
Yves HilpischYves Hilpisch

 Python
 for Algorithmic
 Trading
From Idea to Cloud Deployment

Yves Hilpisch

Python for Algorithmic Trading
From Idea to Cloud Deployment

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05335-4

[LSI]

Python for Algorithmic Trading
by Yves Hilpisch

Copyright © 2021 Yves Hilpisch. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith
Development Editor: Michele Cronin
Production Editor: Daniel Elfanbaum
Copyeditor: Piper Editorial LLC
Proofreader: nSight, Inc.

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Jose Marzan
Illustrator: Kate Dullea

November 2020: First Edition

Revision History for the First Edition
2020-11-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492053354 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python for Algorithmic Trading, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights. This book is not intended as financial advice. Please
consult a qualified professional if you require financial advice.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492053354

Table of Contents

Preface. ix

1. Python and Algorithmic Trading. 1
Python for Finance 1

Python Versus Pseudo-Code 2
NumPy and Vectorization 3
pandas and the DataFrame Class 5

Algorithmic Trading 7
Python for Algorithmic Trading 11
Focus and Prerequisites 13
Trading Strategies 13

Simple Moving Averages 14
Momentum 14
Mean Reversion 14
Machine and Deep Learning 15

Conclusions 15
References and Further Resources 15

2. Python Infrastructure. 17
Conda as a Package Manager 19

Installing Miniconda 19
Basic Operations with Conda 21

Conda as a Virtual Environment Manager 27
Using Docker Containers 30

Docker Images and Containers 31
Building a Ubuntu and Python Docker Image 31

Using Cloud Instances 36
RSA Public and Private Keys 38

iii

Jupyter Notebook Configuration File 38
Installation Script for Python and Jupyter Lab 40
Script to Orchestrate the Droplet Set Up 41

Conclusions 43
References and Further Resources 44

3. Working with Financial Data. 45
Reading Financial Data From Different Sources 46

The Data Set 46
Reading from a CSV File with Python 47
Reading from a CSV File with pandas 49
Exporting to Excel and JSON 50
Reading from Excel and JSON 51

Working with Open Data Sources 52
Eikon Data API 55

Retrieving Historical Structured Data 58
Retrieving Historical Unstructured Data 62

Storing Financial Data Efficiently 65
Storing DataFrame Objects 66
Using TsTables 70
Storing Data with SQLite3 75

Conclusions 77
References and Further Resources 78
Python Scripts 78

4. Mastering Vectorized Backtesting. 81
Making Use of Vectorization 82

Vectorization with NumPy 83
Vectorization with pandas 85

Strategies Based on Simple Moving Averages 88
Getting into the Basics 89
Generalizing the Approach 97

Strategies Based on Momentum 98
Getting into the Basics 99
Generalizing the Approach 104

Strategies Based on Mean Reversion 107
Getting into the Basics 107
Generalizing the Approach 110

Data Snooping and Overfitting 111
Conclusions 113
References and Further Resources 113
Python Scripts 115

iv | Table of Contents

SMA Backtesting Class 115
Momentum Backtesting Class 118
Mean Reversion Backtesting Class 120

5. Predicting Market Movements with Machine Learning. 123
Using Linear Regression for Market Movement Prediction 124

A Quick Review of Linear Regression 125
The Basic Idea for Price Prediction 127
Predicting Index Levels 129
Predicting Future Returns 132
Predicting Future Market Direction 134
Vectorized Backtesting of Regression-Based Strategy 135
Generalizing the Approach 137

Using Machine Learning for Market Movement Prediction 139
Linear Regression with scikit-learn 139
A Simple Classification Problem 141
Using Logistic Regression to Predict Market Direction 146
Generalizing the Approach 150

Using Deep Learning for Market Movement Prediction 153
The Simple Classification Problem Revisited 154
Using Deep Neural Networks to Predict Market Direction 156
Adding Different Types of Features 162

Conclusions 166
References and Further Resources 166
Python Scripts 167

Linear Regression Backtesting Class 167
Classification Algorithm Backtesting Class 170

6. Building Classes for Event-Based Backtesting. 175
Backtesting Base Class 177
Long-Only Backtesting Class 182
Long-Short Backtesting Class 185
Conclusions 190
References and Further Resources 190
Python Scripts 191

Backtesting Base Class 191
Long-Only Backtesting Class 194
Long-Short Backtesting Class 197

7. Working with Real-Time Data and Sockets. 201
Running a Simple Tick Data Server 203
Connecting a Simple Tick Data Client 206

Table of Contents | v

Signal Generation in Real Time 208
Visualizing Streaming Data with Plotly 211

The Basics 211
Three Real-Time Streams 212
Three Sub-Plots for Three Streams 214
Streaming Data as Bars 215

Conclusions 217
References and Further Resources 218
Python Scripts 218

Sample Tick Data Server 218
Tick Data Client 219
Momentum Online Algorithm 219
Sample Data Server for Bar Plot 220

8. CFD Trading with Oanda. 223
Setting Up an Account 227
The Oanda API 229
Retrieving Historical Data 230

Looking Up Instruments Available for Trading 230
Backtesting a Momentum Strategy on Minute Bars 231
Factoring In Leverage and Margin 234

Working with Streaming Data 236
Placing Market Orders 237
Implementing Trading Strategies in Real Time 239
Retrieving Account Information 244
Conclusions 246
References and Further Resources 247
Python Script 247

9. FX Trading with FXCM. 249
Getting Started 251
Retrieving Data 251

Retrieving Tick Data 252
Retrieving Candles Data 254

Working with the API 256
Retrieving Historical Data 257
Retrieving Streaming Data 259
Placing Orders 260
Account Information 262

Conclusions 263
References and Further Resources 264

vi | Table of Contents

10. Automating Trading Operations. 265
Capital Management 266

Kelly Criterion in Binomial Setting 266
Kelly Criterion for Stocks and Indices 272

ML-Based Trading Strategy 277
Vectorized Backtesting 278
Optimal Leverage 285
Risk Analysis 287
Persisting the Model Object 290

Online Algorithm 291
Infrastructure and Deployment 296
Logging and Monitoring 297
Visual Step-by-Step Overview 299

Configuring Oanda Account 299
Setting Up the Hardware 300
Setting Up the Python Environment 301
Uploading the Code 302
Running the Code 302
Real-Time Monitoring 304

Conclusions 304
References and Further Resources 305
Python Script 305

Automated Trading Strategy 305
Strategy Monitoring 308

Appendix. Python, NumPy, matplotlib, pandas. 309

Index. 351

Table of Contents | vii

1 Harari, Yuval Noah. 2015. Homo Deus: A Brief History of Tomorrow. London: Harvill Secker.

Preface

Dataism says that the universe consists of data flows, and the value of any phenom‐
enon or entity is determined by its contribution to data processing….Dataism thereby
collapses the barrier between animals [humans] and machines, and expects electronic
algorithms to eventually decipher and outperform biochemical algorithms.1

—Yuval Noah Harari

Finding the right algorithm to automatically and successfully trade in financial mar‐
kets is the holy grail in finance. Not too long ago, algorithmic trading was only avail‐
able and possible for institutional players with deep pockets and lots of assets under
management. Recent developments in the areas of open source, open data, cloud
compute, and cloud storage, as well as online trading platforms, have leveled the play‐
ing field for smaller institutions and individual traders, making it possible to get
started in this fascinating discipline while equipped only with a typical notebook or
desktop computer and a reliable internet connection.

Nowadays, Python and its ecosystem of powerful packages is the technology platform
of choice for algorithmic trading. Among other things, Python allows you to do
efficient data analytics (with pandas, for example), to apply machine learning to stock
market prediction (with scikit-learn, for example), or even to make use of Google’s
deep learning technology with TensorFlow.

This is a book about Python for algorithmic trading, primarily in the context of alpha
generating strategies (see Chapter 1). Such a book at the intersection of two vast and
exciting fields can hardly cover all topics of relevance. However, it can cover a range
of important meta topics in depth.

ix

http://pandas.pydata.org
http://scikit-learn.org
http://tensorflow.org

These topics include:

Financial data
Financial data is at the core of every algorithmic trading project. Python and
packages like NumPy and pandas do a great job of handling and working with
structured financial data of any kind (end-of-day, intraday, high frequency).

Backtesting
There should be no automated algorithmic trading without a rigorous testing of
the trading strategy to be deployed. The book covers, among other things, trad‐
ing strategies based on simple moving averages, momentum, mean-reversion,
and machine/deep-learning based prediction.

Real-time data
Algorithmic trading requires dealing with real-time data, online algorithms
based on it, and visualization in real time. The book provides an introduction to
socket programming with ZeroMQ and streaming visualization.

Online platforms
No trading can take place without a trading platform. The book covers two pop‐
ular electronic trading platforms: Oanda and FXCM.

Automation
The beauty, as well as some major challenges, in algorithmic trading results from
the automation of the trading operation. The book shows how to deploy Python
in the cloud and how to set up an environment appropriate for automated
algorithmic trading.

The book offers a unique learning experience with the following features and
benefits:

Coverage of relevant topics
This is the only book covering such a breadth and depth with regard to relevant
topics in Python for algorithmic trading (see the following).

Self-contained code base
The book is accompanied by a Git repository with all codes in a self-contained,
executable form. The repository is available on the Quant Platform.

Real trading as the goal
The coverage of two different online trading platforms puts the reader in the
position to start both paper and live trading efficiently. To this end, the book
equips the reader with relevant, practical, and valuable background knowledge.

Do-it-yourself and self-paced approach
Since the material and the code are self-contained and only rely on standard
Python packages, the reader has full knowledge of and full control over what is

x | Preface

http://oanda.com
http://fxcm.com
http://py4at.pqp.io

going on, how to use the code examples, how to change them, and so on. There is
no need to rely on third-party platforms, for instance, to do the backtesting or to
connect to the trading platforms. With this book, the reader can do all this on
their own at a convenient pace and has every single line of code to do so.

User forum
Although the reader should be able to follow along seamlessly, the author and
The Python Quants are there to help. The reader can post questions and com‐
ments in the user forum on the Quant Platform at any time (accounts are free).

Online/video training (paid subscription)
The Python Quants offer comprehensive online training programs that make use
of the contents presented in the book and that add additional content, covering
important topics such as financial data science, artificial intelligence in finance,
Python for Excel and databases, and additional Python tools and skills.

Contents and Structure
Here’s a quick overview of the topics and contents presented in each chapter.

Chapter 1, Python and Algorithmic Trading
The first chapter is an introduction to the topic of algorithmic trading—that is,
the automated trading of financial instruments based on computer algorithms. It
discusses fundamental notions in this context and also addresses, among other
things, what the expected prerequisites for reading the book are.

Chapter 2, Python Infrastructure
This chapter lays the technical foundations for all subsequent chapters in that it
shows how to set up a proper Python environment. This chapter mainly uses
conda as a package and environment manager. It illustrates Python deployment
via Docker containers and in the cloud.

Chapter 3, Working with Financial Data
Financial time series data is central to every algorithmic trading project. This
chapter shows you how to retrieve financial data from different public data and
proprietary data sources. It also demonstrates how to store financial time series
data efficiently with Python.

Chapter 4, Mastering Vectorized Backtesting
Vectorization is a powerful approach in numerical computation in general and
for financial analytics in particular. This chapter introduces vectorization with
NumPy and pandas and applies that approach to the backtesting of SMA-based,
momentum, and mean-reversion strategies.

Preface | xi

http://py4at.pqp.io
https://oreil.ly/Qy90w
http://docker.com

Chapter 5, Predicting Market Movements with Machine Learning
This chapter is dedicated to generating market predictions by the use of machine
learning and deep learning approaches. By mainly relying on past return obser‐
vations as features, approaches are presented for predicting tomorrow’s market
direction by using such Python packages as Keras in combination with Tensor
Flow and scikit-learn.

Chapter 6, Building Classes for Event-Based Backtesting
While vectorized backtesting has advantages when it comes to conciseness of
code and performance, it’s limited with regard to the representation of certain
market features of trading strategies. On the other hand, event-based backtesting,
technically implemented by the use of object oriented programming, allows for a
rather granular and more realistic modeling of such features. This chapter
presents and explains in detail a base class as well as two classes for the backtest‐
ing of long-only and long-short trading strategies.

Chapter 7, Working with Real-Time Data and Sockets
Needing to cope with real-time or streaming data is a reality even for the ambi‐
tious individual algorithmic trader. The tool of choice is socket programming, for
which this chapter introduces ZeroMQ as a lightweight and scalable technology.
The chapter also illustrates how to make use of Plotly to create nice looking,
interactive streaming plots.

Chapter 8, CFD Trading with Oanda
Oanda is a foreign exchange (forex, FX) and Contracts for Difference (CFD)
trading platform offering a broad set of tradable instruments, such as those based
on foreign exchange pairs, stock indices, commodities, or rates instruments
(benchmark bonds). This chapter provides guidance on how to implement auto‐
mated algorithmic trading strategies with Oanda, making use of the Python
wrapper package tpqoa.

Chapter 9, FX Trading with FXCM
FXCM is another forex and CFD trading platform that has recently released a
modern RESTful API for algorithmic trading. Available instruments span multi‐
ple asset classes, such as forex, stock indices, or commodities. A Python wrapper
package that makes algorithmic trading based on Python code rather convenient
and efficient is available (http://fxcmpy.tpq.io).

Chapter 10, Automating Trading Operations
This chapter deals with capital management, risk analysis and management, as
well as with typical tasks in the technical automation of algorithmic trading oper‐
ations. It covers, for instance, the Kelly criterion for capital allocation and
leverage in detail.

xii | Preface

https://keras.io
https://oreil.ly/B44Fb
https://oreil.ly/B44Fb
http://scikit-learn.org
http://zeromq.org
http://plot.ly
http://oanda.com
http://github.com/yhilpisch/tpqoa
http://fxcm.co.uk
http://fxcmpy.tpq.io

Appendix
The appendix provides a concise introduction to the most important Python,
NumPy, and pandas topics in the context of the material presented in the main
chapters. It represents a starting point from which one can add to one’s own
Python knowledge over time.

Figure P-1 shows the layers related to algorithmic trading that the chapters cover
from the bottom to the top. It necessarily starts with the Python infrastructure (Chap‐
ter 2), and adds financial data (Chapter 3), strategy, and vectorized backtesting code
(Chapters 4 and 5). Until that point, data sets are used and manipulated as a whole.
Event-based backtesting for the first time introduces the idea that data in the real
world arrives incrementally (Chapter 6). It is the bridge that leads to the connecting
code layer that covers socket communication and real-time data handling (Chap‐
ter 7). On top of that, trading platforms and their APIs are required to be able to
place orders (Chapters 8 and 9). Finally, important aspects of automation and deploy‐
ment are covered (Chapter 10). In that sense, the main chapters of the book relate to
the layers as seen in Figure P-1, which provide a natural sequence for the topics to be
covered.

Figure P-1. The layers of Python for algorithmic trading

Preface | xiii

Who This Book Is For
This book is for students, academics, and practitioners alike who want to apply
Python in the fascinating field of algorithmic trading. The book assumes that the
reader has, at least on a fundamental level, background knowledge in both Python
programming and in financial trading. For reference and review, the Appendix intro‐
duces important Python, NumPy, matplotlib, and pandas topics. The following are
good references to get a sound understanding of the Python topics important for this
book. Most readers will benefit from having at least access to Hilpisch (2018) for ref‐
erence. With regard to the machine and deep learning approaches applied to algorith‐
mic trading, Hilpisch (2020) provides a wealth of background information and a
larger number of specific examples. Background information about Python as applied
to finance, financial data science, and artificial intelligence can be found in the
following books:

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

⸻. 2020. Artificial Intelligence in Finance: A Python-Based Guide. Sebastopol:
O’Reilly.

McKinney, Wes. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. 2nd ed. Sebastopol: O’Reilly.

Ramalho, Luciano. 2021. Fluent Python: Clear, Concise, and Effective Programming.
2nd ed. Sebastopol: O’Reilly.

VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working
with Data. Sebastopol: O’Reilly.

Background information about algorithmic trading can be found, for instance, in
these books:

Chan, Ernest. 2009. Quantitative Trading: How to Build Your Own Algorithmic Trad‐
ing Business. Hoboken et al: John Wiley & Sons.

Chan, Ernest. 2013. Algorithmic Trading: Winning Strategies and Their Rationale.
Hoboken et al: John Wiley & Sons.

Kissel, Robert. 2013. The Science of Algorithmic Trading and Portfolio Management.
Amsterdam et al: Elsevier/Academic Press.

Narang, Rishi. 2013. Inside the Black Box: A Simple Guide to Quantitative and High
Frequency Trading. Hoboken et al: John Wiley & Sons.

Enjoy your journey through the algorithmic trading world with Python and get in
touch by emailing py4at@tpq.io if you have questions or comments.

xiv | Preface

mailto:py4at@tpq.io

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs, to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
You can access and execute the code that accompanies the book on the Quant Plat‐
form at https://py4at.pqp.io, for which only a free registration is required.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

Preface | xv

https://py4at.pqp.io
mailto:bookquestions@oreilly.com

need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example, this book may be attrib‐
uted as: “Python for Algorithmic Trading by Yves Hilpisch (O’Reilly). Copyright 2021
Yves Hilpisch, 978-1-492-05335-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/py4at.

xvi | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/py4at

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
I want to thank the technical reviewers—Hugh Brown, McKlayne Marshall, Ramana‐
than Ramakrishnamoorthy, and Prem Jebaseelan—who provided helpful comments
that led to many improvements of the book’s content.

As usual, a special thank you goes to Michael Schwed, who supports me in all techni‐
cal matters, simple and highly complex, with his broad and in-depth technology
know-how.

Delegates of the Certificate Programs in Python for Computational Finance and
Algorithmic Trading also helped improve this book. Their ongoing feedback has
enabled me to weed out errors and mistakes and refine the code and notebooks used
in our online training classes and now, finally, in this book.

I would also like to thank the whole team at O’Reilly Media—especially Michelle
Smith, Michele Cronin, Victoria DeRose, and Danny Elfanbaum—for making it all
happen and helping me refine the book in so many ways.

Of course, all remaining errors are mine alone.

Furthermore, I would also like to thank the team at Refinitiv—in particular, Jason
Ramchandani—for providing ongoing support and access to financial data. The
major data files used throughout the book and made available to the readers were
received in one way or another from Refinitiv’s data APIs.

To my family with love. I dedicate this book to my father Adolf whose support for me
and our family now spans almost five decades.

Preface | xvii

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

1 “Too Squid to Fail.” The Economist, 29. October 2016.

CHAPTER 1

Python and Algorithmic Trading

At Goldman [Sachs] the number of people engaged in trading shares has fallen from a peak
of 600 in 2000 to just two today.1

—The Economist

This chapter provides background information for, and an overview of, the topics
covered in this book. Although Python for algorithmic trading is a niche at the inter‐
section of Python programming and finance, it is a fast-growing one that touches on
such diverse topics as Python deployment, interactive financial analytics, machine
and deep learning, object-oriented programming, socket communication, visualiza‐
tion of streaming data, and trading platforms.

For a quick refresher on important Python topics, read the Appendix first.

Python for Finance
The Python programming language originated in 1991 with the first release by Guido
van Rossum of a version labeled 0.9.0. In 1994, version 1.0 followed. However, it took
almost two decades for Python to establish itself as a major programming language
and technology platform in the financial industry. Of course, there were early adopt‐
ers, mainly hedge funds, but widespread adoption probably started only around 2011.

One major obstacle to the adoption of Python in the financial industry has been the
fact that the default Python version, called CPython, is an interpreted, high-level lan‐
guage. Numerical algorithms in general and financial algorithms in particular are
quite often implemented based on (nested) loop structures. While compiled, low-
level languages like C or C++ are really fast at executing such loops, Python, which

1

2 For details, see Hilpisch (2018, ch. 12).

relies on interpretation instead of compilation, is generally quite slow at doing so. As
a consequence, pure Python proved too slow for many real-world financial applica‐
tions, such as option pricing or risk management.

Python Versus Pseudo-Code
Although Python was never specifically targeted towards the scientific and financial
communities, many people from these fields nevertheless liked the beauty and con‐
ciseness of its syntax. Not too long ago, it was generally considered good tradition to
explain a (financial) algorithm and at the same time present some pseudo-code as an
intermediate step towards its proper technological implementation. Many felt that,
with Python, the pseudo-code step would not be necessary anymore. And they were
proven mostly correct.

Consider, for instance, the Euler discretization of the geometric Brownian motion, as
in Equation 1-1.

Equation 1-1. Euler discretization of geometric Brownian motion

ST = S0 exp r − 0 . 5σ2 T + σz T

For decades, the LaTeX markup language and compiler have been the gold standard
for authoring scientific documents containing mathematical formulae. In many ways,
Latex syntax is similar to or already like pseudo-code when, for example, laying out
equations, as in Equation 1-1. In this particular case, the Latex version looks like this:

S_T = S_0 \exp((r - 0.5 \sigma^2) T + \sigma z \sqrt{T})

In Python, this translates to executable code, given respective variable definitions,
that is also really close to the financial formula as well as to the Latex representation:

S_T = S_0 * exp((r - 0.5 * sigma ** 2) * T + sigma * z * sqrt(T))

However, the speed issue remains. Such a difference equation, as a numerical approx‐
imation of the respective stochastic differential equation, is generally used to price
derivatives by Monte Carlo simulation or to do risk analysis and management based
on simulation.2 These tasks in turn can require millions of simulations that need to be
finished in due time, often in almost real-time or at least near-time. Python, as an
interpreted high-level programming language, was never designed to be fast enough
to tackle such computationally demanding tasks.

2 | Chapter 1: Python and Algorithmic Trading

3 For example, list objects are not only mutable, which means that they can be changed in size, but they can
also contain almost any other kind of Python object, like int, float, tuple objects or list objects themselves.

NumPy and Vectorization
In 2006, version 1.0 of the NumPy Python package was released by Travis Oliphant.
NumPy stands for numerical Python, suggesting that it targets scenarios that are
numerically demanding. The base Python interpreter tries to be as general as possible
in many areas, which often leads to quite a bit of overhead at run-time.3 NumPy, on the
other hand, uses specialization as its major approach to avoid overhead and to be as
good and as fast as possible in certain application scenarios.

The major class of NumPy is the regular array object, called ndarray object for n-
dimensional array. It is immutable, which means that it cannot be changed in size,
and can only accommodate a single data type, called dtype. This specialization allows
for the implementation of concise and fast code. One central approach in this context
is vectorization. Basically, this approach avoids looping on the Python level and dele‐
gates the looping to specialized NumPy code, generally implemented in C and there‐
fore rather fast.

Consider the simulation of 1,000,000 end of period values ST according to Equation
1-1 with pure Python. The major part of the following code is a for loop with
1,000,000 iterations:

In [1]: %%time
 import random
 from math import exp, sqrt

 S0 = 100
 r = 0.05
 T = 1.0
 sigma = 0.2

 values = []

 for _ in range(1000000):
 ST = S0 * exp((r - 0.5 * sigma ** 2) * T +
 sigma * random.gauss(0, 1) * sqrt(T))
 values.append(ST)
 CPU times: user 1.13 s, sys: 21.7 ms, total: 1.15 s
 Wall time: 1.15 s

The initial index level.

The constant short rate.

Python for Finance | 3

http://numpy.org

The time horizon in year fractions.

The constant volatility factor.

An empty list object to collect simulated values.

The main for loop.

The simulation of a single end-of-period value.

Appends the simulated value to the list object.

With NumPy, you can avoid looping on the Python level completely by the use of vec‐
torization. The code is much more concise, more readable, and faster by a factor of
about eight:

In [2]: %%time
 import numpy as np

 S0 = 100
 r = 0.05
 T = 1.0
 sigma = 0.2

 ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T +
 sigma * np.random.standard_normal(1000000) *
 np.sqrt(T))
 CPU times: user 375 ms, sys: 82.6 ms, total: 458 ms
 Wall time: 160 ms

This single line of NumPy code simulates all the values and stores them in an
ndarray object.

Vectorization is a powerful concept for writing concise, easy-to-
read, and easy-to-maintain code in finance and algorithmic trad‐
ing. With NumPy, vectorized code does not only make code more
concise, but it also can speed up code execution considerably (by a
factor of about eight in the Monte Carlo simulation, for example).

It’s safe to say that NumPy has significantly contributed to the success of Python in sci‐
ence and finance. Many other popular Python packages from the so-called scientific
Python stack build on NumPy as an efficient, performing data structure to store and
handle numerical data. In fact, NumPy is an outgrowth of the SciPy package project,
which provides a wealth of functionality frequently needed in science. The SciPy
project recognized the need for a more powerful numerical data structure and

4 | Chapter 1: Python and Algorithmic Trading

consolidated older projects like Numeric and NumArray in this area into a new, unify‐
ing one in the form of NumPy.

In algorithmic trading, a Monte Carlo simulation might not be the most important
use case for a programming language. However, if you enter the algorithmic trading
space, the management of larger, or even big, financial time series data sets is a very
important use case. Just think of the backtesting of (intraday) trading strategies or the
processing of tick data streams during trading hours. This is where the pandas data
analysis package comes into play.

pandas and the DataFrame Class
Development of pandas began in 2008 by Wes McKinney, who back then was work‐
ing at AQR Capital Management, a big hedge fund operating out of Greenwich, Con‐
necticut. As with for any other hedge fund, working with time series data is of
paramount importance for AQR Capital Management, but back then Python did not
provide any kind of appealing support for this type of data. Wes’s idea was to create a
package that mimics the capabilities of the R statistical language (http://r-project.org)
in this area. This is reflected, for example, in naming the major class DataFrame,
whose counterpart in R is called data.frame. Not being considered close enough to
the core business of money management, AQR Capital Management open sourced
the pandas project in 2009, which marks the beginning of a major success story in
open source–based data and financial analytics.

Partly due to pandas, Python has become a major force in data and financial analyt‐
ics. Many people who adopt Python, coming from diverse other languages, cite
pandas as a major reason for their decision. In combination with open data sources
like Quandl, pandas even allows students to do sophisticated financial analytics with
the lowest barriers of entry ever: a regular notebook computer with an internet con‐
nection suffices.

Assume an algorithmic trader is interested in trading Bitcoin, the cryptocurrency
with the largest market capitalization. A first step might be to retrieve data about the
historical exchange rate in USD. Using Quandl data and pandas, such a task is accom‐
plished in less than a minute. Figure 1-1 shows the plot that results from the follow‐
ing Python code, which is (omitting some plotting style related parameterizations)
only four lines. Although pandas is not explicitly imported, the Quandl Python wrap‐
per package by default returns a DataFrame object that is then used to add a simple
moving average (SMA) of 100 days, as well as to visualize the raw data alongside
the SMA:

In [3]: %matplotlib inline
 from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300

Python for Finance | 5

http://pandas.pydata.org
http://pandas.pydata.org
http://r-project.org
http://quandl.com

 mpl.rcParams['font.family'] = 'serif'

In [4]: import configparser
 c = configparser.ConfigParser()
 c.read('../pyalgo.cfg')
Out[4]: ['../pyalgo.cfg']

In [5]: import quandl as q
 q.ApiConfig.api_key = c['quandl']['api_key']
 d = q.get('BCHAIN/MKPRU')
 d['SMA'] = d['Value'].rolling(100).mean()
 d.loc['2013-1-1':].plot(title='BTC/USD exchange rate',
 figsize=(10, 6));

Imports and configures the plotting package.

Imports the configparser module and reads credentials.

Imports the Quandl Python wrapper package and provides the API key.

Retrieves daily data for the Bitcoin exchange rate and returns a pandas Data
Frame object with a single column.

Calculates the SMA for 100 days in vectorized fashion.

Selects data from the 1st of January 2013 on and plots it.

Obviously, NumPy and pandas measurably contribute to the success of Python in
finance. However, the Python ecosystem has much more to offer in the form of addi‐
tional Python packages that solve rather fundamental problems and sometimes speci‐
alized ones. This book will make use of packages for data retrieval and storage (for
example, PyTables, TsTables, SQLite) and for machine and deep learning (for exam‐
ple, scikit-learn, TensorFlow), to name just two categories. Along the way, we will
also implement classes and modules that will make any algorithmic trading project
more efficient. However, the main packages used throughout will be NumPy and
pandas.

6 | Chapter 1: Python and Algorithmic Trading

4 See The Mathematics of the Rubik’s Cube or Algorithms for Solving Rubik’s Cube.

Figure 1-1. Historical Bitcoin exchange rate in USD from the beginning of 2013 until
mid-2020

While NumPy provides the basic data structure to store numerical
data and work with it, pandas brings powerful time series manage‐
ment capabilities to the table. It also does a great job of wrapping
functionality from other packages into an easy-to-use API. The Bit‐
coin example just described shows that a single method call on a
DataFrame object is enough to generate a plot with two financial
time series visualized. Like NumPy, pandas allows for rather concise,
vectorized code that is also generally executed quite fast due to
heavy use of compiled code under the hood.

Algorithmic Trading
The term algorithmic trading is neither uniquely nor universally defined. On a rather
basic level, it refers to the trading of financial instruments based on some formal
algorithm. An algorithm is a set of operations (mathematical, technical) to be conduc‐
ted in a certain sequence to achieve a certain goal. For example, there are mathemati‐
cal algorithms to solve a Rubik’s Cube.4 Such an algorithm can solve the problem at
hand via a step-by-step procedure, often perfectly. Another example is algorithms for

Algorithmic Trading | 7

https://oreil.ly/16pIA
https://oreil.ly/XM0ZP

finding the root(s) of an equation if it (they) exist(s) at all. In that sense, the objective
of a mathematical algorithm is often well specified and an optimal solution is often
expected.

But what about the objective of financial trading algorithms? This question is not that
easy to answer in general. It might help to step back for a moment and consider gen‐
eral motives for trading. In Dorn et al. (2008) write:

Trading in financial markets is an important economic activity. Trades are necessary to
get into and out of the market, to put unneeded cash into the market, and to convert
back into cash when the money is wanted. They are also needed to move money
around within the market, to exchange one asset for another, to manage risk, and to
exploit information about future price movements.

The view expressed here is more technical than economic in nature, focusing mainly
on the process itself and only partly on why people initiate trades in the first place.
For our purposes, a nonexhaustive list of financial trading motives of people and
financial institutions managing money of their own or for others includes the
following:

Beta trading
Earning market risk premia by investing in, for instance, exchange traded funds
(ETFs) that replicate the performance of the S&P 500.

Alpha generation
Earning risk premia independent of the market by, for example, selling short
stocks listed in the S&P 500 or ETFs on the S&P 500.

Static hedging
Hedging against market risks by buying, for example, out-of-the-money put
options on the S&P 500.

Dynamic hedging
Hedging against market risks affecting options on the S&P 500 by, for example,
dynamically trading futures on the S&P 500 and appropriate cash, money mar‐
ket, or rate instruments.

Asset-liability management
Trading S&P 500 stocks and ETFs to be able to cover liabilities resulting from, for
example, writing life insurance policies.

Market making
Providing, for example, liquidity to options on the S&P 500 by buying and selling
options at different bid and ask prices.

All these types of trades can be implemented by a discretionary approach,
with human traders making decisions mainly on their own, as well as based on algo‐
rithms supporting the human trader or even replacing them completely in the

8 | Chapter 1: Python and Algorithmic Trading

5 See Hilpisch (2015) for a detailed analysis of delta hedging strategies for European and American options
using Python.

decision-making process. In this context, computerization of financial trading of
course plays an important role. While in the beginning of financial trading, floor
trading with a large group of people shouting at each other (“open outcry”) was the
only way of executing trades, computerization and the advent of the internet and web
technologies have revolutionized trading in the financial industry. The quotation at
the beginning of this chapter illustrates this impressively in terms of the number of
people actively engaged in trading shares at Goldman Sachs in 2000 and in 2016. It is
a trend that was foreseen 25 years ago, as Solomon and Corso (1991) point out:

Computers have revolutionized the trading of securities and the stock market is cur‐
rently in the midst of a dynamic transformation. It is clear that the market of the future
will not resemble the markets of the past.
Technology has made it possible for information regarding stock prices to be sent all
over the world in seconds. Presently, computers route orders and execute small trades
directly from the brokerage firm’s terminal to the exchange. Computers now link
together various stock exchanges, a practice which is helping to create a single global
market for the trading of securities. The continuing improvements in technology will
make it possible to execute trades globally by electronic trading systems.

Interestingly, one of the oldest and most widely used algorithms is found in dynamic
hedging of options. Already with the publication of the seminal papers about the
pricing of European options by Black and Scholes (1973) and Merton (1973), the
algorithm, called delta hedging, was made available long before computerized and
electronic trading even started. Delta hedging as a trading algorithm shows how to
hedge away all market risks in a simplified, perfect, continuous model world. In the
real world, with transaction costs, discrete trading, imperfectly liquid markets, and
other frictions (“imperfections”), the algorithm has proven, somewhat surprisingly
maybe, its usefulness and robustness, as well. It might not allow one to perfectly
hedge away market risks affecting options, but it is useful in getting close to the ideal
and is therefore still used on a large scale in the financial industry.5

This book focuses on algorithmic trading in the context of alpha generating strategies.
Although there are more sophisticated definitions for alpha, for the purposes of this
book, alpha is seen as the difference between a trading strategy’s return over some
period of time and the return of the benchmark (single stock, index, cryptocurrency,
etc.). For example, if the S&P 500 returns 10% in 2018 and an algorithmic strategy
returns 12%, then alpha is +2% points. If the strategy returns 7%, then alpha is -3%
points. In general, such numbers are not adjusted for risk, and other risk characteris‐
tics, such as maximal drawdown (period), are usually considered to be of second
order importance, if at all.

Algorithmic Trading | 9

6 See the book by Lewis (2015) for a non-technical introduction to HFT.
7 Source: “66% of Fund Managers Can’t Match S&P Results.” USA Today, March 14, 2016.

This book focuses on alpha-generating strategies, or strategies that
try to generate positive returns (above a benchmark) independent
of the market’s performance. Alpha is defined in this book (in the
simplest way) as the excess return of a strategy over the benchmark
financial instrument’s performance.

There are other areas where trading-related algorithms play an important role. One is
the high frequency trading (HFT) space, where speed is typically the discipline in
which players compete.6 The motives for HFT are diverse, but market making and
alpha generation probably play a prominent role. Another one is trade execution,
where algorithms are deployed to optimally execute certain nonstandard trades.
Motives in this area might include the execution (at best possible prices) of large
orders or the execution of an order with as little market and price impact as possible.
A more subtle motive might be to disguise an order by executing it on a number of
different exchanges.

An important question remains to be addressed: is there any advantage to using algo‐
rithms for trading instead of human research, experience, and discretion? This ques‐
tion can hardly be answered in any generality. For sure, there are human traders and
portfolio managers who have earned, on average, more than their benchmark for
investors over longer periods of time. The paramount example in this regard is War‐
ren Buffett. On the other hand, statistical analyses show that the majority of active
portfolio managers rarely beat relevant benchmarks consistently. Referring to the year
2015, Adam Shell writes:

Last year, for example, when the Standard & Poor’s 500-stock index posted a paltry
total return of 1.4% with dividends included, 66% of “actively managed” large-
company stock funds posted smaller returns than the index…The longer-term outlook
is just as gloomy, with 84% of large-cap funds generating lower returns than the S&P
500 in the latest five year period and 82% falling shy in the past 10 years, the study
found.7

In an empirical study published in December 2016, Harvey et al. write:

We analyze and contrast the performance of discretionary and systematic hedge funds.
Systematic funds use strategies that are rules‐based, with little or no daily intervention
by humans….We find that, for the period 1996‐2014, systematic equity managers
underperform their discretionary counterparts in terms of unadjusted (raw) returns,
but that after adjusting for exposures to well‐known risk factors, the risk‐adjusted per‐
formance is similar. In the case of macro, systematic funds outperform discretionary
funds, both on an unadjusted and risk‐adjusted basis.

10 | Chapter 1: Python and Algorithmic Trading

8 Annualized performance (above the short-term interest rate) and risk measures for hedge fund categories
comprising a total of 9,000 hedge funds over the period from June 1996 to December 2014.

Table 1-0 reproduces the major quantitative findings of the study by Harvey et al.
(2016).8 In the table, factors include traditional ones (equity, bonds, etc.), dynamic
ones (value, momentum, etc.), and volatility (buying at-the-money puts and calls).
The adjusted return appraisal ratio divides alpha by the adjusted return volatility. For
more details and background, see the original study.

The study’s results illustrate that systematic (“algorithmic”) macro hedge funds per‐
form best as a category, both in unadjusted and risk-adjusted terms. They generate an
annualized alpha of 4.85% points over the period studied. These are hedge funds
implementing strategies that are typically global, are cross-asset, and often involve
political and macroeconomic elements. Systematic equity hedge funds only beat their
discretionary counterparts on the basis of the adjusted return appraisal ratio (0.35
versus 0.25).

 Systematic macro Discretionary macro Systematic equity Discretionary equity

Return average 5.01% 2.86% 2.88% 4.09%

Return attributed to
factors

0.15% 1.28% 1.77% 2.86%

Adj. return average (alpha) 4.85% 1.57% 1.11% 1.22%

Adj. return volatility 0.93% 5.10% 3.18% 4.79%

Adj. return appraisal ratio 0.44 0.31 0.35 0.25

Compared to the S&P 500, hedge fund performance overall was quite meager for the
year 2017. While the S&P 500 index returned 21.8%, hedge funds only returned 8.5%
to investors (see this article in Investopedia). This illustrates how hard it is, even with
multimillion dollar budgets for research and technology, to generate alpha.

Python for Algorithmic Trading
Python is used in many corners of the financial industry but has become particularly
popular in the algorithmic trading space. There are a few good reasons for this:

Data analytics capabilities
A major requirement for every algorithmic trading project is the ability to man‐
age and process financial data efficiently. Python, in combination with packages
like NumPy and pandas, makes life easier in this regard for every algorithmic
trader than most other programming languages do.

Python for Algorithmic Trading | 11

https://oreil.ly/N59Hf

Handling of modern APIs
Modern online trading platforms like the ones from FXCM and Oanda offer
RESTful application programming interfaces (APIs) and socket (streaming) APIs
to access historical and live data. Python is in general well suited to efficiently
interact with such APIs.

Dedicated packages
In addition to the standard data analytics packages, there are multiple packages
available that are dedicated to the algorithmic trading space, such as PyAlgoTrade
and Zipline for the backtesting of trading strategies and Pyfolio for performing
portfolio and risk analysis.

Vendor sponsored packages
More and more vendors in the space release open source Python packages to
facilitate access to their offerings. Among them are online trading platforms like
Oanda, as well as the leading data providers like Bloomberg and Refinitiv.

Dedicated platforms
Quantopian, for example, offers a standardized backtesting environment as a
Web-based platform where the language of choice is Python and where people
can exchange ideas with like-minded others via different social network features.
From its founding until 2020, Quantopian has attracted more than 300,000 users.

Buy- and sell-side adoption
More and more institutional players have adopted Python to streamline develop‐
ment efforts in their trading departments. This, in turn, requires more and more
staff proficient in Python, which makes learning Python a worthwhile
investment.

Education, training, and books
Prerequisites for the widespread adoption of a technology or programming lan‐
guage are academic and professional education and training programs in combi‐
nation with specialized books and other resources. The Python ecosystem has
seen a tremendous growth in such offerings recently, educating and training
more and more people in the use of Python for finance. This can be expected to
reinforce the trend of Python adoption in the algorithmic trading space.

In summary, it is rather safe to say that Python plays an important role in algorithmic
trading already and seems to have strong momentum to become even more impor‐
tant in the future. It is therefore a good choice for anyone trying to enter the space, be
it as an ambitious “retail” trader or as a professional employed by a leading financial
institution engaged in systematic trading.

12 | Chapter 1: Python and Algorithmic Trading

http://fxcm.co.uk
http://oanda.com
https://oreil.ly/IpIt1
https://oreil.ly/2cSKR
https://oreil.ly/KT7V8
https://oreil.ly/oSxei
https://oreil.ly/1SNBN
http://quantopian.com

Focus and Prerequisites
The focus of this book is on Python as a programming language for algorithmic trad‐
ing. The book assumes that the reader already has some experience with Python and
popular Python packages used for data analytics. Good introductory books are, for
example, Hilpisch (2018), McKinney (2017), and VanderPlas (2016), which all can be
consulted to build a solid foundation in Python for data analysis and finance. The
reader is also expected to have some experience with typical tools used for interactive
analytics with Python, such as IPython, to which VanderPlas (2016) also provides an
introduction.

This book presents and explains Python code that is applied to the topics at hand, like
backtesting trading strategies or working with streaming data. It cannot provide a
thorough introduction to all packages used in different places. It tries, however, to
highlight those capabilities of the packages that are central to the exposition (such as
vectorization with NumPy).

The book also cannot provide a thorough introduction and overview of all financial
and operational aspects relevant for algorithmic trading. The approach instead focu‐
ses on the use of Python to build the necessary infrastructure for automated algorith‐
mic trading systems. Of course, the majority of examples used are taken from the
algorithmic trading space. However, when dealing with, say, momentum or mean-
reversion strategies, they are more or less simply used without providing (statistical)
verification or an in-depth discussion of their intricacies. Whenever it seems appro‐
priate, references are given that point the reader to sources that address issues left
open during the exposition.

All in all, this book is written for readers who have some experience with both
Python and (algorithmic) trading. For such a reader, the book is a practical guide to
the creation of automated trading systems using Python and additional packages.

This book uses a number of Python programming approaches (for
example, object oriented programming) and packages (for exam‐
ple, scikit-learn) that cannot be explained in detail. The focus is
on applying these approaches and packages to different steps in an
algorithmic trading process. It is therefore recommended that
those who do not yet have enough Python (for finance) experience
additionally consult more introductory Python texts.

Trading Strategies
Throughout this book, four different algorithmic trading strategies are used as exam‐
ples. They are introduced briefly in the following sections and in some more detail
in Chapter 4. All these trading strategies can be classified as mainly alpha seeking

Focus and Prerequisites | 13

9 See the book by Kissel (2013) for an overview of topics related to algorithmic trading, the book by Chan
(2013) for an in-depth discussion of momentum and mean-reversion strategies, or the book by Narang (2013)
for a coverage of quantitative and HFT trading in general.

strategies, since their main objective is to generate positive, above-market returns
independent of the market direction. Canonical examples throughout the book, when
it comes to financial instruments traded, are a stock index, a single stock, or a crypto‐
currency (denominated in a fiat currency). The book does not cover strategies involv‐
ing multiple financial instruments at the same time (pair trading strategies, strategies
based on baskets, etc.). It also covers only strategies whose trading signals are derived
from structured, financial time series data and not, for instance, from unstructured
data sources like news or social media feeds. This keeps the discussions and the
Python implementations concise and easier to understand, in line with the approach
(discussed earlier) of focusing on Python for algorithmic trading.9

The remainder of this chapter gives a quick overview of the four trading strategies
used in this book.

Simple Moving Averages
The first type of trading strategy relies on simple moving averages (SMAs) to gener‐
ate trading signals and market positionings. These trading strategies have been popu‐
larized by so-called technical analysts or chartists. The basic idea is that a shorter-
term SMA being higher in value than a longer term SMA signals a long market
position and the opposite scenario signals a neutral or short market position.

Momentum
The basic idea behind momentum strategies is that a financial instrument is assumed
to perform in accordance with its recent performance for some additional time. For
example, when a stock index has seen a negative return on average over the last five
days, it is assumed that its performance will be negative tomorrow, as well.

Mean Reversion
In mean-reversion strategies, a financial instrument is assumed to revert to some
mean or trend level if it is currently far enough away from such a level. For example,
assume that a stock trades 10 USD under its 200 days SMA level of 100. It is then
expected that the stock price will return to its SMA level sometime soon.

14 | Chapter 1: Python and Algorithmic Trading

Machine and Deep Learning
With machine and deep learning algorithms, one generally takes a more black box
approach to predicting market movements. For simplicity and reproducibility, the
examples in this book mainly rely on historical return observations as features to
train machine and deep learning algorithms to predict stock market movements.

This book does not introduce algorithmic trading in a systematic
fashion. Since the focus lies on applying Python in this fascinating
field, readers not familiar with algorithmic trading should consult
dedicated resources on the topic, some of which are cited in this
chapter and the chapters that follow. But be aware of the fact that
the algorithmic trading world in general is secretive and that
almost everyone who is successful is naturally reluctant to share
their secrets in order to protect their sources of success (that is,
their alpha).

Conclusions
Python is already a force in finance in general and is on its way to becoming a major
force in algorithmic trading. There are a number of good reasons to use Python for
algorithmic trading, among them the powerful ecosystem of packages that allows for
efficient data analysis or the handling of modern APIs. There are also a number of
good reasons to learn Python for algorithmic trading, chief among them the fact that
some of the biggest buy- and sell-side institutions make heavy use of Python in their
trading operations and constantly look for seasoned Python professionals.

This book focuses on applying Python to the different disciplines in algorithmic trad‐
ing, like backtesting trading strategies or interacting with online trading platforms. It
cannot replace a thorough introduction to Python itself nor to trading in general.
However, it systematically combines these two fascinating worlds to provide a valua‐
ble source for the generation of alpha in today’s competitive financial and cryptocur‐
rency markets.

References and Further Resources
Books and papers cited in this chapter:

Black, Fischer, and Myron Scholes. 1973. “The Pricing of Options and Corporate Lia‐
bilities.” Journal of Political Economy 81 (3): 638-659.

Chan, Ernest. 2013. Algorithmic Trading: Winning Strategies and Their Rationale.
Hoboken et al: John Wiley & Sons.

Conclusions | 15

Dorn, Anne, Daniel Dorn, and Paul Sengmueller. 2008. “Why Do People Trade?”
Journal of Applied Finance (Fall/Winter): 37-50.

Harvey, Campbell, Sandy Rattray, Andrew Sinclair, and Otto Van Hemert. 2016.
“Man vs. Machine: Comparing Discretionary and Systematic Hedge Fund Perfor‐
mance.” The Journal of Portfolio Management White Paper, Man Group.

Hilpisch, Yves. 2015. Derivatives Analytics with Python: Data Analysis, Models, Simu‐
lation, Calibration and Hedging. Wiley Finance. Resources under http://
dawp.tpq.io.

⸻. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed. Sebasto‐
pol: O’Reilly. Resources under https://py4fi.pqp.io.

⸻. 2020. Artificial Intelligence in Finance: A Python-Based Guide. Sebastopol:
O’Reilly. Resources under https://aiif.pqp.io.

Kissel, Robert. 2013. The Science of Algorithmic Trading and Portfolio Management.
Amsterdam et al: Elsevier/Academic Press.

Lewis, Michael. 2015. Flash Boys: Cracking the Money Code. New York, London: W.W.
Norton & Company.

McKinney, Wes. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. 2nd ed. Sebastopol: O’Reilly.

Merton, Robert. 1973. “Theory of Rational Option Pricing.” Bell Journal of Economics
and Management Science 4: 141-183.

Narang, Rishi. 2013. Inside the Black Box: A Simple Guide to Quantitative and High
Frequency Trading. Hoboken et al: John Wiley & Sons.

Solomon, Lewis, and Louise Corso. 1991. “The Impact of Technology on the Trading
of Securities: The Emerging Global Market and the Implications for Regulation.”
The John Marshall Law Review 24 (2): 299-338.

VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working
with Data. Sebastopol: O’Reilly.

16 | Chapter 1: Python and Algorithmic Trading

http://dawp.tpq.io
http://dawp.tpq.io
https://py4fi.pqp.io
https://aiif.pqp.io

CHAPTER 2

Python Infrastructure

In building a house, there is the problem of the selection of wood.
It is essential that the carpenter’s aim be to carry equipment that will cut well and, when he
has time, to sharpen that equipment.

—Miyamoto Musashi (The Book of Five Rings)

For someone new to Python, Python deployment might seem all but straightforward.
The same holds true for the wealth of libraries and packages that can be installed
optionally. First of all, there is not only one Python. Python comes in many different
flavors, like CPython, Jython, IronPython, or PyPy. Then there is still the divide
between Python 2.7 and the 3.x world. This chapter focuses on CPython, the most
popular version of the Python programming language, and on version 3.8.

Even when focusing on CPython 3.8 (henceforth just “Python”), deployment is made
difficult due to a number of reasons:

• The interpreter (a standard CPython installation) only comes with the so-called
standard library (e.g. covering typical mathematical functions).

• Optional Python packages need to be installed separately, and there are hundreds
of them.

• Compiling (“building”) such non-standard packages on your own can be tricky
due to dependencies and operating system–specific requirements.

• Taking care of such dependencies and of version consistency over time (mainte‐
nance) is often tedious and time consuming.

• Updates and upgrades for certain packages might cause the need for recompiling
a multitude of other packages.

17

1 A recent project called pipenv combines the capabilities of the package manager pip with those of the virual
environment manager virtualenv. See https://github.com/pypa/pipenv.

• Changing or replacing one package might cause trouble in (many) other places.
• Migrating from one Python version to another one at some later point might

amplify all the preceding issues.

Fortunately, there are tools and strategies available that help with the Python deploy‐
ment issue. This chapter covers the following types of technologies that help with
Python deployment:

Package manager
Package managers like pip or conda help with the installing, updating, and
removing of Python packages. They also help with version consistency of differ‐
ent packages.

Virtual environment manager
A virtual environment manager like virtualenv or conda allows one to manage
multiple Python installations in parallel (for example, to have both a Python 2.7
and 3.8 installation on a single machine or to test the most recent development
version of a fancy Python package without risk).1

Container
Docker containers represent complete file systems containing all pieces of a sys‐
tem needed to run a certain software, such as code, runtime, or system tools. For
example, you can run a Ubuntu 20.04 operating system with a Python 3.8 instal‐
lation and the respective Python codes in a Docker container hosted on a
machine running Mac OS or Windows 10. Such a containerized environment can
then also be deployed later in the cloud without any major changes.

Cloud instance
Deploying Python code for financial applications generally requires high availa‐
bility, security, and performance. These requirements can typically be met only
by the use of professional compute and storage infrastructure that is nowadays
available at attractive conditions in the form of fairly small to really large and
powerful cloud instances. One benefit of a cloud instance (virtual server) com‐
pared to a dedicated server rented longer term is that users generally get charged
only for the hours of actual usage. Another advantage is that such cloud instances
are available literally in a minute or two if needed, which helps with agile devel‐
opment and scalability.

The structure of this chapter is as follows. “Conda as a Package Manager” on page 19
introduces conda as a package manager for Python. “Conda as a Virtual Environment

18 | Chapter 2: Python Infrastructure

https://github.com/pypa/pipenv
https://oreil.ly/5vKCa
https://oreil.ly/uTZRn
https://oreil.ly/xMnlC
http://docker.com

2 On Windows, you can also run the exact same commands in a Docker container (see https://oreil.ly/GndRR).
Working on Windows directly requires some adjustments. See, for example, the book by Matthias and Kane
(2018) for further details on Docker usage.

Manager” on page 27 focuses on conda capabilities for virtual environment manage‐
ment. “Using Docker Containers” on page 30 gives a brief overview of Docker as a
containerization technology and focuses on the building of a Ubuntu-based container
with Python 3.8 installation. “Using Cloud Instances” on page 36 shows how to
deploy Python and Jupyter Lab, a powerful, browser-based tool suite for Python
development and deployment in the cloud.

The goal of this chapter is to have a proper Python installation with the most impor‐
tant tools, as well as numerical, data analysis, and visualization packages, available on
a professional infrastructure. This combination then serves as the backbone for
implementing and deploying the Python codes in later chapters, be it interactive
financial analytics code or code in the form of scripts and modules.

Conda as a Package Manager
Although conda can be installed alone, an efficient way of doing it is via Miniconda, a
minimal Python distribution that includes conda as a package and virtual environ‐
ment manager.

Installing Miniconda
You can download the different versions of Miniconda on the Miniconda page. In
what follows, the Python 3.8 64-bit version is assumed, which is available for Linux,
Windows, and Mac OS. The main example in this sub-section is a session in an
Ubuntu-based Docker container, which downloads the Linux 64-bit installer via wget
and then installs Miniconda. The code as shown should work (with maybe minor
modifications) on any other Linux-based or Mac OS–based machine, as well:2

$ docker run -ti -h pyalgo -p 11111:11111 ubuntu:latest /bin/bash

root@pyalgo:/# apt-get update; apt-get upgrade -y
...
root@pyalgo:/# apt-get install -y gcc wget
...
root@pyalgo:/# cd root
root@pyalgo:~# wget \
> https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
> -O miniconda.sh
...
HTTP request sent, awaiting response... 200 OK
Length: 93052469 (89M) [application/x-sh]
Saving to: 'miniconda.sh'

Conda as a Package Manager | 19

https://oreil.ly/GndRR
https://oreil.ly/4LqUS
https://oreil.ly/-Z_6H

miniconda.sh 100%[============>] 88.74M 1.60MB/s in 2m 15s

2020-08-25 11:01:54 (3.08 MB/s) - 'miniconda.sh' saved [93052469/93052469]

root@pyalgo:~# bash miniconda.sh

Welcome to Miniconda3 py38_4.8.3

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>

Simply pressing the ENTER key starts the installation process. After reviewing the
license agreement, approve the terms by answering yes:

...
Last updated February 25, 2020

Do you accept the license terms? [yes|no]
[no] >>> yes

Miniconda3 will now be installed into this location:
/root/miniconda3

 - Press ENTER to confirm the location
 - Press CTRL-C to abort the installation
 - Or specify a different location below

[/root/miniconda3] >>>
PREFIX=/root/miniconda3
Unpacking payload ...
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

 environment location: /root/miniconda3
...
 python pkgs/main/linux-64::python-3.8.3-hcff3b4d_0
...
Preparing transaction: done
Executing transaction: done
installation finished.

After you have agreed to the licensing terms and have confirmed the install location,
you should allow Miniconda to prepend the new Miniconda install location to the
PATH environment variable by answering yes once again:

Do you wish the installer to initialize Miniconda3
by running conda init? [yes|no]
[no] >>> yes

20 | Chapter 2: Python Infrastructure

...
no change /root/miniconda3/etc/profile.d/conda.csh
modified /root/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

If you'd prefer that conda's base environment not be activated on startup,
 set the auto_activate_base parameter to false:

conda config --set auto_activate_base false

Thank you for installing Miniconda3!
root@pyalgo:~#

After that, you might want to update conda since the Miniconda installer is in general
not as regularly updated as conda itself:

root@pyalgo:~# export PATH="/root/miniconda3/bin/:$PATH"
root@pyalgo:~# conda update -y conda
...
root@pyalgo:~# echo ". /root/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc
root@pyalgo:~# bash
(base) root@pyalgo:~#

After this rather simple installation procedure, there are now both a basic Python
installation and conda available. The basic Python installation comes already with
some nice batteries included, like the SQLite3 database engine. You might try out
whether you can start Python in a new shell instance or after appending the relevant
path to the respective environment variable (as done in the preceding example):

(base) root@pyalgo:~# python
Python 3.8.3 (default, May 19 2020, 18:47:26)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello Python for Algorithmic Trading World.')
Hello Python for Algorithmic Trading World.
>>> exit()
(base) root@pyalgo:~#

Basic Operations with Conda
conda can be used to efficiently handle, among other things, the installation, updat‐
ing, and removal of Python packages. The following list provides an overview of the
major functions:

Installing Python x.x
conda install python=x.x

Updating Python
conda update python

Conda as a Package Manager | 21

https://sqlite.org

3 Installing the meta package nomkl, such as in conda install numpy nomkl, avoids the automatic installation
and usage of mkl and related other packages.

Installing a package
conda install $PACKAGE_NAME

Updating a package
conda update $PACKAGE_NAME

Removing a package
conda remove $PACKAGE_NAME

Updating conda itself
conda update conda

Searching for packages
conda search $SEARCH_TERM

Listing installed packages
conda list

Given these capabilities, installing, for example, NumPy (as one of the most important
packages of the so-called scientific stack) is a single command only. When the installa‐
tion takes place on a machine with an Intel processor, the procedure automatically
installs the Intel Math Kernel Library mkl, which speeds up numerical operations not
only for NumPy on Intel machines but also for a few other scientific Python packages:3

(base) root@pyalgo:~# conda install numpy
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

 environment location: /root/miniconda3

 added / updated specs:
 - numpy

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 blas-1.0 | mkl 6 KB
 intel-openmp-2020.1 | 217 780 KB
 mkl-2020.1 | 217 129.0 MB
 mkl-service-2.3.0 | py38he904b0f_0 62 KB
 mkl_fft-1.1.0 | py38h23d657b_0 150 KB

22 | Chapter 2: Python Infrastructure

https://oreil.ly/Tca2C

 mkl_random-1.1.1 | py38h0573a6f_0 341 KB
 numpy-1.19.1 | py38hbc911f0_0 21 KB
 numpy-base-1.19.1 | py38hfa32c7d_0 4.2 MB
 --
 Total: 134.5 MB

The following NEW packages will be INSTALLED:

 blas pkgs/main/linux-64::blas-1.0-mkl
 intel-openmp pkgs/main/linux-64::intel-openmp-2020.1-217
 mkl pkgs/main/linux-64::mkl-2020.1-217
 mkl-service pkgs/main/linux-64::mkl-service-2.3.0-py38he904b0f_0
 mkl_fft pkgs/main/linux-64::mkl_fft-1.1.0-py38h23d657b_0
 mkl_random pkgs/main/linux-64::mkl_random-1.1.1-py38h0573a6f_0
 numpy pkgs/main/linux-64::numpy-1.19.1-py38hbc911f0_0
 numpy-base pkgs/main/linux-64::numpy-base-1.19.1-py38hfa32c7d_0

Proceed ([y]/n)? y

Downloading and Extracting Packages
numpy-base-1.19.1 | 4.2 MB | ############################## | 100%
blas-1.0 | 6 KB | ############################## | 100%
mkl_fft-1.1.0 | 150 KB | ############################## | 100%
mkl-service-2.3.0 | 62 KB | ############################## | 100%
numpy-1.19.1 | 21 KB | ############################## | 100%
mkl-2020.1 | 129.0 MB | ############################## | 100%
mkl_random-1.1.1 | 341 KB | ############################## | 100%
intel-openmp-2020.1 | 780 KB | ############################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) root@pyalgo:~#

Conda as a Package Manager | 23

Multiple packages can also be installed at once. The -y flag indicates that all (poten‐
tial) questions shall be answered with yes:

(base) root@pyalgo:~# conda install -y ipython matplotlib pandas \
> pytables scikit-learn scipy
...
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

 environment location: /root/miniconda3

 added / updated specs:
 - ipython
 - matplotlib
 - pandas
 - pytables
 - scikit-learn
 - scipy

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 backcall-0.2.0 | py_0 15 KB
 ...
 zstd-1.4.5 | h9ceee32_0 619 KB
 --
 Total: 144.9 MB

The following NEW packages will be INSTALLED:

 backcall pkgs/main/noarch::backcall-0.2.0-py_0
 blosc pkgs/main/linux-64::blosc-1.20.0-hd408876_0
 ...
 zstd pkgs/main/linux-64::zstd-1.4.5-h9ceee32_0

Downloading and Extracting Packages
glib-2.65.0 | 2.9 MB | ############################## | 100%
...
snappy-1.1.8 | 40 KB | ############################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) root@pyalgo:~#

24 | Chapter 2: Python Infrastructure

After the resulting installation procedure, some of the most important libraries for
financial analytics are available in addition to the standard ones:

IPython
An improved interactive Python shell

matplotlib
The standard plotting library for Python

NumPy
Efficient handling of numerical arrays

pandas
Management of tabular data, like financial time series data

PyTables
A Python wrapper for the HDF5 library

scikit-learn
A package for machine learning and related tasks

SciPy
A collection of scientific classes and functions

This provides a basic tool set for data analysis in general and financial analytics in
particular. The next example uses IPython and draws a set of pseudo-random num‐
bers with NumPy:

(base) root@pyalgo:~# ipython
Python 3.8.3 (default, May 19 2020, 18:47:26)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.16.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: np.random.seed(100)

In [3]: np.random.standard_normal((5, 4))
Out[3]:
array([[-1.74976547, 0.3426804 , 1.1530358 , -0.25243604],
 [0.98132079, 0.51421884, 0.22117967, -1.07004333],
 [-0.18949583, 0.25500144, -0.45802699, 0.43516349],
 [-0.58359505, 0.81684707, 0.67272081, -0.10441114],
 [-0.53128038, 1.02973269, -0.43813562, -1.11831825]])

In [4]: exit
(base) root@pyalgo:~#

Conda as a Package Manager | 25

http://ipython.org
http://matplotlib.org
http://numpy.org
http://pandas.pydata.org
http://pytables.org
http://hdfgroup.org
http://scikit-learn.org
http://scipy.org

Executing conda list shows which packages are installed:

(base) root@pyalgo:~# conda list
packages in environment at /root/miniconda3:
#
Name Version Build Channel
_libgcc_mutex 0.1 main
backcall 0.2.0 py_0
blas 1.0 mkl
blosc 1.20.0 hd408876_0
...
zlib 1.2.11 h7b6447c_3
zstd 1.4.5 h9ceee32_0
(base) root@pyalgo:~#

In case a package is not needed anymore, it is efficiently removed with conda remove:

(base) root@pyalgo:~# conda remove matplotlib
Collecting package metadata (repodata.json): done
Solving environment: done

Package Plan

 environment location: /root/miniconda3

 removed specs:
 - matplotlib

The following packages will be REMOVED:

The following packages will be REMOVED:

 cycler-0.10.0-py38_0
 ...
 tornado-6.0.4-py38h7b6447c_1

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) root@pyalgo:~#

conda as a package manager is already quite useful. However, its full power only
becomes evident when adding virtual environment management to the mix.

26 | Chapter 2: Python Infrastructure

conda as a package manager makes installing, updating, and
removing Python packages a pleasant experience. There is no need
to take care of building and compiling packages on your own,
which can be tricky sometimes given the list of dependencies a
package specifies and given the specifics to be considered on differ‐
ent operating systems.

Conda as a Virtual Environment Manager
Having installed Miniconda with conda included provides a default Python installa‐
tion depending on what version of Miniconda has been chosen. The virtual environ‐
ment management capabilities of conda allow one, for example, to add to a Python
3.8 default installation a completely separated installation of Python 2.7.x. To this
end, conda offers the following functionality:

Creating a virtual environment
conda create --name $ENVIRONMENT_NAME

Activating an environment
conda activate $ENVIRONMENT_NAME

Deactivating an environment
conda deactivate $ENVIRONMENT_NAME

Removing an environment
conda env remove --name $ENVIRONMENT_NAME

Exporting to an environment file
conda env export > $FILE_NAME

Creating an environment from a file
conda env create -f $FILE_NAME

Listing all environments
conda info --envs

As a simple illustration, the example code that follows creates an environment called
py27, installs IPython, and executes a line of Python 2.7.x code. Although the support
for Python 2.7 has ended, the example illustrates how legacy Python 2.7 code can
easily be executed and tested:

(base) root@pyalgo:~# conda create --name py27 python=2.7
Collecting package metadata (current_repodata.json): done
Solving environment: failed with repodata from current_repodata.json,
will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

Conda as a Virtual Environment Manager | 27

Package Plan

 environment location: /root/miniconda3/envs/py27

 added / updated specs:
 - python=2.7

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 certifi-2019.11.28 | py27_0 153 KB
 pip-19.3.1 | py27_0 1.7 MB
 python-2.7.18 | h15b4118_1 9.9 MB
 setuptools-44.0.0 | py27_0 512 KB
 wheel-0.33.6 | py27_0 42 KB
 --
 Total: 12.2 MB

The following NEW packages will be INSTALLED:

 _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main
 ca-certificates pkgs/main/linux-64::ca-certificates-2020.6.24-0
 ...
 zlib pkgs/main/linux-64::zlib-1.2.11-h7b6447c_3

Proceed ([y]/n)? y

Downloading and Extracting Packages
certifi-2019.11.28 | 153 KB | ############################### | 100%
python-2.7.18 | 9.9 MB | ############################### | 100%
pip-19.3.1 | 1.7 MB | ############################### | 100%
setuptools-44.0.0 | 512 KB | ############################### | 100%
wheel-0.33.6 | 42 KB | ############################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate py27
#
To deactivate an active environment, use
#
$ conda deactivate

(base) root@pyalgo:~#

28 | Chapter 2: Python Infrastructure

Notice how the prompt changes to include (py27) after the environment is activated:

(base) root@pyalgo:~# conda activate py27
(py27) root@pyalgo:~# pip install ipython
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020.
...
Executing transaction: done
(py27) root@pyalgo:~#

Finally, this allows one to use IPython with Python 2.7 syntax:

(py27) root@pyalgo:~# ipython
Python 2.7.18 |Anaconda, Inc.| (default, Apr 23 2020, 22:42:48)
Type "copyright", "credits" or "license" for more information.

IPython 5.10.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: print "Hello Python for Algorithmic Trading World."
Hello Python for Algorithmic Trading World.

In [2]: exit
(py27) root@pyalgo:~#

As this example demonstrates, conda as a virtual environment manager allows one to
install different Python versions alongside each other. It also allows one to install dif‐
ferent versions of certain packages. The default Python installation is not influenced
by such a procedure, nor are other environments that might exist on the same
machine. All available environments can be shown via conda info --envs:

(py27) root@pyalgo:~# conda env list
conda environments:
#
base /root/miniconda3
py27 * /root/miniconda3/envs/py27

(py27) root@pyalgo:~#

Sometimes it is necessary to share environment information with others or to use
environment information on multiple machines, for instance. To this end, one can
export the installed packages list to a file with conda env export. However, this only
works properly by default for the same operating system since the build versions are
specified in the resulting yaml file. However, they can be deleted to only specify the
package version via the --no-builds flag:

(py27) root@pyalgo:~# conda deactivate
(base) root@pyalgo:~# conda env export --no-builds > base.yml
(base) root@pyalgo:~# cat base.yml
name: base

Conda as a Virtual Environment Manager | 29

4 In the official documentation, you will find the following explanation: “Python Virtual Environments allow
Python packages to be installed in an isolated location for a particular application, rather than being installed
globally.” See the Creating Virtual Environments page.

channels:
 - defaults
dependencies:
 - _libgcc_mutex=0.1
 - backcall=0.2.0
 - blas=1.0
 - blosc=1.20.0
 ...
 - zlib=1.2.11
 - zstd=1.4.5
prefix: /root/miniconda3
(base) root@pyalgo:~#

Often, virtual environments, which are technically not that much more than a certain
(sub-)folder structure, are created to do some quick tests.4 In such a case, an environ‐
ment is easily removed (after deactivation) via conda env remove:

(base) root@pyalgo:~# conda env remove -n py27

Remove all packages in environment /root/miniconda3/envs/py27:

(base) root@pyalgo:~#

This concludes the overview of conda as a virtual environment manager.

conda not only helps with managing packages, but it is also a vir‐
tual environment manager for Python. It simplifies the creation of
different Python environments, allowing one to have multiple ver‐
sions of Python and optional packages available on the same
machine without them influencing each other in any way. conda
also allows one to export environment information to easily repli‐
cate it on multiple machines or to share it with others.

Using Docker Containers
Docker containers have taken the IT world by storm (see Docker). Although the
technology is still relatively young, it has established itself as one of the benchmarks
for the efficient development and deployment of almost any kind of software applica‐
tion.

For our purposes, it suffices to think of a Docker container as a separated (“contain‐
erized”) file system that includes an operating system (for example, Ubuntu 20.04 LTS
for server), a (Python) runtime, additional system and development tools, and

30 | Chapter 2: Python Infrastructure

https://oreil.ly/5Jgjc
http://docker.com

5 See Matthias and Kane (2018) for a comprehensive introduction to the Docker technology.

further (Python) libraries and packages as needed. Such a Docker container might
run on a local machine with Windows 10 Professional 64 Bit or on a cloud instance
with a Linux operating system, for instance.

This section goes into the exciting details of Docker containers. It is a concise illustra‐
tion of what the Docker technology can do in the context of Python deployment.5

Docker Images and Containers
Before moving on to the illustration, two fundamental terms need to be distinguished
when talking about Docker. The first is a Docker image, which can be compared to a
Python class. The second is a Docker container, which can be compared to an instance
of the respective Python class.

On a more technical level, you will find the following definition for a Docker image in
the Docker glossary:

Docker images are the basis of containers. An image is an ordered collection of root
filesystem changes and the corresponding execution parameters for use within a con‐
tainer runtime. An image typically contains a union of layered filesystems stacked on
top of each other. An image does not have state and it never changes.

Similarly, you will find the following definition for a Docker container in the Docker
glossary, which makes the analogy to Python classes and instances of such classes
transparent:

A container is a runtime instance of a Docker image.
A Docker container consists of

• A Docker image

• An execution environment

• A standard set of instructions

The concept is borrowed from Shipping Containers, which define a standard to ship
goods globally. Docker defines a standard to ship software.

Depending on the operating system, the installation of Docker is somewhat different.
That is why this section does not go into the respective details. More information and
further links are found on the Get Docker page.

Building a Ubuntu and Python Docker Image
This sub-section illustrates the building of a Docker image based on the latest version
of Ubuntu that includes Miniconda, as well as a few important Python packages. In

Using Docker Containers | 31

https://oreil.ly/NNUiB
https://oreil.ly/NNUiB
https://oreil.ly/NNUiB
https://oreil.ly/hGgxs

6 Consult the book by Robbins (2016) for a concise introduction to and a quick overview of Bash scripting.
Also see see GNU Bash.

addition, it does some Linux housekeeping by updating the Linux packages index,
upgrading packages if required and installing certain additional system tools. To this
end, two scripts are needed. One is a Bash script doing all the work on the Linux
level.6 The other is a so-called Dockerfile, which controls the building procedure for
the image itself.

The Bash script in Example 2-1, which does the installing, consists of three major
parts. The first part handles the Linux housekeeping. The second part installs Mini‐
conda, while the third part installs optional Python packages. There are also more
detailed comments inline:

Example 2-1. Script installing Python and optional packages

#!/bin/bash
#
Script to Install
Linux System Tools and
Basic Python Components
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
GENERAL LINUX
apt-get update # updates the package index cache
apt-get upgrade -y # updates packages
installs system tools
apt-get install -y bzip2 gcc git # system tools
apt-get install -y htop screen vim wget # system tools
apt-get upgrade -y bash # upgrades bash if necessary
apt-get clean # cleans up the package index cache

INSTALL MINICONDA
downloads Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O \
 Miniconda.sh
bash Miniconda.sh -b # installs it
rm -rf Miniconda.sh # removes the installer
export PATH="/root/miniconda3/bin:$PATH" # prepends the new path

INSTALL PYTHON LIBRARIES
conda install -y pandas # installs pandas
conda install -y ipython # installs IPython shell

CUSTOMIZATION

32 | Chapter 2: Python Infrastructure

https://oreil.ly/SGHn1

cd /root/
wget http://hilpisch.com/.vimrc # Vim configuration

The Dockerfile in Example 2-2 uses the Bash script in Example 2-1 to build a new
Docker image. It also has its major parts commented inline:

Example 2-2. Dockerfile to build the image

#
Building a Docker Image with
the Latest Ubuntu Version and
Basic Python Install
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#

latest Ubuntu version
FROM ubuntu:latest

information about maintainer
MAINTAINER yves

add the bash script
ADD install.sh /
change rights for the script
RUN chmod u+x /install.sh
run the bash script
RUN /install.sh
prepend the new path
ENV PATH /root/miniconda3/bin:$PATH

execute IPython when container is run
CMD ["ipython"]

If these two files are in a single folder and Docker is installed, then the building of the
new Docker image is straightforward. Here, the tag pyalgo:basic is used for the
image. This tag is needed to reference the image, for example, when running a
container based on it:

(base) pro:Docker yves$ docker build -t pyalgo:basic .
Sending build context to Docker daemon 4.096kB
Step 1/7 : FROM ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/7 : MAINTAINER yves
 ---> Running in 859db5550d82
Removing intermediate container 859db5550d82
 ---> 40adf11b689f
Step 3/7 : ADD install.sh /
 ---> 34cd9dc267e0

Using Docker Containers | 33

Step 4/7 : RUN chmod u+x /install.sh
 ---> Running in 08ce2f46541b
Removing intermediate container 08ce2f46541b
 ---> 88c0adc82cb0
Step 5/7 : RUN /install.sh
 ---> Running in 112e70510c5b
...
Removing intermediate container 112e70510c5b
 ---> 314dc8ec5b48
Step 6/7 : ENV PATH /root/miniconda3/bin:$PATH
 ---> Running in 82497aea20bd
Removing intermediate container 82497aea20bd
 ---> 5364f494f4b4
Step 7/7 : CMD ["ipython"]
 ---> Running in ff434d5a3c1b
Removing intermediate container ff434d5a3c1b
 ---> a0bb86daf9ad
Successfully built a0bb86daf9ad
Successfully tagged pyalgo:basic
(base) pro:Docker yves$

Existing Docker images can be listed via docker images. The new image should be
on top of the list:

(base) pro:Docker yves$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
pyalgo basic a0bb86daf9ad 2 minutes ago 1.79GB
ubuntu latest 4e2eef94cd6b 5 days ago 73.9MB
(base) pro:Docker yves$

Having built the pyalgo:basic image successfully allows one to run a respective
Docker container with docker run. The parameter combination -ti is needed for
interactive processes running within a Docker container, like a shell process of
IPython (see the Docker Run Reference page):

(base) pro:Docker yves$ docker run -ti pyalgo:basic
Python 3.8.3 (default, May 19 2020, 18:47:26)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.16.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: np.random.seed(100)

In [3]: a = np.random.standard_normal((5, 3))

In [4]: import pandas as pd

In [5]: df = pd.DataFrame(a, columns=['a', 'b', 'c'])

In [6]: df
Out[6]:

34 | Chapter 2: Python Infrastructure

https://oreil.ly/s0_hn

 a b c
0 -1.749765 0.342680 1.153036
1 -0.252436 0.981321 0.514219
2 0.221180 -1.070043 -0.189496
3 0.255001 -0.458027 0.435163
4 -0.583595 0.816847 0.672721

Exiting IPython will exit the container as well, since it is the only application running
within the container. However, you can detach from a container via the following:

Ctrl+p --> Ctrl+q

After having detached from the container, the docker ps command shows the run‐
ning container (and maybe other currently running containers):

(base) pro:Docker yves$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ... NAMES
e93c4cbd8ea8 pyalgo:basic "ipython" About a minute ago jolly_rubin
(base) pro:Docker yves$

Attaching to the Docker container is accomplished by docker attach $CON

TAINER_ID. Notice that a few letters of the CONTAINER ID are enough:

(base) pro:Docker yves$ docker attach e93c
In [7]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 a 5 non-null float64
 1 b 5 non-null float64
 2 c 5 non-null float64
dtypes: float64(3)
memory usage: 248.0 bytes

The exit command terminates IPython and therewith stops the Docker container, as
well. It can be removed by docker rm:

In [8]: exit
(base) pro:Docker yves$ docker rm e93c
e93c
(base) pro:Docker yves$

Similarly, the Docker image pyalgo:basic can be removed via docker rmi if not
needed any longer. While containers are relatively lightweight, single images might
consume quite a bit of storage. In the case of the pyalgo:basic image, the size is
close to 2 GB. That is why you might want to regularly clean up the list of Docker
images:

(base) pro:Docker yves$ docker rmi a0bb86
Untagged: pyalgo:basic
Deleted: sha256:a0bb86daf9adfd0ddf65312ce6c1b068100448152f2ced5d0b9b5adef5788d88

Using Docker Containers | 35

7 For those who do not have an account with a cloud provider yet, on http://bit.ly/do_sign_up, new users get a
starting credit of 10 USD for DigitalOcean.

8 Technically, Jupyter Lab is an extension of Jupyter Notebook. Both expressions are, however, sometimes
used interchangeably.

...
Deleted: sha256:40adf11b689fc778297c36d4b232c59fedda8c631b4271672cc86f505710502d
(base) pro:Docker yves$

Of course, there is much more to say about Docker containers and their benefits in
certain application scenarios. For the purposes of this book, they provide a modern
approach to deploying Python, to doing Python development in a completely separa‐
ted (containerized) environment, and to shipping codes for algorithmic trading.

If you are not yet using Docker containers, you should consider
starting to use them. They provide a number of benefits when it
comes to Python deployment and development efforts, not only
when working locally but also in particular when working with
remote cloud instances and servers deploying code for algorithmic
trading.

Using Cloud Instances
This section shows how to set up a full-fledged Python infrastructure on a
DigitalOcean cloud instance. There are many other cloud providers out there, among
them Amazon Web Services (AWS) as the leading provider. However, DigitalOcean is
well known for its simplicity and relatively low rates for smaller cloud instances,
which it calls Droplet. The smallest Droplet, which is generally sufficient for explora‐
tion and development purposes, only costs 5 USD per month or 0.007 USD per hour.
Usage is charged by the hour so that one can (for example) easily spin up a Droplet
for two hours, destroy it, and get charged just 0.014 USD.7

The goal of this section is to set up a Droplet on DigitalOcean that has a Python 3.8
installation plus typically needed packages (such as NumPy and pandas) in combina‐
tion with a password-protected and Secure Sockets Layer (SSL)-encrypted Jupyter
Lab server installation.8 As a web-based tool suite, Jupyter Lab provides several tools
that can be used via a regular browser:

Jupyter Notebook
This is one of the most popular (if not the most popular) browser-based, interac‐
tive development environment that features a selection of different language ker‐
nels like Python, R, and Julia.

36 | Chapter 2: Python Infrastructure

http://bit.ly/do_sign_up
http://digitalocean.com
http://aws.amazon.com
http://jupyter.org
http://jupyter.org

Python console
This is an IPython-based console that has a graphical user interface different
from the look and feel of the standard, terminal-based implementation.

Terminal
This is a system shell implementation accessible via the browser that allows not
only for all typical system administration tasks, but also for usage of helpful tools
such as Vim for code editing or git for version control.

Editor
Another major tool is a browser-based text file editor with syntax highlighting for
many different programming languages and file types, as well as typical text/code
editing capabilities.

File manager
Jupyter Lab also provides a full-fledged file manager that allows for typical file
operations, such as uploading, downloading, and renaming.

Having Jupyter Lab installed on a Droplet allows one to do Python development
and deployment via the browser, circumventing the need to log in to the cloud
instance via Secure Shell (SSH) access.

To accomplish the goal of this section, several scripts are needed:

Server setup script
This script orchestrates all steps necessary, such as copying other files to the
Droplet and running them on the Droplet.

Python and Jupyter installation script
This script installs Python, additional packages, Jupyter Lab, and starts the
Jupyter Lab server.

Jupyter Notebook configuration file
This file is for the configuration of the Jupyter Lab server, for example, with
regard to password protection.

RSA public and private key files
These two files are needed for the SSL encryption of the communication with the
Jupyter Lab server.

The following section works backwards through this list of files since although the
setup script is executed first, the other files need to have been created beforehand.

Using Cloud Instances | 37

http://vim.org/download
https://git-scm.com/

9 With such a self-generated certificate, you might need to add a security exception when prompted by the
browser. On Mac OS you might even explicitely register the certificate as trustworthy.

RSA Public and Private Keys
In order to accomplish a secure connection to the Jupyter Lab server via an arbi‐
trary browser, an SSL certificate consisting of RSA public and private keys (see RSA
Wikipedia page) is needed. In general, one would expect that such a certificate comes
from a so-called Certificate Authority (CA). For the purposes of this book, however, a
self-generated certificate is “good enough.”9 A popular tool to generate RSA key pairs
is OpenSSL. The brief interactive session to follow generates a certificate appropriate
for use with a Jupyter Lab server (see the Jupyter Notebook docs):

(base) pro:cloud yves$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
> -keyout mykey.key -out mycert.pem
Generating a RSA private key
.......+++++
.....+++++
+++++
writing new private key to 'mykey.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:DE
State or Province Name (full name) [Some-State]:Saarland
Locality Name (e.g., city) []:Voelklingen
Organization Name (eg, company) [Internet Widgits Pty Ltd]:TPQ GmbH
Organizational Unit Name (e.g., section) []:Algorithmic Trading
Common Name (e.g., server FQDN or YOUR name) []:Jupyter Lab
Email Address []:pyalgo@tpq.io
(base) pro:cloud yves$

The two files mykey.key and mycert.pem need to be copied to the Droplet and need
to be referenced by the Jupyter Notebook configuration file. This file is presented
next.

Jupyter Notebook Configuration File
A public Jupyter Lab server can be deployed securely, as explained in the Jupyter
Notebook docs. Among others things, Jupyter Lab shall be password protected. To
this end, there is a password hash code-generating function called passwd() available

38 | Chapter 2: Python Infrastructure

https://oreil.ly/8UG1K
https://oreil.ly/8UG1K
http://openssl.org
https://oreil.ly/YxxaF
https://oreil.ly/YxxaF
https://oreil.ly/YxxaF

in the notebook.auth sub-package. The following code generates a password hash
code with jupyter being the password itself:

In [1]: from notebook.auth import passwd

In [2]: passwd('jupyter')
Out[2]: 'sha1:da3a3dfc0445:052235bb76e56450b38d27e41a85a136c3bf9cd7'

In [3]: exit

This hash code needs to be placed in the Jupyter Notebook configuration file as pre‐
sented in Example 2-3. The configuration file assumes that the RSA key files have
been copied on the Droplet to the /root/.jupyter/ folder.

Example 2-3. Jupyter Notebook configuration file

#
Jupyter Notebook Configuration File
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
SSL ENCRYPTION
replace the following file names (and files used) by your choice/files
c.NotebookApp.certfile = u'/root/.jupyter/mycert.pem'
c.NotebookApp.keyfile = u'/root/.jupyter/mykey.key'

IP ADDRESS AND PORT
set ip to '*' to bind on all IP addresses of the cloud instance
c.NotebookApp.ip = '0.0.0.0'
it is a good idea to set a known, fixed default port for server access
c.NotebookApp.port = 8888

PASSWORD PROTECTION
here: 'jupyter' as password
replace the hash code with the one for your password
c.NotebookApp.password = \
 'sha1:da3a3dfc0445:052235bb76e56450b38d27e41a85a136c3bf9cd7'

NO BROWSER OPTION
prevent Jupyter from trying to open a browser
c.NotebookApp.open_browser = False

ROOT ACCESS
allow Jupyter to run from root user
c.NotebookApp.allow_root = True

The next step is to make sure that Python and Jupyter Lab get installed on the
Droplet.

Using Cloud Instances | 39

Deploying Jupyter Lab in the cloud leads to a number of security
issues since it is a full-fledged development environment accessible
via a web browser. It is therefore of paramount importance to use
the security measures that a Jupyter Lab server provides by
default, like password protection and SSL encryption. But this is
just the beginning, and further security measures might be advised
depending on what exactly is done on the cloud instance.

Installation Script for Python and Jupyter Lab
The bash script to install Python and Jupyter Lab is similar to the one presented in
section “Using Docker Containers” on page 30 to install Python via Miniconda in a
Docker container. However, the script in Example 2-4 needs to start the Jupyter Lab
server, as well. All major parts and lines of code are commented inline.

Example 2-4. Bash script to install Python and to run the Jupyter Notebook server

#!/bin/bash
#
Script to Install
Linux System Tools and Basic Python Components
as well as to
Start Jupyter Lab Server
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
GENERAL LINUX
apt-get update # updates the package index cache
apt-get upgrade -y # updates packages
install system tools
apt-get install -y build-essential git # system tools
apt-get install -y screen htop vim wget # system tools
apt-get upgrade -y bash # upgrades bash if necessary
apt-get clean # cleans up the package index cache

INSTALLING MINICONDA
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
 -O Miniconda.sh
bash Miniconda.sh -b # installs Miniconda
rm -rf Miniconda.sh # removes the installer
prepends the new path for current session
export PATH="/root/miniconda3/bin:$PATH"
prepends the new path in the shell configuration
cat >> ~/.profile <<EOF
export PATH="/root/miniconda3/bin:$PATH"
EOF

40 | Chapter 2: Python Infrastructure

INSTALLING PYTHON LIBRARIES
conda install -y jupyter # interactive data analytics in the browser
conda install -y jupyterlab # Jupyter Lab environment
conda install -y numpy # numerical computing package
conda install -y pytables # wrapper for HDF5 binary storage
conda install -y pandas # data analysis package
conda install -y scipy # scientific computations package
conda install -y matplotlib # standard plotting library
conda install -y seaborn # statistical plotting library
conda install -y quandl # wrapper for Quandl data API
conda install -y scikit-learn # machine learning library
conda install -y openpyxl # package for Excel interaction
conda install -y xlrd xlwt # packages for Excel interaction
conda install -y pyyaml # package to manage yaml files

pip install --upgrade pip # upgrading the package manager
pip install q # logging and debugging
pip install plotly # interactive D3.js plots
pip install cufflinks # combining plotly with pandas
pip install tensorflow # deep learning library
pip install keras # deep learning library
pip install eikon # Python wrapper for the Refinitiv Eikon Data API
Python wrapper for Oanda API
pip install git+git://github.com/yhilpisch/tpqoa

COPYING FILES AND CREATING DIRECTORIES
mkdir -p /root/.jupyter/custom
wget http://hilpisch.com/custom.css
mv custom.css /root/.jupyter/custom
mv /root/jupyter_notebook_config.py /root/.jupyter/
mv /root/mycert.pem /root/.jupyter
mv /root/mykey.key /root/.jupyter
mkdir /root/notebook
cd /root/notebook

STARTING JUPYTER LAB
jupyter lab &

This script needs to be copied to the Droplet and needs to be started by the orchestra‐
tion script, as described in the next sub-section.

Script to Orchestrate the Droplet Set Up
The second bash script, which sets up the Droplet, is the shortest one (see
Example 2-5). It mainly copies all the other files to the Droplet for which the respec‐
tive IP address is expected as a parameter. In the final line, it starts the install.sh
bash script, which in turn does the installation itself and starts the Jupyter Lab
server.

Using Cloud Instances | 41

10 If you need assistance, visit either How To Use SSH Keys with DigitalOcean Droplets or How To Use SSH
Keys with PuTTY on DigitalOcean Droplets (Windows users).

Example 2-5. Bash script to set up the Droplet

#!/bin/bash
#
Setting up a DigitalOcean Droplet
with Basic Python Stack
and Jupyter Notebook
#
Python for Algorithmic Trading
(c) Dr Yves J Hilpisch
The Python Quants GmbH
#

IP ADDRESS FROM PARAMETER
MASTER_IP=$1

COPYING THE FILES
scp install.sh root@${MASTER_IP}:
scp mycert.pem mykey.key jupyter_notebook_config.py root@${MASTER_IP}:

EXECUTING THE INSTALLATION SCRIPT
ssh root@${MASTER_IP} bash /root/install.sh

Everything now is together to give the set up code a try. On DigitalOcean, create a
new Droplet with options similar to these:

Operating system
Ubuntu 20.04 LTS x64 (the newest version available at the time of this writing)

Size
Two core, 2GB, 60GB SSD (standard Droplet)

Data center region
Frankfurt (since your author lives in Germany)

SSH key
Add a (new) SSH key for password-less login10

Droplet name
Prespecified name or something like pyalgo

Finally, clicking on the Create button initiates the Droplet creation process, which
generally takes about one minute. The major outcome for proceeding with the set-up
procedure is the IP address, which might be, for instance, 134.122.74.144 when you

42 | Chapter 2: Python Infrastructure

https://oreil.ly/Tggw7
https://oreil.ly/-jTif
https://oreil.ly/-jTif

have chosen Frankfurt as your data center location. Setting up the Droplet now is as
easy as what follows:

(base) pro:cloud yves$ bash setup.sh 134.122.74.144

The resulting process, however, might take a couple of minutes. It is finished when
there is a message from the Jupyter Lab server saying something like the following:

[I 12:02:50.190 LabApp] Serving notebooks from local directory: /root/notebook
[I 12:02:50.190 LabApp] Jupyter Notebook 6.1.1 is running at:
[I 12:02:50.190 LabApp] https://pyalgo:8888/

In any current browser, visiting the following address accesses the running Jupyter
Notebook server (note the https protocol):

https://134.122.74.144:8888

After maybe adding a security exception, the Jupyter Notebook login screen
prompting for a password (in our case jupyter) should appear. Everything is now
ready to start Python development in the browser via Jupyter Lab, via the IPython-
based console, and via a terminal window or the text file editor. Other file manage‐
ment capabilities like file upload, deletion of files, or creation of folders are also
available.

Cloud instances, like those from DigitalOcean, and Jupyter Lab
(powered by the Jupyter Notebook server) are a powerful combi‐
nation for the Python developer and algorithmic trading practi‐
tioner to work on and to make use of professional compute and
storage infrastructure. Professional cloud and data center providers
make sure that your (virtual) machines are physically secure and
highly available. Using cloud instances also keeps the exploration
and development phase at rather low costs since usage is generally
charged by the hour without the need to enter long term
agreements.

Conclusions
Python is the programming language and technology platform of choice not only for
this book but also for almost every leading financial institution. However, Python
deployment can be tricky at best and sometimes even tedious and nerve-wracking.
Fortunately, technologies are available today—almost all of which are younger than
ten years—that help with the deployment issue. The open source software conda
helps with both Python package and virtual environment management. Docker con‐
tainers go even further in that complete file systems and runtime environments can
be easily created in a technically shielded “sandbox,” or the container. Going even one
step further, cloud providers like DigitalOcean offer compute and storage capacity in

Conclusions | 43

professionally managed and secured data centers within minutes and billed by the
hour. This in combination with a Python 3.8 installation and a secure Jupyter Note
book/Lab server installation provides a professional environment for Python devel‐
opment and deployment in the context of Python for algorithmic trading projects.

References and Further Resources
For Python package management, consult the following resources:

• pip package manager page
• conda package manager page
• official Installing Packages page

For virtual environment management, consult these resources:

• virtualenv environment manager page
• conda Managing Environments page
• pipenv package and environment manager

Information about Docker containers can found, among other places, at the Docker
home page, as well as in the following:

• Matthias, Karl, and Sean Kane. 2018. Docker: Up and Running. 2nd ed. Sebasto‐
pol: O’Reilly.

Robbins (2016) provides a concise introduction to and overview of the Bash scripting
language:

• Robbins, Arnold. 2016. Bash Pocket Reference. 2nd ed. Sebastopol: O’Reilly.

How to run a public Jupyter Notebook/Lab server securely is explained in The Jupyter
Notebook Docs. There is also JupyterHub available, which allows the management of
multiple users for a Jupyter Notebook server (see JupyterHub).

To sign up on DigitalOcean with a 10 USD starting balance in your new account, visit
http://bit.ly/do_sign_up. This pays for two months of usage for the smallest Droplet.

44 | Chapter 2: Python Infrastructure

https://pypi.python.org/pypi/pip
http://conda.pydata.org
https://packaging.python.org/installing
https://pypi.python.org/pypi/virtualenv
http://conda.pydata.org/docs/using/envs.html
https://github.com/pypa/pipenv
http://docker.com
http://docker.com
https://oreil.ly/uBEeq
https://oreil.ly/uBEeq
https://oreil.ly/-XLi5
http://bit.ly/do_sign_up

CHAPTER 3

Working with Financial Data

Clearly, data beats algorithms. Without comprehensive data, you tend to get non-
comprehensive predictions.

—Rob Thomas (2016)

In algorithmic trading, one generally has to deal with four types of data, as illustrated
in Table 3-1. Although it simplifies the financial data world, distinguishing data along
the pairs historical versus real-time and structured versus unstructured often proves
useful in technical settings.

Table 3-1. Types of financial data (examples)

 Structured Unstructured

Historical End-of-day closing prices Financial news articles

Real-time Bid/ask prices for FX Posts on Twitter

This book is mainly concerned with structured data (numerical, tabular data) of both
historical and real-time types. This chapter in particular focuses on historical, struc‐
tured data, like end-of-day closing values for the SAP SE stock traded at the Frankfurt
Stock Exchange. However, this category also subsumes intraday data, such as 1-
minute-bar data for the Apple, Inc. stock traded at the NASDAQ stock exchange. The
processing of real-time, structured data is covered in Chapter 7.

An algorithmic trading project typically starts with a trading idea or hypothesis that
needs to be (back)tested based on historical financial data. This is the context for this
chapter, the plan for which is as follows. “Reading Financial Data From Different
Sources” on page 46 uses pandas to read data from different file- and web-based sour‐
ces. “Working with Open Data Sources” on page 52 introduces Quandl as a popular
open data source platform. “Eikon Data API” on page 55 introduces the Python
wrapper for the Refinitiv Eikon Data API. Finally, “Storing Financial Data Efficiently”

45

http://quandl.com

on page 65 briefly shows how to store historical, structured data efficiently with pan
das based on the HDF5 binary storage format.

The goal for this chapter is to have available financial data in a format with which the
backtesting of trading ideas and hypotheses can be implemented effectively. The three
major themes are the importing of data, the handling of the data, and the storage of it.
This and subsequent chapters assume a Python 3.8 installation with Python packages
installed as explained in detail in Chapter 2. For the time being, it is not yet relevant
on which infrastructure exactly this Python environment is provided. For more
details on efficient input-output operations with Python, see Hilpisch (2018, ch. 9).

Reading Financial Data From Different Sources
This section makes heavy use of the capabilities of pandas, the popular data analysis
package for Python (see pandas home page). pandas comprehensively supports the
three main tasks this chapter is concerned with: reading data, handling data, and stor‐
ing data. One of its strengths is the reading of data from different types of sources, as
the remainder of this section illustrates.

The Data Set
In this section, we work with a fairly small data set for the Apple Inc. stock price
(with symbol AAPL and Reuters Instrument Code or RIC AAPL.O) as retrieved from
the Eikon Data API for April 2020.

Since such historical financial data has been stored in a CSV file on disk, pure Python
can be used to read and print its content:

In [1]: fn = '../data/AAPL.csv'

In [2]: with open(fn, 'r') as f:
 for _ in range(5):
 print(f.readline(), end='')
 Date,HIGH,CLOSE,LOW,OPEN,COUNT,VOLUME
 2020-04-01,248.72,240.91,239.13,246.5,460606.0,44054638.0
 2020-04-02,245.15,244.93,236.9,240.34,380294.0,41483493.0
 2020-04-03,245.7,241.41,238.9741,242.8,293699.0,32470017.0
 2020-04-06,263.11,262.47,249.38,250.9,486681.0,50455071.0

Opens the file on disk (adjust path and filename if necessary).

Sets up a for loop with five iterations.

Prints the first five lines in the opened CSV file.

This approach allows for simple inspection of the data. One learns that there is a
header line and that the single data points per row represent Date, OPEN, HIGH,

46 | Chapter 3: Working with Financial Data

http://hdfgroup.org
http://pandas.pydata.org

LOW, CLOSE, COUNT, and VOLUME, respectively. However, the data is not yet available
in memory for further usage with Python.

Reading from a CSV File with Python
To work with data stored as a CSV file, the file needs to be parsed and the data needs
to be stored in a Python data structure. Python has a built-in module called csv that
supports the reading of data from a CSV file. The first approach yields a list object
containing other list objects with the data from the file:

In [3]: import csv

In [4]: csv_reader = csv.reader(open(fn, 'r'))

In [5]: data = list(csv_reader)

In [6]: data[:5]
Out[6]: [['Date', 'HIGH', 'CLOSE', 'LOW', 'OPEN', 'COUNT', 'VOLUME'],
 ['2020-04-01',
 '248.72',
 '240.91',
 '239.13',
 '246.5',
 '460606.0',
 '44054638.0'],
 ['2020-04-02',
 '245.15',
 '244.93',
 '236.9',
 '240.34',
 '380294.0',
 '41483493.0'],
 ['2020-04-03',
 '245.7',
 '241.41',
 '238.9741',
 '242.8',
 '293699.0',
 '32470017.0'],
 ['2020-04-06',
 '263.11',
 '262.47',
 '249.38',
 '250.9',
 '486681.0',
 '50455071.0']]

Reading Financial Data From Different Sources | 47

Imports the csv module.

Instantiates a csv.reader iterator object.

A list comprehension adding every single line from the CSV file as a list
object to the resulting list object.

Prints out the first five elements of the list object.

Working with such a nested list object—for the calculation of the average closing
price, for exammple—is possible in principle but not really efficient or intuitive.
Using a csv.DictReader iterator object instead of the standard csv.reader object
makes such tasks a bit more manageable. Every row of data in the CSV file (apart
from the header row) is then imported as a dict object so that single values can be
accessed via the respective key:

In [7]: csv_reader = csv.DictReader(open(fn, 'r'))

In [8]: data = list(csv_reader)

In [9]: data[:3]
Out[9]: [{'Date': '2020-04-01',
 'HIGH': '248.72',
 'CLOSE': '240.91',
 'LOW': '239.13',
 'OPEN': '246.5',
 'COUNT': '460606.0',
 'VOLUME': '44054638.0'},
 {'Date': '2020-04-02',
 'HIGH': '245.15',
 'CLOSE': '244.93',
 'LOW': '236.9',
 'OPEN': '240.34',
 'COUNT': '380294.0',
 'VOLUME': '41483493.0'},
 {'Date': '2020-04-03',
 'HIGH': '245.7',
 'CLOSE': '241.41',
 'LOW': '238.9741',
 'OPEN': '242.8',
 'COUNT': '293699.0',
 'VOLUME': '32470017.0'}]

Here, the csv.DictReader iterator object is instantiated, which reads every data
row into a dict object, given the information in the header row.

48 | Chapter 3: Working with Financial Data

Based on the single dict objects, aggregations are now somewhat easier to accom‐
plish. However, one still cannot speak of a convenient way of calculating the mean of
the Apple closing stock price when inspecting the respective Python code:

In [10]: sum([float(l['CLOSE']) for l in data]) / len(data)
Out[10]: 272.38619047619045

First, a list object is generated via a list comprehension with all closing values;
second, the sum is taken over all these values; third, the resulting sum is divided
by the number of closing values.

This is one of the major reasons why pandas has gained such popularity in the
Python community. It makes the importing of data and the handling of, for example,
financial time series data sets more convenient (and also often considerably faster)
than pure Python.

Reading from a CSV File with pandas
From this point on, this section uses pandas to work with the Apple stock price data
set. The major function used is read_csv(), which allows for a number of customiza‐
tions via different parameters (see the read_csv() API reference). read_csv() yields
as a result of the data reading procedure a DataFrame object, which is the central
means of storing (tabular) data with pandas. The DataFrame class has many powerful
methods that are particularly helpful in financial applications (refer to the DataFrame
API reference):

In [11]: import pandas as pd

In [12]: data = pd.read_csv(fn, index_col=0,
 parse_dates=True)

In [13]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 21 entries, 2020-04-01 to 2020-04-30
 Data columns (total 6 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 HIGH 21 non-null float64
 1 CLOSE 21 non-null float64
 2 LOW 21 non-null float64
 3 OPEN 21 non-null float64
 4 COUNT 21 non-null float64
 5 VOLUME 21 non-null float64
 dtypes: float64(6)
 memory usage: 1.1 KB

In [14]: data.tail()
Out[14]: HIGH CLOSE LOW OPEN COUNT VOLUME
 Date

Reading Financial Data From Different Sources | 49

https://oreil.ly/IAVfO
https://oreil.ly/5-sNr
https://oreil.ly/5-sNr

 2020-04-24 283.01 282.97 277.00 277.20 306176.0 31627183.0
 2020-04-27 284.54 283.17 279.95 281.80 300771.0 29271893.0
 2020-04-28 285.83 278.58 278.20 285.08 285384.0 28001187.0
 2020-04-29 289.67 287.73 283.89 284.73 324890.0 34320204.0
 2020-04-30 294.53 293.80 288.35 289.96 471129.0 45765968.0

The pandas package is imported.

This imports the data from the CSV file, indicating that the first column shall be
treated as the index column and letting the entries in that column be interpreted
as date-time information.

This method call prints out meta information regarding the resulting DataFrame
object.

The data.tail() method prints out by default the five most recent data rows.

Calculating the mean of the Apple stock closing values now is only a single method
call:

In [15]: data['CLOSE'].mean()
Out[15]: 272.38619047619056

Chapter 4 introduces more functionality of pandas for the handling of financial data.
For details on working with pandas and the powerful DataFrame class, also refer to
the official pandas Documentation page and to McKinney (2017).

Although the Python standard library provides capabilities to read
data from CSV files, pandas in general significantly simplifies and
speeds up such operations. An additional benefit is that the data
analysis capabilities of pandas are immediately available since
read_csv() returns a DataFrame object.

Exporting to Excel and JSON
pandas also excels at exporting data stored in DataFrame objects when this data needs
to be shared in a non-Python specific format. Apart from being able to export to CSV
files, pandas also allows one to do the export in the form of Excel spreadsheet files as
well as JSON files, both of which are popular data exchange formats in the financial
industry. Such an exporting procedure typically needs a single method call only:

In [16]: data.to_excel('data/aapl.xls', 'AAPL')

In [17]: data.to_json('data/aapl.json')

In [18]: ls -n data/
 total 24

50 | Chapter 3: Working with Financial Data

https://oreil.ly/5PM-O

 -rw-r--r-- 1 501 20 3067 Aug 25 11:47 aapl.json
 -rw-r--r-- 1 501 20 5632 Aug 25 11:47 aapl.xls

Exports the data to an Excel spreadsheet file on disk.

Exports the data to a JSON file on disk.

In particular when it comes to the interaction with Excel spreadsheet files, there are
more elegant ways than just doing a data dump to a new file. xlwings, for example, is
a powerful Python package that allows for an efficient and intelligent interaction
between Python and Excel (visit the xlwings home page).

Reading from Excel and JSON
Now that the data is also available in the form of an Excel spreadsheet file and a JSON
data file, pandas can read data from these sources, as well. The approach is as
straightforward as with CSV files:

In [19]: data_copy_1 = pd.read_excel('data/aapl.xls', 'AAPL',
 index_col=0)

In [20]: data_copy_1.head()
Out[20]: HIGH CLOSE LOW OPEN COUNT VOLUME
 Date
 2020-04-01 248.72 240.91 239.1300 246.50 460606 44054638
 2020-04-02 245.15 244.93 236.9000 240.34 380294 41483493
 2020-04-03 245.70 241.41 238.9741 242.80 293699 32470017
 2020-04-06 263.11 262.47 249.3800 250.90 486681 50455071
 2020-04-07 271.70 259.43 259.0000 270.80 467375 50721831

In [21]: data_copy_2 = pd.read_json('data/aapl.json')

In [22]: data_copy_2.head()
Out[22]: HIGH CLOSE LOW OPEN COUNT VOLUME
 2020-04-01 248.72 240.91 239.1300 246.50 460606 44054638
 2020-04-02 245.15 244.93 236.9000 240.34 380294 41483493
 2020-04-03 245.70 241.41 238.9741 242.80 293699 32470017
 2020-04-06 263.11 262.47 249.3800 250.90 486681 50455071
 2020-04-07 271.70 259.43 259.0000 270.80 467375 50721831

In [23]: !rm data/*

This reads the data from the Excel spreadsheet file to a new DataFrame object.

The first five rows of the first in-memory copy of the data are printed.

This reads the data from the JSON file to yet another DataFrame object.

Reading Financial Data From Different Sources | 51

http://xlwings.org

This then prints the first five rows of the second in-memory copy of the data.

pandas proves useful for reading and writing financial data from and to different
types of data files. Often the reading might be tricky due to nonstandard storage
formats (like a “;” instead of a “,” as separator), but pandas generally provides the right
set of parameter combinations to cope with such cases. Although all examples in this
section use a small data set only, one can expect high performance input-output oper‐
ations from pandas in the most important scenarios when the data sets are much
larger.

Working with Open Data Sources
To a great extent, the attractiveness of the Python ecosystem stems from the fact that
almost all packages available are open source and can be used for free. Financial ana‐
lytics in general and algorithmic trading in particular, however, cannot live with open
source software and algorithms alone; data also plays a vital role, as the quotation at
the beginning of the chapter emphasizes. The previous section uses a small data set
from a commercial data source. While there have been helpful open (financial) data
sources available for some years (such as the ones provided by Yahoo! Finance or
Google Finance), there are not too many left at the time of this writing in 2020. One
of the more obvious reasons for this trend might be the ever-changing terms of data
licensing agreements.

The one notable exception for the purposes of this book is Quandl, a platform that
aggregates a large number of open, as well as premium (i.e., to-be-paid-for) data
sources. The data is provided via a unified API for which a Python wrapper package
is available.

The Python wrapper package for the Quandl data API (see the Python wrapper page
on Quandl and the GitHub page of the package) is installed with conda through
conda install quandl. The first example shows how to retrieve historical average
prices for the BTC/USD exchange rate since the introduction of Bitcoin as a crypto‐
currency. With Quandl, requests always expect a combination of the database and the
specific data set desired. (In the example, BCHAIN and MKPRU.) Such information can
generally be looked up on the Quandl platform. For the example, the relevant page on
Quandl is BCHAIN/MKPRU.

By default, the quandl package returns a pandas DataFrame object. In the example,
the Value column is also presented in annualized fashion (that is, with year end
values). Note that the number shown for 2020 is the last available value in the data set
(from May 2020) and not necessarily the year end value.

While a large part of the data sets on the Quandl platform are free, some of the free
data sets require an API key. Such a key is required after a certain limit of free API

52 | Chapter 3: Working with Financial Data

http://quandl.com
https://oreil.ly/xRt5x
https://oreil.ly/xRt5x
https://oreil.ly/LcJEo
https://oreil.ly/APwvn

calls too. Every user obtains such a key by signing up for a free Quandl account on
the Quandl sign up page. Data requests requiring an API key expect the key to be
provided as the parameter api_key. In the example, the API key (which is found on
the account settings page) is stored as a string in the variable quandl_api_key. The
concrete value for the key is read from a configuration file via the configparser
module:

In [24]: import configparser
 config = configparser.ConfigParser()
 config.read('../pyalgo.cfg')
Out[24]: ['../pyalgo.cfg']

In [25]: import quandl as q

In [26]: data = q.get('BCHAIN/MKPRU', api_key=config['quandl']['api_key'])

In [27]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 4254 entries, 2009-01-03 to 2020-08-26
 Data columns (total 1 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 Value 4254 non-null float64
 dtypes: float64(1)
 memory usage: 66.5 KB

In [28]: data['Value'].resample('A').last()
Out[28]: Date
 2009-12-31 0.000000
 2010-12-31 0.299999
 2011-12-31 4.995000
 2012-12-31 13.590000
 2013-12-31 731.000000
 2014-12-31 317.400000
 2015-12-31 428.000000
 2016-12-31 952.150000
 2017-12-31 13215.574000
 2018-12-31 3832.921667
 2019-12-31 7385.360000
 2020-12-31 11763.930000
 Freq: A-DEC, Name: Value, dtype: float64

Working with Open Data Sources | 53

https://oreil.ly/sbh9j

Imports the Python wrapper package for Quandl.

Reads historical data for the BTC/USD exchange rate.

Selects the Value column, resamples it—from the originally daily values to yearly
values—and defines the last available observation to be the relevant one.

Quandl also provides, for example, diverse data sets for single stocks, like end-of-day
stock prices, stock fundamentals, or data sets related to options traded on a certain
stock:

In [29]: data = q.get('FSE/SAP_X', start_date='2018-1-1',
 end_date='2020-05-01',
 api_key=config['quandl']['api_key'])

In [30]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 579 entries, 2018-01-02 to 2020-04-30
 Data columns (total 10 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 Open 257 non-null float64
 1 High 579 non-null float64
 2 Low 579 non-null float64
 3 Close 579 non-null float64
 4 Change 0 non-null object
 5 Traded Volume 533 non-null float64
 6 Turnover 533 non-null float64
 7 Last Price of the Day 0 non-null object
 8 Daily Traded Units 0 non-null object
 9 Daily Turnover 0 non-null object
 dtypes: float64(6), object(4)
 memory usage: 49.8+ KB

The API key can also be configured permanently with the Python wrapper via the
following:

q.ApiConfig.api_key = 'YOUR_API_KEY'

The Quandl platform also offers premium data sets for which a subscription or fee is
required. Most of these data sets offer free samples. The example retrieves option
implied volatilities for the Microsoft Corp. stock. The free sample data set is quite
large, with more than 4,100 rows and many columns (only a subset is shown). The
last lines of code display the 30, 60, and 90 days implied volatility values for the five
most recent days available:

In [31]: q.ApiConfig.api_key = config['quandl']['api_key']

In [32]: vol = q.get('VOL/MSFT')

54 | Chapter 3: Working with Financial Data

In [33]: vol.iloc[:, :10].info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 1006 entries, 2015-01-02 to 2018-12-31
 Data columns (total 10 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 Hv10 1006 non-null float64
 1 Hv20 1006 non-null float64
 2 Hv30 1006 non-null float64
 3 Hv60 1006 non-null float64
 4 Hv90 1006 non-null float64
 5 Hv120 1006 non-null float64
 6 Hv150 1006 non-null float64
 7 Hv180 1006 non-null float64
 8 Phv10 1006 non-null float64
 9 Phv20 1006 non-null float64
 dtypes: float64(10)
 memory usage: 86.5 KB

In [34]: vol[['IvMean30', 'IvMean60', 'IvMean90']].tail()
Out[34]: IvMean30 IvMean60 IvMean90
 Date
 2018-12-24 0.4310 0.4112 0.3829
 2018-12-26 0.4059 0.3844 0.3587
 2018-12-27 0.3918 0.3879 0.3618
 2018-12-28 0.3940 0.3736 0.3482
 2018-12-31 0.3760 0.3519 0.3310

This concludes the overview of the Python wrapper package quandl for the Quandl
data API. The Quandl platform and service is growing rapidly and proves to be a
valuable source for financial data in an algorithmic trading context.

Open source software is a trend that started many years ago. It has
lowered the barriers to entry in many areas and also in algorithmic
trading. A new, reinforcing trend in this regard is open data sour‐
ces. In some cases, such as with Quandl, they even provide high
quality data sets. It cannot be expected that open data will com‐
pletely replace professional data subscriptions any time soon, but
they represent a valuable means to get started with algorithmic
trading in a cost efficient manner.

Eikon Data API
Open data sources are a blessing for algorithmic traders wanting to get started in the
space and wanting to be able to quickly test hypotheses and ideas based on real finan‐
cial data sets. Sooner or later, however, open data sets will not suffice anymore to
satisfy the requirements of more ambitious traders and professionals.

Eikon Data API | 55

Refinitiv is one of the biggest financial data and news providers in the world. Its cur‐
rent desktop flagship product is Eikon, which is the equivalent to the Terminal by
Bloomberg, the major competitor in the data services field. Figure 3-1 shows a
screenshot of Eikon in the browser-based version. Eikon provides access to petabytes
of data via a single access point.

Figure 3-1. Browser version of Eikon terminal

Recently, Refinitiv have streamlined their API landscape and have released a Python
wrapper package, called eikon, for the Eikon data API, which is installed via pip
install eikon. If you have a subscription to the Refinitiv Eikon data services, you
can use the Python package to programmatically retrieve historical data, as well as
streaming structured and unstructured data, from the unified API. A technical pre‐
requisite is that a local desktop application is running that provides a desktop API
session. The latest such desktop application at the time of this writing is called Work‐
space (see Figure 3-2).

If you are an Eikon subscriber and have an account for the Developer Community
pages, you will find an overview of the Python Eikon Scripting Library under Quick
Start.

56 | Chapter 3: Working with Financial Data

http://refinitiv.com
https://oreil.ly/foYNk
https://oreil.ly/kMJl7
https://oreil.ly/xowdi
https://oreil.ly/xowdi
https://oreil.ly/7dnQx
https://oreil.ly/7dnQx

Figure 3-2. Workspace application with desktop API services

In order to use the Eikon Data API, the Eikon app_key needs to be set. You get it via
the App Key Generator (APPKEY) application in either Eikon or Workspace:

In [35]: import eikon as ek

In [36]: ek.set_app_key(config['eikon']['app_key'])

In [37]: help(ek)
 Help on package eikon:

 NAME
 eikon - # coding: utf-8

 PACKAGE CONTENTS
 Profile
 data_grid
 eikonError
 json_requests
 news_request
 streaming_session (package)
 symbology
 time_series
 tools

 SUBMODULES
 cache
 desktop_session
 istream_callback

Eikon Data API | 57

 itemstream
 session
 stream
 stream_connection
 streamingprice
 streamingprice_callback
 streamingprices

 VERSION
 1.1.5

 FILE

 /Users/yves/Python/envs/py38/lib/python3.8/site-packages/eikon/__init__
 .py

Imports the eikon package as ek.

Sets the app_key.

Shows the help text for the main module.

Retrieving Historical Structured Data
The retrieval of historical financial time series data is as straightforward as with the
other wrappers used before:

In [39]: symbols = ['AAPL.O', 'MSFT.O', 'GOOG.O']

In [40]: data = ek.get_timeseries(symbols,
 start_date='2020-01-01',
 end_date='2020-05-01',
 interval='daily',
 fields=['*'])

In [41]: data.keys()
Out[41]: MultiIndex([('AAPL.O', 'HIGH'),
 ('AAPL.O', 'CLOSE'),
 ('AAPL.O', 'LOW'),
 ('AAPL.O', 'OPEN'),
 ('AAPL.O', 'COUNT'),
 ('AAPL.O', 'VOLUME'),
 ('MSFT.O', 'HIGH'),
 ('MSFT.O', 'CLOSE'),
 ('MSFT.O', 'LOW'),
 ('MSFT.O', 'OPEN'),
 ('MSFT.O', 'COUNT'),
 ('MSFT.O', 'VOLUME'),
 ('GOOG.O', 'HIGH'),
 ('GOOG.O', 'CLOSE'),

58 | Chapter 3: Working with Financial Data

 ('GOOG.O', 'LOW'),
 ('GOOG.O', 'OPEN'),
 ('GOOG.O', 'COUNT'),
 ('GOOG.O', 'VOLUME')],
)

In [42]: type(data['AAPL.O'])
Out[42]: pandas.core.frame.DataFrame

In [43]: data['AAPL.O'].info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 84 entries, 2020-01-02 to 2020-05-01
 Data columns (total 6 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 HIGH 84 non-null float64
 1 CLOSE 84 non-null float64
 2 LOW 84 non-null float64
 3 OPEN 84 non-null float64
 4 COUNT 84 non-null Int64
 5 VOLUME 84 non-null Int64
 dtypes: Int64(2), float64(4)
 memory usage: 4.8 KB

In [44]: data['AAPL.O'].tail()
Out[44]: HIGH CLOSE LOW OPEN COUNT VOLUME
 Date
 2020-04-27 284.54 283.17 279.95 281.80 300771 29271893
 2020-04-28 285.83 278.58 278.20 285.08 285384 28001187
 2020-04-29 289.67 287.73 283.89 284.73 324890 34320204
 2020-04-30 294.53 293.80 288.35 289.96 471129 45765968
 2020-05-01 299.00 289.07 285.85 286.25 558319 60154175

Defines a few symbols as a list object.

The central line of code that retrieves data for the first symbol…

…for the given start date and…

…the given end date.

The time interval is here chosen to be daily.

All fields are requested.

The function get_timeseries() returns a multi-index DataFrame object.

The values corresponding to each level are regular DataFrame objects.

Eikon Data API | 59

This provides an overview of the data stored in the DataFrame object.

The final five rows of data are shown.

The beauty of working with a professional data service API becomes evident when
one wishes to work with multiple symbols and in particular with a different granular‐
ity of the financial data (that is, other time intervals):

In [45]: %%time
 data = ek.get_timeseries(symbols,
 start_date='2020-08-14',
 end_date='2020-08-15',
 interval='minute',
 fields='*')
 CPU times: user 58.2 ms, sys: 3.16 ms, total: 61.4 ms
 Wall time: 2.02 s

In [46]: print(data['GOOG.O'].loc['2020-08-14 16:00:00':
 '2020-08-14 16:04:00'])

 HIGH LOW OPEN CLOSE COUNT VOLUME
 Date

 2020-08-14 16:00:00 1510.7439 1509.220 1509.940 1510.5239 48 1362
 2020-08-14 16:01:00 1511.2900 1509.980 1510.500 1511.2900 52 1002
 2020-08-14 16:02:00 1513.0000 1510.964 1510.964 1512.8600 72 1762
 2020-08-14 16:03:00 1513.6499 1512.160 1512.990 1513.2300 108 4534
 2020-08-14 16:04:00 1513.6500 1511.540 1513.418 1512.7100 40 1364

In [47]: for sym in symbols:
 print('\n' + sym + '\n', data[sym].iloc[-300:-295])

 AAPL.O
 HIGH LOW OPEN CLOSE COUNT VOLUME
 Date
 2020-08-14 19:01:00 457.1699 456.6300 457.14 456.83 1457 104693
 2020-08-14 19:02:00 456.9399 456.4255 456.81 456.45 1178 79740
 2020-08-14 19:03:00 456.8199 456.4402 456.45 456.67 908 68517
 2020-08-14 19:04:00 456.9800 456.6100 456.67 456.97 665 53649
 2020-08-14 19:05:00 457.1900 456.9300 456.98 457.00 679 49636

 MSFT.O
 HIGH LOW OPEN CLOSE COUNT VOLUME
 Date

 2020-08-14 19:01:00 208.6300 208.5083 208.5500 208.5674 333 21368
 2020-08-14 19:02:00 208.5750 208.3550 208.5501 208.3600 513 37270
 2020-08-14 19:03:00 208.4923 208.3000 208.3600 208.4000 303 23903
 2020-08-14 19:04:00 208.4200 208.3301 208.3901 208.4099 222 15861
 2020-08-14 19:05:00 208.4699 208.3600 208.3920 208.4069 235 9569

60 | Chapter 3: Working with Financial Data

 GOOG.O
 HIGH LOW OPEN CLOSE COUNT VOLUME
 Date

 2020-08-14 19:01:00 1510.42 1509.3288 1509.5100 1509.8550 47 1577
 2020-08-14 19:02:00 1510.30 1508.8000 1509.7559 1508.8647 71 2950
 2020-08-14 19:03:00 1510.21 1508.7200 1508.7200 1509.8100 33 603
 2020-08-14 19:04:00 1510.21 1508.7200 1509.8800 1509.8299 41 934
 2020-08-14 19:05:00 1510.21 1508.7300 1509.5500 1509.6600 30 445

Data is retrieved for all symbols at once.

The time interval…

…is drastically shortened.

The function call retrieves minute bars for the symbols.

Prints five rows from the Google, LLC, data set.

Prints three data rows from every DataFrame object.

The preceding code illustrates how convenient it is to retrieve historical financial
time series data from the Eikon API with Python. By default, the function get_times
eries() provides the following options for the interval parameter: tick, minute,
hour, daily, weekly, monthly, quarterly, and yearly. This gives all the flexibility
needed in an algorithmic trading context, particularly when combined with the
resampling capabilities of pandas as shown in the following code:

In [48]: %%time
 data = ek.get_timeseries(symbols[0],
 start_date='2020-08-14 15:00:00',
 end_date='2020-08-14 15:30:00',
 interval='tick',
 fields=['*'])
 CPU times: user 257 ms, sys: 17.3 ms, total: 274 ms
 Wall time: 2.31 s

In [49]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 47346 entries, 2020-08-14 15:00:00.019000 to 2020-08-14
 15:29:59.987000
 Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 VALUE 47311 non-null float64
 1 VOLUME 47346 non-null Int64
 dtypes: Int64(1), float64(1)
 memory usage: 1.1 MB

Eikon Data API | 61

In [50]: data.head()
Out[50]: VALUE VOLUME
 Date
 2020-08-14 15:00:00.019 453.2499 60
 2020-08-14 15:00:00.036 453.2294 3
 2020-08-14 15:00:00.146 453.2100 5
 2020-08-14 15:00:00.146 453.2100 100
 2020-08-14 15:00:00.236 453.2100 2

In [51]: resampled = data.resample('30s', label='right').agg(
 {'VALUE': 'last', 'VOLUME': 'sum'})

In [52]: resampled.tail()
Out[52]: VALUE VOLUME
 Date
 2020-08-14 15:28:00 453.9000 29746
 2020-08-14 15:28:30 454.2869 86441
 2020-08-14 15:29:00 454.3900 49513
 2020-08-14 15:29:30 454.7550 98520
 2020-08-14 15:30:00 454.6200 55592

A time interval of…

…one hour is chosen (due to data retrieval limits).

The interval parameter is set to tick.

Close to 50,000 price ticks are retrieved for the interval.

The time series data set shows highly irregular (heterogeneous) interval lengths
between two ticks.

The tick data is resampled to a 30 second interval length (by taking the last value
and the sum, respectively)…

…which is reflected in the DatetimeIndex of the new DataFrame object.

Retrieving Historical Unstructured Data
A major strength of working with the Eikon API via Python is the easy retrieval of
unstructured data, which can then be parsed and analyzed with Python packages for
natural language processing (NLP). Such a procedure is as simple and straightfor‐
ward as for financial time series data.

62 | Chapter 3: Working with Financial Data

The code that follows retrieves news headlines for a fixed time interval that includes
Apple Inc. as a company and “Macbook” as a word. The five most recent hits are dis‐
played as a maximum:

In [53]: headlines = ek.get_news_headlines(query='R:AAPL.O macbook',
 count=5,
 date_from='2020-4-1',
 date_to='2020-5-1')

In [54]: headlines
Out[54]: versionCreated \
 2020-04-20 21:33:37.332 2020-04-20 21:33:37.332000+00:00
 2020-04-20 10:20:23.201 2020-04-20 10:20:23.201000+00:00
 2020-04-20 02:32:27.721 2020-04-20 02:32:27.721000+00:00
 2020-04-15 12:06:58.693 2020-04-15 12:06:58.693000+00:00
 2020-04-09 21:34:08.671 2020-04-09 21:34:08.671000+00:00

 text \
 2020-04-20 21:33:37.332 Apple said to launch new AirPods, MacBook Pro ...
 2020-04-20 10:20:23.201 Apple might launch upgraded AirPods, 13-inch M...
 2020-04-20 02:32:27.721 Apple to reportedly launch new AirPods alongsi...
 2020-04-15 12:06:58.693 Apple files a patent for iPhones, MacBook indu...
 2020-04-09 21:34:08.671 Apple rolls out new software update for MacBoo...

 storyId \
 2020-04-20 21:33:37.332 urn:newsml:reuters.com:20200420:nNRAble9rq:1
 2020-04-20 10:20:23.201 urn:newsml:reuters.com:20200420:nNRAbl8eob:1
 2020-04-20 02:32:27.721 urn:newsml:reuters.com:20200420:nNRAbl4mfz:1
 2020-04-15 12:06:58.693 urn:newsml:reuters.com:20200415:nNRAbjvsix:1
 2020-04-09 21:34:08.671 urn:newsml:reuters.com:20200409:nNRAbi2nbb:1

 sourceCode
 2020-04-20 21:33:37.332 NS:TIMIND
 2020-04-20 10:20:23.201 NS:BUSSTA
 2020-04-20 02:32:27.721 NS:HINDUT
 2020-04-15 12:06:58.693 NS:HINDUT
 2020-04-09 21:34:08.671 NS:TIMIND

In [55]: story = headlines.iloc[0]

In [56]: story
Out[56]: versionCreated 2020-04-20 21:33:37.332000+00:00
 text Apple said to launch new AirPods, MacBook Pro ...
 storyId urn:newsml:reuters.com:20200420:nNRAble9rq:1
 sourceCode NS:TIMIND
 Name: 2020-04-20 21:33:37.332000, dtype: object

In [57]: news_text = ek.get_news_story(story['storyId'])

In [58]: from IPython.display import HTML

Eikon Data API | 63

In [59]: HTML(news_text)
Out[59]: <IPython.core.display.HTML object>

NEW DELHI: Apple recently launched its much-awaited affordable smartphone
iPhone SE. Now it seems that the company is gearing up for another launch.
Apple is said to launch the next generation of AirPods and the all-new
13-inch MacBook Pro next month.

In February an online report revealed that the Cupertino-based tech giant
is working on AirPods Pro Lite. Now a tweet by tipster Job Posser has
revealed that Apple will soon come up with new AirPods and MacBook Pro.
Jon Posser tweeted, "New AirPods (which were supposed to be at the
March Event) is now ready to go.

Probably alongside the MacBook Pro next month." However, not many details
about the upcoming products are available right now. The company was
supposed to launch these products at the March event along with the iPhone SE.

But due to the ongoing pandemic coronavirus, the event got cancelled.
It is expected that Apple will launch the AirPods Pro Lite and the 13-inch
MacBook Pro just like the way it launched the iPhone SE. Meanwhile,
Apple has scheduled its annual developer conference WWDC to take place in June.

This year the company has decided to hold an online-only event due to
the outbreak of coronavirus. Reports suggest that this year the company
is planning to launch the all-new AirTags and a premium pair of over-ear
Bluetooth headphones at the event. Using the Apple AirTags, users will
be able to locate real-world items such as keys or suitcase in the Find My app.

The AirTags will also have offline finding capabilities that the company
introduced in the core of iOS 13. Apart from this, Apple is also said to
unveil its high-end Bluetooth headphones. It is expected that the Bluetooth
headphones will offer better sound quality and battery backup as compared
to the AirPods.

For Reprint Rights: timescontent.com

Copyright (c) 2020 BENNETT, COLEMAN & CO.LTD.

The query parameter for the retrieval operation.

Sets the maximum number of hits to five.

Defines the interval…

…for which to look for news headlines.

Gives out the results object (output shortened).

One particular headline is picked…

64 | Chapter 3: Working with Financial Data

…and the story_id shown.

This retrieves the news text as html code.

In Jupyter Notebook, for example, the html code…

…can be rendered for better reading.

This concludes the illustration of the Python wrapper package for the Refinitiv Eikon
data API.

Storing Financial Data Efficiently
In algorithmic trading, one of the most important scenarios for the management of
data sets is “retrieve once, use multiple times.” Or from an input-output (IO) perspec‐
tive, it is “write once, read multiple times.” In the first case, data might be retrieved
from a web service and then used to backtest a strategy multiple times based on a
temporary, in-memory copy of the data set. In the second case, tick data that is
received continually is written to disk and later on again used multiple times for cer‐
tain manipulations (like aggregations) in combination with a backtesting procedure.

This section assumes that the in-memory data structure to store the data is a pandas
DataFrame object, no matter from which source the data is acquired (from a CSV file,
a web service, etc.).

To have a somewhat meaningful data set available in terms of size, the section uses a
sample financial data set generated by the use of pseudorandom numbers. “Python
Scripts” on page 78 presents the Python module with a function called generate_sam
ple_data() that accomplishes the task.

In principle, this function generates a sample financial data set in tabular form of
arbitrary size (available memory, of course, sets a limit):

In [60]: from sample_data import generate_sample_data

In [61]: print(generate_sample_data(rows=5, cols=4))
 No0 No1 No2 No3
 2021-01-01 00:00:00 100.000000 100.000000 100.000000 100.000000
 2021-01-01 00:01:00 100.019641 99.950661 100.052993 99.913841
 2021-01-01 00:02:00 99.998164 99.796667 100.109971 99.955398
 2021-01-01 00:03:00 100.051537 99.660550 100.136336 100.024150
 2021-01-01 00:04:00 99.984614 99.729158 100.210888 99.976584

Imports the function from the Python script.

Prints a sample financial data set with five rows and four columns.

Storing Financial Data Efficiently | 65

1 Of course, multiple DataFrame objects could also be stored in a single HDFStore object.

Storing DataFrame Objects
The storage of a pandas DataFrame object as a whole is made simple by the pandas
HDFStore wrapper functionality for the HDF5 binary storage standard. It allows one
to dump complete DataFrame objects in a single step to a file-based database object.
To illustrate the implementation, the first step is to create a sample data set of mean‐
ingful size. Here the size of the DataFrame generated is about 420 MB:

In [62]: %time data = generate_sample_data(rows=5e6, cols=10).round(4)
 CPU times: user 3.88 s, sys: 830 ms, total: 4.71 s
 Wall time: 4.72 s

In [63]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 5000000 entries, 2021-01-01 00:00:00 to 2030-07-05
 05:19:00
 Freq: T
 Data columns (total 10 columns):
 # Column Dtype
 --- ------ -----
 0 No0 float64
 1 No1 float64
 2 No2 float64
 3 No3 float64
 4 No4 float64
 5 No5 float64
 6 No6 float64
 7 No7 float64
 8 No8 float64
 9 No9 float64
 dtypes: float64(10)
 memory usage: 419.6 MB

A sample financial data set with 5,000,000 rows and ten columns is generated; the
generation takes a couple of seconds.

The second step is to open a HDFStore object (that is, a HDF5 database file) on disk
and to write the DataFrame object to it.1 The size on disk of about 440 MB is a bit
larger than for the in-memory DataFrame object. However, the writing speed is about
five times faster than the in-memory generation of the sample data set.

66 | Chapter 3: Working with Financial Data

http://hdfgroup.org

2 All values reported here are from the author’s MacMini with Intel i7 hexa core processor (12 threads), 32 GB
of random access memory (DDR4 RAM), and a 512 GB solid state drive (SSD).

Working in Python with binary stores like HDF5 database files usually gets you writ‐
ing speeds close to the theoretical maximum of the hardware available:2

In [64]: h5 = pd.HDFStore('data/data.h5', 'w')

In [65]: %time h5['data'] = data
 CPU times: user 356 ms, sys: 472 ms, total: 828 ms
 Wall time: 1.08 s

In [66]: h5
Out[66]: <class 'pandas.io.pytables.HDFStore'>
 File path: data/data.h5

In [67]: ls -n data/data.*
 -rw-r--r--@ 1 501 20 440007240 Aug 25 11:48 data/data.h5

In [68]: h5.close()

This opens the database file on disk for writing (and overwrites a potentially
existing file with the same name).

Writing the DataFrame object to disk takes less than a second.

This prints out meta information for the database file.

This closes the database file.

The third step is to read the data from the file-based HDFStore object. Reading also
generally takes place close to the theoretical maximum speed:

In [69]: h5 = pd.HDFStore('data/data.h5', 'r')

In [70]: %time data_copy = h5['data']
 CPU times: user 388 ms, sys: 425 ms, total: 813 ms
 Wall time: 812 ms

In [71]: data_copy.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 5000000 entries, 2021-01-01 00:00:00 to 2030-07-05
 05:19:00
 Freq: T
 Data columns (total 10 columns):
 # Column Dtype
 --- ------ -----
 0 No0 float64
 1 No1 float64

Storing Financial Data Efficiently | 67

 2 No2 float64
 3 No3 float64
 4 No4 float64
 5 No5 float64
 6 No6 float64
 7 No7 float64
 8 No8 float64
 9 No9 float64
 dtypes: float64(10)
 memory usage: 419.6 MB

In [72]: h5.close()

In [73]: rm data/data.h5

Opens the database file for reading.

Reading takes less than half of a second.

There is another, somewhat more flexible way of writing the data from a DataFrame
object to an HDFStore object. To this end, one can use the to_hdf() method of the
DataFrame object and set the format parameter to table (see the to_hdf API refer‐
ence page). This allows the appending of new data to the table object on disk and
also, for example, the searching over the data on disk, which is not possible with the
first approach. The price to pay is slower writing and reading speeds:

In [74]: %time data.to_hdf('data/data.h5', 'data', format='table')
 CPU times: user 3.25 s, sys: 491 ms, total: 3.74 s
 Wall time: 3.8 s

In [75]: ls -n data/data.*
 -rw-r--r--@ 1 501 20 446911563 Aug 25 11:48 data/data.h5

In [76]: %time data_copy = pd.read_hdf('data/data.h5', 'data')
 CPU times: user 236 ms, sys: 266 ms, total: 502 ms
 Wall time: 503 ms

In [77]: data_copy.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 5000000 entries, 2021-01-01 00:00:00 to 2030-07-05
 05:19:00
 Freq: T
 Data columns (total 10 columns):
 # Column Dtype
 --- ------ -----
 0 No0 float64
 1 No1 float64
 2 No2 float64
 3 No3 float64
 4 No4 float64
 5 No5 float64

68 | Chapter 3: Working with Financial Data

https://oreil.ly/uu0_j
https://oreil.ly/uu0_j

 6 No6 float64
 7 No7 float64
 8 No8 float64
 9 No9 float64
 dtypes: float64(10)
 memory usage: 419.6 MB

This defines the writing format to be of type table. Writing becomes slower
since this format type involves a bit more overhead and leads to a somewhat
increased file size.

Reading is also slower in this application scenario.

In practice, the advantage of this approach is that one can work with the table_frame
object on disk like with any other table object of the PyTables package that is used
by pandas in this context. This provides access to certain basic capabilities of the
PyTables package, such as appending rows to a table object:

In [78]: import tables as tb

In [79]: h5 = tb.open_file('data/data.h5', 'r')

In [80]: h5
Out[80]: File(filename=data/data.h5, title='', mode='r', root_uep='/',
 filters=Filters(complevel=0, shuffle=False, bitshuffle=False,
 fletcher32=False, least_significant_digit=None))
 / (RootGroup) ''
 /data (Group) ''
 /data/table (Table(5000000,)) ''
 description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": Float64Col(shape=(10,), dflt=0.0, pos=1)}
 byteorder := 'little'
 chunkshape := (2978,)
 autoindex := True
 colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

In [81]: h5.root.data.table[:3]
Out[81]: array([(1609459200000000000, [100. , 100. , 100. , 100. ,
 100. , 100. , 100. , 100. , 100. , 100.]),
 (1609459260000000000, [100.0752, 100.1164, 100.0224, 100.0073,
 100.1142, 100.0474, 99.9329, 100.0254, 100.1009, 100.066]),
 (1609459320000000000, [100.1593, 100.1721, 100.0519, 100.0933,
 100.1578, 100.0301, 99.92 , 100.0965, 100.1441, 100.0717])],
 dtype=[('index', '<i8'), ('values_block_0', '<f8', (10,))])

In [82]: h5.close()

In [83]: rm data/data.h5

Storing Financial Data Efficiently | 69

http://pytables.org

Imports the PyTables package.

Opens the database file for reading.

Shows the contents of the database file.

Prints the first three rows in the table.

Closes the database.

Although this second approach provides more flexibility, it does not open the doors
to the full capabilities of the PyTables package. Nevertheless, the two approaches
introduced in this sub-section are convenient and efficient when you are working
with more or less immutable data sets that fit into memory. Nowadays, algorithmic
trading, however, has to deal in general with continuously and rapidly growing data
sets like, for example, tick data with regard to stock prices or foreign exchange rates.
To cope with the requirements of such a scenario, alternative approaches might prove
useful.

Using the HDFStore wrapper for the HDF5 binary storage standard,
pandas is able to write and read financial data almost at the maxi‐
mum speed the available hardware allows. Exports to other file-
based formats, like CSV, are generally much slower alternatives.

Using TsTables
The PyTables package, with the import name tables, is a wrapper for the HDF5
binary storage library that is also used by pandas for its HDFStore implementation
presented in the previous sub-section. The TsTables package (see the GitHub page
for the package) in turn is dedicated to the efficient handling of large financial time
series data sets based on the HDF5 binary storage library. It is effectively an enhance‐
ment of the PyTables package and adds support for time series data to its capabilities.
It implements a hierarchical storage approach that allows for a fast retrieval of data
sub-sets selected by providing start and end dates and times, respectively. The major
scenario supported by TsTables is “write once, retrieve multiple times.”

The setup illustrated in this sub-section is that data is continuously collected from a
web source, professional data provider, etc. and is stored interim and in-memory in a
DataFrame object. After a while or a certain number of data points retrieved, the col‐
lected data is then stored in a TsTables table object in an HDF5 database.

70 | Chapter 3: Working with Financial Data

https://oreil.ly/VGPas
https://oreil.ly/VGPas

First, here is the generation of the sample data:

In [84]: %%time
 data = generate_sample_data(rows=2.5e6, cols=5,
 freq='1s').round(4)
 CPU times: user 915 ms, sys: 191 ms, total: 1.11 s
 Wall time: 1.14 s

In [85]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2500000 entries, 2021-01-01 00:00:00 to 2021-01-29
 22:26:39
 Freq: S
 Data columns (total 5 columns):
 # Column Dtype
 --- ------ -----
 0 No0 float64
 1 No1 float64
 2 No2 float64
 3 No3 float64
 4 No4 float64
 dtypes: float64(5)
 memory usage: 114.4 MB

This generates a sample financial data set with 2,500,000 rows and five columns
with a one second frequency; the sample data is rounded to two digits.

Second, some more imports and the creation of the TsTables table object. The
major part is the definition of the desc class, which provides the description for the
table object’s data structure:

Currently, TsTables only works with the old pandas version 0.19.
A friendly fork, working with newer versions of pandas is available
under http://github.com/yhilpisch/tstables which can be installed
with the following:

pip install git+https://github.com/yhilpisch/tstables.git

In [86]: import tstables

In [87]: import tables as tb

In [88]: class desc(tb.IsDescription):
 ''' Description of TsTables table structure.
 '''
 timestamp = tb.Int64Col(pos=0)
 No0 = tb.Float64Col(pos=1)
 No1 = tb.Float64Col(pos=2)
 No2 = tb.Float64Col(pos=3)
 No3 = tb.Float64Col(pos=4)

Storing Financial Data Efficiently | 71

http://github.com/yhilpisch/tstables

 No4 = tb.Float64Col(pos=5)

In [89]: h5 = tb.open_file('data/data.h5ts', 'w')

In [90]: ts = h5.create_ts('/', 'data', desc)

In [91]: h5
Out[91]: File(filename=data/data.h5ts, title='', mode='w', root_uep='/',
 filters=Filters(complevel=0, shuffle=False, bitshuffle=False,
 fletcher32=False, least_significant_digit=None))
 / (RootGroup) ''
 /data (Group/Timeseries) ''
 /data/y2020 (Group) ''
 /data/y2020/m08 (Group) ''
 /data/y2020/m08/d25 (Group) ''
 /data/y2020/m08/d25/ts_data (Table(0,)) ''
 description := {
 "timestamp": Int64Col(shape=(), dflt=0, pos=0),
 "No0": Float64Col(shape=(), dflt=0.0, pos=1),
 "No1": Float64Col(shape=(), dflt=0.0, pos=2),
 "No2": Float64Col(shape=(), dflt=0.0, pos=3),
 "No3": Float64Col(shape=(), dflt=0.0, pos=4),
 "No4": Float64Col(shape=(), dflt=0.0, pos=5)}
 byteorder := 'little'
 chunkshape := (1365,)

TsTables (installed from https://github.com/yhilpisch/tstables)…

…PyTables are imported.

The first column of the table is a timestamp represented as an int value.

All data columns contain float values.

This opens a new database file for writing.

The TsTables table is created at the root node, with name data and given the
class-based description desc.

Inspecting the database file reveals the basic principle behind the hierarchical
structuring in years, months, and days.

Third is the writing of the sample data stored in a DataFrame object to the table
object on disk. One of the major benefits of TsTables is the convenience with which
this operation is accomplished, namely by a simple method call. Even better, that con‐
venience here is coupled with speed. With regard to the structure in the database,
TsTables chunks the data into sub-sets of a single day. In the example case where the

72 | Chapter 3: Working with Financial Data

https://github.com/yhilpisch/tstables

frequency is set to one second, this translates into 24 x 60 x 60 = 86,400 data rows per
full day’s worth of data:

In [92]: %time ts.append(data)
 CPU times: user 476 ms, sys: 238 ms, total: 714 ms
 Wall time: 739 ms

In [93]: # h5

File(filename=data/data.h5ts, title='', mode='w', root_uep='/',
 filters=Filters(complevel=0, shuffle=False, bitshuffle=False,
 fletcher32=False, least_significant_digit=None))
/ (RootGroup) ''
/data (Group/Timeseries) ''
/data/y2020 (Group) ''
/data/y2021 (Group) ''
/data/y2021/m01 (Group) ''
/data/y2021/m01/d01 (Group) ''
/data/y2021/m01/d01/ts_data (Table(86400,)) ''
 description := {
 "timestamp": Int64Col(shape=(), dflt=0, pos=0),
 "No0": Float64Col(shape=(), dflt=0.0, pos=1),
 "No1": Float64Col(shape=(), dflt=0.0, pos=2),
 "No2": Float64Col(shape=(), dflt=0.0, pos=3),
 "No3": Float64Col(shape=(), dflt=0.0, pos=4),
 "No4": Float64Col(shape=(), dflt=0.0, pos=5)}
 byteorder := 'little'
 chunkshape := (1365,)
/data/y2021/m01/d02 (Group) ''
/data/y2021/m01/d02/ts_data (Table(86400,)) ''
 description := {
 "timestamp": Int64Col(shape=(), dflt=0, pos=0),
 "No0": Float64Col(shape=(), dflt=0.0, pos=1),
 "No1": Float64Col(shape=(), dflt=0.0, pos=2),
 "No2": Float64Col(shape=(), dflt=0.0, pos=3),
 "No3": Float64Col(shape=(), dflt=0.0, pos=4),
 "No4": Float64Col(shape=(), dflt=0.0, pos=5)}
 byteorder := 'little'
 chunkshape := (1365,)
/data/y2021/m01/d03 (Group) ''
/data/y2021/m01/d03/ts_data (Table(86400,)) ''
 description := {
 "timestamp": Int64Col(shape=(), dflt=0, pos=0),
 ...

This appends the DataFrame object via a simple method call.

The table object shows 86,400 rows per day after the append() operation.

Reading sub-sets of the data from a TsTables table object is generally really fast
since this is what it is optimized for in the first place. In this regard, TsTables sup‐

Storing Financial Data Efficiently | 73

ports typical algorithmic trading applications, like backtesting, pretty well. Another
contributing factor is that TsTables returns the data already as a DataFrame object
such that additional conversions are not necessary in general:

In [94]: import datetime

In [95]: start = datetime.datetime(2021, 1, 2)

In [96]: end = datetime.datetime(2021, 1, 3)

In [97]: %time subset = ts.read_range(start, end)
 CPU times: user 10.3 ms, sys: 3.63 ms, total: 14 ms
 Wall time: 12.8 ms

In [98]: start = datetime.datetime(2021, 1, 2, 12, 30, 0)

In [99]: end = datetime.datetime(2021, 1, 5, 17, 15, 30)

In [100]: %time subset = ts.read_range(start, end)
 CPU times: user 28.6 ms, sys: 18.5 ms, total: 47.1 ms
 Wall time: 46.1 ms

In [101]: subset.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 276331 entries, 2021-01-02 12:30:00 to 2021-01-05
 17:15:30
 Data columns (total 5 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 No0 276331 non-null float64
 1 No1 276331 non-null float64
 2 No2 276331 non-null float64
 3 No3 276331 non-null float64
 4 No4 276331 non-null float64
 dtypes: float64(5)
 memory usage: 12.6 MB

In [102]: h5.close()

In [103]: rm data/*

This defines the starting date and…

…end date for the data retrieval operation.

The read_range() method takes the start and end dates as input—reading here
is only a matter of milliseconds.

New data that is retrieved during a day can be appended to the TsTables table
object, as illustrated previously. The package is therefore a valuable addition to the

74 | Chapter 3: Working with Financial Data

capabilities of pandas in combination with HDFStore objects when it comes to the
efficient storage and retrieval of (large) financial time series data sets over time.

Storing Data with SQLite3
Financial time series data can also be written directly from a DataFrame object to a
relational database like SQLite3. The use of a relational database might be useful in
scenarios where the SQL query language is applied to implement more sophisticated
analyses. With regard to speed and also disk usage, relational databases cannot, how‐
ever, compare with the other approaches that rely on binary storage formats like
HDF5.

The DataFrame class provides the method to_sql() (see the to_sql() API reference
page) to write data to a table in a relational database. The size on disk with 100+ MB
indicates that there is quite some overhead when using relational databases:

In [104]: %time data = generate_sample_data(1e6, 5, '1min').round(4)
 CPU times: user 342 ms, sys: 60.5 ms, total: 402 ms
 Wall time: 405 ms

In [105]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 1000000 entries, 2021-01-01 00:00:00 to 2022-11-26
 10:39:00
 Freq: T
 Data columns (total 5 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 No0 1000000 non-null float64
 1 No1 1000000 non-null float64
 2 No2 1000000 non-null float64
 3 No3 1000000 non-null float64
 4 No4 1000000 non-null float64
 dtypes: float64(5)
 memory usage: 45.8 MB

In [106]: import sqlite3 as sq3

In [107]: con = sq3.connect('data/data.sql')

In [108]: %time data.to_sql('data', con)
 CPU times: user 4.6 s, sys: 352 ms, total: 4.95 s
 Wall time: 5.07 s

In [109]: ls -n data/data.*
 -rw-r--r--@ 1 501 20 105316352 Aug 25 11:48 data/data.sql

Storing Financial Data Efficiently | 75

https://oreil.ly/ENhoW
https://oreil.ly/ENhoW

The sample financial data set has 1,000,000 rows and five columns; memory
usage is about 46 MB.

This imports the SQLite3 module.

A connection is opened to a new database file.

Writing the data to the relational database takes a couple of seconds.

One strength of relational databases is the ability to implement (out-of-memory) ana‐
lytics tasks based on standardized SQL statements. As an example, consider a query
that selects for column No1 all those rows where the value in that row lies between
105 and 108:

In [110]: query = 'SELECT * FROM data WHERE No1 > 105 and No2 < 108'

In [111]: %time res = con.execute(query).fetchall()
 CPU times: user 109 ms, sys: 30.3 ms, total: 139 ms
 Wall time: 138 ms

In [112]: res[:5]
Out[112]: [('2021-01-03 19:19:00', 103.6894, 105.0117, 103.9025, 95.8619,
 93.6062),
 ('2021-01-03 19:20:00', 103.6724, 105.0654, 103.9277, 95.8915,
 93.5673),
 ('2021-01-03 19:21:00', 103.6213, 105.1132, 103.8598, 95.7606,
 93.5618),
 ('2021-01-03 19:22:00', 103.6724, 105.1896, 103.8704, 95.7302,
 93.4139),
 ('2021-01-03 19:23:00', 103.8115, 105.1152, 103.8342, 95.706,
 93.4436)]

In [113]: len(res)
Out[113]: 5035

In [114]: con.close()

In [115]: rm data/*

The SQL query as a Python str object.

The query executed to retrieve all results rows.

The first five results printed.

The length of the results list object.

76 | Chapter 3: Working with Financial Data

Admittedly, such simple queries are also possible with pandas if the data set fits into
memory. However, the SQL query language has proven useful and powerful for deca‐
des now and should be in the algorithmic trader’s arsenal of data weapons.

pandas also supports database connections via SQLAlchemy, a
Python abstraction layer package for diverse relational databases
(refer to the SQLAlchemy home page). This in turn allows for the
use of, for example, MySQL as the relational database backend.

Conclusions
This chapter covers the handling of financial time series data. It illustrates the reading
of such data from different file-based sources, like CSV files. It also shows how to
retrieve financial data from web services, such as that of Quandl, for end-of-day and
options data. Open financial data sources are a valuable addition to the financial
landscape. Quandl is a platform integrating thousands of open data sets under the
umbrella of a unified API.

Another important topic covered in this chapter is the efficient storage of complete
DataFrame objects on disk, as well as of the data contained in such an in-memory
object in databases. Database flavors used in this chapter include the HDF5 database
standard and the light-weight relational database SQLite3. This chapter lays the foun‐
dation for Chapter 4, which addresses vectorized backtesting; Chapter 5, which cov‐
ers machine learning and deep learning for market prediction; and Chapter 6, which
discusses event-based backtesting of trading strategies.

Conclusions | 77

http://sqlalchemy.org
https://mysql.com

References and Further Resources
You can find more information about Quandl at the following link:

• http://quandl.org

Information about the package used to retrieve data from that source is found here:

• Python wrapper page on Quandl
• GitHub page of the Quandl Python wrapper

You should consult the official documentation pages for more information on the
packages used in this chapter:

• pandas home page
• PyTables home page
• TsTables fork on GitHub
• SQLite home page

Books and articles cited in this chapter:

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

McKinney, Wes. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. 2nd ed. Sebastopol: O’Reilly.

Thomas, Rob. “Bad Election Day Forecasts Deal Blow to Data Science: Prediction
Models Suffered from Narrow Data, Faulty Algorithms and Human Foibles.”
Wall Street Journal, November 9, 2016.

Python Scripts
The following Python script generates sample financial time series data based on a
Monte Carlo simulation for a geometric Brownian motion; for more, see Hilpisch
(2018, ch. 12):

#
Python Module to Generate a
Sample Financial Data Set
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#

78 | Chapter 3: Working with Financial Data

http://quandl.org
https://www.quandl.com/tools/python
https://github.com/quandl/quandl-python
http://pandas.pydata.org
http://pytables.org
https://github.com/yhilpisch/tstables
http://sqlite.org

import numpy as np
import pandas as pd

r = 0.05 # constant short rate
sigma = 0.5 # volatility factor

def generate_sample_data(rows, cols, freq='1min'):
 '''
 Function to generate sample financial data.

 Parameters
 ==========
 rows: int
 number of rows to generate
 cols: int
 number of columns to generate
 freq: str
 frequency string for DatetimeIndex

 Returns
 =======
 df: DataFrame
 DataFrame object with the sample data
 '''
 rows = int(rows)
 cols = int(cols)
 # generate a DatetimeIndex object given the frequency
 index = pd.date_range('2021-1-1', periods=rows, freq=freq)
 # determine time delta in year fractions
 dt = (index[1] - index[0]) / pd.Timedelta(value='365D')
 # generate column names
 columns = ['No%d' % i for i in range(cols)]
 # generate sample paths for geometric Brownian motion
 raw = np.exp(np.cumsum((r - 0.5 * sigma ** 2) * dt +
 sigma * np.sqrt(dt) *
 np.random.standard_normal((rows, cols)), axis=0))
 # normalize the data to start at 100
 raw = raw / raw[0] * 100
 # generate the DataFrame object
 df = pd.DataFrame(raw, index=index, columns=columns)
 return df

if __name__ == '__main__':
 rows = 5 # number of rows
 columns = 3 # number of columns
 freq = 'D' # daily frequency
 print(generate_sample_data(rows, columns, freq))

Python Scripts | 79

1 Source: “Does the Past Predict the Future?” The Economist, September 23, 2009.

CHAPTER 4

Mastering Vectorized Backtesting

[T]hey were silly enough to think you can look at the past to predict the future.1

—The Economist

Developing ideas and hypotheses for an algorithmic trading program is generally the
more creative and sometimes even fun part in the preparation stage. Thoroughly test‐
ing them is generally the more technical and time consuming part. This chapter is
about the vectorized backtesting of different algorithmic trading strategies. It covers
the following types of strategies (refer also to “Trading Strategies” on page 13):

Simple moving averages (SMA) based strategies
The basic idea of SMA usage for buy and sell signal generation is already decades
old. SMAs are a major tool in the so-called technical analysis of stock prices. A
signal is derived, for example, when an SMA defined on a shorter time window—
say 42 days—crosses an SMA defined on a longer time window—say 252 days.

Momentum strategies
These are strategies that are based on the hypothesis that recent performance will
persist for some additional time. For example, a stock that is downward trending
is assumed to do so for longer, which is why such a stock is to be shorted.

Mean-reversion strategies
The reasoning behind mean-reversion strategies is that stock prices or prices of
other financial instruments tend to revert to some mean level or to some trend
level when they have deviated too much from such levels.

81

The chapter proceeds as follows. “Making Use of Vectorization” on page 82 introdu‐
ces vectorization as a useful technical approach to formulate and backtest trading
strategies. “Strategies Based on Simple Moving Averages” on page 88 is the core of
this chapter and covers vectorized backtesting of SMA-based strategies in some
depth. “Strategies Based on Momentum” on page 98 introduces and backtests trading
strategies based on the so-called time series momentum (“recent performance”) of a
stock. “Strategies Based on Mean Reversion” on page 107 finishes the chapter with
coverage of mean-reversion strategies. Finally, “Data Snooping and Overfitting” on
page 111 discusses the pitfalls of data snooping and overfitting in the context of the
backtesting of algorithmic trading strategies.

The major goal of this chapter is to master the vectorized implementation approach,
which packages like NumPy and pandas allow for, as an efficient and fast backtesting
tool. To this end, the approaches presented make a number of simplifying assump‐
tions to better focus the discussion on the major topic of vectorization.

Vectorized backtesting should be considered in the following cases:

Simple trading strategies
The vectorized backtesting approach clearly has limits when it comes to the
modeling of algorithmic trading strategies. However, many popular, simple
strategies can be backtested in vectorized fashion.

Interactive strategy exploration
Vectorized backtesting allows for an agile, interactive exploration of trading
strategies and their characteristics. A few lines of code generally suffice to come
up with first results, and different parameter combinations are easily tested.

Visualization as major goal
The approach lends itself pretty well for visualizations of the used data, statistics,
signals, and performance results. A few lines of Python code are generally
enough to generate appealing and insightful plots.

Comprehensive backtesting programs
Vectorized backtesting is pretty fast in general, allowing one to test a great variety
of parameter combinations in a short amount of time. When speed is key, the
approach should be considered.

Making Use of Vectorization
Vectorization, or array programming, refers to a programming style where operations
on scalars (that is, integer or floating point numbers) are generalized to vectors,
matrices, or even multidimensional arrays. Consider a vector of integers
v = 1, 2, 3, 4, 5 T represented in Python as a list object v = [1, 2, 3, 4, 5]. Cal‐
culating the scalar product of such a vector and, say, the number 2 requires in pure

82 | Chapter 4: Mastering Vectorized Backtesting

Python a for loop or something similar, such as a list comprehension, which is just
different syntax for a for loop:

In [1]: v = [1, 2, 3, 4, 5]

In [2]: sm = [2 * i for i in v]

In [3]: sm
Out[3]: [2, 4, 6, 8, 10]

In principle, Python allows one to multiply a list object by an integer, but Python’s
data model gives back another list object in the example case containing two times
the elements of the original object:

In [4]: 2 * v
Out[4]: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

Vectorization with NumPy
The NumPy package for numerical computing (cf. NumPy home page) introduces vecto‐
rization to Python. The major class provided by NumPy is the ndarray class, which
stands for n-dimensional array. An instance of such an object can be created, for
example, on the basis of the list object v. Scalar multiplication, linear transforma‐
tions, and similar operations from linear algebra then work as desired:

In [5]: import numpy as np

In [6]: a = np.array(v)

In [7]: a
Out[7]: array([1, 2, 3, 4, 5])

In [8]: type(a)
Out[8]: numpy.ndarray

In [9]: 2 * a
Out[9]: array([2, 4, 6, 8, 10])

In [10]: 0.5 * a + 2
Out[10]: array([2.5, 3. , 3.5, 4. , 4.5])

Imports the NumPy package.

Instantiates an ndarray object based on the list object.

Prints out the data stored as ndarray object.

Looks up the type of the object.

Making Use of Vectorization | 83

http://numpy.org

Achieves a scalar multiplication in vectorized fashion.

Achieves a linear transformation in vectorized fashion.

The transition from a one-dimensional array (a vector) to a two-dimensional array (a
matrix) is natural. The same holds true for higher dimensions:

In [11]: a = np.arange(12).reshape((4, 3))

In [12]: a
Out[12]: array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [13]: 2 * a
Out[13]: array([[0, 2, 4],
 [6, 8, 10],
 [12, 14, 16],
 [18, 20, 22]])

In [14]: a ** 2
Out[14]: array([[0, 1, 4],
 [9, 16, 25],
 [36, 49, 64],
 [81, 100, 121]])

Creates a one-dimensional ndarray object and reshapes it to two dimensions.

Calculates the square of every element of the object in vectorized fashion.

In addition, the ndarray class provides certain methods that allow vectorized opera‐
tions. They often also have counterparts in the form of so-called universal functions
that NumPy provides:

In [15]: a.mean()
Out[15]: 5.5

In [16]: np.mean(a)
Out[16]: 5.5

In [17]: a.mean(axis=0)
Out[17]: array([4.5, 5.5, 6.5])

In [18]: np.mean(a, axis=1)
Out[18]: array([1., 4., 7., 10.])

Calculates the mean of all elements by a method call.

Calculates the mean of all elements by a universal function.

84 | Chapter 4: Mastering Vectorized Backtesting

Calculates the mean along the first axis.

Calculates the mean along the second axis.

As a financial example, consider the function generate_sample_data() in “Python
Scripts” on page 78 that uses an Euler discretization to generate sample paths for a
geometric Brownian motion. The implementation makes use of multiple vectorized
operations that are combined to a single line of code.

See the Appendix for more details of vectorization with NumPy. Refer to Hilpisch
(2018) for a multitude of applications of vectorization in a financial context.

The standard instruction set and data model of Python does not
generally allow for vectorized numerical operations. NumPy introdu‐
ces powerful vectorization techniques based on the regular array
class ndarray that lead to concise code that is close to mathematical
notation in, for example, linear algebra regarding vectors and
matrices.

Vectorization with pandas
The pandas package and the central DataFrame class make heavy use of NumPy and the
ndarray class. Therefore, most of the vectorization principles seen in the NumPy con‐
text carry over to pandas. The mechanics are best explained again on the basis of a
concrete example. To begin with, define a two-dimensional ndarray object first:

In [19]: a = np.arange(15).reshape(5, 3)

In [20]: a
Out[20]: array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11],
 [12, 13, 14]])

For the creation of a DataFrame object, generate a list object with column names
and a DatetimeIndex object next, both of appropriate size given the ndarray object:

In [21]: import pandas as pd

In [22]: columns = list('abc')

In [23]: columns
Out[23]: ['a', 'b', 'c']

In [24]: index = pd.date_range('2021-7-1', periods=5, freq='B')

In [25]: index

Making Use of Vectorization | 85

Out[25]: DatetimeIndex(['2021-07-01', '2021-07-02', '2021-07-05',
 '2021-07-06',
 '2021-07-07'],
 dtype='datetime64[ns]', freq='B')

In [26]: df = pd.DataFrame(a, columns=columns, index=index)

In [27]: df
Out[27]: a b c
 2021-07-01 0 1 2
 2021-07-02 3 4 5
 2021-07-05 6 7 8
 2021-07-06 9 10 11
 2021-07-07 12 13 14

Imports the pandas package.

Creates a list object out of the str object.

A pandas DatetimeIndex object is created that has a “business day” frequency
and goes over five periods.

A DataFrame object is instantiated based on the ndarray object a with column
labels and index values specified.

In principle, vectorization now works similarly to ndarray objects. One difference is
that aggregation operations default to column-wise results:

In [28]: 2 * df
Out[28]: a b c
 2021-07-01 0 2 4
 2021-07-02 6 8 10
 2021-07-05 12 14 16
 2021-07-06 18 20 22
 2021-07-07 24 26 28

In [29]: df.sum()
Out[29]: a 30
 b 35
 c 40
 dtype: int64

In [30]: np.mean(df)
Out[30]: a 6.0
 b 7.0
 c 8.0
 dtype: float64

86 | Chapter 4: Mastering Vectorized Backtesting

Calculates the scalar product for the DataFrame object (treated as a matrix).

Calculates the sum per column.

Calculates the mean per column.

Column-wise operations can be implemented by referencing the respective column
names, either by the bracket notation or the dot notation:

In [31]: df['a'] + df['c']
Out[31]: 2021-07-01 2
 2021-07-02 8
 2021-07-05 14
 2021-07-06 20
 2021-07-07 26
 Freq: B, dtype: int64

In [32]: 0.5 * df.a + 2 * df.b - df.c
Out[32]: 2021-07-01 0.0
 2021-07-02 4.5
 2021-07-05 9.0
 2021-07-06 13.5
 2021-07-07 18.0
 Freq: B, dtype: float64

Calculates the element-wise sum over columns a and c.

Calculates a linear transform involving all three columns.

Similarly, conditions yielding Boolean results vectors and SQL-like selections based
on such conditions are straightforward to implement:

In [33]: df['a'] > 5
Out[33]: 2021-07-01 False
 2021-07-02 False
 2021-07-05 True
 2021-07-06 True
 2021-07-07 True
 Freq: B, Name: a, dtype: bool

In [34]: df[df['a'] > 5]
Out[34]: a b c
 2021-07-05 6 7 8
 2021-07-06 9 10 11
 2021-07-07 12 13 14

Which element in column a is greater than five?

Select all those rows where the element in column a is greater than five.

Making Use of Vectorization | 87

For a vectorized backtesting of trading strategies, comparisons between two columns
or more are typical:

In [35]: df['c'] > df['b']
Out[35]: 2021-07-01 True
 2021-07-02 True
 2021-07-05 True
 2021-07-06 True
 2021-07-07 True
 Freq: B, dtype: bool

In [36]: 0.15 * df.a + df.b > df.c
Out[36]: 2021-07-01 False
 2021-07-02 False
 2021-07-05 False
 2021-07-06 True
 2021-07-07 True
 Freq: B, dtype: bool

For which date is the element in column c greater than in column b?

Condition comparing a linear combination of columns a and b with column c.

Vectorization with pandas is a powerful concept, in particular for the implementation
of financial algorithms and the vectorized backtesting, as illustrated in the remainder
of this chapter. For more on the basics of vectorization with pandas and financial
examples, refer to Hilpisch (2018, ch. 5).

While NumPy brings general vectorization approaches to the numer‐
ical computing world of Python, pandas allows vectorization over
time series data. This is really helpful for the implementation of
financial algorithms and the backtesting of algorithmic trading
strategies. By using this approach, you can expect concise code, as
well as a faster code execution, in comparison to standard Python
code, making use of for loops and similar idioms to accomplish
the same goal.

Strategies Based on Simple Moving Averages
Trading based on simple moving averages (SMAs) is a decades old strategy that has
its origins in the technical stock analysis world. Brock et al. (1992), for example,
empirically investigate such strategies in systematic fashion. They write:

The term “technical analysis” is a general heading for a myriad of trading techni‐
ques….In this paper, we explore two of the simplest and most popular technical rules:
moving average-oscillator and trading-range break (resistance and support levels). In
the first method, buy and sell signals are generated by two moving averages, a long

88 | Chapter 4: Mastering Vectorized Backtesting

period, and a short period….Our study reveals that technical analysis helps to predict
stock changes.

Getting into the Basics
This sub-section focuses on the basics of backtesting trading strategies that make use
of two SMAs. The example to follow works with end-of-day (EOD) closing data for
the EUR/USD exchange rate, as provided in the csv file under the EOD data file. The
data in the data set is from the Refinitiv Eikon Data API and represents EOD values
for the respective instruments (RICs):

In [37]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()

In [38]: raw.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 12 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 AAPL.O 2516 non-null float64
 1 MSFT.O 2516 non-null float64
 2 INTC.O 2516 non-null float64
 3 AMZN.O 2516 non-null float64
 4 GS.N 2516 non-null float64
 5 SPY 2516 non-null float64
 6 .SPX 2516 non-null float64
 7 .VIX 2516 non-null float64
 8 EUR= 2516 non-null float64
 9 XAU= 2516 non-null float64
 10 GDX 2516 non-null float64
 11 GLD 2516 non-null float64
 dtypes: float64(12)
 memory usage: 255.5 KB

In [39]: data = pd.DataFrame(raw['EUR='])

In [40]: data.rename(columns={'EUR=': 'price'}, inplace=True)

In [41]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 1 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 price 2516 non-null float64
 dtypes: float64(1)
 memory usage: 39.3 KB

Strategies Based on Simple Moving Averages | 89

https://oreil.ly/AzE-p

Reads the data from the remotely stored CSV file.

Shows the meta information for the DataFrame object.

Transforms the Series object to a DataFrame object.

Renames the only column to price.

Shows the meta information for the new DataFrame object.

The calculation of SMAs is made simple by the rolling() method, in combination
with a deferred calculation operation:

In [42]: data['SMA1'] = data['price'].rolling(42).mean()

In [43]: data['SMA2'] = data['price'].rolling(252).mean()

In [44]: data.tail()
Out[44]: price SMA1 SMA2
 Date
 2019-12-24 1.1087 1.107698 1.119630
 2019-12-26 1.1096 1.107740 1.119529
 2019-12-27 1.1175 1.107924 1.119428
 2019-12-30 1.1197 1.108131 1.119333
 2019-12-31 1.1210 1.108279 1.119231

Creates a column with 42 days of SMA values. The first 41 values will be NaN.

Creates a column with 252 days of SMA values. The first 251 values will be NaN.

Prints the final five rows of the data set.

A visualization of the original time series data in combination with the SMAs best
illustrates the results (see Figure 4-1):

In [45]: %matplotlib inline
 from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

In [46]: data.plot(title='EUR/USD | 42 & 252 days SMAs',
 figsize=(10, 6));

The next step is to generate signals, or rather market positionings, based on the rela‐
tionship between the two SMAs. The rule is to go long whenever the shorter SMA is
above the longer one and vice versa. For our purposes, we indicate a long position by 1
and a short position by –1.

90 | Chapter 4: Mastering Vectorized Backtesting

Figure 4-1. The EUR/USD exchange rate with two SMAs

Being able to directly compare two columns of the DataFrame object makes the
implementation of the rule an affair of a single line of code only. The positioning over
time is illustrated in Figure 4-2:

In [47]: data['position'] = np.where(data['SMA1'] > data['SMA2'],
 1, -1)

In [48]: data.dropna(inplace=True)

In [49]: data['position'].plot(ylim=[-1.1, 1.1],
 title='Market Positioning',
 figsize=(10, 6));

Implements the trading rule in vectorized fashion. np.where() produces +1 for
rows where the expression is True and -1 for rows where the expression is False.

Deletes all rows of the data set that contain at least one NaN value.

Plots the positioning over time.

Strategies Based on Simple Moving Averages | 91

Figure 4-2. Market positioning based on the strategy with two SMAs

To calculate the performance of the strategy, calculate the log returns based on the
original financial time series next. The code to do this is again rather concise due to
vectorization. Figure 4-3 shows the histogram of the log returns:

In [50]: data['returns'] = np.log(data['price'] / data['price'].shift(1))

In [51]: data['returns'].hist(bins=35, figsize=(10, 6));

Calculates the log returns in vectorized fashion over the price column.

Plots the log returns as a histogram (frequency distribution).

To derive the strategy returns, multiply the position column—shifted by one trading
day—with the returns column. Since log returns are additive, calculating the sum
over the columns returns and strategy provides a first comparison of the perfor‐
mance of the strategy relative to the base investment itself.

92 | Chapter 4: Mastering Vectorized Backtesting

Figure 4-3. Frequency distribution of EUR/USD log returns

Comparing the returns shows that the strategy books a win over the passive bench‐
mark investment:

In [52]: data['strategy'] = data['position'].shift(1) * data['returns']

In [53]: data[['returns', 'strategy']].sum()
Out[53]: returns -0.176731
 strategy 0.253121
 dtype: float64

In [54]: data[['returns', 'strategy']].sum().apply(np.exp)
Out[54]: returns 0.838006
 strategy 1.288039
 dtype: float64

Derives the log returns of the strategy given the positionings and market returns.

Sums up the single log return values for both the stock and the strategy (for illus‐
tration only).

Applies the exponential function to the sum of the log returns to calculate the
gross performance.

Calculating the cumulative sum over time with cumsum and, based on this, the cumu‐
lative returns by applying the exponential function np.exp() gives a more compre‐
hensive picture of how the strategy compares to the performance of the base financial

Strategies Based on Simple Moving Averages | 93

instrument over time. Figure 4-4 shows the data graphically and illustrates the out‐
performance in this particular case:

In [55]: data[['returns', 'strategy']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Figure 4-4. Gross performance of EUR/USD compared to the SMA-based strategy

Average, annualized risk-return statistics for both the stock and the strategy are easy
to calculate:

In [56]: data[['returns', 'strategy']].mean() * 252
Out[56]: returns -0.019671
 strategy 0.028174
 dtype: float64

In [57]: np.exp(data[['returns', 'strategy']].mean() * 252) - 1
Out[57]: returns -0.019479
 strategy 0.028575
 dtype: float64

In [58]: data[['returns', 'strategy']].std() * 252 ** 0.5
Out[58]: returns 0.085414
 strategy 0.085405
 dtype: float64

In [59]: (data[['returns', 'strategy']].apply(np.exp) - 1).std() * 252 ** 0.5
Out[59]: returns 0.085405
 strategy 0.085373
 dtype: float64

94 | Chapter 4: Mastering Vectorized Backtesting

Calculates the annualized mean return in both log and regular space.

Calculates the annualized standard deviation in both log and regular space.

Other risk statistics often of interest in the context of trading strategy performances
are the maximum drawdown and the longest drawdown period. A helper statistic to
use in this context is the cumulative maximum gross performance as calculated by the
cummax() method applied to the gross performance of the strategy. Figure 4-5 shows
the two time series for the SMA-based strategy:

In [60]: data['cumret'] = data['strategy'].cumsum().apply(np.exp)

In [61]: data['cummax'] = data['cumret'].cummax()

In [62]: data[['cumret', 'cummax']].dropna().plot(figsize=(10, 6));

Defines a new column, cumret, with the gross performance over time.

Defines yet another column with the running maximum value of the gross
performance.

Plots the two new columns of the DataFrame object.

Figure 4-5. Gross performance and cumulative maximum performance of the SMA-
based strategy

Strategies Based on Simple Moving Averages | 95

2 For more on the datetime and timedelta objects, refer to Appendix C of Hilpisch (2018).

The maximum drawdown is then simply calculated as the maximum of the difference
between the two relevant columns. The maximum drawdown in the example is about
18 percentage points:

In [63]: drawdown = data['cummax'] - data['cumret']

In [64]: drawdown.max()
Out[64]: 0.17779367070195917

Calculates the element-wise difference between the two columns.

Picks out the maximum value from all differences.

The determination of the longest drawdown period is a bit more involved. It requires
those dates at which the gross performance equals its cumulative maximum (that is,
where a new maximum is set). This information is stored in a temporary object. Then
the differences in days between all such dates are calculated and the longest period is
picked out. Such periods can be only one day long or more than 100 days. Here, the
longest drawdown period lasts for 596 days—a pretty long period:2

In [65]: temp = drawdown[drawdown == 0]

In [66]: periods = (temp.index[1:].to_pydatetime() -
 temp.index[:-1].to_pydatetime())

In [67]: periods[12:15]
Out[67]: array([datetime.timedelta(days=1), datetime.timedelta(days=1),
 datetime.timedelta(days=10)], dtype=object)

In [68]: periods.max()
Out[68]: datetime.timedelta(days=596)

Where are the differences equal to zero?

Calculates the timedelta values between all index values.

Picks out the maximum timedelta value.

Vectorized backtesting with pandas is generally a rather efficient endeavor due to the
capabilities of the package and the main DataFrame class. However, the interactive
approach illustrated so far does not work well when one wishes to implement a larger
backtesting program that, for example, optimizes the parameters of an SMA-based
strategy. To this end, a more general approach is advisable.

96 | Chapter 4: Mastering Vectorized Backtesting

pandas proves to be a powerful tool for the vectorized analysis of
trading strategies. Many statistics of interest, such as log returns,
cumulative returns, annualized returns and volatility, maximum
drawdown, and maximum drawdown period, can in general be cal‐
culated by a single line or just a few lines of code. Being able to vis‐
ualize results by a simple method call is an additional benefit.

Generalizing the Approach
“SMA Backtesting Class” on page 115 presents a Python code that contains a class for
the vectorized backtesting of SMA-based trading strategies. In a sense, it is a generali‐
zation of the approach introduced in the previous sub-section. It allows one to define
an instance of the SMAVectorBacktester class by providing the following parameters:

• symbol: RIC (instrument data) to be used
• SMA1: for the time window in days for the shorter SMA
• SMA2: for the time window in days for the longer SMA
• start: for the start date of the data selection
• end: for the end date of the data selection

The application itself is best illustrated by an interactive session that makes use of the
class. The example first replicates the backtest implemented previously based on
EUR/USD exchange rate data. It then optimizes the SMA parameters for maximum
gross performance. Based on the optimal parameters, it plots the resulting gross
performance of the strategy compared to the base instrument over the relevant period
of time:

In [69]: import SMAVectorBacktester as SMA

In [70]: smabt = SMA.SMAVectorBacktester('EUR=', 42, 252,
 '2010-1-1', '2019-12-31')

In [71]: smabt.run_strategy()
Out[71]: (1.29, 0.45)

In [72]: %%time
 smabt.optimize_parameters((30, 50, 2),
 (200, 300, 2))
 CPU times: user 3.76 s, sys: 15.8 ms, total: 3.78 s
 Wall time: 3.78 s

Out[72]: (array([48., 238.]), 1.5)

In [73]: smabt.plot_results()

This imports the module as SMA.

Strategies Based on Simple Moving Averages | 97

An instance of the main class is instantiated.

Backtests the SMA-based strategy, given the parameters during instantiation.

The optimize_parameters() method takes as input parameter ranges with step
sizes and determines the optimal combination by a brute force approach.

The plot_results() method plots the strategy performance compared to the
benchmark instrument, given the currently stored parameter values (here from
the optimization procedure).

The gross performance of the strategy with the original parametrization is 1.24 or
124%. The optimized strategy yields an absolute return of 1.44 or 144% for the
parameter combination SMA1 = 48 and SMA2 = 238. Figure 4-6 shows the gross per‐
formance over time graphically, again compared to the performance of the base
instrument, which represents the benchmark.

Figure 4-6. Gross performance of EUR/USD and the optimized SMA strategy

Strategies Based on Momentum
There are two basic types of momentum strategies. The first type is cross-sectional
momentum strategies. Selecting from a larger pool of instruments, these strategies
buy those instruments that have recently outperformed relative to their peers (or a
benchmark) and sell those instruments that have underperformed. The basic idea is
that the instruments continue to outperform and underperform, respectively—at

98 | Chapter 4: Mastering Vectorized Backtesting

least for a certain period of time. Jegadeesh and Titman (1993, 2001) and Chan et al.
(1996) study these types of trading strategies and their potential sources of profit.

Cross-sectional momentum strategies have traditionally performed quite well. Jega‐
deesh and Titman (1993) write:

This paper documents that strategies which buy stocks that have performed well in the
past and sell stocks that have performed poorly in the past generate significant positive
returns over 3- to 12-month holding periods.

The second type is time series momentum strategies. These strategies buy those
instruments that have recently performed well and sell those instruments that have
recently performed poorly. In this case, the benchmark is the past returns of the
instrument itself. Moskowitz et al. (2012) analyze this type of momentum strategy in
detail across a wide range of markets. They write:

Rather than focus on the relative returns of securities in the cross-section, time series
momentum focuses purely on a security’s own past return….Our finding of time series
momentum in virtually every instrument we examine seems to challenge the “random
walk” hypothesis, which in its most basic form implies that knowing whether a price
went up or down in the past should not be informative about whether it will go up or
down in the future.

Getting into the Basics
Consider end-of-day closing prices for the gold price in USD (XAU=):

In [74]: data = pd.DataFrame(raw['XAU='])

In [75]: data.rename(columns={'XAU=': 'price'}, inplace=True)

In [76]: data['returns'] = np.log(data['price'] / data['price'].shift(1))

The most simple time series momentum strategy is to buy the stock if the last return
was positive and to sell it if it was negative. With NumPy and pandas this is easy to
formalize; just take the sign of the last available return as the market position.
Figure 4-7 illustrates the performance of this strategy. The strategy does significantly
underperform the base instrument:

In [77]: data['position'] = np.sign(data['returns'])

In [78]: data['strategy'] = data['position'].shift(1) * data['returns']

In [79]: data[['returns', 'strategy']].dropna().cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Defines a new column with the sign (that is, 1 or –1) of the relevant log return;
the resulting values represent the market positionings (long or short).

Strategies Based on Momentum | 99

Calculates the strategy log returns given the market positionings.

Plots and compares the strategy performance with the benchmark instrument.

Figure 4-7. Gross performance of gold price (USD) and momentum strategy (last return
only)

Using a rolling time window, the time series momentum strategy can be generalized
to more than just the last return. For example, the average of the last three returns can
be used to generate the signal for the positioning. Figure 4-8 shows that the strategy
in this case does much better, both in absolute terms and relative to the base
instrument:

In [80]: data['position'] = np.sign(data['returns'].rolling(3).mean())

In [81]: data['strategy'] = data['position'].shift(1) * data['returns']

In [82]: data[['returns', 'strategy']].dropna().cumsum(
).apply(np.exp).plot(figsize=(10, 6));

This time, the mean return over a rolling window of three days is taken.

However, the performance is quite sensitive to the time window parameter. Choos‐
ing, for example, the last two returns instead of three leads to a much worse perfor‐
mance, as shown in Figure 4-9.

100 | Chapter 4: Mastering Vectorized Backtesting

Figure 4-8. Gross performance of gold price (USD) and momentum strategy (last three
returns)

Figure 4-9. Gross performance of gold price (USD) and momentum strategy (last two
returns)

Strategies Based on Momentum | 101

Time series momentum might be expected intraday, as well. Actually, one would
expect it to be more pronounced intraday than interday. Figure 4-10 shows the gross
performance of five time series momentum strategies for one, three, five, seven, and
nine return observations, respectively. The data used is intraday stock price data for
Apple Inc., as retrieved from the Eikon Data API. The figure is based on the code that
follows. Basically all strategies outperform the stock over the course of this intraday
time window, although some only slightly:

In [83]: fn = '../data/AAPL_1min_05052020.csv'
 # fn = '../data/SPX_1min_05052020.csv'

In [84]: data = pd.read_csv(fn, index_col=0, parse_dates=True)

In [85]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 241 entries, 2020-05-05 16:00:00 to 2020-05-05 20:00:00
 Data columns (total 6 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 HIGH 241 non-null float64
 1 LOW 241 non-null float64
 2 OPEN 241 non-null float64
 3 CLOSE 241 non-null float64
 4 COUNT 241 non-null float64
 5 VOLUME 241 non-null float64
 dtypes: float64(6)
 memory usage: 13.2 KB

In [86]: data['returns'] = np.log(data['CLOSE'] /
 data['CLOSE'].shift(1))

In [87]: to_plot = ['returns']

In [88]: for m in [1, 3, 5, 7, 9]:
 data['position_%d' % m] = np.sign(data['returns'].rolling(m).mean())
 data['strategy_%d' % m] = (data['position_%d' % m].shift(1) *
 data['returns'])
 to_plot.append('strategy_%d' % m)

In [89]: data[to_plot].dropna().cumsum().apply(np.exp).plot(
 title='AAPL intraday 05. May 2020',
 figsize=(10, 6), style=['-', '--', '--', '--', '--', '--']);

Reads the intraday data from a CSV file.

Calculates the intraday log returns.

Defines a list object to select the columns to be plotted later.

Derives positionings according to the momentum strategy parameter.

102 | Chapter 4: Mastering Vectorized Backtesting

Calculates the resulting strategy log returns.

Appends the column name to the list object.

Plots all relevant columns to compare the strategies’ performances to the bench‐
mark instrument’s performance.

Figure 4-10. Gross intraday performance of the Apple stock and five momentum strate‐
gies (last one, three, five, seven, and nine returns)

Figure 4-11 shows the performance of the same five strategies for the S&P 500 index.
Again, all five strategy configurations outperform the index and all show a positive
return (before transaction costs).

Strategies Based on Momentum | 103

Figure 4-11. Gross intraday performance of the S&P 500 index and five momentum
strategies (last one, three, five, seven, and nine returns)

Generalizing the Approach
“Momentum Backtesting Class” on page 118 presents a Python module containing
the MomVectorBacktester class, which allows for a bit more standardized backtesting
of momentum-based strategies. The class has the following attributes:

• symbol: RIC (instrument data) to be used
• start: for the start date of the data selection
• end: for the end date of the data selection
• amount: for the initial amount to be invested
• tc: for the proportional transaction costs per trade

Compared to the SMAVectorBacktester class, this one introduces two important gen‐
eralizations: the fixed amount to be invested at the beginning of the backtesting
period and proportional transaction costs to get closer to market realities cost-wise.
In particular, the addition of transaction costs is important in the context of time ser‐
ies momentum strategies that often lead to a large number of transactions over time.

104 | Chapter 4: Mastering Vectorized Backtesting

The application is as straightforward and convenient as before. The example first rep‐
licates the results from the interactive session before, but this time with an initial
investment of 10,000 USD. Figure 4-12 visualizes the performance of the strategy,
taking the mean of the last three returns to generate signals for the positioning. The
second case covered is one with proportional transaction costs of 0.1% per trade. As
Figure 4-13 illustrates, even small transaction costs deteriorate the performance sig‐
nificantly in this case. The driving factor in this regard is the relatively high frequency
of trades that the strategy requires:

In [90]: import MomVectorBacktester as Mom

In [91]: mombt = Mom.MomVectorBacktester('XAU=', '2010-1-1',
 '2019-12-31', 10000, 0.0)

In [92]: mombt.run_strategy(momentum=3)
Out[92]: (20797.87, 7395.53)

In [93]: mombt.plot_results()
In [94]: mombt = Mom.MomVectorBacktester('XAU=', '2010-1-1',
 '2019-12-31', 10000, 0.001)

In [95]: mombt.run_strategy(momentum=3)
Out[95]: (10749.4, -2652.93)

In [96]: mombt.plot_results()

Imports the module as Mom

Instantiates an object of the backtesting class defining the starting capital to be
10,000 USD and the proportional transaction costs to be zero.

Backtests the momentum strategy based on a time window of three days: the
strategy outperforms the benchmark passive investment.

This time, proportional transaction costs of 0.1% are assumed per trade.

In that case, the strategy basically loses all the outperformance.

Strategies Based on Momentum | 105

Figure 4-12. Gross performance of the gold price (USD) and the momentum strategy
(last three returns, no transaction costs)

Figure 4-13. Gross performance of the gold price (USD) and the momentum strategy
(last three returns, transaction costs of 0.1%)

106 | Chapter 4: Mastering Vectorized Backtesting

Strategies Based on Mean Reversion
Roughly speaking, mean-reversion strategies rely on a reasoning that is the opposite
of momentum strategies. If a financial instrument has performed “too well” relative
to its trend, it is shorted, and vice versa. To put it differently, while (time series)
momentum strategies assume a positive correlation between returns, mean-reversion
strategies assume a negative correlation. Balvers et al. (2000) write:

Mean reversion refers to a tendency of asset prices to return to a trend path.

Working with a simple moving average (SMA) as a proxy for a “trend path,” a mean-
reversion strategy in, say, the EUR/USD exchange rate can be backtested in a similar
fashion as the backtests of the SMA- and momentum-based strategies. The idea is to
define a threshold for the distance between the current stock price and the SMA,
which signals a long or short position.

Getting into the Basics
The examples that follow are for two different financial instruments for which one
would expect significant mean reversion since they are both based on the gold price:

• GLD is the symbol for SPDR Gold Shares, which is the largest physically backed
exchange traded fund (ETF) for gold (cf. SPDR Gold Shares home page).

• GDX is the symbol for the VanEck Vectors Gold Miners ETF, which invests in
equity products to track the NYSE Arca Gold Miners Index (cf. VanEck Vectors
Gold Miners overview page).

The example starts with GDX and implements a mean-reversion strategy on the basis
of an SMA of 25 days and a threshold value of 3.5 for the absolute deviation of the
current price to deviate from the SMA to signal a positioning. Figure 4-14 shows the
differences between the current price of GDX and the SMA, as well as the positive and
negative threshold value to generate sell and buy signals, respectively:

In [97]: data = pd.DataFrame(raw['GDX'])

In [98]: data.rename(columns={'GDX': 'price'}, inplace=True)

In [99]: data['returns'] = np.log(data['price'] /
 data['price'].shift(1))

In [100]: SMA = 25

In [101]: data['SMA'] = data['price'].rolling(SMA).mean()

In [102]: threshold = 3.5

In [103]: data['distance'] = data['price'] - data['SMA']

Strategies Based on Mean Reversion | 107

http://spdrgoldshares.com
https://oreil.ly/CmPBA
https://oreil.ly/CmPBA

In [104]: data['distance'].dropna().plot(figsize=(10, 6), legend=True)
 plt.axhline(threshold, color='r')
 plt.axhline(-threshold, color='r')
 plt.axhline(0, color='r');

The SMA parameter is defined…

…and SMA (“trend path”) is calculated.

The threshold for the signal generation is defined.

The distance is calculated for every point in time.

The distance values are plotted.

Figure 4-14. Difference between current price of GDX and SMA, as well as threshold val‐
ues for generating mean-reversion signals

Based on the differences and the fixed threshold values, positionings can again be
derived in vectorized fashion. Figure 4-15 shows the resulting positionings:

In [105]: data['position'] = np.where(data['distance'] > threshold,
 -1, np.nan)

In [106]: data['position'] = np.where(data['distance'] < -threshold,
 1, data['position'])

In [107]: data['position'] = np.where(data['distance'] *

108 | Chapter 4: Mastering Vectorized Backtesting

 data['distance'].shift(1) < 0, 0, data['position'])

In [108]: data['position'] = data['position'].ffill().fillna(0)

In [109]: data['position'].iloc[SMA:].plot(ylim=[-1.1, 1.1],
 figsize=(10, 6));

If the distance value is greater than the threshold value, go short (set –1 in the
new column position), otherwise set NaN.

If the distance value is lower than the negative threshold value, go long (set 1),
otherwise keep the column position unchanged.

If there is a change in the sign of the distance value, go market neutral (set 0),
otherwise keep the column position unchanged.

Forward fill all NaN positions with the previous values; replace all remaining NaN
values by 0.

Plot the resulting positionings from the index position SMA on.

Figure 4-15. Positionings generated for GDX based on the mean-reversion strategy

The final step is to derive the strategy returns that are shown in Figure 4-16. The
strategy outperforms the GDX ETF by quite a margin, although the particular para‐
metrization leads to long periods with a neutral position (neither long or short).
These neutral positions are reflected in the flat parts of the strategy curve in
Figure 4-16:

Strategies Based on Mean Reversion | 109

In [110]: data['strategy'] = data['position'].shift(1) * data['returns']

In [111]: data[['returns', 'strategy']].dropna().cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Figure 4-16. Gross performance of the GDX ETF and the mean-reversion strategy (SMA =
25, threshold = 3.5)

Generalizing the Approach
As before, the vectorized backtesting is more efficient to implement based on a
respective Python class. The class MRVectorBacktester presented in “Mean Rever‐
sion Backtesting Class” on page 120 inherits from the MomVectorBacktester class
and just replaces the run_strategy() method to accommodate for the specifics of the
mean-reversion strategy.

The example now uses GLD and sets the proportional transaction costs to 0.1%. The
initial amount to invest is again set to 10,000 USD. The SMA is 43 this time, and the
threshold value is set to 7.5. Figure 4-17 shows the performance of the mean-
reversion strategy compared to the GLD ETF:

In [112]: import MRVectorBacktester as MR

In [113]: mrbt = MR.MRVectorBacktester('GLD', '2010-1-1', '2019-12-31',
 10000, 0.001)

In [114]: mrbt.run_strategy(SMA=43, threshold=7.5)
Out[114]: (13542.15, 646.21)

110 | Chapter 4: Mastering Vectorized Backtesting

In [115]: mrbt.plot_results()

Imports the module as MR.

Instantiates an object of the MRVectorBacktester class with 10,000 USD initial
capital and 0.1% proportional transaction costs per trade; the strategy signifi‐
cantly outperforms the benchmark instrument in this case.

Backtests the mean-reversion strategy with an SMA value of 43 and a threshold
value of 7.5.

Plots the cumulative performance of the strategy against the base instrument.

Figure 4-17. Gross performance of the GLD ETF and the mean-reversion strategy (SMA =
43, threshold = 7.5, transaction costs of 0.1%)

Data Snooping and Overfitting
The emphasis in this chapter, as well as in the rest of this book, is on the technological
implementation of important concepts in algorithmic trading by using Python. The
strategies, parameters, data sets, and algorithms used are sometimes arbitrarily
chosen and sometimes purposefully chosen to make a certain point. Without a doubt,
when discussing technical methods applied to finance, it is more exciting and
motivating to see examples that show “good results,” even if they might not generalize
on other financial instruments or time periods, for example.

Data Snooping and Overfitting | 111

The ability to show examples with good results often comes at the cost of data snoop‐
ing. According to White (2000), data snooping can be defined as follows:

Data snooping occurs when a given set of data is used more than once for purposes of
inference or model selection.

In other words, a certain approach might be applied multiple or even many times on
the same data set to arrive at satisfactory numbers and plots. This, of course, is intel‐
lectually dishonest in trading strategy research because it pretends that a trading
strategy has some economic potential that might not be realistic in a real-world con‐
text. Because the focus of this book is the use of Python as a programming language
for algorithmic trading, the data snooping approach might be justifiable. This is in
analogy to a mathematics book which, by way of an example, solves an equation that
has a unique solution that can be easily identified. In mathematics, such straightfor‐
ward examples are rather the exception than the rule, but they are nevertheless fre‐
quently used for didactical purposes.

Another problem that arises in this context is overfitting. Overfitting in a trading
context can be described as follows (see the Man Institute on Overfitting):

Overfitting is when a model describes noise rather than signal. The model may have
good performance on the data on which it was tested, but little or no predictive power
on new data in the future. Overfitting can be described as finding patterns that aren’t
actually there. There is a cost associated with overfitting—an overfitted strategy will
underperform in the future.

Even a simple strategy, such as the one based on two SMA values, allows for the back‐
testing of thousands of different parameter combinations. Some of those combina‐
tions are almost certain to show good performance results. As Bailey et al. (2015)
discuss in detail, this easily leads to backtest overfitting with the people responsible
for the backtesting often not even being aware of the problem. They point out:

Recent advances in algorithmic research and high-performance computing have made
it nearly trivial to test millions and billions of alternative investment strategies on a
finite dataset of financial time series….[I]t is common practice to use this computa‐
tional power to calibrate the parameters of an investment strategy in order to maxi‐
mize its performance. But because the signal-to-noise ratio is so weak, often the result
of such calibration is that parameters are chosen to profit from past noise rather than
future signal. The outcome is an overfit backtest.

The problem of the validity of empirical results, in a statistical sense, is of course not
constrained to strategy backtesting in a financial context.

112 | Chapter 4: Mastering Vectorized Backtesting

https://oreil.ly/uYIGs

Ioannidis (2005), referring to medical publications, emphasizes probabilistic and stat‐
istical considerations when judging the reproducibility and validity of research
results:

There is increasing concern that in modern research, false findings may be the major‐
ity or even the vast majority of published research claims. However, this should not be
surprising. It can be proven that most claimed research findings are false….As has
been shown previously, the probability that a research finding is indeed true depends
on the prior probability of it being true (before doing the study), the statistical power
of the study, and the level of statistical significance.

Against this background, if a trading strategy in this book is shown to perform well
given a certain data set, combination of parameters, and maybe a specific machine
learning algorithm, this neither constitutes any kind of recommendation for the par‐
ticular configuration nor allows it to draw more general conclusions about the quality
and performance potential of the strategy configuration at hand.

You are, of course, encouraged to use the code and examples presented in this book to
explore your own algorithmic trading strategy ideas and to implement them in prac‐
tice based on your own backtesting results, validations, and conclusions. After all,
proper and diligent strategy research is what financial markets will compensate for,
not brute-force driven data snooping and overfitting.

Conclusions
Vectorization is a powerful concept in scientific computing, as well as for financial
analytics, in the context of the backtesting of algorithmic trading strategies. This
chapter introduces vectorization both with NumPy and pandas and applies it to backt‐
est three types of trading strategies: strategies based on simple moving averages,
momentum, and mean reversion. The chapter admittedly makes a number of simpli‐
fying assumptions, and a rigorous backtesting of trading strategies needs to take into
account more factors that determine trading success in practice, such as data issues,
selection issues, avoidance of overfitting, or market microstructure elements. How‐
ever, the major goal of the chapter is to focus on the concept of vectorization and
what it can do in algorithmic trading from a technological and implementation point
of view. With regard to all concrete examples and results presented, the problems of
data snooping, overfitting, and statistical significance need to be considered.

References and Further Resources
For the basics of vectorization with NumPy and pandas, refer to these books:

McKinney, Wes. 2017. Python for Data Analysis. 2nd ed. Sebastopol: O’Reilly.
VanderPlas, Jake. 2016. Python Data Science Handbook. Sebastopol: O’Reilly.

Conclusions | 113

For the use of NumPy and pandas in a financial context, refer to these books:

Hilpisch, Yves. 2015. Derivatives Analytics with Python: Data Analysis, Models, Simu‐
lation, Calibration, and Hedging. Wiley Finance.

⸻. 2017. Listed Volatility and Variance Derivatives: A Python-Based Guide. Wiley
Finance.

⸻. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed. Sebasto‐
pol: O’Reilly.

For the topics of data snooping and overfitting, refer to these papers:

Bailey, David, Jonathan Borwein, Marcos López de Prado, and Qiji Jim Zhu. 2015.
“The Probability of Backtest Overfitting.” Journal of Computational Finance 20,
(4): 39-69. https://oreil.ly/sOHlf.

Ioannidis, John. 2005. “Why Most Published Research Findings Are False.” PLoS
Medicine 2, (8): 696-701.

White, Halbert. 2000. “A Reality Check for Data Snooping.” Econometrica 68, (5):
1097-1126.

For more background information and empirical results about trading strategies
based on simple moving averages, refer to these sources:

Brock, William, Josef Lakonishok, and Blake LeBaron. 1992. “Simple Technical Trad‐
ing Rules and the Stochastic Properties of Stock Returns.” Journal of Finance 47,
(5): 1731-1764.

Droke, Clif. 2001. Moving Averages Simplified. Columbia: Marketplace Books.

The book by Ernest Chan covers in detail trading strategies based on momentum, as
well as on mean reversion. The book is also a good source for the pitfalls of backtest‐
ing trading strategies:

Chan, Ernest. 2013. Algorithmic Trading: Winning Strategies and Their Rationale.
Hoboken et al: John Wiley & Sons.

These research papers analyze characteristics and sources of profit for cross-sectional
momentum strategies, the traditional approach to momentum-based trading:

Chan, Louis, Narasimhan Jegadeesh, and Josef Lakonishok. 1996. “Momentum
Strategies.” Journal of Finance 51, (5): 1681-1713.

Jegadeesh, Narasimhan, and Sheridan Titman. 1993. “Returns to Buying Winners and
Selling Losers: Implications for Stock Market Efficiency.” Journal of Finance 48,
(1): 65-91.

114 | Chapter 4: Mastering Vectorized Backtesting

https://oreil.ly/sOHlf

Jegadeesh, Narasimhan, and Sheridan Titman. 2001. “Profitability of Momentum
Strategies: An Evaluation of Alternative Explanations.” Journal of Finance 56, (2):
599-720.

The paper by Moskowitz et al. provides an analysis of so-called time series momentum
strategies:

Moskowitz, Tobias, Yao Hua Ooi, and Lasse Heje Pedersen. 2012. “Time Series
Momentum.” Journal of Financial Economics 104: 228-250.

These papers empirically analyze mean reversion in asset prices:

Balvers, Ronald, Yangru Wu, and Erik Gilliland. 2000. “Mean Reversion across
National Stock Markets and Parametric Contrarian Investment Strategies.” Jour‐
nal of Finance 55, (2): 745-772.

Kim, Myung Jig, Charles Nelson, and Richard Startz. 1991. “Mean Reversion in Stock
Prices? A Reappraisal of the Empirical Evidence.” Review of Economic Studies 58:
515-528.

Spierdijk, Laura, Jacob Bikker, and Peter van den Hoek. 2012. “Mean Reversion in
International Stock Markets: An Empirical Analysis of the 20th Century.” Journal
of International Money and Finance 31: 228-249.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

SMA Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on simple moving averages:
#
Python Module with Class
for Vectorized Backtesting
of SMA-based Strategies
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import numpy as np
import pandas as pd
from scipy.optimize import brute

class SMAVectorBacktester(object):

Python Scripts | 115

 ''' Class for the vectorized backtesting of SMA-based trading strategies.

 Attributes
 ==========
 symbol: str
 RIC symbol with which to work
 SMA1: int
 time window in days for shorter SMA
 SMA2: int
 time window in days for longer SMA
 start: str
 start date for data retrieval
 end: str
 end date for data retrieval

 Methods
 =======
 get_data:
 retrieves and prepares the base data set
 set_parameters:
 sets one or two new SMA parameters
 run_strategy:
 runs the backtest for the SMA-based strategy
 plot_results:
 plots the performance of the strategy compared to the symbol
 update_and_run:
 updates SMA parameters and returns the (negative) absolute performance
 optimize_parameters:
 implements a brute force optimization for the two SMA parameters
 '''

 def __init__(self, symbol, SMA1, SMA2, start, end):
 self.symbol = symbol
 self.SMA1 = SMA1
 self.SMA2 = SMA2
 self.start = start
 self.end = end
 self.results = None
 self.get_data()

 def get_data(self):
 ''' Retrieves and prepares the data.
 '''
 raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()
 raw = pd.DataFrame(raw[self.symbol])
 raw = raw.loc[self.start:self.end]
 raw.rename(columns={self.symbol: 'price'}, inplace=True)
 raw['return'] = np.log(raw / raw.shift(1))
 raw['SMA1'] = raw['price'].rolling(self.SMA1).mean()
 raw['SMA2'] = raw['price'].rolling(self.SMA2).mean()
 self.data = raw

116 | Chapter 4: Mastering Vectorized Backtesting

 def set_parameters(self, SMA1=None, SMA2=None):
 ''' Updates SMA parameters and resp. time series.
 '''
 if SMA1 is not None:
 self.SMA1 = SMA1
 self.data['SMA1'] = self.data['price'].rolling(
 self.SMA1).mean()
 if SMA2 is not None:
 self.SMA2 = SMA2
 self.data['SMA2'] = self.data['price'].rolling(self.SMA2).mean()

 def run_strategy(self):
 ''' Backtests the trading strategy.
 '''
 data = self.data.copy().dropna()
 data['position'] = np.where(data['SMA1'] > data['SMA2'], 1, -1)
 data['strategy'] = data['position'].shift(1) * data['return']
 data.dropna(inplace=True)
 data['creturns'] = data['return'].cumsum().apply(np.exp)
 data['cstrategy'] = data['strategy'].cumsum().apply(np.exp)
 self.results = data
 # gross performance of the strategy
 aperf = data['cstrategy'].iloc[-1]
 # out-/underperformance of strategy
 operf = aperf - data['creturns'].iloc[-1]
 return round(aperf, 2), round(operf, 2)

 def plot_results(self):
 ''' Plots the cumulative performance of the trading strategy
 compared to the symbol.
 '''
 if self.results is None:
 print('No results to plot yet. Run a strategy.')
 title = '%s | SMA1=%d, SMA2=%d' % (self.symbol,
 self.SMA1, self.SMA2)
 self.results[['creturns', 'cstrategy']].plot(title=title,
 figsize=(10, 6))

 def update_and_run(self, SMA):
 ''' Updates SMA parameters and returns negative absolute performance
 (for minimazation algorithm).

 Parameters
 ==========
 SMA: tuple
 SMA parameter tuple
 '''
 self.set_parameters(int(SMA[0]), int(SMA[1]))
 return -self.run_strategy()[0]

 def optimize_parameters(self, SMA1_range, SMA2_range):

Python Scripts | 117

 ''' Finds global maximum given the SMA parameter ranges.

 Parameters
 ==========
 SMA1_range, SMA2_range: tuple
 tuples of the form (start, end, step size)
 '''
 opt = brute(self.update_and_run, (SMA1_range, SMA2_range), finish=None)
 return opt, -self.update_and_run(opt)

if __name__ == '__main__':
 smabt = SMAVectorBacktester('EUR=', 42, 252,
 '2010-1-1', '2020-12-31')
 print(smabt.run_strategy())
 smabt.set_parameters(SMA1=20, SMA2=100)
 print(smabt.run_strategy())
 print(smabt.optimize_parameters((30, 56, 4), (200, 300, 4)))

Momentum Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on time series momentum:

#
Python Module with Class
for Vectorized Backtesting
of Momentum-Based Strategies
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import numpy as np
import pandas as pd

class MomVectorBacktester(object):
 ''' Class for the vectorized backtesting of
 momentum-based trading strategies.

 Attributes
 ==========
 symbol: str
 RIC (financial instrument) to work with
 start: str
 start date for data selection
 end: str
 end date for data selection
 amount: int, float
 amount to be invested at the beginning
 tc: float

118 | Chapter 4: Mastering Vectorized Backtesting

 proportional transaction costs (e.g., 0.5% = 0.005) per trade

 Methods
 =======
 get_data:
 retrieves and prepares the base data set
 run_strategy:
 runs the backtest for the momentum-based strategy
 plot_results:
 plots the performance of the strategy compared to the symbol
 '''

 def __init__(self, symbol, start, end, amount, tc):
 self.symbol = symbol
 self.start = start
 self.end = end
 self.amount = amount
 self.tc = tc
 self.results = None
 self.get_data()

 def get_data(self):
 ''' Retrieves and prepares the data.
 '''
 raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()
 raw = pd.DataFrame(raw[self.symbol])
 raw = raw.loc[self.start:self.end]
 raw.rename(columns={self.symbol: 'price'}, inplace=True)
 raw['return'] = np.log(raw / raw.shift(1))
 self.data = raw

 def run_strategy(self, momentum=1):
 ''' Backtests the trading strategy.
 '''
 self.momentum = momentum
 data = self.data.copy().dropna()
 data['position'] = np.sign(data['return'].rolling(momentum).mean())
 data['strategy'] = data['position'].shift(1) * data['return']
 # determine when a trade takes place
 data.dropna(inplace=True)
 trades = data['position'].diff().fillna(0) != 0
 # subtract transaction costs from return when trade takes place
 data['strategy'][trades] -= self.tc
 data['creturns'] = self.amount * data['return'].cumsum().apply(np.exp)
 data['cstrategy'] = self.amount * \
 data['strategy'].cumsum().apply(np.exp)
 self.results = data
 # absolute performance of the strategy
 aperf = self.results['cstrategy'].iloc[-1]
 # out-/underperformance of strategy
 operf = aperf - self.results['creturns'].iloc[-1]

Python Scripts | 119

 return round(aperf, 2), round(operf, 2)

 def plot_results(self):
 ''' Plots the cumulative performance of the trading strategy
 compared to the symbol.
 '''
 if self.results is None:
 print('No results to plot yet. Run a strategy.')
 title = '%s | TC = %.4f' % (self.symbol, self.tc)
 self.results[['creturns', 'cstrategy']].plot(title=title,
 figsize=(10, 6))

if __name__ == '__main__':
 mombt = MomVectorBacktester('XAU=', '2010-1-1', '2020-12-31',
 10000, 0.0)
 print(mombt.run_strategy())
 print(mombt.run_strategy(momentum=2))
 mombt = MomVectorBacktester('XAU=', '2010-1-1', '2020-12-31',
 10000, 0.001)
 print(mombt.run_strategy(momentum=2))

Mean Reversion Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on mean reversion:.

#
Python Module with Class
for Vectorized Backtesting
of Mean-Reversion Strategies
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
from MomVectorBacktester import *

class MRVectorBacktester(MomVectorBacktester):
 ''' Class for the vectorized backtesting of
 mean reversion-based trading strategies.

 Attributes
 ==========
 symbol: str
 RIC symbol with which to work
 start: str
 start date for data retrieval
 end: str
 end date for data retrieval
 amount: int, float

120 | Chapter 4: Mastering Vectorized Backtesting

 amount to be invested at the beginning
 tc: float
 proportional transaction costs (e.g., 0.5% = 0.005) per trade

 Methods
 =======
 get_data:
 retrieves and prepares the base data set
 run_strategy:
 runs the backtest for the mean reversion-based strategy
 plot_results:
 plots the performance of the strategy compared to the symbol
 '''

 def run_strategy(self, SMA, threshold):
 ''' Backtests the trading strategy.
 '''
 data = self.data.copy().dropna()
 data['sma'] = data['price'].rolling(SMA).mean()
 data['distance'] = data['price'] - data['sma']
 data.dropna(inplace=True)
 # sell signals
 data['position'] = np.where(data['distance'] > threshold,
 -1, np.nan)
 # buy signals
 data['position'] = np.where(data['distance'] < -threshold,
 1, data['position'])
 # crossing of current price and SMA (zero distance)
 data['position'] = np.where(data['distance'] *
 data['distance'].shift(1) < 0,
 0, data['position'])
 data['position'] = data['position'].ffill().fillna(0)
 data['strategy'] = data['position'].shift(1) * data['return']
 # determine when a trade takes place
 trades = data['position'].diff().fillna(0) != 0
 # subtract transaction costs from return when trade takes place
 data['strategy'][trades] -= self.tc
 data['creturns'] = self.amount * \
 data['return'].cumsum().apply(np.exp)
 data['cstrategy'] = self.amount * \
 data['strategy'].cumsum().apply(np.exp)
 self.results = data
 # absolute performance of the strategy
 aperf = self.results['cstrategy'].iloc[-1]
 # out-/underperformance of strategy
 operf = aperf - self.results['creturns'].iloc[-1]
 return round(aperf, 2), round(operf, 2)

if __name__ == '__main__':
 mrbt = MRVectorBacktester('GDX', '2010-1-1', '2020-12-31',
 10000, 0.0)

Python Scripts | 121

 print(mrbt.run_strategy(SMA=25, threshold=5))
 mrbt = MRVectorBacktester('GDX', '2010-1-1', '2020-12-31',
 10000, 0.001)
 print(mrbt.run_strategy(SMA=25, threshold=5))
 mrbt = MRVectorBacktester('GLD', '2010-1-1', '2020-12-31',
 10000, 0.001)
 print(mrbt.run_strategy(SMA=42, threshold=7.5))

122 | Chapter 4: Mastering Vectorized Backtesting

1 The books by Guido and Müller (2016) and VanderPlas (2016) provide practical, general introductions to
machine learning with Python.

CHAPTER 5

Predicting Market Movements with
Machine Learning

Skynet begins to learn at a geometric rate. It becomes self-aware at 2:14 a.m. Eastern
time, August 29th.

—The Terminator (Terminator 2)

Recent years have seen tremendous progress in the areas of machine learning, deep
learning, and artificial intelligence. The financial industry in general and algorithmic
traders around the globe in particular also try to benefit from these technological
advances.

This chapter introduces techniques from statistics, like linear regression, and from
machine learning, like logistic regression, to predict future price movements based on
past returns. It also illustrates the use of neural networks to predict stock market
movements. This chapter, of course, cannot replace a thorough introduction to
machine learning, but it can show, from a practitioner’s point of view, how to con‐
cretely apply certain techniques to the price prediction problem. For more details,
refer to Hilpisch (2020).1

This chapter covers the following types of trading strategies:

Linear regression-based strategies
Such strategies use linear regression to extrapolate a trend or to derive a financial
instrument’s direction of future price movement.

123

Machine learning-based strategies
In algorithmic trading it is generally enough to predict the direction of move‐
ment for a financial instrument as opposed to the absolute magnitude of that
movement. With this reasoning, the prediction problem basically boils down to a
classification problem of deciding whether there will be an upwards or down‐
wards movement. Different machine learning algorithms have been developed to
attack such classification problems. This chapter introduces logistic regression, as
a typical baseline algorithm, for classification.

Deep learning-based strategies
Deep learning has been popularized by such technological giants as Facebook.
Similar to machine learning algorithms, deep learning algorithms based on neu‐
ral networks allow one to attack classification problems faced in financial market
prediction.

The chapter is organized as follows. “Using Linear Regression for Market Movement
Prediction” on page 124 introduces linear regression as a technique to predict index
levels and the direction of price movements. “Using Machine Learning for Market
Movement Prediction” on page 139 focuses on machine learning and introduces
scikit-learn on the basis of linear regression. It mainly covers logistic regression as
an alternative linear model explicitly applicable to classification problems. “Using
Deep Learning for Market Movement Prediction” on page 153 introduces Keras to
predict the direction of stock market movements based on neural network
algorithms.

The major goal of this chapter is to provide practical approaches to predict future
price movements in financial markets based on past returns. The basic assumption is
that the efficient market hypothesis does not hold universally and that, similar to the
reasoning behind the technical analysis of stock price charts, the history might pro‐
vide some insights about the future that can be mined with statistical techniques. In
other words, it is assumed that certain patterns in financial markets repeat themselves
such that past observations can be leveraged to predict future price movements. More
details are covered in Hilpisch (2020).

Using Linear Regression for Market Movement Prediction
Ordinary least squares (OLS) and linear regression are decades-old statistical techni‐
ques that have proven useful in many different application areas. This section uses
linear regression for price prediction purposes. However, it starts with a quick review
of the basics and an introduction to the basic approach.

124 | Chapter 5: Predicting Market Movements with Machine Learning

A Quick Review of Linear Regression
Before applying linear regression, a quick review of the approach based on some
randomized data might be helpful. The example code uses NumPy to first generate an
ndarray object with data for the independent variable x. Based on this data, random‐
ized data (“noisy data”) for the dependent variable y is generated. NumPy provides two
functions, polyfit and polyval, for a convenient implementation of OLS regression
based on simple monomials. For a linear regression, the highest degree for the mono‐
mials to be used is set to 1. Figure 5-1 shows the data and the regression line:

In [1]: import os
 import random
 import numpy as np
 from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'
 os.environ['PYTHONHASHSEED'] = '0'

In [2]: x = np.linspace(0, 10)

In [3]: def set_seeds(seed=100):
 random.seed(seed)
 np.random.seed(seed)
 set_seeds()

In [4]: y = x + np.random.standard_normal(len(x))

In [5]: reg = np.polyfit(x, y, deg=1)

In [6]: reg
Out[6]: array([0.94612934, 0.22855261])

In [7]: plt.figure(figsize=(10, 6))
 plt.plot(x, y, 'bo', label='data')
 plt.plot(x, np.polyval(reg, x), 'r', lw=2.5,
 label='linear regression')
 plt.legend(loc=0);

Imports NumPy.

Imports matplotlib.

Generates an evenly spaced grid of floats for the x values between 0 and 10.

Fixes the seed values for all relevant random number generators.

Generates the randomized data for the y values.

Using Linear Regression for Market Movement Prediction | 125

OLS regression of degree 1 (that is, linear regression) is conducted.

Shows the optimal parameter values.

Creates a new figure object.

Plots the original data set as dots.

Plots the regression line.

Creates the legend.

Figure 5-1. Linear regression illustrated based on randomized data

The interval for the dependent variable x is x ∈ 0, 10 . Enlarging the interval to, say,
x ∈ 0, 20 allows one to “predict” values for the dependent variable y beyond the
domain of the original data set by an extrapolation given the optimal regression
parameters. Figure 5-2 visualizes the extrapolation:

In [8]: plt.figure(figsize=(10, 6))
 plt.plot(x, y, 'bo', label='data')
 xn = np.linspace(0, 20)
 plt.plot(xn, np.polyval(reg, xn), 'r', lw=2.5,
 label='linear regression')
 plt.legend(loc=0);

Generates an enlarged domain for the x values.

126 | Chapter 5: Predicting Market Movements with Machine Learning

Figure 5-2. Prediction (extrapolation) based on linear regression

The Basic Idea for Price Prediction
Price prediction based on time series data has to deal with one special feature: the
time-based ordering of the data. Generally, the ordering of the data is not important
for the application of linear regression. In the first example in the previous section,
the data on which the linear regression is implemented could have been compiled in
completely different orderings, while keeping the x and y pairs constant. Independent
of the ordering, the optimal regression parameters would have been the same.

However, in the context of predicting tomorrow’s index level, for example, it seems to
be of paramount importance to have the historic index levels in the correct order. If
this is the case, one would then try to predict tomorrow’s index level given the index
level of today, yesterday, the day before, etc. The number of days used as input is gen‐
erally called lags. Using today’s index level and the two more from before therefore
translates into three lags.

The next example casts this idea again into a rather simple context. The data the
example uses are the numbers from 0 to 11:

In [9]: x = np.arange(12)

In [10]: x
Out[10]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

Assume three lags for the regression. This implies three independent variables for the
regression and one dependent one. More concretely, 0, 1, and 2 are values of the

Using Linear Regression for Market Movement Prediction | 127

independent variables, while 3 would be the corresponding value for the dependent
variable. Moving forward on step (“in time”), the values are 1, 2, and 3, as well as 4.
The final combination of values is 8, 9, and 10 with 11. The problem, therefore, is to
cast this idea formally into a linear equation of the form A · x = b where A is a matrix
and x and b are vectors:

In [11]: lags = 3

In [12]: m = np.zeros((lags + 1, len(x) - lags))

In [13]: m[lags] = x[lags:]
 for i in range(lags):
 m[i] = x[i:i - lags]

In [14]: m.T
Out[14]: array([[0., 1., 2., 3.],
 [1., 2., 3., 4.],
 [2., 3., 4., 5.],
 [3., 4., 5., 6.],
 [4., 5., 6., 7.],
 [5., 6., 7., 8.],
 [6., 7., 8., 9.],
 [7., 8., 9., 10.],
 [8., 9., 10., 11.]])

Defines the number of lags.

Instantiates an ndarray object with the appropriate dimensions.

Defines the target values (dependent variable).

Iterates over the numbers from 0 to lags - 1.

Defines the basis vectors (independent variables)

Shows the transpose of the ndarray object m.

In the transposed ndarray object m, the first three columns contain the values for the
three independent variables. They together form the matrix A. The fourth and final
column represents the vector b. As a result, linear regression then yields the missing
vector x. Since there are now more independent variables, polyfit and polyval do
not work anymore. However, there is a function in the NumPy sub-package for linear
algebra (linalg) that allows one to solve general least-squares problems: lstsq. Only
the first element of the results array is needed since it contains the optimal regression
parameters:

In [15]: reg = np.linalg.lstsq(m[:lags].T, m[lags], rcond=None)[0]

128 | Chapter 5: Predicting Market Movements with Machine Learning

In [16]: reg
Out[16]: array([-0.66666667, 0.33333333, 1.33333333])

In [17]: np.dot(m[:lags].T, reg)
Out[17]: array([3., 4., 5., 6., 7., 8., 9., 10., 11.])

Implements the linear OLS regression.

Prints out the optimal parameters.

The dot product yields the prediction results.

This basic idea easily carries over to real-world financial time series data.

Predicting Index Levels
The next step is to translate the basic approach to time series data for a real financial
instrument, like the EUR/USD exchange rate:

In [18]: import pandas as pd

In [19]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()

In [20]: raw.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 12 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 AAPL.O 2516 non-null float64
 1 MSFT.O 2516 non-null float64
 2 INTC.O 2516 non-null float64
 3 AMZN.O 2516 non-null float64
 4 GS.N 2516 non-null float64
 5 SPY 2516 non-null float64
 6 .SPX 2516 non-null float64
 7 .VIX 2516 non-null float64
 8 EUR= 2516 non-null float64
 9 XAU= 2516 non-null float64
 10 GDX 2516 non-null float64
 11 GLD 2516 non-null float64
 dtypes: float64(12)
 memory usage: 255.5 KB

In [21]: symbol = 'EUR='

In [22]: data = pd.DataFrame(raw[symbol])

In [23]: data.rename(columns={symbol: 'price'}, inplace=True)

Using Linear Regression for Market Movement Prediction | 129

Imports the pandas package.

Retrieves end-of-day (EOD) data and stores it in a DataFrame object.

The time series data for the specified symbol is selected from the original Data
Frame.

Renames the single column to price.

Formally, the Python code from the preceding simple example hardly needs to be
changed to implement the regression-based prediction approach. Just the data object
needs to be replaced:

In [24]: lags = 5

In [25]: cols = []
 for lag in range(1, lags + 1):
 col = f'lag_{lag}'
 data[col] = data['price'].shift(lag)
 cols.append(col)
 data.dropna(inplace=True)

In [26]: reg = np.linalg.lstsq(data[cols], data['price'],
 rcond=None)[0]

In [27]: reg
Out[27]: array([0.98635864, 0.02292172, -0.04769849, 0.05037365,
 -0.01208135])

Takes the price column and shifts it by lag.

The optimal regression parameters illustrate what is typically called the random walk
hypothesis. This hypothesis states that stock prices or exchange rates, for example, fol‐
low a random walk with the consequence that the best predictor for tomorrow’s price
is today’s price. The optimal parameters seem to support such a hypothesis since
today’s price almost completely explains the predicted price level for tomorrow. The
four other values hardly have any weight assigned.

Figure 5-3 shows the EUR/USD exchange rate and the predicted values. Due to the
sheer amount of data for the multi-year time window, the two time series are indistin‐
guishable in the plot:

In [28]: data['prediction'] = np.dot(data[cols], reg)

In [29]: data[['price', 'prediction']].plot(figsize=(10, 6));

130 | Chapter 5: Predicting Market Movements with Machine Learning

Calculates the prediction values as the dot product.

Plots the price and prediction columns.

Figure 5-3. EUR/USD exchange rate and predicted values based on linear regression
(five lags)

Zooming in by plotting the results for a much shorter time window allows one to bet‐
ter distinguish the two time series. Figure 5-4 shows the results for a three months
time window. This plot illustrates that the prediction for tomorrow’s rate is roughly
today’s rate. The prediction is more or less a shift of the original rate to the right by
one trading day:

In [30]: data[['price', 'prediction']].loc['2019-10-1':].plot(
 figsize=(10, 6));

Applying linear OLS regression to predict rates for EUR/USD
based on historical rates provides support for the random walk
hypothesis. The results of the numerical example show that today’s
rate is the best predictor for tomorrow’s rate in a least-squares
sense.

Using Linear Regression for Market Movement Prediction | 131

Figure 5-4. EUR/USD exchange rate and predicted values based on linear regression
(five lags, three months only)

Predicting Future Returns
So far, the analysis is based on absolute rate levels. However, (log) returns might be a
better choice for such statistical applications due to, for example, their characteristic
of making the time series data stationary. The code to apply linear regression to the
returns data is almost the same as before. This time it is not only today’s return that is
relevant to predict tomorrow’s return, but the regression results are also completely
different in nature:

In [31]: data['return'] = np.log(data['price'] /
 data['price'].shift(1))

In [32]: data.dropna(inplace=True)

In [33]: cols = []
 for lag in range(1, lags + 1):
 col = f'lag_{lag}'
 data[col] = data['return'].shift(lag)
 cols.append(col)
 data.dropna(inplace=True)

In [34]: reg = np.linalg.lstsq(data[cols], data['return'],
 rcond=None)[0]

In [35]: reg

132 | Chapter 5: Predicting Market Movements with Machine Learning

Out[35]: array([-0.015689 , 0.00890227, -0.03634858, 0.01290924,
 -0.00636023])

Calculates the log returns.

Deletes all lines with NaN values.

Takes the returns column for the lagged data.

Figure 5-5 shows the returns data and the prediction values. As the figure impres‐
sively illustrates, linear regression obviously cannot predict the magnitude of future
returns to some significant extent:

In [36]: data['prediction'] = np.dot(data[cols], reg)

In [37]: data[['return', 'prediction']].iloc[lags:].plot(figsize=(10, 6));

Figure 5-5. EUR/USD log returns and predicted values based on linear regression (five
lags)

From a trading point of view, one might argue that it is not the magnitude of the fore‐
casted return that is relevant, but rather whether the direction is forecasted correctly
or not. To this end, a simple calculation yields an overview. Whenever the linear
regression gets the direction right, meaning that the sign of the forecasted return is
correct, the product of the market return and the predicted return is positive and
otherwise negative.

Using Linear Regression for Market Movement Prediction | 133

In the example case, the prediction is 1,250 times correct and 1,242 wrong, which
translates into a hit ratio of about 49.9%, or almost exactly 50%:

In [38]: hits = np.sign(data['return'] *
 data['prediction']).value_counts()

In [39]: hits
Out[39]: 1.0 1250
 -1.0 1242
 0.0 13
 dtype: int64

In [40]: hits.values[0] / sum(hits)
Out[40]: 0.499001996007984

Calculates the product of the market and predicted return, takes the sign of the
results and counts the values.

Prints out the counts for the two possible values.

Calculates the hit ratio defined as the number of correct predictions given all
predictions.

Predicting Future Market Direction
The question that arises is whether one can improve on the hit ratio by directly
implementing the linear regression based on the sign of the log returns that serve as
the dependent variable values. In theory at least, this simplifies the problem from pre‐
dicting an absolute return value to the sign of the return value. The only change in
the Python code to implement this reasoning is to use the sign values (that is, 1.0 or
-1.0 in Python) for the regression step. This indeed increases the number of hits to
1,301 and the hit ratio to about 51.9%—an improvement of two percentage points:

In [41]: reg = np.linalg.lstsq(data[cols], np.sign(data['return']),
 rcond=None)[0]

In [42]: reg
Out[42]: array([-5.11938725, -2.24077248, -5.13080606, -3.03753232,
 -2.14819119])

In [43]: data['prediction'] = np.sign(np.dot(data[cols], reg))

In [44]: data['prediction'].value_counts()
Out[44]: 1.0 1300
 -1.0 1205
 Name: prediction, dtype: int64

In [45]: hits = np.sign(data['return'] *
 data['prediction']).value_counts()

134 | Chapter 5: Predicting Market Movements with Machine Learning

2 See, for example, the discussion in The Tale of 10 Days.

In [46]: hits
Out[46]: 1.0 1301
 -1.0 1191
 0.0 13
 dtype: int64

In [47]: hits.values[0] / sum(hits)
Out[47]: 0.5193612774451097

This directly uses the sign of the return to be predicted for the regression.

Also, for the prediction step, only the sign is relevant.

Vectorized Backtesting of Regression-Based Strategy
The hit ratio alone does not tell too much about the economic potential of a trading
strategy using linear regression in the way presented so far. It is well known that the
ten best and worst days in the markets for a given period of time considerably influ‐
ence the overall performance of investments.2 In an ideal world, a long-short trader
would try, of course, to benefit from both best and worst days by going long and
short, respectively, on the basis of appropriate market timing indicators. Translated to
the current context, this implies that, in addition to the hit ratio, the quality of the
market timing matters. Therefore, a backtesting along the lines of the approach in
Chapter 4 can give a better picture of the value of regression for prediction.

Given the data that is already available, vectorized backtesting boils down to two lines
of Python code including visualization. This is due to the fact that the prediction val‐
ues already reflect the market positions (long or short). Figure 5-6 shows that, in-
sample, the strategy under the current assumptions outperforms the market
significantly (ignoring, among other things, transaction costs):

In [48]: data.head()
Out[48]: price lag_1 lag_2 lag_3 lag_4 lag_5 \
 Date
 2010-01-20 1.4101 -0.005858 -0.008309 -0.000551 0.001103 -0.001310
 2010-01-21 1.4090 -0.013874 -0.005858 -0.008309 -0.000551 0.001103
 2010-01-22 1.4137 -0.000780 -0.013874 -0.005858 -0.008309 -0.000551
 2010-01-25 1.4150 0.003330 -0.000780 -0.013874 -0.005858 -0.008309
 2010-01-26 1.4073 0.000919 0.003330 -0.000780 -0.013874 -0.005858

 prediction return
 Date
 2010-01-20 1.0 -0.013874
 2010-01-21 1.0 -0.000780

Using Linear Regression for Market Movement Prediction | 135

https://oreil.ly/KRH78

 2010-01-22 1.0 0.003330
 2010-01-25 1.0 0.000919
 2010-01-26 1.0 -0.005457

In [49]: data['strategy'] = data['prediction'] * data['return']

In [50]: data[['return', 'strategy']].sum().apply(np.exp)
Out[50]: return 0.784026
 strategy 1.654154
 dtype: float64

In [51]: data[['return', 'strategy']].dropna().cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Multiplies the prediction values (positionings) by the market returns.

Calculates the gross performance of the base instrument and the strategy.

Plots the gross performance of the base instrument and the strategy over time
(in-sample, no transaction costs).

Figure 5-6. Gross performance of EUR/USD and the regression-based strategy (five lags)

136 | Chapter 5: Predicting Market Movements with Machine Learning

The hit ratio of a prediction-based strategy is only one side of the
coin when it comes to overall strategy performance. The other side
is how well the strategy gets the market timing right. A strategy
correctly predicting the best and worst days over a certain period of
time might outperform the market even with a hit ratio below 50%.
On the other hand, a strategy with a hit ratio well above 50% might
still underperform the base instrument if it gets the rare, large
movements wrong.

Generalizing the Approach
“Linear Regression Backtesting Class” on page 167 presents a Python module con‐
taining a class for the vectorized backtesting of the regression-based trading strategy
in the spirit of Chapter 4. In addition to allowing for an arbitrary amount to invest
and proportional transaction costs, it allows the in-sample fitting of the linear regres‐
sion model and the out-of-sample evaluation. This means that the regression model is
fitted based on one part of the data set, say for the years 2010 to 2015, and is evalu‐
ated based on another part of the data set, say for the years 2016 and 2019. For all
strategies that involve an optimization or fitting step, this provides a more realistic
view on the performance in practice since it helps avoid the problems arising from
data snooping and the overfitting of models (see also “Data Snooping and Overfit‐
ting” on page 111).

Figure 5-7 shows that the regression-based strategy based on five lags does outper‐
form the EUR/USD base instrument for the particular configuration also out-of-
sample and before accounting for transaction costs:

In [52]: import LRVectorBacktester as LR

In [53]: lrbt = LR.LRVectorBacktester('EUR=', '2010-1-1', '2019-12-31',
 10000, 0.0)

In [54]: lrbt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31', lags=5)
Out[54]: (17166.53, 9442.42)

In [55]: lrbt.run_strategy('2010-1-1', '2017-12-31',
 '2018-1-1', '2019-12-31', lags=5)
Out[55]: (10160.86, 791.87)

In [56]: lrbt.plot_results()

Imports the module as LR.

Instantiates an object of the LRVectorBacktester class.

Trains and evaluates the strategy on the same data set.

Using Linear Regression for Market Movement Prediction | 137

Uses two different data sets for the training and evaluation steps.

Plots the out of sample strategy performance compared to the market.

Figure 5-7. Gross performance of EUR/USD and the regression-based strategy (five lags,
out-of-sample, before transaction costs)

Consider the GDX ETF. The strategy configuration chosen shows an outperformance
out-of-sample and after taking transaction costs into account (see Figure 5-8):

In [57]: lrbt = LR.LRVectorBacktester('GDX', '2010-1-1', '2019-12-31',
 10000, 0.002)

In [58]: lrbt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31', lags=7)
Out[58]: (23642.32, 17649.69)

In [59]: lrbt.run_strategy('2010-1-1', '2014-12-31',
 '2015-1-1', '2019-12-31', lags=7)
Out[59]: (28513.35, 14888.41)

In [60]: lrbt.plot_results()

Changes to the time series data for GDX.

138 | Chapter 5: Predicting Market Movements with Machine Learning

Figure 5-8. Gross performance of the GDX ETF and the regression-based strategy (seven
lags, out-of-sample, after transaction costs)

Using Machine Learning for Market Movement Prediction
Nowadays, the Python ecosystem provides a number of packages in the machine
learning field. The most popular of these is scikit-learn (see scikit-learn home
page), which is also one of the best documented and maintained packages. This sec‐
tion first introduces the API of the package based on linear regression, replicating
some of the results of the previous section. It then goes on to use logistic regression as
a classification algorithm to attack the problem of predicting the future market
direction.

Linear Regression with scikit-learn
To introduce the scikit-learn API, revisiting the basic idea behind the prediction
approach presented in this chapter is fruitful. Data preparation is the same as with
NumPy only:

In [61]: x = np.arange(12)

In [62]: x
Out[62]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

In [63]: lags = 3

In [64]: m = np.zeros((lags + 1, len(x) - lags))

Using Machine Learning for Market Movement Prediction | 139

http://scikit-learn.org
http://scikit-learn.org

In [65]: m[lags] = x[lags:]
 for i in range(lags):
 m[i] = x[i:i - lags]

Using scikit-learn for our purposes mainly consists of three steps:

1. Model selection: a model is to be picked and instantiated.
2. Model fitting: the model is to be fitted to the data at hand.
3. Prediction: given the fitted model, the prediction is conducted.

To apply linear regression, this translates into the following code that makes use of
the linear_model sub-package for generalized linear models (see scikit-learn lin‐
ear models page). By default, the LinearRegression model fits an intercept value:

In [66]: from sklearn import linear_model

In [67]: lm = linear_model.LinearRegression()

In [68]: lm.fit(m[:lags].T, m[lags])
Out[68]: LinearRegression()

In [69]: lm.coef_
Out[69]: array([0.33333333, 0.33333333, 0.33333333])

In [70]: lm.intercept_
Out[70]: 2.0

In [71]: lm.predict(m[:lags].T)
Out[71]: array([3., 4., 5., 6., 7., 8., 9., 10., 11.])

Imports the generalized linear model classes.

Instantiates a linear regression model.

Fits the model to the data.

Prints out the optimal regression parameters.

Prints out the intercept values.

Predicts the sought after values given the fitted model.

Setting the parameter fit_intercept to False gives the exact same regression results
as with NumPy and polyfit():

In [72]: lm = linear_model.LinearRegression(fit_intercept=False)

In [73]: lm.fit(m[:lags].T, m[lags])

140 | Chapter 5: Predicting Market Movements with Machine Learning

https://oreil.ly/5XoG1
https://oreil.ly/5XoG1

Out[73]: LinearRegression(fit_intercept=False)

In [74]: lm.coef_
Out[74]: array([-0.66666667, 0.33333333, 1.33333333])

In [75]: lm.intercept_
Out[75]: 0.0

In [76]: lm.predict(m[:lags].T)
Out[76]: array([3., 4., 5., 6., 7., 8., 9., 10., 11.])

Forces a fit without intercept value.

This example already illustrates quite well how to apply scikit-learn to the predic‐
tion problem. Due to its consistent API design, the basic approach carries over to
other models, as well.

A Simple Classification Problem
In a classification problem, it has to be decided to which of a limited set of categories
(“classes”) a new observation belongs. A classical problem studied in machine learn‐
ing is the identification of handwritten digits from 0 to 9. Such an identification leads
to a correct result, say 3. Or it leads to a wrong result, say 6 or 8, where all such wrong
results are equally wrong. In a financial market context, predicting the price of a
financial instrument can lead to a numerical result that is far off the correct one or
that is quite close to it. Predicting tomorrow’s market direction, there can only be a
correct or a (“completely”) wrong result. The latter is a classification problem with the
set of categories limited to, for example, “up” and “down” or “+1” and “–1” or “1” and
“0.” By contrast, the former problem is an estimation problem.

A simple example for a classification problem is found on Wikipedia under Logistic
Regression. The data set relates the number of hours studied to prepare for an exam
by a number of students to the success of each student in passing the exam or not.
While the number of hours studied is a real number (float object), the passing of the
exam is either True or False (that is, 1 or 0 in numbers). Figure 5-9 shows the data
graphically:

In [77]: hours = np.array([0.5, 0.75, 1., 1.25, 1.5, 1.75, 1.75, 2.,
 2.25, 2.5, 2.75, 3., 3.25, 3.5, 4., 4.25,
 4.5, 4.75, 5., 5.5])

In [78]: success = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
 0, 1, 1, 1, 1, 1, 1])

In [79]: plt.figure(figsize=(10, 6))
 plt.plot(hours, success, 'ro')
 plt.ylim(-0.2, 1.2);

Using Machine Learning for Market Movement Prediction | 141

https://oreil.ly/zg8gW
https://oreil.ly/zg8gW

The number of hours studied by the different students (sequence matters).

The success of each student in passing the exam (sequence matters).

Plots the data set taking hours as x values and success as y values.

Adjusts the limits of the y-axis.

Figure 5-9. Example data for classification problem

The basic question typically raised in a such a context is: given a certain number of
hours studied by a student (not in the data set), will they pass the exam or not? What
answer could linear regression give? Probably not one that is satisfying, as
Figure 5-10 shows. Given different numbers of hours studied, linear regression gives
(prediction) values mainly between 0 and 1, as well as lower and higher. But there can
only be failure or success as the outcome of taking the exam:

In [80]: reg = np.polyfit(hours, success, deg=1)

In [81]: plt.figure(figsize=(10, 6))
 plt.plot(hours, success, 'ro')
 plt.plot(hours, np.polyval(reg, hours), 'b')
 plt.ylim(-0.2, 1.2);

Implements a linear regression on the data set.

Plots the regression line in addition to the data set.

142 | Chapter 5: Predicting Market Movements with Machine Learning

Figure 5-10. Linear regression applied to the classification problem

This is where classification algorithms, like logistic regression and support vector
machines, come into play. For illustration, the application of logistic regression suffi‐
ces (see James et al. (2013, ch. 4) for more background information). The respective
class is also found in the linear_model sub-package. Figure 5-11 shows the result of
the following Python code. This time, there is a clear cut (prediction) value for every
different input value. The model predicts that students who studied for 0 to 2 hours
will fail. For all values equal to or higher than 2.75 hours, the model predicts that a
student passes the exam:

In [82]: lm = linear_model.LogisticRegression(solver='lbfgs')

In [83]: hrs = hours.reshape(1, -1).T

In [84]: lm.fit(hrs, success)
Out[84]: LogisticRegression()

In [85]: prediction = lm.predict(hrs)

In [86]: plt.figure(figsize=(10, 6))
 plt.plot(hours, success, 'ro', label='data')
 plt.plot(hours, prediction, 'b', label='prediction')
 plt.legend(loc=0)
 plt.ylim(-0.2, 1.2);

Using Machine Learning for Market Movement Prediction | 143

Instantiates the logistic regression model.

Reshapes the one-dimensional ndarray object to a two-dimensional one
(required by scikit-learn).

Implements the fitting step.

Implements the prediction step given the fitted model.

Figure 5-11. Logistic regression applied to the classification problem

However, as Figure 5-11 shows, there is no guarantee that 2.75 hours or more lead to
success. It is just “more probable” to succeed from that many hours on than to fail.
This probabilistic reasoning can also be analyzed and visualized based on the same
model instance, as the following code illustrates. The dashed line in Figure 5-12
shows the probability for succeeding (monotonically increasing). The dash-dotted
line shows the probability for failing (monotonically decreasing):

In [87]: prob = lm.predict_proba(hrs)

In [88]: plt.figure(figsize=(10, 6))
 plt.plot(hours, success, 'ro')
 plt.plot(hours, prediction, 'b')
 plt.plot(hours, prob.T[0], 'm--',
 label='$p(h)$ for zero')
 plt.plot(hours, prob.T[1], 'g-.',
 label='$p(h)$ for one')

144 | Chapter 5: Predicting Market Movements with Machine Learning

 plt.ylim(-0.2, 1.2)
 plt.legend(loc=0);

Predicts probabilities for succeeding and failing, respectively.

Plots the probabilities for failing.

Plots the probabilities for succeeding.

Figure 5-12. Probabilities for succeeding and failing, respectively, based on logistic
regression

scikit-learn does a good job of providing access to a great variety
of machine learning models in a unified way. The examples show
that the API for applying logistic regression does not differ from
the one for linear regression. scikit-learn, therefore, is well
suited to test a number of appropriate machine learning models in
a certain application scenario without altering the Python code
very much.

Equipped with the basics, the next step is to apply logistic regression to the problem
of predicting market direction.

Using Machine Learning for Market Movement Prediction | 145

Using Logistic Regression to Predict Market Direction
In machine learning, one generally speaks of features instead of independent or
explanatory variables as in a regression context. The simple classification example has
a single feature only: the number of hours studied. In practice, one often has more
than one feature that can be used for classification. Given the prediction approach
introduced in this chapter, one can identify a feature by a lag. Therefore, working with
three lags from the time series data means that there are three features. As possible
outcomes or categories, there are only +1 and -1 for an upwards and a downwards
movement, respectively. Although the wording changes, the formalism stays the
same, particularly with regard to deriving the matrix, now called the feature matrix.

The following code presents an alternative to creating a pandas DataFrame based “fea‐
ture matrix” to which the three step procedure applies equally well—if not in a more
Pythonic fashion. The feature matrix now is a sub-set of the columns in the original
data set:

In [89]: symbol = 'GLD'

In [90]: data = pd.DataFrame(raw[symbol])

In [91]: data.rename(columns={symbol: 'price'}, inplace=True)

In [92]: data['return'] = np.log(data['price'] / data['price'].shift(1))

In [93]: data.dropna(inplace=True)

In [94]: lags = 3

In [95]: cols = []
 for lag in range(1, lags + 1):
 col = 'lag_{}'.format(lag)
 data[col] = data['return'].shift(lag)
 cols.append(col)

In [96]: data.dropna(inplace=True)

Instantiates an empty list object to collect column names.

Creates a str object for the column name.

Adds a new column to the DataFrame object with the respective lag data.

Appends the column name to the list object.

Makes sure that the data set is complete.

146 | Chapter 5: Predicting Market Movements with Machine Learning

Logistic regression improves the hit ratio compared to linear regression by more than
a percentage point to about 54.5%. Figure 5-13 shows the performance of the strategy
based on logistic regression-based predictions. Although the hit ratio is higher, the
performance is worse than with linear regression:

In [97]: from sklearn.metrics import accuracy_score

In [98]: lm = linear_model.LogisticRegression(C=1e7, solver='lbfgs',
 multi_class='auto',
 max_iter=1000)

In [99]: lm.fit(data[cols], np.sign(data['return']))
Out[99]: LogisticRegression(C=10000000.0, max_iter=1000)

In [100]: data['prediction'] = lm.predict(data[cols])

In [101]: data['prediction'].value_counts()
Out[101]: 1.0 1983
 -1.0 529
 Name: prediction, dtype: int64

In [102]: hits = np.sign(data['return'].iloc[lags:] *
 data['prediction'].iloc[lags:]
).value_counts()

In [103]: hits
Out[103]: 1.0 1338
 -1.0 1159
 0.0 12
 dtype: int64

In [104]: accuracy_score(data['prediction'],
 np.sign(data['return']))
Out[104]: 0.5338375796178344

In [105]: data['strategy'] = data['prediction'] * data['return']

In [106]: data[['return', 'strategy']].sum().apply(np.exp)
Out[106]: return 1.289478
 strategy 2.458716
 dtype: float64

In [107]: data[['return', 'strategy']].cumsum().apply(np.exp).plot(
 figsize=(10, 6));

Instantiates the model object using a C value that gives less weight to the regulari‐
zation term (see the Generalized Linear Models page).

Fits the model based on the sign of the returns to be predicted.

Using Machine Learning for Market Movement Prediction | 147

https://oreil.ly/D819h

Generates a new column in the DataFrame object and writes the prediction values
to it.

Shows the number of the resulting long and short positions, respectively.

Calculates the number of correct and wrong predictions.

The accuracy (hit ratio) is 53.3% in this case.

However, the gross performance of the strategy…

…is much higher when compared with the passive benchmark investment.

Figure 5-13. Gross performance of GLD ETF and the logistic regression-based strategy (3
lags, in-sample)

Increasing the number of lags used from three to five decreases the hit ratio but
improves the gross performance of the strategy to some extent (in-sample, before
transaction costs). Figure 5-14 shows the resulting performance:

In [108]: data = pd.DataFrame(raw[symbol])

In [109]: data.rename(columns={symbol: 'price'}, inplace=True)

In [110]: data['return'] = np.log(data['price'] / data['price'].shift(1))

In [111]: lags = 5

148 | Chapter 5: Predicting Market Movements with Machine Learning

In [112]: cols = []
 for lag in range(1, lags + 1):
 col = 'lag_%d' % lag
 data[col] = data['price'].shift(lag)
 cols.append(col)

In [113]: data.dropna(inplace=True)

In [114]: lm.fit(data[cols], np.sign(data['return']))
Out[114]: LogisticRegression(C=10000000.0, max_iter=1000)

In [115]: data['prediction'] = lm.predict(data[cols])

In [116]: data['prediction'].value_counts()
Out[116]: 1.0 2047
 -1.0 464
 Name: prediction, dtype: int64

In [117]: hits = np.sign(data['return'].iloc[lags:] *
 data['prediction'].iloc[lags:]
).value_counts()

In [118]: hits
Out[118]: 1.0 1331
 -1.0 1163
 0.0 12
 dtype: int64

In [119]: accuracy_score(data['prediction'],
 np.sign(data['return']))
Out[119]: 0.5312624452409399

In [120]: data['strategy'] = data['prediction'] * data['return']

In [121]: data[['return', 'strategy']].sum().apply(np.exp)
Out[121]: return 1.283110
 strategy 2.656833
 dtype: float64

In [122]: data[['return', 'strategy']].cumsum().apply(np.exp).plot(
 figsize=(10, 6));

Increases the number of lags to five.

Fits the model based on five lags.

There are now significantly more short positions with the new parametrization.

The accuracy (hit ratio) decreases to 53.1%.

The cumulative performance also increases significantly.

Using Machine Learning for Market Movement Prediction | 149

Figure 5-14. Gross performance of GLD ETF and the logistic regression-based strategy
(five lags, in-sample)

You have to be careful to not fall into the overfitting trap here. A
more realistic picture is obtained by an approach that uses training
data (= in-sample data) for the fitting of the model and test data (=
out-of-sample data) for the evaluation of the strategy performance.
This is done in the following section, when the approach is general‐
ized again in the form of a Python class.

Generalizing the Approach
“Classification Algorithm Backtesting Class” on page 170 presents a Python module
with a class for the vectorized backtesting of strategies based on linear models from
scikit-learn. Although only linear and logistic regression are implemented, the
number of models is easily increased. In principle, the ScikitVectorBacktester
class could inherit selected methods from the LRVectorBacktester but it is presented
in a self-contained fashion. This makes it easier to enhance and reuse this class for
practical applications.

Based on the ScikitBacktesterClass, an out-of-sample evaluation of the logistic
regression-based strategy is possible. The example uses the EUR/USD exchange rate
as the base instrument.

150 | Chapter 5: Predicting Market Movements with Machine Learning

Figure 5-15 illustrates that the strategy outperforms the base instrument during the
out-of-sample period (spanning the year 2019) however, without considering trans‐
action costs as before:

In [123]: import ScikitVectorBacktester as SCI

In [124]: scibt = SCI.ScikitVectorBacktester('EUR=',
 '2010-1-1', '2019-12-31',
 10000, 0.0, 'logistic')

In [125]: scibt.run_strategy('2015-1-1', '2019-12-31',
 '2015-1-1', '2019-12-31', lags=15)
Out[125]: (12192.18, 2189.5)

In [126]: scibt.run_strategy('2016-1-1', '2018-12-31',
 '2019-1-1', '2019-12-31', lags=15)
Out[126]: (10580.54, 729.93)

In [127]: scibt.plot_results()

Figure 5-15. Gross performance of S&P 500 and the out-of-sample logistic regression-
based strategy (15 lags, no transaction costs)

As another example, consider the same strategy applied to the GDX ETF, for which an
out-of-sample outperformance (over the year 2018) is shown in Figure 5-16 (before
transaction costs):

In [128]: scibt = SCI.ScikitVectorBacktester('GDX',
 '2010-1-1', '2019-12-31',
 10000, 0.00, 'logistic')

Using Machine Learning for Market Movement Prediction | 151

In [129]: scibt.run_strategy('2013-1-1', '2017-12-31',
 '2018-1-1', '2018-12-31', lags=10)
Out[129]: (12686.81, 4032.73)

In [130]: scibt.plot_results()

Figure 5-16. Gross performance of GDX ETF and the logistic regression-based strategy (10
lags, out-of-sample, no transaction costs)

Figure 5-17 shows how the gross performance is diminished—leading even to a net
loss—when taking transaction costs into account, while keeping all other parameters
constant:

In [131]: scibt = SCI.ScikitVectorBacktester('GDX',
 '2010-1-1', '2019-12-31',
 10000, 0.0025, 'logistic')

In [132]: scibt.run_strategy('2013-1-1', '2017-12-31',
 '2018-1-1', '2018-12-31', lags=10)
Out[132]: (9588.48, 934.4)

In [133]: scibt.plot_results()

152 | Chapter 5: Predicting Market Movements with Machine Learning

Figure 5-17. Gross performance of GDX ETF and the logistic regression-based strategy (10
lags, out-of-sample, with transaction costs)

Applying sophisticated machine learning techniques to stock mar‐
ket prediction often yields promising results early on. In several
examples, the strategies backtested outperform the base instrument
significantly in-sample. Quite often, such stellar performances are
due to a mix of simplifying assumptions and also due to an overfit‐
ting of the prediction model. For example, testing the very same
strategy instead of in-sample on an out-of-sample data set and
adding transaction costs—as two ways of getting to a more realistic
picture—often shows that the performance of the considered strat‐
egy “suddenly” trails the base instrument performance-wise or
turns to a net loss.

Using Deep Learning for Market Movement Prediction
Right from the open sourcing and publication by Google, the deep learning library
TensorFlow has attracted much interest and wide-spread application. This section
applies TensorFlow in the same way that the previous section applied scikit-learn
to the prediction of stock market movements modeled as a classification problem.
However, TensorFlow is not used directly; it is rather used via the equally popular
Keras deep learning package. Keras can be thought of as providing a higher level
abstraction to the TensorFlow package with an easier to understand and use API.

Using Deep Learning for Market Movement Prediction | 153

http://tensorflow.org
http://keras.io

3 For details, see https://oreil.ly/hOwsE.

The libraries are best installed via pip install tensorflow and pip install

keras. scikit-learn also offers classes to apply neural networks to classification
problems.

For more background information on deep learning and Keras, see Goodfellow et al.
(2016) and Chollet (2017), respectively.

The Simple Classification Problem Revisited
To illustrate the basic approach of applying neural networks to classification prob‐
lems, the simple classification problem introduced in the previous section again
proves useful:

In [134]: hours = np.array([0.5, 0.75, 1., 1.25, 1.5, 1.75, 1.75, 2.,
 2.25, 2.5, 2.75, 3., 3.25, 3.5, 4., 4.25,
 4.5, 4.75, 5., 5.5])

In [135]: success = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
 0, 1, 1, 1, 1, 1, 1])

In [136]: data = pd.DataFrame({'hours': hours, 'success': success})

In [137]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 20 entries, 0 to 19
 Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 hours 20 non-null float64
 1 success 20 non-null int64
 dtypes: float64(1), int64(1)
 memory usage: 448.0 bytes

Stores the two data sub-sets in a DataFrame object.

Prints out the meta information for the DataFrame object.

With these preparations, MLPClassifier from scikit-learn can be imported and
straightforwardly applied.3 “MLP” in this context stands for multi-layer perceptron,
which is another expression for dense neural network. As before, the API to apply
neural networks with scikit-learn is basically the same:

In [138]: from sklearn.neural_network import MLPClassifier

In [139]: model = MLPClassifier(hidden_layer_sizes=[32],
 max_iter=1000, random_state=100)

154 | Chapter 5: Predicting Market Movements with Machine Learning

https://oreil.ly/hOwsE

Imports the MLPClassifier object from scikit-learn.

Instantiates the MLPClassifier object.

The following code fits the model, generates the predictions, and plots the results, as
shown in Figure 5-18:

In [140]: model.fit(data['hours'].values.reshape(-1, 1), data['success'])
Out[140]: MLPClassifier(hidden_layer_sizes=[32], max_iter=1000,
 random_state=100)

In [141]: data['prediction'] = model.predict(data['hours'].values.reshape(-1, 1))

In [142]: data.tail()
Out[142]: hours success prediction
 15 4.25 1 1
 16 4.50 1 1
 17 4.75 1 1
 18 5.00 1 1
 19 5.50 1 1

In [143]: data.plot(x='hours', y=['success', 'prediction'],
 style=['ro', 'b-'], ylim=[-.1, 1.1],
 figsize=(10, 6));

Fits the neural network for classification.

Generates the prediction values based on the fitted model.

Plots the original data and the prediction values.

This simple example shows that the application of the deep learning approach is quite
similar to the approach with scikit-learn and the LogisticRegression model
object. The API is basically the same; only the parameters are different.

Using Deep Learning for Market Movement Prediction | 155

Figure 5-18. Base data and prediction results with MLPClassifier for the simple classi‐
fication example

Using Deep Neural Networks to Predict Market Direction
The next step is to apply the approach to stock market data in the form of log returns
from a financial time series. First, the data needs to be retrieved and prepared:

In [144]: symbol = 'EUR='

In [145]: data = pd.DataFrame(raw[symbol])

In [146]: data.rename(columns={symbol: 'price'}, inplace=True)

In [147]: data['return'] = np.log(data['price'] /
 data['price'].shift(1))

In [148]: data['direction'] = np.where(data['return'] > 0, 1, 0)

In [149]: lags = 5

In [150]: cols = []
 for lag in range(1, lags + 1):
 col = f'lag_{lag}'
 data[col] = data['return'].shift(lag)
 cols.append(col)
 data.dropna(inplace=True)

156 | Chapter 5: Predicting Market Movements with Machine Learning

4 For details, refer to https://keras.io/layers/core/.

In [151]: data.round(4).tail()
Out[151]:
 price return direction lag_1 lag_2 lag_3 lag_4 lag_5
 Date
 2019-12-24 1.1087 0.0001 1 0.0007 -0.0038 0.0008 -0.0034 0.0006
 2019-12-26 1.1096 0.0008 1 0.0001 0.0007 -0.0038 0.0008 -0.0034
 2019-12-27 1.1175 0.0071 1 0.0008 0.0001 0.0007 -0.0038 0.0008
 2019-12-30 1.1197 0.0020 1 0.0071 0.0008 0.0001 0.0007 -0.0038
 2019-12-31 1.1210 0.0012 1 0.0020 0.0071 0.0008 0.0001 0.0007

Reads the data from the CSV file.

Picks the single time series column of interest.

Renames the only column to price.

Calculates the log returns and defines the direction as a binary column.

Creates the lagged data.

Creates new DataFrame columns with the log returns shifted by the respective
number of lags.

Deletes rows containing NaN values.

Prints out the final five rows indicating the “patterns” emerging in the five feature
columns.

The following code uses a dense neural network (DNN) with the Keras package4,
defines training and test data sub-sets, defines the feature columns, and labels and fits
the classifier. In the backend, Keras uses the TensorFlow package to accomplish the
task. Figure 5-19 shows how the accuracy of the DNN classifier changes for both the
training and validation data sets during training. As validation data set, 20% of the
training data (without shuffling) is used:

In [152]: import tensorflow as tf
 from keras.models import Sequential
 from keras.layers import Dense
 from keras.optimizers import Adam, RMSprop

In [153]: optimizer = Adam(learning_rate=0.0001)

In [154]: def set_seeds(seed=100):
 random.seed(seed)
 np.random.seed(seed)

Using Deep Learning for Market Movement Prediction | 157

https://keras.io/layers/core/

 tf.random.set_seed(100)

In [155]: set_seeds()
 model = Sequential()
 model.add(Dense(64, activation='relu',
 input_shape=(lags,)))
 model.add(Dense(64, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))
 model.compile(optimizer=optimizer,
 loss='binary_crossentropy',
 metrics=['accuracy'])

In [156]: cutoff = '2017-12-31'

In [157]: training_data = data[data.index < cutoff].copy()

In [158]: mu, std = training_data.mean(), training_data.std()

In [159]: training_data_ = (training_data - mu) / std

In [160]: test_data = data[data.index >= cutoff].copy()

In [161]: test_data_ = (test_data - mu) / std

In [162]: %%time
 model.fit(training_data[cols],
 training_data['direction'],
 epochs=50, verbose=False,
 validation_split=0.2, shuffle=False)
 CPU times: user 4.86 s, sys: 989 ms, total: 5.85 s
 Wall time: 3.34 s

Out[162]: <tensorflow.python.keras.callbacks.History at 0x7f996a0a2880>

In [163]: res = pd.DataFrame(model.history.history)

In [164]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');

Imports the TensorFlow package.

Imports the required model object from Keras.

Imports the relevant layer object from Keras.

A Sequential model is instantiated.

The hidden layers and the output layer are defined.

Compiles the Sequential model object for classification.

158 | Chapter 5: Predicting Market Movements with Machine Learning

Defines the cutoff date between the training and test data.

Defines the training and test data sets.

Normalizes the features data by Gaussian normalization.

Fits the model to the training data set.

Figure 5-19. Accuracy of DNN classifier on training and validation data per training
step

Equipped with the fitted classifier, the model can generate predictions on the training
data set. Figure 5-20 shows the strategy gross performance compared to the base
instrument (in-sample):

In [165]: model.evaluate(training_data_[cols], training_data['direction'])
 63/63 [==============================] - 0s 586us/step - loss: 0.7556 -
 accuracy: 0.5152

Out[165]: [0.7555528879165649, 0.5151968002319336]

In [166]: pred = np.where(model.predict(training_data_[cols]) > 0.5, 1, 0)

In [167]: pred[:30].flatten()
Out[167]: array([0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,
 0, 0, 0, 1, 0, 1, 0, 1, 0, 0])

In [168]: training_data['prediction'] = np.where(pred > 0, 1, -1)

Using Deep Learning for Market Movement Prediction | 159

In [169]: training_data['strategy'] = (training_data['prediction'] *
 training_data['return'])

In [170]: training_data[['return', 'strategy']].sum().apply(np.exp)
Out[170]: return 0.826569
 strategy 1.317303
 dtype: float64

In [171]: training_data[['return', 'strategy']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Predicts the market direction in-sample.

Transforms the predictions into long-short positions, +1 and -1.

Calculates the strategy returns given the positions.

Plots and compares the strategy performance to the benchmark performance (in-
sample).

Figure 5-20. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (in-sample, no transaction costs)

The strategy seems to perform somewhat better than the base instrument on the
training data set (in-sample, without transaction costs). However, the more interest‐
ing question is how it performs on the test data set (out-of-sample). After a wobbly
start, the strategy also outperforms the base instrument out-of-sample, as Figure 5-21

160 | Chapter 5: Predicting Market Movements with Machine Learning

illustrates. This is despite the fact that the accuracy of the classifier is only slightly
above 50% on the test data set:

In [172]: model.evaluate(test_data_[cols], test_data['direction'])
 16/16 [==============================] - 0s 676us/step - loss: 0.7292 -
 accuracy: 0.5050

Out[172]: [0.7292129993438721, 0.5049701929092407]

In [173]: pred = np.where(model.predict(test_data_[cols]) > 0.5, 1, 0)

In [174]: test_data['prediction'] = np.where(pred > 0, 1, -1)

In [175]: test_data['prediction'].value_counts()
Out[175]: -1 368
 1 135
 Name: prediction, dtype: int64

In [176]: test_data['strategy'] = (test_data['prediction'] *
 test_data['return'])

In [177]: test_data[['return', 'strategy']].sum().apply(np.exp)
Out[177]: return 0.934478
 strategy 1.109065
 dtype: float64

In [178]: test_data[['return', 'strategy']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Figure 5-21. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (out-of-sample, no transaction costs)

Using Deep Learning for Market Movement Prediction | 161

Adding Different Types of Features
So far, the analysis mainly focuses on the log returns directly. It is, of course, possible
not only to add more classes/categories but also to add other types of features to the
mix, such as ones based on momentum, volatility, or distance measures. The code that
follows derives the additional features and adds them to the data set:

In [179]: data['momentum'] = data['return'].rolling(5).mean().shift(1)

In [180]: data['volatility'] = data['return'].rolling(20).std().shift(1)

In [181]: data['distance'] = (data['price'] -
 data['price'].rolling(50).mean()).shift(1)

In [182]: data.dropna(inplace=True)

In [183]: cols.extend(['momentum', 'volatility', 'distance'])

In [184]: print(data.round(4).tail())

 price return direction lag_1 lag_2 lag_3 lag_4 lag_5
 Date

 2019-12-24 1.1087 0.0001 1 0.0007 -0.0038 0.0008 -0.0034 0.0006
 2019-12-26 1.1096 0.0008 1 0.0001 0.0007 -0.0038 0.0008 -0.0034
 2019-12-27 1.1175 0.0071 1 0.0008 0.0001 0.0007 -0.0038 0.0008
 2019-12-30 1.1197 0.0020 1 0.0071 0.0008 0.0001 0.0007 -0.0038
 2019-12-31 1.1210 0.0012 1 0.0020 0.0071 0.0008 0.0001 0.0007

 momentum volatility distance
 Date
 2019-12-24 -0.0010 0.0024 0.0005
 2019-12-26 -0.0011 0.0024 0.0004
 2019-12-27 -0.0003 0.0024 0.0012
 2019-12-30 0.0010 0.0028 0.0089
 2019-12-31 0.0021 0.0028 0.0110

The momentum-based feature.

The volatility-based feature.

The distance-based feature.

The next steps are to redefine the training and test data sets, to normalize the features
data, and to update the model to reflect the new features columns:

In [185]: training_data = data[data.index < cutoff].copy()

In [186]: mu, std = training_data.mean(), training_data.std()

In [187]: training_data_ = (training_data - mu) / std

162 | Chapter 5: Predicting Market Movements with Machine Learning

In [188]: test_data = data[data.index >= cutoff].copy()

In [189]: test_data_ = (test_data - mu) / std

In [190]: set_seeds()
 model = Sequential()
 model.add(Dense(32, activation='relu',
 input_shape=(len(cols),)))
 model.add(Dense(32, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))
 model.compile(optimizer=optimizer,
 loss='binary_crossentropy',
 metrics=['accuracy'])

The input_shape parameter is adjusted to reflect the new number of features.

Based on the enriched feature set, the classifier can be trained. The in-sample perfor‐
mance of the strategy is quite a bit better than before, as illustrated in Figure 5-22:

In [191]: %%time
 model.fit(training_data_[cols], training_data['direction'],
 verbose=False, epochs=25)
 CPU times: user 2.32 s, sys: 577 ms, total: 2.9 s
 Wall time: 1.48 s

Out[191]: <tensorflow.python.keras.callbacks.History at 0x7f996d35c100>

In [192]: model.evaluate(training_data_[cols], training_data['direction'])
 62/62 [==============================] - 0s 649us/step - loss: 0.6816 -
 accuracy: 0.5646

Out[192]: [0.6816270351409912, 0.5646397471427917]

In [193]: pred = np.where(model.predict(training_data_[cols]) > 0.5, 1, 0)

In [194]: training_data['prediction'] = np.where(pred > 0, 1, -1)

In [195]: training_data['strategy'] = (training_data['prediction'] *
 training_data['return'])

In [196]: training_data[['return', 'strategy']].sum().apply(np.exp)
Out[196]: return 0.901074
 strategy 2.703377
 dtype: float64

In [197]: training_data[['return', 'strategy']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Using Deep Learning for Market Movement Prediction | 163

Figure 5-22. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (in-sample, additional features)

The final step is the evaluation of the classifier and the derivation of the strategy per‐
formance out-of-sample. The classifier also performs significantly better, ceteris pari‐
bus, when compared to the case without the additional features. As before, the start is
a bit wobbly (see Figure 5-23):

In [198]: model.evaluate(test_data_[cols], test_data['direction'])
 16/16 [==============================] - 0s 800us/step - loss: 0.6931 -
 accuracy: 0.5507

Out[198]: [0.6931276321411133, 0.5506958365440369]

In [199]: pred = np.where(model.predict(test_data_[cols]) > 0.5, 1, 0)

In [200]: test_data['prediction'] = np.where(pred > 0, 1, -1)

In [201]: test_data['prediction'].value_counts()
Out[201]: -1 335
 1 168
 Name: prediction, dtype: int64

In [202]: test_data['strategy'] = (test_data['prediction'] *
 test_data['return'])

In [203]: test_data[['return', 'strategy']].sum().apply(np.exp)
Out[203]: return 0.934478
 strategy 1.144385
 dtype: float64

164 | Chapter 5: Predicting Market Movements with Machine Learning

In [204]: test_data[['return', 'strategy']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Figure 5-23. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (out-of-sample, additional features)

The Keras package, in combination with the TensorFlow package as its backend,
allows one to make use of the most recent advances in deep learning, such as deep
neural network (DNN) classifiers, for algorithmic trading. The application is as
straightforward as applying other machine learning models with scikit-learn. The
approach illustrated in this section allows for an easy enhancement with regard to the
different types of features used.

As an exercise, it is worthwhile to code a Python class (in the spirit
of “Linear Regression Backtesting Class” on page 167 and “Classifi‐
cation Algorithm Backtesting Class” on page 170) that allows for a
more systematic and realistic usage of the Keras package for finan‐
cial market prediction and the backtesting of respective trading
strategies.

Using Deep Learning for Market Movement Prediction | 165

Conclusions
Predicting future market movements is the holy grail in finance. It means to find the
truth. It means to overcome efficient markets. If one can do it with a considerable
edge, then stellar investment and trading returns are the consequence. This chapter
introduces statistical techniques from the fields of traditional statistics, machine
learning, and deep learning to predict the future market direction based on past
returns or similar financial quantities. Some first in-sample results are promising,
both for linear and logistic regression. However, a more reliable impression is gained
when evaluating such strategies out-of-sample and when factoring in transaction
costs.

This chapter does not claim to have found the holy grail. It rather offers a glimpse on
techniques that could prove useful in the search for it. The unified API of scikit-
learn also makes it easy to replace, for example, one linear model with another one.
In that sense, the ScikitBacktesterClass can be used as a starting point to explore
more machine learning models and to apply them to financial time series prediction.

The quote at the beginning of the chapter from the Terminator 2 movie from 1991 is
rather optimistic with regard to how fast and to what extent computers might be able
to learn and acquire consciousness. No matter if you believe that computers will
replace human beings in most areas of life or not, or if they indeed one day become
self-aware, they have proven useful to human beings as supporting devices in almost
any area of life. And algorithms like those used in machine learning, deep learning, or
artificial intelligence hold at least the promise to let them become better algorithmic
traders in the near future. A more detailed account of these topics and considerations
is found in Hilpisch (2020).

References and Further Resources
The books by Guido and Müller (2016) and VanderPlas (2016) provide practical
introductions to machine learning with Python and scikit-learn. The book by Hil‐
pisch (2020) focuses exclusively on the application of algorithms for machine and
deep learning to the problem of identifying statistical inefficiencies and exploiting
economic inefficiencies through algorithmic trading:

Guido, Sarah, and Andreas Müller. 2016. Introduction to Machine Learning with
Python: A Guide for Data Scientists. Sebastopol: O’Reilly.

Hilpisch, Yves. 2020. Artificial Intelligence in Finance: A Python-Based Guide. Sebasto‐
pol: O’Reilly.

VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working
with Data. Sebastopol: O’Reilly.

166 | Chapter 5: Predicting Market Movements with Machine Learning

The books by Hastie et al. (2008) and James et al. (2013) provide a thorough, mathe‐
matical overview of popular machine learning techniques and algorithms:

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2008. The Elements of Statis‐
tical Learning. 2nd ed. New York: Springer.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. Introduc‐
tion to Statistical Learning. New York: Springer.

For more background information on deep learning and Keras, refer to these books:

Chollet, Francois. 2017. Deep Learning with Python. Shelter Island: Manning.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cam‐

bridge: MIT Press. http://deeplearningbook.org.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

Linear Regression Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on linear regression used for the prediction of the direction of market
movements:

#
Python Module with Class
for Vectorized Backtesting
of Linear Regression-Based Strategies
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import numpy as np
import pandas as pd

class LRVectorBacktester(object):
 ''' Class for the vectorized backtesting of
 linear regression-based trading strategies.

 Attributes
 ==========
 symbol: str
 TR RIC (financial instrument) to work with
 start: str
 start date for data selection
 end: str

Python Scripts | 167

http://deeplearningbook.org

 end date for data selection
 amount: int, float
 amount to be invested at the beginning
 tc: float
 proportional transaction costs (e.g., 0.5% = 0.005) per trade

 Methods
 =======
 get_data:
 retrieves and prepares the base data set
 select_data:
 selects a sub-set of the data
 prepare_lags:
 prepares the lagged data for the regression
 fit_model:
 implements the regression step
 run_strategy:
 runs the backtest for the regression-based strategy
 plot_results:
 plots the performance of the strategy compared to the symbol
 '''

 def __init__(self, symbol, start, end, amount, tc):
 self.symbol = symbol
 self.start = start
 self.end = end
 self.amount = amount
 self.tc = tc
 self.results = None
 self.get_data()

 def get_data(self):
 ''' Retrieves and prepares the data.
 '''
 raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()
 raw = pd.DataFrame(raw[self.symbol])
 raw = raw.loc[self.start:self.end]
 raw.rename(columns={self.symbol: 'price'}, inplace=True)
 raw['returns'] = np.log(raw / raw.shift(1))
 self.data = raw.dropna()

 def select_data(self, start, end):
 ''' Selects sub-sets of the financial data.
 '''
 data = self.data[(self.data.index >= start) &
 (self.data.index <= end)].copy()
 return data

 def prepare_lags(self, start, end):
 ''' Prepares the lagged data for the regression and prediction steps.
 '''

168 | Chapter 5: Predicting Market Movements with Machine Learning

 data = self.select_data(start, end)
 self.cols = []
 for lag in range(1, self.lags + 1):
 col = f'lag_{lag}'
 data[col] = data['returns'].shift(lag)
 self.cols.append(col)
 data.dropna(inplace=True)
 self.lagged_data = data

 def fit_model(self, start, end):
 ''' Implements the regression step.
 '''
 self.prepare_lags(start, end)
 reg = np.linalg.lstsq(self.lagged_data[self.cols],
 np.sign(self.lagged_data['returns']),
 rcond=None)[0]
 self.reg = reg

 def run_strategy(self, start_in, end_in, start_out, end_out, lags=3):
 ''' Backtests the trading strategy.
 '''
 self.lags = lags
 self.fit_model(start_in, end_in)
 self.results = self.select_data(start_out, end_out).iloc[lags:]
 self.prepare_lags(start_out, end_out)
 prediction = np.sign(np.dot(self.lagged_data[self.cols], self.reg))
 self.results['prediction'] = prediction
 self.results['strategy'] = self.results['prediction'] * \
 self.results['returns']
 # determine when a trade takes place
 trades = self.results['prediction'].diff().fillna(0) != 0
 # subtract transaction costs from return when trade takes place
 self.results['strategy'][trades] -= self.tc
 self.results['creturns'] = self.amount * \
 self.results['returns'].cumsum().apply(np.exp)
 self.results['cstrategy'] = self.amount * \
 self.results['strategy'].cumsum().apply(np.exp)
 # gross performance of the strategy
 aperf = self.results['cstrategy'].iloc[-1]
 # out-/underperformance of strategy
 operf = aperf - self.results['creturns'].iloc[-1]
 return round(aperf, 2), round(operf, 2)

 def plot_results(self):
 ''' Plots the cumulative performance of the trading strategy
 compared to the symbol.
 '''
 if self.results is None:
 print('No results to plot yet. Run a strategy.')
 title = '%s | TC = %.4f' % (self.symbol, self.tc)
 self.results[['creturns', 'cstrategy']].plot(title=title,
 figsize=(10, 6))

Python Scripts | 169

if __name__ == '__main__':
 lrbt = LRVectorBacktester('.SPX', '2010-1-1', '2018-06-29', 10000, 0.0)
 print(lrbt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31'))
 print(lrbt.run_strategy('2010-1-1', '2015-12-31',
 '2016-1-1', '2019-12-31'))
 lrbt = LRVectorBacktester('GDX', '2010-1-1', '2019-12-31', 10000, 0.001)
 print(lrbt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31', lags=5))
 print(lrbt.run_strategy('2010-1-1', '2016-12-31',
 '2017-1-1', '2019-12-31', lags=5))

Classification Algorithm Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on logistic regression, as a standard classification algorithm, used for
the prediction of the direction of market movements:

#
Python Module with Class
for Vectorized Backtesting
of Machine Learning-Based Strategies
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import numpy as np
import pandas as pd
from sklearn import linear_model

class ScikitVectorBacktester(object):
 ''' Class for the vectorized backtesting of
 machine learning-based trading strategies.

 Attributes
 ==========
 symbol: str
 TR RIC (financial instrument) to work with
 start: str
 start date for data selection
 end: str
 end date for data selection
 amount: int, float
 amount to be invested at the beginning
 tc: float
 proportional transaction costs (e.g., 0.5% = 0.005) per trade
 model: str
 either 'regression' or 'logistic'

170 | Chapter 5: Predicting Market Movements with Machine Learning

 Methods
 =======
 get_data:
 retrieves and prepares the base data set
 select_data:
 selects a sub-set of the data
 prepare_features:
 prepares the features data for the model fitting
 fit_model:
 implements the fitting step
 run_strategy:
 runs the backtest for the regression-based strategy
 plot_results:
 plots the performance of the strategy compared to the symbol
 '''

 def __init__(self, symbol, start, end, amount, tc, model):
 self.symbol = symbol
 self.start = start
 self.end = end
 self.amount = amount
 self.tc = tc
 self.results = None
 if model == 'regression':
 self.model = linear_model.LinearRegression()
 elif model == 'logistic':
 self.model = linear_model.LogisticRegression(C=1e6,
 solver='lbfgs', multi_class='ovr', max_iter=1000)
 else:
 raise ValueError('Model not known or not yet implemented.')
 self.get_data()

 def get_data(self):
 ''' Retrieves and prepares the data.
 '''
 raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()
 raw = pd.DataFrame(raw[self.symbol])
 raw = raw.loc[self.start:self.end]
 raw.rename(columns={self.symbol: 'price'}, inplace=True)
 raw['returns'] = np.log(raw / raw.shift(1))
 self.data = raw.dropna()

 def select_data(self, start, end):
 ''' Selects sub-sets of the financial data.
 '''
 data = self.data[(self.data.index >= start) &
 (self.data.index <= end)].copy()
 return data

 def prepare_features(self, start, end):

Python Scripts | 171

 ''' Prepares the feature columns for the regression and prediction steps.
 '''
 self.data_subset = self.select_data(start, end)
 self.feature_columns = []
 for lag in range(1, self.lags + 1):
 col = 'lag_{}'.format(lag)
 self.data_subset[col] = self.data_subset['returns'].shift(lag)
 self.feature_columns.append(col)
 self.data_subset.dropna(inplace=True)

 def fit_model(self, start, end):
 ''' Implements the fitting step.
 '''
 self.prepare_features(start, end)
 self.model.fit(self.data_subset[self.feature_columns],
 np.sign(self.data_subset['returns']))

 def run_strategy(self, start_in, end_in, start_out, end_out, lags=3):
 ''' Backtests the trading strategy.
 '''
 self.lags = lags
 self.fit_model(start_in, end_in)
 # data = self.select_data(start_out, end_out)
 self.prepare_features(start_out, end_out)
 prediction = self.model.predict(
 self.data_subset[self.feature_columns])
 self.data_subset['prediction'] = prediction
 self.data_subset['strategy'] = (self.data_subset['prediction'] *
 self.data_subset['returns'])
 # determine when a trade takes place
 trades = self.data_subset['prediction'].diff().fillna(0) != 0
 # subtract transaction costs from return when trade takes place
 self.data_subset['strategy'][trades] -= self.tc
 self.data_subset['creturns'] = (self.amount *
 self.data_subset['returns'].cumsum().apply(np.exp))
 self.data_subset['cstrategy'] = (self.amount *
 self.data_subset['strategy'].cumsum().apply(np.exp))
 self.results = self.data_subset
 # absolute performance of the strategy
 aperf = self.results['cstrategy'].iloc[-1]
 # out-/underperformance of strategy
 operf = aperf - self.results['creturns'].iloc[-1]
 return round(aperf, 2), round(operf, 2)

 def plot_results(self):
 ''' Plots the cumulative performance of the trading strategy
 compared to the symbol.
 '''
 if self.results is None:
 print('No results to plot yet. Run a strategy.')
 title = '%s | TC = %.4f' % (self.symbol, self.tc)
 self.results[['creturns', 'cstrategy']].plot(title=title,

172 | Chapter 5: Predicting Market Movements with Machine Learning

 figsize=(10, 6))

if __name__ == '__main__':
 scibt = ScikitVectorBacktester('.SPX', '2010-1-1', '2019-12-31',
 10000, 0.0, 'regression')
 print(scibt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31'))
 print(scibt.run_strategy('2010-1-1', '2016-12-31',
 '2017-1-1', '2019-12-31'))
 scibt = ScikitVectorBacktester('.SPX', '2010-1-1', '2019-12-31',
 10000, 0.0, 'logistic')
 print(scibt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31'))
 print(scibt.run_strategy('2010-1-1', '2016-12-31',
 '2017-1-1', '2019-12-31'))
 scibt = ScikitVectorBacktester('.SPX', '2010-1-1', '2019-12-31',
 10000, 0.001, 'logistic')
 print(scibt.run_strategy('2010-1-1', '2019-12-31',
 '2010-1-1', '2019-12-31', lags=15))
 print(scibt.run_strategy('2010-1-1', '2013-12-31',
 '2014-1-1', '2019-12-31', lags=15))

Python Scripts | 173

CHAPTER 6

Building Classes for
Event-Based Backtesting

The actual tragedies of life bear no relation to one’s preconceived ideas. In the event,
one is always bewildered by their simplicity, their grandeur of design, and by that ele‐
ment of the bizarre which seems inherent in them.

—Jean Cocteau

On the one hand, vectorized backtesting with NumPy and pandas is generally conve‐
nient and efficient to implement due to the concise code, and it is fast to execute due
to these packages being optimized for such operations. However, the approach can‐
not cope with all types of trading strategies nor with all phenomena that the trading
reality presents an algorithmic trader with. When it comes to vectorized backtesting,
potential shortcomings of the approach are the following:

Look-ahead bias
Vectorized backtesting is based on the complete data set available and does not
take into account that new data arrives incrementally.

Simplification
For example, fixed transaction costs cannot be modeled by vectorization, which
is mainly based on relative returns. Also, fixed amounts per trade or the non-
divisibility of single financial instruments (for example, a share of a stock) cannot
be modeled properly.

Non-recursiveness
Algorithms, embodying trading strategies, might take recurse to state variables
over time, like profit and loss up to a certain point in time or similar path-
dependent statistics. Vectorization cannot cope with such features.

175

On the other hand, event-based backtesting allows one to address these issues by a
more realistic approach to model trading realities. On a basic level, an event is charac‐
terized by the arrival of new data. Backtesting a trading strategy for the Apple Inc.
stock based on end-of-day data, an event would be a new closing price for the Apple
stock. It can also be a change in an interest rate, or the hitting of a stop loss level.
Advantages of the event-based backtesting approach generally are the following:

Incremental approach
As in the trading reality, backtesting takes place on the premise that new data
arrives incrementally, tick-by-tick and quote-by-quote.

Realistic modeling
One has complete freedom to model those processes that are triggered by a new
and specific event.

Path dependency
It is straightforward to keep track of conditional, recursive, or otherwise path-
dependent statistics, such as the maximum or minimum price seen so far, and to
include them in the trading algorithm.

Reusability
Backtesting different types of trading strategies requires a similar base function‐
ality that can be implemented and unified through object-oriented program‐
ming.

Close to trading
Certain elements of an event-based backtesting system can sometimes also be
used for the automated implementation of the trading strategy.

In what follows, a new event is generally identified by a bar, which represents one
unit of new data. For example, events can be one-minute bars for an intraday trading
strategy or one-day bars for a trading strategy based on daily closing prices.

The chapter is organized as follows. “Backtesting Base Class” on page 177 presents a
base class for the event-based backtesting of trading strategies. “Long-Only Backtest‐
ing Class” on page 182 and “Long-Short Backtesting Class” on page 185 make use of
the base class to implement long-only and long-short backtesting classes, respectively.

The goals of this chapter are to understand event-based modeling, to create classes
that allow a more realistic backtesting, and to have a foundational backtesting infra‐
structure available as a starting point for further enhancements and refinements.

176 | Chapter 6: Building Classes for Event-Based Backtesting

Backtesting Base Class
When it comes to building the infrastructure—in the form of a Python class—for
event-based backtesting, several requirements must be met:

Retrieving and preparing data
The base class shall take care of the data retrieval and possibly the preparation for
the backtesting itself. To keep the discussion focused, end-of-day (EOD) data as
read from a CSV file is the type of data the base class shall allow for.

Helper and convenience functions
It shall provide a couple of helper and convenience functions that make backtest‐
ing easier. Examples are functions for plotting data, printing out state variables,
or returning date and price information for a given bar.

Placing orders
The base class shall cover the placing of basic buy and sell orders. For simplicity,
only market buy and sell orders are modeled.

Closing out positions
At the end of any backtesting, any market positions need to be closed out. The
base class shall take care of this final trade.

If the base class meets these requirements, respective classes to backtest strategies
based on simple moving averages (SMAs), momentum, or mean reversion (see Chap‐
ter 4), as well as on machine learning-based prediction (see Chapter 5), can be built
upon it. “Backtesting Base Class” on page 191 presents an implementation of such a
base class called BacktestBase. The following is a walk through the single methods of
this class to get an overview of its design.

With regard to the special method __main__, there are only a few noteworthy things.
First, the initial amount available is stored twice, both in a private attribute _amount
that is kept constant and in a regular attribute amount that represents the running bal‐
ance. The default assumption is that there are no transaction costs:

 def __init__(self, symbol, start, end, amount,
 ftc=0.0, ptc=0.0, verbose=True):
 self.symbol = symbol
 self.start = start
 self.end = end
 self.initial_amount = amount
 self.amount = amount
 self.ftc = ftc
 self.ptc = ptc
 self.units = 0
 self.position = 0
 self.trades = 0

Backtesting Base Class | 177

 self.verbose = verbose
 self.get_data()

Stores the initial amount in a private attribute.

Sets the starting cash balance value.

Defines fixed transaction costs per trade.

Defines proportional transaction costs per trade.

Units of the instrument (for example, number of shares) in the portfolio initially.

Sets the initial position to market neutral.

Sets the initial number of trades to zero.

Sets self.verbose to True to get full output.

During initialization, the get_data method is called, which retrieves EOD data from
a CSV file for the provided symbol and the given time interval. It also calculates the
log returns. The Python code that follows has been used extensively in Chapters 4
and 5. Therefore, it does not need to be explained in detail here:

 def get_data(self):
 ''' Retrieves and prepares the data.
 '''
 raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()
 raw = pd.DataFrame(raw[self.symbol])
 raw = raw.loc[self.start:self.end]
 raw.rename(columns={self.symbol: 'price'}, inplace=True)
 raw['return'] = np.log(raw / raw.shift(1))
 self.data = raw.dropna()

The .plot_data() method is just a simple helper method to plot the (adjusted close)
values for the provided symbol:

 def plot_data(self, cols=None):
 ''' Plots the closing prices for symbol.
 '''
 if cols is None:
 cols = ['price']
 self.data['price'].plot(figsize=(10, 6), title=self.symbol)

A method that gets frequently called is .get_date_price(). For a given bar, it
returns the date and price information:

 def get_date_price(self, bar):
 ''' Return date and price for bar.

178 | Chapter 6: Building Classes for Event-Based Backtesting

 '''
 date = str(self.data.index[bar])[:10]
 price = self.data.price.iloc[bar]
 return date, price

.print_balance() prints out the current cash balance given a certain bar,
while .print_net_wealth() does the same for the net wealth (= current balance plus
value of trading position):

 def print_balance(self, bar):
 ''' Print out current cash balance info.
 '''
 date, price = self.get_date_price(bar)
 print(f'{date} | current balance {self.amount:.2f}')

 def print_net_wealth(self, bar):
 ''' Print out current cash balance info.
 '''
 date, price = self.get_date_price(bar)
 net_wealth = self.units * price + self.amount
 print(f'{date} | current net wealth {net_wealth:.2f}')

Two core methods are .place_buy_order() and .place_sell_order(). They allow
the emulated buying and selling of units of a financial instrument. First is
the .place_buy_order() method, which is commented on in detail:

 def place_buy_order(self, bar, units=None, amount=None):
 ''' Place a buy order.
 '''
 date, price = self.get_date_price(bar)
 if units is None:
 units = int(amount / price)
 self.amount -= (units * price) * (1 + self.ptc) + self.ftc
 self.units += units
 self.trades += 1
 if self.verbose:
 print(f'{date} | selling {units} units at {price:.2f}')
 self.print_balance(bar)
 self.print_net_wealth(bar)

The date and price information for the given bar is retrieved.

If no value for units is given…

…the number of units is calculated given the value for amount. (Note that one
needs to be given.) The calculation does not include transaction costs.

The current cash balance is reduced by the cash outlays for the units of the
instrument to be bought plus the proportional and fixed transaction costs. Note
that it is not checked whether there is enough liquidity available or not.

Backtesting Base Class | 179

The value of self.units is increased by the number of units bought.

This increases the counter for the number of trades by one.

If self.verbose is True…

…print out information about trade execution…

…the current cash balance…

…and the current net wealth.

Second, the .place_sell_order() method, which has only two minor adjustments
compared to the .place_buy_order() method:

 def place_sell_order(self, bar, units=None, amount=None):
 ''' Place a sell order.
 '''
 date, price = self.get_date_price(bar)
 if units is None:
 units = int(amount / price)
 self.amount += (units * price) * (1 - self.ptc) - self.ftc
 self.units -= units
 self.trades += 1
 if self.verbose:
 print(f'{date} | selling {units} units at {price:.2f}')
 self.print_balance(bar)
 self.print_net_wealth(bar)

The current cash balance is increased by the proceeds of the sale minus transac‐
tions costs.

The value of self.units is decreased by the number of units sold.

No matter what kind of trading strategy is backtested, the position at the end of the
backtesting period needs to be closed out. The code in the BacktestBase class
assumes that the position is not liquidated but rather accounted for with its asset
value to calculate and print the performance figures:

 def close_out(self, bar):
 ''' Closing out a long or short position.
 '''
 date, price = self.get_date_price(bar)
 self.amount += self.units * price
 self.units = 0
 self.trades += 1
 if self.verbose:
 print(f'{date} | inventory {self.units} units at {price:.2f}')
 print('=' * 55)

180 | Chapter 6: Building Classes for Event-Based Backtesting

 print('Final balance [$] {:.2f}'.format(self.amount))
 perf = ((self.amount - self.initial_amount) /
 self.initial_amount * 100)
 print('Net Performance [%] {:.2f}'.format(perf))
 print('Trades Executed [#] {:.2f}'.format(self.trades))
 print('=' * 55)

No transaction costs are subtracted at the end.

The final balance consists of the current cash balance plus the value of the trad‐
ing position.

This calculates the net performance in percent.

The final part of the Python script is the __main__ section, which gets executed when
the file is run as a script:

if __name__ == '__main__':
 bb = BacktestBase('AAPL.O', '2010-1-1', '2019-12-31', 10000)
 print(bb.data.info())
 print(bb.data.tail())
 bb.plot_data()

It instantiates an object based on the BacktestBase class. This leads automatically to
the data retrieval for the symbol provided. Figure 6-1 shows the resulting plot. The
following output shows the meta information for the respective DataFrame object and
the five most recent data rows:

In [1]: %run BacktestBase.py
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2515 entries, 2010-01-05 to 2019-12-31
Data columns (total 2 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 price 2515 non-null float64
 1 return 2515 non-null float64
dtypes: float64(2)
memory usage: 58.9 KB
None
 price return
Date
2019-12-24 284.27 0.000950
2019-12-26 289.91 0.019646
2019-12-27 289.80 -0.000380
2019-12-30 291.52 0.005918
2019-12-31 293.65 0.007280

In [2]:

Backtesting Base Class | 181

Figure 6-1. Plot of data as retrieved for symbol by the BacktestBase class

The two subsequent sections present classes to backtest long-only and long-short
trading strategies. Since these classes rely on the base class presented in this section,
the implementation of the backtesting routines is rather concise.

Using object-oriented programming allows one to build a basic
backtesting infrastructure in the form of a Python class. Standard
functionality needed during the backtesting of different kinds of
algorithmic trading strategies is made available by such a class in a
non-redundant, easy-to-maintain fashion. It is also straightforward
to enhance the base class to provide more features by default that
might benefit a multitude of other classes built on top of it.

Long-Only Backtesting Class
Certain investor preferences or regulations might prohibit short selling as part of a
trading strategy. As a consequence, a trader or portfolio manager is only allowed to
enter long positions or to park capital in the form of cash or similar low risk assets,
like money market accounts. “Long-Only Backtesting Class” on page 194 shows the
code of a backtesting class for long-only strategies called BacktestLongOnly. Since it
relies on and inherits from the BacktestBase class, the code to implement the three
strategies based on SMAs, momentum, and mean reversion is rather concise.

182 | Chapter 6: Building Classes for Event-Based Backtesting

The method .run_mean_reversion_strategy() implements the backtesting proce‐
dure for the mean reversion-based strategy. This method is commented on in detail,
since it might be a bit trickier from an implementation standpoint. The basic insights,
however, easily carry over to the methods implementing the other two strategies:

 def run_mean_reversion_strategy(self, SMA, threshold):
 ''' Backtesting a mean reversion-based strategy.

 Parameters
 ==========
 SMA: int
 simple moving average in days
 threshold: float
 absolute value for deviation-based signal relative to SMA
 '''
 msg = f'\n\nRunning mean reversion strategy | '
 msg += f'SMA={SMA} & thr={threshold}'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0
 self.trades = 0
 self.amount = self.initial_amount

 self.data['SMA'] = self.data['price'].rolling(SMA).mean()

 for bar in range(SMA, len(self.data)):
 if self.position == 0:
 if (self.data['price'].iloc[bar] <
 self.data['SMA'].iloc[bar] - threshold):
 self.place_buy_order(bar, amount=self.amount)
 self.position = 1
 elif self.position == 1:
 if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:
 self.place_sell_order(bar, units=self.units)
 self.position = 0
 self.close_out(bar)

At the beginning, this method prints out an overview of the major parameters for
the backtesting.

The position is set to market neutral, which is done here for more clarity and
should be the case anyway.

The current cash balance is reset to the initial amount in case another backtest
run has overwritten the value.

This calculates the SMA values needed for the strategy implementation.

Long-Only Backtesting Class | 183

The start value SMA ensures that there are SMA values available to start imple‐
menting and backtesting the strategy.

The condition checks whether the position is market neutral.

If the position is market neutral, it is checked whether the current price is low
enough relative to the SMA to trigger a buy order and to go long.

This executes the buy order in the amount of the current cash balance.

The market position is set to long.

The condition checks whether the position is long the market.

If that is the case, it is checked whether the current price has returned to the SMA
level or above.

In such a case, a sell order is placed for all units of the financial instrument.

The market position is set to neutral again.

At the end of the backtesting period, the market position gets closed out if one is
open.

Executing the Python script in “Long-Only Backtesting Class” on page 194 yields
backtesting results, as shown in the following. The examples illustrate the influence of
fixed and proportional transaction costs. First, they eat into the performance in gen‐
eral. In any case, taking account of transaction costs reduces the performance. Sec‐
ond, they bring to light the importance of the number of trades a certain strategy
triggers over time. Without transaction costs, the momentum strategy significantly
outperforms the SMA-based strategy. With transaction costs, the SMA-based strategy
outperforms the momentum strategy since it relies on fewer trades:

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 0.0 | proportional costs 0.0
===
Final balance [$] 56204.95
Net Performance [%] 462.05
===

Running momentum strategy | 60 days
fixed costs 0.0 | proportional costs 0.0
===
Final balance [$] 136716.52
Net Performance [%] 1267.17
===

184 | Chapter 6: Building Classes for Event-Based Backtesting

Running mean reversion strategy | SMA=50 & thr=5
fixed costs 0.0 | proportional costs 0.0
===
Final balance [$] 53907.99
Net Performance [%] 439.08
===

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 10.0 | proportional costs 0.01
===
Final balance [$] 51959.62
Net Performance [%] 419.60
===

Running momentum strategy | 60 days
fixed costs 10.0 | proportional costs 0.01
===
Final balance [$] 38074.26
Net Performance [%] 280.74
===

Running mean reversion strategy | SMA=50 & thr=5
fixed costs 10.0 | proportional costs 0.01
===
Final balance [$] 15375.48
Net Performance [%] 53.75
===

Chapter 5 emphasizes that there are two sides of the performance
coin: the hit ratio for the correct prediction of the market direction
and the market timing (that is, when exactly the prediction is cor‐
rect). The results shown here illustrate that there is even a “third
side”: the number of trades triggered by a strategy. A strategy that
demands a higher frequency of trades has to bear higher transac‐
tion costs that easily eat up an alleged outperformance over
another strategy with no or low transaction costs. Among other
things, this often makes the case for low-cost passive investment
strategies based, for example, on exchange-traded funds (ETFs).

Long-Short Backtesting Class
“Long-Short Backtesting Class” on page 197 presents the BacktestLongShort class,
which also inherits from the BacktestBase class. In addition to implementing the
respective methods for the backtesting of the different strategies, it implements two

Long-Short Backtesting Class | 185

additional methods to go long and short, respectively. Only the .go_long() method
is commented on in detail, since the .go_short() method does exactly the same in
the opposite direction:

 def go_long(self, bar, units=None, amount=None):
 if self.position == -1:
 self.place_buy_order(bar, units=-self.units)
 if units:
 self.place_buy_order(bar, units=units)
 elif amount:
 if amount == 'all':
 amount = self.amount
 self.place_buy_order(bar, amount=amount)

 def go_short(self, bar, units=None, amount=None):
 if self.position == 1:
 self.place_sell_order(bar, units=self.units)
 if units:
 self.place_sell_order(bar, units=units)
 elif amount:
 if amount == 'all':
 amount = self.amount
 self.place_sell_order(bar, amount=amount)

In addition to bar, the methods expect either a number for the units of the traded
instrument or a currency amount.

In the .go_long() case, it is first checked whether there is a short position.

If so, this short position gets closed first.

It is then checked whether units is given…

…which triggers a buy order accordingly.

If amount is given, there can be two cases.

First, the value is all, which translates into…

…all the available cash in the current cash balance.

Second, the value is a number that is then simply taken to place the respective
buy order. Note that it is not checked whether there is enough liquidity or not.

186 | Chapter 6: Building Classes for Event-Based Backtesting

To keep the implementation concise throughout, there are many
simplifications in the Python classes that transfer responsibility to
the user. For example, the classes do not take care of whether there
is enough liquidity or not to execute a trade. This is an economic
simplification since, in theory, one could assume enough or even
unlimited credit for the algorithmic trader. As another example,
certain methods expect that at least one of two parameters (either
units or amount) is specified. There is no code that catches the case
where both are not set. This is a technical simplification.

The following presents the core loop from the .run_mean_reversion_strategy()
method of the BacktestLongShort class. Again, the mean-reversion strategy is
picked since the implementation is a bit more involved. For instance, it is the only
strategy that also leads to intermediate market neutral positions. This necessitates
more checks compared to the other two strategies, as seen in “Long-Short Backtesting
Class” on page 197:

 for bar in range(SMA, len(self.data)):
 if self.position == 0:
 if (self.data['price'].iloc[bar] <
 self.data['SMA'].iloc[bar] - threshold):
 self.go_long(bar, amount=self.initial_amount)
 self.position = 1
 elif (self.data['price'].iloc[bar] >
 self.data['SMA'].iloc[bar] + threshold):
 self.go_short(bar, amount=self.initial_amount)
 self.position = -1
 elif self.position == 1:
 if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:
 self.place_sell_order(bar, units=self.units)
 self.position = 0
 elif self.position == -1:
 if self.data['price'].iloc[bar] <= self.data['SMA'].iloc[bar]:
 self.place_buy_order(bar, units=-self.units)
 self.position = 0
 self.close_out(bar)

The first top-level condition checks whether the position is market neutral.

If this is true, it is then checked whether the current price is low enough relative
to the SMA.

In such a case, the .go_long() method is called…

…and the market position is set to long.

Long-Short Backtesting Class | 187

If the current price is high enough relative to the SMA, the .go_short() method
is called…

…and the market position is set to short.

The second top-level condition checks for a long market position.

In such a case, it is further checked whether the current price is at or above the
SMA level again.

If so, the long position gets closed out by selling all units in the portfolio.

The market position is reset to neutral.

Finally, the third top-level condition checks for a short position.

If the current price is at or below the SMA…

…a buy order for all units short is triggered to close out the short position.

The market position is then reset to neutral.

Executing the Python script in “Long-Short Backtesting Class” on page 197 yields
performance results that shed further light on strategy characteristics. One might be
inclined to assume that adding the flexibility to short a financial instrument yields
better results. However, reality shows that this is not necessarily true. All strategies
perform worse both without and after transaction costs. Some configurations even
pile up net losses or even a position of debt. Although these are specific results only,
they illustrate that it is risky in such a context to jump to conclusions too early and to
not take into account limits for piling up debt:

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 0.0 | proportional costs 0.0
===
Final balance [$] 45631.83
Net Performance [%] 356.32
===

Running momentum strategy | 60 days
fixed costs 0.0 | proportional costs 0.0
===
Final balance [$] 105236.62
Net Performance [%] 952.37
===

188 | Chapter 6: Building Classes for Event-Based Backtesting

Running mean reversion strategy | SMA=50 & thr=5
fixed costs 0.0 | proportional costs 0.0
===
Final balance [$] 17279.15
Net Performance [%] 72.79
===

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 10.0 | proportional costs 0.01
===
Final balance [$] 38369.65
Net Performance [%] 283.70
===

Running momentum strategy | 60 days
fixed costs 10.0 | proportional costs 0.01
===
Final balance [$] 6883.45
Net Performance [%] -31.17
===

Running mean reversion strategy | SMA=50 & thr=5
fixed costs 10.0 | proportional costs 0.01
===
Final balance [$] -5110.97
Net Performance [%] -151.11
===

Situations where trading might eat up all the initial equity and
might even lead to a position of debt arise, for example, in the con‐
text of trading contracts-for-difference (CFDs). These are highly
leveraged products for which the trader only needs to put down,
say, 5% of the position value as the initial margin (when the lever‐
age is 20). If the position value changes by, say, 10%, the trader
might be required to meet a corresponding margin call. For a long
position of 100,000 USD, equity of 5,000 USD is required. If the
position drops to 90,000 USD, the equity is wiped out and the
trader must put down 5,000 USD more to cover the losses. This
assumes that no margin stop outs are in place that would close the
position as soon as the remaining equity drops to 0 USD.

Long-Short Backtesting Class | 189

Conclusions
This chapter presents classes for the event-based backtesting of trading strategies.
Compared to vectorized backtesting, event-based backtesting makes intentional and
heavy use of loops and iterations to be able to tackle every single new event (generally,
the arrival of new data) individually. This allows for a more flexible approach that
can, among other things, easily cope with fixed transaction costs or more complex
strategies (and variations thereof).

“Backtesting Base Class” on page 177 presents a base class with certain methods use‐
ful for the backtesting of a variety of trading strategies. “Long-Only Backtesting
Class” on page 182 and “Long-Short Backtesting Class” on page 185 build on this
infrastructure to implement classes that allow the backtesting of long-only and long-
short trading strategies. Mainly for comparison reasons, the implementations include
all three strategies formally introduced in Chapter 4. Taking the classes of this chapter
as a starting point, enhancements and refinements are easily achieved.

References and Further Resources
Previous chapters introduce the basic ideas and concepts with regard to the three
trading strategies covered in this chapter. This chapter for the first time makes a more
systemic use of Python classes and object-oriented programming (OOP). A good
introduction to OOP with Python and Python’s data model is found in Ramalho
(2021). A more concise introduction to OOP applied to finance is found in Hilpisch
(2018, ch. 6):

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

Ramalho, Luciano. 2021. Fluent Python: Clear, Concise, and Effective Programming.
2nd ed. Sebastopol: O’Reilly.

The Python ecosystem provides a number of optional packages that allow the back‐
testing of algorithmic trading strategies. Four of them are the following:

• bt
• Backtrader
• PyAlgoTrade
• Zipline

Zipline, for example, powers the popular Quantopian platform for the backtesting of
algorithmic trading strategies but can also be installed and used locally.

190 | Chapter 6: Building Classes for Event-Based Backtesting

http://pmorissette.github.io/bt/
https://backtrader.com/
http://gbeced.github.io/pyalgotrade/
https://github.com/quantopian/zipline
http://quantopian.com

Although these packages might allow for a more thorough backtesting of algorithmic
trading strategies than the rather simple classes presented in this chapter, the main
goal of this book is to empower the reader and algorithmic trader to implement
Python code in a self-contained fashion. Even if standard packages are later used to
do the actual backtesting, a good understanding of the different approaches and their
mechanics is beneficial, if not required.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

Backtesting Base Class
The following Python code contains the base class for event-based backtesting:

#
Python Script with Base Class
for Event-Based Backtesting
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import numpy as np
import pandas as pd
from pylab import mpl, plt
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

class BacktestBase(object):
 ''' Base class for event-based backtesting of trading strategies.

 Attributes
 ==========
 symbol: str
 TR RIC (financial instrument) to be used
 start: str
 start date for data selection
 end: str
 end date for data selection
 amount: float
 amount to be invested either once or per trade
 ftc: float
 fixed transaction costs per trade (buy or sell)
 ptc: float
 proportional transaction costs per trade (buy or sell)

 Methods
 =======

Python Scripts | 191

 get_data:
 retrieves and prepares the base data set
 plot_data:
 plots the closing price for the symbol
 get_date_price:
 returns the date and price for the given bar
 print_balance:
 prints out the current (cash) balance
 print_net_wealth:
 prints out the current net wealth
 place_buy_order:
 places a buy order
 place_sell_order:
 places a sell order
 close_out:
 closes out a long or short position
 '''

 def __init__(self, symbol, start, end, amount,
 ftc=0.0, ptc=0.0, verbose=True):
 self.symbol = symbol
 self.start = start
 self.end = end
 self.initial_amount = amount
 self.amount = amount
 self.ftc = ftc
 self.ptc = ptc
 self.units = 0
 self.position = 0
 self.trades = 0
 self.verbose = verbose
 self.get_data()

 def get_data(self):
 ''' Retrieves and prepares the data.
 '''
 raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()
 raw = pd.DataFrame(raw[self.symbol])
 raw = raw.loc[self.start:self.end]
 raw.rename(columns={self.symbol: 'price'}, inplace=True)
 raw['return'] = np.log(raw / raw.shift(1))
 self.data = raw.dropna()

 def plot_data(self, cols=None):
 ''' Plots the closing prices for symbol.
 '''
 if cols is None:
 cols = ['price']
 self.data['price'].plot(figsize=(10, 6), title=self.symbol)

 def get_date_price(self, bar):

192 | Chapter 6: Building Classes for Event-Based Backtesting

 ''' Return date and price for bar.
 '''
 date = str(self.data.index[bar])[:10]
 price = self.data.price.iloc[bar]
 return date, price

 def print_balance(self, bar):
 ''' Print out current cash balance info.
 '''
 date, price = self.get_date_price(bar)
 print(f'{date} | current balance {self.amount:.2f}')

 def print_net_wealth(self, bar):
 ''' Print out current cash balance info.
 '''
 date, price = self.get_date_price(bar)
 net_wealth = self.units * price + self.amount
 print(f'{date} | current net wealth {net_wealth:.2f}')

 def place_buy_order(self, bar, units=None, amount=None):
 ''' Place a buy order.
 '''
 date, price = self.get_date_price(bar)
 if units is None:
 units = int(amount / price)
 self.amount -= (units * price) * (1 + self.ptc) + self.ftc
 self.units += units
 self.trades += 1
 if self.verbose:
 print(f'{date} | selling {units} units at {price:.2f}')
 self.print_balance(bar)
 self.print_net_wealth(bar)

 def place_sell_order(self, bar, units=None, amount=None):
 ''' Place a sell order.
 '''
 date, price = self.get_date_price(bar)
 if units is None:
 units = int(amount / price)
 self.amount += (units * price) * (1 - self.ptc) - self.ftc
 self.units -= units
 self.trades += 1
 if self.verbose:
 print(f'{date} | selling {units} units at {price:.2f}')
 self.print_balance(bar)
 self.print_net_wealth(bar)

 def close_out(self, bar):
 ''' Closing out a long or short position.
 '''
 date, price = self.get_date_price(bar)
 self.amount += self.units * price

Python Scripts | 193

 self.units = 0
 self.trades += 1
 if self.verbose:
 print(f'{date} | inventory {self.units} units at {price:.2f}')
 print('=' * 55)
 print('Final balance [$] {:.2f}'.format(self.amount))
 perf = ((self.amount - self.initial_amount) /
 self.initial_amount * 100)
 print('Net Performance [%] {:.2f}'.format(perf))
 print('Trades Executed [#] {:.2f}'.format(self.trades))
 print('=' * 55)

if __name__ == '__main__':
 bb = BacktestBase('AAPL.O', '2010-1-1', '2019-12-31', 10000)
 print(bb.data.info())
 print(bb.data.tail())
 bb.plot_data()

Long-Only Backtesting Class
The following presents Python code with a class for the event-based backtesting of
long-only strategies, with implementations for strategies based on SMAs, momentum,
and mean reversion:

#
Python Script with Long Only Class
for Event-Based Backtesting
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
from BacktestBase import *

class BacktestLongOnly(BacktestBase):

 def run_sma_strategy(self, SMA1, SMA2):
 ''' Backtesting an SMA-based strategy.

 Parameters
 ==========
 SMA1, SMA2: int
 shorter and longer term simple moving average (in days)
 '''
 msg = f'\n\nRunning SMA strategy | SMA1={SMA1} & SMA2={SMA2}'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0 # initial neutral position

194 | Chapter 6: Building Classes for Event-Based Backtesting

 self.trades = 0 # no trades yet
 self.amount = self.initial_amount # reset initial capital
 self.data['SMA1'] = self.data['price'].rolling(SMA1).mean()
 self.data['SMA2'] = self.data['price'].rolling(SMA2).mean()

 for bar in range(SMA2, len(self.data)):
 if self.position == 0:
 if self.data['SMA1'].iloc[bar] > self.data['SMA2'].iloc[bar]:
 self.place_buy_order(bar, amount=self.amount)
 self.position = 1 # long position
 elif self.position == 1:
 if self.data['SMA1'].iloc[bar] < self.data['SMA2'].iloc[bar]:
 self.place_sell_order(bar, units=self.units)
 self.position = 0 # market neutral
 self.close_out(bar)

 def run_momentum_strategy(self, momentum):
 ''' Backtesting a momentum-based strategy.

 Parameters
 ==========
 momentum: int
 number of days for mean return calculation
 '''
 msg = f'\n\nRunning momentum strategy | {momentum} days'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0 # initial neutral position
 self.trades = 0 # no trades yet
 self.amount = self.initial_amount # reset initial capital
 self.data['momentum'] = self.data['return'].rolling(momentum).mean()
 for bar in range(momentum, len(self.data)):
 if self.position == 0:
 if self.data['momentum'].iloc[bar] > 0:
 self.place_buy_order(bar, amount=self.amount)
 self.position = 1 # long position
 elif self.position == 1:
 if self.data['momentum'].iloc[bar] < 0:
 self.place_sell_order(bar, units=self.units)
 self.position = 0 # market neutral
 self.close_out(bar)

 def run_mean_reversion_strategy(self, SMA, threshold):
 ''' Backtesting a mean reversion-based strategy.

 Parameters
 ==========
 SMA: int
 simple moving average in days
 threshold: float

Python Scripts | 195

 absolute value for deviation-based signal relative to SMA
 '''
 msg = f'\n\nRunning mean reversion strategy | '
 msg += f'SMA={SMA} & thr={threshold}'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0
 self.trades = 0
 self.amount = self.initial_amount

 self.data['SMA'] = self.data['price'].rolling(SMA).mean()

 for bar in range(SMA, len(self.data)):
 if self.position == 0:
 if (self.data['price'].iloc[bar] <
 self.data['SMA'].iloc[bar] - threshold):
 self.place_buy_order(bar, amount=self.amount)
 self.position = 1
 elif self.position == 1:
 if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:
 self.place_sell_order(bar, units=self.units)
 self.position = 0
 self.close_out(bar)

if __name__ == '__main__':
 def run_strategies():
 lobt.run_sma_strategy(42, 252)
 lobt.run_momentum_strategy(60)
 lobt.run_mean_reversion_strategy(50, 5)
 lobt = BacktestLongOnly('AAPL.O', '2010-1-1', '2019-12-31', 10000,
 verbose=False)
 run_strategies()
 # transaction costs: 10 USD fix, 1% variable
 lobt = BacktestLongOnly('AAPL.O', '2010-1-1', '2019-12-31',
 10000, 10.0, 0.01, False)
 run_strategies()

196 | Chapter 6: Building Classes for Event-Based Backtesting

Long-Short Backtesting Class
The following Python code contains a class for the event-based backtesting of long-
short strategies, with implementations for strategies based on SMAs, momentum, and
mean reversion:

#
Python Script with Long-Short Class
for Event-Based Backtesting
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
from BacktestBase import *

class BacktestLongShort(BacktestBase):

 def go_long(self, bar, units=None, amount=None):
 if self.position == -1:
 self.place_buy_order(bar, units=-self.units)
 if units:
 self.place_buy_order(bar, units=units)
 elif amount:
 if amount == 'all':
 amount = self.amount
 self.place_buy_order(bar, amount=amount)

 def go_short(self, bar, units=None, amount=None):
 if self.position == 1:
 self.place_sell_order(bar, units=self.units)
 if units:
 self.place_sell_order(bar, units=units)
 elif amount:
 if amount == 'all':
 amount = self.amount
 self.place_sell_order(bar, amount=amount)

 def run_sma_strategy(self, SMA1, SMA2):
 msg = f'\n\nRunning SMA strategy | SMA1={SMA1} & SMA2={SMA2}'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0 # initial neutral position
 self.trades = 0 # no trades yet
 self.amount = self.initial_amount # reset initial capital
 self.data['SMA1'] = self.data['price'].rolling(SMA1).mean()
 self.data['SMA2'] = self.data['price'].rolling(SMA2).mean()

Python Scripts | 197

 for bar in range(SMA2, len(self.data)):
 if self.position in [0, -1]:
 if self.data['SMA1'].iloc[bar] > self.data['SMA2'].iloc[bar]:
 self.go_long(bar, amount='all')
 self.position = 1 # long position
 if self.position in [0, 1]:
 if self.data['SMA1'].iloc[bar] < self.data['SMA2'].iloc[bar]:
 self.go_short(bar, amount='all')
 self.position = -1 # short position
 self.close_out(bar)

 def run_momentum_strategy(self, momentum):
 msg = f'\n\nRunning momentum strategy | {momentum} days'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0 # initial neutral position
 self.trades = 0 # no trades yet
 self.amount = self.initial_amount # reset initial capital
 self.data['momentum'] = self.data['return'].rolling(momentum).mean()
 for bar in range(momentum, len(self.data)):
 if self.position in [0, -1]:
 if self.data['momentum'].iloc[bar] > 0:
 self.go_long(bar, amount='all')
 self.position = 1 # long position
 if self.position in [0, 1]:
 if self.data['momentum'].iloc[bar] <= 0:
 self.go_short(bar, amount='all')
 self.position = -1 # short position
 self.close_out(bar)

 def run_mean_reversion_strategy(self, SMA, threshold):
 msg = f'\n\nRunning mean reversion strategy | '
 msg += f'SMA={SMA} & thr={threshold}'
 msg += f'\nfixed costs {self.ftc} | '
 msg += f'proportional costs {self.ptc}'
 print(msg)
 print('=' * 55)
 self.position = 0 # initial neutral position
 self.trades = 0 # no trades yet
 self.amount = self.initial_amount # reset initial capital

 self.data['SMA'] = self.data['price'].rolling(SMA).mean()

 for bar in range(SMA, len(self.data)):
 if self.position == 0:
 if (self.data['price'].iloc[bar] <
 self.data['SMA'].iloc[bar] - threshold):
 self.go_long(bar, amount=self.initial_amount)
 self.position = 1
 elif (self.data['price'].iloc[bar] >

198 | Chapter 6: Building Classes for Event-Based Backtesting

 self.data['SMA'].iloc[bar] + threshold):
 self.go_short(bar, amount=self.initial_amount)
 self.position = -1
 elif self.position == 1:
 if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:
 self.place_sell_order(bar, units=self.units)
 self.position = 0
 elif self.position == -1:
 if self.data['price'].iloc[bar] <= self.data['SMA'].iloc[bar]:
 self.place_buy_order(bar, units=-self.units)
 self.position = 0
 self.close_out(bar)

if __name__ == '__main__':
 def run_strategies():
 lsbt.run_sma_strategy(42, 252)
 lsbt.run_momentum_strategy(60)
 lsbt.run_mean_reversion_strategy(50, 5)
 lsbt = BacktestLongShort('EUR=', '2010-1-1', '2019-12-31', 10000,
 verbose=False)
 run_strategies()
 # transaction costs: 10 USD fix, 1% variable
 lsbt = BacktestLongShort('AAPL.O', '2010-1-1', '2019-12-31',
 10000, 10.0, 0.01, False)
 run_strategies()

Python Scripts | 199

CHAPTER 7

Working with Real-Time Data and Sockets

If you want to find the secrets of the universe, think in terms of energy, frequency, and
vibration.

—Nikola Tesla

Developing trading ideas and backtesting them is a rather asynchronous and non-
critical process during which there are multiple steps that might or might not be
repeated, during which no capital is at stake, and during which performance and
speed are not the most important requirements. Turning to the markets to deploy a
trading strategy changes the rules considerably. Data arrives in real time and usually
in massive amounts, making a real-time processing of the data and the real-time deci‐
sion making based on the streaming data a necessity. This chapter is about working
with real-time data for which sockets are in general the technological tool of choice.
In this context, here are a few words on central technical terms:

Network socket
Endpoint of a connection in a computer network, also simply socket for short.

Socket address
Combination of an Internet Protocol (IP) address and a port number.

Socket protocol
A protocol defining and handling the socket communication, like the Transfer
Control Protocol (TCP).

Socket pair
Combination of a local and a remote socket that communicate with each other.

Socket API
The application programming interface allowing for the controlling of sockets
and their communication.

201

1 When speaking of simultaneously or at the same time, this is meant in a theoretical, idealized sense. In practi‐
cal applications, different distances between the sending and receiving sockets, network speeds, and other fac‐
tors affect the exact retrieval time per subscriber socket.

This chapter focuses on the use of ZeroMQ as a lightweight, fast, and scalable socket
programming library. It is available on multiple platforms with wrappers for the most
popular programming languages. ZeroMQ supports different patterns for socket com‐
munication. One of those patterns is the so-called publisher-subscriber (PUB-SUB) pat‐
tern where a single socket publishes data and multiple sockets simultaneously retrieve
the data. This is similar to a radio station that broadcasts its program that is simulta‐
neously listened to by thousands of people via radio devices.

Given the PUB-SUB pattern, a fundamental application scenario in algorithmic trading
is the retrieval of real-time financial data from an exchange, a trading platform, or a
data service provider. Suppose you have developed an intraday trading idea based on
the EUR/USD currency pair and have backtested it thoroughly. When deploying it,
you need to be able to receive and process the price data in real-time. This fits exactly
such a PUB-SUB pattern. A central instance broadcasts the new tick data as it becomes
available and you, as well as probably thousands of others, receive and process it at
the same time.1

This chapter is organized as follows. “Running a Simple Tick Data Server” on page
203 describes how to implement and run a tick data server for sample financial data.
“Connecting a Simple Tick Data Client” on page 206 implements a tick data client to
connect to the tick data server. “Signal Generation in Real Time” on page 208 shows
how to generate trading signals in real time based on data from the tick data server.
Finally, “Visualizing Streaming Data with Plotly” on page 211 introduces the Plotly
plotting package as an efficient way to plot streaming data in real time.

The goal of this chapter is to have a tool set and approaches available to be able to
work with streaming data in the context of algorithmic trading.

The code in this chapter makes heavy use of ports over which
socket communication takes place and requires the simultaneous
execution of two or more scripts at the same time. It is therefore
recommended to execute the codes in this chapter in different ter‐
minal instances, running different Python kernels. The execution
within a single Jupyter Notebook, for instance, does not work in
general. What works, however, is the execution of the tick data
server script (“Running a Simple Tick Data Server” on page 203) in
a terminal and the retrieval of data in a Jupyter Notebook (“Visual‐
izing Streaming Data with Plotly” on page 211).

202 | Chapter 7: Working with Real-Time Data and Sockets

http://zeromq.org
http://plot.ly

Running a Simple Tick Data Server
This section shows how to run a simple tick data server based on simulated financial
instrument prices. The model used for the data generation is the geometric Brownian
motion (without dividends) for which an exact Euler discretization is available, as
shown in Equation 7-1. Here, S is the instrument price, r is the constant short rate, σ
is the constant volatility factor, and z is a standard normal random variable. Δt is the
interval between two discrete observations of the instrument price.

Equation 7-1. Euler discretization of geometric Brownian motion

St = St − Δt · exp r − σ2

2 Δt + σ Δtz

Making use of this model, “Sample Tick Data Server” on page 218 presents a Python
script that implements a tick data server using ZeroMQ and a class called Instrument
Price to publish new, simulated tick data in a randomized fashion. The publishing is
randomized in two ways. First, the stock price value is based on a Monte Carlo simu‐
lation. Second is the length of time interval between two publishing events it random‐
ized. The remainder of this section explains the major parts of the script in detail.

The first part of the following script does some imports, among other things, for the
Python wrapper of ZeroMQ. It also instantiates the major objects needed to open a
socket of PUB type:

import zmq
import math
import time
import random

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind('tcp://0.0.0.0:5555')

This imports the Python wrapper for the ZeroMQ library.

A Context object is instantiated. It is the central object for the socket communi‐
cation.

The socket itself is defined based on the PUB socket type (“communication pat‐
tern”).

The socket gets bound to the local IP address (0.0.0.0 on Linux and Mac OS,
127.0.0.1 on Windows) and the port number 5555.

Running a Simple Tick Data Server | 203

The class InstrumentPrice is for the simulation of instrument price values over time.
As attributes, there are the major parameters for the geometric Brownian motion in
addition to the instrument symbol and the time at which an instance is created. The
only method .simulate_value() generates new values for the stock price given the
time passed since it has been called the last time and a random factor:

class InstrumentPrice(object):
 def __init__(self):
 self.symbol = 'SYMBOL'
 self.t = time.time()
 self.value = 100.
 self.sigma = 0.4
 self.r = 0.01

 def simulate_value(self):
 ''' Generates a new, random stock price.
 '''
 t = time.time()
 dt = (t - self.t) / (252 * 8 * 60 * 60)
 dt *= 500
 self.t = t
 self.value *= math.exp((self.r - 0.5 * self.sigma ** 2) * dt +
 self.sigma * math.sqrt(dt) * random.gauss(0, 1))
 return self.value

The attribute t stores the time of the initialization.

When the .simulate_value() method is called, the current time is recorded.

dt represents the time interval between the current time and the one stored in
self.t in (trading) year fractions.

To have larger instrument price movements, this line of code scales the dt vari‐
able (by an arbitrary factor).

The attribute t is updated with the current time, which represents the reference
point for the next call of the method.

Based on an Euler scheme for the geometric Brownian motion, a new instrument
price is simulated.

The main part of the script consists of the instantiation of an object of type Instru
mentPrice and an infinite while loop. During the while loop, a new instrument price
gets simulated, and a message is created, printed, and sent via the socket.

204 | Chapter 7: Working with Real-Time Data and Sockets

Finally, the execution pauses for a random amount of time:

ip = InstrumentPrice()

while True:
 msg = '{} {:.2f}'.format(ip.symbol, ip.simulate_value())
 print(msg)
 socket.send_string(msg)
 time.sleep(random.random() * 2)

This line instantiates an InstrumentPrice object.

An infinite while loop is started.

The message text gets generated based on the symbol attribute and a newly simu‐
lated stock price value.

The message str object is printed to the standard out.

It is also sent to subscribed sockets.

The execution of the loop is paused for a random amount of time (between 0 and
2 seconds), simulating the random arrival of new tick data in the markets.

Executing the script prints out messages as follows:

(base) pro:ch07 yves$ Python TickServer.py
SYMBOL 100.00
SYMBOL 99.65
SYMBOL 99.28
SYMBOL 99.09
SYMBOL 98.76
SYMBOL 98.83
SYMBOL 98.82
SYMBOL 98.92
SYMBOL 98.57
SYMBOL 98.81
SYMBOL 98.79
SYMBOL 98.80

At this point, it cannot yet be verified whether the script is also sending the same
message via the socket bound to tcp://0.0.0.0:5555 (tcp://127.0.0.1:5555 on
Windows). To this end, another socket subscribing to the publishing socket is needed
to complete the socket pair.

Running a Simple Tick Data Server | 205

Often, the Monte Carlo simulation of prices for financial instru‐
ments relies on homogeneous time intervals (like “one trading
day”). In many cases, this is a “good enough” approximation when
working with, say, end-of-day closing prices over longer horizons.
In the context of intraday tick data, the random arrival of the data
is an important characteristic that needs to be taken into account.
The Python script for the tick data server implements the random
arrival times by randomized time intervals during which it pauses
the execution.

Connecting a Simple Tick Data Client
The code for the tick data server is already quite concise, with the InstrumentPrice
simulation class representing the longest part. The code for a respective tick data cli‐
ent, as shown in “Tick Data Client” on page 219, is even more concise. It is only a few
lines of code that instantiate the main Context object, connect to the publishing
socket, and subscribe to the SYMBOL channel, which happens to be the only available
channel here. In the while loop, the string-based message is received and printed.
That makes for a rather short script.

The initial part of the following script is almost symmetrical to the tick data server
script:

import zmq

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://0.0.0.0:5555')
socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

This imports the Python wrapper for the ZeroMQ library.

For the client, the main object also is an instance of zmq.Context.

From here, the code is different; the socket type is set to SUB.

This socket connects to the respective IP address and port combination.

This line of code defines the so-called channel to which the socket subscribes.
Here, there is only one, but a specification is nevertheless required. In real-world
applications, however, you might receive data for a multitude of different sym‐
bols via a socket connection.

206 | Chapter 7: Working with Real-Time Data and Sockets

The while loop boils down to the retrieval of the messages sent by the server socket
and printing them out:

while True:
 data = socket.recv_string()
 print(data)

This socket receives data in an infinite loop.

This is the main line of code where the data (string-based message) is received.

data is printed to stdout.

The output of the Python script for the socket client is exactly the same as the one
from the Python script for the socket server:

(base) pro:ch07 yves$ Python TickClient.py
SYMBOL 100.00
SYMBOL 99.65
SYMBOL 99.28
SYMBOL 99.09
SYMBOL 98.76
SYMBOL 98.83
SYMBOL 98.82
SYMBOL 98.92
SYMBOL 98.57
SYMBOL 98.81
SYMBOL 98.79
SYMBOL 98.80

Retrieving data in the form of string-based messages via socket communication is
only a prerequisite for the very tasks to be accomplished based on the data, like gen‐
erating trading signals in real time or visualizing the data. This is what the two next
sections cover.

ZeroMQ allows the transmission of other object types, as well. For
example, there is an option to send a Python object via a socket.
To this end, the object is, by default, serialized and deserialized
with pickle. The respective methods to accomplish this
are .send_pyobj() and .recv_pyobj() (see The PyZMQ API). In
practice, however, platforms and data providers cater to a diverse
set of environments, with Python being only one out of many lan‐
guages. Therefore, string-based socket communication is often
used, for example, in combination with standard data formats such
as JSON.

Connecting a Simple Tick Data Client | 207

https://oreil.ly/ok2kc

Signal Generation in Real Time
An online algorithm is an algorithm based on data that is received incrementally (bit
by bit) over time. Such an algorithm only knows the current and previous states of
relevant variables and parameters, but nothing about the future. This is a realistic set‐
ting for financial trading algorithms for which any element of (perfect) foresight is to
be excluded. By contrast, an offline algorithm knows the complete data set from the
beginning. Many algorithms in computer science fall into the category of offline algo‐
rithms, such as a sorting algorithm over a list of numbers.

To generate signals in real time on the basis of an online algorithm, data needs to be
collected and processed over time. Consider, for example, a trading strategy based on
the time series momentum of the last three five-second intervals (see Chapter 4). Tick
data needs to be collected and then resampled, and the momentum needs to be calcu‐
lated based on the resampled data set. When time passes by, a continuous, incremen‐
tal updating takes place. “Momentum Online Algorithm” on page 219 presents a
Python script that implements the momentum strategy, as described previously as an
online algorithm. Technically, there are two major parts in addition to handling the
socket communication. First are the retrieval and storage of the tick data:

df = pd.DataFrame()
mom = 3
min_length = mom + 1

while True:
 data = socket.recv_string()
 t = datetime.datetime.now()
 sym, value = data.split()
 df = df.append(pd.DataFrame({sym: float(value)}, index=[t]))

Instantiates an empty pandas DataFrame to collect the tick data.

Defines the number of time intervals for the momentum calculation.

Specifies the (initial) minimum length for the signal generation to be triggered.

The retrieval of the tick data via the socket connection.

A timestamp is generated for the data retrieval.

The string-based message is split into the symbol and the numerical value (still a
str object here).

This line of code first generates a temporary DataFrame object with the new data
and then appends it to the existing DataFrame object.

208 | Chapter 7: Working with Real-Time Data and Sockets

Second is the resampling and processing of the data, as shown in the following
Python code. This happens based on the tick data collected up to a certain point in
time. During this step, log returns are calculated based on the resampled data and the
momentum is derived. The sign of the momentum defines the positioning to be
taken in the financial instrument:

 dr = df.resample('5s', label='right').last()
 dr['returns'] = np.log(dr / dr.shift(1))
 if len(dr) > min_length:
 min_length += 1
 dr['momentum'] = np.sign(dr['returns'].rolling(mom).mean())
 print('\n' + '=' * 51)
 print('NEW SIGNAL | {}'.format(datetime.datetime.now()))
 print('=' * 51)
 print(dr.iloc[:-1].tail())
 if dr['momentum'].iloc[-2] == 1.0:
 print('\nLong market position.')
 # take some action (e.g., place buy order)
 elif dr['momentum'].iloc[-2] == -1.0:
 print('\nShort market position.')
 # take some action (e.g., place sell order)

The tick data is resampled to a five-second interval, taking the last available tick
value as the relevant one.

This calculates the log returns over the five-second intervals.

This increases the minimum length of the resampled DataFrame object by one.

The momentum and, based on its sign, the positioning are derived given the log
returns from three resampled time intervals.

This prints the final five rows of the resampled DataFrame object.

A momentum value of 1.0 means a long market position. In production, the first
signal or a change in the signal then triggers certain actions, like placing an order
with the broker. Note that the second but last value of the momentum column is
used since the last value is based at this stage on incomplete data for the relevant
(not yet finished) time interval. Technically, this is due to using the pan
das .resample() method with the label='right' parametrization.

Similarly, a momentum value of -1.0 implies a short market position and poten‐
tially certain actions that might be triggered, such as a sell order with a broker.
Again, the second but last value from the momentum column is used.

When the script is executed, it takes some time, depending on the very parameters
chosen, until there is enough (resampled) data available to generate the first signal.

Signal Generation in Real Time | 209

Here is an intermediate example output of the online trading algorithm script:

(base) yves@pro ch07 $ python OnlineAlgorithm.py

===
NEW SIGNAL | 2020-05-23 11:33:31.233606
===
 SYMBOL ... momentum
2020-05-23 11:33:15 98.65 ... NaN
2020-05-23 11:33:20 98.53 ... NaN
2020-05-23 11:33:25 98.83 ... NaN
2020-05-23 11:33:30 99.33 ... 1.0

[4 rows x 3 columns]

Long market position.

===
NEW SIGNAL | 2020-05-23 11:33:36.185453
===
 SYMBOL ... momentum
2020-05-23 11:33:15 98.65 ... NaN
2020-05-23 11:33:20 98.53 ... NaN
2020-05-23 11:33:25 98.83 ... NaN
2020-05-23 11:33:30 99.33 ... 1.0
2020-05-23 11:33:35 97.76 ... -1.0

[5 rows x 3 columns]

Short market position.

===
NEW SIGNAL | 2020-05-23 11:33:40.077869
===
 SYMBOL ... momentum
2020-05-23 11:33:20 98.53 ... NaN
2020-05-23 11:33:25 98.83 ... NaN
2020-05-23 11:33:30 99.33 ... 1.0
2020-05-23 11:33:35 97.76 ... -1.0
2020-05-23 11:33:40 98.51 ... -1.0

[5 rows x 3 columns]

Short market position.

It is a good exercise to implement, based on the presented tick
client script, both an SMA-based strategy and a mean-reversion
strategy as an online algorithm.

210 | Chapter 7: Working with Real-Time Data and Sockets

Visualizing Streaming Data with Plotly
The visualization of streaming data in real time is generally a demanding task. Fortu‐
nately, there are quite a few technologies and Python packages available nowadays
that significantly simplify such a task. In what follows, we will work with Plotly,
which is both a technology and a service used to generate nice looking, interactive
plots for static and streaming data. To follow along, the plotly package needs to be
installed. Also, several Jupyter Lab extensions need to be installed when working with
Jupyter Lab. The following command should be executed on the terminal:

conda install plotly ipywidgets
jupyter labextension install jupyterlab-plotly
jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install plotlywidget

The Basics
Once the required packages and extension are installed, the generation of a streaming
plot is quite efficient. The first step is the creation of a Plotly figure widget:

In [1]: import zmq
 from datetime import datetime
 import plotly.graph_objects as go

In [2]: symbol = 'SYMBOL'

In [3]: fig = go.FigureWidget()
 fig.add_scatter()
 fig
Out[3]: FigureWidget({
 'data': [{'type': 'scatter', 'uid':
 'e1a65f25-287d-4021-a210-c2f41f32426a'}], 'layout': {'t…

This imports the graphical objects from plotly.

This instantiates a Plotly figure widget within the Jupyter Notebook.

The second step is to set up the socket communication with the sample tick data
server, which needs to run on the same machine in a separate Python process. The
incoming data is enriched by a timestamp and collected in list objects. These list
objects in turn are used to update the data objects of the figure widget (see
Figure 7-1):

In [4]: context = zmq.Context()

In [5]: socket = context.socket(zmq.SUB)

In [6]: socket.connect('tcp://0.0.0.0:5555')

Visualizing Streaming Data with Plotly | 211

http://plot.ly

In [7]: socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

In [8]: times = list()
 prices = list()

In [9]: for _ in range(50):
 msg = socket.recv_string()
 t = datetime.now()
 times.append(t)
 _, price = msg.split()
 prices.append(float(price))
 fig.data[0].x = times
 fig.data[0].y = prices

list object for the timestamps.

list object for the real-time prices.

Generates a timestamp and appends it.

Updates the data object with the amended x (times) and y (prices) data sets.

Figure 7-1. Plot of streaming price data, as retrieved in real time via socket connection

Three Real-Time Streams
A streaming plot with Plotly can have multiple graph objects. This comes in handy
when, for instance, two simple moving averages (SMAs) shall be visualized in real
time in addition to the price ticks. The following code instantiates again a figure
widget—this time with three scatter objects. The tick data from the sample tick data

212 | Chapter 7: Working with Real-Time Data and Sockets

server is collected in a pandas DataFrame object. The two SMAs are calculated after
each update from the socket. The amended data sets are used to update the data
object of the figure widget (see Figure 7-2):

In [10]: fig = go.FigureWidget()
 fig.add_scatter(name='SYMBOL')
 fig.add_scatter(name='SMA1', line=dict(width=1, dash='dot'),
 mode='lines+markers')
 fig.add_scatter(name='SMA2', line=dict(width=1, dash='dash'),
 mode='lines+markers')
 fig
Out[10]: FigureWidget({
 'data': [{'name': 'SYMBOL', 'type': 'scatter', 'uid':
 'bcf83157-f015-411b-a834-d5fd6ac509ba…

In [11]: import pandas as pd

In [12]: df = pd.DataFrame()

In [13]: for _ in range(75):
 msg = socket.recv_string()
 t = datetime.now()
 sym, price = msg.split()
 df = df.append(pd.DataFrame({sym: float(price)}, index=[t]))
 df['SMA1'] = df[sym].rolling(5).mean()
 df['SMA2'] = df[sym].rolling(10).mean()
 fig.data[0].x = df.index
 fig.data[1].x = df.index
 fig.data[2].x = df.index
 fig.data[0].y = df[sym]
 fig.data[1].y = df['SMA1']
 fig.data[2].y = df['SMA2']

Collects the tick data in a DataFrame object.

Adds the two SMAs in separate columns to the DataFrame object.

Again, it is a good exercise to combine the plotting of streaming
tick data and the two SMAs with the implementation of an online
trading algorithm based on the two SMAs. In this case, resampling
should be added to the implementation since such trading algo‐
rithms are hardly ever based on tick data but rather on bars of fixed
length (five seconds, one minute, etc.).

Visualizing Streaming Data with Plotly | 213

Figure 7-2. Plot of streaming price data and two SMAs calculated in real time

Three Sub-Plots for Three Streams
As with conventional Plotly plots, streaming plots based on figure widgets can also
have multiple sub-plots. The example that follows creates a streaming plot with three
sub-plots. The first plots the real-time tick data. The second plots the log returns data.
The third plots the time series momentum based on the log returns data. Figure 7-3
shows a snapshot of the whole figure object:

In [14]: from plotly.subplots import make_subplots

In [15]: f = make_subplots(rows=3, cols=1, shared_xaxes=True)
 f.append_trace(go.Scatter(name='SYMBOL'), row=1, col=1)
 f.append_trace(go.Scatter(name='RETURN', line=dict(width=1, dash='dot'),
 mode='lines+markers', marker={'symbol': 'triangle-up'}),
 row=2, col=1)
 f.append_trace(go.Scatter(name='MOMENTUM', line=dict(width=1, dash='dash'),
 mode='lines+markers', marker={'symbol': 'x'}), row=3, col=1)
 # f.update_layout(height=600)

In [16]: fig = go.FigureWidget(f)

In [17]: fig
Out[17]: FigureWidget({
 'data': [{'name': 'SYMBOL',
 'type': 'scatter',
 'uid': 'c8db0cac…

In [18]: import numpy as np

In [19]: df = pd.DataFrame()

214 | Chapter 7: Working with Real-Time Data and Sockets

In [20]: for _ in range(75):
 msg = socket.recv_string()
 t = datetime.now()
 sym, price = msg.split()
 df = df.append(pd.DataFrame({sym: float(price)}, index=[t]))
 df['RET'] = np.log(df[sym] / df[sym].shift(1))
 df['MOM'] = df['RET'].rolling(10).mean()
 fig.data[0].x = df.index
 fig.data[1].x = df.index
 fig.data[2].x = df.index
 fig.data[0].y = df[sym]
 fig.data[1].y = df['RET']
 fig.data[2].y = df['MOM']

Creates three sub-plots that share the x-axis.

Creates the first sub-plot for the price data.

Creates the second sub-plot for the log returns data.

Creates the third sub-plot for the momentum data.

Adjusts the height of the figure object.

Figure 7-3. Streaming price data, log returns, and momentum in different sub-plots

Streaming Data as Bars
Not all streaming data is best visualized as a time series (Scatter object). Some
streaming data is better visualized as bars with changing height. “Sample Data Server
for Bar Plot” on page 220 contains a Python script that serves sample data suited for a
bar-based visualization. A single data set (message) consists of eight floating point

Visualizing Streaming Data with Plotly | 215

numbers. The following Python code generates a streaming bar plot (see Figure 7-4).
In this context, the x data usually does not change. For the following code to work,
the BarsServer.py script needs to be executed in a separate, local Python instance:

In [21]: socket = context.socket(zmq.SUB)

In [22]: socket.connect('tcp://0.0.0.0:5556')

In [23]: socket.setsockopt_string(zmq.SUBSCRIBE, '')

In [24]: for _ in range(5):
 msg = socket.recv_string()
 print(msg)
 60.361 53.504 67.782 64.165 35.046 94.227 20.221 54.716
 79.508 48.210 84.163 73.430 53.288 38.673 4.962 78.920
 53.316 80.139 73.733 55.549 21.015 20.556 49.090 29.630
 86.664 93.919 33.762 82.095 3.108 92.122 84.194 36.666
 37.192 85.305 48.397 36.903 81.835 98.691 61.818 87.121

In [25]: fig = go.FigureWidget()
 fig.add_bar()
 fig
Out[25]: FigureWidget({
 'data': [{'type': 'bar', 'uid':
 '51c6069f-4924-458d-a1ae-c5b5b5f3b07f'}], 'layout': {'templ…

In [26]: x = list('abcdefgh')
 fig.data[0].x = x
 for _ in range(25):
 msg = socket.recv_string()
 y = msg.split()
 y = [float(n) for n in y]
 fig.data[0].y = y

216 | Chapter 7: Working with Real-Time Data and Sockets

2 Not all markets are open 24 hours, 7 days per week, and for sure not all financial instruments are traded
around the clock. However, cryptocurrency markets, for example, for Bitcoin, indeed operate around the
clock, constantly creating new data that needs to be digested in real-time by players active in these markets.

Figure 7-4. Streaming data as bars with changing height

Conclusions
Nowadays, algorithmic trading has to deal with different types of streaming (real-
time) data types. The most important type in this regard is tick data for financial
instruments that is, in principle, generated and published around the clock.2 Sockets
are the technological tool of choice to deal with streaming data. A powerful and at the
same time easy-to-use library in this regard is ZeroMQ, which is used in this chapter to
create a simple tick data server that endlessly emits sample tick data.

Different tick data clients are introduced and explained to generate trading signals in
real time based on online algorithms and to visualize the incoming tick data by
streaming plots using Plotly. Plotly makes streaming visualization within a Jupyter
Notebook an efficient affair, allowing for, among other things, multiple streams at the
same time—both in a single plot or in different sub-plots.

Based on the topics covered in this chapter and the previous ones, you are now able
to work with both historical structured data (for example, in the context of the back‐
testing of trading strategies) and real-time streaming data (for example, in the context
of generating trading signals in real time). This represents a major milestone in the
endeavor to build an automated, algorithmic trading operation.

Conclusions | 217

References and Further Resources
The best starting point for a thorough overview of ZeroMQ is the ZeroMQ home page.
The Learning ZeroMQ with Python tutorial page provides an overview of the PUB-
SUB pattern based on the Python wrapper for the socket communication library.

A good place to start working with Plotly is the Plotly home page and in particular
the Getting Started with Plotly page for Python.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

Sample Tick Data Server
The following is a script that runs a sample tick data server based on ZeroMQ. It makes
use of Monte Carlo simulation for the geometric Brownian motion:

#
Python Script to Simulate a
Financial Tick Data Server
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import zmq
import math
import time
import random

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind('tcp://0.0.0.0:5555')

class InstrumentPrice(object):
 def __init__(self):
 self.symbol = 'SYMBOL'
 self.t = time.time()
 self.value = 100.
 self.sigma = 0.4
 self.r = 0.01

 def simulate_value(self):
 ''' Generates a new, random stock price.
 '''
 t = time.time()
 dt = (t - self.t) / (252 * 8 * 60 * 60)
 dt *= 500

218 | Chapter 7: Working with Real-Time Data and Sockets

http://zeromq.org
https://bit.ly/zmq_pub_sub
http://plot.ly
https://oreil.ly/7ARrQ

 self.t = t
 self.value *= math.exp((self.r - 0.5 * self.sigma ** 2) * dt +
 self.sigma * math.sqrt(dt) * random.gauss(0, 1))
 return self.value

ip = InstrumentPrice()

while True:
 msg = '{} {:.2f}'.format(ip.symbol, ip.simulate_value())
 print(msg)
 socket.send_string(msg)
 time.sleep(random.random() * 2)

Tick Data Client
The following is a script that runs a tick data client based on ZeroMQ. It connects to
the tick data server from “Sample Tick Data Server” on page 218:

#
Python Script
with Tick Data Client
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import zmq

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://0.0.0.0:5555')
socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

while True:
 data = socket.recv_string()
 print(data)

Momentum Online Algorithm
The following is a script that implements a trading strategy based on time series
momentum as an online algorithm. It connects to the tick data server from “Sample
Tick Data Server” on page 218:

#
Python Script
with Online Trading Algorithm
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH

Python Scripts | 219

#
import zmq
import datetime
import numpy as np
import pandas as pd

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://0.0.0.0:5555')
socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

df = pd.DataFrame()
mom = 3
min_length = mom + 1

while True:
 data = socket.recv_string()
 t = datetime.datetime.now()
 sym, value = data.split()
 df = df.append(pd.DataFrame({sym: float(value)}, index=[t]))
 dr = df.resample('5s', label='right').last()
 dr['returns'] = np.log(dr / dr.shift(1))
 if len(dr) > min_length:
 min_length += 1
 dr['momentum'] = np.sign(dr['returns'].rolling(mom).mean())
 print('\n' + '=' * 51)
 print('NEW SIGNAL | {}'.format(datetime.datetime.now()))
 print('=' * 51)
 print(dr.iloc[:-1].tail())
 if dr['momentum'].iloc[-2] == 1.0:
 print('\nLong market position.')
 # take some action (e.g., place buy order)
 elif dr['momentum'].iloc[-2] == -1.0:
 print('\nShort market position.')
 # take some action (e.g., place sell order)

Sample Data Server for Bar Plot
The following is a Python script that generates sample data for a streaming bar plot:

#
Python Script to Serve
Random Bars Data
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import zmq
import math
import time
import random

220 | Chapter 7: Working with Real-Time Data and Sockets

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind('tcp://0.0.0.0:5556')

while True:
 bars = [random.random() * 100 for _ in range(8)]
 msg = ' '.join([f'{bar:.3f}' for bar in bars])
 print(msg)
 socket.send_string(msg)
 time.sleep(random.random() * 2)

Python Scripts | 221

CHAPTER 8

CFD Trading with Oanda

Today, even small entities that trade complex instruments or are granted sufficient lev‐
erage can threaten the global financial system.

—Paul Singer

Today, it is easier than ever to get started with trading in the financial markets. There
is a large number of online trading platforms (brokers) available from which an algo‐
rithmic trader can choose. The choice of a platform might be influenced by multiple
factors:

Instruments
The first criterion that comes to mind is the type of instrument one is interested
in to trade. For example, one might be interested in trading stocks, exchange
traded funds (ETFs), bonds, currencies, commodities, options, or futures.

Strategies
Some traders are interested in long-only strategies, while others require short
selling as well. Some focus on single-instrument strategies, while others focus on
those involving multiple instruments at the same time.

Costs
Fixed and variable transaction costs are an important factor for many traders.
They might even decide whether a certain strategy is profitable or not (see, for
instance, Chapters 4 and 6).

223

Technology
Technology has become an important factor in the selection of trading platforms.
First, there are the tools that the platforms offer to traders. Trading tools are
available, in general, for desktop/notebook computers, tablets, and smart phones.
Second, there are the application programming interfaces (APIs) that can be
accessed programmatically by traders.

Jurisdiction
Financial trading is a heavily regulated field with different legal frameworks in
place for different countries or regions. This might prohibit certain traders from
using certain platforms and/or financial instruments depending on their resi‐
dence.

This chapter focuses on Oanda, an online trading platform that is well suited to
deploy automated, algorithmic trading strategies, even for retail traders. The follow‐
ing is a brief description of Oanda along the criteria as outlined previously:

Instruments
Oanda offers a wide range of so-called contracts for difference (CFD) products
(see also “Contracts for Difference (CFDs)” on page 225 and “Disclaimer” on
page 249). Main characteristics of CFDs are that they are leveraged (for example,
10:1 or 50:1) and traded on margin such that losses might exceed the initial
capital.

Strategies
Oanda allows both to go long (buy) and to go short (sell) CFDs. Different order
types are available, such as market or limit orders, with or without profit targets
and/or (trailing) stop losses.

Costs
There are no fixed transaction costs associated with the trading of CFDs at
Oanda. However, there is a bid-ask spread that leads to variable transaction costs
when trading CFDs.

Technology
Oanda provides the trading application fxTrade (Practice), which retrieves data
in real time and allows the (manual, discretionary) trading of all instruments (see
Figure 8-1). There is also a browser-based trading application available (see
Figure 8-2). A major strength of the platform are the RESTful and streaming
APIs (see Oanda v20 API) via which traders can programmatically access histori‐
cal and streaming data, place buy and sell orders, or retrieve account informa‐
tion. A Python wrapper package is available (see v20 on PyPi). Oanda offers free
paper trading accounts that provide full access to all technological capabilities,

224 | Chapter 8: CFD Trading with Oanda

http://oanda.com
https://oreil.ly/_AHHI
https://oreil.ly/iZuuV

which is really helpful in getting started on the platform. This also simplifies the
transitioning from paper to live trading.

Jurisdiction
Depending on the residence of the account holder, the selection of CFDs that can
be traded changes. FX-related CFDs are available basically everywhere Oanda is
active. CFDs on stock indices, for instance, might not be available in certain
jurisdictions.

Figure 8-1. Oanda trading application fxTrade Practice

Contracts for Difference (CFDs)
For more details on CFDs, see the Investopedia CFD page or the more detailed Wiki‐
pedia CFD page. There are CFDs available on currency pairs (for example, EUR/
USD), commodities (for example, gold), stock indices (for example, S&P 500 stock
index), bonds (for example, German 10 Year Bund), and more. One can think of a
product range that basically allows one to implement global macro strategies. Finan‐
cially speaking, CFDs are derivative products that derive their payoff based on the
development of prices for other instruments. In addition, trading activity (liquidity)
influences the price of CFDs. Although a CFD might be based on the S&P 500 index,
it is a completely different product issued, quoted, and supported by Oanda (or a sim‐
ilar provider).

CFD Trading with Oanda | 225

https://oreil.ly/wsoAz
https://oreil.ly/2PnEQ
https://oreil.ly/2PnEQ

This brings along certain risks that traders should be aware of. A recent event that
illustrates this issue is the Swiss Franc event that led to a number of insolvencies in the
online broker space. See, for instance, the article Currency Brokers Fall Over Like
Dominoes After SNB Decison on Swiss Franc.

Figure 8-2. Oanda browser-based trading application

The chapter is organized as follows. “Setting Up an Account” on page 227 briefly dis‐
cusses how to set up an account. “The Oanda API” on page 229 illustrates the neces‐
sary steps to access the API. Based on the API access, “Retrieving Historical Data” on
page 230 retrieves and works with historical data for a certain CFD. “Working with
Streaming Data” on page 236 introduces the streaming API of Oanda for data
retrieval and visualization. “Implementing Trading Strategies in Real Time” on page
239 implements an automated, algorithmic trading strategy in real time. Finally,
“Retrieving Account Information” on page 244 deals with retrieving data about the
account itself, such as the current balance or recent trades. Throughout, the code
makes use of a Python wrapper class called tpqoa (see GitHub repository).

The goal of this chapter is to make use of the approaches and technologies as intro‐
duced in previous chapters to automatically trade on the Oanda platform.

226 | Chapter 8: CFD Trading with Oanda

https://oreil.ly/dx7ps
https://oreil.ly/dx7ps
https://oreil.ly/E95UV

Setting Up an Account
The process for setting up an account with Oanda is simple and efficient. You can
choose between a real account and a free demo (“practice”) account, which absolutely
suffices to implement what follows (see Figures 8-3 and 8-4).

Figure 8-3. Oanda account registration (account types)

If the registration is successful and you are logged in to the account on the platform,
you should see a starting page, as shown in Figure 8-5. In the middle, you will find a
download link for the fxTrade Practice for Desktop application, which you
should install. Once it is running, it looks similar to the screenshot shown in
Figure 8-1.

Setting Up an Account | 227

Figure 8-4. Oanda account registration (registration form)

Figure 8-5. Oanda account starting page

228 | Chapter 8: CFD Trading with Oanda

1 The naming of certain objects is not completely consistent in the context of the Oanda APIs. For example,
API key and access token are used interchangeably. Also, account ID and account number refer to the same
number.

The Oanda API
After registration, getting access to the APIs of Oanda is an easy affair. The major
ingredients needed are the account number and the access token (API key). You will
find the account number, for instance, in the area Manage Funds. The access token
can be generated in the area Manage API Access (see Figure 8-6).1

From now on, the configparser module is used to manage account credentials. The
module expects a text file—with a filename, say, of pyalgo.cfg—in the following format
for use with an Oanda practice account:

[oanda]
account_id = YOUR_ACCOUNT_ID
access_token = YOUR_ACCESS_TOKEN
account_type = practice

Figure 8-6. Oanda API access managing page

To access the API via Python, it is recommended to use the Python wrapper package
tpqoa (see GitHub repository) that in turn relies on the v20 package from Oanda (see
GitHub repository).

The Oanda API | 229

https://oreil.ly/UaQyo
http://github.com/yhilpisch/tpqoa
https://oreil.ly/F_cB2

It is installed with the following command:

pip install git+https://github.com/yhilpisch/tpqoa.git

With these prerequisites, you can connect to the API with a single line of code:

In [1]: import tpqoa

In [2]: api = tpqoa.tpqoa('../pyalgo.cfg')

Adjust the path and filename if required.

This is a major milestone: being connected to the Oanda API allows for the retrieval
of historical data, the programmatic placement of orders, and more.

The upside of using the configparser module is that it simplifies
the storage and management of account credentials. In algorithmic
trading, the number of accounts needed can quickly grow. Exam‐
ples are a cloud instance or server, data service provider, online
trading platform, and so on.
The downside is that the account information is stored in the form
of plain text, which represents a considerable security risk, particu‐
larly since the information about multiple accounts is stored in a
single file. When moving to production, you should therefore
apply, for example, file encryption methods to keep the credentials
safe.

Retrieving Historical Data
A major benefit of working with the Oanda platform is that the complete price his‐
tory of all Oanda instruments is accessible via the RESTful API. In this context, com‐
plete history refers to the different CFDs themselves, not the underlying instruments
they are defined on.

Looking Up Instruments Available for Trading
For an overview of what instruments can be traded for a given account, use
the .get_instruments() method. It only retrieves the display names and technical
instruments, names from the API. More details are available via the API, such as
minimum position size:

In [3]: api.get_instruments()[:15]
Out[3]: [('AUD/CAD', 'AUD_CAD'),
 ('AUD/CHF', 'AUD_CHF'),
 ('AUD/HKD', 'AUD_HKD'),
 ('AUD/JPY', 'AUD_JPY'),
 ('AUD/NZD', 'AUD_NZD'),
 ('AUD/SGD', 'AUD_SGD'),

230 | Chapter 8: CFD Trading with Oanda

 ('AUD/USD', 'AUD_USD'),
 ('Australia 200', 'AU200_AUD'),
 ('Brent Crude Oil', 'BCO_USD'),
 ('Bund', 'DE10YB_EUR'),
 ('CAD/CHF', 'CAD_CHF'),
 ('CAD/HKD', 'CAD_HKD'),
 ('CAD/JPY', 'CAD_JPY'),
 ('CAD/SGD', 'CAD_SGD'),
 ('CHF/HKD', 'CHF_HKD')]

Backtesting a Momentum Strategy on Minute Bars
The example that follows uses the instrument EUR_USD based on the EUR/USD cur‐
rency pair. The goal is to backtest momentum-based strategies on one-minute bars. The
data used is for two days in May 2020. The first step is to retrieve the raw data from
Oanda:

In [4]: help(api.get_history)
 Help on method get_history in module tpqoa.tpqoa:

 get_history(instrument, start, end, granularity, price, localize=True)
 method of tpqoa.tpqoa.tpqoa instance
 Retrieves historical data for instrument.

 Parameters
 ==========
 instrument: string
 valid instrument name
 start, end: datetime, str
 Python datetime or string objects for start and end
 granularity: string
 a string like 'S5', 'M1' or 'D'
 price: string
 one of 'A' (ask), 'B' (bid) or 'M' (middle)

 Returns
 =======
 data: pd.DataFrame
 pandas DataFrame object with data

In [5]: instrument = 'EUR_USD'
 start = '2020-08-10'
 end = '2020-08-12'
 granularity = 'M1'
 price = 'M'

In [6]: data = api.get_history(instrument, start, end,
 granularity, price)

In [7]: data.info()

Retrieving Historical Data | 231

2 This implicitely neglects transaction costs in the form of bid-ask spreads when selling and buying units of the
instrument, respectively.

 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2814 entries, 2020-08-10 00:00:00 to 2020-08-11
 23:59:00
 Data columns (total 6 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 o 2814 non-null float64
 1 h 2814 non-null float64
 2 l 2814 non-null float64
 3 c 2814 non-null float64
 4 volume 2814 non-null int64
 5 complete 2814 non-null bool
 dtypes: bool(1), float64(4), int64(1)
 memory usage: 134.7 KB

In [8]: data[['c', 'volume']].head()
Out[8]: c volume
 time
 2020-08-10 00:00:00 1.17822 18
 2020-08-10 00:01:00 1.17836 32
 2020-08-10 00:02:00 1.17828 25
 2020-08-10 00:03:00 1.17834 13
 2020-08-10 00:04:00 1.17847 43

Shows the docstring (help text) for the .get_history() method.

Defines the parameter values.

Retrieves the raw data from the API.

Shows the meta information for the retrieved data set.

Shows the first five data rows for two columns.

The second step is to implement the vectorized backtesting. The idea is to simultane‐
ously backtest a couple of momentum strategies. The code is straightforward and
concise (see also Chapter 4).

For simplicity, the following code uses close (c) values of mid prices only:2

In [9]: import numpy as np

In [10]: data['returns'] = np.log(data['c'] / data['c'].shift(1))

In [11]: cols = []

232 | Chapter 8: CFD Trading with Oanda

In [12]: for momentum in [15, 30, 60, 120]:
 col = 'position_{}'.format(momentum)
 data[col] = np.sign(data['returns'].rolling(momentum).mean())
 cols.append(col)

Calculates the log returns based on the close values of the mid prices.

Instantiates an empty list object to collect column names.

Defines the time interval in minute bars for the momentum strategy.

Defines the name of the column to be used for storage in the DataFrame object.

Adds the strategy positionings as a new column.

Appends the name of the column to the list object.

The final step is the derivation and plotting of the absolute performance of the different
momentum strategies. The plot Figure 8-7 shows the performances of the
momentum-based strategies graphically and compares them to the performance of
the base instrument itself:

In [13]: from pylab import plt
 plt.style.use('seaborn')
 import matplotlib as mpl
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

In [14]: strats = ['returns']

In [15]: for col in cols:
 strat = 'strategy_{}'.format(col.split('_')[1])
 data[strat] = data[col].shift(1) * data['returns']
 strats.append(strat)

In [16]: data[strats].dropna().cumsum(
).apply(np.exp).plot(figsize=(10, 6));

Defines another list object to store the column names to be plotted later on.

Iterates over columns with the positionings for the different strategies.

Derives the name for the new column in which the strategy performance is
stored.

Calculates the log returns for the different strategies and stores them as new
columns.

Retrieving Historical Data | 233

Appends the column names to the list object for later plotting.

Plots the cumulative performances for the instrument and the strategies.

Figure 8-7. Gross performance of different momentum strategies for EUR_USD instrument
(minute bars)

Factoring In Leverage and Margin
In general, when you buy a share of a stock for, say, 100 USD, the profit and loss
(P&L) calculations are straightforward: if the stock price rises by 1 USD, you earn 1
USD (unrealized profit); if the stock price falls by 1 USD, you lose 1 USD (unrealized
loss). If you buy 10 shares, just multiply the results by 10.

Trading CFDs on the Oanda platform involves leverage and margin. This signifi‐
cantly influences the P&L calculation. For an introduction to and overview of this
topic refer to Oanda fxTrade Margin Rules. A simple example can illustrate the major
aspects in this context.

Consider that a EUR-based algorithmic trader wants to trade the EUR_USD instrument
on the Oanda platform and wants to get a long exposure of 10,000 EUR at an ask
price of 1.1. Without leverage and margin, the trader (or Python program) would buy

234 | Chapter 8: CFD Trading with Oanda

https://oreil.ly/8I5Eg

3 Note that for some instruments, one unit means 1 USD, like for currency-related CFDs. For others, like for
index-related CFDs (for example, DE30_EUR), one unit means a currency exposure at the (bid/ask) price of the
CFD (for example, 11,750 EUR).

4 The simplified calculations neglect, for example, financing costs that might become due for leveraged trading.

10,000 units of the CFD.3 If the price of the instrument (exchange rate) rises to 1.105
(as the midpoint rate between bid and ask prices), the absolute profit is 10,000 x 0.005
= 50 or 0.5%.

What impact do leverage and margining have? Suppose the algorithmic trader choo‐
ses a leverage ratio of 20:1, which translates into a 5% margin (= 100% / 20). This in
turn implies that the trader only needs to put up a margin upfront of 10,000 EUR x
5% = 500 EUR to get the same exposure. If the price of the instrument then rises to
1.105, the absolute profit stays the same at 50 EUR, but the relative profit rises to 50
EUR / 500 EUR = 10%. The return is considerably amplified by a factor of 20; this is
the benefit of leverage when things go as desired.

What happens if things go south? Assume the instrument price drops to 1.08 (as the
midpoint rate between bid and ask prices), leading to a loss of 10,000 x (1.08 - 1.1) =
-200 EUR. The relative loss now is -200 EUR / 500 EUR = -40%. If the account the
algorithmic trader is trading with has less than 200 EUR left in equity/cash, the posi‐
tion needs to be closed out since the (regulatory) margin requirements cannot be met
anymore. If losses eat up the margin completely, additional funds need to be allocated
as margin to keep the trade alive.4

Figure 8-8 shows the amplifying effect on the performance of the momentum strate‐
gies for a leverage ratio of 20:1. The initial margin of 5% suffices to cover potential
losses since it is not eaten up even in the worst case depicted:

In [17]: data[strats].dropna().cumsum().apply(
 lambda x: x * 20).apply(np.exp).plot(figsize=(10, 6));

Multiplies the log returns by a factor of 20 according to the leverage ratio
assumed.

Leveraged trading does not only amplify potentials profits, but it
also amplifies potential losses. With leveraged trading based on a
10:1 factor (10% margin), a 10% adverse move in the base instru‐
ment already wipes out the complete margin. In other words, a
10% move leads to a 100% loss. Therefore, you should make sure to
fully understand all risks involved in leveraged trading. You should
also make sure to apply appropriate risk measures, such as stop loss
orders, that are in line with your risk profile and appetite.

Retrieving Historical Data | 235

Figure 8-8. Gross performance of momentum strategies for EUR_USD instrument with
20:1 leverage (minute bars)

Working with Streaming Data
Working with streaming data is again made simple and straightforward by the
Python wrapper package tpqoa. The package, in combination with the v20 package,
takes care of the socket communication such that the algorithmic trader only needs to
decide what to do with the streaming data:

In [18]: instrument = 'EUR_USD'

In [19]: api.stream_data(instrument, stop=10)
 2020-08-19T14:39:13.560138152Z 1.19131 1.1915
 2020-08-19T14:39:14.088511060Z 1.19134 1.19152
 2020-08-19T14:39:14.390081879Z 1.19124 1.19145
 2020-08-19T14:39:15.105974700Z 1.19129 1.19144
 2020-08-19T14:39:15.375370451Z 1.19128 1.19144
 2020-08-19T14:39:15.501380756Z 1.1912 1.19141
 2020-08-19T14:39:15.951793928Z 1.1912 1.19138
 2020-08-19T14:39:16.354844135Z 1.19123 1.19138
 2020-08-19T14:39:16.661440356Z 1.19118 1.19133
 2020-08-19T14:39:16.912150908Z 1.19112 1.19132

The stop parameter stops the streaming after a certain number of ticks retrieved.

236 | Chapter 8: CFD Trading with Oanda

Placing Market Orders
Similarly, it is straightforward to place market buy or sell orders with the cre
ate_order() method:

In [20]: help(api.create_order)
 Help on method create_order in module tpqoa.tpqoa:

 create_order(instrument, units, price=None, sl_distance=None,
 tsl_distance=None, tp_price=None, comment=None, touch=False,
 suppress=False, ret=False) method of tpqoa.tpqoa.tpqoa instance
 Places order with Oanda.

 Parameters
 ==========
 instrument: string
 valid instrument name
 units: int
 number of units of instrument to be bought
 (positive int, e.g., 'units=50')
 or to be sold (negative int, e.g., 'units=-100')
 price: float
 limit order price, touch order price
 sl_distance: float
 stop loss distance price, mandatory e.g., in Germany
 tsl_distance: float
 trailing stop loss distance
 tp_price: float
 take profit price to be used for the trade
 comment: str
 string
 touch: boolean
 market_if_touched order (requires price to be set)
 suppress: boolean
 whether to suppress print out
 ret: boolean
 whether to return the order object

In [21]: api.create_order(instrument, 1000)

 {'id': '1721', 'time': '2020-08-19T14:39:17.062399275Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1720',
 'requestID': '24716258589170956', 'type': 'ORDER_FILL', 'orderID':
 '1720', 'instrument': 'EUR_USD', 'units': '1000.0',
 'gainQuoteHomeConversionFactor': '0.835288642787',
 'lossQuoteHomeConversionFactor': '0.843683503518', 'price': 1.19131,
 'fullVWAP': 1.19131, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.1911, 'liquidity': '10000000'}], 'asks': [{'price': 1.19131,
 'liquidity': '10000000'}], 'closeoutBid': 1.1911, 'closeoutAsk':
 1.19131}, 'reason': 'MARKET_ORDER', 'pl': '0.0', 'financing': '0.0',

Placing Market Orders | 237

 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98510.7986', 'tradeOpened': {'tradeID': '1721',
 'units': '1000.0', 'price': 1.19131, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.0881', 'initialMarginRequired': '33.3'},
 'halfSpreadCost': '0.0881'}

In [22]: api.create_order(instrument, -1500)

 {'id': '1723', 'time': '2020-08-19T14:39:17.200434462Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1722',
 'requestID': '24716258589171315', 'type': 'ORDER_FILL', 'orderID':
 '1722', 'instrument': 'EUR_USD', 'units': '-1500.0',
 'gainQuoteHomeConversionFactor': '0.835288642787',
 'lossQuoteHomeConversionFactor': '0.843683503518', 'price': 1.1911,
 'fullVWAP': 1.1911, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.1911, 'liquidity': '10000000'}], 'asks': [{'price': 1.19131,
 'liquidity': '9999000'}], 'closeoutBid': 1.1911, 'closeoutAsk':
 1.19131}, 'reason': 'MARKET_ORDER', 'pl': '-0.1772', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98510.6214', 'tradeOpened': {'tradeID': '1723',
 'units': '-500.0', 'price': 1.1911, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.0441', 'initialMarginRequired': '16.65'},
 'tradesClosed': [{'tradeID': '1721', 'units': '-1000.0', 'price':
 1.1911, 'realizedPL': '-0.1772', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '0.0881'}],
 'halfSpreadCost': '0.1322'}

In [23]: api.create_order(instrument, 500)

 {'id': '1725', 'time': '2020-08-19T14:39:17.348231507Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1724',
 'requestID': '24716258589171775', 'type': 'ORDER_FILL', 'orderID':
 '1724', 'instrument': 'EUR_USD', 'units': '500.0',
 'gainQuoteHomeConversionFactor': '0.835313189428',
 'lossQuoteHomeConversionFactor': '0.84370829686', 'price': 1.1913,
 'fullVWAP': 1.1913, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19104, 'liquidity': '9998500'}], 'asks': [{'price': 1.1913,
 'liquidity': '9999000'}], 'closeoutBid': 1.19104, 'closeoutAsk':
 1.1913}, 'reason': 'MARKET_ORDER', 'pl': '-0.0844', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98510.537', 'tradesClosed': [{'tradeID': '1723',
 'units': '500.0', 'price': 1.1913, 'realizedPL': '-0.0844',
 'financing': '0.0', 'guaranteedExecutionFee': '0.0', 'halfSpreadCost':
 '0.0546'}], 'halfSpreadCost': '0.0546'}

Shows all options for placing market, limit, and market-if-touched orders.

Opens a long position via market order.

238 | Chapter 8: CFD Trading with Oanda

Goes short after closing the long position via market order.

Closes the short position via market order.

Although the Oanda API allows the placement of different order types, this chapter
and the following chapter mainly focus on market orders to instantly go long or short
whenever a new signal appears.

Implementing Trading Strategies in Real Time
This section presents a custom class that automatically trades the EUR_USD instrument
on the Oanda platform based on a momentum strategy. It is called MomentumTrader
and is presented in “Python Script” on page 247. The following walks through the
class line by line, beginning with the 0 method. The class itself inherits from the
tpqoa class:

import tpqoa
import numpy as np
import pandas as pd

class MomentumTrader(tpqoa.tpqoa):
 def __init__(self, conf_file, instrument, bar_length, momentum, units,
 *args, **kwargs):
 super(MomentumTrader, self).__init__(conf_file)
 self.position = 0
 self.instrument = instrument
 self.momentum = momentum
 self.bar_length = bar_length
 self.units = units
 self.raw_data = pd.DataFrame()
 self.min_length = self.momentum + 1

Initial position value (market neutral).

Instrument to be traded.

Length of the bar for the resampling of the tick data.

Number of intervals for momentum calculation.

Number of units to be traded.

An empty DataFrame object to be filled with tick data.

The initial minimum bar length for the start of the trading itself.

Implementing Trading Strategies in Real Time | 239

The major method is the .on_success() method, which implements the trading logic
for the momentum strategy:

 def on_success(self, time, bid, ask):
 ''' Takes actions when new tick data arrives. '''
 print(self.ticks, end=' ')
 self.raw_data = self.raw_data.append(pd.DataFrame(
 {'bid': bid, 'ask': ask}, index=[pd.Timestamp(time)]))
 self.data = self.raw_data.resample(
 self.bar_length, label='right').last().ffill().iloc[:-1]
 self.data['mid'] = self.data.mean(axis=1)
 self.data['returns'] = np.log(self.data['mid'] /
 self.data['mid'].shift(1))
 self.data['position'] = np.sign(
 self.data['returns'].rolling(self.momentum).mean())

 if len(self.data) > self.min_length:
 self.min_length += 1
 if self.data['position'].iloc[-1] == 1:
 if self.position == 0:
 self.create_order(self.instrument, self.units)
 elif self.position == -1:
 self.create_order(self.instrument, self.units * 2)
 self.position = 1
 elif self.data['position'].iloc[-1] == -1:
 if self.position == 0:
 self.create_order(self.instrument, -self.units)
 elif self.position == 1:
 self.create_order(self.instrument, -self.units * 2)
 self.position = -1

This method is called whenever new tick data arrives.

The number of ticks retrieved is printed.

The tick data is collected and stored.

The tick data is then resampled to the appropriate bar length.

The mid prices are calculated…

…based on which the log returns are derived.

The signal (positioning) is derived based on the momentum parameter/attribute
(via an online algorithm).

When there is enough or new data, the trading logic is applied and the minimum
length is increased by one every time.

240 | Chapter 8: CFD Trading with Oanda

Checks whether the latest positioning (“signal”) is 1 (long).

If the current market position is 0 (neutral)…

…a buy order for self.units is initiated.

If it is -1 (short)…

…a buy order for 0 is initiated.

The market position self.position is set to +1 (long).

Checks whether the latest positioning (“signal”) is -1 (short).

If the current market position is 0 (neutral)…

…a sell order for -self.units is initiated.

If it is +1 (long)…

…a sell order for 0 is initiated.

The market position self.position is set to -1 (short).

Based on this class, getting started with automated, algorithmic trading is just four
lines of code. The Python code that follows initiates an automated trading session:

In [24]: import MomentumTrader as MT

In [25]: mt = MT.MomentumTrader('../pyalgo.cfg',
 instrument=instrument,
 bar_length='10s',
 momentum=6,
 units=10000)

In [26]: mt.stream_data(mt.instrument, stop=500)

The configuration file with the credentials.

The instrument parameter is specified.

The bar_length parameter for the resampling is provided.

The momentum parameter is defined, which is applied to the resampled data inter‐
vals.

Implementing Trading Strategies in Real Time | 241

The units parameter is set, which specifies the position size for long and short
positions.

This starts the streaming and therewith the trading; it stops after 100 ticks.

The preceding code provides the following output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 149 150 151 152 153

{'id': '1727', 'time': '2020-08-19T14:40:30.443867492Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1726',
 'requestID': '42730657405829101', 'type': 'ORDER_FILL', 'orderID':
 '1726', 'instrument': 'EUR_USD', 'units': '10000.0',
 'gainQuoteHomeConversionFactor': '0.8350012403',
 'lossQuoteHomeConversionFactor': '0.843393212565', 'price': 1.19168,
 'fullVWAP': 1.19168, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19155, 'liquidity': '10000000'}], 'asks': [{'price': 1.19168,
 'liquidity': '10000000'}], 'closeoutBid': 1.19155, 'closeoutAsk':
 1.19168}, 'reason': 'MARKET_ORDER', 'pl': '0.0', 'financing': '0.0',
 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98510.537', 'tradeOpened': {'tradeID': '1727',
 'units': '10000.0', 'price': 1.19168, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.5455', 'initialMarginRequired': '333.0'},
 'halfSpreadCost': '0.5455'}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
 223

{'id': '1729', 'time': '2020-08-19T14:41:11.436438078Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1728',
 'requestID': '42730657577912600', 'type': 'ORDER_FILL', 'orderID':
 '1728', 'instrument': 'EUR_USD', 'units': '-20000.0',
 'gainQuoteHomeConversionFactor': '0.83519398913',
 'lossQuoteHomeConversionFactor': '0.843587898569', 'price': 1.19124,
 'fullVWAP': 1.19124, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19124, 'liquidity': '10000000'}], 'asks': [{'price': 1.19144,
 'liquidity': '10000000'}], 'closeoutBid': 1.19124, 'closeoutAsk':
 1.19144}, 'reason': 'MARKET_ORDER', 'pl': '-3.7118', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98506.8252', 'tradeOpened': {'tradeID': '1729',
 'units': '-10000.0', 'price': 1.19124, 'guaranteedExecutionFee':
 '0.0', 'halfSpreadCost': '0.8394', 'initialMarginRequired': '333.0'},

242 | Chapter 8: CFD Trading with Oanda

 'tradesClosed': [{'tradeID': '1727', 'units': '-10000.0', 'price':
 1.19124, 'realizedPL': '-3.7118', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '0.8394'}],
 'halfSpreadCost': '1.6788'}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

{'id': '1731', 'time': '2020-08-19T14:42:20.525804142Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1730',
 'requestID': '42730657867512554', 'type': 'ORDER_FILL', 'orderID':
 '1730', 'instrument': 'EUR_USD', 'units': '20000.0',
 'gainQuoteHomeConversionFactor': '0.835400847964',
 'lossQuoteHomeConversionFactor': '0.843796836386', 'price': 1.19111,
 'fullVWAP': 1.19111, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19098, 'liquidity': '10000000'}], 'asks': [{'price': 1.19111,
 'liquidity': '10000000'}], 'closeoutBid': 1.19098, 'closeoutAsk':
 1.19111}, 'reason': 'MARKET_ORDER', 'pl': '1.086', 'financing': '0.0',
 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98507.9112', 'tradeOpened': {'tradeID': '1731',
 'units': '10000.0', 'price': 1.19111, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.5457', 'initialMarginRequired': '333.0'},
 'tradesClosed': [{'tradeID': '1729', 'units': '10000.0', 'price':
 1.19111, 'realizedPL': '1.086', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '0.5457'}],
 'halfSpreadCost': '1.0914'}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
 498 499 500

Finally, close out the final position:

In [27]: oo = mt.create_order(instrument, units=-mt.position * mt.units,
 ret=True, suppress=True)
 oo
Out[27]: {'id': '1733',
 'time': '2020-08-19T14:43:17.107985242Z',
 'userID': 13834683,
 'accountID': '101-004-13834683-001',
 'batchID': '1732',

Implementing Trading Strategies in Real Time | 243

 'requestID': '42730658106750652',
 'type': 'ORDER_FILL',
 'orderID': '1732',
 'instrument': 'EUR_USD',
 'units': '-10000.0',
 'gainQuoteHomeConversionFactor': '0.835327206922',
 'lossQuoteHomeConversionFactor': '0.843722455232',
 'price': 1.19109,
 'fullVWAP': 1.19109,
 'fullPrice': {'type': 'PRICE',
 'bids': [{'price': 1.19109, 'liquidity': '10000000'}],
 'asks': [{'price': 1.19121, 'liquidity': '10000000'}],
 'closeoutBid': 1.19109,
 'closeoutAsk': 1.19121},
 'reason': 'MARKET_ORDER',
 'pl': '-0.1687',
 'financing': '0.0',
 'commission': '0.0',
 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98507.7425',
 'tradesClosed': [{'tradeID': '1731',
 'units': '-10000.0',
 'price': 1.19109,
 'realizedPL': '-0.1687',
 'financing': '0.0',
 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.5037'}],
 'halfSpreadCost': '0.5037'}

Closes out the final position.

Retrieving Account Information
With regard to account information, transaction history, and the like, the Oanda
RESTful API is also convenient to work with. For example, after the execution of the
momentum strategy in the previous section, the algorithmic trader might want
to inspect the current balance of the trading account. This is possible via
the .get_account_summary() method:

In [28]: api.get_account_summary()
Out[28]: {'id': '101-004-13834683-001',
 'alias': 'Primary',
 'currency': 'EUR',
 'balance': '98507.7425',
 'createdByUserID': 13834683,
 'createdTime': '2020-03-19T06:08:14.363139403Z',
 'guaranteedStopLossOrderMode': 'DISABLED',
 'pl': '-1273.126',
 'resettablePL': '-1273.126',
 'resettablePLTime': '0',
 'financing': '-219.1315',

244 | Chapter 8: CFD Trading with Oanda

 'commission': '0.0',
 'guaranteedExecutionFees': '0.0',
 'marginRate': '0.0333',
 'openTradeCount': 1,
 'openPositionCount': 1,
 'pendingOrderCount': 0,
 'hedgingEnabled': False,
 'unrealizedPL': '929.8862',
 'NAV': '99437.6287',
 'marginUsed': '377.76',
 'marginAvailable': '99064.4945',
 'positionValue': '3777.6',
 'marginCloseoutUnrealizedPL': '935.8183',
 'marginCloseoutNAV': '99443.5608',
 'marginCloseoutMarginUsed': '377.76',
 'marginCloseoutPercent': '0.0019',
 'marginCloseoutPositionValue': '3777.6',
 'withdrawalLimit': '98507.7425',
 'marginCallMarginUsed': '377.76',
 'marginCallPercent': '0.0038',
 'lastTransactionID': '1733'}

Information about the last few trades is received with the .get_transactions()
method:

In [29]: api.get_transactions(tid=int(oo['id']) - 2)
Out[29]: [{'id': '1732',
 'time': '2020-08-19T14:43:17.107985242Z',
 'userID': 13834683,
 'accountID': '101-004-13834683-001',
 'batchID': '1732',
 'requestID': '42730658106750652',
 'type': 'MARKET_ORDER',
 'instrument': 'EUR_USD',
 'units': '-10000.0',
 'timeInForce': 'FOK',
 'positionFill': 'DEFAULT',
 'reason': 'CLIENT_ORDER'},
 {'id': '1733',
 'time': '2020-08-19T14:43:17.107985242Z',
 'userID': 13834683,
 'accountID': '101-004-13834683-001',
 'batchID': '1732',
 'requestID': '42730658106750652',
 'type': 'ORDER_FILL',
 'orderID': '1732',
 'instrument': 'EUR_USD',
 'units': '-10000.0',
 'gainQuoteHomeConversionFactor': '0.835327206922',
 'lossQuoteHomeConversionFactor': '0.843722455232',
 'price': 1.19109,
 'fullVWAP': 1.19109,
 'fullPrice': {'type': 'PRICE',

Retrieving Account Information | 245

 'bids': [{'price': 1.19109, 'liquidity': '10000000'}],
 'asks': [{'price': 1.19121, 'liquidity': '10000000'}],
 'closeoutBid': 1.19109,
 'closeoutAsk': 1.19121},
 'reason': 'MARKET_ORDER',
 'pl': '-0.1687',
 'financing': '0.0',
 'commission': '0.0',
 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98507.7425',
 'tradesClosed': [{'tradeID': '1731',
 'units': '-10000.0',
 'price': 1.19109,
 'realizedPL': '-0.1687',
 'financing': '0.0',
 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.5037'}],
 'halfSpreadCost': '0.5037'}]

For a concise overview, there is also the .print_transactions() method available:

In [30]: api.print_transactions(tid=int(oo['id']) - 18)
 1717 | 2020-08-19T14:37:00.803426931Z | EUR_USD | -10000.0 | 0.0
 1719 | 2020-08-19T14:38:21.953399006Z | EUR_USD | 10000.0 | 6.8444
 1721 | 2020-08-19T14:39:17.062399275Z | EUR_USD | 1000.0 | 0.0
 1723 | 2020-08-19T14:39:17.200434462Z | EUR_USD | -1500.0 | -0.1772
 1725 | 2020-08-19T14:39:17.348231507Z | EUR_USD | 500.0 | -0.0844
 1727 | 2020-08-19T14:40:30.443867492Z | EUR_USD | 10000.0 | 0.0
 1729 | 2020-08-19T14:41:11.436438078Z | EUR_USD | -20000.0 | -3.7118
 1731 | 2020-08-19T14:42:20.525804142Z | EUR_USD | 20000.0 | 1.086
 1733 | 2020-08-19T14:43:17.107985242Z | EUR_USD | -10000.0 | -0.1687

Conclusions
The Oanda platform allows for an easy and straightforward entry into the world of
automated, algorithmic trading. Oanda specializes in so-called contracts for differ‐
ence (CFDs). Depending on the country of residence of the trader, there is a great
variety of instruments that can be traded.

A major advantage of Oanda from a technological point of view is the modern, pow‐
erful APIs that can be easily accessed via a dedicated Python wrapper package (v20).
This chapter shows how to set up an account, how to connect to the APIs with
Python, how to retrieve historical data (one minute bars) for backtesting purposes,
how to retrieve streaming data in real time, how to automatically trade a CFD based
on a momentum strategy, and how to retrieve account information and the detailed
transaction history.

246 | Chapter 8: CFD Trading with Oanda

References and Further Resources
Visit the help and support pages of Oanda under Help and Support to learn more
about the Oanda platform and important aspects of CFD trading.

The developer portal of Oanda Getting Started provides a detailed description of the
APIs.

Python Script
The following Python script contains an Oanda custom streaming class that automat‐
ically trades a momentum strategy:

#
Python Script
with Momentum Trading Class
for Oanda v20
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
The Python Quants GmbH
#
import tpqoa
import numpy as np
import pandas as pd

class MomentumTrader(tpqoa.tpqoa):
 def __init__(self, conf_file, instrument, bar_length, momentum, units,
 *args, **kwargs):
 super(MomentumTrader, self).__init__(conf_file)
 self.position = 0
 self.instrument = instrument
 self.momentum = momentum
 self.bar_length = bar_length
 self.units = units
 self.raw_data = pd.DataFrame()
 self.min_length = self.momentum + 1

 def on_success(self, time, bid, ask):
 ''' Takes actions when new tick data arrives. '''
 print(self.ticks, end=' ')
 self.raw_data = self.raw_data.append(pd.DataFrame(
 {'bid': bid, 'ask': ask}, index=[pd.Timestamp(time)]))
 self.data = self.raw_data.resample(
 self.bar_length, label='right').last().ffill().iloc[:-1]
 self.data['mid'] = self.data.mean(axis=1)
 self.data['returns'] = np.log(self.data['mid'] /
 self.data['mid'].shift(1))
 self.data['position'] = np.sign(
 self.data['returns'].rolling(self.momentum).mean())

References and Further Resources | 247

https://oreil.ly/-CMwk
https://oreil.ly/oO_eV

 if len(self.data) > self.min_length:
 self.min_length += 1
 if self.data['position'].iloc[-1] == 1:
 if self.position == 0:
 self.create_order(self.instrument, self.units)
 elif self.position == -1:
 self.create_order(self.instrument, self.units * 2)
 self.position = 1
 elif self.data['position'].iloc[-1] == -1:
 if self.position == 0:
 self.create_order(self.instrument, -self.units)
 elif self.position == 1:
 self.create_order(self.instrument, -self.units * 2)
 self.position = -1

if __name__ == '__main__':
 strat = 2
 if strat == 1:
 mom = MomentumTrader('../pyalgo.cfg', 'DE30_EUR', '5s', 3, 1)
 mom.stream_data(mom.instrument, stop=100)
 mom.create_order(mom.instrument, units=-mom.position * mom.units)
 elif strat == 2:
 mom = MomentumTrader('../pyalgo.cfg', instrument='EUR_USD',
 bar_length='5s', momentum=6, units=100000)
 mom.stream_data(mom.instrument, stop=100)
 mom.create_order(mom.instrument, units=-mom.position * mom.units)
 else:
 print('Strategy not known.')

248 | Chapter 8: CFD Trading with Oanda

CHAPTER 9

FX Trading with FXCM

Financial institutions like to call what they do trading. Let’s be honest. It’s not trading;
it’s betting.

—Graydon Carter

This chapter introduces the trading platform from FXCM Group, LLC (“FXCM”
afterwards), with its RESTful and streaming application programming interface (API)
as well as the Python wrapper package fcxmpy. Similar to Oanda, it is a platform well
suited for the deployment of automated, algorithmic trading strategies, even for retail
traders with smaller capital positions. FXCM offers to retail and institutional traders
a number of financial products that can be traded both via traditional trading appli‐
cations and programmatically via their API. The focus of the products lies on cur‐
rency pairs as well as contracts for difference (CFDs) on, among other things, major
stock indices and commodities. In this context, also refer to “Contracts for Difference
(CFDs)” on page 225 and “Disclaimer” on page 249.

Disclaimer
Trading forex/CFDs on margin carries a high level of risk and may not be suitable for
all investors as you could sustain losses in excess of deposits. Leverage can work
against you. The products are intended for retail and professional clients. Due to the
certain restrictions imposed by the local law and regulation, German resident retail
client(s) could sustain a total loss of deposited funds but are not subject to subsequent
payment obligations beyond the deposited funds. Be aware of and fully understand all
risks associated with the market and trading. Prior to trading any products, carefully
consider your financial situation and experience level. Any opinions, news, research,
analyses, prices, or other information is provided as general market commentary and
does not constitute investment advice. The market commentary has not been pre‐
pared in accordance with legal requirements designed to promote the independence

249

of investment research, and it is therefore not subject to any prohibition on dealing
ahead of dissemination. Neither the trading platforms nor the author will accept lia‐
bility for any loss or damage, including and without limitation to any loss of profit,
which may arise directly or indirectly from use of or reliance on such information.

With regard to the platform criteria as discussed in Chapter 8, FXCM offers the
following:

Instruments
FX products (for example, the trading of currency pairs), contracts for difference
(CFDs) on stock indices, commodities, or rates products.

Strategies
FXCM allows for, among other things, (leveraged) long and short positions, mar‐
ket entry orders, and stop loss orders and take profit targets.

Costs
In addition to the bid-ask spread, a fixed fee is generally due for every trade with
FXCM. Different pricing models are available.

Technology
FXCM provides the algorithmic trader with a modern RESTful API that can be
accessed by, for example, the use of the Python wrapper package fxcmpy. Stan‐
dard trading applications for desktop computers, tablets, and smartphones are
also available.

Jurisdiction
FXCM is active in a number of countries globally (for instance, in the United
Kingdom or Germany). Depending on the country itself, certain products might
not be available/offered due to regulations and restrictions.

This chapter covers the basic functionalities of the FXCM trading API and the fxcmpy
Python package required to implement an automated, algorithmic trading strategy
programmatically. It is structured as follows. “Getting Started” on page 251 shows
how to set up everything to work with the FXCM REST API for algorithmic trading.
“Retrieving Data” on page 251 shows how to retrieve and work with financial data
(down to the tick level). “Working with the API” on page 256 is at the core in that it
illustrates typical tasks implemented using the RESTful API, such as retrieving histor‐
ical and streaming data, placing orders, or looking up account information.

250 | Chapter 9: FX Trading with FXCM

1 Note that FXCM demo accounts are only offered for certain countries.

Getting Started
A detailed documentation of the FXCM API is found under https://oreil.ly/Df_7e. To
install the Python wrapper package fxcmpy, execute the following on the shell:

pip install fxcmpy

The documentation of the fxcmpy package is found under http://fxcmpy.tpq.io.

To get started with the the FXCM trading API and the fxcmpy package, a free demo
account with FXCM is sufficient. One can open such an account under FXCM Demo
Account.1 The next step is to create a unique API token (for example,
YOUR_FXCM_API_TOKEN) from within the demo account. A connection to the API is
then opened, for example, via the following:

import fxcmpy
api = fxcmpy.fxcmpy(access_token=YOUR_FXCM_API_TOKEN, log_level='error')

Alternatively, you can use the configuration file as created in Chapter 8 to connect to
the API. This file’s content should be amended as follows:

[FXCM]
log_level = error
log_file = PATH_TO_AND_NAME_OF_LOG_FILE
access_token = YOUR_FXCM_API_TOKEN

One can then connect to the API via the following:

import fxcmpy
api = fxcmpy.fxcmpy(config_file='pyalgo.cfg')

By default, the server connects to the demo server. However, by the use of the server
parameter, the connection can be made to the live trading server (if such an account
exists):

api = fxcmpy.fxcmpy(config_file='pyalgo.cfg', server='demo')
api = fxcmpy.fxcmpy(config_file='pyalgo.cfg', server='real')

Connects to the demo server.

Connects to the live trading server.

Retrieving Data
FXCM provides access to historical market price data sets, such as tick data, in a pre-
packaged variant. This means that one can retrieve, for instance, compressed files
from FXCM servers that contain tick data for the EUR/USD exchange rate for week

Getting Started | 251

https://oreil.ly/Df_7e
http://fxcmpy.tpq.io
https://oreil.ly/v9H6z
https://oreil.ly/v9H6z

10 of 2020. The retrieval of historical candles data from the API is explained in the
subsequent section.

Retrieving Tick Data
For a number of currency pairs, FXCM provides historical tick data. The fxcmpy
package makes retrieval of such tick data and working with it convenient. First, some
imports:

In [1]: import time
 import numpy as np
 import pandas as pd
 import datetime as dt
 from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

Second is a look at the available symbols (currency pairs) for which tick data is
available:

In [2]: from fxcmpy import fxcmpy_tick_data_reader as tdr

In [3]: print(tdr.get_available_symbols())
 ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF',
 'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD',
 'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD',
 'USDCAD', 'USDCHF', 'USDJPY')

The following code retrieves one week’s worth of tick data for a single symbol. The
resulting pandas DataFrame object has more than 4.5 million data rows:

In [4]: start = dt.datetime(2020, 3, 25)
 stop = dt.datetime(2020, 3, 30)

In [5]: td = tdr('EURUSD', start, stop)

In [6]: td.get_raw_data().info()
 <class 'pandas.core.frame.DataFrame'>
 Index: 4504288 entries, 03/22/2020 21:12:02.256 to 03/27/2020
 20:59:00.022
 Data columns (total 2 columns):
 # Column Dtype
 --- ------ -----
 0 Bid float64
 1 Ask float64
 dtypes: float64(2)
 memory usage: 103.1+ MB

In [7]: td.get_data().info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 4504288 entries, 2020-03-22 21:12:02.256000 to

252 | Chapter 9: FX Trading with FXCM

2 The DatetimeIndex conversion is time consuming, which is why there are two different methods related to
tick data retrieval.

 2020-03-27 20:59:00.022000
 Data columns (total 2 columns):
 # Column Dtype
 --- ------ -----
 0 Bid float64
 1 Ask float64
 dtypes: float64(2)
 memory usage: 103.1 MB

In [8]: td.get_data().head()
Out[8]: Bid Ask
 2020-03-22 21:12:02.256 1.07006 1.07050
 2020-03-22 21:12:02.258 1.07002 1.07050
 2020-03-22 21:12:02.259 1.07003 1.07033
 2020-03-22 21:12:02.653 1.07003 1.07034
 2020-03-22 21:12:02.749 1.07000 1.07034

This retrieves the data file, unpacks it, and stores the raw data in a DataFrame
object (as an attribute to the resulting object).

The .get_raw_data() method returns the DataFrame object with the raw data
for which the index values are still str objects.

The .get_data() method returns a DataFrame object for which the index has
been transformed to a DatetimeIndex.2

Since the tick data is stored in a DataFrame object, it is straightforward to pick a sub-
set of the data and to implement typical financial analytics tasks on it. Figure 9-1
shows a plot of the mid prices derived for the sub-set and a simple moving average
(SMA):

In [9]: sub = td.get_data(start='2020-03-25 12:00:00',
 end='2020-03-25 12:15:00')

In [10]: sub.head()
Out[10]: Bid Ask
 2020-03-25 12:00:00.067 1.08109 1.0811
 2020-03-25 12:00:00.072 1.08110 1.0811
 2020-03-25 12:00:00.074 1.08109 1.0811
 2020-03-25 12:00:00.078 1.08111 1.0811
 2020-03-25 12:00:00.121 1.08112 1.0811

In [11]: sub['Mid'] = sub.mean(axis=1)

In [12]: sub['SMA'] = sub['Mid'].rolling(1000).mean()

Retrieving Data | 253

In [13]: sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=1.5);

Picks a sub-set of the complete data set.

Calculates the mid prices from the bid and ask prices.

Derives SMA values over intervals of 1,000 ticks.

Figure 9-1. Historical mid tick prices for EUR/USD and SMA

Retrieving Candles Data
In addition, FXCM provides access to historical candles data (beyond the API). Can‐
dles data is data for certain homogeneous time intervals (“bars”) with open, high, low,
and close values for both bid and ask prices.

First is a look at the available symbols for which candles data is provided:

In [14]: from fxcmpy import fxcmpy_candles_data_reader as cdr

In [15]: print(cdr.get_available_symbols())
 ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF',
 'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD',
 'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD',
 'USDCAD', 'USDCHF', 'USDJPY')

254 | Chapter 9: FX Trading with FXCM

Second, the data retrieval itself. It is similar to the the tick data retrieval. The only dif‐
ference is that a period value, or the bar length, needs to be specified (for example, m1
for one minute, H1 for one hour, or D1 for one day):

In [16]: start = dt.datetime(2020, 4, 1)
 stop = dt.datetime(2020, 5, 1)

In [17]: period = 'H1'

In [18]: candles = cdr('EURUSD', start, stop, period)

In [19]: data = candles.get_data()

In [20]: data.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 600 entries, 2020-03-29 21:00:00 to 2020-05-01 20:00:00
 Data columns (total 8 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 BidOpen 600 non-null float64
 1 BidHigh 600 non-null float64
 2 BidLow 600 non-null float64
 3 BidClose 600 non-null float64
 4 AskOpen 600 non-null float64
 5 AskHigh 600 non-null float64
 6 AskLow 600 non-null float64
 7 AskClose 600 non-null float64
 dtypes: float64(8)
 memory usage: 42.2 KB

In [21]: data[data.columns[:4]].tail()
Out[21]: BidOpen BidHigh BidLow BidClose
 2020-05-01 16:00:00 1.09976 1.09996 1.09850 1.09874
 2020-05-01 17:00:00 1.09874 1.09888 1.09785 1.09818
 2020-05-01 18:00:00 1.09818 1.09820 1.09757 1.09766
 2020-05-01 19:00:00 1.09766 1.09816 1.09747 1.09793
 2020-05-01 20:00:00 1.09793 1.09812 1.09730 1.09788

In [22]: data[data.columns[4:]].tail()
Out[22]: AskOpen AskHigh AskLow AskClose
 2020-05-01 16:00:00 1.09980 1.09998 1.09853 1.09876
 2020-05-01 17:00:00 1.09876 1.09891 1.09786 1.09818
 2020-05-01 18:00:00 1.09818 1.09822 1.09758 1.09768
 2020-05-01 19:00:00 1.09768 1.09818 1.09748 1.09795
 2020-05-01 20:00:00 1.09795 1.09856 1.09733 1.09841

Specifies the period value.

Open, high, low, and close values for the bid prices.

Open, high, low, and close values for the ask prices.

Retrieving Data | 255

To conclude this section, the Python code that follows and calculates mid close prices,
calculates two SMAs, and plots the results (see Figure 9-2):

In [23]: data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1)

In [24]: data['SMA1'] = data['MidClose'].rolling(30).mean()
 data['SMA2'] = data['MidClose'].rolling(100).mean()

In [25]: data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6));

Calculates the mid close prices from the bid and ask close prices.

Calculates two SMAs: one for a shorter time interval, and one for a longer one.

Figure 9-2. Historical hourly mid close prices for EUR/USD and two SMAs

Working with the API
While the previous sections retrieve historical tick data and candles data pre-
packaged from FXCM servers, this section shows how to retrieve historical data via
the API. However, a connection object to the FXCM API is needed. Therefore, first,
here is the import of the fxcmpy package, the connection to the API (based on the
unique API token), and a look at the available instruments. There might be more
instruments available as compared to the pre-packaged data sets:

In [26]: import fxcmpy

In [27]: fxcmpy.__version__
Out[27]: '1.2.6'

256 | Chapter 9: FX Trading with FXCM

In [28]: api = fxcmpy.fxcmpy(config_file='../pyalgo.cfg')

In [29]: instruments = api.get_instruments()

In [30]: print(instruments)
 ['EUR/USD', 'USD/JPY', 'GBP/USD', 'USD/CHF', 'EUR/CHF', 'AUD/USD',
 'USD/CAD', 'NZD/USD', 'EUR/GBP', 'EUR/JPY', 'GBP/JPY', 'CHF/JPY',
 'GBP/CHF', 'EUR/AUD', 'EUR/CAD', 'AUD/CAD', 'AUD/JPY', 'CAD/JPY',
 'NZD/JPY', 'GBP/CAD', 'GBP/NZD', 'GBP/AUD', 'AUD/NZD', 'USD/SEK',
 'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF', 'EUR/NZD',
 'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'USD/TRY', 'EUR/TRY', 'NZD/CHF',
 'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'USD/ILS', 'USD/CNH', 'AUS200',
 'ESP35', 'FRA40', 'GER30', 'HKG33', 'JPN225', 'NAS100', 'SPX500',
 'UK100', 'US30', 'Copper', 'CHN50', 'EUSTX50', 'USDOLLAR', 'US2000',
 'USOil', 'UKOil', 'SOYF', 'NGAS', 'USOilSpot', 'UKOilSpot', 'WHEATF',
 'CORNF', 'Bund', 'XAU/USD', 'XAG/USD', 'EMBasket', 'JPYBasket',
 'BTC/USD', 'BCH/USD', 'ETH/USD', 'LTC/USD', 'XRP/USD', 'CryptoMajor',
 'EOS/USD', 'XLM/USD', 'ESPORTS', 'BIOTECH', 'CANNABIS', 'FAANG',
 'CHN.TECH', 'CHN.ECOMM', 'USEquities']

This connects to the API; adjust the path/filename.

Retrieving Historical Data
Once connected, data retrieval for specific time intervals is accomplished via a single
method call. When using the .get_candles() method, the parameter period can be
one of m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1, or M1. Figure 9-3 shows one-
minute bar ask close prices for the EUR/USD instrument (currency pair):

In [31]: candles = api.get_candles('USD/JPY', period='D1', number=10)

In [32]: candles[candles.columns[:4]]
Out[32]: bidopen bidclose bidhigh bidlow
 date
 2020-08-07 21:00:00 105.538 105.898 106.051 105.452
 2020-08-09 21:00:00 105.871 105.846 105.871 105.844
 2020-08-10 21:00:00 105.846 105.914 106.197 105.702
 2020-08-11 21:00:00 105.914 106.466 106.679 105.870
 2020-08-12 21:00:00 106.466 106.848 107.009 106.434
 2020-08-13 21:00:00 106.848 106.893 107.044 106.560
 2020-08-14 21:00:00 106.893 106.535 107.033 106.429
 2020-08-17 21:00:00 106.559 105.960 106.648 105.937
 2020-08-18 21:00:00 105.960 105.378 106.046 105.277
 2020-08-19 21:00:00 105.378 105.528 105.599 105.097

In [33]: candles[candles.columns[4:]]
Out[33]: askopen askclose askhigh asklow tickqty
 date
 2020-08-07 21:00:00 105.557 105.969 106.062 105.484 253759
 2020-08-09 21:00:00 105.983 105.952 105.989 105.925 20
 2020-08-10 21:00:00 105.952 105.986 106.209 105.715 161841

Working with the API | 257

 2020-08-11 21:00:00 105.986 106.541 106.689 105.929 243813
 2020-08-12 21:00:00 106.541 106.950 107.022 106.447 248989
 2020-08-13 21:00:00 106.950 106.983 107.056 106.572 214735
 2020-08-14 21:00:00 106.983 106.646 107.044 106.442 164244
 2020-08-17 21:00:00 106.680 106.047 106.711 105.948 163629
 2020-08-18 21:00:00 106.047 105.431 106.101 105.290 215574
 2020-08-19 21:00:00 105.431 105.542 105.612 105.109 151255

In [34]: start = dt.datetime(2019, 1, 1)
 end = dt.datetime(2020, 6, 1)

In [35]: candles = api.get_candles('EUR/GBP', period='D1',
 start=start, stop=end)

In [36]: candles.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 438 entries, 2019-01-02 22:00:00 to 2020-06-01 21:00:00
 Data columns (total 9 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 bidopen 438 non-null float64
 1 bidclose 438 non-null float64
 2 bidhigh 438 non-null float64
 3 bidlow 438 non-null float64
 4 askopen 438 non-null float64
 5 askclose 438 non-null float64
 6 askhigh 438 non-null float64
 7 asklow 438 non-null float64
 8 tickqty 438 non-null int64
 dtypes: float64(8), int64(1)
 memory usage: 34.2 KB

In [37]: candles = api.get_candles('EUR/USD', period='m1', number=250)

In [38]: candles['askclose'].plot(figsize=(10, 6))

Retrieves the 10 most recent end-of-day prices.

Retrieves end-of-day prices for a whole year.

Retrieves the most recent one-minute bar prices available.

Historical data retrieved from the FXCM RESTful API can change
with the pricing model of the account. In particular, the average
bid-ask spreads can be higher or lower for different pricing models
offered by FXCM to different groups of traders.

258 | Chapter 9: FX Trading with FXCM

Figure 9-3. Historical ask close prices for EUR/USD (minute bars)

Retrieving Streaming Data
While historical data is important to, for example, backtest algorithmic trading strate‐
gies, continuous access to real-time or streaming data (during trading hours) is
required to deploy and automate algorithmic trading strategies. Similar to the Oanda
API, the FXCM API therefore also allows for the subscription to real-time data
streams for all instruments. The fxcmpy wrapper package supports this functionality
in that it allows one to provide user-defined functions (so called callback functions) to
process the subscribed real-time data stream.

The following Python code presents such a simple callback function—it only prints
out selected elements of the data set retrieved—and uses it to process data retrieved in
real time, after a subscription for the desired instrument (here EUR/USD):

In [39]: def output(data, dataframe):
 print('%3d | %s | %s | %6.5f, %6.5f'
 % (len(dataframe), data['Symbol'],
 pd.to_datetime(int(data['Updated']), unit='ms'),
 data['Rates'][0], data['Rates'][1]))

In [40]: api.subscribe_market_data('EUR/USD', (output,))
 2 | EUR/USD | 2020-08-19 14:32:36.204000 | 1.19319, 1.19331
 3 | EUR/USD | 2020-08-19 14:32:37.005000 | 1.19320, 1.19331
 4 | EUR/USD | 2020-08-19 14:32:37.940000 | 1.19323, 1.19333
 5 | EUR/USD | 2020-08-19 14:32:38.429000 | 1.19321, 1.19332
 6 | EUR/USD | 2020-08-19 14:32:38.915000 | 1.19323, 1.19334
 7 | EUR/USD | 2020-08-19 14:32:39.436000 | 1.19321, 1.19332

Working with the API | 259

3 See the documentation under http://fxcmpy.tpq.io.

 8 | EUR/USD | 2020-08-19 14:32:39.883000 | 1.19317, 1.19328
 9 | EUR/USD | 2020-08-19 14:32:40.437000 | 1.19317, 1.19328
 10 | EUR/USD | 2020-08-19 14:32:40.810000 | 1.19318, 1.19329

In [41]: api.get_last_price('EUR/USD')
Out[41]: Bid 1.19318
 Ask 1.19329
 High 1.19534
 Low 1.19217
 Name: 2020-08-19 14:32:40.810000, dtype: float64

 11 | EUR/USD | 2020-08-19 14:32:41.410000 | 1.19319, 1.19329

In [42]: api.unsubscribe_market_data('EUR/USD')

This is the callback function that prints out certain elements of the retrieved data
set.

Here is the subscription to a specific real-time data stream. Data is processed
asynchronously as long as there is no “unsubscribe” event.

During the subscription, the .get_last_price() method returns the last avail‐
able data set.

This unsubscribes from the real-time data stream.

Callback Functions

Callback functions are a flexible way to process real-time streaming
data based on a Python function or even multiple such functions.
They can be used for simple tasks, such as the printing of incoming
data, or complex tasks, such as generating trading signals based on
online trading algorithms.

Placing Orders
The FXCM API allows for the placement and management of all types of orders that
are also available via the trading application of FXCM (such as entry orders or trailing
stop loss orders).3 However, the following code illustrates basic market buy and sell
orders only since they are generally sufficient to at least get started with algorithmic
trading.

260 | Chapter 9: FX Trading with FXCM

http://fxcmpy.tpq.io

4 Quantities are in 1,000s of the instrument for currency pairs. Also, note that different accounts might have
different leverage ratios. This implies that the same position might require more or less equity (margin)
depending on the relevant leverage ratio. Adjust the example quantities to lower values if necessary. See
https://oreil.ly/xUHMP.

The following code first verifies that there are no open positions and then opens dif‐
ferent positions via the .create_market_buy_order() method:

In [43]: api.get_open_positions()
Out[43]: Empty DataFrame
 Columns: []
 Index: []

In [44]: order = api.create_market_buy_order('EUR/USD', 100)

In [45]: sel = ['tradeId', 'amountK', 'currency',
 'grossPL', 'isBuy']

In [46]: api.get_open_positions()[sel]
Out[46]: tradeId amountK currency grossPL isBuy
 0 169122817 100 EUR/USD -9.21945 True

In [47]: order = api.create_market_buy_order('EUR/GBP', 50)

In [48]: api.get_open_positions()[sel]
Out[48]: tradeId amountK currency grossPL isBuy
 0 169122817 100 EUR/USD -8.38125 True
 1 169122819 50 EUR/GBP -9.40900 True

Shows the open positions for the connected (default) account.

Opens a position of 100,000 in the EUR/USD currency pair.4

Shows the open positions for selected elements only.

Opens another position of 50,000 in the EUR/GBP currency pair.

While the .create_market_buy_order() opens or increases positions, the .cre
ate_market_sell_order() allows one to close or decrease positions. There are also
more general methods that allow the closing out of positions, as the following code
illustrates:

In [49]: order = api.create_market_sell_order('EUR/USD', 25)

In [50]: order = api.create_market_buy_order('EUR/GBP', 50)

In [51]: api.get_open_positions()[sel]
Out[51]: tradeId amountK currency grossPL isBuy
 0 169122817 100 EUR/USD -7.54306 True

Working with the API | 261

https://oreil.ly/xUHMP

 1 169122819 50 EUR/GBP -11.62340 True
 2 169122834 25 EUR/USD -2.30463 False
 3 169122835 50 EUR/GBP -9.96292 True

In [52]: api.close_all_for_symbol('EUR/GBP')

In [53]: api.get_open_positions()[sel]
Out[53]: tradeId amountK currency grossPL isBuy
 0 169122817 100 EUR/USD -5.02858 True
 1 169122834 25 EUR/USD -3.14257 False

In [54]: api.close_all()

In [55]: api.get_open_positions()
Out[55]: Empty DataFrame
 Columns: []
 Index: []

Reduces the position in the EUR/USD currency pair.

Increases the position in the EUR/GBP currency pair.

For EUR/GBP there are now two open long positions; contrary to the EUR/USD
position, it is not netted.

The .close_all_for_symbol() method closes all positions for the specified
symbol.

The .close_all() method closes all open positions at once.

By default, FXCM sets up demo accounts as hedge accounts. This
means that going long, say EUR/USD, with 10,000 and going short
the same instrument with 10,000 leads to two different open posi‐
tions. The default with Oanda are net accounts that net orders and
positions for the same instrument.

Account Information
Beyond, for example, open positions, the FXCM API allows one to retrieve more gen‐
eral account informationm, as well. For example, one can look up the default account
(if there are multiple accounts) or an overview equity and margin situation:

In [56]: api.get_default_account()
Out[56]: 1233279

In [57]: api.get_accounts().T
Out[57]: 0
 t 6

262 | Chapter 9: FX Trading with FXCM

 ratePrecision 0
 accountId 1233279
 balance 47555.2
 usdMr 0
 mc N
 mcDate
 accountName 01233279
 usdMr3 0
 hedging Y
 usableMargin3 47555.2
 usableMarginPerc 100
 usableMargin3Perc 100
 equity 47555.2
 usableMargin 47555.2
 bus 1000
 dayPL 653.16
 grossPL 0

Shows the default accountId value.

Shows for all accounts the financial situation and some parameters.

Conclusions
This chapter is about the RESTful API of FXCM for algorithmic trading and covers
the following topics:

• Setting everything up for API usage
• Retrieving historical tick data
• Retrieving historical candles data
• Retrieving streaming data in real-time
• Placing market buy and sell orders
• Looking up account information

Beyond these aspects, the FXCM API and the fxcmpy wrapper package provide, of
course, more functionality. However, the topics of this chapter are the basic building
blocks needed to get started with algorithmic trading.

With Oanda and FXCM, algorithmic traders have two trading platforms (brokers)
available that provide a wide-ranging spectrum of financial instruments and appro‐
priate APIs to implement automated, algorithmic trading strategies. Some important
aspects are added to the mix in Chapter 10.

Conclusions | 263

References and Further Resources
The following resources cover the FXCM trading API and the Python wrapper
package:

• Trading API: https://fxcm.github.io/rest-api-docs
• fxcmpy package: http://fxcmpy.tpq.io

264 | Chapter 9: FX Trading with FXCM

https://fxcm.github.io/rest-api-docs
http://fxcmpy.tpq.io

CHAPTER 10

Automating Trading Operations

People worry that computers will get too smart and take over the world, but the real
problem is that they’re too stupid and they’ve already taken over the world.

—Pedro Domingos

“Now what?” you might think. The trading platform that allows one to retrieve his‐
torical data and streaming data is available. It allows one to place buy and sell orders
and to check the account status. A number of different methods have been intro‐
duced in this book to derive algorithmic trading strategies by predicting the direction
of market price movements. You may ask, “How, after all, can this all be put together
to work in automated fashion?” This cannot be answered in any generality. However,
this chapter addresses a number of topics that are important in this context. The
chapter assumes that a single automated, algorithmic trading strategy is to be
deployed. This simplifies, for example, aspects like capital and risk management.

The chapter covers the following topics. “Capital Management” on page 266 discusses
the Kelly criterion. Depending on the strategy characteristics and the trading capital
available, the Kelly criterion helps with sizing the trades. To gain confidence in an
algorithmic trading strategy, the strategy needs to be backtested thoroughly with
regard to both performance and risk characteristics. “ML-Based Trading Strategy” on
page 277 backtests an example strategy based on a classification algorithm from
machine learning (ML), as introduced in “Trading Strategies” on page 13. To deploy
the algorithmic trading strategy for automated trading, it needs to be translated into
an online algorithm that works with incoming streaming data in real time. “Online
Algorithm” on page 291 covers the transformation of an offline algorithm into an
online algorithm.

“Infrastructure and Deployment” on page 296 then sets out to make sure that the
automated, algorithmic trading strategy runs robustly and reliably in the cloud. Not
all topics of relevance can be covered in detail, but cloud deployment seems to be the

265

only viable option from an availability, performance, and security point of view in
this context. “Logging and Monitoring” on page 297 covers logging and monitoring.
Logging is important in order to be able to analyze the history and certain events dur‐
ing the deployment of an automated trading strategy. Monitoring via socket commu‐
nication, as introduced in Chapter 7, allows one to observe events remotely in real
time. The chapter concludes with “Visual Step-by-Step Overview” on page 299,
which provides a visual summary of the core steps for the automated deployment of
algorithmic trading strategies in the cloud.

Capital Management
A central question in algorithmic trading is how much capital to deploy to a given
algorithmic trading strategy given the total available capital. The answer to this ques‐
tion depends on the main goal one is trying to achieve by algorithmic trading. Most
individuals and financial institutions will agree that the maximization of long-term
wealth is a good candidate objective. This is what Edward Thorp had in mind when
he derived the Kelly criterion to investing, as described in Rotando and Thorp (1992).
Simply speaking, the Kelly criterion allows for an explicit calculation of the fraction
of the available capital a trader should deploy to a strategy, given its statistical return
characteristics.

Kelly Criterion in Binomial Setting
The common way of introducing the theory of the Kelly criterion to investing is on
the basis of a coin tossing game or, more generally, a binomial setting (only two out‐
comes are possible). This section follows that path. Assume a gambler is playing a
coin tossing game against an infinitely rich bank or casino. Assume further that the
probability for heads is some value p for which the following holds:

1
2 < p < 1

Probability for tails is defined by the following:

q = 1 − p < 1
2

The gambler can place bets b > 0 of arbitrary size, whereby the gambler wins the
same amount if right and loses it all if wrong. Given the assumptions about the prob‐
abilities, the gambler would of course want to bet on heads.

266 | Chapter 10: Automating Trading Operations

Therefore, the expected value for this betting game B (that is, the random variable
representing this game) in a one-shot setting is as follows:

� B = p · b − q · b = p − q · b > 0

A risk-neutral gambler with unlimited funds would like to bet as large an amount as
possible since this would maximize the expected payoff. However, trading in financial
markets is not a one-shot game in general. It is a repeated game. Therefore, assume
that bi represents the amount that is bet on day i and that c0 represents the initial cap‐
ital. The capital c1 at the end of day one depends on the betting success on that day
and might be either c0 + b1 or c0 − b1. The expected value for a gamble that is repeated
n times then is as follows:

� Bn = c0 + ∑
i = 1

n
p − q · bi

In classical economic theory, with risk-neutral, expected utility-maximizing agents, a
gambler would try to maximize the preceding expression. It is easily seen that it is
maximized by betting all available funds, bi = ci − 1, like in the one-shot scenario.
However, this in turn implies that a single loss will wipe out all available funds and
will lead to ruin (unless unlimited borrowing is possible). Therefore, this strategy
does not lead to a maximization of long-term wealth.

While betting the maximum capital available might lead to sudden ruin, betting
nothing at all avoids any kind of loss but does not benefit from the advantageous
gamble either. This is where the Kelly criterion comes into play since it derives the
optimal fraction f * of the available capital to bet per round of betting. Assume that
n = h + t where h stands for the number of heads observed during n rounds of bet‐
ting and where t stands for the number of tails. With these definitions, the available
capital after n rounds is the following:

cn = c0 · 1 + f h · 1 − f t

Capital Management | 267

In such a context, long-term wealth maximization boils down to maximizing the
average geometric growth rate per bet which is given as follows:

rg = log
cn
c0

1/n

= log
c0 · 1 + f h · 1 − f t

c0

1/n

= log 1 + f h · 1 − f t 1/n

= h
n log 1 + f + t

n log 1 − f

The problem then formally is to maximize the expected average rate of growth by
choosing f optimally. With � h = n · p and � t = n · q, one gets:

� rg = � h
n log 1 + f + t

n log 1 − f

= � p log 1 + f + q log 1 − f
= p log 1 + f + q log 1 − f
≡ G f

One can now maximize the term by choosing the optimal fraction f * according to
the first order condition. The first derivative is given by the following:

G′ f = p
1 + f − q

1 − f

= p − p f − q − q f
1 + f 1 − f

= p − q − f
1 + f 1 − f

From the first order condition, one gets the following:

G′ f =! 0 f * = p − q

If one trusts this to be the maximum (and not the minimum), this result implies that
it is optimal to invest a fraction f * = p − q per round of betting. With, for example,
p = 0.55, one has f * = 0.55 - 0.45 = 0.1, or that the optimal fraction is 10%.

268 | Chapter 10: Automating Trading Operations

The following Python code formalizes these concepts and results through simulation.
First, some imports and configurations:

In [1]: import math
 import time
 import numpy as np
 import pandas as pd
 import datetime as dt
 from pylab import plt, mpl

In [2]: np.random.seed(1000)
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

The idea is to simulate, for example, 50 series with 100 coin tosses per series. The
Python code for this is straightforward:

In [3]: p = 0.55

In [4]: f = p - (1 - p)

In [5]: f
Out[5]: 0.10000000000000009

In [6]: I = 50

In [7]: n = 100

Fixes the probability for heads.

Calculates the optimal fraction according to the Kelly criterion.

The number of series to be simulated.

The number of trials per series.

The major part is the Python function run_simulation(), which achieves the simula‐
tion according to the preceding assumptions. Figure 10-1 shows the simulation
results:

In [8]: def run_simulation(f):
 c = np.zeros((n, I))
 c[0] = 100
 for i in range(I):
 for t in range(1, n):
 o = np.random.binomial(1, p)
 if o > 0:
 c[t, i] = (1 + f) * c[t - 1, i]
 else:
 c[t, i] = (1 - f) * c[t - 1, i]

Capital Management | 269

 return c

In [9]: c_1 = run_simulation(f)

In [10]: c_1.round(2)
Out[10]: array([[100. , 100. , 100. , ..., 100. , 100. , 100.],
 [90. , 110. , 90. , ..., 110. , 90. , 110.],
 [99. , 121. , 99. , ..., 121. , 81. , 121.],
 ...,
 [226.35, 338.13, 413.27, ..., 123.97, 123.97, 123.97],
 [248.99, 371.94, 454.6 , ..., 136.37, 136.37, 136.37],
 [273.89, 409.14, 409.14, ..., 122.73, 150.01, 122.73]])

In [11]: plt.figure(figsize=(10, 6))
 plt.plot(c_1, 'b', lw=0.5)
 plt.plot(c_1.mean(axis=1), 'r', lw=2.5);

Instantiates an ndarray object to store the simulation results.

Initializes the starting capital with 100.

Outer loop for the series simulations.

Inner loop for the series itself.

Simulates the tossing of a coin.

If 1 or heads…

…then add the win to the capital.

If 0 or tails…

…subtract the loss from the capital.

This runs the simulation.

Plots all 50 series.

Plots the average over all 50 series.

270 | Chapter 10: Automating Trading Operations

Figure 10-1. 50 simulated series with 100 trials each (red line = average)

The following code repeats the simulation for different values of f . As shown in
Figure 10-2, a lower fraction leads to a lower growth rate on average. Higher values
might lead both to a higher average capital at the end of the simulation (f =0.25) or
lead to a much lower average capital (f =0.5]). In both cases where the fraction f is
higher, the volatility increases considerably:

In [12]: c_2 = run_simulation(0.05)

In [13]: c_3 = run_simulation(0.25)

In [14]: c_4 = run_simulation(0.5)

In [15]: plt.figure(figsize=(10, 6))
 plt.plot(c_1.mean(axis=1), 'r', label='$f^*=0.1$')
 plt.plot(c_2.mean(axis=1), 'b', label='$f=0.05$')
 plt.plot(c_3.mean(axis=1), 'y', label='$f=0.25$')
 plt.plot(c_4.mean(axis=1), 'm', label='$f=0.5$')
 plt.legend(loc=0);

Simulation with f = 0.05.

Simulation with f = 0.25.

Simulation with f = 0.5.

Capital Management | 271

1 The exposition follows Hung (2010).

Figure 10-2. Average capital over time for different values of f

Kelly Criterion for Stocks and Indices
Assume now a stock market setting in which the relevant stock (index) can take on
only two values after a period of one year from today, given its known value today.
The setting is again binomial but this time a bit closer on the modeling side to stock
market realities.1 Specifically, assume the following holds true:

P rS = μ + σ = P rS = μ − σ = 1
2

Here, � rS = μ > 0 is the the expected return of the stock over one year, and σ > 0 is
the standard deviation of returns (volatility). In a one-period setting, one gets the fol‐
lowing for the available capital after one year (with c0 and f defined as before):

c f = c0 · 1 + 1 − f · r + f · rS

272 | Chapter 10: Automating Trading Operations

Here, r is the constant short rate earned on cash not invested in the stock. Maximiz‐
ing the geometric growth rate means maximizing the term:

G f = � log c f
c0

Assume now that there are n relevant trading days in the year so that for each such
trading day i the following holds true:

P ri
S = μ

n + σ
n = P ri

S = μ
n − σ

n = 1
2

Note that volatility scales with the square root of the number of trading days. Under
these assumptions, the daily values scale up to the yearly ones from before and one
gets the following:

cn f = c0 · ∏
i = 1

n
1 + 1 − f · r

n + f · ri
S

One now has to maximize the following quantity to achieve maximum long-term
wealth when investing in the stock:

Gn f = � log
cn f

c0

= � ∑
i = 1

n
log 1 + 1 − f · r

n + f · ri
S

= 1
2 ∑

i = 1

n
log 1 + 1 − f · r

n + f · μ
n + σ

n

+ log 1 + 1 − f · r
n + f · μ

n − σ
n

= n
2 log 1 + 1 − f · r

n + f · μ
n

2
− f 2σ2

n

Using a Taylor series expansion, one finally arrives at the following:

Gn f = r + μ − r · f − σ2

2 · f 2 + � 1
n

Capital Management | 273

https://oreil.ly/xX4tA

Or for infinitely many trading points in time (that is, for continuous trading), one
arrives at the following:

G∞ f = r + μ − r · f − σ2

2 · f 2

The optimal fraction f * then is given through the first order condition by the follow‐
ing expression:

f * = μ − r
σ2

This represents the expected excess return of the stock over the risk-free rate divided
by the variance of the returns. This expression looks similar to the Sharpe ratio but is
different.

A real-world example shall illustrate the application of the preceding formula and its
role in leveraging equity deployed to trading strategies. The trading strategy under
consideration is simply a passive long position in the S&P 500 index. To this end, base
data is quickly retrieved and required statistics are easily derived:

In [16]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True)

In [17]: symbol = '.SPX'

In [18]: data = pd.DataFrame(raw[symbol])

In [19]: data['return'] = np.log(data / data.shift(1))

In [20]: data.dropna(inplace=True)

In [21]: data.tail()
Out[21]: .SPX return
 Date
 2019-12-23 3224.01 0.000866
 2019-12-24 3223.38 -0.000195
 2019-12-27 3240.02 0.000034
 2019-12-30 3221.29 -0.005798
 2019-12-31 3230.78 0.002942

The statistical properties of the S&P 500 index over the period covered suggest an
optimal fraction of about 4.5 to be invested in the long position in the index. In other
words, for every dollar available, 4.5 dollars shall be invested, implying a leverage ratio
of 4.5 in accordance with the optimal Kelly fraction or, in this case, the optimal Kelly
factor.

274 | Chapter 10: Automating Trading Operations

Everything being equal, the Kelly criterion implies a higher leverage when the
expected return is higher and the volatility (variance) is lower:

In [22]: mu = data['return'].mean() * 252

In [23]: mu
Out[23]: 0.09992181916534204

In [24]: sigma = data['return'].std() * 252 ** 0.5

In [25]: sigma
Out[25]: 0.14761569775486563

In [26]: r = 0.0

In [27]: f = (mu - r) / sigma ** 2

In [28]: f
Out[28]: 4.585590244019818

Calculates the annualized return.

Calculates the annualized volatility.

Sets the risk-free rate to 0 (for simplicity).

Calculates the optimal Kelly fraction to be invested in the strategy.

The following Python code simulates the application of the Kelly criterion and the
optimal leverage ratio. For simplicity and comparison reasons, the initial equity is set
to 1 while the initially invested total capital is set to 1 · f *. Depending on the perfor‐
mance of the capital deployed to the strategy, the total capital itself is adjusted daily
according to the available equity. After a loss, the capital is reduced; after a profit, the
capital is increased. The evolution of the equity position compared to the index itself
is shown in Figure 10-3:

In [29]: equs = []

In [30]: def kelly_strategy(f):
 global equs
 equ = 'equity_{:.2f}'.format(f)
 equs.append(equ)
 cap = 'capital_{:.2f}'.format(f)
 data[equ] = 1
 data[cap] = data[equ] * f
 for i, t in enumerate(data.index[1:]):
 t_1 = data.index[i]
 data.loc[t, cap] = data[cap].loc[t_1] * \
 math.exp(data['return'].loc[t])
 data.loc[t, equ] = data[cap].loc[t] - \

Capital Management | 275

 data[cap].loc[t_1] + \
 data[equ].loc[t_1]
 data.loc[t, cap] = data[equ].loc[t] * f

In [31]: kelly_strategy(f * 0.5)

In [32]: kelly_strategy(f * 0.66)

In [33]: kelly_strategy(f)

In [34]: print(data[equs].tail())
 equity_2.29 equity_3.03 equity_4.59
 Date
 2019-12-23 6.628865 9.585294 14.205748
 2019-12-24 6.625895 9.579626 14.193019
 2019-12-27 6.626410 9.580610 14.195229
 2019-12-30 6.538582 9.412991 13.818934
 2019-12-31 6.582748 9.496919 14.005618

In [35]: ax = data['return'].cumsum().apply(np.exp).plot(figsize=(10, 6))
 data[equs].plot(ax=ax, legend=True);

Generates a new column for equity and sets the initial value to 1.

Generates a new column for capital and sets the initial value to 1 · f *.

Picks the right DatetimeIndex value for the previous values.

Calculates the new capital position given the return.

Adjusts the equity value according to the capital position performance.

Adjusts the capital position given the new equity position and the fixed leverage
ratio.

Simulates the Kelly criterion based strategy for half of f …

…for two thirds of f …

…and f itself.

276 | Chapter 10: Automating Trading Operations

Figure 10-3. Gross performance of S&P 500 compared to equity position given different
values of f

As Figure 10-3 illustrates, applying the optimal Kelly leverage leads to a rather erratic
evolution of the equity position (high volatility), which is intuitively plausible, given
the leverage ratio of 4.59. One would expect the volatility of the equity position to
increase with increasing leverage. Therefore, practitioners often do not use “full
Kelly” (4.6), but rather “half Kelly” (2.3). In the current example, this is reduced to:

1
2 • f * ≈ 2.3

Against this background, Figure 10-3 also shows the evolution of the equity position
for values lower than “full Kelly.” The risk indeed reduces with lower values of latex‐
math:[f].

ML-Based Trading Strategy
Chapter 8 introduces the Oanda trading platform, its RESTful API and the Python
wrapper package tpqoa. This section combines an ML-based approach for predicting
the direction of market price movements with historical data from the Oanda v20
RESTful API to backtest an algorithmic trading strategy for the EUR/USD currency
pair. It uses vectorized backtesting, taking into account this time the bid-ask spread
as proportional transactions costs. It also adds, compared to the plain vectorized

ML-Based Trading Strategy | 277

backtesting approach introduced in Chapter 4, a more in-depth analysis of the risk
characteristics of the trading strategy tested.

Vectorized Backtesting
The backtest is based on intraday data, more specifically on bars of 10 minutes in
length. The following code connects to the Oanda v20 API and retrieves 10-minute
bar data for one week. Figure 10-4 visualizes the mid close prices over the period for
which data is retrieved:

In [36]: import tpqoa

In [37]: %time api = tpqoa.tpqoa('../pyalgo.cfg')
 CPU times: user 893 µs, sys: 198 µs, total: 1.09 ms
 Wall time: 1.04 ms

In [38]: instrument = 'EUR_USD'

In [39]: raw = api.get_history(instrument,
 start='2020-06-08',
 end='2020-06-13',
 granularity='M10',
 price='M')

In [40]: raw.tail()
Out[40]: o h l c volume complete
 time
 2020-06-12 20:10:00 1.12572 1.12593 1.12532 1.12568 221 True
 2020-06-12 20:20:00 1.12569 1.12578 1.12532 1.12558 163 True
 2020-06-12 20:30:00 1.12560 1.12573 1.12534 1.12543 192 True
 2020-06-12 20:40:00 1.12544 1.12594 1.12528 1.12542 219 True
 2020-06-12 20:50:00 1.12544 1.12624 1.12541 1.12554 296 True

In [41]: raw.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 701 entries, 2020-06-08 00:00:00 to 2020-06-12 20:50:00
 Data columns (total 6 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 o 701 non-null float64
 1 h 701 non-null float64
 2 l 701 non-null float64
 3 c 701 non-null float64
 4 volume 701 non-null int64
 5 complete 701 non-null bool
 dtypes: bool(1), float64(4), int64(1)
 memory usage: 33.5 KB

In [42]: spread = 0.00012

In [43]: mean = raw['c'].mean()

278 | Chapter 10: Automating Trading Operations

In [44]: ptc = spread / mean
 ptc
Out[44]: 0.00010599557439495706

In [45]: raw['c'].plot(figsize=(10, 6), legend=True);

Connects to the API and retrieves the data.

Specifies the average bid-ask spread.

Calculates the mean closing price for the data set.

Calculates the average proportional transactions costs given the average spread
and the average mid closing price.

Figure 10-4. EUR/USD exchange rate (10-minute bars)

The ML-based strategy uses a number of time series features, such as the log return
and the minimum and the maximum of the closing price. In addition, the features
data is lagged. In other words, the ML algorithm shall learn from historical patterns
as embodied by the lagged features data:

In [46]: data = pd.DataFrame(raw['c'])

In [47]: data.columns = [instrument,]

In [48]: window = 20
 data['return'] = np.log(data / data.shift(1))

ML-Based Trading Strategy | 279

 data['vol'] = data['return'].rolling(window).std()
 data['mom'] = np.sign(data['return'].rolling(window).mean())
 data['sma'] = data[instrument].rolling(window).mean()
 data['min'] = data[instrument].rolling(window).min()
 data['max'] = data[instrument].rolling(window).max()

In [49]: data.dropna(inplace=True)

In [50]: lags = 6

In [51]: features = ['return', 'vol', 'mom', 'sma', 'min', 'max']

In [52]: cols = []
 for f in features:
 for lag in range(1, lags + 1):
 col = f'{f}_lag_{lag}'
 data[col] = data[f].shift(lag)
 cols.append(col)

In [53]: data.dropna(inplace=True)

In [54]: data['direction'] = np.where(data['return'] > 0, 1, -1)

In [55]: data[cols].iloc[:lags, :lags]
Out[55]:
 return_lag_1 return_lag_2 return_lag_3 return_lag_4 \
 time
 2020-06-08 04:20:00 0.000097 0.000018 -0.000452 0.000035
 2020-06-08 04:30:00 -0.000115 0.000097 0.000018 -0.000452
 2020-06-08 04:40:00 0.000027 -0.000115 0.000097 0.000018
 2020-06-08 04:50:00 -0.000142 0.000027 -0.000115 0.000097
 2020-06-08 05:00:00 0.000035 -0.000142 0.000027 -0.000115
 2020-06-08 05:10:00 -0.000159 0.000035 -0.000142 0.000027

 return_lag_5 return_lag_6
 time
 2020-06-08 04:20:00 0.000000 0.000009
 2020-06-08 04:30:00 0.000035 0.000000
 2020-06-08 04:40:00 -0.000452 0.000035
 2020-06-08 04:50:00 0.000018 -0.000452
 2020-06-08 05:00:00 0.000097 0.000018
 2020-06-08 05:10:00 -0.000115 0.000097

Specifies the window length for certain features.

Calculates the log returns from the closing prices.

Calculates the rolling volatility.

Derives the time series momentum as the mean of the recent log returns.

280 | Chapter 10: Automating Trading Operations

Calculates the simple moving average.

Calculates the rolling maximum value.

Calculates the rolling minimum value.

Adds the lagged features data to the DataFrame object.

Defines the labels data as the market direction (+1 or up and -1 or down).

Shows a small sub-set from the resulting lagged features data.

Given the features and label data, different supervised learning algorithms could now
be applied. In what follows, a so-called AdaBoost algorithm for classification is used
from the scikit-learn ML package (see AdaBoostClassifier). The idea of boosting
in the context of classification is to use an ensemble of base classifiers to arrive at a
superior predictor that is supposed to be less prone to overfitting (see “Data Snoop‐
ing and Overfitting” on page 111). As the base classifier, a decision tree classification
algorithm from scikit-learn is used (see DecisionTreeClassifier).

The code trains and tests the algorithmic trading strategy based on a sequential train-
test split. The accuracy scores of the model for the training and test data are both sig‐
nificantly above 50%. Instead of accuracy scores, one would also speak in a financial
trading context of the hit ratio of the trading strategy (that is, the number of winning
trades compared to all trades). Since the hit ratio is significantly greater than 50%,
this might indicate—in the context of the Kelly criterion—a statistical edge compared
to a random walk setting:

In [56]: from sklearn.metrics import accuracy_score
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.ensemble import AdaBoostClassifier

In [57]: n_estimators=15
 random_state=100
 max_depth=2
 min_samples_leaf=15
 subsample=0.33

In [58]: dtc = DecisionTreeClassifier(random_state=random_state,
 max_depth=max_depth,
 min_samples_leaf=min_samples_leaf)

In [59]: model = AdaBoostClassifier(base_estimator=dtc,
 n_estimators=n_estimators,
 random_state=random_state)

In [60]: split = int(len(data) * 0.7)

ML-Based Trading Strategy | 281

https://oreil.ly/WIANy
https://oreil.ly/wb-wh

In [61]: train = data.iloc[:split].copy()

In [62]: mu, std = train.mean(), train.std()

In [63]: train_ = (train - mu) / std

In [64]: model.fit(train_[cols], train['direction'])
Out[64]: AdaBoostClassifier(algorithm='SAMME.R',
 base_estimator=DecisionTreeClassifier(ccp_alpha=0.0,
 class_weight=None,
 criterion='gini',
 max_depth=2,
 max_features=None,
 max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None,
 min_samples_leaf=15,
 min_samples_split=2,
 min_weight_fraction_leaf=0.0,
 presort='deprecated',
 random_state=100,
 splitter='best'),
 learning_rate=1.0, n_estimators=15, random_state=100)

In [65]: accuracy_score(train['direction'], model.predict(train_[cols]))
Out[65]: 0.8050847457627118

In [66]: test = data.iloc[split:].copy()

In [67]: test_ = (test - mu) / std

In [68]: test['position'] = model.predict(test_[cols])

In [69]: accuracy_score(test['direction'], test['position'])
Out[69]: 0.5665024630541872

Specifies major parameters for the ML algorithm (see the references for the
model classes provided previously).

Instantiates the base classification algorithm (decision tree).

Instantiates the AdaBoost classification algorithm.

Applies Gaussian normalization to the training features data set.

Fits the model based on the training data set.

Shows the accuracy of the predictions from the trained model in-sample (training
data set).

282 | Chapter 10: Automating Trading Operations

2 It is a stylized empirical fact that it is of paramount importance for the investment and trading performance to
get the largest market movements right (that is, the biggest winner and loser movements). This aspect is
neatly illustrated in Figure 10-5, which shows that the trading strategy gets a large downwards movement in
the underlying instrument correct, leading to a larger jump for the trading strategy.

Applies Gaussian normalization to the testing features data set (using the parame‐
ters from the training features data set).

Generates the predictions for the test data set.

Shows the accuracy of the predictions from the trained model out-of-sample (test
data set).

It is well known that the hit ratio is only one side of the coin of success in financial
trading. The other side comprises, among other things, getting the important trades
right, as well as the transactions costs implied by the trading strategy.2 To this end,
only a formal vectorized backtesting approach allows one to judge the quality of the
trading strategy. The following code takes into account the proportional transaction
costs based on the average bid-ask spread. Figure 10-5 compares the performance of
the algorithmic trading strategy (without and with proportional transaction costs) to
the performance of the passive benchmark investment:

In [70]: test['strategy'] = test['position'] * test['return']

In [71]: sum(test['position'].diff() != 0)
Out[71]: 77

In [72]: test['strategy_tc'] = np.where(test['position'].diff() != 0,
 test['strategy'] - ptc,
 test['strategy'])

In [73]: test[['return', 'strategy', 'strategy_tc']].sum(
).apply(np.exp)
Out[73]: return 0.990182
 strategy 1.015827
 strategy_tc 1.007570
 dtype: float64

In [74]: test[['return', 'strategy', 'strategy_tc']].cumsum(
).apply(np.exp).plot(figsize=(10, 6));

ML-Based Trading Strategy | 283

Derives the log returns for the ML-based algorithmic trading strategy.

Calculates the number of trades implied by the trading strategy based on changes
in the position.

Whenever a trade takes place, the proportional transaction costs are subtracted
from the strategy’s log return on that day.

Figure 10-5. Gross performance of EUR/USD exchange rate and algorithmic trading
strategy (before and after transaction costs)

Vectorized backtesting has its limits with regard to how close to
market realities strategies can be tested. For example, it does not
allow one to include fixed transaction costs per trade directly. One
could, as an approximation, take a multiple of the average propor‐
tional transaction costs (based on average position sizes) to
account indirectly for fixed transactions costs. However, this would
not be precise in general. If a higher degree of precision is required,
other approaches, such as event-based backtesting (see Chapter 6)
with explicit loops over every bar of the price data, need to be
applied.

284 | Chapter 10: Automating Trading Operations

Optimal Leverage
Equipped with the trading strategy’s log returns data, the mean and variance values
can be calculated in order to derive the optimal leverage according to the Kelly crite‐
rion. The code that follows scales the numbers to annualized values, although this
does not change the optimal leverage values according to the Kelly criterion since the
mean return and the variance scale with the same factor:

In [75]: mean = test[['return', 'strategy_tc']].mean() * len(data) * 52
 mean
Out[75]: return -1.705965
 strategy_tc 1.304023
 dtype: float64

In [76]: var = test[['return', 'strategy_tc']].var() * len(data) * 52
 var
Out[76]: return 0.011306
 strategy_tc 0.011370
 dtype: float64

In [77]: vol = var ** 0.5
 vol
Out[77]: return 0.106332
 strategy_tc 0.106631
 dtype: float64

In [78]: mean / var
Out[78]: return -150.884961
 strategy_tc 114.687875
 dtype: float64

In [79]: mean / var * 0.5
Out[79]: return -75.442481
 strategy_tc 57.343938
 dtype: float64

Annualized mean returns.

Annualized variances.

Annualized volatilities.

Optimal leverage according to the Kelly criterion (“full Kelly”).

Optimal leverage according to the Kelly criterion (“half Kelly”).

Using the “half Kelly” criterion, the optimal leverage for the trading strategy is above
50. With a number of brokers, such as Oanda, and certain financial instruments, such
as foreign exchange pairs and contracts for difference (CFDs), such leverage ratios

ML-Based Trading Strategy | 285

are feasible, even for retail traders. Figure 10-6 shows, in comparison, the perfor‐
mance of the trading strategy with transaction costs for different leverage values:

In [80]: to_plot = ['return', 'strategy_tc']

In [81]: for lev in [10, 20, 30, 40, 50]:
 label = 'lstrategy_tc_%d' % lev
 test[label] = test['strategy_tc'] * lev
 to_plot.append(label)

In [82]: test[to_plot].cumsum().apply(np.exp).plot(figsize=(10, 6));

Scales the strategy returns for different leverage values.

Figure 10-6. Gross performance of the algorithmic trading strategy for different leverage
values

Leverage increases risks associated with trading strategies signifi‐
cantly. Traders should read the risk disclaimers and regulations
carefully. A positive backtesting performance is also no guarantee
whatsoever for future performances. All results shown are illustra‐
tive only and are meant to demonstrate the application of program‐
ming and analytics approaches. In some jurisdictions, such as in
Germany, leverage ratios are capped for retail traders based on dif‐
ferent groups of financial instruments.

286 | Chapter 10: Automating Trading Operations

Risk Analysis
Since leverage increases the risk associated with a certain trading strategy considera‐
bly, a more in-depth risk analysis seems in order. The risk analysis that follows
assumes a leverage ratio of 30. First, the maximum drawdown and the longest draw‐
down period shall be calculated. Maximum drawdown is the largest loss (dip) after a
recent high. Accordingly, the longest drawdown period is the longest period that the
trading strategy needs to get back to a recent high. The analysis assumes that the ini‐
tial equity position is 3,333 EUR leading to an initial position size of 100,000 EUR for
a leverage ratio of 30. It also assumes that there are no adjustments with regard to the
equity over time, no matter what the performance is:

In [83]: equity = 3333

In [84]: risk = pd.DataFrame(test['lstrategy_tc_30'])

In [85]: risk['equity'] = risk['lstrategy_tc_30'].cumsum(
).apply(np.exp) * equity

In [86]: risk['cummax'] = risk['equity'].cummax()

In [87]: risk['drawdown'] = risk['cummax'] - risk['equity']

In [88]: risk['drawdown'].max()
Out[88]: 511.38321383258017

In [89]: t_max = risk['drawdown'].idxmax()
 t_max
Out[89]: Timestamp('2020-06-12 10:30:00')

The initial equity.

The relevant log returns time series…

…scaled by the initial equity.

The cumulative maximum values over time.

The drawdown values over time.

The maximum drawdown value.

The point in time when it happens.

ML-Based Trading Strategy | 287

Technically, a new high is characterized by a drawdown value of 0. The drawdown
period is the time between two such highs. Figure 10-7 visualizes both the maximum
drawdown and the drawdown periods:

In [90]: temp = risk['drawdown'][risk['drawdown'] == 0]

In [91]: periods = (temp.index[1:].to_pydatetime() -
 temp.index[:-1].to_pydatetime())

In [92]: periods[20:30]
Out[92]: array([datetime.timedelta(seconds=600),
 datetime.timedelta(seconds=1200),
 datetime.timedelta(seconds=1200), datetime.timedelta(seconds=1200)],
 dtype=object)

In [93]: t_per = periods.max()

In [94]: t_per
Out[94]: datetime.timedelta(seconds=26400)

In [95]: t_per.seconds / 60 / 60
Out[95]: 7.333333333333333

In [96]: risk[['equity', 'cummax']].plot(figsize=(10, 6))
 plt.axvline(t_max, c='r', alpha=0.5);

Identifies highs for which the drawdown must be 0.

Calculates the timedelta values between all highs.

The longest drawdown period in seconds…

…transformed to hours.

Another important risk measure is value-at-risk (VaR). It is quoted as a currency
amount and represents the maximum loss to be expected given both a certain time
horizon and a confidence level.

288 | Chapter 10: Automating Trading Operations

Figure 10-7. Maximum drawdown (vertical line) and drawdown periods (horizontal
lines)

The following code derives VaR values based on the log returns of the equity position
for the leveraged trading strategy over time for different confidence levels. The time
interval is fixed to the bar length of ten minutes:

In [97]: import scipy.stats as scs

In [98]: percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0]

In [99]: risk['return'] = np.log(risk['equity'] /
 risk['equity'].shift(1))

In [100]: VaR = scs.scoreatpercentile(equity * risk['return'], percs)

In [101]: def print_var():
 print('{} {}'.format('Confidence Level', 'Value-at-Risk'))
 print(33 * '-')
 for pair in zip(percs, VaR):
 print('{:16.2f} {:16.3f}'.format(100 - pair[0], -pair[1]))

In [102]: print_var()
 Confidence Level Value-at-Risk

 99.99 162.570
 99.90 161.348
 99.00 132.382

ML-Based Trading Strategy | 289

 97.50 122.913
 95.00 100.950
 90.00 62.622

Defines the percentile values to be used.

Calculates the VaR values given the percentile values.

Translates the percentile values into confidence levels and the VaR values (nega‐
tive values) to positive values for printing.

Finally, the following code calculates the VaR values for a time horizon of one hour by
resampling the original DataFrame object. In effect, the VaR values are increased for
all confidence levels:

In [103]: hourly = risk.resample('1H', label='right').last()

In [104]: hourly['return'] = np.log(hourly['equity'] /
 hourly['equity'].shift(1))

In [105]: VaR = scs.scoreatpercentile(equity * hourly['return'], percs)

In [106]: print_var()
 Confidence Level Value-at-Risk

 99.99 252.460
 99.90 251.744
 99.00 244.593
 97.50 232.674
 95.00 125.498
 90.00 61.701

Resamples the data from 10-minute to 1-hour bars.

Calculates the VaR values given the percentile values.

Persisting the Model Object
Once the algorithmic trading strategy is accepted based on the backtesting, leverag‐
ing, and risk analysis results, the model object and other relevant algorithm compo‐
nents might be persisted for later use in deployment. It embodies now the ML-based
trading strategy or the trading algorithm.

In [107]: import pickle

In [108]: algorithm = {'model': model, 'mu': mu, 'std': std}

In [109]: pickle.dump(algorithm, open('algorithm.pkl', 'wb'))

290 | Chapter 10: Automating Trading Operations

Online Algorithm
The trading algorithm tested so far is an offline algorithm. Such algorithms use a com‐
plete data set to solve a problem at hand. The problem has been to train an AdaBoost
classification algorithm based on a decision tree as the base classifier, a number of dif‐
ferent time series features, and directional label data. In practice, when deploying the
trading algorithm in financial markets, it must consume data piece by piece as it
arrives to predict the direction of the market movement for the next time interval
(bar). This section makes use of the persisted model object from the previous section
and embeds it into a streaming data context.

The code that transforms the offline trading algorithm into an online trading algo‐
rithm mainly addresses the following issues:

Tick data
Tick data arrives in real time and is to be processed in real time, such as to be
collected in a DataFrame object.

Resampling
The tick data is to be resampled to the appropriate bar length given the trading
algorithm. For illustration, a shorter bar length is used for resampling than for
the training and backtesting.

Prediction
The trading algorithm generates a prediction for the direction of the market
movement over the relevant time interval that by nature lies in the future.

Orders
Given the current position and the prediction (“signal”) generated by the algo‐
rithm, an order is placed or the position is kept unchanged.

Chapter 8, and in particular “Working with Streaming Data” on page 236, shows how
to retrieve tick data from the Oanda API in real time. The basic approach is to rede‐
fine the .on_success() method of the tpqoa.tpqoa class to implement the trading
logic.

First, the persisted trading algorithm is loaded; it represents the trading logic to be
followed. It consists of the trained model itself and the parameters for the normaliza‐
tion of the features data, which are integral parts of the algorithm:

In [110]: algorithm = pickle.load(open('algorithm.pkl', 'rb'))

In [111]: algorithm['model']
Out[111]: AdaBoostClassifier(algorithm='SAMME.R',
 base_estimator=DecisionTreeClassifier(ccp_alpha=0.0,
 class_weight=None,
 criterion='gini',
 max_depth=2,

Online Algorithm | 291

 max_features=None,
 max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None,
 min_samples_leaf=15,
 min_samples_split=2,
 min_weight_fraction_leaf=0.0,
 presort='deprecated',
 random_state=100,
 splitter='best'),
 learning_rate=1.0, n_estimators=15, random_state=100)

In the following code, the new class MLTrader, which inherits from tpqoa.tpqoa and
which, via the .on_success() and additional helper methods, transforms the trading
algorithm into a real-time context. It is the transformation of the offline algorithm to a
so-called online algorithm:

In [112]: class MLTrader(tpqoa.tpqoa):
 def __init__(self, config_file, algorithm):
 super(MLTrader, self).__init__(config_file)
 self.model = algorithm['model']
 self.mu = algorithm['mu']
 self.std = algorithm['std']
 self.units = 100000
 self.position = 0
 self.bar = '5s'
 self.window = 2
 self.lags = 6
 self.min_length = self.lags + self.window + 1
 self.features = ['return', 'sma', 'min', 'max', 'vol', 'mom']
 self.raw_data = pd.DataFrame()
 def prepare_features(self):
 self.data['return'] = np.log(self.data['mid'] /
 self.data['mid'].shift(1))
 self.data['sma'] = self.data['mid'].rolling(self.window).mean()
 self.data['min'] = self.data['mid'].rolling(self.window).min()
 self.data['mom'] = np.sign(
 self.data['return'].rolling(self.window).mean())
 self.data['max'] = self.data['mid'].rolling(self.window).max()
 self.data['vol'] = self.data['return'].rolling(
 self.window).std()
 self.data.dropna(inplace=True)
 self.data[self.features] -= self.mu
 self.data[self.features] /= self.std
 self.cols = []
 for f in self.features:
 for lag in range(1, self.lags + 1):
 col = f'{f}_lag_{lag}'
 self.data[col] = self.data[f].shift(lag)
 self.cols.append(col)
 def on_success(self, time, bid, ask):
 df = pd.DataFrame({'bid': float(bid), 'ask': float(ask)},

292 | Chapter 10: Automating Trading Operations

 index=[pd.Timestamp(time).tz_localize(None)])
 self.raw_data = self.raw_data.append(df)
 self.data = self.raw_data.resample(self.bar,
 label='right').last().ffill()
 self.data = self.data.iloc[:-1]
 if len(self.data) > self.min_length:
 self.min_length +=1
 self.data['mid'] = (self.data['bid'] +
 self.data['ask']) / 2
 self.prepare_features()
 features = self.data[
 self.cols].iloc[-1].values.reshape(1, -1)
 signal = self.model.predict(features)[0]
 print(f'NEW SIGNAL: {signal}', end='\r')
 if self.position in [0, -1] and signal == 1:
 print('*** GOING LONG ***')
 self.create_order(self.stream_instrument,
 units=(1 - self.position) * self.units)
 self.position = 1
 elif self.position in [0, 1] and signal == -1:
 print('*** GOING SHORT ***')
 self.create_order(self.stream_instrument,
 units=-(1 + self.position) * self.units)
 self.position = -1

The trained AdaBoost model object and the normalization parameters.

The number of units traded.

The initial, neutral position.

The bar length on which the algorithm is implemented.

The length of the window for selected features.

The number of lags (must be in line with algorithm training).

The method that generates the lagged features data.

The redefined method that embodies the trading logic.

Check for a long signal and long trade.

Check for a short signal and short trade.

With the new class MLTrader, automated trading is made simple. A few lines of code
are enough in an interactive context. The parameters are set such that the first order
is placed after a short while. In reality, however, all parameters must, of course, be in

Online Algorithm | 293

line with original ones from the research and backtesting phase. They could, for
example, also be persisted on disk and be read with the algorithm:

In [113]: mlt = MLTrader('../pyalgo.cfg', algorithm)

In [114]: mlt.stream_data(instrument, stop=500)
 print('*** CLOSING OUT ***')
 mlt.create_order(mlt.stream_instrument,
 units=-mlt.position * mlt.units)

Instantiates the trading object.

Starts the streaming, data processing, and trading.

Closes out the final open position.

The preceding code generates an output similar to the following:

 *** GOING LONG ***

 {'id': '1735', 'time': '2020-08-19T14:46:15.552233563Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1734',
 'requestID': '42730658849646182', 'type': 'ORDER_FILL', 'orderID':
 '1734', 'instrument': 'EUR_USD', 'units': '100000.0',
 'gainQuoteHomeConversionFactor': '0.835983419025',
 'lossQuoteHomeConversionFactor': '0.844385262432', 'price': 1.1903,
 'fullVWAP': 1.1903, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19013, 'liquidity': '10000000'}], 'asks': [{'price': 1.1903,
 'liquidity': '10000000'}], 'closeoutBid': 1.19013, 'closeoutAsk':
 1.1903}, 'reason': 'MARKET_ORDER', 'pl': '0.0', 'financing': '0.0',
 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98507.7425', 'tradeOpened': {'tradeID': '1735',
 'units': '100000.0', 'price': 1.1903, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '7.1416', 'initialMarginRequired': '3330.0'},
 'halfSpreadCost': '7.1416'}

 *** GOING SHORT ***

 {'id': '1737', 'time': '2020-08-19T14:48:10.510726213Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1736',
 'requestID': '42730659332312267', 'type': 'ORDER_FILL', 'orderID':
 '1736', 'instrument': 'EUR_USD', 'units': '-200000.0',
 'gainQuoteHomeConversionFactor': '0.835885095595',
 'lossQuoteHomeConversionFactor': '0.844285950827', 'price': 1.19029,
 'fullVWAP': 1.19029, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19029, 'liquidity': '10000000'}], 'asks': [{'price': 1.19042,
 'liquidity': '10000000'}], 'closeoutBid': 1.19029, 'closeoutAsk':
 1.19042}, 'reason': 'MARKET_ORDER', 'pl': '-0.8443', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98506.8982', 'tradeOpened': {'tradeID': '1737',

294 | Chapter 10: Automating Trading Operations

 'units': '-100000.0', 'price': 1.19029, 'guaranteedExecutionFee':
 '0.0', 'halfSpreadCost': '5.4606', 'initialMarginRequired': '3330.0'},
 'tradesClosed': [{'tradeID': '1735', 'units': '-100000.0', 'price':
 1.19029, 'realizedPL': '-0.8443', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '5.4606'}],
 'halfSpreadCost': '10.9212'}

 *** GOING LONG ***

 {'id': '1739', 'time': '2020-08-19T14:48:15.529680632Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1738',
 'requestID': '42730659353297789', 'type': 'ORDER_FILL', 'orderID':
 '1738', 'instrument': 'EUR_USD', 'units': '200000.0',
 'gainQuoteHomeConversionFactor': '0.835835944263',
 'lossQuoteHomeConversionFactor': '0.844236305512', 'price': 1.1905,
 'fullVWAP': 1.1905, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19035, 'liquidity': '10000000'}], 'asks': [{'price': 1.1905,
 'liquidity': '10000000'}], 'closeoutBid': 1.19035, 'closeoutAsk':
 1.1905}, 'reason': 'MARKET_ORDER', 'pl': '-17.729', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98489.1692', 'tradeOpened': {'tradeID': '1739',
 'units': '100000.0', 'price': 1.1905, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '6.3003', 'initialMarginRequired': '3330.0'},
 'tradesClosed': [{'tradeID': '1737', 'units': '100000.0', 'price':
 1.1905, 'realizedPL': '-17.729', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '6.3003'}],
 'halfSpreadCost': '12.6006'}

 *** CLOSING OUT ***

 {'id': '1741', 'time': '2020-08-19T14:49:11.976885485Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1740',
 'requestID': '42730659588338204', 'type': 'ORDER_FILL', 'orderID':
 '1740', 'instrument': 'EUR_USD', 'units': '-100000.0',
 'gainQuoteHomeConversionFactor': '0.835730636848',
 'lossQuoteHomeConversionFactor': '0.844129939731', 'price': 1.19051,
 'fullVWAP': 1.19051, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19051, 'liquidity': '10000000'}], 'asks': [{'price': 1.19064,
 'liquidity': '10000000'}], 'closeoutBid': 1.19051, 'closeoutAsk':
 1.19064}, 'reason': 'MARKET_ORDER', 'pl': '0.8357', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98490.0049', 'tradesClosed': [{'tradeID': '1739',
 'units': '-100000.0', 'price': 1.19051, 'realizedPL': '0.8357',
 'financing': '0.0', 'guaranteedExecutionFee': '0.0', 'halfSpreadCost':
 '5.4595'}], 'halfSpreadCost': '5.4595'}

Online Algorithm | 295

3 Use the link http://bit.ly/do_sign_up to get a 10 USD bonus on DigitalOcean when signing up for a new
account.

Infrastructure and Deployment
Deploying an automated algorithmic trading strategy with real funds requires an
appropriate infrastructure. Among other things, the infrastructure should satisfy the
following:

Reliability
The infrastructure on which to deploy an algorithmic trading strategy should
allow for high availability (for example, 99.9% or higher) and should otherwise
take care of reliability (automatic backups, redundancy of drives and web con‐
nections, and so on).

Performance
Depending on the amount of data being processed and the computational
demand the algorithms generate, the infrastructure must have enough CPU
cores, working memory (RAM), and storage (SSD). In addition, the web connec‐
tions should be fast enough.

Security
The operating system and the applications that run on it should be protected by
strong passwords, as well as SSL encryption and hard drive encryption. The
hardware should be protected from fire, water, and unauthorized physical access.

Basically, these requirements can only be fulfilled by renting an appropriate infra‐
structure from a professional data center or a cloud provider. Own investments in the
physical infrastructure to satisfy the aforementioned requirements can in general
only be justified by the bigger, or even the biggest, players in the financial markets.

From a development and testing point of view, even the smallest Droplet (cloud
instance) from DigitalOcean (http://digitalocean.com) is enough to get started. At the
time of writing, such a Droplet costs 5 USD per month and is billed by the hour, cre‐
ated within minutes, and destroyed within seconds.3

How to set up a Droplet with DigitalOcean is explained in detail in Chapter 2 (specif‐
ically in “Using Cloud Instances” on page 36), with Bash scripts that can be adjusted
to reflect individual requirements regarding Python packages, for example.

296 | Chapter 10: Automating Trading Operations

http://bit.ly/do_sign_up
http://digitalocean.com

4 The logging approach used here is pretty simple in the form of a simple text file. It is easy to change the log‐
ging and persisting of, say, the relevant financial data in the form of a database or appropriate binary storage
formats, such as HDF5 (see Chapter 3).

Although the development and testing of automated algorithmic
trading strategies is possible from a local computer (desktop, note‐
book, or similar), it is not appropriate for the deployment of auto‐
mated strategies trading real money. A simple loss of the web
connection or a brief power outage might bring down the whole
algorithm, leaving, for example, unintended open positions in the
portfolio. As another example, it would cause one to miss out on
real-time tick data and end up with corrupted data sets, potentially
leading to wrong signals and unintended trades and positions.

Logging and Monitoring
Assume now that the automated algorithmic trading strategy is to be deployed on a
remote server (virtual cloud instance or dedicated server). Further assume that all
required Python packages have been installed (see “Using Cloud Instances” on page
36) and that, for instance, Jupyter Lab is running securely (see Running a notebook
server). What else needs to be considered from the algorithmic traders’ point of view
if they do not want to sit all day in front of the screen being logged in to the server?

This section addresses two important topics in this regard: logging and real-time mon‐
itoring. Logging persists information and events on disk for later inspection. It is stan‐
dard practice in software application development and deployment. However, here
the focus might be put instead on the financial side, logging important financial data
and event information for later inspection and analysis. The same holds true for real-
time monitoring making use of socket communication. Via sockets, a constant real-
time stream of important financial aspects can be created that can then be retrieved
and processed on a local computer, even if the deployment happens in the cloud.

“Automated Trading Strategy” on page 305 presents a Python script implementing all
these aspects and making use of the code from “Online Algorithm” on page 291. The
script brings the code in a shape that allows, for example, the deployment of the algo‐
rithmic trading strategy—sbased on the persisted algorithm object—son a remote
server. It adds both logging and monitoring capabilities based on a custom function
that, among other things, makes use of ZeroMQ (see http://zeromq.org) for socket com‐
munication. In combination with the short script from “Strategy Monitoring” on
page 308, this allows for a remote real-time monitoring of the activity on a remote
server.4

When the script from “Automated Trading Strategy” on page 305 is executed, either
locally or remotely, the output that is logged and sent via the socket looks as follows:

Logging and Monitoring | 297

https://oreil.ly/cnBHE
https://oreil.ly/cnBHE
http://zeromq.org

2020-06-15 17:04:14.298653
==
NUMBER OF TICKS: 147 | NUMBER OF BARS: 49

==
MOST RECENT DATA
 return_lag_1 return_lag_2 ... max_lag_5 max_lag_6
2020-06-15 15:04:06 0.026508 -0.125253 ... -1.703276 -1.700746
2020-06-15 15:04:08 -0.049373 0.026508 ... -1.694419 -1.703276
2020-06-15 15:04:10 -0.077828 -0.049373 ... -1.694419 -1.694419
2020-06-15 15:04:12 0.064448 -0.077828 ... -1.705807 -1.694419
2020-06-15 15:04:14 -0.020918 0.064448 ... -1.710869 -1.705807

[5 rows x 36 columns]

==
features:
[[-0.02091774 0.06444794 -0.07782834 -0.04937258 0.02650799 -0.12525265
 -2.06428556 -1.96568848 -2.16288147 -2.08071843 -1.94925692 -2.19574189
 0.92939697 0.92939697 -1.07368691 0.92939697 -1.07368691 -1.07368691
 -1.41861822 -1.42605902 -1.4294412 -1.42470615 -1.4274119 -1.42470615
 -1.05508516 -1.06879043 -1.06879043 -1.0619378 -1.06741991 -1.06741991
 -1.70580717 -1.70707253 -1.71339931 -1.7108686 -1.7108686 -1.70580717]]
position: 1
signal: 1

2020-06-15 17:04:14.402154
==
*** NO TRADE PLACED ***

*** END OF CYCLE ***

2020-06-15 17:04:16.199950
==

==
*** GOING NEUTRAL ***

{'id': '979', 'time': '2020-06-15T15:04:16.138027118Z', 'userID': 13834683,
'accountID': '101-004-13834683-001', 'batchID': '978',
'requestID': '60721506683906591', 'type': 'ORDER_FILL', 'orderID': '978',
'instrument': 'EUR_USD', 'units': '-100000.0',
'gainQuoteHomeConversionFactor': '0.882420762903',
'lossQuoteHomeConversionFactor': '0.891289313284',
'price': 1.12751, 'fullVWAP': 1.12751, 'fullPrice': {'type': 'PRICE',
'bids': [{'price': 1.12751, 'liquidity': '10000000'}],
'asks': [{'price': 1.12765, 'liquidity': '10000000'}],
'closeoutBid': 1.12751, 'closeoutAsk': 1.12765}, 'reason': 'MARKET_ORDER',
'pl': '-3.5652', 'financing': '0.0', 'commission': '0.0',

298 | Chapter 10: Automating Trading Operations

5 Note that the socket communication, as implemented in the two scripts, is not encrypted and is sending plain
text over the web, which might represent a security risk in production.

'guaranteedExecutionFee': '0.0', 'accountBalance': '99259.7485',
'tradesClosed': [{'tradeID': '975', 'units': '-100000.0',
'price': 1.12751, 'realizedPL': '-3.5652', 'financing': '0.0',
'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '6.208'}],
'halfSpreadCost': '6.208'}
==

Running the script from “Strategy Monitoring” on page 308 locally then allows for
the real-time retrieval and processing of such information. Of course, it is easy to
adjust the logging and streaming data to one’s own requirements.5 Furthermore, the
trading script and the whole logic can be adjusted to include such elements as stop
losses or take profit targets programmatically.

Trading currency pairs and/or CFDs is associated with a number of
financial risks. Implementing an algorithmic trading strategy for
such instruments automatically leads to a number of additional
risks. Among them are flaws in the trading and/or execution logic,
as well as technical risks including problems associated with socket
communication, delayed retrieval, or even loss of tick data during
the deployment. Therefore, before one deploys a trading strategy in
automated fashion one should make sure that all associated market,
execution, operational, technical, and other risks have been identi‐
fied, evaluated, and properly addressed. The code presented in this
chapter is only for technical illustration purposes.

Visual Step-by-Step Overview
This final section provides a step-by-step overview in screenshots. While the previous
sections are based on the FXCM trading platform, the visual overview is based on the
Oanda trading platform.

Configuring Oanda Account
The first step is to set up an account with Oanda (or any other trading platform to
this end) and to set the correct leverage ratio for the account according to the Kelly
criterion and as shown in Figure 10-8.

Visual Step-by-Step Overview | 299

Figure 10-8. Setting leverage on Oanda

Setting Up the Hardware
The second step is to create a DigitalOcean droplet, as shown in Figure 10-9.

Figure 10-9. DigitalOcean droplet

300 | Chapter 10: Automating Trading Operations

Setting Up the Python Environment
The third step is to put all the software on the droplet (see Figure 10-10) in order to
set up the infrastructure. When it all works fine, you can create a new Jupyter Note‐
book and start your interactive Python session (see Figure 10-11).

Figure 10-10. Installing Python and packages

Figure 10-11. Testing Jupyter Lab

Visual Step-by-Step Overview | 301

Uploading the Code
The fourth step is to upload the Python scripts for automated trading and real-time
monitoring, as shown in Figure 10-12. The configuration file with the account cre‐
dentials also needs to be uploaded.

Figure 10-12. Uploading Python code files

Running the Code
The fifth step is to run the Python script for automated trading, as shown in
Figure 10-13. Figure 10-14 shows a trade that the Python script has initiated.

302 | Chapter 10: Automating Trading Operations

Figure 10-13. Running the Python script

Figure 10-14. A trade initiated by the Python script

Visual Step-by-Step Overview | 303

Real-Time Monitoring
The final step is to run the monitoring script locally (provided you have set the cor‐
rect IP in the local script), as seen in Figure 10-15. In practice, this means that you
can monitor locally in real time what exactly is happening on your cloud instance.

Figure 10-15. Local real-time monitoring via socket

Conclusions
This chapter is about the deployment of an algorithmic trading strategy in automated
fashion, based on a classification algorithm from machine learning to predict the
direction of market movements. It addresses such important topics as capital man‐
agement (based on the Kelly criterion), vectorized backtesting for performance and
risk, the transformation of offline to online trading algorithms, an appropriate infra‐
structure for deployment, and logging and monitoring during deployment.

The topic of this chapter is complex and requires a broad skill set from the algorith‐
mic trading practitioner. On the other hand, having RESTful APIs for algorithmic
trading available, such as the one from Oanda, simplifies the automation task consid‐
erably since the core part boils down mainly to making use of the capabilities of the
Python wrapper package tpqoa for tick data retrieval and order placement. Around
this core, elements to mitigate operational and technical risks should be added as far
as appropriate and possible.

304 | Chapter 10: Automating Trading Operations

References and Further Resources
Papers cited in this chapter:

Rotando, Louis, and Edward Thorp. 1992. “The Kelly Criterion and the Stock Mar‐
ket.” The American Mathematical Monthly 99 (10): 922-931.

Hung, Jane. 2010. “Betting with the Kelly Criterion.” http://bit.ly/betting_with_kelly.

Python Script
This section contains Python scripts used in this chapter.

Automated Trading Strategy
The following Python script contains the code for the automated deployment of the
ML-based trading strategy, as discussed and backtested in this chapter:

#
Automated ML-Based Trading Strategy for Oanda
Online Algorithm, Logging, Monitoring
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
#
import zmq
import tpqoa
import pickle
import numpy as np
import pandas as pd
import datetime as dt

log_file = 'automated_strategy.log'

loads the persisted algorithm object
algorithm = pickle.load(open('algorithm.pkl', 'rb'))

sets up the socket communication via ZeroMQ (here: "publisher")
context = zmq.Context()
socket = context.socket(zmq.PUB)

this binds the socket communication to all IP addresses of the machine
socket.bind('tcp://0.0.0.0:5555')

recreating the log file
with open(log_file, 'w') as f:
 f.write('*** NEW LOG FILE ***\n')
 f.write(str(dt.datetime.now()) + '\n\n\n')

References and Further Resources | 305

http://bit.ly/betting_with_kelly

def logger_monitor(message, time=True, sep=True):
 ''' Custom logger and monitor function.
 '''
 with open(log_file, 'a') as f:
 t = str(dt.datetime.now())
 msg = ''
 if time:
 msg += '\n' + t + '\n'
 if sep:
 msg += 80 * '=' + '\n'
 msg += message + '\n\n'
 # sends the message via the socket
 socket.send_string(msg)
 # writes the message to the log file
 f.write(msg)

class MLTrader(tpqoa.tpqoa):
 def __init__(self, config_file, algorithm):
 super(MLTrader, self).__init__(config_file)
 self.model = algorithm['model']
 self.mu = algorithm['mu']
 self.std = algorithm['std']
 self.units = 100000
 self.position = 0
 self.bar = '2s'
 self.window = 2
 self.lags = 6
 self.min_length = self.lags + self.window + 1
 self.features = ['return', 'vol', 'mom', 'sma', 'min', 'max']
 self.raw_data = pd.DataFrame()

 def prepare_features(self):
 self.data['return'] = np.log(
 self.data['mid'] / self.data['mid'].shift(1))
 self.data['vol'] = self.data['return'].rolling(self.window).std()
 self.data['mom'] = np.sign(
 self.data['return'].rolling(self.window).mean())
 self.data['sma'] = self.data['mid'].rolling(self.window).mean()
 self.data['min'] = self.data['mid'].rolling(self.window).min()
 self.data['max'] = self.data['mid'].rolling(self.window).max()
 self.data.dropna(inplace=True)
 self.data[self.features] -= self.mu
 self.data[self.features] /= self.std
 self.cols = []
 for f in self.features:
 for lag in range(1, self.lags + 1):
 col = f'{f}_lag_{lag}'
 self.data[col] = self.data[f].shift(lag)
 self.cols.append(col)

 def report_trade(self, pos, order):

306 | Chapter 10: Automating Trading Operations

 ''' Prints, logs, and sends trade data.
 '''
 out = '\n\n' + 80 * '=' + '\n'
 out += '*** GOING {} *** \n'.format(pos) + '\n'
 out += str(order) + '\n'
 out += 80 * '=' + '\n'
 logger_monitor(out)
 print(out)

 def on_success(self, time, bid, ask):
 print(self.ticks, 20 * ' ', end='\r')
 df = pd.DataFrame({'bid': float(bid), 'ask': float(ask)},
 index=[pd.Timestamp(time).tz_localize(None)])
 self.raw_data = self.raw_data.append(df)
 self.data = self.raw_data.resample(
 self.bar, label='right').last().ffill()
 self.data = self.data.iloc[:-1]
 if len(self.data) > self.min_length:
 logger_monitor('NUMBER OF TICKS: {} | '.format(self.ticks) +
 'NUMBER OF BARS: {}'.format(self.min_length))
 self.min_length += 1
 self.data['mid'] = (self.data['bid'] + self.data['ask']) / 2
 self.prepare_features()
 features = self.data[self.cols].iloc[-1].values.reshape(1, -1)
 signal = self.model.predict(features)[0]
 # logs and sends major financial information
 logger_monitor('MOST RECENT DATA\n' +
 str(self.data[self.cols].tail()),
 False)
 logger_monitor('features:\n' + str(features) + '\n' +
 'position: ' + str(self.position) + '\n' +
 'signal: ' + str(signal), False)
 if self.position in [0, -1] and signal == 1: # going long?
 order = self.create_order(self.stream_instrument,
 units=(1 - self.position) *
 self.units,
 suppress=True, ret=True)
 self.report_trade('LONG', order)
 self.position = 1
 elif self.position in [0, 1] and signal == -1: # going short?
 order = self.create_order(self.stream_instrument,
 units=-(1 + self.position) *
 self.units,
 suppress=True, ret=True)
 self.report_trade('SHORT', order)
 self.position = -1
 else: # no trade
 logger_monitor('*** NO TRADE PLACED ***')

 logger_monitor('*** END OF CYCLE ***\n\n', False, False)

Python Script | 307

if __name__ == '__main__':
 mlt = MLTrader('../pyalgo.cfg', algorithm)
 mlt.stream_data('EUR_USD', stop=150)
 order = mlt.create_order(mlt.stream_instrument,
 units=-mlt.position * mlt.units,
 suppress=True, ret=True)
 mlt.position = 0
 mlt.report_trade('NEUTRAL', order)

Strategy Monitoring
The following Python script contains code to remotely monitor the execution of the
Python script from “Automated Trading Strategy” on page 305.

#
Automated ML-Based Trading Strategy for Oanda
Strategy Monitoring via Socket Communication
#
Python for Algorithmic Trading
(c) Dr. Yves J. Hilpisch
#
import zmq

sets up the socket communication via ZeroMQ (here: "subscriber")
context = zmq.Context()
socket = context.socket(zmq.SUB)

adjust the IP address to reflect the remote location
socket.connect('tcp://134.122.70.51:5555')

local IP address used for testing
socket.connect('tcp://0.0.0.0:5555')

configures the socket to retrieve every message
socket.setsockopt_string(zmq.SUBSCRIBE, '')

while True:
 msg = socket.recv_string()
 print(msg)

308 | Chapter 10: Automating Trading Operations

APPENDIX

Python, NumPy, matplotlib, pandas

Talk is cheap. Show me the code.
—Linus Torvalds

Python has become a powerful programming language and has developed a vast eco‐
system of helpful packages over the last couple of years. This appendix provides a
concise overview of Python and three of the major pillars of the so-called scientific or
data science stack:

• NumPy (see https://numpy.org)
• matplotlib (see https://matplotlib.org)
• pandas (see https://pandas.pydata.org)

NumPy provides performant array operations on large, homogeneous numerical data
sets while pandas is primarily designed to handle tabular data, such as financial time
series data, efficiently.

Such an introductory appendix—only addressing selected topics relevant to the rest
of the contents of this book—cannot, of course, replace a thorough introduction to
Python and the packages covered. However, if you are rather new to Python or pro‐
gramming in general you might get a first overview and a feeling of what Python is all
about. If you are already experienced in another language typically used in quantita‐
tive finance (such as Matlab, R, C++, or VBA), you see what typical data structures,
programming paradigms, and idioms in Python look like.

For a comprehensive overview of Python applied to finance see, Hilpisch (2018).
Other, more general introductions to the language with a scientific and data analysis
focus are VanderPlas (2017) and McKinney (2017).

309

https://numpy.org
https://matplotlib.org
https://pandas.pydata.org

Python Basics
This section introduces basic Python data types and structures, control structures,
and some Python idioms.

Data Types
It is noteworthy that Python is generally a dynamically typed system, which means
that types of objects are inferred from their contexts. Let us start with numbers:

In [1]: a = 3

In [2]: type(a)
Out[2]: int

In [3]: a.bit_length()
Out[3]: 2

In [4]: b = 5.

In [5]: type(b)
Out[5]: float

Assigns the variable name a an integer value of 3.

Looks up the type of a.

Looks up the number of bits used to store the integer value.

Assigns the variable name b a floating point value of 5.0.

Python can handle arbitrarily large integers, which is quite beneficial for number the‐
oretical applications, for instance:

In [6]: c = 10 ** 100

In [7]: c
Out[7]: 1000
 00000000000000000000000000000

In [8]: c.bit_length()
Out[8]: 333

Assigns a “huge” integer value.

Shows the number of bits used for the integer representation.

310 | Appendix: Python, NumPy, matplotlib, pandas

Arithmetic operations on these objects work as expected:

In [9]: 3 / 5.
Out[9]: 0.6

In [10]: a * b
Out[10]: 15.0

In [11]: a - b
Out[11]: -2.0

In [12]: b + a
Out[12]: 8.0

In [13]: a ** b
Out[13]: 243.0

Division.

Multiplication.

Addition.

Difference.

Power.

Many commonly used mathematical functions are found in the math module, which
is part of Python’s standard library:

In [14]: import math

In [15]: math.log(a)
Out[15]: 1.0986122886681098

In [16]: math.exp(a)
Out[16]: 20.085536923187668

In [17]: math.sin(b)
Out[17]: -0.9589242746631385

Imports the math module from the standard library.

Calculates the natural logarithm.

Calculates the exponential value.

Calculates the sine value.

Python, NumPy, matplotlib, pandas | 311

Another important basic data type is the string object (str):

In [18]: s = 'Python for Algorithmic Trading.'

In [19]: type(s)
Out[19]: str

In [20]: s.lower()
Out[20]: 'python for algorithmic trading.'

In [21]: s.upper()
Out[21]: 'PYTHON FOR ALGORITHMIC TRADING.'

In [22]: s[0:6]
Out[22]: 'Python'

Assigns a str object to the variable name s.

Transforms all characters to lowercase.

Transforms all characters to uppercase.

Selects the first six characters.

Such objects can also be combined using the + operator. The index value –1 repre‐
sents the last character of a string (or last element of a sequence in general):

In [23]: st = s[0:6] + s[-9:-1]

In [24]: print(st)
 Python Trading

Combines sub-sets of the str object to a new one.

Prints out the result.

String replacements are often used to parametrize text output:

In [25]: repl = 'My name is %s, I am %d years old and %4.2f m tall.'

In [26]: print(repl % ('Gordon Gekko', 43, 1.78))
 My name is Gordon Gekko, I am 43 years old and 1.78 m tall.

In [27]: repl = 'My name is {:s}, I am {:d} years old and {:4.2f} m tall.'

In [28]: print(repl.format('Gordon Gekko', 43, 1.78))
 My name is Gordon Gekko, I am 43 years old and 1.78 m tall.

In [29]: name, age, height = 'Gordon Gekko', 43, 1.78

In [30]: print(f'My name is {name:s}, I am {age:d} years old and \

312 | Appendix: Python, NumPy, matplotlib, pandas

 {height:4.2f}m tall.')
 My name is Gordon Gekko, I am 43 years old and 1.78m tall.

Defines a string template the “old” way.

Prints the template with the values replaced the “old” way.

Defines a string template the “new” way.

Prints the template with the values replaced the “new” way.

Defines variables for later usage during replacement.

Makes use of a so-called f-string for string replacement (introduced in Python
3.6).

Data Structures
tuple objects are light weight data structures. These are immutable collections of
other objects and are constructed by objects separated by commas—with or without
parentheses:

In [31]: t1 = (a, b, st)

In [32]: t1
Out[32]: (3, 5.0, 'Python Trading')

In [33]: type(t1)
Out[33]: tuple

In [34]: t2 = st, b, a

In [35]: t2
Out[35]: ('Python Trading', 5.0, 3)

In [36]: type(t2)
Out[36]: tuple

Constructs a tuple object with parentheses.

Prints out the str representation.

Constructs a tuple object without parentheses.

Nested structures are also possible:

In [37]: t = (t1, t2)

In [38]: t

Python, NumPy, matplotlib, pandas | 313

Out[38]: ((3, 5.0, 'Python Trading'), ('Python Trading', 5.0, 3))

In [39]: t[0][2]
Out[39]: 'Python Trading'

Constructs a tuple object out of two others.

Accesses the third element of the first object.

list objects are mutable collections of other objects and are generally constructed by
providing a comma-separated collection of objects in brackets:

In [40]: l = [a, b, st]

In [41]: l
Out[41]: [3, 5.0, 'Python Trading']

In [42]: type(l)
Out[42]: list

In [43]: l.append(s.split()[3])

In [44]: l
Out[44]: [3, 5.0, 'Python Trading', 'Trading.']

Generates a list object using brackets.

Appends a new element (final word of s) to the list object.

Sorting is a typical operation on list objects, which can also be constructed using the
list constructor (here applied to a tuple object):

In [45]: l = list(('Z', 'Q', 'D', 'J', 'E', 'H', '5.', 'a'))

In [46]: l
Out[46]: ['Z', 'Q', 'D', 'J', 'E', 'H', '5.', 'a']

In [47]: l.sort()

In [48]: l
Out[48]: ['5.', 'D', 'E', 'H', 'J', 'Q', 'Z', 'a']

Creates a list object from a tuple.

Sorts all elements in-place (that is, changes the object itself).

Dictionary (dict) objects are so-called key-value stores and are generally constructed
with curly brackets:

In [49]: d = {'int_obj': a, 'float_obj': b, 'string_obj': st}

314 | Appendix: Python, NumPy, matplotlib, pandas

In [50]: type(d)
Out[50]: dict

In [51]: d
Out[51]: {'int_obj': 3, 'float_obj': 5.0, 'string_obj': 'Python Trading'}

In [52]: d['float_obj']
Out[52]: 5.0

In [53]: d['int_obj_long'] = 10 ** 20

In [54]: d
Out[54]: {'int_obj': 3,
 'float_obj': 5.0,
 'string_obj': 'Python Trading',
 'int_obj_long': 100000000000000000000}

In [55]: d.keys()
Out[55]: dict_keys(['int_obj', 'float_obj', 'string_obj', 'int_obj_long'])

In [56]: d.values()
Out[56]: dict_values([3, 5.0, 'Python Trading', 100000000000000000000])

Creates a dict object using curly brackets and key-value pairs.

Accesses the value given a key.

Adds a new key-value pair.

Selects and shows all keys.

Selects and shows all values.

Control Structures
Iterations are very important operations in programming in general and financial
analytics in particular. Many Python objects are iterable, which proves rather conve‐
nient in many circumstances. Consider the special iterator object range:

In [57]: range(5)
Out[57]: range(0, 5)

In [58]: range(3, 15, 2)
Out[58]: range(3, 15, 2)

In [59]: for i in range(5):
 print(i ** 2, end=' ')
 0 1 4 9 16
In [60]: for i in range(3, 15, 2):
 print(i, end=' ')

Python, NumPy, matplotlib, pandas | 315

 3 5 7 9 11 13
In [61]: l = ['a', 'b', 'c', 'd', 'e']

In [62]: for _ in l:
 print(_)
 a
 b
 c
 d
 e

In [63]: s = 'Python Trading'

In [64]: for c in s:
 print(c + '|', end='')
 P|y|t|h|o|n| |T|r|a|d|i|n|g|

` object given a single parameter (end value + 1).

Creates a range object with start, end, and step parameter values.

Iterates over a range object and prints the squared values.

Iterates over a range object using start, end, and step parameters.

Iterates over a list object.

Iterates over a str object.

while loops are similar to their counterparts in other languages:

In [65]: i = 0

In [66]: while i < 5:
 print(i ** 0.5, end=' ')
 i += 1
 0.0 1.0 1.4142135623730951 1.7320508075688772 2.0

Sets the counter value to 0.

As long as the value of i is smaller than 5…

…print the square root of i and…

…increase the value of i by 1.

316 | Appendix: Python, NumPy, matplotlib, pandas

Python Idioms
Python in many places relies on a number of special idioms. Let us start with a rather
popular one, the list comprehension:

In [67]: lc = [i ** 2 for i in range(10)]

In [68]: lc
Out[68]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In [69]: type(lc)
Out[69]: list

Creates a new list object based on the list comprehension syntax (for loop in
brackets).

So-called lambda or anonymous functions are useful helpers in many places:

In [70]: f = lambda x: math.cos(x)

In [71]: f(5)
Out[71]: 0.2836621854632263

In [72]: list(map(lambda x: math.cos(x), range(10)))
Out[72]: [1.0,
 0.5403023058681398,
 -0.4161468365471424,
 -0.9899924966004454,
 -0.6536436208636119,
 0.2836621854632263,
 0.9601702866503661,
 0.7539022543433046,
 -0.14550003380861354,
 -0.9111302618846769]

Defines a new function f via the lambda syntax.

Evaluates the function f for a value of 5.

Maps the function f to all elements of the range object and creates a list object
with the results, which is printed.

In general, one works with regular Python functions (as opposed to lambda func‐
tions), which are constructed as follows:

In [73]: def f(x):
 return math.exp(x)

In [74]: f(5)
Out[74]: 148.4131591025766

Python, NumPy, matplotlib, pandas | 317

In [75]: def f(*args):
 for arg in args:
 print(arg)
 return None

In [76]: f(l)
 ['a', 'b', 'c', 'd', 'e']

Regular functions use the def statement for the definition.

With the return statement, one defines what gets returned when the execution/
evaluation is successful; multiple return statements are possible (for example, for
different cases).

0 allows for multiple arguments to be passed as an iterable object (for example,
list object).

Iterates over the arguments.

Does something with every argument: here, printing.

Returns something: here, None; not necessary for a valid Python function.

Passes the list object l to the function f, which interprets it as a list of
arguments.

Consider the following function definition, which returns different values/strings
based on an if-elif-else control structure:

In [77]: import random

In [78]: a = random.randint(0, 1000)

In [79]: print(f'Random number is {a}')
 Random number is 188

In [80]: def number_decide(number):
 if a < 10:
 return "Number is single digit."
 elif 10 <= a < 100:
 return "Number is double digit."
 else:
 return "Number is triple digit."

In [81]: number_decide(a)
Out[81]: 'Number is triple digit.'

318 | Appendix: Python, NumPy, matplotlib, pandas

Imports the random module to draw random numbers.

Draws a random integer between 0 and 1,000.

Prints the value of the drawn number.

Checks for a single digit number, and if False…

…checks for a double digit number; if also False…

…the only case that remains is the triple digit case.

Calls the function with the random number value a.

NumPy
Many operations in computational finance take place over large arrays of numerical
data. NumPy is a Python package that allows the efficient handling of and operation on
such data structures. Although quite a mighty package with a wealth of functionality,
it suffices for the purposes of this book to cover the basics of NumPy. A neat online
book that is available for free about NumPy is From Python to NumPy. It covers many
important aspects in detail that are omitted in the following sections.

Regular ndarray Object
The workhorse is the NumPy ndarray class, which provides the data structure for n-
dimensional array objects. You can generate an ndarray object, for instance, from a
list object:

In [82]: import numpy as np

In [83]: a = np.array(range(24))

In [84]: a
Out[84]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 15, 16,
 17, 18, 19, 20, 21, 22, 23])

In [85]: b = a.reshape((4, 6))

In [86]: b
Out[86]: array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 21, 22, 23]])

Python, NumPy, matplotlib, pandas | 319

https://oreil.ly/Yxequ

In [87]: c = a.reshape((2, 3, 4))

In [88]: c
Out[88]: array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],

 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

In [89]: b = np.array(b, dtype=np.float)

In [90]: b
Out[90]: array([[0., 1., 2., 3., 4., 5.],
 [6., 7., 8., 9., 10., 11.],
 [12., 13., 14., 15., 16., 17.],
 [18., 19., 20., 21., 22., 23.]])

Imports NumPy as np by convention.

Instantiates an ndarray object from the range object; np.arange could also be
used, for instance.

Prints out the values.

Reshapes the object to a two-dimensional one…

…and prints out the result.

Reshapes the object to a three-dimensional one…

…and prints out the result.

This changes the dtype of the object to np.float and…

…shows the new set of (now floating point) numbers.

320 | Appendix: Python, NumPy, matplotlib, pandas

Many Python data structures are designed to be quite general. An
example are mutable list objects that can be easily manipulated in
many ways (adding and removing elements, storing other complex
data structures, and so on). The strategy of NumPy with the regular
ndarray object is to provide a more specialized data structure for
which all elements are of the same atomic type and which in turn
allows the contiguous storage in memory. This makes the ndarray
object much better at solving problems in certain settings, such as
when operating on larger, or even large, numerical data sets. In the
case of NumPy, this specialization also comes along with conve‐
nience for the programmer on the one hand and often increased
speed on the other hand.

Vectorized Operations
A major strength of NumPy are vectorized operations:

In [91]: 2 * b
Out[91]: array([[0., 2., 4., 6., 8., 10.],
 [12., 14., 16., 18., 20., 22.],
 [24., 26., 28., 30., 32., 34.],
 [36., 38., 40., 42., 44., 46.]])

In [92]: b ** 2
Out[92]: array([[0., 1., 4., 9., 16., 25.],
 [36., 49., 64., 81., 100., 121.],
 [144., 169., 196., 225., 256., 289.],
 [324., 361., 400., 441., 484., 529.]])

In [93]: f = lambda x: x ** 2 - 2 * x + 0.5

In [94]: f(a)
Out[94]: array([0.5, -0.5, 0.5, 3.5, 8.5, 15.5, 24.5, 35.5,
 48.5,
 63.5, 80.5, 99.5, 120.5, 143.5, 168.5, 195.5, 224.5, 255.5,
 288.5, 323.5, 360.5, 399.5, 440.5, 483.5])

Implements a scalar multiplication on the one-dimensional ndarray object
(vector).

Calculates the square of each number of b in vectorized fashion.

Defines a function f via a lambda constructor.

Applies f to the ndarray object a using vectorization.

Python, NumPy, matplotlib, pandas | 321

In many scenarios, only a (small) part of the data stored in an ndarray object is of
interest. NumPy supports basic and advanced slicing and other selection features:

In [95]: a[2:6]
Out[95]: array([2, 3, 4, 5])

In [96]: b[2, 4]
Out[96]: 16.0

In [97]: b[1:3, 2:4]
Out[97]: array([[8., 9.],
 [14., 15.]])

Selects the third to sixth elements.

Selects the third row and fifth (final) row.

Picks out the middle square from the b object.

Boolean Operations
Boolean operations are also supported in many places:

In [98]: b > 10
Out[98]: array([[False, False, False, False, False, False],
 [False, False, False, False, False, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True]])

In [99]: b[b > 10]
Out[99]: array([11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.,
 23.])

Which numbers are greater than 10?

Return all those numbers greater than 10.

ndarray Methods and NumPy Functions
Furthermore, ndarray objects have multiple (convenience) methods already built in:

In [100]: a.sum()
Out[100]: 276

In [101]: b.mean()
Out[101]: 11.5

In [102]: b.mean(axis=0)
Out[102]: array([9., 10., 11., 12., 13., 14.])

322 | Appendix: Python, NumPy, matplotlib, pandas

In [103]: b.mean(axis=1)
Out[103]: array([2.5, 8.5, 14.5, 20.5])

In [104]: c.std()
Out[104]: 6.922186552431729

The sum of all elements.

The mean of all elements.

The mean along the first axis.

The mean along the second axis.

The standard deviation over all elements.

Similarly, there is a wealth of so-called universal functions that the NumPy package pro‐
vides. They are universal in the sense that they can be applied in general to NumPy
ndarray objects and to standard numerical Python data types. For details, see Univer‐
sal functions (ufunc):

In [105]: np.sum(a)
Out[105]: 276

In [106]: np.mean(b, axis=0)
Out[106]: array([9., 10., 11., 12., 13., 14.])

In [107]: np.sin(b).round(2)
Out[107]: array([[0. , 0.84, 0.91, 0.14, -0.76, -0.96],
 [-0.28, 0.66, 0.99, 0.41, -0.54, -1.],
 [-0.54, 0.42, 0.99, 0.65, -0.29, -0.96],
 [-0.75, 0.15, 0.91, 0.84, -0.01, -0.85]])

In [108]: np.sin(4.5)
Out[108]: -0.977530117665097

The sum of all elements.

The mean along the first axis.

The sine value for all elements rounded to two digits.

The sine value of a Python float object.

Python, NumPy, matplotlib, pandas | 323

https://oreil.ly/Ogiah
https://oreil.ly/Ogiah

However, you should be aware that applying NumPy universal functions to standard
Python data types generally comes with a significant performance burden:

In [109]: %time l = [np.sin(x) for x in range(1000000)]
 CPU times: user 1.21 s, sys: 22.9 ms, total: 1.24 s
 Wall time: 1.24 s

In [110]: %time l = [math.sin(x) for x in range(1000000)]
 CPU times: user 215 ms, sys: 22.9 ms, total: 238 ms
 Wall time: 239 ms

List comprehension using NumPy universal function on Python float objects.

List comprehension using math function on Python float objects.

On the other hand, using the vectorized operations from NumPy on ndarray objects is
faster than both of the preceding alternatives that result in list objects. However, the
speed advantage often comes at the cost of a larger, or even huge, memory footprint:

In [111]: %time a = np.sin(np.arange(1000000))
 CPU times: user 20.7 ms, sys: 5.32 ms, total: 26 ms
 Wall time: 24.6 ms

In [112]: import sys

In [113]: sys.getsizeof(a)
Out[113]: 8000096

In [114]: a.nbytes
Out[114]: 8000000

Vectorized calculation of the sine values with NumPy, which is much faster in
general.

Imports the sys module with many system-related functions.

Shows the size of the a object in memory.

Shows the number of bytes used to store the data in the a object.

Vectorization sometimes is a very useful approach to write concise
code that is often also much faster than Python code. However, be
aware of the memory footprint that vectorization can have in many
scenarios relevant to finance. Often, there are alternative imple‐
mentations of algorithms available that are memory efficient and
that, by using performance libraries such as Numba or Cython, can
even be faster. See Hilpisch (2018, ch. 10).

324 | Appendix: Python, NumPy, matplotlib, pandas

ndarray Creation
Here, we use the ndarray object constructor np.arange(), which yields an ndarray
object of integers. The following is a simple example:

In [115]: ai = np.arange(10)

In [116]: ai
Out[116]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [117]: ai.dtype
Out[117]: dtype('int64')

In [118]: af = np.arange(0.5, 9.5, 0.5)

In [119]: af
Out[119]: array([0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ,
 6.5,
 7. , 7.5, 8. , 8.5, 9.])

In [120]: af.dtype
Out[120]: dtype('float64')

In [121]: np.linspace(0, 10, 12)
Out[121]: array([0. , 0.90909091, 1.81818182, 2.72727273,
 3.63636364,
 4.54545455, 5.45454545, 6.36363636, 7.27272727, 8.18181818,
 9.09090909, 10.])

Instantiates an ndarray object via the np.arange() constructor.

Prints out the values.

The resulting dtype is np.int64.

Uses arange() again, but this time with start, end, and step parameters.

Prints out the values.

The resulting dtype is np.float64.

Uses the linspace() constructor, which evenly spaces the interval between 0 and
10 in 11 intervals, giving back an ndarray object with 12 values.

Python, NumPy, matplotlib, pandas | 325

1 Note that computers can only generate pseudorandom numbers as approximations for truly random numbers.

Random Numbers
In financial analytics, one often needs random1 numbers. NumPy provides many func‐
tions to sample from different distributions. Those regularly needed in quantitative
finance are the standard normal distribution and the Poisson distribution. The
respective functions are found in the sub-package numpy.random:

In [122]: np.random.standard_normal(10)
Out[122]: array([-1.06384884, -0.22662171, 1.2615483 , -0.45626608,
 -1.23231112,
 -1.51309987, 1.23938439, 0.22411366, -0.84616512, -1.09923136])

In [123]: np.random.poisson(0.5, 10)
Out[123]: array([0, 1, 1, 0, 0, 1, 0, 0, 2, 0])

In [124]: np.random.seed(1000)

In [125]: data = np.random.standard_normal((5, 100))

In [126]: data[:, :3]
Out[126]: array([[-0.8044583 , 0.32093155, -0.02548288],
 [-0.39031935, -0.58069634, 1.94898697],
 [-1.11573322, -1.34477121, 0.75334374],
 [0.42400699, -1.56680276, 0.76499895],
 [-1.74866738, -0.06913021, 1.52621653]])

In [127]: data.mean()
Out[127]: -0.02714981205311327

In [128]: data.std()
Out[128]: 1.0016799134894265

In [129]: data = data - data.mean()

In [130]: data.mean()
Out[130]: 3.552713678800501e-18

In [131]: data = data / data.std()

In [132]: data.std()
Out[132]: 1.0

Draws ten standard normally distributed random numbers.

Draws ten Poisson distributed random numbers.

Fixes the seed value of the random number generator for repeatability.

326 | Appendix: Python, NumPy, matplotlib, pandas

Generates a two-dimensional ndarray object with random numbers.

Prints a small selection of the numbers.

The mean of all values is close to 0 but not exactly 0.

The standard deviation is close to 1 but not exactly 1.

The first moment is corrected in vectorized fashion.

The mean now is “almost equal” to 0.

The second moment is corrected in vectorized fashion.

The standard deviation is now exactly 1.

matplotlib
At this point, it makes sense to introduce plotting with matplotlib, the plotting
workhorse in the Python ecosystem. We use matplotlib with the settings of another
library throughout, namely seaborn. This results in a more modern plotting style.
The following code generates Figure A-1:

In [133]: import matplotlib.pyplot as plt

In [134]: plt.style.use('seaborn')

In [135]: import matplotlib as mpl

In [136]: mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'
 %matplotlib inline

In [137]: data = np.random.standard_normal((5, 100))

In [138]: plt.figure(figsize=(10, 6))
 plt.plot(data.cumsum())
Out[138]: [<matplotlib.lines.Line2D at 0x7faceaaeed30>]

Imports the main plotting library.

Sets new plot style defaults.

Imports the top level module.

Sets the resolution to 300 DPI (for saving) and the font to serif.

Python, NumPy, matplotlib, pandas | 327

http://matplotlib.org
https://oreil.ly/SWvT6

Generates an ndarray object with random numbers.

Instantiates a new figure object.

First calculates the cumulative sum over all elements of the ndarray object and
then plots the result.

Figure A-1. Line plot with matplotlib

Multiple line plots in a single figure object are also easy to generate (see Figure A-2):

In [139]: plt.figure(figsize=(10, 6));
 plt.plot(data.T.cumsum(axis=0), label='line')
 plt.legend(loc=0);
 plt.xlabel('data point')
 plt.ylabel('value');
 plt.title('random series');

Instantiates a new figure objects and defines the size.

Plots five lines by calculating the cumulative sum along the first axis and defines
a label.

Puts a legend in the optimal position (loc=0).

Adds a label to the x-axis.

328 | Appendix: Python, NumPy, matplotlib, pandas

Adds a label to the y-axis.

Adds a title to the figure.

Figure A-2. Plot with multiple lines

Other important plotting types are histograms and bar charts. A histogram for all 500
values of the data object is shown as Figure A-3. In the code, the .flatten() method
is used to generate a one-dimensional array from the two-dimensional one:

In [140]: plt.figure(figsize=(10, 6))
 plt.hist(data.flatten(), bins=30);

Plots the histogram with 30 bins (data groups).

Finally, consider the bar chart presented in Figure A-4, generated by the following
code:

In [141]: plt.figure(figsize=(10, 6))
 plt.bar(np.arange(1, 12) - 0.25,
 data[0, :11], width=0.5);

Plots a bar chart based on a small sub-set of the original data set.

Python, NumPy, matplotlib, pandas | 329

Figure A-3. Histogram of random data

Figure A-4. Bar chart of random data

To conclude the introduction to matplotlib, consider the ordinary least squares
(OLS) regression of the sample data displayed in Figure A-5. NumPy provides with the
two functions polyfit and polyval convenience functions to implement OLS based

330 | Appendix: Python, NumPy, matplotlib, pandas

on simple monomials, x, x2, x3, . . . , xn. For illustration purposes, consider linear,
cubic, and ninth degree OLS regression (see Figure A-5):

In [142]: x = np.arange(len(data.cumsum()))

In [143]: y = 0.2 * data.cumsum() ** 2

In [144]: rg1 = np.polyfit(x, y, 1)

In [145]: rg3 = np.polyfit(x, y, 3)

In [146]: rg9 = np.polyfit(x, y, 9)

In [147]: plt.figure(figsize=(10, 6))
 plt.plot(x, y, 'r', label='data')
 plt.plot(x, np.polyval(rg1, x), 'b--', label='linear')
 plt.plot(x, np.polyval(rg3, x), 'b-.', label='cubic')
 plt.plot(x, np.polyval(rg9, x), 'b:', label='9th degree')
 plt.legend(loc=0);

Creates an ndarray object for the x values.

Defines the y values as the cumulative sum of the data object.

Linear regression.

Cubic regression.

Ninth degree regression.

The new figure object.

The base data.

The regression results visualized.

Places a legend.

Python, NumPy, matplotlib, pandas | 331

Figure A-5. Linear, cubic, and 9th degree regression

pandas
pandas is a package with which one can manage and operate on time series data and
other tabular data structures efficiently. It allows implementation of even sophistica‐
ted data analytics tasks on pretty large data sets in-memory. While the focus lies on
in-memory operations, there are also multiple options for out-of-memory (on-disk)
operations. Although pandas provides a number of different data structures, embod‐
ied by powerful classes, the most commonly used structure is the DataFrame class,
which resembles a typical table of a relational (SQL) database and is used to manage,
for instance, financial time series data. This is what we focus on in this section.

DataFrame Class
In its most basic form, a DataFrame object is characterized by an index, column
names, and tabular data. To make this more specific, consider the following sample
data set:

In [148]: import pandas as pd

In [149]: np.random.seed(1000)

In [150]: raw = np.random.standard_normal((10, 3)).cumsum(axis=0)

In [151]: index = pd.date_range('2022-1-1', periods=len(raw), freq='M')

332 | Appendix: Python, NumPy, matplotlib, pandas

In [152]: columns = ['no1', 'no2', 'no3']

In [153]: df = pd.DataFrame(raw, index=index, columns=columns)

In [154]: df
Out[154]: no1 no2 no3
 2022-01-31 -0.804458 0.320932 -0.025483
 2022-02-28 -0.160134 0.020135 0.363992
 2022-03-31 -0.267572 -0.459848 0.959027
 2022-04-30 -0.732239 0.207433 0.152912
 2022-05-31 -1.928309 -0.198527 -0.029466
 2022-06-30 -1.825116 -0.336949 0.676227
 2022-07-31 -0.553321 -1.323696 0.341391
 2022-08-31 -0.652803 -0.916504 1.260779
 2022-09-30 -0.340685 0.616657 0.710605
 2022-10-31 -0.723832 -0.206284 2.310688

Imports the pandas package.

Fixes the seed value of the random number generator of NumPy.

Creates an ndarray object with random numbers.

Defines a DatetimeIndex object with some dates.

Defines a list object containing the column names (labels).

Instantiates a DataFrame object.

Shows the str (HTML) representation of the new object.

DataFrame objects have built in a multitude of basic, advanced, and convenience
methods, a few of which are illustrated in the Python code that follows:

In [155]: df.head()
Out[155]: no1 no2 no3
 2022-01-31 -0.804458 0.320932 -0.025483
 2022-02-28 -0.160134 0.020135 0.363992
 2022-03-31 -0.267572 -0.459848 0.959027
 2022-04-30 -0.732239 0.207433 0.152912
 2022-05-31 -1.928309 -0.198527 -0.029466

In [156]: df.tail()
Out[156]: no1 no2 no3
 2022-06-30 -1.825116 -0.336949 0.676227
 2022-07-31 -0.553321 -1.323696 0.341391
 2022-08-31 -0.652803 -0.916504 1.260779
 2022-09-30 -0.340685 0.616657 0.710605
 2022-10-31 -0.723832 -0.206284 2.310688

Python, NumPy, matplotlib, pandas | 333

In [157]: df.index
Out[157]: DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31',
 '2022-04-30',
 '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
 '2022-09-30', '2022-10-31'],
 dtype='datetime64[ns]', freq='M')

In [158]: df.columns
Out[158]: Index(['no1', 'no2', 'no3'], dtype='object')

In [159]: df.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 10 entries, 2022-01-31 to 2022-10-31
 Freq: M
 Data columns (total 3 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 no1 10 non-null float64
 1 no2 10 non-null float64
 2 no3 10 non-null float64
 dtypes: float64(3)
 memory usage: 320.0 bytes

In [160]: df.describe()
Out[160]: no1 no2 no3
 count 10.000000 10.000000 10.000000
 mean -0.798847 -0.227665 0.672067
 std 0.607430 0.578071 0.712430
 min -1.928309 -1.323696 -0.029466
 25% -0.786404 -0.429123 0.200031
 50% -0.688317 -0.202406 0.520109
 75% -0.393844 0.160609 0.896922
 max -0.160134 0.616657 2.310688

Shows the first five data rows.

Shows the last five data rows.

Prints the index attribute of the object.

Prints the column attribute of the object.

Shows some meta data about the object.

Provides selected summary statistics about the data.

334 | Appendix: Python, NumPy, matplotlib, pandas

While NumPy provides a specialized data structure for multi-
dimensional arrays (with numerical data in general), pandas takes
specialization one step further to tabular (two-dimensional) data
with the DataFrame class. In particular, pandas is strong in han‐
dling financial time series data, as subsequent examples illustrate.

Numerical Operations
Numerical operations are in general as easy with DataFrame objects as with NumPy
ndarray objects. They are also quite close in terms of syntax:

In [161]: print(df * 2)
 no1 no2 no3
 2022-01-31 -1.608917 0.641863 -0.050966
 2022-02-28 -0.320269 0.040270 0.727983
 2022-03-31 -0.535144 -0.919696 1.918054
 2022-04-30 -1.464479 0.414866 0.305823
 2022-05-31 -3.856618 -0.397054 -0.058932
 2022-06-30 -3.650232 -0.673898 1.352453
 2022-07-31 -1.106642 -2.647393 0.682782
 2022-08-31 -1.305605 -1.833009 2.521557
 2022-09-30 -0.681369 1.233314 1.421210
 2022-10-31 -1.447664 -0.412568 4.621376

In [162]: df.std()
Out[162]: no1 0.607430
 no2 0.578071
 no3 0.712430
 dtype: float64

In [163]: df.mean()
Out[163]: no1 -0.798847
 no2 -0.227665
 no3 0.672067
 dtype: float64

In [164]: df.mean(axis=1)
Out[164]: 2022-01-31 -0.169670
 2022-02-28 0.074664
 2022-03-31 0.077202
 2022-04-30 -0.123965
 2022-05-31 -0.718767
 2022-06-30 -0.495280
 2022-07-31 -0.511875
 2022-08-31 -0.102843
 2022-09-30 0.328859
 2022-10-31 0.460191
 Freq: M, dtype: float64

In [165]: np.mean(df)
Out[165]: no1 -0.798847

Python, NumPy, matplotlib, pandas | 335

 no2 -0.227665
 no3 0.672067
 dtype: float64

Scalar (vectorized) multiplication of all elements.

Calculates the column-wise standard deviation…

…and mean value. With DataFrame objects, column-wise operations are the
default.

Calculates the mean value per index value (that is, row-wise).

Applies a function of NumPy to the DataFrame object.

Data Selection
Pieces of data can be looked up via different mechanisms:

In [166]: df['no2']
Out[166]: 2022-01-31 0.320932
 2022-02-28 0.020135
 2022-03-31 -0.459848
 2022-04-30 0.207433
 2022-05-31 -0.198527
 2022-06-30 -0.336949
 2022-07-31 -1.323696
 2022-08-31 -0.916504
 2022-09-30 0.616657
 2022-10-31 -0.206284
 Freq: M, Name: no2, dtype: float64

In [167]: df.iloc[0]
Out[167]: no1 -0.804458
 no2 0.320932
 no3 -0.025483
 Name: 2022-01-31 00:00:00, dtype: float64

In [168]: df.iloc[2:4]
Out[168]: no1 no2 no3
 2022-03-31 -0.267572 -0.459848 0.959027
 2022-04-30 -0.732239 0.207433 0.152912

In [169]: df.iloc[2:4, 1]
Out[169]: 2022-03-31 -0.459848
 2022-04-30 0.207433
 Freq: M, Name: no2, dtype: float64

In [170]: df.no3.iloc[3:7]
Out[170]: 2022-04-30 0.152912

336 | Appendix: Python, NumPy, matplotlib, pandas

 2022-05-31 -0.029466
 2022-06-30 0.676227
 2022-07-31 0.341391
 Freq: M, Name: no3, dtype: float64

In [171]: df.loc['2022-3-31']
Out[171]: no1 -0.267572
 no2 -0.459848
 no3 0.959027
 Name: 2022-03-31 00:00:00, dtype: float64

In [172]: df.loc['2022-5-31', 'no3']
Out[172]: -0.02946577492329111

In [173]: df['no1'] + 3 * df['no3']
Out[173]: 2022-01-31 -0.880907
 2022-02-28 0.931841
 2022-03-31 2.609510
 2022-04-30 -0.273505
 2022-05-31 -2.016706
 2022-06-30 0.203564
 2022-07-31 0.470852
 2022-08-31 3.129533
 2022-09-30 1.791130
 2022-10-31 6.208233
 Freq: M, dtype: float64

Selects a column by name.

Selects a row by index position.

Selects two rows by index position.

Selects two row values from one column by index positions.

Uses the dot lookup syntax to select a column.

Selects a row by index value.

Selects a single data point by index value and column name.

Implements a vectorized arithmetic operation.

Boolean Operations
Data selection based on Boolean operations is also a strength of pandas:

In [174]: df['no3'] > 0.5
Out[174]: 2022-01-31 False
 2022-02-28 False

Python, NumPy, matplotlib, pandas | 337

 2022-03-31 True
 2022-04-30 False
 2022-05-31 False
 2022-06-30 True
 2022-07-31 False
 2022-08-31 True
 2022-09-30 True
 2022-10-31 True
 Freq: M, Name: no3, dtype: bool

In [175]: df[df['no3'] > 0.5]
Out[175]: no1 no2 no3
 2022-03-31 -0.267572 -0.459848 0.959027
 2022-06-30 -1.825116 -0.336949 0.676227
 2022-08-31 -0.652803 -0.916504 1.260779
 2022-09-30 -0.340685 0.616657 0.710605
 2022-10-31 -0.723832 -0.206284 2.310688

In [176]: df[(df.no3 > 0.5) & (df.no2 > -0.25)]
Out[176]: no1 no2 no3
 2022-09-30 -0.340685 0.616657 0.710605
 2022-10-31 -0.723832 -0.206284 2.310688

In [177]: df[df.index > '2022-5-15']
Out[177]: no1 no2 no3
 2022-05-31 -1.928309 -0.198527 -0.029466
 2022-06-30 -1.825116 -0.336949 0.676227
 2022-07-31 -0.553321 -1.323696 0.341391
 2022-08-31 -0.652803 -0.916504 1.260779
 2022-09-30 -0.340685 0.616657 0.710605
 2022-10-31 -0.723832 -0.206284 2.310688

In [178]: df.query('no2 > 0.1')
Out[178]: no1 no2 no3
 2022-01-31 -0.804458 0.320932 -0.025483
 2022-04-30 -0.732239 0.207433 0.152912
 2022-09-30 -0.340685 0.616657 0.710605

In [179]: a = -0.5

In [180]: df.query('no1 > @a')
Out[180]: no1 no2 no3
 2022-02-28 -0.160134 0.020135 0.363992
 2022-03-31 -0.267572 -0.459848 0.959027
 2022-09-30 -0.340685 0.616657 0.710605

Which values in column no3 are greater than 0.5?

Select all such rows for which the condition is True.

338 | Appendix: Python, NumPy, matplotlib, pandas

Combines two conditions with the & (bitwise and) operator; | is the bitwise or
operator.

Selects all rows with index values greater (later) than '2020-5-15' (here, based
on str object sorting).

Uses the .query() method to select rows given conditions as str objects.

Plotting with pandas
pandas is well integrated with the matplotlib plotting package, which makes it con‐
venient to plot data stored in DataFrame objects. In general, a single method call does
the trick already (see Figure A-6):

In [181]: df.plot(figsize=(10, 6));

Plots the data as a line plot (column-wise) and fixes the figure size.

Figure A-6. Line plot with pandas

pandas takes care of the proper formatting of the index values, dates in this case. This
only works for a DatetimeIndex properly. If the date-time information is available as
str objects only, the DatetimeIndex() constructor can be used to transform the date-
time information easily:

Python, NumPy, matplotlib, pandas | 339

In [182]: index = ['2022-01-31', '2022-02-28', '2022-03-31', '2022-04-30',
 '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
 '2022-09-30', '2022-10-31']

In [183]: pd.DatetimeIndex(df.index)
Out[183]: DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31',
 '2022-04-30',
 '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
 '2022-09-30', '2022-10-31'],
 dtype='datetime64[ns]', freq='M')

Date-time index data as a list object of str objects.

Generates a DatetimeIndex object out of the list object.

Histograms are also generated this way. In both cases, pandas takes care of the han‐
dling of the single columns and automatically generates single lines (with respective
legend entries, see Figure A-6) and generates respective sub-plots with three different
histograms (as in Figure A-7):

In [184]: df.hist(figsize=(10, 6));

Generates a histogram for each column.

Figure A-7. Histograms with pandas

340 | Appendix: Python, NumPy, matplotlib, pandas

Input-Output Operations
Yet another strength of pandas is the exporting and importing of data to and from
diverse data storage formats (see also Chapter 3). Consider the case of comma separa‐
ted value (CSV) files:

In [185]: df.to_csv('data.csv')

In [186]: with open('data.csv') as f:
 for line in f.readlines():
 print(line, end='')
 ,no1,no2,no3
 2022-01-31,-0.8044583035248052,0.3209315470898572,
 ,-0.025482880472072204
 2022-02-28,-0.16013447509799061,0.020134874302836725,0.363991673815235
 2022-03-31,-0.26757177678888727,-0.4598482010579319,0.9590271758917923
 2022-04-30,-0.7322393029842283,0.2074331059300848,0.15291156544935125
 2022-05-31,-1.9283091368170622,-0.19852705542997268,
 ,-0.02946577492329111
 2022-06-30,-1.8251162427820806,-0.33694904401573555,0.6762266000356951
 2022-07-31,-0.5533209663746153,-1.3236963728130973,0.34139114682415433
 2022-08-31,-0.6528026643843922,-0.9165042724715742,1.2607786860286034
 2022-09-30,-0.34068465431802875,0.6166567928863607,0.7106048210003031
 2022-10-31,-0.7238320652023266,-0.20628417055270565,2.310688189060956

In [187]: from_csv = pd.read_csv('data.csv',
 index_col=0,
 parse_dates=True)

In [188]: from_csv.head() #
Out[188]: no1 no2 no3
 2022-01-31 -0.804458 0.320932 -0.025483
 2022-02-28 -0.160134 0.020135 0.363992
 2022-03-31 -0.267572 -0.459848 0.959027
 2022-04-30 -0.732239 0.207433 0.152912
 2022-05-31 -1.928309 -0.198527 -0.029466

Writes the data to disk as a CSV file.

Opens that file and prints the contents line by line.

Reads the data stored in the CSV file into a new DataFrame object.

Defines the first column to be the index column.

Date-time information in the index column shall be transformed to Timestamp
objects.

Prints the first five rows of the new DataFrame object.

Python, NumPy, matplotlib, pandas | 341

However, in general, you would store DataFrame objects on disk in more efficient
binary formats like HDF5. pandas in this case wraps the functionality of the PyTables
package. The constructor function to be used is HDFStore:

In [189]: h5 = pd.HDFStore('data.h5', 'w')

In [190]: h5['df'] = df

In [191]: h5
Out[191]: <class 'pandas.io.pytables.HDFStore'>
 File path: data.h5

In [192]: from_h5 = h5['df']

In [193]: h5.close()

In [194]: from_h5.tail()
Out[194]: no1 no2 no3
 2022-06-30 -1.825116 -0.336949 0.676227
 2022-07-31 -0.553321 -1.323696 0.341391
 2022-08-31 -0.652803 -0.916504 1.260779
 2022-09-30 -0.340685 0.616657 0.710605
 2022-10-31 -0.723832 -0.206284 2.310688

In [195]: !rm data.csv data.h5

Opens an HDFStore object.

Writes the DataFrame object (the data) to the HDFStore.

Shows the structure/contents of the database file.

Reads the data into a new DataFrame object.

Closes the HDFStore object.

Shows the final five rows of the new DataFrame object.

Removes the CSV and HDF5 files.

342 | Appendix: Python, NumPy, matplotlib, pandas

http://hdfgroup.org
http://pytables.org
http://pytables.org

Case Study
When it comes to financial data, there are useful data importing functions available
in the pandas package (see also Chapter 3). The following code reads historical daily
data for the S&P 500 index and the VIX volatility index from a CSV file stored on a
remote server using the pd.read_csv() function:

In [196]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
 index_col=0, parse_dates=True).dropna()

In [197]: spx = pd.DataFrame(raw['.SPX'])

In [198]: spx.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 1 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 .SPX 2516 non-null float64
 dtypes: float64(1)
 memory usage: 39.3 KB

In [199]: vix = pd.DataFrame(raw['.VIX'])

In [200]: vix.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 1 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 .VIX 2516 non-null float64
 dtypes: float64(1)
 memory usage: 39.3 KB

Imports the pandas package.

Reads historical data for the S&P 500 stock index from a CSV file (data from
Refinitiv Eikon Data API).

Shows the meta information for the resulting DataFrame object.

Reads historical data for the VIX volatility index.

Shows the meta information for the resulting DataFrame object.

Let us combine the respective Close columns into a single DataFrame object. Multiple
ways are possible to accomplish this goal:

Python, NumPy, matplotlib, pandas | 343

In [201]: spxvix = pd.DataFrame(spx).join(vix)

In [202]: spxvix.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 .SPX 2516 non-null float64
 1 .VIX 2516 non-null float64
 dtypes: float64(2)
 memory usage: 139.0 KB

In [203]: spxvix = pd.merge(spx, vix,
 left_index=True, # merge on left index
 right_index=True, # merge on right index
)

In [204]: spxvix.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 .SPX 2516 non-null float64
 1 .VIX 2516 non-null float64
 dtypes: float64(2)
 memory usage: 139.0 KB

In [205]: spxvix = pd.DataFrame({'SPX': spx['.SPX'],
 'VIX': vix['.VIX']},
 index=spx.index)

In [206]: spxvix.info()
 <class 'pandas.core.frame.DataFrame'>
 DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
 Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 --- ------ -------------- -----
 0 SPX 2516 non-null float64
 1 VIX 2516 non-null float64
 dtypes: float64(2)
 memory usage: 139.0 KB

Uses the join method to combine the relevant data sub-sets.

Uses the merge function for the combination.

Uses the DataFrame constructor in combination with a dict object as input.

344 | Appendix: Python, NumPy, matplotlib, pandas

Having available the combined data in a single object makes visual analysis straight‐
forward (see Figure A-8):

In [207]: spxvix.plot(figsize=(10, 6), subplots=True);

Plots the two data sub-sets into separate sub-plots.

Figure A-8. Historical end-of-day closing values for the S&P 500 and VIX

pandas also allows vectorized operations on whole DataFrame objects. The following
code calculates the log returns over the two columns of the spxvix object simultane‐
ously in vectorized fashion. The shift method shifts the data set by the number of
index values as provided (in this particular case, by one trading day):

In [208]: rets = np.log(spxvix / spxvix.shift(1))

In [209]: rets = rets.dropna()

In [210]: rets.head()
Out[210]: SPX VIX
 Date
 2010-01-05 0.003111 -0.035038
 2010-01-06 0.000545 -0.009868
 2010-01-07 0.003993 -0.005233
 2010-01-08 0.002878 -0.050024
 2010-01-11 0.001745 -0.032514

Python, NumPy, matplotlib, pandas | 345

Calculates the log returns for the two time series in fully vectorized fashion.

Drops all rows containing NaN values (“not a number”).

Shows the first five rows of the new DataFrame object.

Consider the plot in Figure A-9 showing the VIX log returns against the SPX log
returns in a scatter plot with a linear regression. It illustrates a strong negative corre‐
lation between the two indexes:

In [211]: rg = np.polyfit(rets['SPX'], rets['VIX'], 1)

In [212]: rets.plot(kind='scatter', x='SPX', y='VIX',
 style='.', figsize=(10, 6))
 plt.plot(rets['SPX'], np.polyval(rg, rets['SPX']), 'r-');

Implements a linear regression on the two log return data sets.

Creates a scatter plot of the log returns.

Plots the linear regression line in the existing scatter plot.

Figure A-9. Scatter plot of S&P 500 and VIX log returns with linear regression line

346 | Appendix: Python, NumPy, matplotlib, pandas

Having financial time series data stored in a pandas DataFrame object makes the cal‐
culation of typical statistics straightforward:

In [213]: ret = rets.mean() * 252

In [214]: ret
Out[214]: SPX 0.104995
 VIX -0.037526
 dtype: float64

In [215]: vol = rets.std() * math.sqrt(252)

In [216]: vol
Out[216]: SPX 0.147902
 VIX 1.229086
 dtype: float64

In [217]: (ret - 0.01) / vol
Out[217]: SPX 0.642279
 VIX -0.038667
 dtype: float64

Calculates the annualized mean return for the two indexes.

Calculates the annualized standard deviation.

Calculates the Sharpe ratio for a risk-free short rate of 1%.

The maximum drawdown, which we only calculate for the S&P 500 index, is a bit
more involved. For its calculation, we use the .cummax() method, which records the
running, historical maximum of the time series up to a certain date. Consider the fol‐
lowing code that generates the plot in Figure A-10:

In [218]: plt.figure(figsize=(10, 6))
 spxvix['SPX'].plot(label='S&P 500')
 spxvix['SPX'].cummax().plot(label='running maximum')
 plt.legend(loc=0);

Instantiates a new figure object.

Plots the historical closing values for the S&P 500 index.

Calculates and plots the running maximum over time.

Places a legend on the canvas.

Python, NumPy, matplotlib, pandas | 347

Figure A-10. Historical closing prices of S&P 500 index and running maximum

The absolute maximum drawdown is the largest difference between the running maxi‐
mum and the current index level. In our particular case, it is about 580 index points.
The relative maximum drawdown might sometimes be a bit more meaningful. It is
here a value of about 20%:

In [219]: adrawdown = spxvix['SPX'].cummax() - spxvix['SPX']

In [220]: adrawdown.max()
Out[220]: 579.6500000000001

In [221]: rdrawdown = ((spxvix['SPX'].cummax() - spxvix['SPX']) /
 spxvix['SPX'].cummax())

In [222]: rdrawdown.max()
Out[222]: 0.1977821376780688

Derives the absolute maximum drawdown.

Derives the relative maximum drawdown.

The longest drawdown period is calculated as follows. The following code selects all
those data points where the drawdown is zero (where a new maximum is reached). It
then calculates the difference between two consecutive index values (trading dates)
for which the drawdown is zero and takes the maximum value. Given the data set we
are analyzing, the longest drawdown period is 417 days:

348 | Appendix: Python, NumPy, matplotlib, pandas

In [223]: temp = adrawdown[adrawdown == 0]

In [224]: periods_spx = (temp.index[1:].to_pydatetime() -
 temp.index[:-1].to_pydatetime())

In [225]: periods_spx[50:60]
Out[225]: array([datetime.timedelta(days=67), datetime.timedelta(days=1),
 datetime.timedelta(days=1), datetime.timedelta(days=1),
 datetime.timedelta(days=301), datetime.timedelta(days=3),
 datetime.timedelta(days=1), datetime.timedelta(days=2),
 datetime.timedelta(days=12), datetime.timedelta(days=2)],
 dtype=object)

In [226]: max(periods_spx)
Out[226]: datetime.timedelta(days=417)

Picks out all index positions where the drawdown is 0.

Calculates the timedelta values between all such index positions.

Shows a select few of these values.

Picks out the maximum value for the result.

Conclusions
This appendix provides a concise, introductory overview of selected topics relevant to
use Python, NumPy, matplotlib, and pandas in the context of algorithmic trading. It
cannot, of course, replace a thorough training and practical experience, but it helps
those who want to get started quickly and who are willing to dive deeper into the
details where necessary.

Further Resources
A valuable, free source for the topics covered in this appendix are the Scipy Lecture
Notes that are available in multiple electronic formats. Also freely available is the
online book From Python to NumPy by Nicolas Rougier.

Books cited in this appendix:

Hilpisch, Yves. 2018. Python for Finance. 2nd ed. Sebastopol: O’Reilly.
McKinney, Wes. 2017. Python for Data Analysis. 2nd ed. Sebastopol: O’Reilly.
VanderPlas, Jake. 2017. Python Data Science Handbook. Sebastopol: O’Reilly.

Python, NumPy, matplotlib, pandas | 349

http://scipy-lectures.org
http://scipy-lectures.org
https://oreil.ly/vo54e

Index

A
absolute maximum drawdown, 348
AdaBoost algorithm, 281
addition (+) operator, 312
adjusted return appraisal ratio, 11
algorithmic trading (generally)

advantages of, 10
basics, 7-11
strategies, 13-15

alpha seeking strategies, 13
alpha, defined, 9
anonymous functions, 317
API key, for data sets, 52-54
Apple, Inc.

intraday stock prices, 102
reading stock price data from different sour‐

ces, 46-52
retrieving historical unstructured data

about, 63-65
app_key, for Eikon Data API, 57
AQR Capital Management, 5
arithmetic operations, 311
array programming, 82

(see also vectorization)
automated trading operations, 265-308

capital management, 266-277
configuring Oanda account, 299
hardware setup, 300
infrastructure and deployment, 296
logging and monitoring, 297-299
ML-based trading strategy, 277-290
online algorithm, 291-294
Python environment setup, 301
Python scripts for, 305-308

real-time monitoring, 304
running code, 302
uploading code, 302
visual step-by-step overview, 299-304

B
backtesting

based on simple moving averages, 88-98
Python scripts for classification algorithm

backtesting, 170
Python scripts for linear regression back‐

testing class, 167
vectorized (see vectorized backtesting)

BacktestLongShort class, 185, 197
bar charts, 329
bar plots (see Plotly; streaming bar plot)
base class, for event-based backtesting, 177-182,

191
Bash script, 32

for Droplet set-up, 41-43
for Python/Jupyter Lab installation, 40-41

Bitcoin, 5, 52
Boolean operations

NumPy, 322
pandas, 337

C
callback functions, 259
capital management

automated trading operations and, 266-277
Kelly criterion for stocks and indices,

272-277
Kelly criterion in binomial setting, 266-271

351

Carter, Graydon, 249
CFD (contracts for difference)

algorithmic trading risks, 299
defined, 225
risks of losses, 189
risks of trading on margin, 249
trading with Oanda, 223-247

(see also Oanda)
classification problems

machine learning for, 141-145
neural networks for, 154-155
Python scripts for vectorized backtesting,

170
.close_all() method, 262
cloud instances, 36-43

installation script for Python and Jupyter
Lab, 40-41

Jupyter Notebook configuration file, 38
RSA public/private keys, 38
script to orchestrate Droplet set-up, 41-43

Cocteau, Jean, 175
comma separated value (CSV) files (see CSV

files)
conda

as package manager, 19-27
as virtual environment manager, 27-30
basic operations, 21-27
installing Miniconda, 19-21

conda remove, 26
configparser module, 229
containers (see Docker containers)
contracts for difference (see CFD)
control structures, 315
CPython, 1, 17
.create_market_buy_order() method, 261
.create_order() method, 237-239
cross-sectional momentum strategies, 98
CSV files

input-output operations, 341-342
reading from a CSV file with pandas, 49
reading from a CSV file with Python, 47-49

.cummax() method, 347
currency pairs, 299

(see also EUR/USD exchange rate)
algorithmic trading risks, 299

D
data science stack, 309
data snooping, 112

data storage
SQLite3 for, 75-77
storing data efficiently, 65-77
storing DataFrame objects, 66-70
TsTables package for, 70-75

data structures, 313-315
DataFrame class, 5-7, 49, 332-335
DataFrame objects

creating, 85
storing, 66-70

dataism, ix
DatetimeIndex() constructor, 339
decision tree classification algorithm, 281
deep learning

adding features to analysis, 162-165
classification problem, 154-155
deep neural networks for predicting market

direction, 156-165
market movement prediction, 153-165
trading strategies and, 15

deep neural networks, 156-165
delta hedging, 9
dense neural network (DNN), 154, 157
dictionary (dict) objects, 48, 314
DigitalOcean

cloud instances, 36-43
droplet setup, 300

DNN (dense neural network), 154, 157
Docker containers, 30-36

building a Ubuntu and Python Docker
image, 31-36

defined, 31
Docker images versus, 31

Docker images
defined, 31
Docker containers versus, 31

Dockerfile, 32-33
Domingos, Pedro, 265
Droplet, 36

costs, 296
script to orchestrate set-up, 41-43

dynamic hedging, 9

E
efficient market hypothesis, 124
Eikon Data API, 55-65

retrieving historical structured data, 58-62
retrieving historical unstructured data,

62-65

352 | Index

Euler discretization, 2
EUR/USD exchange rate

backtesting momentum strategy on minute
bars, 231-234

evaluation of regression-based strategy, 137
factoring in leverage/margin, 234-235
gross performance versus deep learning-

based strategy, 159-161, 163-164
historical ask close prices, 257-258
historical candles data for, 256
historical tick data for, 253
implementing trading strategies in real time,

239-244
logistic regression-based strategies, 150
placing orders, 260-262
predicting, 129-131
predicting future returns, 132-134
predicting index levels, 129-131
retrieving streaming data for, 259
retrieving trading account information,

244-246
SMA calculation, 89-98
vectorized backtesting of ML-based trading

strategy, 278-284
vectorized backtesting of regression-based

strategy, 135
event-based backtesting, 175-197

advantages, 176
base class, 177-182, 191
building classes for, 175-197
long-only backtesting class, 182-185, 194
long-short backtesting class, 185-189, 197
Python scripts for, 191-197

Excel
exporting financial data to, 50
reading financial data from, 51

F
features

adding different types, 162-165
lags and, 146

financial data, working with, 45-78
data set for examples, 46
Eikon Data API, 55-65
exporting to Excel/JSON, 50
open data sources, 52-55
reading data from different sources, 46-52
reading data from Excel/JSON, 51
reading from a CSV file with pandas, 49

reading from a CSV file with Python, 47-49
storing data efficiently, 65-77

.flatten() method, 329
foreign exchange trading (see FX trading;

FXCM)
future returns, predicting, 132-134
FX trading, 249-264

(see also EUR/USD exchange rate)
FXCM

FX trading, 249-264
getting started, 251
placing orders, 260-262
retrieving account information, 262
retrieving candles data, 254-256
retrieving data, 251-256
retrieving historical data, 257-258
retrieving streaming data, 259
retrieving tick data, 252-254
working with the API, 256-263

fxcmpy wrapper package
callback functions, 259
installing, 251
tick data retrieval, 252

fxTrade, 224

G
GDX (VanEck Vectors Gold Miners ETF)

logistic regression-based strategies, 151
mean-reversion strategies, 107-111
regression-based strategies, 138

generate_sample_data(), 65
.get_account_summary() method, 244
.get_candles() method, 257
.get_data() method, 178, 253
.get_date_price() method, 178
.get_instruments() method, 230
.get_last_price() method, 260
.get_raw_data() method, 253
get_timeseries() function, 61
.get_transactions() method, 245
GLD (SPDR Gold Shares)

logistic regression-based strategies, 147-150
mean-reversion strategies, 107-111

gold price
mean-reversion strategies, 107-109
momentum strategy and, 99-102, 105-105

Goldman Sachs, 1, 9
.go_long() method, 186

Index | 353

H
half Kelly criterion, 285
Harari, Yuval Noah, ix
HDF5 binary storage library, 70-75
HDFStore wrapper, 66-70
high frequency trading (HFQ), 10
histograms, 329
hit ratio, defined, 281

I
if-elif-else control structure, 318
in-sample fitting, 137
index levels, predicting, 129-131
infrastructure (see Python infrastructure)
installation script, Python/Jupyter Lab, 40-41
Intel Math Kernel Library, 22
iterations, 315

J
JSON

exporting financial data to, 50
reading financial data from, 51

Jupyter Lab
installation script for, 40-41
RSA public/private keys for, 38
tools included, 36

Jupyter Notebook, 38

K
Kelly criterion

in binomial setting, 266-271
optimal leverage, 285-286
stocks and indices, 272-277

Keras, 153, 157, 165
key-value stores, 314
keys, public/private, 38

L
lags, 127, 146
lambda functions, 317
LaTeX, 2
leveraged trading, risks of, 235, 249, 286
linear regression

generalizing the approach, 137
market movement prediction, 124-138
predicting future market direction, 134
predicting future returns, 132-134

predicting index levels, 129-131
price prediction based on time series data,

127-129
review of, 125
scikit-learn and, 139
vectorized backtesting of regression-based

strategy, 135, 167
list comprehension, 317
list constructor, 314
list objects, 47, 314, 321
logging, of automated trading operations,

297-299
logistic regression

generalizing the approach, 150-153
market direction prediction, 146-150
Python script for vectorized backtesting,

170
long-only backtesting class, 182-185, 194
long-short backtesting class, 185-189, 197
longest drawdown period, 287

M
machine learning

classification problem, 141-145
linear regression with scikit-learn, 139
market movement prediction, 139-153
ML-based trading strategy, 277-290
Python scripts, 167
trading strategies and, 15
using logistic regression to predict market

direction, 146-150
macro hedge funds, algorithmic trading and, 11
__main__ method, 177
margin trading, 249
market direction prediction, 134
market movement prediction

deep learning for, 153-165
deep neural networks for, 156-165
linear regression for, 124-138
linear regression with scikit-learn, 139
logistic regression to predict market direc‐

tion, 146-150
machine learning for, 139-153
predicting future market direction, 134
predicting future returns, 132-134
predicting index levels, 129-131
price prediction based on time series data,

127-129

354 | Index

vectorized backtesting of regression-based
strategy, 135

market orders, placing, 237-239
math module, 311
mathematical functions, 311
matplotlib, 327-331, 339-340
maximum drawdown, 287, 348
McKinney, Wes, 5
mean-reversion strategies, 3, 107-111

basics, 107-111
generalizing the approach, 110
Python code with a class for vectorized

backtesting, 118
Miniconda, 19-21
mkl (Intel Math Kernel Library), 22
ML-based strategies, 277-290

optimal leverage, 285-286
persisting the model object, 290
Python script for, 305
risk analysis, 287-290
vectorized backtesting, 278-284

MLPClassifier, 154
MLTrader class, 292-294
momentum strategies, 14

backtesting on minute bars, 231-234
basics, 99-103
generalizing the approach, 104
Python code with a class for vectorized

backtesting, 118
Python script for custom streaming class,

247
Python script for momentum online algo‐

rithm, 219
vectorized backtesting of, 98-105

MomentumTrader class, 239-244
MomVectorBacktester class, 104
monitoring

automated trading operations, 297-299, 304
Python scripts for strategy monitoring, 308

Monte Carlo simulation
sample tick data server, 218
time series data based on, 78

motives, for trading, 8
MRVectorBacktester class, 110
multi-layer perceptron, 154
Musashi, Miyamoto, 17

N
natural language processing (NLP), 62

ndarray class, 83-85
ndarray objects, 3, 322-324

creating, 325
linear regression and, 125
regular, 319

nested structures, 313
NLP (natural language processing), 62
np.arange(), 325
numbers, data typing of, 310
numerical operations, pandas, 335
NumPy, 3-5, 319-327

Boolean operations, 322
ndarray creation, 325
ndarray methods, 322-324
random numbers, 326
regular ndarray object, 319
universal functions, 323
vectorization, 83-85
vectorized operations, 321

numpy.random sub-package, 326
NYSE Arca Gold Miners Index, 107

O
Oanda

account configuration, 299
account setup, 227
API access, 229-230
backtesting momentum strategy on minute

bars, 231-234
CFD trading, 223-247
factoring in leverage/margin with historical

data, 234-235
implementing trading strategies in real time,

239-244
looking up instruments available for trad‐

ing, 230
placing market orders, 237-239
Python script for custom streaming class,

247
retrieving account information, 244-246
retrieving historical data, 230-235
working with streaming data, 236

Oanda v20 RESTful API, 229, 277-290, 278
offline algorithm

defined, 208
transformation to online algorithm, 292

OLS (ordinary least squares) regression, 330
online algorithm

automated trading operations, 291-294

Index | 355

defined, 208
Python script for momentum online algo‐

rithm, 219
signal generation in real time, 208-210
transformation of offline algorithm to, 292

.on_success() method, 240, 291
open data sources, 52-55
ordinary least squares (OLS) regression, 330
out-of-sample evaluation, 137
overfitting, 112

P
package manager, conda as, 19-27
pandas, 5-7, 332-342

Boolean operations, 337
case study, 343-349
data selection, 336-337
DataFrame class, 332-335
exporting financial data to Excel/JSON, 50
input-output operations, 341-342
numerical operations, 335
plotting, 339-340
reading financial data from Excel/JSON, 51
reading from a CSV file, 49
storing DataFrame objects, 66-70
vectorization, 85-88

password protection, for Jupyter lab, 38
.place_buy_order() method, 179
.place_sell_order() method, 179
Plotly

basics, 211
multiple real-time streams for, 212
multiple sub-plots for streams, 214
streaming data as bars, 215
visualization of streaming data, 211-216

plotting, with pandas, 339-340
.plot_data() method, 178
polyfit()/polyval() convenience functions, 330
price prediction, based on time series data,

127-129
.print_balance() method, 179
.print_net_wealth() method, 179
.print_transactions() method, 246
pseudo-code, Python versus, 2
publisher-subscriber (PUB-SUB) pattern, 202
Python (generally)

advantages of, 11
basics, 1-16
control structures, 315

data structures, 313-315
data types, 310-313
deployment difficulties, 17
idioms, 317-319
NumPy and vectorization, 3-5
obstacles to adoption in financial industry,

1
origins, 1
pandas and DataFrame class, 5-7
pseudo-code versus, 2
reading from a CSV file, 47-49

Python infrastructure, 17-44
conda as package manager, 19-27
conda as virtual environment manager,

27-30
Docker containers, 30-36
using cloud instances, 36-43

Python scripts
automated trading operations, 302, 305-308
backtesting base class, 191
custom streaming class that trades a

momentum strategy, 247
linear regression backtesting class, 167
long-only backtesting class, 194
long-short backtesting class, 197
real-time data handling, 218-220
sample time series data set, 78
strategy monitoring, 308
uploading for automated trading opera‐

tions, 302
vectorized backtesting, 115-120

Q
Quandl

premium data sets, 54
working with open data sources, 52-55

R
random numbers, 326
random walk hypothesis, 130
range (iterator object), 315
read_csv() function, 49
real-time data, 201-220

Python script for handling, 218-220
signal generation in real time, 208-210
tick data client for, 206
tick data server for, 203-206, 218

356 | Index

visualizing streaming data with Plotly,
211-216

real-time monitoring, 304
Refinitiv, 56
relative maximum drawdown, 348
returns, predicting future, 132-134
risk analysis, for ML-based trading strategy,

287-290
RSA public/private keys, 38
.run_mean_reversion_strategy() method, 183,

187
.run_simulation() method, 269

S
S&P 500, 8-11

logistic regression-based strategies and, 150
momentum strategies, 103
passive long position in, 274-277

scatter objects, 212
scientific stack, 4, 309
scikit-learn, 139
ScikitBacktester class, 150-152
SciPy package project, 4
seaborn library, 327-331
simple moving averages (SMAs), 5, 14

trading strategies based on, 88-98
visualization with price ticks, 212

.simulate_value() method, 204
Singer, Paul, 223
sockets, real-time data and, 201-220
sorting list objects, 314
SQLite3, 75-77
SSL certificate, 38
storage (see data storage)
streaming bar plots, 215, 220
streaming data

Oanda and, 236
visualization with Plotly, 211-216

string objects (str), 312-313
Swiss Franc event, 226
systematic macro hedge funds, 11

T
TensorFlow, 153, 157
Thomas, Rob, 45
Thorp, Edward, 266
tick data client, 206
tick data server, 203-206, 218

time series data sets
pandas and vectorization, 88
price prediction based on, 127-129
Python script for generating sample set, 78
SQLite3 for storage of, 75-77
TsTables for storing, 70-75

time series momentum strategies, 99
(see also momentum strategies)

.to_hdf() method, 68
tpqoa wrapper package, 229, 236
trading platforms, factors influencing choice of,

223
trading strategies, 13-15

(see also specific strategies)
implementing in real time with Oanda,

239-244
machine learning/deep learning, 15
mean-reversion, 3
momentum, 14
simple moving averages, 14

trading, motives for, 8
transaction costs, 184, 284
TsTables package, 70-75
tuple objects, 313

U
Ubuntu, 31-36
universal functions, NumPy, 323

V
v20 wrapper package, 229, 277-290, 278
value-at-risk (VAR), 288-290
vectorization, 3, 107-111
vectorized backtesting

data snooping and overfitting, 111-113
ML-based trading strategy, 278-284
momentum-based trading strategies, 98-105
potential shortcomings, 175
Python code with a class for vectorized

backtesting of mean-reversion trading
strategies, 118

Python scripts for, 115-120, 167
regression-based strategy, 135
trading strategies based on simple moving

averages, 88-98
vectorization with NumPy, 83-85
vectorization with pandas, 85-88

vectorized operations, 321

Index | 357

virtual environment management, 27-30

W
while loops, 316

Z
ZeroMQ, 202

358 | Index

About the Author
Dr. Yves J. Hilpisch is founder and CEO of The Python Quants, a group focusing on
the use of open source technologies for financial data science, artificial intelligence,
algorithmic trading, and computational finance. He is also founder and CEO of The
AI Machine, a company focused on AI-powered algorithmic trading via a proprietary
strategy execution platform.

In addition to this book, he is the author of the following books:

• Artificial Intelligence in Finance (O’Reilly, 2020)
• Python for Finance (2nd ed., O’Reilly, 2018)
• Derivatives Analytics with Python (Wiley, 2015)
• Listed Volatility and Variance Derivatives (Wiley, 2017)

Yves is an adjunct professor of computational finance and lectures on algorithmic
trading at the CQF Program. He is also the director of the first online training pro‐
grams leading to university certificates in Python for Algorithmic Trading and
Python for Computational Finance.

Yves wrote the financial analytics library DX Analytics and organizes meetups, con‐
ferences, and bootcamps about Python for quantitative finance and algorithmic trad‐
ing in London, Frankfurt, Berlin, Paris, and New York. He has given keynote speeches
at technology conferences in the United States, Europe, and Asia.

http://tpq.io
http://aimachine.io
http://aimachine.io
https://aiif.tpq.io
https://py4fi.tpq.io
https://dawp.tpq.io
https://lvvd.tpq.io
http://cqf.com
http://certificate.tpq.io
http://compfinance.tpq.io
http://dx-analytics.com

Colophon
The animal on the cover of Python for Algorithmic Trading is a common barred grass
snake (Natrix helvetica). This nonvenomous snake is found in or near fresh water in
Western Europe.

The common barred grass snake, originally a member of Natrix natrix prior to its
reclassification as a distinct species, has a grey-green body with distinctive banding
along its flanks and can grow up to a meter in length. It is a prodigious swimmer and
preys primarily on amphibians such as toads and frogs. Because they need to regulate
their body temperatures like all reptiles, the common barred grass snake typically
spends its winters underground where the temperature is more stable.

This snake’s conservation status is currently of “Least Concern,” and it is currently
protected in Great Britain under the Wildlife and Countryside Act. Many of the ani‐
mals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Jose Marzan, based on a black and white engraving from
English Cyclopedia Natural History. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	Contents and Structure
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Python and Algorithmic Trading
	Python for Finance
	Python Versus Pseudo-Code
	NumPy and Vectorization
	pandas and the DataFrame Class

	Algorithmic Trading
	Python for Algorithmic Trading
	Focus and Prerequisites
	Trading Strategies
	Simple Moving Averages
	Momentum
	Mean Reversion
	Machine and Deep Learning

	Conclusions
	References and Further Resources

	Chapter 2. Python Infrastructure
	Conda as a Package Manager
	Installing Miniconda
	Basic Operations with Conda

	Conda as a Virtual Environment Manager
	Using Docker Containers
	Docker Images and Containers
	Building a Ubuntu and Python Docker Image

	Using Cloud Instances
	RSA Public and Private Keys
	Jupyter Notebook Configuration File
	Installation Script for Python and Jupyter Lab
	Script to Orchestrate the Droplet Set Up

	Conclusions
	References and Further Resources

	Chapter 3. Working with Financial Data
	Reading Financial Data From Different Sources
	The Data Set
	Reading from a CSV File with Python
	Reading from a CSV File with pandas
	Exporting to Excel and JSON
	Reading from Excel and JSON

	Working with Open Data Sources
	Eikon Data API
	Retrieving Historical Structured Data
	Retrieving Historical Unstructured Data

	Storing Financial Data Efficiently
	Storing DataFrame Objects
	Using TsTables
	Storing Data with SQLite3

	Conclusions
	References and Further Resources
	Python Scripts

	Chapter 4. Mastering Vectorized Backtesting
	Making Use of Vectorization
	Vectorization with NumPy
	Vectorization with pandas

	Strategies Based on Simple Moving Averages
	Getting into the Basics
	Generalizing the Approach

	Strategies Based on Momentum
	Getting into the Basics
	Generalizing the Approach

	Strategies Based on Mean Reversion
	Getting into the Basics
	Generalizing the Approach

	Data Snooping and Overfitting
	Conclusions
	References and Further Resources
	Python Scripts
	SMA Backtesting Class
	Momentum Backtesting Class
	Mean Reversion Backtesting Class

	Chapter 5. Predicting Market Movements with Machine Learning
	Using Linear Regression for Market Movement Prediction
	A Quick Review of Linear Regression
	The Basic Idea for Price Prediction
	Predicting Index Levels
	Predicting Future Returns
	Predicting Future Market Direction
	Vectorized Backtesting of Regression-Based Strategy
	Generalizing the Approach

	Using Machine Learning for Market Movement Prediction
	Linear Regression with scikit-learn
	A Simple Classification Problem
	Using Logistic Regression to Predict Market Direction
	Generalizing the Approach

	Using Deep Learning for Market Movement Prediction
	The Simple Classification Problem Revisited
	Using Deep Neural Networks to Predict Market Direction
	Adding Different Types of Features

	Conclusions
	References and Further Resources
	Python Scripts
	Linear Regression Backtesting Class
	Classification Algorithm Backtesting Class

	Chapter 6. Building Classes for
Event-Based Backtesting
	Backtesting Base Class
	Long-Only Backtesting Class
	Long-Short Backtesting Class
	Conclusions
	References and Further Resources
	Python Scripts
	Backtesting Base Class
	Long-Only Backtesting Class
	Long-Short Backtesting Class

	Chapter 7. Working with Real-Time Data and Sockets
	Running a Simple Tick Data Server
	Connecting a Simple Tick Data Client
	Signal Generation in Real Time
	Visualizing Streaming Data with Plotly
	The Basics
	Three Real-Time Streams
	Three Sub-Plots for Three Streams
	Streaming Data as Bars

	Conclusions
	References and Further Resources
	Python Scripts
	Sample Tick Data Server
	Tick Data Client
	Momentum Online Algorithm
	Sample Data Server for Bar Plot

	Chapter 8. CFD Trading with Oanda
	Setting Up an Account
	The Oanda API
	Retrieving Historical Data
	Looking Up Instruments Available for Trading
	Backtesting a Momentum Strategy on Minute Bars
	Factoring In Leverage and Margin

	Working with Streaming Data
	Placing Market Orders
	Implementing Trading Strategies in Real Time
	Retrieving Account Information
	Conclusions
	References and Further Resources
	Python Script

	Chapter 9. FX Trading with FXCM
	Getting Started
	Retrieving Data
	Retrieving Tick Data
	Retrieving Candles Data

	Working with the API
	Retrieving Historical Data
	Retrieving Streaming Data
	Placing Orders
	Account Information

	Conclusions
	References and Further Resources

	Chapter 10. Automating Trading Operations
	Capital Management
	Kelly Criterion in Binomial Setting
	Kelly Criterion for Stocks and Indices

	ML-Based Trading Strategy
	Vectorized Backtesting
	Optimal Leverage
	Risk Analysis
	Persisting the Model Object

	Online Algorithm
	Infrastructure and Deployment
	Logging and Monitoring
	Visual Step-by-Step Overview
	Configuring Oanda Account
	Setting Up the Hardware
	Setting Up the Python Environment
	Uploading the Code
	Running the Code
	Real-Time Monitoring

	Conclusions
	References and Further Resources
	Python Script
	Automated Trading Strategy
	Strategy Monitoring

	Appendix A. Python, NumPy, matplotlib, pandas
	Python Basics
	Data Types
	Data Structures
	Control Structures
	Python Idioms

	NumPy
	Regular ndarray Object
	Vectorized Operations
	Boolean Operations
	ndarray Methods and NumPy Functions
	ndarray Creation
	Random Numbers

	matplotlib
	pandas
	DataFrame Class
	Numerical Operations
	Data Selection
	Boolean Operations
	Plotting with pandas
	Input-Output Operations

	Case Study
	Conclusions
	Further Resources

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

