; t; T )
a(t∗, T ) function appearing in the expression for B(r; t; T )

Chapter 10 Field theory Hamiltonian of forward interest rates

fn,l forward rates at discrete time n and future time l
Fn forward rates excluding single (earliest) forward rate fn,n
Fn+1 forward rates excluding single (latest) forward rate

fn+1,n+1+NF R

S(n) forward rates’ action at time t = nε

Ln[F̃n; Fn+1] forward rates Lagrangian connecting two time slices
Vn forward rates time-dependent state space at time n
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Vdual,n forward rates time-dependent dual state space at time n
Fn forward rates physical state space at time n
Hn forward rates time-dependent Hamiltonian at time n
In the identity operator at discrete time n for the forward rates’

state space
| ft >, |Ft > forward rates’ continuum state space basis vectors at time t
|P(t, T ) >, |B(t) > zero coupon and coupon Treasury Bond state vectors
H f (t),H f,z(t) Hamiltonians for linear forward rates
Hφ(t) Hamiltonian for nonlinear forward rates
M(x, x ′; t) kinetic operator for Lagrangian with stochastic volatility
H(t) Hamiltonian for linear forward rates with stochastic volatility
Heff(t) effective forward rates’ linear Hermitian Hamiltonian
O(t), β(t, x) functions required for determining Heff(t)
< f∗| basis of dual vector space for forward rates at future time t∗
H∗

f (t)|R forward rates’ Hamiltonian restricted to domain R
W time integrated forward rates’ linear Hamiltonian
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