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1 Harari, Yuval Noah. 2015. Homo Deus: A Brief History of Tomorrow. London: Harvill Secker.

Preface

Dataism says that the universe consists of data flows, and the value of any phenom‐
enon or entity is determined by its contribution to data processing….Dataism thereby
collapses the barrier between animals [humans] and machines, and expects electronic
algorithms to eventually decipher and outperform biochemical algorithms.1

—Yuval Noah Harari

Finding the right algorithm to automatically and successfully trade in financial mar‐
kets is the holy grail in finance. Not too long ago, algorithmic trading was only avail‐
able and possible for institutional players with deep pockets and lots of assets under
management. Recent developments in the areas of open source, open data, cloud
compute, and cloud storage, as well as online trading platforms, have leveled the play‐
ing field for smaller institutions and individual traders, making it possible to get
started in this fascinating discipline while equipped only with a typical notebook or
desktop computer and a reliable internet connection.

Nowadays, Python and its ecosystem of powerful packages is the technology platform
of choice for algorithmic trading. Among other things, Python allows you to do
efficient data analytics (with pandas, for example), to apply machine learning to stock
market prediction (with scikit-learn, for example), or even to make use of Google’s
deep learning technology with TensorFlow.

This is a book about Python for algorithmic trading, primarily in the context of alpha
generating strategies (see Chapter 1). Such a book at the intersection of two vast and
exciting fields can hardly cover all topics of relevance. However, it can cover a range
of important meta topics in depth.

ix
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These topics include:

Financial data
Financial data is at the core of every algorithmic trading project. Python and
packages like NumPy and pandas do a great job of handling and working with
structured financial data of any kind (end-of-day, intraday, high frequency).

Backtesting
There should be no automated algorithmic trading without a rigorous testing of
the trading strategy to be deployed. The book covers, among other things, trad‐
ing strategies based on simple moving averages, momentum, mean-reversion,
and machine/deep-learning based prediction.

Real-time data
Algorithmic trading requires dealing with real-time data, online algorithms
based on it, and visualization in real time. The book provides an introduction to
socket programming with ZeroMQ and streaming visualization.

Online platforms
No trading can take place without a trading platform. The book covers two pop‐
ular electronic trading platforms: Oanda and FXCM.

Automation
The beauty, as well as some major challenges, in algorithmic trading results from
the automation of the trading operation. The book shows how to deploy Python
in the cloud and how to set up an environment appropriate for automated
algorithmic trading.

The book offers a unique learning experience with the following features and
benefits:

Coverage of relevant topics
This is the only book covering such a breadth and depth with regard to relevant
topics in Python for algorithmic trading (see the following).

Self-contained code base
The book is accompanied by a Git repository with all codes in a self-contained,
executable form. The repository is available on the Quant Platform.

Real trading as the goal
The coverage of two different online trading platforms puts the reader in the
position to start both paper and live trading efficiently. To this end, the book
equips the reader with relevant, practical, and valuable background knowledge.

Do-it-yourself and self-paced approach
Since the material and the code are self-contained and only rely on standard
Python packages, the reader has full knowledge of and full control over what is
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going on, how to use the code examples, how to change them, and so on. There is
no need to rely on third-party platforms, for instance, to do the backtesting or to
connect to the trading platforms. With this book, the reader can do all this on
their own at a convenient pace and has every single line of code to do so.

User forum
Although the reader should be able to follow along seamlessly, the author and
The Python Quants are there to help. The reader can post questions and com‐
ments in the user forum on the Quant Platform at any time (accounts are free).

Online/video training (paid subscription)
The Python Quants offer comprehensive online training programs that make use
of the contents presented in the book and that add additional content, covering
important topics such as financial data science, artificial intelligence in finance,
Python for Excel and databases, and additional Python tools and skills.

Contents and Structure
Here’s a quick overview of the topics and contents presented in each chapter.

Chapter 1, Python and Algorithmic Trading
The first chapter is an introduction to the topic of algorithmic trading—that is,
the automated trading of financial instruments based on computer algorithms. It
discusses fundamental notions in this context and also addresses, among other
things, what the expected prerequisites for reading the book are.

Chapter 2, Python Infrastructure
This chapter lays the technical foundations for all subsequent chapters in that it
shows how to set up a proper Python environment. This chapter mainly uses
conda as a package and environment manager. It illustrates Python deployment
via Docker containers and in the cloud.

Chapter 3, Working with Financial Data
Financial time series data is central to every algorithmic trading project. This
chapter shows you how to retrieve financial data from different public data and
proprietary data sources. It also demonstrates how to store financial time series
data efficiently with Python.

Chapter 4, Mastering Vectorized Backtesting
Vectorization is a powerful approach in numerical computation in general and
for financial analytics in particular. This chapter introduces vectorization with
NumPy and pandas and applies that approach to the backtesting of SMA-based,
momentum, and mean-reversion strategies.
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Chapter 5, Predicting Market Movements with Machine Learning
This chapter is dedicated to generating market predictions by the use of machine
learning and deep learning approaches. By mainly relying on past return obser‐
vations as features, approaches are presented for predicting tomorrow’s market
direction by using such Python packages as Keras in combination with Tensor
Flow and scikit-learn.

Chapter 6, Building Classes for Event-Based Backtesting
While vectorized backtesting has advantages when it comes to conciseness of
code and performance, it’s limited with regard to the representation of certain
market features of trading strategies. On the other hand, event-based backtesting,
technically implemented by the use of object oriented programming, allows for a
rather granular and more realistic modeling of such features. This chapter
presents and explains in detail a base class as well as two classes for the backtest‐
ing of long-only and long-short trading strategies.

Chapter 7, Working with Real-Time Data and Sockets
Needing to cope with real-time or streaming data is a reality even for the ambi‐
tious individual algorithmic trader. The tool of choice is socket programming, for
which this chapter introduces ZeroMQ as a lightweight and scalable technology.
The chapter also illustrates how to make use of Plotly to create nice looking,
interactive streaming plots.

Chapter 8, CFD Trading with Oanda
Oanda is a foreign exchange (forex, FX) and Contracts for Difference (CFD)
trading platform offering a broad set of tradable instruments, such as those based
on foreign exchange pairs, stock indices, commodities, or rates instruments
(benchmark bonds). This chapter provides guidance on how to implement auto‐
mated algorithmic trading strategies with Oanda, making use of the Python
wrapper package tpqoa.

Chapter 9, FX Trading with FXCM
FXCM is another forex and CFD trading platform that has recently released a
modern RESTful API for algorithmic trading. Available instruments span multi‐
ple asset classes, such as forex, stock indices, or commodities. A Python wrapper
package that makes algorithmic trading based on Python code rather convenient
and efficient is available (http://fxcmpy.tpq.io).

Chapter 10, Automating Trading Operations
This chapter deals with capital management, risk analysis and management, as
well as with typical tasks in the technical automation of algorithmic trading oper‐
ations. It covers, for instance, the Kelly criterion for capital allocation and
leverage in detail.
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Appendix
The appendix provides a concise introduction to the most important Python,
NumPy, and pandas topics in the context of the material presented in the main
chapters. It represents a starting point from which one can add to one’s own
Python knowledge over time.

Figure P-1 shows the layers related to algorithmic trading that the chapters cover
from the bottom to the top. It necessarily starts with the Python infrastructure (Chap‐
ter 2), and adds financial data (Chapter 3), strategy, and vectorized backtesting code
(Chapters 4 and 5). Until that point, data sets are used and manipulated as a whole.
Event-based backtesting for the first time introduces the idea that data in the real
world arrives incrementally (Chapter 6). It is the bridge that leads to the connecting
code layer that covers socket communication and real-time data handling (Chap‐
ter 7). On top of that, trading platforms and their APIs are required to be able to
place orders (Chapters 8 and 9). Finally, important aspects of automation and deploy‐
ment are covered (Chapter 10). In that sense, the main chapters of the book relate to
the layers as seen in Figure P-1, which provide a natural sequence for the topics to be
covered.

Figure P-1. The layers of Python for algorithmic trading
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Who This Book Is For
This book is for students, academics, and practitioners alike who want to apply
Python in the fascinating field of algorithmic trading. The book assumes that the
reader has, at least on a fundamental level, background knowledge in both Python
programming and in financial trading. For reference and review, the Appendix intro‐
duces important Python, NumPy, matplotlib, and pandas topics. The following are
good references to get a sound understanding of the Python topics important for this
book. Most readers will benefit from having at least access to Hilpisch (2018) for ref‐
erence. With regard to the machine and deep learning approaches applied to algorith‐
mic trading, Hilpisch (2020) provides a wealth of background information and a
larger number of specific examples. Background information about Python as applied
to finance, financial data science, and artificial intelligence can be found in the
following books:

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

⸻. 2020. Artificial Intelligence in Finance: A Python-Based Guide. Sebastopol:
O’Reilly.

McKinney, Wes. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. 2nd ed. Sebastopol: O’Reilly.

Ramalho, Luciano. 2021. Fluent Python: Clear, Concise, and Effective Programming.
2nd ed. Sebastopol: O’Reilly.

VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working
with Data. Sebastopol: O’Reilly.

Background information about algorithmic trading can be found, for instance, in
these books:

Chan, Ernest. 2009. Quantitative Trading: How to Build Your Own Algorithmic Trad‐
ing Business. Hoboken et al: John Wiley & Sons.

Chan, Ernest. 2013. Algorithmic Trading: Winning Strategies and Their Rationale.
Hoboken et al: John Wiley & Sons.

Kissel, Robert. 2013. The Science of Algorithmic Trading and Portfolio Management.
Amsterdam et al: Elsevier/Academic Press.

Narang, Rishi. 2013. Inside the Black Box: A Simple Guide to Quantitative and High
Frequency Trading. Hoboken et al: John Wiley & Sons.

Enjoy your journey through the algorithmic trading world with Python and get in
touch by emailing py4at@tpq.io if you have questions or comments.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs, to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
You can access and execute the code that accompanies the book on the Quant Plat‐
form at https://py4at.pqp.io, for which only a free registration is required.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
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need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example, this book may be attrib‐
uted as: “Python for Algorithmic Trading by Yves Hilpisch (O’Reilly). Copyright 2021
Yves Hilpisch, 978-1-492-05335-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/py4at.
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Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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1 “Too Squid to Fail.” The Economist, 29. October 2016.

CHAPTER 1

Python and Algorithmic Trading

At Goldman [Sachs] the number of people engaged in trading shares has fallen from a peak
of 600 in 2000 to just two today.1

—The Economist

This chapter provides background information for, and an overview of, the topics
covered in this book. Although Python for algorithmic trading is a niche at the inter‐
section of Python programming and finance, it is a fast-growing one that touches on
such diverse topics as Python deployment, interactive financial analytics, machine
and deep learning, object-oriented programming, socket communication, visualiza‐
tion of streaming data, and trading platforms.

For a quick refresher on important Python topics, read the Appendix first.

Python for Finance
The Python programming language originated in 1991 with the first release by Guido
van Rossum of a version labeled 0.9.0. In 1994, version 1.0 followed. However, it took
almost two decades for Python to establish itself as a major programming language
and technology platform in the financial industry. Of course, there were early adopt‐
ers, mainly hedge funds, but widespread adoption probably started only around 2011.

One major obstacle to the adoption of Python in the financial industry has been the
fact that the default Python version, called CPython, is an interpreted, high-level lan‐
guage. Numerical algorithms in general and financial algorithms in particular are
quite often implemented based on (nested) loop structures. While compiled, low-
level languages like C or C++ are really fast at executing such loops, Python, which

1



2 For details, see Hilpisch (2018, ch. 12).

relies on interpretation instead of compilation, is generally quite slow at doing so. As
a consequence, pure Python proved too slow for many real-world financial applica‐
tions, such as option pricing or risk management.

Python Versus Pseudo-Code
Although Python was never specifically targeted towards the scientific and financial
communities, many people from these fields nevertheless liked the beauty and con‐
ciseness of its syntax. Not too long ago, it was generally considered good tradition to
explain a (financial) algorithm and at the same time present some pseudo-code as an
intermediate step towards its proper technological implementation. Many felt that,
with Python, the pseudo-code step would not be necessary anymore. And they were
proven mostly correct.

Consider, for instance, the Euler discretization of the geometric Brownian motion, as
in Equation 1-1.

Equation 1-1. Euler discretization of geometric Brownian motion

ST = S0 exp r − 0 . 5σ2 T + σz T

For decades, the LaTeX markup language and compiler have been the gold standard
for authoring scientific documents containing mathematical formulae. In many ways,
Latex syntax is similar to or already like pseudo-code when, for example, laying out
equations, as in Equation 1-1. In this particular case, the Latex version looks like this:

S_T = S_0 \exp((r - 0.5 \sigma^2) T + \sigma z \sqrt{T})

In Python, this translates to executable code, given respective variable definitions,
that is also really close to the financial formula as well as to the Latex representation:

S_T = S_0 * exp((r - 0.5 * sigma ** 2) * T + sigma * z * sqrt(T))

However, the speed issue remains. Such a difference equation, as a numerical approx‐
imation of the respective stochastic differential equation, is generally used to price
derivatives by Monte Carlo simulation or to do risk analysis and management based
on simulation.2 These tasks in turn can require millions of simulations that need to be
finished in due time, often in almost real-time or at least near-time. Python, as an
interpreted high-level programming language, was never designed to be fast enough
to tackle such computationally demanding tasks.
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also contain almost any other kind of Python object, like int, float, tuple objects or list objects themselves.

NumPy and Vectorization
In 2006, version 1.0 of the NumPy Python package was released by Travis Oliphant.
NumPy stands for numerical Python, suggesting that it targets scenarios that are
numerically demanding. The base Python interpreter tries to be as general as possible
in many areas, which often leads to quite a bit of overhead at run-time.3 NumPy, on the
other hand, uses specialization as its major approach to avoid overhead and to be as
good and as fast as possible in certain application scenarios.

The major class of NumPy is the regular array object, called ndarray object for n-
dimensional array. It is immutable, which means that it cannot be changed in size,
and can only accommodate a single data type, called dtype. This specialization allows
for the implementation of concise and fast code. One central approach in this context
is vectorization. Basically, this approach avoids looping on the Python level and dele‐
gates the looping to specialized NumPy code, generally implemented in C and there‐
fore rather fast.

Consider the simulation of 1,000,000 end of period values ST according to Equation
1-1 with pure Python. The major part of the following code is a for loop with
1,000,000 iterations:

In [1]: %%time
        import random
        from math import exp, sqrt

        S0 = 100  
        r = 0.05  
        T = 1.0  
        sigma = 0.2  

        values = []  

        for _ in range(1000000):  
            ST = S0 * exp((r - 0.5 * sigma ** 2) * T +
                            sigma * random.gauss(0, 1) * sqrt(T))  
            values.append(ST)  
        CPU times: user 1.13 s, sys: 21.7 ms, total: 1.15 s
        Wall time: 1.15 s

The initial index level.

The constant short rate.
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The time horizon in year fractions.

The constant volatility factor.

An empty list object to collect simulated values.

The main for loop.

The simulation of a single end-of-period value.

Appends the simulated value to the list object.

With NumPy, you can avoid looping on the Python level completely by the use of vec‐
torization. The code is much more concise, more readable, and faster by a factor of
about eight:

In [2]: %%time
        import numpy as np

        S0 = 100
        r = 0.05
        T = 1.0
        sigma = 0.2

        ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T +
                            sigma * np.random.standard_normal(1000000) *
                            np.sqrt(T))  
        CPU times: user 375 ms, sys: 82.6 ms, total: 458 ms
        Wall time: 160 ms

This single line of NumPy code simulates all the values and stores them in an
ndarray object.

Vectorization is a powerful concept for writing concise, easy-to-
read, and easy-to-maintain code in finance and algorithmic trad‐
ing. With NumPy, vectorized code does not only make code more
concise, but it also can speed up code execution considerably (by a
factor of about eight in the Monte Carlo simulation, for example).

It’s safe to say that NumPy has significantly contributed to the success of Python in sci‐
ence and finance. Many other popular Python packages from the so-called scientific
Python stack build on NumPy as an efficient, performing data structure to store and
handle numerical data. In fact, NumPy is an outgrowth of the SciPy package project,
which provides a wealth of functionality frequently needed in science. The SciPy
project recognized the need for a more powerful numerical data structure and
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consolidated older projects like Numeric and NumArray in this area into a new, unify‐
ing one in the form of NumPy.

In algorithmic trading, a Monte Carlo simulation might not be the most important
use case for a programming language. However, if you enter the algorithmic trading
space, the management of larger, or even big, financial time series data sets is a very
important use case. Just think of the backtesting of (intraday) trading strategies or the
processing of tick data streams during trading hours. This is where the pandas data
analysis package comes into play.

pandas and the DataFrame Class
Development of pandas began in 2008 by Wes McKinney, who back then was work‐
ing at AQR Capital Management, a big hedge fund operating out of Greenwich, Con‐
necticut. As with for any other hedge fund, working with time series data is of
paramount importance for AQR Capital Management, but back then Python did not
provide any kind of appealing support for this type of data. Wes’s idea was to create a
package that mimics the capabilities of the R statistical language (http://r-project.org)
in this area. This is reflected, for example, in naming the major class DataFrame,
whose counterpart in R is called data.frame. Not being considered close enough to
the core business of money management, AQR Capital Management open sourced
the pandas project in 2009, which marks the beginning of a major success story in
open source–based data and financial analytics.

Partly due to pandas, Python has become a major force in data and financial analyt‐
ics. Many people who adopt Python, coming from diverse other languages, cite
pandas as a major reason for their decision. In combination with open data sources
like Quandl, pandas even allows students to do sophisticated financial analytics with
the lowest barriers of entry ever: a regular notebook computer with an internet con‐
nection suffices.

Assume an algorithmic trader is interested in trading Bitcoin, the cryptocurrency
with the largest market capitalization. A first step might be to retrieve data about the
historical exchange rate in USD. Using Quandl data and pandas, such a task is accom‐
plished in less than a minute. Figure 1-1 shows the plot that results from the follow‐
ing Python code, which is (omitting some plotting style related parameterizations)
only four lines. Although pandas is not explicitly imported, the Quandl Python wrap‐
per package by default returns a DataFrame object that is then used to add a simple
moving average (SMA) of 100 days, as well as to visualize the raw data alongside
the SMA:

In [3]: %matplotlib inline
        from pylab import mpl, plt  
        plt.style.use('seaborn')  
        mpl.rcParams['savefig.dpi'] = 300  
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        mpl.rcParams['font.family'] = 'serif'  

In [4]: import configparser  
        c = configparser.ConfigParser()  
        c.read('../pyalgo.cfg')  
Out[4]: ['../pyalgo.cfg']

In [5]: import quandl as q  
        q.ApiConfig.api_key = c['quandl']['api_key']  
        d = q.get('BCHAIN/MKPRU')  
        d['SMA'] = d['Value'].rolling(100).mean()  
        d.loc['2013-1-1':].plot(title='BTC/USD exchange rate',
                                figsize=(10, 6));  

Imports and configures the plotting package.

Imports the configparser module and reads credentials.

Imports the Quandl Python wrapper package and provides the API key.

Retrieves daily data for the Bitcoin exchange rate and returns a pandas Data
Frame object with a single column.

Calculates the SMA for 100 days in vectorized fashion.

Selects data from the 1st of January 2013 on and plots it.

Obviously, NumPy and pandas measurably contribute to the success of Python in
finance. However, the Python ecosystem has much more to offer in the form of addi‐
tional Python packages that solve rather fundamental problems and sometimes speci‐
alized ones. This book will make use of packages for data retrieval and storage (for
example, PyTables, TsTables, SQLite) and for machine and deep learning (for exam‐
ple, scikit-learn, TensorFlow), to name just two categories. Along the way, we will
also implement classes and modules that will make any algorithmic trading project
more efficient. However, the main packages used throughout will be NumPy and
pandas.
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4 See The Mathematics of the Rubik’s Cube or Algorithms for Solving Rubik’s Cube.

Figure 1-1. Historical Bitcoin exchange rate in USD from the beginning of 2013 until
mid-2020

While NumPy provides the basic data structure to store numerical
data and work with it, pandas brings powerful time series manage‐
ment capabilities to the table. It also does a great job of wrapping
functionality from other packages into an easy-to-use API. The Bit‐
coin example just described shows that a single method call on a
DataFrame object is enough to generate a plot with two financial
time series visualized. Like NumPy, pandas allows for rather concise,
vectorized code that is also generally executed quite fast due to
heavy use of compiled code under the hood.

Algorithmic Trading
The term algorithmic trading is neither uniquely nor universally defined. On a rather
basic level, it refers to the trading of financial instruments based on some formal
algorithm. An algorithm is a set of operations (mathematical, technical) to be conduc‐
ted in a certain sequence to achieve a certain goal. For example, there are mathemati‐
cal algorithms to solve a Rubik’s Cube.4 Such an algorithm can solve the problem at
hand via a step-by-step procedure, often perfectly. Another example is algorithms for
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finding the root(s) of an equation if it (they) exist(s) at all. In that sense, the objective
of a mathematical algorithm is often well specified and an optimal solution is often
expected.

But what about the objective of financial trading algorithms? This question is not that
easy to answer in general. It might help to step back for a moment and consider gen‐
eral motives for trading. In Dorn et al. (2008) write:

Trading in financial markets is an important economic activity. Trades are necessary to
get into and out of the market, to put unneeded cash into the market, and to convert
back into cash when the money is wanted. They are also needed to move money
around within the market, to exchange one asset for another, to manage risk, and to
exploit information about future price movements.

The view expressed here is more technical than economic in nature, focusing mainly
on the process itself and only partly on why people initiate trades in the first place. 
For our purposes, a nonexhaustive list of financial trading motives of people and
financial institutions managing money of their own or for others includes the
following:

Beta trading
Earning market risk premia by investing in, for instance, exchange traded funds
(ETFs) that replicate the performance of the S&P 500.

Alpha generation
Earning risk premia independent of the market by, for example, selling short
stocks listed in the S&P 500 or ETFs on the S&P 500.

Static hedging
Hedging against market risks by buying, for example, out-of-the-money put
options on the S&P 500.

Dynamic hedging
Hedging against market risks affecting options on the S&P 500 by, for example,
dynamically trading futures on the S&P 500 and appropriate cash, money mar‐
ket, or rate instruments.

Asset-liability management
Trading S&P 500 stocks and ETFs to be able to cover liabilities resulting from, for
example, writing life insurance policies.

Market making
Providing, for example, liquidity to options on the S&P 500 by buying and selling
options at different bid and ask prices.

All these types of trades can be implemented by a discretionary approach,
with human traders making decisions mainly on their own, as well as based on algo‐
rithms supporting the human trader or even replacing them completely in the
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decision-making process. In this context, computerization of financial trading of
course plays an important role. While in the beginning of financial trading, floor
trading with a large group of people shouting at each other (“open outcry”) was the
only way of executing trades, computerization and the advent of the internet and web
technologies have revolutionized trading in the financial industry. The quotation at
the beginning of this chapter illustrates this impressively in terms of the number of
people actively engaged in trading shares at Goldman Sachs in 2000 and in 2016. It is
a trend that was foreseen 25 years ago, as Solomon and Corso (1991) point out:

Computers have revolutionized the trading of securities and the stock market is cur‐
rently in the midst of a dynamic transformation. It is clear that the market of the future
will not resemble the markets of the past.
Technology has made it possible for information regarding stock prices to be sent all
over the world in seconds. Presently, computers route orders and execute small trades
directly from the brokerage firm’s terminal to the exchange. Computers now link
together various stock exchanges, a practice which is helping to create a single global
market for the trading of securities. The continuing improvements in technology will
make it possible to execute trades globally by electronic trading systems.

Interestingly, one of the oldest and most widely used algorithms is found in dynamic
hedging of options. Already with the publication of the seminal papers about the
pricing of European options by Black and Scholes (1973) and Merton (1973), the
algorithm, called delta hedging, was made available long before computerized and
electronic trading even started. Delta hedging as a trading algorithm shows how to
hedge away all market risks in a simplified, perfect, continuous model world. In the
real world, with transaction costs, discrete trading, imperfectly liquid markets, and
other frictions (“imperfections”), the algorithm has proven, somewhat surprisingly
maybe, its usefulness and robustness, as well. It might not allow one to perfectly
hedge away market risks affecting options, but it is useful in getting close to the ideal
and is therefore still used on a large scale in the financial industry.5

This book focuses on algorithmic trading in the context of alpha generating strategies.
Although there are more sophisticated definitions for alpha, for the purposes of this
book, alpha is seen as the difference between a trading strategy’s return over some
period of time and the return of the benchmark (single stock, index, cryptocurrency,
etc.). For example, if the S&P 500 returns 10% in 2018 and an algorithmic strategy
returns 12%, then alpha is +2% points. If the strategy returns 7%, then alpha is -3%
points. In general, such numbers are not adjusted for risk, and other risk characteris‐
tics, such as maximal drawdown (period), are usually considered to be of second
order importance, if at all.
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This book focuses on alpha-generating strategies, or strategies that
try to generate positive returns (above a benchmark) independent
of the market’s performance. Alpha is defined in this book (in the
simplest way) as the excess return of a strategy over the benchmark
financial instrument’s performance.

There are other areas where trading-related algorithms play an important role. One is
the high frequency trading (HFT) space, where speed is typically the discipline in
which players compete.6 The motives for HFT are diverse, but market making and
alpha generation probably play a prominent role. Another one is trade execution,
where algorithms are deployed to optimally execute certain nonstandard trades.
Motives in this area might include the execution (at best possible prices) of large
orders or the execution of an order with as little market and price impact as possible.
A more subtle motive might be to disguise an order by executing it on a number of
different exchanges.

An important question remains to be addressed: is there any advantage to using algo‐
rithms for trading instead of human research, experience, and discretion? This ques‐
tion can hardly be answered in any generality. For sure, there are human traders and
portfolio managers who have earned, on average, more than their benchmark for
investors over longer periods of time. The paramount example in this regard is War‐
ren Buffett. On the other hand, statistical analyses show that the majority of active
portfolio managers rarely beat relevant benchmarks consistently. Referring to the year
2015, Adam Shell writes:

Last year, for example, when the Standard & Poor’s 500-stock index posted a paltry
total return of 1.4% with dividends included, 66% of “actively managed” large-
company stock funds posted smaller returns than the index…The longer-term outlook
is just as gloomy, with 84% of large-cap funds generating lower returns than the S&P
500 in the latest five year period and 82% falling shy in the past 10 years, the study
found.7

In an empirical study published in December 2016, Harvey et al. write:

We analyze and contrast the performance of discretionary and systematic hedge funds.
Systematic funds use strategies that are rules‐based, with little or no daily intervention
by humans….We find that, for the period 1996‐2014, systematic equity managers
underperform their discretionary counterparts in terms of unadjusted (raw) returns,
but that after adjusting for exposures to well‐known risk factors, the risk‐adjusted per‐
formance is similar. In the case of macro, systematic funds outperform discretionary
funds, both on an unadjusted and risk‐adjusted basis.
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comprising a total of 9,000 hedge funds over the period from June 1996 to December 2014.

Table 1-0 reproduces the major quantitative findings of the study by Harvey et al.
(2016).8 In the table, factors include traditional ones (equity, bonds, etc.), dynamic
ones (value, momentum, etc.), and volatility (buying at-the-money puts and calls). 
The adjusted return appraisal ratio divides alpha by the adjusted return volatility. For
more details and background, see the original study.

The study’s results illustrate that systematic (“algorithmic”) macro hedge funds per‐
form best as a category, both in unadjusted and risk-adjusted terms. They generate an
annualized alpha of 4.85% points over the period studied. These are hedge funds
implementing strategies that are typically global, are cross-asset, and often involve
political and macroeconomic elements. Systematic equity hedge funds only beat their
discretionary counterparts on the basis of the adjusted return appraisal ratio (0.35
versus 0.25).

 Systematic macro Discretionary macro Systematic equity Discretionary equity

Return average 5.01% 2.86% 2.88% 4.09%

Return attributed to
factors

0.15% 1.28% 1.77% 2.86%

Adj. return average (alpha) 4.85% 1.57% 1.11% 1.22%

Adj. return volatility 0.93% 5.10% 3.18% 4.79%

Adj. return appraisal ratio 0.44 0.31 0.35 0.25

Compared to the S&P 500, hedge fund performance overall was quite meager for the
year 2017. While the S&P 500 index returned 21.8%, hedge funds only returned 8.5%
to investors (see this article in Investopedia). This illustrates how hard it is, even with
multimillion dollar budgets for research and technology, to generate alpha.

Python for Algorithmic Trading
Python is used in many corners of the financial industry but has become particularly
popular in the algorithmic trading space. There are a few good reasons for this:

Data analytics capabilities
A major requirement for every algorithmic trading project is the ability to man‐
age and process financial data efficiently. Python, in combination with packages
like NumPy and pandas, makes life easier in this regard for every algorithmic
trader than most other programming languages do.
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Handling of modern APIs
Modern online trading platforms like the ones from FXCM and Oanda offer
RESTful application programming interfaces (APIs) and socket (streaming) APIs
to access historical and live data. Python is in general well suited to efficiently
interact with such APIs.

Dedicated packages
In addition to the standard data analytics packages, there are multiple packages
available that are dedicated to the algorithmic trading space, such as PyAlgoTrade
and Zipline for the backtesting of trading strategies and Pyfolio for performing
portfolio and risk analysis.

Vendor sponsored packages
More and more vendors in the space release open source Python packages to
facilitate access to their offerings. Among them are online trading platforms like
Oanda, as well as the leading data providers like Bloomberg and Refinitiv.

Dedicated platforms
Quantopian, for example, offers a standardized backtesting environment as a
Web-based platform where the language of choice is Python and where people
can exchange ideas with like-minded others via different social network features.
From its founding until 2020, Quantopian has attracted more than 300,000 users.

Buy- and sell-side adoption
More and more institutional players have adopted Python to streamline develop‐
ment efforts in their trading departments. This, in turn, requires more and more
staff proficient in Python, which makes learning Python a worthwhile
investment.

Education, training, and books
Prerequisites for the widespread adoption of a technology or programming lan‐
guage are academic and professional education and training programs in combi‐
nation with specialized books and other resources. The Python ecosystem has
seen a tremendous growth in such offerings recently, educating and training
more and more people in the use of Python for finance. This can be expected to
reinforce the trend of Python adoption in the algorithmic trading space.

In summary, it is rather safe to say that Python plays an important role in algorithmic
trading already and seems to have strong momentum to become even more impor‐
tant in the future. It is therefore a good choice for anyone trying to enter the space, be
it as an ambitious “retail” trader or as a professional employed by a leading financial
institution engaged in systematic trading.
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Focus and Prerequisites
The focus of this book is on Python as a programming language for algorithmic trad‐
ing. The book assumes that the reader already has some experience with Python and
popular Python packages used for data analytics. Good introductory books are, for
example, Hilpisch (2018), McKinney (2017), and VanderPlas (2016), which all can be
consulted to build a solid foundation in Python for data analysis and finance. The
reader is also expected to have some experience with typical tools used for interactive
analytics with Python, such as IPython, to which VanderPlas (2016) also provides an
introduction.

This book presents and explains Python code that is applied to the topics at hand, like
backtesting trading strategies or working with streaming data. It cannot provide a
thorough introduction to all packages used in different places. It tries, however, to
highlight those capabilities of the packages that are central to the exposition (such as
vectorization with NumPy).

The book also cannot provide a thorough introduction and overview of all financial
and operational aspects relevant for algorithmic trading. The approach instead focu‐
ses on the use of Python to build the necessary infrastructure for automated algorith‐
mic trading systems. Of course, the majority of examples used are taken from the
algorithmic trading space. However, when dealing with, say, momentum or mean-
reversion strategies, they are more or less simply used without providing (statistical)
verification or an in-depth discussion of their intricacies. Whenever it seems appro‐
priate, references are given that point the reader to sources that address issues left
open during the exposition.

All in all, this book is written for readers who have some experience with both
Python and (algorithmic) trading. For such a reader, the book is a practical guide to
the creation of automated trading systems using Python and additional packages.

This book uses a number of Python programming approaches (for
example, object oriented programming) and packages (for exam‐
ple, scikit-learn) that cannot be explained in detail. The focus is
on applying these approaches and packages to different steps in an
algorithmic trading process. It is therefore recommended that
those who do not yet have enough Python (for finance) experience
additionally consult more introductory Python texts.

Trading Strategies
Throughout this book, four different algorithmic trading strategies are used as exam‐
ples. They are introduced briefly in the following sections and in some more detail
in Chapter 4. All these trading strategies can be classified as mainly alpha seeking
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strategies, since their main objective is to generate positive, above-market returns
independent of the market direction. Canonical examples throughout the book, when
it comes to financial instruments traded, are a stock index, a single stock, or a crypto‐
currency (denominated in a fiat currency). The book does not cover strategies involv‐
ing multiple financial instruments at the same time (pair trading strategies, strategies
based on baskets, etc.). It also covers only strategies whose trading signals are derived
from structured, financial time series data and not, for instance, from unstructured
data sources like news or social media feeds. This keeps the discussions and the
Python implementations concise and easier to understand, in line with the approach
(discussed earlier) of focusing on Python for algorithmic trading.9

The remainder of this chapter gives a quick overview of the four trading strategies
used in this book.

Simple Moving Averages
The first type of trading strategy relies on simple moving averages (SMAs) to gener‐
ate trading signals and market positionings. These trading strategies have been popu‐
larized by so-called technical analysts or chartists. The basic idea is that a shorter-
term SMA being higher in value than a longer term SMA signals a long market
position and the opposite scenario signals a neutral or short market position.

Momentum
The basic idea behind momentum strategies is that a financial instrument is assumed
to perform in accordance with its recent performance for some additional time. For
example, when a stock index has seen a negative return on average over the last five
days, it is assumed that its performance will be negative tomorrow, as well.

Mean Reversion
In mean-reversion strategies, a financial instrument is assumed to revert to some
mean or trend level if it is currently far enough away from such a level. For example,
assume that a stock trades 10 USD under its 200 days SMA level of 100. It is then
expected that the stock price will return to its SMA level sometime soon.

14 | Chapter 1: Python and Algorithmic Trading



Machine and Deep Learning
With machine and deep learning algorithms, one generally takes a more black box
approach to predicting market movements. For simplicity and reproducibility, the
examples in this book mainly rely on historical return observations as features to
train machine and deep learning algorithms to predict stock market movements.

This book does not introduce algorithmic trading in a systematic
fashion. Since the focus lies on applying Python in this fascinating
field, readers not familiar with algorithmic trading should consult
dedicated resources on the topic, some of which are cited in this
chapter and the chapters that follow. But be aware of the fact that
the algorithmic trading world in general is secretive and that
almost everyone who is successful is naturally reluctant to share
their secrets in order to protect their sources of success (that is,
their alpha).

Conclusions
Python is already a force in finance in general and is on its way to becoming a major
force in algorithmic trading. There are a number of good reasons to use Python for
algorithmic trading, among them the powerful ecosystem of packages that allows for
efficient data analysis or the handling of modern APIs. There are also a number of
good reasons to learn Python for algorithmic trading, chief among them the fact that
some of the biggest buy- and sell-side institutions make heavy use of Python in their
trading operations and constantly look for seasoned Python professionals.

This book focuses on applying Python to the different disciplines in algorithmic trad‐
ing, like backtesting trading strategies or interacting with online trading platforms. It
cannot replace a thorough introduction to Python itself nor to trading in general.
However, it systematically combines these two fascinating worlds to provide a valua‐
ble source for the generation of alpha in today’s competitive financial and cryptocur‐
rency markets.
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CHAPTER 2

Python Infrastructure

In building a house, there is the problem of the selection of wood.
It is essential that the carpenter’s aim be to carry equipment that will cut well and, when he
has time, to sharpen that equipment.

—Miyamoto Musashi (The Book of Five Rings)

For someone new to Python, Python deployment might seem all but straightforward.
The same holds true for the wealth of libraries and packages that can be installed
optionally. First of all, there is not only one Python. Python comes in many different
flavors, like CPython, Jython, IronPython, or PyPy. Then there is still the divide
between Python 2.7 and the 3.x world. This chapter focuses on CPython, the most
popular version of the Python programming language, and on version 3.8.

Even when focusing on CPython 3.8 (henceforth just “Python”), deployment is made
difficult due to a number of reasons:

• The interpreter (a standard CPython installation) only comes with the so-called
standard library (e.g. covering typical mathematical functions).

• Optional Python packages need to be installed separately, and there are hundreds
of them.

• Compiling (“building”) such non-standard packages on your own can be tricky
due to dependencies and operating system–specific requirements.

• Taking care of such dependencies and of version consistency over time (mainte‐
nance) is often tedious and time consuming.

• Updates and upgrades for certain packages might cause the need for recompiling
a multitude of other packages.
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1 A recent project called pipenv combines the capabilities of the package manager pip with those of the virual
environment manager virtualenv. See https://github.com/pypa/pipenv.

• Changing or replacing one package might cause trouble in (many) other places.
• Migrating from one Python version to another one at some later point might

amplify all the preceding issues.

Fortunately, there are tools and strategies available that help with the Python deploy‐
ment issue. This chapter covers the following types of technologies that help with
Python deployment:

Package manager
Package managers like pip or conda help with the installing, updating, and
removing of Python packages. They also help with version consistency of differ‐
ent packages.

Virtual environment manager
A virtual environment manager like virtualenv or conda allows one to manage
multiple Python installations in parallel (for example, to have both a Python 2.7
and 3.8 installation on a single machine or to test the most recent development
version of a fancy Python package without risk).1

Container
Docker containers represent complete file systems containing all pieces of a sys‐
tem needed to run a certain software, such as code, runtime, or system tools. For
example, you can run a Ubuntu 20.04 operating system with a Python 3.8 instal‐
lation and the respective Python codes in a Docker container hosted on a
machine running Mac OS or Windows 10. Such a containerized environment can
then also be deployed later in the cloud without any major changes.

Cloud instance
Deploying Python code for financial applications generally requires high availa‐
bility, security, and performance. These requirements can typically be met only
by the use of professional compute and storage infrastructure that is nowadays
available at attractive conditions in the form of fairly small to really large and
powerful cloud instances. One benefit of a cloud instance (virtual server) com‐
pared to a dedicated server rented longer term is that users generally get charged
only for the hours of actual usage. Another advantage is that such cloud instances
are available literally in a minute or two if needed, which helps with agile devel‐
opment and scalability.

The structure of this chapter is as follows. “Conda as a Package Manager” on page 19
introduces conda as a package manager for Python. “Conda as a Virtual Environment
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2 On Windows, you can also run the exact same commands in a Docker container (see https://oreil.ly/GndRR).
Working on Windows directly requires some adjustments. See, for example, the book by Matthias and Kane
(2018) for further details on Docker usage.

Manager” on page 27 focuses on conda capabilities for virtual environment manage‐
ment. “Using Docker Containers” on page 30 gives a brief overview of Docker as a
containerization technology and focuses on the building of a Ubuntu-based container
with Python 3.8 installation. “Using Cloud Instances” on page 36 shows how to
deploy Python and Jupyter Lab, a powerful, browser-based tool suite for Python
development and deployment in the cloud.

The goal of this chapter is to have a proper Python installation with the most impor‐
tant tools, as well as numerical, data analysis, and visualization packages, available on
a professional infrastructure. This combination then serves as the backbone for
implementing and deploying the Python codes in later chapters, be it interactive
financial analytics code or code in the form of scripts and modules.

Conda as a Package Manager
Although conda can be installed alone, an efficient way of doing it is via Miniconda, a
minimal Python distribution that includes conda as a package and virtual environ‐
ment manager.

Installing Miniconda
You can download the different versions of Miniconda on the Miniconda page. In
what follows, the Python 3.8 64-bit version is assumed, which is available for Linux,
Windows, and Mac OS. The main example in this sub-section is a session in an
Ubuntu-based Docker container, which downloads the Linux 64-bit installer via wget
and then installs Miniconda. The code as shown should work (with maybe minor
modifications) on any other Linux-based or Mac OS–based machine, as well:2

$ docker run -ti -h pyalgo -p 11111:11111 ubuntu:latest /bin/bash

root@pyalgo:/# apt-get update; apt-get upgrade -y
...
root@pyalgo:/# apt-get install -y gcc wget
...
root@pyalgo:/# cd root
root@pyalgo:~# wget \
> https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
> -O miniconda.sh
...
HTTP request sent, awaiting response... 200 OK
Length: 93052469 (89M) [application/x-sh]
Saving to: 'miniconda.sh'
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miniconda.sh              100%[============>]  88.74M  1.60MB/s    in 2m 15s

2020-08-25 11:01:54 (3.08 MB/s) - 'miniconda.sh' saved [93052469/93052469]

root@pyalgo:~# bash miniconda.sh

Welcome to Miniconda3 py38_4.8.3

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>

Simply pressing the ENTER key starts the installation process. After reviewing the
license agreement, approve the terms by answering yes:

...
Last updated February 25, 2020

Do you accept the license terms? [yes|no]
[no] >>> yes

Miniconda3 will now be installed into this location:
/root/miniconda3

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

[/root/miniconda3] >>>
PREFIX=/root/miniconda3
Unpacking payload ...
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3
...
  python             pkgs/main/linux-64::python-3.8.3-hcff3b4d_0
...
Preparing transaction: done
Executing transaction: done
installation finished.

After you have agreed to the licensing terms and have confirmed the install location,
you should allow Miniconda to prepend the new Miniconda install location to the
PATH environment variable by answering yes once again:

Do you wish the installer to initialize Miniconda3
by running conda init? [yes|no]
[no] >>> yes
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...
no change     /root/miniconda3/etc/profile.d/conda.csh
modified      /root/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

If you'd prefer that conda's base environment not be activated on startup,
   set the auto_activate_base parameter to false:

conda config --set auto_activate_base false

Thank you for installing Miniconda3!
root@pyalgo:~#

After that, you might want to update conda since the Miniconda installer is in general
not as regularly updated as conda itself:

root@pyalgo:~# export PATH="/root/miniconda3/bin/:$PATH"
root@pyalgo:~# conda update -y conda
...
root@pyalgo:~# echo ". /root/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc
root@pyalgo:~# bash
(base) root@pyalgo:~#

After this rather simple installation procedure, there are now both a basic Python
installation and conda available. The basic Python installation comes already with
some nice batteries included, like the SQLite3 database engine. You might try out
whether you can start Python in a new shell instance or after appending the relevant
path to the respective environment variable (as done in the preceding example):

(base) root@pyalgo:~# python
Python 3.8.3 (default, May 19 2020, 18:47:26)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello Python for Algorithmic Trading World.')
Hello Python for Algorithmic Trading World.
>>> exit()
(base) root@pyalgo:~#

Basic Operations with Conda
conda can be used to efficiently handle, among other things, the installation, updat‐
ing, and removal of Python packages. The following list provides an overview of the
major functions:

Installing Python x.x
conda install python=x.x

Updating Python
conda update python
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3 Installing the meta package nomkl, such as in conda install numpy nomkl, avoids the automatic installation
and usage of mkl and related other packages.

Installing a package
conda install $PACKAGE_NAME

Updating a package
conda update $PACKAGE_NAME

Removing a package
conda remove $PACKAGE_NAME

Updating conda itself
conda update conda

Searching for packages
conda search $SEARCH_TERM

Listing installed packages
conda list

Given these capabilities, installing, for example, NumPy (as one of the most important
packages of the so-called scientific stack) is a single command only. When the installa‐
tion takes place on a machine with an Intel processor, the procedure automatically
installs the Intel Math Kernel Library mkl, which speeds up numerical operations not
only for NumPy on Intel machines but also for a few other scientific Python packages:3

(base) root@pyalgo:~# conda install numpy
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3

  added / updated specs:
    - numpy

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    blas-1.0                   |              mkl           6 KB
    intel-openmp-2020.1        |              217         780 KB
    mkl-2020.1                 |              217       129.0 MB
    mkl-service-2.3.0          |   py38he904b0f_0          62 KB
    mkl_fft-1.1.0              |   py38h23d657b_0         150 KB
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    mkl_random-1.1.1           |   py38h0573a6f_0         341 KB
    numpy-1.19.1               |   py38hbc911f0_0          21 KB
    numpy-base-1.19.1          |   py38hfa32c7d_0         4.2 MB
    ------------------------------------------------------------
                                           Total:       134.5 MB

The following NEW packages will be INSTALLED:

  blas               pkgs/main/linux-64::blas-1.0-mkl
  intel-openmp       pkgs/main/linux-64::intel-openmp-2020.1-217
  mkl                pkgs/main/linux-64::mkl-2020.1-217
  mkl-service        pkgs/main/linux-64::mkl-service-2.3.0-py38he904b0f_0
  mkl_fft            pkgs/main/linux-64::mkl_fft-1.1.0-py38h23d657b_0
  mkl_random         pkgs/main/linux-64::mkl_random-1.1.1-py38h0573a6f_0
  numpy              pkgs/main/linux-64::numpy-1.19.1-py38hbc911f0_0
  numpy-base         pkgs/main/linux-64::numpy-base-1.19.1-py38hfa32c7d_0

Proceed ([y]/n)? y

Downloading and Extracting Packages
numpy-base-1.19.1    | 4.2 MB    | ############################## | 100%
blas-1.0             | 6 KB      | ############################## | 100%
mkl_fft-1.1.0        | 150 KB    | ############################## | 100%
mkl-service-2.3.0    | 62 KB     | ############################## | 100%
numpy-1.19.1         | 21 KB     | ############################## | 100%
mkl-2020.1           | 129.0 MB  | ############################## | 100%
mkl_random-1.1.1     | 341 KB    | ############################## | 100%
intel-openmp-2020.1  | 780 KB    | ############################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) root@pyalgo:~#
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Multiple packages can also be installed at once. The -y flag indicates that all (poten‐
tial) questions shall be answered with yes:

(base) root@pyalgo:~# conda install -y ipython matplotlib pandas \
> pytables scikit-learn scipy
...
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3

  added / updated specs:
    - ipython
    - matplotlib
    - pandas
    - pytables
    - scikit-learn
    - scipy

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    backcall-0.2.0             |             py_0          15 KB
    ...
    zstd-1.4.5                 |       h9ceee32_0         619 KB
    ------------------------------------------------------------
                                           Total:       144.9 MB

The following NEW packages will be INSTALLED:

  backcall           pkgs/main/noarch::backcall-0.2.0-py_0
  blosc              pkgs/main/linux-64::blosc-1.20.0-hd408876_0
  ...
  zstd               pkgs/main/linux-64::zstd-1.4.5-h9ceee32_0

Downloading and Extracting Packages
glib-2.65.0          | 2.9 MB    | ############################## | 100%
...
snappy-1.1.8         | 40 KB     | ############################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) root@pyalgo:~#
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After the resulting installation procedure, some of the most important libraries for
financial analytics are available in addition to the standard ones:

IPython
An improved interactive Python shell

matplotlib
The standard plotting library for Python

NumPy
Efficient handling of numerical arrays

pandas
Management of tabular data, like financial time series data

PyTables
A Python wrapper for the HDF5 library

scikit-learn
A package for machine learning and related tasks

SciPy
A collection of scientific classes and functions

This provides a basic tool set for data analysis in general and financial analytics in
particular. The next example uses IPython and draws a set of pseudo-random num‐
bers with NumPy:

(base) root@pyalgo:~# ipython
Python 3.8.3 (default, May 19 2020, 18:47:26)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.16.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: np.random.seed(100)

In [3]: np.random.standard_normal((5, 4))
Out[3]:
array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604],
       [ 0.98132079,  0.51421884,  0.22117967, -1.07004333],
       [-0.18949583,  0.25500144, -0.45802699,  0.43516349],
       [-0.58359505,  0.81684707,  0.67272081, -0.10441114],
       [-0.53128038,  1.02973269, -0.43813562, -1.11831825]])

In [4]: exit
(base) root@pyalgo:~#
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Executing conda list shows which packages are installed:

(base) root@pyalgo:~# conda list
# packages in environment at /root/miniconda3:
#
# Name                    Version                   Build  Channel
_libgcc_mutex             0.1                        main
backcall                  0.2.0                      py_0
blas                      1.0                         mkl
blosc                     1.20.0               hd408876_0
...
zlib                      1.2.11               h7b6447c_3
zstd                      1.4.5                h9ceee32_0
(base) root@pyalgo:~#

In case a package is not needed anymore, it is efficiently removed with conda remove:

(base) root@pyalgo:~# conda remove matplotlib
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3

  removed specs:
    - matplotlib

The following packages will be REMOVED:

The following packages will be REMOVED:

  cycler-0.10.0-py38_0
  ...
  tornado-6.0.4-py38h7b6447c_1

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) root@pyalgo:~#

conda as a package manager is already quite useful. However, its full power only
becomes evident when adding virtual environment management to the mix.
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conda as a package manager makes installing, updating, and
removing Python packages a pleasant experience. There is no need
to take care of building and compiling packages on your own,
which can be tricky sometimes given the list of dependencies a
package specifies and given the specifics to be considered on differ‐
ent operating systems.

Conda as a Virtual Environment Manager
Having installed Miniconda with conda included provides a default Python installa‐
tion depending on what version of Miniconda has been chosen. The virtual environ‐
ment management capabilities of conda allow one, for example, to add to a Python
3.8 default installation a completely separated installation of Python 2.7.x. To this
end, conda offers the following functionality:

Creating a virtual environment
conda create --name $ENVIRONMENT_NAME

Activating an environment
conda activate $ENVIRONMENT_NAME

Deactivating an environment
conda deactivate $ENVIRONMENT_NAME

Removing an environment
conda env remove --name $ENVIRONMENT_NAME

Exporting to an environment file
conda env export > $FILE_NAME

Creating an environment from a file
conda env create -f $FILE_NAME

Listing all environments
conda info --envs

As a simple illustration, the example code that follows creates an environment called
py27, installs IPython, and executes a line of Python 2.7.x code. Although the support
for Python 2.7 has ended, the example illustrates how legacy Python 2.7 code can
easily be executed and tested:

(base) root@pyalgo:~# conda create --name py27 python=2.7
Collecting package metadata (current_repodata.json): done
Solving environment: failed with repodata from current_repodata.json,
will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done
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## Package Plan ##

  environment location: /root/miniconda3/envs/py27

  added / updated specs:
    - python=2.7

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    certifi-2019.11.28         |           py27_0         153 KB
    pip-19.3.1                 |           py27_0         1.7 MB
    python-2.7.18              |       h15b4118_1         9.9 MB
    setuptools-44.0.0          |           py27_0         512 KB
    wheel-0.33.6               |           py27_0          42 KB
    ------------------------------------------------------------
                                           Total:        12.2 MB

The following NEW packages will be INSTALLED:

  _libgcc_mutex      pkgs/main/linux-64::_libgcc_mutex-0.1-main
  ca-certificates    pkgs/main/linux-64::ca-certificates-2020.6.24-0
  ...
  zlib               pkgs/main/linux-64::zlib-1.2.11-h7b6447c_3

Proceed ([y]/n)? y

Downloading and Extracting Packages
certifi-2019.11.28   | 153 KB    | ############################### | 100%
python-2.7.18        | 9.9 MB    | ############################### | 100%
pip-19.3.1           | 1.7 MB    | ############################### | 100%
setuptools-44.0.0    | 512 KB    | ############################### | 100%
wheel-0.33.6         | 42 KB     | ############################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate py27
#
# To deactivate an active environment, use
#
#     $ conda deactivate

(base) root@pyalgo:~#
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Notice how the prompt changes to include (py27) after the environment is activated:

(base) root@pyalgo:~# conda activate py27
(py27) root@pyalgo:~# pip install ipython
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020.
...
Executing transaction: done
(py27) root@pyalgo:~#

Finally, this allows one to use IPython with Python 2.7 syntax:

(py27) root@pyalgo:~# ipython
Python 2.7.18 |Anaconda, Inc.| (default, Apr 23 2020, 22:42:48)
Type "copyright", "credits" or "license" for more information.

IPython 5.10.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: print "Hello Python for Algorithmic Trading World."
Hello Python for Algorithmic Trading World.

In [2]: exit
(py27) root@pyalgo:~#

As this example demonstrates, conda as a virtual environment manager allows one to
install different Python versions alongside each other. It also allows one to install dif‐
ferent versions of certain packages. The default Python installation is not influenced
by such a procedure, nor are other environments that might exist on the same
machine. All available environments can be shown via conda info --envs:

(py27) root@pyalgo:~# conda env list
# conda environments:
#
base                     /root/miniconda3
py27                  *  /root/miniconda3/envs/py27

(py27) root@pyalgo:~#

Sometimes it is necessary to share environment information with others or to use
environment information on multiple machines, for instance. To this end, one can
export the installed packages list to a file with conda env export. However, this only
works properly by default for the same operating system since the build versions are
specified in the resulting yaml file. However, they can be deleted to only specify the
package version via the --no-builds flag:

(py27) root@pyalgo:~# conda deactivate
(base) root@pyalgo:~# conda env export --no-builds > base.yml
(base) root@pyalgo:~# cat base.yml
name: base
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4 In the official documentation, you will find the following explanation: “Python Virtual Environments allow
Python packages to be installed in an isolated location for a particular application, rather than being installed
globally.” See the Creating Virtual Environments page.

channels:
  - defaults
dependencies:
  - _libgcc_mutex=0.1
  - backcall=0.2.0
  - blas=1.0
  - blosc=1.20.0
  ...
  - zlib=1.2.11
  - zstd=1.4.5
prefix: /root/miniconda3
(base) root@pyalgo:~#

Often, virtual environments, which are technically not that much more than a certain
(sub-)folder structure, are created to do some quick tests.4 In such a case, an environ‐
ment is easily removed (after deactivation) via conda env remove:

(base) root@pyalgo:~# conda env remove -n py27

Remove all packages in environment /root/miniconda3/envs/py27:

(base) root@pyalgo:~#

This concludes the overview of conda as a virtual environment manager.

conda not only helps with managing packages, but it is also a vir‐
tual environment manager for Python. It simplifies the creation of
different Python environments, allowing one to have multiple ver‐
sions of Python and optional packages available on the same
machine without them influencing each other in any way. conda
also allows one to export environment information to easily repli‐
cate it on multiple machines or to share it with others.

Using Docker Containers
Docker containers have taken the IT world by storm (see Docker). Although the
technology is still relatively young, it has established itself as one of the benchmarks
for the efficient development and deployment of almost any kind of software applica‐
tion.

For our purposes, it suffices to think of a Docker container as a separated (“contain‐
erized”) file system that includes an operating system (for example, Ubuntu 20.04 LTS
for server), a (Python) runtime, additional system and development tools, and
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5 See Matthias and Kane (2018) for a comprehensive introduction to the Docker technology.

further (Python) libraries and packages as needed. Such a Docker container might
run on a local machine with Windows 10 Professional 64 Bit or on a cloud instance
with a Linux operating system, for instance.

This section goes into the exciting details of Docker containers. It is a concise illustra‐
tion of what the Docker technology can do in the context of Python deployment.5

Docker Images and Containers
Before moving on to the illustration, two fundamental terms need to be distinguished
when talking about Docker. The first is a Docker image, which can be compared to a
Python class. The second is a Docker container, which can be compared to an instance
of the respective Python class.

On a more technical level, you will find the following definition for a Docker image in
the Docker glossary:

Docker images are the basis of containers. An image is an ordered collection of root
filesystem changes and the corresponding execution parameters for use within a con‐
tainer runtime. An image typically contains a union of layered filesystems stacked on
top of each other. An image does not have state and it never changes.

Similarly, you will find the following definition for a Docker container in the Docker
glossary, which makes the analogy to Python classes and instances of such classes
transparent:

A container is a runtime instance of a Docker image.
A Docker container consists of

• A Docker image

• An execution environment

• A standard set of instructions

The concept is borrowed from Shipping Containers, which define a standard to ship
goods globally. Docker defines a standard to ship software.

Depending on the operating system, the installation of Docker is somewhat different.
That is why this section does not go into the respective details. More information and
further links are found on the Get Docker page.

Building a Ubuntu and Python Docker Image
This sub-section illustrates the building of a Docker image based on the latest version
of Ubuntu that includes Miniconda, as well as a few important Python packages. In
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6 Consult the book by Robbins (2016) for a concise introduction to and a quick overview of Bash scripting.
Also see see GNU Bash.

addition, it does some Linux housekeeping by updating the Linux packages index,
upgrading packages if required and installing certain additional system tools. To this
end, two scripts are needed. One is a Bash script doing all the work on the Linux
level.6 The other is a so-called Dockerfile, which controls the building procedure for
the image itself.

The Bash script in Example 2-1, which does the installing, consists of three major
parts. The first part handles the Linux housekeeping. The second part installs Mini‐
conda, while the third part installs optional Python packages. There are also more
detailed comments inline:

Example 2-1. Script installing Python and optional packages

#!/bin/bash
#
# Script to Install
# Linux System Tools and
# Basic Python Components
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
# GENERAL LINUX
apt-get update  # updates the package index cache
apt-get upgrade -y  # updates packages
# installs system tools
apt-get install -y bzip2 gcc git  # system tools
apt-get install -y htop screen vim wget  # system tools
apt-get upgrade -y bash  # upgrades bash if necessary
apt-get clean  # cleans up the package index cache

# INSTALL MINICONDA
# downloads Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O \
  Miniconda.sh
bash Miniconda.sh -b  # installs it
rm -rf Miniconda.sh  # removes the installer
export PATH="/root/miniconda3/bin:$PATH"  # prepends the new path

# INSTALL PYTHON LIBRARIES
conda install -y pandas  # installs pandas
conda install -y ipython  # installs IPython shell

# CUSTOMIZATION
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cd /root/
wget http://hilpisch.com/.vimrc  # Vim configuration

The Dockerfile in Example 2-2 uses the Bash script in Example 2-1 to build a new
Docker image. It also has its major parts commented inline:

Example 2-2. Dockerfile to build the image

#
# Building a Docker Image with
# the Latest Ubuntu Version and
# Basic Python Install
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#

# latest Ubuntu version
FROM ubuntu:latest

# information about maintainer
MAINTAINER yves

# add the bash script
ADD install.sh /
# change rights for the script
RUN chmod u+x /install.sh
# run the bash script
RUN /install.sh
# prepend the new path
ENV PATH /root/miniconda3/bin:$PATH

# execute IPython when container is run
CMD ["ipython"]

If these two files are in a single folder and Docker is installed, then the building of the
new Docker image is straightforward. Here, the tag pyalgo:basic is used for the
image. This tag is needed to reference the image, for example, when running a
container based on it:

(base) pro:Docker yves$ docker build -t pyalgo:basic .
Sending build context to Docker daemon  4.096kB
Step 1/7 : FROM ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/7 : MAINTAINER yves
 ---> Running in 859db5550d82
Removing intermediate container 859db5550d82
 ---> 40adf11b689f
Step 3/7 : ADD install.sh /
 ---> 34cd9dc267e0
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Step 4/7 : RUN chmod u+x /install.sh
 ---> Running in 08ce2f46541b
Removing intermediate container 08ce2f46541b
 ---> 88c0adc82cb0
Step 5/7 : RUN /install.sh
 ---> Running in 112e70510c5b
...
Removing intermediate container 112e70510c5b
 ---> 314dc8ec5b48
Step 6/7 : ENV PATH /root/miniconda3/bin:$PATH
 ---> Running in 82497aea20bd
Removing intermediate container 82497aea20bd
 ---> 5364f494f4b4
Step 7/7 : CMD ["ipython"]
 ---> Running in ff434d5a3c1b
Removing intermediate container ff434d5a3c1b
 ---> a0bb86daf9ad
Successfully built a0bb86daf9ad
Successfully tagged pyalgo:basic
(base) pro:Docker yves$

Existing Docker images can be listed via docker images. The new image should be
on top of the list:

(base) pro:Docker yves$ docker images
REPOSITORY         TAG              IMAGE ID          CREATED             SIZE
pyalgo             basic            a0bb86daf9ad      2 minutes ago       1.79GB
ubuntu             latest           4e2eef94cd6b      5 days ago          73.9MB
(base) pro:Docker yves$

Having built the pyalgo:basic image successfully allows one to run a respective
Docker container with docker run. The parameter combination -ti is needed for
interactive processes running within a Docker container, like a shell process of
IPython (see the Docker Run Reference page):

(base) pro:Docker yves$ docker run -ti pyalgo:basic
Python 3.8.3 (default, May 19 2020, 18:47:26)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.16.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: np.random.seed(100)

In [3]: a = np.random.standard_normal((5, 3))

In [4]: import pandas as pd

In [5]: df = pd.DataFrame(a, columns=['a', 'b', 'c'])

In [6]: df
Out[6]:
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          a         b         c
0 -1.749765  0.342680  1.153036
1 -0.252436  0.981321  0.514219
2  0.221180 -1.070043 -0.189496
3  0.255001 -0.458027  0.435163
4 -0.583595  0.816847  0.672721

Exiting IPython will exit the container as well, since it is the only application running
within the container. However, you can detach from a container via the following:

Ctrl+p --> Ctrl+q

After having detached from the container, the docker ps command shows the run‐
ning container (and maybe other currently running containers):

(base) pro:Docker yves$ docker ps
CONTAINER ID  IMAGE         COMMAND     CREATED       ...    NAMES
e93c4cbd8ea8  pyalgo:basic  "ipython"   About a minute ago   jolly_rubin
(base) pro:Docker yves$

Attaching to the Docker container is accomplished by docker attach $CON

TAINER_ID. Notice that a few letters of the CONTAINER ID are enough:

(base) pro:Docker yves$ docker attach e93c
In [7]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   a       5 non-null      float64
 1   b       5 non-null      float64
 2   c       5 non-null      float64
dtypes: float64(3)
memory usage: 248.0 bytes

The exit command terminates IPython and therewith stops the Docker container, as
well. It can be removed by docker rm:

In [8]: exit
(base) pro:Docker yves$ docker rm e93c
e93c
(base) pro:Docker yves$

Similarly, the Docker image pyalgo:basic can be removed via docker rmi if not
needed any longer. While containers are relatively lightweight, single images might
consume quite a bit of storage. In the case of the pyalgo:basic image, the size is
close to 2 GB. That is why you might want to regularly clean up the list of Docker
images:

(base) pro:Docker yves$ docker rmi a0bb86
Untagged: pyalgo:basic
Deleted: sha256:a0bb86daf9adfd0ddf65312ce6c1b068100448152f2ced5d0b9b5adef5788d88
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7 For those who do not have an account with a cloud provider yet, on http://bit.ly/do_sign_up, new users get a
starting credit of 10 USD for DigitalOcean.

8 Technically, Jupyter Lab is an extension of Jupyter Notebook. Both expressions are, however, sometimes
used interchangeably.

...
Deleted: sha256:40adf11b689fc778297c36d4b232c59fedda8c631b4271672cc86f505710502d
(base) pro:Docker yves$

Of course, there is much more to say about Docker containers and their benefits in
certain application scenarios. For the purposes of this book, they provide a modern
approach to deploying Python, to doing Python development in a completely separa‐
ted (containerized) environment, and to shipping codes for algorithmic trading.

If you are not yet using Docker containers, you should consider
starting to use them. They provide a number of benefits when it
comes to Python deployment and development efforts, not only
when working locally but also in particular when working with
remote cloud instances and servers deploying code for algorithmic
trading.

Using Cloud Instances
This section shows how to set up a full-fledged Python infrastructure on a
DigitalOcean cloud instance. There are many other cloud providers out there, among
them Amazon Web Services (AWS) as the leading provider. However, DigitalOcean is
well known for its simplicity and relatively low rates for smaller cloud instances,
which it calls Droplet. The smallest Droplet, which is generally sufficient for explora‐
tion and development purposes, only costs 5 USD per month or 0.007 USD per hour.
Usage is charged by the hour so that one can (for example) easily spin up a Droplet
for two hours, destroy it, and get charged just 0.014 USD.7

The goal of this section is to set up a Droplet on DigitalOcean that has a Python 3.8
installation plus typically needed packages (such as NumPy and pandas) in combina‐
tion with a password-protected and Secure Sockets Layer (SSL)-encrypted Jupyter
Lab server installation.8 As a web-based tool suite, Jupyter Lab provides several tools
that can be used via a regular browser:

Jupyter Notebook
This is one of the most popular (if not the most popular) browser-based, interac‐
tive development environment that features a selection of different language ker‐
nels like Python, R, and Julia.
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Python console
This is an IPython-based console that has a graphical user interface different
from the look and feel of the standard, terminal-based implementation.

Terminal
This is a system shell implementation accessible via the browser that allows not
only for all typical system administration tasks, but also for usage of helpful tools
such as Vim for code editing or git for version control.

Editor
Another major tool is a browser-based text file editor with syntax highlighting for
many different programming languages and file types, as well as typical text/code
editing capabilities.

File manager
Jupyter Lab also provides a full-fledged file manager that allows for typical file
operations, such as uploading, downloading, and renaming.

Having Jupyter Lab installed on a Droplet allows one to do Python development
and deployment via the browser, circumventing the need to log in to the cloud
instance via Secure Shell (SSH) access.

To accomplish the goal of this section, several scripts are needed:

Server setup script
This script orchestrates all steps necessary, such as copying other files to the
Droplet and running them on the Droplet.

Python and Jupyter installation script
This script installs Python, additional packages, Jupyter Lab, and starts the
Jupyter Lab server.

Jupyter Notebook configuration file
This file is for the configuration of the Jupyter Lab server, for example, with
regard to password protection.

RSA public and private key files
These two files are needed for the SSL encryption of the communication with the
Jupyter Lab server.

The following section works backwards through this list of files since although the
setup script is executed first, the other files need to have been created beforehand.

Using Cloud Instances | 37

http://vim.org/download
https://git-scm.com/


9 With such a self-generated certificate, you might need to add a security exception when prompted by the
browser. On Mac OS you might even explicitely register the certificate as trustworthy.

RSA Public and Private Keys
In order to accomplish a secure connection to the Jupyter Lab server via an arbi‐
trary browser, an SSL certificate consisting of RSA public and private keys (see RSA
Wikipedia page) is needed. In general, one would expect that such a certificate comes
from a so-called Certificate Authority (CA). For the purposes of this book, however, a
self-generated certificate is “good enough.”9 A popular tool to generate RSA key pairs
is OpenSSL. The brief interactive session to follow generates a certificate appropriate
for use with a Jupyter Lab server (see the Jupyter Notebook docs):

(base) pro:cloud yves$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
> -keyout mykey.key -out mycert.pem
Generating a RSA private key
.......+++++
.....+++++
+++++
writing new private key to 'mykey.key'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:DE
State or Province Name (full name) [Some-State]:Saarland
Locality Name (e.g., city) []:Voelklingen
Organization Name (eg, company) [Internet Widgits Pty Ltd]:TPQ GmbH
Organizational Unit Name (e.g., section) []:Algorithmic Trading
Common Name (e.g., server FQDN or YOUR name) []:Jupyter Lab
Email Address []:pyalgo@tpq.io
(base) pro:cloud yves$

The two files mykey.key and mycert.pem need to be copied to the Droplet and need
to be referenced by the Jupyter Notebook configuration file. This file is presented
next.

Jupyter Notebook Configuration File
A public Jupyter Lab server can be deployed securely, as explained in the Jupyter
Notebook docs. Among others things, Jupyter Lab shall be password protected. To
this end, there is a password hash code-generating function called passwd() available
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in the notebook.auth sub-package. The following code generates a password hash
code with jupyter being the password itself:

In [1]: from notebook.auth import passwd

In [2]: passwd('jupyter')
Out[2]: 'sha1:da3a3dfc0445:052235bb76e56450b38d27e41a85a136c3bf9cd7'

In [3]: exit

This hash code needs to be placed in the Jupyter Notebook configuration file as pre‐
sented in Example 2-3. The configuration file assumes that the RSA key files have
been copied on the Droplet to the /root/.jupyter/ folder.

Example 2-3. Jupyter Notebook configuration file

#
# Jupyter Notebook Configuration File
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
# SSL ENCRYPTION
# replace the following file names (and files used) by your choice/files
c.NotebookApp.certfile = u'/root/.jupyter/mycert.pem'
c.NotebookApp.keyfile = u'/root/.jupyter/mykey.key'

# IP ADDRESS AND PORT
# set ip to '*' to bind on all IP addresses of the cloud instance
c.NotebookApp.ip = '0.0.0.0'
# it is a good idea to set a known, fixed default port for server access
c.NotebookApp.port = 8888

# PASSWORD PROTECTION
# here: 'jupyter' as password
# replace the hash code with the one for your password
c.NotebookApp.password = \
 'sha1:da3a3dfc0445:052235bb76e56450b38d27e41a85a136c3bf9cd7'

# NO BROWSER OPTION
# prevent Jupyter from trying to open a browser
c.NotebookApp.open_browser = False

# ROOT ACCESS
# allow Jupyter to run from root user
c.NotebookApp.allow_root = True

The next step is to make sure that Python and Jupyter Lab get installed on the
Droplet.
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Deploying Jupyter Lab in the cloud leads to a number of security
issues since it is a full-fledged development environment accessible
via a web browser. It is therefore of paramount importance to use
the security measures that a Jupyter Lab server provides by
default, like password protection and SSL encryption. But this is
just the beginning, and further security measures might be advised
depending on what exactly is done on the cloud instance.

Installation Script for Python and Jupyter Lab
The bash script to install Python and Jupyter Lab is similar to the one presented in
section “Using Docker Containers” on page 30 to install Python via Miniconda in a
Docker container. However, the script in Example 2-4 needs to start the Jupyter Lab
server, as well. All major parts and lines of code are commented inline.

Example 2-4. Bash script to install Python and to run the Jupyter Notebook server

#!/bin/bash
#
# Script to Install
# Linux System Tools and Basic Python Components
# as well as to
# Start Jupyter Lab Server
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
# GENERAL LINUX
apt-get update  # updates the package index cache
apt-get upgrade -y  # updates packages
# install system tools
apt-get install -y build-essential git  # system tools
apt-get install -y screen htop vim wget  # system tools
apt-get upgrade -y bash  # upgrades bash if necessary
apt-get clean  # cleans up the package index cache

# INSTALLING MINICONDA
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
  -O Miniconda.sh
bash Miniconda.sh -b  # installs Miniconda
rm -rf Miniconda.sh  # removes the installer
# prepends the new path for current session
export PATH="/root/miniconda3/bin:$PATH"
# prepends the new path in the shell configuration
cat >> ~/.profile <<EOF
export PATH="/root/miniconda3/bin:$PATH"
EOF
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# INSTALLING PYTHON LIBRARIES
conda install -y jupyter  # interactive data analytics in the browser
conda install -y jupyterlab  # Jupyter Lab environment
conda install -y numpy  #  numerical computing package
conda install -y pytables  # wrapper for HDF5 binary storage
conda install -y pandas  #  data analysis package
conda install -y scipy  #  scientific computations package
conda install -y matplotlib  # standard plotting library
conda install -y seaborn  # statistical plotting library
conda install -y quandl  # wrapper for Quandl data API
conda install -y scikit-learn  # machine learning library
conda install -y openpyxl  # package for Excel interaction
conda install -y xlrd xlwt  # packages for Excel interaction
conda install -y pyyaml  # package to manage yaml files

pip install --upgrade pip  # upgrading the package manager
pip install q  # logging and debugging
pip install plotly  # interactive D3.js plots
pip install cufflinks  # combining plotly with pandas
pip install tensorflow  # deep learning library
pip install keras  # deep learning library
pip install eikon  # Python wrapper for the Refinitiv Eikon Data API
# Python wrapper for Oanda API
pip install git+git://github.com/yhilpisch/tpqoa

# COPYING FILES AND CREATING DIRECTORIES
mkdir -p /root/.jupyter/custom
wget http://hilpisch.com/custom.css
mv custom.css /root/.jupyter/custom
mv /root/jupyter_notebook_config.py /root/.jupyter/
mv /root/mycert.pem /root/.jupyter
mv /root/mykey.key /root/.jupyter
mkdir /root/notebook
cd /root/notebook

# STARTING JUPYTER LAB
jupyter lab &

This script needs to be copied to the Droplet and needs to be started by the orchestra‐
tion script, as described in the next sub-section.

Script to Orchestrate the Droplet Set Up
The second bash script, which sets up the Droplet, is the shortest one (see
Example 2-5). It mainly copies all the other files to the Droplet for which the respec‐
tive IP address is expected as a parameter. In the final line, it starts the install.sh
bash script, which in turn does the installation itself and starts the Jupyter Lab
server.
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10 If you need assistance, visit either How To Use SSH Keys with DigitalOcean Droplets or How To Use SSH
Keys with PuTTY on DigitalOcean Droplets (Windows users).

Example 2-5. Bash script to set up the Droplet

#!/bin/bash
#
# Setting up a DigitalOcean Droplet
# with Basic Python Stack
# and Jupyter Notebook
#
# Python for Algorithmic Trading
# (c) Dr Yves J Hilpisch
# The Python Quants GmbH
#

# IP ADDRESS FROM PARAMETER
MASTER_IP=$1

# COPYING THE FILES
scp install.sh root@${MASTER_IP}:
scp mycert.pem mykey.key jupyter_notebook_config.py root@${MASTER_IP}:

# EXECUTING THE INSTALLATION SCRIPT
ssh root@${MASTER_IP} bash /root/install.sh

Everything now is together to give the set up code a try. On DigitalOcean, create a
new Droplet with options similar to these:

Operating system
Ubuntu 20.04 LTS x64 (the newest version available at the time of this writing)

Size
Two core, 2GB, 60GB SSD (standard Droplet)

Data center region
Frankfurt (since your author lives in Germany)

SSH key
Add a (new) SSH key for password-less login10

Droplet name
Prespecified name or something like pyalgo

Finally, clicking on the Create button initiates the Droplet creation process, which
generally takes about one minute. The major outcome for proceeding with the set-up
procedure is the IP address, which might be, for instance, 134.122.74.144 when you
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have chosen Frankfurt as your data center location. Setting up the Droplet now is as
easy as what follows:

(base) pro:cloud yves$ bash setup.sh 134.122.74.144

The resulting process, however, might take a couple of minutes. It is finished when
there is a message from the Jupyter Lab server saying something like the following:

[I 12:02:50.190 LabApp] Serving notebooks from local directory: /root/notebook
[I 12:02:50.190 LabApp] Jupyter Notebook 6.1.1 is running at:
[I 12:02:50.190 LabApp] https://pyalgo:8888/

In any current browser, visiting the following address accesses the running Jupyter
Notebook server (note the https protocol):

https://134.122.74.144:8888

After maybe adding a security exception, the Jupyter Notebook login screen
prompting for a password (in our case jupyter) should appear. Everything is now
ready to start Python development in the browser via Jupyter Lab, via the IPython-
based console, and via a terminal window or the text file editor. Other file manage‐
ment capabilities like file upload, deletion of files, or creation of folders are also
available.

Cloud instances, like those from DigitalOcean, and Jupyter Lab
(powered by the Jupyter Notebook server) are a powerful combi‐
nation for the Python developer and algorithmic trading practi‐
tioner to work on and to make use of professional compute and
storage infrastructure. Professional cloud and data center providers
make sure that your (virtual) machines are physically secure and
highly available. Using cloud instances also keeps the exploration
and development phase at rather low costs since usage is generally
charged by the hour without the need to enter long term
agreements.

Conclusions
Python is the programming language and technology platform of choice not only for
this book but also for almost every leading financial institution. However, Python
deployment can be tricky at best and sometimes even tedious and nerve-wracking.
Fortunately, technologies are available today—almost all of which are younger than
ten years—that help with the deployment issue. The open source software conda
helps with both Python package and virtual environment management. Docker con‐
tainers go even further in that complete file systems and runtime environments can
be easily created in a technically shielded “sandbox,” or the container. Going even one
step further, cloud providers like DigitalOcean offer compute and storage capacity in
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professionally managed and secured data centers within minutes and billed by the
hour. This in combination with a Python 3.8 installation and a secure Jupyter Note
book/Lab server installation provides a professional environment for Python devel‐
opment and deployment in the context of Python for algorithmic trading projects.

References and Further Resources
For Python package management, consult the following resources:

• pip package manager page
• conda package manager page
• official Installing Packages page

For virtual environment management, consult these resources:

• virtualenv environment manager page
• conda Managing Environments page
• pipenv package and environment manager

Information about Docker containers can found, among other places, at the Docker
home page, as well as in the following:

• Matthias, Karl, and Sean Kane. 2018. Docker: Up and Running. 2nd ed. Sebasto‐
pol: O’Reilly.

Robbins (2016) provides a concise introduction to and overview of the Bash scripting
language:

• Robbins, Arnold. 2016. Bash Pocket Reference. 2nd ed. Sebastopol: O’Reilly.

How to run a public Jupyter Notebook/Lab server securely is explained in The Jupyter
Notebook Docs. There is also JupyterHub available, which allows the management of
multiple users for a Jupyter Notebook server (see JupyterHub).

To sign up on DigitalOcean with a 10 USD starting balance in your new account, visit
http://bit.ly/do_sign_up. This pays for two months of usage for the smallest Droplet.
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CHAPTER 3

Working with Financial Data

Clearly, data beats algorithms. Without comprehensive data, you tend to get non-
comprehensive predictions.

—Rob Thomas (2016)

In algorithmic trading, one generally has to deal with four types of data, as illustrated
in Table 3-1. Although it simplifies the financial data world, distinguishing data along
the pairs historical versus real-time and structured versus unstructured often proves
useful in technical settings.

Table 3-1. Types of financial data (examples)

 Structured Unstructured

Historical End-of-day closing prices Financial news articles

Real-time Bid/ask prices for FX Posts on Twitter

This book is mainly concerned with structured data (numerical, tabular data) of both
historical and real-time types. This chapter in particular focuses on historical, struc‐
tured data, like end-of-day closing values for the SAP SE stock traded at the Frankfurt
Stock Exchange. However, this category also subsumes intraday data, such as 1-
minute-bar data for the Apple, Inc. stock traded at the NASDAQ stock exchange. The
processing of real-time, structured data is covered in Chapter 7.

An algorithmic trading project typically starts with a trading idea or hypothesis that
needs to be (back)tested based on historical financial data. This is the context for this
chapter, the plan for which is as follows. “Reading Financial Data From Different
Sources” on page 46 uses pandas to read data from different file- and web-based sour‐
ces. “Working with Open Data Sources” on page 52 introduces Quandl as a popular
open data source platform. “Eikon Data API” on page 55 introduces the Python
wrapper for the Refinitiv Eikon Data API. Finally, “Storing Financial Data Efficiently”
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on page 65 briefly shows how to store historical, structured data efficiently with pan
das based on the HDF5 binary storage format.

The goal for this chapter is to have available financial data in a format with which the
backtesting of trading ideas and hypotheses can be implemented effectively. The three
major themes are the importing of data, the handling of the data, and the storage of it.
This and subsequent chapters assume a Python 3.8 installation with Python packages
installed as explained in detail in Chapter 2. For the time being, it is not yet relevant
on which infrastructure exactly this Python environment is provided. For more
details on efficient input-output operations with Python, see Hilpisch (2018, ch. 9).

Reading Financial Data From Different Sources
This section makes heavy use of the capabilities of pandas, the popular data analysis
package for Python (see pandas home page). pandas comprehensively supports the
three main tasks this chapter is concerned with: reading data, handling data, and stor‐
ing data. One of its strengths is the reading of data from different types of sources, as
the remainder of this section illustrates.

The Data Set
In this section, we work with a fairly small data set for the Apple Inc. stock price
(with symbol AAPL and Reuters Instrument Code or RIC AAPL.O) as retrieved from
the Eikon Data API for April 2020.

Since such historical financial data has been stored in a CSV file on disk, pure Python
can be used to read and print its content:

In [1]: fn = '../data/AAPL.csv'  

In [2]: with open(fn, 'r') as f:  
            for _ in range(5):  
                print(f.readline(), end='')  
        Date,HIGH,CLOSE,LOW,OPEN,COUNT,VOLUME
        2020-04-01,248.72,240.91,239.13,246.5,460606.0,44054638.0
        2020-04-02,245.15,244.93,236.9,240.34,380294.0,41483493.0
        2020-04-03,245.7,241.41,238.9741,242.8,293699.0,32470017.0
        2020-04-06,263.11,262.47,249.38,250.9,486681.0,50455071.0

Opens the file on disk (adjust path and filename if necessary).

Sets up a for loop with five iterations.

Prints the first five lines in the opened CSV file.

This approach allows for simple inspection of the data. One learns that there is a
header line and that the single data points per row represent Date, OPEN, HIGH,
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LOW, CLOSE, COUNT, and VOLUME, respectively. However, the data is not yet available
in memory for further usage with Python.

Reading from a CSV File with Python
To work with data stored as a CSV file, the file needs to be parsed and the data needs
to be stored in a Python data structure. Python has a built-in module called csv that
supports the reading of data from a CSV file. The first approach yields a list object
containing other list objects with the data from the file:

In [3]: import csv  

In [4]: csv_reader = csv.reader(open(fn, 'r'))  

In [5]: data = list(csv_reader)  

In [6]: data[:5]  
Out[6]: [['Date', 'HIGH', 'CLOSE', 'LOW', 'OPEN', 'COUNT', 'VOLUME'],
         ['2020-04-01',
          '248.72',
          '240.91',
          '239.13',
          '246.5',
          '460606.0',
          '44054638.0'],
         ['2020-04-02',
          '245.15',
          '244.93',
          '236.9',
          '240.34',
          '380294.0',
          '41483493.0'],
         ['2020-04-03',
          '245.7',
          '241.41',
          '238.9741',
          '242.8',
          '293699.0',
          '32470017.0'],
         ['2020-04-06',
          '263.11',
          '262.47',
          '249.38',
          '250.9',
          '486681.0',
          '50455071.0']]
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Imports the csv module.

Instantiates a csv.reader iterator object.

A list comprehension adding every single line from the CSV file as a list
object to the resulting list object.

Prints out the first five elements of the list object.

Working with such a nested list object—for the calculation of the average closing
price, for exammple—is possible in principle but not really efficient or intuitive.
Using a csv.DictReader iterator object instead of the standard csv.reader object
makes such tasks a bit more manageable. Every row of data in the CSV file (apart
from the header row) is then imported as a dict object so that single values can be
accessed via the respective key:

In [7]: csv_reader = csv.DictReader(open(fn, 'r'))  

In [8]: data = list(csv_reader)

In [9]: data[:3]
Out[9]: [{'Date': '2020-04-01',
          'HIGH': '248.72',
          'CLOSE': '240.91',
          'LOW': '239.13',
          'OPEN': '246.5',
          'COUNT': '460606.0',
          'VOLUME': '44054638.0'},
         {'Date': '2020-04-02',
          'HIGH': '245.15',
          'CLOSE': '244.93',
          'LOW': '236.9',
          'OPEN': '240.34',
          'COUNT': '380294.0',
          'VOLUME': '41483493.0'},
         {'Date': '2020-04-03',
          'HIGH': '245.7',
          'CLOSE': '241.41',
          'LOW': '238.9741',
          'OPEN': '242.8',
          'COUNT': '293699.0',
          'VOLUME': '32470017.0'}]

Here, the csv.DictReader iterator object is instantiated, which reads every data
row into a dict object, given the information in the header row.
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Based on the single dict objects, aggregations are now somewhat easier to accom‐
plish. However, one still cannot speak of a convenient way of calculating the mean of
the Apple closing stock price when inspecting the respective Python code:

In [10]: sum([float(l['CLOSE']) for l in data]) / len(data)  
Out[10]: 272.38619047619045

First, a list object is generated via a list comprehension with all closing values;
second, the sum is taken over all these values; third, the resulting sum is divided
by the number of closing values.

This is one of the major reasons why pandas has gained such popularity in the
Python community. It makes the importing of data and the handling of, for example,
financial time series data sets more convenient (and also often considerably faster)
than pure Python.

Reading from a CSV File with pandas
From this point on, this section uses pandas to work with the Apple stock price data
set. The major function used is read_csv(), which allows for a number of customiza‐
tions via different parameters (see the read_csv() API reference). read_csv() yields
as a result of the data reading procedure a DataFrame object, which is the central
means of storing (tabular) data with pandas. The DataFrame class has many powerful
methods that are particularly helpful in financial applications (refer to the DataFrame
API reference):

In [11]: import pandas as pd  

In [12]: data = pd.read_csv(fn, index_col=0,
                            parse_dates=True)  

In [13]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 21 entries, 2020-04-01 to 2020-04-30
         Data columns (total 6 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   HIGH    21 non-null     float64
          1   CLOSE   21 non-null     float64
          2   LOW     21 non-null     float64
          3   OPEN    21 non-null     float64
          4   COUNT   21 non-null     float64
          5   VOLUME  21 non-null     float64
         dtypes: float64(6)
         memory usage: 1.1 KB

In [14]: data.tail()  
Out[14]:               HIGH   CLOSE     LOW    OPEN     COUNT      VOLUME
         Date
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         2020-04-24  283.01  282.97  277.00  277.20  306176.0  31627183.0
         2020-04-27  284.54  283.17  279.95  281.80  300771.0  29271893.0
         2020-04-28  285.83  278.58  278.20  285.08  285384.0  28001187.0
         2020-04-29  289.67  287.73  283.89  284.73  324890.0  34320204.0
         2020-04-30  294.53  293.80  288.35  289.96  471129.0  45765968.0

The pandas package is imported.

This imports the data from the CSV file, indicating that the first column shall be
treated as the index column and letting the entries in that column be interpreted
as date-time information.

This method call prints out meta information regarding the resulting DataFrame
object.

The data.tail() method prints out by default the five most recent data rows.

Calculating the mean of the Apple stock closing values now is only a single method
call:

In [15]: data['CLOSE'].mean()
Out[15]: 272.38619047619056

Chapter 4 introduces more functionality of pandas for the handling of financial data.
For details on working with pandas and the powerful DataFrame class, also refer to
the official pandas Documentation page and to McKinney (2017).

Although the Python standard library provides capabilities to read
data from CSV files, pandas in general significantly simplifies and
speeds up such operations. An additional benefit is that the data
analysis capabilities of pandas are immediately available since
read_csv() returns a DataFrame object.

Exporting to Excel and JSON
pandas also excels at exporting data stored in DataFrame objects when this data needs
to be shared in a non-Python specific format. Apart from being able to export to CSV
files, pandas also allows one to do the export in the form of Excel spreadsheet files as
well as JSON files, both of which are popular data exchange formats in the financial
industry. Such an exporting procedure typically needs a single method call only:

In [16]: data.to_excel('data/aapl.xls', 'AAPL')  

In [17]: data.to_json('data/aapl.json')  

In [18]: ls -n data/
         total 24
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         -rw-r--r--  1 501  20  3067 Aug 25 11:47 aapl.json
         -rw-r--r--  1 501  20  5632 Aug 25 11:47 aapl.xls

Exports the data to an Excel spreadsheet file on disk.

Exports the data to a JSON file on disk.

In particular when it comes to the interaction with Excel spreadsheet files, there are
more elegant ways than just doing a data dump to a new file. xlwings, for example, is
a powerful Python package that allows for an efficient and intelligent interaction
between Python and Excel (visit the xlwings home page).

Reading from Excel and JSON
Now that the data is also available in the form of an Excel spreadsheet file and a JSON
data file, pandas can read data from these sources, as well. The approach is as
straightforward as with CSV files:

In [19]: data_copy_1 = pd.read_excel('data/aapl.xls', 'AAPL',
                                     index_col=0)  

In [20]: data_copy_1.head()  
Out[20]:               HIGH   CLOSE       LOW    OPEN   COUNT    VOLUME
         Date
         2020-04-01  248.72  240.91  239.1300  246.50  460606  44054638
         2020-04-02  245.15  244.93  236.9000  240.34  380294  41483493
         2020-04-03  245.70  241.41  238.9741  242.80  293699  32470017
         2020-04-06  263.11  262.47  249.3800  250.90  486681  50455071
         2020-04-07  271.70  259.43  259.0000  270.80  467375  50721831

In [21]: data_copy_2 = pd.read_json('data/aapl.json')  

In [22]: data_copy_2.head()  
Out[22]:               HIGH   CLOSE       LOW    OPEN   COUNT    VOLUME
         2020-04-01  248.72  240.91  239.1300  246.50  460606  44054638
         2020-04-02  245.15  244.93  236.9000  240.34  380294  41483493
         2020-04-03  245.70  241.41  238.9741  242.80  293699  32470017
         2020-04-06  263.11  262.47  249.3800  250.90  486681  50455071
         2020-04-07  271.70  259.43  259.0000  270.80  467375  50721831

In [23]: !rm data/*

This reads the data from the Excel spreadsheet file to a new DataFrame object.

The first five rows of the first in-memory copy of the data are printed.

This reads the data from the JSON file to yet another DataFrame object.
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This then prints the first five rows of the second in-memory copy of the data.

pandas proves useful for reading and writing financial data from and to different
types of data files. Often the reading might be tricky due to nonstandard storage
formats (like a “;” instead of a “,” as separator), but pandas generally provides the right
set of parameter combinations to cope with such cases. Although all examples in this
section use a small data set only, one can expect high performance input-output oper‐
ations from pandas in the most important scenarios when the data sets are much
larger.

Working with Open Data Sources
To a great extent, the attractiveness of the Python ecosystem stems from the fact that
almost all packages available are open source and can be used for free. Financial ana‐
lytics in general and algorithmic trading in particular, however, cannot live with open
source software and algorithms alone; data also plays a vital role, as the quotation at
the beginning of the chapter emphasizes. The previous section uses a small data set
from a commercial data source. While there have been helpful open (financial) data
sources available for some years (such as the ones provided by Yahoo! Finance or
Google Finance), there are not too many left at the time of this writing in 2020. One
of the more obvious reasons for this trend might be the ever-changing terms of data
licensing agreements.

The one notable exception for the purposes of this book is Quandl, a platform that
aggregates a large number of open, as well as premium (i.e., to-be-paid-for) data
sources. The data is provided via a unified API for which a Python wrapper package
is available.

The Python wrapper package for the Quandl data API (see the Python wrapper page
on Quandl and the GitHub page of the package) is installed with conda through
conda install quandl. The first example shows how to retrieve historical average
prices for the BTC/USD exchange rate since the introduction of Bitcoin as a crypto‐
currency. With Quandl, requests always expect a combination of the database and the
specific data set desired. (In the example, BCHAIN and MKPRU.) Such information can
generally be looked up on the Quandl platform. For the example, the relevant page on
Quandl is BCHAIN/MKPRU.

By default, the quandl package returns a pandas DataFrame object. In the example,
the Value column is also presented in annualized fashion (that is, with year end
values). Note that the number shown for 2020 is the last available value in the data set
(from May 2020) and not necessarily the year end value.

While a large part of the data sets on the Quandl platform are free, some of the free
data sets require an API key. Such a key is required after a certain limit of free API
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calls too. Every user obtains such a key by signing up for a free Quandl account on
the Quandl sign up page. Data requests requiring an API key expect the key to be
provided as the parameter api_key. In the example, the API key (which is found on
the account settings page) is stored as a string in the variable quandl_api_key. The
concrete value for the key is read from a configuration file via the configparser
module:

In [24]: import configparser
         config = configparser.ConfigParser()
         config.read('../pyalgo.cfg')
Out[24]: ['../pyalgo.cfg']

In [25]: import quandl as q  

In [26]: data = q.get('BCHAIN/MKPRU', api_key=config['quandl']['api_key'])  

In [27]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 4254 entries, 2009-01-03 to 2020-08-26
         Data columns (total 1 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   Value   4254 non-null   float64
         dtypes: float64(1)
         memory usage: 66.5 KB

In [28]: data['Value'].resample('A').last()  
Out[28]: Date
         2009-12-31        0.000000
         2010-12-31        0.299999
         2011-12-31        4.995000
         2012-12-31       13.590000
         2013-12-31      731.000000
         2014-12-31      317.400000
         2015-12-31      428.000000
         2016-12-31      952.150000
         2017-12-31    13215.574000
         2018-12-31     3832.921667
         2019-12-31     7385.360000
         2020-12-31    11763.930000
         Freq: A-DEC, Name: Value, dtype: float64

Working with Open Data Sources | 53

https://oreil.ly/sbh9j


Imports the Python wrapper package for Quandl.

Reads historical data for the BTC/USD exchange rate.

Selects the Value column, resamples it—from the originally daily values to yearly
values—and defines the last available observation to be the relevant one.

Quandl also provides, for example, diverse data sets for single stocks, like end-of-day
stock prices, stock fundamentals, or data sets related to options traded on a certain
stock:

In [29]: data = q.get('FSE/SAP_X', start_date='2018-1-1',
                      end_date='2020-05-01',
                      api_key=config['quandl']['api_key'])

In [30]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 579 entries, 2018-01-02 to 2020-04-30
         Data columns (total 10 columns):
          #   Column                 Non-Null Count  Dtype
         ---  ------                 --------------  -----
          0   Open                   257 non-null    float64
          1   High                   579 non-null    float64
          2   Low                    579 non-null    float64
          3   Close                  579 non-null    float64
          4   Change                 0 non-null      object
          5   Traded Volume          533 non-null    float64
          6   Turnover               533 non-null    float64
          7   Last Price of the Day  0 non-null      object
          8   Daily Traded Units     0 non-null      object
          9   Daily Turnover         0 non-null      object
         dtypes: float64(6), object(4)
         memory usage: 49.8+ KB

The API key can also be configured permanently with the Python wrapper via the
following:

q.ApiConfig.api_key = 'YOUR_API_KEY'

The Quandl platform also offers premium data sets for which a subscription or fee is
required. Most of these data sets offer free samples. The example retrieves option
implied volatilities for the Microsoft Corp. stock. The free sample data set is quite
large, with more than 4,100 rows and many columns (only a subset is shown). The
last lines of code display the 30, 60, and 90 days implied volatility values for the five
most recent days available:

In [31]: q.ApiConfig.api_key = config['quandl']['api_key']

In [32]: vol = q.get('VOL/MSFT')
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In [33]: vol.iloc[:, :10].info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 1006 entries, 2015-01-02 to 2018-12-31
         Data columns (total 10 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   Hv10    1006 non-null   float64
          1   Hv20    1006 non-null   float64
          2   Hv30    1006 non-null   float64
          3   Hv60    1006 non-null   float64
          4   Hv90    1006 non-null   float64
          5   Hv120   1006 non-null   float64
          6   Hv150   1006 non-null   float64
          7   Hv180   1006 non-null   float64
          8   Phv10   1006 non-null   float64
          9   Phv20   1006 non-null   float64
         dtypes: float64(10)
         memory usage: 86.5 KB

In [34]: vol[['IvMean30', 'IvMean60', 'IvMean90']].tail()
Out[34]:             IvMean30  IvMean60  IvMean90
         Date
         2018-12-24    0.4310    0.4112    0.3829
         2018-12-26    0.4059    0.3844    0.3587
         2018-12-27    0.3918    0.3879    0.3618
         2018-12-28    0.3940    0.3736    0.3482
         2018-12-31    0.3760    0.3519    0.3310

This concludes the overview of the Python wrapper package quandl for the Quandl
data API. The Quandl platform and service is growing rapidly and proves to be a
valuable source for financial data in an algorithmic trading context.

Open source software is a trend that started many years ago. It has
lowered the barriers to entry in many areas and also in algorithmic
trading. A new, reinforcing trend in this regard is open data sour‐
ces. In some cases, such as with Quandl, they even provide high
quality data sets. It cannot be expected that open data will com‐
pletely replace professional data subscriptions any time soon, but
they represent a valuable means to get started with algorithmic
trading in a cost efficient manner.

Eikon Data API
Open data sources are a blessing for algorithmic traders wanting to get started in the
space and wanting to be able to quickly test hypotheses and ideas based on real finan‐
cial data sets. Sooner or later, however, open data sets will not suffice anymore to
satisfy the requirements of more ambitious traders and professionals.
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Refinitiv is one of the biggest financial data and news providers in the world. Its cur‐
rent desktop flagship product is Eikon, which is the equivalent to the Terminal by
Bloomberg, the major competitor in the data services field. Figure 3-1 shows a
screenshot of Eikon in the browser-based version. Eikon provides access to petabytes
of data via a single access point.

Figure 3-1. Browser version of Eikon terminal

Recently, Refinitiv have streamlined their API landscape and have released a Python
wrapper package, called eikon, for the Eikon data API, which is installed via pip
install eikon. If you have a subscription to the Refinitiv Eikon data services, you
can use the Python package to programmatically retrieve historical data, as well as
streaming structured and unstructured data, from the unified API. A technical pre‐
requisite is that a local desktop application is running that provides a desktop API
session. The latest such desktop application at the time of this writing is called Work‐
space (see Figure 3-2).

If you are an Eikon subscriber and have an account for the Developer Community
pages, you will find an overview of the Python Eikon Scripting Library under Quick
Start.
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Figure 3-2. Workspace application with desktop API services

In order to use the Eikon Data API, the Eikon app_key needs to be set. You get it via
the App Key Generator (APPKEY) application in either Eikon or Workspace:

In [35]: import eikon as ek  

In [36]: ek.set_app_key(config['eikon']['app_key'])  

In [37]: help(ek)  
         Help on package eikon:

         NAME
           eikon - # coding: utf-8

         PACKAGE CONTENTS
           Profile
           data_grid
           eikonError
           json_requests
           news_request
           streaming_session (package)
           symbology
           time_series
           tools

         SUBMODULES
           cache
           desktop_session
           istream_callback
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           itemstream
           session
           stream
           stream_connection
           streamingprice
           streamingprice_callback
           streamingprices

         VERSION
           1.1.5

         FILE

            /Users/yves/Python/envs/py38/lib/python3.8/site-packages/eikon/__init__
         .py

Imports the eikon package as ek.

Sets the app_key.

Shows the help text for the main module.

Retrieving Historical Structured Data
The retrieval of historical financial time series data is as straightforward as with the
other wrappers used before:

In [39]: symbols = ['AAPL.O', 'MSFT.O', 'GOOG.O']  

In [40]: data = ek.get_timeseries(symbols,  
                                  start_date='2020-01-01',  
                                  end_date='2020-05-01',  
                                  interval='daily',  
                                  fields=['*'])  

In [41]: data.keys()  
Out[41]: MultiIndex([('AAPL.O',   'HIGH'),
                     ('AAPL.O',  'CLOSE'),
                     ('AAPL.O',    'LOW'),
                     ('AAPL.O',   'OPEN'),
                     ('AAPL.O',  'COUNT'),
                     ('AAPL.O', 'VOLUME'),
                     ('MSFT.O',   'HIGH'),
                     ('MSFT.O',  'CLOSE'),
                     ('MSFT.O',    'LOW'),
                     ('MSFT.O',   'OPEN'),
                     ('MSFT.O',  'COUNT'),
                     ('MSFT.O', 'VOLUME'),
                     ('GOOG.O',   'HIGH'),
                     ('GOOG.O',  'CLOSE'),
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                     ('GOOG.O',    'LOW'),
                     ('GOOG.O',   'OPEN'),
                     ('GOOG.O',  'COUNT'),
                     ('GOOG.O', 'VOLUME')],
                    )

In [42]: type(data['AAPL.O'])  
Out[42]: pandas.core.frame.DataFrame

In [43]: data['AAPL.O'].info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 84 entries, 2020-01-02 to 2020-05-01
         Data columns (total 6 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   HIGH    84 non-null     float64
          1   CLOSE   84 non-null     float64
          2   LOW     84 non-null     float64
          3   OPEN    84 non-null     float64
          4   COUNT   84 non-null     Int64
          5   VOLUME  84 non-null     Int64
         dtypes: Int64(2), float64(4)
         memory usage: 4.8 KB

In [44]: data['AAPL.O'].tail()  
Out[44]:               HIGH   CLOSE     LOW    OPEN   COUNT    VOLUME
         Date
         2020-04-27  284.54  283.17  279.95  281.80  300771  29271893
         2020-04-28  285.83  278.58  278.20  285.08  285384  28001187
         2020-04-29  289.67  287.73  283.89  284.73  324890  34320204
         2020-04-30  294.53  293.80  288.35  289.96  471129  45765968
         2020-05-01  299.00  289.07  285.85  286.25  558319  60154175

Defines a few symbols as a list object.

The central line of code that retrieves data for the first symbol…

…for the given start date and…

…the given end date.

The time interval is here chosen to be daily.

All fields are requested.

The function get_timeseries() returns a multi-index DataFrame object.

The values corresponding to each level are regular DataFrame objects.
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This provides an overview of the data stored in the DataFrame object.

The final five rows of data are shown.

The beauty of working with a professional data service API becomes evident when
one wishes to work with multiple symbols and in particular with a different granular‐
ity of the financial data (that is, other time intervals):

In [45]: %%time
         data = ek.get_timeseries(symbols,  
                                  start_date='2020-08-14',  
                                  end_date='2020-08-15',  
                                  interval='minute',  
                                  fields='*')
         CPU times: user 58.2 ms, sys: 3.16 ms, total: 61.4 ms
         Wall time: 2.02 s

In [46]: print(data['GOOG.O'].loc['2020-08-14 16:00:00':
                                  '2020-08-14 16:04:00'])  

                               HIGH       LOW      OPEN     CLOSE   COUNT VOLUME
     Date

     2020-08-14 16:00:00  1510.7439  1509.220  1509.940  1510.5239     48   1362
     2020-08-14 16:01:00  1511.2900  1509.980  1510.500  1511.2900     52   1002
     2020-08-14 16:02:00  1513.0000  1510.964  1510.964  1512.8600     72   1762
     2020-08-14 16:03:00  1513.6499  1512.160  1512.990  1513.2300    108   4534
     2020-08-14 16:04:00  1513.6500  1511.540  1513.418  1512.7100     40   1364

In [47]: for sym in symbols:
             print('\n' + sym + '\n', data[sym].iloc[-300:-295])  

       AAPL.O
                                HIGH       LOW      OPEN    CLOSE  COUNT  VOLUME
       Date
       2020-08-14 19:01:00  457.1699  456.6300    457.14   456.83   1457  104693
       2020-08-14 19:02:00  456.9399  456.4255    456.81   456.45   1178   79740
       2020-08-14 19:03:00  456.8199  456.4402    456.45   456.67    908   68517
       2020-08-14 19:04:00  456.9800  456.6100    456.67   456.97    665   53649
       2020-08-14 19:05:00  457.1900  456.9300    456.98   457.00    679   49636

       MSFT.O
                                HIGH       LOW      OPEN     CLOSE  COUNT VOLUME
       Date

       2020-08-14 19:01:00  208.6300  208.5083  208.5500  208.5674    333  21368
       2020-08-14 19:02:00  208.5750  208.3550  208.5501  208.3600    513  37270
       2020-08-14 19:03:00  208.4923  208.3000  208.3600  208.4000    303  23903
       2020-08-14 19:04:00  208.4200  208.3301  208.3901  208.4099    222  15861
       2020-08-14 19:05:00  208.4699  208.3600  208.3920  208.4069    235   9569
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       GOOG.O
                                HIGH       LOW       OPEN   CLOSE   COUNT VOLUME
       Date

       2020-08-14 19:01:00  1510.42  1509.3288  1509.5100  1509.8550   47   1577
       2020-08-14 19:02:00  1510.30  1508.8000  1509.7559  1508.8647   71   2950
       2020-08-14 19:03:00  1510.21  1508.7200  1508.7200  1509.8100   33    603
       2020-08-14 19:04:00  1510.21  1508.7200  1509.8800  1509.8299   41    934
       2020-08-14 19:05:00  1510.21  1508.7300  1509.5500  1509.6600   30    445

Data is retrieved for all symbols at once.

The time interval…

…is drastically shortened.

The function call retrieves minute bars for the symbols.

Prints five rows from the Google, LLC, data set.

Prints three data rows from every DataFrame object.

The preceding code illustrates how convenient it is to retrieve historical financial
time series data from the Eikon API with Python. By default, the function get_times
eries() provides the following options for the interval parameter: tick, minute,
hour, daily, weekly, monthly, quarterly, and yearly. This gives all the flexibility
needed in an algorithmic trading context, particularly when combined with the
resampling capabilities of pandas as shown in the following code:

In [48]: %%time
         data = ek.get_timeseries(symbols[0],
                                  start_date='2020-08-14 15:00:00',  
                                  end_date='2020-08-14 15:30:00',  
                                  interval='tick',  
                                  fields=['*'])
         CPU times: user 257 ms, sys: 17.3 ms, total: 274 ms
         Wall time: 2.31 s

In [49]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 47346 entries, 2020-08-14 15:00:00.019000 to 2020-08-14
          15:29:59.987000
         Data columns (total 2 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   VALUE   47311 non-null  float64
          1   VOLUME  47346 non-null  Int64
         dtypes: Int64(1), float64(1)
         memory usage: 1.1 MB
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In [50]: data.head()  
Out[50]:                             VALUE  VOLUME
         Date
         2020-08-14 15:00:00.019  453.2499      60
         2020-08-14 15:00:00.036  453.2294       3
         2020-08-14 15:00:00.146  453.2100       5
         2020-08-14 15:00:00.146  453.2100     100
         2020-08-14 15:00:00.236  453.2100       2

In [51]: resampled = data.resample('30s', label='right').agg(
                     {'VALUE': 'last', 'VOLUME': 'sum'}) 

In [52]: resampled.tail()  
Out[52]:                         VALUE  VOLUME
         Date
         2020-08-14 15:28:00  453.9000   29746
         2020-08-14 15:28:30  454.2869   86441
         2020-08-14 15:29:00  454.3900   49513
         2020-08-14 15:29:30  454.7550   98520
         2020-08-14 15:30:00  454.6200   55592

A time interval of…

…one hour is chosen (due to data retrieval limits).

The interval parameter is set to tick.

Close to 50,000 price ticks are retrieved for the interval.

The time series data set shows highly irregular (heterogeneous) interval lengths
between two ticks.

The tick data is resampled to a 30 second interval length (by taking the last value
and the sum, respectively)…

…which is reflected in the DatetimeIndex of the new DataFrame object.

Retrieving Historical Unstructured Data
A major strength of working with the Eikon API via Python is the easy retrieval of
unstructured data, which can then be parsed and analyzed with Python packages for 
natural language processing (NLP). Such a procedure is as simple and straightfor‐
ward as for financial time series data.
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The code that follows retrieves news headlines for a fixed time interval that includes 
Apple Inc. as a company and “Macbook” as a word. The five most recent hits are dis‐
played as a maximum:

In [53]: headlines = ek.get_news_headlines(query='R:AAPL.O macbook',  
                                           count=5,  
                                           date_from='2020-4-1',  
                                           date_to='2020-5-1')  

In [54]: headlines  
Out[54]:                                           versionCreated  \
         2020-04-20 21:33:37.332 2020-04-20 21:33:37.332000+00:00
         2020-04-20 10:20:23.201 2020-04-20 10:20:23.201000+00:00
         2020-04-20 02:32:27.721 2020-04-20 02:32:27.721000+00:00
         2020-04-15 12:06:58.693 2020-04-15 12:06:58.693000+00:00
         2020-04-09 21:34:08.671 2020-04-09 21:34:08.671000+00:00

                                                                             text  \
         2020-04-20 21:33:37.332  Apple said to launch new AirPods, MacBook Pro ...
         2020-04-20 10:20:23.201  Apple might launch upgraded AirPods, 13-inch M...
         2020-04-20 02:32:27.721  Apple to reportedly launch new AirPods alongsi...
         2020-04-15 12:06:58.693  Apple files a patent for iPhones, MacBook indu...
         2020-04-09 21:34:08.671  Apple rolls out new software update for MacBoo...

                                                                       storyId  \
         2020-04-20 21:33:37.332  urn:newsml:reuters.com:20200420:nNRAble9rq:1
         2020-04-20 10:20:23.201  urn:newsml:reuters.com:20200420:nNRAbl8eob:1
         2020-04-20 02:32:27.721  urn:newsml:reuters.com:20200420:nNRAbl4mfz:1
         2020-04-15 12:06:58.693  urn:newsml:reuters.com:20200415:nNRAbjvsix:1
         2020-04-09 21:34:08.671  urn:newsml:reuters.com:20200409:nNRAbi2nbb:1

                                 sourceCode
         2020-04-20 21:33:37.332  NS:TIMIND
         2020-04-20 10:20:23.201  NS:BUSSTA
         2020-04-20 02:32:27.721  NS:HINDUT
         2020-04-15 12:06:58.693  NS:HINDUT
         2020-04-09 21:34:08.671  NS:TIMIND

In [55]: story = headlines.iloc[0]  

In [56]: story  
Out[56]: versionCreated                     2020-04-20 21:33:37.332000+00:00
         text              Apple said to launch new AirPods, MacBook Pro ...
         storyId                urn:newsml:reuters.com:20200420:nNRAble9rq:1
         sourceCode                                                NS:TIMIND
         Name: 2020-04-20 21:33:37.332000, dtype: object

In [57]: news_text = ek.get_news_story(story['storyId'])  

In [58]: from IPython.display import HTML  
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In [59]: HTML(news_text)  
Out[59]: <IPython.core.display.HTML object>

NEW DELHI: Apple recently launched its much-awaited affordable smartphone
iPhone SE. Now it seems that the company is gearing up for another launch.
Apple is said to launch the next generation of AirPods and the all-new
13-inch MacBook Pro next month.

In February an online report revealed that the Cupertino-based tech giant
is working on AirPods Pro Lite. Now a tweet by tipster Job Posser has
revealed that Apple will soon come up with new AirPods and MacBook Pro.
Jon Posser tweeted, "New AirPods (which were supposed to be at the
March Event) is now ready to go.

Probably alongside the MacBook Pro next month." However, not many details
about the upcoming products are available right now. The company was
supposed to launch these products at the March event along with the iPhone SE.

But due to the ongoing pandemic coronavirus, the event got cancelled.
It is expected that Apple will launch the AirPods Pro Lite and the 13-inch
MacBook Pro just like the way it launched the iPhone SE. Meanwhile,
Apple has scheduled its annual developer conference WWDC to take place in June.

This year the company has decided to hold an online-only event due to
the outbreak of coronavirus. Reports suggest that this year the company
is planning to launch the all-new AirTags and a premium pair of over-ear
Bluetooth headphones at the event. Using the Apple AirTags, users will
be able to locate real-world items such as keys or suitcase in the Find My app.

The AirTags will also have offline finding capabilities that the company
introduced in the core of iOS 13. Apart from this, Apple is also said to
unveil its high-end Bluetooth headphones. It is expected that the Bluetooth
headphones will offer better sound quality and battery backup as compared
to the AirPods.

For Reprint Rights: timescontent.com

Copyright (c) 2020 BENNETT, COLEMAN & CO.LTD.

The query parameter for the retrieval operation.

Sets the maximum number of hits to five.

Defines the interval…

…for which to look for news headlines.

Gives out the results object (output shortened).

One particular headline is picked…
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…and the story_id shown.

This retrieves the news text as html code.

In Jupyter Notebook, for example, the html code…

…can be rendered for better reading.

This concludes the illustration of the Python wrapper package for the Refinitiv Eikon
data API.

Storing Financial Data Efficiently
In algorithmic trading, one of the most important scenarios for the management of
data sets is “retrieve once, use multiple times.” Or from an input-output (IO) perspec‐
tive, it is “write once, read multiple times.” In the first case, data might be retrieved
from a web service and then used to backtest a strategy multiple times based on a
temporary, in-memory copy of the data set. In the second case, tick data that is
received continually is written to disk and later on again used multiple times for cer‐
tain manipulations (like aggregations) in combination with a backtesting procedure.

This section assumes that the in-memory data structure to store the data is a pandas
DataFrame object, no matter from which source the data is acquired (from a CSV file,
a web service, etc.).

To have a somewhat meaningful data set available in terms of size, the section uses a
sample financial data set generated by the use of pseudorandom numbers. “Python
Scripts” on page 78 presents the Python module with a function called generate_sam
ple_data() that accomplishes the task.

In principle, this function generates a sample financial data set in tabular form of
arbitrary size (available memory, of course, sets a limit):

In [60]: from sample_data import generate_sample_data  

In [61]: print(generate_sample_data(rows=5, cols=4))  
                                     No0         No1         No2         No3
         2021-01-01 00:00:00  100.000000  100.000000  100.000000  100.000000
         2021-01-01 00:01:00  100.019641   99.950661  100.052993   99.913841
         2021-01-01 00:02:00   99.998164   99.796667  100.109971   99.955398
         2021-01-01 00:03:00  100.051537   99.660550  100.136336  100.024150
         2021-01-01 00:04:00   99.984614   99.729158  100.210888   99.976584

Imports the function from the Python script.

Prints a sample financial data set with five rows and four columns.
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1 Of course, multiple DataFrame objects could also be stored in a single HDFStore object.

Storing DataFrame Objects
The storage of a pandas DataFrame object as a whole is made simple by the pandas
HDFStore wrapper functionality for the HDF5 binary storage standard. It allows one
to dump complete DataFrame objects in a single step to a file-based database object.
To illustrate the implementation, the first step is to create a sample data set of mean‐
ingful size. Here the size of the DataFrame generated is about 420 MB:

In [62]: %time data = generate_sample_data(rows=5e6, cols=10).round(4)  
         CPU times: user 3.88 s, sys: 830 ms, total: 4.71 s
         Wall time: 4.72 s

In [63]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 5000000 entries, 2021-01-01 00:00:00 to 2030-07-05
          05:19:00
         Freq: T
         Data columns (total 10 columns):
          #   Column  Dtype
         ---  ------  -----
          0   No0     float64
          1   No1     float64
          2   No2     float64
          3   No3     float64
          4   No4     float64
          5   No5     float64
          6   No6     float64
          7   No7     float64
          8   No8     float64
          9   No9     float64
         dtypes: float64(10)
         memory usage: 419.6 MB

A sample financial data set with 5,000,000 rows and ten columns is generated; the
generation takes a couple of seconds.

The second step is to open a HDFStore object (that is, a HDF5 database file) on disk
and to write the DataFrame object to it.1 The size on disk of about 440 MB is a bit
larger than for the in-memory DataFrame object. However, the writing speed is about
five times faster than the in-memory generation of the sample data set.
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2 All values reported here are from the author’s MacMini with Intel i7 hexa core processor (12 threads), 32 GB
of random access memory (DDR4 RAM), and a 512 GB solid state drive (SSD).

Working in Python with binary stores like HDF5 database files usually gets you writ‐
ing speeds close to the theoretical maximum of the hardware available:2

In [64]: h5 = pd.HDFStore('data/data.h5', 'w')  

In [65]: %time h5['data'] = data  
         CPU times: user 356 ms, sys: 472 ms, total: 828 ms
         Wall time: 1.08 s

In [66]: h5  
Out[66]: <class 'pandas.io.pytables.HDFStore'>
         File path: data/data.h5

In [67]: ls -n data/data.*
         -rw-r--r--@ 1 501  20  440007240 Aug 25 11:48 data/data.h5

In [68]: h5.close()  

This opens the database file on disk for writing (and overwrites a potentially
existing file with the same name).

Writing the DataFrame object to disk takes less than a second.

This prints out meta information for the database file.

This closes the database file.

The third step is to read the data from the file-based HDFStore object. Reading also
generally takes place close to the theoretical maximum speed:

In [69]: h5 = pd.HDFStore('data/data.h5', 'r')  

In [70]: %time data_copy = h5['data']  
         CPU times: user 388 ms, sys: 425 ms, total: 813 ms
         Wall time: 812 ms

In [71]: data_copy.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 5000000 entries, 2021-01-01 00:00:00 to 2030-07-05
          05:19:00
         Freq: T
         Data columns (total 10 columns):
          #   Column  Dtype
         ---  ------  -----
          0   No0     float64
          1   No1     float64
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          2   No2     float64
          3   No3     float64
          4   No4     float64
          5   No5     float64
          6   No6     float64
          7   No7     float64
          8   No8     float64
          9   No9     float64
         dtypes: float64(10)
         memory usage: 419.6 MB

In [72]: h5.close()

In [73]: rm data/data.h5

Opens the database file for reading.

Reading takes less than half of a second.

There is another, somewhat more flexible way of writing the data from a DataFrame
object to an HDFStore object. To this end, one can use the to_hdf() method of the
DataFrame object and set the format parameter to table (see the to_hdf API refer‐
ence page). This allows the appending of new data to the table object on disk and
also, for example, the searching over the data on disk, which is not possible with the
first approach. The price to pay is slower writing and reading speeds:

In [74]: %time data.to_hdf('data/data.h5', 'data', format='table')  
         CPU times: user 3.25 s, sys: 491 ms, total: 3.74 s
         Wall time: 3.8 s

In [75]: ls -n data/data.*
         -rw-r--r--@ 1 501  20  446911563 Aug 25 11:48 data/data.h5

In [76]: %time data_copy = pd.read_hdf('data/data.h5', 'data')  
         CPU times: user 236 ms, sys: 266 ms, total: 502 ms
         Wall time: 503 ms

In [77]: data_copy.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 5000000 entries, 2021-01-01 00:00:00 to 2030-07-05
          05:19:00
         Freq: T
         Data columns (total 10 columns):
          #   Column  Dtype
         ---  ------  -----
          0   No0     float64
          1   No1     float64
          2   No2     float64
          3   No3     float64
          4   No4     float64
          5   No5     float64
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          6   No6     float64
          7   No7     float64
          8   No8     float64
          9   No9     float64
         dtypes: float64(10)
         memory usage: 419.6 MB

This defines the writing format to be of type table. Writing becomes slower
since this format type involves a bit more overhead and leads to a somewhat
increased file size.

Reading is also slower in this application scenario.

In practice, the advantage of this approach is that one can work with the table_frame
object on disk like with any other table object of the PyTables package that is used
by pandas in this context. This provides access to certain basic capabilities of the
PyTables package, such as appending rows to a table object:

In [78]: import tables as tb  

In [79]: h5 = tb.open_file('data/data.h5', 'r')  

In [80]: h5  
Out[80]: File(filename=data/data.h5, title='', mode='r', root_uep='/',
          filters=Filters(complevel=0, shuffle=False, bitshuffle=False,
          fletcher32=False, least_significant_digit=None))
         / (RootGroup) ''
         /data (Group) ''
         /data/table (Table(5000000,)) ''
           description := {
           "index": Int64Col(shape=(), dflt=0, pos=0),
           "values_block_0": Float64Col(shape=(10,), dflt=0.0, pos=1)}
           byteorder := 'little'
           chunkshape := (2978,)
           autoindex := True
           colindexes := {
             "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

In [81]: h5.root.data.table[:3]  
Out[81]: array([(1609459200000000000, [100.    , 100.    , 100.    , 100.    ,
          100.    , 100.    , 100.    , 100.    , 100.    , 100.    ]),
         (1609459260000000000, [100.0752, 100.1164, 100.0224, 100.0073,
          100.1142, 100.0474,  99.9329, 100.0254, 100.1009, 100.066 ]),
         (1609459320000000000, [100.1593, 100.1721, 100.0519, 100.0933,
          100.1578, 100.0301,  99.92  , 100.0965, 100.1441, 100.0717])],
               dtype=[('index', '<i8'), ('values_block_0', '<f8', (10,))])

In [82]: h5.close()  

In [83]: rm data/data.h5
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Imports the PyTables package.

Opens the database file for reading.

Shows the contents of the database file.

Prints the first three rows in the table.

Closes the database.

Although this second approach provides more flexibility, it does not open the doors
to the full capabilities of the PyTables package. Nevertheless, the two approaches
introduced in this sub-section are convenient and efficient when you are working
with more or less immutable data sets that fit into memory. Nowadays, algorithmic
trading, however, has to deal in general with continuously and rapidly growing data
sets like, for example, tick data with regard to stock prices or foreign exchange rates.
To cope with the requirements of such a scenario, alternative approaches might prove
useful.

Using the HDFStore wrapper for the HDF5 binary storage standard,
pandas is able to write and read financial data almost at the maxi‐
mum speed the available hardware allows. Exports to other file-
based formats, like CSV, are generally much slower alternatives.

Using TsTables
The PyTables package, with the import name tables, is a wrapper for the HDF5
binary storage library that is also used by pandas for its HDFStore implementation
presented in the previous sub-section. The TsTables package (see the GitHub page
for the package) in turn is dedicated to the efficient handling of large financial time
series data sets based on the HDF5 binary storage library. It is effectively an enhance‐
ment of the PyTables package and adds support for time series data to its capabilities.
It implements a hierarchical storage approach that allows for a fast retrieval of data
sub-sets selected by providing start and end dates and times, respectively. The major
scenario supported by TsTables is “write once, retrieve multiple times.”

The setup illustrated in this sub-section is that data is continuously collected from a
web source, professional data provider, etc. and is stored interim and in-memory in a
DataFrame object. After a while or a certain number of data points retrieved, the col‐
lected data is then stored in a TsTables table object in an HDF5 database.
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First, here is the generation of the sample data:

In [84]: %%time
         data = generate_sample_data(rows=2.5e6, cols=5,
                                     freq='1s').round(4)  
         CPU times: user 915 ms, sys: 191 ms, total: 1.11 s
         Wall time: 1.14 s

In [85]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2500000 entries, 2021-01-01 00:00:00 to 2021-01-29
          22:26:39
         Freq: S
         Data columns (total 5 columns):
          #   Column  Dtype
         ---  ------  -----
          0   No0     float64
          1   No1     float64
          2   No2     float64
          3   No3     float64
          4   No4     float64
         dtypes: float64(5)
         memory usage: 114.4 MB

This generates a sample financial data set with 2,500,000 rows and five columns
with a one second frequency; the sample data is rounded to two digits.

Second, some more imports and the creation of the TsTables table object. The
major part is the definition of the desc class, which provides the description for the
table object’s data structure:

Currently, TsTables only works with the old pandas version 0.19.
A friendly fork, working with newer versions of pandas is available
under http://github.com/yhilpisch/tstables which can be installed
with the following:

pip install git+https://github.com/yhilpisch/tstables.git

In [86]: import tstables  

In [87]: import tables as tb  

In [88]: class desc(tb.IsDescription):
             ''' Description of TsTables table structure.
             '''
             timestamp = tb.Int64Col(pos=0)  
             No0 = tb.Float64Col(pos=1)  
             No1 = tb.Float64Col(pos=2)
             No2 = tb.Float64Col(pos=3)
             No3 = tb.Float64Col(pos=4)
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             No4 = tb.Float64Col(pos=5)

In [89]: h5 = tb.open_file('data/data.h5ts', 'w')  

In [90]: ts = h5.create_ts('/', 'data', desc)  

In [91]: h5  
Out[91]: File(filename=data/data.h5ts, title='', mode='w', root_uep='/',
          filters=Filters(complevel=0, shuffle=False, bitshuffle=False,
          fletcher32=False, least_significant_digit=None))
         / (RootGroup) ''
         /data (Group/Timeseries) ''
         /data/y2020 (Group) ''
         /data/y2020/m08 (Group) ''
         /data/y2020/m08/d25 (Group) ''
         /data/y2020/m08/d25/ts_data (Table(0,)) ''
           description := {
           "timestamp": Int64Col(shape=(), dflt=0, pos=0),
           "No0": Float64Col(shape=(), dflt=0.0, pos=1),
           "No1": Float64Col(shape=(), dflt=0.0, pos=2),
           "No2": Float64Col(shape=(), dflt=0.0, pos=3),
           "No3": Float64Col(shape=(), dflt=0.0, pos=4),
           "No4": Float64Col(shape=(), dflt=0.0, pos=5)}
           byteorder := 'little'
           chunkshape := (1365,)

TsTables (installed from https://github.com/yhilpisch/tstables)…

…PyTables are imported.

The first column of the table is a timestamp represented as an int value.

All data columns contain float values.

This opens a new database file for writing.

The TsTables table is created at the root node, with name data and given the
class-based description desc.

Inspecting the database file reveals the basic principle behind the hierarchical
structuring in years, months, and days.

Third is the writing of the sample data stored in a DataFrame object to the table
object on disk. One of the major benefits of TsTables is the convenience with which
this operation is accomplished, namely by a simple method call. Even better, that con‐
venience here is coupled with speed. With regard to the structure in the database,
TsTables chunks the data into sub-sets of a single day. In the example case where the
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frequency is set to one second, this translates into 24 x 60 x 60 = 86,400 data rows per
full day’s worth of data:

In [92]: %time ts.append(data)  
         CPU times: user 476 ms, sys: 238 ms, total: 714 ms
         Wall time: 739 ms

In [93]: # h5  

File(filename=data/data.h5ts, title='', mode='w', root_uep='/',
 filters=Filters(complevel=0, shuffle=False, bitshuffle=False,
 fletcher32=False, least_significant_digit=None))
/ (RootGroup) ''
/data (Group/Timeseries) ''
/data/y2020 (Group) ''
/data/y2021 (Group) ''
/data/y2021/m01 (Group) ''
/data/y2021/m01/d01 (Group) ''
/data/y2021/m01/d01/ts_data (Table(86400,)) ''
  description := {
  "timestamp": Int64Col(shape=(), dflt=0, pos=0),
  "No0": Float64Col(shape=(), dflt=0.0, pos=1),
  "No1": Float64Col(shape=(), dflt=0.0, pos=2),
  "No2": Float64Col(shape=(), dflt=0.0, pos=3),
  "No3": Float64Col(shape=(), dflt=0.0, pos=4),
  "No4": Float64Col(shape=(), dflt=0.0, pos=5)}
  byteorder := 'little'
  chunkshape := (1365,)
/data/y2021/m01/d02 (Group) ''
/data/y2021/m01/d02/ts_data (Table(86400,)) ''
  description := {
  "timestamp": Int64Col(shape=(), dflt=0, pos=0),
  "No0": Float64Col(shape=(), dflt=0.0, pos=1),
  "No1": Float64Col(shape=(), dflt=0.0, pos=2),
  "No2": Float64Col(shape=(), dflt=0.0, pos=3),
  "No3": Float64Col(shape=(), dflt=0.0, pos=4),
  "No4": Float64Col(shape=(), dflt=0.0, pos=5)}
  byteorder := 'little'
  chunkshape := (1365,)
/data/y2021/m01/d03 (Group) ''
/data/y2021/m01/d03/ts_data (Table(86400,)) ''
  description := {
  "timestamp": Int64Col(shape=(), dflt=0, pos=0),
 ...

This appends the DataFrame object via a simple method call.

The table object shows 86,400 rows per day after the append() operation.

Reading sub-sets of the data from a TsTables table object is generally really fast
since this is what it is optimized for in the first place. In this regard, TsTables sup‐
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ports typical algorithmic trading applications, like backtesting, pretty well. Another
contributing factor is that TsTables returns the data already as a DataFrame object
such that additional conversions are not necessary in general:

In [94]: import datetime

In [95]: start = datetime.datetime(2021, 1, 2)  

In [96]: end = datetime.datetime(2021, 1, 3)  

In [97]: %time subset = ts.read_range(start, end)  
         CPU times: user 10.3 ms, sys: 3.63 ms, total: 14 ms
         Wall time: 12.8 ms

In [98]: start = datetime.datetime(2021, 1, 2, 12, 30, 0)

In [99]: end = datetime.datetime(2021, 1, 5, 17, 15, 30)

In [100]: %time subset = ts.read_range(start, end)
          CPU times: user 28.6 ms, sys: 18.5 ms, total: 47.1 ms
          Wall time: 46.1 ms

In [101]: subset.info()
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 276331 entries, 2021-01-02 12:30:00 to 2021-01-05
           17:15:30
          Data columns (total 5 columns):
           #   Column  Non-Null Count   Dtype
          ---  ------  --------------   -----
           0   No0     276331 non-null  float64
           1   No1     276331 non-null  float64
           2   No2     276331 non-null  float64
           3   No3     276331 non-null  float64
           4   No4     276331 non-null  float64
          dtypes: float64(5)
          memory usage: 12.6 MB

In [102]: h5.close()

In [103]: rm data/*

This defines the starting date and…

…end date for the data retrieval operation.

The read_range() method takes the start and end dates as input—reading here
is only a matter of milliseconds.

New data that is retrieved during a day can be appended to the TsTables table
object, as illustrated previously. The package is therefore a valuable addition to the
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capabilities of pandas in combination with HDFStore objects when it comes to the
efficient storage and retrieval of (large) financial time series data sets over time.

Storing Data with SQLite3
Financial time series data can also be written directly from a DataFrame object to a
relational database like SQLite3. The use of a relational database might be useful in
scenarios where the SQL query language is applied to implement more sophisticated
analyses. With regard to speed and also disk usage, relational databases cannot, how‐
ever, compare with the other approaches that rely on binary storage formats like
HDF5.

The DataFrame class provides the method to_sql() (see the to_sql() API reference
page) to write data to a table in a relational database. The size on disk with 100+ MB
indicates that there is quite some overhead when using relational databases:

In [104]: %time data = generate_sample_data(1e6, 5, '1min').round(4)  
          CPU times: user 342 ms, sys: 60.5 ms, total: 402 ms
          Wall time: 405 ms

In [105]: data.info()  
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 1000000 entries, 2021-01-01 00:00:00 to 2022-11-26
           10:39:00
          Freq: T
          Data columns (total 5 columns):
           #   Column  Non-Null Count    Dtype
          ---  ------  --------------    -----
           0   No0     1000000 non-null  float64
           1   No1     1000000 non-null  float64
           2   No2     1000000 non-null  float64
           3   No3     1000000 non-null  float64
           4   No4     1000000 non-null  float64
          dtypes: float64(5)
          memory usage: 45.8 MB

In [106]: import sqlite3 as sq3  

In [107]: con = sq3.connect('data/data.sql')  

In [108]: %time data.to_sql('data', con)  
          CPU times: user 4.6 s, sys: 352 ms, total: 4.95 s
          Wall time: 5.07 s

In [109]: ls -n data/data.*
          -rw-r--r--@ 1 501  20  105316352 Aug 25 11:48 data/data.sql
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The sample financial data set has 1,000,000 rows and five columns; memory
usage is about 46 MB.

This imports the SQLite3 module.

A connection is opened to a new database file.

Writing the data to the relational database takes a couple of seconds.

One strength of relational databases is the ability to implement (out-of-memory) ana‐
lytics tasks based on standardized SQL statements. As an example, consider a query
that selects for column No1 all those rows where the value in that row lies between
105 and 108:

In [110]: query = 'SELECT * FROM data WHERE No1 > 105 and No2 < 108'  

In [111]: %time res = con.execute(query).fetchall()  
          CPU times: user 109 ms, sys: 30.3 ms, total: 139 ms
          Wall time: 138 ms

In [112]: res[:5]  
Out[112]: [('2021-01-03 19:19:00', 103.6894, 105.0117, 103.9025, 95.8619,
           93.6062),
          ('2021-01-03 19:20:00', 103.6724, 105.0654, 103.9277, 95.8915,
           93.5673),
          ('2021-01-03 19:21:00', 103.6213, 105.1132, 103.8598, 95.7606,
           93.5618),
          ('2021-01-03 19:22:00', 103.6724, 105.1896, 103.8704, 95.7302,
           93.4139),
          ('2021-01-03 19:23:00', 103.8115, 105.1152, 103.8342, 95.706,
           93.4436)]

In [113]: len(res)  
Out[113]: 5035

In [114]: con.close()

In [115]: rm data/*

The SQL query as a Python str object.

The query executed to retrieve all results rows.

The first five results printed.

The length of the results list object.
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Admittedly, such simple queries are also possible with pandas if the data set fits into
memory. However, the SQL query language has proven useful and powerful for deca‐
des now and should be in the algorithmic trader’s arsenal of data weapons.

pandas also supports database connections via SQLAlchemy, a
Python abstraction layer package for diverse relational databases
(refer to the SQLAlchemy home page). This in turn allows for the
use of, for example, MySQL as the relational database backend.

Conclusions
This chapter covers the handling of financial time series data. It illustrates the reading
of such data from different file-based sources, like CSV files. It also shows how to
retrieve financial data from web services, such as that of Quandl, for end-of-day and
options data. Open financial data sources are a valuable addition to the financial
landscape. Quandl is a platform integrating thousands of open data sets under the
umbrella of a unified API.

Another important topic covered in this chapter is the efficient storage of complete
DataFrame objects on disk, as well as of the data contained in such an in-memory
object in databases. Database flavors used in this chapter include the HDF5 database
standard and the light-weight relational database SQLite3. This chapter lays the foun‐
dation for Chapter 4, which addresses vectorized backtesting; Chapter 5, which cov‐
ers machine learning and deep learning for market prediction; and Chapter 6, which
discusses event-based backtesting of trading strategies.
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References and Further Resources
You can find more information about Quandl at the following link:

• http://quandl.org

Information about the package used to retrieve data from that source is found here:
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packages used in this chapter:
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• SQLite home page
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Python Scripts
The following Python script generates sample financial time series data based on a
Monte Carlo simulation for a geometric Brownian motion; for more, see Hilpisch
(2018, ch. 12):

#
# Python Module to Generate a
# Sample Financial Data Set
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
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import numpy as np
import pandas as pd

r = 0.05  # constant short rate
sigma = 0.5  # volatility factor

def generate_sample_data(rows, cols, freq='1min'):
    '''
    Function to generate sample financial data.

    Parameters
    ==========
    rows: int
        number of rows to generate
    cols: int
        number of columns to generate
    freq: str
        frequency string for DatetimeIndex

    Returns
    =======
    df: DataFrame
        DataFrame object with the sample data
    '''
    rows = int(rows)
    cols = int(cols)
    # generate a DatetimeIndex object given the frequency
    index = pd.date_range('2021-1-1', periods=rows, freq=freq)
    # determine time delta in year fractions
    dt = (index[1] - index[0]) / pd.Timedelta(value='365D')
    # generate column names
    columns = ['No%d' % i for i in range(cols)]
    # generate sample paths for geometric Brownian motion
    raw = np.exp(np.cumsum((r - 0.5 * sigma ** 2) * dt +
                 sigma * np.sqrt(dt) *
                 np.random.standard_normal((rows, cols)), axis=0))
    # normalize the data to start at 100
    raw = raw / raw[0] * 100
    # generate the DataFrame object
    df = pd.DataFrame(raw, index=index, columns=columns)
    return df

if __name__ == '__main__':
    rows = 5  # number of rows
    columns = 3  # number of columns
    freq = 'D'  # daily frequency
    print(generate_sample_data(rows, columns, freq))
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1 Source: “Does the Past Predict the Future?” The Economist, September 23, 2009.

CHAPTER 4

Mastering Vectorized Backtesting

[T]hey were silly enough to think you can look at the past to predict the future.1

—The Economist

Developing ideas and hypotheses for an algorithmic trading program is generally the
more creative and sometimes even fun part in the preparation stage. Thoroughly test‐
ing them is generally the more technical and time consuming part. This chapter is
about the vectorized backtesting of different algorithmic trading strategies. It covers
the following types of strategies (refer also to “Trading Strategies” on page 13):

Simple moving averages (SMA) based strategies
The basic idea of SMA usage for buy and sell signal generation is already decades
old. SMAs are a major tool in the so-called technical analysis of stock prices. A
signal is derived, for example, when an SMA defined on a shorter time window—
say 42 days—crosses an SMA defined on a longer time window—say 252 days.

Momentum strategies
These are strategies that are based on the hypothesis that recent performance will
persist for some additional time. For example, a stock that is downward trending
is assumed to do so for longer, which is why such a stock is to be shorted.

Mean-reversion strategies
The reasoning behind mean-reversion strategies is that stock prices or prices of
other financial instruments tend to revert to some mean level or to some trend
level when they have deviated too much from such levels.

81



The chapter proceeds as follows. “Making Use of Vectorization” on page 82 introdu‐
ces vectorization as a useful technical approach to formulate and backtest trading
strategies. “Strategies Based on Simple Moving Averages” on page 88 is the core of
this chapter and covers vectorized backtesting of SMA-based strategies in some
depth. “Strategies Based on Momentum” on page 98 introduces and backtests trading
strategies based on the so-called time series momentum (“recent performance”) of a
stock. “Strategies Based on Mean Reversion” on page 107 finishes the chapter with
coverage of mean-reversion strategies. Finally, “Data Snooping and Overfitting” on
page 111 discusses the pitfalls of data snooping and overfitting in the context of the
backtesting of algorithmic trading strategies.

The major goal of this chapter is to master the vectorized implementation approach,
which packages like NumPy and pandas allow for, as an efficient and fast backtesting
tool. To this end, the approaches presented make a number of simplifying assump‐
tions to better focus the discussion on the major topic of vectorization.

Vectorized backtesting should be considered in the following cases:

Simple trading strategies
The vectorized backtesting approach clearly has limits when it comes to the
modeling of algorithmic trading strategies. However, many popular, simple
strategies can be backtested in vectorized fashion.

Interactive strategy exploration
Vectorized backtesting allows for an agile, interactive exploration of trading
strategies and their characteristics. A few lines of code generally suffice to come
up with first results, and different parameter combinations are easily tested.

Visualization as major goal
The approach lends itself pretty well for visualizations of the used data, statistics,
signals, and performance results. A few lines of Python code are generally
enough to generate appealing and insightful plots.

Comprehensive backtesting programs
Vectorized backtesting is pretty fast in general, allowing one to test a great variety
of parameter combinations in a short amount of time. When speed is key, the
approach should be considered.

Making Use of Vectorization
Vectorization, or array programming, refers to a programming style where operations
on scalars (that is, integer or floating point numbers) are generalized to vectors,
matrices, or even multidimensional arrays. Consider a vector of integers
v = 1, 2, 3, 4, 5 T represented in Python as a list object v = [1, 2, 3, 4, 5]. Cal‐
culating the scalar product of such a vector and, say, the number 2 requires in pure
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Python a for loop or something similar, such as a list comprehension, which is just
different syntax for a for loop:

In [1]: v = [1, 2, 3, 4, 5]

In [2]: sm = [2 * i for i in v]

In [3]: sm
Out[3]: [2, 4, 6, 8, 10]

In principle, Python allows one to multiply a list object by an integer, but Python’s
data model gives back another list object in the example case containing two times
the elements of the original object:

In [4]: 2 * v
Out[4]: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

Vectorization with NumPy
The NumPy package for numerical computing (cf. NumPy home page) introduces vecto‐
rization to Python. The major class provided by NumPy is the ndarray class, which
stands for n-dimensional array. An instance of such an object can be created, for
example, on the basis of the list object v. Scalar multiplication, linear transforma‐
tions, and similar operations from linear algebra then work as desired:

In [5]: import numpy as np  

In [6]: a = np.array(v)  

In [7]: a  
Out[7]: array([1, 2, 3, 4, 5])

In [8]: type(a)  
Out[8]: numpy.ndarray

In [9]: 2 * a  
Out[9]: array([ 2,  4,  6,  8, 10])

In [10]: 0.5 * a + 2  
Out[10]: array([2.5, 3. , 3.5, 4. , 4.5])

Imports the NumPy package.

Instantiates an ndarray object based on the list object.

Prints out the data stored as ndarray object.

Looks up the type of the object.
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Achieves a scalar multiplication in vectorized fashion.

Achieves a linear transformation in vectorized fashion.

The transition from a one-dimensional array (a vector) to a two-dimensional array (a
matrix) is natural. The same holds true for higher dimensions:

In [11]: a = np.arange(12).reshape((4, 3))  

In [12]: a
Out[12]: array([[ 0,  1,  2],
                [ 3,  4,  5],
                [ 6,  7,  8],
                [ 9, 10, 11]])

In [13]: 2 * a
Out[13]: array([[ 0,  2,  4],
                [ 6,  8, 10],
                [12, 14, 16],
                [18, 20, 22]])

In [14]: a ** 2  
Out[14]: array([[  0,   1,   4],
                [  9,  16,  25],
                [ 36,  49,  64],
                [ 81, 100, 121]])

Creates a one-dimensional ndarray object and reshapes it to two dimensions.

Calculates the square of every element of the object in vectorized fashion.

In addition, the ndarray class provides certain methods that allow vectorized opera‐
tions. They often also have counterparts in the form of so-called universal functions
that NumPy provides:

In [15]: a.mean()  
Out[15]: 5.5

In [16]: np.mean(a)  
Out[16]: 5.5

In [17]: a.mean(axis=0)  
Out[17]: array([4.5, 5.5, 6.5])

In [18]: np.mean(a, axis=1)  
Out[18]: array([ 1.,  4.,  7., 10.])

Calculates the mean of all elements by a method call.

Calculates the mean of all elements by a universal function.
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Calculates the mean along the first axis.

Calculates the mean along the second axis.

As a financial example, consider the function generate_sample_data() in “Python
Scripts” on page 78 that uses an Euler discretization to generate sample paths for a
geometric Brownian motion. The implementation makes use of multiple vectorized
operations that are combined to a single line of code.

See the Appendix for more details of vectorization with NumPy. Refer to Hilpisch
(2018) for a multitude of applications of vectorization in a financial context.

The standard instruction set and data model of Python does not
generally allow for vectorized numerical operations. NumPy introdu‐
ces powerful vectorization techniques based on the regular array
class ndarray that lead to concise code that is close to mathematical
notation in, for example, linear algebra regarding vectors and
matrices.

Vectorization with pandas
The pandas package and the central DataFrame class make heavy use of NumPy and the
ndarray class. Therefore, most of the vectorization principles seen in the NumPy con‐
text carry over to pandas. The mechanics are best explained again on the basis of a
concrete example. To begin with, define a two-dimensional ndarray object first:

In [19]: a = np.arange(15).reshape(5, 3)

In [20]: a
Out[20]: array([[ 0,  1,  2],
                [ 3,  4,  5],
                [ 6,  7,  8],
                [ 9, 10, 11],
                [12, 13, 14]])

For the creation of a DataFrame object, generate a list object with column names
and a DatetimeIndex object next, both of appropriate size given the ndarray object:

In [21]: import pandas as pd  

In [22]: columns = list('abc')  

In [23]: columns
Out[23]: ['a', 'b', 'c']

In [24]: index = pd.date_range('2021-7-1', periods=5, freq='B')  

In [25]: index
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Out[25]: DatetimeIndex(['2021-07-01', '2021-07-02', '2021-07-05',
          '2021-07-06',
                        '2021-07-07'],
                       dtype='datetime64[ns]', freq='B')

In [26]: df = pd.DataFrame(a, columns=columns, index=index)  

In [27]: df
Out[27]:              a   b   c
         2021-07-01   0   1   2
         2021-07-02   3   4   5
         2021-07-05   6   7   8
         2021-07-06   9  10  11
         2021-07-07  12  13  14

Imports the pandas package.

Creates a list object out of the str object.

A pandas DatetimeIndex object is created that has a “business day” frequency
and goes over five periods.

A DataFrame object is instantiated based on the ndarray object a with column
labels and index values specified.

In principle, vectorization now works similarly to ndarray objects. One difference is
that aggregation operations default to column-wise results:

In [28]: 2 * df  
Out[28]:              a   b   c
         2021-07-01   0   2   4
         2021-07-02   6   8  10
         2021-07-05  12  14  16
         2021-07-06  18  20  22
         2021-07-07  24  26  28

In [29]: df.sum()  
Out[29]: a    30
         b    35
         c    40
         dtype: int64

In [30]: np.mean(df)  
Out[30]: a    6.0
         b    7.0
         c    8.0
         dtype: float64
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Calculates the scalar product for the DataFrame object (treated as a matrix).

Calculates the sum per column.

Calculates the mean per column.

Column-wise operations can be implemented by referencing the respective column
names, either by the bracket notation or the dot notation:

In [31]: df['a'] + df['c']  
Out[31]: 2021-07-01     2
         2021-07-02     8
         2021-07-05    14
         2021-07-06    20
         2021-07-07    26
         Freq: B, dtype: int64

In [32]: 0.5 * df.a + 2 * df.b - df.c  
Out[32]: 2021-07-01     0.0
         2021-07-02     4.5
         2021-07-05     9.0
         2021-07-06    13.5
         2021-07-07    18.0
         Freq: B, dtype: float64

Calculates the element-wise sum over columns a and c.

Calculates a linear transform involving all three columns.

Similarly, conditions yielding Boolean results vectors and SQL-like selections based
on such conditions are straightforward to implement:

In [33]: df['a'] > 5  
Out[33]: 2021-07-01    False
         2021-07-02    False
         2021-07-05     True
         2021-07-06     True
         2021-07-07     True
         Freq: B, Name: a, dtype: bool

In [34]: df[df['a'] > 5]  
Out[34]:              a   b   c
         2021-07-05   6   7   8
         2021-07-06   9  10  11
         2021-07-07  12  13  14

Which element in column a is greater than five?

Select all those rows where the element in column a is greater than five.
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For a vectorized backtesting of trading strategies, comparisons between two columns
or more are typical:

In [35]: df['c'] > df['b']  
Out[35]: 2021-07-01    True
         2021-07-02    True
         2021-07-05    True
         2021-07-06    True
         2021-07-07    True
         Freq: B, dtype: bool

In [36]: 0.15 * df.a + df.b > df.c  
Out[36]: 2021-07-01    False
         2021-07-02    False
         2021-07-05    False
         2021-07-06     True
         2021-07-07     True
         Freq: B, dtype: bool

For which date is the element in column c greater than in column b?

Condition comparing a linear combination of columns a and b with column c.

Vectorization with pandas is a powerful concept, in particular for the implementation
of financial algorithms and the vectorized backtesting, as illustrated in the remainder
of this chapter. For more on the basics of vectorization with pandas and financial
examples, refer to Hilpisch (2018, ch. 5).

While NumPy brings general vectorization approaches to the numer‐
ical computing world of Python, pandas allows vectorization over
time series data. This is really helpful for the implementation of
financial algorithms and the backtesting of algorithmic trading
strategies. By using this approach, you can expect concise code, as
well as a faster code execution, in comparison to standard Python
code, making use of for loops and similar idioms to accomplish
the same goal.

Strategies Based on Simple Moving Averages
Trading based on simple moving averages (SMAs) is a decades old strategy that has
its origins in the technical stock analysis world. Brock et al. (1992), for example,
empirically investigate such strategies in systematic fashion. They write:

The term “technical analysis” is a general heading for a myriad of trading techni‐
ques….In this paper, we explore two of the simplest and most popular technical rules:
moving average-oscillator and trading-range break (resistance and support levels). In
the first method, buy and sell signals are generated by two moving averages, a long
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period, and a short period….Our study reveals that technical analysis helps to predict
stock changes.

Getting into the Basics
This sub-section focuses on the basics of backtesting trading strategies that make use
of two SMAs. The example to follow works with end-of-day (EOD) closing data for
the EUR/USD exchange rate, as provided in the csv file under the EOD data file. The
data in the data set is from the Refinitiv Eikon Data API and represents EOD values
for the respective instruments (RICs):

In [37]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                            index_col=0, parse_dates=True).dropna()  

In [38]: raw.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
         Data columns (total 12 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   AAPL.O  2516 non-null   float64
          1   MSFT.O  2516 non-null   float64
          2   INTC.O  2516 non-null   float64
          3   AMZN.O  2516 non-null   float64
          4   GS.N    2516 non-null   float64
          5   SPY     2516 non-null   float64
          6   .SPX    2516 non-null   float64
          7   .VIX    2516 non-null   float64
          8   EUR=    2516 non-null   float64
          9   XAU=    2516 non-null   float64
          10  GDX     2516 non-null   float64
          11  GLD     2516 non-null   float64
         dtypes: float64(12)
         memory usage: 255.5 KB

In [39]: data = pd.DataFrame(raw['EUR='])  

In [40]: data.rename(columns={'EUR=': 'price'}, inplace=True)  

In [41]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
         Data columns (total 1 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   price   2516 non-null   float64
         dtypes: float64(1)
         memory usage: 39.3 KB
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Reads the data from the remotely stored CSV file.

Shows the meta information for the DataFrame object.

Transforms the Series object to a DataFrame object.

Renames the only column to price.

Shows the meta information for the new DataFrame object.

The calculation of SMAs is made simple by the rolling() method, in combination
with a deferred calculation operation:

In [42]: data['SMA1'] = data['price'].rolling(42).mean()  

In [43]: data['SMA2'] = data['price'].rolling(252).mean()  

In [44]: data.tail()  
Out[44]:              price      SMA1      SMA2
         Date
         2019-12-24  1.1087  1.107698  1.119630
         2019-12-26  1.1096  1.107740  1.119529
         2019-12-27  1.1175  1.107924  1.119428
         2019-12-30  1.1197  1.108131  1.119333
         2019-12-31  1.1210  1.108279  1.119231

Creates a column with 42 days of SMA values. The first 41 values will be NaN.

Creates a column with 252 days of SMA values. The first 251 values will be NaN.

Prints the final five rows of the data set.

A visualization of the original time series data in combination with the SMAs best
illustrates the results (see Figure 4-1):

In [45]: %matplotlib inline
         from pylab import mpl, plt
         plt.style.use('seaborn')
         mpl.rcParams['savefig.dpi'] = 300
         mpl.rcParams['font.family'] = 'serif'

In [46]: data.plot(title='EUR/USD | 42 & 252 days SMAs',
                   figsize=(10, 6));

The next step is to generate signals, or rather market positionings, based on the rela‐
tionship between the two SMAs. The rule is to go long whenever the shorter SMA is
above the longer one and vice versa. For our purposes, we indicate a long position by 1
and a short position by –1.
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Figure 4-1. The EUR/USD exchange rate with two SMAs

Being able to directly compare two columns of the DataFrame object makes the
implementation of the rule an affair of a single line of code only. The positioning over
time is illustrated in Figure 4-2:

In [47]: data['position'] = np.where(data['SMA1'] > data['SMA2'],
                                     1, -1)  

In [48]: data.dropna(inplace=True)  

In [49]: data['position'].plot(ylim=[-1.1, 1.1],
                               title='Market Positioning',
                               figsize=(10, 6));  

Implements the trading rule in vectorized fashion. np.where() produces +1 for
rows where the expression is True and -1 for rows where the expression is False.

Deletes all rows of the data set that contain at least one NaN value.

Plots the positioning over time.
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Figure 4-2. Market positioning based on the strategy with two SMAs

To calculate the performance of the strategy, calculate the log returns based on the
original financial time series next. The code to do this is again rather concise due to
vectorization. Figure 4-3 shows the histogram of the log returns:

In [50]: data['returns'] = np.log(data['price'] / data['price'].shift(1))  

In [51]: data['returns'].hist(bins=35, figsize=(10, 6));  

Calculates the log returns in vectorized fashion over the price column.

Plots the log returns as a histogram (frequency distribution).

To derive the strategy returns, multiply the position column—shifted by one trading
day—with the returns column. Since log returns are additive, calculating the sum
over the columns returns and strategy provides a first comparison of the perfor‐
mance of the strategy relative to the base investment itself.
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Figure 4-3. Frequency distribution of EUR/USD log returns

Comparing the returns shows that the strategy books a win over the passive bench‐
mark investment:

In [52]: data['strategy'] = data['position'].shift(1) * data['returns']  

In [53]: data[['returns', 'strategy']].sum()  
Out[53]: returns    -0.176731
         strategy    0.253121
         dtype: float64

In [54]: data[['returns', 'strategy']].sum().apply(np.exp)  
Out[54]: returns     0.838006
         strategy    1.288039
         dtype: float64

Derives the log returns of the strategy given the positionings and market returns.

Sums up the single log return values for both the stock and the strategy (for illus‐
tration only).

Applies the exponential function to the sum of the log returns to calculate the
gross performance.

Calculating the cumulative sum over time with cumsum and, based on this, the cumu‐
lative returns by applying the exponential function np.exp() gives a more compre‐
hensive picture of how the strategy compares to the performance of the base financial
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instrument over time. Figure 4-4 shows the data graphically and illustrates the out‐
performance in this particular case:

In [55]: data[['returns', 'strategy']].cumsum(
                     ).apply(np.exp).plot(figsize=(10, 6));

Figure 4-4. Gross performance of EUR/USD compared to the SMA-based strategy

Average, annualized risk-return statistics for both the stock and the strategy are easy
to calculate:

In [56]: data[['returns', 'strategy']].mean() * 252  
Out[56]: returns    -0.019671
         strategy    0.028174
         dtype: float64

In [57]: np.exp(data[['returns', 'strategy']].mean() * 252) - 1  
Out[57]: returns    -0.019479
         strategy    0.028575
         dtype: float64

In [58]: data[['returns', 'strategy']].std() * 252 ** 0.5  
Out[58]: returns     0.085414
         strategy    0.085405
         dtype: float64

In [59]: (data[['returns', 'strategy']].apply(np.exp) - 1).std() * 252 ** 0.5  
Out[59]: returns     0.085405
         strategy    0.085373
         dtype: float64
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Calculates the annualized mean return in both log and regular space.

Calculates the annualized standard deviation in both log and regular space.

Other risk statistics often of interest in the context of trading strategy performances
are the maximum drawdown and the longest drawdown period. A helper statistic to
use in this context is the cumulative maximum gross performance as calculated by the
cummax() method applied to the gross performance of the strategy. Figure 4-5 shows
the two time series for the SMA-based strategy:

In [60]: data['cumret'] = data['strategy'].cumsum().apply(np.exp)  

In [61]: data['cummax'] = data['cumret'].cummax()  

In [62]: data[['cumret', 'cummax']].dropna().plot(figsize=(10, 6));  

Defines a new column, cumret, with the gross performance over time.

Defines yet another column with the running maximum value of the gross
performance.

Plots the two new columns of the DataFrame object.

Figure 4-5. Gross performance and cumulative maximum performance of the SMA-
based strategy
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2 For more on the datetime and timedelta objects, refer to Appendix C of Hilpisch (2018).

The maximum drawdown is then simply calculated as the maximum of the difference
between the two relevant columns. The maximum drawdown in the example is about
18 percentage points:

In [63]: drawdown = data['cummax'] - data['cumret']  

In [64]: drawdown.max()  
Out[64]: 0.17779367070195917

Calculates the element-wise difference between the two columns.

Picks out the maximum value from all differences.

The determination of the longest drawdown period is a bit more involved. It requires
those dates at which the gross performance equals its cumulative maximum (that is,
where a new maximum is set). This information is stored in a temporary object. Then
the differences in days between all such dates are calculated and the longest period is
picked out. Such periods can be only one day long or more than 100 days. Here, the
longest drawdown period lasts for 596 days—a pretty long period:2

In [65]: temp = drawdown[drawdown == 0]  

In [66]: periods = (temp.index[1:].to_pydatetime() -
                    temp.index[:-1].to_pydatetime())  

In [67]: periods[12:15]
Out[67]: array([datetime.timedelta(days=1), datetime.timedelta(days=1),
                datetime.timedelta(days=10)], dtype=object)

In [68]: periods.max()  
Out[68]: datetime.timedelta(days=596)

Where are the differences equal to zero?

Calculates the timedelta values between all index values.

Picks out the maximum timedelta value.

Vectorized backtesting with pandas is generally a rather efficient endeavor due to the
capabilities of the package and the main DataFrame class. However, the interactive
approach illustrated so far does not work well when one wishes to implement a larger
backtesting program that, for example, optimizes the parameters of an SMA-based
strategy. To this end, a more general approach is advisable.
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pandas proves to be a powerful tool for the vectorized analysis of
trading strategies. Many statistics of interest, such as log returns,
cumulative returns, annualized returns and volatility, maximum
drawdown, and maximum drawdown period, can in general be cal‐
culated by a single line or just a few lines of code. Being able to vis‐
ualize results by a simple method call is an additional benefit.

Generalizing the Approach
“SMA Backtesting Class” on page 115 presents a Python code that contains a class for
the vectorized backtesting of SMA-based trading strategies. In a sense, it is a generali‐
zation of the approach introduced in the previous sub-section. It allows one to define
an instance of the SMAVectorBacktester class by providing the following parameters:

• symbol: RIC (instrument data) to be used
• SMA1: for the time window in days for the shorter SMA
• SMA2: for the time window in days for the longer SMA
• start: for the start date of the data selection
• end: for the end date of the data selection

The application itself is best illustrated by an interactive session that makes use of the
class. The example first replicates the backtest implemented previously based on
EUR/USD exchange rate data. It then optimizes the SMA parameters for maximum
gross performance. Based on the optimal parameters, it plots the resulting gross
performance of the strategy compared to the base instrument over the relevant period
of time:

In [69]: import SMAVectorBacktester as SMA  

In [70]: smabt = SMA.SMAVectorBacktester('EUR=', 42, 252,
                                         '2010-1-1', '2019-12-31')   

In [71]: smabt.run_strategy()  
Out[71]: (1.29, 0.45)

In [72]: %%time
         smabt.optimize_parameters((30, 50, 2),
                                   (200, 300, 2))  
         CPU times: user 3.76 s, sys: 15.8 ms, total: 3.78 s
         Wall time: 3.78 s

Out[72]: (array([ 48., 238.]), 1.5)

In [73]: smabt.plot_results()  

This imports the module as SMA.
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An instance of the main class is instantiated.

Backtests the SMA-based strategy, given the parameters during instantiation.

The optimize_parameters() method takes as input parameter ranges with step
sizes and determines the optimal combination by a brute force approach.

The plot_results() method plots the strategy performance compared to the
benchmark instrument, given the currently stored parameter values (here from
the optimization procedure).

The gross performance of the strategy with the original parametrization is 1.24 or
124%. The optimized strategy yields an absolute return of 1.44 or 144% for the
parameter combination SMA1 = 48 and SMA2 = 238. Figure 4-6 shows the gross per‐
formance over time graphically, again compared to the performance of the base
instrument, which represents the benchmark.

Figure 4-6. Gross performance of EUR/USD and the optimized SMA strategy

Strategies Based on Momentum
There are two basic types of momentum strategies. The first type is cross-sectional
momentum strategies. Selecting from a larger pool of instruments, these strategies
buy those instruments that have recently outperformed relative to their peers (or a
benchmark) and sell those instruments that have underperformed. The basic idea is
that the instruments continue to outperform and underperform, respectively—at
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least for a certain period of time. Jegadeesh and Titman (1993, 2001) and Chan et al.
(1996) study these types of trading strategies and their potential sources of profit.

Cross-sectional momentum strategies have traditionally performed quite well. Jega‐
deesh and Titman (1993) write:

This paper documents that strategies which buy stocks that have performed well in the
past and sell stocks that have performed poorly in the past generate significant positive
returns over 3- to 12-month holding periods.

The second type is time series momentum strategies. These strategies buy those
instruments that have recently performed well and sell those instruments that have
recently performed poorly. In this case, the benchmark is the past returns of the
instrument itself. Moskowitz et al. (2012) analyze this type of momentum strategy in
detail across a wide range of markets. They write:

Rather than focus on the relative returns of securities in the cross-section, time series
momentum focuses purely on a security’s own past return….Our finding of time series
momentum in virtually every instrument we examine seems to challenge the “random
walk” hypothesis, which in its most basic form implies that knowing whether a price
went up or down in the past should not be informative about whether it will go up or
down in the future.

Getting into the Basics
Consider end-of-day closing prices for the gold price in USD (XAU=):

In [74]: data = pd.DataFrame(raw['XAU='])

In [75]: data.rename(columns={'XAU=': 'price'}, inplace=True)

In [76]: data['returns'] = np.log(data['price'] / data['price'].shift(1))

The most simple time series momentum strategy is to buy the stock if the last return
was positive and to sell it if it was negative. With NumPy and pandas this is easy to
formalize; just take the sign of the last available return as the market position.
Figure 4-7 illustrates the performance of this strategy. The strategy does significantly
underperform the base instrument:

In [77]: data['position'] = np.sign(data['returns'])  

In [78]: data['strategy'] = data['position'].shift(1) * data['returns']  

In [79]: data[['returns', 'strategy']].dropna().cumsum(
                     ).apply(np.exp).plot(figsize=(10, 6));  

Defines a new column with the sign (that is, 1 or –1) of the relevant log return;
the resulting values represent the market positionings (long or short).
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Calculates the strategy log returns given the market positionings.

Plots and compares the strategy performance with the benchmark instrument.

Figure 4-7. Gross performance of gold price (USD) and momentum strategy (last return
only)

Using a rolling time window, the time series momentum strategy can be generalized
to more than just the last return. For example, the average of the last three returns can
be used to generate the signal for the positioning. Figure 4-8 shows that the strategy
in this case does much better, both in absolute terms and relative to the base
instrument:

In [80]: data['position'] = np.sign(data['returns'].rolling(3).mean())  

In [81]: data['strategy'] = data['position'].shift(1) * data['returns']

In [82]: data[['returns', 'strategy']].dropna().cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));

This time, the mean return over a rolling window of three days is taken.

However, the performance is quite sensitive to the time window parameter. Choos‐
ing, for example, the last two returns instead of three leads to a much worse perfor‐
mance, as shown in Figure 4-9.
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Figure 4-8. Gross performance of gold price (USD) and momentum strategy (last three
returns)

Figure 4-9. Gross performance of gold price (USD) and momentum strategy (last two
returns)
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Time series momentum might be expected intraday, as well. Actually, one would
expect it to be more pronounced intraday than interday. Figure 4-10 shows the gross
performance of five time series momentum strategies for one, three, five, seven, and
nine return observations, respectively. The data used is intraday stock price data for
Apple Inc., as retrieved from the Eikon Data API. The figure is based on the code that
follows. Basically all strategies outperform the stock over the course of this intraday
time window, although some only slightly:

In [83]: fn = '../data/AAPL_1min_05052020.csv'  
         # fn = '../data/SPX_1min_05052020.csv'  

In [84]: data = pd.read_csv(fn, index_col=0, parse_dates=True)  

In [85]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 241 entries, 2020-05-05 16:00:00 to 2020-05-05 20:00:00
         Data columns (total 6 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   HIGH    241 non-null    float64
          1   LOW     241 non-null    float64
          2   OPEN    241 non-null    float64
          3   CLOSE   241 non-null    float64
          4   COUNT   241 non-null    float64
          5   VOLUME  241 non-null    float64
         dtypes: float64(6)
         memory usage: 13.2 KB

In [86]: data['returns'] = np.log(data['CLOSE'] /
                                  data['CLOSE'].shift(1))  

In [87]: to_plot = ['returns']  

In [88]: for m in [1, 3, 5, 7, 9]:
             data['position_%d' % m] = np.sign(data['returns'].rolling(m).mean())  
             data['strategy_%d' % m] = (data['position_%d' % m].shift(1) *
                                        data['returns'])  
             to_plot.append('strategy_%d' % m)   

In [89]: data[to_plot].dropna().cumsum().apply(np.exp).plot(
             title='AAPL intraday 05. May 2020',
             figsize=(10, 6), style=['-', '--', '--', '--', '--', '--']);  

Reads the intraday data from a CSV file.

Calculates the intraday log returns.

Defines a list object to select the columns to be plotted later.

Derives positionings according to the momentum strategy parameter.
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Calculates the resulting strategy log returns.

Appends the column name to the list object.

Plots all relevant columns to compare the strategies’ performances to the bench‐
mark instrument’s performance.

Figure 4-10. Gross intraday performance of the Apple stock and five momentum strate‐
gies (last one, three, five, seven, and nine returns)

Figure 4-11 shows the performance of the same five strategies for the S&P 500 index.
Again, all five strategy configurations outperform the index and all show a positive
return (before transaction costs).
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Figure 4-11. Gross intraday performance of the S&P 500 index and five momentum
strategies (last one, three, five, seven, and nine returns)

Generalizing the Approach
“Momentum Backtesting Class” on page 118 presents a Python module containing
the MomVectorBacktester class, which allows for a bit more standardized backtesting
of momentum-based strategies. The class has the following attributes:

• symbol: RIC (instrument data) to be used
• start: for the start date of the data selection
• end: for the end date of the data selection
• amount: for the initial amount to be invested
• tc: for the proportional transaction costs per trade

Compared to the SMAVectorBacktester class, this one introduces two important gen‐
eralizations: the fixed amount to be invested at the beginning of the backtesting
period and proportional transaction costs to get closer to market realities cost-wise.
In particular, the addition of transaction costs is important in the context of time ser‐
ies momentum strategies that often lead to a large number of transactions over time.
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The application is as straightforward and convenient as before. The example first rep‐
licates the results from the interactive session before, but this time with an initial
investment of 10,000 USD. Figure 4-12 visualizes the performance of the strategy,
taking the mean of the last three returns to generate signals for the positioning. The
second case covered is one with proportional transaction costs of 0.1% per trade. As
Figure 4-13 illustrates, even small transaction costs deteriorate the performance sig‐
nificantly in this case. The driving factor in this regard is the relatively high frequency
of trades that the strategy requires:

In [90]: import MomVectorBacktester as Mom  

In [91]: mombt = Mom.MomVectorBacktester('XAU=', '2010-1-1',
                                         '2019-12-31', 10000, 0.0)  

In [92]: mombt.run_strategy(momentum=3)  
Out[92]: (20797.87, 7395.53)

In [93]: mombt.plot_results()
In [94]: mombt = Mom.MomVectorBacktester('XAU=', '2010-1-1',
                                         '2019-12-31', 10000, 0.001)  

In [95]: mombt.run_strategy(momentum=3)  
Out[95]: (10749.4, -2652.93)

In [96]: mombt.plot_results()

Imports the module as Mom

Instantiates an object of the backtesting class defining the starting capital to be
10,000 USD and the proportional transaction costs to be zero.

Backtests the momentum strategy based on a time window of three days: the
strategy outperforms the benchmark passive investment.

This time, proportional transaction costs of 0.1% are assumed per trade.

In that case, the strategy basically loses all the outperformance.
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Figure 4-12. Gross performance of the gold price (USD) and the momentum strategy
(last three returns, no transaction costs)

Figure 4-13. Gross performance of the gold price (USD) and the momentum strategy
(last three returns, transaction costs of 0.1%)
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Strategies Based on Mean Reversion
Roughly speaking, mean-reversion strategies rely on a reasoning that is the opposite
of momentum strategies. If a financial instrument has performed “too well” relative
to its trend, it is shorted, and vice versa. To put it differently, while (time series)
momentum strategies assume a positive correlation between returns, mean-reversion
strategies assume a negative correlation. Balvers et al. (2000) write:

Mean reversion refers to a tendency of asset prices to return to a trend path.

Working with a simple moving average (SMA) as a proxy for a “trend path,” a mean-
reversion strategy in, say, the EUR/USD exchange rate can be backtested in a similar
fashion as the backtests of the SMA- and momentum-based strategies. The idea is to
define a threshold for the distance between the current stock price and the SMA,
which signals a long or short position.

Getting into the Basics
The examples that follow are for two different financial instruments for which one
would expect significant mean reversion since they are both based on the gold price:

• GLD is the symbol for SPDR Gold Shares, which is the largest physically backed
exchange traded fund (ETF) for gold (cf. SPDR Gold Shares home page).

• GDX is the symbol for the VanEck Vectors Gold Miners ETF, which invests in
equity products to track the NYSE Arca Gold Miners Index (cf. VanEck Vectors
Gold Miners overview page).

The example starts with GDX and implements a mean-reversion strategy on the basis
of an SMA of 25 days and a threshold value of 3.5 for the absolute deviation of the
current price to deviate from the SMA to signal a positioning. Figure 4-14 shows the
differences between the current price of GDX and the SMA, as well as the positive and
negative threshold value to generate sell and buy signals, respectively:

In [97]: data = pd.DataFrame(raw['GDX'])

In [98]: data.rename(columns={'GDX': 'price'}, inplace=True)

In [99]: data['returns'] = np.log(data['price'] /
                                  data['price'].shift(1))

In [100]: SMA = 25  

In [101]: data['SMA'] = data['price'].rolling(SMA).mean()  

In [102]: threshold = 3.5  

In [103]: data['distance'] = data['price'] - data['SMA']  
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In [104]: data['distance'].dropna().plot(figsize=(10, 6), legend=True)  
          plt.axhline(threshold, color='r')
          plt.axhline(-threshold, color='r')
          plt.axhline(0, color='r');

The SMA parameter is defined…

…and SMA (“trend path”) is calculated.

The threshold for the signal generation is defined.

The distance is calculated for every point in time.

The distance values are plotted.

Figure 4-14. Difference between current price of GDX and SMA, as well as threshold val‐
ues for generating mean-reversion signals

Based on the differences and the fixed threshold values, positionings can again be
derived in vectorized fashion. Figure 4-15 shows the resulting positionings:

In [105]: data['position'] = np.where(data['distance'] > threshold,
                                      -1, np.nan)  

In [106]: data['position'] = np.where(data['distance'] < -threshold,
                                      1, data['position'])  

In [107]: data['position'] = np.where(data['distance'] *
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                      data['distance'].shift(1) < 0, 0, data['position'])  

In [108]: data['position'] = data['position'].ffill().fillna(0)  

In [109]: data['position'].iloc[SMA:].plot(ylim=[-1.1, 1.1],
                                         figsize=(10, 6));  

If the distance value is greater than the threshold value, go short (set –1 in the
new column position), otherwise set NaN.

If the distance value is lower than the negative threshold value, go long (set 1),
otherwise keep the column position unchanged.

If there is a change in the sign of the distance value, go market neutral (set 0),
otherwise keep the column position unchanged.

Forward fill all NaN positions with the previous values; replace all remaining NaN
values by 0.

Plot the resulting positionings from the index position SMA on.

Figure 4-15. Positionings generated for GDX based on the mean-reversion strategy

The final step is to derive the strategy returns that are shown in Figure 4-16. The
strategy outperforms the GDX ETF by quite a margin, although the particular para‐
metrization leads to long periods with a neutral position (neither long or short).
These neutral positions are reflected in the flat parts of the strategy curve in
Figure 4-16:
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In [110]: data['strategy'] = data['position'].shift(1) * data['returns']

In [111]: data[['returns', 'strategy']].dropna().cumsum(
                  ).apply(np.exp).plot(figsize=(10, 6));

Figure 4-16. Gross performance of the GDX ETF and the mean-reversion strategy (SMA =
25, threshold = 3.5)

Generalizing the Approach
As before, the vectorized backtesting is more efficient to implement based on a
respective Python class. The class MRVectorBacktester presented in “Mean Rever‐
sion Backtesting Class” on page 120 inherits from the MomVectorBacktester class
and just replaces the run_strategy() method to accommodate for the specifics of the
mean-reversion strategy.

The example now uses GLD and sets the proportional transaction costs to 0.1%. The
initial amount to invest is again set to 10,000 USD. The SMA is 43 this time, and the
threshold value is set to 7.5. Figure 4-17 shows the performance of the mean-
reversion strategy compared to the GLD ETF:

In [112]: import MRVectorBacktester as MR  

In [113]: mrbt = MR.MRVectorBacktester('GLD', '2010-1-1', '2019-12-31',
                                       10000, 0.001)  

In [114]: mrbt.run_strategy(SMA=43, threshold=7.5)  
Out[114]: (13542.15, 646.21)
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In [115]: mrbt.plot_results()  

Imports the module as MR.

Instantiates an object of the MRVectorBacktester class with 10,000 USD initial
capital and 0.1% proportional transaction costs per trade; the strategy signifi‐
cantly outperforms the benchmark instrument in this case.

Backtests the mean-reversion strategy with an SMA value of 43 and a threshold
value of 7.5.

Plots the cumulative performance of the strategy against the base instrument.

Figure 4-17. Gross performance of the GLD ETF and the mean-reversion strategy (SMA =
43, threshold = 7.5, transaction costs of 0.1%)

Data Snooping and Overfitting
The emphasis in this chapter, as well as in the rest of this book, is on the technological
implementation of important concepts in algorithmic trading by using Python. The
strategies, parameters, data sets, and algorithms used are sometimes arbitrarily
chosen and sometimes purposefully chosen to make a certain point. Without a doubt,
when discussing technical methods applied to finance, it is more exciting and
motivating to see examples that show “good results,” even if they might not generalize
on other financial instruments or time periods, for example.
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The ability to show examples with good results often comes at the cost of data snoop‐
ing. According to White (2000), data snooping can be defined as follows:

Data snooping occurs when a given set of data is used more than once for purposes of
inference or model selection.

In other words, a certain approach might be applied multiple or even many times on
the same data set to arrive at satisfactory numbers and plots. This, of course, is intel‐
lectually dishonest in trading strategy research because it pretends that a trading
strategy has some economic potential that might not be realistic in a real-world con‐
text. Because the focus of this book is the use of Python as a programming language
for algorithmic trading, the data snooping approach might be justifiable. This is in
analogy to a mathematics book which, by way of an example, solves an equation that
has a unique solution that can be easily identified. In mathematics, such straightfor‐
ward examples are rather the exception than the rule, but they are nevertheless fre‐
quently used for didactical purposes.

Another problem that arises in this context is overfitting. Overfitting in a trading
context can be described as follows (see the Man Institute on Overfitting):

Overfitting is when a model describes noise rather than signal. The model may have
good performance on the data on which it was tested, but little or no predictive power
on new data in the future. Overfitting can be described as finding patterns that aren’t
actually there. There is a cost associated with overfitting—an overfitted strategy will
underperform in the future.

Even a simple strategy, such as the one based on two SMA values, allows for the back‐
testing of thousands of different parameter combinations. Some of those combina‐
tions are almost certain to show good performance results. As Bailey et al. (2015)
discuss in detail, this easily leads to backtest overfitting with the people responsible
for the backtesting often not even being aware of the problem. They point out:

Recent advances in algorithmic research and high-performance computing have made
it nearly trivial to test millions and billions of alternative investment strategies on a
finite dataset of financial time series….[I]t is common practice to use this computa‐
tional power to calibrate the parameters of an investment strategy in order to maxi‐
mize its performance. But because the signal-to-noise ratio is so weak, often the result
of such calibration is that parameters are chosen to profit from past noise rather than
future signal. The outcome is an overfit backtest.

The problem of the validity of empirical results, in a statistical sense, is of course not
constrained to strategy backtesting in a financial context.
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Ioannidis (2005), referring to medical publications, emphasizes probabilistic and stat‐
istical considerations when judging the reproducibility and validity of research
results:

There is increasing concern that in modern research, false findings may be the major‐
ity or even the vast majority of published research claims. However, this should not be
surprising. It can be proven that most claimed research findings are false….As has
been shown previously, the probability that a research finding is indeed true depends
on the prior probability of it being true (before doing the study), the statistical power
of the study, and the level of statistical significance.

Against this background, if a trading strategy in this book is shown to perform well
given a certain data set, combination of parameters, and maybe a specific machine
learning algorithm, this neither constitutes any kind of recommendation for the par‐
ticular configuration nor allows it to draw more general conclusions about the quality
and performance potential of the strategy configuration at hand.

You are, of course, encouraged to use the code and examples presented in this book to
explore your own algorithmic trading strategy ideas and to implement them in prac‐
tice based on your own backtesting results, validations, and conclusions. After all,
proper and diligent strategy research is what financial markets will compensate for,
not brute-force driven data snooping and overfitting.

Conclusions
Vectorization is a powerful concept in scientific computing, as well as for financial
analytics, in the context of the backtesting of algorithmic trading strategies. This
chapter introduces vectorization both with NumPy and pandas and applies it to backt‐
est three types of trading strategies: strategies based on simple moving averages,
momentum, and mean reversion. The chapter admittedly makes a number of simpli‐
fying assumptions, and a rigorous backtesting of trading strategies needs to take into
account more factors that determine trading success in practice, such as data issues,
selection issues, avoidance of overfitting, or market microstructure elements. How‐
ever, the major goal of the chapter is to focus on the concept of vectorization and
what it can do in algorithmic trading from a technological and implementation point
of view. With regard to all concrete examples and results presented, the problems of
data snooping, overfitting, and statistical significance need to be considered.
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Python Scripts
This section presents Python scripts referenced and used in this chapter.

SMA Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on simple moving averages:
#
# Python Module with Class
# for Vectorized Backtesting
# of SMA-based Strategies
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import numpy as np
import pandas as pd
from scipy.optimize import brute

class SMAVectorBacktester(object):

Python Scripts | 115



    ''' Class for the vectorized backtesting of SMA-based trading strategies.

    Attributes
    ==========
    symbol: str
        RIC symbol with which to work
    SMA1: int
        time window in days for shorter SMA
    SMA2: int
        time window in days for longer SMA
    start: str
        start date for data retrieval
    end: str
        end date for data retrieval

    Methods
    =======
    get_data:
        retrieves and prepares the base data set
    set_parameters:
        sets one or two new SMA parameters
    run_strategy:
        runs the backtest for the SMA-based strategy
    plot_results:
        plots the performance of the strategy compared to the symbol
    update_and_run:
        updates SMA parameters and returns the (negative) absolute performance
    optimize_parameters:
        implements a brute force optimization for the two SMA parameters
    '''

    def __init__(self, symbol, SMA1, SMA2, start, end):
        self.symbol = symbol
        self.SMA1 = SMA1
        self.SMA2 = SMA2
        self.start = start
        self.end = end
        self.results = None
        self.get_data()

    def get_data(self):
        ''' Retrieves and prepares the data.
        '''
        raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()
        raw = pd.DataFrame(raw[self.symbol])
        raw = raw.loc[self.start:self.end]
        raw.rename(columns={self.symbol: 'price'}, inplace=True)
        raw['return'] = np.log(raw / raw.shift(1))
        raw['SMA1'] = raw['price'].rolling(self.SMA1).mean()
        raw['SMA2'] = raw['price'].rolling(self.SMA2).mean()
        self.data = raw
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    def set_parameters(self, SMA1=None, SMA2=None):
        ''' Updates SMA parameters and resp. time series.
        '''
        if SMA1 is not None:
            self.SMA1 = SMA1
            self.data['SMA1'] = self.data['price'].rolling(
                self.SMA1).mean()
        if SMA2 is not None:
            self.SMA2 = SMA2
            self.data['SMA2'] = self.data['price'].rolling(self.SMA2).mean()

    def run_strategy(self):
        ''' Backtests the trading strategy.
        '''
        data = self.data.copy().dropna()
        data['position'] = np.where(data['SMA1'] > data['SMA2'], 1, -1)
        data['strategy'] = data['position'].shift(1) * data['return']
        data.dropna(inplace=True)
        data['creturns'] = data['return'].cumsum().apply(np.exp)
        data['cstrategy'] = data['strategy'].cumsum().apply(np.exp)
        self.results = data
        # gross performance of the strategy
        aperf = data['cstrategy'].iloc[-1]
        # out-/underperformance of strategy
        operf = aperf - data['creturns'].iloc[-1]
        return round(aperf, 2), round(operf, 2)

    def plot_results(self):
        ''' Plots the cumulative performance of the trading strategy
        compared to the symbol.
        '''
        if self.results is None:
            print('No results to plot yet. Run a strategy.')
        title = '%s | SMA1=%d, SMA2=%d' % (self.symbol,
                                               self.SMA1, self.SMA2)
        self.results[['creturns', 'cstrategy']].plot(title=title,
                                                     figsize=(10, 6))

    def update_and_run(self, SMA):
        ''' Updates SMA parameters and returns negative absolute performance
        (for minimazation algorithm).

        Parameters
        ==========
        SMA: tuple
            SMA parameter tuple
        '''
        self.set_parameters(int(SMA[0]), int(SMA[1]))
        return -self.run_strategy()[0]

    def optimize_parameters(self, SMA1_range, SMA2_range):
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        ''' Finds global maximum given the SMA parameter ranges.

        Parameters
        ==========
        SMA1_range, SMA2_range: tuple
            tuples of the form (start, end, step size)
        '''
        opt = brute(self.update_and_run, (SMA1_range, SMA2_range), finish=None)
        return opt, -self.update_and_run(opt)

if __name__ == '__main__':
    smabt = SMAVectorBacktester('EUR=', 42, 252,
                                '2010-1-1', '2020-12-31')
    print(smabt.run_strategy())
    smabt.set_parameters(SMA1=20, SMA2=100)
    print(smabt.run_strategy())
    print(smabt.optimize_parameters((30, 56, 4), (200, 300, 4)))

Momentum Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on time series momentum:

#
# Python Module with Class
# for Vectorized Backtesting
# of Momentum-Based Strategies
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import numpy as np
import pandas as pd

class MomVectorBacktester(object):
    ''' Class for the vectorized backtesting of
    momentum-based trading strategies.

    Attributes
    ==========
    symbol: str
       RIC (financial instrument) to work with
    start: str
        start date for data selection
    end: str
        end date for data selection
    amount: int, float
        amount to be invested at the beginning
    tc: float
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        proportional transaction costs (e.g., 0.5% = 0.005) per trade

    Methods
    =======
    get_data:
        retrieves and prepares the base data set
    run_strategy:
        runs the backtest for the momentum-based strategy
    plot_results:
        plots the performance of the strategy compared to the symbol
    '''

    def __init__(self, symbol, start, end, amount, tc):
        self.symbol = symbol
        self.start = start
        self.end = end
        self.amount = amount
        self.tc = tc
        self.results = None
        self.get_data()

    def get_data(self):
        ''' Retrieves and prepares the data.
        '''
        raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()
        raw = pd.DataFrame(raw[self.symbol])
        raw = raw.loc[self.start:self.end]
        raw.rename(columns={self.symbol: 'price'}, inplace=True)
        raw['return'] = np.log(raw / raw.shift(1))
        self.data = raw

    def run_strategy(self, momentum=1):
        ''' Backtests the trading strategy.
        '''
        self.momentum = momentum
        data = self.data.copy().dropna()
        data['position'] = np.sign(data['return'].rolling(momentum).mean())
        data['strategy'] = data['position'].shift(1) * data['return']
        # determine when a trade takes place
        data.dropna(inplace=True)
        trades = data['position'].diff().fillna(0) != 0
        # subtract transaction costs from return when trade takes place
        data['strategy'][trades] -= self.tc
        data['creturns'] = self.amount * data['return'].cumsum().apply(np.exp)
        data['cstrategy'] = self.amount * \
            data['strategy'].cumsum().apply(np.exp)
        self.results = data
        # absolute performance of the strategy
        aperf = self.results['cstrategy'].iloc[-1]
        # out-/underperformance of strategy
        operf = aperf - self.results['creturns'].iloc[-1]
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        return round(aperf, 2), round(operf, 2)

    def plot_results(self):
        ''' Plots the cumulative performance of the trading strategy
        compared to the symbol.
        '''
        if self.results is None:
            print('No results to plot yet. Run a strategy.')
        title = '%s | TC = %.4f' % (self.symbol, self.tc)
        self.results[['creturns', 'cstrategy']].plot(title=title,
                                                     figsize=(10, 6))

if __name__ == '__main__':
    mombt = MomVectorBacktester('XAU=', '2010-1-1', '2020-12-31',
                                10000, 0.0)
    print(mombt.run_strategy())
    print(mombt.run_strategy(momentum=2))
    mombt = MomVectorBacktester('XAU=', '2010-1-1', '2020-12-31',
                                10000, 0.001)
    print(mombt.run_strategy(momentum=2))

Mean Reversion Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on mean reversion:.

#
# Python Module with Class
# for Vectorized Backtesting
# of Mean-Reversion Strategies
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
from MomVectorBacktester import *

class MRVectorBacktester(MomVectorBacktester):
    ''' Class for the vectorized backtesting of
    mean reversion-based trading strategies.

    Attributes
    ==========
    symbol: str
        RIC symbol with which to work
    start: str
        start date for data retrieval
    end: str
        end date for data retrieval
    amount: int, float
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        amount to be invested at the beginning
    tc: float
        proportional transaction costs (e.g., 0.5% = 0.005) per trade

    Methods
    =======
    get_data:
        retrieves and prepares the base data set
    run_strategy:
        runs the backtest for the mean reversion-based strategy
    plot_results:
        plots the performance of the strategy compared to the symbol
    '''

    def run_strategy(self, SMA, threshold):
        ''' Backtests the trading strategy.
        '''
        data = self.data.copy().dropna()
        data['sma'] = data['price'].rolling(SMA).mean()
        data['distance'] = data['price'] - data['sma']
        data.dropna(inplace=True)
        # sell signals
        data['position'] = np.where(data['distance'] > threshold,
                                    -1, np.nan)
        # buy signals
        data['position'] = np.where(data['distance'] < -threshold,
                                    1, data['position'])
        # crossing of current price and SMA (zero distance)
        data['position'] = np.where(data['distance'] *
                                    data['distance'].shift(1) < 0,
                                    0, data['position'])
        data['position'] = data['position'].ffill().fillna(0)
        data['strategy'] = data['position'].shift(1) * data['return']
        # determine when a trade takes place
        trades = data['position'].diff().fillna(0) != 0
        # subtract transaction costs from return when trade takes place
        data['strategy'][trades] -= self.tc
        data['creturns'] = self.amount * \
            data['return'].cumsum().apply(np.exp)
        data['cstrategy'] = self.amount * \
            data['strategy'].cumsum().apply(np.exp)
        self.results = data
        # absolute performance of the strategy
        aperf = self.results['cstrategy'].iloc[-1]
        # out-/underperformance of strategy
        operf = aperf - self.results['creturns'].iloc[-1]
        return round(aperf, 2), round(operf, 2)

if __name__ == '__main__':
    mrbt = MRVectorBacktester('GDX', '2010-1-1', '2020-12-31',
                              10000, 0.0)
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    print(mrbt.run_strategy(SMA=25, threshold=5))
    mrbt = MRVectorBacktester('GDX', '2010-1-1', '2020-12-31',
                              10000, 0.001)
    print(mrbt.run_strategy(SMA=25, threshold=5))
    mrbt = MRVectorBacktester('GLD', '2010-1-1', '2020-12-31',
                              10000, 0.001)
    print(mrbt.run_strategy(SMA=42, threshold=7.5))
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1 The books by Guido and Müller (2016) and VanderPlas (2016) provide practical, general introductions to
machine learning with Python.

CHAPTER 5

Predicting Market Movements with
Machine Learning

Skynet begins to learn at a geometric rate. It becomes self-aware at 2:14 a.m. Eastern
time, August 29th.

—The Terminator (Terminator 2)

Recent years have seen tremendous progress in the areas of machine learning, deep
learning, and artificial intelligence. The financial industry in general and algorithmic
traders around the globe in particular also try to benefit from these technological
advances.

This chapter introduces techniques from statistics, like linear regression, and from
machine learning, like logistic regression, to predict future price movements based on
past returns. It also illustrates the use of neural networks to predict stock market
movements. This chapter, of course, cannot replace a thorough introduction to
machine learning, but it can show, from a practitioner’s point of view, how to con‐
cretely apply certain techniques to the price prediction problem. For more details,
refer to Hilpisch (2020).1

This chapter covers the following types of trading strategies:

Linear regression-based strategies
Such strategies use linear regression to extrapolate a trend or to derive a financial
instrument’s direction of future price movement.
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Machine learning-based strategies
In algorithmic trading it is generally enough to predict the direction of move‐
ment for a financial instrument as opposed to the absolute magnitude of that
movement. With this reasoning, the prediction problem basically boils down to a
classification problem of deciding whether there will be an upwards or down‐
wards movement. Different machine learning algorithms have been developed to
attack such classification problems. This chapter introduces logistic regression, as
a typical baseline algorithm, for classification.

Deep learning-based strategies
Deep learning has been popularized by such technological giants as Facebook.
Similar to machine learning algorithms, deep learning algorithms based on neu‐
ral networks allow one to attack classification problems faced in financial market
prediction.

The chapter is organized as follows. “Using Linear Regression for Market Movement
Prediction” on page 124 introduces linear regression as a technique to predict index
levels and the direction of price movements. “Using Machine Learning for Market
Movement Prediction” on page 139 focuses on machine learning and introduces
scikit-learn on the basis of linear regression. It mainly covers logistic regression as
an alternative linear model explicitly applicable to classification problems. “Using
Deep Learning for Market Movement Prediction” on page 153 introduces Keras to
predict the direction of stock market movements based on neural network
algorithms.

The major goal of this chapter is to provide practical approaches to predict future
price movements in financial markets based on past returns. The basic assumption is
that the efficient market hypothesis does not hold universally and that, similar to the
reasoning behind the technical analysis of stock price charts, the history might pro‐
vide some insights about the future that can be mined with statistical techniques. In
other words, it is assumed that certain patterns in financial markets repeat themselves
such that past observations can be leveraged to predict future price movements. More
details are covered in Hilpisch (2020).

Using Linear Regression for Market Movement Prediction
Ordinary least squares (OLS) and linear regression are decades-old statistical techni‐
ques that have proven useful in many different application areas. This section uses
linear regression for price prediction purposes. However, it starts with a quick review
of the basics and an introduction to the basic approach.
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A Quick Review of Linear Regression
Before applying linear regression, a quick review of the approach based on some
randomized data might be helpful. The example code uses NumPy to first generate an
ndarray object with data for the independent variable x. Based on this data, random‐
ized data (“noisy data”) for the dependent variable y is generated. NumPy provides two
functions, polyfit and polyval, for a convenient implementation of OLS regression
based on simple monomials. For a linear regression, the highest degree for the mono‐
mials to be used is set to 1. Figure 5-1 shows the data and the regression line:

In [1]: import os
        import random
        import numpy as np  
        from pylab import mpl, plt  
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        os.environ['PYTHONHASHSEED'] = '0'

In [2]: x = np.linspace(0, 10)  

In [3]: def set_seeds(seed=100):
            random.seed(seed)
            np.random.seed(seed)
        set_seeds() 

In [4]: y = x + np.random.standard_normal(len(x))  

In [5]: reg = np.polyfit(x, y, deg=1)  

In [6]: reg  
Out[6]: array([0.94612934, 0.22855261])

In [7]: plt.figure(figsize=(10, 6))  
        plt.plot(x, y, 'bo', label='data')  
        plt.plot(x, np.polyval(reg, x), 'r', lw=2.5,
                 label='linear regression')  
        plt.legend(loc=0);  

Imports NumPy.

Imports matplotlib.

Generates an evenly spaced grid of floats for the x values between 0 and 10.

Fixes the seed values for all relevant random number generators.

Generates the randomized data for the y values.
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OLS regression of degree 1 (that is, linear regression) is conducted.

Shows the optimal parameter values.

Creates a new figure object.

Plots the original data set as dots.

Plots the regression line.

Creates the legend.

Figure 5-1. Linear regression illustrated based on randomized data

The interval for the dependent variable x is x ∈ 0, 10 . Enlarging the interval to, say,
x ∈ 0, 20  allows one to “predict” values for the dependent variable y beyond the
domain of the original data set by an extrapolation given the optimal regression
parameters. Figure 5-2 visualizes the extrapolation:

In [8]: plt.figure(figsize=(10, 6))
        plt.plot(x, y, 'bo', label='data')
        xn = np.linspace(0, 20)  
        plt.plot(xn, np.polyval(reg, xn), 'r', lw=2.5,
                 label='linear regression')
        plt.legend(loc=0);

Generates an enlarged domain for the x values.
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Figure 5-2. Prediction (extrapolation) based on linear regression

The Basic Idea for Price Prediction
Price prediction based on time series data has to deal with one special feature: the
time-based ordering of the data. Generally, the ordering of the data is not important
for the application of linear regression. In the first example in the previous section,
the data on which the linear regression is implemented could have been compiled in
completely different orderings, while keeping the x and y pairs constant. Independent
of the ordering, the optimal regression parameters would have been the same.

However, in the context of predicting tomorrow’s index level, for example, it seems to
be of paramount importance to have the historic index levels in the correct order. If
this is the case, one would then try to predict tomorrow’s index level given the index
level of today, yesterday, the day before, etc. The number of days used as input is gen‐
erally called lags. Using today’s index level and the two more from before therefore
translates into three lags.

The next example casts this idea again into a rather simple context. The data the
example uses are the numbers from 0 to 11:

In [9]: x = np.arange(12)

In [10]: x
Out[10]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

Assume three lags for the regression. This implies three independent variables for the
regression and one dependent one. More concretely, 0, 1, and 2 are values of the
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independent variables, while 3 would be the corresponding value for the dependent
variable. Moving forward on step (“in time”), the values are 1, 2, and 3, as well as 4.
The final combination of values is 8, 9, and 10 with 11. The problem, therefore, is to
cast this idea formally into a linear equation of the form A · x = b where A is a matrix
and x and b are vectors:

In [11]: lags = 3  

In [12]: m = np.zeros((lags + 1, len(x) - lags))  

In [13]: m[lags] = x[lags:]  
         for i in range(lags):  
             m[i] = x[i:i - lags]  

In [14]: m.T  
Out[14]: array([[ 0.,  1.,  2.,  3.],
                [ 1.,  2.,  3.,  4.],
                [ 2.,  3.,  4.,  5.],
                [ 3.,  4.,  5.,  6.],
                [ 4.,  5.,  6.,  7.],
                [ 5.,  6.,  7.,  8.],
                [ 6.,  7.,  8.,  9.],
                [ 7.,  8.,  9., 10.],
                [ 8.,  9., 10., 11.]])

Defines the number of lags.

Instantiates an ndarray object with the appropriate dimensions.

Defines the target values (dependent variable).

Iterates over the numbers from 0 to lags - 1.

Defines the basis vectors (independent variables)

Shows the transpose of the ndarray object m.

In the transposed ndarray object m, the first three columns contain the values for the
three independent variables. They together form the matrix A. The fourth and final
column represents the vector b. As a result, linear regression then yields the missing
vector x. Since there are now more independent variables, polyfit and polyval do
not work anymore. However, there is a function in the NumPy sub-package for linear
algebra (linalg) that allows one to solve general least-squares problems: lstsq. Only
the first element of the results array is needed since it contains the optimal regression
parameters:

In [15]: reg = np.linalg.lstsq(m[:lags].T, m[lags], rcond=None)[0]  
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In [16]: reg  
Out[16]: array([-0.66666667,  0.33333333,  1.33333333])

In [17]: np.dot(m[:lags].T, reg)  
Out[17]: array([ 3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11.])

Implements the linear OLS regression.

Prints out the optimal parameters.

The dot product yields the prediction results.

This basic idea easily carries over to real-world financial time series data.

Predicting Index Levels
The next step is to translate the basic approach to time series data for a real financial
instrument, like the EUR/USD exchange rate:

In [18]: import pandas as pd  

In [19]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                           index_col=0, parse_dates=True).dropna()  

In [20]: raw.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
         Data columns (total 12 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   AAPL.O  2516 non-null   float64
          1   MSFT.O  2516 non-null   float64
          2   INTC.O  2516 non-null   float64
          3   AMZN.O  2516 non-null   float64
          4   GS.N    2516 non-null   float64
          5   SPY     2516 non-null   float64
          6   .SPX    2516 non-null   float64
          7   .VIX    2516 non-null   float64
          8   EUR=    2516 non-null   float64
          9   XAU=    2516 non-null   float64
          10  GDX     2516 non-null   float64
          11  GLD     2516 non-null   float64
         dtypes: float64(12)
         memory usage: 255.5 KB

In [21]: symbol = 'EUR='

In [22]: data = pd.DataFrame(raw[symbol])  

In [23]: data.rename(columns={symbol: 'price'}, inplace=True)  
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Imports the pandas package.

Retrieves end-of-day (EOD) data and stores it in a DataFrame object.

The time series data for the specified symbol is selected from the original Data
Frame.

Renames the single column to price.

Formally, the Python code from the preceding simple example hardly needs to be
changed to implement the regression-based prediction approach. Just the data object
needs to be replaced:

In [24]: lags = 5

In [25]: cols = []
         for lag in range(1, lags + 1):
             col = f'lag_{lag}'
             data[col] = data['price'].shift(lag) 
             cols.append(col)
         data.dropna(inplace=True)

In [26]: reg = np.linalg.lstsq(data[cols], data['price'],
                               rcond=None)[0]

In [27]: reg
Out[27]: array([ 0.98635864,  0.02292172, -0.04769849,  0.05037365,
          -0.01208135])

Takes the price column and shifts it by lag.

The optimal regression parameters illustrate what is typically called the random walk
hypothesis. This hypothesis states that stock prices or exchange rates, for example, fol‐
low a random walk with the consequence that the best predictor for tomorrow’s price
is today’s price. The optimal parameters seem to support such a hypothesis since
today’s price almost completely explains the predicted price level for tomorrow. The
four other values hardly have any weight assigned.

Figure 5-3 shows the EUR/USD exchange rate and the predicted values. Due to the
sheer amount of data for the multi-year time window, the two time series are indistin‐
guishable in the plot:

In [28]: data['prediction'] = np.dot(data[cols], reg)  

In [29]: data[['price', 'prediction']].plot(figsize=(10, 6));  
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Calculates the prediction values as the dot product.

Plots the price and prediction columns.

Figure 5-3. EUR/USD exchange rate and predicted values based on linear regression
(five lags)

Zooming in by plotting the results for a much shorter time window allows one to bet‐
ter distinguish the two time series. Figure 5-4 shows the results for a three months
time window. This plot illustrates that the prediction for tomorrow’s rate is roughly
today’s rate. The prediction is more or less a shift of the original rate to the right by
one trading day:

In [30]: data[['price', 'prediction']].loc['2019-10-1':].plot(
                     figsize=(10, 6));

Applying linear OLS regression to predict rates for EUR/USD
based on historical rates provides support for the random walk
hypothesis. The results of the numerical example show that today’s
rate is the best predictor for tomorrow’s rate in a least-squares
sense.
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Figure 5-4. EUR/USD exchange rate and predicted values based on linear regression
(five lags, three months only)

Predicting Future Returns
So far, the analysis is based on absolute rate levels. However, (log) returns might be a
better choice for such statistical applications due to, for example, their characteristic
of making the time series data stationary. The code to apply linear regression to the
returns data is almost the same as before. This time it is not only today’s return that is
relevant to predict tomorrow’s return, but the regression results are also completely
different in nature:

In [31]: data['return'] = np.log(data['price'] /
                                  data['price'].shift(1))  

In [32]: data.dropna(inplace=True)  

In [33]: cols = []
         for lag in range(1, lags + 1):
             col = f'lag_{lag}'
             data[col] = data['return'].shift(lag) 
             cols.append(col)
         data.dropna(inplace=True)

In [34]: reg = np.linalg.lstsq(data[cols], data['return'],
                               rcond=None)[0]

In [35]: reg
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Out[35]: array([-0.015689  ,  0.00890227, -0.03634858,  0.01290924,
          -0.00636023])

Calculates the log returns.

Deletes all lines with NaN values.

Takes the returns column for the lagged data.

Figure 5-5 shows the returns data and the prediction values. As the figure impres‐
sively illustrates, linear regression obviously cannot predict the magnitude of future
returns to some significant extent:

In [36]: data['prediction'] = np.dot(data[cols], reg)

In [37]: data[['return', 'prediction']].iloc[lags:].plot(figsize=(10, 6));

Figure 5-5. EUR/USD log returns and predicted values based on linear regression (five
lags)

From a trading point of view, one might argue that it is not the magnitude of the fore‐
casted return that is relevant, but rather whether the direction is forecasted correctly
or not. To this end, a simple calculation yields an overview. Whenever the linear
regression gets the direction right, meaning that the sign of the forecasted return is
correct, the product of the market return and the predicted return is positive and
otherwise negative.
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In the example case, the prediction is 1,250 times correct and 1,242 wrong, which
translates into a hit ratio of about 49.9%, or almost exactly 50%:

In [38]: hits = np.sign(data['return'] *
                        data['prediction']).value_counts()  

In [39]: hits  
Out[39]:  1.0    1250
         -1.0    1242
          0.0      13
         dtype: int64

In [40]: hits.values[0] / sum(hits)  
Out[40]: 0.499001996007984

Calculates the product of the market and predicted return, takes the sign of the
results and counts the values.

Prints out the counts for the two possible values.

Calculates the hit ratio defined as the number of correct predictions given all
predictions.

Predicting Future Market Direction
The question that arises is whether one can improve on the hit ratio by directly
implementing the linear regression based on the sign of the log returns that serve as
the dependent variable values. In theory at least, this simplifies the problem from pre‐
dicting an absolute return value to the sign of the return value. The only change in
the Python code to implement this reasoning is to use the sign values (that is, 1.0 or
-1.0 in Python) for the regression step. This indeed increases the number of hits to
1,301 and the hit ratio to about 51.9%—an improvement of two percentage points:

In [41]: reg = np.linalg.lstsq(data[cols], np.sign(data['return']),
                               rcond=None)[0]  

In [42]: reg
Out[42]: array([-5.11938725, -2.24077248, -5.13080606, -3.03753232,
          -2.14819119])

In [43]: data['prediction'] = np.sign(np.dot(data[cols], reg))  

In [44]: data['prediction'].value_counts()
Out[44]:  1.0    1300
         -1.0    1205
         Name: prediction, dtype: int64

In [45]: hits = np.sign(data['return'] *
                        data['prediction']).value_counts()
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2 See, for example, the discussion in The Tale of 10 Days.

In [46]: hits
Out[46]:  1.0    1301
         -1.0    1191
          0.0      13
         dtype: int64

In [47]: hits.values[0] / sum(hits)
Out[47]: 0.5193612774451097

This directly uses the sign of the return to be predicted for the regression.

Also, for the prediction step, only the sign is relevant.

Vectorized Backtesting of Regression-Based Strategy
The hit ratio alone does not tell too much about the economic potential of a trading
strategy using linear regression in the way presented so far. It is well known that the
ten best and worst days in the markets for a given period of time considerably influ‐
ence the overall performance of investments.2 In an ideal world, a long-short trader
would try, of course, to benefit from both best and worst days by going long and
short, respectively, on the basis of appropriate market timing indicators. Translated to
the current context, this implies that, in addition to the hit ratio, the quality of the
market timing matters. Therefore, a backtesting along the lines of the approach in
Chapter 4 can give a better picture of the value of regression for prediction.

Given the data that is already available, vectorized backtesting boils down to two lines
of Python code including visualization. This is due to the fact that the prediction val‐
ues already reflect the market positions (long or short). Figure 5-6 shows that, in-
sample, the strategy under the current assumptions outperforms the market
significantly (ignoring, among other things, transaction costs):

In [48]: data.head()
Out[48]:              price     lag_1     lag_2     lag_3     lag_4     lag_5  \
         Date
         2010-01-20  1.4101 -0.005858 -0.008309 -0.000551  0.001103 -0.001310
         2010-01-21  1.4090 -0.013874 -0.005858 -0.008309 -0.000551  0.001103
         2010-01-22  1.4137 -0.000780 -0.013874 -0.005858 -0.008309 -0.000551
         2010-01-25  1.4150  0.003330 -0.000780 -0.013874 -0.005858 -0.008309
         2010-01-26  1.4073  0.000919  0.003330 -0.000780 -0.013874 -0.005858

                     prediction    return
         Date
         2010-01-20         1.0 -0.013874
         2010-01-21         1.0 -0.000780
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         2010-01-22         1.0  0.003330
         2010-01-25         1.0  0.000919
         2010-01-26         1.0 -0.005457

In [49]: data['strategy'] = data['prediction'] * data['return']  

In [50]: data[['return', 'strategy']].sum().apply(np.exp)  
Out[50]: return      0.784026
         strategy    1.654154
         dtype: float64

In [51]: data[['return', 'strategy']].dropna().cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));  

Multiplies the prediction values (positionings) by the market returns.

Calculates the gross performance of the base instrument and the strategy.

Plots the gross performance of the base instrument and the strategy over time
(in-sample, no transaction costs).

Figure 5-6. Gross performance of EUR/USD and the regression-based strategy (five lags)
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The hit ratio of a prediction-based strategy is only one side of the
coin when it comes to overall strategy performance. The other side
is how well the strategy gets the market timing right. A strategy
correctly predicting the best and worst days over a certain period of
time might outperform the market even with a hit ratio below 50%.
On the other hand, a strategy with a hit ratio well above 50% might
still underperform the base instrument if it gets the rare, large
movements wrong.

Generalizing the Approach
“Linear Regression Backtesting Class” on page 167 presents a Python module con‐
taining a class for the vectorized backtesting of the regression-based trading strategy
in the spirit of Chapter 4. In addition to allowing for an arbitrary amount to invest
and proportional transaction costs, it allows the in-sample fitting of the linear regres‐
sion model and the out-of-sample evaluation. This means that the regression model is
fitted based on one part of the data set, say for the years 2010 to 2015, and is evalu‐
ated based on another part of the data set, say for the years 2016 and 2019. For all
strategies that involve an optimization or fitting step, this provides a more realistic
view on the performance in practice since it helps avoid the problems arising from
data snooping and the overfitting of models (see also “Data Snooping and Overfit‐
ting” on page 111).

Figure 5-7 shows that the regression-based strategy based on five lags does outper‐
form the EUR/USD base instrument for the particular configuration also out-of-
sample and before accounting for transaction costs:

In [52]: import LRVectorBacktester as LR  

In [53]: lrbt = LR.LRVectorBacktester('EUR=', '2010-1-1', '2019-12-31',
                                              10000, 0.0)  

In [54]: lrbt.run_strategy('2010-1-1', '2019-12-31',
                           '2010-1-1', '2019-12-31', lags=5)  
Out[54]: (17166.53, 9442.42)

In [55]: lrbt.run_strategy('2010-1-1', '2017-12-31',
                           '2018-1-1', '2019-12-31', lags=5)  
Out[55]: (10160.86, 791.87)

In [56]: lrbt.plot_results()  

Imports the module as LR.

Instantiates an object of the LRVectorBacktester class.

Trains and evaluates the strategy on the same data set.
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Uses two different data sets for the training and evaluation steps.

Plots the out of sample strategy performance compared to the market.

Figure 5-7. Gross performance of EUR/USD and the regression-based strategy (five lags,
out-of-sample, before transaction costs)

Consider the GDX ETF. The strategy configuration chosen shows an outperformance
out-of-sample and after taking transaction costs into account (see Figure 5-8):

In [57]: lrbt = LR.LRVectorBacktester('GDX', '2010-1-1', '2019-12-31',
                                              10000, 0.002)  

In [58]: lrbt.run_strategy('2010-1-1', '2019-12-31',
                           '2010-1-1', '2019-12-31', lags=7)
Out[58]: (23642.32, 17649.69)

In [59]: lrbt.run_strategy('2010-1-1', '2014-12-31',
                           '2015-1-1', '2019-12-31', lags=7)
Out[59]: (28513.35, 14888.41)

In [60]: lrbt.plot_results()

Changes to the time series data for GDX.
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Figure 5-8. Gross performance of the GDX ETF and the regression-based strategy (seven
lags, out-of-sample, after transaction costs)

Using Machine Learning for Market Movement Prediction
Nowadays, the Python ecosystem provides a number of packages in the machine
learning field. The most popular of these is scikit-learn (see scikit-learn home
page), which is also one of the best documented and maintained packages. This sec‐
tion first introduces the API of the package based on linear regression, replicating
some of the results of the previous section. It then goes on to use logistic regression as
a classification algorithm to attack the problem of predicting the future market
direction.

Linear Regression with scikit-learn
To introduce the scikit-learn API, revisiting the basic idea behind the prediction
approach presented in this chapter is fruitful. Data preparation is the same as with
NumPy only:

In [61]: x = np.arange(12)

In [62]: x
Out[62]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

In [63]: lags = 3

In [64]: m = np.zeros((lags + 1, len(x) - lags))
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In [65]: m[lags] = x[lags:]
         for i in range(lags):
             m[i] = x[i:i - lags]

Using scikit-learn for our purposes mainly consists of three steps:

1. Model selection: a model is to be picked and instantiated.
2. Model fitting: the model is to be fitted to the data at hand.
3. Prediction: given the fitted model, the prediction is conducted.

To apply linear regression, this translates into the following code that makes use of
the linear_model sub-package for generalized linear models (see scikit-learn lin‐
ear models page). By default, the LinearRegression model fits an intercept value:

In [66]: from sklearn import linear_model  

In [67]: lm = linear_model.LinearRegression()  

In [68]: lm.fit(m[:lags].T, m[lags])  
Out[68]: LinearRegression()

In [69]: lm.coef_  
Out[69]: array([0.33333333, 0.33333333, 0.33333333])

In [70]: lm.intercept_  
Out[70]: 2.0

In [71]: lm.predict(m[:lags].T)  
Out[71]: array([ 3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11.])

Imports the generalized linear model classes.

Instantiates a linear regression model.

Fits the model to the data.

Prints out the optimal regression parameters.

Prints out the intercept values.

Predicts the sought after values given the fitted model.

Setting the parameter fit_intercept to False gives the exact same regression results
as with NumPy and polyfit():

In [72]: lm = linear_model.LinearRegression(fit_intercept=False)  

In [73]: lm.fit(m[:lags].T, m[lags])
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Out[73]: LinearRegression(fit_intercept=False)

In [74]: lm.coef_
Out[74]: array([-0.66666667,  0.33333333,  1.33333333])

In [75]: lm.intercept_
Out[75]: 0.0

In [76]: lm.predict(m[:lags].T)
Out[76]: array([ 3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11.])

Forces a fit without intercept value.

This example already illustrates quite well how to apply scikit-learn to the predic‐
tion problem. Due to its consistent API design, the basic approach carries over to
other models, as well.

A Simple Classification Problem
In a classification problem, it has to be decided to which of a limited set of categories
(“classes”) a new observation belongs. A classical problem studied in machine learn‐
ing is the identification of handwritten digits from 0 to 9. Such an identification leads
to a correct result, say 3. Or it leads to a wrong result, say 6 or 8, where all such wrong
results are equally wrong. In a financial market context, predicting the price of a
financial instrument can lead to a numerical result that is far off the correct one or
that is quite close to it. Predicting tomorrow’s market direction, there can only be a
correct or a (“completely”) wrong result. The latter is a classification problem with the
set of categories limited to, for example, “up” and “down” or “+1” and “–1” or “1” and
“0.” By contrast, the former problem is an estimation problem.

A simple example for a classification problem is found on Wikipedia under Logistic
Regression. The data set relates the number of hours studied to prepare for an exam
by a number of students to the success of each student in passing the exam or not.
While the number of hours studied is a real number (float object), the passing of the
exam is either True or False (that is, 1 or 0 in numbers). Figure 5-9 shows the data
graphically:

In [77]: hours = np.array([0.5, 0.75, 1., 1.25, 1.5, 1.75, 1.75, 2.,
                           2.25, 2.5, 2.75, 3., 3.25, 3.5, 4., 4.25,
                           4.5, 4.75, 5., 5.5])  

In [78]: success = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
                             0, 1, 1, 1, 1, 1, 1])  

In [79]: plt.figure(figsize=(10, 6))
         plt.plot(hours, success, 'ro')  
         plt.ylim(-0.2, 1.2);  
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The number of hours studied by the different students (sequence matters).

The success of each student in passing the exam (sequence matters).

Plots the data set taking hours as x values and success as y values.

Adjusts the limits of the y-axis.

Figure 5-9. Example data for classification problem

The basic question typically raised in a such a context is: given a certain number of
hours studied by a student (not in the data set), will they pass the exam or not? What
answer could linear regression give? Probably not one that is satisfying, as
Figure 5-10 shows. Given different numbers of hours studied, linear regression gives
(prediction) values mainly between 0 and 1, as well as lower and higher. But there can
only be failure or success as the outcome of taking the exam:

In [80]: reg = np.polyfit(hours, success, deg=1)  

In [81]: plt.figure(figsize=(10, 6))
         plt.plot(hours, success, 'ro')
         plt.plot(hours, np.polyval(reg, hours), 'b')  
         plt.ylim(-0.2, 1.2);

Implements a linear regression on the data set.

Plots the regression line in addition to the data set.
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Figure 5-10. Linear regression applied to the classification problem

This is where classification algorithms, like logistic regression and support vector
machines, come into play. For illustration, the application of logistic regression suffi‐
ces (see James et al. (2013, ch. 4) for more background information). The respective
class is also found in the linear_model sub-package. Figure 5-11 shows the result of
the following Python code. This time, there is a clear cut (prediction) value for every
different input value. The model predicts that students who studied for 0 to 2 hours
will fail. For all values equal to or higher than 2.75 hours, the model predicts that a
student passes the exam:

In [82]: lm = linear_model.LogisticRegression(solver='lbfgs')  

In [83]: hrs = hours.reshape(1, -1).T  

In [84]: lm.fit(hrs, success)  
Out[84]: LogisticRegression()

In [85]: prediction = lm.predict(hrs)  

In [86]: plt.figure(figsize=(10, 6))
         plt.plot(hours, success, 'ro', label='data')
         plt.plot(hours, prediction, 'b', label='prediction')
         plt.legend(loc=0)
         plt.ylim(-0.2, 1.2);
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Instantiates the logistic regression model.

Reshapes the one-dimensional ndarray object to a two-dimensional one
(required by scikit-learn).

Implements the fitting step.

Implements the prediction step given the fitted model.

Figure 5-11. Logistic regression applied to the classification problem

However, as Figure 5-11 shows, there is no guarantee that 2.75 hours or more lead to
success. It is just “more probable” to succeed from that many hours on than to fail.
This probabilistic reasoning can also be analyzed and visualized based on the same
model instance, as the following code illustrates. The dashed line in Figure 5-12
shows the probability for succeeding (monotonically increasing). The dash-dotted
line shows the probability for failing (monotonically decreasing):

In [87]: prob = lm.predict_proba(hrs)  

In [88]: plt.figure(figsize=(10, 6))
         plt.plot(hours, success, 'ro')
         plt.plot(hours, prediction, 'b')
         plt.plot(hours, prob.T[0], 'm--',
                  label='$p(h)$ for zero')  
         plt.plot(hours, prob.T[1], 'g-.',
                  label='$p(h)$ for one')  
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         plt.ylim(-0.2, 1.2)
         plt.legend(loc=0);

Predicts probabilities for succeeding and failing, respectively.

Plots the probabilities for failing.

Plots the probabilities for succeeding.

Figure 5-12. Probabilities for succeeding and failing, respectively, based on logistic
regression

scikit-learn does a good job of providing access to a great variety
of machine learning models in a unified way. The examples show
that the API for applying logistic regression does not differ from
the one for linear regression. scikit-learn, therefore, is well
suited to test a number of appropriate machine learning models in
a certain application scenario without altering the Python code
very much.

Equipped with the basics, the next step is to apply logistic regression to the problem
of predicting market direction.
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Using Logistic Regression to Predict Market Direction
In machine learning, one generally speaks of features instead of independent or
explanatory variables as in a regression context. The simple classification example has
a single feature only: the number of hours studied. In practice, one often has more
than one feature that can be used for classification. Given the prediction approach
introduced in this chapter, one can identify a feature by a lag. Therefore, working with
three lags from the time series data means that there are three features. As possible
outcomes or categories, there are only +1 and -1 for an upwards and a downwards
movement, respectively. Although the wording changes, the formalism stays the
same, particularly with regard to deriving the matrix, now called the feature matrix.

The following code presents an alternative to creating a pandas DataFrame based “fea‐
ture matrix” to which the three step procedure applies equally well—if not in a more
Pythonic fashion. The feature matrix now is a sub-set of the columns in the original
data set:

In [89]: symbol = 'GLD'

In [90]: data = pd.DataFrame(raw[symbol])

In [91]: data.rename(columns={symbol: 'price'}, inplace=True)

In [92]: data['return'] = np.log(data['price'] / data['price'].shift(1))

In [93]: data.dropna(inplace=True)

In [94]: lags = 3

In [95]: cols = []  
         for lag in range(1, lags + 1):
             col = 'lag_{}'.format(lag)  
             data[col] = data['return'].shift(lag)  
             cols.append(col)  

In [96]: data.dropna(inplace=True)  

Instantiates an empty list object to collect column names.

Creates a str object for the column name.

Adds a new column to the DataFrame object with the respective lag data.

Appends the column name to the list object.

Makes sure that the data set is complete.
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Logistic regression improves the hit ratio compared to linear regression by more than
a percentage point to about 54.5%. Figure 5-13 shows the performance of the strategy
based on logistic regression-based predictions. Although the hit ratio is higher, the
performance is worse than with linear regression:

In [97]: from sklearn.metrics import accuracy_score

In [98]: lm = linear_model.LogisticRegression(C=1e7, solver='lbfgs',
                                              multi_class='auto',
                                              max_iter=1000)  

In [99]: lm.fit(data[cols], np.sign(data['return']))  
Out[99]: LogisticRegression(C=10000000.0, max_iter=1000)

In [100]: data['prediction'] = lm.predict(data[cols])  

In [101]: data['prediction'].value_counts()  
Out[101]:  1.0    1983
          -1.0     529
          Name: prediction, dtype: int64

In [102]: hits = np.sign(data['return'].iloc[lags:] *
                         data['prediction'].iloc[lags:]
                        ).value_counts()  

In [103]: hits
Out[103]:  1.0    1338
          -1.0    1159
           0.0      12
          dtype: int64

In [104]: accuracy_score(data['prediction'],
                         np.sign(data['return']))  
Out[104]: 0.5338375796178344

In [105]: data['strategy'] = data['prediction'] * data['return']  

In [106]: data[['return', 'strategy']].sum().apply(np.exp)  
Out[106]: return      1.289478
          strategy    2.458716
          dtype: float64

In [107]: data[['return', 'strategy']].cumsum().apply(np.exp).plot(
                                                  figsize=(10, 6));  

Instantiates the model object using a C value that gives less weight to the regulari‐
zation term (see the Generalized Linear Models page).

Fits the model based on the sign of the returns to be predicted.
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Generates a new column in the DataFrame object and writes the prediction values
to it.

Shows the number of the resulting long and short positions, respectively.

Calculates the number of correct and wrong predictions.

The accuracy (hit ratio) is 53.3% in this case.

However, the gross performance of the strategy…

…is much higher when compared with the passive benchmark investment.

Figure 5-13. Gross performance of GLD ETF and the logistic regression-based strategy (3
lags, in-sample)

Increasing the number of lags used from three to five decreases the hit ratio but
improves the gross performance of the strategy to some extent (in-sample, before
transaction costs). Figure 5-14 shows the resulting performance:

In [108]: data = pd.DataFrame(raw[symbol])

In [109]: data.rename(columns={symbol: 'price'}, inplace=True)

In [110]: data['return'] = np.log(data['price'] / data['price'].shift(1))

In [111]: lags = 5
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In [112]: cols = []
          for lag in range(1, lags + 1):
              col = 'lag_%d' % lag
              data[col] = data['price'].shift(lag)  
              cols.append(col)

In [113]: data.dropna(inplace=True)

In [114]: lm.fit(data[cols], np.sign(data['return']))  
Out[114]: LogisticRegression(C=10000000.0, max_iter=1000)

In [115]: data['prediction'] = lm.predict(data[cols])

In [116]: data['prediction'].value_counts()  
Out[116]:  1.0    2047
          -1.0     464
          Name: prediction, dtype: int64

In [117]: hits = np.sign(data['return'].iloc[lags:] *
                         data['prediction'].iloc[lags:]
                        ).value_counts()

In [118]: hits
Out[118]:  1.0    1331
          -1.0    1163
           0.0      12
          dtype: int64

In [119]: accuracy_score(data['prediction'],
                         np.sign(data['return']))  
Out[119]: 0.5312624452409399

In [120]: data['strategy'] = data['prediction'] * data['return']  

In [121]: data[['return', 'strategy']].sum().apply(np.exp)  
Out[121]: return      1.283110
          strategy    2.656833
          dtype: float64

In [122]: data[['return', 'strategy']].cumsum().apply(np.exp).plot(
                                                  figsize=(10, 6));

Increases the number of lags to five.

Fits the model based on five lags.

There are now significantly more short positions with the new parametrization.

The accuracy (hit ratio) decreases to 53.1%.

The cumulative performance also increases significantly.
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Figure 5-14. Gross performance of GLD ETF and the logistic regression-based strategy
(five lags, in-sample)

You have to be careful to not fall into the overfitting trap here. A
more realistic picture is obtained by an approach that uses training
data (= in-sample data) for the fitting of the model and test data (=
out-of-sample data) for the evaluation of the strategy performance.
This is done in the following section, when the approach is general‐
ized again in the form of a Python class.

Generalizing the Approach
“Classification Algorithm Backtesting Class” on page 170 presents a Python module
with a class for the vectorized backtesting of strategies based on linear models from
scikit-learn. Although only linear and logistic regression are implemented, the
number of models is easily increased. In principle, the ScikitVectorBacktester
class could inherit selected methods from the LRVectorBacktester but it is presented
in a self-contained fashion. This makes it easier to enhance and reuse this class for
practical applications.

Based on the ScikitBacktesterClass, an out-of-sample evaluation of the logistic
regression-based strategy is possible. The example uses the EUR/USD exchange rate
as the base instrument.
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Figure 5-15 illustrates that the strategy outperforms the base instrument during the
out-of-sample period (spanning the year 2019) however, without considering trans‐
action costs as before:

In [123]: import ScikitVectorBacktester as SCI

In [124]: scibt = SCI.ScikitVectorBacktester('EUR=',
                                             '2010-1-1', '2019-12-31',
                                             10000, 0.0, 'logistic')

In [125]: scibt.run_strategy('2015-1-1', '2019-12-31',
                             '2015-1-1', '2019-12-31', lags=15)
Out[125]: (12192.18, 2189.5)

In [126]: scibt.run_strategy('2016-1-1', '2018-12-31',
                             '2019-1-1', '2019-12-31', lags=15)
Out[126]: (10580.54, 729.93)

In [127]: scibt.plot_results()

Figure 5-15. Gross performance of S&P 500 and the out-of-sample logistic regression-
based strategy (15 lags, no transaction costs)

As another example, consider the same strategy applied to the GDX ETF, for which an
out-of-sample outperformance (over the year 2018) is shown in Figure 5-16 (before
transaction costs):

In [128]: scibt = SCI.ScikitVectorBacktester('GDX',
                                             '2010-1-1', '2019-12-31',
                                             10000, 0.00, 'logistic')
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In [129]: scibt.run_strategy('2013-1-1', '2017-12-31',
                             '2018-1-1', '2018-12-31', lags=10)
Out[129]: (12686.81, 4032.73)

In [130]: scibt.plot_results()

Figure 5-16. Gross performance of GDX ETF and the logistic regression-based strategy (10
lags, out-of-sample, no transaction costs)

Figure 5-17 shows how the gross performance is diminished—leading even to a net
loss—when taking transaction costs into account, while keeping all other parameters
constant:

In [131]: scibt = SCI.ScikitVectorBacktester('GDX',
                                             '2010-1-1', '2019-12-31',
                                             10000, 0.0025, 'logistic')

In [132]: scibt.run_strategy('2013-1-1', '2017-12-31',
                             '2018-1-1', '2018-12-31', lags=10)
Out[132]: (9588.48, 934.4)

In [133]: scibt.plot_results()
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Figure 5-17. Gross performance of GDX ETF and the logistic regression-based strategy (10
lags, out-of-sample, with transaction costs)

Applying sophisticated machine learning techniques to stock mar‐
ket prediction often yields promising results early on. In several
examples, the strategies backtested outperform the base instrument
significantly in-sample. Quite often, such stellar performances are
due to a mix of simplifying assumptions and also due to an overfit‐
ting of the prediction model. For example, testing the very same
strategy instead of in-sample on an out-of-sample data set and
adding transaction costs—as two ways of getting to a more realistic
picture—often shows that the performance of the considered strat‐
egy “suddenly” trails the base instrument performance-wise or
turns to a net loss.

Using Deep Learning for Market Movement Prediction
Right from the open sourcing and publication by Google, the deep learning library
TensorFlow has attracted much interest and wide-spread application. This section
applies TensorFlow in the same way that the previous section applied scikit-learn
to the prediction of stock market movements modeled as a classification problem. 
However, TensorFlow is not used directly; it is rather used via the equally popular
Keras deep learning package. Keras can be thought of as providing a higher level
abstraction to the TensorFlow package with an easier to understand and use API.
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3 For details, see https://oreil.ly/hOwsE.

The libraries are best installed via pip install tensorflow and pip install

keras. scikit-learn also offers classes to apply neural networks to classification
problems.

For more background information on deep learning and Keras, see Goodfellow et al.
(2016) and Chollet (2017), respectively.

The Simple Classification Problem Revisited
To illustrate the basic approach of applying neural networks to classification prob‐
lems, the simple classification problem introduced in the previous section again
proves useful:

In [134]: hours = np.array([0.5, 0.75, 1., 1.25, 1.5, 1.75, 1.75, 2.,
                            2.25, 2.5, 2.75, 3., 3.25, 3.5, 4., 4.25,
                            4.5, 4.75, 5., 5.5])

In [135]: success = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
                              0, 1, 1, 1, 1, 1, 1])

In [136]: data = pd.DataFrame({'hours': hours, 'success': success})  

In [137]: data.info()  
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 20 entries, 0 to 19
          Data columns (total 2 columns):
           #   Column   Non-Null Count  Dtype
          ---  ------   --------------  -----
           0   hours    20 non-null     float64
           1   success  20 non-null     int64
          dtypes: float64(1), int64(1)
          memory usage: 448.0 bytes

Stores the two data sub-sets in a DataFrame object.

Prints out the meta information for the DataFrame object.

With these preparations, MLPClassifier from scikit-learn can be imported and
straightforwardly applied.3 “MLP” in this context stands for multi-layer perceptron,
which is another expression for dense neural network. As before, the API to apply
neural networks with scikit-learn is basically the same:

In [138]: from sklearn.neural_network import MLPClassifier  

In [139]: model = MLPClassifier(hidden_layer_sizes=[32],
                               max_iter=1000, random_state=100)  
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Imports the MLPClassifier object from scikit-learn.

Instantiates the MLPClassifier object.

The following code fits the model, generates the predictions, and plots the results, as
shown in Figure 5-18:

In [140]: model.fit(data['hours'].values.reshape(-1, 1), data['success'])  
Out[140]: MLPClassifier(hidden_layer_sizes=[32], max_iter=1000,
           random_state=100)

In [141]: data['prediction'] = model.predict(data['hours'].values.reshape(-1, 1)) 

In [142]: data.tail()
Out[142]:     hours  success  prediction
          15   4.25        1           1
          16   4.50        1           1
          17   4.75        1           1
          18   5.00        1           1
          19   5.50        1           1

In [143]: data.plot(x='hours', y=['success', 'prediction'],
                    style=['ro', 'b-'], ylim=[-.1, 1.1],
                    figsize=(10, 6));  

Fits the neural network for classification.

Generates the prediction values based on the fitted model.

Plots the original data and the prediction values.

This simple example shows that the application of the deep learning approach is quite
similar to the approach with scikit-learn and the LogisticRegression model
object. The API is basically the same; only the parameters are different.
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Figure 5-18. Base data and prediction results with MLPClassifier for the simple classi‐
fication example

Using Deep Neural Networks to Predict Market Direction
The next step is to apply the approach to stock market data in the form of log returns
from a financial time series. First, the data needs to be retrieved and prepared:

In [144]: symbol = 'EUR='  

In [145]: data = pd.DataFrame(raw[symbol])  

In [146]: data.rename(columns={symbol: 'price'}, inplace=True)  

In [147]: data['return'] = np.log(data['price'] /
                                   data['price'].shift(1))   

In [148]: data['direction'] = np.where(data['return'] > 0, 1, 0)  

In [149]: lags = 5

In [150]: cols = []
          for lag in range(1, lags + 1): 
              col = f'lag_{lag}'
              data[col] = data['return'].shift(lag) 
              cols.append(col)
          data.dropna(inplace=True) 
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4 For details, refer to https://keras.io/layers/core/.

In [151]: data.round(4).tail()  
Out[151]:
                  price  return  direction   lag_1   lag_2   lag_3   lag_4   lag_5
     Date
     2019-12-24  1.1087  0.0001          1  0.0007 -0.0038  0.0008 -0.0034  0.0006
     2019-12-26  1.1096  0.0008          1  0.0001  0.0007 -0.0038  0.0008 -0.0034
     2019-12-27  1.1175  0.0071          1  0.0008  0.0001  0.0007 -0.0038  0.0008
     2019-12-30  1.1197  0.0020          1  0.0071  0.0008  0.0001  0.0007 -0.0038
     2019-12-31  1.1210  0.0012          1  0.0020  0.0071  0.0008  0.0001  0.0007

Reads the data from the CSV file.

Picks the single time series column of interest.

Renames the only column to price.

Calculates the log returns and defines the direction as a binary column.

Creates the lagged data.

Creates new DataFrame columns with the log returns shifted by the respective
number of lags.

Deletes rows containing NaN values.

Prints out the final five rows indicating the “patterns” emerging in the five feature
columns.

The following code uses a dense neural network (DNN) with the Keras package4,
defines training and test data sub-sets, defines the feature columns, and labels and fits
the classifier. In the backend, Keras uses the TensorFlow package to accomplish the
task. Figure 5-19 shows how the accuracy of the DNN classifier changes for both the
training and validation data sets during training. As validation data set, 20% of the
training data (without shuffling) is used:

In [152]: import tensorflow as tf  
          from keras.models import Sequential  
          from keras.layers import Dense  
          from keras.optimizers import Adam, RMSprop

In [153]: optimizer = Adam(learning_rate=0.0001)

In [154]: def set_seeds(seed=100):
              random.seed(seed)
              np.random.seed(seed)
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              tf.random.set_seed(100)

In [155]: set_seeds()
          model = Sequential()  
          model.add(Dense(64, activation='relu',
                  input_shape=(lags,)))  
          model.add(Dense(64, activation='relu'))  
          model.add(Dense(1, activation='sigmoid')) 
          model.compile(optimizer=optimizer,
                        loss='binary_crossentropy',
                        metrics=['accuracy'])  

In [156]: cutoff = '2017-12-31'  

In [157]: training_data = data[data.index < cutoff].copy()  

In [158]: mu, std = training_data.mean(), training_data.std()  

In [159]: training_data_ = (training_data - mu) / std  

In [160]: test_data = data[data.index >= cutoff].copy()  

In [161]: test_data_ = (test_data - mu) / std  

In [162]: %%time
          model.fit(training_data[cols],
                    training_data['direction'],
                    epochs=50, verbose=False,
                    validation_split=0.2, shuffle=False)  
          CPU times: user 4.86 s, sys: 989 ms, total: 5.85 s
          Wall time: 3.34 s

Out[162]: <tensorflow.python.keras.callbacks.History at 0x7f996a0a2880>

In [163]: res = pd.DataFrame(model.history.history)

In [164]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');

Imports the TensorFlow package.

Imports the required model object from Keras.

Imports the relevant layer object from Keras.

A Sequential model is instantiated.

The hidden layers and the output layer are defined.

Compiles the Sequential model object for classification.
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Defines the cutoff date between the training and test data.

Defines the training and test data sets.

Normalizes the features data by Gaussian normalization.

Fits the model to the training data set.

Figure 5-19. Accuracy of DNN classifier on training and validation data per training
step

Equipped with the fitted classifier, the model can generate predictions on the training
data set. Figure 5-20 shows the strategy gross performance compared to the base
instrument (in-sample):

In [165]: model.evaluate(training_data_[cols], training_data['direction'])
          63/63 [==============================] - 0s 586us/step - loss: 0.7556 -
           accuracy: 0.5152

Out[165]: [0.7555528879165649, 0.5151968002319336]

In [166]: pred = np.where(model.predict(training_data_[cols]) > 0.5, 1, 0)  

In [167]: pred[:30].flatten()  
Out[167]: array([0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,
           0, 0, 0, 1, 0, 1, 0, 1, 0, 0])

In [168]: training_data['prediction'] = np.where(pred > 0, 1, -1)  
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In [169]: training_data['strategy'] = (training_data['prediction'] *
                                      training_data['return'])  

In [170]: training_data[['return', 'strategy']].sum().apply(np.exp)
Out[170]: return      0.826569
          strategy    1.317303
          dtype: float64

In [171]: training_data[['return', 'strategy']].cumsum(
                          ).apply(np.exp).plot(figsize=(10, 6));  

Predicts the market direction in-sample.

Transforms the predictions into long-short positions, +1 and -1.

Calculates the strategy returns given the positions.

Plots and compares the strategy performance to the benchmark performance (in-
sample).

Figure 5-20. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (in-sample, no transaction costs)

The strategy seems to perform somewhat better than the base instrument on the
training data set (in-sample, without transaction costs). However, the more interest‐
ing question is how it performs on the test data set (out-of-sample). After a wobbly
start, the strategy also outperforms the base instrument out-of-sample, as Figure 5-21
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illustrates. This is despite the fact that the accuracy of the classifier is only slightly
above 50% on the test data set:

In [172]: model.evaluate(test_data_[cols], test_data['direction'])
          16/16 [==============================] - 0s 676us/step - loss: 0.7292 -
           accuracy: 0.5050

Out[172]: [0.7292129993438721, 0.5049701929092407]

In [173]: pred = np.where(model.predict(test_data_[cols]) > 0.5, 1, 0)

In [174]: test_data['prediction'] = np.where(pred > 0, 1, -1)

In [175]: test_data['prediction'].value_counts()
Out[175]: -1    368
           1    135
          Name: prediction, dtype: int64

In [176]: test_data['strategy'] = (test_data['prediction'] *
                                  test_data['return'])

In [177]: test_data[['return', 'strategy']].sum().apply(np.exp)
Out[177]: return      0.934478
          strategy    1.109065
          dtype: float64

In [178]: test_data[['return', 'strategy']].cumsum(
                          ).apply(np.exp).plot(figsize=(10, 6));

Figure 5-21. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (out-of-sample, no transaction costs)
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Adding Different Types of Features
So far, the analysis mainly focuses on the log returns directly. It is, of course, possible
not only to add more classes/categories but also to add other types of features to the
mix, such as ones based on momentum, volatility, or distance measures. The code that
follows derives the additional features and adds them to the data set:

In [179]: data['momentum'] = data['return'].rolling(5).mean().shift(1)  

In [180]: data['volatility'] = data['return'].rolling(20).std().shift(1)  

In [181]: data['distance'] = (data['price'] -
                              data['price'].rolling(50).mean()).shift(1)  

In [182]: data.dropna(inplace=True)

In [183]: cols.extend(['momentum', 'volatility', 'distance'])

In [184]: print(data.round(4).tail())

                 price  return  direction   lag_1   lag_2   lag_3   lag_4    lag_5
    Date

    2019-12-24  1.1087  0.0001          1  0.0007 -0.0038  0.0008 -0.0034   0.0006
    2019-12-26  1.1096  0.0008          1  0.0001  0.0007 -0.0038  0.0008  -0.0034
    2019-12-27  1.1175  0.0071          1  0.0008  0.0001  0.0007 -0.0038   0.0008
    2019-12-30  1.1197  0.0020          1  0.0071  0.0008  0.0001  0.0007  -0.0038
    2019-12-31  1.1210  0.0012          1  0.0020  0.0071  0.0008  0.0001   0.0007

                      momentum  volatility  distance
          Date
          2019-12-24   -0.0010      0.0024    0.0005
          2019-12-26   -0.0011      0.0024    0.0004
          2019-12-27   -0.0003      0.0024    0.0012
          2019-12-30    0.0010      0.0028    0.0089
          2019-12-31    0.0021      0.0028    0.0110

The momentum-based feature.

The volatility-based feature.

The distance-based feature.

The next steps are to redefine the training and test data sets, to normalize the features
data, and to update the model to reflect the new features columns:

In [185]: training_data = data[data.index < cutoff].copy()

In [186]: mu, std = training_data.mean(), training_data.std()

In [187]: training_data_ = (training_data - mu) / std
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In [188]: test_data = data[data.index >= cutoff].copy()

In [189]: test_data_ = (test_data - mu) / std

In [190]: set_seeds()
          model = Sequential()
          model.add(Dense(32, activation='relu',
                          input_shape=(len(cols),)))  
          model.add(Dense(32, activation='relu'))
          model.add(Dense(1, activation='sigmoid'))
          model.compile(optimizer=optimizer,
                        loss='binary_crossentropy',
                        metrics=['accuracy'])

The input_shape parameter is adjusted to reflect the new number of features.

Based on the enriched feature set, the classifier can be trained. The in-sample perfor‐
mance of the strategy is quite a bit better than before, as illustrated in Figure 5-22:

In [191]: %%time
          model.fit(training_data_[cols], training_data['direction'],
                    verbose=False, epochs=25)
          CPU times: user 2.32 s, sys: 577 ms, total: 2.9 s
          Wall time: 1.48 s

Out[191]: <tensorflow.python.keras.callbacks.History at 0x7f996d35c100>

In [192]: model.evaluate(training_data_[cols], training_data['direction'])
          62/62 [==============================] - 0s 649us/step - loss: 0.6816 -
           accuracy: 0.5646

Out[192]: [0.6816270351409912, 0.5646397471427917]

In [193]: pred = np.where(model.predict(training_data_[cols]) > 0.5, 1, 0)

In [194]: training_data['prediction'] = np.where(pred > 0, 1, -1)

In [195]: training_data['strategy'] = (training_data['prediction'] *
                                       training_data['return'])

In [196]: training_data[['return', 'strategy']].sum().apply(np.exp)
Out[196]: return      0.901074
          strategy    2.703377
          dtype: float64

In [197]: training_data[['return', 'strategy']].cumsum(
                          ).apply(np.exp).plot(figsize=(10, 6));
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Figure 5-22. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (in-sample, additional features)

The final step is the evaluation of the classifier and the derivation of the strategy per‐
formance out-of-sample. The classifier also performs significantly better, ceteris pari‐
bus, when compared to the case without the additional features. As before, the start is
a bit wobbly (see Figure 5-23):

In [198]: model.evaluate(test_data_[cols], test_data['direction'])
          16/16 [==============================] - 0s 800us/step - loss: 0.6931 -
           accuracy: 0.5507

Out[198]: [0.6931276321411133, 0.5506958365440369]

In [199]: pred = np.where(model.predict(test_data_[cols]) > 0.5, 1, 0)

In [200]: test_data['prediction'] = np.where(pred > 0, 1, -1)

In [201]: test_data['prediction'].value_counts()
Out[201]: -1    335
           1    168
          Name: prediction, dtype: int64

In [202]: test_data['strategy'] = (test_data['prediction'] *
                                   test_data['return'])

In [203]: test_data[['return', 'strategy']].sum().apply(np.exp)
Out[203]: return      0.934478
          strategy    1.144385
          dtype: float64
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In [204]: test_data[['return', 'strategy']].cumsum(
                          ).apply(np.exp).plot(figsize=(10, 6));

Figure 5-23. Gross performance of EUR/USD compared to the deep learning-based strat‐
egy (out-of-sample, additional features)

The Keras package, in combination with the TensorFlow package as its backend,
allows one to make use of the most recent advances in deep learning, such as deep
neural network (DNN) classifiers, for algorithmic trading. The application is as
straightforward as applying other machine learning models with scikit-learn. The
approach illustrated in this section allows for an easy enhancement with regard to the
different types of features used.

As an exercise, it is worthwhile to code a Python class (in the spirit
of “Linear Regression Backtesting Class” on page 167 and “Classifi‐
cation Algorithm Backtesting Class” on page 170) that allows for a
more systematic and realistic usage of the Keras package for finan‐
cial market prediction and the backtesting of respective trading
strategies.
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Conclusions
Predicting future market movements is the holy grail in finance. It means to find the
truth. It means to overcome efficient markets. If one can do it with a considerable
edge, then stellar investment and trading returns are the consequence. This chapter
introduces statistical techniques from the fields of traditional statistics, machine
learning, and deep learning to predict the future market direction based on past
returns or similar financial quantities. Some first in-sample results are promising,
both for linear and logistic regression. However, a more reliable impression is gained
when evaluating such strategies out-of-sample and when factoring in transaction
costs.

This chapter does not claim to have found the holy grail. It rather offers a glimpse on
techniques that could prove useful in the search for it. The unified API of scikit-
learn also makes it easy to replace, for example, one linear model with another one.
In that sense, the ScikitBacktesterClass can be used as a starting point to explore
more machine learning models and to apply them to financial time series prediction.

The quote at the beginning of the chapter from the Terminator 2 movie from 1991 is
rather optimistic with regard to how fast and to what extent computers might be able
to learn and acquire consciousness. No matter if you believe that computers will
replace human beings in most areas of life or not, or if they indeed one day become
self-aware, they have proven useful to human beings as supporting devices in almost
any area of life. And algorithms like those used in machine learning, deep learning, or
artificial intelligence hold at least the promise to let them become better algorithmic
traders in the near future. A more detailed account of these topics and considerations
is found in Hilpisch (2020).
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The books by Hastie et al. (2008) and James et al. (2013) provide a thorough, mathe‐
matical overview of popular machine learning techniques and algorithms:

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2008. The Elements of Statis‐
tical Learning. 2nd ed. New York: Springer.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. Introduc‐
tion to Statistical Learning. New York: Springer.

For more background information on deep learning and Keras, refer to these books:

Chollet, Francois. 2017. Deep Learning with Python. Shelter Island: Manning.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cam‐

bridge: MIT Press. http://deeplearningbook.org.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

Linear Regression Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on linear regression used for the prediction of the direction of market
movements:

#
# Python Module with Class
# for Vectorized Backtesting
# of Linear Regression-Based Strategies
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import numpy as np
import pandas as pd

class LRVectorBacktester(object):
    ''' Class for the vectorized backtesting of
    linear regression-based trading strategies.

    Attributes
    ==========
    symbol: str
       TR RIC (financial instrument) to work with
    start: str
        start date for data selection
    end: str
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        end date for data selection
    amount: int, float
        amount to be invested at the beginning
    tc: float
        proportional transaction costs (e.g., 0.5% = 0.005) per trade

    Methods
    =======
    get_data:
        retrieves and prepares the base data set
    select_data:
        selects a sub-set of the data
    prepare_lags:
        prepares the lagged data for the regression
    fit_model:
        implements the regression step
    run_strategy:
        runs the backtest for the regression-based strategy
    plot_results:
        plots the performance of the strategy compared to the symbol
    '''

    def __init__(self, symbol, start, end, amount, tc):
        self.symbol = symbol
        self.start = start
        self.end = end
        self.amount = amount
        self.tc = tc
        self.results = None
        self.get_data()

    def get_data(self):
        ''' Retrieves and prepares the data.
        '''
        raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()
        raw = pd.DataFrame(raw[self.symbol])
        raw = raw.loc[self.start:self.end]
        raw.rename(columns={self.symbol: 'price'}, inplace=True)
        raw['returns'] = np.log(raw / raw.shift(1))
        self.data = raw.dropna()

    def select_data(self, start, end):
        ''' Selects sub-sets of the financial data.
        '''
        data = self.data[(self.data.index >= start) &
                         (self.data.index <= end)].copy()
        return data

    def prepare_lags(self, start, end):
        ''' Prepares the lagged data for the regression and prediction steps.
        '''
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        data = self.select_data(start, end)
        self.cols = []
        for lag in range(1, self.lags + 1):
            col = f'lag_{lag}'
            data[col] = data['returns'].shift(lag)
            self.cols.append(col)
        data.dropna(inplace=True)
        self.lagged_data = data

    def fit_model(self, start, end):
        ''' Implements the regression step.
        '''
        self.prepare_lags(start, end)
        reg = np.linalg.lstsq(self.lagged_data[self.cols],
                              np.sign(self.lagged_data['returns']),
                              rcond=None)[0]
        self.reg = reg

    def run_strategy(self, start_in, end_in, start_out, end_out, lags=3):
        ''' Backtests the trading strategy.
        '''
        self.lags = lags
        self.fit_model(start_in, end_in)
        self.results = self.select_data(start_out, end_out).iloc[lags:]
        self.prepare_lags(start_out, end_out)
        prediction = np.sign(np.dot(self.lagged_data[self.cols], self.reg))
        self.results['prediction'] = prediction
        self.results['strategy'] = self.results['prediction'] * \
                                   self.results['returns']
        # determine when a trade takes place
        trades = self.results['prediction'].diff().fillna(0) != 0
        # subtract transaction costs from return when trade takes place
        self.results['strategy'][trades] -= self.tc
        self.results['creturns'] = self.amount * \
                        self.results['returns'].cumsum().apply(np.exp)
        self.results['cstrategy'] = self.amount * \
                        self.results['strategy'].cumsum().apply(np.exp)
        # gross performance of the strategy
        aperf = self.results['cstrategy'].iloc[-1]
        # out-/underperformance of strategy
        operf = aperf - self.results['creturns'].iloc[-1]
        return round(aperf, 2), round(operf, 2)

    def plot_results(self):
        ''' Plots the cumulative performance of the trading strategy
        compared to the symbol.
        '''
        if self.results is None:
            print('No results to plot yet. Run a strategy.')
        title = '%s | TC = %.4f' % (self.symbol, self.tc)
        self.results[['creturns', 'cstrategy']].plot(title=title,
                                                     figsize=(10, 6))
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if __name__ == '__main__':
    lrbt = LRVectorBacktester('.SPX', '2010-1-1', '2018-06-29', 10000, 0.0)
    print(lrbt.run_strategy('2010-1-1', '2019-12-31',
                            '2010-1-1', '2019-12-31'))
    print(lrbt.run_strategy('2010-1-1', '2015-12-31',
                            '2016-1-1', '2019-12-31'))
    lrbt = LRVectorBacktester('GDX', '2010-1-1', '2019-12-31', 10000, 0.001)
    print(lrbt.run_strategy('2010-1-1', '2019-12-31',
                            '2010-1-1', '2019-12-31', lags=5))
    print(lrbt.run_strategy('2010-1-1', '2016-12-31',
                            '2017-1-1', '2019-12-31', lags=5))

Classification Algorithm Backtesting Class
The following presents Python code with a class for the vectorized backtesting of
strategies based on logistic regression, as a standard classification algorithm, used for
the prediction of the direction of market movements:

#
# Python Module with Class
# for Vectorized Backtesting
# of Machine Learning-Based Strategies
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import numpy as np
import pandas as pd
from sklearn import linear_model

class ScikitVectorBacktester(object):
    ''' Class for the vectorized backtesting of
    machine learning-based trading strategies.

    Attributes
    ==========
    symbol: str
        TR RIC (financial instrument) to work with
    start: str
        start date for data selection
    end: str
        end date for data selection
    amount: int, float
        amount to be invested at the beginning
    tc: float
        proportional transaction costs (e.g., 0.5% = 0.005) per trade
    model: str
        either 'regression' or 'logistic'

170 | Chapter 5: Predicting Market Movements with Machine Learning



    Methods
    =======
    get_data:
        retrieves and prepares the base data set
    select_data:
        selects a sub-set of the data
    prepare_features:
        prepares the features data for the model fitting
    fit_model:
        implements the fitting step
    run_strategy:
        runs the backtest for the regression-based strategy
    plot_results:
        plots the performance of the strategy compared to the symbol
    '''

    def __init__(self, symbol, start, end, amount, tc, model):
        self.symbol = symbol
        self.start = start
        self.end = end
        self.amount = amount
        self.tc = tc
        self.results = None
        if model == 'regression':
            self.model = linear_model.LinearRegression()
        elif model == 'logistic':
            self.model = linear_model.LogisticRegression(C=1e6,
                solver='lbfgs', multi_class='ovr', max_iter=1000)
        else:
            raise ValueError('Model not known or not yet implemented.')
        self.get_data()

    def get_data(self):
        ''' Retrieves and prepares the data.
        '''
        raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()
        raw = pd.DataFrame(raw[self.symbol])
        raw = raw.loc[self.start:self.end]
        raw.rename(columns={self.symbol: 'price'}, inplace=True)
        raw['returns'] = np.log(raw / raw.shift(1))
        self.data = raw.dropna()

    def select_data(self, start, end):
        ''' Selects sub-sets of the financial data.
        '''
        data = self.data[(self.data.index >= start) &
                         (self.data.index <= end)].copy()
        return data

    def prepare_features(self, start, end):
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        ''' Prepares the feature columns for the regression and prediction steps.
        '''
        self.data_subset = self.select_data(start, end)
        self.feature_columns = []
        for lag in range(1, self.lags + 1):
            col = 'lag_{}'.format(lag)
            self.data_subset[col] = self.data_subset['returns'].shift(lag)
            self.feature_columns.append(col)
        self.data_subset.dropna(inplace=True)

    def fit_model(self, start, end):
        ''' Implements the fitting step.
        '''
        self.prepare_features(start, end)
        self.model.fit(self.data_subset[self.feature_columns],
                       np.sign(self.data_subset['returns']))

    def run_strategy(self, start_in, end_in, start_out, end_out, lags=3):
        ''' Backtests the trading strategy.
        '''
        self.lags = lags
        self.fit_model(start_in, end_in)
        # data = self.select_data(start_out, end_out)
        self.prepare_features(start_out, end_out)
        prediction = self.model.predict(
            self.data_subset[self.feature_columns])
        self.data_subset['prediction'] = prediction
        self.data_subset['strategy'] = (self.data_subset['prediction'] *
                                        self.data_subset['returns'])
        # determine when a trade takes place
        trades = self.data_subset['prediction'].diff().fillna(0) != 0
        # subtract transaction costs from return when trade takes place
        self.data_subset['strategy'][trades] -= self.tc
        self.data_subset['creturns'] = (self.amount *
                        self.data_subset['returns'].cumsum().apply(np.exp))
        self.data_subset['cstrategy'] = (self.amount *
                        self.data_subset['strategy'].cumsum().apply(np.exp))
        self.results = self.data_subset
        # absolute performance of the strategy
        aperf = self.results['cstrategy'].iloc[-1]
        # out-/underperformance of strategy
        operf = aperf - self.results['creturns'].iloc[-1]
        return round(aperf, 2), round(operf, 2)

    def plot_results(self):
        ''' Plots the cumulative performance of the trading strategy
        compared to the symbol.
        '''
        if self.results is None:
            print('No results to plot yet. Run a strategy.')
        title = '%s | TC = %.4f' % (self.symbol, self.tc)
        self.results[['creturns', 'cstrategy']].plot(title=title,
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                                                     figsize=(10, 6))

if __name__ == '__main__':
    scibt = ScikitVectorBacktester('.SPX', '2010-1-1', '2019-12-31',
                                   10000, 0.0, 'regression')
    print(scibt.run_strategy('2010-1-1', '2019-12-31',
                             '2010-1-1', '2019-12-31'))
    print(scibt.run_strategy('2010-1-1', '2016-12-31',
                             '2017-1-1', '2019-12-31'))
    scibt = ScikitVectorBacktester('.SPX', '2010-1-1', '2019-12-31',
                                   10000, 0.0, 'logistic')
    print(scibt.run_strategy('2010-1-1', '2019-12-31',
                             '2010-1-1', '2019-12-31'))
    print(scibt.run_strategy('2010-1-1', '2016-12-31',
                             '2017-1-1', '2019-12-31'))
    scibt = ScikitVectorBacktester('.SPX', '2010-1-1', '2019-12-31',
                                   10000, 0.001, 'logistic')
    print(scibt.run_strategy('2010-1-1', '2019-12-31',
                             '2010-1-1', '2019-12-31', lags=15))
    print(scibt.run_strategy('2010-1-1', '2013-12-31',
                             '2014-1-1', '2019-12-31', lags=15))
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CHAPTER 6

Building Classes for
Event-Based Backtesting

The actual tragedies of life bear no relation to one’s preconceived ideas. In the event,
one is always bewildered by their simplicity, their grandeur of design, and by that ele‐
ment of the bizarre which seems inherent in them.

—Jean Cocteau

On the one hand, vectorized backtesting with NumPy and pandas is generally conve‐
nient and efficient to implement due to the concise code, and it is fast to execute due
to these packages being optimized for such operations. However, the approach can‐
not cope with all types of trading strategies nor with all phenomena that the trading
reality presents an algorithmic trader with. When it comes to vectorized backtesting,
potential shortcomings of the approach are the following:

Look-ahead bias
Vectorized backtesting is based on the complete data set available and does not
take into account that new data arrives incrementally.

Simplification
For example, fixed transaction costs cannot be modeled by vectorization, which
is mainly based on relative returns. Also, fixed amounts per trade or the non-
divisibility of single financial instruments (for example, a share of a stock) cannot
be modeled properly.

Non-recursiveness
Algorithms, embodying trading strategies, might take recurse to state variables
over time, like profit and loss up to a certain point in time or similar path-
dependent statistics. Vectorization cannot cope with such features.
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On the other hand, event-based backtesting allows one to address these issues by a
more realistic approach to model trading realities. On a basic level, an event is charac‐
terized by the arrival of new data. Backtesting a trading strategy for the Apple Inc.
stock based on end-of-day data, an event would be a new closing price for the Apple
stock. It can also be a change in an interest rate, or the hitting of a stop loss level.
Advantages of the event-based backtesting approach generally are the following:

Incremental approach
As in the trading reality, backtesting takes place on the premise that new data
arrives incrementally, tick-by-tick and quote-by-quote.

Realistic modeling
One has complete freedom to model those processes that are triggered by a new
and specific event.

Path dependency
It is straightforward to keep track of conditional, recursive, or otherwise path-
dependent statistics, such as the maximum or minimum price seen so far, and to
include them in the trading algorithm.

Reusability
Backtesting different types of trading strategies requires a similar base function‐
ality that can be implemented and unified through object-oriented program‐
ming.

Close to trading
Certain elements of an event-based backtesting system can sometimes also be
used for the automated implementation of the trading strategy.

In what follows, a new event is generally identified by a bar, which represents one
unit of new data. For example, events can be one-minute bars for an intraday trading
strategy or one-day bars for a trading strategy based on daily closing prices.

The chapter is organized as follows. “Backtesting Base Class” on page 177 presents a
base class for the event-based backtesting of trading strategies. “Long-Only Backtest‐
ing Class” on page 182 and “Long-Short Backtesting Class” on page 185 make use of
the base class to implement long-only and long-short backtesting classes, respectively.

The goals of this chapter are to understand event-based modeling, to create classes
that allow a more realistic backtesting, and to have a foundational backtesting infra‐
structure available as a starting point for further enhancements and refinements.
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Backtesting Base Class
When it comes to building the infrastructure—in the form of a Python class—for
event-based backtesting, several requirements must be met:

Retrieving and preparing data
The base class shall take care of the data retrieval and possibly the preparation for
the backtesting itself. To keep the discussion focused, end-of-day (EOD) data as
read from a CSV file is the type of data the base class shall allow for.

Helper and convenience functions
It shall provide a couple of helper and convenience functions that make backtest‐
ing easier. Examples are functions for plotting data, printing out state variables,
or returning date and price information for a given bar.

Placing orders
The base class shall cover the placing of basic buy and sell orders. For simplicity,
only market buy and sell orders are modeled.

Closing out positions
At the end of any backtesting, any market positions need to be closed out. The
base class shall take care of this final trade.

If the base class meets these requirements, respective classes to backtest strategies
based on simple moving averages (SMAs), momentum, or mean reversion (see Chap‐
ter 4), as well as on machine learning-based prediction (see Chapter 5), can be built
upon it. “Backtesting Base Class” on page 191 presents an implementation of such a
base class called BacktestBase. The following is a walk through the single methods of
this class to get an overview of its design.

With regard to the special method __main__, there are only a few noteworthy things.
First, the initial amount available is stored twice, both in a private attribute _amount
that is kept constant and in a regular attribute amount that represents the running bal‐
ance. The default assumption is that there are no transaction costs:

    def __init__(self, symbol, start, end, amount,
                 ftc=0.0, ptc=0.0, verbose=True):
        self.symbol = symbol
        self.start = start
        self.end = end
        self.initial_amount = amount  
        self.amount = amount  
        self.ftc = ftc  
        self.ptc = ptc  
        self.units = 0  
        self.position = 0  
        self.trades = 0  
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        self.verbose = verbose  
        self.get_data()

Stores the initial amount in a private attribute.

Sets the starting cash balance value.

Defines fixed transaction costs per trade.

Defines proportional transaction costs per trade.

Units of the instrument (for example, number of shares) in the portfolio initially.

Sets the initial position to market neutral.

Sets the initial number of trades to zero.

Sets self.verbose to True to get full output.

During initialization, the get_data method is called, which retrieves EOD data from
a CSV file for the provided symbol and the given time interval. It also calculates the
log returns. The Python code that follows has been used extensively in Chapters 4
and 5. Therefore, it does not need to be explained in detail here:

    def get_data(self):
        ''' Retrieves and prepares the data.
        '''
        raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()
        raw = pd.DataFrame(raw[self.symbol])
        raw = raw.loc[self.start:self.end]
        raw.rename(columns={self.symbol: 'price'}, inplace=True)
        raw['return'] = np.log(raw / raw.shift(1))
        self.data = raw.dropna()

The .plot_data() method is just a simple helper method to plot the (adjusted close)
values for the provided symbol:

    def plot_data(self, cols=None):
        ''' Plots the closing prices for symbol.
        '''
        if cols is None:
            cols = ['price']
        self.data['price'].plot(figsize=(10, 6), title=self.symbol)

A method that gets frequently called is .get_date_price(). For a given bar, it
returns the date and price information:

    def get_date_price(self, bar):
        ''' Return date and price for bar.
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        '''
        date = str(self.data.index[bar])[:10]
        price = self.data.price.iloc[bar]
        return date, price

.print_balance() prints out the current cash balance given a certain bar,
while .print_net_wealth() does the same for the net wealth (= current balance plus
value of trading position):

    def print_balance(self, bar):
        ''' Print out current cash balance info.
        '''
        date, price = self.get_date_price(bar)
        print(f'{date} | current balance {self.amount:.2f}')

    def print_net_wealth(self, bar):
        ''' Print out current cash balance info.
        '''
        date, price = self.get_date_price(bar)
        net_wealth = self.units * price + self.amount
        print(f'{date} | current net wealth {net_wealth:.2f}')

Two core methods are .place_buy_order() and .place_sell_order(). They allow
the emulated buying and selling of units of a financial instrument. First is
the .place_buy_order() method, which is commented on in detail:

    def place_buy_order(self, bar, units=None, amount=None):
        ''' Place a buy order.
        '''
        date, price = self.get_date_price(bar)  
        if units is None:  
            units = int(amount / price)  
        self.amount -= (units * price) * (1 + self.ptc) + self.ftc  
        self.units += units  
        self.trades += 1  
        if self.verbose:  
            print(f'{date} | selling {units} units at {price:.2f}')  
            self.print_balance(bar)  
            self.print_net_wealth(bar)  

The date and price information for the given bar is retrieved.

If no value for units is given…

…the number of units is calculated given the value for amount. (Note that one
needs to be given.) The calculation does not include transaction costs.

The current cash balance is reduced by the cash outlays for the units of the
instrument to be bought plus the proportional and fixed transaction costs. Note
that it is not checked whether there is enough liquidity available or not.
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The value of self.units is increased by the number of units bought.

This increases the counter for the number of trades by one.

If self.verbose is True…

…print out information about trade execution…

…the current cash balance…

…and the current net wealth.

Second, the .place_sell_order() method, which has only two minor adjustments
compared to the .place_buy_order() method:

    def place_sell_order(self, bar, units=None, amount=None):
        ''' Place a sell order.
        '''
        date, price = self.get_date_price(bar)
        if units is None:
            units = int(amount / price)
        self.amount += (units * price) * (1 - self.ptc) - self.ftc  
        self.units -= units  
        self.trades += 1
        if self.verbose:
            print(f'{date} | selling {units} units at {price:.2f}')
            self.print_balance(bar)
            self.print_net_wealth(bar)

The current cash balance is increased by the proceeds of the sale minus transac‐
tions costs.

The value of self.units is decreased by the number of units sold.

No matter what kind of trading strategy is backtested, the position at the end of the
backtesting period needs to be closed out. The code in the BacktestBase class
assumes that the position is not liquidated but rather accounted for with its asset
value to calculate and print the performance figures:

    def close_out(self, bar):
        ''' Closing out a long or short position.
        '''
        date, price = self.get_date_price(bar)
        self.amount += self.units * price  
        self.units = 0
        self.trades += 1
        if self.verbose:
            print(f'{date} | inventory {self.units} units at {price:.2f}')
            print('=' * 55)
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        print('Final balance   [$] {:.2f}'.format(self.amount))  
        perf = ((self.amount - self.initial_amount) /
                self.initial_amount * 100)
        print('Net Performance [%] {:.2f}'.format(perf))  
        print('Trades Executed [#] {:.2f}'.format(self.trades))  
        print('=' * 55)

No transaction costs are subtracted at the end.

The final balance consists of the current cash balance plus the value of the trad‐
ing position.

This calculates the net performance in percent.

The final part of the Python script is the __main__ section, which gets executed when
the file is run as a script:

if __name__ == '__main__':
    bb = BacktestBase('AAPL.O', '2010-1-1', '2019-12-31', 10000)
    print(bb.data.info())
    print(bb.data.tail())
    bb.plot_data()

It instantiates an object based on the BacktestBase class. This leads automatically to
the data retrieval for the symbol provided. Figure 6-1 shows the resulting plot. The
following output shows the meta information for the respective DataFrame object and
the five most recent data rows:

In [1]: %run BacktestBase.py
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2515 entries, 2010-01-05 to 2019-12-31
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   price   2515 non-null   float64
 1   return  2515 non-null   float64
dtypes: float64(2)
memory usage: 58.9 KB
None
             price    return
Date
2019-12-24  284.27  0.000950
2019-12-26  289.91  0.019646
2019-12-27  289.80 -0.000380
2019-12-30  291.52  0.005918
2019-12-31  293.65  0.007280

In [2]:
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Figure 6-1. Plot of data as retrieved for symbol by the BacktestBase class

The two subsequent sections present classes to backtest long-only and long-short
trading strategies. Since these classes rely on the base class presented in this section,
the implementation of the backtesting routines is rather concise.

Using object-oriented programming allows one to build a basic
backtesting infrastructure in the form of a Python class. Standard
functionality needed during the backtesting of different kinds of
algorithmic trading strategies is made available by such a class in a
non-redundant, easy-to-maintain fashion. It is also straightforward
to enhance the base class to provide more features by default that
might benefit a multitude of other classes built on top of it.

Long-Only Backtesting Class
Certain investor preferences or regulations might prohibit short selling as part of a
trading strategy. As a consequence, a trader or portfolio manager is only allowed to
enter long positions or to park capital in the form of cash or similar low risk assets,
like money market accounts. “Long-Only Backtesting Class” on page 194 shows the
code of a backtesting class for long-only strategies called BacktestLongOnly. Since it
relies on and inherits from the BacktestBase class, the code to implement the three
strategies based on SMAs, momentum, and mean reversion is rather concise.
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The method .run_mean_reversion_strategy() implements the backtesting proce‐
dure for the mean reversion-based strategy. This method is commented on in detail,
since it might be a bit trickier from an implementation standpoint. The basic insights,
however, easily carry over to the methods implementing the other two strategies:

    def run_mean_reversion_strategy(self, SMA, threshold):
        ''' Backtesting a mean reversion-based strategy.

        Parameters
        ==========
        SMA: int
            simple moving average in days
        threshold: float
            absolute value for deviation-based signal relative to SMA
        '''
        msg = f'\n\nRunning mean reversion strategy | '
        msg += f'SMA={SMA} & thr={threshold}'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)  
        print('=' * 55)
        self.position = 0  
        self.trades = 0  
        self.amount = self.initial_amount  

        self.data['SMA'] = self.data['price'].rolling(SMA).mean()  

        for bar in range(SMA, len(self.data)):  
            if self.position == 0:  
                if (self.data['price'].iloc[bar] <
                        self.data['SMA'].iloc[bar] - threshold):  
                    self.place_buy_order(bar, amount=self.amount)  
                    self.position = 1  
            elif self.position == 1:  
                if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:  
                    self.place_sell_order(bar, units=self.units)  
                    self.position = 0  
        self.close_out(bar)  

At the beginning, this method prints out an overview of the major parameters for
the backtesting.

The position is set to market neutral, which is done here for more clarity and
should be the case anyway.

The current cash balance is reset to the initial amount in case another backtest
run has overwritten the value.

This calculates the SMA values needed for the strategy implementation.
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The start value SMA ensures that there are SMA values available to start imple‐
menting and backtesting the strategy.

The condition checks whether the position is market neutral.

If the position is market neutral, it is checked whether the current price is low
enough relative to the SMA to trigger a buy order and to go long.

This executes the buy order in the amount of the current cash balance.

The market position is set to long.

The condition checks whether the position is long the market.

If that is the case, it is checked whether the current price has returned to the SMA
level or above.

In such a case, a sell order is placed for all units of the financial instrument.

The market position is set to neutral again.

At the end of the backtesting period, the market position gets closed out if one is
open.

Executing the Python script in “Long-Only Backtesting Class” on page 194 yields
backtesting results, as shown in the following. The examples illustrate the influence of
fixed and proportional transaction costs. First, they eat into the performance in gen‐
eral. In any case, taking account of transaction costs reduces the performance. Sec‐
ond, they bring to light the importance of the number of trades a certain strategy
triggers over time. Without transaction costs, the momentum strategy significantly
outperforms the SMA-based strategy. With transaction costs, the SMA-based strategy
outperforms the momentum strategy since it relies on fewer trades:

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 0.0 | proportional costs 0.0
=======================================================
Final balance   [$] 56204.95
Net Performance [%] 462.05
=======================================================

Running momentum strategy | 60 days
fixed costs 0.0 | proportional costs 0.0
=======================================================
Final balance   [$] 136716.52
Net Performance [%] 1267.17
=======================================================
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Running mean reversion strategy | SMA=50 & thr=5
fixed costs 0.0 | proportional costs 0.0
=======================================================
Final balance   [$] 53907.99
Net Performance [%] 439.08
=======================================================

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 10.0 | proportional costs 0.01
=======================================================
Final balance   [$] 51959.62
Net Performance [%] 419.60
=======================================================

Running momentum strategy | 60 days
fixed costs 10.0 | proportional costs 0.01
=======================================================
Final balance   [$] 38074.26
Net Performance [%] 280.74
=======================================================

Running mean reversion strategy | SMA=50 & thr=5
fixed costs 10.0 | proportional costs 0.01
=======================================================
Final balance   [$] 15375.48
Net Performance [%] 53.75
=======================================================

Chapter 5 emphasizes that there are two sides of the performance
coin: the hit ratio for the correct prediction of the market direction
and the market timing (that is, when exactly the prediction is cor‐
rect). The results shown here illustrate that there is even a “third
side”: the number of trades triggered by a strategy. A strategy that
demands a higher frequency of trades has to bear higher transac‐
tion costs that easily eat up an alleged outperformance over
another strategy with no or low transaction costs. Among other
things, this often makes the case for low-cost passive investment
strategies based, for example, on exchange-traded funds (ETFs).

Long-Short Backtesting Class
“Long-Short Backtesting Class” on page 197 presents the BacktestLongShort class,
which also inherits from the BacktestBase class. In addition to implementing the
respective methods for the backtesting of the different strategies, it implements two
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additional methods to go long and short, respectively. Only the .go_long() method
is commented on in detail, since the .go_short() method does exactly the same in
the opposite direction:

    def go_long(self, bar, units=None, amount=None):  
        if self.position == -1:  
            self.place_buy_order(bar, units=-self.units)  
        if units:  
            self.place_buy_order(bar, units=units)  
        elif amount:  
            if amount == 'all':  
                amount = self.amount  
            self.place_buy_order(bar, amount=amount)  

    def go_short(self, bar, units=None, amount=None):
        if self.position == 1:
            self.place_sell_order(bar, units=self.units)
        if units:
            self.place_sell_order(bar, units=units)
        elif amount:
            if amount == 'all':
                amount = self.amount
            self.place_sell_order(bar, amount=amount)

In addition to bar, the methods expect either a number for the units of the traded
instrument or a currency amount.

In the .go_long() case, it is first checked whether there is a short position.

If so, this short position gets closed first.

It is then checked whether units is given…

…which triggers a buy order accordingly.

If amount is given, there can be two cases.

First, the value is all, which translates into…

…all the available cash in the current cash balance.

Second, the value is a number that is then simply taken to place the respective
buy order. Note that it is not checked whether there is enough liquidity or not.
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To keep the implementation concise throughout, there are many
simplifications in the Python classes that transfer responsibility to
the user. For example, the classes do not take care of whether there
is enough liquidity or not to execute a trade. This is an economic
simplification since, in theory, one could assume enough or even
unlimited credit for the algorithmic trader. As another example,
certain methods expect that at least one of two parameters (either
units or amount) is specified. There is no code that catches the case
where both are not set. This is a technical simplification.

The following presents the core loop from the .run_mean_reversion_strategy()
method of the BacktestLongShort class. Again, the mean-reversion strategy is
picked since the implementation is a bit more involved. For instance, it is the only
strategy that also leads to intermediate market neutral positions. This necessitates
more checks compared to the other two strategies, as seen in “Long-Short Backtesting
Class” on page 197:

        for bar in range(SMA, len(self.data)):
            if self.position == 0:  
                if (self.data['price'].iloc[bar] <
                        self.data['SMA'].iloc[bar] - threshold):  
                    self.go_long(bar, amount=self.initial_amount)  
                    self.position = 1  
                elif (self.data['price'].iloc[bar] >
                        self.data['SMA'].iloc[bar] + threshold):  
                    self.go_short(bar, amount=self.initial_amount)
                    self.position = -1  
            elif self.position == 1:  
                if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:  
                    self.place_sell_order(bar, units=self.units)  
                    self.position = 0  
            elif self.position == -1:  
                if self.data['price'].iloc[bar] <= self.data['SMA'].iloc[bar]:  
                    self.place_buy_order(bar, units=-self.units)  
                    self.position = 0  
        self.close_out(bar)

The first top-level condition checks whether the position is market neutral.

If this is true, it is then checked whether the current price is low enough relative
to the SMA.

In such a case, the .go_long() method is called…

…and the market position is set to long.
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If the current price is high enough relative to the SMA, the .go_short() method
is called…

…and the market position is set to short.

The second top-level condition checks for a long market position.

In such a case, it is further checked whether the current price is at or above the
SMA level again.

If so, the long position gets closed out by selling all units in the portfolio.

The market position is reset to neutral.

Finally, the third top-level condition checks for a short position.

If the current price is at or below the SMA…

…a buy order for all units short is triggered to close out the short position.

The market position is then reset to neutral.

Executing the Python script in “Long-Short Backtesting Class” on page 197 yields
performance results that shed further light on strategy characteristics. One might be
inclined to assume that adding the flexibility to short a financial instrument yields
better results. However, reality shows that this is not necessarily true. All strategies
perform worse both without and after transaction costs. Some configurations even
pile up net losses or even a position of debt. Although these are specific results only,
they illustrate that it is risky in such a context to jump to conclusions too early and to
not take into account limits for piling up debt:

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 0.0 | proportional costs 0.0
=======================================================
Final balance   [$] 45631.83
Net Performance [%] 356.32
=======================================================

Running momentum strategy | 60 days
fixed costs 0.0 | proportional costs 0.0
=======================================================
Final balance   [$] 105236.62
Net Performance [%] 952.37
=======================================================
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Running mean reversion strategy | SMA=50 & thr=5
fixed costs 0.0 | proportional costs 0.0
=======================================================
Final balance   [$] 17279.15
Net Performance [%] 72.79
=======================================================

Running SMA strategy | SMA1=42 & SMA2=252
fixed costs 10.0 | proportional costs 0.01
=======================================================
Final balance   [$] 38369.65
Net Performance [%] 283.70
=======================================================

Running momentum strategy | 60 days
fixed costs 10.0 | proportional costs 0.01
=======================================================
Final balance   [$] 6883.45
Net Performance [%] -31.17
=======================================================

Running mean reversion strategy | SMA=50 & thr=5
fixed costs 10.0 | proportional costs 0.01
=======================================================
Final balance   [$] -5110.97
Net Performance [%] -151.11
=======================================================

Situations where trading might eat up all the initial equity and
might even lead to a position of debt arise, for example, in the con‐
text of trading contracts-for-difference (CFDs). These are highly
leveraged products for which the trader only needs to put down,
say, 5% of the position value as the initial margin (when the lever‐
age is 20). If the position value changes by, say, 10%, the trader
might be required to meet a corresponding margin call. For a long
position of 100,000 USD, equity of 5,000 USD is required. If the
position drops to 90,000 USD, the equity is wiped out and the
trader must put down 5,000 USD more to cover the losses. This
assumes that no margin stop outs are in place that would close the
position as soon as the remaining equity drops to 0 USD.
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Conclusions
This chapter presents classes for the event-based backtesting of trading strategies.
Compared to vectorized backtesting, event-based backtesting makes intentional and
heavy use of loops and iterations to be able to tackle every single new event (generally,
the arrival of new data) individually. This allows for a more flexible approach that
can, among other things, easily cope with fixed transaction costs or more complex
strategies (and variations thereof).

“Backtesting Base Class” on page 177 presents a base class with certain methods use‐
ful for the backtesting of a variety of trading strategies. “Long-Only Backtesting
Class” on page 182 and “Long-Short Backtesting Class” on page 185 build on this
infrastructure to implement classes that allow the backtesting of long-only and long-
short trading strategies. Mainly for comparison reasons, the implementations include
all three strategies formally introduced in Chapter 4. Taking the classes of this chapter
as a starting point, enhancements and refinements are easily achieved.

References and Further Resources
Previous chapters introduce the basic ideas and concepts with regard to the three
trading strategies covered in this chapter. This chapter for the first time makes a more
systemic use of Python classes and object-oriented programming (OOP). A good
introduction to OOP with Python and Python’s data model is found in Ramalho
(2021). A more concise introduction to OOP applied to finance is found in Hilpisch
(2018, ch. 6):

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

Ramalho, Luciano. 2021. Fluent Python: Clear, Concise, and Effective Programming.
2nd ed. Sebastopol: O’Reilly.

The Python ecosystem provides a number of optional packages that allow the back‐
testing of algorithmic trading strategies. Four of them are the following:

• bt
• Backtrader
• PyAlgoTrade
• Zipline

Zipline, for example, powers the popular Quantopian platform for the backtesting of
algorithmic trading strategies but can also be installed and used locally.
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Although these packages might allow for a more thorough backtesting of algorithmic
trading strategies than the rather simple classes presented in this chapter, the main
goal of this book is to empower the reader and algorithmic trader to implement
Python code in a self-contained fashion. Even if standard packages are later used to
do the actual backtesting, a good understanding of the different approaches and their
mechanics is beneficial, if not required.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

Backtesting Base Class
The following Python code contains the base class for event-based backtesting:

#
# Python Script with Base Class
# for Event-Based Backtesting
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import numpy as np
import pandas as pd
from pylab import mpl, plt
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

class BacktestBase(object):
    ''' Base class for event-based backtesting of trading strategies.

    Attributes
    ==========
    symbol: str
        TR RIC (financial instrument) to be used
    start: str
        start date for data selection
    end: str
        end date for data selection
    amount: float
        amount to be invested either once or per trade
    ftc: float
        fixed transaction costs per trade (buy or sell)
    ptc: float
        proportional transaction costs per trade (buy or sell)

    Methods
    =======
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    get_data:
        retrieves and prepares the base data set
    plot_data:
        plots the closing price for the symbol
    get_date_price:
        returns the date and price for the given bar
    print_balance:
        prints out the current (cash) balance
    print_net_wealth:
        prints out the current net wealth
    place_buy_order:
        places a buy order
    place_sell_order:
        places a sell order
    close_out:
        closes out a long or short position
    '''

    def __init__(self, symbol, start, end, amount,
                 ftc=0.0, ptc=0.0, verbose=True):
        self.symbol = symbol
        self.start = start
        self.end = end
        self.initial_amount = amount
        self.amount = amount
        self.ftc = ftc
        self.ptc = ptc
        self.units = 0
        self.position = 0
        self.trades = 0
        self.verbose = verbose
        self.get_data()

    def get_data(self):
        ''' Retrieves and prepares the data.
        '''
        raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()
        raw = pd.DataFrame(raw[self.symbol])
        raw = raw.loc[self.start:self.end]
        raw.rename(columns={self.symbol: 'price'}, inplace=True)
        raw['return'] = np.log(raw / raw.shift(1))
        self.data = raw.dropna()

    def plot_data(self, cols=None):
        ''' Plots the closing prices for symbol.
        '''
        if cols is None:
            cols = ['price']
        self.data['price'].plot(figsize=(10, 6), title=self.symbol)

    def get_date_price(self, bar):
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        ''' Return date and price for bar.
        '''
        date = str(self.data.index[bar])[:10]
        price = self.data.price.iloc[bar]
        return date, price

    def print_balance(self, bar):
        ''' Print out current cash balance info.
        '''
        date, price = self.get_date_price(bar)
        print(f'{date} | current balance {self.amount:.2f}')

    def print_net_wealth(self, bar):
        ''' Print out current cash balance info.
        '''
        date, price = self.get_date_price(bar)
        net_wealth = self.units * price + self.amount
        print(f'{date} | current net wealth {net_wealth:.2f}')

    def place_buy_order(self, bar, units=None, amount=None):
        ''' Place a buy order.
        '''
        date, price = self.get_date_price(bar)
        if units is None:
            units = int(amount / price)
        self.amount -= (units * price) * (1 + self.ptc) + self.ftc
        self.units += units
        self.trades += 1
        if self.verbose:
            print(f'{date} | selling {units} units at {price:.2f}')
            self.print_balance(bar)
            self.print_net_wealth(bar)

    def place_sell_order(self, bar, units=None, amount=None):
        ''' Place a sell order.
        '''
        date, price = self.get_date_price(bar)
        if units is None:
            units = int(amount / price)
        self.amount += (units * price) * (1 - self.ptc) - self.ftc
        self.units -= units
        self.trades += 1
        if self.verbose:
            print(f'{date} | selling {units} units at {price:.2f}')
            self.print_balance(bar)
            self.print_net_wealth(bar)

    def close_out(self, bar):
        ''' Closing out a long or short position.
        '''
        date, price = self.get_date_price(bar)
        self.amount += self.units * price
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        self.units = 0
        self.trades += 1
        if self.verbose:
            print(f'{date} | inventory {self.units} units at {price:.2f}')
            print('=' * 55)
        print('Final balance   [$] {:.2f}'.format(self.amount))
        perf = ((self.amount - self.initial_amount) /
                self.initial_amount * 100)
        print('Net Performance [%] {:.2f}'.format(perf))
        print('Trades Executed [#] {:.2f}'.format(self.trades))
        print('=' * 55)

if __name__ == '__main__':
    bb = BacktestBase('AAPL.O', '2010-1-1', '2019-12-31', 10000)
    print(bb.data.info())
    print(bb.data.tail())
    bb.plot_data()

Long-Only Backtesting Class
The following presents Python code with a class for the event-based backtesting of
long-only strategies, with implementations for strategies based on SMAs, momentum,
and mean reversion:

#
# Python Script with Long Only Class
# for Event-Based Backtesting
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
from BacktestBase import *

class BacktestLongOnly(BacktestBase):

    def run_sma_strategy(self, SMA1, SMA2):
        ''' Backtesting an SMA-based strategy.

        Parameters
        ==========
        SMA1, SMA2: int
            shorter and longer term simple moving average (in days)
        '''
        msg = f'\n\nRunning SMA strategy | SMA1={SMA1} & SMA2={SMA2}'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)
        print('=' * 55)
        self.position = 0  # initial neutral position
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        self.trades = 0  # no trades yet
        self.amount = self.initial_amount  # reset initial capital
        self.data['SMA1'] = self.data['price'].rolling(SMA1).mean()
        self.data['SMA2'] = self.data['price'].rolling(SMA2).mean()

        for bar in range(SMA2, len(self.data)):
            if self.position == 0:
                if self.data['SMA1'].iloc[bar] > self.data['SMA2'].iloc[bar]:
                    self.place_buy_order(bar, amount=self.amount)
                    self.position = 1  # long position
            elif self.position == 1:
                if self.data['SMA1'].iloc[bar] < self.data['SMA2'].iloc[bar]:
                    self.place_sell_order(bar, units=self.units)
                    self.position = 0  # market neutral
        self.close_out(bar)

    def run_momentum_strategy(self, momentum):
        ''' Backtesting a momentum-based strategy.

        Parameters
        ==========
        momentum: int
            number of days for mean return calculation
        '''
        msg = f'\n\nRunning momentum strategy | {momentum} days'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)
        print('=' * 55)
        self.position = 0  # initial neutral position
        self.trades = 0  # no trades yet
        self.amount = self.initial_amount  # reset initial capital
        self.data['momentum'] = self.data['return'].rolling(momentum).mean()
        for bar in range(momentum, len(self.data)):
            if self.position == 0:
                if self.data['momentum'].iloc[bar] > 0:
                    self.place_buy_order(bar, amount=self.amount)
                    self.position = 1  # long position
            elif self.position == 1:
                if self.data['momentum'].iloc[bar] < 0:
                    self.place_sell_order(bar, units=self.units)
                    self.position = 0  # market neutral
        self.close_out(bar)

    def run_mean_reversion_strategy(self, SMA, threshold):
        ''' Backtesting a mean reversion-based strategy.

        Parameters
        ==========
        SMA: int
            simple moving average in days
        threshold: float
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            absolute value for deviation-based signal relative to SMA
        '''
        msg = f'\n\nRunning mean reversion strategy | '
        msg += f'SMA={SMA} & thr={threshold}'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)
        print('=' * 55)
        self.position = 0
        self.trades = 0
        self.amount = self.initial_amount

        self.data['SMA'] = self.data['price'].rolling(SMA).mean()

        for bar in range(SMA, len(self.data)):
            if self.position == 0:
                if (self.data['price'].iloc[bar] <
                        self.data['SMA'].iloc[bar] - threshold):
                    self.place_buy_order(bar, amount=self.amount)
                    self.position = 1
            elif self.position == 1:
                if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:
                    self.place_sell_order(bar, units=self.units)
                    self.position = 0
        self.close_out(bar)

if __name__ == '__main__':
    def run_strategies():
        lobt.run_sma_strategy(42, 252)
        lobt.run_momentum_strategy(60)
        lobt.run_mean_reversion_strategy(50, 5)
    lobt = BacktestLongOnly('AAPL.O', '2010-1-1', '2019-12-31', 10000,
                            verbose=False)
    run_strategies()
    # transaction costs: 10 USD fix, 1% variable
    lobt = BacktestLongOnly('AAPL.O', '2010-1-1', '2019-12-31',
                            10000, 10.0, 0.01, False)
    run_strategies()
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Long-Short Backtesting Class
The following Python code contains a class for the event-based backtesting of long-
short strategies, with implementations for strategies based on SMAs, momentum, and
mean reversion:

#
# Python Script with Long-Short Class
# for Event-Based Backtesting
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
from BacktestBase import *

class BacktestLongShort(BacktestBase):

    def go_long(self, bar, units=None, amount=None):
        if self.position == -1:
            self.place_buy_order(bar, units=-self.units)
        if units:
            self.place_buy_order(bar, units=units)
        elif amount:
            if amount == 'all':
                amount = self.amount
            self.place_buy_order(bar, amount=amount)

    def go_short(self, bar, units=None, amount=None):
        if self.position == 1:
            self.place_sell_order(bar, units=self.units)
        if units:
            self.place_sell_order(bar, units=units)
        elif amount:
            if amount == 'all':
                amount = self.amount
            self.place_sell_order(bar, amount=amount)

    def run_sma_strategy(self, SMA1, SMA2):
        msg = f'\n\nRunning SMA strategy | SMA1={SMA1} & SMA2={SMA2}'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)
        print('=' * 55)
        self.position = 0  # initial neutral position
        self.trades = 0  # no trades yet
        self.amount = self.initial_amount  # reset initial capital
        self.data['SMA1'] = self.data['price'].rolling(SMA1).mean()
        self.data['SMA2'] = self.data['price'].rolling(SMA2).mean()
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        for bar in range(SMA2, len(self.data)):
            if self.position in [0, -1]:
                if self.data['SMA1'].iloc[bar] > self.data['SMA2'].iloc[bar]:
                    self.go_long(bar, amount='all')
                    self.position = 1  # long position
            if self.position in [0, 1]:
                if self.data['SMA1'].iloc[bar] < self.data['SMA2'].iloc[bar]:
                    self.go_short(bar, amount='all')
                    self.position = -1  # short position
        self.close_out(bar)

    def run_momentum_strategy(self, momentum):
        msg = f'\n\nRunning momentum strategy | {momentum} days'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)
        print('=' * 55)
        self.position = 0  # initial neutral position
        self.trades = 0  # no trades yet
        self.amount = self.initial_amount  # reset initial capital
        self.data['momentum'] = self.data['return'].rolling(momentum).mean()
        for bar in range(momentum, len(self.data)):
            if self.position in [0, -1]:
                if self.data['momentum'].iloc[bar] > 0:
                    self.go_long(bar, amount='all')
                    self.position = 1  # long position
            if self.position in [0, 1]:
                if self.data['momentum'].iloc[bar] <= 0:
                    self.go_short(bar, amount='all')
                    self.position = -1  # short position
        self.close_out(bar)

    def run_mean_reversion_strategy(self, SMA, threshold):
        msg = f'\n\nRunning mean reversion strategy | '
        msg += f'SMA={SMA} & thr={threshold}'
        msg += f'\nfixed costs {self.ftc} | '
        msg += f'proportional costs {self.ptc}'
        print(msg)
        print('=' * 55)
        self.position = 0  # initial neutral position
        self.trades = 0  # no trades yet
        self.amount = self.initial_amount  # reset initial capital

        self.data['SMA'] = self.data['price'].rolling(SMA).mean()

        for bar in range(SMA, len(self.data)):
            if self.position == 0:
                if (self.data['price'].iloc[bar] <
                        self.data['SMA'].iloc[bar] - threshold):
                    self.go_long(bar, amount=self.initial_amount)
                    self.position = 1
                elif (self.data['price'].iloc[bar] >
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                        self.data['SMA'].iloc[bar] + threshold):
                    self.go_short(bar, amount=self.initial_amount)
                    self.position = -1
            elif self.position == 1:
                if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]:
                    self.place_sell_order(bar, units=self.units)
                    self.position = 0
            elif self.position == -1:
                if self.data['price'].iloc[bar] <= self.data['SMA'].iloc[bar]:
                    self.place_buy_order(bar, units=-self.units)
                    self.position = 0
        self.close_out(bar)

if __name__ == '__main__':
    def run_strategies():
        lsbt.run_sma_strategy(42, 252)
        lsbt.run_momentum_strategy(60)
        lsbt.run_mean_reversion_strategy(50, 5)
    lsbt = BacktestLongShort('EUR=', '2010-1-1', '2019-12-31', 10000,
                             verbose=False)
    run_strategies()
    # transaction costs: 10 USD fix, 1% variable
    lsbt = BacktestLongShort('AAPL.O', '2010-1-1', '2019-12-31',
                             10000, 10.0, 0.01, False)
    run_strategies()
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CHAPTER 7

Working with Real-Time Data and Sockets

If you want to find the secrets of the universe, think in terms of energy, frequency, and
vibration.

—Nikola Tesla

Developing trading ideas and backtesting them is a rather asynchronous and non-
critical process during which there are multiple steps that might or might not be
repeated, during which no capital is at stake, and during which performance and
speed are not the most important requirements. Turning to the markets to deploy a
trading strategy changes the rules considerably. Data arrives in real time and usually
in massive amounts, making a real-time processing of the data and the real-time deci‐
sion making based on the streaming data a necessity. This chapter is about working
with real-time data for which sockets are in general the technological tool of choice.
In this context, here are a few words on central technical terms:

Network socket
Endpoint of a connection in a computer network, also simply socket for short.

Socket address
Combination of an Internet Protocol (IP) address and a port number.

Socket protocol
A protocol defining and handling the socket communication, like the Transfer
Control Protocol (TCP).

Socket pair
Combination of a local and a remote socket that communicate with each other.

Socket API
The application programming interface allowing for the controlling of sockets
and their communication.
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1 When speaking of simultaneously or at the same time, this is meant in a theoretical, idealized sense. In practi‐
cal applications, different distances between the sending and receiving sockets, network speeds, and other fac‐
tors affect the exact retrieval time per subscriber socket.

This chapter focuses on the use of ZeroMQ as a lightweight, fast, and scalable socket
programming library. It is available on multiple platforms with wrappers for the most
popular programming languages. ZeroMQ supports different patterns for socket com‐
munication. One of those patterns is the so-called publisher-subscriber (PUB-SUB) pat‐
tern where a single socket publishes data and multiple sockets simultaneously retrieve
the data. This is similar to a radio station that broadcasts its program that is simulta‐
neously listened to by thousands of people via radio devices.

Given the PUB-SUB pattern, a fundamental application scenario in algorithmic trading
is the retrieval of real-time financial data from an exchange, a trading platform, or a
data service provider. Suppose you have developed an intraday trading idea based on
the EUR/USD currency pair and have backtested it thoroughly. When deploying it,
you need to be able to receive and process the price data in real-time. This fits exactly
such a PUB-SUB pattern. A central instance broadcasts the new tick data as it becomes
available and you, as well as probably thousands of others, receive and process it at
the same time.1

This chapter is organized as follows. “Running a Simple Tick Data Server” on page
203 describes how to implement and run a tick data server for sample financial data.
“Connecting a Simple Tick Data Client” on page 206 implements a tick data client to
connect to the tick data server. “Signal Generation in Real Time” on page 208 shows
how to generate trading signals in real time based on data from the tick data server.
Finally, “Visualizing Streaming Data with Plotly” on page 211 introduces the Plotly
plotting package as an efficient way to plot streaming data in real time.

The goal of this chapter is to have a tool set and approaches available to be able to
work with streaming data in the context of algorithmic trading.

The code in this chapter makes heavy use of ports over which
socket communication takes place and requires the simultaneous
execution of two or more scripts at the same time. It is therefore
recommended to execute the codes in this chapter in different ter‐
minal instances, running different Python kernels. The execution
within a single Jupyter Notebook, for instance, does not work in
general. What works, however, is the execution of the tick data
server script (“Running a Simple Tick Data Server” on page 203) in
a terminal and the retrieval of data in a Jupyter Notebook (“Visual‐
izing Streaming Data with Plotly” on page 211).
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Running a Simple Tick Data Server
This section shows how to run a simple tick data server based on simulated financial
instrument prices. The model used for the data generation is the geometric Brownian
motion (without dividends) for which an exact Euler discretization is available, as
shown in Equation 7-1. Here, S is the instrument price, r is the constant short rate, σ
is the constant volatility factor, and z is a standard normal random variable. Δt is the
interval between two discrete observations of the instrument price.

Equation 7-1. Euler discretization of geometric Brownian motion

St = St − Δt · exp r − σ2

2 Δt + σ Δtz

Making use of this model, “Sample Tick Data Server” on page 218 presents a Python
script that implements a tick data server using ZeroMQ and a class called Instrument
Price to publish new, simulated tick data in a randomized fashion. The publishing is
randomized in two ways. First, the stock price value is based on a Monte Carlo simu‐
lation. Second is the length of time interval between two publishing events it random‐
ized. The remainder of this section explains the major parts of the script in detail.

The first part of the following script does some imports, among other things, for the
Python wrapper of ZeroMQ. It also instantiates the major objects needed to open a
socket of PUB type:

import zmq  
import math
import time
import random

context = zmq.Context()  
socket = context.socket(zmq.PUB)  
socket.bind('tcp://0.0.0.0:5555')  

This imports the Python wrapper for the ZeroMQ library.

A Context object is instantiated. It is the central object for the socket communi‐
cation.

The socket itself is defined based on the PUB socket type (“communication pat‐
tern”).

The socket gets bound to the local IP address (0.0.0.0 on Linux and Mac OS,
127.0.0.1 on Windows) and the port number 5555.
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The class InstrumentPrice is for the simulation of instrument price values over time.
As attributes, there are the major parameters for the geometric Brownian motion in
addition to the instrument symbol and the time at which an instance is created. The
only method .simulate_value() generates new values for the stock price given the
time passed since it has been called the last time and a random factor:

class InstrumentPrice(object):
    def __init__(self):
        self.symbol = 'SYMBOL'
        self.t = time.time()  
        self.value = 100.
        self.sigma = 0.4
        self.r = 0.01

    def simulate_value(self):
        ''' Generates a new, random stock price.
        '''
        t = time.time()  
        dt = (t - self.t) / (252 * 8 * 60 * 60)  
        dt *= 500  
        self.t = t  
        self.value *= math.exp((self.r - 0.5 * self.sigma ** 2) * dt +
                               self.sigma * math.sqrt(dt) * random.gauss(0, 1))  
        return self.value

The attribute t stores the time of the initialization.

When the .simulate_value() method is called, the current time is recorded.

dt represents the time interval between the current time and the one stored in
self.t in (trading) year fractions.

To have larger instrument price movements, this line of code scales the dt vari‐
able (by an arbitrary factor).

The attribute t is updated with the current time, which represents the reference
point for the next call of the method.

Based on an Euler scheme for the geometric Brownian motion, a new instrument
price is simulated.

The main part of the script consists of the instantiation of an object of type Instru
mentPrice and an infinite while loop. During the while loop, a new instrument price
gets simulated, and a message is created, printed, and sent via the socket.
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Finally, the execution pauses for a random amount of time:

ip = InstrumentPrice()  

while True:  
    msg = '{} {:.2f}'.format(ip.symbol, ip.simulate_value())  
    print(msg)  
    socket.send_string(msg)  
    time.sleep(random.random() * 2)  

This line instantiates an InstrumentPrice object.

An infinite while loop is started.

The message text gets generated based on the symbol attribute and a newly simu‐
lated stock price value.

The message str object is printed to the standard out.

It is also sent to subscribed sockets.

The execution of the loop is paused for a random amount of time (between 0 and
2 seconds), simulating the random arrival of new tick data in the markets.

Executing the script prints out messages as follows:

(base) pro:ch07 yves$ Python TickServer.py
SYMBOL 100.00
SYMBOL 99.65
SYMBOL 99.28
SYMBOL 99.09
SYMBOL 98.76
SYMBOL 98.83
SYMBOL 98.82
SYMBOL 98.92
SYMBOL 98.57
SYMBOL 98.81
SYMBOL 98.79
SYMBOL 98.80

At this point, it cannot yet be verified whether the script is also sending the same
message via the socket bound to tcp://0.0.0.0:5555 (tcp://127.0.0.1:5555 on
Windows). To this end, another socket subscribing to the publishing socket is needed
to complete the socket pair.
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Often, the Monte Carlo simulation of prices for financial instru‐
ments relies on homogeneous time intervals (like “one trading
day”). In many cases, this is a “good enough” approximation when
working with, say, end-of-day closing prices over longer horizons.
In the context of intraday tick data, the random arrival of the data
is an important characteristic that needs to be taken into account.
The Python script for the tick data server implements the random
arrival times by randomized time intervals during which it pauses
the execution.

Connecting a Simple Tick Data Client
The code for the tick data server is already quite concise, with the InstrumentPrice
simulation class representing the longest part. The code for a respective tick data cli‐
ent, as shown in “Tick Data Client” on page 219, is even more concise. It is only a few
lines of code that instantiate the main Context object, connect to the publishing
socket, and subscribe to the SYMBOL channel, which happens to be the only available
channel here. In the while loop, the string-based message is received and printed.
That makes for a rather short script.

The initial part of the following script is almost symmetrical to the tick data server
script:

import zmq  

context = zmq.Context()  
socket = context.socket(zmq.SUB)  
socket.connect('tcp://0.0.0.0:5555')  
socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')  

This imports the Python wrapper for the ZeroMQ library.

For the client, the main object also is an instance of zmq.Context.

From here, the code is different; the socket type is set to SUB.

This socket connects to the respective IP address and port combination.

This line of code defines the so-called channel to which the socket subscribes.
Here, there is only one, but a specification is nevertheless required. In real-world
applications, however, you might receive data for a multitude of different sym‐
bols via a socket connection.
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The while loop boils down to the retrieval of the messages sent by the server socket
and printing them out:

while True:  
    data = socket.recv_string()  
    print(data)  

This socket receives data in an infinite loop.

This is the main line of code where the data (string-based message) is received.

data is printed to stdout.

The output of the Python script for the socket client is exactly the same as the one
from the Python script for the socket server:

(base) pro:ch07 yves$ Python TickClient.py
SYMBOL 100.00
SYMBOL 99.65
SYMBOL 99.28
SYMBOL 99.09
SYMBOL 98.76
SYMBOL 98.83
SYMBOL 98.82
SYMBOL 98.92
SYMBOL 98.57
SYMBOL 98.81
SYMBOL 98.79
SYMBOL 98.80

Retrieving data in the form of string-based messages via socket communication is
only a prerequisite for the very tasks to be accomplished based on the data, like gen‐
erating trading signals in real time or visualizing the data. This is what the two next
sections cover.

ZeroMQ allows the transmission of other object types, as well. For
example, there is an option to send a Python object via a socket.
To this end, the object is, by default, serialized and deserialized
with pickle. The respective methods to accomplish this
are .send_pyobj() and .recv_pyobj() (see The PyZMQ API). In
practice, however, platforms and data providers cater to a diverse
set of environments, with Python being only one out of many lan‐
guages. Therefore, string-based socket communication is often
used, for example, in combination with standard data formats such
as JSON.
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Signal Generation in Real Time
An online algorithm is an algorithm based on data that is received incrementally (bit
by bit) over time. Such an algorithm only knows the current and previous states of
relevant variables and parameters, but nothing about the future. This is a realistic set‐
ting for financial trading algorithms for which any element of (perfect) foresight is to
be excluded. By contrast, an offline algorithm knows the complete data set from the
beginning. Many algorithms in computer science fall into the category of offline algo‐
rithms, such as a sorting algorithm over a list of numbers.

To generate signals in real time on the basis of an online algorithm, data needs to be
collected and processed over time. Consider, for example, a trading strategy based on
the time series momentum of the last three five-second intervals (see Chapter 4). Tick
data needs to be collected and then resampled, and the momentum needs to be calcu‐
lated based on the resampled data set. When time passes by, a continuous, incremen‐
tal updating takes place. “Momentum Online Algorithm” on page 219 presents a
Python script that implements the momentum strategy, as described previously as an
online algorithm. Technically, there are two major parts in addition to handling the
socket communication. First are the retrieval and storage of the tick data:

df = pd.DataFrame()  
mom = 3  
min_length = mom + 1  

while True:
    data = socket.recv_string()  
    t = datetime.datetime.now()  
    sym, value = data.split()  
    df = df.append(pd.DataFrame({sym: float(value)}, index=[t]))  

Instantiates an empty pandas DataFrame to collect the tick data.

Defines the number of time intervals for the momentum calculation.

Specifies the (initial) minimum length for the signal generation to be triggered.

The retrieval of the tick data via the socket connection.

A timestamp is generated for the data retrieval.

The string-based message is split into the symbol and the numerical value (still a
str object here).

This line of code first generates a temporary DataFrame object with the new data
and then appends it to the existing DataFrame object.
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Second is the resampling and processing of the data, as shown in the following
Python code. This happens based on the tick data collected up to a certain point in
time. During this step, log returns are calculated based on the resampled data and the
momentum is derived. The sign of the momentum defines the positioning to be
taken in the financial instrument:

    dr = df.resample('5s', label='right').last()  
    dr['returns'] = np.log(dr / dr.shift(1))  
    if len(dr) > min_length:
        min_length += 1  
        dr['momentum'] = np.sign(dr['returns'].rolling(mom).mean())  
        print('\n' + '=' * 51)
        print('NEW SIGNAL | {}'.format(datetime.datetime.now()))
        print('=' * 51)
        print(dr.iloc[:-1].tail())  
        if dr['momentum'].iloc[-2] == 1.0:  
            print('\nLong market position.')
            # take some action (e.g., place buy order)
        elif dr['momentum'].iloc[-2] == -1.0:  
            print('\nShort market position.')
            # take some action (e.g., place sell order)

The tick data is resampled to a five-second interval, taking the last available tick
value as the relevant one.

This calculates the log returns over the five-second intervals.

This increases the minimum length of the resampled DataFrame object by one.

The momentum and, based on its sign, the positioning are derived given the log
returns from three resampled time intervals.

This prints the final five rows of the resampled DataFrame object.

A momentum value of 1.0 means a long market position. In production, the first
signal or a change in the signal then triggers certain actions, like placing an order
with the broker. Note that the second but last value of the momentum column is
used since the last value is based at this stage on incomplete data for the relevant
(not yet finished) time interval. Technically, this is due to using the pan
das .resample() method with the label='right' parametrization.

Similarly, a momentum value of -1.0 implies a short market position and poten‐
tially certain actions that might be triggered, such as a sell order with a broker.
Again, the second but last value from the momentum column is used.

When the script is executed, it takes some time, depending on the very parameters
chosen, until there is enough (resampled) data available to generate the first signal.
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Here is an intermediate example output of the online trading algorithm script:

(base) yves@pro ch07 $ python OnlineAlgorithm.py

===================================================
NEW SIGNAL | 2020-05-23 11:33:31.233606
===================================================
                     SYMBOL  ...  momentum
2020-05-23 11:33:15   98.65  ...       NaN
2020-05-23 11:33:20   98.53  ...       NaN
2020-05-23 11:33:25   98.83  ...       NaN
2020-05-23 11:33:30   99.33  ...       1.0

[4 rows x 3 columns]

Long market position.

===================================================
NEW SIGNAL | 2020-05-23 11:33:36.185453
===================================================
                     SYMBOL  ...  momentum
2020-05-23 11:33:15   98.65  ...       NaN
2020-05-23 11:33:20   98.53  ...       NaN
2020-05-23 11:33:25   98.83  ...       NaN
2020-05-23 11:33:30   99.33  ...       1.0
2020-05-23 11:33:35   97.76  ...      -1.0

[5 rows x 3 columns]

Short market position.

===================================================
NEW SIGNAL | 2020-05-23 11:33:40.077869
===================================================
                     SYMBOL  ...  momentum
2020-05-23 11:33:20   98.53  ...       NaN
2020-05-23 11:33:25   98.83  ...       NaN
2020-05-23 11:33:30   99.33  ...       1.0
2020-05-23 11:33:35   97.76  ...      -1.0
2020-05-23 11:33:40   98.51  ...      -1.0

[5 rows x 3 columns]

Short market position.

It is a good exercise to implement, based on the presented tick
client script, both an SMA-based strategy and a mean-reversion
strategy as an online algorithm.
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Visualizing Streaming Data with Plotly
The visualization of streaming data in real time is generally a demanding task. Fortu‐
nately, there are quite a few technologies and Python packages available nowadays
that significantly simplify such a task. In what follows, we will work with Plotly,
which is both a technology and a service used to generate nice looking, interactive
plots for static and streaming data. To follow along, the plotly package needs to be
installed. Also, several Jupyter Lab extensions need to be installed when working with
Jupyter Lab. The following command should be executed on the terminal:

conda install plotly ipywidgets
jupyter labextension install jupyterlab-plotly
jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install plotlywidget

The Basics
Once the required packages and extension are installed, the generation of a streaming
plot is quite efficient. The first step is the creation of a Plotly figure widget:

In [1]: import zmq
        from datetime import datetime
        import plotly.graph_objects as go  

In [2]: symbol = 'SYMBOL'

In [3]: fig = go.FigureWidget()  
        fig.add_scatter()  
        fig  
Out[3]: FigureWidget({
       'data': [{'type': 'scatter', 'uid':
        'e1a65f25-287d-4021-a210-c2f41f32426a'}], 'layout': {'t…

This imports the graphical objects from plotly.

This instantiates a Plotly figure widget within the Jupyter Notebook.

The second step is to set up the socket communication with the sample tick data
server, which needs to run on the same machine in a separate Python process. The
incoming data is enriched by a timestamp and collected in list objects. These list
objects in turn are used to update the data objects of the figure widget (see
Figure 7-1):

In [4]: context = zmq.Context()

In [5]: socket = context.socket(zmq.SUB)

In [6]: socket.connect('tcp://0.0.0.0:5555')
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In [7]: socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

In [8]: times = list()  
        prices = list()  

In [9]: for _ in range(50):
            msg = socket.recv_string()
            t = datetime.now()  
            times.append(t)  
            _, price = msg.split()
            prices.append(float(price))
            fig.data[0].x = times  
            fig.data[0].y = prices  

list object for the timestamps.

list object for the real-time prices.

Generates a timestamp and appends it.

Updates the data object with the amended x (times) and y (prices) data sets.

Figure 7-1. Plot of streaming price data, as retrieved in real time via socket connection

Three Real-Time Streams
A streaming plot with Plotly can have multiple graph objects. This comes in handy
when, for instance, two simple moving averages (SMAs) shall be visualized in real
time in addition to the price ticks. The following code instantiates again a figure
widget—this time with three scatter objects. The tick data from the sample tick data
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server is collected in a pandas DataFrame object. The two SMAs are calculated after
each update from the socket. The amended data sets are used to update the data
object of the figure widget (see Figure 7-2):

In [10]: fig = go.FigureWidget()
         fig.add_scatter(name='SYMBOL')
         fig.add_scatter(name='SMA1', line=dict(width=1, dash='dot'),
                         mode='lines+markers')
         fig.add_scatter(name='SMA2', line=dict(width=1, dash='dash'),
                         mode='lines+markers')
         fig
Out[10]: FigureWidget({
        'data': [{'name': 'SYMBOL', 'type': 'scatter', 'uid':
        'bcf83157-f015-411b-a834-d5fd6ac509ba…

In [11]: import pandas as pd

In [12]: df = pd.DataFrame()  

In [13]: for _ in range(75):
             msg = socket.recv_string()
             t = datetime.now()
             sym, price = msg.split()
             df = df.append(pd.DataFrame({sym: float(price)}, index=[t]))  
             df['SMA1'] = df[sym].rolling(5).mean()  
             df['SMA2'] = df[sym].rolling(10).mean()  
             fig.data[0].x = df.index
             fig.data[1].x = df.index
             fig.data[2].x = df.index
             fig.data[0].y = df[sym]
             fig.data[1].y = df['SMA1']
             fig.data[2].y = df['SMA2']

Collects the tick data in a DataFrame object.

Adds the two SMAs in separate columns to the DataFrame object.

Again, it is a good exercise to combine the plotting of streaming
tick data and the two SMAs with the implementation of an online
trading algorithm based on the two SMAs. In this case, resampling
should be added to the implementation since such trading algo‐
rithms are hardly ever based on tick data but rather on bars of fixed
length (five seconds, one minute, etc.).
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Figure 7-2. Plot of streaming price data and two SMAs calculated in real time

Three Sub-Plots for Three Streams
As with conventional Plotly plots, streaming plots based on figure widgets can also
have multiple sub-plots. The example that follows creates a streaming plot with three
sub-plots. The first plots the real-time tick data. The second plots the log returns data.
The third plots the time series momentum based on the log returns data. Figure 7-3
shows a snapshot of the whole figure object:

In [14]: from plotly.subplots import make_subplots

In [15]: f = make_subplots(rows=3, cols=1, shared_xaxes=True)  
         f.append_trace(go.Scatter(name='SYMBOL'), row=1, col=1)  
         f.append_trace(go.Scatter(name='RETURN', line=dict(width=1, dash='dot'),
                  mode='lines+markers', marker={'symbol': 'triangle-up'}),
                  row=2, col=1)  
         f.append_trace(go.Scatter(name='MOMENTUM', line=dict(width=1, dash='dash'),
                  mode='lines+markers', marker={'symbol': 'x'}), row=3, col=1)  
         # f.update_layout(height=600)  

In [16]: fig = go.FigureWidget(f)

In [17]: fig
Out[17]: FigureWidget({
           'data': [{'name': 'SYMBOL',
                     'type': 'scatter',
                     'uid': 'c8db0cac…

In [18]: import numpy as np

In [19]: df = pd.DataFrame()
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In [20]: for _ in range(75):
             msg = socket.recv_string()
             t = datetime.now()
             sym, price = msg.split()
             df = df.append(pd.DataFrame({sym: float(price)}, index=[t]))
             df['RET'] = np.log(df[sym] / df[sym].shift(1))
             df['MOM'] = df['RET'].rolling(10).mean()
             fig.data[0].x = df.index
             fig.data[1].x = df.index
             fig.data[2].x = df.index
             fig.data[0].y = df[sym]
             fig.data[1].y = df['RET']
             fig.data[2].y = df['MOM']

Creates three sub-plots that share the x-axis.

Creates the first sub-plot for the price data.

Creates the second sub-plot for the log returns data.

Creates the third sub-plot for the momentum data.

Adjusts the height of the figure object.

Figure 7-3. Streaming price data, log returns, and momentum in different sub-plots

Streaming Data as Bars
Not all streaming data is best visualized as a time series (Scatter object). Some
streaming data is better visualized as bars with changing height. “Sample Data Server
for Bar Plot” on page 220 contains a Python script that serves sample data suited for a
bar-based visualization. A single data set (message) consists of eight floating point
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numbers. The following Python code generates a streaming bar plot (see Figure 7-4).
In this context, the x data usually does not change. For the following code to work,
the BarsServer.py script needs to be executed in a separate, local Python instance:

In [21]: socket = context.socket(zmq.SUB)

In [22]: socket.connect('tcp://0.0.0.0:5556')

In [23]: socket.setsockopt_string(zmq.SUBSCRIBE, '')

In [24]: for _ in range(5):
             msg = socket.recv_string()
             print(msg)
         60.361 53.504 67.782 64.165 35.046 94.227 20.221 54.716
         79.508 48.210 84.163 73.430 53.288 38.673 4.962 78.920
         53.316 80.139 73.733 55.549 21.015 20.556 49.090 29.630
         86.664 93.919 33.762 82.095 3.108 92.122 84.194 36.666
         37.192 85.305 48.397 36.903 81.835 98.691 61.818 87.121

In [25]: fig = go.FigureWidget()
         fig.add_bar()
         fig
Out[25]: FigureWidget({
        'data': [{'type': 'bar', 'uid':
        '51c6069f-4924-458d-a1ae-c5b5b5f3b07f'}], 'layout': {'templ…

In [26]: x = list('abcdefgh')
         fig.data[0].x = x
         for _ in range(25):
             msg = socket.recv_string()
             y = msg.split()
             y = [float(n) for n in y]
             fig.data[0].y = y
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2 Not all markets are open 24 hours, 7 days per week, and for sure not all financial instruments are traded
around the clock. However, cryptocurrency markets, for example, for Bitcoin, indeed operate around the
clock, constantly creating new data that needs to be digested in real-time by players active in these markets.

Figure 7-4. Streaming data as bars with changing height

Conclusions
Nowadays, algorithmic trading has to deal with different types of streaming (real-
time) data types. The most important type in this regard is tick data for financial
instruments that is, in principle, generated and published around the clock.2 Sockets
are the technological tool of choice to deal with streaming data. A powerful and at the
same time easy-to-use library in this regard is ZeroMQ, which is used in this chapter to
create a simple tick data server that endlessly emits sample tick data.

Different tick data clients are introduced and explained to generate trading signals in
real time based on online algorithms and to visualize the incoming tick data by
streaming plots using Plotly. Plotly makes streaming visualization within a Jupyter
Notebook an efficient affair, allowing for, among other things, multiple streams at the
same time—both in a single plot or in different sub-plots.

Based on the topics covered in this chapter and the previous ones, you are now able
to work with both historical structured data (for example, in the context of the back‐
testing of trading strategies) and real-time streaming data (for example, in the context
of generating trading signals in real time). This represents a major milestone in the
endeavor to build an automated, algorithmic trading operation.
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References and Further Resources
The best starting point for a thorough overview of ZeroMQ is the ZeroMQ home page.
The Learning ZeroMQ with Python tutorial page provides an overview of the PUB-
SUB pattern based on the Python wrapper for the socket communication library.

A good place to start working with Plotly is the Plotly home page and in particular
the Getting Started with Plotly page for Python.

Python Scripts
This section presents Python scripts referenced and used in this chapter.

Sample Tick Data Server
The following is a script that runs a sample tick data server based on ZeroMQ. It makes
use of Monte Carlo simulation for the geometric Brownian motion:

#
# Python Script to Simulate a
# Financial Tick Data Server
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import zmq
import math
import time
import random

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind('tcp://0.0.0.0:5555')

class InstrumentPrice(object):
    def __init__(self):
        self.symbol = 'SYMBOL'
        self.t = time.time()
        self.value = 100.
        self.sigma = 0.4
        self.r = 0.01

    def simulate_value(self):
        ''' Generates a new, random stock price.
        '''
        t = time.time()
        dt = (t - self.t) / (252 * 8 * 60 * 60)
        dt *= 500
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        self.t = t
        self.value *= math.exp((self.r - 0.5 * self.sigma ** 2) * dt +
                               self.sigma * math.sqrt(dt) * random.gauss(0, 1))
        return self.value

ip = InstrumentPrice()

while True:
    msg = '{} {:.2f}'.format(ip.symbol, ip.simulate_value())
    print(msg)
    socket.send_string(msg)
    time.sleep(random.random() * 2)

Tick Data Client
The following is a script that runs a tick data client based on ZeroMQ. It connects to
the tick data server from “Sample Tick Data Server” on page 218:

#
# Python Script
# with Tick Data Client
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import zmq

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://0.0.0.0:5555')
socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

while True:
    data = socket.recv_string()
    print(data)

Momentum Online Algorithm
The following is a script that implements a trading strategy based on time series
momentum as an online algorithm. It connects to the tick data server from “Sample
Tick Data Server” on page 218:

#
# Python Script
# with Online Trading Algorithm
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
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#
import zmq
import datetime
import numpy as np
import pandas as pd

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://0.0.0.0:5555')
socket.setsockopt_string(zmq.SUBSCRIBE, 'SYMBOL')

df = pd.DataFrame()
mom = 3
min_length = mom + 1

while True:
    data = socket.recv_string()
    t = datetime.datetime.now()
    sym, value = data.split()
    df = df.append(pd.DataFrame({sym: float(value)}, index=[t]))
    dr = df.resample('5s', label='right').last()
    dr['returns'] = np.log(dr / dr.shift(1))
    if len(dr) > min_length:
        min_length += 1
        dr['momentum'] = np.sign(dr['returns'].rolling(mom).mean())
        print('\n' + '=' * 51)
        print('NEW SIGNAL | {}'.format(datetime.datetime.now()))
        print('=' * 51)
        print(dr.iloc[:-1].tail())
        if dr['momentum'].iloc[-2] == 1.0:
            print('\nLong market position.')
            # take some action (e.g., place buy order)
        elif dr['momentum'].iloc[-2] == -1.0:
            print('\nShort market position.')
            # take some action (e.g., place sell order)

Sample Data Server for Bar Plot
The following is a Python script that generates sample data for a streaming bar plot:

#
# Python Script to Serve
# Random Bars Data
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import zmq
import math
import time
import random
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context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind('tcp://0.0.0.0:5556')

while True:
    bars = [random.random() * 100 for _ in range(8)]
    msg = ' '.join([f'{bar:.3f}' for bar in bars])
    print(msg)
    socket.send_string(msg)
    time.sleep(random.random() * 2)
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CHAPTER 8

CFD Trading with Oanda

Today, even small entities that trade complex instruments or are granted sufficient lev‐
erage can threaten the global financial system.

—Paul Singer

Today, it is easier than ever to get started with trading in the financial markets. There
is a large number of online trading platforms (brokers) available from which an algo‐
rithmic trader can choose. The choice of a platform might be influenced by multiple
factors:

Instruments
The first criterion that comes to mind is the type of instrument one is interested
in to trade. For example, one might be interested in trading stocks, exchange
traded funds (ETFs), bonds, currencies, commodities, options, or futures.

Strategies
Some traders are interested in long-only strategies, while others require short
selling as well. Some focus on single-instrument strategies, while others focus on
those involving multiple instruments at the same time.

Costs
Fixed and variable transaction costs are an important factor for many traders.
They might even decide whether a certain strategy is profitable or not (see, for
instance, Chapters 4 and 6).
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Technology
Technology has become an important factor in the selection of trading platforms.
First, there are the tools that the platforms offer to traders. Trading tools are
available, in general, for desktop/notebook computers, tablets, and smart phones.
Second, there are the application programming interfaces (APIs) that can be
accessed programmatically by traders.

Jurisdiction
Financial trading is a heavily regulated field with different legal frameworks in
place for different countries or regions. This might prohibit certain traders from
using certain platforms and/or financial instruments depending on their resi‐
dence.

This chapter focuses on Oanda, an online trading platform that is well suited to
deploy automated, algorithmic trading strategies, even for retail traders. The follow‐
ing is a brief description of Oanda along the criteria as outlined previously:

Instruments
Oanda offers a wide range of so-called contracts for difference (CFD) products
(see also “Contracts for Difference (CFDs)” on page 225 and “Disclaimer” on
page 249). Main characteristics of CFDs are that they are leveraged (for example,
10:1 or 50:1) and traded on margin such that losses might exceed the initial
capital.

Strategies
Oanda allows both to go long (buy) and to go short (sell) CFDs. Different order
types are available, such as market or limit orders, with or without profit targets
and/or (trailing) stop losses.

Costs
There are no fixed transaction costs associated with the trading of CFDs at
Oanda. However, there is a bid-ask spread that leads to variable transaction costs
when trading CFDs.

Technology
Oanda provides the trading application fxTrade (Practice), which retrieves data
in real time and allows the (manual, discretionary) trading of all instruments (see
Figure 8-1). There is also a browser-based trading application available (see
Figure 8-2). A major strength of the platform are the RESTful and streaming
APIs (see Oanda v20 API) via which traders can programmatically access histori‐
cal and streaming data, place buy and sell orders, or retrieve account informa‐
tion. A Python wrapper package is available (see v20 on PyPi). Oanda offers free
paper trading accounts that provide full access to all technological capabilities,
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which is really helpful in getting started on the platform. This also simplifies the
transitioning from paper to live trading.

Jurisdiction
Depending on the residence of the account holder, the selection of CFDs that can
be traded changes. FX-related CFDs are available basically everywhere Oanda is
active. CFDs on stock indices, for instance, might not be available in certain
jurisdictions.

Figure 8-1. Oanda trading application fxTrade Practice

Contracts for Difference (CFDs)
For more details on CFDs, see the Investopedia CFD page or the more detailed Wiki‐
pedia CFD page. There are CFDs available on currency pairs (for example, EUR/
USD), commodities (for example, gold), stock indices (for example, S&P 500 stock
index), bonds (for example, German 10 Year Bund), and more. One can think of a
product range that basically allows one to implement global macro strategies. Finan‐
cially speaking, CFDs are derivative products that derive their payoff based on the
development of prices for other instruments. In addition, trading activity (liquidity)
influences the price of CFDs. Although a CFD might be based on the S&P 500 index,
it is a completely different product issued, quoted, and supported by Oanda (or a sim‐
ilar provider).
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This brings along certain risks that traders should be aware of. A recent event that
illustrates this issue is the Swiss Franc event that led to a number of insolvencies in the
online broker space. See, for instance, the article Currency Brokers Fall Over Like
Dominoes After SNB Decison on Swiss Franc.

Figure 8-2. Oanda browser-based trading application

The chapter is organized as follows. “Setting Up an Account” on page 227 briefly dis‐
cusses how to set up an account. “The Oanda API” on page 229 illustrates the neces‐
sary steps to access the API. Based on the API access, “Retrieving Historical Data” on
page 230 retrieves and works with historical data for a certain CFD. “Working with
Streaming Data” on page 236 introduces the streaming API of Oanda for data
retrieval and visualization. “Implementing Trading Strategies in Real Time” on page
239 implements an automated, algorithmic trading strategy in real time. Finally,
“Retrieving Account Information” on page 244 deals with retrieving data about the
account itself, such as the current balance or recent trades. Throughout, the code
makes use of a Python wrapper class called tpqoa (see GitHub repository).

The goal of this chapter is to make use of the approaches and technologies as intro‐
duced in previous chapters to automatically trade on the Oanda platform.
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Setting Up an Account
The process for setting up an account with Oanda is simple and efficient. You can
choose between a real account and a free demo (“practice”) account, which absolutely
suffices to implement what follows (see Figures 8-3 and 8-4).

Figure 8-3. Oanda account registration (account types)

If the registration is successful and you are logged in to the account on the platform,
you should see a starting page, as shown in Figure 8-5. In the middle, you will find a
download link for the fxTrade Practice for Desktop application, which you
should install. Once it is running, it looks similar to the screenshot shown in
Figure 8-1.
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Figure 8-4. Oanda account registration (registration form)

Figure 8-5. Oanda account starting page
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1 The naming of certain objects is not completely consistent in the context of the Oanda APIs. For example,
API key and access token are used interchangeably. Also, account ID and account number refer to the same
number.

The Oanda API
After registration, getting access to the APIs of Oanda is an easy affair. The major
ingredients needed are the account number and the access token (API key). You will
find the account number, for instance, in the area Manage Funds. The access token
can be generated in the area Manage API Access (see Figure 8-6).1

From now on, the configparser module is used to manage account credentials. The
module expects a text file—with a filename, say, of pyalgo.cfg—in the following format
for use with an Oanda practice account:

[oanda]
account_id = YOUR_ACCOUNT_ID
access_token = YOUR_ACCESS_TOKEN
account_type = practice

Figure 8-6. Oanda API access managing page

To access the API via Python, it is recommended to use the Python wrapper package
tpqoa (see GitHub repository) that in turn relies on the v20 package from Oanda (see
GitHub repository).
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It is installed with the following command:

pip install git+https://github.com/yhilpisch/tpqoa.git

With these prerequisites, you can connect to the API with a single line of code:

In [1]: import tpqoa

In [2]: api = tpqoa.tpqoa('../pyalgo.cfg')  

Adjust the path and filename if required.

This is a major milestone: being connected to the Oanda API allows for the retrieval
of historical data, the programmatic placement of orders, and more.

The upside of using the configparser module is that it simplifies
the storage and management of account credentials. In algorithmic
trading, the number of accounts needed can quickly grow. Exam‐
ples are a cloud instance or server, data service provider, online
trading platform, and so on.
The downside is that the account information is stored in the form
of plain text, which represents a considerable security risk, particu‐
larly since the information about multiple accounts is stored in a
single file. When moving to production, you should therefore
apply, for example, file encryption methods to keep the credentials
safe.

Retrieving Historical Data
A major benefit of working with the Oanda platform is that the complete price his‐
tory of all Oanda instruments is accessible via the RESTful API. In this context, com‐
plete history refers to the different CFDs themselves, not the underlying instruments
they are defined on.

Looking Up Instruments Available for Trading
For an overview of what instruments can be traded for a given account, use
the .get_instruments() method. It only retrieves the display names and technical
instruments, names from the API. More details are available via the API, such as
minimum position size:

In [3]: api.get_instruments()[:15]
Out[3]: [('AUD/CAD', 'AUD_CAD'),
         ('AUD/CHF', 'AUD_CHF'),
         ('AUD/HKD', 'AUD_HKD'),
         ('AUD/JPY', 'AUD_JPY'),
         ('AUD/NZD', 'AUD_NZD'),
         ('AUD/SGD', 'AUD_SGD'),
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         ('AUD/USD', 'AUD_USD'),
         ('Australia 200', 'AU200_AUD'),
         ('Brent Crude Oil', 'BCO_USD'),
         ('Bund', 'DE10YB_EUR'),
         ('CAD/CHF', 'CAD_CHF'),
         ('CAD/HKD', 'CAD_HKD'),
         ('CAD/JPY', 'CAD_JPY'),
         ('CAD/SGD', 'CAD_SGD'),
         ('CHF/HKD', 'CHF_HKD')]

Backtesting a Momentum Strategy on Minute Bars
The example that follows uses the instrument EUR_USD based on the EUR/USD cur‐
rency pair. The goal is to backtest momentum-based strategies on one-minute bars. The
data used is for two days in May 2020. The first step is to retrieve the raw data from
Oanda:

In [4]: help(api.get_history)  
        Help on method get_history in module tpqoa.tpqoa:

        get_history(instrument, start, end, granularity, price, localize=True)
         method of tpqoa.tpqoa.tpqoa instance
            Retrieves historical data for instrument.

            Parameters
            ==========
            instrument: string
                valid instrument name
            start, end: datetime, str
                Python datetime or string objects for start and end
            granularity: string
                a string like 'S5', 'M1' or 'D'
            price: string
                one of 'A' (ask), 'B' (bid) or 'M' (middle)

            Returns
            =======
            data: pd.DataFrame
                pandas DataFrame object with data

In [5]: instrument = 'EUR_USD'  
        start = '2020-08-10'  
        end = '2020-08-12'  
        granularity = 'M1'  
        price = 'M'  

In [6]: data = api.get_history(instrument, start, end,
                              granularity, price)  

In [7]: data.info()  
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2 This implicitely neglects transaction costs in the form of bid-ask spreads when selling and buying units of the
instrument, respectively.

        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2814 entries, 2020-08-10 00:00:00 to 2020-08-11
         23:59:00
        Data columns (total 6 columns):
         #   Column    Non-Null Count  Dtype
        ---  ------    --------------  -----
         0   o         2814 non-null   float64
         1   h         2814 non-null   float64
         2   l         2814 non-null   float64
         3   c         2814 non-null   float64
         4   volume    2814 non-null   int64
         5   complete  2814 non-null   bool
        dtypes: bool(1), float64(4), int64(1)
        memory usage: 134.7 KB

In [8]: data[['c', 'volume']].head()  
Out[8]:                            c  volume
        time
        2020-08-10 00:00:00  1.17822      18
        2020-08-10 00:01:00  1.17836      32
        2020-08-10 00:02:00  1.17828      25
        2020-08-10 00:03:00  1.17834      13
        2020-08-10 00:04:00  1.17847      43

Shows the docstring (help text) for the .get_history() method.

Defines the parameter values.

Retrieves the raw data from the API.

Shows the meta information for the retrieved data set.

Shows the first five data rows for two columns.

The second step is to implement the vectorized backtesting. The idea is to simultane‐
ously backtest a couple of momentum strategies. The code is straightforward and
concise (see also Chapter 4).

For simplicity, the following code uses close (c) values of mid prices only:2

In [9]: import numpy as np

In [10]: data['returns'] = np.log(data['c'] / data['c'].shift(1))  

In [11]: cols = []  
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In [12]: for momentum in [15, 30, 60, 120]:  
             col = 'position_{}'.format(momentum)  
             data[col] = np.sign(data['returns'].rolling(momentum).mean())  
             cols.append(col)  

Calculates the log returns based on the close values of the mid prices.

Instantiates an empty list object to collect column names.

Defines the time interval in minute bars for the momentum strategy.

Defines the name of the column to be used for storage in the DataFrame object.

Adds the strategy positionings as a new column.

Appends the name of the column to the list object.

The final step is the derivation and plotting of the absolute performance of the different
momentum strategies. The plot Figure 8-7 shows the performances of the
momentum-based strategies graphically and compares them to the performance of
the base instrument itself:

In [13]: from pylab import plt
         plt.style.use('seaborn')
         import matplotlib as mpl
         mpl.rcParams['savefig.dpi'] = 300
         mpl.rcParams['font.family'] = 'serif'

In [14]: strats = ['returns']  

In [15]: for col in cols:  
             strat = 'strategy_{}'.format(col.split('_')[1])  
             data[strat] = data[col].shift(1) * data['returns']  
             strats.append(strat)  

In [16]: data[strats].dropna().cumsum(
             ).apply(np.exp).plot(figsize=(10, 6));  

Defines another list object to store the column names to be plotted later on.

Iterates over columns with the positionings for the different strategies.

Derives the name for the new column in which the strategy performance is
stored.

Calculates the log returns for the different strategies and stores them as new
columns.
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Appends the column names to the list object for later plotting.

Plots the cumulative performances for the instrument and the strategies.

Figure 8-7. Gross performance of different momentum strategies for EUR_USD instrument
(minute bars)

Factoring In Leverage and Margin
In general, when you buy a share of a stock for, say, 100 USD, the profit and loss
(P&L) calculations are straightforward: if the stock price rises by 1 USD, you earn 1
USD (unrealized profit); if the stock price falls by 1 USD, you lose 1 USD (unrealized
loss). If you buy 10 shares, just multiply the results by 10.

Trading CFDs on the Oanda platform involves leverage and margin. This signifi‐
cantly influences the P&L calculation. For an introduction to and overview of this
topic refer to Oanda fxTrade Margin Rules. A simple example can illustrate the major
aspects in this context.

Consider that a EUR-based algorithmic trader wants to trade the EUR_USD instrument
on the Oanda platform and wants to get a long exposure of 10,000 EUR at an ask
price of 1.1. Without leverage and margin, the trader (or Python program) would buy
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3 Note that for some instruments, one unit means 1 USD, like for currency-related CFDs. For others, like for
index-related CFDs (for example, DE30_EUR), one unit means a currency exposure at the (bid/ask) price of the
CFD (for example, 11,750 EUR).

4 The simplified calculations neglect, for example, financing costs that might become due for leveraged trading.

10,000 units of the CFD.3 If the price of the instrument (exchange rate) rises to 1.105
(as the midpoint rate between bid and ask prices), the absolute profit is 10,000 x 0.005
= 50 or 0.5%.

What impact do leverage and margining have? Suppose the algorithmic trader choo‐
ses a leverage ratio of 20:1, which translates into a 5% margin (= 100% / 20). This in
turn implies that the trader only needs to put up a margin upfront of 10,000 EUR x
5% = 500 EUR to get the same exposure. If the price of the instrument then rises to
1.105, the absolute profit stays the same at 50 EUR, but the relative profit rises to 50
EUR / 500 EUR = 10%. The return is considerably amplified by a factor of 20; this is
the benefit of leverage when things go as desired.

What happens if things go south? Assume the instrument price drops to 1.08 (as the
midpoint rate between bid and ask prices), leading to a loss of 10,000 x (1.08 - 1.1) =
-200 EUR. The relative loss now is -200 EUR / 500 EUR = -40%. If the account the
algorithmic trader is trading with has less than 200 EUR left in equity/cash, the posi‐
tion needs to be closed out since the (regulatory) margin requirements cannot be met
anymore. If losses eat up the margin completely, additional funds need to be allocated
as margin to keep the trade alive.4

Figure 8-8 shows the amplifying effect on the performance of the momentum strate‐
gies for a leverage ratio of 20:1. The initial margin of 5% suffices to cover potential
losses since it is not eaten up even in the worst case depicted:

In [17]: data[strats].dropna().cumsum().apply(
                     lambda x: x * 20).apply(np.exp).plot(figsize=(10, 6));  

Multiplies the log returns by a factor of 20 according to the leverage ratio
assumed.

Leveraged trading does not only amplify potentials profits, but it
also amplifies potential losses. With leveraged trading based on a
10:1 factor (10% margin), a 10% adverse move in the base instru‐
ment already wipes out the complete margin. In other words, a
10% move leads to a 100% loss. Therefore, you should make sure to
fully understand all risks involved in leveraged trading. You should
also make sure to apply appropriate risk measures, such as stop loss
orders, that are in line with your risk profile and appetite.
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Figure 8-8. Gross performance of momentum strategies for EUR_USD instrument with
20:1 leverage (minute bars)

Working with Streaming Data
Working with streaming data is again made simple and straightforward by the
Python wrapper package tpqoa. The package, in combination with the v20 package,
takes care of the socket communication such that the algorithmic trader only needs to
decide what to do with the streaming data:

In [18]: instrument = 'EUR_USD'

In [19]: api.stream_data(instrument, stop=10)  
         2020-08-19T14:39:13.560138152Z 1.19131 1.1915
         2020-08-19T14:39:14.088511060Z 1.19134 1.19152
         2020-08-19T14:39:14.390081879Z 1.19124 1.19145
         2020-08-19T14:39:15.105974700Z 1.19129 1.19144
         2020-08-19T14:39:15.375370451Z 1.19128 1.19144
         2020-08-19T14:39:15.501380756Z 1.1912 1.19141
         2020-08-19T14:39:15.951793928Z 1.1912 1.19138
         2020-08-19T14:39:16.354844135Z 1.19123 1.19138
         2020-08-19T14:39:16.661440356Z 1.19118 1.19133
         2020-08-19T14:39:16.912150908Z 1.19112 1.19132

The stop parameter stops the streaming after a certain number of ticks retrieved.
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Placing Market Orders
Similarly, it is straightforward to place market buy or sell orders with the cre
ate_order() method:

In [20]: help(api.create_order)  
         Help on method create_order in module tpqoa.tpqoa:

         create_order(instrument, units, price=None, sl_distance=None,
          tsl_distance=None, tp_price=None, comment=None, touch=False,
          suppress=False, ret=False) method of tpqoa.tpqoa.tpqoa instance
             Places order with Oanda.

             Parameters
             ==========
             instrument: string
                 valid instrument name
             units: int
                 number of units of instrument to be bought
                 (positive int, e.g., 'units=50')
                 or to be sold (negative int, e.g., 'units=-100')
             price: float
                 limit order price, touch order price
             sl_distance: float
                 stop loss distance price, mandatory e.g., in Germany
             tsl_distance: float
                 trailing stop loss distance
             tp_price: float
                 take profit price to be used for the trade
             comment: str
                 string
             touch: boolean
                 market_if_touched order (requires price to be set)
             suppress: boolean
                 whether to suppress print out
             ret: boolean
                 whether to return the order object

In [21]: api.create_order(instrument, 1000)  

         {'id': '1721', 'time': '2020-08-19T14:39:17.062399275Z', 'userID':
          13834683, 'accountID': '101-004-13834683-001', 'batchID': '1720',
          'requestID': '24716258589170956', 'type': 'ORDER_FILL', 'orderID':
          '1720', 'instrument': 'EUR_USD', 'units': '1000.0',
          'gainQuoteHomeConversionFactor': '0.835288642787',
          'lossQuoteHomeConversionFactor': '0.843683503518', 'price': 1.19131,
          'fullVWAP': 1.19131, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
          1.1911, 'liquidity': '10000000'}], 'asks': [{'price': 1.19131,
          'liquidity': '10000000'}], 'closeoutBid': 1.1911, 'closeoutAsk':
          1.19131}, 'reason': 'MARKET_ORDER', 'pl': '0.0', 'financing': '0.0',
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          'commission': '0.0', 'guaranteedExecutionFee': '0.0',
          'accountBalance': '98510.7986', 'tradeOpened': {'tradeID': '1721',
          'units': '1000.0', 'price': 1.19131, 'guaranteedExecutionFee': '0.0',
          'halfSpreadCost': '0.0881', 'initialMarginRequired': '33.3'},
          'halfSpreadCost': '0.0881'}

In [22]: api.create_order(instrument, -1500)  

         {'id': '1723', 'time': '2020-08-19T14:39:17.200434462Z', 'userID':
          13834683, 'accountID': '101-004-13834683-001', 'batchID': '1722',
          'requestID': '24716258589171315', 'type': 'ORDER_FILL', 'orderID':
          '1722', 'instrument': 'EUR_USD', 'units': '-1500.0',
          'gainQuoteHomeConversionFactor': '0.835288642787',
          'lossQuoteHomeConversionFactor': '0.843683503518', 'price': 1.1911,
          'fullVWAP': 1.1911, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
          1.1911, 'liquidity': '10000000'}], 'asks': [{'price': 1.19131,
          'liquidity': '9999000'}], 'closeoutBid': 1.1911, 'closeoutAsk':
          1.19131}, 'reason': 'MARKET_ORDER', 'pl': '-0.1772', 'financing':
          '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
          'accountBalance': '98510.6214', 'tradeOpened': {'tradeID': '1723',
          'units': '-500.0', 'price': 1.1911, 'guaranteedExecutionFee': '0.0',
          'halfSpreadCost': '0.0441', 'initialMarginRequired': '16.65'},
          'tradesClosed': [{'tradeID': '1721', 'units': '-1000.0', 'price':
          1.1911, 'realizedPL': '-0.1772', 'financing': '0.0',
          'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '0.0881'}],
          'halfSpreadCost': '0.1322'}

In [23]: api.create_order(instrument, 500)  

         {'id': '1725', 'time': '2020-08-19T14:39:17.348231507Z', 'userID':
          13834683, 'accountID': '101-004-13834683-001', 'batchID': '1724',
          'requestID': '24716258589171775', 'type': 'ORDER_FILL', 'orderID':
          '1724', 'instrument': 'EUR_USD', 'units': '500.0',
          'gainQuoteHomeConversionFactor': '0.835313189428',
          'lossQuoteHomeConversionFactor': '0.84370829686', 'price': 1.1913,
          'fullVWAP': 1.1913, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
          1.19104, 'liquidity': '9998500'}], 'asks': [{'price': 1.1913,
          'liquidity': '9999000'}], 'closeoutBid': 1.19104, 'closeoutAsk':
          1.1913}, 'reason': 'MARKET_ORDER', 'pl': '-0.0844', 'financing':
          '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
          'accountBalance': '98510.537', 'tradesClosed': [{'tradeID': '1723',
          'units': '500.0', 'price': 1.1913, 'realizedPL': '-0.0844',
          'financing': '0.0', 'guaranteedExecutionFee': '0.0', 'halfSpreadCost':
          '0.0546'}], 'halfSpreadCost': '0.0546'}

Shows all options for placing market, limit, and market-if-touched orders.

Opens a long position via market order.
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Goes short after closing the long position via market order.

Closes the short position via market order.

Although the Oanda API allows the placement of different order types, this chapter
and the following chapter mainly focus on market orders to instantly go long or short
whenever a new signal appears.

Implementing Trading Strategies in Real Time
This section presents a custom class that automatically trades the EUR_USD instrument
on the Oanda platform based on a momentum strategy. It is called MomentumTrader
and is presented in “Python Script” on page 247. The following walks through the
class line by line, beginning with the 0 method. The class itself inherits from the
tpqoa class:

import tpqoa
import numpy as np
import pandas as pd

class MomentumTrader(tpqoa.tpqoa):
    def __init__(self, conf_file, instrument, bar_length, momentum, units,
                 *args, **kwargs):
        super(MomentumTrader, self).__init__(conf_file)
        self.position = 0  
        self.instrument = instrument  
        self.momentum = momentum  
        self.bar_length = bar_length  
        self.units = units  
        self.raw_data = pd.DataFrame()  
        self.min_length = self.momentum + 1  

Initial position value (market neutral).

Instrument to be traded.

Length of the bar for the resampling of the tick data.

Number of intervals for momentum calculation.

Number of units to be traded.

An empty DataFrame object to be filled with tick data.

The initial minimum bar length for the start of the trading itself.
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The major method is the .on_success() method, which implements the trading logic
for the momentum strategy:

    def on_success(self, time, bid, ask):  
        ''' Takes actions when new tick data arrives. '''
        print(self.ticks, end=' ')  
        self.raw_data = self.raw_data.append(pd.DataFrame(
            {'bid': bid, 'ask': ask}, index=[pd.Timestamp(time)]))  
        self.data = self.raw_data.resample(
            self.bar_length, label='right').last().ffill().iloc[:-1]  
        self.data['mid'] = self.data.mean(axis=1)  
        self.data['returns'] = np.log(self.data['mid'] /
                                      self.data['mid'].shift(1))  
        self.data['position'] = np.sign(
            self.data['returns'].rolling(self.momentum).mean())  

        if len(self.data) > self.min_length:  
            self.min_length += 1  
            if self.data['position'].iloc[-1] == 1:  
                if self.position == 0:  
                    self.create_order(self.instrument, self.units)  
                elif self.position == -1:  
                    self.create_order(self.instrument, self.units * 2)  
                self.position = 1  
            elif self.data['position'].iloc[-1] == -1:  
                if self.position == 0:  
                    self.create_order(self.instrument, -self.units)  
                elif self.position == 1:  
                    self.create_order(self.instrument, -self.units * 2)  
                self.position = -1  

This method is called whenever new tick data arrives.

The number of ticks retrieved is printed.

The tick data is collected and stored.

The tick data is then resampled to the appropriate bar length.

The mid prices are calculated…

…based on which the log returns are derived.

The signal (positioning) is derived based on the momentum parameter/attribute
(via an online algorithm).

When there is enough or new data, the trading logic is applied and the minimum
length is increased by one every time.
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Checks whether the latest positioning (“signal”) is 1 (long).

If the current market position is 0 (neutral)…

…a buy order for self.units is initiated.

If it is -1 (short)…

…a buy order for 0 is initiated.

The market position self.position is set to +1 (long).

Checks whether the latest positioning (“signal”) is -1 (short).

If the current market position is 0 (neutral)…

…a sell order for -self.units is initiated.

If it is +1 (long)…

…a sell order for 0 is initiated.

The market position self.position is set to -1 (short).

Based on this class, getting started with automated, algorithmic trading is just four
lines of code. The Python code that follows initiates an automated trading session:

In [24]: import MomentumTrader as MT

In [25]: mt = MT.MomentumTrader('../pyalgo.cfg',  
                                instrument=instrument,  
                                bar_length='10s',  
                                momentum=6,  
                                units=10000)  

In [26]: mt.stream_data(mt.instrument, stop=500)  

The configuration file with the credentials.

The instrument parameter is specified.

The bar_length parameter for the resampling is provided.

The momentum parameter is defined, which is applied to the resampled data inter‐
vals.
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The units parameter is set, which specifies the position size for long and short
positions.

This starts the streaming and therewith the trading; it stops after 100 ticks.

The preceding code provides the following output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 149 150 151 152 153

{'id': '1727', 'time': '2020-08-19T14:40:30.443867492Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1726',
 'requestID': '42730657405829101', 'type': 'ORDER_FILL', 'orderID':
 '1726', 'instrument': 'EUR_USD', 'units': '10000.0',
 'gainQuoteHomeConversionFactor': '0.8350012403',
 'lossQuoteHomeConversionFactor': '0.843393212565', 'price': 1.19168,
 'fullVWAP': 1.19168, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19155, 'liquidity': '10000000'}], 'asks': [{'price': 1.19168,
 'liquidity': '10000000'}], 'closeoutBid': 1.19155, 'closeoutAsk':
 1.19168}, 'reason': 'MARKET_ORDER', 'pl': '0.0', 'financing': '0.0',
 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98510.537', 'tradeOpened': {'tradeID': '1727',
 'units': '10000.0', 'price': 1.19168, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.5455', 'initialMarginRequired': '333.0'},
 'halfSpreadCost': '0.5455'}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
 223

{'id': '1729', 'time': '2020-08-19T14:41:11.436438078Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1728',
 'requestID': '42730657577912600', 'type': 'ORDER_FILL', 'orderID':
 '1728', 'instrument': 'EUR_USD', 'units': '-20000.0',
 'gainQuoteHomeConversionFactor': '0.83519398913',
 'lossQuoteHomeConversionFactor': '0.843587898569', 'price': 1.19124,
 'fullVWAP': 1.19124, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19124, 'liquidity': '10000000'}], 'asks': [{'price': 1.19144,
 'liquidity': '10000000'}], 'closeoutBid': 1.19124, 'closeoutAsk':
 1.19144}, 'reason': 'MARKET_ORDER', 'pl': '-3.7118', 'financing':
 '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98506.8252', 'tradeOpened': {'tradeID': '1729',
 'units': '-10000.0', 'price': 1.19124, 'guaranteedExecutionFee':
 '0.0', 'halfSpreadCost': '0.8394', 'initialMarginRequired': '333.0'},
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 'tradesClosed': [{'tradeID': '1727', 'units': '-10000.0', 'price':
 1.19124, 'realizedPL': '-3.7118', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '0.8394'}],
 'halfSpreadCost': '1.6788'}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

{'id': '1731', 'time': '2020-08-19T14:42:20.525804142Z', 'userID':
 13834683, 'accountID': '101-004-13834683-001', 'batchID': '1730',
 'requestID': '42730657867512554', 'type': 'ORDER_FILL', 'orderID':
 '1730', 'instrument': 'EUR_USD', 'units': '20000.0',
 'gainQuoteHomeConversionFactor': '0.835400847964',
 'lossQuoteHomeConversionFactor': '0.843796836386', 'price': 1.19111,
 'fullVWAP': 1.19111, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
 1.19098, 'liquidity': '10000000'}], 'asks': [{'price': 1.19111,
 'liquidity': '10000000'}], 'closeoutBid': 1.19098, 'closeoutAsk':
 1.19111}, 'reason': 'MARKET_ORDER', 'pl': '1.086', 'financing': '0.0',
 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
 'accountBalance': '98507.9112', 'tradeOpened': {'tradeID': '1731',
 'units': '10000.0', 'price': 1.19111, 'guaranteedExecutionFee': '0.0',
 'halfSpreadCost': '0.5457', 'initialMarginRequired': '333.0'},
 'tradesClosed': [{'tradeID': '1729', 'units': '10000.0', 'price':
 1.19111, 'realizedPL': '1.086', 'financing': '0.0',
 'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '0.5457'}],
 'halfSpreadCost': '1.0914'}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
 498 499 500

Finally, close out the final position:

In [27]: oo = mt.create_order(instrument, units=-mt.position * mt.units,
                              ret=True, suppress=True)  
         oo
Out[27]: {'id': '1733',
          'time': '2020-08-19T14:43:17.107985242Z',
          'userID': 13834683,
          'accountID': '101-004-13834683-001',
          'batchID': '1732',
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          'requestID': '42730658106750652',
          'type': 'ORDER_FILL',
          'orderID': '1732',
          'instrument': 'EUR_USD',
          'units': '-10000.0',
          'gainQuoteHomeConversionFactor': '0.835327206922',
          'lossQuoteHomeConversionFactor': '0.843722455232',
          'price': 1.19109,
          'fullVWAP': 1.19109,
          'fullPrice': {'type': 'PRICE',
           'bids': [{'price': 1.19109, 'liquidity': '10000000'}],
           'asks': [{'price': 1.19121, 'liquidity': '10000000'}],
           'closeoutBid': 1.19109,
           'closeoutAsk': 1.19121},
          'reason': 'MARKET_ORDER',
          'pl': '-0.1687',
          'financing': '0.0',
          'commission': '0.0',
          'guaranteedExecutionFee': '0.0',
          'accountBalance': '98507.7425',
          'tradesClosed': [{'tradeID': '1731',
            'units': '-10000.0',
            'price': 1.19109,
            'realizedPL': '-0.1687',
            'financing': '0.0',
            'guaranteedExecutionFee': '0.0',
            'halfSpreadCost': '0.5037'}],
          'halfSpreadCost': '0.5037'}

Closes out the final position.

Retrieving Account Information
With regard to account information, transaction history, and the like, the Oanda
RESTful API is also convenient to work with. For example, after the execution of the
momentum strategy in the previous section, the algorithmic trader might want
to inspect the current balance of the trading account. This is possible via
the .get_account_summary() method:

In [28]: api.get_account_summary()
Out[28]: {'id': '101-004-13834683-001',
          'alias': 'Primary',
          'currency': 'EUR',
          'balance': '98507.7425',
          'createdByUserID': 13834683,
          'createdTime': '2020-03-19T06:08:14.363139403Z',
          'guaranteedStopLossOrderMode': 'DISABLED',
          'pl': '-1273.126',
          'resettablePL': '-1273.126',
          'resettablePLTime': '0',
          'financing': '-219.1315',
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          'commission': '0.0',
          'guaranteedExecutionFees': '0.0',
          'marginRate': '0.0333',
          'openTradeCount': 1,
          'openPositionCount': 1,
          'pendingOrderCount': 0,
          'hedgingEnabled': False,
          'unrealizedPL': '929.8862',
          'NAV': '99437.6287',
          'marginUsed': '377.76',
          'marginAvailable': '99064.4945',
          'positionValue': '3777.6',
          'marginCloseoutUnrealizedPL': '935.8183',
          'marginCloseoutNAV': '99443.5608',
          'marginCloseoutMarginUsed': '377.76',
          'marginCloseoutPercent': '0.0019',
          'marginCloseoutPositionValue': '3777.6',
          'withdrawalLimit': '98507.7425',
          'marginCallMarginUsed': '377.76',
          'marginCallPercent': '0.0038',
          'lastTransactionID': '1733'}

Information about the last few trades is received with the .get_transactions()
method:

In [29]: api.get_transactions(tid=int(oo['id']) - 2)
Out[29]: [{'id': '1732',
           'time': '2020-08-19T14:43:17.107985242Z',
           'userID': 13834683,
           'accountID': '101-004-13834683-001',
           'batchID': '1732',
           'requestID': '42730658106750652',
           'type': 'MARKET_ORDER',
           'instrument': 'EUR_USD',
           'units': '-10000.0',
           'timeInForce': 'FOK',
           'positionFill': 'DEFAULT',
           'reason': 'CLIENT_ORDER'},
          {'id': '1733',
           'time': '2020-08-19T14:43:17.107985242Z',
           'userID': 13834683,
           'accountID': '101-004-13834683-001',
           'batchID': '1732',
           'requestID': '42730658106750652',
           'type': 'ORDER_FILL',
           'orderID': '1732',
           'instrument': 'EUR_USD',
           'units': '-10000.0',
           'gainQuoteHomeConversionFactor': '0.835327206922',
           'lossQuoteHomeConversionFactor': '0.843722455232',
           'price': 1.19109,
           'fullVWAP': 1.19109,
           'fullPrice': {'type': 'PRICE',
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            'bids': [{'price': 1.19109, 'liquidity': '10000000'}],
            'asks': [{'price': 1.19121, 'liquidity': '10000000'}],
            'closeoutBid': 1.19109,
            'closeoutAsk': 1.19121},
           'reason': 'MARKET_ORDER',
           'pl': '-0.1687',
           'financing': '0.0',
           'commission': '0.0',
           'guaranteedExecutionFee': '0.0',
           'accountBalance': '98507.7425',
           'tradesClosed': [{'tradeID': '1731',
             'units': '-10000.0',
             'price': 1.19109,
             'realizedPL': '-0.1687',
             'financing': '0.0',
             'guaranteedExecutionFee': '0.0',
             'halfSpreadCost': '0.5037'}],
           'halfSpreadCost': '0.5037'}]

For a concise overview, there is also the .print_transactions() method available:

In [30]: api.print_transactions(tid=int(oo['id']) - 18)
         1717 | 2020-08-19T14:37:00.803426931Z | EUR_USD |   -10000.0 | 0.0
         1719 | 2020-08-19T14:38:21.953399006Z | EUR_USD |    10000.0 | 6.8444
         1721 | 2020-08-19T14:39:17.062399275Z | EUR_USD |     1000.0 | 0.0
         1723 | 2020-08-19T14:39:17.200434462Z | EUR_USD |    -1500.0 | -0.1772
         1725 | 2020-08-19T14:39:17.348231507Z | EUR_USD |      500.0 | -0.0844
         1727 | 2020-08-19T14:40:30.443867492Z | EUR_USD |    10000.0 | 0.0
         1729 | 2020-08-19T14:41:11.436438078Z | EUR_USD |   -20000.0 | -3.7118
         1731 | 2020-08-19T14:42:20.525804142Z | EUR_USD |    20000.0 | 1.086
         1733 | 2020-08-19T14:43:17.107985242Z | EUR_USD |   -10000.0 | -0.1687

Conclusions
The Oanda platform allows for an easy and straightforward entry into the world of
automated, algorithmic trading. Oanda specializes in so-called contracts for differ‐
ence (CFDs). Depending on the country of residence of the trader, there is a great
variety of instruments that can be traded.

A major advantage of Oanda from a technological point of view is the modern, pow‐
erful APIs that can be easily accessed via a dedicated Python wrapper package (v20).
This chapter shows how to set up an account, how to connect to the APIs with
Python, how to retrieve historical data (one minute bars) for backtesting purposes,
how to retrieve streaming data in real time, how to automatically trade a CFD based
on a momentum strategy, and how to retrieve account information and the detailed
transaction history.
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References and Further Resources
Visit the help and support pages of Oanda under Help and Support to learn more
about the Oanda platform and important aspects of CFD trading.

The developer portal of Oanda Getting Started provides a detailed description of the
APIs.

Python Script
The following Python script contains an Oanda custom streaming class that automat‐
ically trades a momentum strategy:

#
# Python Script
# with Momentum Trading Class
# for Oanda v20
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
# The Python Quants GmbH
#
import tpqoa
import numpy as np
import pandas as pd

class MomentumTrader(tpqoa.tpqoa):
    def __init__(self, conf_file, instrument, bar_length, momentum, units,
                 *args, **kwargs):
        super(MomentumTrader, self).__init__(conf_file)
        self.position = 0
        self.instrument = instrument
        self.momentum = momentum
        self.bar_length = bar_length
        self.units = units
        self.raw_data = pd.DataFrame()
        self.min_length = self.momentum + 1

    def on_success(self, time, bid, ask):
        ''' Takes actions when new tick data arrives. '''
        print(self.ticks, end=' ')
        self.raw_data = self.raw_data.append(pd.DataFrame(
            {'bid': bid, 'ask': ask}, index=[pd.Timestamp(time)]))
        self.data = self.raw_data.resample(
            self.bar_length, label='right').last().ffill().iloc[:-1]
        self.data['mid'] = self.data.mean(axis=1)
        self.data['returns'] = np.log(self.data['mid'] /
                                      self.data['mid'].shift(1))
        self.data['position'] = np.sign(
            self.data['returns'].rolling(self.momentum).mean())
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        if len(self.data) > self.min_length:
            self.min_length += 1
            if self.data['position'].iloc[-1] == 1:
                if self.position == 0:
                    self.create_order(self.instrument, self.units)
                elif self.position == -1:
                    self.create_order(self.instrument, self.units * 2)
                self.position = 1
            elif self.data['position'].iloc[-1] == -1:
                if self.position == 0:
                    self.create_order(self.instrument, -self.units)
                elif self.position == 1:
                    self.create_order(self.instrument, -self.units * 2)
                self.position = -1

if __name__ == '__main__':
    strat = 2
    if strat == 1:
        mom = MomentumTrader('../pyalgo.cfg', 'DE30_EUR', '5s', 3, 1)
        mom.stream_data(mom.instrument, stop=100)
        mom.create_order(mom.instrument, units=-mom.position * mom.units)
    elif strat == 2:
        mom = MomentumTrader('../pyalgo.cfg', instrument='EUR_USD',
                             bar_length='5s', momentum=6, units=100000)
        mom.stream_data(mom.instrument, stop=100)
        mom.create_order(mom.instrument, units=-mom.position * mom.units)
    else:
        print('Strategy not known.')
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CHAPTER 9

FX Trading with FXCM

Financial institutions like to call what they do trading. Let’s be honest. It’s not trading;
it’s betting.

—Graydon Carter

This chapter introduces the trading platform from FXCM Group, LLC (“FXCM”
afterwards), with its RESTful and streaming application programming interface (API)
as well as the Python wrapper package fcxmpy. Similar to Oanda, it is a platform well
suited for the deployment of automated, algorithmic trading strategies, even for retail
traders with smaller capital positions. FXCM offers to retail and institutional traders
a number of financial products that can be traded both via traditional trading appli‐
cations and programmatically via their API. The focus of the products lies on cur‐
rency pairs as well as contracts for difference (CFDs) on, among other things, major
stock indices and commodities. In this context, also refer to “Contracts for Difference
(CFDs)” on page 225 and “Disclaimer” on page 249.

Disclaimer
Trading forex/CFDs on margin carries a high level of risk and may not be suitable for
all investors as you could sustain losses in excess of deposits. Leverage can work
against you. The products are intended for retail and professional clients. Due to the
certain restrictions imposed by the local law and regulation, German resident retail
client(s) could sustain a total loss of deposited funds but are not subject to subsequent
payment obligations beyond the deposited funds. Be aware of and fully understand all
risks associated with the market and trading. Prior to trading any products, carefully
consider your financial situation and experience level. Any opinions, news, research,
analyses, prices, or other information is provided as general market commentary and
does not constitute investment advice. The market commentary has not been pre‐
pared in accordance with legal requirements designed to promote the independence
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of investment research, and it is therefore not subject to any prohibition on dealing
ahead of dissemination. Neither the trading platforms nor the author will accept lia‐
bility for any loss or damage, including and without limitation to any loss of profit,
which may arise directly or indirectly from use of or reliance on such information.

With regard to the platform criteria as discussed in Chapter 8, FXCM offers the
following:

Instruments
FX products (for example, the trading of currency pairs), contracts for difference
(CFDs) on stock indices, commodities, or rates products.

Strategies
FXCM allows for, among other things, (leveraged) long and short positions, mar‐
ket entry orders, and stop loss orders and take profit targets.

Costs
In addition to the bid-ask spread, a fixed fee is generally due for every trade with
FXCM. Different pricing models are available.

Technology
FXCM provides the algorithmic trader with a modern RESTful API that can be
accessed by, for example, the use of the Python wrapper package fxcmpy. Stan‐
dard trading applications for desktop computers, tablets, and smartphones are
also available.

Jurisdiction
FXCM is active in a number of countries globally (for instance, in the United
Kingdom or Germany). Depending on the country itself, certain products might
not be available/offered due to regulations and restrictions.

This chapter covers the basic functionalities of the FXCM trading API and the fxcmpy
Python package required to implement an automated, algorithmic trading strategy
programmatically. It is structured as follows. “Getting Started” on page 251 shows
how to set up everything to work with the FXCM REST API for algorithmic trading.
“Retrieving Data” on page 251 shows how to retrieve and work with financial data
(down to the tick level). “Working with the API” on page 256 is at the core in that it
illustrates typical tasks implemented using the RESTful API, such as retrieving histor‐
ical and streaming data, placing orders, or looking up account information.
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1 Note that FXCM demo accounts are only offered for certain countries.

Getting Started
A detailed documentation of the FXCM API is found under https://oreil.ly/Df_7e. To
install the Python wrapper package fxcmpy, execute the following on the shell:

pip install fxcmpy

The documentation of the fxcmpy package is found under http://fxcmpy.tpq.io.

To get started with the the FXCM trading API and the fxcmpy package, a free demo
account with FXCM is sufficient. One can open such an account under FXCM Demo
Account.1 The next step is to create a unique API token (for example,
YOUR_FXCM_API_TOKEN) from within the demo account. A connection to the API is
then opened, for example, via the following:

import fxcmpy
api = fxcmpy.fxcmpy(access_token=YOUR_FXCM_API_TOKEN, log_level='error')

Alternatively, you can use the configuration file as created in Chapter 8 to connect to
the API. This file’s content should be amended as follows:

[FXCM]
log_level = error
log_file = PATH_TO_AND_NAME_OF_LOG_FILE
access_token = YOUR_FXCM_API_TOKEN

One can then connect to the API via the following:

import fxcmpy
api = fxcmpy.fxcmpy(config_file='pyalgo.cfg')

By default, the server connects to the demo server. However, by the use of the server
parameter, the connection can be made to the live trading server (if such an account
exists):

api = fxcmpy.fxcmpy(config_file='pyalgo.cfg', server='demo')  
api = fxcmpy.fxcmpy(config_file='pyalgo.cfg', server='real')  

Connects to the demo server.

Connects to the live trading server.

Retrieving Data
FXCM provides access to historical market price data sets, such as tick data, in a pre-
packaged variant. This means that one can retrieve, for instance, compressed files
from FXCM servers that contain tick data for the EUR/USD exchange rate for week
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10 of 2020. The retrieval of historical candles data from the API is explained in the
subsequent section.

Retrieving Tick Data
For a number of currency pairs, FXCM provides historical tick data. The fxcmpy
package makes retrieval of such tick data and working with it convenient. First, some
imports:

In [1]: import time
        import numpy as np
        import pandas as pd
        import datetime as dt
        from pylab import mpl, plt
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'

Second is a look at the available symbols (currency pairs) for which tick data is
available:

In [2]: from fxcmpy import fxcmpy_tick_data_reader as tdr

In [3]: print(tdr.get_available_symbols())
        ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF',
         'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD',
         'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD',
         'USDCAD', 'USDCHF', 'USDJPY')

The following code retrieves one week’s worth of tick data for a single symbol. The
resulting pandas DataFrame object has more than 4.5 million data rows:

In [4]: start = dt.datetime(2020, 3, 25)  
        stop = dt.datetime(2020, 3, 30)  

In [5]: td = tdr('EURUSD', start, stop)  

In [6]: td.get_raw_data().info()  
        <class 'pandas.core.frame.DataFrame'>
        Index: 4504288 entries, 03/22/2020 21:12:02.256 to 03/27/2020
         20:59:00.022
        Data columns (total 2 columns):
         #   Column  Dtype
        ---  ------  -----
         0   Bid     float64
         1   Ask     float64
        dtypes: float64(2)
        memory usage: 103.1+ MB

In [7]: td.get_data().info()  
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 4504288 entries, 2020-03-22 21:12:02.256000 to
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2 The DatetimeIndex conversion is time consuming, which is why there are two different methods related to
tick data retrieval.

         2020-03-27 20:59:00.022000
        Data columns (total 2 columns):
         #   Column  Dtype
        ---  ------  -----
         0   Bid     float64
         1   Ask     float64
        dtypes: float64(2)
        memory usage: 103.1 MB

In [8]: td.get_data().head()
Out[8]:                              Bid      Ask
        2020-03-22 21:12:02.256  1.07006  1.07050
        2020-03-22 21:12:02.258  1.07002  1.07050
        2020-03-22 21:12:02.259  1.07003  1.07033
        2020-03-22 21:12:02.653  1.07003  1.07034
        2020-03-22 21:12:02.749  1.07000  1.07034

This retrieves the data file, unpacks it, and stores the raw data in a DataFrame
object (as an attribute to the resulting object).

The .get_raw_data() method returns the DataFrame object with the raw data
for which the index values are still str objects.

The .get_data() method returns a DataFrame object for which the index has
been transformed to a DatetimeIndex.2

Since the tick data is stored in a DataFrame object, it is straightforward to pick a sub-
set of the data and to implement typical financial analytics tasks on it. Figure 9-1
shows a plot of the mid prices derived for the sub-set and a simple moving average
(SMA):

In [9]: sub = td.get_data(start='2020-03-25 12:00:00',
                          end='2020-03-25 12:15:00')  

In [10]: sub.head()
Out[10]:                              Bid     Ask
         2020-03-25 12:00:00.067  1.08109  1.0811
         2020-03-25 12:00:00.072  1.08110  1.0811
         2020-03-25 12:00:00.074  1.08109  1.0811
         2020-03-25 12:00:00.078  1.08111  1.0811
         2020-03-25 12:00:00.121  1.08112  1.0811

In [11]: sub['Mid'] = sub.mean(axis=1)  

In [12]: sub['SMA'] = sub['Mid'].rolling(1000).mean()  
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In [13]: sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=1.5);

Picks a sub-set of the complete data set.

Calculates the mid prices from the bid and ask prices.

Derives SMA values over intervals of 1,000 ticks.

Figure 9-1. Historical mid tick prices for EUR/USD and SMA

Retrieving Candles Data
In addition, FXCM provides access to historical candles data (beyond the API). Can‐
dles data is data for certain homogeneous time intervals (“bars”) with open, high, low,
and close values for both bid and ask prices.

First is a look at the available symbols for which candles data is provided:

In [14]: from fxcmpy import fxcmpy_candles_data_reader as cdr

In [15]: print(cdr.get_available_symbols())
         ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF',
          'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD',
          'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD',
          'USDCAD', 'USDCHF', 'USDJPY')
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Second, the data retrieval itself. It is similar to the the tick data retrieval. The only dif‐
ference is that a period value, or the bar length, needs to be specified (for example, m1
for one minute, H1 for one hour, or D1 for one day):

In [16]: start = dt.datetime(2020, 4, 1)
         stop = dt.datetime(2020, 5, 1)

In [17]: period = 'H1'  

In [18]: candles = cdr('EURUSD', start, stop, period)

In [19]: data = candles.get_data()

In [20]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 600 entries, 2020-03-29 21:00:00 to 2020-05-01 20:00:00
         Data columns (total 8 columns):
          #   Column    Non-Null Count  Dtype
         ---  ------    --------------  -----
          0   BidOpen   600 non-null    float64
          1   BidHigh   600 non-null    float64
          2   BidLow    600 non-null    float64
          3   BidClose  600 non-null    float64
          4   AskOpen   600 non-null    float64
          5   AskHigh   600 non-null    float64
          6   AskLow    600 non-null    float64
          7   AskClose  600 non-null    float64
         dtypes: float64(8)
         memory usage: 42.2 KB

In [21]: data[data.columns[:4]].tail()  
Out[21]:                      BidOpen  BidHigh   BidLow  BidClose
         2020-05-01 16:00:00  1.09976  1.09996  1.09850   1.09874
         2020-05-01 17:00:00  1.09874  1.09888  1.09785   1.09818
         2020-05-01 18:00:00  1.09818  1.09820  1.09757   1.09766
         2020-05-01 19:00:00  1.09766  1.09816  1.09747   1.09793
         2020-05-01 20:00:00  1.09793  1.09812  1.09730   1.09788

In [22]: data[data.columns[4:]].tail()  
Out[22]:                      AskOpen  AskHigh   AskLow  AskClose
         2020-05-01 16:00:00  1.09980  1.09998  1.09853   1.09876
         2020-05-01 17:00:00  1.09876  1.09891  1.09786   1.09818
         2020-05-01 18:00:00  1.09818  1.09822  1.09758   1.09768
         2020-05-01 19:00:00  1.09768  1.09818  1.09748   1.09795
         2020-05-01 20:00:00  1.09795  1.09856  1.09733   1.09841

Specifies the period value.

Open, high, low, and close values for the bid prices.

Open, high, low, and close values for the ask prices.
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To conclude this section, the Python code that follows and calculates mid close prices,
calculates two SMAs, and plots the results (see Figure 9-2):

In [23]: data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1)  

In [24]: data['SMA1'] = data['MidClose'].rolling(30).mean()  
         data['SMA2'] = data['MidClose'].rolling(100).mean()  

In [25]: data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6));

Calculates the mid close prices from the bid and ask close prices.

Calculates two SMAs: one for a shorter time interval, and one for a longer one.

Figure 9-2. Historical hourly mid close prices for EUR/USD and two SMAs

Working with the API
While the previous sections retrieve historical tick data and candles data pre-
packaged from FXCM servers, this section shows how to retrieve historical data via
the API. However, a connection object to the FXCM API is needed. Therefore, first,
here is the import of the fxcmpy package, the connection to the API (based on the
unique API token), and a look at the available instruments. There might be more
instruments available as compared to the pre-packaged data sets:

In [26]: import fxcmpy

In [27]: fxcmpy.__version__
Out[27]: '1.2.6'
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In [28]: api = fxcmpy.fxcmpy(config_file='../pyalgo.cfg')  

In [29]: instruments = api.get_instruments()

In [30]: print(instruments)
         ['EUR/USD', 'USD/JPY', 'GBP/USD', 'USD/CHF', 'EUR/CHF', 'AUD/USD',
          'USD/CAD', 'NZD/USD', 'EUR/GBP', 'EUR/JPY', 'GBP/JPY', 'CHF/JPY',
          'GBP/CHF', 'EUR/AUD', 'EUR/CAD', 'AUD/CAD', 'AUD/JPY', 'CAD/JPY',
          'NZD/JPY', 'GBP/CAD', 'GBP/NZD', 'GBP/AUD', 'AUD/NZD', 'USD/SEK',
          'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF', 'EUR/NZD',
          'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'USD/TRY', 'EUR/TRY', 'NZD/CHF',
          'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'USD/ILS', 'USD/CNH', 'AUS200',
          'ESP35', 'FRA40', 'GER30', 'HKG33', 'JPN225', 'NAS100', 'SPX500',
          'UK100', 'US30', 'Copper', 'CHN50', 'EUSTX50', 'USDOLLAR', 'US2000',
          'USOil', 'UKOil', 'SOYF', 'NGAS', 'USOilSpot', 'UKOilSpot', 'WHEATF',
          'CORNF', 'Bund', 'XAU/USD', 'XAG/USD', 'EMBasket', 'JPYBasket',
          'BTC/USD', 'BCH/USD', 'ETH/USD', 'LTC/USD', 'XRP/USD', 'CryptoMajor',
          'EOS/USD', 'XLM/USD', 'ESPORTS', 'BIOTECH', 'CANNABIS', 'FAANG',
          'CHN.TECH', 'CHN.ECOMM', 'USEquities']

This connects to the API; adjust the path/filename.

Retrieving Historical Data
Once connected, data retrieval for specific time intervals is accomplished via a single
method call. When using the .get_candles() method, the parameter period can be
one of m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1, or M1. Figure 9-3 shows one-
minute bar ask close prices for the EUR/USD instrument (currency pair):

In [31]: candles = api.get_candles('USD/JPY', period='D1', number=10)  

In [32]: candles[candles.columns[:4]]  
Out[32]:                      bidopen  bidclose  bidhigh   bidlow
         date
         2020-08-07 21:00:00  105.538   105.898  106.051  105.452
         2020-08-09 21:00:00  105.871   105.846  105.871  105.844
         2020-08-10 21:00:00  105.846   105.914  106.197  105.702
         2020-08-11 21:00:00  105.914   106.466  106.679  105.870
         2020-08-12 21:00:00  106.466   106.848  107.009  106.434
         2020-08-13 21:00:00  106.848   106.893  107.044  106.560
         2020-08-14 21:00:00  106.893   106.535  107.033  106.429
         2020-08-17 21:00:00  106.559   105.960  106.648  105.937
         2020-08-18 21:00:00  105.960   105.378  106.046  105.277
         2020-08-19 21:00:00  105.378   105.528  105.599  105.097

In [33]: candles[candles.columns[4:]]  
Out[33]:                      askopen  askclose  askhigh   asklow  tickqty
         date
         2020-08-07 21:00:00  105.557   105.969  106.062  105.484   253759
         2020-08-09 21:00:00  105.983   105.952  105.989  105.925       20
         2020-08-10 21:00:00  105.952   105.986  106.209  105.715   161841
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         2020-08-11 21:00:00  105.986   106.541  106.689  105.929   243813
         2020-08-12 21:00:00  106.541   106.950  107.022  106.447   248989
         2020-08-13 21:00:00  106.950   106.983  107.056  106.572   214735
         2020-08-14 21:00:00  106.983   106.646  107.044  106.442   164244
         2020-08-17 21:00:00  106.680   106.047  106.711  105.948   163629
         2020-08-18 21:00:00  106.047   105.431  106.101  105.290   215574
         2020-08-19 21:00:00  105.431   105.542  105.612  105.109   151255

In [34]: start = dt.datetime(2019, 1, 1)  
         end = dt.datetime(2020, 6, 1)  

In [35]: candles = api.get_candles('EUR/GBP', period='D1',
                                   start=start, stop=end)  

In [36]: candles.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 438 entries, 2019-01-02 22:00:00 to 2020-06-01 21:00:00
         Data columns (total 9 columns):
          #   Column    Non-Null Count  Dtype
         ---  ------    --------------  -----
          0   bidopen   438 non-null    float64
          1   bidclose  438 non-null    float64
          2   bidhigh   438 non-null    float64
          3   bidlow    438 non-null    float64
          4   askopen   438 non-null    float64
          5   askclose  438 non-null    float64
          6   askhigh   438 non-null    float64
          7   asklow    438 non-null    float64
          8   tickqty   438 non-null    int64
         dtypes: float64(8), int64(1)
         memory usage: 34.2 KB

In [37]: candles = api.get_candles('EUR/USD', period='m1', number=250)  

In [38]: candles['askclose'].plot(figsize=(10, 6))

Retrieves the 10 most recent end-of-day prices.

Retrieves end-of-day prices for a whole year.

Retrieves the most recent one-minute bar prices available.

Historical data retrieved from the FXCM RESTful API can change
with the pricing model of the account. In particular, the average
bid-ask spreads can be higher or lower for different pricing models
offered by FXCM to different groups of traders.

258 | Chapter 9: FX Trading with FXCM



Figure 9-3. Historical ask close prices for EUR/USD (minute bars)

Retrieving Streaming Data
While historical data is important to, for example, backtest algorithmic trading strate‐
gies, continuous access to real-time or streaming data (during trading hours) is
required to deploy and automate algorithmic trading strategies. Similar to the Oanda
API, the FXCM API therefore also allows for the subscription to real-time data
streams for all instruments. The fxcmpy wrapper package supports this functionality
in that it allows one to provide user-defined functions (so called callback functions) to
process the subscribed real-time data stream.

The following Python code presents such a simple callback function—it only prints
out selected elements of the data set retrieved—and uses it to process data retrieved in
real time, after a subscription for the desired instrument (here EUR/USD):

In [39]: def output(data, dataframe):
             print('%3d | %s | %s | %6.5f, %6.5f'
                   % (len(dataframe), data['Symbol'],
                      pd.to_datetime(int(data['Updated']), unit='ms'),
                      data['Rates'][0], data['Rates'][1]))  

In [40]: api.subscribe_market_data('EUR/USD', (output,))  
           2 | EUR/USD | 2020-08-19 14:32:36.204000 | 1.19319, 1.19331
           3 | EUR/USD | 2020-08-19 14:32:37.005000 | 1.19320, 1.19331
           4 | EUR/USD | 2020-08-19 14:32:37.940000 | 1.19323, 1.19333
           5 | EUR/USD | 2020-08-19 14:32:38.429000 | 1.19321, 1.19332
           6 | EUR/USD | 2020-08-19 14:32:38.915000 | 1.19323, 1.19334
           7 | EUR/USD | 2020-08-19 14:32:39.436000 | 1.19321, 1.19332
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3 See the documentation under http://fxcmpy.tpq.io.

           8 | EUR/USD | 2020-08-19 14:32:39.883000 | 1.19317, 1.19328
           9 | EUR/USD | 2020-08-19 14:32:40.437000 | 1.19317, 1.19328
          10 | EUR/USD | 2020-08-19 14:32:40.810000 | 1.19318, 1.19329

In [41]: api.get_last_price('EUR/USD')  
Out[41]: Bid     1.19318
         Ask     1.19329
         High    1.19534
         Low     1.19217
         Name: 2020-08-19 14:32:40.810000, dtype: float64

          11 | EUR/USD | 2020-08-19 14:32:41.410000 | 1.19319, 1.19329

In [42]: api.unsubscribe_market_data('EUR/USD')  

This is the callback function that prints out certain elements of the retrieved data
set.

Here is the subscription to a specific real-time data stream. Data is processed
asynchronously as long as there is no “unsubscribe” event.

During the subscription, the .get_last_price() method returns the last avail‐
able data set.

This unsubscribes from the real-time data stream.

Callback Functions

Callback functions are a flexible way to process real-time streaming
data based on a Python function or even multiple such functions.
They can be used for simple tasks, such as the printing of incoming
data, or complex tasks, such as generating trading signals based on
online trading algorithms.

Placing Orders
The FXCM API allows for the placement and management of all types of orders that
are also available via the trading application of FXCM (such as entry orders or trailing
stop loss orders).3 However, the following code illustrates basic market buy and sell
orders only since they are generally sufficient to at least get started with algorithmic
trading.

260 | Chapter 9: FX Trading with FXCM

http://fxcmpy.tpq.io


4 Quantities are in 1,000s of the instrument for currency pairs. Also, note that different accounts might have
different leverage ratios. This implies that the same position might require more or less equity (margin)
depending on the relevant leverage ratio. Adjust the example quantities to lower values if necessary. See
https://oreil.ly/xUHMP.

The following code first verifies that there are no open positions and then opens dif‐
ferent positions via the .create_market_buy_order() method:

In [43]: api.get_open_positions()  
Out[43]: Empty DataFrame
         Columns: []
         Index: []

In [44]: order = api.create_market_buy_order('EUR/USD', 100)  

In [45]: sel = ['tradeId', 'amountK', 'currency',
                'grossPL', 'isBuy']  

In [46]: api.get_open_positions()[sel]  
Out[46]:      tradeId  amountK currency  grossPL  isBuy
         0  169122817      100  EUR/USD -9.21945   True

In [47]: order = api.create_market_buy_order('EUR/GBP', 50)  

In [48]: api.get_open_positions()[sel]
Out[48]:      tradeId  amountK currency  grossPL  isBuy
         0  169122817      100  EUR/USD -8.38125   True
         1  169122819       50  EUR/GBP -9.40900   True

Shows the open positions for the connected (default) account.

Opens a position of 100,000 in the EUR/USD currency pair.4

Shows the open positions for selected elements only.

Opens another position of 50,000 in the EUR/GBP currency pair.

While the .create_market_buy_order() opens or increases positions, the .cre
ate_market_sell_order() allows one to close or decrease positions. There are also
more general methods that allow the closing out of positions, as the following code
illustrates:

In [49]: order = api.create_market_sell_order('EUR/USD', 25)  

In [50]: order = api.create_market_buy_order('EUR/GBP', 50)  

In [51]: api.get_open_positions()[sel]  
Out[51]:      tradeId  amountK currency   grossPL  isBuy
         0  169122817      100  EUR/USD  -7.54306   True
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         1  169122819       50  EUR/GBP -11.62340   True
         2  169122834       25  EUR/USD  -2.30463  False
         3  169122835       50  EUR/GBP  -9.96292   True

In [52]: api.close_all_for_symbol('EUR/GBP')  

In [53]: api.get_open_positions()[sel]
Out[53]:      tradeId  amountK currency  grossPL  isBuy
         0  169122817      100  EUR/USD -5.02858   True
         1  169122834       25  EUR/USD -3.14257  False

In [54]: api.close_all()  

In [55]: api.get_open_positions()
Out[55]: Empty DataFrame
         Columns: []
         Index: []

Reduces the position in the EUR/USD currency pair.

Increases the position in the EUR/GBP currency pair.

For EUR/GBP there are now two open long positions; contrary to the EUR/USD
position, it is not netted.

The .close_all_for_symbol() method closes all positions for the specified
symbol.

The .close_all() method closes all open positions at once.

By default, FXCM sets up demo accounts as hedge accounts. This
means that going long, say EUR/USD, with 10,000 and going short
the same instrument with 10,000 leads to two different open posi‐
tions. The default with Oanda are net accounts that net orders and
positions for the same instrument.

Account Information
Beyond, for example, open positions, the FXCM API allows one to retrieve more gen‐
eral account informationm, as well. For example, one can look up the default account
(if there are multiple accounts) or an overview equity and margin situation:

In [56]: api.get_default_account()  
Out[56]: 1233279

In [57]: api.get_accounts().T  
Out[57]:                           0
         t                         6
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         ratePrecision             0
         accountId           1233279
         balance             47555.2
         usdMr                     0
         mc                        N
         mcDate
         accountName        01233279
         usdMr3                    0
         hedging                   Y
         usableMargin3       47555.2
         usableMarginPerc        100
         usableMargin3Perc       100
         equity              47555.2
         usableMargin        47555.2
         bus                    1000
         dayPL                653.16
         grossPL                   0

Shows the default accountId value.

Shows for all accounts the financial situation and some parameters.

Conclusions
This chapter is about the RESTful API of FXCM for algorithmic trading and covers
the following topics:

• Setting everything up for API usage
• Retrieving historical tick data
• Retrieving historical candles data
• Retrieving streaming data in real-time
• Placing market buy and sell orders
• Looking up account information

Beyond these aspects, the FXCM API and the fxcmpy wrapper package provide, of
course, more functionality. However, the topics of this chapter are the basic building
blocks needed to get started with algorithmic trading.

With Oanda and FXCM, algorithmic traders have two trading platforms (brokers)
available that provide a wide-ranging spectrum of financial instruments and appro‐
priate APIs to implement automated, algorithmic trading strategies. Some important
aspects are added to the mix in Chapter 10.
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References and Further Resources
The following resources cover the FXCM trading API and the Python wrapper
package:

• Trading API: https://fxcm.github.io/rest-api-docs
• fxcmpy package: http://fxcmpy.tpq.io
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CHAPTER 10

Automating Trading Operations

People worry that computers will get too smart and take over the world, but the real
problem is that they’re too stupid and they’ve already taken over the world.

—Pedro Domingos

“Now what?” you might think. The trading platform that allows one to retrieve his‐
torical data and streaming data is available. It allows one to place buy and sell orders
and to check the account status. A number of different methods have been intro‐
duced in this book to derive algorithmic trading strategies by predicting the direction
of market price movements. You may ask, “How, after all, can this all be put together
to work in automated fashion?” This cannot be answered in any generality. However,
this chapter addresses a number of topics that are important in this context. The
chapter assumes that a single automated, algorithmic trading strategy is to be
deployed. This simplifies, for example, aspects like capital and risk management.

The chapter covers the following topics. “Capital Management” on page 266 discusses
the Kelly criterion. Depending on the strategy characteristics and the trading capital
available, the Kelly criterion helps with sizing the trades. To gain confidence in an
algorithmic trading strategy, the strategy needs to be backtested thoroughly with
regard to both performance and risk characteristics. “ML-Based Trading Strategy” on
page 277 backtests an example strategy based on a classification algorithm from
machine learning (ML), as introduced in “Trading Strategies” on page 13. To deploy
the algorithmic trading strategy for automated trading, it needs to be translated into
an online algorithm that works with incoming streaming data in real time. “Online
Algorithm” on page 291 covers the transformation of an offline algorithm into an
online algorithm.

“Infrastructure and Deployment” on page 296 then sets out to make sure that the
automated, algorithmic trading strategy runs robustly and reliably in the cloud. Not
all topics of relevance can be covered in detail, but cloud deployment seems to be the
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only viable option from an availability, performance, and security point of view in
this context. “Logging and Monitoring” on page 297 covers logging and monitoring.
Logging is important in order to be able to analyze the history and certain events dur‐
ing the deployment of an automated trading strategy. Monitoring via socket commu‐
nication, as introduced in Chapter 7, allows one to observe events remotely in real
time. The chapter concludes with “Visual Step-by-Step Overview” on page 299,
which provides a visual summary of the core steps for the automated deployment of
algorithmic trading strategies in the cloud.

Capital Management
A central question in algorithmic trading is how much capital to deploy to a given
algorithmic trading strategy given the total available capital. The answer to this ques‐
tion depends on the main goal one is trying to achieve by algorithmic trading. Most
individuals and financial institutions will agree that the maximization of long-term
wealth is a good candidate objective. This is what Edward Thorp had in mind when
he derived the Kelly criterion to investing, as described in Rotando and Thorp (1992).
Simply speaking, the Kelly criterion allows for an explicit calculation of the fraction
of the available capital a trader should deploy to a strategy, given its statistical return
characteristics.

Kelly Criterion in Binomial Setting
The common way of introducing the theory of the Kelly criterion to investing is on
the basis of a coin tossing game or, more generally, a binomial setting (only two out‐
comes are possible). This section follows that path. Assume a gambler is playing a
coin tossing game against an infinitely rich bank or casino. Assume further that the
probability for heads is some value p for which the following holds:

1
2 < p < 1

Probability for tails is defined by the following:

q = 1 − p < 1
2

The gambler can place bets b > 0 of arbitrary size, whereby the gambler wins the
same amount if right and loses it all if wrong. Given the assumptions about the prob‐
abilities, the gambler would of course want to bet on heads.
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Therefore, the expected value for this betting game B (that is, the random variable
representing this game) in a one-shot setting is as follows:

� B = p · b − q · b = p − q · b > 0

A risk-neutral gambler with unlimited funds would like to bet as large an amount as
possible since this would maximize the expected payoff. However, trading in financial
markets is not a one-shot game in general. It is a repeated game. Therefore, assume
that bi represents the amount that is bet on day i and that c0 represents the initial cap‐
ital. The capital c1 at the end of day one depends on the betting success on that day
and might be either c0 + b1 or c0 − b1. The expected value for a gamble that is repeated
n times then is as follows:

� Bn = c0 + ∑
i = 1

n
p − q · bi

In classical economic theory, with risk-neutral, expected utility-maximizing agents, a
gambler would try to maximize the preceding expression. It is easily seen that it is
maximized by betting all available funds, bi = ci − 1, like in the one-shot scenario.
However, this in turn implies that a single loss will wipe out all available funds and
will lead to ruin (unless unlimited borrowing is possible). Therefore, this strategy
does not lead to a maximization of long-term wealth.

While betting the maximum capital available might lead to sudden ruin, betting
nothing at all avoids any kind of loss but does not benefit from the advantageous
gamble either. This is where the Kelly criterion comes into play since it derives the
optimal fraction f * of the available capital to bet per round of betting. Assume that
n = h + t where h stands for the number of heads observed during n rounds of bet‐
ting and where t stands for the number of tails. With these definitions, the available
capital after n rounds is the following:

cn = c0 · 1 + f h · 1 − f t
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In such a context, long-term wealth maximization boils down to maximizing the
average geometric growth rate per bet which is given as follows:

rg = log
cn
c0

1/n

= log
c0 · 1 + f h · 1 − f t

c0

1/n

= log 1 + f h · 1 − f t 1/n

= h
n log 1 + f + t

n log 1 − f

The problem then formally is to maximize the expected average rate of growth by
choosing f  optimally. With � h = n · p and � t = n · q, one gets:

� rg = � h
n log 1 + f + t

n log 1 − f

= � p log 1 + f + q log 1 − f
= p log 1 + f + q log 1 − f
≡ G f

One can now maximize the term by choosing the optimal fraction f * according to
the first order condition. The first derivative is given by the following:

G′ f = p
1 + f − q

1 − f

= p − p f − q − q f
1 + f 1 − f

= p − q − f
1 + f 1 − f

From the first order condition, one gets the following:

G′ f =! 0 f * = p − q

If one trusts this to be the maximum (and not the minimum), this result implies that
it is optimal to invest a fraction f * = p − q per round of betting. With, for example,
p = 0.55, one has f * = 0.55 - 0.45 = 0.1, or that the optimal fraction is 10%.
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The following Python code formalizes these concepts and results through simulation.
First, some imports and configurations:

In [1]: import math
        import time
        import numpy as np
        import pandas as pd
        import datetime as dt
        from pylab import plt, mpl

In [2]: np.random.seed(1000)
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'

The idea is to simulate, for example, 50 series with 100 coin tosses per series. The
Python code for this is straightforward:

In [3]: p = 0.55  

In [4]: f = p - (1 - p)  

In [5]: f  
Out[5]: 0.10000000000000009

In [6]: I = 50  

In [7]: n = 100  

Fixes the probability for heads.

Calculates the optimal fraction according to the Kelly criterion.

The number of series to be simulated.

The number of trials per series.

The major part is the Python function run_simulation(), which achieves the simula‐
tion according to the preceding assumptions. Figure 10-1 shows the simulation
results:

In [8]: def run_simulation(f):
            c = np.zeros((n, I))  
            c[0] = 100  
            for i in range(I):  
                for t in range(1, n):  
                    o = np.random.binomial(1, p)  
                    if o > 0:  
                        c[t, i] = (1 + f) * c[t - 1, i]  
                    else:  
                        c[t, i] = (1 - f) * c[t - 1, i]  
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            return c

In [9]: c_1 = run_simulation(f)  

In [10]: c_1.round(2)
Out[10]: array([[100.  , 100.  , 100.  , ..., 100.  , 100.  , 100.  ],
                [ 90.  , 110.  ,  90.  , ..., 110.  ,  90.  , 110.  ],
                [ 99.  , 121.  ,  99.  , ..., 121.  ,  81.  , 121.  ],
                ...,
                [226.35, 338.13, 413.27, ..., 123.97, 123.97, 123.97],
                [248.99, 371.94, 454.6 , ..., 136.37, 136.37, 136.37],
                [273.89, 409.14, 409.14, ..., 122.73, 150.01, 122.73]])

In [11]: plt.figure(figsize=(10, 6))
         plt.plot(c_1, 'b', lw=0.5)  
         plt.plot(c_1.mean(axis=1), 'r', lw=2.5);  

Instantiates an ndarray object to store the simulation results.

Initializes the starting capital with 100.

Outer loop for the series simulations.

Inner loop for the series itself.

Simulates the tossing of a coin.

If 1 or heads…

…then add the win to the capital.

If 0 or tails…

…subtract the loss from the capital.

This runs the simulation.

Plots all 50 series.

Plots the average over all 50 series.
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Figure 10-1. 50 simulated series with 100 trials each (red line = average)

The following code repeats the simulation for different values of f . As shown in
Figure 10-2, a lower fraction leads to a lower growth rate on average. Higher values
might lead both to a higher average capital at the end of the simulation ( f =0.25) or
lead to a much lower average capital ( f =0.5]). In both cases where the fraction f  is
higher, the volatility increases considerably:

In [12]: c_2 = run_simulation(0.05)  

In [13]: c_3 = run_simulation(0.25)  

In [14]: c_4 = run_simulation(0.5)  

In [15]: plt.figure(figsize=(10, 6))
         plt.plot(c_1.mean(axis=1), 'r', label='$f^*=0.1$')
         plt.plot(c_2.mean(axis=1), 'b', label='$f=0.05$')
         plt.plot(c_3.mean(axis=1), 'y', label='$f=0.25$')
         plt.plot(c_4.mean(axis=1), 'm', label='$f=0.5$')
         plt.legend(loc=0);

Simulation with f = 0.05.

Simulation with f = 0.25.

Simulation with f = 0.5.
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1 The exposition follows Hung (2010).

Figure 10-2. Average capital over time for different values of f

Kelly Criterion for Stocks and Indices
Assume now a stock market setting in which the relevant stock (index) can take on
only two values after a period of one year from today, given its known value today.
The setting is again binomial but this time a bit closer on the modeling side to stock
market realities.1 Specifically, assume the following holds true:

P rS = μ + σ = P rS = μ − σ = 1
2

Here, � rS = μ > 0 is the the expected return of the stock over one year, and σ > 0 is
the standard deviation of returns (volatility). In a one-period setting, one gets the fol‐
lowing for the available capital after one year (with c0 and f  defined as before):

c f = c0 · 1 + 1 − f · r + f · rS
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Here, r is the constant short rate earned on cash not invested in the stock. Maximiz‐
ing the geometric growth rate means maximizing the term:

G f = � log c f
c0

Assume now that there are n relevant trading days in the year so that for each such
trading day i the following holds true:

P ri
S = μ

n + σ
n = P ri

S = μ
n − σ

n = 1
2

Note that volatility scales with the square root of the number of trading days. Under
these assumptions, the daily values scale up to the yearly ones from before and one
gets the following:

cn f = c0 · ∏
i = 1

n
1 + 1 − f · r

n + f · ri
S

One now has to maximize the following quantity to achieve maximum long-term
wealth when investing in the stock:

Gn f = � log
cn f

c0

= � ∑
i = 1

n
log 1 + 1 − f · r

n + f · ri
S

= 1
2 ∑

i = 1

n
log 1 + 1 − f · r

n + f · μ
n + σ

n

+ log 1 + 1 − f · r
n + f · μ

n − σ
n

= n
2 log 1 + 1 − f · r

n + f · μ
n

2
− f 2σ2

n

Using a Taylor series expansion, one finally arrives at the following:

Gn f = r + μ − r · f − σ2

2 · f 2 + � 1
n
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Or for infinitely many trading points in time (that is, for continuous trading), one
arrives at the following:

G∞ f = r + μ − r · f − σ2

2 · f 2

The optimal fraction f * then is given through the first order condition by the follow‐
ing expression:

f * = μ − r
σ2

This represents the expected excess return of the stock over the risk-free rate divided
by the variance of the returns. This expression looks similar to the Sharpe ratio but is
different.

A real-world example shall illustrate the application of the preceding formula and its
role in leveraging equity deployed to trading strategies. The trading strategy under
consideration is simply a passive long position in the S&P 500 index. To this end, base
data is quickly retrieved and required statistics are easily derived:

In [16]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                           index_col=0, parse_dates=True)

In [17]: symbol = '.SPX'

In [18]: data = pd.DataFrame(raw[symbol])

In [19]: data['return'] = np.log(data / data.shift(1))

In [20]: data.dropna(inplace=True)

In [21]: data.tail()
Out[21]:                .SPX    return
         Date
         2019-12-23  3224.01  0.000866
         2019-12-24  3223.38 -0.000195
         2019-12-27  3240.02  0.000034
         2019-12-30  3221.29 -0.005798
         2019-12-31  3230.78  0.002942

The statistical properties of the S&P 500 index over the period covered suggest an
optimal fraction of about 4.5 to be invested in the long position in the index. In other
words, for every dollar available, 4.5 dollars shall be invested, implying a leverage ratio
of 4.5 in accordance with the optimal Kelly fraction or, in this case, the optimal Kelly
factor.
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Everything being equal, the Kelly criterion implies a higher leverage when the
expected return is higher and the volatility (variance) is lower:

In [22]: mu = data['return'].mean() * 252  

In [23]: mu  
Out[23]: 0.09992181916534204

In [24]: sigma = data['return'].std() * 252 ** 0.5  

In [25]: sigma  
Out[25]: 0.14761569775486563

In [26]: r = 0.0  

In [27]: f = (mu - r) / sigma ** 2 

In [28]: f  
Out[28]: 4.585590244019818

Calculates the annualized return.

Calculates the annualized volatility.

Sets the risk-free rate to 0 (for simplicity).

Calculates the optimal Kelly fraction to be invested in the strategy.

The following Python code simulates the application of the Kelly criterion and the
optimal leverage ratio. For simplicity and comparison reasons, the initial equity is set
to 1 while the initially invested total capital is set to 1 · f *. Depending on the perfor‐
mance of the capital deployed to the strategy, the total capital itself is adjusted daily
according to the available equity. After a loss, the capital is reduced; after a profit, the
capital is increased. The evolution of the equity position compared to the index itself
is shown in Figure 10-3:

In [29]: equs = []

In [30]: def kelly_strategy(f):
             global equs
             equ = 'equity_{:.2f}'.format(f)
             equs.append(equ)
             cap = 'capital_{:.2f}'.format(f)
             data[equ] = 1  
             data[cap] = data[equ] * f  
             for i, t in enumerate(data.index[1:]):
                 t_1 = data.index[i]  
                 data.loc[t, cap] = data[cap].loc[t_1] * \
                                     math.exp(data['return'].loc[t])  
                 data.loc[t, equ] = data[cap].loc[t] - \
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                                     data[cap].loc[t_1] + \
                                     data[equ].loc[t_1]  
                 data.loc[t, cap] = data[equ].loc[t] * f  

In [31]: kelly_strategy(f * 0.5)  

In [32]: kelly_strategy(f * 0.66)  

In [33]: kelly_strategy(f)  

In [34]: print(data[equs].tail())
                     equity_2.29  equity_3.03  equity_4.59
         Date
         2019-12-23     6.628865     9.585294    14.205748
         2019-12-24     6.625895     9.579626    14.193019
         2019-12-27     6.626410     9.580610    14.195229
         2019-12-30     6.538582     9.412991    13.818934
         2019-12-31     6.582748     9.496919    14.005618

In [35]: ax = data['return'].cumsum().apply(np.exp).plot(figsize=(10, 6))
         data[equs].plot(ax=ax, legend=True);

Generates a new column for equity and sets the initial value to 1.

Generates a new column for capital and sets the initial value to 1 · f *.

Picks the right DatetimeIndex value for the previous values.

Calculates the new capital position given the return.

Adjusts the equity value according to the capital position performance.

Adjusts the capital position given the new equity position and the fixed leverage
ratio.

Simulates the Kelly criterion based strategy for half of f …

…for two thirds of f …

…and f  itself.
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Figure 10-3. Gross performance of S&P 500 compared to equity position given different
values of f

As Figure 10-3 illustrates, applying the optimal Kelly leverage leads to a rather erratic
evolution of the equity position (high volatility), which is intuitively plausible, given
the leverage ratio of 4.59. One would expect the volatility of the equity position to
increase with increasing leverage. Therefore, practitioners often do not use “full
Kelly” (4.6), but rather “half Kelly” (2.3). In the current example, this is reduced to:

1
2 • f * ≈ 2.3

Against this background, Figure 10-3 also shows the evolution of the equity position
for values lower than “full Kelly.” The risk indeed reduces with lower values of latex‐
math:[$f$].

ML-Based Trading Strategy
Chapter 8 introduces the Oanda trading platform, its RESTful API and the Python
wrapper package tpqoa. This section combines an ML-based approach for predicting
the direction of market price movements with historical data from the Oanda v20
RESTful API to backtest an algorithmic trading strategy for the EUR/USD currency
pair. It uses vectorized backtesting, taking into account this time the bid-ask spread
as proportional transactions costs. It also adds, compared to the plain vectorized

ML-Based Trading Strategy | 277



backtesting approach introduced in Chapter 4, a more in-depth analysis of the risk
characteristics of the trading strategy tested.

Vectorized Backtesting
The backtest is based on intraday data, more specifically on bars of 10 minutes in
length. The following code connects to the Oanda v20 API and retrieves 10-minute
bar data for one week. Figure 10-4 visualizes the mid close prices over the period for
which data is retrieved:

In [36]: import tpqoa

In [37]: %time api = tpqoa.tpqoa('../pyalgo.cfg')  
         CPU times: user 893 µs, sys: 198 µs, total: 1.09 ms
         Wall time: 1.04 ms

In [38]: instrument = 'EUR_USD'  

In [39]: raw = api.get_history(instrument,
                                start='2020-06-08',
                                end='2020-06-13',
                                granularity='M10',
                                price='M')  

In [40]: raw.tail()
Out[40]:                            o        h        l        c  volume  complete
         time
         2020-06-12 20:10:00  1.12572  1.12593  1.12532  1.12568     221      True
         2020-06-12 20:20:00  1.12569  1.12578  1.12532  1.12558     163      True
         2020-06-12 20:30:00  1.12560  1.12573  1.12534  1.12543     192      True
         2020-06-12 20:40:00  1.12544  1.12594  1.12528  1.12542     219      True
         2020-06-12 20:50:00  1.12544  1.12624  1.12541  1.12554     296      True

In [41]: raw.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 701 entries, 2020-06-08 00:00:00 to 2020-06-12 20:50:00
         Data columns (total 6 columns):
          #   Column    Non-Null Count  Dtype
         ---  ------    --------------  -----
          0   o         701 non-null    float64
          1   h         701 non-null    float64
          2   l         701 non-null    float64
          3   c         701 non-null    float64
          4   volume    701 non-null    int64
          5   complete  701 non-null    bool
         dtypes: bool(1), float64(4), int64(1)
         memory usage: 33.5 KB

In [42]: spread = 0.00012  

In [43]: mean = raw['c'].mean()  
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In [44]: ptc = spread / mean  
         ptc  
Out[44]: 0.00010599557439495706

In [45]: raw['c'].plot(figsize=(10, 6), legend=True);

Connects to the API and retrieves the data.

Specifies the average bid-ask spread.

Calculates the mean closing price for the data set.

Calculates the average proportional transactions costs given the average spread
and the average mid closing price.

Figure 10-4. EUR/USD exchange rate (10-minute bars)

The ML-based strategy uses a number of time series features, such as the log return
and the minimum and the maximum of the closing price. In addition, the features
data is lagged. In other words, the ML algorithm shall learn from historical patterns
as embodied by the lagged features data:

In [46]: data = pd.DataFrame(raw['c'])

In [47]: data.columns = [instrument,]

In [48]: window = 20  
         data['return'] = np.log(data / data.shift(1))  
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         data['vol'] = data['return'].rolling(window).std()  
         data['mom'] = np.sign(data['return'].rolling(window).mean())  
         data['sma'] = data[instrument].rolling(window).mean()  
         data['min'] = data[instrument].rolling(window).min()  
         data['max'] = data[instrument].rolling(window).max()  

In [49]: data.dropna(inplace=True)

In [50]: lags = 6  

In [51]: features = ['return', 'vol', 'mom', 'sma', 'min', 'max']  

In [52]: cols = []
         for f in features:
             for lag in range(1, lags + 1):
                 col = f'{f}_lag_{lag}'
                 data[col] = data[f].shift(lag)  
                 cols.append(col)

In [53]: data.dropna(inplace=True)

In [54]: data['direction'] = np.where(data['return'] > 0, 1, -1)  

In [55]: data[cols].iloc[:lags, :lags]  
Out[55]:
                          return_lag_1  return_lag_2  return_lag_3  return_lag_4 \
     time
     2020-06-08 04:20:00      0.000097      0.000018     -0.000452      0.000035
     2020-06-08 04:30:00     -0.000115      0.000097      0.000018     -0.000452
     2020-06-08 04:40:00      0.000027     -0.000115      0.000097      0.000018
     2020-06-08 04:50:00     -0.000142      0.000027     -0.000115      0.000097
     2020-06-08 05:00:00      0.000035     -0.000142      0.000027     -0.000115
     2020-06-08 05:10:00     -0.000159      0.000035     -0.000142      0.000027

                          return_lag_5  return_lag_6
     time
     2020-06-08 04:20:00      0.000000      0.000009
     2020-06-08 04:30:00      0.000035      0.000000
     2020-06-08 04:40:00     -0.000452      0.000035
     2020-06-08 04:50:00      0.000018     -0.000452
     2020-06-08 05:00:00      0.000097      0.000018
     2020-06-08 05:10:00     -0.000115      0.000097

Specifies the window length for certain features.

Calculates the log returns from the closing prices.

Calculates the rolling volatility.

Derives the time series momentum as the mean of the recent log returns.
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Calculates the simple moving average.

Calculates the rolling maximum value.

Calculates the rolling minimum value.

Adds the lagged features data to the DataFrame object.

Defines the labels data as the market direction (+1 or up and -1 or down).

Shows a small sub-set from the resulting lagged features data.

Given the features and label data, different supervised learning algorithms could now
be applied. In what follows, a so-called AdaBoost algorithm for classification is used
from the scikit-learn ML package (see AdaBoostClassifier). The idea of boosting
in the context of classification is to use an ensemble of base classifiers to arrive at a
superior predictor that is supposed to be less prone to overfitting (see “Data Snoop‐
ing and Overfitting” on page 111). As the base classifier, a decision tree classification
algorithm from scikit-learn is used (see DecisionTreeClassifier).

The code trains and tests the algorithmic trading strategy based on a sequential train-
test split. The accuracy scores of the model for the training and test data are both sig‐
nificantly above 50%. Instead of accuracy scores, one would also speak in a financial
trading context of the hit ratio of the trading strategy (that is, the number of winning
trades compared to all trades). Since the hit ratio is significantly greater than 50%,
this might indicate—in the context of the Kelly criterion—a statistical edge compared
to a random walk setting:

In [56]: from sklearn.metrics import accuracy_score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import AdaBoostClassifier

In [57]: n_estimators=15  
         random_state=100  
         max_depth=2  
         min_samples_leaf=15  
         subsample=0.33  

In [58]: dtc = DecisionTreeClassifier(random_state=random_state,
                                      max_depth=max_depth,
                                      min_samples_leaf=min_samples_leaf)  

In [59]: model = AdaBoostClassifier(base_estimator=dtc,
                                   n_estimators=n_estimators,
                                   random_state=random_state)  

In [60]: split = int(len(data) * 0.7)
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In [61]: train = data.iloc[:split].copy()

In [62]: mu, std = train.mean(), train.std()  

In [63]: train_ = (train - mu) / std  

In [64]: model.fit(train_[cols], train['direction'])  
Out[64]: AdaBoostClassifier(algorithm='SAMME.R',
         base_estimator=DecisionTreeClassifier(ccp_alpha=0.0,
         class_weight=None,
         criterion='gini',
         max_depth=2,
         max_features=None,
         max_leaf_nodes=None,
         min_impurity_decrease=0.0,
         min_impurity_split=None,
         min_samples_leaf=15,
         min_samples_split=2,
         min_weight_fraction_leaf=0.0,
         presort='deprecated',
         random_state=100,
         splitter='best'),
         learning_rate=1.0, n_estimators=15, random_state=100)

In [65]: accuracy_score(train['direction'], model.predict(train_[cols]))  
Out[65]: 0.8050847457627118

In [66]: test = data.iloc[split:].copy()  

In [67]: test_ = (test - mu) / std  

In [68]: test['position'] = model.predict(test_[cols])  

In [69]: accuracy_score(test['direction'], test['position'])  
Out[69]: 0.5665024630541872

Specifies major parameters for the ML algorithm (see the references for the
model classes provided previously).

Instantiates the base classification algorithm (decision tree).

Instantiates the AdaBoost classification algorithm.

Applies Gaussian normalization to the training features data set.

Fits the model based on the training data set.

Shows the accuracy of the predictions from the trained model in-sample (training
data set).
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2 It is a stylized empirical fact that it is of paramount importance for the investment and trading performance to
get the largest market movements right (that is, the biggest winner and loser movements). This aspect is
neatly illustrated in Figure 10-5, which shows that the trading strategy gets a large downwards movement in
the underlying instrument correct, leading to a larger jump for the trading strategy.

Applies Gaussian normalization to the testing features data set (using the parame‐
ters from the training features data set).

Generates the predictions for the test data set.

Shows the accuracy of the predictions from the trained model out-of-sample (test
data set).

It is well known that the hit ratio is only one side of the coin of success in financial
trading. The other side comprises, among other things, getting the important trades
right, as well as the transactions costs implied by the trading strategy.2 To this end,
only a formal vectorized backtesting approach allows one to judge the quality of the
trading strategy. The following code takes into account the proportional transaction
costs based on the average bid-ask spread. Figure 10-5 compares the performance of
the algorithmic trading strategy (without and with proportional transaction costs) to
the performance of the passive benchmark investment:

In [70]: test['strategy'] = test['position'] * test['return']  

In [71]: sum(test['position'].diff() != 0)  
Out[71]: 77

In [72]: test['strategy_tc'] = np.where(test['position'].diff() != 0,
                                        test['strategy'] - ptc,  
                                        test['strategy'])

In [73]: test[['return', 'strategy', 'strategy_tc']].sum(
                 ).apply(np.exp)
Out[73]: return         0.990182
         strategy       1.015827
         strategy_tc    1.007570
         dtype: float64

In [74]: test[['return', 'strategy', 'strategy_tc']].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));
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Derives the log returns for the ML-based algorithmic trading strategy.

Calculates the number of trades implied by the trading strategy based on changes
in the position.

Whenever a trade takes place, the proportional transaction costs are subtracted
from the strategy’s log return on that day.

Figure 10-5. Gross performance of EUR/USD exchange rate and algorithmic trading
strategy (before and after transaction costs)

Vectorized backtesting has its limits with regard to how close to
market realities strategies can be tested. For example, it does not
allow one to include fixed transaction costs per trade directly. One
could, as an approximation, take a multiple of the average propor‐
tional transaction costs (based on average position sizes) to
account indirectly for fixed transactions costs. However, this would
not be precise in general. If a higher degree of precision is required,
other approaches, such as event-based backtesting (see Chapter 6)
with explicit loops over every bar of the price data, need to be
applied.
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Optimal Leverage
Equipped with the trading strategy’s log returns data, the mean and variance values
can be calculated in order to derive the optimal leverage according to the Kelly crite‐
rion. The code that follows scales the numbers to annualized values, although this
does not change the optimal leverage values according to the Kelly criterion since the
mean return and the variance scale with the same factor:

In [75]: mean = test[['return', 'strategy_tc']].mean() * len(data) * 52  
         mean
Out[75]: return        -1.705965
         strategy_tc    1.304023
         dtype: float64

In [76]: var = test[['return', 'strategy_tc']].var() * len(data) * 52  
         var
Out[76]: return         0.011306
         strategy_tc    0.011370
         dtype: float64

In [77]: vol = var ** 0.5  
         vol
Out[77]: return         0.106332
         strategy_tc    0.106631
         dtype: float64

In [78]: mean / var  
Out[78]: return        -150.884961
         strategy_tc    114.687875
         dtype: float64

In [79]: mean / var * 0.5  
Out[79]: return        -75.442481
         strategy_tc    57.343938
         dtype: float64

Annualized mean returns.

Annualized variances.

Annualized volatilities.

Optimal leverage according to the Kelly criterion (“full Kelly”).

Optimal leverage according to the Kelly criterion (“half Kelly”).

Using the “half Kelly” criterion, the optimal leverage for the trading strategy is above
50. With a number of brokers, such as Oanda, and certain financial instruments, such
as foreign exchange pairs and contracts for difference (CFDs), such leverage ratios
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are feasible, even for retail traders. Figure 10-6 shows, in comparison, the perfor‐
mance of the trading strategy with transaction costs for different leverage values:

In [80]: to_plot = ['return', 'strategy_tc']

In [81]: for lev in [10, 20, 30, 40, 50]:
             label = 'lstrategy_tc_%d' % lev
             test[label] = test['strategy_tc'] * lev  
             to_plot.append(label)

In [82]: test[to_plot].cumsum().apply(np.exp).plot(figsize=(10, 6));

Scales the strategy returns for different leverage values.

Figure 10-6. Gross performance of the algorithmic trading strategy for different leverage
values

Leverage increases risks associated with trading strategies signifi‐
cantly. Traders should read the risk disclaimers and regulations
carefully. A positive backtesting performance is also no guarantee
whatsoever for future performances. All results shown are illustra‐
tive only and are meant to demonstrate the application of program‐
ming and analytics approaches. In some jurisdictions, such as in
Germany, leverage ratios are capped for retail traders based on dif‐
ferent groups of financial instruments.
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Risk Analysis
Since leverage increases the risk associated with a certain trading strategy considera‐
bly, a more in-depth risk analysis seems in order. The risk analysis that follows
assumes a leverage ratio of 30. First, the maximum drawdown and the longest draw‐
down period shall be calculated. Maximum drawdown is the largest loss (dip) after a
recent high. Accordingly, the longest drawdown period is the longest period that the
trading strategy needs to get back to a recent high. The analysis assumes that the ini‐
tial equity position is 3,333 EUR leading to an initial position size of 100,000 EUR for
a leverage ratio of 30. It also assumes that there are no adjustments with regard to the
equity over time, no matter what the performance is:

In [83]: equity = 3333  

In [84]: risk = pd.DataFrame(test['lstrategy_tc_30'])  

In [85]: risk['equity'] = risk['lstrategy_tc_30'].cumsum(
                                   ).apply(np.exp) * equity  

In [86]: risk['cummax'] = risk['equity'].cummax()  

In [87]: risk['drawdown'] = risk['cummax'] - risk['equity']  

In [88]: risk['drawdown'].max()  
Out[88]: 511.38321383258017

In [89]: t_max = risk['drawdown'].idxmax()  
         t_max  
Out[89]: Timestamp('2020-06-12 10:30:00')

The initial equity.

The relevant log returns time series…

…scaled by the initial equity.

The cumulative maximum values over time.

The drawdown values over time.

The maximum drawdown value.

The point in time when it happens.
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Technically, a new high is characterized by a drawdown value of 0. The drawdown
period is the time between two such highs. Figure 10-7 visualizes both the maximum
drawdown and the drawdown periods:

In [90]: temp = risk['drawdown'][risk['drawdown'] == 0]  

In [91]: periods = (temp.index[1:].to_pydatetime() -
                    temp.index[:-1].to_pydatetime())  

In [92]: periods[20:30]  
Out[92]: array([datetime.timedelta(seconds=600),
          datetime.timedelta(seconds=1200),
         datetime.timedelta(seconds=1200), datetime.timedelta(seconds=1200)],
               dtype=object)

In [93]: t_per = periods.max()  

In [94]: t_per  
Out[94]: datetime.timedelta(seconds=26400)

In [95]: t_per.seconds / 60 / 60  
Out[95]: 7.333333333333333

In [96]: risk[['equity', 'cummax']].plot(figsize=(10, 6))
         plt.axvline(t_max, c='r', alpha=0.5);

Identifies highs for which the drawdown must be 0.

Calculates the timedelta values between all highs.

The longest drawdown period in seconds…

…transformed to hours.

Another important risk measure is value-at-risk (VaR). It is quoted as a currency
amount and represents the maximum loss to be expected given both a certain time
horizon and a confidence level.
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Figure 10-7. Maximum drawdown (vertical line) and drawdown periods (horizontal
lines)

The following code derives VaR values based on the log returns of the equity position
for the leveraged trading strategy over time for different confidence levels. The time
interval is fixed to the bar length of ten minutes:

In [97]: import scipy.stats as scs

In [98]: percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0]  

In [99]: risk['return'] = np.log(risk['equity'] /
                                  risk['equity'].shift(1))

In [100]: VaR = scs.scoreatpercentile(equity * risk['return'], percs)  

In [101]: def print_var():
              print('{}    {}'.format('Confidence Level', 'Value-at-Risk'))
              print(33 * '-')
              for pair in zip(percs, VaR):
                  print('{:16.2f} {:16.3f}'.format(100 - pair[0], -pair[1]))  

In [102]: print_var()  
          Confidence Level    Value-at-Risk
          ---------------------------------
                     99.99          162.570
                     99.90          161.348
                     99.00          132.382
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                     97.50          122.913
                     95.00          100.950
                     90.00           62.622

Defines the percentile values to be used.

Calculates the VaR values given the percentile values.

Translates the percentile values into confidence levels and the VaR values (nega‐
tive values) to positive values for printing.

Finally, the following code calculates the VaR values for a time horizon of one hour by
resampling the original DataFrame object. In effect, the VaR values are increased for
all confidence levels:

In [103]: hourly = risk.resample('1H', label='right').last()  

In [104]: hourly['return'] = np.log(hourly['equity'] /
                                   hourly['equity'].shift(1))

In [105]: VaR = scs.scoreatpercentile(equity * hourly['return'], percs)  

In [106]: print_var()
          Confidence Level    Value-at-Risk
          ---------------------------------
                     99.99          252.460
                     99.90          251.744
                     99.00          244.593
                     97.50          232.674
                     95.00          125.498
                     90.00           61.701

Resamples the data from 10-minute to 1-hour bars.

Calculates the VaR values given the percentile values.

Persisting the Model Object
Once the algorithmic trading strategy is accepted based on the backtesting, leverag‐
ing, and risk analysis results, the model object and other relevant algorithm compo‐
nents might be persisted for later use in deployment. It embodies now the ML-based
trading strategy or the trading algorithm.

In [107]: import pickle

In [108]: algorithm = {'model': model, 'mu': mu, 'std': std}

In [109]: pickle.dump(algorithm, open('algorithm.pkl', 'wb'))
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Online Algorithm
The trading algorithm tested so far is an offline algorithm. Such algorithms use a com‐
plete data set to solve a problem at hand. The problem has been to train an AdaBoost
classification algorithm based on a decision tree as the base classifier, a number of dif‐
ferent time series features, and directional label data. In practice, when deploying the
trading algorithm in financial markets, it must consume data piece by piece as it
arrives to predict the direction of the market movement for the next time interval
(bar). This section makes use of the persisted model object from the previous section
and embeds it into a streaming data context.

The code that transforms the offline trading algorithm into an online trading algo‐
rithm mainly addresses the following issues:

Tick data
Tick data arrives in real time and is to be processed in real time, such as to be
collected in a DataFrame object.

Resampling
The tick data is to be resampled to the appropriate bar length given the trading
algorithm. For illustration, a shorter bar length is used for resampling than for
the training and backtesting.

Prediction
The trading algorithm generates a prediction for the direction of the market
movement over the relevant time interval that by nature lies in the future.

Orders
Given the current position and the prediction (“signal”) generated by the algo‐
rithm, an order is placed or the position is kept unchanged.

Chapter 8, and in particular “Working with Streaming Data” on page 236, shows how
to retrieve tick data from the Oanda API in real time. The basic approach is to rede‐
fine the .on_success() method of the tpqoa.tpqoa class to implement the trading
logic.

First, the persisted trading algorithm is loaded; it represents the trading logic to be
followed. It consists of the trained model itself and the parameters for the normaliza‐
tion of the features data, which are integral parts of the algorithm:

In [110]: algorithm = pickle.load(open('algorithm.pkl', 'rb'))

In [111]: algorithm['model']
Out[111]: AdaBoostClassifier(algorithm='SAMME.R',
          base_estimator=DecisionTreeClassifier(ccp_alpha=0.0,
          class_weight=None,
          criterion='gini',
          max_depth=2,
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          max_features=None,
          max_leaf_nodes=None,
          min_impurity_decrease=0.0,
          min_impurity_split=None,
          min_samples_leaf=15,
          min_samples_split=2,
          min_weight_fraction_leaf=0.0,
          presort='deprecated',
          random_state=100,
          splitter='best'),
          learning_rate=1.0, n_estimators=15, random_state=100)

In the following code, the new class MLTrader, which inherits from tpqoa.tpqoa and
which, via the .on_success() and additional helper methods, transforms the trading
algorithm into a real-time context. It is the transformation of the offline algorithm to a
so-called online algorithm:

In [112]: class MLTrader(tpqoa.tpqoa):
              def __init__(self, config_file, algorithm):
                  super(MLTrader, self).__init__(config_file)
                  self.model = algorithm['model']  
                  self.mu = algorithm['mu']  
                  self.std = algorithm['std']  
                  self.units = 100000  
                  self.position = 0  
                  self.bar = '5s'  
                  self.window = 2  
                  self.lags = 6  
                  self.min_length = self.lags + self.window + 1
                  self.features = ['return', 'sma', 'min', 'max', 'vol', 'mom']
                  self.raw_data = pd.DataFrame()
              def prepare_features(self):  
                  self.data['return'] = np.log(self.data['mid'] /
                                               self.data['mid'].shift(1))
                  self.data['sma'] = self.data['mid'].rolling(self.window).mean()
                  self.data['min'] = self.data['mid'].rolling(self.window).min()
                  self.data['mom'] = np.sign(
                      self.data['return'].rolling(self.window).mean())
                  self.data['max'] = self.data['mid'].rolling(self.window).max()
                  self.data['vol'] = self.data['return'].rolling(
                      self.window).std()
                  self.data.dropna(inplace=True)
                  self.data[self.features] -= self.mu
                  self.data[self.features] /= self.std
                  self.cols = []
                  for f in self.features:
                      for lag in range(1, self.lags + 1):
                          col = f'{f}_lag_{lag}'
                          self.data[col] = self.data[f].shift(lag)
                          self.cols.append(col)
              def on_success(self, time, bid, ask):  
                  df = pd.DataFrame({'bid': float(bid), 'ask': float(ask)},
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                                   index=[pd.Timestamp(time).tz_localize(None)])
                  self.raw_data = self.raw_data.append(df)
                  self.data = self.raw_data.resample(self.bar,
                                          label='right').last().ffill()
                  self.data = self.data.iloc[:-1]
                  if len(self.data) > self.min_length:
                      self.min_length +=1
                      self.data['mid'] = (self.data['bid'] +
                                          self.data['ask']) / 2
                      self.prepare_features()
                      features = self.data[
                          self.cols].iloc[-1].values.reshape(1, -1)
                      signal = self.model.predict(features)[0]
                      print(f'NEW SIGNAL: {signal}', end='\r')
                      if self.position in [0, -1] and signal == 1:  
                          print('*** GOING LONG ***')
                          self.create_order(self.stream_instrument,
                                      units=(1 - self.position) * self.units)
                          self.position = 1
                      elif self.position in [0, 1] and signal == -1:  
                          print('*** GOING SHORT ***')
                          self.create_order(self.stream_instrument,
                                      units=-(1 + self.position) * self.units)
                          self.position = -1

The trained AdaBoost model object and the normalization parameters.

The number of units traded.

The initial, neutral position.

The bar length on which the algorithm is implemented.

The length of the window for selected features.

The number of lags (must be in line with algorithm training).

The method that generates the lagged features data.

The redefined method that embodies the trading logic.

Check for a long signal and long trade.

Check for a short signal and short trade.

With the new class MLTrader, automated trading is made simple. A few lines of code
are enough in an interactive context. The parameters are set such that the first order
is placed after a short while. In reality, however, all parameters must, of course, be in
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line with original ones from the research and backtesting phase. They could, for
example, also be persisted on disk and be read with the algorithm:

In [113]: mlt = MLTrader('../pyalgo.cfg', algorithm)  

In [114]: mlt.stream_data(instrument, stop=500)  
          print('*** CLOSING OUT ***')
          mlt.create_order(mlt.stream_instrument,
                            units=-mlt.position * mlt.units)  

Instantiates the trading object.

Starts the streaming, data processing, and trading.

Closes out the final open position.

The preceding code generates an output similar to the following:

          *** GOING LONG ***

          {'id': '1735', 'time': '2020-08-19T14:46:15.552233563Z', 'userID':
           13834683, 'accountID': '101-004-13834683-001', 'batchID': '1734',
           'requestID': '42730658849646182', 'type': 'ORDER_FILL', 'orderID':
           '1734', 'instrument': 'EUR_USD', 'units': '100000.0',
           'gainQuoteHomeConversionFactor': '0.835983419025',
           'lossQuoteHomeConversionFactor': '0.844385262432', 'price': 1.1903,
           'fullVWAP': 1.1903, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
           1.19013, 'liquidity': '10000000'}], 'asks': [{'price': 1.1903,
           'liquidity': '10000000'}], 'closeoutBid': 1.19013, 'closeoutAsk':
           1.1903}, 'reason': 'MARKET_ORDER', 'pl': '0.0', 'financing': '0.0',
           'commission': '0.0', 'guaranteedExecutionFee': '0.0',
           'accountBalance': '98507.7425', 'tradeOpened': {'tradeID': '1735',
           'units': '100000.0', 'price': 1.1903, 'guaranteedExecutionFee': '0.0',
           'halfSpreadCost': '7.1416', 'initialMarginRequired': '3330.0'},
           'halfSpreadCost': '7.1416'}

          *** GOING SHORT ***

          {'id': '1737', 'time': '2020-08-19T14:48:10.510726213Z', 'userID':
           13834683, 'accountID': '101-004-13834683-001', 'batchID': '1736',
           'requestID': '42730659332312267', 'type': 'ORDER_FILL', 'orderID':
           '1736', 'instrument': 'EUR_USD', 'units': '-200000.0',
           'gainQuoteHomeConversionFactor': '0.835885095595',
           'lossQuoteHomeConversionFactor': '0.844285950827', 'price': 1.19029,
           'fullVWAP': 1.19029, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
           1.19029, 'liquidity': '10000000'}], 'asks': [{'price': 1.19042,
           'liquidity': '10000000'}], 'closeoutBid': 1.19029, 'closeoutAsk':
           1.19042}, 'reason': 'MARKET_ORDER', 'pl': '-0.8443', 'financing':
           '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
           'accountBalance': '98506.8982', 'tradeOpened': {'tradeID': '1737',
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           'units': '-100000.0', 'price': 1.19029, 'guaranteedExecutionFee':
           '0.0', 'halfSpreadCost': '5.4606', 'initialMarginRequired': '3330.0'},
           'tradesClosed': [{'tradeID': '1735', 'units': '-100000.0', 'price':
           1.19029, 'realizedPL': '-0.8443', 'financing': '0.0',
           'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '5.4606'}],
           'halfSpreadCost': '10.9212'}

          *** GOING LONG ***

          {'id': '1739', 'time': '2020-08-19T14:48:15.529680632Z', 'userID':
           13834683, 'accountID': '101-004-13834683-001', 'batchID': '1738',
           'requestID': '42730659353297789', 'type': 'ORDER_FILL', 'orderID':
           '1738', 'instrument': 'EUR_USD', 'units': '200000.0',
           'gainQuoteHomeConversionFactor': '0.835835944263',
           'lossQuoteHomeConversionFactor': '0.844236305512', 'price': 1.1905,
           'fullVWAP': 1.1905, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
           1.19035, 'liquidity': '10000000'}], 'asks': [{'price': 1.1905,
           'liquidity': '10000000'}], 'closeoutBid': 1.19035, 'closeoutAsk':
           1.1905}, 'reason': 'MARKET_ORDER', 'pl': '-17.729', 'financing':
           '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
           'accountBalance': '98489.1692', 'tradeOpened': {'tradeID': '1739',
           'units': '100000.0', 'price': 1.1905, 'guaranteedExecutionFee': '0.0',
           'halfSpreadCost': '6.3003', 'initialMarginRequired': '3330.0'},
           'tradesClosed': [{'tradeID': '1737', 'units': '100000.0', 'price':
           1.1905, 'realizedPL': '-17.729', 'financing': '0.0',
           'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '6.3003'}],
           'halfSpreadCost': '12.6006'}

          *** CLOSING OUT ***

          {'id': '1741', 'time': '2020-08-19T14:49:11.976885485Z', 'userID':
           13834683, 'accountID': '101-004-13834683-001', 'batchID': '1740',
           'requestID': '42730659588338204', 'type': 'ORDER_FILL', 'orderID':
           '1740', 'instrument': 'EUR_USD', 'units': '-100000.0',
           'gainQuoteHomeConversionFactor': '0.835730636848',
           'lossQuoteHomeConversionFactor': '0.844129939731', 'price': 1.19051,
           'fullVWAP': 1.19051, 'fullPrice': {'type': 'PRICE', 'bids': [{'price':
           1.19051, 'liquidity': '10000000'}], 'asks': [{'price': 1.19064,
           'liquidity': '10000000'}], 'closeoutBid': 1.19051, 'closeoutAsk':
           1.19064}, 'reason': 'MARKET_ORDER', 'pl': '0.8357', 'financing':
           '0.0', 'commission': '0.0', 'guaranteedExecutionFee': '0.0',
           'accountBalance': '98490.0049', 'tradesClosed': [{'tradeID': '1739',
           'units': '-100000.0', 'price': 1.19051, 'realizedPL': '0.8357',
           'financing': '0.0', 'guaranteedExecutionFee': '0.0', 'halfSpreadCost':
           '5.4595'}], 'halfSpreadCost': '5.4595'}
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3 Use the link http://bit.ly/do_sign_up to get a 10 USD bonus on DigitalOcean when signing up for a new
account.

Infrastructure and Deployment
Deploying an automated algorithmic trading strategy with real funds requires an
appropriate infrastructure. Among other things, the infrastructure should satisfy the
following:

Reliability
The infrastructure on which to deploy an algorithmic trading strategy should
allow for high availability (for example, 99.9% or higher) and should otherwise
take care of reliability (automatic backups, redundancy of drives and web con‐
nections, and so on).

Performance
Depending on the amount of data being processed and the computational
demand the algorithms generate, the infrastructure must have enough CPU
cores, working memory (RAM), and storage (SSD). In addition, the web connec‐
tions should be fast enough.

Security
The operating system and the applications that run on it should be protected by
strong passwords, as well as SSL encryption and hard drive encryption. The
hardware should be protected from fire, water, and unauthorized physical access.

Basically, these requirements can only be fulfilled by renting an appropriate infra‐
structure from a professional data center or a cloud provider. Own investments in the
physical infrastructure to satisfy the aforementioned requirements can in general
only be justified by the bigger, or even the biggest, players in the financial markets.

From a development and testing point of view, even the smallest Droplet (cloud
instance) from DigitalOcean (http://digitalocean.com) is enough to get started. At the
time of writing, such a Droplet costs 5 USD per month and is billed by the hour, cre‐
ated within minutes, and destroyed within seconds.3

How to set up a Droplet with DigitalOcean is explained in detail in Chapter 2 (specif‐
ically in “Using Cloud Instances” on page 36), with Bash scripts that can be adjusted
to reflect individual requirements regarding Python packages, for example.
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4 The logging approach used here is pretty simple in the form of a simple text file. It is easy to change the log‐
ging and persisting of, say, the relevant financial data in the form of a database or appropriate binary storage
formats, such as HDF5 (see Chapter 3).

Although the development and testing of automated algorithmic
trading strategies is possible from a local computer (desktop, note‐
book, or similar), it is not appropriate for the deployment of auto‐
mated strategies trading real money. A simple loss of the web
connection or a brief power outage might bring down the whole
algorithm, leaving, for example, unintended open positions in the
portfolio. As another example, it would cause one to miss out on
real-time tick data and end up with corrupted data sets, potentially
leading to wrong signals and unintended trades and positions.

Logging and Monitoring
Assume now that the automated algorithmic trading strategy is to be deployed on a
remote server (virtual cloud instance or dedicated server). Further assume that all
required Python packages have been installed (see “Using Cloud Instances” on page
36) and that, for instance, Jupyter Lab is running securely (see Running a notebook
server). What else needs to be considered from the algorithmic traders’ point of view
if they do not want to sit all day in front of the screen being logged in to the server?

This section addresses two important topics in this regard: logging and real-time mon‐
itoring. Logging persists information and events on disk for later inspection. It is stan‐
dard practice in software application development and deployment. However, here
the focus might be put instead on the financial side, logging important financial data
and event information for later inspection and analysis. The same holds true for real-
time monitoring making use of socket communication. Via sockets, a constant real-
time stream of important financial aspects can be created that can then be retrieved
and processed on a local computer, even if the deployment happens in the cloud.

“Automated Trading Strategy” on page 305 presents a Python script implementing all
these aspects and making use of the code from “Online Algorithm” on page 291. The
script brings the code in a shape that allows, for example, the deployment of the algo‐
rithmic trading strategy—sbased on the persisted algorithm object—son a remote
server. It adds both logging and monitoring capabilities based on a custom function
that, among other things, makes use of ZeroMQ (see http://zeromq.org) for socket com‐
munication. In combination with the short script from “Strategy Monitoring” on
page 308, this allows for a remote real-time monitoring of the activity on a remote
server.4

When the script from “Automated Trading Strategy” on page 305 is executed, either
locally or remotely, the output that is logged and sent via the socket looks as follows:
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2020-06-15 17:04:14.298653
================================================================================
NUMBER OF TICKS: 147 | NUMBER OF BARS: 49

================================================================================
MOST RECENT DATA
                     return_lag_1  return_lag_2  ...  max_lag_5  max_lag_6
2020-06-15 15:04:06      0.026508     -0.125253  ...  -1.703276  -1.700746
2020-06-15 15:04:08     -0.049373      0.026508  ...  -1.694419  -1.703276
2020-06-15 15:04:10     -0.077828     -0.049373  ...  -1.694419  -1.694419
2020-06-15 15:04:12      0.064448     -0.077828  ...  -1.705807  -1.694419
2020-06-15 15:04:14     -0.020918      0.064448  ...  -1.710869  -1.705807

[5 rows x 36 columns]

================================================================================
features:
[[-0.02091774  0.06444794 -0.07782834 -0.04937258  0.02650799 -0.12525265
  -2.06428556 -1.96568848 -2.16288147 -2.08071843 -1.94925692 -2.19574189
   0.92939697  0.92939697 -1.07368691  0.92939697 -1.07368691 -1.07368691
  -1.41861822 -1.42605902 -1.4294412  -1.42470615 -1.4274119  -1.42470615
  -1.05508516 -1.06879043 -1.06879043 -1.0619378  -1.06741991 -1.06741991
  -1.70580717 -1.70707253 -1.71339931 -1.7108686  -1.7108686  -1.70580717]]
position: 1
signal:   1

2020-06-15 17:04:14.402154
================================================================================
*** NO TRADE PLACED ***

*** END OF CYCLE ***

2020-06-15 17:04:16.199950
================================================================================

================================================================================
*** GOING NEUTRAL ***

{'id': '979', 'time': '2020-06-15T15:04:16.138027118Z', 'userID': 13834683,
'accountID': '101-004-13834683-001', 'batchID': '978',
'requestID': '60721506683906591', 'type': 'ORDER_FILL', 'orderID': '978',
'instrument': 'EUR_USD', 'units': '-100000.0',
'gainQuoteHomeConversionFactor': '0.882420762903',
'lossQuoteHomeConversionFactor': '0.891289313284',
'price': 1.12751, 'fullVWAP': 1.12751, 'fullPrice': {'type': 'PRICE',
'bids': [{'price': 1.12751, 'liquidity': '10000000'}],
'asks': [{'price': 1.12765, 'liquidity': '10000000'}],
'closeoutBid': 1.12751, 'closeoutAsk': 1.12765}, 'reason': 'MARKET_ORDER',
'pl': '-3.5652', 'financing': '0.0', 'commission': '0.0',
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5 Note that the socket communication, as implemented in the two scripts, is not encrypted and is sending plain
text over the web, which might represent a security risk in production.

'guaranteedExecutionFee': '0.0', 'accountBalance': '99259.7485',
'tradesClosed': [{'tradeID': '975', 'units': '-100000.0',
'price': 1.12751, 'realizedPL': '-3.5652', 'financing': '0.0',
'guaranteedExecutionFee': '0.0', 'halfSpreadCost': '6.208'}],
'halfSpreadCost': '6.208'}
================================================================================

Running the script from “Strategy Monitoring” on page 308 locally then allows for
the real-time retrieval and processing of such information. Of course, it is easy to
adjust the logging and streaming data to one’s own requirements.5 Furthermore, the
trading script and the whole logic can be adjusted to include such elements as stop
losses or take profit targets programmatically.

Trading currency pairs and/or CFDs is associated with a number of
financial risks. Implementing an algorithmic trading strategy for
such instruments automatically leads to a number of additional
risks. Among them are flaws in the trading and/or execution logic,
as well as technical risks including problems associated with socket
communication, delayed retrieval, or even loss of tick data during
the deployment. Therefore, before one deploys a trading strategy in
automated fashion one should make sure that all associated market,
execution, operational, technical, and other risks have been identi‐
fied, evaluated, and properly addressed. The code presented in this
chapter is only for technical illustration purposes.

Visual Step-by-Step Overview
This final section provides a step-by-step overview in screenshots. While the previous
sections are based on the FXCM trading platform, the visual overview is based on the
Oanda trading platform.

Configuring Oanda Account
The first step is to set up an account with Oanda (or any other trading platform to
this end) and to set the correct leverage ratio for the account according to the Kelly
criterion and as shown in Figure 10-8.
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Figure 10-8. Setting leverage on Oanda

Setting Up the Hardware
The second step is to create a DigitalOcean droplet, as shown in Figure 10-9.

Figure 10-9. DigitalOcean droplet
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Setting Up the Python Environment
The third step is to put all the software on the droplet (see Figure 10-10) in order to
set up the infrastructure. When it all works fine, you can create a new Jupyter Note‐
book and start your interactive Python session (see Figure 10-11).

Figure 10-10. Installing Python and packages

Figure 10-11. Testing Jupyter Lab
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Uploading the Code
The fourth step is to upload the Python scripts for automated trading and real-time
monitoring, as shown in Figure 10-12. The configuration file with the account cre‐
dentials also needs to be uploaded.

Figure 10-12. Uploading Python code files

Running the Code
The fifth step is to run the Python script for automated trading, as shown in
Figure 10-13. Figure 10-14 shows a trade that the Python script has initiated.
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Figure 10-13. Running the Python script

Figure 10-14. A trade initiated by the Python script
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Real-Time Monitoring
The final step is to run the monitoring script locally (provided you have set the cor‐
rect IP in the local script), as seen in Figure 10-15. In practice, this means that you
can monitor locally in real time what exactly is happening on your cloud instance.

Figure 10-15. Local real-time monitoring via socket

Conclusions
This chapter is about the deployment of an algorithmic trading strategy in automated
fashion, based on a classification algorithm from machine learning to predict the
direction of market movements. It addresses such important topics as capital man‐
agement (based on the Kelly criterion), vectorized backtesting for performance and
risk, the transformation of offline to online trading algorithms, an appropriate infra‐
structure for deployment, and logging and monitoring during deployment.

The topic of this chapter is complex and requires a broad skill set from the algorith‐
mic trading practitioner. On the other hand, having RESTful APIs for algorithmic
trading available, such as the one from Oanda, simplifies the automation task consid‐
erably since the core part boils down mainly to making use of the capabilities of the
Python wrapper package tpqoa for tick data retrieval and order placement. Around
this core, elements to mitigate operational and technical risks should be added as far
as appropriate and possible.
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Python Script
This section contains Python scripts used in this chapter.

Automated Trading Strategy
The following Python script contains the code for the automated deployment of the
ML-based trading strategy, as discussed and backtested in this chapter:

#
# Automated ML-Based Trading Strategy for Oanda
# Online Algorithm, Logging, Monitoring
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
#
import zmq
import tpqoa
import pickle
import numpy as np
import pandas as pd
import datetime as dt

log_file = 'automated_strategy.log'

# loads the persisted algorithm object
algorithm = pickle.load(open('algorithm.pkl', 'rb'))

# sets up the socket communication via ZeroMQ (here: "publisher")
context = zmq.Context()
socket = context.socket(zmq.PUB)

# this binds the socket communication to all IP addresses of the machine
socket.bind('tcp://0.0.0.0:5555')

# recreating the log file
with open(log_file, 'w') as f:
    f.write('*** NEW LOG FILE ***\n')
    f.write(str(dt.datetime.now()) + '\n\n\n')
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def logger_monitor(message, time=True, sep=True):
    ''' Custom logger and monitor function.
    '''
    with open(log_file, 'a') as f:
        t = str(dt.datetime.now())
        msg = ''
        if time:
            msg += '\n' + t + '\n'
        if sep:
            msg += 80 * '=' + '\n'
        msg += message + '\n\n'
        # sends the message via the socket
        socket.send_string(msg)
        # writes the message to the log file
        f.write(msg)

class MLTrader(tpqoa.tpqoa):
    def __init__(self, config_file, algorithm):
        super(MLTrader, self).__init__(config_file)
        self.model = algorithm['model']
        self.mu = algorithm['mu']
        self.std = algorithm['std']
        self.units = 100000
        self.position = 0
        self.bar = '2s'
        self.window = 2
        self.lags = 6
        self.min_length = self.lags + self.window + 1
        self.features = ['return', 'vol', 'mom', 'sma', 'min', 'max']
        self.raw_data = pd.DataFrame()

    def prepare_features(self):
        self.data['return'] = np.log(
            self.data['mid'] / self.data['mid'].shift(1))
        self.data['vol'] = self.data['return'].rolling(self.window).std()
        self.data['mom'] = np.sign(
            self.data['return'].rolling(self.window).mean())
        self.data['sma'] = self.data['mid'].rolling(self.window).mean()
        self.data['min'] = self.data['mid'].rolling(self.window).min()
        self.data['max'] = self.data['mid'].rolling(self.window).max()
        self.data.dropna(inplace=True)
        self.data[self.features] -= self.mu
        self.data[self.features] /= self.std
        self.cols = []
        for f in self.features:
            for lag in range(1, self.lags + 1):
                col = f'{f}_lag_{lag}'
                self.data[col] = self.data[f].shift(lag)
                self.cols.append(col)

    def report_trade(self, pos, order):
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        ''' Prints, logs, and sends trade data.
        '''
        out = '\n\n' + 80 * '=' + '\n'
        out += '*** GOING {} *** \n'.format(pos) + '\n'
        out += str(order) + '\n'
        out += 80 * '=' + '\n'
        logger_monitor(out)
        print(out)

    def on_success(self, time, bid, ask):
        print(self.ticks, 20 * ' ', end='\r')
        df = pd.DataFrame({'bid': float(bid), 'ask': float(ask)},
                          index=[pd.Timestamp(time).tz_localize(None)])
        self.raw_data = self.raw_data.append(df)
        self.data = self.raw_data.resample(
            self.bar, label='right').last().ffill()
        self.data = self.data.iloc[:-1]
        if len(self.data) > self.min_length:
            logger_monitor('NUMBER OF TICKS: {} | '.format(self.ticks) +
                           'NUMBER OF BARS: {}'.format(self.min_length))
            self.min_length += 1
            self.data['mid'] = (self.data['bid'] + self.data['ask']) / 2
            self.prepare_features()
            features = self.data[self.cols].iloc[-1].values.reshape(1, -1)
            signal = self.model.predict(features)[0]
            # logs and sends major financial information
            logger_monitor('MOST RECENT DATA\n' +
                           str(self.data[self.cols].tail()),
                           False)
            logger_monitor('features:\n' + str(features) + '\n' +
                           'position: ' + str(self.position) + '\n' +
                           'signal:   ' + str(signal), False)
            if self.position in [0, -1] and signal == 1:  # going long?
                order = self.create_order(self.stream_instrument,
                                          units=(1 - self.position) *
                                          self.units,
                                          suppress=True, ret=True)
                self.report_trade('LONG', order)
                self.position = 1
            elif self.position in [0, 1] and signal == -1:  # going short?
                order = self.create_order(self.stream_instrument,
                                          units=-(1 + self.position) *
                                          self.units,
                                          suppress=True, ret=True)
                self.report_trade('SHORT', order)
                self.position = -1
            else:  # no trade
                logger_monitor('*** NO TRADE PLACED ***')

            logger_monitor('*** END OF CYCLE ***\n\n', False, False)
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if __name__ == '__main__':
    mlt = MLTrader('../pyalgo.cfg', algorithm)
    mlt.stream_data('EUR_USD', stop=150)
    order = mlt.create_order(mlt.stream_instrument,
                             units=-mlt.position * mlt.units,
                             suppress=True, ret=True)
    mlt.position = 0
    mlt.report_trade('NEUTRAL', order)

Strategy Monitoring
The following Python script contains code to remotely monitor the execution of the
Python script from “Automated Trading Strategy” on page 305.

#
# Automated ML-Based Trading Strategy for Oanda
# Strategy Monitoring via Socket Communication
#
# Python for Algorithmic Trading
# (c) Dr. Yves J. Hilpisch
#
import zmq

# sets up the socket communication via ZeroMQ (here: "subscriber")
context = zmq.Context()
socket = context.socket(zmq.SUB)

# adjust the IP address to reflect the remote location
socket.connect('tcp://134.122.70.51:5555')

# local IP address used for testing
# socket.connect('tcp://0.0.0.0:5555')

# configures the socket to retrieve every message
socket.setsockopt_string(zmq.SUBSCRIBE, '')

while True:
    msg = socket.recv_string()
    print(msg)
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APPENDIX

Python, NumPy, matplotlib, pandas

Talk is cheap. Show me the code.
—Linus Torvalds

Python has become a powerful programming language and has developed a vast eco‐
system of helpful packages over the last couple of years. This appendix provides a
concise overview of Python and three of the major pillars of the so-called scientific or
data science stack:

• NumPy (see https://numpy.org)
• matplotlib (see https://matplotlib.org)
• pandas (see https://pandas.pydata.org)

NumPy provides performant array operations on large, homogeneous numerical data
sets while pandas is primarily designed to handle tabular data, such as financial time
series data, efficiently.

Such an introductory appendix—only addressing selected topics relevant to the rest
of the contents of this book—cannot, of course, replace a thorough introduction to
Python and the packages covered. However, if you are rather new to Python or pro‐
gramming in general you might get a first overview and a feeling of what Python is all
about. If you are already experienced in another language typically used in quantita‐
tive finance (such as Matlab, R, C++, or VBA), you see what typical data structures,
programming paradigms, and idioms in Python look like.

For a comprehensive overview of Python applied to finance see, Hilpisch (2018).
Other, more general introductions to the language with a scientific and data analysis
focus are VanderPlas (2017) and McKinney (2017).
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Python Basics
This section introduces basic Python data types and structures, control structures,
and some Python idioms.

Data Types
It is noteworthy that Python is generally a dynamically typed system, which means
that types of objects are inferred from their contexts. Let us start with numbers:

In [1]: a = 3  

In [2]: type(a)  
Out[2]: int

In [3]: a.bit_length()  
Out[3]: 2

In [4]: b = 5.  

In [5]: type(b)
Out[5]: float

Assigns the variable name a an integer value of 3.

Looks up the type of a.

Looks up the number of bits used to store the integer value.

Assigns the variable name b a floating point value of 5.0.

Python can handle arbitrarily large integers, which is quite beneficial for number the‐
oretical applications, for instance:

In [6]: c = 10 ** 100  

In [7]: c
Out[7]: 100000000000000000000000000000000000000000000000000000000000000000000000
        00000000000000000000000000000

In [8]: c.bit_length()  
Out[8]: 333

Assigns a “huge” integer value.

Shows the number of bits used for the integer representation.
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Arithmetic operations on these objects work as expected:

In [9]: 3 / 5.  
Out[9]: 0.6

In [10]: a * b  
Out[10]: 15.0

In [11]: a - b  
Out[11]: -2.0

In [12]: b + a  
Out[12]: 8.0

In [13]: a ** b  
Out[13]: 243.0

Division.

Multiplication.

Addition.

Difference.

Power.

Many commonly used mathematical functions are found in the math module, which
is part of Python’s standard library:

In [14]: import math  

In [15]: math.log(a)  
Out[15]: 1.0986122886681098

In [16]: math.exp(a)  
Out[16]: 20.085536923187668

In [17]: math.sin(b)  
Out[17]: -0.9589242746631385

Imports the math module from the standard library.

Calculates the natural logarithm.

Calculates the exponential value.

Calculates the sine value.
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Another important basic data type is the string object (str):

In [18]: s = 'Python for Algorithmic Trading.'  

In [19]: type(s)
Out[19]: str

In [20]: s.lower()  
Out[20]: 'python for algorithmic trading.'

In [21]: s.upper()  
Out[21]: 'PYTHON FOR ALGORITHMIC TRADING.'

In [22]: s[0:6]  
Out[22]: 'Python'

Assigns a str object to the variable name s.

Transforms all characters to lowercase.

Transforms all characters to uppercase.

Selects the first six characters.

Such objects can also be combined using the + operator. The index value –1 repre‐
sents the last character of a string (or last element of a sequence in general):

In [23]: st = s[0:6] + s[-9:-1]  

In [24]: print(st)  
         Python Trading

Combines sub-sets of the str object to a new one.

Prints out the result.

String replacements are often used to parametrize text output:

In [25]: repl = 'My name is %s, I am %d years old and %4.2f m tall.'  

In [26]: print(repl % ('Gordon Gekko', 43, 1.78))  
         My name is Gordon Gekko, I am 43 years old and 1.78 m tall.

In [27]: repl = 'My name is {:s}, I am {:d} years old and {:4.2f} m tall.' 

In [28]: print(repl.format('Gordon Gekko', 43, 1.78))  
         My name is Gordon Gekko, I am 43 years old and 1.78 m tall.

In [29]: name, age, height = 'Gordon Gekko', 43, 1.78 

In [30]: print(f'My name is {name:s}, I am {age:d} years old and \
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                {height:4.2f}m tall.')  
         My name is Gordon Gekko, I am 43 years old and 1.78m tall.

Defines a string template the “old” way.

Prints the template with the values replaced the “old” way.

Defines a string template the “new” way.

Prints the template with the values replaced the “new” way.

Defines variables for later usage during replacement.

Makes use of a so-called f-string for string replacement (introduced in Python
3.6).

Data Structures
tuple objects are light weight data structures. These are immutable collections of
other objects and are constructed by objects separated by commas—with or without
parentheses:

In [31]: t1 = (a, b, st)  

In [32]: t1  
Out[32]: (3, 5.0, 'Python Trading')

In [33]: type(t1)
Out[33]: tuple

In [34]: t2 = st, b, a  

In [35]: t2
Out[35]: ('Python Trading', 5.0, 3)

In [36]: type(t2)
Out[36]: tuple

Constructs a tuple object with parentheses.

Prints out the str representation.

Constructs a tuple object without parentheses.

Nested structures are also possible:

In [37]: t = (t1, t2)  

In [38]: t
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Out[38]: ((3, 5.0, 'Python Trading'), ('Python Trading', 5.0, 3))

In [39]: t[0][2]  
Out[39]: 'Python Trading'

Constructs a tuple object out of two others.

Accesses the third element of the first object.

list objects are mutable collections of other objects and are generally constructed by
providing a comma-separated collection of objects in brackets:

In [40]: l = [a, b, st]  

In [41]: l
Out[41]: [3, 5.0, 'Python Trading']

In [42]: type(l)
Out[42]: list

In [43]: l.append(s.split()[3])  

In [44]: l
Out[44]: [3, 5.0, 'Python Trading', 'Trading.']

Generates a list object using brackets.

Appends a new element (final word of s) to the list object.

Sorting is a typical operation on list objects, which can also be constructed using the
list constructor (here applied to a tuple object):

In [45]: l = list(('Z', 'Q', 'D', 'J', 'E', 'H', '5.', 'a'))  

In [46]: l
Out[46]: ['Z', 'Q', 'D', 'J', 'E', 'H', '5.', 'a']

In [47]: l.sort()  

In [48]: l
Out[48]: ['5.', 'D', 'E', 'H', 'J', 'Q', 'Z', 'a']

Creates a list object from a tuple.

Sorts all elements in-place (that is, changes the object itself).

Dictionary (dict) objects are so-called key-value stores and are generally constructed
with curly brackets:

In [49]: d = {'int_obj': a, 'float_obj': b, 'string_obj': st}  
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In [50]: type(d)
Out[50]: dict

In [51]: d
Out[51]: {'int_obj': 3, 'float_obj': 5.0, 'string_obj': 'Python Trading'}

In [52]: d['float_obj']  
Out[52]: 5.0

In [53]: d['int_obj_long'] = 10 ** 20  

In [54]: d
Out[54]: {'int_obj': 3,
          'float_obj': 5.0,
          'string_obj': 'Python Trading',
          'int_obj_long': 100000000000000000000}

In [55]: d.keys()  
Out[55]: dict_keys(['int_obj', 'float_obj', 'string_obj', 'int_obj_long'])

In [56]: d.values()  
Out[56]: dict_values([3, 5.0, 'Python Trading', 100000000000000000000])

Creates a dict object using curly brackets and key-value pairs.

Accesses the value given a key.

Adds a new key-value pair.

Selects and shows all keys.

Selects and shows all values.

Control Structures
Iterations are very important operations in programming in general and financial
analytics in particular. Many Python objects are iterable, which proves rather conve‐
nient in many circumstances. Consider the special iterator object range:

In [57]: range(5)  
Out[57]: range(0, 5)

In [58]: range(3, 15, 2)  
Out[58]: range(3, 15, 2)

In [59]: for i in range(5):  
             print(i ** 2, end=' ')  
         0 1 4 9 16
In [60]: for i in range(3, 15, 2):
             print(i, end=' ')
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         3 5 7 9 11 13
In [61]: l = ['a', 'b', 'c', 'd', 'e']

In [62]: for _ in l:  
             print(_)
         a
         b
         c
         d
         e

In [63]: s = 'Python Trading'

In [64]: for c in s:  
             print(c + '|', end='')
         P|y|t|h|o|n| |T|r|a|d|i|n|g|

` object given a single parameter (end value + 1).

Creates a range object with start, end, and step parameter values.

Iterates over a range object and prints the squared values.

Iterates over a range object using start, end, and step parameters.

Iterates over a list object.

Iterates over a str object.

while loops are similar to their counterparts in other languages:

In [65]: i = 0  

In [66]: while i < 5:  
             print(i ** 0.5, end=' ')  
             i += 1  
         0.0 1.0 1.4142135623730951 1.7320508075688772 2.0

Sets the counter value to 0.

As long as the value of i is smaller than 5…

…print the square root of i and…

…increase the value of i by 1.
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Python Idioms
Python in many places relies on a number of special idioms. Let us start with a rather
popular one, the list comprehension:

In [67]: lc = [i ** 2 for i in range(10)]  

In [68]: lc
Out[68]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In [69]: type(lc)
Out[69]: list

Creates a new list object based on the list comprehension syntax (for loop in
brackets).

So-called lambda or anonymous functions are useful helpers in many places:

In [70]: f = lambda x: math.cos(x)  

In [71]: f(5)  
Out[71]: 0.2836621854632263

In [72]: list(map(lambda x: math.cos(x), range(10)))  
Out[72]: [1.0,
          0.5403023058681398,
          -0.4161468365471424,
          -0.9899924966004454,
          -0.6536436208636119,
          0.2836621854632263,
          0.9601702866503661,
          0.7539022543433046,
          -0.14550003380861354,
          -0.9111302618846769]

Defines a new function f via the lambda syntax.

Evaluates the function f for a value of 5.

Maps the function f to all elements of the range object and creates a list object
with the results, which is printed.

In general, one works with regular Python functions (as opposed to lambda func‐
tions), which are constructed as follows:

In [73]: def f(x):  
             return math.exp(x)  

In [74]: f(5)
Out[74]: 148.4131591025766
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In [75]: def f(*args):  
             for arg in args:  
                 print(arg)  
             return None  

In [76]: f(l)  
         ['a', 'b', 'c', 'd', 'e']

Regular functions use the def statement for the definition.

With the return statement, one defines what gets returned when the execution/
evaluation is successful; multiple return statements are possible (for example, for
different cases).

0 allows for multiple arguments to be passed as an iterable object (for example,
list object).

Iterates over the arguments.

Does something with every argument: here, printing.

Returns something: here, None; not necessary for a valid Python function.

Passes the list object l to the function f, which interprets it as a list of
arguments.

Consider the following function definition, which returns different values/strings
based on an if-elif-else control structure:

In [77]: import random  

In [78]: a = random.randint(0, 1000)  

In [79]: print(f'Random number is {a}')  
         Random number is 188

In [80]: def number_decide(number):
             if a < 10:  
                 return "Number is single digit."
             elif 10 <= a < 100:  
                 return "Number is double digit."
             else:  
                 return "Number is triple digit."

In [81]: number_decide(a)  
Out[81]: 'Number is triple digit.'
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Imports the random module to draw random numbers.

Draws a random integer between 0 and 1,000.

Prints the value of the drawn number.

Checks for a single digit number, and if False…

…checks for a double digit number; if also False…

…the only case that remains is the triple digit case.

Calls the function with the random number value a.

NumPy
Many operations in computational finance take place over large arrays of numerical
data. NumPy is a Python package that allows the efficient handling of and operation on
such data structures. Although quite a mighty package with a wealth of functionality,
it suffices for the purposes of this book to cover the basics of NumPy. A neat online
book that is available for free about NumPy is From Python to NumPy. It covers many
important aspects in detail that are omitted in the following sections.

Regular ndarray Object
The workhorse is the NumPy ndarray class, which provides the data structure for n-
dimensional array objects. You can generate an ndarray object, for instance, from a
list object:

In [82]: import numpy as np  

In [83]: a = np.array(range(24))  

In [84]: a  
Out[84]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
          15, 16,
                17, 18, 19, 20, 21, 22, 23])

In [85]: b = a.reshape((4, 6))  

In [86]: b  
Out[86]: array([[ 0,  1,  2,  3,  4,  5],
                [ 6,  7,  8,  9, 10, 11],
                [12, 13, 14, 15, 16, 17],
                [18, 19, 20, 21, 22, 23]])
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In [87]: c = a.reshape((2, 3, 4))  

In [88]: c  
Out[88]: array([[[ 0,  1,  2,  3],
                 [ 4,  5,  6,  7],
                 [ 8,  9, 10, 11]],

                [[12, 13, 14, 15],
                 [16, 17, 18, 19],
                 [20, 21, 22, 23]]])

In [89]: b = np.array(b, dtype=np.float)  

In [90]: b  
Out[90]: array([[ 0.,  1.,  2.,  3.,  4.,  5.],
                [ 6.,  7.,  8.,  9., 10., 11.],
                [12., 13., 14., 15., 16., 17.],
                [18., 19., 20., 21., 22., 23.]])

Imports NumPy as np by convention.

Instantiates an ndarray object from the range object; np.arange could also be
used, for instance.

Prints out the values.

Reshapes the object to a two-dimensional one…

…and prints out the result.

Reshapes the object to a three-dimensional one…

…and prints out the result.

This changes the dtype of the object to np.float and…

…shows the new set of (now floating point) numbers.
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Many Python data structures are designed to be quite general. An
example are mutable list objects that can be easily manipulated in
many ways (adding and removing elements, storing other complex
data structures, and so on). The strategy of NumPy with the regular
ndarray object is to provide a more specialized data structure for
which all elements are of the same atomic type and which in turn
allows the contiguous storage in memory. This makes the ndarray
object much better at solving problems in certain settings, such as
when operating on larger, or even large, numerical data sets. In the
case of NumPy, this specialization also comes along with conve‐
nience for the programmer on the one hand and often increased
speed on the other hand.

Vectorized Operations
A major strength of NumPy are vectorized operations:

In [91]: 2 * b  
Out[91]: array([[ 0.,  2.,  4.,  6.,  8., 10.],
                [12., 14., 16., 18., 20., 22.],
                [24., 26., 28., 30., 32., 34.],
                [36., 38., 40., 42., 44., 46.]])

In [92]: b ** 2  
Out[92]: array([[  0.,   1.,   4.,   9.,  16.,  25.],
                [ 36.,  49.,  64.,  81., 100., 121.],
                [144., 169., 196., 225., 256., 289.],
                [324., 361., 400., 441., 484., 529.]])

In [93]: f = lambda x: x ** 2 - 2 * x + 0.5  

In [94]: f(a)  
Out[94]: array([  0.5,  -0.5,   0.5,   3.5,   8.5,  15.5,  24.5,  35.5,
          48.5,
         63.5,  80.5,  99.5, 120.5, 143.5, 168.5, 195.5, 224.5, 255.5,
                288.5, 323.5, 360.5, 399.5, 440.5, 483.5])

Implements a scalar multiplication on the one-dimensional ndarray object
(vector).

Calculates the square of each number of b in vectorized fashion.

Defines a function f via a lambda constructor.

Applies f to the ndarray object a using vectorization.
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In many scenarios, only a (small) part of the data stored in an ndarray object is of
interest. NumPy supports basic and advanced slicing and other selection features:

In [95]: a[2:6]  
Out[95]: array([2, 3, 4, 5])

In [96]: b[2, 4]  
Out[96]: 16.0

In [97]: b[1:3, 2:4]  
Out[97]: array([[ 8.,  9.],
                [14., 15.]])

Selects the third to sixth elements.

Selects the third row and fifth (final) row.

Picks out the middle square from the b object.

Boolean Operations
Boolean operations are also supported in many places:

In [98]: b > 10  
Out[98]: array([[False, False, False, False, False, False],
                [False, False, False, False, False,  True],
                [ True,  True,  True,  True,  True,  True],
                [ True,  True,  True,  True,  True,  True]])

In [99]: b[b > 10]  
Out[99]: array([11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.,
          23.])

Which numbers are greater than 10?

Return all those numbers greater than 10.

ndarray Methods and NumPy Functions
Furthermore, ndarray objects have multiple (convenience) methods already built in:

In [100]: a.sum()  
Out[100]: 276

In [101]: b.mean()  
Out[101]: 11.5

In [102]: b.mean(axis=0)  
Out[102]: array([ 9., 10., 11., 12., 13., 14.])
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In [103]: b.mean(axis=1)  
Out[103]: array([ 2.5,  8.5, 14.5, 20.5])

In [104]: c.std()  
Out[104]: 6.922186552431729

The sum of all elements.

The mean of all elements.

The mean along the first axis.

The mean along the second axis.

The standard deviation over all elements.

Similarly, there is a wealth of so-called universal functions that the NumPy package pro‐
vides. They are universal in the sense that they can be applied in general to NumPy
ndarray objects and to standard numerical Python data types. For details, see Univer‐
sal functions (ufunc):

In [105]: np.sum(a)  
Out[105]: 276

In [106]: np.mean(b, axis=0)  
Out[106]: array([ 9., 10., 11., 12., 13., 14.])

In [107]: np.sin(b).round(2)  
Out[107]: array([[ 0.  ,  0.84,  0.91,  0.14, -0.76, -0.96],
                 [-0.28,  0.66,  0.99,  0.41, -0.54, -1.  ],
                 [-0.54,  0.42,  0.99,  0.65, -0.29, -0.96],
                 [-0.75,  0.15,  0.91,  0.84, -0.01, -0.85]])

In [108]: np.sin(4.5)  
Out[108]: -0.977530117665097

The sum of all elements.

The mean along the first axis.

The sine value for all elements rounded to two digits.

The sine value of a Python float object.
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However, you should be aware that applying NumPy universal functions to standard
Python data types generally comes with a significant performance burden:

In [109]: %time l = [np.sin(x) for x in range(1000000)]  
          CPU times: user 1.21 s, sys: 22.9 ms, total: 1.24 s
          Wall time: 1.24 s

In [110]: %time l = [math.sin(x) for x in range(1000000)]  
          CPU times: user 215 ms, sys: 22.9 ms, total: 238 ms
          Wall time: 239 ms

List comprehension using NumPy universal function on Python float objects.

List comprehension using math function on Python float objects.

On the other hand, using the vectorized operations from NumPy on ndarray objects is
faster than both of the preceding alternatives that result in list objects. However, the
speed advantage often comes at the cost of a larger, or even huge, memory footprint:

In [111]: %time a = np.sin(np.arange(1000000))  
          CPU times: user 20.7 ms, sys: 5.32 ms, total: 26 ms
          Wall time: 24.6 ms

In [112]: import sys  

In [113]: sys.getsizeof(a)  
Out[113]: 8000096

In [114]: a.nbytes  
Out[114]: 8000000

Vectorized calculation of the sine values with NumPy, which is much faster in
general.

Imports the sys module with many system-related functions.

Shows the size of the a object in memory.

Shows the number of bytes used to store the data in the a object.

Vectorization sometimes is a very useful approach to write concise
code that is often also much faster than Python code. However, be
aware of the memory footprint that vectorization can have in many
scenarios relevant to finance. Often, there are alternative imple‐
mentations of algorithms available that are memory efficient and
that, by using performance libraries such as Numba or Cython, can
even be faster. See Hilpisch (2018, ch. 10).
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ndarray Creation
Here, we use the ndarray object constructor np.arange(), which yields an ndarray
object of integers. The following is a simple example:

In [115]: ai = np.arange(10)  

In [116]: ai  
Out[116]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [117]: ai.dtype  
Out[117]: dtype('int64')

In [118]: af = np.arange(0.5, 9.5, 0.5)  

In [119]: af  
Out[119]: array([0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ,
           6.5,
                 7. , 7.5, 8. , 8.5, 9. ])

In [120]: af.dtype  
Out[120]: dtype('float64')

In [121]: np.linspace(0, 10, 12)  
Out[121]: array([ 0.        ,  0.90909091,  1.81818182,  2.72727273,
           3.63636364,
          4.54545455,  5.45454545,  6.36363636,  7.27272727,  8.18181818,
                  9.09090909, 10.        ])

Instantiates an ndarray object via the np.arange() constructor.

Prints out the values.

The resulting dtype is np.int64.

Uses arange() again, but this time with start, end, and step parameters.

Prints out the values.

The resulting dtype is np.float64.

Uses the linspace() constructor, which evenly spaces the interval between 0 and
10 in 11 intervals, giving back an ndarray object with 12 values.
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1 Note that computers can only generate pseudorandom numbers as approximations for truly random numbers.

Random Numbers
In financial analytics, one often needs random1 numbers. NumPy provides many func‐
tions to sample from different distributions. Those regularly needed in quantitative
finance are the standard normal distribution and the Poisson distribution. The
respective functions are found in the sub-package numpy.random:

In [122]: np.random.standard_normal(10)   
Out[122]: array([-1.06384884, -0.22662171,  1.2615483 , -0.45626608,
           -1.23231112,
          -1.51309987,  1.23938439,  0.22411366, -0.84616512, -1.09923136])

In [123]: np.random.poisson(0.5, 10)  
Out[123]: array([0, 1, 1, 0, 0, 1, 0, 0, 2, 0])

In [124]: np.random.seed(1000)  

In [125]: data = np.random.standard_normal((5, 100))  

In [126]: data[:, :3]  
Out[126]: array([[-0.8044583 ,  0.32093155, -0.02548288],
                 [-0.39031935, -0.58069634,  1.94898697],
                 [-1.11573322, -1.34477121,  0.75334374],
                 [ 0.42400699, -1.56680276,  0.76499895],
                 [-1.74866738, -0.06913021,  1.52621653]])

In [127]: data.mean()  
Out[127]: -0.02714981205311327

In [128]: data.std()  
Out[128]: 1.0016799134894265

In [129]: data = data - data.mean()  

In [130]: data.mean()  
Out[130]: 3.552713678800501e-18

In [131]: data = data / data.std()  

In [132]: data.std()  
Out[132]: 1.0

Draws ten standard normally distributed random numbers.

Draws ten Poisson distributed random numbers.

Fixes the seed value of the random number generator for repeatability.
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Generates a two-dimensional ndarray object with random numbers.

Prints a small selection of the numbers.

The mean of all values is close to 0 but not exactly 0.

The standard deviation is close to 1 but not exactly 1.

The first moment is corrected in vectorized fashion.

The mean now is “almost equal” to 0.

The second moment is corrected in vectorized fashion.

The standard deviation is now exactly 1.

matplotlib
At this point, it makes sense to introduce plotting with matplotlib, the plotting
workhorse in the Python ecosystem. We use matplotlib with the settings of another
library throughout, namely seaborn. This results in a more modern plotting style.
The following code generates Figure A-1:

In [133]: import matplotlib.pyplot as plt  

In [134]: plt.style.use('seaborn')  

In [135]: import matplotlib as mpl  

In [136]: mpl.rcParams['savefig.dpi'] = 300  
          mpl.rcParams['font.family'] = 'serif'  
          %matplotlib inline

In [137]: data = np.random.standard_normal((5, 100))  

In [138]: plt.figure(figsize=(10, 6))  
          plt.plot(data.cumsum())  
Out[138]: [<matplotlib.lines.Line2D at 0x7faceaaeed30>]

Imports the main plotting library.

Sets new plot style defaults.

Imports the top level module.

Sets the resolution to 300 DPI (for saving) and the font to serif.
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Generates an ndarray object with random numbers.

Instantiates a new figure object.

First calculates the cumulative sum over all elements of the ndarray object and
then plots the result.

Figure A-1. Line plot with matplotlib

Multiple line plots in a single figure object are also easy to generate (see Figure A-2):

In [139]: plt.figure(figsize=(10, 6));  
          plt.plot(data.T.cumsum(axis=0), label='line')  
          plt.legend(loc=0);  
          plt.xlabel('data point')  
          plt.ylabel('value');  
          plt.title('random series');  

Instantiates a new figure objects and defines the size.

Plots five lines by calculating the cumulative sum along the first axis and defines
a label.

Puts a legend in the optimal position (loc=0).

Adds a label to the x-axis.
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Adds a label to the y-axis.

Adds a title to the figure.

Figure A-2. Plot with multiple lines

Other important plotting types are histograms and bar charts. A histogram for all 500
values of the data object is shown as Figure A-3. In the code, the .flatten() method
is used to generate a one-dimensional array from the two-dimensional one:

In [140]: plt.figure(figsize=(10, 6))
          plt.hist(data.flatten(), bins=30);  

Plots the histogram with 30 bins (data groups).

Finally, consider the bar chart presented in Figure A-4, generated by the following
code:

In [141]: plt.figure(figsize=(10, 6))
          plt.bar(np.arange(1, 12) - 0.25,
                  data[0, :11], width=0.5);  

Plots a bar chart based on a small sub-set of the original data set.
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Figure A-3. Histogram of random data

Figure A-4. Bar chart of random data

To conclude the introduction to matplotlib, consider the ordinary least squares
(OLS) regression of the sample data displayed in Figure A-5. NumPy provides with the
two functions polyfit and polyval convenience functions to implement OLS based
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on simple monomials, x, x2, x3, . . . , xn. For illustration purposes, consider linear,
cubic, and ninth degree OLS regression (see Figure A-5):

In [142]: x = np.arange(len(data.cumsum()))  

In [143]: y = 0.2 * data.cumsum() ** 2 

In [144]: rg1 = np.polyfit(x, y, 1)  

In [145]: rg3 = np.polyfit(x, y, 3)  

In [146]: rg9 = np.polyfit(x, y, 9)  

In [147]: plt.figure(figsize=(10, 6))  
          plt.plot(x, y, 'r', label='data')  
          plt.plot(x, np.polyval(rg1, x), 'b--', label='linear')  
          plt.plot(x, np.polyval(rg3, x), 'b-.', label='cubic')  
          plt.plot(x, np.polyval(rg9, x), 'b:', label='9th degree')  
          plt.legend(loc=0);  

Creates an ndarray object for the x values.

Defines the y values as the cumulative sum of the data object.

Linear regression.

Cubic regression.

Ninth degree regression.

The new figure object.

The base data.

The regression results visualized.

Places a legend.
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Figure A-5. Linear, cubic, and 9th degree regression

pandas
pandas is a package with which one can manage and operate on time series data and
other tabular data structures efficiently. It allows implementation of even sophistica‐
ted data analytics tasks on pretty large data sets in-memory. While the focus lies on
in-memory operations, there are also multiple options for out-of-memory (on-disk)
operations. Although pandas provides a number of different data structures, embod‐
ied by powerful classes, the most commonly used structure is the DataFrame class,
which resembles a typical table of a relational (SQL) database and is used to manage,
for instance, financial time series data. This is what we focus on in this section.

DataFrame Class
In its most basic form, a DataFrame object is characterized by an index, column
names, and tabular data. To make this more specific, consider the following sample
data set:

In [148]: import pandas as pd  

In [149]: np.random.seed(1000)  

In [150]: raw = np.random.standard_normal((10, 3)).cumsum(axis=0)  

In [151]: index = pd.date_range('2022-1-1', periods=len(raw), freq='M')  
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In [152]: columns = ['no1', 'no2', 'no3']  

In [153]: df = pd.DataFrame(raw, index=index, columns=columns)  

In [154]: df  
Out[154]:                  no1       no2       no3
          2022-01-31 -0.804458  0.320932 -0.025483
          2022-02-28 -0.160134  0.020135  0.363992
          2022-03-31 -0.267572 -0.459848  0.959027
          2022-04-30 -0.732239  0.207433  0.152912
          2022-05-31 -1.928309 -0.198527 -0.029466
          2022-06-30 -1.825116 -0.336949  0.676227
          2022-07-31 -0.553321 -1.323696  0.341391
          2022-08-31 -0.652803 -0.916504  1.260779
          2022-09-30 -0.340685  0.616657  0.710605
          2022-10-31 -0.723832 -0.206284  2.310688

Imports the pandas package.

Fixes the seed value of the random number generator of NumPy.

Creates an ndarray object with random numbers.

Defines a DatetimeIndex object with some dates.

Defines a list object containing the column names (labels).

Instantiates a DataFrame object.

Shows the str (HTML) representation of the new object.

DataFrame objects have built in a multitude of basic, advanced, and convenience
methods, a few of which are illustrated in the Python code that follows:

In [155]: df.head()  
Out[155]:                  no1       no2       no3
          2022-01-31 -0.804458  0.320932 -0.025483
          2022-02-28 -0.160134  0.020135  0.363992
          2022-03-31 -0.267572 -0.459848  0.959027
          2022-04-30 -0.732239  0.207433  0.152912
          2022-05-31 -1.928309 -0.198527 -0.029466

In [156]: df.tail()  
Out[156]:                  no1       no2       no3
          2022-06-30 -1.825116 -0.336949  0.676227
          2022-07-31 -0.553321 -1.323696  0.341391
          2022-08-31 -0.652803 -0.916504  1.260779
          2022-09-30 -0.340685  0.616657  0.710605
          2022-10-31 -0.723832 -0.206284  2.310688
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In [157]: df.index  
Out[157]: DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31',
           '2022-04-30',
          '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
                         '2022-09-30', '2022-10-31'],
                        dtype='datetime64[ns]', freq='M')

In [158]: df.columns  
Out[158]: Index(['no1', 'no2', 'no3'], dtype='object')

In [159]: df.info()  
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 10 entries, 2022-01-31 to 2022-10-31
          Freq: M
          Data columns (total 3 columns):
           #   Column  Non-Null Count  Dtype
          ---  ------  --------------  -----
           0   no1     10 non-null     float64
           1   no2     10 non-null     float64
           2   no3     10 non-null     float64
          dtypes: float64(3)
          memory usage: 320.0 bytes

In [160]: df.describe()  
Out[160]:              no1        no2        no3
          count  10.000000  10.000000  10.000000
          mean   -0.798847  -0.227665   0.672067
          std     0.607430   0.578071   0.712430
          min    -1.928309  -1.323696  -0.029466
          25%    -0.786404  -0.429123   0.200031
          50%    -0.688317  -0.202406   0.520109
          75%    -0.393844   0.160609   0.896922
          max    -0.160134   0.616657   2.310688

Shows the first five data rows.

Shows the last five data rows.

Prints the index attribute of the object.

Prints the column attribute of the object.

Shows some meta data about the object.

Provides selected summary statistics about the data.

334 | Appendix: Python, NumPy, matplotlib, pandas



While NumPy provides a specialized data structure for multi-
dimensional arrays (with numerical data in general), pandas takes
specialization one step further to tabular (two-dimensional) data
with the DataFrame class. In particular, pandas is strong in han‐
dling financial time series data, as subsequent examples illustrate.

Numerical Operations
Numerical operations are in general as easy with DataFrame objects as with NumPy
ndarray objects. They are also quite close in terms of syntax:

In [161]: print(df * 2)  
                           no1       no2       no3
          2022-01-31 -1.608917  0.641863 -0.050966
          2022-02-28 -0.320269  0.040270  0.727983
          2022-03-31 -0.535144 -0.919696  1.918054
          2022-04-30 -1.464479  0.414866  0.305823
          2022-05-31 -3.856618 -0.397054 -0.058932
          2022-06-30 -3.650232 -0.673898  1.352453
          2022-07-31 -1.106642 -2.647393  0.682782
          2022-08-31 -1.305605 -1.833009  2.521557
          2022-09-30 -0.681369  1.233314  1.421210
          2022-10-31 -1.447664 -0.412568  4.621376

In [162]: df.std()  
Out[162]: no1    0.607430
          no2    0.578071
          no3    0.712430
          dtype: float64

In [163]: df.mean()  
Out[163]: no1   -0.798847
          no2   -0.227665
          no3    0.672067
          dtype: float64

In [164]: df.mean(axis=1)  
Out[164]: 2022-01-31   -0.169670
          2022-02-28    0.074664
          2022-03-31    0.077202
          2022-04-30   -0.123965
          2022-05-31   -0.718767
          2022-06-30   -0.495280
          2022-07-31   -0.511875
          2022-08-31   -0.102843
          2022-09-30    0.328859
          2022-10-31    0.460191
          Freq: M, dtype: float64

In [165]: np.mean(df)  
Out[165]: no1   -0.798847
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          no2   -0.227665
          no3    0.672067
          dtype: float64

Scalar (vectorized) multiplication of all elements.

Calculates the column-wise standard deviation…

…and mean value. With DataFrame objects, column-wise operations are the
default.

Calculates the mean value per index value (that is, row-wise).

Applies a function of NumPy to the DataFrame object.

Data Selection
Pieces of data can be looked up via different mechanisms:

In [166]: df['no2']  
Out[166]: 2022-01-31    0.320932
          2022-02-28    0.020135
          2022-03-31   -0.459848
          2022-04-30    0.207433
          2022-05-31   -0.198527
          2022-06-30   -0.336949
          2022-07-31   -1.323696
          2022-08-31   -0.916504
          2022-09-30    0.616657
          2022-10-31   -0.206284
          Freq: M, Name: no2, dtype: float64

In [167]: df.iloc[0]  
Out[167]: no1   -0.804458
          no2    0.320932
          no3   -0.025483
          Name: 2022-01-31 00:00:00, dtype: float64

In [168]: df.iloc[2:4]  
Out[168]:                  no1       no2       no3
          2022-03-31 -0.267572 -0.459848  0.959027
          2022-04-30 -0.732239  0.207433  0.152912

In [169]: df.iloc[2:4, 1]  
Out[169]: 2022-03-31   -0.459848
          2022-04-30    0.207433
          Freq: M, Name: no2, dtype: float64

In [170]: df.no3.iloc[3:7]  
Out[170]: 2022-04-30    0.152912
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          2022-05-31   -0.029466
          2022-06-30    0.676227
          2022-07-31    0.341391
          Freq: M, Name: no3, dtype: float64

In [171]: df.loc['2022-3-31']  
Out[171]: no1   -0.267572
          no2   -0.459848
          no3    0.959027
          Name: 2022-03-31 00:00:00, dtype: float64

In [172]: df.loc['2022-5-31', 'no3']  
Out[172]: -0.02946577492329111

In [173]: df['no1'] + 3 * df['no3']  
Out[173]: 2022-01-31   -0.880907
          2022-02-28    0.931841
          2022-03-31    2.609510
          2022-04-30   -0.273505
          2022-05-31   -2.016706
          2022-06-30    0.203564
          2022-07-31    0.470852
          2022-08-31    3.129533
          2022-09-30    1.791130
          2022-10-31    6.208233
          Freq: M, dtype: float64

Selects a column by name.

Selects a row by index position.

Selects two rows by index position.

Selects two row values from one column by index positions.

Uses the dot lookup syntax to select a column.

Selects a row by index value.

Selects a single data point by index value and column name.

Implements a vectorized arithmetic operation.

Boolean Operations
Data selection based on Boolean operations is also a strength of pandas:

In [174]: df['no3'] > 0.5  
Out[174]: 2022-01-31    False
          2022-02-28    False

Python, NumPy, matplotlib, pandas | 337



          2022-03-31     True
          2022-04-30    False
          2022-05-31    False
          2022-06-30     True
          2022-07-31    False
          2022-08-31     True
          2022-09-30     True
          2022-10-31     True
          Freq: M, Name: no3, dtype: bool

In [175]: df[df['no3'] > 0.5]  
Out[175]:                  no1       no2       no3
          2022-03-31 -0.267572 -0.459848  0.959027
          2022-06-30 -1.825116 -0.336949  0.676227
          2022-08-31 -0.652803 -0.916504  1.260779
          2022-09-30 -0.340685  0.616657  0.710605
          2022-10-31 -0.723832 -0.206284  2.310688

In [176]: df[(df.no3 > 0.5) & (df.no2 > -0.25)]  
Out[176]:                  no1       no2       no3
          2022-09-30 -0.340685  0.616657  0.710605
          2022-10-31 -0.723832 -0.206284  2.310688

In [177]: df[df.index > '2022-5-15']  
Out[177]:                  no1       no2       no3
          2022-05-31 -1.928309 -0.198527 -0.029466
          2022-06-30 -1.825116 -0.336949  0.676227
          2022-07-31 -0.553321 -1.323696  0.341391
          2022-08-31 -0.652803 -0.916504  1.260779
          2022-09-30 -0.340685  0.616657  0.710605
          2022-10-31 -0.723832 -0.206284  2.310688

In [178]: df.query('no2 > 0.1')  
Out[178]:                  no1       no2       no3
          2022-01-31 -0.804458  0.320932 -0.025483
          2022-04-30 -0.732239  0.207433  0.152912
          2022-09-30 -0.340685  0.616657  0.710605

In [179]: a = -0.5  

In [180]: df.query('no1 > @a')  
Out[180]:                  no1       no2       no3
          2022-02-28 -0.160134  0.020135  0.363992
          2022-03-31 -0.267572 -0.459848  0.959027
          2022-09-30 -0.340685  0.616657  0.710605

Which values in column no3 are greater than 0.5?

Select all such rows for which the condition is True.
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Combines two conditions with the & (bitwise and) operator; | is the bitwise or
operator.

Selects all rows with index values greater (later) than '2020-5-15' (here, based
on str object sorting).

Uses the .query() method to select rows given conditions as str objects.

Plotting with pandas
pandas is well integrated with the matplotlib plotting package, which makes it con‐
venient to plot data stored in DataFrame objects. In general, a single method call does
the trick already (see Figure A-6):

In [181]: df.plot(figsize=(10, 6));  

Plots the data as a line plot (column-wise) and fixes the figure size.

Figure A-6. Line plot with pandas

pandas takes care of the proper formatting of the index values, dates in this case. This
only works for a DatetimeIndex properly. If the date-time information is available as
str objects only, the DatetimeIndex() constructor can be used to transform the date-
time information easily:
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In [182]: index = ['2022-01-31', '2022-02-28', '2022-03-31', '2022-04-30',
                   '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
                   '2022-09-30', '2022-10-31']  

In [183]: pd.DatetimeIndex(df.index)  
Out[183]: DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31',
           '2022-04-30',
          '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
                         '2022-09-30', '2022-10-31'],
                        dtype='datetime64[ns]', freq='M')

Date-time index data as a list object of str objects.

Generates a DatetimeIndex object out of the list object.

Histograms are also generated this way. In both cases, pandas takes care of the han‐
dling of the single columns and automatically generates single lines (with respective
legend entries, see Figure A-6) and generates respective sub-plots with three different
histograms (as in Figure A-7):

In [184]: df.hist(figsize=(10, 6));  

Generates a histogram for each column.

Figure A-7. Histograms with pandas
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Input-Output Operations
Yet another strength of pandas is the exporting and importing of data to and from
diverse data storage formats (see also Chapter 3). Consider the case of comma separa‐
ted value (CSV) files:

In [185]: df.to_csv('data.csv')  

In [186]: with open('data.csv') as f:
              for line in f.readlines():
                  print(line, end='')  
          ,no1,no2,no3
          2022-01-31,-0.8044583035248052,0.3209315470898572,
          ,-0.025482880472072204
          2022-02-28,-0.16013447509799061,0.020134874302836725,0.363991673815235
          2022-03-31,-0.26757177678888727,-0.4598482010579319,0.9590271758917923
          2022-04-30,-0.7322393029842283,0.2074331059300848,0.15291156544935125
          2022-05-31,-1.9283091368170622,-0.19852705542997268,
          ,-0.02946577492329111
          2022-06-30,-1.8251162427820806,-0.33694904401573555,0.6762266000356951
          2022-07-31,-0.5533209663746153,-1.3236963728130973,0.34139114682415433
          2022-08-31,-0.6528026643843922,-0.9165042724715742,1.2607786860286034
          2022-09-30,-0.34068465431802875,0.6166567928863607,0.7106048210003031
          2022-10-31,-0.7238320652023266,-0.20628417055270565,2.310688189060956

In [187]: from_csv = pd.read_csv('data.csv',  
                                index_col=0,  
                                parse_dates=True)  

In [188]: from_csv.head() #  
Out[188]:                  no1       no2       no3
          2022-01-31 -0.804458  0.320932 -0.025483
          2022-02-28 -0.160134  0.020135  0.363992
          2022-03-31 -0.267572 -0.459848  0.959027
          2022-04-30 -0.732239  0.207433  0.152912
          2022-05-31 -1.928309 -0.198527 -0.029466

Writes the data to disk as a CSV file.

Opens that file and prints the contents line by line.

Reads the data stored in the CSV file into a new DataFrame object.

Defines the first column to be the index column.

Date-time information in the index column shall be transformed to Timestamp
objects.

Prints the first five rows of the new DataFrame object.
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However, in general, you would store DataFrame objects on disk in more efficient
binary formats like HDF5. pandas in this case wraps the functionality of the PyTables
package. The constructor function to be used is HDFStore:

In [189]: h5 = pd.HDFStore('data.h5', 'w')  

In [190]: h5['df'] = df  

In [191]: h5  
Out[191]: <class 'pandas.io.pytables.HDFStore'>
          File path: data.h5

In [192]: from_h5 = h5['df']  

In [193]: h5.close()  

In [194]: from_h5.tail()  
Out[194]:                  no1       no2       no3
          2022-06-30 -1.825116 -0.336949  0.676227
          2022-07-31 -0.553321 -1.323696  0.341391
          2022-08-31 -0.652803 -0.916504  1.260779
          2022-09-30 -0.340685  0.616657  0.710605
          2022-10-31 -0.723832 -0.206284  2.310688

In [195]: !rm data.csv data.h5 

Opens an HDFStore object.

Writes the DataFrame object (the data) to the HDFStore.

Shows the structure/contents of the database file.

Reads the data into a new DataFrame object.

Closes the HDFStore object.

Shows the final five rows of the new DataFrame object.

Removes the CSV and HDF5 files.
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Case Study
When it comes to financial data, there are useful data importing functions available
in the pandas package (see also Chapter 3). The following code reads historical daily
data for the S&P 500 index and the VIX volatility index from a CSV file stored on a
remote server using the pd.read_csv() function:

In [196]: raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv',
                           index_col=0, parse_dates=True).dropna()  

In [197]: spx = pd.DataFrame(raw['.SPX'])  

In [198]: spx.info()  
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
          Data columns (total 1 columns):
           #   Column  Non-Null Count  Dtype
          ---  ------  --------------  -----
           0   .SPX    2516 non-null   float64
          dtypes: float64(1)
          memory usage: 39.3 KB

In [199]: vix = pd.DataFrame(raw['.VIX'])  

In [200]: vix.info()  
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
          Data columns (total 1 columns):
           #   Column  Non-Null Count  Dtype
          ---  ------  --------------  -----
           0   .VIX    2516 non-null   float64
          dtypes: float64(1)
          memory usage: 39.3 KB

Imports the pandas package.

Reads historical data for the S&P 500 stock index from a CSV file (data from
Refinitiv Eikon Data API).

Shows the meta information for the resulting DataFrame object.

Reads historical data for the VIX volatility index.

Shows the meta information for the resulting DataFrame object.

Let us combine the respective Close columns into a single DataFrame object. Multiple
ways are possible to accomplish this goal:
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In [201]: spxvix = pd.DataFrame(spx).join(vix)  

In [202]: spxvix.info()
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
          Data columns (total 2 columns):
           #   Column  Non-Null Count  Dtype
          ---  ------  --------------  -----
           0   .SPX    2516 non-null   float64
           1   .VIX    2516 non-null   float64
          dtypes: float64(2)
          memory usage: 139.0 KB

In [203]: spxvix = pd.merge(spx, vix,
                            left_index=True,  # merge on left index
                            right_index=True,  # merge on right index
                           )  

In [204]: spxvix.info()
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
          Data columns (total 2 columns):
           #   Column  Non-Null Count  Dtype
          ---  ------  --------------  -----
           0   .SPX    2516 non-null   float64
           1   .VIX    2516 non-null   float64
          dtypes: float64(2)
          memory usage: 139.0 KB

In [205]: spxvix = pd.DataFrame({'SPX': spx['.SPX'],
                                 'VIX': vix['.VIX']},
                                 index=spx.index)  

In [206]: spxvix.info()
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
          Data columns (total 2 columns):
           #   Column  Non-Null Count  Dtype
          ---  ------  --------------  -----
           0   SPX     2516 non-null   float64
           1   VIX     2516 non-null   float64
          dtypes: float64(2)
          memory usage: 139.0 KB

Uses the join method to combine the relevant data sub-sets.

Uses the merge function for the combination.

Uses the DataFrame constructor in combination with a dict object as input.
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Having available the combined data in a single object makes visual analysis straight‐
forward (see Figure A-8):

In [207]: spxvix.plot(figsize=(10, 6), subplots=True);  

Plots the two data sub-sets into separate sub-plots.

Figure A-8. Historical end-of-day closing values for the S&P 500 and VIX

pandas also allows vectorized operations on whole DataFrame objects. The following
code calculates the log returns over the two columns of the spxvix object simultane‐
ously in vectorized fashion. The shift method shifts the data set by the number of
index values as provided (in this particular case, by one trading day):

In [208]: rets = np.log(spxvix / spxvix.shift(1))  

In [209]: rets = rets.dropna()  

In [210]: rets.head()  
Out[210]:                  SPX       VIX
          Date
          2010-01-05  0.003111 -0.035038
          2010-01-06  0.000545 -0.009868
          2010-01-07  0.003993 -0.005233
          2010-01-08  0.002878 -0.050024
          2010-01-11  0.001745 -0.032514
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Calculates the log returns for the two time series in fully vectorized fashion.

Drops all rows containing NaN values (“not a number”).

Shows the first five rows of the new DataFrame object.

Consider the plot in Figure A-9 showing the VIX log returns against the SPX log
returns in a scatter plot with a linear regression. It illustrates a strong negative corre‐
lation between the two indexes:

In [211]: rg = np.polyfit(rets['SPX'], rets['VIX'], 1)  

In [212]: rets.plot(kind='scatter', x='SPX', y='VIX',
                    style='.', figsize=(10, 6))  
          plt.plot(rets['SPX'], np.polyval(rg, rets['SPX']), 'r-');  

Implements a linear regression on the two log return data sets.

Creates a scatter plot of the log returns.

Plots the linear regression line in the existing scatter plot.

Figure A-9. Scatter plot of S&P 500 and VIX log returns with linear regression line
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Having financial time series data stored in a pandas DataFrame object makes the cal‐
culation of typical statistics straightforward:

In [213]: ret = rets.mean() * 252  

In [214]: ret
Out[214]: SPX    0.104995
          VIX   -0.037526
          dtype: float64

In [215]: vol = rets.std() * math.sqrt(252)  

In [216]: vol
Out[216]: SPX    0.147902
          VIX    1.229086
          dtype: float64

In [217]: (ret - 0.01) / vol  
Out[217]: SPX    0.642279
          VIX   -0.038667
          dtype: float64

Calculates the annualized mean return for the two indexes.

Calculates the annualized standard deviation.

Calculates the Sharpe ratio for a risk-free short rate of 1%.

The maximum drawdown, which we only calculate for the S&P 500 index, is a bit
more involved. For its calculation, we use the .cummax() method, which records the
running, historical maximum of the time series up to a certain date. Consider the fol‐
lowing code that generates the plot in Figure A-10:

In [218]: plt.figure(figsize=(10, 6))  
          spxvix['SPX'].plot(label='S&P 500')  
          spxvix['SPX'].cummax().plot(label='running maximum')  
          plt.legend(loc=0);  

Instantiates a new figure object.

Plots the historical closing values for the S&P 500 index.

Calculates and plots the running maximum over time.

Places a legend on the canvas.
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Figure A-10. Historical closing prices of S&P 500 index and running maximum

The absolute maximum drawdown is the largest difference between the running maxi‐
mum and the current index level. In our particular case, it is about 580 index points. 
The relative maximum drawdown might sometimes be a bit more meaningful. It is
here a value of about 20%:

In [219]: adrawdown = spxvix['SPX'].cummax() - spxvix['SPX']  

In [220]: adrawdown.max()
Out[220]: 579.6500000000001

In [221]: rdrawdown = ((spxvix['SPX'].cummax() - spxvix['SPX']) /
                        spxvix['SPX'].cummax())  

In [222]: rdrawdown.max()
Out[222]: 0.1977821376780688

Derives the absolute maximum drawdown.

Derives the relative maximum drawdown.

The longest drawdown period is calculated as follows. The following code selects all
those data points where the drawdown is zero (where a new maximum is reached). It
then calculates the difference between two consecutive index values (trading dates)
for which the drawdown is zero and takes the maximum value. Given the data set we
are analyzing, the longest drawdown period is 417 days:
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In [223]: temp = adrawdown[adrawdown == 0]  

In [224]: periods_spx = (temp.index[1:].to_pydatetime() -
                         temp.index[:-1].to_pydatetime())  

In [225]: periods_spx[50:60]  
Out[225]: array([datetime.timedelta(days=67), datetime.timedelta(days=1),
                 datetime.timedelta(days=1), datetime.timedelta(days=1),
                 datetime.timedelta(days=301), datetime.timedelta(days=3),
                 datetime.timedelta(days=1), datetime.timedelta(days=2),
                 datetime.timedelta(days=12), datetime.timedelta(days=2)],
                dtype=object)

In [226]: max(periods_spx)  
Out[226]: datetime.timedelta(days=417)

Picks out all index positions where the drawdown is 0.

Calculates the timedelta values between all such index positions.

Shows a select few of these values.

Picks out the maximum value for the result.

Conclusions
This appendix provides a concise, introductory overview of selected topics relevant to
use Python, NumPy, matplotlib, and pandas in the context of algorithmic trading. It
cannot, of course, replace a thorough training and practical experience, but it helps
those who want to get started quickly and who are willing to dive deeper into the
details where necessary.

Further Resources
A valuable, free source for the topics covered in this appendix are the Scipy Lecture
Notes that are available in multiple electronic formats. Also freely available is the
online book From Python to NumPy by Nicolas Rougier.

Books cited in this appendix:

Hilpisch, Yves. 2018. Python for Finance. 2nd ed. Sebastopol: O’Reilly.
McKinney, Wes. 2017. Python for Data Analysis. 2nd ed. Sebastopol: O’Reilly.
VanderPlas, Jake. 2017. Python Data Science Handbook. Sebastopol: O’Reilly.
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