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To my parents



Paul Wilmott has been called ‘the smartest of the quants, he
may be the only smart quant’ (Portfolio magazine/Nassim
Nicholas Taleb), ‘cult derivatives lecturer’ (Financial Times),
‘expert on quantitative easing,” (Guardian)*, ‘the finance
industry’s Mozart’ (Sunday Business) and ‘financial
mathematics guru’ (BBC).

*This was, of course, a typical Grauniad mistake.
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Preface to the Second Edition X1

The previous edition of this book was aimed to some
extent at those people wanting to get their first job in
quantitative finance and perhaps needed something to refresh
their memories just as they were going into an interview. In
part it was meant to be orthogonal to those interview-prep
books that focus almost exclusively on the math. Math is
important, but I think it’s the easy bit of this business. It’s
where the math breaks down that I think is crucial, and so
there’s a lot of that in both the previous edition and this one.

In one respect I couldn’t have been more wrong when I

said that the last book was for newbies. Recent events have
shown that some of those most in need of a refresher in the
fundamentals are not necessarily the newbies, but sometimes
also the ‘experienced’ quants, the ‘respected’ academics

and the ‘genius’ Nobel laureates. I think this book has an
additional purpose now if you are going for a job. Yes, take
this book with you, but use it to interrogate the interviewer.
If he can’t answer your questions then don’t accept a job
from him, his bank might not be around for much longer!

This second edition is not an ‘updating.” Nothing in the previ-
ous edition is out of date ... And that’s not a statement that
many quant finance authors can make! One of the themes in
my research and writing is that much of quantitative finance
is too theoretical, it’s far too mathematical, and somewhere
along the way common sense has got left behind. In 2000 I
wrote that there needed to be a change in modelling methods
if there was not to be a “mathematician-led market melt-
down.” There wasn’t, so there was. In 2006 I narrowed this
down to credit instruments and credit models. Sadly, money
making got in the way of good modelling, and you no doubt
know what ensued. But now more and more people are start-
ing to appreciate the importance of getting the level of math-
ematics right, and this has to be a good thing for the indus-
try. We ran a survey on wilmott.com, our famous ‘“Name and
Shame in Our New Blame Game!” in which we asked members
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to tell us which are the worst finance models. The results
are published towards the end of this book so you’ll see
that common sense and robustness of modelling are on their
way back.

To the thankees in the first edition I would like to add
Emanuel Derman for allowing me to republish the “Financial
Modelers’ Manifesto” that we wrote together at the start

of 2009.

Some more about the author

Paul Wilmott is still learning the guitar, after 36 years try-
ing. He now knows six chords. His only hobby at which he
has been successful is reading, always fiction. But even so,
he has been stuck at half way through James Joyce’s Ulysses
for a decade, and has never got beyond the first 10 pages of
anything by Salman Rushdie. Paul divides his time between
his home in London and airport lounges around the world,
where he can often be found nursing a dry martini.
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Edition

This book grew out of a suggestion by wilmott.com

Member ‘bayes’ for a Forum (as in ‘internet discussion
group’) dedicated to gathering together answers to the most
common quanty questions. We responded positively, as is
our wont, and the Wilmott Quantitative Finance FAQs Project
was born. This Forum may be found at www.wilmott.com/fag.
(There anyone may read the FAQ answers, but to post a
message you must be a member. Fortunately, this is entirely
free!) The FAQs project is one of the many collaborations
between Members of wilmott.com.

As well as being an ongoing online project, the FAQs have
inspired the book you are holding. It includes FAQs and their
answers and also sections on common models and formulee,
many different ways to derive the Black-Scholes model, the
history of quantitative finance, a selection of brainteasers
and a couple of sections for those who like lists (there are
lists of the most popular quant books and search items on
wilmott.com). Right at the end is an excerpt from Paul and
Dominic’s Guide to Getting a Quant Job, this will be of interest
to those of you seeking their first quant role.

FAQs in QF is not a shortcut to an in-depth knowledge of
quantitative finance. There is no such shortcut. However, it
will give you tips and tricks of the trade, and insight, to help
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you to do your job or to get you through initial job inter-
views. It will serve as an aide memoire to fundamental con-
cepts (including why theory and practice diverge) and some
of the basic Black-Scholes formulae and greeks. The subject
is forever evolving, and although the foundations are fairly
robust and static there are always going to be new prod-
ucts and models. So, if there are questions you would like
to see answered in future editions please drop me an email
at paul@wilmott.com.

I would like to thank all Members of the forum for their par-
ticipation and in particular the following, more prolific, Mem-
bers for their contributions to the online FAQs and Brain-
teasers: Aaron, adas, Alan, bayes, Cuchulainn, exotiq, HA, kr,
mj, mrbadguy, N, Omar, reza, WaaghBakri and zerdna. Thanks
also to DCFC for his advice concerning the book.

I am grateful to Caitlin Cornish, Emily Pears, Graham Russel,
Jenny McCall, Sarah Stevens, Steve Smith, Tom Clark and Viv
Wickham at John Wiley & Sons Ltd for their continued sup-
port, and to Dave Thompson for his entertaining cartoons.

[ am also especially indebted to James Fahy for making the
Forum happen and run smoothly. Mahalo and aloha to my
ever-encouraging wife, Andrea.

About the author

Paul Wilmott is an author, researcher, consultant and trainer
in quantitative finance. He owns wilmott.com, is the Editor in
Chief of the bimonthly quant magazine Wilmott and is the
Course Director for the Certificate in Quantitative Finance
(cqf.com). He is the author of the student text Paul Wilmott
Introduces Quantitative Finance, which covers classical quant
finance from the ground up, and Paul Wilmott on Quantitative
Finance, the three-volume research-level epic. Both are also
published by John Wiley & Sons, Ltd.
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Frequently Asked Questions in Quantitative Finance

There follows a speedy, roller-coaster of a ride through
the official history of quantitative finance, passing
through both the highs and lows. Where possible I give
dates, name names and refer to the original sources.!

71827 Brown The Scottish botanist, Robert Brown, gave his
name to the random motion of small particles in a liquid.
This idea of the random walk has permeated many scien-
tific fields and is commonly used as the model mechanism
behind a variety of unpredictable continuous-time processes.
The lognormal random walk based on Brownian motion is the
classical paradigm for the stock market. See Brown (1827).

7900 Bachelier Louis Bachelier was the first to quantify the
concept of Brownian motion. He developed a mathemati-

cal theory for random walks, a theory rediscovered later by
Einstein. He proposed a model for equity prices, a simple
normal distribution, and built on it a model for pricing the
almost unheard of options. His model contained many of the
seeds for later work, but lay ‘dormant’ for many, many years.
It is told that his thesis was not a great success and, natu-
rally, Bachelier’s work was not appreciated in his lifetime.
See Bachelier (1995).

1905 Einstein Albert Einstein proposed a scientific foundation
for Brownian motion in 1905. He did some other clever stuff
as well. See Stachel (1990).

71977 Richardson Most option models result in diffusion-type
equations. And often these have to be solved numerically.
The two main ways of doing this are Monte Carlo and finite
differences (a sophisticated version of the binomial model).

A version of this chapter was first published in New Directions in
Mathematical Finance, edited by Paul Wilmott and Henrik Rasmussen,
John Wiley & Sons Ltd, 2002.
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The very first use of the finite-difference method, in which a
differential equation is discretized into a difference equation,
was by Lewis Fry Richardson in 1911, and used to solve the
diffusion equation associated with weather forecasting. See
Richardson (1922). Richardson later worked on the mathemat-
ics for the causes of war. During his work on the relationship
between the probability of war and the length of common
borders between countries he stumbled upon the concept of
fractals, observing that the length of borders depended on
the length of the ‘ruler.’ The fractal nature of turbulence was
summed up in his poem “Big whorls have little whorls that
feed on their velocity, and little whorls have smaller whorls
and so on to viscosity.”

1923 Wiener Norbert Wiener developed a rigorous theory for
Brownian motion, the mathematics of which was to become
a necessary modelling device for quantitative finance decades
later. The starting point for almost all financial models, the
first equation written down in most technical papers, includes
the Wiener process as the representation for randomness in
asset prices. See Wiener (1923).

19505 Samuelson  The 1970 Nobel Laureate in Economics, Paul
Samuelson, was responsible for setting the tone for subse-
quent generations of economists. Samuelson ‘mathematized’
both macro and micro economics. He rediscovered Bache-
lier’s thesis and laid the foundations for later option pricing
theories. His approach to derivative pricing was via expec-
tations, real as opposed to the much later risk-neutral ones.
See Samuelson (1955).

7957 1ts Where would we be without stochastic or Itd calcu-
lus? (Some people even think finance is only about Itd calcu-
lus.) Kiyosi Itd showed the relationship between a stochastic
differential equation for some independent variable and the
stochastic differential equation for a function of that variable.
One of the starting points for classical derivatives theory is
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the lognormal stochastic differential equation for the evolu-
tion of an asset. [td’s lemma tells us the stochastic differential
equation for the value of an option on that asset.

In mathematical terms, if we have a Wiener process X with
increments dX that are normally distributed with mean zero
and variance dt, then the increment of a function F(X) is
given by

dF 1d*F

dF = —dX + - —

ax + 2 dx2
This is a very loose definition of It6’s lemma but will suffice.
See Ito (1951).

dt

1952 Markowitz Harry Markowitz was the first to propose a
modern quantitative methodology for portfolio selection. This
required knowledge of assets’ volatilities and the correlation
between assets. The idea was extremely elegant, resulting in
novel ideas such as ‘efficiency’ and ‘market portfolios.” In
this Modern Portfolio Theory, Markowitz showed that com-
binations of assets could have better properties than any
individual assets. What did ‘better’ mean? Markowitz quan-
tified a portfolio’s possible future performance in terms of its
expected return and its standard deviation. The latter was to
be interpreted as its risk. He showed how to optimize a port-
folio to give the maximum expected return for a given level of
risk. Such a portfolio was said to be ‘efficient.” The work later
won Markowitz a Nobel Prize for Economics but is problem-
atic to use in practice because of the difficulty in measuring
the parameters ‘volatility,” and, especially, ‘correlation,” and
their instability.

1963 Sharpe, Lintner and Mossin William Sharpe of Stanford, John
Lintner of Harvard and Norwegian economist Jan Mossin
independently developed a simple model for pricing risky
assets. This Capital Asset Pricing Model (CAPM) also reduced
the number of parameters needed for portfolio selection
from those needed by Markowitz’'s Modern Portfolio Theory,
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making asset allocation theory more practical. See Sharpe,
Alexander and Bailey (1999), Lintner (1965) and Mossin
(1966).

71966 Fama Eugene Fama concluded that stock prices were
unpredictable and coined the phrase ‘market efficiency.’
Although there are various forms of market efficiency, in
a nutshell the idea is that stock market prices reflect all
publicly available information, and that no person can gain
an edge over another by fair means. See Fama (1966).

19605 Sobol’, Faure, Hammersley, Haselgrove and Halton ... Many
people were associated with the definition and development
of quasi random number theory or low-discrepancy sequence
theory. The subject concerns the distribution of points in an
arbitrary number of dimensions in order to cover the space
as efficiently as possible, with as few points as possible (see
Figure 1.1). The methodology is used in the evaluation of
multiple integrals among other things. These ideas would find
a use in finance almost three decades later. See Sobol’ (1967),
Faure (1969), Hammersley & Handscomb (1964), Haselgrove
(1961) and Halton (1960).

1968 Thorp Ed Thorp’s first claim to fame was that he
figured out how to win at casino Blackjack, ideas that were
put into practice by Thorp himself and written about in

his best-selling Beat the Dealer, the “book that made Las
Vegas change its rules.” His second claim to fame is that he
invented and built, with Claude Shannon, the information
theorist, the world’s first wearable computer. His third claim
to fame is that he used the ‘correct’ formule for pricing
options, formulae that were rediscovered and originally
published several years later by the next three people on our
list. Thorp used these formulee to make a fortune for himself
and his clients in the first ever quantitative finance-based
hedge fund. He proposed dynamic hedging as a way of
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Figure 1.1: They may not look like it, but these dots are distributed deter-
ministically so as to have very useful properties.

removing more risk than static hedging. See Thorp (2002) for
the story behind the discovery of the Black—Scholes formulee.

1973 Black, Scholes and Merton Fischer Black, Myron Scholes
and Robert Merton derived the Black-Scholes equation for
options in the early seventies, publishing it in two separate
papers in 1973 (Black & Scholes, 1973, and Merton, 1973).
The date corresponded almost exactly with the trading of call
options on the Chicago Board Options Exchange. Scholes and
Merton won the Nobel Prize for Economics in 1997. Black had
died in 1995.
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The Black-Scholes model is based on geometric Brownian
motion for the asset price .S

dS = uSdt+ oS dX.

The Black-Scholes partial differential equation for the value
V of an option is then

1%

1 5 00%V sV

1974 Merton, again In 1974 Robert Merton (Merton, 1974)
introduced the idea of modelling the value of a company
as a call option on its assets, with the company’s debt
being related to the strike price and the maturity of the
debt being the option’s expiration. Thus was born the
structural approach to modelling risk of default, for if the
option expired out of the money (i.e. assets had less value
than the debt at maturity) then the firm would have to go
bankrupt.

Credit risk became big, huge, in the 1990s. Theory and prac-
tice progressed at rapid speed during this period, urged on
by some significant credit-led events, such as the Long Term
Capital Management mess. One of the principals of LTCM
was Merton who had worked on credit risk two decades
earlier. Now the subject really took off, not just along the
lines proposed by Merton but also using the Poisson process
as the model for the random arrival of an event, such as
bankruptcy or default. For a list of key research in this area
see Schoénbucher (2003).

1977 Boyle Phelim Boyle related the pricing of options to the
simulation of random asset paths (Figure 1.2). He showed
how to find the fair value of an option by generating lots of
possible future paths for an asset and then looking at the
average that the option had paid off. The future important
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Figure 1.2: Simulations like this can be easily used to value derivatives.

role of Monte Carlo simulations in finance was assured. See
Boyle (1977).

1977 Vasicek So far quantitative finance hadn’t had much to
say about pricing interest rate products. Some people were
using equity option formulee for pricing interest rate options,
but a consistent framework for interest rates had not been
developed. This was addressed by Vasicek. He started by
modelling a short-term interest rate as a random walk and
concluded that interest rate derivatives could be valued using
equations similar to the Black-Scholes partial differential
equation.
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Oldrich Vasicek represented the short-term interest rate by a
stochastic differential equation of the form

dr = p(r,t) dt + o (r,t) dX.

The bond pricing equation is a parabolic partial differential
equation, similar to the Black-Scholes equation. See Vasicek

(1977).

1979 Cox, Ross and Rubinstein Boyle had shown how to price
options via simulations, an important and intuitively reason-
able idea, but it was these three, John Cox, Stephen Ross and
Mark Rubinstein, who gave option-pricing capability to the
masses.

The Black-Scholes equation was derived using stochastic
calculus and resulted in a partial differential equation. This
was not likely to endear it to the thousands of students inter-
ested in a career in finance. At that time these were typically
MBA students, not the mathematicians and physicists that
are nowadays found on Wall Street. How could MBAs cope?
An MBA was a necessary requirement for a prestigious career
in finance, but an ability to count beans is not the same as
an ability to understand mathematics. Fortunately Cox, Ross
and Rubinstein were able to distil the fundamental concepts
of option pricing into a simple algorithm requiring only addi-
tion, subtraction, multiplication and (twice) division. Even
MBAs could now join in the fun. See Cox, Ross & Rubinstein
(1979) and Figure 1.3.

1979-81 Harrison, Kreps and Pliska Until these three came onto
the scene quantitative finance was the domain of either
economists or applied mathematicians. Mike Harrison and
David Kreps, in 1979, showed the relationship between option
prices and advanced probability theory, originally in discrete
time. Harrison and Stan Pliska in 1981 used the same ideas
but in continuous time. From that moment until the mid
1990s applied mathematicians hardly got a look in. Theorem,
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Figure 1.3: The branching structure of the binomial model.

proof everywhere you looked. See Harrison & Kreps (1979)
and Harrison & Pliska (1981).

7986 Ho and Lee One of the problems with the Vasicek frame-
work for interest-rate derivative products was that it didn’t
give very good prices for bonds, the simplest of fixed-income
products. If the model couldn’t even get bond prices right,
how could it hope to correctly value bond options? Thomas
Ho and Sang-Bin Lee found a way around this, introducing the
idea of yield-curve fitting or calibration. See Ho & Lee (1986).

1992 Heath, Jarrow and Morton Although Ho and Lee showed
how to match theoretical and market prices for simple bonds,
the methodology was rather cumbersome and not easily gen-
eralized. David Heath, Robert Jarrow and Andrew Morton
(HIM) took a different approach. Instead of modelling just

a short rate and deducing the whole yield curve, they mod-
elled the random evolution of the whole yield curve. The
initial yield curve, and hence the value of simple interest
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rate instruments, was an input to the model. The model can-
not easily be expressed in differential equation terms and so
relies on either Monte Carlo simulation or tree building. The
work was well known via a working paper, but was finally
published, and therefore made respectable in Heath, Jarrow
& Morton (1992).

19905 Cheyette, Barrett, Moore and Wilmott When there are many
underlyings, all following lognormal random walks, you can
write down the value of any European non-path-dependent
option as a multiple integral, one dimension for each asset.
Valuing such options then becomes equivalent to calculating
an integral. The usual methods for quadrature are very inef-
ficient in high dimensions, but simulations can prove quite
effective. Monte Carlo evaluation of integrals is based on
the idea that an integral is just an average multiplied by a
‘volume.” And since one way of estimating an average is by
picking numbers at random we can value a multiple inte-
gral by picking integrand values at random and summing.
With N function evaluations, taking a time of O(V) you can
expect an accuracy of O(1/N'/?), independent of the num-
ber of dimensions. As mentioned above, breakthroughs in
the 1960s on low-discrepancy sequences showed how clever,
non-random, distributions could be used for an accuracy of
O(1/N), to leading order. (There is a weak dependence on the
dimension.) In the early 1990s several groups of people were
simultaneously working on valuation of multi-asset options.
Their work was less of a breakthrough than a transfer of
technology.

They used ideas from the field of number theory and applied
them to finance. Nowadays, these low-discrepancy sequences
are commonly used for option valuation whenever random
numbers are needed. A few years after these researchers
made their work public, a completely unrelated group at
Columbia University successfully patented the work. See
Oren Cheyette (1990) and John Barrett, Gerald Moore & Paul
Wilmott (1992).



]2

Frequently Asked Questions in Quantitative Finance

1994 Dupire, Rubinstein, Derman and Kani Another discovery was
made independently and simultaneously by three groups of
researchers in the subject of option pricing with determin-
istic volatility. One of the perceived problems with classical
option pricing is that the assumption of constant volatility is
inconsistent with market prices of exchange-traded instru-
ments. A model is needed that can correctly price vanilla
contracts, and then price exotic contracts consistently. The
new methodology, which quickly became standard market
practice, was to find the volatility as a function of underly-
ing and time that when put into the Black-Scholes equation
and solved, usually numerically, gave resulting option prices
which matched market prices. This is what is known as an
inverse problem: use the ‘answer’ to find the coefficients in
the governing equation. On the plus side, this is not too diffi-
cult to do in theory. On the minus side, the practice is much
harder, the sought volatility function depending very sensi-
tively on the initial data. From a scientific point of view there
is much to be said against the methodology. The resulting
volatility structure never matches actual volatility, and even
if exotics are priced consistently it is not clear how to best
hedge exotics with vanillas in order to minimize any model
error. Such concerns seem to carry little weight, since the
method is so ubiquitous. As so often happens in finance,
once a technique becomes popular it is hard to go against
the majority. There is job safety in numbers. See Emanuel
Derman & Iraj Kani (1994), Bruno Dupire (1994) and Mark
Rubinstein (1994).

1996 Avellaneda and Paris Marco Avellaneda and Antonio
Paras were, together with Arnon Levy and Terry Lyons, the
creators of the uncertain volatility model for option pricing.
It was a great breakthrough for the rigorous, scientific side
of finance theory, but the best was yet to come. This model,
and many that succeeded it, was nonlinear. Nonlinearity in
an option pricing model means that the value of a portfolio
of contracts is not necessarily the same as the sum of the
values of its constituent parts. An option will have a different
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value depending on what else is in the portfolio with it,
and an exotic will have a different value depending on what
it is statically hedged with. Avellaneda and Paras defined

an exotic option’s value as the highest possible marginal
value for that contract when hedged with any or all available
exchange-traded contracts. The result was that the method
of option pricing also came with its own technique for static
hedging with other options. Prior to their work the only
result of an option pricing model was its value and its delta,
only dynamic hedging was theoretically necessary. With this
new concept, theory became a major step closer to practice.
Another result of this technique was that the theoretical
price of an exchange-traded option exactly matched its
market price. The convoluted calibration of volatility surface
models was redundant. See Avellaneda & Paras (1996).

1997 Brace, Gatarek and Musiela Although the HJM interest rate
model had addressed the main problem with stochastic
spot rate models, and others of that ilk, it still had two
major drawbacks. It required the existence of a spot rate
and it assumed a continuous distribution of forward rates.
Alan Brace, Dariusz Gatarek & Marek Musiela (1997) got
around both of those difficulties by introducing a model
which only relied on a discrete set of rates — ones that
actually are traded. As with the HIM model the initial data
are the forward rates so that bond prices are calibrated
automatically. One specifies a number of random factors,
their volatilities and correlations between them, and the
requirement of no arbitrage then determines the risk-neutral
drifts. Although B, G and M have their names associated with
this idea many others worked on it simultaneously.

2000 Li As already mentioned, the 1990s saw an explosion
in the number of credit instruments available, and also in
the growth of derivatives with multiple underlyings. It’s not
a great step to imagine contracts depending on the default of
many underlyings. Examples of these are the once ubiquitous
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Collateralized Debt Obligations (CDOs). But to price such
complicated instruments requires a model for the interaction
of many companies during the process of default. A proba-
bilistic approach based on copulas was proposed by David
Li (2000). The copula approach allows one to join together
(hence the word ‘copula”) default models for individual com-
panies in isolation to make a model for the probabilities of
their joint default. The idea was adopted universally as a
practical solution to a complicated problem. However with
the recent financial crisis the concept has come in for a lot of
criticism.

2002 Hagan, Kumar, Lesniewski and Woodward There has always
been a need for models that are both fast and match traded
prices well. The interest-rate model of Pat Hagan, Deep
Kumar, Andrew Lesniewski and Diana Woodward (2002),
which has come to be called the SABR (stochastic, «, 8, p)
model, is a model for a forward rate and its volatility, both
of which are stochastic. This model is made tractable by
exploiting an asymptotic approximation to the governing
equation that is highly accurate in practice. The asymptotic
analysis simplifies a problem that would otherwise have to be
solved numerically. Although asymptotic analysis has been
used in financial problems before, for example in modelling
transaction costs, this was the first time it really entered
mainstream quantitative finance.

August 2007 quantitative finance in disrepute In early August
2007 several hedge funds using quantitative strategies
experienced losses on such a scale as to bring the field of
quantitative finance into disrepute. From then, and through
2008, trading of complex derivative products in obscene
amounts using simplistic mathematical models almost
brought the global financial market to its knees: Lend to the
less-than-totally-creditworthy for home purchase, repackage
these mortgages for selling on from one bank to another, at
each stage adding complexity, combine with overoptimistic
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ratings given to these products by the ratings agencies, with
a dash of moral hazard thrown in, base it all on a crunchy
base of a morally corrupt compensation scheme, and you
have the recipe for the biggest financial collapse in decades.
Out of this many people became very, very rich, while in
many cases the man in the street lost his life savings. And
financial modelling is what made this seem all so simple
and safe.
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And Now a Brief Unofficial History!

Espen Gaarder Haug, as well as being an option trader,
author, lecturer, researcher, gardener, soldier, and collector
of option-pricing formulee, is also a historian of derivatives
theory. In his excellent book Derivatives: Model on Models
(John Wiley and Sons Ltd, 2007) he gives the ‘alternative’
history of derivatives, a history often ignored for various
reasons. He also keeps us updated on his findings via his
blog http://www.wilmott.com/blogs/collector. Here are a few of the
many interesting facts Espen has unearthed.

7688 de la Vega Possibly a reference to put—call parity. But
then possibly not. De la Vega’s language is not particularly
precise.

79005 Higgins and Nelson They appear to have some grasp of
delta hedging and put-call parity.

71908 Bronzin Publishes a book that includes option formulee,
and seems to be using risk neutrality. But the work is rapidly
forgotten!
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1915 Mitchell, 1926 Oliver and 1927 Mills They all described the
high-peak/fat-tails in empirical price data.

1956 Kruizenga and 1961 Reinach They definitely describe
put—call parity. Reinach explains ‘conversion,” which is what
we know as put-call parity, he also understands that it does
not necessarily apply for American options.

7962 Mandelbrot In this year Benoit Mandelbrot wrote his
famous paper on the distribution of cotton price returns,
observing their fat tails.

1970 Arnold Bernhard % Co They describe market-neutral delta
hedging of convertible bonds and warrants. And show how to
numerically find an approximation to the delta.

For more details about the underground history of derivatives
see Espen’s excellent book (2007).
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What are the Different Types of
Mathematics Found in Quantitative
Finance?

Short answer

The fields of mathematics most used in quantitative finance
are those of probability theory and differential equations.
And, of course, numerical methods are usually needed for
producing numbers.

Example

The classical model for option pricing can be written as a
partial differential equation. But the same model also has a
probabilistic interpretation in terms of expectations.

Long answer

The real-world subject of quantitative finance uses tools
from many branches of mathematics. And financial modelling
can be approached in a variety of different ways. For some
strange reason the advocates of different branches of
mathematics get quite emotional when discussing the merits
and demerits of their methodologies and those of their
‘opponents.’ Is this a territorial thing? What are the pros and
cons of martingales and differential equations? What is all
this fuss, and will it end in tears before bedtime?

Here’s a list of the various approaches to modelling and a
selection of useful tools. The distinction between a ‘modelling
approach’ and a ‘tool’ will start to become clear.

Modelling approaches:

e Probabilistic
e Deterministic
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e Discrete: difference equations
e Continuous: differential equations

Useful tools:

e Simulations

e Discretization methods
e Approximations

e Asymptotic analysis

e Series solutions

e Green’s functions

While these are not exactly arbitrary lists, they are certainly
open to some criticism or addition. Let’s first take a look at
the modelling approaches.

Probabilistic One of the main assumptions about the finan-
cial markets, at least as far as quantitative finance goes, is
that asset prices are random. We tend to think of describ-
ing financial variables as following some random path, with
parameters describing the growth of the asset and its degree
of randomness. We effectively model the asset path via a
specified rate of growth, on average, and its deviation from
that average. This approach to modelling has had the great-
est impact over the last 30 years, leading to the explosive
growth of the derivatives markets.

Deterministic The idea behind this approach is that our model
will tell us everything about the future. Given enough data,
and a big enough brain, we can write down some equations
or an algorithm for predicting the future. Interestingly, the
subjects of dynamical systems and chaos fall into this cat-
egory. And, as you know, chaotic systems show such sen-
sitivity to initial conditions that predictability is in practice
impossible. This is the ‘butterfly effect,” that a butterfly flap-
ping its wings in Brazil will ‘cause’ rainfall over Manchester.
(And what doesn’t!) A topic popular in the early 1990s, this
has not lived up to its promises in the financial world.
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Discrete/Continuous Whether probabilistic or deterministic,

the eventual model you write down can be discrete or
continuous. Discrete means that asset prices and/or time can
only be incremented in finite chunks, whether a dollar or a
cent, a year or a day. Continuous means that no such lower
increment exists. The mathematics of continuous processes
is often easier than that of discrete ones. But then when it
comes to number crunching you have in any case to turn a
continuous model into a discrete one.

In discrete models we end up with difference equations. An
example of this is the binomial model for option pricing. Time
progresses in finite amounts, the time step. In continuous
models we end up with differential equations. The equivalent
of the binomial model in discrete space is the Black—Scholes
model, which has continuous asset price and continuous
time. Whether binomial or Black-Scholes, both of these mod-
els come from the probabilistic assumptions about the finan-
cial world.

Now let’s take a look at some of the tools available.

Simulations If the financial world is random then we can
experiment with the future by running simulations. For
example, an asset price may be represented by its average
growth and its risk, so let’s simulate what could happen in
the future to this random asset. If we were to take such an
approach we would want to run many, many simulations.
There’d be little point in running just the one; we’d like to
see a range of possible future scenarios.

Simulations can also be used for non-probabilistic problems.
Just because of the similarities between mathematical
equations, a model derived in a deterministic framework may
have a probabilistic interpretation.
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Discretization methods The complement to simulation methods,
and there are many types of these. The best known are the
finite-difference methods which are discretizations of continu-
ous models such as Black-Scholes.

Depending on the problem you are solving, and unless it’s
very simple, you will probably go down the simulation or
finite-difference routes for your number crunching.

Approximations In modelling we aim to come up with a solution
representing something meaningful and useful, such as an
option price. Unless the model is really simple, we may not
be able to solve it easily. This is where approximations come
in. A complicated model may have approximate solutions.
And these approximate solutions might be good enough for
our purposes.

Asymptotic analysis This is an incredibly useful technique,
used in most branches of applicable mathematics, but until
recently almost unknown in finance. The idea is simple:
find approximate solutions to a complicated problem by
exploiting parameters or variables that are either large

or small, or special in some way. For example, there are
simple approximations for vanilla option values close to
expiry.

Series solutions If your equation is linear (and they almost all
are in quantitative finance) then you might be able to solve a
particular problem by adding together the solutions of other
problems. Series solutions are when you decompose the solu-
tion into a (potentially infinite) sum of simple functions, such
as sines and cosines, or a power series. This is the case, for
example, with barrier options having two barriers, one below
the current asset price and the other above.
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Green’s functions This is a very special technique that only
works in certain situations. The idea is that solutions to some
difficult problems can be built up from solutions to special
cases of a similar problem.
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What is Arbitrage?

Short answer

Arbitrage is making a sure profit in excess of the risk-free
rate of return. In the language of quantitative finance we can
say that an arbitrage opportunity is a portfolio of zero value
today which is of positive value in the future with positive
probability, and of negative value in the future with zero
probability.

The assumption that there are no arbitrage opportunities in
the market is fundamental to classical finance theory. This
idea is popularly known as ‘there’s no such thing as a free
lunch.’

Example

An at-the-money European call option with a strike of $100
and an expiration of six months is worth $8. A European put
with the same strike and expiration is worth $6. There are
no dividends on the stock and a six-month zero-coupon bond
with a principal of $100 is worth $97.

Buy the call and a bond, sell the put and the stock, which will
bring in $ —8 — 97+ 6 + 100 = $1. At expiration this portfolio
will be worthless regardless of the final price of the stock.
You will make a profit of $1 with no risk. This is arbitrage. It
is an example of the violation of put-call parity.

Long answer

The principle of no arbitrage is one of the foundations of
classical finance theory. In derivatives theory it is assumed
during the derivation of the binomial model option-pricing
algorithm and in the Black-Scholes model. In these cases it
is rather more complicated than the simple example given
above. In the above example we set up a portfolio that gave
us an immediate profit, and that portfolio did not have to
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be touched until expiration. This is a case of a static arbi-
trage. Another special feature of the above example is that
it does not rely on any assumptions about how the stock
price behaves. So the example is that of model-independent
arbitrage. However, when deriving the famous option-pricing
models we rely on a dynamic strategy, called delta hedg-
ing, in which a portfolio consisting of an option and stock
is constantly adjusted by purchase or sale of stock in a very
specific manner.

Now we can see that there are several types of arbitrage that
we can think of. Here is a list and description of the most
important.

e A static arbitrage is an arbitrage that does not require
rebalancing of positions

e A dynamic arbitrage is an arbitrage that requires trading
instruments in the future, generally contingent on market
states

e A statistical arbitrage is not an arbitrage but simply a likely
profit in excess of the risk-free return (perhaps even
suitably adjusted for risk taken) as predicted by past
statistics

e Model-independent arbitrage is an arbitrage which does not
depend on any mathematical model of financial instruments
to work. For example, an exploitable violation of put-call
parity or a violation of the relationship between spot and
forward prices, or between bonds and swaps

e Model-dependent arbitrage does require a model. For
example, options mispriced because of incorrect volatility
estimate. To profit from the arbitrage you need to delta
hedge, and that requires a model

Not all apparent arbitrage opportunities can be exploited in

practice. If you see such an opportunity in quoted prices on
a screen in front of you then you are likely to find that when
you try to take advantage of them they just evaporate. Here

are several reasons for this.
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Quoted prices are wrong or not tradeable

Option and stock prices were not quoted synchronously
There is a bid-offer spread you have not accounted for
Your model is wrong, or there is a risk factor you have not
accounted for
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What is Put—Call Parity?

Short answer

Put-call parity is a relationship between the prices of a
European-style call option and a European-style put option,
as long as they have the same strike and expiration:

Call price — Put price = Stock price
— Strike price (present valued from expiration).

Example Stock price is $98, a European call option struck at
$100 with an expiration of nine months has a value of $9.07.
The nine-month, continuously compounded, interest rate is
4.5%. What is the value of the put option with the same strike
and expiration?

By rearranging the above expression we find
Put price = 9.07 — 98 4 100 e %945x0.75 — 7 75,

The put must therefore be worth $7.75.

Long answer
This relationship,

C-P=S-Ke I,

between European calls (value C) and puts (value P) with
the same strike (K) and expiration (7") valued at time ¢ is a
result of a simple arbitrage argument. If you buy a call option,
at the same time write a put, and sell stock short, what will
your payoff be at expiration? If the stock is above the strike
at expiration you will have S — K from the call, 0 from the
put and —S from the stock. A total of —K. If the stock is
below the strike at expiration you will have 0 from the call,
—S again from the stock, and —(K —.5) from the short put.
Again a total of —K. So, whatever the stock price is at expi-
ration this portfolio will always be worth —K, a guaranteed
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amount. Since this amount is guaranteed we can discount it
back to the present. We must have

C—P-S=-Ke D
This is put—call parity.

Another way of interpreting put—call parity is in terms of
implied volatility. Calls and puts with the same strike and
expiration must have the same implied volatility.

The beauty of put-call parity is that it is a model-independent
relationship. To value a call on its own we need a model for
the stock price, in particular its volatility. The same is true
for valuing a put. But to value a portfolio consisting of a long
call and a short put (or vice versa), no model is needed. Such
model-independent relationships are few and far between in
finance. The relationship between forward and spot prices

is one, and the relationships between bonds and swaps is
another.

In practice options don’t have a single price, they have two
prices, a bid and an offer (or ask). This means that when
looking for violations of put-call parity you must use bid
(offer) if you are going short (long) the options. This makes
the calculations a little bit messier. If you think in terms of
implied volatility then it’s much easier to spot violations of
put—call parity. You must look for non-overlapping implied
volatility ranges. For example, suppose that the bid/offer on a
call is 22%/25% in implied volatility terms and that on a put
(same strike and expiration) is 21%/23%. There is an over-
lap between these two ranges (22-23%) and so no arbitrage
opportunity. However, if the put prices were 19%/21% then
there would be a violation of put—call parity and hence an
easy arbitrage opportunity. Don’t expect to find many (or,
indeed, any) of such simple free-money opportunities in prac-
tice though. If you do find such an arbitrage then it usually
disappears by the time you put the trade on. See Kamara
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and Miller (1995) for details of the statistics of no-arbitrage
violations.

When there are dividends on the underlying stock during the
life of the options, we must adjust the equation to allow for
this. We now find that

C — P =S — Present value of all dividends — E e 7T,

This, of course, assumes that we know what the dividends
will be.

If interest rates are not constant then just discount the strike
back to the present using the value of a zero-coupon bond
with maturity the same as the expiration of the option. Divi-
dends should similarly be discounted.

When the options are American, put—call parity does

not hold, because the short position could be exercised
against you, leaving you with some exposure to the stock
price. Therefore you don’t know what you will be worth at
expiration. In the absence of dividends it is theoretically
never optimal to exercise an American call before expiration,
whereas an American put should be exercised if the stock
falls low enough.
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What is the Central Limit Theorem
and What are its Implications for
Finance?

Short answer

The distribution of the average of a lot of random numbers
will be normal (also known as Gaussian) even when the indi-
vidual numbers are not normally distributed.

Example

Play a dice game where you win $10 if you throw a six, but
lose $1 if you throw anything else. The distribution of your
profit after one coin toss is clearly not normal, it’s bimodal
and skewed, but if you play the game thousands of times
your total profit will be approximately normal.

Long answer

Let X1,X5,...,X, be a sequence of random variables which
are independent and identically distributed (i.i.d.), with finite
mean, m and standard deviation s. The sum

n
S, = in
i=1

has mean mn and standard deviation s./n. The Central Limit
Theorem says that as n gets larger the distribution of S,
tends to the normal distribution. More accurately, if we work
with the scaled quantity

— S, —mn
Sp=—"

sa/n
then the distribution of S, converges to the normal distribu-
tion with zero mean and unit standard deviation as n tends

to infinity. The cumulative distribution for .S,, approaches that
for the standardized normal distribution.
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Figure 2.1: Probabilities in a simple coin-tossing experiment: one toss.

Figure 2.1 shows the distribution for the above coin-tossing
experiment.

Now here’s what your total profit will be like after one
thousand tosses (Figure 2.2). Your expected profit after one

toss is . 5 5
G X 10+E x (=1 = 3 ~ (.833.

Your variance is therefore

1 5\* 5 5\* 605

- 10 — - - “1—-=) =—

6X<0 6>+6X< 6) 54
so a standard deviation of \/605/54 ~ 1.097. After one thou-
sand tosses your expected profit is

1,000 x g ~ 833.3
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Figure 2.2: Probabilities in a simple coin-tossing experiment: one thou-
sand tosses.

and your standard deviation is

605
1,000 x o © 34.7

See how the standard deviation has grown much less than
the expectation. That’s because of the square-root rule.

In finance we often assume that equity returns are normally
distributed. We could argue that this ought to be the case
by saying that returns over any finite period, one day, say,
are made up of many, many trades over smaller time peri-
ods, with the result that the returns over the finite timescale
are normal thanks to the Central Limit Theorem. The same
argument could be applied to the daily changes in exchange
rate rates, or interest rates, or risk of default, etc. We find
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ourselves using the normal distribution quite naturally for
many financial processes.

As often with mathematical ‘laws’ there is the ‘legal’ small
print, in this case the conditions under which the Central
Limit Theorem applies. These are as follows.

e The random numbers must all be drawn from the same
distribution

e The draws must all be independent

e The distribution must have finite mean and standard
deviation.

Of course, financial data may not satisfy all of these, or
indeed, any. In particular, it turns out that if you try to

fit equity returns data with non-normal distributions you
often find that the best distribution is one that has infinite
variance. Not only does it complicate the nice mathematics
of normal distributions and the Central Limit Theorem, it also
results in infinite volatility. This is appealing to those who
want to produce the best models of financial reality but does
rather spoil many decades of financial theory and practice
based on volatility as a measure of risk, for example.

However, you can get around these three restrictions to some
extent and still get the Central Limit Theorem, or something
very much like it. For example, you don’t need to have com-
pletely identical distributions. As long as none of the random
variables has too much more impact on the average than the
others then it still works. You are even allowed to have some
weak dependence between the variables.

A generalization that is important in finance applies to dis-
tributions with infinite variance. If the tails of the individual
distributions have a power-law decay, |x|~!=% with 0 < o < 2,
then the average will tend to a stable Lévy distribution.



Chapter 2: FAQs 3 7

If you add random numbers and get normal, what happens
when you multiply them? To answer this question we must
think in terms of logarithms of the random numbers.

Logarithms of random numbers are themselves random (let’s
stay with logarithms of strictly positive numbers). So if you
add up lots of logarithms of random numbers you will get a
normal distribution. But, of course, a sum of logarithms is
just the logarithm of a product, therefore the logarithm of the
product must be normal, and this is the definition of lognor-
mal: the product of positive random numbers converges to
lognormal.

This is important in finance because a stock price after a long
period can be thought of as its value on some starting day
multiplied by lots of random numbers, each representing a
random return. So whatever the distribution of returns is, the
logarithm of the stock price will be normally distributed. We
tend to assume that equity returns are normally distributed,
and equivalently, equities themselves are lognormally dis-
tributed.

References and Further Reading
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How is Risk Defined in Mathematical
Terms?

Short answer

In layman’s terms, risk is the possibility of harm or loss. In
finance it refers to the possibility of a monetary loss associ-
ated with investments.

Example

The most common measure of risk is simply standard devia-
tion of portfolio returns. The higher this is, the more random-
ness in a portfolio, and this is seen as a bad thing.

Long answer
Financial risk comes in many forms:

e Market risk: The possibility of loss due to movements in
the market, either as a whole or specific investments

e Credit risk: The possibility of loss due to default on a
financial obligation

e Model risk: The possibility of loss due to errors in
mathematical models, often models of derivatives. Since
these models contain parameters, such as volatility, we can
also speak of parameter risk, volatility risk, etc.

e Operational risk: The possibility of loss due to people,
procedures or systems. This includes human error and
fraud

e Legal risk: The possibility of loss due to legal action or the
meaning of legal contracts

Before looking at the mathematics of risk we should under-
stand the difference between risk, randomness and uncer-
tainty, all of which are important.

When measuring risk we often use probabilistic concepts.
But this requires having a distribution for the randomness



Chapter 2: FAQs 39

in investments, a probability density function, for example.
With enough data or a decent enough model we may have a
good idea about the distribution of returns. However, with-
out the data, or when embarking into unknown territory we
may be completely in the dark as to probabilities. This is
especially true when looking at scenarios which are incred-
ibly rare, or have never even happened before. For example,
we may have a good idea of the results of an alien invasion,
after all, many scenarios have been explored in the movies,
but what is the probability of this happening? When you do
not know the probabilities then you have what Knight (1921)
termed ‘uncertainty.’

We can categorize these issues, following Knight, as follows.

1. For ‘risk’ the probabilities that specified events will occur
in the future are measurable and known, i.e. there is
randomness but with a known probability distribution.
This can be further divided.

(@) a priori risk, such as the outcome of the roll of a fair
die

(b) estimable risk, where the probabilities can be
estimated through statistical analysis of the past, for
example, the probability of a one-day fall of 10% in the
S&P index

2. With ‘uncertainty’ the probabilities of future events cannot
be estimated or calculated.

In finance we tend to concentrate on risk with probabilities
we estimate, we then have all the tools of statistics and prob-
ability for quantifying various aspects of that risk. In some
financial models we do attempt to address the uncertain. For
example, the uncertain volatility work of Avellaneda et al.
(1995). Here volatility is uncertain, is allowed to lie within

a specified range, but the probability of volatility having any
value is not given. Instead of working with probabilities we
now work with worst-case scenarios. Uncertainty is there-
fore more associated with the idea of stress-testing portfolios.
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CrashMetrics is another example of worst-case scenarios and
uncertainty.

A starting point for a mathematical definition of risk is sim-
ply as standard deviation. This is sensible because of the
results of the Central Limit Theorem (CLT), that if you add
up a large number of investments what matters as far as the
statistical properties of the portfolio are just the expected
return and the standard deviation of individual investments,
and the resulting portfolio returns are normally distributed.
The normal distribution being symmetrical about the mean,
the potential downside can be measured in terms of the stan-
dard deviation.

However, this is only meaningful if the conditions for the CLT
are satisfied. For example, if we only have a small number of
investments, or if the investments are correlated, or if they
don’t have finite variance, then standard deviation may not
be relevant.

Another mathematical definition of risk is semivariance, in
which only downside deviations are used in the calculation.
This definition is used in the Sortino performance measure.

Artzner et al. (1997) proposed a set of properties that a mea-
sure of risk should satisfy for it to be sensible. Such risk
measures are called coherent.

References and Further Reading

Artzner, P, Delbaen, F, Eber, J-M & Heath, D 1997 Thinking coher-
ently. Risk magazine 10 (11) 68-72.

Avellaneda, M & Paras, A 1996 Managing the volatility risk of deriva-
tive securities: the Lagrangian volatility model. Applied Mathemati-
cal Finance 3 21-53



Chapter 2: FAQs 4']

Avellaneda, M, Levy, A & Paras, A 1995 Pricing and hedging deriva-
tive securities in markets with uncertain volatilities. Applied Math-
ematical Finance 2 73-88

Knight, FH 1921 Risk, Uncertainty, and Profit. Hart, Schaffner, and
Marx. Prize Essays, no. 31. Boston and New York: Houghton Mif-
flin

Wilmott, P 2006 Paul Wilmott on Quantitative Finance, second edition.
John Wiley & Sons Ltd.



4’2 Frequently Asked Questions in Quantitative Finance

What is Value at Risk and How 15 it
Used?

Short answer

Value at Risk, or VaR for short, is a measure of the amount
that could be lost from a position, portfolio, desk, bank, etc.
VaR is generally understood to mean the maximum loss an
investment could incur at a given confidence level over a
specified time horizon. There are other risk measures used
in practice but this is the simplest and most common.

Example

An equity derivatives hedge fund estimates that its Value at
Risk over one day at the 95% confidence level is $500,000.
This is interpreted as one day out of 20 the fund expects to
lose more than half a million dollars.

Long answer

VaR calculations often assume that returns are normally dis-
tributed over the time horizon of interest. Inputs for a VaR
calculation will include details of the portfolio composition,
the time horizon, and parameters governing the distribu-
tion of the underlyings. The latter set of parameters includes
average growth rate, standard deviations (volatilities) and
correlations. (If the time horizon is short you can ignore the
growth rate, as it will only have a small effect on the final
calculation.)

With the assumption of normality, VaR is calculated by a
simple formula if you have a simple portfolio, or by simula-
tions if you have a more complicated portfolio. The difference
between simple and complicated is essentially the difference
between portfolios without derivatives and those with. If your
portfolio only contains linear instruments then calculations
involving normal distributions, standard deviations, etc., can
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all be done analytically. This is also the case if the time hori-
zon is short so that derivatives can be approximated by a
position of delta in the underlying.

The simulations can be quite straightforward, albeit rather
time consuming. Simulate many realizations of all of the
underlyings up to the time horizon using traditional Monte
Carlo methods. For each realization calculate the portfolio’s
value. This will give you a distribution of portfolio values
at the time horizon. Now look at where the tail of the
distribution begins, the left-hand 5% tail if you want 95%
confidence, or the 1% tail if you are working to 99%, etc.

If you are working entirely with normal distributions then
going from one confidence level to another is just a matter
of looking at a table of numbers for the standardized nor-
mal distribution (see Table 2.1). As long as your time horizon
is sufficiently short for the growth to be unimportant you
can use the square-root rule to go from one time horizon

to another. (The VaR will scale with the square root of the
time horizon; this assumes that the portfolio return is also
normally distributed.)

Table 2.1: Degree of confidence and the
relationship with deviation from the mean.

Degree of Number of standard

confidence deviations from
the mean

99% 2.326342

98% 2.053748

97% 1.88079

96% 1.750686

95% 1.644853

90% 1.281551




4'4' Frequently Asked Questions in Quantitative Finance

An alternative to using a parameterized model for the under-
lyings is to simulate straight from historical data, bypassing
the normal distribution assumption altogether.

VaR is a very useful concept in practice for the following rea-
sons:

e VaR is easily calculated for individual instruments, entire
portfolios, or at any level right up to an entire bank or
fund

e You can adjust the time horizon depending on your trading
style. If you hedge every day you may want a one-day
horizon; if you buy and hold for many months, then a
longer horizon would be relevant

¢ [t can be broken down into components, so you can
examine different classes of risk, or you can look at the
marginal risk of adding new positions to your book

e It can be used to constrain positions of individual traders
or entire hedge funds

¢ [t is easily understood, by management, by investors, by
people who are perhaps not that technically sophisticated

Of course, there are also valid criticisms as well:

¢ It does not tell you what the loss will be beyond the VaR
value

e VaR is concerned with typical market conditions, not the
extreme events

e It uses historical data, ‘like driving a car by looking in the
rear-view mirror only’

e Within the time horizon positions could change
dramatically (due to normal trading or due to hedging or
expiration of derivatives).

A common criticism of traditional VaR has been that it does
not satisfy all of certain commonsense criteria. Artzner et al.
(1997) specify criteria that make a risk measure coherent.
And VaR as described above is not coherent.
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Prudence would suggest that other risk-measurement meth-
ods are used in conjunction with VaR including, but not lim-
ited to, stress testing under different real and hypothetical
scenarios, including the stressing of volatility especially for
portfolios containing derivatives.
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What is Extreme Value Theory?

Short answer

Extreme Value Theory (EVT) is the mathematics behind
extreme events. Some important results have analogies

with the Central Limit Theorem, but instead of being about
averages they are about extremes. Of course, whether one
should even be talking about probabilities when talking about
crashes is another matter. It’s probably safer to look at
worst-case scenarios.

Example

(Taken from McNeil, 1998.) Fit a Frechet distribution to the
28 annual maxima of the SP500 index returns from 1960 to
October I16th 1987, the business day before the '87 crash. In
this dataset the largest fall was ‘just’ 6.7%. Now calculate the
probability of various returns. For example, a 50-year return
level is the level which on average should only be exceeded
in one year every 50 years. The Frechet distribution gives the
result as 24%. One business day later the index falls 20.4%.

Long answer

Modern techniques for estimating tail risk use Extreme Value
Theory. The idea is to more accurately represent the outer
limits of returns distributions since this is where the most
important risk is. Throw normal distributions away, their tails
are far too thin to capture the frequent market crashes (and
rallies).

One important EVT result concerns the distribution of max-
ima and minima and is used in calculations such as in the
example above.

If X; are independent, identically distributed random variables
and

x = max(Xy, Xo,...,Xn)
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then the distribution of x converges to

£<1 +S@)l/‘él - (_ <1 . @)1/;&).

When & = 0 this is a Gumbel distribution, & < 0 a Weibull
and & > 0 a Frechet. Frechet is the one of interest in finance
because it is associated with fat tails.

The role of theorems about extremes is similar to that of the
Central Limit Theorem for sums/averages.

References and Further Reading
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What is CrashMetrics?

Short answer

CrashMetrics is a stress-testing methodology for evaluating
portfolio performance in the event of extreme movements in
financial markets. Like CAPM it relates moves in individual
stocks to the moves in one or more indices but only dur-
ing large moves. It is applicable to portfolios of equities and
equity derivatives.

Example

Your portfolio contains many individual stocks and many
derivatives of different types. It is perfectly constructed to
profit from your view on the market and its volatility. But
what if there is a dramatic fall in the market, perhaps 5%?
What will the effect be on your P&L? And if the fall is 10%,
20%...?

Long answer

CrashMetrics is a very simple risk-management tool for exam-
ining the effects of a large move in the market as a whole.

It is therefore of use for studying times when diversification
does not work.

If your portfolio consists of a single underlying equity and its
derivatives, then the change in its value during a crash, §I1,
can be written as

ST = F(8S),

where F(-) is the ‘formula’ for the portfolio, meaning
option-pricing formule for all of the derivatives and equity in
the portfolio, and 4S is the change in the underlying.

In CrashMetrics the risk in this portfolio is measured as the
worst case over some range of equity moves:

Worst-case loss = min  F(8S).
—885— <85<sSt
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This is the number that would be quoted as the possible
downside during a dramatic move in the market. This down-
side can be reduced by adding derivatives to the portfolio
in an optimal fashion. This is called Platinum Hedging. For
example, if you want to use some out-of-the-money puts to
make this worst case not so bad, then you could optimize by
choosing A so that the worst case of

F(8S) + AF*(8S) — |AIC

represents an acceptable level of downside risk. Here F*(.) is
the ‘formula’ for the change in value of the hedging contract,
C is the ‘cost’ associated with each hedging contract and A
is the quantity of the contract which is to be determined. In
practice there would be many such hedging contracts, not
necessarily just an out-of-the-money put, so you would sum
over all of them and then optimize.

CrashMetrics deals with any number of underlyings by
exploiting the high degree of correlation between equities
during extreme markets. We can relate the return on the ith
stock to the return on a representative index, x, during a
crash by

8S;

?i = KiX,
where «; is a constant crash coefficient. For example, if the
kappa for stock XYZ is 1.2 it means that when the index falls
by 10% XYZ will fall by 12%. The crash coefficient therefore
allows a portfolio with many underlyings to be interpreted
during a crash as a portfolio on a single underlying, the
index. We therefore consider the worst case of

S = F(8S1,...,85y) = F(k1xS1, . . ., knXxSy)

as our measure of downside risk. Note that this is really just
a function of the one variable x and so it is very easy to plot
the change in the portfolio against x, the retun on the index.
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Again Platinum Hedging can be applied when we have many
underlyings. We must consider the worst case of

M
8T1 = F(k1xS1, ..., kNXSN) + Z)»ka(leSl, o KNXSN)
k=1

M
= > Inkl G,
k=1

where F is the original portfolio and the Fis are the M avail-
able hedging contracts.

CrashMetrics is very robust because

¢ it does not use unstable parameters such as volatilities or
correlations

¢ it does not rely on probabilities, instead considers worst
cases.

CrashMetrics is a good risk tool because

e it is very simple and fast to implement
e it can be used to optimize portfolio insurance against
market crashes

CrashMetrics is used for

analysing derivatives portfolios under the threat of a crash
optimizing portfolio insurance

reporting risk

providing trading limits to avoid intolerable performance
during a crash.
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What is a Coherent Risk Measure and
What are its Properties?

Short answer

A risk measure is coherent if it satisfies certain simple,
mathematical properties. One of these properties, which
some popular measures do not possess is sub-additivity,
that adding together two risky portfolios cannot increase the
measure of risk.

Example

Artzner et al. (1997) give a simple example of traditional VaR
which violates this, and illustrates perfectly the problems of
measures that are not coherent. Portfolio X consists only of
a far out-of-the-money put with one day to expiry. Portfolio
Y consists only of a far out-of-the-money call with one day
to expiry. Let us suppose that each option has a probability
of 4% of ending up in the money. For each option individu-
ally, at the 95% confidence level the one-day traditional VaR
is effectively zero. Now put the two portfolios together and
there is a 92% chance of not losing anything, 100% less two
lots of 4%. So at the 95% confidence level there will be a sig-
nificant VaR. Putting the two portfolios together has in this
example increased the risk. ‘A merger does not create extra
risk’ (Artzner et al. 1997).

Long answer

A common criticism of traditional VaR has been that it does
not satisfy all of certain commonsense criteria. Artzner et al.
(1997) defined the following set of sensible criteria that a
measure of risk, p(X) where X is a set of outcomes, should
satisfy. These are as follows:

1. Sub-additivity: p(X +Y) < p(X) + p(Y). This just says that
if you add two portfolios together the total risk can’t get
any worse than adding the two risks separately. Indeed,
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there may be cancellation effects or economies of scale
that will make the risk better.

2. Monotonicity: If X <Y for each scenario then p(X) > p(Y).
If one portfolio has better values than another under all
scenarios then its risk will be better.

3. Positive homogeneity: For all A >0, p(AX) = 1p(X). Double
your portfolio then you double your risk.

4. Translation invariance: For all constant c,

p(X + ¢) = p(X) — c. Think of just adding cash to a
portfolio; this would come off your risk.

A risk measure that satisfies all of these is called coherent.
The traditional, simple VaR measure is not coherent since it
does not satisfy the sub-additivity condition. Sub-additivity is
an obvious requirement for a risk measure, otherwise there
would be no risk benefit to adding uncorrelated new trades
into a book. If you have two portfolios X and Y then this ben-
efit can be defined as

pX)+p(Y) — p(X +1).

Sub-additivity says that this can only be non-negative.

Lack of sub-additivity in a risk measure and that can be
exploited can lead to a form of regulatory arbitrage. All a
bank has to do is create subsidiary firms, in a reverse form
of the above example, to save regulatory capital.

With a coherent measure of risk, specifically because of its
sub-additivity, one can simply add together risks of individual
portfolios to get a conservative estimate of the total risk.

Coherent measures A popular measure that is coherent is
Expected Shortfall. This is calculated as the average of all
the P&Ls making up the tail percentile of interest. Suppose
we are working with the 5% percentile, rather than quoting
this number (this would be traditional VaR) instead calculate
the average of all the P&Ls in this 5% tail.
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Attribution Having calculated a coherent measure of risk, one
often wants to attribute this to smaller units. For example, a
desk has calculated its risk and wants to see how much each
trader is responsible for. Similarly, one may want to break
down the risk into contributions from each of the greeks in a
derivatives portfolio. How much risk is associated with direc-
tion of the market, and how much is associated with volatility
exposure, for example.

References and Further Reading
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What is Modern Portfolio Theory?

Short answer

The Modern Portfolio Theory (MPT) of Harry Markowitz
(1952) introduced the analysis of portfolios of investments
by considering the expected return and risk of individual
assets and, crucially, their interrelationship as measured
by correlation. Prior to this investors would examine
investments individually, build up portfolios of favoured
stocks, and not consider how they related to each other. In
MPT diversification plays an important role.

Example

Should you put all your money in a stock that has low risk
but also low expected return, or one with high expected
return but which is far riskier? Or perhaps divide your
money between the two. Modern Portfolio Theory addresses
this question and provides a framework for quantifying and
understanding risk and return.

Long answer

In MPT the return on individual assets are represented by
normal distributions with certain mean and standard devi-
ation over a specified period. So one asset might have an
annualized expected return of 5% and an annualized standard
deviation (volatility) of 15%. Another might have an expected
return of —2% and a volatility of 10%. Before Markowitz, one
would only have invested in the first stock, or perhaps sold
the second stock short. Markowitz showed how it might be
possible to better both of these simplistic portfolios by tak-
ing into account the correlation between the returns on these
stocks.

In the MPT world of N assets there are 2N + N(N —1)/2
parameters: expected return, one per stock; standard

deviation, one per stock; correlations, between any two
stocks (choose two from N without replacement, order
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unimportant). To Markowitz all investments and all portfolios
should be compared and contrasted via a plot of expected
return versus risk, as measured by standard deviation. If we
write ua to represent the expected return from investment
or portfolio A (and similarly for B, C, etc.) and op for its
standard deviation then investment/portfolio A is at least as
good as B if

na = pp and oa < op.

The mathematics of risk and return is very simple. Consider a
portfolio, I, of N assets, with W; being the fraction of wealth
invested in the ith asset. The expected return is then

N
nn = Z Wi
i=1

and the standard deviation of the return, the risk, is

N N
on= |y ) WiWpjoio
i=1 j=1

where p;; is the correlation between the ith and jth invest-
ments, with p; = 1.

Markowitz showed how to optimize a portfolio by finding the
W'’s giving the portfolio the greatest expected return for a
prescribed level of risk. The curve in the risk-return space
with the largest expected return for each level of risk is
called the efficient frontier.

According to the theory, no one should hold portfolios that
are not on the efficient frontier. Furthermore, if you introduce
a risk-free investment into the universe of assets, the efficient
frontier becomes the tangential line shown in Figure 2.3. This
line is called the Capital Market Line and the portfolio at the
point at which it is tangential is called the Market Portfolio.
Now, again according to the theory, no one ought to hold any
portfolio of assets other than the risk-free investment and the
Market Portfolio.
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Figure 2.3: Reward versus risk, a selection of risky assets and the effi-
cient frontier (bold green).

Harry Markowitz, together with Merton Miller and William
Sharpe, was awarded the Nobel Prize for Economic Science in
1990.
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What is the Capital Asset Pricing
Model?

Short answer

The Capital Asset Pricing Model (CAPM) relates the returns
on individual assets or entire portfolios to the return on the
market as a whole. It introduces the concepts of specific risk
and systematic risk. Specific risk is unique to an individual
asset, systematic risk is that associated with the market. In
CAPM investors are compensated for taking systematic risk
but not for taking specific risk. This is because specific risk
can be diversified away by holding many different assets.

Example

A stock has an expected return of 15% and a volatility of
20%. But how much of that risk and return are related to
the market as a whole? The less that can be attributed to
the behaviour of the market, the better will that stock be for
diversification purposes.

Long answer

CAPM simultaneously simplified Markowitz’s Modern Port-
folio Theory (MPT), made it more practical and introduced
the idea of specific and systematic risk. Whereas MPT has
arbitrary correlation between all investments, CAPM, in its
basic form, only links investments via the market as a whole.
CAPM is an example of an equilibrium model, as opposed to
a no-arbitrage model such as Black-Scholes.

The mathematics of CAPM is very simple. We relate the ran-
dom return on the ith investment, R;, to the random return
on the market as a whole (or some representative index), Ry
by

Ri = a; + BiRy + €.

The ¢; is random with zero mean and standard deviation e;,
and uncorrelated with the market return Ry and the other
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¢;. There are three parameters associated with each asset, «;,
Bi and e;. In this representation we can see that the return
on an asset can be decomposed into three parts: a constant
drift; a random part common with the index; a random part
uncorrelated with the index, ¢;. The random part ¢; is unique
to the ith asset. Notice how all the assets are related to the
index but are otherwise completely uncorrelated.

Let us denote the expected return on the index by uy and
its standard deviation by oj;. The expected return on the ith
asset is then

wi = i+ Bipy

and the standard deviation

o = ,/,Bizaﬂz,[—l—e?.

If we have a portfolio of such assets then the return is given
by
N

STI N N N
0= > WiR; = (Z Wiai) + Ry (Z W,-) +) Wi
i=1 i=1 i=1

i=1

From this it follows that

N N
i = (Z w,ui) + E[Ry] (Z Wiﬂi) .

i=1 i=1

Writing
N

N
an = Z Wie; and Bp = Z WBi,
-1

i=1
we have
un = on + BnE[Ry] = an + Briy.

Similarly the risk in IT is measured by

N N N

on=|Y. ) WiWipjoj + ) Wief.

i=1 j=1 i=1
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Note that if the weights are all about the same, N~!, then the
final terms inside the square root are also O(N~1). Thus this
expression is, to leading order as N — oo,

N
> Wisi

i=1

on = om = |Brlom.

Observe that the contribution from the uncorrelated es to the
portfolio vanishes as we increase the number of assets in the
portfolio; this is the risk associated with the diversifiable risk.
The remaining risk, which is correlated with the index, is the
undiversifiable systematic risk.

Multi-index versions of CAPM can be constructed. Each index
being representative of some important financial or economic
variable.

The parameters alpha and beta are also commonly referred
to in the hedge-fund world. Performance reports for trading
strategies will often quote the alpha and beta of the strategy.
A good strategy will have a high, positive alpha with a

beta close to zero. With beta being small you would expect
performance to be unrelated to the market as a whole and
with large, positive alpha you would expect good returns
whichever way the market was moving. Small beta also
means that a strategy should be a valuable addition to a
portfolio because of its beneficial diversification.

Sharpe shared the 1990 Nobel Prize in Economics with Harry
Markowitz and Merton Miller.
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What is Arbitrage Pricing Theory?

Short answer

The Arbitrage Pricing Theory (APT) of Stephen Ross (1976)
represents the returns on individual assets as a linear com-
bination of multiple random factors. These random factors
can be fundamental factors or statistical. For there to be
no arbitrage opportunities there must be restrictions on the
investment processes.

Example

Suppose that there are five dominant causes of randomness
across investments. These five factors might be market as
a whole, inflation, oil prices, etc. If you are asked to invest
in six different, well-diversified portfolios then either one of
these portfolios will have approximately the same risk and
return as a suitable combination of the other five, or there
will be an arbitrage opportunity.

Long answer

Modern Portfolio Theory represents each asset by its

own random return and then links the returns on different
assets via a correlation matrix. In the Capital Asset Pricing
Model returns on individual assets are related to returns

on the market as a whole together with an uncorrelated
stock-specific random component. In Arbitrage Pricing
Theory returns on investments are represented by a linear
combination of multiple random factors, with associated
factor weighting. Portfolios of assets can also be decomposed
in this way. Provided the portfolio contains a sufficiently
large number of assets, then the stock-specific component
can be ignored. Being able to ignore the stock-specific risk is
the key to the ‘A’ in ‘APT.

We write the random return on the ith asset as

n
Ri=ai+ Y BiRi+e,
j=1
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where the K’j are the factors, the o’s and B’s are constants
and ¢; is the stock-specific risk. A portfolio of these assets
has return

N N n /N B
ZaiRi = Zaiai + Z (Zaiﬂji) Ri+---,
i=1 i=1

j=1 \i=1

where the ‘- -.” can be ignored if the portfolio is well diversi-
fied.

Suppose we think that five factors are sufficient to rep-
resent the economy. We can therefore decompose any
portfolio into a linear combination of these five factors,
plus some supposedly negligible stock-specific risks. If
we are shown six diversified portfolios we can decom-
pose each into the five random factors. Since there are
more portfolios than factors we can find a relationship
between (some of) these portfolios, effectively relating
their values, otherwise there would be an arbitrage.
Note that the arbitrage argument is an approximate one,
relating diversified portfolios, on the assumption that the
stock-specific risks are negligible compared with the factor
risks.

In practice we can choose the factors to be macroeconomic
or statistical. Here are some possible macroeconomic vari-
ables.

an index level

GDP growth

an interest rate (or two)

a default spread on corporate bonds
an exchange rate.

Statistical variables come from an analysis of a covariance
of asset returns. From this one extracts the factors by some
suitable decomposition.
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The main differences between CAPM and APT is that CAPM is
based on equilibrium arguments to get to the concept of the
Market Portfolio, whereas APT is based on a simple approxi-
mate arbitrage argument. Although APT talks about arbitrage,
this must be contrasted with the arbitrage arguments we

see in spot versus forward and in option pricing. These are
genuine exact arbitrages (albeit the latter being model depen-
dent). In APT the arbitrage is only approximate.

References and Further Reading
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What is Maximum Likelihood
Estimation?

Short answer

Maximum Likelihood Estimation (MLE) is a statistical tech-
nique for estimating parameters in a probability distribution.
We choose parameters that maximize the a priori probability
of the final outcome actually happening.

Example

You have three hats containing normally distributed random
numbers. One hat’s numbers have a mean of zero and a stan-
dard deviation of 0.1. This is hat A. Another hat’s numbers
have a mean of zero and a standard deviation of 1. This is
hat B. The final hat’s numbers have a mean of zero and a
standard deviation of 10. This is hat C. You don’t know which
hat is which.

You pick a number out of one hat. It is —2.6. Which hat do
you think it came from? MLE can help you answer this ques-
tion.

Long answer

A large part of statistical modelling concerns finding model
parameters. One popular way of doing this is Maximum Like-
lihood Estimation.

The method is easily explained by a very simple example.

You are attending a maths conference. You arrive by train

at the city hosting the event. You take a taxi from the train
station to the conference venue. The taxi number is 20,922.
How many taxis are there in the city?

This is a parameter estimation problem. Getting into a spe-
cific taxi is a probabilistic event. Estimating the number of
taxis in the city from that event is a question of assumptions
and statistical methodology.
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For this problem the obvious assumptions to make are:

1. Taxi numbers are strictly positive integers
2. Numbering starts at 1

3. No number is repeated

4. No number is skipped.

We will look at the probability of getting into taxi number

20,922 when there are N taxis in the city. This couldn’t be

simpler, the probability of getting into any specific taxi is
1

N.
Which N maximizes the probability of getting into taxi num-
ber 20,922? The answer is

N =20,922.

This example explains the concept of MLE: Choose parameters
that maximize the probability of the outcome actually happen-

ing.

Another example, more closely related to problems in quanti-
tative finance, is the hat example above. You have three hats
containing normally distributed random numbers. One hat’s
numbers have a mean of zero and a standard deviation of 0.1.
This is hat A. Another hat’s numbers have a mean of zero
and a standard deviation of 1. This is hat B. The final hat’s
numbers have a mean of zero and a standard deviation of 10.
This is hat C.

You pick a number out of one hat, it is —2.6. Which hat do
you think it came from?

The ‘probability’ of picking the number —2.6 from hat A (hav-
ing a mean of zero and a standard deviation of 0.1) is

1 2.62
- = ) =6 10717,
V27 0.1 P ( 2 x 0.12>

Very, very unlikely!
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(N.B. The word ‘probability’ is in inverted commas to empha-
size the fact that this is the value of the probability density
function, not the actual probability. The probability of picking
exactly —2.6 is, of course, zero.)

The ‘probability’ of picking the number —2.6 from hat B (hav-
ing a mean of zero and a standard deviation of 1) is

2.62
=0.014
/— 1 ex p ( X 12) )
and from hat C (having a mean of zero and a standard devia-

tion of 10)

1 2.62
- =0.039.
«/Zmexl)( 2 x 102)

We would conclude that hat C is the most likely, since it has
the highest probability for picking the number —2.6.

We now pick a second number from the same hat. It is 0.37.
This looks more likely to have come from hat B. Table 2.2
shows the probabilities.

The second column represents the probability of drawing the
number —2.6 from each of the hats; the third column repre-
sents the probability of drawing 0.37 from each of the hats;
and the final column is the joint probability, that is, the prob-
ability of drawing both numbers from each of the hats.

Table 2.2: Probabilities and hats.

Hat —-2.6 0.37 Joint

A 6 107147 0.004 2 1071
B 0.014 0.372 0.005
C 0.039 0.040 0.002
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Using the information about both draws, we can see that the
most likely hat is now B.

Now let’s make this into precisely a quant finance problem.

Find the volatility

You have one hat containing normally distributed random
numbers, with a mean of zero and a standard deviation of
o which is unknown. You draw N numbers ¢; from this hat.
Estimate o.

Q. What is the ‘probability’ of drawing ¢; from a Normal
distribution with mean zero and standard deviation o?
A Ttis

Q. What is the ‘probability’ of drawing all of the numbers

b1, d2,...,¢n from independent Normal distributions with
mean zero and standard deviation o?
A Ttis
¢2

H

Now choose the o that maximizes this quantity. This is easy.
First take logarithms of this expression, and then differentiate
with respect to o and set result equal to zero:

4w —LN HEL
do n() 202;¢i -

(A multiplicative factor has been ignored here.) That is:

——+—Z¢,—0
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Therefore, our best guess for o is given by

1N
2 2
o _—E ;.

Ni:1

You should recognize this as a measure of the variance.

Quants’ salaries

Figure 2.4 shows the results of a 2004 survey on
www.wilmott.com concerning the salaries of quants using
the Forum (or rather, those answering the question!). This
distribution looks vaguely lognormal, with distribution

1 exp _(mE—lnEO)2
V2o2noE 202 '

If you are a professional ‘quant,’
how much do you earn?

Last year | earned:

$0—50k

[ | ] 8.51 (%)
$50 — 100k

[ ] 28.37 (%)
$100 — 200k

[ ] 40.43 (%)
$200 — 500k

[ | 14.18 (%)
$500k— 1MM

[ ]| 5.67 (%)
More than $1MM

| | 2.84 (%)

Figure 2.4: Distribution of quants’ salaries.
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where E is annual earnings, o is the standard deviation and
Ey the mean. We can use MLE find o and Ej.

It turns out that the mean E, = $133,284, with ¢ = 0.833.

References and Further Reading
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What is Cointegration?

Short answer

Two time series are cointegrated if a linear combination has
constant mean and standard deviation. In other words, the
two series never stray too far from one another. Cointegra-
tion is a useful technique for studying relationships in mul-
tivariate time series, and provides a sound methodology for
modelling both long-run and short-run dynamics in a financial
system.

Example

Suppose you have two stocks .S; and S, and you find that

S1 — 38 is stationary, so that this combination never strays
too far from its mean. If one day this ‘spread’ is particularly
large then you would have sound statistical reasons for think-
ing the spread might shortly reduce, giving you a possible
source of statistical arbitrage profit. This can be the basis for
pairs trading.

Long answer

The correlations between financial quantities are notoriously
unstable. Nevertheless correlations are regularly used in
almost all multivariate financial problems. An alternative
statistical measure to correlation is cointegration. This is
probably a more robust measure of the linkage between two
financial quantities but as yet there is little derivatives theory
based on the concept.

Two stocks may be perfectly correlated over short timescales
yet diverge in the long run, with one growing and the other
decaying. Conversely, two stocks may follow each other,
never being more than a certain distance apart, but with
any correlation, positive, negative or varying. If we are

delta hedging then maybe the short timescale correlation
matters, but not if we are holding stocks for a long time in
an unhedged portfolio. To see whether two stocks stay close
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together we need a definition of stationarity. A time series
is stationary if it has finite and constant mean, standard
deviation and autocorrelation function. Stocks, which tend to
grow, are not stationary. In a sense, stationary series do not
wander too far from their mean.

Testing for the stationarity of a time series X; involves a lin-
ear regression to find the coefficients a, b and c in

X =aXi—1+b+ct.

If it is found that |a| > 1 then the series is unstable. If —1 <

a < 1 then the series is stationary. If a =1 then the series

is non-stationary. As with all things statistical, we can only
say that our value for a is accurate with a certain degree of
confidence. To decide whether we have got a stationary or
non-stationary series requires us to look at the Dickey-Fuller
statistic to estimate the degree of confidence in our result. So
far, so good, but from this point on the subject of cointegra-
tion gets complicated.

How is this useful in finance? Even though individual stock
prices might be non stationary it is possible for a linear com-
bination (i.e. a portfolio) to be stationary. Can we find %;, with
ny:l A; = 1, such that

N
Z)\,‘S,‘
i=1

is stationary? If we can, then we say that the stocks are coin-
tegrated.

For example, suppose we find that the S&P500 index is coin-
tegrated with a portfolio of 15 stocks. We can then use these
fifteen stocks to track the index. The error in this tracking
portfolio will have constant mean and standard deviation, so
should not wander too far from its average. This is clearly
easier than using all 500 stocks for the tracking (when, of
course, the tracking error would be zero).
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We don’t have to track the index, we could track anything
we want, such as e’ to choose a portfolio that gets a 20%
return. We could analyse the cointegration properties of two
related stocks, Nike and Reebok, for example, to look for
relationships. This would be pairs trading. Clearly there are
similarities with MPT and CAPM in concepts such as means
and standard deviations. The important difference is that
cointegration assumes far fewer properties for the individ-
ual time series. Most importantly, volatility and correlation
do not appear explicitly.

Another feature of cointegration is Granger causality which
is where one variable leads and another lags. This is of help
in explaining why there is any dynamic relationship between
several financial quantities.
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What is the Kelly Criterion?

Short answer

The Kelly criterion is a technique for maximizing expected
growth of assets by optimally investing a fixed fraction of
your wealth in a series of investments. The idea has long
been used in the world of gambling.

Example

You own a biased coin that will land heads up with probabil-
ity p> % You find someone willing to bet any amount against
you at evens. They are willing to bet any number of times.
Clearly you can make a lot of money with this special coin.
You start with $1,000. How much of this should you bet?

Long answer

Let’s work with the above example. The first observation is
that you should bet an amount proportional to how much
you have. As you win and your wealth grows you will bet a
larger amount. But you shouldn’t bet too much. If you bet
all $1,000 you will eventually toss a tail and lose everything
and will be unable to continue. If you bet too little then it will
take a long time for you to make a decent amount.

The Kelly criterion is to bet a certain fraction of your wealth
so as to maximize your expected growth of wealth.

We use ¢ to denote the random variable taking value 1 with
probability p and —1 with probability 1 — p and f to denote
the fraction of our wealth that we bet. The growth of wealth
after each toss of the coin is then the random amount

In(1 + f¢).
The expected growth rate is
pIn(1+fH+ (1 —-p)In(l —1).
This function is plotted in Figure 2.5 for p = 0.55.
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Figure 2.5: Expected return versus betting fraction.

This expected growth rate is maximized by the choice
f=2p—1.
This is the Kelly fraction.

A betting fraction of less than this would be a conservative
strategy. Anything to the right will add volatility to returns,
and decrease the expected returns. Too far to the right and
the expected return becomes negative.

This money management principle can be applied to any
bet or investment, not just the coin toss. More generally, if
the investment has an expected return of u and a standard
deviation o > u then the expected growth for an investment
fraction of f is

E[In(1 + f¢)]
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which can be approximated by Taylor series
1
fé — Ef2¢2+....

The Kelly fraction, which comes from maximizing this expres-
sion, is therefore

F=L

o2

In practice, because the mean and standard deviation are
rarely known accurately, one would err on the side of caution
and bet a smaller fraction. A common choice is half Kelly.

Other money management strategies are, of course, possible,
involving target wealth, probability of ruin, etc.

References and Further Reading
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Why Hedge?

Short answer

‘Hedging’ in its broadest sense means the reduction of

risk by exploiting relationships or correlation (or lack of
correlation) between various risky investments. The purpose
behind hedging is that it can lead to an improved risk/return.
In the classical Modern Portfolio Theory framework, for
example, it is usually possible to construct many portfolios
having the same expected return but with different variance
of returns (‘risk’). Clearly, if you have two portfolios with
the same expected return the one with the lower risk is the
better investment.

Example

You buy a call option, it could go up or down in value
depending on whether the underlying go up or down. So now
sell some stock short. If you sell the right amount short then
any rises or falls in the stock position will balance the falls
or rises in the option, reducing risk.

Long answer
To help to understand why one might hedge it is useful to
look at the different types of hedging.

The two main classifications Probably the most important distinc-
tion between types of hedging is between model-independent
and model-dependent hedging strategies.

e Model-independent hedging: An example of such hedging
is put—call parity. There is a simple relationship between
calls and puts on an asset (when they are both European
and with the same strikes and expiries), the underlying
stock and a zero-coupon bond with the same maturity.
This relationship is completely independent of how the
underlying asset changes in value. Another example is
spot-forward parity. In neither case do we have to specify
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the dynamics of the asset, not even its volatility, to find a
possible hedge. Such model-independent hedges are few
and far between.

¢ Model-dependent hedging: Most sophisticated finance
hedging strategies depend on a model for the underlying
asset. The obvious example is the hedging used in the
Black-Scholes analysis that leads to a whole theory for the
value of derivatives. In pricing derivatives we typically
need to at least know the volatility of the underlying asset.
If the model is wrong then the option value and any
hedging strategy could also be wrong.

Delta hedging One of the building blocks of derivatives theory
is delta hedging. This is the theoretically perfect elimination
of all risk by using a very clever hedge between the option
and its underlying. Delta hedging exploits the perfect cor-
relation between the changes in the option value and the
changes in the stock price. This is an example of ‘dynamic’
hedging; the hedge must be continually monitored and fre-
quently adjusted by the sale or purchase of the underlying
asset. Because of the frequent rehedging, any dynamic hedg-
ing strategy is going to result in losses due to transaction
costs. In some markets this can be very important.

The ‘underlying’ in a delta-hedged portfolio could be a traded
asset, a stock for example, or it could be another random
quantity that determines a price such as a risk of default.

If you have two instruments depending on the same risk of
default, you can calculate the sensitivities, the deltas, of their
prices to this quantity and then buy the two instruments in
amounts inversely proportional to these deltas (one long, one
short). This is also delta hedging.

If two underlyings are very highly correlated you can use
one as a proxy for the other for hedging purposes. You
would then only be exposed to basis risk. Be careful with
this because there may be times when the close relationship
breaks down.
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If you have many financial instruments that are uncorrelated
with each other then you can construct a portfolio with
much less risk than any one of the instruments individually.
With such a large portfolio you can theoretically reduce risk
to negligible levels. Although this isn’t strictly hedging it
achieves the same goal.

Gamma hedging To reduce the size of each rehedge and/or

to increase the time between rehedges, and thus reduce
costs, the technique of gamma hedging is often employed. A
portfolio that is delta hedged is insensitive to movements in
the underlying as long as those movements are quite small.
There is a small error in this due to the convexity of the port-
folio with respect to the underlying. Gamma hedging is a
more accurate form of hedging that theoretically eliminates
these second-order effects. Typically, one hedges one, exotic,
say, contract with a vanilla contract and the underlying. The
quantities of the vanilla and the underlying are chosen so

as to make both the portfolio delta and the portfolio gamma
instantaneously zero.

Vega hedging The prices and hedging strategies are only as
good as the model for the underlying. The key parameter
that determines the value of a contract is the volatility of
the underlying asset. Unfortunately, this is a very difficult
parameter to measure. Nor is it usually a constant as
assumed in the simple theories. Obviously, the value of a
contract depends on this parameter, and so to ensure that a
portfolio value is insensitive to this parameter we can vega
hedge. This means that we hedge one option with both the
underlying and another option in such a way that both the
delta and the vega, the sensitivity of the portfolio value to
volatility, are zero. This is often quite satisfactory in practice
but is usually theoretically inconsistent; we should not use a
constant volatility (basic Black—-Scholes) model to calculate
sensitivities to parameters that are assumed not to vary.
The distinction between variables (underlying asset price



80 Frequently Asked Questions in Quantitative Finance

and time) and parameters (volatility, dividend yield, interest
rate) is extremely important here. It is justifiable to rely on
sensitivities of prices to variables, but usually not sensitivity
to parameters. To get around this problem it is possible to
independently model volatility, etc., as variables themselves.
In such a way it is possible to build up a consistent theory.

Static hedging There are quite a few problems with delta hedg-
ing, on both the practical and the theoretical side. In prac-
tice, hedging must be done at discrete times and is costly.
Sometimes one has to buy or sell a prohibitively large num-
ber of the underlying in order to follow the theory. This is a
problem with barrier options and options with discontinuous
payoff. On the theoretical side, the model for the underlying
is not perfect, at the very least we do not know parameter
values accurately. Delta hedging alone leaves us very exposed
to the model, this is model risk. Many of these problems can
be reduced or eliminated if we follow a strategy of static
hedging as well as delta hedging; buy or sell more liquid
traded contracts to reduce the cashflows in the original con-
tract. The static hedge is put into place now, and left until
expiry. In the extreme case where an exotic contract has all
of its cashflows matched by cashflows from traded options
then its value is given by the cost of setting up the static
hedge; a model is not needed. (But then the option wasn’t
exotic in the first place.)

Superhedging In incomplete markets you cannot eliminate all
risk by classical dynamic delta hedging. But sometimes you
can superhedge meaning that you construct a portfolio that
has a positive payoff whatever happens to the market. A
simple example of this would be to superhedge a short call
position by buying one of the stock, and never rebalancing.
Unfortunately, as you can probably imagine, and certainly
as in this example, superhedging might give you prices that
differ vastly from the market.



Chapter 2: FAQs 81

Margin hedging Often what causes banks, and other institu-
tions, to suffer during volatile markets is not the change in
the paper value of their assets but the requirement to sud-
denly come up with a large amount of cash to cover an unex-
pected margin call. Examples where margin has caused sig-
nificant damage are Metallgesellschaft and Long Term Capital
Management. Writing options is very risky. The downside of
buying an option is just the initial premium, the upside may
be unlimited. The upside of writing an option is limited, but
the downside could be huge. For this reason, to cover the
risk of default in the event of an unfavourable outcome, the
clearing houses that register and settle options insist on the
deposit of a margin by the writers of options. Margin comes
in two forms: the initial margin and the maintenance margin.
The initial margin is the amount deposited at the initiation
of the contract. The total amount held as margin must stay
above a prescribed maintenance margin. If it ever falls below
this level then more money (or equivalent in bonds, stocks,
etc.) must be deposited. The amount of margin that must
be deposited depends on the particular contract. A dramatic
market move could result in a sudden large margin call that
may be difficult to meet. To prevent this situation it is poss-
ible to margin hedge. That is, set up a portfolio such that

a margin calls on one part of the portfolio are balanced by
refunds from other parts. Usually over-the-counter contracts
have no associated margin requirements and so won’t appear
in the calculation.

Crash (Platinum) hedging The final variety of hedging is specific
to extreme markets. Market crashes have at least two obvi-
ous effects on our hedging. First of all, the moves are so large
and rapid that they cannot be traditionally delta hedged. The
convexity effect is not small. Second, normal market correla-
tions become meaningless. Typically all correlations become
one (or minus one). Crash or Platinum hedging exploits the
latter effect in such a way as to minimize the worst possible
outcome for the portfolio. The method, called CrashMetrics,
does not rely on parameters such as volatilities and so is
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a very robust hedge. Platinum hedging comes in two types:
hedging the paper value of the portfolio and hedging the mar-
gin calls.
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What is Marking to Market and How
Does it Affect Risk Management in
Derivatives Trading?

Short answer

Marking to market means valuing an instrument at the price
at which it is currently trading in the market. If you buy an
option because you believe it is undervalued then you will
not see any profit appear immediately, you will have wait
until the market value moves into line with your own esti-
mate. With an option this may not happen until expiration.
When you hedge options you have to choose whether to
use a delta based on the implied volatility or your own esti-
mate of volatility. If you want to avoid fluctuations in your
mark-to-market P&L you will hedge using the implied volatil-
ity, even though you may believe this volatility to be incor-
rect.

Example

A stock is trading at $47, but you think it is seriously under-
valued. You believe that the value should be $60. You buy
the stock. How much do you tell people your little ‘portfolio
is worth? $47 or $60? If you say $47 then you are marking to
market, if you say $60 you are marking to (your) model. Obvi-
ously this is open to serious abuse and so it is usual, and
often a regulatory requirement, to quote the mark-to-market
value. If you are right about the stock value then the profit
will be realized as the stock price rises. Patience, my son.

9

Long answer

If instruments are liquid, exchange traded, then marking to
market is straightforward. You just need to know the most
recent market-traded price. Of course, this doesn’t stop you
also saying what you believe the value to be, or the profit
you expect to make. After all, you presumably entered the
trade because you thought you would make a gain.
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Hedge funds will tell their investors their Net Asset Value
based on the mark-to-market values of the liquid instruments
in their portfolio. They may estimate future profit, although
this is a bit of a hostage to fortune.

With futures and short options there are also margins to be
paid, usually daily, to a clearing house as a safeguard against
credit risk. So if prices move against you, you may have to
pay a maintenance margin. This will be based on the prevail-
ing market values of the futures and short options. (There is
no margin on long options positions because they are paid
for up front, from which point the only way is up.)

Marking to market of exchange-traded instruments is
clearly very straightforward. But what about exotic or
over-the-counter (OTC) contracts? These are not traded
actively, they may be unique to you and your counterparty.
These instruments have to be marked to model. And this
obviously raises the question of which model to use. Usually
in this context the ‘model’ means the volatility, whether

in equity markets, FX or fixed income. So the question
about which model to use becomes a question about which
volatility to use. With credit instruments the model often
boils down to a number for risk of default.

Here are some possible ways of marking OTC contracts.

e The trader uses his own volatility. Perhaps his best
forecast going forward. This is very easy to abuse, it is
very easy to rack up an imaginary profit this way.
Whatever volatility is used it cannot be too far from the
market’s implied volatilities on liquid options with the
same underlying.

e Use prices obtained from brokers. This has the advantage
of being real, tradeable prices, and unprejudiced. The main
drawback is that you can’t be forever calling brokers for
prices with no intention of trading. They get very annoyed.
And they won'’t give you tickets to Wimbledon anymore.
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Use a volatility model that is calibrated to vanillas. This
has the advantage of giving prices that are consistent with
the information in the market, and are therefore arbitrage
free. Although there is always the question of which
volatility model to use, deterministic, stochastic, etc., so
‘arbitrage freeness’ is in the eye of the modeller. It can also
be time consuming to have to crunch prices frequently.

One subtlety concerns the marking method and the hedging
of derivatives. Take the simple case of a vanilla equity
option bought because it is considered cheap. There are
potentially three different volatilities here: implied volatility;
forecast volatility; hedging volatility. In this situation the
option, being exchange traded, would probably be marked
to market using the implied volatility, but the ultimate profit
will depend on the realized volatility (let’s be optimistic
and assume it is as forecast) and also how the option

is hedged. Hedging using implied volatility in the delta
formula theoretically eliminates the otherwise random
fluctuations in the mark-to-market value of the hedged option
portfolio, but at the cost of making the final profit path
dependent, directly related to realized gamma along the
stock’s path.

By marking to market, or using a model-based marking that
is as close to this as possible, your losses will be plain

to see. If your theoretically profitable trade is doing badly
you will see your losses mounting up. You may be forced
to close your position if the loss gets to be too large. Of
course, you may have been right in the end, just a bit out
in the timing. The loss could have reversed, but if you have
closed out your position previously then tough. Having said
that, human nature is such that people tend to hold onto
losing positions too long on the assumption that they will
recover, yet close out winning positions too early. Marking
to market will therefore put some rationality back into your
trading.
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What is the Efficient Markets
Hypothesis?

Short answer

An efficient market is one where it is impossible to beat the
market because all information about securities is already
reflected in their prices.

Example
Or rather a counter-example, “I'd be a bum in the street with
a tin cup if the markets were efficient,” Warren Buffett.

Long answer

The concept of market efficiency was proposed by Eugene
Fama in the 1960s. Prior to that it had been assumed that
excess returns could be made by careful choice of invest-
ments. Here and in the following the references to ‘excess
returns’ refers to profit above the risk-free rate not explained
by a risk premium, i.e. the reward for taking risk. Fama
argued that since there are so many active, well-informed
and intelligent market participants securities will be priced
to reflect all available information. Thus was born the idea of
the efficient market, one where it is impossible to beat the
market.

There are three classical forms of the Efficient Markets
Hypothesis (EMH). These are weak form, semi-strong form
and strong form.

o Weak-form efficiency: In weak-form efficiency excess
returns cannot be made by using investment strategies
based on historical prices or other historical financial data.
If this form of efficiency is true then it will not be possible
to make excess returns by using methods such as technical
analysis. A trading strategy incorporating historical data,
such as price and volume information, will not
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systematically outperform a buy-and-hold strategy. It is
often said that current prices accurately incorporate all
historical information, and that current prices are the best
estimate of the value of the investment. Prices will respond
to news, but if this news is random then price changes will
also be random. Technical analysis will not be profitable.

e Semi-strong form efficiency: In the semi-strong form of the
EMH a trading strategy incorporating current publicly
available fundamental information (such as financial
statements) and historical price information will not
systematically outperform a buy-and-hold strategy. Share
prices adjust instantaneously to publicly available new
information, and no excess returns can be earned by using
that information. Fundamental analysis will not be
profitable.

¢ Strong-form efficiency: In strong-form efficiency share
prices reflect all information, public and private,
fundamental and historical, and no one can earn excess
returns. Inside information will not be profitable.

Of course, tests of the EMH should always allow for transac-
tion costs associated with trading and the internal efficiency
of trade execution.

A weaker cousin of EMH is the Adaptive Market Hypothe-
sis of Andrew Lo. This idea is related to behavioural finance
and proposes that market participants adapt to changing
markets, information, models, etc., in such a way as to lead
to market efficiency but in the meantime there may well be
exploitable opportunities for excess returns. This is com-
monly seen when new contracts, exotic derivatives, are first
created leading to a short period of excess profit before the
knowledge diffuses and profit margins shrink. The same is
true of previously neglected sources of convexity and there-
fore value. A profitable strategy can exist for a while but per-
haps others find out about it, or because of the exploitation
of the profit opportunity, either way that efficiency disap-
pears.
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The Grossman-Stiglitz paradox says that if a market were effi-
cient, reflecting all available information, then there would be
no incentive to acquire the information on which prices are
based. Essentially the job has been done for everyone. This is
seen when one calibrates a model to market prices of deriva-
tives, without ever studying the statistics of the underlying
process.

The validity of the EMH, whichever form, is of great impor-
tance because it determines whether anyone can outperform
the market, or whether successful investing is all about luck.
EMH does not require investors to behave rationally, only
that in response to news or data there will be a sufficiently
large random reaction that an excess profit cannot be made.
Market bubbles, for example, do not invalidate EMH provided
they cannot be exploited.

There have been many studies of the EMH, and the validity
of its different forms. Many early studies concluded in favour
of the weak form. Bond markets and large-capitalization
stocks are thought to be highly efficient, smaller stocks

less so. Because of different quality of information among
investors and because of an emotional component, real
estate is thought of as being quite inefficient.
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What are the Most Useful Performance
Measures?

Short answer

Performance measures are used to quantify the results of a
trading strategy. They are usually adjusted for risk. The most
popular is the Sharpe ratio.

Example

One stock has an average growth of 10% per annum, another
is 30% per annum. You'd rather invest in the second, right?
What if I said that the first had a volatility of only 5%,
whereas the second was 20%, does that make a difference?

Long answer

Performance measures are used to determine how success-
ful an investment strategy has been. When a hedge fund or
trader is asked about past performance the first question is
usually “What was your return?” Later maybe ‘“What was
your worst month?”” These are both very simple measures
of performance. The more sensible measures make allowance
for the risk that has been taken, since a high return with low
risk is much better than a high return with a lot of risk.

Sharpe ratio The Sharpe ratio is probably the most important
non-trivial risk-adjusted performance measure. It is calculated

as
—r

Sharpe ratio = t

where 1 is the return on the strategy over some specified
period, r is the risk-free rate over that period and o is the
standard deviation of returns. The Sharpe ratio will be quoted
in annualized terms. A high Sharpe ratio is intended to be a
sign of a good strategy.

If returns are normally distributed then the Sharpe ratio is
related to the probability of making a return in excess of
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the risk-free rate. In the expected return versus risk diagram
of Modern Portfolio Theory the Sharpe ratio is the slope

of the line joining each investment to the risk-free invest-
ment. Choosing the portfolio that maximizes the Sharpe ratio
will give you the Market Portfolio. We also know from the
Central Limit Theorem that if you have many different invest-
ments all that matters is the mean and the standard devia-
tion. So as long as the CLT is valid the Sharpe ratio makes
sense.

The Sharpe ratio has been criticized for attaching equal
weight to upside ‘risk’ as downside risk since the standard
deviation incorporates both in its calculation. This may be
important if returns are very skewed.

Modigliani—Modigliani measure The Modigliani-Modigliani or
M2 measure is a simple linear transformation of the Sharpe
ratio:

M2 = r 4+ v x Sharpe

where v is the standard deviation of returns of the relevant
benchmark. This is easily interpreted as the return you would
expect from your portfolio is it were (de)leveraged to have
the same volatility as the benchmark.

Sortino ratio The Sortino ratio is calculated in the same way
as the Sharpe ratio except that it uses the square root of
the semi-variance as the denominator measuring risk. The
semi-variance is measured in the same way as the variance
except that all data points with positive return are replaced
with zero, or with some target value.

This measure ignores upside ‘risk’ completely. However,
if returns are expected to be normally distributed the
semi-variance will be statistically noisier than the variance
because fewer data points are used in its calculation.
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Treynor ratio The Treynor or Reward-to-variability ratio is
another Sharpe-like measure, but now the denominator is the
systematic risk, measured by the portfolio’s beta, (see Capital
Asset Pricing Model), instead of the total risk:

w—r

Treynor ratio =

In a well-diversified portfolio Sharpe and Treynor are similar,
but Treynor is more relevant for less diversified portfolios or
individual stocks.

Information ratio The Information ratio is a different type of
performance measure in that it uses the idea of tracking
error. The numerator is the return in excess of a benchmark
again, but the denominator is the standard deviation of the
differences between the portfolio returns and the benchmark

returns, the tracking error.

—r
Information ratio = Mi
Tracking error

This ratio gives a measure of the value added by a manager
relative to their benchmark.
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What isa Utility Function and How 15
it Used?

Short answer

A utility function represents the ‘worth,” ‘happiness’ or ‘satis-
faction’ associated with goods, services, events, outcomes,
levels of wealth, etc. It can be used to rank outcomes, to
aggregate ‘happiness’ across individuals and to value games
of chance.

Example

You own a valuable work of art; you are going to put it up
for auction. You don’t know how much you will make but
the auctioneer has estimated the chances of achieving cer-
tain amounts. Someone then offers you a guaranteed amount
provided you withdraw the painting from the auction. Should
you take the offer or take your chances? Utility theory can
help you make that decision.

Long answer

The idea is not often used in practice in finance but is com-
mon in the literature, especially economics literature. The
utility function allows the ranking of the otherwise incompa-
rable, and is used to explain people’s actions; rational people
are supposed to act so as to increase their utility.

When a meaningful numerical value is used to represent util-
ity this is called cardinal utility. One can then talk about
one thing having three times the utility of another, and one
can compare utility from person to person. If the ordering of
utility is all that matters (so that one is only concerned with
ranking of preferences, not the numerical value) then this is
called ordinal utility.

If we denote a utility function by U(W) where W is the
‘wealth,” then one would expect utility functions to have
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certain commonsense properties. In the following a prime (")
denotes differentiation with respect to W.

e The function U(W) can vary among investors, each will
have a different attitude to risk for example.

e U'(W) > 0: more is preferred to less. If it is a strict
inequality then satiation is not possible, the investor will
always prefer more than he has. This slope measures the
marginal improvement in utility with changes in wealth.

e Usually U”(W) < 0: the utility function is strictly concave.
Since this is the rate of change of the marginal ‘happiness,’
it gets harder and harder to increase happiness as wealth
increases. An investor with a concave utility function is
said to be risk averse. This property is often referred to as
the law of diminishing returns.

The final point in the above leads to definitions for measure-
ment of risk aversion. The absolute risk aversion function is

defined as Urwy
A =— .
) o
The relative risk aversion function is defined as
WU" (W)
ROW) = -~ 72 = WA(W).
umw)

Utility functions are often used to analyse random events.
Suppose a monetary amount is associated with the number
of spots on a rolled dice. You could calculate the expected
winnings as the average of all of the six amounts. But what if
the amounts were $1, $2, $3, $4, $5 and $6,000,000? Would the
average, $1,000,002.5, be meaningful? Would you be willing to
pay $1,000,000 to enter this as a bet? After all, you expect
to make a profit. A more sensible way of valuing this game
might be to look at the utility of each of the six outcomes,
and then average the utility. This leads on to the idea of cer-
tainty equivalent wealth.
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When the wealth is random, and all outcomes can be
assigned a probability, one can ask what amount of certain
wealth has the same utility as the expected utility of the
unknown outcomes. Simply solve

UWo) = E[lU(W)].

The quantity of wealth W, that solves this equation is called
the certainty equivalent wealth. One is therefore indifferent
between the average of the utilities of the random outcomes
and the guaranteed amount W,.. As an example, consider the
above dice-rolling game, supposing our utility function is
U(W) = —Le="W_ With n = 1 we find that the certainty equiv-
alent is $2.34. So we would pay this amount or less to play
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Figure 2.6: Certainty equivalent as a function of the risk-aversion parame-
ter for example in the text.
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the game. Figure 2.6 shows a plot of the certainty equivalent
for this example as a function of the risk-aversion parameter
n. Observe how this decreases the greater the risk aversion.
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What is the Difference between a
Quant and an Actuary?

Short answer
The answer is ‘Lots.” They can both learn a lot from each
other.

Example

Actuaries work more than quants with historical data and
that data tends to be more stable. Think of mortality statis-
tics. Quants often project forward using information con-
tained in a snapshot of option prices.

Long answer
(Note: The following was published in The Actuary in Septem-
ber 2008.)

Those working in the two fields of actuarial science and quan-
titative finance have not always been totally appreciative of
each others’ skills. Actuaries have been dealing with ran-
domness and risk in finance for centuries. Quants are the
relative newcomers, with all their fancy stochastic mathe-
matics. Rather annoyingly for actuaries, quants come along
late in the game and thanks to one piece of insight in the
early '70s completely change the face of the valuation of risk.
The insight I refer to is the concept of dynamic hedging, first
published by Black, Scholes and Merton in 1973. Before 1973
derivatives were being valued using the ‘actuarial method,’
i.e. in a sense relying, as actuaries always have, on the Cen-
tral Limit Theorem. Since 1973 and the publication of the
famous papers, all that has been made redundant. Quants
have ruled the financial roost.

But this might just be the time for actuaries to fight back.

[ am putting the finishing touches to this article a few days
after the first anniversary of the ‘day that quant died.” In
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early August 2007 a number of high-profile and previously
successful quantitative hedge funds suffered large losses.
People said that their models ‘just stopped working.” The
year since has been occupied with a lot of soul searching by
quants; how could this happen when they’ve got such incred-
ible models?

In my view the main reason why quantitative finance is in
a mess is because of complexity and obscurity. Quants are
making their models increasingly complicated, in the belief
that they are making improvements. This is not the case.
More often than not each ‘improvement’ is a step backwards.
If this were a proper hard science then there would be a
reason for trying to perfect models. But finance is not a
hard science, one in which you can conduct experiments
for which the results are repeatable. Finance, thanks to it
being underpinned by human beings and their wonderfully
irrational behaviour, is forever changing. It is therefore
much better to focus your attention on making the models
robust and transparent rather than ever more intricate. As
[ mentioned in a recent wilmott.com blog, there is a maths
sweet spot in quant finance. The models should not be
too elementary so as to make it impossible to invent new
structured products, but nor should they be so abstract as
to be easily misunderstood by all except their inventor (and
sometimes even by him), with the obvious and financially
dangerous consequences. | teach on the Certificate in
Quantitative Finance and in that our goal is to make quant
finance practical, understandable and, above all, safe.

When banks sell a contract they do so assuming that it is
going to make a profit. They use their complex models, with
sophisticated numerical solutions, to come up with the per-
fect value. Having gone to all that effort for that contract
they then throw it into the same pot as all the others and
risk manage en masse. The funny thing is that they never
know whether each individual contract has ‘washed its own
face.” Sure they know whether the pot has made money; their



Chapter 2: FAQs 99

bonus is tied to it. But each contract? It makes good sense
to risk manage all contracts together but it doesn’t make
sense to go to such obsessive detail in valuation when ulti-
mately it’s the portfolio that makes money, especially when
the basic models are so dodgy. The theory of quant finance
and the practice diverge. Money is made by portfolios, not by
individual contracts.

In other words, quants make money from the Central Limit
Theorem, just like actuaries, it’s just that quants are loath to
admit it! Ironic.

It’s about time that actuaries got more involved in quanti-
tative finance. They could bring some common sense back
into this field. We need models which people can understand
and a greater respect for risk. Actuaries and quants have
complementary skill sets. What high finance needs now are
precisely those skills that actuaries have, a deep understand-
ing of statistics, a historical perspective, and a willingness to
work with data.

References and Further Reading
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What is a Wiener Process/Brownian
Motion and What are its Uses in
Finance?

Short answer

The Wiener process or Brownian motion is a stochastic pro-
cess with stationary independent normally distributed incre-
ments and which also has continuous sample paths. It is the
most common stochastic building block for random walks in

finance.

Example

Pollen in water, smoke in a room, pollution in a river, are all
examples of Brownian motion. And this is the common model

for stock prices as well.

Long answer
Brownian motion (BM) is named after the Scottish botanist

who first described the random motions of pollen grains sus-

pended in water. The mathematics of this process were for-
malized by Bachelier, in an option-pricing context, and by

Einstein. The mathematics of BM is also that of heat conduc-

tion and diffusion.

Mathematically, BM is a continuous, stationary, stochastic
process with independent normally distributed increments.

If W; is the BM at time ¢ then for every ¢, t > 0, Wy, — W; is
independent of {W, : 0 < u < t}, and has a normal distribution

with zero mean and variance t.

The important properties of BM are as follows:

o Finiteness: the scaling of the variance with the time step is

crucial to BM remaining finite.
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e Continuity: the paths are continuous, there are no
discontinuities. However, the path is fractal, and not
differentiable anywhere.

e Markov: the conditional distribution of W; given
information up until r < ¢t depends only on W..

e Martingale: given information up until r < ¢ the conditional
expectation of W; is W;.

e Quadratic variation: if we divide up the time 0 to ¢ in a
partition with n 4 1 partition points ¢; = it/n then

n 2

Z(W,j - Wf]._1> St

J=1

e Normality: Over finite time increments ¢;,_; to &;, W;, — Wi,
is normally distributed with mean zero and variance
ti —ti—1.

You'll see this ‘W’ in the form dW as the stochastic incre-

ment term in stochastic differential equations. It might also
appear as dX or dB, different authors using different letters,
and sometimes with a time subscript. But these are all the

same thing!

It’s often easiest just to think of dW as being a random num-
ber drawn from a normal distribution with the properties:
E[dW] =0 and E[dW?] = dt.

BM is a very simple yet very rich process, extremely useful
for representing many random processes especially those in
finance. Its simplicity allows calculations and analysis that
would not be possible with other processes. For example, in
option pricing it results in simple closed-form formulee for
the prices of vanilla options. It can be used as a building
block for random walks with characteristics beyond those of
BM itself. For example, it is used in the modelling of interest
rates via mean-reverting random walks. Higher-dimensional
versions of BM can be used to represent multi-factor random
walks, such as stock prices under stochastic volatility.
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One of the unfortunate features of BM is that it gives returns
distributions with tails that are unrealistically shallow. In
practice, asset returns have tails that are much fatter than
those given by the normal distribution of BM. There is even
some evidence that the distribution of returns has infinite
second moment. Despite this, and the existence of financial
theories that do incorporate such fat tails, BM motion is eas-
ily the most common model used to represent random walks
in finance.
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What is Jensen’s Inequality and What
15 its Role in Finance?

Short answer
Jensen’s Inequality states! that if f(*) is a convex function
and x is a random variable then

E[fCO] = f(E[xD .

This justifies why non-linear instruments, options, have inher-
ent value.

Example

You roll a die, square the number of spots you get, you win
that many dollars. For this exercise f(x) is x* a convex func-
tion. So E[f(x)] is 1 +4 49+ 16 4+ 25+ 36 = 91 divided by 6,
so 151/6. But E[x] is 31/2 so f (E[x]) is 12 1/4.

Long answer
A function f(-) is convex on an interval if for every x and y in
that interval

fOx+ QA —=2y) <A+ A —-Df(Y)

for any 0 < A < 1. Graphically this means that the line joining
the points (x,f(x)) and (y,f(y)) is nowhere lower than the
curve. (Concave is the opposite, simply —f is convex.)

Jensen’s Inequality and convexity can be used to explain the
relationship between randomness in stock prices and the
value inherent in options, the latter typically having some
convexity.

Suppose that a stock price S is random and we want to con-
sider the value of an option with payoff P(S). We could cal-
culate the expected stock price at expiration as E[Sr], and

I'This is the probabilistic interpretation of the inequality.
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then the payoff at that expected price P(E[St]). Alternatively,
we could look at the various option payoffs and then calcu-
late the expected payoff as E[P(S7)]. The latter makes more
sense, and is indeed the correct way to value options, pro-
vided the expectation is with respect to the risk-neutral stock
price. If the payoff is convex then

E[P(S1)] = PE[STD.

We can get an idea of how much greater the left-hand side is
than the right-hand side by using a Taylor series approxima-
tion around the mean of S. Write

S=S+e,
where S = E[S], so E[¢] = 0. Then

E[fO]=E [f(§ + e)] =E [f@ +€f'(S) + %gf’/@ + .. ]
_ 1 _
~ ) + S (DE [62]
— FE[S]) + %f”(E[S])E [62] .

Therefore the left-hand side is greater than the right by
approximately

1
S/ ESDE [62] .
This shows the importance of two concepts:

e f"(E[S]): The convexity of an option. As a rule this adds
value to an option. It also means that any intuition we may
get from linear contracts (forwards and futures) might not
be helpful with non-linear instruments such as options.

e E[¢?]: Randomness in the underlying, and its variance.
Modelling randomness is the key to modelling options.

The lesson to learn from this is that whenever a contract
has convexity in a variable or parameter, and that variable
or parameter is random, then allowance must be made for
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this in the pricing. To do this correctly requires a knowledge
of the amount of convexity and the amount of randomness.
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What 15 1té’s Lemma?

Short answer

Ito’s lemma is a theorem in stochastic calculus. It tells you
that if you have a random walk, in y, say, and a function of
that randomly walking variable, call it f(y, ), then you can
easily write an expression for the random walk in f. A func-
tion of a random variable is itself random in general.

Example
The obvious example concerns the random walk

dS=uSdt+oSdX

commonly used to model an equity price or exchange rate, S.
What is the stochastic differential equation for the logarithm
of S, InS?

The answer is

1
d(InS) = (M - E&) dt + o dX.

Long answer
Let’s begin by stating the theorem. Given a random variable y
satisfying the stochastic differential equation

dy = a(y,t) dt + b(y, ) dX,

where dX is a Wiener process, and a function f(y, ) that is
differentiable with respect to ¢ and twice differentiable with
respect to y, then f satisfies the following stochastic differen-
tial equation

2
2 171
ay?
It6’s lemma is to stochastic variables what Taylor series is

to deterministic. You can think of it as a way of expanding
functions in a series in dt, just like Taylor series. If it helps to

df = — +a — 4+ =b dt+ b — dX.



Chapter 2: FAQs ’07

think of it this way then you must remember the simple rules
of thumb as follows:

1. Whenever you get dX? in a Taylor series expansion of a
stochastic variable you must replace it with dt.

2. Terms that are O(df*/?) or smaller must be ignored. This
means that df?, dX®, dt dX, etc. are too small to keep.

It is difficult to overstate the importance of It6’s lemma in
quantitative finance. It is used in many of the derivations of
the Black-Scholes option-pricing model and the equivalent
models in the fixed-income and credit worlds. If we have a
random walk model for a stock price S and an option on that
stock, with value V(S,f), then Itd’s lemma tells us how the
option price changes with changes in the stock price. From
this follows the idea of hedging, by matching random fluc-
tuations in .S with those in V. This is important both in the
theory of derivatives pricing and in the practical management
of market risk.

Even if you don’t know how to prove It6’s lemma you must
be able to quote it and use the result.

Sometimes we have a function of more than one stochastic
quantity. Suppose that we have a function f(y1,y2,...,yn,t) of
n stochastic quantities and time such that

dy;i = ai(y1,y2,...,Yn, ) dt + bi(y1,¥2, ..., yn, 1) dX;,

where the n Wiener processes dX; have correlations p;;, then

af
df = dt
8t+ 2;121p'j']8y oy
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We can understand this (if not entirely legitimately derive it)
via Taylor series by using the rules of thumb

dX? =dt and dX,dX; = p;dt.

Another extension that is often useful in finance is to incor-
porate jumps in the independent variable. These are usually
modelled by a Poisson process. This is dg such that dg =1
with probability A df and is 0 with probability 1 — A dt. Return-
ing to the single independent variable case for simplicity,
suppose y satisfies

dy =a(y,t) dt + b(y,t) dX +J(y,t) dg

where dqg is a Poisson process and J is the size of the jump
or discontinuity in y (when dg = 1) then

of of 1 92f
df = | = D— + —b(y,H?>— | dt
<8t+a(y )8y+2 .0 ayz)

+b(y, t)g—; ax+ (fy+JQ,0) —f(y,0) dq.

And this is It6 in the presence of jumps.
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Why Does Risk-Neutral Valuation
Work?

Short answer
Risk-neutral valuation means that you can value options in
terms of their expected payoffs, discounted from expiration
to the present, assuming that they grow on average at the
risk-free rate.

Option value = Expected present value of payoff
(under a risk-neutral random walk).

Therefore the real rate at which the underlying grows on
average doesn’t affect the value. Of course, the volatility,
related to the standard deviation of the underlying’s return,
does matter. In practice, it’s usually much, much harder to
estimate this average growth than the volatility, so we are
rather spoiled in derivatives, that we only need to estimate
the relatively stable parameter, volatility.?> The reason that
this is true is that by hedging an option with the underly-
ing we remove any exposure to the direction of the stock,
whether it goes up or down ceases to matter. By eliminating
risk in this way we also remove any dependence on the value
of risk. End result is that we may as well imagine we are in
a world in which no one values risk at all, and all tradeable
assets grow at the risk-free rate on average.

For any derivative product, as long as we can hedge it
dynamically and perfectly (supposing we can as in the case
of known, deterministic volatility and no defaults) the hedged
portfolio loses its randomness and behaves like a bond.

%I should emphasize the word ‘relatively.” Volatility does vary in
reality, but probably not as much as the growth rate.
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Example

A stock whose value is currently $44.75 is growing on aver-
age by 15% per annum. Its volatility is 22%. The interest rate
is 4%. You want to value a call option with a strike of $45,
expiring in two months’ time. What can you do?

First of all, the 15% average growth is totally irrelevant. The
stock’s growth and therefore its real direction does not affect
the value of derivatives. What you can do is simulate many,
many future paths of a stock with an average growth of 4%
per annum, since that is the risk-free interest rate, and a 22%
volatility, to find out where it may be in two months’ time.
Then calculate the call payoff for each of these paths. Present
value each of these back to today, and calculate the aver-
age over all paths. That’s your option value. (For this simple
example of the call option there is a formula for its value,

so you don’t need to do all these simulations. And in that
formula you’ll see an r for the risk-free interest rate, and no
mention of the real drift rate.)

Long answer

Risk-neutral valuation of derivatives exploits the perfect cor-
relation between the changes in the value of an option and
its underlying asset. As long as the underlying is the only
random factor then this correlation should be perfect. So if
an option goes up in value with a rise in the stock then a
long option and sufficiently short stock position shouldn’t
have any random fluctuations, therefore the stock hedges the
option. The resulting portfolio is risk free.

Of course, you need to know the correct number of the stock
to sell short. That’s called the ‘delta’ and usually comes from
a model. Because we usually need a mathematical model to
calculate the delta, and because quantitative finance models
are necessarily less than perfect, the theoretical elimination
of risk by delta hedging is also less than perfect in practice.
There are several such imperfections with risk-neutral valu-
ation. First, it requires continuous rebalancing of the hedge.
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Delta is constantly changing so you must always be buying
or selling stock to maintain a risk-free position. Obviously,
this is not possible in practice. Second, it hinges on the accu-
racy of the model. The underlying has to be consistent with
certain assumptions, such as being Brownian motion without
any jumps, and with known volatility.

One of the most important side effects of risk-neutral pric-
ing is that we can value derivatives by doing simulations of
the risk-neutral path of underlyings, to calculate payoffs for
the derivatives. These payoffs are then discounted to the
present, and finally averaged. This average that we find is the
contract’s fair value.

Here are some further explanations of risk-neutral pricing.

Explanation 1: If you hedge correctly in a Black-Scholes world
then all risk is eliminated. If there is no risk then we should
not expect any compensation for risk. We can therefore work
under a measure in which everything grows at the risk-free
interest rate.

Explanation 2: If the model for the asset is dS = uS dt + oS dX
then the us cancel in the derivation of the Black-Scholes
equation.

Explanation 3: Two measures are equivalent if they have the
same sets of zero probability. Because zero probability sets
don’t change, a portfolio is an arbitrage under one measure if
and only if it is one under all equivalent measures. Therefore
a price is non-arbitrageable in the real world if and only if it
is non-arbitrageable in the risk-neutral world. The risk-neutral
price is always non-arbitrageable. If everything has a dis-
counted asset price process which is a martingale then there
can be no arbitrage. So if we change to a measure in which
all the fundamental assets, for example the stock and bond,
are martingales after discounting, and then define the option
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price to be the discounted expectation making it into a mar-
tingale too, we have that everything is a martingale in the
risk-neutral world. Therefore there is no arbitrage in the real
world.

Explanation 4: If we have calls with a continuous distribution
of strikes from zero to infinity then we can synthesize
arbitrarily well any payoff with the same expiration. But
these calls define the risk-neutral probability density function
for that expiration, and so we can interpret the synthesized
option in terms of risk-neutral random walks. When such a
static replication is possible then it is model independent,
we can price complex derivatives in terms of vanillas. (Of
course, the continuous distribution requirement does spoil
this argument to some extent.)

It should be noted that risk-neutral pricing only works under
assumptions of continuous hedging, zero transaction costs,
continuous asset paths, etc. Once we move away from this
simplifying world we may find that it doesn’t work.
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What 15 Girsanov’s Theorem, and Why
15 1t Important in Finance?

Short answer

Girsanov’s theorem is the formal concept underlying the
change of measure from the real world to the risk-neutral
world. We can change from a Brownian motion with one drift
to a Brownian motion with another.

Example
The classical example is to start with

dS = uSdt+ oS dW;

with W being Brownian motion under one measure (the
real-world measure) and converting it to

dS =rS di + oS dW,

under a different, the risk-neutral, measure.

Long answer

First a statement of the theorem. Let W; be a Brownian
motion with measure P and sample space Q. If y; is a previsi-
ble process satisfying the constraint Ep | exp % /OT 7/12 f

then there exists an equivalent measure Q on 2 such that

< 0

t
W= W, + f odls
0
is a Brownian motion.

It will be helpful if we explain some of the more technical
terms in this theorem.

e Sample space: All possible future states or outcomes.
¢ (Probability) Measure: In layman’s terms, the measure
gives the probabilities of each of the outcomes in the

sample space.
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e Previsible: A previsible process is one that only depends
on the previous history.

e Equivalent: Two measures are equivalent if they have the
same sample space and the same set of ‘possibilities.” Note
the use of the word possibilities instead of probabilities.
The two measures can have different probabilities for each
outcome but must agree on what is possible.

Another way of writing the above is in differential form
dW; = dW, + y; dt.

One important point about Girsanov’s theorem is its
converse, that every equivalent measure is given by a drift
change. This implies that in the Black-Scholes world there is
only the one equivalent risk-neutral measure. If this were not
the case then there would be multiple arbitrage-free prices.

For many problems in finance Girsanov theorem is not nec-
essarily useful. This is often the case in the world of equity
derivatives. Straightforward Black-Scholes does not require
any understanding of Girsanov. Once you go beyond basic
Black-Scholes it becomes more useful. For example, suppose
you want to derive the valuation partial differential equations
for options under stochastic volatility. The stock price fol-
lows the real-world processes, P,

dsS = uSdt+oSdX;

and
do = a(S,o,Hdt + b(S, o, )dWX,,

where dX; and dX, are correlated Brownian motions with cor-
relation p(S,0,1).

Using Girsanov you can get the governing equation in three
steps:
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1. Under a pricing measure Q, Girsanov plus the fact that S
is traded implies that

dx, =dx; — Lt
o

and B
dXy = dXo — 1(S,0,1) dt,

where 1 is the market price of volatility risk.

2. Apply It6’s formula to the discounted option price
V(S,0,t) =e "T-DF(S,0,f), expanding under Q, using the
formulee for dS and dV obtained from the Girsanov
transformation

3. Since the option is traded, the coefficient of the dt term in
its Itd0 expansion must also be zero; this yields the
relevant equation

Girsanov and the idea of change of measure are particularly
important in the fixed-income world where practitioners often
have to deal with many different measures at the same time,
corresponding to different maturities. This is the reason for
the popularity of the BGM model and its ilk.
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What are the Greeks?

Short answer

The ‘greeks’ are the sensitivities of derivatives prices

to underlyings, variables and parameters. They can be
calculated by differentiating option values with respect to
variables and/or parameters, either analytically, if you have a
closed-form formula, or numerically.

Example
Delta, A = %—‘; is the sensitivity of an option price to the

stock price. Gamma, I' = {;2_12/’ is the second derivative of the
option price to the underlying stock, it is the sensitivity of
the delta to the stock price. These two examples are called
greek because they are members of the Greek alphabet. Some
sensitivities, such as vega = %, are still called ‘greek’ even

though they aren’t in the Greek alphabet.
Long answer

Pelta The delta, A, of an option or a portfolio of options is
the sensitivity of the option or portfolio to the underlying. It
is the rate of change of value with respect to the asset:

A= 1%

A’

Speculators take a view on the direction of some quantity
such as the asset price and implement a strategy to take
advantage of their view. If they own options then their expo-
sure to the underlying is, to a first approximation, the same
as if they own delta of the underlying.

Those who are not speculating on direction of the underlying
will hedge by buying or selling the underlying, or another
option, so that the portfolio delta is zero. By doing this they
eliminate market risk.
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Typically the delta changes as stock price and time change,
so to maintain a delta-neutral position the number of assets
held requires continual readjustment by purchase or sale of
the stock. This is called rehedging or rebalancing the portfo-
lio, and is an example of dynamic hedging.

Sometimes going short the stock for hedging purposes
requires the borrowing of the stock in the first place. (You
then sell what you have borrowed, buying it back later.)
This can be costly, you may have to pay a repo rate, the
equivalent of an interest rate, on the amount borrowed.

Gamma The gamma, I', of an option or a portfolio of options
is the second derivative of the position with respect to the
underlying:

_ v
Tas?

Since gamma is the sensitivity of the delta to the underlying
it is a measure of by how much or how often a position must
be rehedged in order to maintain a delta-neutral position. If
there are costs associated with buying or selling stock, the
bid-offer spread, for example, then the larger the gamma the
larger the cost or friction caused by dynamic hedging.

Because costs can be large and because one wants to reduce
exposure to model error it is natural to try to minimize

the need to rebalance the portfolio too frequently. Since
gamma is a measure of sensitivity of the hedge ratio A to the
movement in the underlying, the hedging requirement can be
decreased by a gamma-neutral strategy. This means buying
or selling more options, not just the underlying.

Theta The theta, ©, is the rate of change of the option price
with time.

1%
O=—.
at
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The theta is related to the option value, the delta and the
gamma by the Black-Scholes equation.

speed The speed of an option is the rate of change of the
gamma with respect to the stock price.

3V

083"

Traders use the gamma to estimate how much they will have
to rehedge by if the stock moves. The stock moves by $1 so
the delta changes by whatever the gamma is. But that’s only
an approximation. The delta may change by more or less
than this, especially if the stock moves by a larger amount,
or the option is close to the strike and expiration. Hence the
use of speed in a higher-order Taylor series expansion.

Speed =

Vega The vega, sometimes known as zeta or kappa, is a very
important but confusing quantity. It is the sensitivity of the
option price to volatility.

Vega = ﬂ

ao

This is completely different from the other greeks since it is
a derivative with respect to a parameter and not a variable.
This can be important. It is perfectly acceptable to consider
sensitivity to a variable, which does vary, after all. However,
it can be dangerous to measure sensitivity to something, such
as volatility, which is a parameter and may, for example, have
been assumed to be constant. That would be internally incon-
sistent. (See bastard greeks.)

As with gamma hedging, one can vega hedge to reduce sen-
sitivity to the volatility. This is a major step towards elim-

inating some model risk, since it reduces dependence on a

quantity that is not known very accurately.

There is a downside to the measurement of vega. It is only
really meaningful for options having single-signed gamma
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everywhere. For example, it makes sense to measure vega
for calls and puts but not binary calls and binary puts. The
reason for this is that call and put values (and options with
single-signed gamma) have values that are monotonic in

the volatility: increase the volatility in a call and its value
increases everywhere. Contracts with a gamma that changes
sign may have a vega measured at zero because as we
increase the volatility the price may rise somewhere and fall
somewhere else. Such a contract is very exposed to volatility
risk but that risk is not measured by the vega.

Rho p, is the sensitivity of the option value to the interest
rate used in the Black-Scholes formulee:
v
P=or
In practice one often uses a whole term structure of interest
rates, meaning a time-dependent rate r(f). Rho would then

be the sensitivity to the level of the rates assuming a parallel
shift in rates at all times. (But see bastard greeks again.)

Rho can also be sensitivity to dividend yield, or foreign inter-
est rate in a foreign exchange option.

Charm The charm is the sensitivity of delta to time.
GE%
aS at’

This is useful for seeing how your hedge position will change
with time, for example, up until the next time you expect to
hedge. This can be important near expiration.

Colour The colour is the rate of change of gamma with time.

LEA%
3S2 at’
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Vanna The Vanna is the sensitivity of delta to volatility.

22V
39S do

This is used when testing sensitivity of hedge ratios to volatil-
ity. It can be misleading at places where gamma is small.

Vomma or Volga The Vomma or Volga is the second derivative
of the option value with respect to volatility.

v

o2’
Because of Jensen’s Inequality, if volatility is stochastic the
Vomma/Volga measures convexity due to random volatility

and so gives you an idea of how much to add (or subtract)
from an option’s value.

Shadow greeks The above greeks are defined in terms of par-
tial derivatives with respect to underlying, time, volatility,
etc. while holding the other variables/parameters fixed. That

is the definition of a partial derivative.? But, of course, the
variables/parameters might, in practice, move together. For
example, a fall in the stock price might be accompanied by an
increase in volatility. So one can measure sensitivity as both
the underlying and volatility move together. This is called a
shadow greek and is just like the concept of a total derivative
in, for example, fluid mechanics where one might follow the
path of a fluid particle.

3Here derivative has its mathematical meaning of that which is dif-
ferentiated not its financial meaning as an option.
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Why 9o Quants like Closed-Form
Solutions?

Short answer
Because they are fast to compute and easy to understand.

Example

The Black-Scholes formulee are simple and closed form and
often used despite people knowing that they have limitations,
and despite being used for products for which they were not
originally intended.

Long answer
There are various pressures on a quant when it comes to
choosing a model. What he’d really like is a model that is

e robust: small changes in the random process for the
underlying don’t matter too much

o fast: prices and the greeks have to be quick to compute
for several reasons, so that the trade gets done and you
don’t lose out to a competitor, and so that positions can
be managed in real time as just one small part of a large
portfolio

e accurate: in a scientific sense the prices ought to be good,
perhaps matching historical data; this is different from
robust, of course

e easy to calibrate: banks like to have models that match
traded prices of simple contracts

There is some overlap in these. Fast may also mean easy to
calibrate, but not necessarily. Accurate and robust might be
similar, but again, not always.

From the scientific point of view the most important of these
is accuracy. The least important is speed. To the scientist the
question of calibration becomes one concerning the existence
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of arbitrage. If you are a hedge fund looking for prop trad-
ing opportunities with vanillas then calibration is precisely
what you don’t want to do. And robustness would be nice,
but maybe the financial world is so unstable that models can
never be robust.

To the practitioner he needs to be able to price quickly to get
the deal done and to manage the risk. If he is in the business
of selling exotic contracts then he will invariably be calibrat-
ing, so that he can say that his prices are consistent with
vanillas. As long as the model isn’t too inaccurate or sensi-
tive, and he can add a sufficient profit margin, then he will be
content. So to the practitioner speed and ability to calibrate
to the market are the most important.

The scientist and the practitioner have conflicting interests.
And the practitioner usually wins.

And what could be faster than a closed-form solution? This is
why practitioners tend to favour closed forms. They also tend
to be easier to understand intuitively than a numerical solu-
tion. The Black-Scholes formulze are perfect for this, having a
simple interpretation in terms of expectations, and using the
cumulative distribution function for the Gaussian distribution.

Such is the desire for simple formula that people often use
the formulee for the wrong product. Suppose you want to
price certain Asian options based on an arithmetic average.
To do this properly in the Black-Scholes world you would
do this by solving a three-dimensional partial differential
equation or by Monte Carlo simulation. But if you pretend
that the averaging is geometric and not arithmetic then
often there are simple closed-form solutions. So use those,
even though they must be wrong. The point is that they
will probably be less wrong than other assumptions you are
making, such as what future volatility will be.
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Of course, the definition of closed form is to some extent in
the eye of the beholder. If an option can be priced in terms of
an infinite sum of hypergeometric functions does that count?
Some Asian options can be priced that way. Or what about

a closed form involving a subtle integration in the complex
plane that must ultimately be done numerically? That is the
Heston stochastic volatility model.

If closed form is so appreciated, is it worth spending much
time seeking them out? Probably not. There are always
new products being invented and new pricing models being
devised, but they are unlikely to be of the simple type that
can be solved explicitly. Chances are that you will either
have to solve these numerically, or approximate them by
something not too dissimilar. Approximations such as Black
76 are probably your best chance of finding closed-form
solutions for new products these days.
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What are the Forward and Backward
Equations?

Short answer

Forward and backward equations usually refer to the
differential equations governing the transition probability
density function for a stochastic process. They are diffusion
equations and must therefore be solved in the appropriate
direction in time, hence the names.

Example

An exchange rate is currently 1.88. What is the probability
that it will be over 2 by this time next year? If you have a
stochastic differential equation model for this exchange rate
then this question can be answered using the equations for
the transition probability density function.

Long answer
Let us suppose that we have a random variable y evolving
according to a quite general, one-factor stochastic differential
equation

dy =A(y,H) dt + B(y,t) dX.

Here A and B are both arbitrary functions of y and ¢.

Many common models can be written in this form, including
the lognormal asset random walk, and common spot interest
rate models.

The transition probability density function p(y,t;y',t") is the
function of four variables defined by

b
Prob(a <y < b at time t|y at time ¢) = / py,t;y,)dy.
a

This simply means the probability that the random variable
y lies between a and b at time ¢ in the future, given that it
started out with value y at time ¢. You can think of y and ¢
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as being current or starting values with y’ and ¢ being future
values.

The transition probability density function p(y,t; ¥, t) satis-
fies two equations, one involving derivatives with respect to
the future state and time (¥’ and ¢) and called the forward
equation, and the other involving derivatives with respect to
the current state and time (y and ¢) and called the backward
equation. These two equations are parabolic partial differen-
tial equations not dissimilar to the Black-Scholes equation.

The forward equation
Also known as the Fokker-Planck or forward Kolmogorov
equation this is

ap 1 92 ) ]
= = —(BY,)?p) — —(A(Y, )p).
Y, 28y/2( o)) ay,( o\ Op)

This forward parabolic partial differential equation requires
initial conditions at time ¢ and to be solved for ¢ > t.

Example An important example is that of the distribution of
equity prices in the future. If we have the random walk

dS=pSdt+oS dX
then the forward equation becomes

op 1 9

ar 29382

a
N

(0%8%p) — — (uS'p).

A special solution of this representing a variable that begins
with certainty with value S at time ¢ is

/ 1 2 n) 002
p(S.1:S' 1) = ! o (ING/S)H=302)C D) /202 1)

oS\ 2x(t — b

This is plotted as a function of both S and ¢ in Figure 2.7.
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Figure 2.7: The probability density function for the lognormal random
walk evolving through time.

The backward equation
Also known as the backward Kolmogorov equation this is

ap 1 5 3%p ap
— + -B(y,t)*— + Ay, H)— = 0.
3t+2 .0 8y2+ o )E)y

This must be solved backwards in ¢ with specified final data.
For example, if we wish to calculate the expected value of
some function F(S) at time 7 we must solve this equation for
the function p(S, ) with

p(S, T) = F(S).

Option prices
If we have the lognormal random walk for S, as above, and
we transform the dependent variable using a discount factor
according to

p(s, 0 = e IOV, D,

then the backward equation for p becomes an equation for
V which is identical to the Black-Scholes partial differential
equation. Identical but for one subtlety, the equation con-

tains a u where Black-Scholes contains r. We can conclude
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that the fair value of an option is the present value of the
expected payoff at expiration under a risk-neutral random
walk for the underlying. Risk neutral here means replace
with r.
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What is the Black—Scholes Equation?

Short answer

The Black-Scholes equation is a differential equation for the
value of an option as a function of the underlying asset and
time.

Example
The basic equation is
AV 1, 0%V v
—+ oS — +rS—=—-rV =0,
ar T27 s TPes T
where V(S, ) is the option value as a function of asset price
S and time ¢.

There have been many extensions to this model, some people
call them ‘improvements.” But these extensions are all trivial
compared with the breakthrough in modelling that was the
original equation.

Long answer
Facts about the Black-Scholes equation:

e The equation follows from certain assumptions and from a
mathematical and financial argument that involves hedging.

e The equation is linear and homogeneous (we say ‘there is
no right-hand side,’ i.e. no non-V terms) so that you can
value a portfolio of derivatives by summing the values of
the individual contracts.

e [t is a partial differential equation because it has more than
one independent variable, here S and ¢.

e It is of parabolic type, meaning that one of the variables, ¢,
only has a first-derivative term, and the other S has a
second-derivative term.

e It is of backward type, meaning that you specify a final
condition representing the option payoff at expiry and then
solve backwards in time to get the option value now. You
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can tell it's backward by looking at the sign of the
t-derivative term and the second S-derivative term, when
on the same side of the equals sign they are both the same
sign. If they were of opposite signs then it would be a
forward equation.

e The equation is an example of a diffusion equation or heat
equation. Such equations have been around for nearly two
hundred years and have been used to model all sorts of
physical phenomena.

e The equation requires specification of two parameters, the
risk-free interest rate and the asset volatility. The interest
rate is easy enough to measure, and the option value isn’t
so sensitive to it anyway. But the volatility is another
matter, rather harder to forecast accurately.

e Because the main uncertainty in the equation is the
volatility one sometimes thinks of the equation less as a
valuation tool and more as a way of understanding the
relationship between options and volatility.

e The equation is easy to solve numerically, by
finite-difference or Monte Carlo methods, for example.

e The equation can be generalized to allow for dividends,
other payoffs, stochastic volatility, jumping stock prices,
etc.

And then there are the Black-Scholes formule which are solu-
tions of the equation in special cases, such as for calls and
puts.

The equation contains four terms:

1%
o = time decay, how much the option value changes by

if the stock price doesn’t change
1 2
1,20V
2 052

makes on average from stock moves

= convexity term, how much a hedged position
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v
rS s = drift term allowing for the growth in the stock at the
risk-free rate
and

—rV = the discounting term, since the payoff is received
at expiration but you are valuing the option now.
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Which Numerical Method should | Use
and When?

Short answer

The three main numerical methods in common use are Monte
Carlo, finite difference and numerical quadrature. (I'm includ-
ing the binomial method as just a simplistic version of finite
differences.) Monte Carlo is great for complex path depen-
dency and high dimensionality, and for problems which can-
not easily be written in differential equation form. Finite dif-
ference is best for low dimensions and contracts with deci-
sion features such as early exercise, ones which have a differ-
ential equation formulation. Numerical quadrature is for when
you can write the option value as a multiple integral.

Example

You want to price a fixed-income contract using the BGM
model. Which numerical method should you use? BGM is
geared up for solution by simulation, so you would use a
Monte Carlo simulation.

You want to price an option which is paid for in instalments,
and you can stop paying and lose the option at any time if
you think it’s not worth keeping up the payments. This may
be one for finite-difference methods since it has a decision
feature.

You want to price a European, non-path-dependent contract
on a basket of equities. This may be recast as a multiple inte-
gral and so you would use a quadrature method.

Long answer

Finite-difference methods

Finite-difference methods are designed for finding numeri-
cal solutions of differential equations. Since we work with
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a mesh, not unlike the binomial method, we will find the
contract value at all points is stock price-time space. In quan-
titative finance that differential equation is almost always of
diffusion or parabolic type. The only real difference between
the partial differential equations are the following:

Number of dimensions
Functional form of coefficients
Boundary/final conditions
Decision features

Linear or non-linear.

Number of dimensions Is the contract an option on a single
underlying or many? Is there any strong path dependence
in the payoff? Answers to these questions will determine
the number of dimensions in the problem. At the very least
we will have two dimensions: S or r, and ¢. Finite-difference
methods cope extremely well with smaller number of
dimensions, up to four, say. Above that they get rather time
consuming.

Functional form of coefficients The main difference between an
equity option problem and a single-factor interest rate option
problem is in the functional form of the drift rate and the
volatility. These appear in the governing partial differential
equations as coefficients. The standard model for equities
is the lognormal model, but there are many more ‘standard’
models in fixed income. Does this matter? No, not if you are
solving the equations numerically, only if you are trying to
find a closed-form solution in which case the simpler the
coefficients the more likely you are to find a closed-form
solution.

Boundary/final conditions In a numerical scheme the difference
between a call and a put is in the final condition. You tell the
finite-difference scheme how to start. And in finite-difference
schemes in finance we start at expiration and work towards
the present. Boundary conditions are where we tell the
scheme about things like knock-out barriers.
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Decision features Early exercise, instalment premiums, chooser
features, are all examples of embedded decisions seen in
exotic contracts. Coping with these numerically is quite
straightforward using finite-difference methods, making these
numerical techniques the natural ones for such contracts.
The difference between a European and an American option
is about three lines of code in a finite-difference program and
less than a minute’s coding.

Linear or non-linear Almost all quant finance models are linear,
so that you can solve for a portfolio of options by solving
each contract at a time and adding. Some more modern mod-
els are nonlinear. Linear or nonlinear doesn’t make that much
difference when you are solving by finite-difference methods.
So choosing this method gives you a lot of flexibility in the
type of model you can use.

Efficiency

Finite differences are very good at coping with low dimen-
sions, and are the method of choice if you have a contract
with embedded decisions. They are excellent for non-linear
differential equations.

The time taken to price an option and calculate the
sensitivities to underlying(s) and time using the explicit
finite-difference method will be

O(Me -4,

where M is the number of different options in the portfolio
and we want an accuracy of ¢, and d is the number of dimen-
sions other than time. So if we have a non-path-dependent
option on a single underlying then d = 1. Note that we may
need one piece of code per option, hence M in the above.

Programme of study
If you are new to finite-difference methods and you really
want to study them, here is a suggested programme of study.
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Explicit method/European calls, puts and binaries: To get

started you should learn the explicit method as applied to

the Black-Scholes equation for a European option. This is
very easy to program and you won’t make many mistakes.

Explicit method/American calls, puts and binaries: Not

much harder is the application of the explicit method to

American options.

e Crank-Nicolson/European calls, puts and binaries: Once

you've got the explicit method under your belt you should

learn the Crank-Nicolson implicit method. This is harder to
program, but you will get a better accuracy.

Crank-Nicolson/American calls, puts and binaries: There’s

not much more effort involved in pricing American-style

options than in the pricing of European-style options.

Explicit method/path-dependent options: By now you’ll be

quite sophisticated and it’s time to price a path-dependent

contract. Start with an Asian option with discrete sampling,
and then try a continuously-sampled Asian. Finally, try
your hand at lookbacks.

Interest rate products: Repeat the above programme for

non-path-dependent and then path-dependent interest rate

products. First price caps and floors and then go on to the
index amortizing rate swap.

o Two-factor explicit: To get started on two-factor problems
price a convertible bond using an explicit method, with
both the stock and the spot interest rate being
stochastic.

e Two-factor implicit: The final stage is to implement the

implicit two-factor method as applied to the convertible

bond.

Monte Carlo methods

Monte Carlo methods simulate the random behaviour under-
lying the financial models. So, in a sense they get right to the
heart of the problem. Always remember, though, that when
pricing you must simulate the risk-neutral random walk(s),
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the value of a contract is then the expected present value of
all cashflows. When implementing a Monte Carlo method look
out for the following:

Number of dimensions
Functional form of coefficients
Boundary/final conditions
Decision features

Linear or non-linear.

again!

Number of dimensions For each random factor you will have to
simulate a time series. It will obviously take longer to do this,
but the time will only be proportional to number of factors,
which isn’t so bad. This makes Monte Carlo methods ideal for
higher dimensions when the finite-difference methods start to
crawl.

Functional form of coefficients As with the finite-difference meth-
ods it doesn’t matter too much what the drift and volatil-
ity functions are in practice, since you won’t be looking for
closed-form solutions.

Boundary/final conditions These play a very similar role as in
finite differences. The final condition is the payoff function
and the boundary conditions are where we implement trigger
levels etc.

Decision features When you have a contract with embedded
decisions the Monte Carlo method becomes cumbersome.
This is easily the main drawback for simulation methods.
When we use the Monte Carlo method we only find the
option value at today’s stock price and time. But to correctly
price an American option, say, we need to know what the
option value would be at every point in stock price-time
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space. We don’t typically find this as part of the Monte Carlo
solution.

Linear or non-linear Simulation methods also cope poorly with
non-linear models. Some models just don’t have a useful
interpretation in terms of probabilities and expectations so
you wouldn’t expect them to be amenable to solution by
methods based on random simulations.

Efficiency
If we want an accuracy of ¢ and we have d underlyings then
the calculation time is

O(de™).

It will take longer to price the greeks, but, on the positive
side, we can price many options at the same time for almost
no extra time cost.

Programme of study
Here is a programme of study for the Monte Carlo
path-simulation methods.

¢ European calls, puts and binaries on a single equity:
Simulate a single stock path, the payoff for an option, or
even a portfolio of options, calculate the expected payoff
and present value to price the contract.

o Path-dependent option on a single equity: Price a barrier,
Asian, lookback, etc.

e Options on many stocks: Price a multi-asset contract by
simulating correlated random walks. You'll see how time
taken varies with number of dimensions.

o Interest rate derivatives, spot rate model: This is not that
much harder than equities. Just remember to present value
along each realized path of rates before taking the
expectation across all paths.

e HJM model: Slightly more ambitious is the HIM interest
rate model. Use a single factor, then two factors, etc.

¢ BGM model: A discrete version of HIM.
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Numerical integration

Occasionally one can write down the solution of an
option-pricing problem in the form of a multiple integral.
This is because you can interpret the option value as an
expectation of a payoff, and an expectation of the payoff is
mathematically just the integral of the product of that payoff
function and a probability density function. This is only
possible in special cases. The option has to be European, the
underlying stochastic differential equation must be explicitly
integrable (so the lognormal random walk is perfect for this)
and the payoff shouldn’t usually be path dependent. So if this
is possible then pricing is easy... you have a formula. The
only difficulty comes in turning this formula into a number.
And that’s the subject of numerical integration or quadrature.
Look out for the following.

e Can you write down the value of an option as an integral?

That’s it in a nutshell.

Efficiency

There are several numerical quadrature methods. But the
two most common are based on random number generation
again. One uses normally distributed numbers and the
other uses what are called low-discrepancy sequences. The
low-discrepancy numbers are clever in that they appear
superficially to be random but don’t have the inevitable
clustering that truly random numbers have.

Using the simple normal numbers, if you want an accuracy of
¢ and you are pricing M options the time taken will be
OMe™).

If you use the low-discrepancy numbers the time taken will
be
O(Me™).
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You can see that this method is very fast, unfortunately it
isn’t often applicable.

Programme of study
Here is a programme of study for the numerical quadrature
methods.

European calls, puts and binaries on a single equity using
normal numbers: Very simple. You will be evaluating a
single integral.

European calls, puts and binaries on several underlying
lognormal equities, using normal numbers: Very simple
again. You will be evaluating a multiple integral.
Arbitrary European, non-path-dependent payoff, on
several underlying lognormal equities, using normal
numbers: You'll only have to change a single function.
Arbitrary European, non-path-dependent payoff, on
several underlying lognormal equities, using
low-discrepancy numbers: Just change the source of the
random numbers in the previous code.

Summary

Table 2.3: Pros and cons of different methods.

Subject FD MC Quad.
Low dimensions Good Inefficient Good
High dimensions Slow Excellent Good
Path dependent Depends Excellent Not good
Greeks Excellent Not good Excellent
Portfolio Inefficient Very good Very good
Decisions Excellent Poor Very poor

Non-linear Excellent Poor Very poor
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What is Monte Carlo Simulation?

Short answer

Monte Carlo simulations are a way of solving probabilistic
problems by numerically ‘imagining’ many possible scenar-
ios or games so as to calculate statistical properties such as
expectations, variances or probabilities of certain outcomes.
In finance we use such simulations to represent the future
behaviour of equities, exchange rates, interest rates, etc., so
as to either study the possible future performance of a port-
folio or to price derivatives.

Example

We hold a complex portfolio of investments, we would like
to know the probability of losing money over the next year
since our bonus depends on our making a profit. We can
estimate this probability by simulating how the individual
components in our portfolio might evolve over the next year.
This requires us to have a model for the random behaviour
of each of the assets, including the relationship or correlation
between them, if any.

Some problems which are completely deterministic can also
be solved numerically by running simulations, most famously
finding a value for x.

Long answer

It is clear enough that probabilistic problems can be solved
by simulations. What is the probability of tossing heads with
a coin, just toss the coin often enough and you will find the
answer. More on this and its relevance to finance shortly. But
many deterministic problems can also be solved this way,
provided you can find a probabilistic equivalent of the deter-
ministic problem. A famous example of this is Buffon’s needle,
a problem and solution dating back to 1777. Draw parallel
lines on a table one inch apart. Drop a needle, also one inch
long, onto this table. Simple trigonometry will show you that
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the probability of the needle touching one of the lines is 2/x.
So conduct many such experiments to get an approximation
to . Unfortunately because of the probabilistic nature of this
method you will have to drop the needle many billions of
times to find = accurate to half a dozen decimal places.

There can also be a relationship between certain types of dif-
ferential equation and probabilistic methods. Stanislaw Ulam,
inspired by a card game, invented this technique while work-
ing on the Manhattan Project towards the development of
nuclear weapons. The name ‘Monte Carlo’ was given to this
idea by his colleague Nicholas Metropolis.

Monte Carlo simulations are used in financial problems for
solving two types of problems:

e Exploring the statistical properties of a portfolio of
investments or cashflows to determine quantities such as
expected returns, risk, possible downsides, probabilities of
making certain profits or losses, etc.

¢ Finding the value of derivatives by exploiting the
theoretical relationship between option values and
expected payoff under a risk-neutral random walk.

Exploring portfolio statisticc The most successful quantitative
models represent investments as random walks. There is
a whole mathematical theory behind these models, but to
appreciate the role they play in portfolio analysis you just
need to understand three simple concepts.

First, you need an algorithm for how the most basic invest-

ments evolve randomly. In equities this is often the lognormal
random walk. (If you know about the real/risk-neutral distinc-
tion then you should know that you will be using the real ran-
dom walk here.) This can be represented on a spreadsheet or
in code as how a stock price changes from one period to the
next by adding on a random return. In the fixed-income world
you may be using the BGM model to model how interest rates



Chapter 2: FAQs ]4’3

of various maturities evolve. In credit you may have a model
that models the random bankruptcy of a company. If you
have more than one such investment that you must model
then you will also need to represent any interrelationships
between them. This is often achieved by using correlations.

Once you can perform such simulations of the basic
investments then you need to have models for more
complicated contracts that depend on them, these are the
options/derivatives/contingent claims. For this you need
some theory, derivatives theory. This the second concept
you must understand.

Finally, you will be able to simulate many thousands, or
more, future scenarios for your portfolio and use the
results to examine the statistics of this portfolio. This is,
for example, how classical Value at Risk can be estimated,
among other things.

Pricing derivatives We know from the results of risk-neutral
pricing that in the popular derivatives theories the value

of an option can be calculated as the present value of the
expected payoff under a risk-neutral random walk. And cal-
culating expectations for a single contract is just a simple
example of the above-mentioned portfolio analysis, but just
for a single option and using the risk-neutral instead of the
real random walk. Even though the pricing models can often
be written as deterministic partial differential equations they
can be solved in a probabilistic way, just as Stanislaw Ulam
noted for other, non-financial, problems. This pricing method-
ology for derivatives was first proposed by the actuarially
trained Phelim Boyle in 1977.

Whether you use Monte Carlo for probabilistic or determinis-
tic problems the method is usually quite simple to implement
in basic form and so is extremely popular in practice.
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What is the Finite-Difference Method?

Short answer

The finite-difference method is a way of approximating dif
ferential equations, in continuous variables, into difference
equations, in discrete variables, so that they may be solved
numerically. It is a method particularly useful when the prob-
lem has a small number of dimensions, that is, independent
variables.

Example

Many financial problems can be cast as partial differential
equations. Usually these cannot be solved analytically and so
they must be solved numerically.

Long answer

Financial problems starting from stochastic differential
equations as models for quantities evolving randomly, such
as equity prices or interest rates, are using the language

of calculus. In calculus we refer to gradients, rates of
change, slopes, sensitivities. These mathematical ‘derivatives’
describe how fast a dependent variable, such as an option
value, changes as one of the independent variables, such as
an equity price, changes. These sensitivities are technically
defined as the ratio of the infinitesimal change in the depen-
dent variable to the infinitesimal change in the independent.
And we need an infinite number of such infinitesimals to
describe an entire curve. However, when trying to calculate
these slopes numerically, on a computer, for example, we
cannot deal with infinites and infinitesimals, and have to
resort to approximations.

Technically, a definition of the delta of an option is
v i VS+h6)—-V(S—ht
S h—0 2h

where V (S, ) is the option value as a function of stock price,
S, and time, ¢. Of course, there may be other independent
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variables. The limiting procedure in the above is the clue to
how to approximate such derivatives based on continuous
variables by differences based on discrete variables.

The first step in the finite-difference methods is to lay down
a grid, such as the one shown in Figure 2.8.

The grid typically has equally spaced asset points, and
equally spaced time steps, although in more sophisticated

S = "infinity’

Expiration

e K

S=0 t

Figure 2.8: The finite-difference grid.
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schemes these can vary. Our task will be to find numerically
an approximation to the option values at each of the nodes
on this grid.

The classical option pricing differential equations are written
in terms of the option function, V (S, ), say, a single deriva-
tive with respect to time, %, the option’s theta, the first
derivative with respect to the underlying, %, the option’s
delta, and the second derivative with respect to the under-
lying, ?)ZT‘Z/’ the option’s gamma. I am explicitly assuming we
have an equity or exchange rate as the underlying in these
examples. In the world of fixed income we might have similar
equations but just read interest rate, r, for underlying, .S, and

the ideas carry over.

A simple discrete approximation to the partial derivative for

theta is
g — v V(S,0—V(S,t— 8D

ot ot

where §t is the time step between grid points. Similarly,

A BV V(SIS0 - V(S—85.D
TS T 288

where 3§ is the asset step between grid points. There is a
subtle difference between these two expressions. Note how
the time derivative has been discretized by evaluating the
function V at the ‘current’ S and ¢, and also one time step
before. But the asset derivative uses an approximation that
straddles the point S, using S+ 8S and S — 38S. The first type
of approximation is called a one-sided difference, the second
is a central difference. The reasons for choosing one type of
approximation over another are to do with stability and accu-
racy. The central difference is more accurate than a one-sided
difference and tends to be preferred for the delta approx-
imation, but when used for the time derivative it can lead

to instabilities in the numerical scheme. (Here [ am going to
describe the explicit finite-difference scheme, which is the
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easiest such scheme, but is one which suffers from being
unstable if the wrong time discretization is used.)

The central difference for the gamma is
_ 92V _V(S+8S,H0-2V(S,D+ V(S -385,D

— R

T 9s2 852

Slightly changing the notation so that Vik is the option value
approximation at the ith asset step and kth time step, we can
write
k-1 k k k k k
9%‘/1']?_% A%Vi-kl_vi—l andl—-%vi-%—l_zvi_l'vi—l
8t ’ 288 552

Finally, plugging the above, together with S =i S, into the
Black-Scholes equation gives the following discretized ver-
sion of the equation:

VE-vi! n 1021-2852 Vi, —2VE+ VE,
st 2 552
yk o _yk
+1i 8S 7'“2 S vk =o.

This can easily be rearranged to give Vl.k_1 in terms of Vi’il,

Vk and V¥ |, as shown schematically in Figure 2.9.

In practice we know what the option value is as a function
of S, and hence i, at expiration. And this allows us to work
backwards from expiry to calculate the option value today,
one time step at a time.

The above is the most elementary form of the finite-difference
methods, there are many other more sophisticated versions.

The advantages of the finite-difference methods are in their
speed for low-dimensional problems, those with up to three
sources of randomness. They are also particularly good when
the problem has decision features such as early exercise
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This option

value \

=N is calculated from]|

/ these three

Figure 2.9: The relationship between option values in the explicit method.

because at each node we can easily check whether the option
price violates arbitrage constraints.

References and Further Reading

Wilmott, P 2006 Paul Wilmott on Quantitative Finance, second edition.
John Wiley & Sons Ltd



]50 Frequently Asked Questions in Quantitative Finance

What 15 a Poisson Process and What are
its Uses in Finance?

Short answer

The Poisson process is a model for a discontinuous random
variable. Time is continuous, but the variable is discrete. The
variable can represent a jump’ in a quantity or the occur-
rence of an ‘event.’

Example

The Poisson process is used to model radioactive decay. In
finance it can be used to model default or bankruptcy, or to
model jumps in stock prices.

Long answer

The most important stochastic process in quantitative finance
is Brownian Motion (the Wiener process) used to model
continuous asset paths. The next most useful stochastic pro-
cess is the Poisson process. It is used to model discontin-
uous jumps in an asset price or to model events such as
bankruptcy.

A Poisson process dq is defined by the limit as dt goes to
zero of
dg = { 0  with probability 1 — A dt
| 1 with probability A dt.
There is therefore a probability A df of a jump in g in the time
step dt. The parameter A is called the intensity of the Pois-
son process, it is a parameter, possibly time dependent, or

dependent on other variables in a model, that represents the
likelihood of the jump.

When a model has both a Wiener process dX term and a
Poisson process dq term it is called a jump-diffusion model.
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If the Poisson process is used to model events, such as the
arrival of buses at a bus-stop, then we can answer questions
about the number of buses arriving with a certain time using
the following result:

Plo = ) = e

This is the probability of exactly n buses having arrived (or
there having been n asset price jumps) in a time ¢.
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What is a Jump-Diffusion Model and
How does it Affect Option Values?

Short answer

Jump-diffusion models combine the continuous Brownian
motion seen in Black-Scholes models (the diffusion) with
prices that are allowed to jump discontinuously. The tim-
ing of the jump is usually random, and this is represented
by a Poisson process. The size of the jump can also be ran-
dom. As you increase the frequency of the jumps (all other
parameters remaining the same), the values of calls and puts
increase. The prices of binaries, and other options, can go
either up or down.

Example

A stock follows a lognormal random walk. Every month you
roll a dice. If you roll a one then the stock price jumps dis-
continuously. The size of this jump is decided by a random
number you draw from a hat. (This is not a great example
because the Poisson process is a continuous process, not a
monthly event.)

Long answer

A Poisson process can be written as dg where dq is the jump
in a random variable g during time ¢ to ¢ + dt. dg is 0 with
probability 1 — A dt and 1 with probability A dt. Note how the
probability of a jump scales with the time period over which
the jump may happen, dt. The scale factor A is known as the
intensity of the process, the larger A the more frequent the
jumps.

This process can be used to model a discontinuous finan-
cial random variable, such as an equity price, volatility or an
interest rate. Although there have been research papers on
pure jump processes as financial models it is more usual to
combine jumps with classical Brownian motion. The model
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for equities, for example, is often taken to be
dS=uSdt+ocSdX+ (- 1S dg.

dq is as defined above, with intensity A, J — 1 is the jump size,
usually taken to be random as well. Jump-diffusion models
can do a good job of representing the real-life phenomenon
of discontinuity in variables, and capturing the fat tails seen
in returns data.

The model for the underlying asset results in a model for
option prices. This model will be an integro-differential
equation, typically, with the integral term representing

the probability of the stock jumping a finite distance
discontinuously. Unfortunately, markets with jumps of this
nature are incomplete, meaning that options cannot be
hedged to eliminate risk. In order to derive option-pricing
equations one must therefore make some assumptions about
risk preferences or introduce more securities with which to
hedge.

Robert Merton was the first to propose jump-diffusion mod-
els. He derived the following equation for equity option val-
ues

v 1 592V
W oS 852"’5%—7‘/

+AE[VS, D) - V(S, D] — ,\%SE [J—1]=0.

E[-] is the expectation taken over the jump size. In probabil-
ity terms this equation represents the expected value of the
discounted payoff. The expectation being over the risk-neutral
measure for the diffusion but the real measure for the jumps.

There is a simple solution of this equation in the special case
that the logarithm of J is Normally distributed. If the loga-
rithm of J is Normally distributed with standard deviation ¢’
and if we write

kR=E[J—-1]
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then the price of a European non-path-dependent option can
be written as
=1
D e TTGNT = )V (S, £ o, ).
n=0
In the above
2

, no
V=x1+k), o2=0+ T
d
an nln(1 + k)

m=r—AR+ T
and Vps is the Black-Scholes formula for the option value
in the absence of jumps. This formula can be interpreted
as the sum of individual Black-Scholes values each of
which assumes that there have been n jumps, and they are
weighted according to the probability that there will have
been n jumps before expiry.

Jump-diffusion models can do a good job of capturing steep-
ness in volatility skews and smiles for short-dated option,
something that other models, such as stochastic volatility,
have difficulties in doing.
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What is Meant by ‘Complete’ and
‘Incomplete’ Markets?

Short answer

A complete market is one in which a derivative product can
be artificially made from more basic instruments, such as
cash and the underlying asset. This usually involves dynam-
ically rebalancing a portfolio of the simpler instruments,
according to some formula or algorithm, to replicate the
more complicated product, the derivative. Obviously, an
incomplete market is one in which you can’t replicate the
option with simpler instruments.

Example

The classic example is replicating an equity option, a call,
say, by continuously buying or selling the equity so that you
always hold the amount

A =e PTON(dY),

in the stock, where

N(x) = \/%/ e_%“’zdd)

g — In(S/E) + (r =D+ 1o(T — 0
' oNT —t '

and

Long answer

A slightly more mathematical, yet still quite easily under-
stood, description is to say that a complete market is one for
which there exist the same number of linearly independent
securities as there are states of the world in the future.

Consider, for example, the binomial model in which there
are two states of the world at the next time step, and there
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are also two securities, cash and the stock. That is a com-
plete market. Now, after two time steps there will be three
possible states of the world, assuming the binomial model
recombines so that an up—down move gets you to the same
place as down-up. You might think that you therefore need
three securities for a complete market. This is not the case
because after the first time step you get to change the quan-
tity of stock you are holding; this is where the dynamic part
of the replication comes in.

In the equity world the two most popular models for equity
prices are the lognormal, with a constant volatility, and the
binomial. Both of these result in complete markets, you can
replicate other contracts in these worlds.

In a complete market you can replicate derivatives with the
simpler instruments. But you can also turn this on its head so
that you can hedge the derivative with the underlying instru-
ments to make a risk-free instrument. In the binomial model
you can replicate an option from stock and cash, or you can
hedge the option with the stock to make cash. Same idea,
same equations, just move terms to be on different sides of
the ‘equals’ sign.

As well as resulting in replication of derivatives, or the ability
to hedge them, complete markets also have a nice mathemat-
ical property. Think of the binomial model. In this model you
specify the probability of the stock rising (and hence falling
because the probabilities must add to 1). It turns out that
this probability does not affect the price of the option. This
is a simple consequence of complete markets, since you can
hedge the option with the stock you don’t care whether the
stock rises or falls, and so you don’t care what the probabili-
ties are. People can therefore disagree on the probability of a
stock rising or falling but still agree on the value of an option,
as long as they share the same view on the stock’s volatility.
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In probabilistic terms we say that in a complete market there
exists a unique martingale measure, but for an incomplete
market there is no unique martingale measure. The interpre-
tation of this is that even though options are risky instru-
ments in complete markets we don’t have to specify our own
degree of risk aversion in order to price them.

Enough of complete markets: where can we find incomplete

markets? The answer is ‘everywhere.’ In practice, all markets
are incomplete because of real-world effects that violate the

assumptions of the simple models.

Take volatility as an example. As long as we have a lognor-
mal equity random walk, no transaction costs, continuous
hedging, perfectly divisible assets,..., and constant volatil-
ity then we have a complete market. If that volatility is a
known time-dependent function then the market is still com-
plete. It is even still complete if the volatility is a known func-
tion of stock price and time. But as soon as that volatility
becomes random then the market is no longer complete. This
is because there are now more states of the world than there
are linearly independent securities. In reality, we don’t know
what volatility will be in the future so markets are incom-
plete.

We also get incomplete markets if the underlying follows a
jump-diffusion process. Again more possible states than there
are underlying securities.

Another common reason for getting incompleteness is if the
underlying or one of the variables governing the behaviour of
the underlying is random. Options on terrorist acts cannot be
hedged since terrorist acts aren’t traded (to my knowledge at
least).

We still have to price contracts even in incomplete markets,
so what can we do? There are two main ideas here. One is to
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price the actuarial way, the other is to try to make all option
prices consistent with each other.

The actuarial way is to look at pricing in some average sense.
Even if you can’t hedge the risk from each option it doesn’t
necessarily matter in the long run. Because in that long run
you will have made many hundreds or thousands of option
trades, so all that really matters is what the average price of
each contract should be, even if it is risky. To some extent
this relies on results from the Central Limit Theorem. This is
called the actuarial approach because it is how the insurance
business works. You can’t hedge the lifespan of individual
policyholders but you can figure out what will happen to hun-
dreds of thousands of them on average using actuarial tables.

The other way of pricing is to make options consistent with
each other. This is commonly used when we have stochas-
tic volatility models, for example, and is also often seen in
fixed-income derivatives pricing. Let’s work with the stochas-
tic volatility model to get inspiration. Suppose we have a
lognormal random walk with stochastic volatility. This means
we have two sources of randomness (stock and volatility) but
only one quantity with which to hedge (stock). That’s like
saying that there are more states of the world than underly-
ing securities, hence incompleteness. Well, we know we can
hedge the stock price risk with the stock, leaving us with
only one source of risk that we can’t get rid of. That’s like
saying there is one extra degree of freedom in states of the
world than there are securities. Whenever you have risk that
you can’t get rid of you have to ask how that risk should be
valued. The more risk the more return you expect to make
in excess of the risk-free rate. This introduces the idea of
the market price of risk. Technically in this case it intro-
duces the market price of volatility risk. This measures the
excess expected return in relation to unhedgeable risk. Now
all options on this stock with the random volatility have the
same sort of unhedgeable risk, some may have more or less
risk than others but they are all exposed to volatility risk.
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The end result is a pricing model which explicitly contains
this market price of risk parameter. This ensures that the
prices of all options are consistent with each other via this
‘universal’ parameter. Another interpretation is that you price
options in terms of the prices of other options.
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Can |l use Real Probabilities to Price
Derivatives?

Short answer
Yes. But you may need to move away from classical quantita-
tive finance.

Example

Some modern derivatives models use ideas from utility the-
ory to price derivatives. Such models may find a use in pric-
ing derivatives that cannot be dynamically hedged.

Long answer

Yes and no. There are lots of reasons why risk-neutral pric-
ing doesn’t work perfectly in practice, because markets are
incomplete and dynamic hedging is impossible. If you can’t
continuously dynamically hedge then you cannot eliminate
risk and so risk neutrality is not so relevant. You might be
tempted to try to price using real probabilities instead. This
is fine, and there are plenty of theories on this topic, usually
with some element of utility theory about them. For example,
some theories use ideas from Modern Portfolio Theory and
look at real averages and real standard deviations.

For example you could value options as the certainty equiva-
lent value under the real random walk, or maybe as the real
expectation of the present value of the option’s payoff plus
or minus some multiple of the standard deviation. (Plus if
you are selling, minus if buying.) The ‘multiple’ represents a
measure of your risk aversion.

But there are two main problems with this.
1. You need to be able to measure real probabilities. In

classical stochastic differential equation models this
means knowing the real drift rate, often denoted by n for
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equities. This can be very hard, much harder than
measuring volatility. Is it even possible to say whether we
are in a bull or bear market? Often not! And you need to
project forward, again even harder, and harder than
forecasting volatility.

2. You need to decide on a utility function or a measure of
risk aversion. This is not impossible, a bank could tell all
its employees ‘From this day forward the bank’s utility
function is ...” Or tests can be used to estimate an
individual’s utility function by asking questions about his
attitude to various trades, this can all be quantified. But at
the moment this subject is still seen as too academic.

Although the assumptions that lead to risk neutrality are
clearly invalid the results that follow, and the avoidance of
the above two problems, means that more people than not
are swayed by its advantages.
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What is Volatility?

Short answer

Volatility is annualized standard deviation of returns. Or is it?
Because that is a statistical measure, necessarily backward
looking, and because volatility seems to vary, and we want to
know what it will be in the future, and because people have
different views on what volatility will be in the future, things
are not that simple.

Example

Actual volatility is the o that goes into the Black-Scholes
partial differential equation. Implied volatility is the number
in the Black-Scholes formula that makes a theoretical price
match a market price.

Long answer

Actual volatility is a measure of the amount of randomness in
a financial quantity at any point in time. It's what Desmond
Fitzgerald calls the ‘bouncy, bouncy.’ It’s difficult to measure,
and even harder to forecast but it’s one of the main inputs
into option-pricing models.

It’s difficult to measure since it is defined mathematically via
standard deviations, which requires historical data to calcu-
late. Yet actual volatility is not a historical quantity but an
instantaneous one.

Realized/historical volatilities are associated with a period

of time, actually two periods of time. We might say that the
daily volatility over the last sixty days has been 27%. This
means that we take the last sixty days’ worth of daily asset
prices and calculate the volatility. Let me stress that this has
two associated timescales, whereas actual volatility has none.
This tends to be the default estimate of future volatility in
the absence of any more sophisticated model. For example,
we might assume that the volatility of the next sixty days is
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the same as over the previous sixty days. This will give us an
idea of what a sixty-day option might be worth.

Implied volatility is the number you have to put into the
Black-Scholes option-pricing equation to get the theoretical
price to match the market price. Often said to be the mar-
ket’s estimate of volatility.

Let’s recap. We have actual volatility, which is the instanta-
neous amount of noise in a stock price return. It is sometimes
modelled as a simple constant, sometimes as time depen-
dent, sometimes as stock and time dependent, sometimes

as stochastic, sometimes as a jump process, and sometimes
as uncertain, that is, lying within a range. It is impossible to
measure exactly; the best you can do is to get a statistical
estimate based on past data. But this is the parameter we
would dearly love to know because of its importance in pric-
ing derivatives. Some hedge funds believe that their edge is
in forecasting this parameter better than other people, and
so profit from options that are mispriced in the market.

Since you can’t see actual volatility people often rely on mea-
suring historical or realized volatility. This is a backward
looking statistical measure of what volatility has been. And
then one assumes that there is some information in this data
that will tell us what volatility will be in the future. There are
several models for measuring and forecasting volatility and
we will come back to them shortly.

Implied volatility is the number you have to put into the
Black-Scholes option-pricing formula to get the theoretical
price to match the market price. This is often said to be the
market’s estimate of volatility. More correctly, option prices
are governed by supply and demand. Is that the same as
the market taking a view on future volatility? Not necessarily
because most people buying options are taking a directional
view on the market and so supply and demand reflects direc-
tion rather than volatility. But because people who hedge
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options are not exposed to direction only volatility it looks
to them as if people are taking a view on volatility when they
are more probably taking a view on direction, or simply buy-
ing out-of-the-money puts as insurance against a crash. For
example, the market falls, people panic, they buy puts, the
price of puts and hence implied volatility goes up. Where the
price stops depends on supply and demand, not on anyone’s
estimate of future volatility, within reason.

Implied volatility levels the playing field so you can compare
and contrast option prices across strikes and expirations.

There is also forward volatility. The adjective ‘forward’ is
added to anything financial to mean values in the future. So
forward volatility would usually mean volatility, either actual
or implied, over some time period in the future. Finally hedg-
ing volatility means the parameter that you plug into a delta
calculation to tell you how many of the underlying to sell
short for hedging purposes.

Since volatility is so difficult to pin down it is a natural quan-
tity for some interesting modelling. Here are some of the
approaches used to model or forecast volatility.

Econometric models These models use various forms of time
series analysis to estimate current and future expected
actual volatility. They are typically based on some regression
of volatility against past returns and they may involve
autoregressive or moving-average components. In this
category are the GARCH type of models. Sometimes one
models the square of volatility, the variance, sometimes

one uses high-low-open-close data and not just closing
prices, and sometimes one models the logarithm of volatility.
The latter seems to be quite promising because there is
evidence that actual volatility is lognormally distributed.
Other work in this area decomposes the volatility of a stock
into components, market volatility, industry volatility and
firm-specific volatility. This is similar to CAPM for returns.
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Deterministic models The simple Black-Scholes formulee assume
that volatility is constant or time dependent. But market
data suggests that implied volatility varies with strike price.
Such market behaviour cannot be consistent with a volatility
that is a deterministic function of time. One way in which
the Black-Scholes world can be modified to accommodate
strike-dependent implied volatility is to assume that actual
volatility is a function of both time and the price of the
underlying. This is the deterministic volatility (surface)
model. This is the simplest extension to the Black-Scholes
world that can be made to be consistent with market prices.
All it requires is that we have o (S, ), and the Black-Scholes
partial differential equation is still valid. The interpretation
of an option’s value as the present value of the expected
payoff under a risk-neutral random walk also carries over.
Unfortunately the Black-Scholes closed-form formulee are no
longer correct. This is a simple and popular model, but it
does not capture the dynamics of implied volatility very well.

Stochastic volatility Since volatility is difficult to measure,

and seems to be forever changing, it is natural to model

it as stochastic. The most popular model of this type is

due to Heston. Such models often have several parameters
which can either be chosen to fit historical data or, more
commonly, chosen so that theoretical prices calibrate

to the market. Stochastic volatility models are better at
capturing the dynamics of traded option prices better than
deterministic models. However, different markets behave
differently. Part of this is because of the way traders look
at option prices. Equity traders look at implied volatility
versus strike, FX traders look at implied volatility versus
delta. It is therefore natural for implied volatility curves to
behave differently in these two markets. Because of this there
have grown up the sticky strike, sticky delta, etc., models,
which model how the implied volatility curve changes as the
underlying moves.
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Poisson processes There are times of low volatility and times of
high volatility. This can be modelled by volatility that jumps
according to a Poisson process.

Uncertain volatility An elegant solution to the problem of mod-

elling the unseen volatility is to treat it as uncertain, meaning
that it is allowed to lie in a specified range but whereabouts

in that range it actually is, or indeed the probability of being
at any value, are left unspecified. With this type of model we
no longer get a single option price, but a range of prices, rep-
resenting worst-case scenario and best-case scenario.
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What is the Volatility Smile?

Short answer

Volatility smile is the phrase used to describe how the
implied volatilities of options vary with their strikes. A smile
means that out-of-the-money puts and out-of-the-money
calls both have higher implied volatilities than at-the-money
options. Other shapes are possible as well. A slope in the
curve is called a skew. So a negative skew would be a
download-sloping graph of implied volatility versus strike.

Example

0.35
0.3 4 °

0.25 1

o
o
°

Implied volatility
©
o

©
=

0.05 1

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
Strike

Figure 2.10: The volatility ‘smile’ for one-month SP500 options, February
2004.




168 Frequently Asked Questions in Quantitative Finance

Long answer

Let us begin with how to calculate the implied volatilities.
Start with the prices of traded vanilla options, usually the
mid price between bid and offer, and all other parameters
needed in the Black-Scholes formulee, such as strikes, expira-
tions, interest rates, dividends, except for volatilities. Now ask
the question: What volatility must be used for each option
series so that the theoretical Black-Scholes price and the
market price are the same?

Although we have the Black-Scholes formula for option
values as a function of volatility, there is no formula for
the implied volatility as a function of option value, it must
be calculated using some bisection, Newton-Raphson, or
other numerical technique for finding zeros of a function.
Now plot these implied volatilities against strike, one curve
per expiration. That is the implied volatility smile. If you
plot implied volatility against both strike and expiration as
a three-dimensional plot, then that is the implied volatility
surface. Often you will find that the smile is quite flat for
long-dated options, but getting steeper for short-dated
options.

Since the Black-Scholes formulae assume constant volatility
(or with a minor change, time-dependent volatility) you might
expect a flat implied volatility plot. This does not appear to
be the case from real option-price data. How can we explain
this? Here are some questions to ask.

e [s volatility constant?
e Are the Black-Scholes formulee correct?
e Do option traders use the Black-Scholes formulae?

Volatility does not appear to be constant. By this we mean
that actual volatility is not constant, actual volatility being
the amount of randomness in a stock’s return. Actual
volatility is something you can try to measure from a stock
price time series, and would exist even if options didn’t
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exist. Although it is easy to say with confidence that actual
volatility is not constant, it is altogether much harder to
estimate the future behaviour of volatility. So that might
explain why implied volatility is not constant, and people
believe that volatility is not constant.

If volatility is not constant then the Black-Scholes formulae
are not correct. (Again, there is the small caveat that the
Black-Scholes formulee can work if volatility is a known deter-
ministic function of time. But I think we can also confidently
dismiss this idea as well.)

Despite this, option traders do still use the Black-Scholes for-
mule for vanilla options. Of all the models that have been
invented, the Black-Scholes model is still the most popu-
lar for vanilla contracts. It is simple and easy to use, it has
very few parameters, it is very robust. Its drawbacks are
quite well understood. But very often, instead of using mod-
els without some of the Black-Scholes’ drawbacks, people
‘adapt’ Black-Scholes to accommodate those problems. For
example, when a stock falls dramatically we often see a tem-
porary increase in its volatility. How can that be squeezed
into the Black-Scholes framework? Easy, just bump up the
implied volatilities for option with lower strikes. A low strike
put option will be out of the money until the stock falls, at
which point it may be at the money, and at the same time
volatility might rise. So, bump up the volatility of all of the
out-of-the-money puts. This deviation from the flat-volatility
Black-Scholes world tends to get more pronounced closer to
expiration.

A more general explanation for the volatility smile is that it
incorporates the kurtosis seen in stock returns. Stock returns
are not normal, stock prices are not lognormal. Both have
fatter tails than you would expect from normally distributed
returns. We know that, theoretically, the value of an option is
the present value of the expected payoff under a risk-neutral
random walk. If that risk-neutral probability density function
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has fat tails then you would expect option prices to be
higher than Black-Scholes for very low and high strikes.
Hence higher implied volatilities, and the smile.

Another school of thought is that the volatility smile and
skew exist because of supply and demand. Option prices
come less from an analysis of probability of tail events

than from simple agreement between a buyer and a seller.
Out-of-the-money puts are a cheap way of buying protection
against a crash. But any form of insurance is expensive; after
all, those selling the insurance also want to make a profit.
Thus out-of-the-money puts are relatively over-priced. This
explains high implied volatility for low strikes. At the other
end, many people owning stock will write out-of-the-money
call options (so-called covered call writing) to take in some
premium, perhaps when markets are moving sideways.
There will therefore be an over-supply of out-of-the-money
calls, pushing the prices down. Net result, a negative skew.
Although the simple supply/demand explanation is popular
among traders it does not sit comfortably with quants
because it does suggest that options are not correctly priced
and that there may be arbitrage opportunities.

While on the topic of arbitrage, it is worth mentioning that
there are constraints on the skew and the smile that come
from examining simple option portfolios. For example, rather
obviously, the higher the strike of a call option, the lower
its price. Otherwise you could make money rather easily by
buying the low strike call and selling the higher strike call.
This imposes a constraint on the skew. Similarly, a butter-
fly spread has to have a positive value since the payoff can
never be negative. This imposes a constraint on the curvature
of the smile. Both of these constraints are model indepen-
dent.

There are many ways to build the volatility-smile effect into
an option-pricing model, and still have no arbitrage. The most
popular are, in order of complexity, as follows
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e Deterministic volatility surface
e Stochastic volatility
e Jump diffusion.

The deterministic volatility surface is the idea that volatil-
ity is not constant, or even only a function of time, but a
known function of stock price and time, o (S, ). Here the word
‘known’ is a bit misleading. What we really know are the
market prices of vanilla options, a snapshot at one instant
in time. We must now figure out the correct function o (S, ¢)
such that the theoretical value of our options matches the
market prices. This is mathematically an inverse problem,
essentially find the parameter, volatility, knowing some solu-
tions, market prices. This model may capture the volatility
surface exactly at an instant in time, but it does a very poor
job of capturing the dynamics, that is, how the data change
with time.

Stochastic volatility models have two sources of randomness,
the stock return and the volatility. One of the parameters in
these models is the correlation between the two sources of
randomness. This correlation is typically negative so that

a fall in the stock price is often accompanied by a rise in
volatility. This results in a negative skew for implied volatil-
ity. Unfortunately, this negative skew is not usually as pro-
nounced as the real market skew. These models can also
explain the smile. As a rule one pays for convexity. We see
this in the simple Black-Scholes world where we pay for
gamma. In the stochastic volatility world we can look at the
second derivative of option value with respect to volatility,
and if it is positive we would expect to have to pay for this
convexity — that is, option values will be relatively higher
wherever this quantity is largest. For a call or put in the
world of constant volatility we have
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This function is plotted in Figure 2.11 for S =100, T — ¢t =1,
o =0.2, r=0.05 and D = 0. Observe how it is positive away
from the money, and small at the money. (Of course, this is
a bit of a cheat because on one hand I am talking about ran-
dom volatility and yet using a formula that is only correct for
constant volatility.)

Stochastic volatility models have greater potential for
capturing dynamics, but the problem, as always, is knowing
which stochastic volatility model to choose and how to find
its parameters. When calibrated to market prices you will
still usually find that supposed constant parameters in your
model keep changing. This is often the case with calibrated
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models and suggests that the model is still not correct, even
though its complexity seems to be very promising.

Jump-diffusion models allow the stock (and even the
volatility) to be discontinuous. Such models contain so many
parameters that calibration can be instantaneously more
accurate (if not necessarily stable through time).
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What 1s GARCH?

Short answer

GARCH stands for Generalized Auto Regressive Conditional
Heteroscedasticity. This is an econometric model used for
modelling and forecasting time-dependent variance, and
hence volatility, of stock price returns. It represents current
variance in terms of past variance(s).

Example

The simplest member of the GARCH family is GARCH(1,1) in
which the variance, v, of stock returns at time step n is mod-
elled by

op=(1—a—BRwy+ Bon_1+ ‘XUnle,zl,p

where wy is the long-term variance, « and B are positive
parameters, with « + 8 < 1, and B, are independent Brownian
motions, that is, random numbers drawn from a normal
distribution. The latest variance, v,, can therefore be thought
of as a weighted average of the most recent variance, the
latest square of returns, and the long-term average.

Long answer

What? GARCH is one member of a large family of economet-
ric models used to model time-varying variance. They are
popular in quantitative finance because they can be used for
measuring and forecasting volatility.

It is clear from simple equity or index data that volatility

is not constant. If it were then estimating it would be very
simple. After all, in finance we have what sometimes seems
like limitless quantities of data. Since volatility varies with
time we would like at the very least to know what it is right
now. And, more ambitiously, we would like to know what it is
going to be in the future, if not precisely then perhaps know
its future expected value. This requires a model.
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The simplest popular model assumes that we can get an esti-
mate for volatility over the next N days (the future) by look-
ing at volatility over the previous N days (the past). This
moving window volatility is initially appealing but suffers
from the problem that if there was a one-off jump in the stock
price it will remain in the data with the same weight for the
next N days and then suddenly drop out. This leads to artifi-
cially inflated volatility estimates for a while. One way around
this is to use the second most popular volatility model, the
exponentially weighted moving average (EWMA). This takes
the form

Un = Bn1 + (1 - PRS_,,

where § is a parameter between 0 and 1, and the R’s are the
returns, suitably normalized with the time step. This models
the latest variance as a weighted average between the pre-
vious variance and the latest square of returns. The larger

B the more weight is attached to the distant past and the
less to the recent past. This model is also simple and appeal-
ing, but it has one drawback. It results in no term structure
going into the future. The expected variance tomorrow, the
day after, and every day in the future is just today’s variance.
This is counterintuitive, especially at times when volatility is
at historical highs or lows.

And so we consider the third simplest model,
Un=1—a— Pwy+ Bop +01R3,_11

the GARCH(1,1) model. This adds a constant, long-term vari-
ance, to the EWMA model. The expected variance, k time
steps in the future, then behaves like

Elvnir] = wo + (Un — wo)(a + B)".

Since « + B8 < 1 this is exponentially decay of the average to
its mean. A much nicer, more realistic, time dependence than
we get from the EWMA model.
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In GARCH(p, g¢) the (p, q) refers to there being p past vari-
ances and g past returns in the estimate:

q p P q
Up = (1 - Za,- - Zﬁ,) wo + Z Bivn—i + ZaiRgz—i'
i=1 i=1 i=1 i=1

Why? Volatility is a required input for all classical
option-pricing models, it is also an input for many
asset-allocation problems and risk estimation, such as Value
at Risk. Therefore it is very important to have a method for
forecasting future volatility.

There is one slight problem with these econometric models,
however. The econometrician develops his volatility models
in discrete time, whereas the option-pricing quant would
ideally like a continuous-time stochastic differential equation
model. Fortunately, in many cases the discrete-time model
can be reinterpreted as a continuous-time model (there is
weak convergence as the time step gets smaller), and so both
the econometrician and the quant are happy. Still, of course,
the econometric models, being based on real stock price
data, result in a model for the real and not the risk-neutral
volatility process. To go from one to the other requires
knowledge of the market price of volatility risk.

How? The parameters in these models are usually deter-
mined by Maximum Likelihood Estimation applied to the
(log)likelihood function. Although this technique is usually
quite straightforward to apply there can be difficulties in
practice. These difficulties can be associated with

¢ having insufficient data

o the (log)likelihood function being very ‘flat’ with respect to
the parameters, so that the maximum is insensitive to the
parameter values

e estimating the wrong model, including having too many
parameters (the best model may be simpler than you
think).
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Family members

Here are some of the other members of the GARCH family.
New ones are being added all the time, they are breeding like
rabbits. In these models the ‘shocks’ can typically either have
a normal distribution, a Student’s t-distribution or a General-
ized Error distribution, the latter two having the fatter tails.

NGARCH

Un=(1—0o—PRwy+ pop-1+a (Rnfl Y Un71)2~

This is similar to GARCH(1,1) but the parameter y permits
correlation between the stock and volatility processes.

AGARCH Absolute value GARCH. Similar to GARCH but with
the volatility (not the variance) being linear in the absolute
value of returns (instead of square of returns).

EGARCH Exponential GARCH. This models the logarithm of
the variance. The model also accommodates asymmetry in
that negative shocks can have a bigger impact on volatility
than positive shocks.

REGARCH Range-based Exponential GARCH. This models the
low to high range of asset prices over a ‘day.’

IGARCH Integrated GARCH. This is a type of GARCH model
with further constraints on the parameters.

FIGARCH Fractionally Integrated GARCH. This model uses the
fractional differencing lag operator applied to the variance.
This adds an extra parameter to the GARCH model, and is
such that it includes GARCH and IGARCH as extremes. This
model has the long memory, slow decay of volatility as seen
in practice.
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FIEGARCH Fractionally Integrated Exponential GARCH. This
models the logarithm of variance and again has the long
memory, slow decay of volatility as seen in practice.

TGARCH Threshold GARCH. This is similar to GARCH but
includes an extra term that kicks in when the shock is neg-
ative. This gives a realistic asymmetry to the volatility model.

PGARCH Power GARCH. In this model the variance is raised
to a power other than zero (logarithm), one (AGARCH) or
two. This model can have the long memory, slow decay of
volatility seen in practice.

CGARCH Component GARCH. This models variance as the
sum of two or more ‘components.’ In a two-component
model, for example, one component is used to capture
short-term and another the long-term effects of shocks.
This model therefore has the long memory, slow decay of
volatility seen in practice.
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How Do | Pynamically Hedge?

Short answer

Dynamic hedging, or delta hedging, means the continuous
buying or selling of the underlying asset according to some
formula or algorithm so that risk is eliminated from an option
position. The key point in this is what formula do you use,
and, given that in practice you can’t hedge continuously, how
should you hedge discretely? First, get your delta correct,
and this means use the correct formula and estimates for
parameters, such as volatility. Second, decide when to hedge
based on the conflicting desires of wanting to hedge as often
as possible to reduce risk, but as little as possible to reduce
any costs associated with hedging.

Example

The implied volatility of a call option is 20% but you think
that is cheap and volatility is nearer 40%. Do you put 20% or
40% into the delta calculation? The stock then moves, should
you rebalance, incurring some inevitable transactions costs,
or wait a bit longer while taking the risks of being unhedged?

Long answer

There are three issues, at least, here. First, what is the cor-

rect delta? Second, if [ don’t hedge very often how big is my
risk? Third, when I do rehedge, how big are my transaction

costs?

What is the correct delta? Let’s continue with the above example,
implied volatility 20% but you believe volatility will be 40%.
Does 0.2 or 0.4 go into the Black-Scholes delta calculation,
or perhaps something else? First let me reassure you that
you won't theoretically lose money in either case (or even if
you hedge using a volatility somewhere in the 20 to 40 range)
as long as you are right about the 40% and you hedge con-
tinuously. There will however be a big impact on your P&L
depending on which volatility you input.
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If you use the actual volatility of 40% then you are guar-
anteed to make a profit that is the difference between the
Black-Scholes formula using 40% and the Black-Scholes
formula using 20%.

V(S,t0) = V(S,t;5),

where V(S,t; o) is the Black-Scholes formula for the call
option and o denotes actual volatility and & is implied
volatility.

That profit is realized in a stochastic manner, so that on a
marked-to-market basis your profit will be random each day.
This is not immediately obvious, nevertheless it is the case
that each day you make a random profit or loss, both equally
likely, but by expiration your total profit is a guaranteed num-
ber that was known at the outset. Most traders dislike the
potentially large P&L swings that you get by hedging, using
the forecast volatility that they hedge using implied volatility.

When you hedge with implied volatility, even though it is
wrong compared with your forecast, you will still make
money. But in this case the profit each day is non-negative
and smooth, so much nicer than when you hedge using
forecast volatility. The downside is that the final profit
depends on the path taken by the underlying. If the stock
stays close to the strike then you will make a lot of money.
If the stocks goes quickly far into or out of the money then
your profit will be small. Hedging using implied volatility
gives you a nice, smooth, monotonically increasing P&L but
at the cost of not knowing how much money you will make.

The profit each time step is
1 .
5(02 — 69821 dt,
where I'! is the Black-Scholes gamma using implied volatil-

ity. You can see from this expression that as long as actual
volatility is greater than implied, you will make money from



Chapter 2: FAQs 181

this hedging strategy. This means that you do not have to be
all that accurate in your forecast of future actual volatility to
make a profit.

How big is my hedging error? In practice you cannot hedge con-
tinuously. The Black-Scholes model, and the above analy-
sis, requires continuous rebalancing of your position in the
underlying. The impact of hedging discretely is quite easy to
quantify.

When you hedge you eliminate a linear exposure to the move-
ment in the underlying. Your exposure becomes quadratic
and depends on the gamma of your position. If we use ¢ to
denote a normally distributed random variable with mean of
zero and variance one, then the profit you make over a time
step &t due to the gamma is simply

1
502521“ St 2.

This is in an otherwise perfect Black-Scholes world. The
only reason why this is not exactly a Black-Scholes world
is because we are hedging at discrete time intervals.

The Black-Scholes model prices in the expected value of
this expression. You will recognize the 102S?I" from the
Black-Scholes equation. So the hedging error is simply

1

Eazszr st (¢? — 1.
This is how much you make or lose between each rebalanc-
ing.
We can make several important observations about hedging

error.

o It is large: it is O(8t), which is the same order of magnitude
as all other terms in the Black-Scholes model. It is usually
much bigger than interest received on the hedged option
portfolio.



182 Frequently Asked Questions in Quantitative Finance

e On average it is zero: hedging errors balance out.

¢ [t is path dependent: the larger gamma, the larger the
hedging errors.

e The total hedging error has standard deviation of /5 :
total hedging error is your final error when you get to
expiration. If you want to halve the error you will have to
hedge four times as often.

e Hedging error is drawn from a chi-square distribution:
that’s what ¢? is

¢ If you are long gamma you will lose money approximately
68% of the time: this is chi-square distribution in action.
But when you make money it will be from the tails, and big
enough to give a mean of zero. Short gamma you lose only
32% of the time, but they will be large losses

e In practice ¢ is not normally distributed: the fat tails, high
peaks we see in practice, will make the above observation
even more extreme, perhaps a long gamma position will
lose 80% of the time and win only 20%. Still the mean will
be zero

Can | optimize my hedge? Suppose I am allowed to rehedge 100
times in a year, should I rehedge at equal time intervals or
is there something better? Yes, there is something better.
Unfortunately the mathematics is a bit tricky. Take a look
at page 343 for some further information on this important
topic.

How much will transaction costs reduce my profit? To reduce hedging
error we must hedge more frequently, but the downside of
this is that any costs associated with trading the underlying
will increase. Can we quantify transaction costs? Of course
we can.

If we hold a short position in delta of the underlying and
then rebalance to the new delta at a time §¢ later, then we
will have had to have bought or sold whatever the change in
delta was. As the stock price changes by &S then the delta
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changes by 3S I'. If we assume that costs are proportional to
the absolute value of the amount of the underlying bought or
sold, such that we pay in costs an amount « times the value
traded then the expected cost each §t will be

Kasz«/ﬁ/Zm,
s

where the \/g appears because we have to take the expected
value of the absolute value of a normal variable. Since this
happens every time step, we can adjust the Black-Scholes
equation by subtracting from it the above divided by 4t to
arrive at

vl , 5,3 v )
S22 ST —V — ke SE || = 0.
or 275 ggE TG~V m ke I

This equation is interesting for being nonlinear, so that the
value of a long call and a short call will be different. The long
call will be less than the Black-Scholes value and a short call
higher. The long position is worth less because we have to
allow for the cost of hedging. The short position is even more
of a liability because of costs.

Crucially we also see that the effect of costs grows like the
inverse of the square root of the time between rehedges. As
explained above, if we want to halve hedging error we must
hedge four times as often. But this would double the effects
of transaction costs.

Can | optimize my hedging when there are transaction costs? In practice,
people do not rehedge at fixed intervals, except perhaps just
before market close. There are many other possible strate-
gies involving hedging when the underlying or delta moves a
specified amount, or even strategies involving utility theory.
Again, the mathematics is usually not easy, and is certainly
too much for a FAQs book! If you are interested in this topic,
and are feeling brave, take at look at some of the Whalley &
Wilmott papers listed below.
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What is Serial Autocorrelation and
Does it Have a Role in Perivatives?

Short answer

Serial autocorrelation (SAC) is a temporal correlation between
a time series and itself, meaning that a move in, say, a stock
price one day is not independent of the stock move on a
previous day. Usually in quantitative finance we assume that
there is no such memory, that’s what Markov means. We can
measure, and model, such serial autocorrelation with differ-
ent ‘lags.” We can look at the SAC with a one-day lag, this
would be the correlation between moves one day and the day
before, or with a two-day lag, that would be the correlation
between moves and moves two days previously, etc.

Example

Figure 2.12 shows the 252-day rolling SAC, with a lag of one
day, for the Dow Jones Industrial index. It is clear from this
that there has been a longstanding trend since the late 1970s
going from extremely positive SAC to the current extremely
negative SAC. (I imagine that many people instinctively felt
this!)

Long answer

Very, very few people have published on the subject of serial
autocorrelation and derivatives pricing and hedging. Being a
specialist in doing things that are important rather than doing
what everyone else does, | am obviously one of those few!

Positive SAC is rather like trend following, negative SAC

is rather like profit taking. (I use ‘rather like’ because
technically speaking trending is, in stochastic differential
equation terms, the function of the growth or dt term,
whereas SAC is in the random term.) The current level has
been seen before, in the early thirties, mid 1960s and late
1980s. (Note that what I have plotted here is a very simplistic
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Figure 2.12: The 252-day rolling SAC, with a lag of one day, for the Dow
Jones Industrial index.

SAC measure, being just a moving window and therefore with
all the well-known faults. The analysis could be improved
upon dramatically, but the consequences would not change.)

As far as pricing and hedging of derivatives is concerned
there are three main points of interest (as [ say, mentioned
in very, very few quant books!).
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1. The definition of ‘volatility’ is subtly different when there
is SAC. The sequence +1, —1, +1, —1, +1, has perfect
negative SAC and a volatility of zero! (The difference
between volatility with and without SAC is a factor of
V1 — p?%, where p is the SAC coefficient.

2. If we can hedge continuously then we don’t care about the
probability of the stock rising or falling and so we don’t
really care about SAC. (A fun consequence of this is that
options paying off SAC always have zero value
theoretically.)

3. In practice, however, hedging must be done discretely.
And this is where non-zero SAC becomes important. If you
expect that a stock will oscillate up and down wildly from
one day to the next, like the above +1, —1, +1, —1,
example, then what you should do depends on whether
you are long or short gamma. If gamma is positive then
you trade to capture the extremes if you can. Whereas if
you are short gamma then you can wait, because the
stock will return to its current level and you will have
gained time value. Of course this is very simplistic, and for
short gamma positions requires nerves of steel!
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What is Dispersion Trading?

Short answer

Dispersion trading is a strategy involving the selling of
options on an index against buying a basket of options on
individual stocks. Such a strategy is a play on the behaviour
of correlations during normal markets and during large
market moves. If the individual assets returns are widely
dispersed then there may be little movement in the index,
but a large movement in the individual assets. This would
result in a large payoff on the individual asset options but
little to payback on the short index option.

Example

You have bought straddles on constituents of the SP500
index, and you have sold a straddle on the index itself. On
most days you don’t make much of a profit or loss on this
position, gains/losses on the equities balance losses/gains on
the index. But one day half of your equities rise dramatically,
and one half fall, with there being little resulting move in the
index. On this day you make money on the equity options
from the gammas, and also make money on the short index
option because of time decay. That was a day on which the
individual stocks were nicely dispersed.

Long answer
The volatility on an index, o7, can be approximated by

N N
012 = Z Z Wil pijoioj,
i=1 j=1
where there are N constituent stocks, with volatilities oy,
weight w; by value and correlations p;;. (I say ‘approximate’
because technically we are dealing with a sum of lognormals
which is not lognormal, but this approximation is fine.)

If you know the implied volatilities for the individual stocks
and for the index option then you can back out an implied
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correlation, amounting to an ‘average’ across all stocks:
2 N o2 2
of — D im Wio;
N N :
Doi1 2izj—1 Willjpijoio;
Dispersion trading can be interpreted as a view on this

implied correlation versus one’s own forecast of where this
correlation ought to be, perhaps based on historical analysis.

The competing effects in a dispersion trade are

e gamma profits versus time decay on each of the long
equity options

e gamma losses versus time decay (the latter a source of
profit) on the short index options

e the amount of correlation across the individual equities.

In the example above we had half of the equities increas-
ing in value, and half decreasing. If they each moved more
than their respective implied volatilities would suggest then
each would make a profit. For each stock this profit would
depend on the option’s gamma and the implied volatility,
and would be parabolic in the stock move. The index would
hardly move and the profit there would also be related to
the index option’s gamma. Such a scenario would amount
to there being an average correlation of zero and the index
volatility being very small.

But if all stocks were to move in the same direction the profit
from the individual stock options would be the same but this
profit would be swamped by the gamma loss on the index
options. This corresponds to a correlation of one across all
stocks and a large index volatility.

Why might dispersion trading be successful?

e Dynamics of markets are more complex than can be
captured by the simplistic concept of correlation.
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¢ Index options might be expensive because of large demand,
therefore good to sell.

e You can choose to buy options on equities that are
predisposed to a high degree of dispersion. For example,
focus on stocks which move dramatically in different
directions during times of stress. This may be because
they are in different sectors, or because they compete with
one another, or because there may be merger possibilities.

e Not all of the index constituents need to be bought. You
can choose to buy the cheaper equity options in terms of
volatility.

Why might dispersion trading be unsuccessful?

e It is too detailed a strategy to cope with large numbers of
contracts with bid-offer spreads.

e You should delta hedge the positions which could be
costly.

e You must be careful of downside during market crashes.
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What is Bootstrapping using Discount
Factors?

Short answer

Bootstrapping means building up a forward interest-rate
curve that is consistent with the market prices of common
fixed-income instruments such as bonds and swaps. The
resulting curve can then be used to value other instruments,
such as bonds that are not traded.

Example

You know the market prices of bonds with one, two three,
five years to maturity. You are asked to value a four-year
bond. How can you use the traded prices so that your
four-year bond price is consistent?

Long answer

Imagine that you live in a world where interest rates change
in a completely deterministic way, no randomness at all.
Interest rates may be low now, but rising in the future,

for example. The spot interest rate is the interest you
receive from one instant to the next. In this deterministic
interest-rate world this spot rate can be written as a function
of time, r(#). If you knew what this function was you would
be able to value fixed-coupon bonds of all maturities by using

the discount factor
T
exp —/ r(t)dr |,
t

to present value a payment at time T to today, t.

Unfortunately you are not told what this r function is. Instead
you only know, by looking at market prices of various
fixed-income instruments, some constraints on this r function.
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As a simple example, suppose you know that a zero-coupon
bond, principal $100, maturing in one year, is worth $95
today. This tells us that

exp (— [tﬂ r(r)a’r) =0.95.

Suppose a similar two-year zero-coupon bond is worth $92,
then we also know that

2
exp (— /tf+ r(r)dr) =0.92.

This is hardly enough information to calculate the entire r(f)
function, but it is similar to what we have to deal with in
practice. In reality, we have many bonds of different matu-
rity, some without any coupons but most with, and also very
liquid swaps of various maturities. Each such instrument is a
constraint on the r(¢) function.

Bootstrapping is backing out a deterministic spot rate func-
tion, r(f), also called the (instantaneous) forward rate curve
that is consistent with all of these liquid instruments.

Note that usually only the simple ‘linear’ instruments are
used for bootstrapping. Essentially this means bonds, but
also includes swaps since they can be decomposed into a
portfolio of bonds. Other contracts such as caps and floors
contain an element of optionality and therefore require a
stochastic model for interest rates. It would not make finan-
cial sense to assume a deterministic world for these instru-
ments, just as you wouldn’t assume a deterministic stock
price path for an equity option.

Because the forward rate curve is not uniquely determined
by the finite set of constraints that we encounter in practice,
we have to impose some conditions on the function r(t).

e Forward rates should be positive, or there will be arbitrage
opportunities.
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e Forward rates should be continuous (although this is
commonsense rather than because of any financial
argument).

e Perhaps the curve should also be smooth.

Even with these desirable characteristics the forward curve is
not uniquely defined.

Finding the forward curve with these properties amounts

to deciding on a way of interpolating ‘between the points,’
the ‘points’ meaning the constraints on the integrals of the r
function. There have been many proposed interpolation tech-
niques such as

linear in discount factors

linear in spot rates

linear in the logarithm of rates
piecewise linear continuous forwards
cubic splines

Bessel cubic spline
monotone-preserving cubic spline
quartic splines

and others.

Finally, the method should result in a forward rate function
that is not too sensitive to the input data, the bond prices
and swap rates, it must be fast to compute and must not be
too local in the sense that if one input is changed it should
only impact on the function nearby. And, of course, it should
be emphasized that there is no ‘correct’ way to join the
dots.

Because of the relative liquidity of the instruments it is com-
mon to use deposit rates in the very short term, bonds and

FRAs for the medium term and swaps for the longer end of

the forward curve.
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Yield

Because the bootstrapped forward curve is assumed to come
from deterministic rates it is dangerous to use it to price
instruments with convexity since such instruments require a
model for randomness, as explained by Jensen’s Inequality.

Two other interpolation techniques are worth mention-
ing: first, that proposed by Jesse Jones and, second, the
Epstein-Wilmott yield envelope.

The method proposed by Jesse Jones involves choosing the
forward curve that satisfies all the constraints imposed by

9 1 The Yield Envelope

Figure 2.13: The Yield Envelope showing ranges of possible yields. The
points at which the range is zero is where there are traded contracts.
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traded instruments but is, cricially, also not too far from the
forward curve as found previously, the day before, say. The
idea being simply that this will minimize changes in valuation
for fixed-income instruments.

The Epstein—-Wilmott model is nonlinear, posing constraints
on the dynamics of the short rate. One of the outputs of
this model is the Yield Envelope (Figure 2.13) which gives
no-arbitrage bounds on the forward curve.
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What 15 the LIBOR Market Model and
its Principal Applications in Finance?

Short answer

The LIBOR Market Model (LMM), also known as the BGM or
BGM/J model, is a model for the stochastic evolution of for-
ward interest rates. Its main strength over other interest rate
models is that it describes the evolution of forward rates that
exist, at market-traded maturities, as opposed to theoretical
constructs such as the spot interest rate.

Example

In the LMM the variables are a set of forward rates for
traded, simple fixed-income instruments. The parameters are
volatilities of these and correlations between them. From no
arbitrage we can find the risk-neutral drift rates for these
variables. The model is then used to price other instruments.

Long answer

The history of interest-rate modelling begins with determin-
istic rates, and the ideas of yield to maturity, duration etc.
The assumption of determinism is not at all satisfactory for
pricing derivatives however, because of Jensen’s Inequality.

In 1976 Fischer Black introduced the idea of treating bonds
as underlying assets so as to use the Black-Scholes equity
option formulee for fixed-income instruments. This is also
not entirely satisfactory since there can be contradictions in
this approach. On the one hand bond prices are random, yet
on the other hand interest rates used for discounting from
expiration to the present are deterministic. An internally con-
sistent stochastic rates approach was needed.

The first step on the stochastic interest rate path used a very
short-term interest rate, the spot rate, as the random fac-
tor driving the entire yield curve. The mathematics of these
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spot-rate models was identical to that for equity models, and
the fixed-income derivatives satisfied similar equations as
equity derivatives. Diffusion equations governed the prices of
derivatives, and derivatives prices could be interpreted as the
risk-neutral expected value of the present value of all cash-
flows as well. And so the solution methods of finite-difference
methods for solving partial differential equations, trees and
Monte Carlo simulation carried over. Models of this type are:
Vasicek; Cox, Ingersoll & Ross; Hull & White. The advantage
of these models is that they are easy to solve numerically
by many different methods. But there are several aspects to
the downside. First, the spot rate does not exist, it has to be
approximated in some way. Second, with only one source of
randomness the yield curve is very constrained in how it can
evolve, essentially parallel shifts. Third, the yield curve that
is output by the model will not match the market yield curve.
To some extent the market thinks of each maturity as being
semi-independent from the others, so a model should match
all maturities otherwise there will be arbitrage opportunities.

Models were then designed to get around the second and
third of these problems. A second random factor was intro-
duced, sometimes representing the long-term interest rate
(Brennan & Schwartz), and sometimes the volatility of the
spot rate (Fong & Vasicek). This allowed for a richer struc-
ture for yield curves. And an arbitrary time-dependent param-
eter (or sometimes two or three such) was allowed in place
of what had hitherto been constant(s). The time dependence
allowed for the yield curve (and other desired quantities) to
be instantaneously matched. Thus was born the idea of cali-
bration, the first example being the Ho & Lee model.

The business of calibration in such models was rarely
straightforward. The next step in the development of models
was by Heath, Jarrow & Morton (HJM) who modelled the
evolution of the entire yield curve directly so that calibration
simply became a matter of specifying an initial curve. The
model was designed to be easy to implement via simulation.
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Because of the non-Markov nature of the general HIM
model it is not possible to solve these via finite-difference
solution of partial differential equations, the governing partial
differential equation would generally be in an infinite number
of variables, representing the infinite memory of the general
HJM model. Since the model is usually solved by simulation
it is straightforward having any number of random factors
and so a very, very rich structure for the behaviour of the
yield curve. The only downside with this model, as far as
implementation is concerned, is that it assumes a continuous
distribution of maturities and the existence of a spot rate.

The LIBOR Market Model (LMM) as proposed by Miltersen,
Sandmann, Sondermann, Brace, Gatarek, Musiela and
Jamshidian in various combinations and at various times,
models traded forward rates of different maturities as
correlated random walks. The key advantage over HIM is
that only prices which exist in the market are modelled, the
LIBOR rates. Each traded forward rate is represented by a
stochastic differential equation model with a drift rate and
a volatility, as well as a correlation with each of the other
forward rate models. For the purposes of pricing derivatives
we work as usual in a risk-neutral world. In this world the
drifts cannot be specified independently of the volatilities
and correlations. If there are N forward rates being modelled
then there will be N volatility functions to specify and

N(N — 1)/2 correlation functions, the risk-neutral drifts are
then a function of these parameters.

Again, the LMM is solved by simulation with the yield curve
‘today’ being the initial data. Calibration to the yield curve is
therefore automatic. The LMM can also be made to be con-
sistent with the standard approach for pricing caps, floors
and swaptions using Black 1976. Thus calibration to volatility-
and correlation-dependent liquid instruments can also be
achieved.



Chapter 2: FAQs ’99

Such a wide variety of interest-rate models have been sug-
gested because there has not been a universally accepted
model. This is in contrast to the equity world in which the
lognormal random walk is a starting point for almost all mod-
els. Whether the LMM is a good model in terms of scientific
accuracy is another matter, but its ease of use and calibra-
tion and its relationship with standard models make it very
appealing to practitioners.

References and Further Reading

Brace, A, Gatarek, D & Musiela, M 1997 The market model of interest
rate dynamics. Mathematical Finance 7 127-154

Brennan, M & Schwartz, E 1982 An equilibrium model of bond pric-
ing and a test of market efficiency. Journal of Financial and Quan-
titative Analysis 17 301-329

Cox, J, Ingersoll, J & Ross, S 1985 A theory of the term structure of
interest rates. Econometrica 53 385-467

Fong, G & Vasicek, O 1991, Interest rate volatility as a stochastic
factor. Working Paper

Heath, D, Jarrow, R & Morton, A 1992 Bond pricing and the term
structure of interest rates: a new methodology. Econometrica 60
77-105

Ho, T & Lee, S 1986 Term structure movements and pricing interest
rate contingent claims. Journal of Finance 42 1129-1142

Hull, JC & White, A 1990 Pricing interest rate derivative securities.
Review of Financial Studies 3 573-592

Rebonato, R 1996 Interest-rate Option Models. John Wiley & Sons Ltd

Vasicek, OA 1977 An equilibrium characterization of the term struc-
ture. Journal of Financial Economics 5 177-188



200 Frequently Asked Questions in Quantitative Finance

What 15 Meant by the ‘Value’ of a

Contract?

Short answer

Value usually means the theoretical cost of building up a new
contract from simpler products, such as replicating an option
by dynamically buying and selling stock.

Example
Wheels cost $10 each. A soapbox is $20. How much is a
go-cart? The value is $60.

Long answer

To many people the value of a contract is what they see on
a screen or comes out of their pricing software. Matters are
actually somewhat more subtle than this. Let’s work with the
above go-cart example.

To the quant the value of the go-cart is simply $60, the cost
of the soapbox and four wheels, ignoring nails and such-
like, and certainly ignoring the cost of manpower involved
in building it.

Are you going to sell the go-cart for $60? I don’t think so.
You’d like to make a profit, so you sell it for $80. That is the
price of the go-cart.

Why did someone buy it from you for $80? Clearly the $80
must be seen by them as being a reasonable amount to pay.
Perhaps they are going to enter a go-carting competition with
a first prize of $200. Without the go-cart they can’t enter, and
they can’t win the $200. The possibility of winning the prize
money means that the go-cart is worth more to them than
the $80. Maybe they would have gone as high as $100.

This simple example illustrates the subtlety of the whole val-
uation/pricing process. In many ways options are like go-carts
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and valuable insight can be gained by thinking on this more
basic level.

The quant rarely thinks like the above. To him value and
price are the same, the two words often used interchange-
ably. And the concept of worth does not crop up.

When a quant has to value an exotic contract he looks to
the exchange-traded vanillas to give him some insight into
what volatility to use. This is calibration. A vanilla trades at
$10, say. That is the price. The quant then backs out from a
Black-Scholes valuation formula the market’s implied volatil-
ity. By so doing he is assuming that price and value are iden-
tical.

Related to this topic is the question of whether a mathemati-
cal model explains or describes a phenomenon. The equations
of fluid mechanics, for example, do both. They are based on
conservation of mass and momentum, two very sound physi-
cal principles. Contrast this with the models for derivatives.

Prices are dictated in practice by supply and demand. Con-
tracts that are in demand, such as out-of-the-money puts for
downside protection, are relatively expensive. This is the
explanation for prices. Yet the mathematical models we use
for pricing have no mention of supply or demand. They are
based on random walks for the underlying with an unobserv-
able volatility parameter, and the assumption of no arbitrage.
The models try to describe how the prices ought to behave
given a volatility. But as we know from data, if we plug in our
own forecast of future volatility into the option-pricing for-
mulae we will get values that disagree with the market prices.
Either our forecast is wrong and the market knows better, or
the model is incorrect, or the market is incorrect. Common-
sense says all three are to blame. Whenever you calibrate
your model by backing out volatility from supply-demand
driven prices using a valuation formula you are mixing apples
and oranges.
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To some extent what the quant is trying to do is the same
as the go-cart builder. The big difference is that the go-cart
builder does not need a dynamic model for the prices of
wheels and soapboxes, his is a static calculation. One go-cart
equals one soapbox plus four wheels. It is rarely so simple
for the quant. His calculations are inevitably dynamic, his
hedge changes as the stock price and time change. It would
be like a go-cart for which you had to keep buying extra
wheels during the race, not knowing what the price of wheels
would be before you bought them. This is where the mathe-
matical models come in, and errors, confusion, and opportu-
nities appear.

And worth? That is a more subjective concept. Quantifying
it might require a utility approach. As Oscar Wilde said “A

cynic is a man who knows the price of everything but the
value of nothing.”

References and Further Reading
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What is Calibration?

Short Answer

Calibration means choosing parameters in your model so
that the theoretical prices for exchange-traded contracts out-
put from your model match exactly, or as closely as possi-
ble, the market prices at an instant in time. In a sense it is
the opposite of fitting parameters to historical time series. If
you match prices exactly then you are eliminating arbitrage
opportunities, and this is why it is popular.

Example

You have your favourite interest rate model, but you don’t
know how to decide what the parameters in the model
should be. You realize that the bonds, swaps and swaptions
markets are very liquid, and presumably very efficient. So
you choose your parameters in the model so that your
model’s theoretical output for these simple instruments is
the same as their market prices.

Long answer

Almost all financial models have some parameter(s) that can’t
be measured accurately. In the simplest non-trivial case, the
Black-Scholes model, that parameter is volatility. If we can’t
measure that parameter how can we decide on its value? For
if we don’t have an idea of its value then the model is use-
less.

Two ways spring to mind. One is to use historical data, the
other is to use today’s price data.

Let’s see the first method in action. Examine, perhaps, equity
data to try to estimate what volatility is. The problem with
that is that it is necessarily backward looking, using data
from the past. This might not be relevant to the future.
Another problem with this is that it might give prices that
are inconsistent with the market. For example, you are
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interested in buying a certain option. You think volatility is
27%, so you use that number to price the option, and the
price you get is $15. However, the market price of that option
is $19. Are you still interested in buying it? You can either
decide that the option is incorrectly priced or that your
volatility estimate is wrong.

The other method is to assume, effectively, that there is infor-
mation in the market prices of traded instruments. In the
above example we ask what volatility must we put into a
formula to get the ‘correct’ price of $19. We then use that
number to price other instruments. In this case we have cali-
brated our model to an instantaneous snapshot of the market
at one moment in time, rather than to any information from
the past.

Calibration is common in all markets, but is usually more
complicated than in the simple example above. Interest rate
models may have dozens of parameters or even entire func-
tions to be chosen by matching with the market.

Calibration can therefore often be time consuming. Calibra-
tion is an example of an inverse problem, in which we know
the answer (the prices of simple contracts) and want to find
the problem (the parameters). Inverse problems are noto-
riously difficult, for example being very sensitive to initial
conditions.

Calibration can be misleading, since it suggests that your
prices are correct. For example, if you calibrate a model to

a set of vanilla contracts, and then calibrate a different model
to the same set of vanillas, how do you know which model is
better? Both correctly price vanillas today. But how will they
perform tomorrow? Will you have to recalibrate? If you use
the two different models to price an exotic contract how do
you know which price to use? How do you know which gives
the better hedge ratios? How will you even know whether you
have made money or lost it?
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What is Option Adjusted Spread?

Short answer

The Option Adjusted Spread (OAS) is the constant spread
added to a forward or a yield curve to match the market
price of some complex instrument and the present value of
all its cash flows.

Example
Analyses using Option Adjusted Spreads are common in
Mortgage-Backed Securities (MBS).

Long answer

We know from Jensen’s Inequality that if there is any con-
vexity (or optionality) together with randomness in a product
and model then we have to be careful about not treating ran-
dom quantities as deterministic, we may miss inherent value.
In the case of the Mortgage-Backed Security we have two
main sources of randomness, interest rates and prepayment.
If we treat these two quantities as deterministic, saying that
forward rates and prepayment rates are both fixed, then we
will incorrectly value the contract, there will be additional
value in the combination of randomness in these two quan-
tities and convexity within the instrument. Treating them as
deterministic will give the wrong value. Assuming that MBSs
are valued better in the market than in this naive fashion,
then there is bound to be a difference between the naive
(deterministic) value and the market value. To allow for this
one makes a parallel shift in rates and revalues the contract
until the theoretical deterministic value and the market price
match. The shift in the curve that ensured this is then the
OAS. So Option Adjusted Spread just means the spread by
which you have to adjust rates to allow for optionality (con-
vexity).

There are problems with this analysis, however. It can be
problematic when the instrument is not monotonic in the
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quantity that has been assumed deterministic. See bastard
greeks.
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What is the Market Price of Risk?

Short answer

The market price of risk is the return in excess of the
risk-free rate that the market wants as compensation for
taking risk.

Example

Historically a stock has grown by an average of 20% per
annum when the risk-free rate of interest was 5%. The
volatility over this period was 30%. Therefore, for each unit
of risk this stock returns on average an extra 0.5 return
above the risk-free rate. This is the market price of risk.

Long answer

In classical economic theory no rational person would invest
in a risky asset unless they expect to beat the return from
holding a risk-free asset. Typically risk is measured by stan-
dard deviation of returns, or volatility. The market price of
risk for a stock is measured by the ratio of expected return
in excess of the risk-free interest rate to the standard devi-
ation of returns. Interestingly, this quantity is not affected
by leverage. If you borrow at the risk-free rate to invest in a
risky asset both the expected return and the risk increase,
such that the market price of risk is unchanged. This ratio,
when suitably annualized, is also the Sharpe ratio.

If a stock has a certain value for its market price of risk then
an obvious question to ask is what is the market price of
risk for an option on that stock? In the famous Black-Scholes
world in which volatility is deterministic and you can hedge
continuously and costlessly, then the market price of risk
for the option is the same as that for the underlying equity.
This is related to the concept of a complete market in which
options are redundant because they can be replicated by
stock and cash.
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In derivatives theory we often try to model quantities as
stochastic, that is, random. Randomness leads to risk, and
risk makes us ask how to value risk, that is, how much return
should we expect for taking risk. By far the most important
determinant of the role of this market price of risk is the
answer to the question, is the quantity you are modelling
traded directly in the market?

If the quantity is traded directly, the obvious example being
a stock, then the market price of risk does not appear in the
Black-Scholes option-pricing model. This is because you can
hedge away the risk in an option position by dynamically
buying and selling the underlying asset. This is the basis of
risk-neutral valuation. Hedging eliminates exposure to the
direction that the asset is going and also to its market price
of risk. You will see this if you look at the Black-Scholes
equation. There the only parameter taken from the stock ran-
dom walk is its volatility, there is no appearance of either its
growth rate or its price of risk.

On the other hand, if the modelled quantity is not directly
traded then there will be an explicit reference in the
option-pricing model to the market price of risk. This is
because you cannot hedge away associated risk. And because
you cannot hedge the risk you must know how much extra
return is needed to compensate for taking this unhedgeable
risk. Indeed, the market price of risk will typically appear

in classical option-pricing models any time you cannot
hedge perfectly. So expect it to appear in the following
situations:

e When you have a stochastic model for a quantity that is
not traded. Examples: stochastic volatility; interest rates
(this is a subtle one, the spot rate is not traded); risk of
default.

e When you cannot hedge. Examples: jump models; default
models; transaction costs.



2’0 Frequently Asked Questions in Quantitative Finance

When you model stochastically a quantity that is not traded,
then the equation governing the pricing of derivatives is usu-
ally of diffusion form, with the market price of risk appearing
in the ‘drift’ term with respect to the non-traded quantity. To
make this clear, here is a general example.

Suppose that the price of an option depends on the value
of a quantity of a substance called phlogiston. Phlogiston
is not traded but either the option’s payoff depends on the
value of phlogiston, or the value of phlogiston plays a role in
the dynamics of the underlying asset. We model the value of
phlogiston as

dd = pedt + 0pdXe.

The market price of phlogiston risk is 14. In the classical
option-pricing models we will end up with an equation for
an option with the following term

+ ( — A ) + =0
y2 [ox oo =Ul
[ 00 5@

The dots represent all the other terms that one usually
gets in a Black-Scholes type of equation. Observe that the
expected change in the value of phlogiston, e, has been
adjusted to allow for the market price of phlogiston risk. We
call this the risk-adjusted or risk-neutral drift. Conveniently,
because the governing equation is still of diffusive type, we
can continue to use Monte Carlo simulation methods for
pricing. Just remember to simulate the risk-neutral random
walk

d® = (ue — Aepoo) dt + 0pdXe.

and not the real one.

You can imagine estimating the real drift and volatility for
any observable financial quantity simply by looking at a time
series of the value of that quantity. But how can you esti-
mate its market price of risk? Market price of risk is only
observable through option prices. This is the point at which
practice and elegant theory start to part company. Market
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price of risk sounds like a way of calmly assessing required
extra value to allow for risk. Unfortunately there is nothing
calm about the way that markets react to risk. For example,
it is quite simple to relate the slope of the yield curve to the
market price of interest rate risk. But evidence from this sug-
gests that market price of risk is itself random, and should
perhaps also be modelled stochastically.

Note that when you calibrate a model to market prices of
options you are often effectively calibrating the market price
of risk. But that will typically be just a snapshot at one
point in time. If the market price of risk is random, reflecting
people’s shifting attitudes from fear to greed and back again,
then you are assuming fixed something which is very mobile,
and calibration will not work.

There are some models in which the market price of risk
does not appear because they typically involve using some
form of utility theory approach to find a person’s own price
for an instrument rather than the market’s.
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Can | Reverse Engineer a Partial
Differential Equation to get at the
Model and Contract?

Short answer

Very often you can. You just need to understand what all the
terms in a financial partial differential equation represent, all
those gth:is terms and their coefficients. And the final condi-
tion for the PDE defines the contract’s payoff.

Example

In a typical equation you will see a V, representing ‘value.’
What is the coefficient in front of it? If it’'s r + p where r is a
risk-free interest rate then the p probably represents a risk of
default, so you are dealing with some contract that has the
possibility of default.

Long answer

The first thing to look out for is how many independent vari-
ables and how many dimensions are there? And what are
those variables?

There’ll usually be a variable t representing time. The
other variables can represent financial quantities that are
either traded or not. Usually the symbol will give a clue.
If one variable is .S that might mean stock price, so you've
got an equity option, or it might be an r, so you've got a
fixed-income contract, or you might have both, so you've
got a hybrid. (I could imagine an interviewer giving an
interviewee a differential equation for deconstruction, but
one in which the symbols are thoroughly mixed up to cause
confusion. Don’t worry, the tricks below will help you spot
this!)
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There are several different types of terms that you see in
the financial partial differential equations used for valuing
derivatives. There’ll usually be a V for value, there’ll be first
derivatives of V with respect to various variables and there’ll
be second derivatives of V. There may be a term independent
of V. Let’s deal with each one of these.

Term independent of V Also called the ‘source term’ or the
‘right-hand side.” This represents a cashflow. The contract
will be earning, or paying, money throughout its life. If the
term is a function of S then the cashflow is .S dependent,
if it’s a function of ¢ then it’s time dependent. Or, if the
contract has default risk, see next example, the term may
represent a recovery amount.

The V term This is the present-valuing term, so its coefficient
is usually r, the risk-free interest rate. If it’s r + p then the p
is the probability of default, i.e. in a time step df there is a
probability p dt of default.

First-derivative terms These can represent all sorts of things.
av

There’s always a %; (unless the contract is perpetual and
time homogeneous, so no expiration).

Suppose there’s a term like % but there’s no g% term. In
this case the H quantity is not random, it may represent a
history-dependent term in a path-dependent option. Its coef-
ficient will represent the quantity that is being sampled over
the option’s life and the payoff will probably be a function
of H.

Suppose there’s a term like % and also a ‘12‘2/ term (although
not necessarily using the symbol ‘S, of coﬁrse). That means
that the quantity S is stochastic. The question then becomes
is this stochastic quantity traded, like an equity, or not, like
volatility. We can tell this by looking at the coefficient of the

first derivative. If it’s S (or (r + p)S for a contract with credit




2’4’ Frequently Asked Questions in Quantitative Finance

risk) then the ‘S’ is traded. If it’s zero then the S may be a
futures contract. If it’s neither of these then it’s not traded,
it’s just some other financial quantity that is being modelled,
such as volatility or an interest rate. (Note that there’s a
subtlety here, technically the interest rate r is not traded,
fixed-income products are functions of r, and it’s those func-
tions that are traded.) Take a look at the FAQ on the Market
Price of Risk (page 208) to see how the coefficient of the first
derivative change depending on the nature of the indepen-
dent variable.

Second-derivative terms These terms are associate(% with random-
ness, variables that are random. If you see a ‘3 5 term then
you can figure out the amount of randomness (i.e. the coef-
ficient of the dX in its stochastic differential equation) by
taking what’s in front of the second derivative, multiplying

it by two and then taking the square root. That’s why if it’s
an equity option you'll see 10252,

If there is more than one stochastic variable then you should

see a cross-derivative term, for example % This is because
there will typically be a correlation between two random
variables. The correlation is backed out by taking the coef-
ficient of this cross-derivative term and dividing by both the
amounts of randomness (the coefficients of the two Wiener
process terms) in the stochastic differential equations that

you've calculated just above.

Other terms? If you see any non-linear terms (e.g. something
depending on the value V that is squared, or its absolute
value) then you are dealing with a very sophisticated model!
(And if you are in a bank then it’s a cutting-edge bank!)

Now you've seen how easy it is to reverse engineer the par-
tial differential equation you’ll realize that it is equally easy to
write down a partial differential for many contracts without
having to go through all the hoops of a ‘proper derivation.’



Chapter 2: FAQs 2’5

Remember, approached correctly quantitative finance is the
easiest real-world application of mathematics!
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What is the Difference Between the
Equilibrium Approach and the
No-Arbitrage Approach to Modelling?

Short answer

Equilibrium models balance supply and demand, they
require knowledge of investor preferences and probabilities.
No-arbitrage models price one instrument by relating it to the
prices of other instruments.

Example

The Vasicek interest rate model can be calibrated to histori-
cal data. It can therefore be thought of as a representation of
an equilibrium model. But it will rarely match traded prices.
Perhaps it would therefore be a good trading model. The
BGM model matches market prices each day and therefore
suggests that there are never any profitable trading opportu-
nities.

Long answer

Equilibrium models represent a balance of supply and
demand. As with models of equilibria in other, non-financial,
contexts there may be a single equilibrium point, or multiple,
or perhaps no equilibrium possible at all. And equilibrium
points may be stable such that any small perturbation away
from equilibrium will be corrected (a ball in a valley), or
unstable such that a small perturbation will grow (a ball on
the top of a hill). The price output by an equilibrium model
is supposedly correct in an absolute sense.

Genuine equilibrium models in economics usually require
probabilities for future outcomes, and a representation of the
preferences of investors. The latter perhaps quantified by util-
ity functions. In practice neither of these is usually available,
and so the equilibrium models tend to be of more academic
than practical interest.
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No-arbitrage, or arbitrage-free, models represent the point at
which there aren’t any arbitrage profits to be made. If the
same future payoffs and probabilities can be made with two
different portfolios then the two portfolios must both have
the same value today, otherwise there would be an arbitrage.
In quantitative finance the obvious example of the two port-
folios is that of an option on the one hand and a cash and
dynamically rebalanced stock position on the other. The end
result being the pricing of the option relative to the price of
the underlying asset. The probabilities associated with future
stock prices falls out of the calculation and preferences are
never needed. When no-arbitrage pricing is possible it tends
to be used in practice. The price output by a no-arbitrage
model is supposedly correct in a relative sense.

For no-arbitrage pricing to work we need to have markets
that are complete, so that we can price one contract in terms
of others. If markets are not complete and we have sources of
risk that are unhedgeable then we need to be able to quantify
the relevant market price of risk. This is a way of consis-
tently relating prices of derivatives with the same source of
unhedgeable risk, a stochastic volatility for example.

Both the equilibrium and no-arbitrage models suffer from
problems concerning parameter stability.

In the fixed-income world, examples of equilibrium models
are Vasicek, CIR, Fong & Vasicek. These have parameters
which are constant, and which can be estimated from time
series data. The problem with these is that they permit very
simple arbitrage because the prices that they output for
bonds will rarely match traded prices. Now the prices may
be correct based on the statistics of the past but are they
correct going forward? The models of Ho & Lee and Hull

& White are a cross between the equilibrium models and
no-arbitrage models. Superficially they look very similar to
the former but by making one or more of the parameters
time dependent they can be calibrated to market prices and
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so supposedly remove arbitrage opportunities. But still, if
the parameters, be they constant or functions, are not stable
then we will have arbitrage. But the question is whether that
arbitrage is foreseeable. The interest rate models of HIM and
BGM match market prices each day and are therefore even
more in the no-arbitrage camp.
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How Good 15 the Assumption of Normal
Distributions for Financial Returns?

Short answer

The answer has to be ‘it depends.’ It depends on the
timescale over which returns are measured. For stocks

over very short timescales, intraday to several days, the
distributions are not normal, they have fatter tails and higher
peaks than normal. Over longer periods they start to look
more normal, but then over years or decades they look
lognormal.

It also depends on what is meant by ‘good.” They are very
good in the sense that they are simple distributions to work
with, and also, thanks to the Central Limit Theorem, sensible
distributions to work with since there are sound reasons why
they might appear. They are also good in that basic stochas-
tic calculus and Itd’s lemma assume normal distributions and
those concepts are bricks and mortar to the quant.

Example

In Figure 2.14 is the probability density function for the daily
returns on the S&P index since 1980, scaled to have zero
mean and standard deviation of 1, and also the standardized
normal distribution. The empirical peak is higher than the
normal distribution and the tails are both fatter.

On 19 October 1987 the SP500 fell 20.5%. What is the proba-
bility of a 20% one-day fall in the SP500? Since we are working
with over 20 years of daily data, we could argue that empiri-
cally there will be a 20% one-day fall in the SPX index every
20 years or so. To get a theoretical estimate, based on nor-
mal distributions, we must first estimate the daily standard
deviation for SPX returns. Over that period it was 0.0106,
equivalent to an average volatility of 16.9%. What is the prob-
ability of a 20% or more fall when the standard deviation is
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Figure 2.14: The standardized probability density functions for SPX
returns and the normal distribution.

0.0106? This is a staggeringly small 1.8 10~7. That is just
once every 2 - 1076 years. Empirical answer: Once every 20
years. Theoretical answer: Once every 2 - 107® years. That’s
how bad the normal-distribution assumption is in the tails.

Long answer

Asset returns are not normally distributed according to
empirical evidence. Statistical studies show that there is sig-
nificant kurtosis (fat tails) and some skewness (asymmetry).
Whether this matters or not depends on several factors:
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e Are you holding stock for speculation or are you hedging
derivatives?

e Are the returns independent and identically distributed
(i.i.d.), albeit non normally?

e Is the variance of the distribution finite?

e Can you hedge with other options?

Most basic theory concerning asset allocation, such as Mod-
ern Portfolio Theory, assumes that returns are normally dis-
tributed. This allows a great deal of analytical progress to be
made since adding random numbers from normal distribu-
tions gives you another normal distribution. But speculating
in stocks, without hedging, exposes you to asset direction;
you buy the stock since you expect it to rise. Assuming that
this stock isn’t your only investment then your main concern
is for the expected stock price in the future, and not so much
its distribution. On the other hand, if you are hedging options
then you largely eliminate exposure to asset direction. That’s
as long as you aren’t hedging too infrequently.

If you are hedging derivatives then your exposure is to the
range of returns, not the direction. That means you are
exposed to variance, if the asset moves are small, or to the
sizes and probabilities of discontinuous jumps. Asset models
can be divided roughly speaking into those for which the
variance of returns is finite, and those for which it is not.

If the variance is finite then it doesn’t matter too much
whether or not the returns are normal. No, more important
is whether they are i.i.d. The ‘independent’ part is also not
that important since if there is any relationship between
returns from one period to the next it tends to be very
small in practice. The real question is about variance, is it
constant? If it is constant, and we are hedging frequently,
then we may as well work with normal distributions and
the Black-Scholes constant volatility model. However, if

it is not constant then we may want to model this more
accurately. Typical approaches include the deterministic or
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local volatility models, in which volatility is a function of
asset and time, o (S, ), and stochastic volatility models, in
which we represent volatility by another stochastic process.
The latter models require a knowledge or specification of risk
preferences since volatility risk cannot be hedged just with
the underlying asset.

If the variance of returns is infinite, or there are jumps in
the asset, then normal distributions and Black-Scholes are
less relevant. Models capturing these effects also require a
knowledge or specification of risk preferences. It is theoret-
ically even harder to hedge options in these worlds than in
the stochastic volatility world.

To some extent the existence of other traded options with
which one can statically hedge a portfolio of derivatives
can reduce exposure to assumptions about distributions
or parameters. This is called hedging model risk. This

is particularly important for market makers. Indeed, it is
instructive to consider the way market makers reduce risk.

e The market maker hedges one derivative with another one,
one sufficiently similar as to have similar model exposure.

e As long as the market maker has a positive expectation for
each trade, although with some model risk, having a large
number of positions he will reduce exposure overall by
diversification. This is more like an actuarial approach to
model risk.

o If neither of the above is possible then he could widen his
bid-ask spreads. He will then only trade with those people
who have significantly different market views from him.
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How Robust is the Black—5choles
Model?

Short answer
Very robust. You can drop quite a few of the assumptions
underpinning Black-Scholes and it won't fall over.

Example

Transaction costs? Simply adjust volatility. Time-dependent
volatility? Use root-mean-square-average volatility instead.
Interest rate derivatives? Black ’76 explains how to use the
Black-Scholes formulee in situations where it wasn’t originally
intended.

Long answer

Here are some assumptions that seems crucial to the whole
Black-Scholes model, and what happens when you drop
those assumptions.

Hedging is continwous If you hedge discretely it turns out that
Black-Scholes is right on average. In other words sometimes
you lose because of discrete hedging, sometimes you win, but
on average you break even. And Black-Scholes still applies.

There are no transaction costs If there is a cost associated with
buying and selling the underlying for hedging this can be
modelled by a new term in the Black-Scholes equation that
depends on gamma. And that term is usually quite small.

If you rehedge at fixed time intervals then the correction is
proportional to the absolute value of the gamma, and can be
interpreted as a simple correction to volatility in the standard
Black-Scholes formule. So instead of pricing with a volatil-
ity of 20%, say, you might use 17% and 23% to represent the
bid-offer spread dues to transaction costs. This little trick
only works if the contract has a gamma that is everywhere
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the same sign, i.e. always and everywhere positive or always
and everywhere negative.

Volatility is constant If volatility is time dependent then the
Black-Scholes formula are still valid as long as you plug

in the ‘average’ volatility over the remaining life of the
option. Here average means the root-mean-square average
since volatilities can’t be added but variances can. Even if
volatility is stochastic we can still use basic Black-Scholes
formulee provided the volatility process is independent of,
and uncorrelated with, the stock price. Just plug the average
variance over the option’s lifetime, conditional upon its
current value, into the formulee.

There are no arbitrage opportunities Even if there are arbitrage
opportunities because implied volatility is different from
actual volatility you can still use the Black-Scholes formulae
to tell you how much profit you can expect to make, and
use the delta formule to tell you how to hedge. Moreover,
if there is an arbitrage opportunity and you don’t hedge
properly, it probably won’t have that much impact on the
profit you expect to make.

The underlying is lognormally distributed The Black-Scholes model
is often used for interest-rate products which are clearly not
lognormal. But this approximation is often quite good, and
has the advantage of being easy to understand. This is the
model commonly referred to as Black ’76.

There are no costs associated with borrowing stock for going short Easily
accommodated within a Black—-Scholes model, all you need to
do is make an adjustment to the risk-neutral drift rate, rather
like when you have a dividend.

Returns are normally distributed Thanks to near-continuous hedg-
ing and the Central Limit Theorem all you really need is for
the returns distribution to have a finite variance, the precise
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shape of that distribution, its skew and kurtosis, don’t much
matter.

Black-Scholes is a remarkably robust model.
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Why is the Lognormal Distribution
Important?

Short answer

The lognormal distribution is often used as a model for the
distribution of equity or commodity prices, exchange rates
and indices. The normal distribution is often used to model
returns.

Example
The stochastic differential equation commonly used to repre-
sent stocks,

dS =uSdt+ oS dX

results in a lognormal distribution for S, provided x and o
are not dependent on stock price.

Long answer

A quantity is lognormally distributed if its logarithm is nor-
mally distributed, that is the definition of lognormal. The
probability density function is

—exp| —=——= (Inx) —a x>0,
- p( oz 00— a?) x=

where the parameters a and b > (0 represent location and
scale. The distribution is skewed to the right, extending to
infinity and bounded below by zero. (The left limit can be
shifted to give an extra parameter, and it can be reflected in
the vertical axis so as to extend to minus infinity instead.)

If we have the stochastic differential equation above then the
probability density function Figure 2.15 for S in terms of time
and the parameters is

2
1 e—(ln(S/so)—(u—%a%r) /202t
oSV 2mt
where Sy is the value of S at time ¢ = 0.
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Figure 2.15: The probability density function for the lognormal random
walk evolving through time.

You would expect equity prices to follow a random walk
around an exponentially growing average. So take the
logarithm of the stock price and you might expect that to
be normal about some mean. That is the non-mathematical
explanation for the appearance of the lognormal distribution.

More mathematically we could argue for lognormality via the
Central Limit Theorem. Using R; to represent the random
return on a stock price from day i — 1 to day i we have

S = S()(l + Rl),

the stock price grows by the return from day zero, its start-
ing value, to day 1. After the second day we also have

So =S51(1 4+ Ro) = So(1 + R1)(1 + R9).

After n days we have

n
Sa=S[ [ +RD,

i=1
the stock price is the initial value multiplied by n factors, the
factors being one plus the random returns. Taking logarithms
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of this we get

n
In(Sy) = In(So) + ) In(1 + Ry,
i=1
the logarithm of a product being the sum of the logarithms.

Now think Central Limit Theorem. If each R; is random, then
so is In(1 + R;). So the expression for In(S,) is just the sum
of a large number of random numbers. As long as the R;
are independent and identically distributed and the mean
and standard deviation of In(1 + R;) are finite then we can
apply the CLT and conclude that In(S,;) must be normally
distributed. Thus .S, is normally distributed. Since here n

is number of ‘days’ (or any fixed time period) the mean of
In(S,) is going to be linear in n, i.e. will grow linearly with
time, and the standard deviation will be proportional to the
square root of n, i.e. will grow like the square root of time.
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What are Copulas and How are they
Used in Quantitative Finance?

Short answer

Copulas are used to model joint distribution of multiple
underlyings. They permit a rich ‘correlation’ structure
between underlyings. They are used for pricing, for risk
management, for pairs trading, etc., and are especially
popular in credit derivatives.

Example

You have a basket of stocks which, during normal days,
exhibit little relationship with each other. We might say that
they are uncorrelated. But on days when the market moves
dramatically they all move together. Such behaviour can be
modelled by copulas.

Long answer

The technique now most often used for pricing credit deriva-
tives when there are many underlyings is that of the cop-
ula. The copula? function is a way of simplifying the default
dependence structure between many underlyings in a rela-
tively transparent manner. The clever trick is to separate
the distribution for default for each individual name from
the dependence structure between those names. So you can
rather easily analyse names one at a time, for calibration pur-
poses, for example, and then bring them all together in a
multivariate distribution. Mathematically, the copula way of
representing the dependence (one marginal distribution per
underlying, and a dependence structure) is no different from
specifying a multivariate density function. But it can simplify
the analysis.

“From the Latin for ‘join.’
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The copula approach in effect allows us to readily go from a
single-default world to a multiple-default world almost seam-
lessly. And by choosing the nature of the dependence, the
copula function, we can explore models with rich ‘correlation’
structure. For example, having a higher degree of dependence
during big market moves is quite straightforward.

Take N uniformly distributed random variables Uy, Us, ..., Uy,
each defined on [0,1]. The copula function is defined as

C(ui,uy,...,uy) =Prob(Ui <u1,Us <u,...,Uy < uy).
Clearly we have
C(”lv”ZvH»,O,...,UN) :0,

and
C(l,l,...,ui,...,1)=lli.

That is the copula function. The way it links many univari-
ate distributions with a single multivariate distribution is as
follows.

Let x1,x9,...,xy be random variables with cumulative
distribution functions (so-called marginal distributions) of
F1(x1),F2(x2), ..., Fy(xy). Combine the Fs with the copula
function,

CF10xa1), Fa(x2), ..., Fn(xn)) = F(x1,x2, ..., )

and it’s easy to show that this function F(x1,x2,...,xy) is the
same as

PI‘Ob(X] < X1,X2 < X2,... Xy < XN).

In pricing basket credit derivatives we would use the cop-
ula approach by simulating default times of each of the con-
stituent names in the basket. And then perform many such
simulations in order to be able to analyse the statistics, the
mean, standard deviation, distribution, etc., of the present
value of resulting cashflows.
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Here are some examples of bivariate copula functions. They
are readily extended to the multivariate case.

Bivariate normal
Cu,v) =N, (N{I(U),Nfl(v).p) , —l=<p=<l,

where N is the bivariate Normal cumulative distribution func-
tion, and N 1 is the inverse of the univariate Normal cumula-
tive distribution function.

Frank
(e~ D~ 1)
er —1

1

C(u,v)=—1n<1+ > —00 < @ < 00.
o

Fréchet—Hoeffding upper bound

C(u,v) = min(u, v).

Gumbel—Hougaard
2 0\1/0
C(u, v) =exp(—((—1nu) +(~Inv)’) ) 1<6 <.

This copula is good for representing extreme value distribu-
tions.

Product
C(u,v) = uv

One of the simple properties to examine with each of these
copulas, and which may help you decide which is best for

your purposes, is the tail index. Examine
C(u,u)
Pt

AMu) =

This is the probability that an event with probability less
than u occurs in the first variable given that at the same time
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an event with probability less than u occurs in the second
variable. Now look at the limit of this as u — 0,
C(u,u
a = lim S8
u—0 u

This tail index tells us about the probability of both extreme
events happening together.
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What is Asymptotic Analysis and How
15 1t Used in Financial Modelling?

Short answer

Asymptotic analysis is about exploiting a large or small
parameter in a problem to find simple(r) equations or even
solutions. You may have a complicated integral that is much
nicer if you approximate it. Or a partial differential equation
that can be solved if you can throw away some of the less
important terms. Sometimes these are called approximate
solutions. But the word ‘approximate’ does not carry the
same technical requirements as ‘asymptotic.’

Example

The SABR model is a famous model for a forward rate and
its volatility that exploits low volatility of volatility in order
for closed-form solutions for option prices to be found. With-
out that parameter being small we would have to solve the
problem numerically.

Long answer
Asymptotic analysis is about exploiting a large or small
parameter to find simple(r) solutions/expressions. Outside
finance asymptotic analysis is extremely common, and useful.
For example, almost all problems in fluid mechanics use it
to make problems more tractable. In fluid mechanics there
is a very important non-dimensional parameter called the
Reynolds number. This quantity is given by

Re = p—UL

"

where p is the density of the fluid, U is a typical velocity in
the flow, L is a typical lengthscale, and p is the fluid’s viscos-
ity. This parameter appears in the Navier-Stokes equation
which, together with the Euler equation for conservation of
mass, governs the flow of fluids. And this means the flow of
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air around an aircraft, and the flow of glass. These equations
are generally difficult to solve. In university lectures they
are solved in special cases, perhaps special geometries.

In real life during the design of aircraft they are solved
numerically. But these equations can often be simplified,
essentially approximated, and therefore made easier to
solve, in special ‘regimes.” The two distinct regimes are
those of high Reynolds number and low Reynolds number.
When Re is large we have fast flows, which are essentially
inviscid to leading order. Assuming that Re > 1 means that
the Navier-Stokes equation dramatically simplifies, and
can often be solved analytically. On the other hand if we
have a problem where Re <« 1 then we have slow viscous
flow. Now the Navier-Stokes equation simplifies again, but
in a completely different way. Terms that were retained in
the high Reynolds number case are thrown away as being
unimportant, and previously ignored terms become crucial.

Remember we are looking at what happens when a param-
eter gets small, well, let’s denote it by €. (Equivalently we
also do asymptotic analysis for large parameters, but then we
can just define the large parameter to be 1/¢.) In asymptotic
analysis we use the following symbols a lot: O(-), o(-) and ~.
These are defined as follows:

We say that f(e) =0(g(e)) ase— 0if 11m E % is finite.
We say that  f(e) =o0(g(e)) ase— 0if lim —= (E)
e—0 g(e)
f
We say that  £(€) ~ g() as € — 0 if lim gg
In finance there have been several examples of asymptotic
analysis.

Transactions costs Transaction costs are usually a small percent-
age of a trade. There are several models for the impact that
these costs have on option prices and in some cases these
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problems can be simplified by performing an asymptotic anal-
ysis as this cost parameter tends to zero. These costs models
are invariably non linear.

$ABR This model for forward rates and their volatility is a
two-factor model. It would normally have to be solved numer-
ically but as long as the volatility of volatility parameter is
small then closed-form asymptotic solutions can be found.
Since the model requires small volatility of volatility it is best
for interest rate derivatives.

Fast orift and high volatility in stochastic volatility models These are a
bit more complicated, singular perturbation problems. Now
the parameter is large, representing both fast reversion of
volatility to its mean and large volatility of volatility. This
model is more suited to the more dramatic equity markets
which exhibit this behaviour.
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What is a Free-Boundary Problem and
What is the Optimal-Stopping Time
for an American Option?

Short answer

A boundary-value problem is typically a differential equation
with specified solution on some domain. A free-boundary
problem is one for which that boundary is also to be found
as part of the solution. When to exercise an American option
is an example of a free-boundary problem, the boundary rep-
resenting the time and place at which to exercise. This is also
called an optimal-stopping problem, the ‘stopping’ here refer-
ring to exercise.

Example

Allow a box of ice cubes to melt. As they do there will appear
a boundary between the water and the ice, the free boundary.
As the ice continues to melt so the amount of water increases
and the amount of ice decreases.

Waves on a pond is another example of a free boundary.

Long answer

In a boundary-value problem the specification of the
behaviour of the solution on some domain is to pin down
the problem so that is has a unique solution. Depending
on the type of equation being solved we must specify just
the right type of conditions. Too few conditions and the
solution won’t be unique. Too many and there may not be
any solution. In the diffusion equations found in derivatives
valuation we must specify a boundary condition in time. This
would be the final payoff, and it is an example of a final
condition. We must also specify two conditions in the asset
space. For example, a put option has zero value at infinite
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stock price and is the discounted strike at zero stock price.
These are examples of boundary conditions. These three
are just the right number and type of conditions for there to
exist a unique solution of the Black-Scholes parabolic partial
differential equation.

In the American put problem it is meaningless to specify the
put’s value when the stock price is zero because the option
would have been exercised before the stock ever got so low.
This is easy to see because the European put value falls
below the payoff for sufficiently small stock. If the American
option price were to satisfy the same equation and boundary
conditions as the European then it would have the same
solution, and this solution would permit arbitrage.

The American put should be exercised when the stock falls
sufficiently low. But what is ‘sufficient’ here?

To determine when it is better to exercise than to hold we
must abide by two principles:

e The option value must never fall below the payoff,
otherwise there will be an arbitrage opportunity.
o We must exercise so as to give the option its highest value.

The second principle is not immediately obvious. The expla-
nation is that we are valuing the option from the point of
view of the writer. He must sell the option for the most it
could possibly be worth, for if he undervalues the contract
he may make a loss if the holder exercises at a better time.
Having said that, we must also be aware that we value from
the viewpoint of a delta-hedging writer. He is not exposed to
direction of the stock. However the holder is probably not
hedging and is therefore very exposed to stock direction. The
exercise strategy that is best for the holder will probably not
be what the writer thinks is best. More of this anon.
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The mathematics behind finding the optimal time to exercise,
the optimal-stopping problem, is rather technical. But its con-
clusion can be stated quite succinctly. At the stock price at
which it is optimal to exercise we must have

e the option value and the payoff function must be
continuous as functions of the underlying

e the delta, the sensitivity of the option value with respect to
the underlying, must also be continuous as functions of the
underlying.

This is called the smooth-pasting condition since it repre-
sents the smooth joining of the option value function to its
payoff function. (Smooth meaning function and its first deriva-
tive are continuous.)

This is now a free-boundary problem. On a fixed, prescribed
boundary we would normally impose one condition. (For
example, the above case of the put’s value at zero stock
price.) But now we don’t know where the boundary actually
is. To pin it down uniquely we impose two conditions,
continuity of function and continuity of gradient. Now we
have enough conditions to find the unknown solution.

Free-boundary problems such as these are nonlinear.
You cannot add two together to get another solution. For
example, the problem for an American straddle is not the
same as the sum of the American call and the American
put.

Although the fascinating mathematics of free-boundary prob-
lems can be complicated, and difficult or impossible to solve
analytically, they can be easy to solve by finite-difference
methods. For example, if in a finite-difference solution we find
that the option value falls below the payoff then we can just
replace it with the payoff. As long as we do this each time
step before moving on to the next time step, we should get
convergence to the correct solution.
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As mentioned above, the option is valued by maximizing the
value from the point of view of the delta-hedging writer. If
the holder is not delta hedging but speculating on direction,
he may well find that he wants to exit his position at a time
that the writer thinks is suboptimal. In this situation there
are three ways to exit:

¢ sell the option
e delta hedge to expiration
e exercise the option.

The first of these is to be preferred because the option may
still have market value in excess of the payoff. The second
choice is only possible if the holder can hedge at low cost. If
all else fails, he can always close his position by exercising.
This is of most relevance in situations where the option is
an exotic, over the counter, contract with an early-exercise
feature when selling or delta hedging may not be possible.

There are many other contracts with decision features

that can be treated in a way similar to early exercise as
free-boundary problems. Obvious examples are conversion of
a convertible bond, callability, shout options, choosers.
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What are Low-Discrepancy Numbers?

Short answer

Low-discrepancy sequences are sequences of numbers that
cover a space without clustering and without gaps, in such a
way that adding another number to the sequence also avoids
clustering and gaps. They give the appearance of randomness
yet are deterministic. They are used for numerically esti-
mating integrals, often in high dimensions. The best-known
sequences are due to Faure, Halton, Hammersley, Niederreiter
and Sobol’.

Example

You have an option that pays off the maximum of 20
exchange rates on a specified date. You know all the
volatilities and correlations. How can you find the value of
this contract? If we assume that each exchange rate follows
a lognormal random walk, then this problem can be solved
as a 20-dimensional integral. Such a high-dimensional integral
must be evaluated by numerical quadrature, and an efficient
way to do this is to use low-discrepancy sequences.

Long answer

Some financial problems can be recast as integrations,
sometimes in a large number of dimensions. For example, the
value of a European option on lognormal random variables
can be written as the present value of the risk-neutral
expected payoff. The expected payoff is an integral of the
product of the payoff function and the probability density
function for the underlying(s) at expiration. If there are n
underlyings then there is typically an n-dimensional integral
to be calculated. If the number of dimensions is small then
there are simple efficient algorithms for performing this
calculation. In one dimension, for example, divide the domain
of integration up into uniform intervals and use the trapezium
rule. This means evaluating the integrand at a number of
points, and as the number of function evaluations increases
so the accuracy of the method improves.
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Unfortunately, in higher dimensions evaluating the function at
uniformly spaced points becomes computationally inefficient.

If the domain of integration is a unit hypercube (and, of
course, it can always be transformed into one) then the value
of the integral is the same as the average of the function
over that domain:

1 1 1 N
fofo f(x)dx««ﬁgf(xi).

where the x; are uniformly distributed. This suggests that an
alternative method of numerical evaluation of the integral is
to select the points in the hypercube from a uniform random
distribution and then compute their average. If N function
evaluations are performed then the method converges like
O(N~1/2). This is the Monte Carlo method of numerical inte-
gration. Although very simple to perform it suffers from prob-
lems associated with the inevitable clustering and gapping
that will happen with randomly chosen numbers.

Clearly we would like to use a sequence of numbers that do
not suffer from the gapping/clustering problem. This is where
low-discrepancy sequences come in.

Low-discrepancy numbers exploit the Koksma-Hlawka
inequality which puts a bound on the error in the above
averaging method for an arbitrary sets of sampling points x;.
The Koksma-Hlawka inequality says that if f(x) is of bounded
variation V(f) then

1 1 1 N .
|/O /0 f(x)dx—ﬁig;f(xiﬂi V(ODL (X1, .., (X)N)

where Dy (x1,...,(X)n) is the discrepancy of the sequence.
(This discrepancy measures the deviation from a uniform
distribution. It is calculated by looking at how many of the
sampling points can be found in sub intervals compared with
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how many there would be for a uniform distribution and then
taking the worst case.)

Rather than the details, the important point concerning this
result is that the bound is a product of one term specific to
the function (its variation, which is independent of the set

of sampling points) and a term specific to the set of sam-
pling points (and independent of the function being sampled).
So once you have found a set of points that is good, of low
discrepancy, then it will work for all integrands of bounded
variation.

The popular low-discrepancy sequences mentioned above

have
(nN)"
N
where C is a constant. Therefore convergence of this

quasi-Monte Carlo numerical quadrature method is faster
than genuinely random Monte Carlo.

Dy <C

Another advantage of these low-discrepancy sequences is
that if you collapse the points onto a lower dimension (for
example, let all of the points in a two-dimensional plot fall
down onto the horizontal axis) they will not be repeated,
they will not fall on top of one another. This means that if
there is any particularly strong dependence on one of the
variables over the others then the method will still give an
accurate answer because it will distribute points nicely over
lower dimensions.

Unfortunately, achieving a good implementation of some
low-discrepancy sequences remains tricky. Some practi-

tioners prefer to buy off-the-shelf software for generating
quasi-random numbers.

Intuition Suppose you want to attach a poster to the wall,
just along its upper edge, and [ am going to give you some
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pieces of blu-tack or poster putty you can use. Where would
you attach the putty? The first piece I give you, you would
probably put in the middle. If I gave you another piece

you might add it near the end of the top edge. If I give you
another piece you might add it near the other edge. The
fourth piece would be used to start filling gaps between

the other pieces. As I give you more and more pieces you
put them in spaces and the poster is then held firmer and
firmer. The position of the bits of blu-tack is rather like a
low-discrepancy sequence. Note that I don’t tell you how
much blu-tack you can use, and nor can you remove old bits
and place them in new places. If you were allowed to put the
putty anywhere on the poster, not just along the top edge,
then that would be like a two-dimensional low-discrepancy
sequence. (There’s also another analogy involving a row of
urinals in a gentlemen’s convenience.)
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What are the Bastard Greeks?

Short answer

The greeks are sensitivities of values, such as option prices,
to other financial quantities, such as price. Bastard means
‘illegitimate,” here in the sense that sometimes such a con-
cept is not mathematically justified and can give misleading
information.

Example

Suppose you value a barrier option assuming constant volatil-
ity, o, of 20% but are then worried whether that volatility is
correct. You might measure ‘;—Z so that you know how sen-
sitive the option’s value is to volatility and whether or not

it matters that you have used 20%. Because you are assum-
ing volatility to be constant and then are effectively varying
that constant you are measuring a strange sort of hybrid sen-
sitivity which is not the true sensitivity. This could be very

dangerous.

Long answer

Bastard greeks are sensitivities to parameters that have been
assumed constant. The classic example is the measurement
of vega, & Let’s work with the above example in a bit more

? do

detail, and draw some graphs.

Suppose we had an up-and-out call option and we naively
priced it using first a 17% volatility and then a 23% volatil-
ity, just to get a feel for the possible range of option values.
We would get two curves looking like those in Figure 2.16.

This figure suggests that there is a point at which the value
is insensitive to the volatility. Vega is zero. So you might
think that at this point the option value is insensitive to your
choice of volatility. Not so.
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Figure 2.16: Barrier option valued using two different constant volatilities.

Actually, the value is very sensitive to volatility as we shall
now see (and in the process also see why vega can be a poor
measure of sensitivity).

Figure 2.17 shows the values for the same option, but using
best- and worst-case volatilities. The volatility is still in the
range 17-23% but, crucially, it is not a constant. Observe the
very wide range of values at the point where the vega is zero.
The wide range of values is a genuine measure of the sensitiv-
ity of the option value to a range of, non-constant, volatilities.
Vega is not.
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Figure 2.17: Barrier option valued using best and worst cases.

It is illegitimate to measure sensitivity to a parameter that
has been assumed constant. (Of course, one way around this
is to treat volatility as another variable in a stochastic volatil-
ity model for example.)

References and Further Reading

Wilmott, P 2006 Paul Wilmott on Quantitative Finance, second edition.
John Wiley & Sons Ltd
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What are the Stupidest Things People
have $a1d about Risk Neutrality?

Short answer

Where do I start? Probably the stupidest and most dangerous
thing is to implicitly (or sometimes even explicitly) assume
that one can use ideas and results from risk neutrality in situ-
ations where it is not valid.

Example

Naming no names, [ have seen the following written in
research papers: ‘Using risk-neutral pricing we replace u with
the risk-free rate r.” Naughty! As explained below you can
only do this under certain very restrictive assumptions.

Long answer

Risk-neutral pricing means that you price as if traded con-
tracts grow at the risk-free interest rate, and that non-traded
financial quantities have a growth that is the real growth
adjusted for risk. Sticking with the case of traded underly-
ings, it means that instead of using the 15.9% (or whatever)
growth rate we have estimated from data we ‘pretend’ that
the growth rate is actually the 4.5% (or whatever) risk-free
rate.

For risk-neutral pricing to work you need complete markets.
And that means enough traded quantities with which to
hedge risk. Also you need to be able to hedge that risk
continuously (and usually costlessly). And you need to be
sure of parameters. And you usually can’t have jumps. And
so on. All highly unlikely.

Here are some things people say that are wrong because of
the confusion of real and risk neutral:

e The forward price of some traded quantity is the market’s
expected value of it in the future. Wrong. Under various
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assumptions there is a simple arbitrage between spot price
and forward price that links them via the interest rate. So
there is no information in the forward price about anyone’s
expectations.

e The forward curve (of interest rates) is the market’s

expected value of the spot interest rate at future times.

Wrong. If any expectation is involved then it is a

risk-neutral expectation. The forward curve contains

information about the expected future spot interest rate,
yes, but it also contains information about the market’s
risk aversion. There are different risks in rolling over your
money in an instant-access bank account and tying it up
for years in a bond. That’s why a risk premium is built into
the forward curve.

Using risk-neutral pricing we replace u with the risk-free

rate r. Only if your assumptions allow you to do this. (And,

of course, reality never does!) Otherwise it’s an assumption
in its own right.

e The delta of an option is the probability of it ending up in
the money. Wrong for two reasons. One is that the
probability of ending up in the money depends on the real
probabilities, and the real growth rate, and that’s
disappeared from the option value so it can’t be true. The
second reason is that there’s a sign wrong! (If we have a
call option then the probability you want is N(d;), where
the prime (") means use p instead of r, and not N(d).)

References and Further Reading

Wilmott, P 2006 Paul Wilmott on Quantitative Finance, second edition.
John Wiley & Sons Ltd
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What 15 the Best-Kept Secret in
Quantitative Finance?

Short answer
That inventors/discoverers/creators of models usually don’t
use them. They often use simpler models instead.

Example
Yeah, right, as if 'm going to give names!

Long answer

Named models are not necessarily used by their authors.
Ok, perhaps not the best-kept secret but it is something that
newbies ought to be aware of, so that they don’t have unwar-
ranted respect for models just because they’'ve got a famous
name attached to them.

In the early 1990s I was chatting to a famous quant who’d
generously given his name to a fixed-income model. Let’s call
this person Dr X, and his model the X model. I asked him
what fixed-income model his bank used. [ was expecting an
answer along the lines of ‘We use the three-factor X model,
of course.” No, his answer was ‘We use the Vasicek model.’
Dr X’s model was at that time pretty sophisticated and so

it was rather surprising to hear him admit to using what is
essentially the ‘starter’ model.

A decade later I asked another inventor of a then
state-of-the-art fixed-income model, let’s call him Dr Y and his
model the Y model, whether he used the Y model himself. Dr
Y had just moved from a bank, and his reply was the very
illuminating ‘No! I work for a hedge fund now, and I need to
make money!’ You can figure out the implications.

I then asked another inventor of a popular ... Dr Z ... His
answer: ‘No, we don’t use our model. Have you ever tried
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to calibrate it? It’s terrible! We only published it to mislead
other banks!” and he then named the model that he used in
practice. Again, it was a much simpler model than his own.

The moral of this story is the same moral that we get from

many quantitative finance experiences: Do not believe what it
says on the tin, do your own modelling and think for yourself.

References and Further Reading

None, obviously!
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Preface

A spectre is haunting Markets — the spectre of illiquidity,
frozen credit, and the failure of financial models.

Beginning with the 2007 collapse in subprime mortgages,
financial markets have shifted to new regimes characterized
by violent movements, epidemics of contagion from market to
market, and almost unimaginable anomalies (who would have
ever thought that swap spreads to Treasuries could go neg-
ative?). Familiar valuation models have become increasingly
unreliable. Where is the risk manager that has not ascribed
his losses to a once-in-a-century tsunami?

To this end, we have assembled in New York City and written
the following manifesto.

Manifesto

In finance we study how to manage funds — from simple secu-
rities like dollars and yen, stocks and bonds to complex ones
like futures and options, subprime CDOs and credit default
swaps. We build financial models to estimate the fair value
of securities, to estimate their risks and to show how those
risks can be controlled. How can a model tell you the value
of a security? And how did these models fail so badly in the
case of the subprime CDO market?

Physics, because of its astonishing success at predicting the
future behaviour of material objects from their present state,
has inspired most financial modelling. Physicists study the
world by repeating the same experiments over and over again
to discover forces and their almost magical mathematical
laws. Galileo dropped balls off the leaning tower, giant teams
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in Geneva collide protons on protons, over and over again.
If a law is proposed and its predictions contradict experi-

ments, it’s back to the drawing board. The method works.

The laws of atomic physics are accurate to more than ten

decimal places.

It’s a different story with finance and economics, which are
concerned with the mental world of monetary value. Finan-
cial theory has tried hard to emulate the style and elegance
of physics in order to discover its own laws. But markets
are made of people, who are influenced by events, by their
ephemeral feelings about events and by their expectations of
other people’s feelings. The truth is that there are no funda-
mental laws in finance. And even if there were, there is no
way to run repeatable experiments to verify them.

You can hardly find a better example of confusedly elegant
modelling than models of CDOs. The CDO research papers
apply abstract probability theory to the price co-movements
of thousands of mortgages. The relationships between so
many mortgages can be vastly complex. The modellers, hav-
ing built up their fantastical theory, need to make it useable;
they resort to sweeping under the model’s rug all unknown
dynamics; with the dirt ignored, all that’s left is a single num-
ber, called the default correlation. From the sublime to the
elegantly ridiculous: all uncertainty is reduced to a single
parameter that, when entered into the model by a trader,
produces a CDO value. This over-reliance on probability and
statistics is a severe limitation. Statistics is shallow descrip-
tion, quite unlike the deeper cause and effect of physics, and
can’t easily capture the complex dynamics of default.

Models are at bottom tools for approximate thinking; they
serve to transform your intuition about the future into a
price for a security today. It’s easier to think intuitively about
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future housing prices, default rates and default correlations
than it is about CDO prices. CDO models turn your guess
about future housing prices, mortgage default rates and

a simplistic default correlation into the model’s output: a
current CDO price.

Our experience in the financial arena has taught us to be
very humble in applying mathematics to markets, and to be
extremely wary of ambitious theories, which are in the end
trying to model human behaviour. We like simplicity, but we
like to remember that it is our models that are simple, not
the world.

Unfortunately, the teachers of finance haven’t learned
these lessons. You have only to glance at business school
textbooks on finance to discover stilts of mathematical
axioms supporting a house of numbered theorems, lemmas
and results. Who would think that the textbook is at bottom
dealing with people and money? It should be obvious to
anyone with commonsense that every financial axiom is
wrong, and that finance can never in its wildest dreams

be Euclid. Different endeavours, as Aristotle wrote, require
different degrees of precision. Finance is not one of the
natural sciences, and its invisible worm is its dark secret love
of mathematical elegance and too much exactitude.

We do need models and mathematics — you cannot think
about finance and economics without them - but one must
never forget that models are not the world. Whenever we
make a model of something involving human beings, we are
trying to force the ugly stepsister’s foot into Cinderella’s
pretty glass slipper. It doesn’t fit without cutting off some
essential parts. And in cutting off parts for the sake of beauty
and precision, models inevitably mask the true risk rather
than exposing it. The most important question about any
financial model is how wrong it is likely to be, and how useful
it is despite its assumptions. You must start with models and
then overlay them with commonsense and experience.
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Many academics imagine that one beautiful day we will find
the ‘right’” model. But there is no right model, because the
world changes in response to the ones we use. Progress in
financial modelling is fleeting and temporary. Markets change
and newer models become necessary. Simple clear models
with explicit assumptions about small numbers of variables
are therefore the best way to leverage your intuition without
deluding yourself.

All models sweep dirt under the rug. A good model makes
the absence of the dirt visible. In this regard, we believe
that the Black-Scholes model of options valuation, now often
unjustly maligned, is a model for models; it is clear and
robust. Clear, because it is based on true engineering; it tells
you how to manufacture an option out of stocks and bonds
and what that will cost you, under ideal dirt-free circum-
stances that it defines. Its method of valuation is analogous
to figuring out the price of a can of fruit salad from the cost
of fruit, sugar, labor and transportation. The world of markets
doesn’t exactly match the ideal circumstances Black-Scholes
requires, but the model is robust because it allows an
intelligent trader to qualitatively adjust for those mismatches.
You know what you are assuming when you use the model,
and you know exactly what has been swept out of view.

Building financial models is challenging and worthwhile: you
need to combine the qualitative and the quantitative, imagi-
nation and observation, art and science, all in the service of
finding approximate patterns in the behaviour of markets and
securities. The greatest danger is the age-old sin of idolatry.
Financial markets are alive but a model, however beautiful, is
an artifice. No matter how hard you try, you will not be able
to breathe life into it. To confuse the model with the world is
to embrace a future disaster driven by the belief that humans
obey mathematical rules.
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MODELLERS OF ALL MARKETS, UNITE!
You have nothing to lose but your illusions.

The modellers” hippocratic oath

e | will remember that I didn’t make the world, and it doesn’t
satisfy my equations.

e Though I will use models boldly to estimate value, I will
not be overly impressed by mathematics.

o | will never sacrifice reality for elegance without explaining
why I have done so.

e Nor will I give the people who use my model false comfort
about its accuracy. Instead, [ will make explicit its
assumptions and oversights.

e | understand that my work may have enormous effects on
society and the economy, many of them beyond my
comprehension.

Emanuel Derman and Paul Wilmott, 7 January 2009
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, f you've got this far you will have read me complaining
about some theories and practices of quantitative finance.
This continues in this section. But if you've managed to resist
throwing this book at the cat so far then you should make it
through ok!

Most of these essays have been previously published in blog
form, some of them as part of a ‘Science In Finance’ series.
You will notice, because they are numbered, that some

of these appear to be missing. That’s to avoid repetition
because those essays have been expanded upon and formed
the basis for the FAQQF2 chapter on the commonest quant
mistakes.

Science in Finance: Introduction

Having for most of my quant career attacked the majority

of mathematical modelling in finance for being ‘unscientific’
(in the sense that the theories are rarely tested before being
used, and when tested usually fail miserably) I feel some-
what heartened by the recent anti-Black—-Scholes movement.
Unfortunately this countermovement, although healthy in pro-
voking debate, also does not quite match my (presumably
rather high!) standards of rigour. With the aim of putting
some science back into the quant debate I'm going to spend
a few essays highlighting what I think are the weaknesses of
financial modelling, and its strengths. [ will even be defending
Black-Scholes at times! Being scientific does not mean being
without emotion, so although my reasoning will be logical
my language will almost certainly, and as always, get quite
demonstrative.

Topics to look out for, in no particular order: supply and
demand; accuracy in different markets; distributions and fat
tails; volatility and robustness; hedging errors; diversification;
correlation; etc.
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Science in Finance | Revisited: Supply
and Pemand, and Spoon Bending

I attended some of the recent Savoy auction by Bonhams and
I couldn’t resist observing the events from a quant perspec-
tive! In particular, [ was drawn back again to the question

of valuation versus supply and demand. We are taught that
value comes from some complicated mathematical analysis
involving lognormal random walks and stochastic calculus.
However, we all ought to know that value comes about by a
more obscure and more interesting and usually ad hoc pro-
cedure, often involving little logic and certainly no maths,
and sometimes quite a lot of emotion. (Think women and
shoes.) All of this was seen at the Savoy auction. Yes, there
were people tut-tutting at the amount some were willing to
pay for an ashtray, but they weren’t those doing the buying.
Those who bought the ashtrays probably had some doubts
at the time, and also shortly afterwards, even this morning
and maybe when they collect the ashtrays, but in the long
run they’ll at least have a funny story about themselves. (The
latter not so easy to assign a value to, and certainly not risk
neutral!)

Near the end of the three days there was a boring patch with
50 Savoy double beds going under the hammer, one after
another. To amuse myself and in the spirit of scientific curios-
ity, [ wrote down the ‘time series’ of prices for these identical
items, see Figure 4.1. Now here was a room full of the same
people, bidding for identical items with a known and limited
supply, but even in this rather dull scenario the results were
interesting, the plot of the times series is shown. Observa-
tions: the price did settle down to a value around $50, but
that wasn’t exactly stable; absentee bids mostly caused dra-
matic increases in the price (I'm sure economists will get
excited about ‘information’ at this point, but this was the
least interesting observation); later absentee bids were very
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low, people perhaps hoping for drying up of demand(?); a
few lucky or clever people even got the price down below
the §50; individual bidders did not seem to show consistency
in their bidding; losing bidders often took a break for a few
lots before coming back in. None of this is other than per-
fectly obvious (and much already covered in auction theory,
I hope) but in my experience you really have to keep remind-
ing quants that they are human beings as well, and that they
should draw inspiration from the mundane.

I bumped into Uri Geller at the auction. He had just suc-
cessfully bid for...you guessed it, spoons! He’s a very nice
gentleman, and very kindly gave a few of us a private display
of spoon bending!
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Figure 4.1: Bed price versus lot number at the Savoy auction.
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Science in Financell: <. .. 1s5ts’

A century or two ago, finance was the career for the less tal-
ented members of the family. Sons of the aristocracy would
eventually go to sit in the House of Lords, while overseeing
their property. One son would join the military, Catholic fam-
ilies would send a son off to the church. Perhaps if they were
of an enquiring mind one son might become a scientist. But if
a son turned out to be intellectually challenged he would be
sent off to be ‘something in the City.” This didn’t require any
more brains than that required for an arts degree. This was
the finance-is-for-artists (and long lunches) period, now long
gone.

More often one now finds proper scientists working in
finance. They have the analytical skills needed by investment
banks and hedge funds. | imagine some must start out being
frustrated by the lack of an established rigorous foundation
for the subject. Where are the conservation laws? Where are
the experimental results and the hypotheses? Quantitative
finance has a well-used set of tools, but the popular models
are essentially ad hoc.

Those in trading are undoubtedly pragmatists who really
don’t care for the port-and-cheese side of finance, nor for
compact theories. Can it be put in a spreadsheet and does
it make money? That’s all that matters.

Unfortunately, most of the theory is built by axiomatists who
really seem to believe in their models. These are the ones

to be really frightened of. Speaking to them is like speak-

ing to a god botherer, ‘there is but one stochastic volatility
model and its name is Heston.” (News flash: God and complete
markets are simplifying assumptions that make life easier for
the unimaginative, you aren’t meant to believe in them once
you've grown up!)
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My feeling is that the best type of ‘ist’ working in finance is
a pragmatic scientist, combining the curiosity and the scepti-
cism of the scientist with the get-the-job-done attitude of the
pragmatist.
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Science in Finance IV: The Feedback
Effect

For every buyer there is a seller and vice versa. So at a first
glance derivatives is a zero-sum game, someone wins and
someone loses, and the amounts are identical. Therefore
there can be no impact on the rest of us or on the economy
if two adults want to bet large sums of money on the
outcome of what may just be the roll of a dice. Well, it isn’t
that simple for at least two reasons.

First, many of those trading derivatives are hedging with the
underlying and this can affect the behaviour of the under-
lying: hedging positive gamma can decrease volatility and
hedging negative gamma can increase volatility. When hedg-
ing positive gamma (i.e. replicating negative gamma) as the
price rises you have to sell more of the underlying, and when
the price falls you buy back, thus reducing volatility if your
trades are in sufficient size to impact on the market. But
hedging negative gamma is not so nice, you buy when the
price rises and sell when it falls, exacerbating the moves and
increasing volatility. The behaviour of stocks on which there
are convertible bonds is often cited as a benign example,
with the rather more dramatic '87 crash, replicating a

put i.e. hedging negative gamma, as the evil version. (See
Schonbucher, P and Wilmott, P 2000 The feedback effect

of hedging in illiquid markets. SIAM J. Appl. Math. 61
232-272, also PS’s dissertation.) You will probably find some
reluctance for people to sell certain derivatives if they are
not permitted to dynamically hedge. (Not that it works
particularly well anyway, but that is what people do, and
that is what most pricing theory is based on. Static hedging
with other derivatives is better, and does not cause such
(in)stability problems.)
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(We’'ve had newspaper headlines about damage done by
excessive risk taking, whether by single, roguish, individuals
or by larger institutions such as hedge funds, or banks and
corporates investing in products they don’t fully understand.
I expect it won’t be long before the attempt to reduce risk is
the cause of similar headlines!)

Second, with the leverage available with derivatives it is poss-
ible, and actually rather simple, for people to trade so much
as to get themselves into a pickle when things go wrong. This
has many consequences. For example a trader loses his bank
so much money that the bank collapses or is taken over, job
losses ensue and possibly the man in the street loses his sav-
ings. Is wealth conserved during this process, as would be
the case in a zero-sum game? I think not.

Of course, we don’t know what proportion of derivatives
trades are being used for hedging, speculation with leverage,
etc. and how many are being dynamically hedged. But while
derivatives trading is such a large business and while pricing
theory is underpinned by dynamic hedging then we can say
that the game of derivatives is not zero sum. Of course, this
should spur on the implementation of mathematical models
for feedback...which may in turn help banks and regulators
to ensure that the press that derivatives are currently getting
is not as bad as it could be.
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Science in Finance VI: True
Sensitivities, CD0s and Correlations

One of the more quantie aspects of recent financial crises
has been the valuation of CDOs, the highly complex credit
instruments depending upon the behaviour of many, many
underlyings. Now your typical quant favours just one tool to
capture the interaction of two assets, and that tool is corre-
lation. Of course, this is a very unsubtle tool which is being
used to capture the extremely subtle interactions between
companies. And when you have 100 underlyings the number
of correlations will be 100 x 99/2 = 4,950. All of them unsta-
ble, all of them meaningless. Yet you will often find complex
derivatives being priced using such wildly nonsensical data.
Sometimes, in the interests of simplicity, some instruments
are priced assuming all correlations are the same. The ratio-
nale behind this might be to return some robustness, in the
sense that you might be more sure of one parameter than of
4,950 of them. If only it were that simple!

Returning to the subject of CDOs. I conducted a simple exper-
iment on a CDO with just three underlyings. Really just a
toy model to illustrate some important issues. | started by
assuming a single correlation (instead of three) to capture
the relationship between the underlyings, and a ‘structural
model.’ I then looked at the pricing of three CDO tranches,
and in particular their dependence on the correlation. Look
at Figure 4.2, but ignore the exact numbers. First observe
that the Senior Tranche decreases monotonically with cor-
relation, the Equity Tranche is monotonically increasing, with
the Mezzanine Tranche apparently being very insensitive to
correlation.

Traditionally one would conduct such sensitivity experiments
to test the robustness of ones prices or to assist in some
form of parameter hedging. Here, for example, one might
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Figure 4.2: Constant correlation model.

conclude that the value of the Mezzanine Tranche was very
accurate since it is insensitive to the correlation parameter.
For a single correlation ranging from —0.25 to +0.5 the Senior
Tranche value ranges from 0.643 to 0.797, the Equity Tranche
from 0.048 to 0.211, and the Mezzanine Tranche from 0.406 to
just 0.415. (Remember, don’t worry about the numbers in this
toy model, just look at the structure.) If you are confident

in your valuation of the Mezzanine Tranche, then so will the
next bank, and with competition being what it is, bid—offer
prices will converge.

Such an analysis could not possibly be more misleading, such
a conclusion could not possibly be more incorrect and such
a response could not possibly be more financially dangerous.
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Consider a more interesting, and more realistic, world

in which correlation is state-dependent. Now allowing
correlation to vary from —0.25 to +0.5, but not constant, and
depending on ‘state,” you will find that the Senior Tranche
still varies from 0.643 to 0.797, the Equity Tranche still
varies from 0.0408 to 0.211, but now the Mezzanine Tranche
varies from 0.330 to 0.495, a factor of 18 in the sensitivity
compared with the traditional naive analysis. The reason is
simple, inside the Mezzanine Tranche structure there is a
non-monotonic sensitivity to correlation which is masked
when calculating the value; sometimes more correlation is
good, sometimes more correlation is bad. (For the Senior
Tranche correlation is always bad, for the Equity Tranche
correlation is always good.)

Why on earth people thought it a good idea to measure sen-
sitivity to a parameter that has been assumed to be constant
escapes me still.

The moral of this example is simple, there is far more risk
inside some of these instruments than you could ever hope
to find with classical analyses. Stop using such convoluted
models, use more straightforward models and start thinking
about where your models’ sensitivities really lie. Your mod-
els can fool some of the people all of the time, and all of the
people some of the time, but your models cannot fool all of
the people all of the time.
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Science in Finance VII: Risk
Management — What is the Point?

Another day, another financial institution collapses.! Bear
Stearns, fifth largest US investment bank, has gone. I've
worked closely with Bear brokerage in the past and quite
enjoyed the experience. It’s the prime brokerage that JP
Morgan is presumably after. 'm a quant not an accountant
so was surprised to see that Bear’s assets were just 2-3%
higher than their liabilities. If this is standard practice in this
sector then crikey, we really are doomed! Who in their right
mind would run a business that way? Sorry if [ seem awfully
naive, but as someone who has himself run a few businesses
in his time, albeit on a somewhat smaller scale, to me this
does seem highly irresponsible.

Investments (although that hardly feels like the right word)
in mortgage-backed products and over-zealous lending com-
bined with one particular scenario are at the bottom of this.
This scenario is that of falling house prices. But isn’t scenario
analysis supposed to spot this sort of exposure? It’s not as

if falling property prices are totally unheard of. As those of
you who have heard me lecture will know, I always like to
boil things down to everyday experiences. And according to
my experience there is a one in three chance of losing money
in property! (Like most people with similar experiences

it was the early 90s to ‘blame’ in my case.) And a one in
three chance is not exactly the 10 standard deviation excuse
du jour! It has been suggested that many bank employees
are too young to have experienced negative equity and
therefore it is off their radar, but if that is the case then what
is the point of risk management at all? What is the point of
all those risk management qualifications that are springing
up like mushrooms? It has also been suggested that senior

IThis essay was first written on 18 March 2008.
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people don’t have a clue about the instruments that their
bank is trading. So I really would like to know how they
fill their days, whatever they are doing it is clearly not
productive.

Are those in positions of responsibility at Bear Stearns blame-
less? Did senior management really think that their downside
was tolerable, that Value at Risk and stress testing were giv-
ing an accurate picture of potential losses and their proba-
bilities? Again we come back to that old problem, if there’s
no downside then irresponsible people will prosper at the
expense of the rest of us. And it seems that only the irre-
sponsible rise to positions of responsibility in this business.
Ironic.

Or maybe they are so lawyered up as to feel invincible. | am
sure there will be civil suits in some of these cases because
you can guarantee that the lawyers will, as always, be the big
winners. They are paid to ensure that your back is covered
no matter how unethical your behaviour, and then they are
paid again when you are inevitably sued.

On the subject of ethical behaviour, don’t some of these risk
management courses teach about ethics? Or does under-
standing ethics these days amount to knowing who are the
best lawyers? Personally, if | know someone had to go on

a course to learn business ethics then I would ask myself
whether that’s a person I can trust. A risk management qual-
ification is just another preventative measure against being
sued, just like the ‘Mind the Step’ signs in restaurants? What,
you broke your leg? Not our fault, mate, didn’t you see the
sign? (I was disappointed to discover recently, but not sur-
prised, that they've taken peanuts out of Revels chocolates.
Some people suffer from allergies, and presumably can’t read,
so we all have to do without.)

Risk management must be consistent with protecting the
wider interests of the institution rather than being easy to
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manipulate towards the narrow interests of some employees.
At present the concept of risk management only exists

to make it easier for people to take risks that common
sense would suggest are stupid, but risks that people still
want to take because of the huge upside for these same
people in terms of bonus. Let’s face it, that’s what rules
and regulations are for. As Madness said in Baggy Trousers,
‘All T learnt at school was how to bend not break the
rules.’

I'd now like to explain how I think risk management should
work. It’s a simple combination of standard practices that I
have used very successfully in the past. It’s not exactly earth
shattering, but it shows how to focus your attention on what
matters. | will also finish with a small proposal for how to
approach scenario analysis.

Roughly speaking, I tend to think in terms of three different
levels or classes of risk management. These are

Level 1: Probabilities and VaR

Level 2: Worst-case scenarios

Level 3: Invasion by aliens, ‘It’s the end of the world as we
know it, and I feel fine’ (REM this time!)

Level 1: Typical day-to-day markets for which it is acceptable
to work with probabilities and even possibly normal distribu-
tions. Correlations, while never exactly trustworthy, will not
be a deciding factor in survival or collapse. Use probabilities
and talk about Value at Risk by all means. This is really just
classical mid 1990’s risk management, with not too much wor-
rying about fat tails. To some extent trust in a decent amount
of diversification. The rationale behind this is simply that
you never know what your parameters or distributions really
are and so you are better off with simple calculations, more
instruments and plenty of diversification. You may not make
a profit but at least you won’t be killed during a quiet day in
the market.
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Level 2: Situations which will cause your bank or hedge fund
to collapse. Test your portfolio against a wide range of sce-
narios and see the results. But since these are situations
resulting in the collapse of your institution you must never,
ever talk about probabilities, except in terms of how many
centuries before such events may happen. [ would much pre-
fer you work with worst-case scenarios (as in the very simple
concept of CrashMetrics). | sometimes use the example of
crossing the road. Imagine it’s late, it’s dark, and it’s raining.
If you cross the road there is a 5% chance of being hit by

a bus and killed. That does not mean that tomorrow 95% of
you goes to work! No, you assume the worst, because it is so
bad, and cross the road elsewhere.

Certainly there is little role for Extreme Value Theory (EVT)
in its fiddly, detailed sense. Consider these two statements
about the same portfolio: ‘According to Gaussian distribu-
tions the expected time to bank collapse is 10%° years’ and
‘According to EVT the expected time to bank collapse is 50
years.” The difference between these statements should only
be of academic interest. Such a portfolio must be protected
asap. Of course, many people would be happy with such

a portfolio because 50 years is still longer than a trading
career. Such people should not be in positions of responsi-
bility. As I said above, ‘risk management must be consistent
with protecting the wider interests of the institution rather
than being easy to manipulate towards the narrow interests
of some employees.” To recap, if it's bad enough to cause
bank/fund collapse you don’t look at probabilities. Handle
extreme events with worst-case scenario analysis.

Level 3: Scenarios which are so dire as to affect the world
directly. I always use the example of invasion by aliens as
an example, since there are whole bodies of literature and
movies that have explored the effects of such an event, but
we have little idea of the probability! If your hedge fund will
collapse in the event of invasion by aliens, or drying up of oil
supplies, or decimation of the world’s population by bird flu,



274' Frequently Asked Questions in Quantitative Finance

then I wouldn’t necessarily change your portfolio! You'll have
other things to worry about!

Finally, a small proposal. | would like to see risk manage-
ment forced to engage in the following task, the reverse engi-
neering of a bank collapse. Start with your current portfo-
lio and imagine being called into the big boss’s office to be
told that the bank has lost $50 billion. Having put yourself
in the frame of mind of having already lost this amount, now
ask yourself what could have caused this to happen. As Ein-
stein said: ‘Imagination is more important than knowledge.’
This should be the mantra for those in risk management.
There is always going to be something that will come as a
surprise at the time but with hindsight you realize could
have been expected (if not necessarily predicted). Once you
have figured out what could have caused this loss then you
ask about the likelihood of this happening. The result of that
analysis then determines what you should do with the port-
folio. If, for example, the answer is simply that a fall in prop-
erty prices caused the loss then you must get out this very
instant, before it actually happens. You see the idea, work
backwards from the result, the loss, rather than pick (possi-
bly convenient) scenarios and look at the effects. Then esti-
mate the likelihood of the chain of events happening, and act
accordingly. Going the other way is more open to abuse. Sce-
nario testing is a beautiful concept, if one gets to choose the
scenarios to test. And those of weak character will not, of
course, test any scenario that might jeopardize a juicy trade.
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Science in Finance |1 X: In Defence of
Black, Scholes and Merton

There’s been a lot of criticism of the Black-Scholes model
of late, on our Forum, in our blogs, in the magazine (see
Haug & Taleb, Wilmott magazine, January 2008) and in other
media. Most is warranted, but perhaps not all. I would now
like to speak in its defence! This may seem perverse since |
have been highly critical of this model for the last 15 years.
But as I will explain, Black-Scholes is a remarkably robust
model that copes very well even when its underlying assump-
tions are violated, as they inevitably are in practice. Before
detailing my views on this matter, I'd like to explain how
my personal relationship with the Black-Scholes model has
evolved.

I was introduced to options in around 1987, well before the
October crash, while I was a postdoc researching in vari-
ous problems of industrial/applicable maths. For a while I
researched in several areas of finance simultaneously: tech-
nical analysis; chaos theory; stochastic calculus. (Thanks to
the technical analysis I was short the market coming into the
crash of '87 but sadly only on paper!). I quickly dropped the
TA and chaos theory, the latter seemed like a dead end, it
was too easy to construct ‘toy models’ that looked plausible
but were useless in practice. And so I began to focus on clas-
sical quant finance. Being in a maths department before most
maths departments had heard of quant finance I had to rely
on reading the literature in order to learn the subject. There
were no courses for me to attend and no one more experi-
enced to speak to. In those days whenever | read a paper

I tended to believe everything in it. If the paper referred to
volatility as a constant then [ would believe that it was a con-
stant. Black-Scholes was to me a good model, which just
needed a minor bit of tweaking. My research from that era
was on making small improvements to Black-Scholes to allow
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for transaction costs, and on the pricing of exotic derivatives
in a constant-volatility world. This was the first phase in my
relationship with Black and Scholes.

The second phase was as a consultant working for various
investment banks, hedge funds and software companies. I
was still in academia but moonlighting on the side. In this
new capacity I finally got access to real data and was now
speaking to practitioners rather than academics. (Fischer
Black himself contacted me about the possibility of working
for Goldman Sachs, and at this time I got to know Emanuel
Derman. For a while I was sorely tempted to join them, but
ultimately such a position would not have suited my per-
sonality.) It didn’t take long for me to realize how unrealis-
tic were the assumptions in the Black-Scholes model. For
example, volatility was certainly not constant, and the errors
due to discrete hedging were enormous. My research during
the mid and late '90s was on making more dramatic improve-
ments to the models for the underlyings and this was also the
era when my interest in worst-case scenarios began. I worked
with some very talented students and postdocs. Some great
ideas and new models came out of this period. This was the
height of my anti-Black-Scholes views.

A couple of years after leaving academia I became a partner
in a volatility arbitrage hedge fund, and this was the start of
phase three. In this fund we had to price and risk manage
many hundreds of options series in real time. As much as

I would have liked to, we just weren’t able to use the ‘bet-
ter’ models that I'd been working on in phase two. There just
wasn’t the time. So we ended up streamlining the complex
models, reducing them to their simplest and most practi-

cal form. And this meant using good ol’ constant volatility
Black-Scholes, but with a few innovations since we were
actively looking for arbitrage opportunities. From a pragmatic
point of view I developed an approach that used Gaussian
models for pricing but worst-case scenarios for risk manage-
ment of tail risk. And guess what? It worked. Sometimes you
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really need to work with something that, while not perfect,
is just good enough and is understandable enough that you
don’t do more harm than good. And that’s Black-Scholes.

[ had gone from a naive belief in Black-Scholes with all its
simplifying assumptions at the start of my quant career, via
some very sophisticated modelling, full circle back to basic
Black-Scholes. But by making that journey I learned a lot
about the robustness of Black-Scholes, when it works and
when it doesn’t, and have learned to appreciate the model
despite its flaws. This is a journey that to me seems, in retro-
spect, an obvious one to take. However, most people I know
working as quants rarely get even half way along. (As dis-
cussed elsewhere, I believe this to be because most people
rather like being blinded by science.)

My research now continues to be aimed at questioning com-
monly held beliefs, about the nature of ‘value,” about how

to use stochastic calculus to make money rather than in a
no-arbitrage world, about the validity of calibration (it’s not
valid!), and how people price risk (inconsistently is how!). All
the time I strive to keep things understandable and meaning-
ful, in the maths sweet spot that 've mentioned before.

That’s my journey. But what about the criticisms of
Black-Scholes? There are several main ones: Black-Scholes
was known well before Black, Scholes and Merton; traders
don’t actually use Black-Scholes; Black-Scholes doesn’t work.

I will happily accept that the Black-Scholes formule were
around well before 1973. Espen Haug (‘Collector’) has done
an excellent job hunting down the real history of derivatives
theory (see his Models on Models). Ed Thorp plays a large
role in that history. In the first issue of our magazine (Wilmott
magazine, September 2002) the cover story was about Ed
Thorp and his discovery of the formulae and their use for
making money (rather than for publication and a Nobel
Prize!). Ed wrote a series of articles ‘What [ Knew and When
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I Knew It’ to clarify his role in the discovery, including

his argument for what is now called risk-neutral pricing. I
particularly like the story of how Fischer Black asked Ed
out to dinner to ask him how to value American options.
By the side of his chair Ed had his briefcase in which there
was an algorithm for valuation and optimal exercise but he
decided not to share the information with Black since it was
not in the interests of Ed’s investors! Incorrect accreditation
of discoveries is nothing new in mathematics, but usually
there’s a quid pro quo that if you don’t get your name
attached to your discovery then at some stage you’ll get your
name attached to someone else’s!

They say traders don’t use Black-Scholes because traders
use an implied volatility skew and smile that is inconsistent
with the model. (Do these same people complain about

the illegitimate use of the ‘bastard greek’ vega? This is a

far worse sin.) I think this is a red herring. Yes, sometimes
traders use the model in ways not originally intended

but they are still using a model that is far simpler than
modern-day ‘improvements.” One of the most fascinating
things about the Black-Scholes model is how well it performs
compared with many of these improvements. For example,
the deterministic volatility model is an attempt by quants to
make Black-Scholes consistent with the volatility smile. But
the complexity of the calibration of this model, its sensitivity
to initial data and ultimately its lack of stability make this
far more dangerous in practice than the inconsistent ‘trader
approach’ it tries to ‘correct’!

The Black-Scholes assumptions are famously poor. Never-
theless my practical experience of seeking arbitrage oppor-
tunities, and my research on costs, hedging errors, volatility
modelling and fat tails, for example, suggest that you won’t
go far wrong using basic Black-Scholes, perhaps with the
smallest of adjustments, either for pricing new instruments or
for exploiting mispriced options. Let’s look at some of these
model errors.
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Transaction costs may be large or small, depending on
which market you are in and who you are, but Black-Scholes
doesn’t need much modification to accommodate them.

The Black-Scholes equation can often be treated as the
foundation to which you add new terms to incorporate
corrections to allow for dropped assumptions. (See anything
by Whalley & Wilmott from the 1990s.)

Discrete hedging is a good example of robustness. It’s easy to
show that hedging errors can be very large. But even with
hedging errors Black-Scholes is correct on average. (See
PWOQF2.) If you only trade one option per year then, yes,
worry about this. But if you are trading thousands then don’t.
It also turns out that you can get many of the benefits of
(impossible) continuous dynamic hedging by using static
hedging with other options. (See Ahn & Wilmott, Wilmott mag-
azine, May 2007 and January 2008.) Even continuous hedging
is not as necessary as people think.

As for volatility modelling, the average profit you make from
an option is very insensitive to what volatility you actually
use for hedging (see Ahmad & Wilmott, Wilmott magazine,
November 2005). That alone is enough of a reason to stick
with the uncomplicated Black-Scholes model, it shows just
how robust the model is to changes in volatility! You cannot
say that a calibrated stochastic volatility model is similarly
robust.

And when it comes to fat tails, sure it would be nice to have
a theory to accommodate them but why use a far more
complicated model that is harder to understand and that
takes much longer to compute just to accommodate an event
that probably won’t happen during the life of the option,

or even during your trading career? No, keep it simple and
price quickly and often, use a simpler model and focus more
on diversification and risk management. I personally like
worst-case scenarios for analysing hedge-fund-destroying
risks. (See anything from the 1990s by Hua & Wilmott.)
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The many improvements on Black-Scholes are rarely
improvements, the best that can be said for many of them is
that they are just better at hiding their faults. Black-Scholes
also has its faults, but at least you can see them.

As a financial model Black-Scholes is perfect in having just
the right number of ‘free’ parameters. Had the model had
many unobservable parameters it would have been useless,
totally impractical. Had all its parameters been observable
then it would have been equally useless since there would
be no room for disagreement over value. No, having one
unobservable parameter that sort of has meaning makes this
model ideal for traders. I speak as a scientist who still seeks
to improve Black-Scholes, yes it can be done and there are
better models out there. It's simply that more complexity

is not the same as better, and the majority of models that
people use in preference to Black-Scholes are not the great
leaps forward that they claim, more often than not they are
giant leaps backward.



Chapter 4: Essays 281

Magicians and Mathematicians

Quantitative finance and risk management are not just about
the numbers. Numbers play a part, but so does the human
side of the business. When analysing risk it is important to
be able to think creatively about scenarios. Unfortunately the
training that most quants get seems to actively discourage
creativity.

Some of the following appeared on the BBC website in
December 2008.

We've learned the hard way how important it is to measure
and manage risk. Despite the thousands of mathematics and
science PhDs working in risk management nowadays we seem
to be at greater financial and economic risk than ever before.
To show you one important side of banking I'd like you to
follow me in an exercise with parallels in risk management.

You are in the audience at a small, intimate theatre, watch-
ing a magic show. The magician hands a pack of cards to a
random member of the audience, asks him to check that it’s
an ordinary pack, and would he please give it a shuffle. The
magician turns to another member of the audience and asks
her to name a card at random. ‘Ace of Spades,” she says. The
magician covers his eyes, reaches out to the pack of cards,
and after some fumbling around he pulls out a card. The
question to you is what is the probability of the card being
the Ace of Spades?

Think about this question while I talk a bit about risk man-
agement. Feel free to interrupt me as soon as you have an
answer. Oh, you already have an answer? What is that, 1 in
52, you say? On the grounds that there are 52 cards in an
ordinary pack. It certainly is one answer. But aren’t you miss-
ing something, possibly crucial, in the question? Ponder a bit
more.
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One aspect of risk management is that of ‘scenario analysis.’
Risk managers in banks have to consider possible future sce-
narios and the effects they will have on their bank’s portfolio.
Assign probabilities to each event and you can estimate the
distribution of future profit and loss. Not unlike our exercise
with the cards. Of course, this is only as useful as the num-
ber of scenarios you can think of.

You have another answer for me already? You'd forgotten
that it was a magician pulling out the card. Well, yes, [ can
see that might make a difference. So your answer is now that
it will be almost 100% that the card will be the Ace of Spades,
the magician is hardly going to get this trick wrong. Are you
right? Well, think just a while longer while I tell you more
about risk and its management.

Sometimes the impact of a scenario is quite easy to estimate.
For example, if interest rates rise by 1% then the bank’s port-
folio will fall in value by so many hundreds of millions. But
estimating the probability of that interest rate rise in the
first case might be quite tricky. And more complex scenar-
ios might not even be considered. What about the effects of
combining rising interest rates, rising mortgage defaults and
falling house prices in America? Hmm, it’s rather looking like
that scenario didn’t get the appreciation it deserved.

Back to our magician friend. Are those the only two possi-
ble answers? Either 1 in 52 or 100%? Suppose that you had
billions of dollars of hedge-fund money riding on the out-
come of this magic trick, would you feel so confident in your
answers? (A hedge fund betting on the outcome of a magic
show, how unrealistic! But did you know that there’s at least
one hedge fund that ‘invests’ in poker players, funding their
play and taking a cut of their winnings? So who knows what
they’ll think of next?) When I ask this question of finance
people I usually get either the 1 in 52 answer or the 100%.
Some will completely ignore the word ‘magician,” hence the
first answer. Some will say ‘I'm supposed to give the maths
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answer, aren’t I? But because he’s a magician he will certainly
pick the Ace of Spades.’ This is usually accompanied by an
aren’t-l-clever smile! Rather frighteningly, some people trained
in the higher mathematics of risk management still don’t see
the second answer even after being told.

This is really a question about whether modern risk man-
agers are capable of thinking beyond maths and formulee.
Do they appreciate the human side of finance, the herding
behaviour of people, the unintended consequences, what

I think of as all the fun stuff. And this is a nice question
because it very quickly sorts out different types of thinkers.

There is no correct answer to our magician problem. The
exercise is to think of as many possibilities as you can. For
example, when I first heard this question an obvious answer
to me was zero. There is no chance that the card is the Ace
of Spades. This trick is too simple for any professional ma-
gician. Maybe the trick is a small part of a larger effect, get-
ting this part ‘wrong’ is designed to make a later feat more
impressive...the Ace of Spades is later found inside some-
one’s pocket. Or maybe on the card are written the winning
lottery numbers that are drawn randomly 15 minutes later
on live TV. Or maybe the magician was Tommy Cooper. Or it
was all the magician’s performance-anxiety dream the night
before. When I ask non-mathematicians this is the sort of
answer | get.

The answer 1 in 52 is almost the answer least likely to be
correct! (Unless the magician was using an ordinary deck of
cards, was aiming to pull out a different card but accidentally
pulled out the Ace of Spades instead! Accidentally not making
the intended ‘mistake.”)

A member of wilmott.com didn’t believe me when I said how
many people get stuck on the 1 in 52 answer, and can’t see
the 100% answer, never mind the more interesting answers.
He wrote ‘I can’t believe anyone (who has a masters/PhD
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anyway) would actually say 1/52, and not consider that this
is not...a random pick? So he asked some of his colleagues,
and his experience was the same as mine. He wrote ‘Ok

I tried this question in the office (a maths postgraduate
dept), the first guy took a fair bit of convincing that it wasn’t
1/52!, then the next person (a hardcore pure mathematician)
declared it an un-interesting problem, once he realized that
there was essentially a human element to the problem! Does
that not send shivers down your spine, it does mine.

Once you start thinking outside the box of mathematical the-
ories the possibilities are endless. And although a knowledge
of advanced mathematics is important in modern finance I do
rather miss the days when banking was populated by man-
agers with degrees in History and who’d been leaders of the
school debating team. A lot of mathematics is no substitute
for a little bit of commonsense and an open mind.

How can we get quants and risk managers to think beyond
the mathematics? I'm afraid I don’t think we can the way they
are currently educated.
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Volatility Arbitrage

I continue to be staggered by the depth and detail of some
people’s understanding of complicated quant models while
these same people have absolutely no appreciation of the
bigger picture. A case in point is that of volatility modelling.

If you really get into the Heston stochastic volatility model
you will find yourself having to do some numerical integration
in the complex plane (thanks to the transform methods used
to solve the governing equation). This can be quite tricky

to do in practice. Is all that effort worth it? Well, in part

this depends on how good the model is. So you might think
people would test the accuracy of the model against the data.
Do they do this? Rarely. It is deemed sufficient to calibrate to
a static dataset of option values regardless of the dynamics
of that dataset. Yes, | know you then hedge with vanillas

to reduce model risk, but this is a fudge that is completely
inconsistent with the initial modelling. The cynic in me says
that the benefit of modelling in such oblivion is truly tested
by the state of your bank balance at the end of the year. If
you get a bonus, does it matter? I don’t have too much of a
problem with that, depending on where you are in the man-
agement structure. However, | suspect that this is not most
people’s justification for their inaccurate modelling. I suspect
that people really do believe that they are doing good work,
and the more complicated the mathematics the better.

So, many know all the ins and outs of the most advanced
volatility models based in the classical no-arbitrage world.
Well, what if your job is to find volatility arbitrage opportu-
nities? ‘There’s no such thing as a free lunch’ is drummed
into most quants, thanks to academics and authors who take
an almost axiomatic approach to our subject (see Derman’s
blog). Those who know the details of volatility arbitrage are
few and far between. Take the example of how to hedge when
you think that options are mispriced.
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You forecast volatility to be much higher or lower than cur-
rent implied volatility. Clearly this is an arbitrage opportu-
nity. But to get at that profit you must hedge stock risk. Now,
working within an otherwise very simple Black-Scholes world
but with two volatilities, implied and forecast, how should
you hedge and how much profit will you make?
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The Same 010 Same 010

Events of the last year seem to have passed a lot of
researchers by. I find it both amusing and disturbing that
the same people are still giving the same lectures about the
same models at the same conferences without any sign of
embarrassment whatsoever.? It’s like a parallel universe! You
can fool some of the people all of the time.

Sadly the easy ones to fool are people doing Finance PhDs
and MFEs. On the forum there’s always plenty of discussion
about which qualifications people should go for, and how
many. | find that the people who pick up new ideas fastest
are those with a mathematics or science background, those
actually with little hard-core quant education. They still have
an open mind, something which is surely needed now more
than ever before. The more time spent in academia learning
the ‘received wisdom’ of quant finance the more one’s brain
atrophies it seems. As has been said on the forum many
times, a finance PhD is for someone who wants to be a
finance professor. You are better off getting a job, any job,
in a bank or fund asap, start earning asap, move up the food
chain as quickly as possible and leave your degree-collecting
friends behind. This business will not be this lucrative
forever.

[ worry that people just can’t distinguish between good and
bad quant finance. There’s plenty of evidence for this in jour-
nals, at conferences and in textbooks. People will certainly
spot a mathematical error in a paper, but can they make
the more subjective distinction between a good paper that
advances the subject and a bad paper that sets it back?

There is nothing new in this, journals have almost always
preferred to publish the ‘reliable,” the ‘brilliant new research

2This essay was first published on 1 September 2008.
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by Professor X’ that is really ‘the same old stuff by a
has-been plodder.’ At this point a plug for our magazine

is in order. Portfolio magazine was very flattering in its
recent article about our magazine, saying ‘Paul Wilmott,
publisher and editor in chief of Wilmott, is looking pretty
smart these days. Wilmott and his magazine, which is aimed
at the quantitative-finance community, the math geeks at
banks and hedge funds, foresaw many of the problems that
dominate the headlines today. He and the contributors to the
magazine, whose influence far outstrips its small circulation,
were railing about the limits of math and financial models far
in advance of the meltdown.’

It’s not hard to find good research; our magazine seems to be
particularly talented at this. The difficult part is knowing the
difference between the good and the bad. This skill can be
learned, but an open mind is needed. And they are increas-
ingly hard to find.
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Results and 1deas: Two Classical
Putdowns

I spoke recently at a very academic conference.? I usually
prefer trader and fund events because of their focus on prac-
tical matters. But this was in a place that I'd never visited
and so [ accepted. My lecture began in the traditional way
of academic events with the audience being a bit hostile in
their questioning. Being an old hand at this, I told myself not
to rise to their baiting, but to see if [ could win them over.
It was clear that they knew little of the markets and practi-
cal finance, and so my ‘winning them over’ took the form of
gently pointing out certain realities, certain constraints, and
how interesting this subject is precisely because it is not a
science. Getting them on my side turned out to be rather eas-
ier than usual, the hostility of most of them evaporated once
they became intrigued. However, one person in the audience
was not impressed with my efforts. He used two very famous
putdowns on me, one of them is common only in academic
circles and the other common in all circles.

The academic putdown was used in response to me talking
about possibilities of arbitrage and whether the exploitation
of arbitrage would make it go away. The putdown is to
simply say ‘There is a result about that.” Now I'm perfectly
happy with people talking about ‘results’ in mathematics,
in statistics, in particle physics, or in a hard science
generally, but the use of the word ‘result’ in the context of
a discussion about quantitative finance says more about
the person using the word than anything about the subject
matter. Human beings have this annoying habit of stubbornly
not obeying theoretical ‘results’ (or indeed laws). As I keep
saying, this subject is not a hard science and is somewhat
more ephemeral than can be captured in a set of results.

3This essay was first published on 10 June 2008.
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So although saying ‘There’s a result about that’ can be
aggressive and arrogant it can also be very naive, suggesting
that whoever says it believes that finance is equivalent to a
set of axioms. It is not, and to believe that it is can be very
dangerous. This putdown is best just laughed off.

The other putdown came while I was explaining strategies
that may be exploited for profit. The putdown is the simple ‘If
this works then why are you telling us about it and not doing
it yourself?” There are many responses to this including:

1. I don’t have the ability to do it myself, this is my
marketing pitch, want to back me?

2. Ideas are cheap, I know which ones are good or bad but
not everyone can tell the difference.

3. Do you know all the barriers to entry? $1 million in
lawyers fees to set up a fund, months of software writing,
years of knocking on doors trying to raise money. Forget
it!

4. This is a great idea, but I've got better.

5. I don’t want to spend the rest of my life doing this, even if
it is profitable, variety is the spice of life.

6. I did, and now I've retired or, more simply, I've got
enough money already.

7. My lawyer/doctor/wife says I mustn’t.

And many more. ..

I was expecting this putdown from the well-known academic
(he of the ‘results”) because of what happened in his lecture,
which was earlier in the day than mine. He was talking about
his model for something or other and right at the end he
made the throw-away remark, ‘Of course, if this worked in
practice I wouldn’t be telling you about it.” [ confess to being
shocked. (My turn to be naive!) This is a man who lectures
on finance at a respected university, to students paying a

lot of money, and here he was admitting that he lectures on
things that do not work, that he keeps some of the good stuff
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to himself. Let me tell you that when I lecture, for example

on the CQF, I keep nothing back (for at least one of the rea-
sons listed above!). And unless I've signed some NDA, [ will
tell you everything.
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It 15and It Isn’t

I couldn’t resist this rather trivial note, just a comment really
on happenings at a recent quantie dinner. In attendance,
going clockwise around the table at Union Square Cafe, PW,
Bruno Dupire, Salih Neftci, Peter Carr, Jim Gatheral and
Emanuel Derman.

Discussing the validity of all this Black—Scholes stuff that has
got so much bad press recently, JG says ‘I have a nice apart-
ment in **** thanks to Black-Scholes being correct’ to which
yours truly responded ‘Well, [ have a nice flat in **** thanks
to it being wrong!” Now, you can sort of see how that can be!
It depends upon (a) to what use you put BS and, crucially,
(b) how much profit margin you can add to any deal!

Not naming any more names, it was clear from the rest of
the conversation (which concerned numerical integration

in infinite-dimensional spaces!) that, if this sample is to

be trusted and extrapolated, (a) half of all quants actually
believe all this math finance modelling nonsense, (b) one
third of all quants don’t, and are rather concerned for the
mental health of the first half, and (c) one sixth of all quants
either don’t care or have maybe been enjoying the excellent
wine list at Union Square Cafe too much!
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This is No Longer Funny

I've been critical of much of quant modelling for many years.
I don’t like the assumptions, the models, the implementa-
tions. I've backed this up with sound reasons and wherever
possible tried to find alternative approaches that I think are
better. I don’t honestly expect to change the world, much,
but, hey, I do what I can. Human nature is such that very
often things have to go from bad to worse to bloody awful
before the necessary paradigm shift happens. | hope we are
close to that point now.

4

Who am I kidding? As another hedge fund disappears thanks
to mishandling of complex derivatives, I predict that things
are going to get even worse.

When it was just a few hundred million dollars here and
there that banks were losing we could all have a good
laugh at those who had forgotten about convexity or
whatever. But now the man in the street has been affected
by these fancy financial instruments. It’s no longer a laughing
matter.

Part of the problem is that many of the people who pro-
duce mathematical models and write books know nothing
about finance. You can see this in the abstractness of
their writing, you can hear it in their voices when they
lecture. Sometimes they are incapable of understanding
the markets, mathematicians are not exactly famous for
their interpersonal skills. And understanding human nature
is very important in this business. It’s not enough to say
“all these interacting humans lead to Brownian Motion and
efficient markets.” Baloney. Sometimes they don’t want to

4This essay was first published 10 March 2008.
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understand the markets; somehow they believe that pure
mathematics for its own sake is better than mathematics that
can actually be used. Sometimes they don’t know they don’t
understand.

Banks and hedge funds employ mathematicians with no
financial-market experience to build models that no one is
testing scientifically for use in situations where they were not
intended by traders who don’t understand them. And people
are surprised by the losses!

[ realized recently that I've been making a big mistake. I've
been too subtle. Whenever I lecture I will talk calmly about
where models go wrong and where they can be dangerous.
I've said CDO models are bad because of assumptions about
correlation. I've pointed out what you can do to improve
the models. I've talked about hidden risks in all sorts of
instruments and how sensible use of mathematics will unveil
them. I've explained why some numerical methods are bad,
and what the good methods are. But, yes, I've been too
subtle. I now realize that one has to shout to be heard above
the noise of finance professors and their theorems. Pointing
people in the right direction is not enough. Screaming and
shouting is needed.

So here, big and bold, gloves off, in capital letters (for this
seems to help), are some fears and predictions for the future.

THERE WILL BE MORE ROGUE TRAPERs While people are com-
pensated as they are, while management look the other way
to let the ‘talent’ do whatever they like, while people mis-
take luck for ability, there will be people of weak character
who take advantage of the system. The bar is currently at §3
billion. There will be many happy to stay under that bar, it
gives them some degree of anonymity when things go wrong.
But that record will be broken.
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GOOD SALESMEN WILL HOOPWINK SMART PEOPLE No matter what
you or regulatory bodies or governments do we are all a
pushover for the slick salesman.

CONVEXITY WILL BE MISSEP One of the more common reasons
for losing money is assuming something to be known when it
isn’t. Option theory tells us that convexity plus randomness
equals value.

CORRELATION PROPUCTS WILL BLOW UP PRAMATICALLY This
means anything with more than one underlying, including
CDOs. Stop trading these contracts in quantity this very
minute. These contracts are lethal. If you must trade
correlation then do it small and with a big margin for error.
If you ignore this then I hope you don’t hurt anyone but
yourself. (I am sometimes asked to do expert-witness work. If
you blow up and hurt others, I am very happy to be against
you in court.)

RISK MANAGEMENT WILL FAIL Risk managers have no incen-
tive to limit risk. If the traders don’t take risks and make
money, the risk managers won’t make money.

VOLATILITY WILL INCREASE ENORMOUSLY AT TIMES FOR NO ECO-
NOMIC REASON Banks and hedge funds are in control of a
ridiculous amount of the world’s wealth. They also trade irre-
sponsibly large quantities of complex derivatives. They slav-
ishly and unimaginatively copy each other, all holding simi-
lar positions. These contracts are then dynamically hedged
by buying and selling shares according to mathematical for-
mulae. This can and does exacerbate the volatility of the
underlying. So from time to time expect to see wild market
fluctuations for no economic reason other than people are
blindly obeying some formula.

T00 MUCH MONEY WILL GO INTO T00 FEW PROPUCTS If you
want the biggest house in the neighbourhood, and today not
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tomorrow, you can only do it by betting OPM (other people’s
money) big and undiversified. There are no incentives for
spreading the money around responsibly.

MORE HEDGE FUNDsS WILL COLLAPSE You can always start a
new one. Hell, start two at the same time, one buys, the other
sells!

POLITICIANS AND GOVERNMENTS WILL REMAIN COMPLETELY

IN THE PARK Do you want to earn $50k p.a. working

for the public sector, or £500k p.a. working for Gold-

man Sachs? Governments, who are supposed to set

the rules, do not even know what the game is. They

do not have the slightest clue about what happens in

banks and hedge funds. Possibly, for the same reason.
London will lose out to New York as a world financial centre.
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Frustration

As you will no doubt know, I have been frustrated by quants
for a long, long time. Their modelling of markets is a strange
combination of the childishly naive and the absurdly abstract.
On a one-to-one basis many people working in banks will
complain to me about the models they have to implement.
They will complain about instability of the Heston volatility
model, for example. I will explain to them why it is unsta-
ble, why they shouldn’t be using it, what they can do that’s
better and they will respond along the lines of ‘I agree, but

I don’t have any choice in the matter.” Senior quants are
clearly insisting on implementations that those on the front
line know are unworkable.

And a large number of people complain to me in private
about what | have started calling the ‘Measure Theory
Police.” These ‘Police’ write papers filled with jargon,
taking 30 pages to do what proper mathematicians could
do in four pages. They won't listen to commonsense
unless it starts with ‘Theorem,’ contains a ‘Proof,” and
ends with a ‘QED.’ I'll write in detail about the Measure
Theory Police at a later date, but in the meantime will all
those people complaining to me about them please speak
up...you are preaching to the converted, go spread the
word!

For several years I tried to argue scientifically, in papers,
book, seminars, etc. about all the abysmal modelling [ saw.
Of all the conferences that I speak at, you would think that
quant events would be the ones at which the audience would
have the best appreciation of good versus bad modelling.
Frustratingly, quant conferences have audiences with great
technical skills but the least imagination. If you're not lectur-
ing about the wonders of correlation, but about the stupidity
of correlation, then expect a hostile ride. But I battled on, I
have a very tough skin!
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Then I thought I'd try a different tack. If data, scientific expla-
nations and commonsense won’t get the truth across then

something else was required. (It turns out that the ‘something
else’ was losses of trillions of dollars and a global recession!)

So I started introducing audiences to relevant aspects of
human psychology. I explained about the famous experiments
in peer pressure to highlight why people were adopting

the same models as everyone else. | explained about the
famous experiments in diffusion of responsibility, mentioned
recently in an article by Taleb and Triana, so that people
would understand why they were sitting around not doing
anything about the terrible state of affairs. Perhaps a little
bit of cognitive behavioural therapy might help them to
understand their own motives and this would bring about a
change of practice in finance. Of course, | was overambitious.
Audiences were entertained and amused, a good time was
had by all. And then they went back to their day jobs and
the implementation of the same old copula nonsense.

Combine peer pressure with diffusion of responsibility and
fear for their jobs and most people will keep quiet. Sad, but
expected and, reluctantly [ will admit, understandable.

What is not understandable is the role in recent events
played by regulators and rating agencies. Their jobs are not
to toe the party line. The job of the regulator is to hold up
the yellow card to banks with bad practices and the job

of the rating agencies is to give an honest assessment of
creditworthiness. In neither case should they have been
effectively colluding with banks in increasing the amount of
risk taken.

[ have an analogy for you.
A rating agency or a regulator visits a bank. They are being

shown around the premises, looking at all the products they
have and how they are managed. They come to one desk on
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which there is a pile of nuclear material. ‘That’s a large pile
of nuclear material. How much does it weigh?’ they ask. ‘Oh,
nothing to worry about, only half the critical mass,” comes
the reply. They go on to the next desk and see a similar pile.
‘Nothing to worry about, only half the critical mass.” They
go next door to another bank, and they see the same story.
It doesn’t take a genius to see the potential risks. The regu-
lators and the credit rating agencies saw something similar,
with CDOs and the like being the explosive material.

In the early days of the current crisis the talk was of blame.
That was precisely the wrong thing to consider at that time.
Shore up the financial system asap, that was the most impor-
tant thing to do. A quick response was what mattered, the
details didn’t. Now is the time to start considering blame
and punishment. And yes, there has to be punishment. You
cannot have obscene rewards for those working in bank-
ing, salaries tens or hundreds of times the national averages
without expecting and demanding corresponding responsi-
ble behaviour. It is both morally objectionable and financially
dangerous to not have the huge upside balanced by a match-
ing downside for irresponsible actions. And so I point the
finger at rating agencies and regulators as those near the top
of those who must take the blame.

Realistically I expect further frustration and a return to busi-
ness as usual.
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Ponzi Schemes, Auditors, Requlators,
Credit Ratings, and Other Scams

There are honest people, and there are dishonest people —

a whole spectrum. I like to think I'm near the honest end;

[ would have worn a white hat in the old cowboy movies.
And I've had the misfortune to have met a few from right up
close to the other extreme, with the black hats. Most people
wear hats of various shades of grey. High finance is a busi-
ness which encourages people to shift towards the dishonest
end of the spectrum by putting temptation in their way, and
the dishonest are drawn to this field by its quick and easy
rewards. Nothing that [ have ever seen in investment banking
and fund management has impressed me as a disincentive to
crooked behaviour, absolutely nothing.

As a keen observer of human behaviour I have been fasci-
nated watching people’s attitude towards money. In academia
they struggle with their mixed feelings, on the one hand hat-
ing the filthy stuff since they are supposed to be above such
worldly matters, but on the other hand rather liking what
they can do with it. The really rich see it as nothing more
than a measure of their success in life, a score. Some bal-
anced people, few and far between, realize they need it, and
that more is better than less, but it’s not the main focus in
their lives. Then there is the common greed that we see in
our business, nasty and unpleasant. And nasty, unpleasant
greed is so easy to feed, it is encouraged in banking, but it
has some unpleasant side effects.

The Madoff affair has highlighted several things, brought
some corrupt practices to light, but we haven’t really learned
anything new from all of this. The old lessons, the ones

that should have been learned years ago, are just as valid.
As | keep saying, there is little reason for regulators to do
anything: people have short memories; people are easily
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distracted; The legal system is now much better at protecting
the guilty than protecting the innocent.

Just like the Social Services in the UK, regulators do such a
useless job that they are now permanently on the defensive.
I bet you that few people working for regulators are doing

their jobs right now, I bet most of their day is spent figuring
out how to protect themselves against the growing backlash.

Quite frankly I don’t see much difference between Madoff’s
Ponzi scheme and naive auditors, self-serving regulators and
morally corrupt ratings agencies. They are all part of a finan-
cial system that encourages scams, scams that may then take
years to sort out and years before the culprits are punished,
meanwhile out on comfortable bail. The US legal system is
particularly easy to ‘play’ so as to drag proceedings out so
long that the accused dies of natural causes before justice is
done.

There is no disincentive for dishonest behaviour in invest-
ment banking at the moment, in fact the opposite. If someone
wants to invest with a manager they think might be dishon-
est but successful then they will ignore the dishonesty. If the
investor loses their shirt then tough, serves them right. (Of
course, it won’t be their money, so anyone found not having
done their full due diligence ought to be arrested.) I know of
several people who manage money who have broken serious
laws, lawbreaking that would prevent them managing money.
And I know of some investors who know that I know, but
who, when considering investing with these people, deliber-
ately do not ask for my opinion as part of their due diligence.
Why not? Because once they hear what [ have to say then
they would no longer be able to invest with the crooked,
but oh-so-smooth and convincing manager. If you've ever
bought a dodgy DVD at the market, or a hi-fi from a man in
the pub, then you are just as culpable. And you therefore
might find some sympathy for a lot of people being blamed
at the moment. I haven’t, and I don't.
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When [ first realized, several years ago, that due diligence is
deliberately not being done I proposed that formal psychome-
tric testing be part of the process of setting up a hedge fund
or managing money. [ know this is easy to criticize or trivi-
alize, especially by all the ‘left-brainers’ working in finance.
But in this business trust is so important. In a world where
we never get to know the people looking after our life sav-
ings, as we might have done in the old days, I can think of no
other simple indicator of testing trustworthiness. Some peo-
ple are dishonest, some can’t be trusted. Do you care? I do,
and always have. Maybe other people don'’t, that’s greed at
work, but they will eventually, perhaps only after they've lost
lots and lots of money.
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Economics Makes My Brain Hurt

A friend of mine, you may know him, you certainly know
‘of’ him, has called for the return of a couple of economics
Nobel Prizes. It’s Nassim Nicholas Taleb, in case you didn’t
know. I'm not fussed one way or the other whether or not
they get to keep their prizes, I don’t really see much dif-
ference between their work and that of many of the others
awarded the economics Nobel. (Yes, I know, it’s not a proper
Nobel, blah, blah, blah, Bank of Sweden, blah, blah, we can
take that much as read!) Or even those awarded the prize
in other fields. The Nobel Prize for Literature seems to be
political (political meaning either greasy pole, or as in politi-
cally correct), the Peace Prize is downright perverse, so the
Economics Prize is no different for being pointless. In con-
trast, we probably all respect laureates in medicine, chem-
istry and physics for mostly decent work that has stood the
test of time.

Economics is a queer subject. I like to boil things down to
the very basics whenever I am trying to learn something new,
doing research or teaching, as the students on the CQF can
attest — think of some of my stranger analogies, guys! But this
doesn’t work with economics. Starting with a couple of blokes
in a cave, one of whom has just invented the wheel, try to
imagine the exchanges that take place and how that turns
into General Motors. No, it makes my brain hurt. No matter
how much red wine I've drunk it doesn’t seem to work.

And I'm supposed to be clever. Why am I incapable of under-
standing economics, a straightforward enough subject that
it’s even taught in schools?

My failure led me to think about economists, as opposed
to economics, and they’re much easier to figure out. This
is how it works. An economist starts with a few axioms,
ones that bear a vague similarity to a small part of the
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human condition under restricted situations and in an
idealized world. (You get my drift here?) From those axioms
follows a theorem. More often than not this will be a
theorem based upon rational behaviour. That theorem gets a
name. And that’s the point I identify as being the problem:
The jargonizing of complex ideas based upon irrelevant
assumptions into an easily used and abused building block
on which to build the edifice of nonsense that is modern
economics.

Small assumption by small assumption, the economist builds
up his theories into useless gibberish. By acceptance of each
step he is able to kid himself he is making progress. And
that’s why I struggle with economics. It is not mathematics
where, barring mistakes, each step is true and indisputable
and therefore you can accept it, even forget it, and move on.
And others can do the same, using everyone else’s results
without question. This you cannot do in a soft science. I've
mentioned this in another article, beware of anyone talking
about ‘results’ in finance or economics, it says more about
them and their perception of the world than it does about
the subject.

Not so long ago Alan Greenspan famously said he had found
a flaw in the ‘critical functioning structure that defines how
the world works.” ‘I don’t know how significant or permanent
it is but I have been very distressed by that fact.” Ohmigod!
His naivety and lack of self-knowledge is staggering. He has
fallen into the same trap as other economists. By believing
the theories he has believed the axioms on which they are
based. The edifice of nonsense has collapsed on top of one of
its builders.

You beautiful, complex, irrational people! Please, promise me
that you will continue to violate every axiom and assumption
of economics, maybe not all the time, that would be too pre-
dictable, but now and then, just so as to keep those pesky
economists on their toes!
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Greenspan also said that risk models and econometric mod-
els are still too simple. Lord, help us!

Let me tell you a story.

A decade or so ago | was browsing through the library of
Imperial College, London, when I happened upon a book
called something like ‘The Treasury’s Model of the UK
Economy.’ It was about one inch thick and full of difference
equations. Seven hundred and seventy of them, one for
each of 770 incredibly important economic variables.
There was an equation for the rate of inflation, one for

the dollar-sterling exchange rate, others for each of the
short-term and long-term interest rates, there was the price
of fish, etc. etc. (The last one I made up. I hope.) Could
that be a good model with reliable forecasts? Consider how
many parameters must be needed, every one impossible to
measure accurately, every one unstable. | can’t remember
whether these were linear or non-linear difference equations,
but every undergrad mathematician knows that you can get
chaos with a single non-linear difference equation so think
of the output you might get from 770. Putting myself in
the mind of the Treasury economists [ think ‘Hmm, maybe
the results of the model are so bad that we need an extra
variable. Yes, that’s it, if we can find the 771st equation
then the model will finally be perfect.” No, gentlemen of the
Treasury, that is not right. What you want to do is throw
away all but the half dozen most important equations and
then accept the inevitable, that the results won’t be perfect.

A short distance away on the same shelf was the model of
the Venezuelan economy. This was a much thinner book with
a mere 160 equations. Again [ can imagine the Venezuelan
economists saying to each other, ‘Amigos, one day we too
will have as many equations as those British cabrones, no?’
No, what you want to do is strip down the 160 equations
you've got to the most important. In Venezuela maybe it’s
just one equation, for the price of oil.
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We don’t need more complex economics models. Nor do we
need that fourteenth stochastic variable in finance. We need
simplicity and robustness. We need to accept that the models
of human behaviour will never be perfect. We need to accept
all that, and then build in a nice safety margin in our fore-
casts, prices and measures of risk.
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Name and Shame in Our New
Blame Game!

(In late 2008 we ran a survey asking members of wilmott.com
who or what they thought was to blame for the ‘crisis.” Here
are some of their responses together with comments from
me.)

We now have the results for which are the worst quant mod-
els according to the contributing members of wilmott.com!
Here I reveal these worst models and concepts (etc.), and
other interesting bits and pieces mentioned by members. |
will also give you a few words, condensing my thoughts on
each culprit.

In alphabetical order, the guilty parties and ideas are below.
The * means that I disagree.

Auditors: They are generally considered clueless. And that’s
also true of governments and regulators generally speaking.
How can they hope to stop the determined big brains at most
investment banks? (Even if those big brains did cause their
own banks to collapse they did so while taking home enor-
mous bonuses, this doesn’t demean the size of those brains
in any way! Au contraire.)

Basel: Committees! Effectively a little bit of public sector men-
tality infiltrating the private sector. Except that such commit-
tees are actually deceptively self serving and destructive.

Complete markets: See below for risk neutrality.

Collateralized Debt Obligations, etc. ABS, MBS: Probably
among the stupidest, most naive, and yet most complicated
quantitative finance modelling can be found behind these
instruments. | warned you they were dangerous, the two main
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reasons being they are credit instruments, see below, and
because of correlation. All correlation instruments are dan-
gerous because correlation is such a simplistic tool for mod-
elling the subtle relationships between financial assets. At
least they are dangerous unless there is a large inbuilt profit
margin (margin for error) and unless they are traded in small
quantities. Large quantities and small profit margins lead to
disaster, but you know that now.

Credit modelling: Burn all credit books, except those that

say that the modelling is rubbish. (Which I do in my books,
so don’t burn those!) Default is not a probabilistic event, a
coin toss, it is a business decision.

Copulas: An abomination. Such abstract models that only a
few people, mostly with severe emotional intelligence prob-
lems, really understand. (One often gets the impression when
speaking to certain types of mathematician that ‘they are not
all there.’ I think you know what I mean! And if you don'’t ...
oh, dear, you are one of them!) Quote from the section on
copulas in PWOQF2 written in 2005: “I have to say that some
of these instruments and models fill me with nervousness and
concern for the future of the global financial markets.”

Efficient Market Hypothesis: Hypocrisy of the first magni-
tude. “You can’t make money from the markets, but give
me a million-dollar bonus.” Either hypocrisy, or material for
a psychiatric journal’s article about lack of communication
between left and right sides of the brain.

French Polytechniques: | interpret this entry as meaning
generally education that is too abstract and lacking in prac-
ticality, i.e. those who think that ‘maths is both necessary
and sufficient for finance’ when clearly it is only necessary!
As someone who has devoted the better part of two decades
trying to educate people to be responsible quants it has
always annoyed and frightened me that universities have
churned out so many ‘quants’ who are both over educated
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and under experienced. That universities often prey on young
people just out of a first degree is therefore not surprising. It
is pleasing to see at last a wider recognition that such people
are better suited to academia than to banks.

Gaussian distribution*: (Note, this does not mean Gauss is
to blame!) — I disagree about Gaussian distributions. See stan-
dard deviation.

Insurance methods: Presumably this means using the Central
Limit Theorem in conditions where the CLT doesn’t hold. An
example of a great theory being misused. Actuaries have long
felt a bit jealous of quants, since they start out with similar
skills but actuaries aren’t quite as glamorous (am I really talk-
ing about mathematicians being glamorous?!) and certainly
don’t earn as much. It goes back to quants’ relationship with
hedging, a trick that actuaries feel they ought to have spot-
ted. Quants could learn a lot from actuaries, including the
proper use of insurance methods. But | expect the ‘education’
will go the other way, actuaries will learn quant methods ...
does this mean a collapse of the insurance industry next? Oh,
how could I forget AIG?!

Mathematics: Well, you know my strong views on this! Dumb-
ing down is bad because then you can’t price sophisticated
instruments and you don’t know all the risk. Making things
too complicated may be even worse, people fool themselves
into believing the models, they are blinded by the maths (see
Copulas and CDOs, and especially French Polytechniques,
above). All is not lost ... from my blog: “Ok, the big secret
... Quantitative finance is one of the easiest branches

of mathematics. Sure you can make it as complicated as

you like, and plenty of authors and universities have a
vested interest in so doing. But, approached correctly and
responsibly, quant finance is easy.” In a Phil. Trans. article
published in 2000 (The use, misuse and abuse of mathematics
in finance) 1 warned that “a major rethink [of financial
modelling] is desperately required if the world is to avoid
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a mathematician-led market meltdown.” Good, huh? We

may have just about avoided this, at possible medium- or
long-term cost to the taxpayer (but who could still profit if
the accountants and the government get their acts together)
and to the economy (which is definitely screwed for a while).
If banks, funds, regulators, governments don’t see the light
now then lord help us!

Media*: Shoot the messenger! I disagree. When short selling
was banned people said it's necessary for price discovery. In
that case we need the media as well. (I'm in favour of short
selling but I thought the argument about price discovery
was silly. Go to a supermarket you’ll see the price of prod-
ucts falling if no one wants them, and you can’t short baked
beans. Or maybe that’s too slow a mechanism, perhaps we
need short selling to speed up price discovery. What, are the
markets too slow for you? Yee-ha!)

Off-balance Sheet Vehicles: Quants + Lawyers + Accountants
= Chaos + Disaster + More money for Lawyers and Accoun-
tants. Hey, quants, you're getting a bum deal here!

Quants: Unwitting stooges or guilty accomplices? Perhaps
even Mister Bigs, the masterminds. Did they get a bonus?
Yes. Did they blow the whistle? No. Then guilty as charged,
M’Lud.

Ratings agencies: As mentioned in my NY7T Op-Ed piece,
“moral hazard so strong you can almost taste it.” Also my
favourite contender for defendants in lawsuits, any day now!
And I'm available for prosecution expert-witness work, very
reasonable rates in a good cause.

Risk neutrality: [ estimate that about 2% of people working in
derivatives and risk management really understand this fun-
damental concept. Yet probably the vast majority of them use
it on a daily basis, knowingly or not. Of course, the validity of
this concept depends on certain assumptions, no frictions,
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perfect hedging, known parameters, i.e. it’s not valid. But
maybe it still works even if not technically valid, perhaps the
idea is somehow robust? Well, sometimes it is, sometimes it
isn’t, but probably only 0.02% of people in this business know
why and when.

RiskMetrics: Making VaR, see below, accessible to the
masses. Why not give away handguns while you're at it?

Standard deviation*: I disagree. | see the point that standard
deviations may not exist for many/most financial distribu-
tions. Thin tails versus fat tails. But the extreme events still
only happen relatively infrequently, and throwing away stan-
dard deviations would be throwing away the baby with the
bathwater! It might add complexity that would actually be
worse than the simplicity and transparency that it replaces.
For normal (in both sense of the word) markets standard
deviations are fine. | advocate using worst-case scenarios for
extremes that might cause banks, or economies, to collapse.

Value at Risk: As one of the cartoons in my books says “I've
got a bad feeling about this.” VaR is used to justify taking
risks. Classic unintended consequences territory this. Yeah,
right! Funny how ‘“unintended consequences” are always
rather obvious, even before the fact, but they are always
brushed under the (expensive silk) rug. “Don’t rock the boat,
dear boy,” cigar in one hand, Napoleon brandy in the other.
Risk managers say there’s no risk according to naive VaR
models, so management is free to trade in bigger, and bigger,
and bigger, amounts. Oops ... it seems that VaR didn’t quite
capture all the risks ... who’d have considered rising interest
rates and increasing mortgage defaults? Answer: Everyone,
except those who had a vested interest in hiding the risks.
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The Commonest Mistakes in Quantitative Finance:
A Dozen Basic Lessons in Commonsense for Quants
and Risk Managers and the Traders Who Rely
on Them
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Introduction

Judging by research papers and books on quantitative
finance, and from conversations with thousands of practi-
tioners, not to mention well-publicized modelling mistakes,

[ believe that quants have totally lost the plot. They focus
on making models increasingly complex when they should
be making them more robust. They use the most abstract

of mathematics and then make obscenely simplifying
assumptions. They fine tune irrelevant detail and ignore
fundamental issues of risk management. They obfuscate when
they ought to educate.

Much of quantitative finance is dumbed down for the
masses, partly, | am sure, to sell lots of books on the
subject — there are sadly more non-mathematicians in
the world than there are mathematicians. This is not

too dangerous because you can’t do much quant finance
without mathematics, and therefore you can’t really invent
too many toxic contracts. But there are also at least as
many people making quantitative finance too complicated.
Overly abstract mathematics is being used by people
who have never traded, yet whose models are respected
precisely because of their complexity. These models (and
people) are dangerous. Lack of transparency in financial
models is not good. Given that the models can never be
perfect in this ‘soft’ science, why is there so much focus
on detail at the expense of the big picture? Some are
easily blinded by science, unable to see the wood for the
trees.

For the above reasons, and after many years experience in
research, training and practice, I have come to believe in a
mathematics sweet spot, using the right kind of mathematics
for each job, not dumbing down and not making too sophisti-
cated; a level of mathematics such that people can see what
the assumptions are and where lie the weaknesses. Ideally



Chapter 5: Commonest Mistakes in Quantitative Finance 315

spend more time seeking robustness of a model rather than
trying to make it ‘better.” Sadly, ‘better’ these days seems
to mean simply adding more and more factors. It is easy

to impress people with difficult mathematics, but a quant’s
job is not to impress, it is to allow banks and funds to trade
products, perhaps new products, and to trade profitably and
with well-understood and controlled risk.

In this chapter I outline 12 of the most common causes of
errors in quant finance. These 12 lessons are most definitely
not about inverting your transform, or about convergence of
Monte Carlo simulations, or how to speed up your calibration
of Hull & White. Those are precisely the sort of questions
that should only be asked after the more fundamental issues
have been successfully addressed. This chapter is about the
fundamental issues.

All of these lessons are basic, all of them are easily quan-
tified, all of them have cost banks and funds huge sums

of money, and all of them are still under-appreciated. In
2000 I wrote, ‘It is clear that a major rethink is desperately
required if the world is to avoid a mathematician-led market
meltdown’ (Wilmott, 2000). In 2006 I wrote about credit
‘some of these instruments and models being used for these
instruments fill me with some nervousness and concern for
the future of the global financial markets. Not to mention
mankind, as well. Never mind, it’s probably just me’ (Wilmott,
2006a). The first draft of the chapter you are reading was
written in mid 2007. I am putting the finishing touches to it
in late 2008 when it has become apparent that the man in
the street has also been dramatically affected by our ‘high
finance.’

If you think quantitative finance is only about the likes of
Radon-Nikodym derivatives, squared Bessel processes and
numerical quadrature in the complex plane, then this chapter
is not for you. If you think quantitative finance is more inter-
esting than that, read on!



3’6 Frequently Asked Questions in Quantitative Finance

The subjects are:

Lack of diversification

Supply and demand

Jensen’s Inequality arbitrage
Sensitivity to parameters
Correlation

Reliance on continuous hedging (arguments)
Feedback

Reliance on closed-form solutions
Valuation is not linear
Calibration

Too much precision

Too much complexity

But first a simple test-yourself quiz, to encourage reader par-
ticipation!

Quiz
(Answers on page 378)

Question 1: What are the advantages of diversification
among products, or even among mathematical models?

Question 2: If you add risk and curvature what do you get?
Question 3: If you increase volatility what happens to the
value of an option?

Question 4: If you use ten different volatility models to value
an option and they all give you very similar values, what can
you say about volatility risk?

Question 5: One apple costs 50p, how much will 100 apples
cost you?

Lesson 7: Lack of Diversification

One of the first lessons in any course on quantitative finance
will be about portfolio construction and the benefits of
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diversification, how to maximize expected return for a given
level of risk. If assets are not correlated then as you add
more and more of them to your portfolio you can maintain a
decent expected return and reduce your risk asymptotically
to zero. (Risk falls off like the inverse square root of the
number of different uncorrelated assets.) Colloquially, we say
don’t put all your eggs into one basket.

Of course, that’s only theory. In practice there are many rea-
sons why things don’t work out so nicely. Correlations never
behave as they should, the relationship between two assets
can never be captured by a single scalar quantity. We'll save
detailed discussion of correlation for later in the chapter!
For the moment I'm more worried about people or banks not
even attempting to diversify.

Part of the problem with current mechanisms for compensa-
tion is that people are encouraged to not diversify. [ don’t
mean ‘not encouraged to,” [ do mean ‘encouraged to not.’

Example It's your first day as a trader in a bank. You're fresh
out of an Ivy League Masters programme. You're keen and
eager, you want to do the best you can in your new job, you
want to impress your employer and make your family proud.
So, what do you trade? What strategies should you adopt?
Having been well educated in theoretical finance you know
that it’s important to diversify, that by diversifying you can
increase expected return and decrease your risk. Let’s put
that into practice.

Let’s suppose that you have the freedom to trade whatever
you like. Would you make the same trades as others around
you? You look around and see that a certain trade is pop-
ular, should you copy this or do something ‘uncorrelated’?
Suppose that you choose the uncorrelated trade. Several
things can happen, let’s look at a couple of possibilities. First,
you lose while all around are raking it in. Not necessarily
your fault, maybe just a stat-arb strategy that was unlucky,
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next month will probably be better. Tough, you don’t have a
month, you are taking up valuable desk space, space better
given to those people making the money. You're fired. But
what if the opposite happens? You make money while all the
others with their popular trade are losing it. Couldn’t be bet-
ter, right? Sadly, the others have lost so much money that
there isn’t going to be a bonus this year. Your relatively tiny
profit hardly begins to fill in the hole made by the others.
You certainly won’t be getting any bonus, no one will. If you
are lucky you get to keep your job this time. As Keynes said,
‘It is better to fail conventionally than to succeed unconven-
tionally.’

There is no incentive to diversify while you are playing with
OPM (Other People’s Money).

Example Exactly the same as above but replace ‘trades’ with
‘models.” There is also no incentive to use different models
from everyone else, even if yours are better.

The problem is in the way that bank employees are rewarded
by gambling with OPM, the compensation system that
rewards excessive risk taking and punishes diversification.
Diversification is not rewarded.

Now, I'm all in favour of using the ‘best’ possible models,
but I can see that there is an argument for different people
to use different models, again on the grounds of diversifica-
tion because ultimately there is no ‘perfect’ model and per-
haps even seeking the ‘best’ model is asking too much. Model
error wouldn’t matter so much if there was more diversifica-
tion. But sadly how good the models are is of secondary or
even tertiary consideration within banks. How can one take
as much risk as possible while appeasing risk management?
That’s number one (and two).

If everyone else is doing similar trades then, yes, you should
do the same. Let’s do some very simple mathematical
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modelling of the current system of compensation,
nothing complicated, and very easily understood by
non-mathematicians. To do a thorough job of modelling
compensation we ought to look at:

e Probabilities of each trader making money, distributions,
etc.

e How skilful you think you are versus how skilful you think
other traders are. (Note that reality may be irrelevant!)

e Number of traders

e Details of the compensation scheme

But we are just going to take a very simple example. Suppose
you think you are clever, but you think all your colleagues
are fools. And these fools are all stupidly doing pretty much
the same trades as each other. To get any bonus two criteria
must be satisfied, first that you make a profit and second that
between you all you make a profit. Now if your colleagues are
idiots you might reckon that it's 50-50 whether they make

a profit between them, think of tossing a coin. And they are
all betting on the same toss of the same coin. You, on the
other hand, are much cleverer, the probability of you mak-
ing money is 75%, say. Now there are far more of them than
you so the probability of it being a profitable year for the
group is about 50%. For you to get a bonus first the group as
a whole must make a profit, that’s 50%, and then you must
also make a profit, that's 75%. If you and they are indepen-
dent then there is a 37.5% chance of you getting a bonus.
Now who’s stupid? If you copy their trades the probability of
you getting a bonus is a significantly bigger 50%!

So what is the logical reaction? All do the same! This is just
classical game theory.

Add to this the natural (for most people) response to see-
ing a person making a profit (even on a coin toss) and you
can easily see how everyone gravitates towards following a
trading strategy that perhaps made money once upon a time.
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And that is the logical thing to do given the nature of the
compensation.

Even if everyone starts off by following independent strate-
gies, if you or anyone thinks that one of your colleagues is
really clever, with a great strategy, then the logical thing to
do is drop your strategy and copy his.

It is easy to see that the tendency is for everyone to converge
to the same strategy, perhaps the one that has performed
well initially, but this does not guarantee ‘evolution’ to the
best strategy or even one that works.

The same happens between banks as well. They copy each
other with little thought to whether that is the right thing
to do. But this has other consequences as well. The banks
compete with each other and if they trade the same con-
tracts then this inevitably reduces profit margins. But profit
margins are also margins for error. Reduction of profit mar-
gin increases the chance of large losses, and such losses will
then happen simultaneously across all banks doing the same
trade.

Finally, there’s a timescale issue here as well. Anyone can sell
deep OTM puts for far less than any ‘theoretical’ value, not
hedge them, and make a fortune for a bank, which then turns
into a big bonus for the individual trader. You just need to be
able to justify this using some convincing model. Eventually
things will go pear shaped and you’ll blow up. However, in
the meantime everyone jumps onto the same (temporarily)
profitable bandwagon, and everyone is getting a tidy bonus.
The moving away from unprofitable trades and models seems
to be happening slower than the speed at which people are
accumulating bonuses from said trades and models!

Unless the compensation system changes then as long as you
want a bonus you must do the same trade as everyone else
and use the same models. It doesn’t matter whether the trade
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or the models are good. No wonder the man in the street
thinks that bankers are crooks. And this does rather make
the remaining 11 lessons rather a waste of time!

My scientist within would prefer each bank/hedge fund to
have ‘one’ model, with each bank/hedge fund having a differ-
ent model from its neighbour. Gives Darwin a fighting chance!
I see so many banks using the same model as each other, and
rarely are they properly tested, the models are just taken on
trust. (And as we know from everyone’s problems with cali-
bration, when they are tested they are usually shown not to
work but the banks still keep using them. Again, to be dis-
cussed later.)

There are fashions within investing. New contracts become
popular, profits margins are big, everyone piles in. Not want-
ing to miss out when all around are reaping huge rewards, it
is human nature to jump onto any passing bandwagon. Again
this is the exact opposite of diversification, often made even
worse because many of those jumping on the bandwagon
(especially after it’s been rolling along for a while) don’t
really have a clue what they are doing. To mix metaphors,
many of those on the bandwagon are in over their heads.

The key point to remember is something that every success-
ful gambler knows (a phrase I use often, but shouldn’t have
to), no single trade should be allowed to make or break you.
If you trade like it is then you are doomed.

We all know of behavioural finance experiments such as the
following two questions.

First question, people are asked to choose which world they
would like to be in, all other things being equal, World A or
World B where

A. You have 2 weeks’ vacation, everyone else has 1 week
B. You have 4 weeks’ vacation, everyone else has 8 weeks
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The large majority of people choose to inhabit World B. They
prefer more holiday to less in an absolute sense, they do not
suffer from vacation envy. But then the second question is to
choose between World A and World B in which

A. You earn $50,000 per year, others earn $25,000 on
average

B. You earn $100,000 per year, others earn $200,000 on
average

Goods have the same values in the two worlds. Now most
people choose World A, even though you won’t be able to
buy as much ‘stuff’ as in World B. But at least you’ll have
more ‘stuff’ than your neighbours. People suffer a great deal
from financial envy.

In banking the consequences are that people feel the need to
do the same as everyone else, for fear of being left behind.
Again, diversification is just not in human nature.

Now none of this matters as long as there is no impact on
the man in the street or the economy. (Although the meaning
of ‘growth’ and its ‘benefits’ are long due a critical analysis.)
And this has to be a high priority for the regulators, banks
clearly need more regulatory encouragement to diversify.
Meanwhile, some final quick lessons. Trade small and trade
often. Don’t try to make your retirement money from one
deal. And work on that envy!

Lesson 2: Supply and Demand

Supply and demand is what ultimately drives everything! But
where is the supply and demand parameter or variable in
Black-Scholes?

In a nutshell, the problem lies with people being so fond of
complete markets. Complete markets are essentially mar-
kets in which you can hedge away risk. You can see why
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people like to work with such models. It makes them believe

that they are safe!! Hence the popularity of the deterministic

volatility model. And even those models which are clearly not
in complete markets, such as stochastic volatility or jump dif-
fusion, people try to make complete by calibration! Of which

more later.

A trivial observation: The world is net long equities after you
add up all positions and options. So, net, people worry about
falling markets. Therefore people will happily pay a premium
for out-of-the-money puts for downside protection. The result
is that put prices rise and you get a negative skew. That skew
contains information about demand and supply and not about
the only ‘free’ parameter in Black-Scholes, the volatility.

The complete-market assumption is obviously unrealistic, and
importantly it leads to models in which a small number of
parameters are used to capture a large number of effects.

Whenever a quant calibrates a model to the prices of options
in the market he is saying something about the information
content of those prices, often interpreted as a volatility,
implied volatility. But really just like the price of a pint of
milk is about far more than the cost of production, the price
of an option is about much more than simple replication.

The price of milk is a scalar quantity that has to capture

in a single number all the behind-the-scenes effects of, yes,
production, but also supply and demand, salesmanship, etc.
Perhaps the pint of milk is even a ‘loss leader.” A vector of
inputs produces a scalar price. So, no, you cannot back out
the cost of production from a single price. Similarly you can-
not back out a precise volatility from the price of an option
when that price is also governed by supply and demand, fear

'How many trillions must be lost before people realize that hedging
is not perfect?
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and greed, not to mention all the imperfections that mess up
your nice model (hedging errors, transaction costs, feedback
effects, etc.).

Supply and demand dictate everything. The role of assump-
tions (such as no arbitrage) and models (such as the
continuous lognormal random walk) is to simply put bounds
on the relative prices among all the instruments. For
example, you cannot have an equity price being 10 and an
at-the-money call option being 20 without violating a simple
arbitrage. The more realistic the assumption/model and the
harder it is to violate in practice, the more seriously you
should treat it. The arbitrage in that example is trivial to
exploit and so should be believed. However, in contrast,
the theoretical profit you might think could be achieved via
dynamic hedging is harder to realize in practice because
delta hedging is not the exact science that one is usually
taught. Therefore results based on delta hedging should be
treated less seriously.

Supply and demand dictate prices, assumptions and models
impose constraints on the relative prices among instruments.
Those constraints can be strong or weak depending on the
strength or weakness of the assumptions and models.

Lesson 3: Jensen’s Inequality
Arbitrage

Jensen’s Inequality states that if f(-) is a convex function and
x is a random variable then

E[f()] = f(E[x]).

This justifies why non-linear instruments, options, have inher-
ent value.
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Example You roll a die, square the number of spots you
get, and you win that many dollars. How much is this game
worth? (Assuming you expect to break even.) We know that
the average number of spots on a fair die is 3% but the fair
‘price’ for this bet is not (33)%.

For this exercise f(x) is x?, it is a convex function. So
1

and

1\? 1
f(E[x]):(?)E) =12,

But

1+44+9+16+25+36
6

E[f(x)] = = 15% > F(E[x]).

The fair price is 15%.

Jensen’s Inequality and convexity can be used to explain the
relationship between randomness in stock prices and the
value inherent in options, the latter typically having some
convexity.

Suppose that a stock price S is random and we want to
consider the value of an option with payoff P(S). We could
calculate the expected stock price at expiration as E[S7], and
then the payoff at that expected price P(E[S7]). That might
make some sense; ask yourself what you think the stock
price will be at expiration and then look at the corresponding
payoff.

Alternatively we could look at the various option payoffs and
then calculate the expected payoff as E[P(S7)]. The latter
actually makes more sense, and is indeed the correct way
to value options (provided the expectation is with respect to
the risk-neutral stock price, of course).
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If the payoff is convex then
E[P(ST)] = PE[STD.

We can get an idea of how much greater the left-hand side is
than the right-hand side by using a Taylor series approxima-
tion around the mean of S. Write

S=S+e,
where S = E[S], so E[¢] = 0. Then

E[f(S)]=E[f(S+e)]=E [f(S) +ef'(S) + %Jf“(?) + - ]
<)+ 5 IEL)
= f(E[SD + %f”(E[S])E[eZ].

Therefore the left-hand side is greater than the right by
approximately

1
Ef”(E[S]) E[€%].
This shows the importance of two concepts

o f’(E[S]): This is the convexity of an option. As a rule this
adds value to an option. It also means that any intuition we
may get from linear contracts (forwards and futures) might
not be helpful with non-linear instruments such as
options.

o E[€%]: This is the variance of the return on the random
underlying. Modelling randomness is the key to valuing
options.

The lesson to learn from this is that whenever a contract
has convexity in a variable or parameter, and that variable
or parameter is random, then allowance must be made for
this in the pricing.
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Example Anything depending on forward rates. If you price

a fixed-income instrument with the assumption that forward
rates are fixed (the deterministic models of yield, duration,
etc.) and there is some non-linearity in those rates, then you
are missing value. How much value depends on the convexity
with respect to the forward rates and forward rate volatility.?

Example Some things are tricky to model and so one tends
to assume they are deterministic. Mortgage-backed securities
have payoffs, and therefore values, that depend on prepay-
ment. Often one assumes prepayment to be a deterministic
function of interest rates, but this can be dangerous. Try to
quantify the convexity with respect to prepayment and the
variance of prepayment.

Lesson 4: Sensitivity to Parameters

If volatility goes up, what happens to the value of an option?
Did you say the value goes up? Oh dear, bottom of the class
for you! I didn’t ask what happens to the value of a vanilla
option, I just said ‘an’ option, of unspecified terms.?

Your boss asks you to price an up-and-out call option. What
could be easier? You get out your well-used copy of Espen
Haug’s Complete Guide to Option Pricing Formulas (Haug,
2007) and code up the relevant option price and greeks.
You've got to plug in a number for volatility so you look

at some vanilla options, and they all seem to be around

By ‘convexity with respect to forward rates’ I do not mean the cur-
vature in the forward rate curve, I mean the second derivative of the
contract with respect to the rates.

3If Bill Clinton can ask what the meaning of ‘is’ is then I can ask
how important is an ‘an.’
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20% implied volatility. So you put 20% into the formula

and tell your boss the resulting option value. A small profit
margin is added on top, the client is happy, the deal is done
and the option sold. All down to Corney and Barrow to
celebrate.

At three o’clock in the morning you wake up in a cold sweat,
and not due to excessive alcohol intake for once. What if
volatility turns out to be something other than 20%? You
completely forgot to test the sensitivity of the price to your
volatility assumption. What an idiot you've been! You get out
of bed and take out your home copy of Espen Haug’s book
(everyone should own two copies). You code up the formula
again and see how the price varies as you change volatil-
ity from 17% to 23%. The price seems to be insensitive to
volatility, and is anyway within the profit margin (a.k.a. mar-
gin for error). You breathe a sigh of relief, Phew!, and go back
to bed.

That morning you go into work, perhaps looking a bit
more tired than usual after all the champagne and the
early-morning panic. Your boss calls you into his office, tells
you that a fortune has been lost on your barrier option and
you are fired.

Apart from the short time between the pricing and the loss
and some risk-management issues this scenario has happened
in the past, and looks like it will continue to happen in the
future. So what went wrong? How could money have been
lost after all that stress testing?

What went wrong was that you assumed volatility to be
constant in the option formula/model and then you changed
that constant. This is only valid if you know that the
parameter is constant but are not sure what that constant
is. But that’s not a realistic scenario in finance. In fact, I
can only think of a couple of scenarios where this makes
sense...
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The first scenario is when every contract in your portfolio
has gamma of the same sign, either all have positive gamma
everywhere or all have negative gamma everywhere. We’ll
see the significance of the sign of gamma in a moment. But,
anyway, who only buys options or only sells options? Most
people buy some and sell some, even Nassim Taleb.

The other scenario is...

The telephone rings, you answer. At the other end of the line
a deep, manly voice says ‘This is God here. I've got a hot tip
for you. The volatility of IBM will be constant for the next
year with value...’ And the line goes dead. Damn, a hot tip
from the top man and my battery dies! Never mind, all is not
lost. We may not know what volatility is going to be, but at
least we know it is going to be constant, and that is useful
information.

Ok, so that’s not a realistic scenario, unless you are an ex
President of the US or an ex Prime Minister of the UK.

By varying a constant parameter you are effectively
measuring
aV

0 parameter’

This is what you are doing when you measure the ‘greek’
vega:
a
vega = Py
But this greek is misleading. Those greeks which measure
sensitivity to a ‘variable’ are fine, those which supposedly
measure sensitivity to a ‘parameter’ are not. Plugging differ-
ent constants for volatility over the range 17% to 23% is not
the same as examining the sensitivity to volatility when it is
allowed to roam freely between 17 and 23% without the con-
straint of being constant. 1 call such greeks ‘bastard greeks’
because they are illegitimate.



330 Frequently Asked Questions in Quantitative Finance

2.5 . . .
Barrier value, various vol scenarios
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Figure 5.1: The value of some up-and-out call option using volatilities
17% and 23%.

The following example demonstrates this.

Example In Figure 5.1 is shown the value of some up-and-out
call option using the two volatilities 17% and 23%. Notice that
at an asset value of around 80 the two curves cross. This is
because the higher volatility increases the option’s value for
lower asset prices but decreases the option’s value above. If
you are sitting around the 80 asset value you would conclude
that the option value is insensitive to the volatility. Vega here
is zero.
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The problem arises because this option has a gamma that
changes sign. For lower asset values it is positive and for
higher it is negative. Generally speaking, if you increase
volatility where the gamma is positive then the price will
riseﬁ.t If you increase it where gamma is negative the price will
fall.

The relationship between sensitivity to volatility and gamma
is because they always go together. In the Black-Scholes
equation we have a term of the form

1,502V

R

277 582
The bigger this combined term, the more the option is worth.
But if gamma is negative then large volatility makes this big

in absolute value, but negative, so it decreases the option’s
value.

So what happens if there is a negative skew in our
barrier-option problem? Increase volatility where gamma is
positive and the price will rise. Decrease volatility where the
gamma is negative and the price will...rise. The result is
that with a negative skew the option value rises everywhere.
You should have sold the option for significantly more than
you did, hence your loss of money and job.

It is quite simple to measure the true sensitivity of an option
value to a range of volatilities as above and that is to solve
the Black-Scholes equation with volatility being 17% when-
ever gamma is positive and 23% whenever gamma is negative.
This will give the lowest possible option value. And then
price again using 23% when gamma is positive and 17% when
gamma is negative. This will give the highest possible option
value. This is easily done, but not by Monte Carlo, you’ll have

4] say ‘Generally speaking’ because this is not exactly true. We are
dealing with diffusion equations here and for them any change to a
parameter in one place will affect the solution everywhere.
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Figure 5.2: Uncertain volatility model, best and worst cases.

to solve by finite-difference methods.” This model is called
the Uncertain Volatility Model (see Avellaneda, Levy & Paras,
1995).

In Figure 5.2 are shown the best and worst cases for this
up-and-out call option. Note that at the point where vega
is zero there is actually a factor of 3 difference between
the worst and best cases. That is an enormous range
considering volatility is only allowed between 17 and 23%.
Yet it is far more realistic than what you get by ‘varying a
constant.’

5If you have a finite-difference code working for a constant volatility
model then rewriting the code to price in this model should take
less than a minute. To modify your Monte Carlo code to do the
same things will takes weeks!
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Figure 5.3: Value versus constant volatility.

As well as looking out for gamma changing sign you can spot
potential hazards of the above form by plotting the value

of an option versus a constant parameter. This is shown

in Figure 5.3 for the up-and-out call option. If you ever see
non-monotonicity then it should set alarm bells ringing.
Non-monotonicity is telling you that sometimes the higher
the parameter value the better, sometimes the lower the
better. Beware.5 And, by the way, you get the same thing
happening in some CDO tranches.

6People also use plots like this to back out implied volatilities. This
is meaningless when there is non-monotonicity. You can get multiple
implied volatilities, or no implied volatility at all. The naive would
say that the latter means arbitrage. It doesn’t, unless you live in
a world where the parameter is definitely constant. That’s not my
world.
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Traditionally minded quants have fudges to try to address
this problem.” These fudges involve measuring delta and see-
ing how delta changes as volatility changes. This is a very
poor substitute for doing the job properly.

Example Another obvious example is the cliquet option.

With some of these cliquet contracts you find that they are
insensitive to volatility in classical models. Suppose that you
price a cliquet using a volatility of 20%. You find that the
price is $17.1. You then use a volatility of 15% and the price
becomes $17.05. Continuing with the test for robustness

you use a volatility of 25% and find a price of $17.07. Seems
pretty insensitive to volatility. You now use a volatility of
10%, and then 30%, both times the theoretical price hardly
changes. You then use the model that everyone else thinks of
as ‘cutting edge,” the Heston model (Heston, 1993), again $17
give or take a few cents. Finally, the ultimate test, you call up
another bank, disguising your voice, and ask their price. Yet
again, $17.

By now you are thinking that the cliquet is insensitive to
volatility, that its price is close to $17. So you add on a tiny
profit margin (after all, these contracts are so popular, lots
of demand and therefore not much room for a profit margin),
sell it to your client and relax after a job well done. Risk man-
agement will be proud of all the stress testing you've done.

Christ! A few weeks later you're fired, again, after huge losses
on cliquet options. What went wrong?

There’s a big clue that you found during your stress testing.
It seems that the price was insensitive to simple volatility
models. From this what can you conclude?

It is common practice to fudge your way out of a hole in this
business. Although the subject could be far more ‘scientific’ this
tendency to apply fixes without addressing fundamental issues
restricts the subject to being a branch of ‘carpentry.’
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The incorrect and naive, although common, conclusion is that
indeed your volatility assumption does not matter. You could
not be more wrong. There is a lot of volatility risk in this con-
tract, it just happens to be cleverly hidden.

What contract is insensitive to volatility? Simply stock. Is the
cliquet option the same as stock? No way, it is far more com-
plicated than that!

Therefore the apparent insensitivity to volatility is masking
the ‘change of sign of gamma’ that we've seen above. See
Wilmott (2002) for details about these contracts, how sen-
sitive they really are and why the traditional ‘fudges’ will not
help you.

Lesson 5: Correlation

Many derivatives contracts depend on more than a single
underlying, these are basket options. Many derivatives
contracts have multiple sources of randomness, such

as stochastic stock price and stochastic volatility. Many
derivatives contracts require modelling of an entire forward
curve. These situations have something in common; they
all, under current theory frameworks, require the input

of parameters representing the relationship between the
multiple underlyings/factors/forward rates.

And so the quant searches around in his quant toolbox for
some mathematical device that can be used to model the
relationship between two or more assets or factors. Unfor-
tunately the number of such tools is limited to correlation
and, er, ..., correlation. It’s not that correlation is particularly
brilliant, as I'll explain, but it is easy to understand. Unfortu-
nately, it is also easy to misunderstand.

One problem concerning correlation is its relevance in dif-
ferent applications, we’ll look at this next in the context of
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Figure 5.4: Two perfectly correlated assets.

timescales, and another is its simplicity, and inability to cap-
ture interesting dynamics.

When we think of two assets that are highly correlated then
we are tempted to think of them both moving along side by
side almost. Surely if one is growing rapidly then so must the
other? This is not true. In Figure 5.4 we see two asset paths
that are perfectly correlated but going in opposite directions.

And if two assets are highly negatively correlated then they
go in opposite directions? No, again not true, as illustrated in
Figure 5.5.

If we are modelling using stochastic differential equations
then correlation is about what happens at the smallest,
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Figure 5.5: Two perfectly negatively correlated assets.

technically infinitesimal, timescale. It is not about the ‘big
picture’ direction. This can be very important and confusing.
For example, if we are interested in how assets behave over
some finite time horizon then we still use correlation even
though we typically don’t care about short timescales, only
our longer investment horizon (at least in theory). Really
we ought to be modelling drift better, and any longer-term
interaction between two assets might be represented by

a clever drift term (in the stochastic differential equation
sense).

However, if we are hedging an option that depends on two
or more underlying assets then, conversely, we don’t care
about direction (because we are hedging), only about dynam-
ics over the hedging timescale. The use of correlation may
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Asset value

then be easier to justify. But then we have to ask how stable
is this correlation.

So when wondering whether correlation is meaningful in any
problem you must answer two questions (at least), one con-
cerning timescales (investment horizons or hedging period)
and another about stability.

It is difficult to model interesting and realistic dynamic
using a simple concept like correlation. This is illustrated in
Figure 5.6 and the following story. In the figure are plotted
the share prices against time of two makers of running shoes.

500 1 Regimes

450 A :é Regime 3

400 -
Regime 4
350 A
Regime 2
300 -

250
Regime 1

200 -

150 4

100 4

50 -

0 2 4 6 8 10 12 14
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Figure 5.6: Two assets, four regimes.
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In Regime 1 both shares are rising, the companies are seen
as great investments, who doesn’t want to go jogging and get
healthy, or hang out in the ‘hood wearing their gang’s brand?
See how both shares rise together (after all, they are in the
same business). In Regime 2 company A has just employed

a hotshot basketball player to advertise their wares; stock A
grows even faster but the greater competition causes share B
to fall (after all, they are in the same business). News Flash!
Top basketball player in sex and drugs scandal! Parents stop
buying brand A and switch to brand B. The competition is
on the other foot so to speak. Stock A is not doing so well
now and stock B recovers, they are taking away stock A’s
customers (after all, they are in the same business). Another
News Flash! Top advocate of jogging drops dead...while
jogging! Sales of both brands fall together (after all, they are
in the same business).

Now that is what happens in real life.

In practice there will also be some delay between trading in
one stock and trading in the other. If company A is much
bigger and better known that company B then A’s stocks will
trade first and there may be a short delay until people ‘join
the dots’ and think that stock B might be affected as well.
This is causality, and not something that correlation models.

And, of course, all this stock movement is based on shift-
ing sentiment. If one company defaults on a payment then
there is a tendency for people to think that other compa-
nies in the same sector will do the same. This is contagion.
Although this could actually decrease the real probability of
default even as the perceived probability is increasing! This
is because of decreasing competition. Correlation is a poor
tool for representing the opposing forces of competition and
contagion.

As you can see, the dynamics between just two companies
can be fascinating. And can be modelled using all sorts of
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interesting mathematics. One thing is for sure, and that is
such dynamics while fascinating are certainly not captured
by a correlation of 0.6!

Is this good news or bad news? If you like modelling then it
is great news, you have a blank canvas on which to express
your ideas. But if you have to work with correlation on a
day-to-day basis it is definitely bad news.

Example In South Korea they are very partial to options on
two underlyings. Typically worst-of options, but also with a
barrier. The value of such a contract will depend on the cor-
relation between the two assets. But because of the barriers
these contracts can have a cross gamma that changes sign.
Remember what happens when this happens? It’s straight
from Lesson 4 above.

In theory there is a term of the form
3%V
EAYECAY)

in the governing equation. If the cross gamma term changes
sign, then sensitivity to correlation cannot be measured by
choosing a constant p and then varying it.

p01025152

In Figure 5.7 is a contour map of the cross gamma of one

of these two-asset worst-of barrier options. Note the change
of sign. There are risk-management troubles ahead for those
naive enough to measure %!

Please remember to plot lots of pictures of values and greeks
before ever trading a new contract!

Example Synthetic CDOs suffer from problems with correla-
tion. People typically model these using a copula approach,
and then argue about which copula to use. Finally because
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Figure 5.7: Contour plot of cross gamma of a two-asset, worst-of, knock-
out option.

there are so many parameters in the problem they say ‘Let’s
assume they are all the same!” Then they vary that single
constant correlation to look for sensitivity (and to back

out implied correlations). Where do I begin criticizing this
model? Let’s say that just about everything in this model is
stupid and dangerous. The model does not capture the true
nature of the interaction between underlyings, correlation
never does, and then making such an enormously simplifying
assumption about correlation is just bizarre. (I grant you not
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Figure 5.8: Various tranches versus correlation.

as bizarre as the people who lap this up without asking any
questions.)®

Figure 5.8 is a plot of various CDO tranches versus constant
correlation. Note how one of the lines is not monotonic. Can
you hear the alarm bells? That tranche is dangerous.?

8We know why people do this though, don’t we? It’s because every-
one else does. And people can’t bear watching other people getting
big bonuses when they’re not.

9You know that now do you? And how much did that lesson cost
you? The most important lesson in life is to make all your lessons
cheap ones. There, 've got you started.
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Lesson 6: Reliance on Continuous
Hedging (Arquments)

One of the most important concepts in quantitative finance
is that of delta or dynamic hedging. This is the idea that you
can hedge risk in an option by buying and selling the under-
lying asset. This is called delta hedging since ‘delta’ is the
Greek letter used to represent the amount of the asset you
should sell. Classical theories require you to rebalance this
hedge continuously. In some of these theories, and certainly
in all the most popular, this hedging will perfectly eliminate
all risk. Once you've got rid of risk from your portfolio it is
easy to value since it should then get the same rate of return
as putting money in the bank.

This is a beautiful, elegant, compact theory, with lots of
important consequences. Two of the most important conse-
quences (as well as the most important which is...no risk!)
are that, first, only volatility matters in option valuation, the
direction of the asset doesn’t, and, second, if two people
agree on the level of volatility they will agree on the value of
an option, personal preferences are not relevant.

The assumption of continuous hedging seems to be crucial to
this theory. But is this assumption valid?

Continuous hedging is not one of those model assumptions
that may or may not be correct, requiring further study.

It is blatantly obvious that hedging more frequently than
every nanosecond is impossible. And even if it were possible,
people are clearly not doing it. Therefore of all the assump-
tions in classical Black-Scholes theory this is one of the
easiest to dismiss.

So why are there so few papers on hedging discretely when
there are tens of thousands of papers on volatility modelling?
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Perhaps because of these nice ‘results,” most quants simply
adore working within this sort of framework, in which contin-
uous hedging is possible. Only a very tiny number are asking
whether the framework is valid, and if it’s not (which it isn’t)
then what are the consequences? This is unfortunate since it
turns out that Black-Scholes is very robust to assumptions
about volatility (see Ahmad & Wilmott, 2005) whereas robust-
ness to discrete hedging is less well understood.

[ continue to find myself in the middle of the argument over
validity of Black-Scholes. On one side are those who we
might call ‘the risk neutrals’ — those heavily invested in

the concepts of complete markets, continuous hedging, no
arbitrage, etc.; those with a relatively small comfort zone.
On the other side there are those who tell us to throw
away Black-Scholes because there are so many fallacious
assumptions in the model that it is worthless. Let’s call
them the ‘dumpers.” And then there are a tiny number of us
saying yes, we agree, that there are many, many reasons why
Black-Scholes should not work, but nevertheless the model
is still incredibly robust to the model assumptions and to
some extent you can pretend to be a risk neutral in practice.

Discrete hedging is the perfect example of this. The theory
says that to get the Black-Scholes model you need to hedge
continuously. But this is impossible in practice. The risk neu-
trals bury their heads in the sand when this topic is dis-
cussed and carry on regardless, and the dumpers tell us to
throw all the models away and start again. In the middle we
say calm down, let’s look at the maths.

Yes, discrete hedging is the cause of large errors in practice.
I've discussed this in depth in Wilmott (2006a). Hedging error
is large, of the order of the square root of the time between
rehedges, it is path dependent, depending on the realized
gamma. The distribution of errors on each rehedge is highly
skewed (even worse in practice than in theory). But most
analysis of hedging error assumes the simple model in which
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Figure 5.9: Risk reduction when hedging discretely.

you rehedge at fixed time intervals. This is a very restrictive
assumption. Can we do better than this? The answer is yes.
If we are allowed a certain number of rehedges during the
life of an option then rehedging at fixed intervals is not at all
optimal. We can do much better (Ahn & Wilmott, 2009).

Figure 5.9 shows a comparison between the values of an
at-the-money call, strike 100, one year to expiration, 20%
volatility, 5% interest rate, when hedged at fixed intervals
(the red line) and hedged optimally (the green line). The lines
are the mean value plus and minus one standard deviation.
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All curves converge to the Black-Scholes complete-market,
risk-neutral, price of 10.45, but hedging optimally gets you
there much faster. If you hedge optimally you will get as
much risk reduction from just 10 rehedges as if you use 25
equally spaced rehedges.

From this we can conclude that as long as people know the
best way to dynamically hedge then we may be able to get
away with using risk neutrality even though hedging is not
continuous. But do they know this? Everyone is brought up
on the results of continuous hedging, and they rely on them
all the time, but they almost certainly do not have the nec-
essary ability to make those results valid! The risk neutrals,
even the cleverest and most well-read, almost certainly do
not know the details of the mathematics of discrete hedging.

I think the risk neutrals need to focus their attention more
on hedging than on making their volatility models even more
complicated.

Lesson 7: Feedback

Are derivatives a good thing or a bad thing? Their origins are
in hedging risk, allowing producers to hedge away financial
risk so they can get on with growing pork bellies or what-
ever. Now derivatives are used for speculation, and the pur-
chase/sale of derivatives for speculation outweighs their use
for hedging.

Does this matter? We know that speculation with linear for-
wards and futures can affect the spot prices of commodities,
especially in those that cannot easily be stored. But what
about all the new-fangled derivatives that are out there?

A simplistic analysis would suggest that derivatives are
harmless, since for every long position there is an equal and
opposite short position, and they cancel each other out.
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But this misses the important point that usually one side

or the other is involved in some form of dynamic hedging
used to reduce their risk. Often one side buys a contract so
as to speculate on direction of the underlying. The seller is
probably not going to have exactly the opposite view on the
market and so they must hedge away risk by dynamically
hedging with the underlying. And that dynamic hedging using
the underlying can move the market. This is the tail wagging
the dog! This was quantified in Schénbucher & Wilmott
(1995), important results from this work concern the role

of gamma, and in particular its sign. For the following you
will need to remember that hedging a short (long) gamma
position is essentially the same as replicating a long (short)
position.

There are two famous examples of this feedback effect:

e Convertible bonds — volatility decrease
e 1987 crash and (dynamic) portfolio insurance - volatility
increase

Example When a company issues convertible bonds it does
so with a discount to encourage people to buy. It would be
very embarrassing if they remained unsold. This obviously
presents a profit opportunity, buy the cheap CB and make
some money. This is not quite that simple because if you
own a CB then you are exposed to risk caused by move-
ment of the underlying. To hedge this risk you must sell the
underlying asset according to the dynamic-hedging theory. If
all goes well you will then realize the profit, being on aver-
age the difference between the correct price, based on the
actual volatility, and the market/issue price, based on implied
volatility. So far so good. The problem arises because these
days the vast majority of CBs are in the hands of banks and
hedge funds. And that means if one firm is delta hedging,
then so are they all.

If the stock rises, then because gamma is positive you have
to sell some stock to maintain a delta-neutral position. If
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there are a lot of you simultaneously selling stock then this
will put some downward pressure on the stock. This may or
may not be enough to change its direction, that will depend
on the relative sizes of the delta hedgers and other traders.
But the larger the gamma the greater the pressure.

Now if the stock does fall then you will all have to buy back
stock, and the pressure is now upwards. The result is that
volatility can be suppressed. And that is a bit of a nuisance
if you have just bought the CB for the potential profit; your
actions aimed at realizing that profit cause the profit to
decrease!

A simple simulation is shown in Figure 5.10. Here a long put
with expiration five years is being hedged dynamically. The
volatility should be 20%, and after expiration that is what
you see, but before expiration the volatility is much lower.
The level of the stock matters because the effect is more pro-
nounced if the asset is around the strike, where gamma is
largest.

The opposite side of the coin was seen in 1987. Dynamic
portfolio insurance was partly blamed for the dramatic stock
market crash. Portfolio insurance was invented in the late
1970s by Leland, O’Brien and Rubinstein and was the neat
idea that if you were worried about losing money during

a falling market then you could limit this by replicating a
put option. As the market falls you sell, according to some
Black-Scholes-like formula. This is replicating a long gamma
position, or equivalently hedging a short gamma position. The
opposite of the CB example. Now as markets fall you have to
sell, putting downward pressure on the stock, increasing the
rate of fall. Again, whether this matters depends on the ratio
of insurers to other traders. In 1987 this ratio turns out to be
big enough to cause or at least exacerbate the crash.!? Again

10This was not entirely Leland, O’Brien and Rubinstein’s fault. Others
in the market knew about this idea and were using it as well.
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Figure 5.10: Simulation when hedging long gamma.

the result was to cause precisely that event against which it
was supposed to insure! Figure 5.11 shows a simulation. This
uses the same method as in the previous figure, just with a
sign change because here it is a positive gamma that is being
replicated.

The simple lesson here is that derivatives do not make a
zero-sum game, they can be beneficial or harmful, affecting
the underlying via dynamic hedging or replication. Maybe you
care about your impact on the world’s economy, maybe you
don’t, but you should definitely look deeper into the impact
on your P&L.
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Figure 5.11: Simulation when hedging short gamma.

Lesson 8: Reliance on Closed-Form
Solutions

Quants work long hours. Some work almost as hard as
nurses. It is surely too much to ask that they also solve an
equation numerically!

Example You need to value a fixed-income contract and so
you have to choose a model. Do you (a) analyse historical
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fixed-income data in order to develop an accurate model,
which is then solved numerically, and finally back-tested
using a decade’s worth of past trades to test for robustness,
or (b) use Professor X’s model because the formulee are
simple and, quite frankly, you don’t know any numerical
analysis, or (c) do whatever everyone else is doing? Typically
people will go for (c), partly for reasons already discussed,
which amounts to (b).

Example You are an aeronautical engineer designing a new
airplane. Boy, those Navier-Stokes equations are hard! How
do you solve non-linear equations? Let’s simplify things,
after all you made a paper plane as a child, so let’s just
scale things up. The plane is built, a big engine is put on the
front, it’s filled with hundreds of passengers, and it starts
its journey along the runway. You turn your back, without

a thought for what happens next, and start on your next
project.

One of those examples is fortunately not real. Unfortunately,
the other is.

Quants love closed-form solutions. The reasons are

1. Pricing is faster
2. Calibration is easier
3. You don’t have to solve numerically.

Popular examples of closed-form solutions/models are, in
equity derivatives, the Heston stochastic volatility model
(Heston, 1993), and in fixed income, Vasicek (1977),!! Hull &
White (1990), etc.

II'To be fair to Vasicek I'm not sure he ever claimed he had a great
model, his paper set out the general theory behind the spot-rate
models, with what is now known as the Vasicek model just being an
example.



352 Frequently Asked Questions in Quantitative Finance

Although the above reasons for choosing models with
closed-form solutions may be true they are not important
criteria per se in the scheme of things. Indeed, there are a
couple of obvious downsides to restricting yourself to such
models. Just because you want an easy life doesn’t make the
model work. By choosing ease of solution or calibration over
accuracy of the model you may be making calibration less
stable.

Models with closed-form solutions have several roles in
applied mathematics and quantitative finance. Closed-form
solutions are

e useful for preliminary insight

e good for testing your numerical scheme before going on to
solve the real problem

e for examining second-year undergraduate mathematicians.

People who only know about the ‘popular’ models do not
make good quants, good risk managers, or good traders. They
don’t even make good researchers.

Lesson 9: Valuation is Not Linear

You want to buy an apple, so you pop into Waitrose. An
apple will cost you 50p. Then you remember you've got
friends coming around that night and these friends really
adore apples. Maybe you should buy some more? How much
will 100 apples cost?

I've started asking this question when I lecture. And
although it is clearly a trick question, the first answer I get is
always §50.

Anyone who thinks that is the right answer will make a
fantastic, classically trained, old-fashioned, and eventually
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loss-making, and finally unemployed, quant. As anyone who
has ever shopped should know, the answer is ‘less than $£50.’
Economies of scale.

Here’s a quote from a well-known book (my emphasis): ‘The
change of numeraire technique probably seems mysterious.
Even though one may agree that it works after following the
steps in the chapter, there is probably a lingering question
about why it works. Fundamentally it works because valua-
tion is linear....The linearity is manifested in the statement
that the value of a cash flow is the sum across states of the
world of the state prices multiplied by the size of the cash
flow in each state....After enough practice with it, it will
seem as natural as other computational tricks one might have
learned.’

Note it doesn’t say that linearity is an assumption, it is
casually taken as a fact. Valuation is apparently linear. Now
there’s someone who has never bought more than a single

apple!

Example The same author may be on a sliding royalty scale
so that the more books he sells the bigger his percentage.
How can nonlinearity be a feature of something as simple as
buying apples or book royalties yet not be seen in suppos-
edly more complex financial structured products? (Maybe
he is selling so few books that the nonlinearity has not
kicked in!)

Example A bank makes a million dollars profit on CDOs.
Fantastic! Let’s trade 10 times as much! They make $10
million profit. The bank next door hears about this and
decides it wants a piece of the action. They trade the same
size. Between the two banks they make $18 million profit.
Where’d the $2 million go? Competition between them
brings the price and profit margin down. To make up the
shortfall, and because of simple greed, they increase the
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size of the trades. Word spreads and more banks join in.
Profit margins are squeezed. Total profit stops rising even
though the positions are getting bigger and bigger. And then
the inevitable happens, the errors in the models exceed the
profit margin (margin for error), and between them the banks
lose billions. ‘Fundamentally it works because valuation is
linear.” Oh dear!

This is not really the place for me to explain all the non-linear
quantitative finance models in existence. There are many,
and | will give some references below. But how many do
you know? [ suspect you'll struggle to name a single one.
Researchers, modellers, banks, software companies, every-
one has a lot invested in this highly unrealistic assumption
of linearity, and yet many of the best models I've seen are
non-linear.!?

To appreciate the importance of nonlinearity you have to
understand that there is a difference between the value of

a portfolio of contracts and the sum of the values of the indi-
vidual contracts.!® In pseudomath, if the problem has been
set up properly, you will get

Value(A + B) > Value(A) + Value(B).

Imagine we have just inherited a barrier option from someone
who got fired earlier today. As with many barrier options it
has a lot of volatility risk because of the way gamma changes
sign. We value it at $10 using one of the non-linear models
to be mentioned shortly. Not worth as much as I'd hoped.
Because of all that volatility risk I'm being conservative in
my valuation. The volatility risk is because the contract has
gamma. If I could reduce gamma then I will reduce volatility

12] have to declare an interest here, I and colleagues have developed
some of these.

1BWhat I call, to help people remember it, the ‘Beatles effect.” The
Fab Four being immeasurably more valuable as a group than as the
sum of individuals... Wings, Thomas the Tank Engine, ...
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risk and the value should increase, there’ll be less risk and
so less reason to be conservative. | look around and I see an
exchange-traded, vanilla option selling for $5. This option has
caught my eye because it has similar gamma to the barrier,
around the same asset value, etc. but of the opposite sign. If

[ buy this option it will reduce my volatility risk! [ buy the
option, it costs $5. I now value the portfolio consisting of
the barrier and the vanilla, valued as one unit, and I get the
answer ... $16. In other words, the benefit to my portfolio of
buying the vanilla has outweighed its cost. | seem to have
made $1. This is ‘static hedging.” We could try buying two

of these options, thinking that buying one vanilla makes us
$1 ‘out of thin air’ so we can conjure up $2 by buying two
options. Sadly, we find that the portfolio of barrier option
plus two vanillas is actually only $20.5, not the hoped-for $22.
Again, this is because of nonlinearity and what this tells us is
that somewhere between buying no vanillas and buying two
is the optimal static hedge.

There are many papers on static hedging of exotics (often
barriers) with vanillas, and they all have in common that

there is no financial benefit whatsoever to such hedging.

They are ad hoc fixes to poor models. However, when the
model is non-linear the benefit is clearly seen in terms of
extra value.

Here is a partial list of the advantages to be found in some
non-linear models.

o Perfect calibration: Actual and implied quantities are not
confused. We don’t have to believe that there is any useful
information about parameters contained in the market
prices of derivatives. Nonlinearity ensures that reasonable
market prices of liquid instruments are matched by default.
No more tying yourself in numerical knots to calibrate your
unstable stochastic volatility model. Nonlinearity means
that there are genuine model-based reasons for static
hedging, a benefit of which is perfect calibration.
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Calibration is automatic. And you can calibrate to both bid
and ask prices, and to liquidity. How many of you
calibrating Heston can make that claim?

e Speed: The models will be almost as fast to solve
numerically as their equivalent linear models (sometimes
faster because calibration happens by default).

e FEasy to add complexity to the model: The modular form
of the models means that it is easy to add complexity in
terms of jumps, stochastic volatility, etc.

e Optimal static hedging: Hedging exotics with traded
vanillas will increase ‘value’ because of the non-linearity.
This can be optimized.

e Can be used by buy and sell sides: Traditionally the buy
side uses one type of models and the sell side another.
This is because the buy side is looking for arbitrage while
the sell side are valuing exotics which their risk
management insists are priced to be consistent with
vanillas (i.e. the thought of accepting that there may be
arbitrage is abhorrent!) By changing the ‘target function’ in
certain optimization problems some of the models can be
used by hedge funds looking for statistical arbitrage and by
investment banks selling exotics that are calibrated to
vanillas.

That list is just to whet your appetite. Even if you think
everything else in this chapter is baloney, you must at least
look up the following articles. That’s assuming you are ready
to move outside your comfort zone.

And now the reading list:

e Hoggard, Whalley & Wilmott (1994) is an early paper on a
non-linear model, in this case a model for pricing in the
presence of transaction costs. Also look at other papers on
costs by Whalley et al.

e Avellaneda, Levy & Paras (1995) introduce the Uncertain
Volatility Model (UVM). (See also Avellaneda & Paras, 1976
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and Avellaneda & Buff, 1977.) This is a very simple and
clever model, very compact in form compared with models
such as Heston and considerably easier to solve and to
calibrate (it’s automatic). The trick is to price
conservatively and look at worst-case scenarios. A
follow-up paper showed just why nonlinearity is so
important (optimal static hedging and value

maximization).

In Hua & Wilmott (1997, 1998, 1999, 2001) we look at
modelling crashes in a worst-case scenario framework,

and again a non-linear model results. This model

and the UVM both permit perfect hedging and are
complete-market models.!* In later articles we

show how to strip the model down to its bare essentials
into a wonderfully simple (and very popular with
investors!) risk management technique called
CrashMetrics.

In Ahn & Wilmott (2003, 2007, 2008) and several follow-up
articles we introduce a model based on stochastic
volatility, but with a twist. Instead of taking the common
route of introducing a market price of volatility risk to
derive an equation we work within a framework in which
we calculate the mean option value and its standard
deviation. Effectively we say that, let’s be honest, you can’t
hedge volatility no matter what academics say, so let’s just
accept it as fact and get on with reducing risk as much as
we can. As well as being no harder to implement than
standard volatility models - actually it’s easier because
calibration is automatic — it can be used for both arbitrage
and for valuation of exotics. It’s about the nearest thing to
an all-singing, all-dancing, model as you can find at the
moment.

4Complete market’ is a common phrase and framework, but its
meaning can be a bit ambiguous once you move outside classical,
linear models. Here I say the models are complete in the same way
that the Black-Scholes for pricing American options is complete.
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Lesson 10: Calibration

Note: This Lesson has been censored to protect the innocent.

‘A cynic is a man who knows the price of everything and
the value of nothing,” said Oscar Wilde. At least a cynic may
know that there is a difference between price and value. A
typical quant thinks that these two are the same. To fully
appreciate finance theory and practice you need to distin-
guish between these two and also to understand the concept
of worth. Go back to page 200 and remind yourself (or maybe
you remember the go-cart example?)

One of the most damaging effects of confusing price and
value is the ubiquity of unthinking calibration. By assuming
that there is perfect information about the future contained
in option prices we are abdicating responsibility for perform-
ing any analysis, estimation or forecasting for that future.
We are in effect saying that ‘the market knows best,” which
has to be one of the stupidest knee-jerk statements that
people make in quantitative finance. | know that markets
do not know best; [ have two pieces of information for
this. First, | have been involved in successful forecasting,
making money because of the difference between forecasts
of the future and the market’s view of the future. Second, I
speak to more people in this business than almost anyone
else, and | know that the vast, vast majority of them are
using models that make ridiculous assumptions about

the market and its knowledge (and aren’t even properly
tested). If almost everyone is basing their models around
the prices of some coked-up 23-year-old trader and not on
any statistical analysis then there are going to be plenty
of (statistical) arbitrage opportunities for a long time to
come.
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I hold three people responsible for the popularity of calibra-
tion. Three very nice, very intelligent people who all pub-
lished similar work at about the same time. These three are

15 and
!16
Professor is a very experienced practitioner, now
academic in the city of N__ Y . He has a great enthusi-

asm for understanding and modelling the markets. I get the
impression that whenever he finds (yet) another violation
of a model’s assumptions he is first disturbed, then intel-
lectually stimulated, and finally turns his mind to improving
and quantifying. Dr is a practitioner. He takes a
very European, laid-back, approach to this business, almost
as if he knows he will never come up with perfection. But
he keeps trying! I do not know Professor very
well, only having met him once and exchanged some emails.
Clearly he is very talented, and seems quite charming, with
the looks of a 1930’s swashbuckling matinee idol! Had his
book with __, published in 19_, been printed in
paperback and cheaper!” then I have no doubt that quanti-
tative finance would be a completely different, and better,
subject from what it is now.

All of these researchers are men I admire and respect, and

they have all produced brilliant work over the years. But

by some once-in-a-lifetime alignment of the heavenly stars

they all in 19_ / published independently the same idea of
, the model that

is a function of price and ___ . And this is the

15 ’s work was joint with . However, I don’t know this
latter gentleman so won’t comment on his niceness or intelligence!
161 don’t really blame them. Their research was interesting and
clever, just in my view misguided. It’s the sheep who implemented
the ideas without testing that I blame.

7t is still one of the most expensive books I have ever bought!
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idea I hate more than any other in quantitative
finance!!®

The function in question is found by looking at the market
prices of exchange-traded contracts. In other words, rather
than estimating or forecasting and then finding
the prices of options, we work backwards from the prices to
the model. This is calibration.

To be fair to these three, this wasn’t the invention of calibra-
tion. Ho & Lee (1986) published a fixed-income paper which
did something similar. But in fixed income this is not so bad
— interest rate volatility is lower than in equities and there
are many contracts with which to hedge.

First of all how does calibration work? I'll explain everything
using this model.

When you look at the market prices of exchange-traded
options you see how there are strike and term structures for
implied volatility. Implied volatility is not constant. The strike
structure goes by the names of skews and smiles. If volatility
is constant and the Black-Scholes model is correct, then
these prices cannot be correct otherwise there’d be arbitrage
opportunities. The existence of arbitrage opportunities seems
to make some people uncomfortable.! What is the simplest
way to make our model output theoretical prices that exactly
match market prices? In equities the simplest such model is
the model.

18Heston (1993) is a very close second.

19As I've said elsewhere, life and everything in it is about arbitrage
opportunities and their exploitation. I don’t see this as a bit prob-
lem. It's an ... opportunity. Evolution is statistical arbitrage in
action! Ok, now I see why maybe Americans don’t like arbitrage,
they don’t believe in evolution!
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Implied volatility is a function of two variables, strike and
expiration, so let’s make actual volatility a function of asset
price and calendar time, two variables again. There is enough
freedom here that if we choose this actual volatility func-
tion carefully enough then the solution of the Black-Scholes
equation will match market prices of vanilla options of all
strikes and expirations. That’s calibration.

And why do people do it? Here’s another story. Your task is
to price some exotic equity option. It just so happens that
you've been doing a part-time PhD in volatility forecasting,
so naturally you’ll want to use your new volatility model. So
you price up the exotic and show the results to your boss.
‘Fantastic,” he says, ‘I'm sure you've done a great job. But
there’s one small problem.” Here it comes. ‘I think your model
is wonderful, I know how clever you are. But those @*&%$ in
risk management are going to need some convincing before
they’ll let you use your new model. Tell you what, if you can
value some vanillas using your model for comparison with
market prices then I'm sure that’d go a long way to persuad-
ing them.” So you do as you are told. You value the vanillas
using your model. However your model only happens to be
a fantastic volatility-forecasting model, it is not a model that
calibrates to market prices. Therefore your values and the
market prices of the vanillas disagree. Your boss tells you to
dump your model and use the
model like everyone else. Your bank has just missed a fantas-
tic opportunity to make a killing, and will probably now lose
millions instead.

This model was adopted with little thought simply because of
quants obsession with no arbitrage! Ask a quant for an esti-
mate of volatility and he will look to option prices. Ask him to
estimate volatility using only the stock price, or for an asset
on which there are no traded options, and watch the look of
confusion that comes over his face.
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Advocates of calibrated models will defend it by saying two

things. First, how do you know that your volatility model is

so great? Second, in practice we hedge with vanillas to mini-
mize risk that the model is wrong.

The first defence is silly. [ know very few walks of life in
which we know anything with any certainty. Or any walks

of life in which we know the probabilities of events, outside
of a few casino games. Does this stop people going about
their day-to-day business? Getting drunk, chatting up women,
starting families, having an affair, nothing has either a
certain outcome or has known consequences with known
probabilities. We are spoiled in quantitative finance that

we seem, according to theories, to need little knowledge of
asset price distributions to value derivatives. We don’t need
to know asset growth rates for example. And this seems to
have caused our ability to attempt to forecast or to analyse
historical data to have completely atrophied. And worse,
not only have people become lazy in this respect, but they
also seem to think that somehow it is a fundamental law

of finance that we be given everything we need in order to
correctly value an option. This is utter nonsense. Here’s an
arbitrage that some people believe exists: do a Masters in
Financial Engineering, get a job in a bank, do a little bit of
programming, take home a big pay packet, and retire at 35. If
you are terrified of the thought of the existence of arbitrage,
why is this one any different??? No, I'm afraid that sometimes
a little bit of effort and originality of thought is required.

The second defence is really saying, well we know that
calibrated models are wrong but we solve this by hedging
with other options so as to reduce model risk. This is a big,
fat fudge. At least these people accept that calibration isn’t
as good as they’ve been led to believe. My problem with
this is that this fudge is completely ad hoc in nature, and no

2ONote that I'm not saying I think this arbitrage exists, only that
many people do.
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one really tests whether the fudge actually works. And the
reason for this is that risk management don’t really know
enough about the markets, the mathematics or the research
literature.

The above strongly hints that the

model and calibrated models generally are
rubbish. They are. I will now tell you how to prove it for
yourself, and then explain why.

Today you take price data for exchange-traded vanillas. You
work backwards from these prices to find the actual volatil-
ity using the model (details in
Wilmott, 2006a, even though I don’t believe in it) or any other
calibrated model. You have now found the local volatility sur-
face or model parameters. Imagine making the local volatility
surface out of modelling clay, which is then baked in the
oven. Once found, this surface, or model parameters, are not
allowed to change. It is set in stone. If there is a change then
the model was wrong. You come back a week later when the
data has changed. You recalculate (recalibrate) the model.
Now look at the local volatility surface or parameters and
compare with what you found last week. Are they the same?
If they are then the model may be right. If they are not, and
they never, ever are (just ask anyone who has ever calibrated
a model) then that model is wrong. If our subject were a sci-
ence (which it could be if people wanted it to be) then the
model would be immediately thrown away. As it is, people
continue to use the model (with the sort of ad hoc fudges
mentioned above) and pretend all is well. See Schoutens et al.
(2004) for nice examples of this.

A simple analogy is that one day you go to a fortune
teller. She tells you that in August next year you will
win the lottery. But then you go back a week later, she
doesn’t recognize you, and now she says that sadly
you will be run over by a bus and killed...in June
next year. These two pieces of information cannot
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both be right, so you conclude that fortune telling is
nonsense. Similarly you should conclude that calibration is
nonsense.

Mathematically we have here what is called an ‘inverse prob-
lem,” meaning that we work backwards from answers/values
to find parameters. Such problems are notoriously unstable
in the sense that a small change to initial conditions (implied
volatility) can have a huge effect on the results (actual
volatility). Diffusion equations, such as the Black-Scholes
equation, cannot be ‘run backwards in time.” But you get
inverse problems in many branches of applied mathematics.
In an episode of CSI Miami there was a murder on a yacht.

[ think one of the big-breasted and bronzed babes was

the vic and H. had to find the murderer. The clue as to

the perp was a piece of fabric on which there was some
writing. Unfortunately the fabric had got wet and the ink
had diffused. H. takes the fabric back to the lab, runs it
through one of their hi-tech gizmos and before our eyes

the lettering appears. What they had done was to reverse
time in a diffusion process, an inverse problem not unlike
calibration. As every applied mathematician knows this is

a no-no, and at this point I lost all respect for CSI! Actually
it’s not as bad as that, as long as the diffusion has not
acted for too long and as long as we know that the image
on the fabric was made up of letters then we can with a
certain degree of confidence figure out what the writing
might have been. With inverse problems in finance such

as the model such reverse
engineering would only make sense if the assumed model,
that volatility is a function of asset price and time, were a
good one. It just is not. And no amount of fancy mathematics
or numerical analysis is going to make this bad model

any good.

So that’s how you prove that calibrated models are rubbish:
Calibrate now and recalibrate a week later. Then take your
results to the most senior risk managers you can find. Tell
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them that what they want you to do is dangerous and insist
on implementing a decent model instead!

Here are a few problems with calibrated models.

Over fitting: You lose important predictive information if
your model fits perfectly. The more instruments you
calibrate to the less use that model is.

Fudging hides model errors: Perfect calibration makes
you think you have no model risk, when in fact you
probably have more than if you hadn’t calibrated at all.

e Always unstable: The parameters or surfaces always
change when you recalibrate.

Confusion between actual parameter values and those
seen via derivatives: For example there are two types of
credit risk, the actual risk of default and the market’s per-
ceived risk of default. If you hold an instrument to maturity
then you may not care about perceived risk of default,

if you sell quickly then all you care about is market percep-
tion since there is little risk of actual default in that time.

Why is calibration unstable?

In a recent piece of research (Ahmad & Wilmott, 2007) we
showed how in the fixed-income markets one can back out
the ‘market price of interest rate risk.” For every random
quantity there is a market price of risk, measuring how much
expected return in excess of the risk-free rate is needed for
every unit of risk. Economists and believers that humans are
rational will probably say that this quantity should be, oh I
don’t know, 3, say. It should be a nice stable parameter rep-
resenting the nice stable behaviour of investors. Of course,
sensible people know better and indeed when we look at
this parameter, shown in Figure 5.12, we see exactly what
you would expect, a lot of variation. (For technical reasons
this parameter ought to be negative.) In some periods people
need more return for taking risk, sometimes less, sometimes
they’ll even pay to take risk! And this is why calibration is
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Figure 5.12: Market price of interest rate risk versus time.

doomed. When you calibrate you are saying that whatever
the market sentiment is today, as seen in option prices, is
going to pertain forever. So if the market is panicking today it
will always panic. But Figure 5.12 shows that such extremes
of emotion are shortlived. And so if you come back a week
later you will now be calibrating to a market that has ceased
panicking and is perhaps now greedy!?!

Calibration assumes a structure for the future that is incon-
sistent with experience, inconsistent with commonsense, and
that fails all tests.

2180 | would advocate models with stochastic market price of risk,
as being sensible and not too far removed from classical models.
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And finally, can we do better? Yes, much better! And to get
you started go back to Lesson 9 and go through that reading
list!

Note: If your goal is to fool risk managers into believing that
you are taking little risk while actually taking enormous
risks then, yes, use any of these calibrated models, the
model, Heston, etc. [ can even
tell you which model is best for hiding risk. Not hedging
risk, note, | mean hiding it from anyone who might want to
restrict the size of your trades and hence your bonus. But,
for obvious topical reasons, I think we’ve gone beyond that
now!

Lesson 717: Too Much Precision

Given all the errors in the models, their unrealistic assump-
tions, and the frankly bizarre ways in which they are used, it
is surprising that banks and funds make money at all!

Actually there is a sound reason why they make money and it
has nothing to do with clever models. As mentioned above, if
you take all equities and derivatives based on those equities,
and sum them up across all banks, hedge funds, individuals,
etc., then all the complicated derivatives will cancel them-
selves out since for every long there is a short, leaving just
the equities, plain and simple. Now put most of those equities
in the hands of banks and funds, rather than in the hands of
the man in the street, and you’ll see that as long as the stock
market is rising those banks and funds will make money,
bonuses all around. All derivatives do is to redistribute the
profit, some banks/funds win, some lose, but net no impact.??
This argument only works during growing markets. In bear

22Feedback being a caveat.



368 Frequently Asked Questions in Quantitative Finance

markets you need to look elsewhere for profit, ways of mak-
ing money whether stocks are going up, down or sideways,
and that means derivatives.

But derivatives come with a lot of risk, some well under-
stood and some not. And as people get more ‘sophisticated’
they believe that they can increase their exposure to deriva-
tives and so make money regardless of market conditions.
Sometimes this is true, and the models seem to work, some-
times it is not and the models fall over. It’s because of poten-
tial model error that one has to build in a decent margin,
based on a decent understanding of possible risks. But once
banks start competing between themselves for the same con-
tracts then the margin for error will inevitably succumb to
the powerful forces of supply and demand.

One part of the above paragraph glosses over something that
is very important in practice. When I say ‘Sometimes this is
true, and the models seem to work,” you should ask how do
we know? The truth of the matter is that we don’t. Let’s look
at the story of a single trade in some exotic. There are sev-
eral stages.

1. There is demand for some contract, real or perceived

2. The contract must be understood in terms of risk,
valuation, potential market, profit, etc.

3. A deal gets done with an inbuilt profit margin.

4. The contract is then thrown into some big pot with
lots of other contracts and they are risk managed
together.

5. A profit is accrued, perhaps marking to model, or perhaps
at expiration.

This is naturally a simplification but I wanted to list this
procedure to highlight a disconnection between theory and
practice. At Stage 2 here there is a valuation procedure that
will probably involve some complicated model, maths, and
numerics. The underlying model makes certain assumptions
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about the financial world and the contract is valued
accordingly. But then at Stage 4 you throw this contract
into the same pot as other contracts, and you don’t actually
implement the theory upon which the valuation was based.
And finally, you never really know whether that particular
contract made money because it gets hedged simultaneously
with other contracts. You never follow the valuation, static
and dynamic hedging, with all its cash flows and accrued
interest, etc., that the theory is using. Instead you look at
the pot containing many contracts and say that it has made
a profit (or a loss). You have no idea whether each contract
has ‘washed its own face’ as they say.

[ have to ask why bother going to all this trouble of
valuation and risk management when you lump everything
together anyway? I'm not saying that it is wrong to lump
everything together, on the contrary, in the above lesson
on nonlinearity you can see sound financial reasons why
you should do that. I am saying that such effort in valuation
hardly seems worth it when ultimately you are probably
going to be making money from the Central Limit Theorem!
Errors in the models and the implementation of the models
are probably large enough that on a contract-by-contract
basis you may make or lose money, but so what? As

long as on average you make money then you should be

happy.

The point of this lesson is to suggest that more effort is spent
on the benefits of portfolios than on fiddly niceties of mod-
elling to an obsessive degree of accuracy. Accept right from
the start that the modelling is going to be less than perfect.
It is not true that one makes money from every instrument
because of the accuracy of the model. Rather one makes
money on average across all instruments despite the model.
These observations suggest to me that less time should be
spent on dodgy models, meaninglessly calibrated, but more
time on models that are accurate enough and that build in
the benefits of portfolios.
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While we are on the topic of model accuracy, I just want to
make a few comments about models in different markets.

Some models are better than others. Sometimes even work-
ing with not-so-good models is not too bad. To a large extent
what determines the success of models is the type of market.
Let me give some examples.

Equity, FX and commodity markets Here the models are only so-so.
There has been a great deal of research on improving these
models, although not necessarily productive work. Combine
less-than-brilliant models with potentially very volatile mar-
kets and exotic, non-transparent, products and the result can
be dangerous. On the positive side as long as you diversify
across instruments and don’t put all your money into one
basket then you should be ok.

Fixed-income markets These models are pretty dire. So you
might expect to lose (or make) lots of money. Well, it’s not
as simple as that. There are two features of these markets
which make the dire modelling less important; these are (a)
the underlying rates are not very volatile and (b) there are
plenty of highly liquid vanilla instruments with which to try
to hedge model risk. (I say ‘try to’ because most model-risk
hedging is really a fudge, inconsistent with the framework in
which it is being used.)

Correlation markets Oh, Lord! Instruments whose pric-
ing requires input of correlation (FI excepted, see
above) are accidents waiting to happen. The dynamic
relationship between just two equities can be beauti-
fully complex, and certainly never to be captured by

a single number, correlation. Fortunately these instru-
ments tend not to be bought or sold in non-diversified,
bank-destroying quantities. (Except for CDOs, of
course!)
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Credit markets Single-name instruments are not too bad as
long as the trades are kept small. Except that often the models
assume risk neutrality and an ability to hedge that is often
not possible in practice. Again problems arise with any
instrument that has multiple ‘underlyings,’ so the credit
derivatives based on baskets...you know who you are. But
as always, as long as the trades aren’t too big then it’s not
the end of the world.?

Lesson 12: Too Much Complexity

‘Four stochastic parameters good, two stochastic parameters
bad.’ (Thanks to George Orwell.)

Maths is fun. I've had many jobs and careers in the last three
decades, and started various businesses, but the one thing
that [ keep coming back to is mathematics. There’s something
peaceful and relaxing about an interesting maths problem
that means you can forget all your troubles, just get totally
absorbed in either the detail of a formulation, calculation or
solution, or lie back and think of deep concepts. [ wonder if
one of the reasons quantitative finance is in such a mess is
that people treat the subject as if it’s of academic interest
only, to be made as abstract and complicated, and therefore
as respectable, as possible.

I'm going to let you in on the big secret of quantitative
finance, and you must keep this secret because if word got
out then that would be the end of all masters in financial
engineering programs. And universities make a lot of money
from those.

2Pd like to have added another ‘lesson’ on credit derivatives and
models, but that would require me to have a solution or better mod-
els. I don’t. Yet. So the best I can do for the moment is to suggest
that you avoid this market like the plague.
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Ok, the big secret...Quantitative finance is one of the easiest
branches of mathematics.

Sure you can make it as complicated as you like, and plenty
of authors and universities have a vested interest in so doing.
But, approached correctly and responsibly, quant finance is
easy.

Let’s talk about the different levels of maths you see in quant
finance.

As I said earlier, some people try to dumb the subject down.
There are plenty of textbooks that kid you into thinking that
there is almost no mathematics in the subject at all. These
books may dabble in the binomial model but go no deeper.
Now anyone with a second-year undergraduate knowledge

of numerical methods will recognize the binomial model for
the inadequate and cumbersome dinosaur that it is. I like
the binomial method as a teaching tool to explain delta hedg-
ing, no arbitrage and risk neutrality. But as a way of pricing
derivatives for real? No way! Watching the contortions people
go through on the wilmott.com Forums in order to make their
binomial code work is an illuminating experience. Dumbing
the subject down is not good. You cannot price sophisticated
contracts unless you have a decent mathematical toolbox,
and the understanding of how to use those tools. Now let’s
look at the opposite extreme.

Some people try to make the subject as complicated as they
can. It may be an academic author who, far from wanting to
pass on knowledge to younger generations, instead wants
to impress the professor down the corridor. He hopes

that one day he will get to be the professor down the
corridor who everyone is trying to impress. Or maybe it’s a
university seeing the lucrative QF bandwagon. Perhaps they
don’t have any faculty with knowledge of finance, certainly
no practical knowledge, but they sure do have plenty of
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people with a deep knowledge of measure theory. Hey presto,
they’ve just launched a masters in financial engineering!
Making this subject too complicated is worse than dumbing
it down. At least if you only work with the binomial method
you can’t do much harm, simply because you can’t do much
of anything. But with all those abstract math tools at your
command you can kid yourself into believing you are a
derivatives genius. Never mind that you don’t understand
the markets, never mind that the people using your models
haven’t a clue what they are doing. I believe that the
obscenely over-complicated models and mathematics that
some people use are a great danger. This sort of maths is
wonderful, if you want to do it on your own time, fine. Or
become a finance professor. Or move into a field where the
maths is hard and the models are good, such as aeronautics.
But please don’t bring this nonsense into an important
subject like finance where even the best models are rubbish.
Every chain has its weakest link. In QF the weakest links are
the models, not the maths, and not the numerical methods.
So spend more time thinking about your models and their
robustness and less on numerical inversion of a transform in
the complex plane.

Here’s a true story that illustrates my point quite nicely. Not
long ago | was approached by someone wanting to show me
a paper they hoped to get published. The paper was about 30
pages long, all maths, quite abstractly presented, no graphs.
When I'd read the paper I said to the author that I thought
this was a good piece of work. And I told him that the reason
I thought it was good was because, unfortunately for him, I'd
done exactly the same piece of research myself with Hyung-
sok Ahn a few years earlier. What I didn’t tell him was that
Hyungsok and I only took four pages to do what he’d needed
30 for. The reason for the huge difference in derivations was
simply that we’d used the right kind of maths for the job

in hand, we didn’t need to couch everything in the most
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complicated framework.?* We used straightforward maths to
present a straightforward problem. Actually, what he had
done was worse than just unnecessarily obscure the work-
ings of the model. There was a point in the paper where he
trotted out the old replacement-of-drift-with-the-risk-free-rate
business. He did this because he’d seen it done a thousand
times before in similarly abstract papers. But, because the
paper was about incomplete markets, the whole point of
the model was that you were not allowed to make this
substitution! He didn’t understand the subtle arguments
behind risk-neutral valuation. That was the place where his
paper and ours diverged, ours started to get interesting, his
then followed a well-worn, and in this case incorrect, path.

Rule 1 of quant finance seems to be ‘Make this as difficult

as we can.’ It’s going to be years before the tendency for
people to make quantitative finance as difficult as they pos-
sibly can is eradicated. And that’ll be years while money is
lost because of lack of transparency and lack of robustness in
pricing and risk-management models. (But on the other hand,
there’ll be lots of research papers. So not all bad news then!)

There’ve been a couple of recent Forum threads that per-
fectly illustrate this unnecessary complexity. One thread was
a brainteaser and the other on numerical methods.

The brainteaser concerned a random walk and the probabil-
ity of hitting a boundary. Several methods were proposed for
solving this problem involving Girsanov, Doleans-Dade mar-
tingales, and optimal stopping. It must have been a really
difficult problem to need all that heavyweight machinery, no?
Well, no, actually. The problem they were trying to solve was
a linear, homogeneous, second-order, constant-coefficient,
ordinary differential equation! (Really only first order because

24And we weren’t afraid of the measure-theory police, so we did
things that mathematicians have been doing for a century and we
did them without any fuss.
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there weren’t even any non-derivative terms!) The problem
was utterly trivial. Talk about sledgehammers and nuts.

The other thread was on using non-recombining trees to
price a simple vanilla option. People were really helpful to
the person asking for advice on this topic. But no one, except
for me, of course, asked the obvious question, ‘Why on Earth
are you doing such a silly thing?’ I can hardly imagine a
more cumbersome, slow, and generally insane way to solve a
simple problem.

It disturbs me when people have been educated to such a
level of complexity that they can throw about references to
obscure theorems while at the same time being unable to
think for themselves. To me, mathematics is about creativity
in the use of tools not about being able to quote ‘results.’
Even knowledge of the names of mathematicians and what
they are famous for is something I find a bit suspect. If you
know the names of all the theorems but don’t know when
to use them then you are a historian not a mathematician.
Perhaps maths is an art, and I'm not impressed with painting
by numbers.

If you look through the various Forums on wilmott.com you will
see that we have some areas for people to talk about mathe-
matics, research papers, etc., and then there are areas to talk
about trading, general finance, etc. You will notice that the
majority of people are comfortable in only either the maths
areas or the trading areas. Not many people are comfortable
in both. That should tell you something, the overlap of skills
is far less than one would expect or hope. Who would you
trust your money to? A mathematician who doesn’t know the
markets or a trader who doesn’t know maths? Ideally, find
someone who is capable in both areas.

And so to the middle ground, not too dumb, not too clever
for its own good. Let’s start with the diffusion equation. As
every mathematician knows there are three important classes
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of partial differential equation: elliptic, hyperbolic, parabolic.
There are various standard techniques for solving these
equations, some of them numerical. The diffusion equations
that we see so often in QF are of parabolic type. Rather con-
veniently for us working in QF, parabolic equations are by far
the simplest of these different types to solve numerically. By
far the simplest. And our equations are almost always linear.
Boy, are we spoiled! (I've thought of publishing the ‘Wilmott
Ratio’ of salary to mathematical complexity for various
industries. Finance would blow all others out of the water!)

Or take the example of some fancy exotic/OTC contract.
You start with a set of model assumptions, then you do

the maths, and then the numerics. Most of the time the
maths can be 100% correct, i.e. no approximations, etc.
Given the assumptions, the pricing model will follow as night
follows day. Then you have to crunch the numbers. Now
the numerics can be as accurate as you like. Let’s say you
want the value and greeks to be 99% accurate. That’s easy!
It may take a few seconds, but it can usually be done. So
where’s the problem? Not the maths, not the numerics. The
problem is in the model, the assumptions. Maybe you get
70% accuracy if you are lucky. It seems odd therefore that so
many people worry about the maths and the numerics, when
it is very obvious where the main errors lie!

There is a maths sweet spot, not too dumb, not too smart,
where quants should focus. In this sweet spot we have basic
tools of probability theory, a decent grasp of calculus, and
the important tools of numerical analysis. The models are
advanced enough to be able to be creative with new instru-
ments, and robust enough not to fall over all the time. They
are transparent so that the quant and the trader and the
salesperson can understand them, at least in their assump-
tions and use.

Because the models are necessarily far, far from perfect, one
must be suspicious of any analytical technique or numerical
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method that is too fiddly or detailed. As I said above, the
weakest link in the chain is not the maths or the numerics
but the model assumptions. Being blinded by mathematical
science and consequently believing your models is all too
common in quantitative finance.

Bonus Lesson 13: The Binomial Methoo
15 Rubbish

Thanks for bearing with me through a dozen lessons. As a
reward for your patience and tolerance I am going to give
you a bonus lesson! And this bonus lesson is probably the
easiest one for quants to implement immediately. The lesson
is...dump the binomial method!

I really like the binomial method. But only as a teaching aid.
It is the easiest way to explain

1. hedging to eliminate risk
2. no arbitrage
3. risk neutrality.

I use it in the CQF to explain these important, and some-
times difficult to grasp, concepts.? But once the CQFers have
understood these concepts they are instructed never to use
the binomial model again, on pain of having their CQFs with-
drawn!

Ok, I exaggerate a little. The binomial model was the first of
what are now known as finite-difference methods. It dates

BI’s also instructive to also take a quick look at the trinomial ver-
sion, because then you see immediately how difficult it is to hedge
in practice.
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back to 1911 and was the creation of Lewis Fry Richardson,
all-round mathematician, sociologist, and poet.

A lot of great work has been done on the development of
these numerical methods in the last century. The binomial
model is finite differences with one hand tied behind its
back, hopping on one leg, while blindfolded. So when I refer
to the ‘binomial method’ here what [ am really criticizing

is people’s tendency to stick with the simplest, most

naive finite-difference method, without venturing into more
sophisticated territory, and without reading up on the more
recent numerical-methods literature.

Why is the binomial method so ubiquitous? Again, habit is
partly to blame. But also all those finance professors who
know bugger all about numerical methods but who can just
about draw a tree structure, they are the ones responsible.
Once an academic writes his lecture notes then he is never
going to change them. It’s too much effort. And so genera-
tions of students are led to believe that the binomial method
is state of the art when it is actually prehistoric.

Summary

Question 1: What are the advantages of diversification
among products, or even among mathematical models?

Answer 1: No advantage to your pay whatsoever!
Question 2: If you add risk and curvature what do you get?
Answer 2: Value!

Question 3: If you increase volatility what happens to the
value of an option?

Answer 3: It depends on the option!

Question 4: If you use ten different volatility models to value
an option and they all give you very similar values what can
you say about volatility risk?

Answer 4: You may have a lot more than you think!
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Question 5: One apple costs 50p, how much will 100 apples
cost you?
Answer 5: Not £50!

How did you do in the quiz at the start? If you are new to
quant finance you may have got some of the answers correct.
If you have just come out of a Masters in Financial Engineer-
ing then you probably got most of them wrong. But if you're
a quant or risk manager who likes to think for himself and is
not happy with the classical ‘results’ of quantitative finance,
then maybe you even got all of them right!

QF is interesting and challenging, not because the mathemat-
ics is complicated, it isn’t, but because putting maths and
trading and market imperfections and human nature together
and trying to model all this, knowing all the while that it is
probably futile, now that’s fun!
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Chapter 6

The Most Popular Probability Distributions and Their
Uses in Finance
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K andom variables can be continuous or discrete (the
latter denoted below by *). Or a combination. New dis-
tributions can also be made up using random variables from
two or more distributions.

Here is a list of distributions seen in finance (mostly), and
some words on each.

Normal or Gaussian This distribution is unbounded below and
above, and is symmetrical about its mean. It has two parame-
ters: a, location; b > 0 scale. Its probability density function is

given by
1 _@-a?
e 22
V21 b

This distribution is commonly used to model equity returns,
and, indeed, the changes in many financial quantities. Errors
in observations of real phenomena are often normally dis-
tributed. The normal distribution is also common because of
the Central Limit Theorem.

Mean a.

Variance b2

Lognormal Bounded below, unbounded above. It has two
parameters: a, location; b > 0 scale. Its probability density
function is given by

1 1
———exp | —=—(n() — a)2> x> 0.
V27 bx ( 2b*
This distribution is commonly used to model equity prices.
Lognormality of prices follows from the assumption of nor-
mally distributed returns.
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Normal

Probability Density Function

Probability Density Function
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Probability Density Function

1,2
Mean e®t2b"

. 2 2
Variance e2ath” (et _ 1),

Poisson* The random variables take non-negative integer val-
ues only. The distribution has one parameter: a > 0. Its prob-
ability density function is given by

e “q*

, x=0,1,2,3,....
X!

This distribution is used in credit risk modelling, representing
the number of credit events in a given time.

Mean a.

Variance a.
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Chi square Bounded below and unbounded above. It has two
parameters a > 0, the location; v, an integer, the degrees of
freedom. Its probability density function is given by

e~ Gta)/2 X yi-14v/2 40

: x>0,
27 L PG+ vj2)

where I'(-) is the Gamma function. The chi-square distribu-
tion comes from adding up the squares of v normally dis-
tributed random variables. The chi-square distribution with
one degree of freedom is the distribution of the hedging error
from an option that is hedged only discretely. It is therefore
a very important distribution in option practice, if not option
theory.

Mean v+a.

Variance 2(v + 2a).

o
w
)

Chi Square

o

N

()]

\

o o
([
w o

o
o
)

0.15 1

©
o
\

°

=)

a
A

0 0.5 1 1.5 2 2.5 3 3.5 4
Random variable



388 Frequently Asked Questions in Quantitative Finance

Gumbel Unbounded above and below. It has two parame-
ters: a, location; b > 0 scale. Its probability density function
is given by

a—x
e el

S

The Gumbel distribution is useful for modelling extreme
values, representing the distribution of the maximum value
out of a large number of random variables drawn from an
unbounded distribution.

Mean a+vyb,

where y is Euler’s constant, 0.577216.. ..

Variance %n2b2.

Gumbel a=-1

Probability Density
Function
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Weibull Bounded below and unbounded above. It has three
parameters: a, location; b > 0, scale; ¢ > 0, shape. Its probabil-
ity density function is given by

¢ (x—a\! x—a\°€
b b exp(—(— , X>a.

The Weibull distribution is also useful for modelling extreme
values, representing the distribution of the maximum value
out of a large number of random variables drawn from a
bounded distribution. (The figure shows a ‘humped’ Weibull,
but depending on parameter values the distribution can be
monotonic.)

Mean a+ bl (<L),
Variance b2 (F (Q> -r (C—1)2> ,

where I'(-) is the Gamma function.
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student’s t Unbounded above and below. It has three param-
eters: a, location; b> 0, scale; c> 0, degrees of freedom. Its
probability density function is given by

1 —a\2 2
e (), G
bymcT (%) c ’
where I'(-) is the Gamma function. This distribution repre-

sents small-sample drawings from a normal distribution. It is
also used for representing equity returns.

Mean a.
. c 2
Variance (5) b2

Note that the nth moment only exists if ¢ > n.
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Pareto Bounded below, unbounded above. It has two parame-
ters: a> 0, scale; b> 0 shape. Its probability density function
is given by

ba®

W’ X >a

Commonly used to describe the distribution of wealth, this is
the classical power-law distribution.

ab

Mean BT

@b

Variance DD

Note that the nth moment only exists if b > n.
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Uniform Bounded below and above. It has two location
parameters, a and b. Its probability density function is given

by
1
m, a<x<b.
Mean %b.
2
Variance %.
1.2 1
Uniform a=1
b=2
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Inverse normal Bounded below, unbounded above. It has two
parameters: a > 0, location; b > 0 scale. Its probability density
function is given by

2
,/Tbxg eii(%) , x>0.

This distribution models the time taken by a Brownian
motion to cover a certain distance.
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Mean a.
. 3
Variance 5

Gamma Bounded below, unbounded above. It has three
parameters: a, location; b> 0 scale; ¢ >0 shape. Its
probability density function is given by

1 x—a\! oo -
br(o \ b er, =4

where I'(-) is the Gamma function. When ¢ =1 this is the
exponential distribution and when a = 0 and b = 2 this is the
chi-square distribution with 2¢ degrees of freedom.

Mean a+ bc.
Variance b’c.
1.2 1
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Probability Density Function
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Logistic  This distribution is unbounded below and above. It
has two parameters: a, location; b> 0 scale. Its probability
density function is given by

1 s
b x—a\2’
(1)
The logistic distribution models the mid value of highs and

lows of a collection of random variables, as the number of
samples becomes large.

Mean a.
Variance 3202,

Laplace This distribution is unbounded below and above. It
has two parameters: a, location; b > 0 scale. Its probability
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density function is given by
1 _pxa
25¢
Errors in observations are usually either normal or Laplace.

Mean a.

Variance 2b2%.

Cauchy This distribution is unbounded below and above. It
has two parameters: a, location; b > 0 scale. Its probability
density function is given by

1
x=a\2\’
b (1+(52)°)
This distribution is rarely used in finance. It does not have
any finite moments, but its mode and median are both a.
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Beta This distribution is bounded below and above. It has
four parameters: a, location of lower limit; b > a location of
upper limit; ¢ >0 and d > 0 shape. Its probability density func-
tion is given by

I'(c+d)
rOr@® - a -

-t o-0T asx<b,

where I'(-) is the Gamma function. This distribution is rarely
used in finance.

ad+bc
Mean “ord -
. cd(b—a)?
Variance Crdt Deerd?
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Exponential Bounded below, unbounded above. It has two
parameters: a, location; b > 0 scale. Its probability density
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Probability Density Function
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function is given by

a—x
ebd, x>a.

S| =

This distribution is rarely used in finance.

Random variable

Léevy  Unbounded below and above. It has four parameters:
i, a location (mean); 0 < @ < 2, the peakedness; —1 < 8 < 1,

Mean a+b.
Variance b
Exponential a=0
iy b=1
0 0.5 1 15 2 2.5 3 3.5

the skewness; v >0, a spread. (Conventional notation is used

here.) This distribution has been saved to last because its
probability density function does not have a simple closed

form. Instead it must be written in terms of its characteristic

function. If P(x) is the probability density function then the
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0.4 1
Lévy n=0
0.35 A a=0.5
=0
v=1
1 2 3

moment generating function is given by

M(z) = K ” e P(x) dx,

o0

where i = «/—1. For the Lévy distribution
In(M(2)) = inz —v*|z|* (1 — iB sgn(z) tan(ra/2)), for a #1

or
In(M(2)) = inz — v|z| (1 + ijsgn(z) ln(|z|)> , fora=1.

The normal distribution is a special case of this with « =2
and g =0, and with the parameter v being one half of the
variance. The Lévy distribution, or Pareto Lévy distribution,
is increasingly popular in finance because it matches data
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well, and has suitable fat tails. It also has the important theo-
retical property of being a stable distribution in that the sum
of independent random numbers drawn from the Lévy dis-
tribution will itself be Lévy. This is a useful property for the
distribution of returns. If you add up n independent numbers
from the Lévy distribution with the above parameters then
you will get a number from another Lévy distribution with
the same « and 8 but with mean of n'/%x and spread n'/%v.
The tail of the distribution decays like |x|~1~.

Mean “w.

Variance infinite, unless o = 2, when it is 2v.
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Twelve Different Ways to
Derive Black—Scholes
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The twelve different ways of deriving the Black-Scholes
equation or formule that follow use different types
of mathematics, with different amounts of complexity and
mathematical baggage. Some derivations are useful in that
they can be generalized, and some are very specific to
this one problem. Naturally we will spend more time on
those derivations that are most useful or give the most
insight. The first eight ways of deriving the Black-Scholes
equation/formulee are taken from the excellent paper

by Jesper Andreason, Bjarke Jensen and Rolf Poulsen
(1998).

Note that the title of this chapter doesn’t explicitly refer to
the Black-Scholes equation or the Black-Scholes formulce.
That’s because some of the derivations result in the famous
partial differential equation and some result in the famous
formulee for calls and puts.

In most cases we work within a framework in which the stock
path is continuous, the returns are normally distributed,
there aren’t any dividends, or transaction costs, etc. To get
the closed-form formulee (the Black-Scholes formulae) we
need to assume that volatility is constant, or perhaps time
dependent, but for the derivations of the equation relating
the greeks (the Black-Scholes equation) the assumptions

can be weaker, if we don’t mind not finding a closed-form
solution.

In many cases, some assumptions can be dropped. The final
derivation, Black-Scholes for accountants, uses perhaps the
least amount of formal mathematics and is easy to generalize.
It also has the advantage that it highlights one of the main
reasons why the Black-Scholes model is less than perfect in
real life. | will spend more time on that derivation than on
most of the others.
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[ am curious to know which derivation(s) readers prefer.
Please mail your comments to paul@wilmott.com. Also if you
are aware of other derivations please let me know.

Hedging and the Partial Differential
Equation

The original derivation of the Black—-Scholes partial differen-
tial equation was via stochastic calculus, Itd6’s lemma and a
simple hedging argument (Black & Scholes, 1973).

Assume that the underlying follows a lognormal random walk
dS =uSdt+oSdX.

Use IT to denote the value of a portfolio of one long option
position and a short position in some quantity A of the
underlying:

I = V(S, ) — AS. )

The first term on the right is the option and the second term
is the short asset position.

Ask how the value of the portfolio changes from time ¢ to
t 4+ dt. The change in the portfolio value is due partly to the
change in the option value and partly to the change in the
underlying:

dIll =dV — AdS.

From It6’s lemma we have

v E1% 1,502V
N=— — - —dt — i
d ath 8SdS+205 8Szdt AdS

The right-hand side of this contains two types of terms, the
deterministic and the random. The deterministic terms are
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those with the dt, and the random terms are those with
the dS. Pretending for the moment that we know V and its
derivatives then we know everything about the right-hand
side except for the value of dS, because this is random.

These random terms can be eliminated by choosing
as?V
aS”
After choosing the quantity A, we hold a portfolio whose
value changes by the amount

WV 1, ,0%V
M= (—+ 05— | dt.
d <8t+205852 dt

This change is completely riskless. If we have a completely
risk-free change dII in the portfolio value IT then it must be
the same as the growth we would get if we put the equivalent
amount of cash in a risk-free interest-bearing account:

dIl = rll dt.

This is an example of the no-arbitrage principle.

Putting all of the above together to eliminate IT and A in
favour of partial derivatives of V gives
AV 1, 0%V E1%
24 242620 T 4 et
ac 1277 a5 TPs
the Black-Scholes equation.

—rV =0,

Solve this quite simple linear diffusion equation with the final
condition
V(S,T) = max(S — K, 0)

and you will get the Black-Scholes call option formula.

This derivation of the Black—-Scholes equation is perhaps the
most useful since it is readily generalizable (if not necessar-
ily still analytically tractable) to different underlyings, more

complicated models, and exotic contracts.
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Martingales

The martingale pricing methodology was formalized by
Harrison & Kreps (1979) and Harrison & Pliska (1981).!
We start again with

dS{ = ,bLSdt + GSdW[

The W; is Brownian motion with measure P. Now introduce a
new equivalent martingale measure Q such that

Wy = W; +nt,
where n = (u—r)/o.

Under Q we have
dS; = rSdt + oS dW,.

Introduce
Gr = e " T OE(max(Sr — K, 0)].

The quantity e" -G, is a Q-martingale and so
d (er(T")Gt> = " TDG, dW,

for some process «;. Applying It6’s lemma,
dG; = (r + an)Gdt + oG dW;.

This stochastic differential equation can be rewritten as one
representing a strategy in which a quantity aG;/0S of the
stock and a quantity (G — «G;/0)e" =D of a zero-coupon bond
maturing at time 7 are bought:

G
a6, = “Orgs 4 2 %Sd r{=o
(=5 Bt ey AT

If my notation changes, it is because I am using the notation most
common to a particular field. Even then the changes are minor,
often just a matter of whether one puts a subscript ¢ on a dW for
example.
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Such a strategy is self financing because the values of the
stock and bond positions add up to G. Because of the exis-
tence of such a self-financing strategy and because at time

t = T we have that Gr is the call payoff we must have that
G; is the value of the call before expiration. The role of the
self-financing strategy is to ensure that there are no arbitrage
opportunities.

Thus the price of a call option is
e " TDE L max(Sr — K, 0)].

The interpretation is simply that the option value is the
present value of the expected payoff under a risk-neutral
random walk.

For other options simply put the payoff function inside the
expectation.

This derivation is most useful for showing the link

between option values and expectations, as it is the
theoretical foundation for valuation by Monte Carlo
simulation.

Now that we have a representation of the option value
in terms of an expectation we can formally calculate this
quantity and hence the Black-Scholes formulae. Under
Q the logarithm of the stock price at expiration is nor-
mally distributed with mean m = In(S)) + (r — 302) (T - 1)
and variance v? = 02(T — f). Therefore the call option
value is

e

V2r

A simplification of this using the cumulative distribution func-
tion for the standardized normal distribution results in the
well-known call option formula.

N

dx.

=]
e—r(T—t) emtux _
InK—m ( K)
v
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Change of Numeraire

The following is a derivation of the Black-Scholes call (or
put) formula, not the equation, and is really just a trick for
simplifying some of the integration.

It starts from the result that the option value is
e "I DE max(Sr — K, 0)].
This can also be written as
e " TDE[(Sy — KYH(S - K],
where H(S — K) is the Heaviside function, which is zero for

S <K and 1 for S >K.

Now define another equivalent martingale measure Q' such
that B
W/ =W;+nt—ot.

The option value can then be written as

SEY [(ST —K?s?(S—K)} .

where _
dS; = (r + oS dt + oS dw,.

It can also be written as a combination of the two expres-
sions,

[ STH(S —
S[E;Q |: TH(S — K)
St
Notice that the same calculation is to be performed, an
expectation of H(S — K), but under two different measures.

The end result is the Black-Scholes formula for a call
option.

] — Ke "TDER[H(S — K)].

This method is most useful for simplifying valuation prob-
lems, perhaps even finding closed-form solutions, by using
the most suitable traded contract to use for the numeraire.
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The relationship between the change of numeraire result and
the partial differential equation approach is very simple, and
informative.

First let us make the comparison between the risk-neutral
expectation and the Black-Scholes equation as transparent as
possible. When we write

e " T-OEX max(Sr — K, 0)]

we are saying that the option value is the present value of
the expected payoff under the risk-neutral random walk

dS =rSdt +oSdW,.
The partial differential equation

AV 1, 3%V v

o 265852 +rSaS V=20
means exactly the same because of the relationship between
it and the Fokker-Planck equation. In this equation the diffu-
sion coefficient is always just one half of the square of the
randomness in dS. The coefficient of V' /dS is always the
risk-neutral drift rS and the coefficient of V is always minus
the interest rate, —r, and represents the present valuing from
expiration to now.

If we write the option value as V =SV then we can think of V
as the number of shares the option is equivalent to, in value
terms. It is like using the stock as the unit of currency. But if
we rewrite the Black-Scholes equation in terms of V using
vV v AV — v %V v
—=5— =S—+V, and — =5S— +25—,
TR TR T T 952~ 95T T %8
then we have
BV 1 ,.,3%V
s - SZ 2 S
57 % gz Tt
The function V can now be interpreted, using the same com-
parison with the Fokker—-Planck equation, as an expectation,
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but this time with respect to the random walk
dS = (r+o®)Sdt +oSdw,.
And there is no present valuing to be done. Since at expira-
tion we have for the call option
max(St — K, 0)
St
we can write the option value as
[ St —K)YHES —
S0 [( T K; ( K)}
T

where _
dS; = (r + oS dt + oS dw,.

Change of numeraire is no more than a change of dependent
variable.

Local Time

The most obscure of the derivations is the one involving the
concept from stochastic calculus known as ‘local time.’ Local
time is a very technical idea involving the time a random
walk spends in the vicinity of a point.

The derivation is based on the analysis of a stop-loss strategy
in which one attempts to hedge a call by selling one share
short if the stock is above the present value of the strike, and
holding nothing if the stock is below the present value of the
strike. Although at expiration the call payoff and the stock
position will cancel each other exactly, this is not a strategy
that eliminates risk. Naively you might think that this strategy
would work, after all when you sell short one of the stock as
it passes through the present value of the strike you will nei-
ther make nor lose money (assuming there are no transaction
costs). But if that were the case then an option initially with
strike above the forward stock price should have zero value.
So clearly something is wrong here.
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To see what goes wrong you have to look more closely at
what happens as the stock goes through the present value of
the strike. In particular, look at discrete moves in the stock
price.

As the forward stock price goes from K to K + ¢ sell one
share and buy K bonds. And then every time the stock falls
below the present value of the strike you reverse this. Even
in the absence of transaction costs, there will be a slippage
in this process. And the total slippage will depend on how
often the stock crosses this point. Herein lies the rub. This
happens an infinite number of times in continuous Brownian
motion.

If U(e) is the number of times the forward price moves from
K to K + ¢, which will be finite since ¢ is finite, then the
financing cost of this strategy is

eU(e).

Now take the limit as ¢ — 0 and this becomes the quantity
known as local time. This local-time term is what explains the
apparent paradox with the above example of the call with
zero value.

Now we go over to the risk-neutral world to value the
local-time term, ending up, eventually, with the Black-Scholes
formula.

It is well worth simulating this strategy on a spreadsheet,
using a finite time step and let this time step get smaller and
smaller.

Parameters as Variables

The next derivation is rather novel in that it involves dif-
ferentiating the option value with respect to the parame-
ters strike, K, and expiration, 7T, instead of the more usual
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differentiation with respect to the variables .S and ¢. This will
lead to a partial differential equation that can be solved for
the Black-Scholes formulese. But more importantly, this tech-
nique can be used to deduce the dependence of volatility
on stock price and time, given the market prices of options
as functions of strike and expiration. This is an idea due to
Dupire (1994) (also see Derman & Kani, 1994, and Rubinstein,
1994, for related work done in a discrete setting) and is the
basis for deterministic volatility models and calibration.

We begin with the call option result from above
V = e """ DE2max(Sr — K, 0)],

that the option value is the present value of the risk-neutral
expected payoff. This can be written as

VK, T) =e 7T~ f max(S — K, 0)p(S*, t*; S, T) dS
0

o0
= 77T /K (S — KOp(S*,t*: 5, T) dS,

where p(S*,t*; S, T) is the transition probability density func-
tion for the risk-neutral random walk with S* being today’s
asset price and t* today’s date. Note that here the arguments
of V are the ‘variables’ strike, K, and expiration, 7.

If we differentiate this with respect to K we get
W rr-) f " (S .1 S, T) dS.
oK K o
After another differentiation, we arrive at this equation for
the probability density function in terms of the option prices

w82V

S*,[*; K, — er(Tft )

p( T K2

We also know that the forward equation for the transition
probability density function, the Fokker—Planck equation, is
op _19°

9
10° 20 0
aT — 23520 5P~ 55SP):
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Here o (S, ) is evaluated at t = T. We also have
— =1V eIt >/ S —K)——dS.
oT — e e © 057
This can be written as
W e | ¥ (L2@°S%p) _ aCSp)
oT k \2 052 aS

)(S—K)dS.

using the forward equation. Integrating this by parts twice we
get
1% 1 - o [
o=V 4 e TG2K2p 4 pe (T )/ Spds.
oT 2 K
In this expression o(S,f) has S =K and ¢t = T. After some
simple manipulations we get

V1, 432V v

— =-0K"— —rK—..

oT — 27" akz "ok
This partial differential equation can now be solved for the
Black-Scholes formulee.

This method is not used in practice for finding these formulee,
but rather, knowing the traded prices of vanillas as a function
of K and T we can turn this equation around to find o, since
the above analysis is still valid even if volatility is stock and
time dependent.

Continuous-Time Limit of the

Binomial Moodel

Some of our twelve derivations lead to the Black-Scholes
partial differential equation, and some to the idea of the
option value as the present value of the option payoff under
a risk-neutral random walk. The following simple model
(Figure 7.1) does both.
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uS

Probability of rise = p

vS

ot

Figure 7.1: The model.

In the binomial model the asset starts at S and over a time
step &t either rises to a value u x S or falls to a value v x S,
with 0 < v < 1 < u. The probability of a rise is p and so the
probability of a fall is 1 — p.

We choose the three constants u, v and p to give the bino-
mial walk the same drift, «, and volatility, o, as the asset we
are modelling. This choice is far from unique and here we use
the choices that result in the simplest formulee:

u=1+o+/6t
v=1-0o+/5t
and 1 i
_L o &t
P=ot 5

Having defined the behaviour of the asset we are ready to
price options.
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Suppose that we know the value of the option at the time

t + 8t. For example, this time may be the expiration of the
option. Now construct a portfolio at time ¢ consisting of one
option and a short position in a quantity A of the underlying.
At time ¢ this portfolio has value

M=V -AS,

where the option value V is for the moment unknown. At
time t + ¢ the option takes one of two values, depending on
whether the asset rises or falls

vVt or V.

At the same time the portfolio of option and stock becomes
either
VT —AuS or V  — AuS.

Having the freedom to choose A, we can make the value of
this portfolio the same whether the asset rises or falls. This
is ensured if we make

Vt—AuS =V — AuS.

This means that we should choose

Ao Vt—v-
CEDS
for hedging. The portfolio value is then
Vvt—v- vt —v-
V+—AuS=V+—u:V— _AUSZV—_M_
(u—vo) (u—v)

Let’s denote this portfolio value by
IT+ 6T1.

This just means the original portfolio value plus the change
in value. But we must also have ST = rI1t to avoid arbitrage
opportunities. Bringing all of these expressions together to
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eliminate I1, and after some rearranging, we get

1 /Y74 / _
V=15 PV APV,

where

p,lr«/ﬁ

=_+
2 20

This is an equation for V given VT and V~, the option values

at the next time step, and the parameters r and o.

The right-hand side of the equation for V can be interpreted,
rather clearly, as the present value of the expected future
option value using the probabilities p’ for an up move and
1—p’ for a down.

Again this is the idea of the option value as the present value
of the expected payoff under a risk-neutral random walk. The
quantity p’ is the risk-neutral probability, and it is this that
determines the value of the option not the real probability.
By comparing the expressions for p and p’ we see that this is
equivalent to replacing the real asset drift © with the risk-free
rate of return r.

We can examine the equation for V in the limit as §t — 0. We
write

V=V(S,0, VE=V@uS,t+) and V- = V(S t+50).

Expanding these expressions in Taylor series for small §¢t we
find that

A o as 8t— 0
aS ’

and the binomial pricing equation for V becomes

WV 1, ,0%V v
— 4+ -0 — +rS— —rV =0.
or 1270 st TRas T

This is the Black-Scholes equation.
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CAPM

This derivation, originally due to Cox & Rubinstein (1985)
starts from the Capital Asset Pricing Model in continuous
time. In particular it uses the result that there is a linear rela-
tionship between the expected return on a financial instru-
ment and the covariance of the asset with the market. The
latter term can be thought of as compensation for taking risk.
But the asset and its option are perfectly correlated, so the
compensation in excess of the risk-free rate for taking unit
amount of risk must be the same for each.

For the stock, the expected return (dividing by df) is w. Its
risk is o.

From Ito we have

v 32V E1%
dV = —dt 0282 dt + —dS.
+ a2 s

Therefore the expected return on the option in excess of the
risk-free rate is

l(ﬂ-f-% 25207V V+Msﬂ—rv)

V 952 aS
and the risk is
1 S oV
—O0D —.
vV aS

Since both the underlying and the option must have the same
compensation, in excess of the risk-free rate, for unit risk

1{av 1 1% v
_(a_ 50 252‘; + puS— rV>

y—r V 52 T1%s
o 1 AV
Py
vo°as

Now rearrange this. The u drops out and we are left with the
Black-Scholes equation.
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Utility Theory

The utility theory approach is not exactly the most useful of
the twelve derivation methods, requiring that we value from
the perspective of a particularly unrepresentative investor,
an investor with a utility function that is a power law. This
idea was introduced by Rubinstein (1976). Even though not
the best way to derive the famous formulee utility theory is
something which deserves better press than it has received
so far.

The steps along the way to finding the Black-Scholes formulae
are as follows. We work within a single-period framework,

so that the concept of continuous hedging, or indeed any-
thing continuous at all, is not needed. We assume that the
stock price at the terminal time (which will shortly also be
an option’s expiration) and the consumption are both log-
normally distributed with some correlation. We choose a
utility function that is a power of the consumption. A valua-
tion expression results. For the market to be in equilibrium
requires a relationship between the stock’s and consump-
tion’s expected growths and volatilities, the above-mentioned
correlation and the degree of risk aversion in the utility func-
tion. Finally, we use the valuation expression for an option,
with the expiration being the terminal date. This valuation
expression can be interpreted as an expectation, with the
usual and oft-repeated interpretation.

Taylor Series

Taylor series is just a discrete-time version of Itd’s lemma. So
you should find this derivation of the Black-Scholes partial
differential equation very simple.

V(S,t) is the option value as a function of asset .S and
time ¢. Set up a portfolio long the option and short A
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of the stock:
IT=V(S, ) — AS.

Now look at the change in this portfolio from time ¢ to ¢ + §¢,
with 8¢ being a small time step:

S =V(S+38S,t+8)—V(S, ) — ASS,

where
88 = uSst+ oS/t ¢

is a discrete-time model for the stock and ¢ is a random
variable drawn from a normal distribution with zero mean
and unit standard deviation. (Aside: Does it matter that

¢ is normally distributed? It’s a nice little exercise to

see what difference it makes if ¢ comes from another
distribution.)

Now expand §IT in Taylor series for small §¢ to get
vV v -
R (uSSt-I—aS«/_(i)) 52525t 0 2¢
A (MS(SI + aS\/§¢) + O(ar3/2).

where all terms are now evaluated at S and ¢.

The variance of this expression is

aV 2
202 3/2
o“S° 8t <—aS—A> + O(8t77%)

which is minimized by the choice

s
aS’
Now put this choice for A into the expression for §I1, and
set
SIT =rIlét.

This is a bit naughty, but I'll come back to it in a second.
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Take the resulting equation, divide by 8¢ so the leading terms
are O(1) and let §t — 0. Bingo, you have the Black-Scholes
partial differential equation, honest.

The naughty step in this was setting the return on the port-
folio equal to the risk-free rate. This is fine as long as the
portfolio is itself risk free. Here it is not, not exactly; there is
still a little bit of risk. The variance, after choosing the best
A, is O(8£3/%). Since there are O(T/8f) rehedges between the
start of the option’s life and expiration, where T is the time
to expiration, the total variance does decay to zero as §t — 0,
thank goodness. And that’s the a posteriori justification for
ignoring risk.

(In Wilmott, 1994, this analysis goes to higher order in §t to
find an even better hedge than the classic Black-Scholes -
one that is relevant if §¢ is not so small, or if gamma is large,
or if you are close to expiration. In that paper there is a small
typo, corrected in Wilmott, 2006.)

In our final derivation you will see a less mathsy version of
this same argument.

Mellin Transform

This derivation (see Yakovlev & Zhabin, 2003) is another one
that [ am only going to do in spirit rather than in detail. Again
it is in discrete time but with continuous asset price. In that
sense it’s rather like the previous derivation and also our
final derivation, Black-Scholes for accountants, only far, far
more complicated.

Vr(S) is the option value when the stock price is S at the
kth time step. You set up a portfolio, I1, long one option
and short a quantity, A, of the underlying asset. The delta is
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chosen to minimize the variance of this portfolio at the next
time step; the resulting expression for A involves the covari-
ance between the stock and the option.

The pricing equation is then
€Ty = E [Tz],

with the obvious notation. There is a slight problem with this,
in that there is really no justification for equating value and
expectation, at least not until you look at (or check a pos-
teriori) the total variance at expiration and show that it is
small enough to ignore (if the time steps are small enough).
Anyway ...

This equation can be rewritten just in terms of V as

Vi (S) = / " R0 Ve(S ) d.

And since we know the option value at expiration, this is
Vo(S) then we can in principle find V,(S) for all k. Next you
go over to the Mellin transform domain (this is not the place
to explain transform theory!)

So far none of this has required the stock to be lognormally
distributed, it is more general than that. But if it is lognormal
then the above iteration will result in the class formulae for
calls and puts.

A Diffusion Equation

The penultimate derivation of the Black-Scholes partial dif-

ferential equation is rather unusual in that it uses just pure

thought about the nature of Brownian motion and a couple

of trivial observations. It also has a very neat punchline that
makes the derivation helpful in other modelling situations.

It goes something like this.
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Stock prices can be modelled as Brownian motion, the stock
price plays the role of the position of the ‘pollen particle’
and time is time. In mathematical terms Brownian motion is
just an example of a diffusion equation. So let’s write down a
diffusion equation for the value of an option as a function
of space and time, i.e. stock price and time, that’s V(S,?).
What'’s the general linear diffusion equation? It is

v vV

ot -i-aaS2 +baS +cV=0.
Note the coefficients a, b and c. At the moment these could
be anything.

Now for the two trivial observations.

First, cash in the bank must be a solution of this equation.
Financial contracts don’t come any simpler than this. So plug
V = e into this diffusion equation to get

re"+ 040+ ce =0.

Soc=-—r.

Second, surely the stock price itself must also be a solution?
After all, you could think of it as being a call option with zero
strike. So plug V =S into the general diffusion equation. We
find

0+0+b+cS=0.

So b= —-cS=rS.

Putting b and ¢ back into the general diffusion equation we
find

v +aazv sV

at 052 aS
This is the risk-neutral Black-Scholes equation. Two of the
coefficients (those of V and 9V/3dS) have been pinned down
exactly without any modelling at all. Ok, so it doesn’t tell us
what the coefficient of the second derivative term is, but even

—rV=0.
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that has a nice interpretation. It means at least a couple of
interesting things.

First, if we do start to move outside the Black-Scholes world
then chances are it will be the diffusion coefficient that we
must change from its usual %0252 to accommodate new
models.

Second, if we want to fudge our option prices, to massage

them into line with traded prices for example, we can only
do so by fiddling with this diffusion coefficient, i.e. what we
now know to be the volatility. This derivation tells us that

our only valid fudge factor is the volatility.

Black—5Scholes for Accountants

The final derivation of the Black-Scholes equation requires
very little complicated mathematics, and doesn’t even need
assumptions about Gaussian returns, all we need is for the
variance of returns to be finite.

The Black-Scholes analysis requires continuous hedging,
which is possible in theory but impossible, and even unde-
sirable, in practice. Hence one hedges in some discrete way.
Let’s assume that we hedge at equal time periods, §t. And
consider the value changes associated with a delta-hedged
option.

We start with zero cash

We buy an option

We sell some stock short

Any cash left (positive or negative) is put into a risk-free
account.

We start by borrowing some money to buy the option. This
option has a delta, and so we sell delta of the underlying
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Asset

Constituents of hedged portfolio

— Long option
— Short stock
— Hedged portfolio

Figure 7.2: How our portfolio depends on S.

stock in order to hedge. This brings in some money. The cash
from these transactions is put in the bank. At this point in
time our net worth is zero.

Our portfolio has a dependence on S as shown in Figure 7.2.

We are only concerned with small movements in the stock
over a small time period, so zoom in on the current stock

position. Locally the curve is approximately a parabola, see
Figure 7.3.

Now think about how our net worth will change from now to
a time §t later. There are three reasons for our total wealth
to change over that period.

1. The option price curve changes.
2. There is an interest payment on the money in the bank.
3. The stock moves
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Today

Figure 7.3: The curve is approximately quadratic.

The option curve falls by the time value, the theta multiplied
by the time step:
® x §t.

To calculate how much interest we received we need to know
how much money we put in the bank. This was

A xS

from the stock sale and
-V

from the option purchase. Therefore the interest we
receive is

r(SA — V).

Finally, look at the money made from the stock move. Since
gamma is positive, any stock price move is good for us. The
larger the move the better.

The curve in Figure 7.3 is locally quadratic, a parabola with
coefficient %F. The stock move over a time period §t is pro-
portional to three things:

e the volatility o
e the stock price S



Chapter 7: Twelve Different Ways to Derive Black—Scholes 4’25

e the square root of the time step

Multiply these three together, square the result because the
curve is parabolic and multiply that by %F and you get the
profit made from the stock move as

1
EGZS2F 8t.

Put these three value changes together (ignoring the §t term
which multiplies all of them) and set the resulting expression
equal to zero, to represent no arbitrage, and you get

1
0+ 5‘7252F +r(SA —V) =0,
the Black-Scholes equation.

Now there was a bit of cheating here, since the stock price
move is really random. What we should have said is that

1
502521“ st

is the profit made from the stock move on average. Crucially
all we need to know is that the variance of returns is

2825t

we don’t even need the stock returns to be normally dis-
tributed. There is a difference between the square of the
stock prices moves and its average value and this gives rise
to hedging error, something that is always seen in practice.
If you hedge discretely, as you must, then Black-Scholes
only works on average. But as you hedge more and more fre-
quently, going to the limit ¢ = 0, then the total hedging error
tends to zero, so justifying the Black-Scholes model.

Other Derivations

There are other ways of deriving the Black—-Scholes equation
or formulee but I am only going to give the references (see
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Gerber & Shiu, 1994, and Hamada & Sherris, 2003). One

of the reasons why I have drawn a line by not including
them is summed up very nicely by a reader (who will
remain anonymous for reasons which will be apparent) who
submitted a couple of possible new derivations, in particular
one using ‘distortion risk theory.’ In an email to me he
wrote: ‘Unfortunately distortion risk theory is completely
unknown to quants ... maybe because this theory originated
in insurance mathematics, but more probably because is
useless, except research paper writing. [ wrote master thesis
on this topic, from time perspective, completely waste of
time.’
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Models and Equations
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Equity, Foreign Exchange and

Commoodities

The lognormal random walk

The most common and simplest model is the lognormal ran-
dom walk:
dS+ pSdt+ oS dX.

The Black-Scholes hedging argument leads to the following
equation for the value of non-path-dependent contracts,

AV 1, 9%V v

— 4+ -0°S°— -D)S— —rV=0.
or 275 g T DS

The parameters are volatility o, dividend yield D and risk-free

interest rate r. All of these can be functions of S and/or ¢,

although it wouldn’t make much sense for the risk-free rate

to be S dependent.

This equation can be interpreted probabilistically. The option
value is

e~ I 1@ dr g [payofi(Sp],

where S7 is the stock price at expiry, time 7, and the expec-
tation is with respect to the risk-neutral random walk

dS = r(H)S dt + o (S, )S dX.

When o, D and r are only time dependent we can write down
an explicit formula for the value of any non-path-dependent
option without early exercise (and without any decision fea-
ture) as

7T 00

5/27(T -0 Jo

— 4 D152 _ 2 52 (T— ds
o (1n(5/5)+(r D-} )(T t)) 1252(T t)Payoff(S/

'/

N
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where

1 T
T = T——t,/[. o(1)%dr,

1 T
—_[ /t‘ D(T) dt

1 T
Fz—T—t/t r(r) dr.

The - parameters represent the ‘average’ of the parameters
from the current time to expiration. For the volatility param-
eter the relevant average is the root-mean-square average,
since variances can be summed but standard deviations
(volatilities) cannot.

and

The above is a very general formula which can be greatly
simplified for European calls, puts and binaries.

Multi-dimensional lognormal random
walks

There is a formula for the value of a European
non-path-dependent option with payoff of Payoff(Sy,...,Ss) at
time T

V=e"T"0Q2r(T - 1) ¥? Detx) Y261 04)""

/ / Payoff(S/ Payofl(sy -5))
1
X exp <—§aT 271a> ds; ---ds,

where

1 Si 61’2
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Y is the correlation matrix and there is a continuous dividend
yield of D; on each asset.

Stochastic volatility

If the risk-neutral volatility is modelled by
do = (p — Aq) dt + g dX»,

where 1 is the market price of volatility risk, with the stock
model still being
dS = uS dt + oS dX,

with correlation between them of p, then the option-pricing
equation is
Vv

22V

22

Vo ls2520 Y sq 2 L 2%V
8t+ o5z T P55, T 39

1%
—|—rS— +(p-2 )——rV:O.
do

This pricing equation can be interpreted as represent-
ing the present value of the expected payoff under
risk-neutral random walks for both S and o. So for a
call option, for example, we can price via the expected
payoff

V(S, 0,0 =e " TDEmax(St — K, 0)].

For other contracts replace the maximum function with the
relevant, even path-dependent, payoff function.

Hull &% White (1987) Hull & White considered both general
and specific volatility models. They showed that when the
stock and the volatility are uncorrelated and the risk-neutral
dynamics of the volatility are unaffected by the stock (i.e.

p — Aq and g are independent of S) then the fair value of

an option is the average of the Black-Scholes values for
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the option, with the average taken over the distribution
of o2.

Square-root model/Heston (1993) In Heston’s model
dv = (a — bv)dt + c/v dXs,

where v = o2, This has arbitrary correlation between the
underlying and its volatility. This is popular because there
are closed-form solutions for European options.

3/2 model
dv = (av — bv?)dt + cv*’? dX,,

where v = 2. Again, this has closed-form solutions.

GARCH-diffusion In stochastic differential equation form the
GARCH(1,1) model is

dv = (a — bv)dt + cv dX».

Here v = o2.

Ornstein—Uhlenbeck process With y =Inv, v = o2,

dy = (a — by)dt + c dX».

This model matches real, as opposed to risk-neutral, data
well.

Asymptotic analysis 1f the volatility of volatility is large and
the speed of mean reversion is fast in a stochastic volatility
model,

—a
dS=rSdi+0SdX, and do =P "% ar+ L ax,
€

Je
with a correlation p, then closed-form approximate solutions
(asymptotic solutions) of the pricing equation can be found
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for simple options for arbitrary functions p — A¢g and q. In the
above model the ¢ represents a small parameter. The asymp-
totic solution is then a power series in €/2.

Schonbucher’s stochastic implied wolatility Schonbucher begins with
a stochastic model for implied volatility and then finds the
actual volatility consistent, in a no-arbitrage sense, with these
implied volatilities. This model calibrates to market prices by
definition.

Jump diffusion

Given the jump-diffusion model
aS=uSdt+oSdX+ (- 1)S dg,

the equation for an option is

V1, 9%V v
— + 502§ — 1S — 1V
ar T390 g TPas T

+AE[VUIS, D) - V(S, D] — A%SE [J—1]=0.

E[-] is the expectation taken over the jump size. If the loga-
rithm of J is Normally distributed with standard deviation o’
then the price of a European non-path-dependent option can
be written as

(o]

1 ,
2 e TOGIT = 0)" Vs (S, om ),
n=0
where
no'?
R=E[J—-1], ¥ =rx(1+k), o2=0+ T
and
nin(l + k&
'n=71r— AR+ #7—1“)’

and Vps is the Black-Scholes formula for the option value in
the absence of jumps.
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Fixed Income

In the following we use the continuously compounded inter-
est convention. So that one dollar put in the bank at a con-
stant rate of interest r would grow exponentially, e’. This is
the convention used outside the fixed-income world. In the
fixed-income world where interest is paid discretely, the con-
vention is that money grows according to

(1+ r/r)n ,
where n is the number of interest payments, 7 is the time

interval between payments (here assumed constant) and r’ is
the annualized interest rate.

To convert from discrete to continuous use

1
r=-In(l1+r'1).
T

The yield to maturity (YTM) or internal rate of return (IRR) Suppose
that we have a zero-coupon bond maturing at time 7 when
it pays one dollar. At time ¢ it has a value Z(¢; T). Applying a
constant rate of return of y between ¢ and T, then one dollar
received at time T has a present value of Z(#; T) at time ¢,
where

Z(t:T) = e T,

It follows that
InZ

T—t
Suppose that we have a coupon-bearing bond. Discount all

coupons and the principal to the present by using some inter-
est rate y. The present value of the bond, at time ¢, is then

N
V=Pe =D 4+ 3" (e,
i=1
where P is the principal, N the number of coupons, C; the
coupon paid on date ¢. If the bond is a traded security then
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we know the price at which the bond can be bought. If this
is the case then we can calculate the yield to maturity or
internal rate of return as the value y that we must put
into the above to make V equal to the traded price of the
bond. This calculation must be performed by some trial and
error/iterative procedure.

The plot of yield to maturity against time to maturity is called
the yield curve.

Duration Since we are often interested in the sensitivity

of instruments to the movement of certain underlying
factors it is natural to ask how does the price of a bond
vary with the yield, or vice versa. To a first approximation
this variation can be quantified by a measure called the
duration.

By differentiating the value function with respect to y we find

that v
v _ —(T — HPe™>T=0 =3 " Ci(t; — e 0.
dy i=1
This is the slope of the price/yield curve. The quantity
1dv
— ?y

is called the Macaulay duration. (The modified duration
is similar but uses the discretely compounded rate.) The
Macaulay duration is a measure of the average life of the
bond.

For small movements in the yield, the duration gives a good
measure of the change in value with a change in the yield.
For larger movements we need to look at higher order terms
in the Taylor series expansion of V(y).
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Convexity The Taylor series expansion of V gives

dv. 14V N 1 a’ZV((S n

Vo Vay? T av g ’
where §y is a change in yield. For very small movements in
the yield, the change in the price of a bond can be measured
by the duration. For larger movements we must take account
of the curvature in the price/yield relationship.

The dollar convexity is defined as

a2V al
e (T = ?Pe?T=0 13" Ci(t; — e 0i70.
i=1
and the convexity is
1 d*v
V dy*’

Yields are associated with individual bonds. Ideally we
would like a consistent interest rate theory that can be
used for all financial instruments simultaneously. The
simplest of these assumes a deterministic evolution of a
spot rate.

The spot rate and forward rates The interest rate we consider will
be what is known as a short-term interest rate or spot inter-
est rate r(¢). This means that the rate r(¢) is to apply at time
t. Interest is compounded at this rate at each moment in time
but this rate may change, generally we assume it to be time
dependent.

Forward rates are interest rates that are assumed to
apply over given periods in the future for all instruments.
This contrasts with yields which are assumed to apply
from the present up to maturity, with a different yield for
each bond.
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Let us suppose that we are in a perfect world in which we
have a continuous distribution of zero-coupon bonds with all
maturities 7. Call the prices of these at time ¢, Z(t; T). Note
the use of Z for zero-coupon.

The implied forward rate is the curve of a time-dependent
spot interest rate that is consistent with the market price of
instruments. If this rate is r(z) at time 7 then it satisfies

Z(t:T) = e I 1@,

On rearranging and differentiating this gives

H(T) = — - (n Z(t: 7).

This is the forward rate for time T as it stands today, time
t. Tomorrow the whole curve (the dependence of r on the
future) may change. For that reason we usually denote the
forward rate at time ¢ applying at time T in the future as
F(t; T) where

0
Ft,; T)= —a—T(an(t, 7).
Writing this in terms of yields y(¢; T) we have
Z(t:T) = e Y&ETY(T-D)

and so )
ST — v(t @

This is the relationship between yields and forward rates
when everything is differentiable with respect to maturity.

In the less-than-perfect real world we must do with only a
discrete set of data points. We continue to assume that we
have zero-coupon bonds but now we will only have a discrete
set of them. We can still find an implied forward rate curve
as follows. (In this I have made the simplifying assumption
that rates are piecewise constant. In practice one uses other
functional forms to achieve smoothness.)
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Rank the bonds according to maturity, with the shortest
maturity first. The market prices of the bonds will be denoted
by ZIM where i is the position of the bond in the ranking.

Using only the first bond, ask the question ‘What interest rate
is implied by the market price of the bond?’ The answer is
given by y;, the solution of

Z{w —e N (T _[)’

In(zi%)

1 —t ’
This rate will be the rate that we use for discounting between
the present and the maturity date 7; of the first bond. And it

will be applied to all instruments whenever we want to dis-
count over this period.

rn =

Now move on to the second bond having maturity date 75.
We know the rate to apply between now and time 77, but at
what interest rate must we discount between dates 77 and
T» to match the theoretical and market prices of the second
bond? The answer is re, which solves the equation

Zé” = e N-Dg12(T2-T1)

In (Zy'/2})
T-T
By this method of bootstrapping we can build up the forward
rate curve. Note how the forward rates are applied between

two dates, for which period I have assumed they are con-
stant.

ro =

This method can easily be extended to accommodate
coupon-bearing bonds. Again rank the bonds by their
maturities, but now we have the added complexity that
we may only have one market value to represent the sum
of several cash flows. Thus one often has to make some
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assumptions to get the right number of equations for the
number of unknowns.

To price non-linear instruments, options, we need a model
that captures the randomness in rates.

Black 1976

Market practice with fixed-income derivatives is often to treat
them as if there is an underlying asset that is lognormal. This
is the methodology proposed by Black (1976).

Bond options A simple example of Black '76 would be a Euro-
pean option on a bond, as long as the maturity of the bond
is significantly greater than the expiration of the option. The
relevant formulee are, for a call option

e T (FN(d)) — KN(dy)) ,
and for a put
e "0 (—FN(=d1) + KN(~db)) ,
where
gy = /) + 30> (T )
oJT; —t ’
gy = /) — 30> (Ti - D)
oJTi—t
Here F is the forward price of the underlying bond at the
option maturity date 7. The volatility of this forward price

is 0. The interest rate r is the rate applicable to the option’s
expiration and K is the strike.

Caps and floors A cap is made up of a string of caplets with
a regular time interval between them. The payoff for the ith
caplet is max(r; — K,0) at time T;;; where r; is the interest
rate applicable from ¢; to t;1; and K is the strike.
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Each caplet is valued under Black 76 as
e "Tit170 (FN(d1) — KN(d2)) ,

where r is the continuously compounded interest rate appli-
cable from ¢ to Tiyi, F is the forward rate from time 7; to
time T;y1, K the strike and

In(F/K) + $o*(T; = )
N o T —t ’

g = NE/K) = 30%(Ti = O
2 = o /—7.,1 ¢ ’

where o is the volatility of the forward rate.

dq

The floorlet can be thought of in a similar way in terms of a
put on the forward rate and so its formula is

e "Tit1-0 (KN(—dy) — FN(—dy)) .

Swaptions A payer swaption, which is the right to pay fixed
and receive floating, can be modelled as a call on the forward
rate of the underlying swap. Its formula is then

1—[1/A + F/m)™]
F

where r is the continuously compounded interest rate appli-
cable from ¢ to T, the expiration, F is the forward swap rate,
K the strike and

e T (EN(d)) — KN(d»)),

0= In(F/K) + 1o®(T - 0
' oT —t ’

J In(F/K) — 1o¥(T - 0)
2= oT —t '
where o is the volatility of the forward swap rate. 7 is the

tenor of the swap and m the number of payments per year in
the swap.
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The receiver swaption is then

1-[1/A + E/m)™]
F

e "T-0 (KN(—dy) — FN(—dy)) .

Spot rate models

The above method for pricing derivatives is not entirely
internally consistent. For that reason there have been
developed other interest rate models that are internally
consistent.

In all of the spot rate models below we have
dr = u(r, Hdt + w(r, t)dX

as the real process for the spot interest rate. The
risk-neutral process which governs the value of fixed-income
instruments is

dr = (u —  w)dt + w dX

where A is the market price of interest rate risk. In
each case the stochastic differential equation we
describe is for the risk-neutral spot rate process, not the
real.

The differential equation governing the value of
non-path-dependent contracts is

v o1 ,9%V v
— 4 W — —aw)— —rV=0.
ot T oW g TG -
The value of fixed-income derivatives can also be inter-

preted as
E;@ [Present value of cash flows],

where the expectation is with respect to the risk-neutral
process.
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Vasicek In this model the risk-neutral process is
dr = (a — br)dt + c dX,
with a, b and ¢ being constant. It is possible for r to go nega-

tive in this model.

There is a solution for bonds of the form exp(A(¢; T) —

B(t; T)r).

Cox, Ingersoll & Ross In this model the risk-neutral process is
dr = (a — br)dt + cr'/?dX,

with a, b and ¢ being constant. As long as a is sufficiently

large this process cannot go negative.

There is a solution for bonds of the form exp(A(¢; T) —
B(t; THr).
Ho % Lee In this model the risk-neutral process is
dr = a(t)dt + c dX,
with ¢ being constant. It is possible for r to go negative in

this model.

There is a solution for bonds of the form exp(A(t; T) —

B(t; THr).

The time-dependent parameter a(f) is chosen so that the the-
oretical yield curve matches the market yield curve initially.
This is calibration.

Hull % White There are Hull & White versions of the above
models. They take the form

dr = (a(t) — b(Or) dt + c(HdX,
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or
dr = (a(t) — b(O)r) dt + c(Hr'/?dX.

The functions of time allow various market data to be
matched or calibrated.

There are solutions for bonds of the form exp(A(t; T) —

B(t: T)r).

Black & Karasinski In this model the risk-neutral spot-rate pro-
cess is
d(Inr) = (a(t) — b(®) Inr) dt + c(t)dX.

There are no closed-form solutions for simple bonds.

Two-factor models

In the two-factor models there are two sources of random-
ness, allowing a much richer structure of theoretical yield
curves than can be achieved by single-factor models. Often,
but not always, one of the factors is still the spot rate.

Bremnan % Schwartz In the Brennan & Schwartz model the
risk-neutral spot rate process is

dr = (a1 + b1(l — r))dt + o1r dX;
and the long rate satisfies
dl = l(az — bor + coDydt + o3l dXs.

Fong & Vasicck Fong & Vasicek consider the following model
for risk-neutral variables

dr = a(r — r)dt + \/E axy
and B
dg = b(E — £)dt + ¢ /£ dXo.

Thus they model the spot rate, and & the square root of the
volatility of the spot rate.
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Longstaff & Schwartz Longstaff & Schwartz consider the follow-
ing model for risk-neutral variables

dx = a(x — x)dt + /x dX;

and
dy = b(y — y)dt + /y dXa,
where the spot interest rate is given by

r=cx+dy.

Hull % White The risk-neutral model,
dr = (n(t) —u—yr)dt+ c dX;

and
du = —au dt + b dX»,

is a two-factor version of the one-factor Hull & White. The
function n(f) is used for fitting the initial yield curve.

All of the above, except for the Brennan & Schwartz model,
have closed-form solutions for simple bonds in terms of the
exponential of a linear function of the two variables.

The market price of risk as a random factor Suppose that we have
the two real random walks

dr = udt+ w dX;

and
dr = p dt+ q dXs,

where A is the market price of r risk. The zero-coupon bond
pricing equation is then
0z 1 ,9%Z 327 1 ,0°Z

ot T oW g TP T T gz

0Z 0z
— W) — — Q) — —1Z =0.
@)+ (Pt —Z =0
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Since the market price of risk is related to the slope of the
yield curve as the short end, there is only one unobservable
in this equation, A;.

$SABR

The SABR (stochastic, @, B8, p) model by Hagan, Kumar,
Lesniewski & Woodward (2002) is a model for a forward rate,
F, and its volatility, «, both of which are stochastic:

dF = aFPdX; and do = va dXo.

There are three parameters, g, v and a correlation p. The
model is designed for the special case where the volatility o
and volatility of volatility, v, are both small. In this case there
are relatively simple closed-form approximations (asymp-
totic solutions). The model is therefore most relevant for
markets such as fixed income, rather than equity. Equity mar-
kets typically have large volatility making the model unsuit-
able.

The model calibrates well to simple fixed-income instruments
of specified maturity, and if the parameters are allowed

to be time dependent then a term structure can also be
fitted.

Heath, Jarrow & Morton

In the Heath, Jarrow & Morton (HIM) model the evolution of
the entire forward curve is modelled. The risk-neutral forward
curve evolves according to

dF(t; T) =m(t,T)dt+v(t,T) dX.
Zero-coupon bonds then have value given by

Z(t; T) — ea[[TF(t;s)ds,
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the principal at maturity is here scaled to $1. A hedging
argument shows that the drift of the risk-neutral process
for F cannot be specified independently of its volatility
and so

T
m(t, T) =v(t, T)/; v(t,s) ds.

This is equivalent to saying that the bonds, which are traded,
grow at the risk-free spot rate on average in the risk-neutral
world.

A multi-factor version of this results in the following
risk-neutral process for the forward rate curve

N

N
dF(t,T) = (Z vi(t, T) / ' vi(t, s) ds) i+ vi(t,T) dX:.
t i=1

i=1

In this the dX; are uncorrelated with each other.

Brace, Gatarek & Musiela

The Brace, Gatarek & Musiela (BGM) model is a discrete ver-
sion of HIM where only traded bonds are modelled rather
than the unrealistic entire continuous yield curve.

If Zi(t) = Z(t; T;) is the value of a zero-coupon bond, maturing
at T;, at time ¢, then the forward rate applicable between T;

and Ty is given by
1/ Z
E = - < . - 1)7
T \Zit1

where v = T;;1 — T;. Assuming equal time periods between all
maturities we have the risk-neutral process for the forward
rates, given by

L o Fitos
dF; = TGN iy dt + oiF; dX;.
= 14 F;
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Modelling interest rates is then a question of the functional
forms for the volatilities of the forward rates o; and the cor-
relations between them, p;;.

Prices as expectations

For all of the above models the value of fixed-income deriva-
tives can be interpreted as

E? [Present value of cash flows],

where the expectation is with respect to the risk-neutral pro-
cess(es). The ‘present value’ here is calculated pathwise. If
performing a simulation for valuation purposes you must dis-
count cash flows for each path using the relevant discount
factor for that path.

Credit

Credit risk models come in two main varieties, the structural
and the reduced form.

Structural models

Structural models try to model the behaviour of the firm
so as to represent the default or bankruptcy of a company
in as realistic a way as possible. The classical work in
this area was by Robert Merton who showed how to
think of a company’s value as being a call option on its
assets. The strike of the option being the outstanding
debt.

Merton assumes that the assets of the company A follow a
random walk

dA = uA dt+ oA dX.
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If V is the current value of the outstanding debt, allowing for
risk of default, then the value of the equity equals assets less
liabilities:

S=A-V.

Here S is the value of the equity. At maturity of this debt
SA, T) =max(A—D,0) and V(A,T) =min(D,A),
where D is the amount of the debt to be paid back at time 7.

If we can hedge the debt with a dynamically changing
quantity of equity, then the Black-Scholes hedging argument
applies and we find that the current value of the debt, V,

satisfies
A%

1, 4,32V v
ot EO’AW-{'VAQ—VA—O
subject to
V(A,T) = min(D, A)

and exactly the same partial differential equation for the
equity of the firm .S but with

S(A, T) = max(A — D, 0).

The problem for S is exactly that for a call option, but now
we have S instead of the option value, the underlying vari-
able is the asset value A and the strike is D, the debt. The
formula for the equity value is the Black-Scholes value for a
call option.

Reduced form

The more popular approach to the modelling of credit risk is
to use an instantaneous risk of default or hazard rate, p. This
means that if at time ¢ the company has not defaulted then
the probability of default between times ¢ and ¢ + dt is p dt.
This is just the same Poisson process seen in jump-diffusion
models. If p is constant then this results in the probability of
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a company still being in existence at time 7, assuming that it
wasn’t bankrupt at time ¢, being simply

e PT-D

If the yield on a risk-free, i.e. government bond, with maturity
T is r, then its value is

T

If we say that an equivalent bond on the risky company will
pay off 1 if the company is not bankrupt and zero otherwise,
then the present value of the expected payoff comes from
multiplying the value of a risk-free bond by the probability
that the company is not in default to get

e TT=D o o=P(T=0 _ o=(r+p)(T-0)

So to represent the value of a risky bond just add a credit
spread of p to the yield on the equivalent risk-free bond. Or,
conversely, knowing the yields on equivalent risk-free and
risky bonds one can estimate p, the implied risk of default.

This is a popular way of modelling credit risk because it is so
simple and the mathematics is identical to that for interest
rate models.
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l n the following formulee

NQo) = J% f_oo e 2% dg,
g — In(S/K) + (r — D + $o*)(T — ©)
' oJT —t
and
b In(S/K) + (r — D — $o2)(T — 0)
£ oVT —t '

The formulee are also valid for time-dependent o, D and r,
just use the relevant ‘average’ as explained in the previous
chapter.

Warning

The greeks which are ‘greyed out’ can sometimes be mislead-
ing. They are those greeks which are partial derivatives with
respect to a parameter (o, r or D) as opposed to a variable
(S and ) and which are not single signed (i.e. always greater
than zero or always less than zero). Differentiating with
respect a parameter, which has been assumed to be constant
so that we can find a closed-form solution, is internally
inconsistent. For example, dV/do is the sensitivity of the
option price to volatility, but if volatility is constant, as
assumed in the formula, why measure sensitivity to it? This
may not matter if the partial derivative with respect to the
parameter is of one sign, such as 9V /do for calls and puts.
But if the partial derivative changes sign then there may be
trouble. For example, the binary call has a positive vega for
low stock prices and negative vega for high stock prices, in
the middle vega is small, and even zero at a point. However,
this does not mean that the binary call is insensitive to
volatility in the middle. It is precisely in the middle that the
binary call value is very sensitive to volatility, but not the
level, rather the volatility skew.
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Table 9.1: Formule for European call.
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Call

Payoff max(S — K, 0)
Value V Se~PT=DN(dy)
Black-Scholes value —Ke " T=DN(dy)
Delta 2% e PT-DN(d))
Sensitivity to underlying

22V e DT-DN'(d)
Gamma 252 oSVT—t 1
Sensitivity of delta to underlying

v oSe PT-DN'(d)) _D(T—

Theta &/ — 2 = 2 + DSN(dye (=0
Sensitivity to time —rKe " T=DN(dy)

3 -D(T-0 N/ (d
Speed% —602527(7,_5)1)X<d1+0'\/7‘—t>

Sensitivity of gamma to
underlying

2V

S ot

Sensitivity of delta to time

Charm

3V
852 ot

Colour

Sensitivity of gamma to time

av
Vega 7

Sensitivity to volatility
av

Rho (r) 5

Sensitivity to interest rate
av

Rho (D) 55

Sensitivity to dividend yield

02V

Vanna 230

Sensitivity of delta to volatility

02V

Volga/Vomma -,

Sensitivity of vega to volatility

DefD(Tft)N(dl) 4 efD(T—t)N/(dl)

4 r-D_
x (2(T—r) VTt
e PT-ON'(dy)
oSV T—t
« (D+ I—didy dl(r—D)>

2AT-0) ~ oyT—t
SVT — te PT-DN'(dy)

K(T — He " T-DN(dy)
—(T — HSe PT-DN(dy)
_e—D(T—[)N/(dl) %

SYT —te PT-ON'(dy) 122
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Table 9.2: Formule for European put.
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Put
Payoff max(K — S,0)
Value V —Se PT-DN(—dy)
Black-Scholes value +Ke " T-ON(—dy)
Delta 2V e PT-DN () — 1)
Sensitivity to underlying
22V e DIT-DN/(ay)

Gamma oSVT—t
Sensitivity of delta to underlying

av 0SeDIT-DN' (_dy)
Theta 5; -z )

Sensitivity to time

2V
253
Sensitivity of gamma to underlying

Speed

P2V
Charm 39S ot

Sensitivity of delta to time

2Tt
—DSN(—dy)e 2T-0
+1Ke " T-ON(—dy)

e DTN/ ()
02S2(T—f)

(dl n gm)

De PT=D(N(d;) — 1)
+e—D(T—t)N/(d1)

d _ _r-D
X(Z(T—_o —mﬁm)

3V e PI-ON'(d))
Colour 55 oSVT—t
e . I-didy _ d1(r—D)
Sensitivity of gamma to time X (D+ T~ o m)
Vega 3¢ SVT — te PT-DN'(dy)
Sensitivity to volatility
Rho (r) & —K(T — e "T=DN(~dy)

Sensitivity to interest rate
Rho (D) 2%
Sensitivity to dividend yield

(T — HSe PT-DN(—dy)

02 _ _ ds

Vanna ;52 —e PT-ON'(d)) 2
Sensitivity of delta to volatility

Volga/Vomma ?:7‘2/ SVT —te PT-DN'(ay) 4z

Sensitivity of vega to volatility
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Table 9.3: Formule for European binary call.

Binary Call
Payoff 1 if S>K otherwise 0
Value V e " T-ON(dy)
Black-Scholes value
av e—r(T—t)Nr(d‘ )
Delta 35 A e =

Sensitivity to underlying

Gamma 2 _ O DIN ()

asZ o282(T—t)
Sensitivity of delta to underlying
Theta 2/ re"T-DN(dy) + e "T-ON'(dy)
epso s . [ _ _r=D
SensmVlty to time X (—Z(Tio py o
e "T-DN'(dy) 1—d;ds
Speed 053 _TT—DZ ( 2d + #)
Sensitivity of gamma to
underlying
32y —r(T=D N’ (d.
Charm o e N (dy) as\/f( 2)
- . 1-didy | dy(r—D)
Sensitivity of delta to time (r+ R T_,>
83V —r(T I)N/(d)
Colour ;5= s o e
s . 2di+dy _ _r-D
Sensitivity of gamma to time (rd1 Ry = Bl
_ 4 _rD
iy (g — 7575))
Vega 2V —e "T-DN'(dp) &
Sensitivity to volatility
Rho (r) % —(T — He "T-ON(dy)
Sensitivity to interest rate + ¥ r(T-DN'(dy)
Rho (D) 25 — It o=r(T=ON'(dy)
Sensitivity to dividend yield
52 e (T
Vanna ;-7 L ﬁ[N/(dz)(l — didy)
Sensitivity of delta to volatility
Volga/Vomma 3%{ Y(T 0 N'(dy) (d3dy — dy — dy)

Sensitivity of vega to volatility
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Table 9.4: Formulae for European binary put.

Binary Put

Payoff
Value V
Black-Scholes value

av
Delta S

Sensitivity to underlying
8%V

X3
Sensitivity of delta to underlying
Theta 2V

Sensitivity to time

Gamma

Speed 2 3 53

Sensitivity of gamma to underlying
0%V

as ot

Sensitivity of delta to time

Charm

>V
a2 ot
Sensitivity of gamma to time

Colour

Vega ? %
Sen51t1v1ty to volatility
Rho (r W
Sensitivity to interest rate
Rho (D) &%
Sensitivity to dividend yield
V. 22y
anna IS 90
Sensitivity of delta to volatility
Volga/Vomma 22V

902
Sensitivity of vega to volatility

1 if S <K otherwise 0
e"T=D(1 - N(dy))

e ON (dy)
oSVT—t

e—r(T—l) d, N (dz)
o282(T—1)

re"T=0(1 — N(d2))
_efr(Tfl)N/(dz)

d r—D
x (Z(T'—o - m/—r:f>
e r(T=D N (dy)

o2S3(T—f)
(—2d + s ‘L"Z)
_ e’ TON'(dy)

oSV T—t

x(r+ i + 202)
e (IO (dy)

o2S2(T—f)
x (s + 5% —

d, —D
—did; (2(T1—r) o m))
e—r(T—t)N/(dz) dy

—(T = e "T0(1 — N(d>))
_ Zfle—r(Tfl)N/(dz)
N g—[ e—r(T—[)N/(dz)

1T

T 02SJT-t

N'(dy) (1 — d1dy)

—r(T )

€ —N'(dy) (d?dy — dy — dp)
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Things to Look Out For in Exotic
Contracts

There are six important features to look out for in exotic con-
tracts. Understanding these features will help you to price a
contract. These features are as follows:

Time dependence
Cash flows

Path dependence
Dimensionality
Order

Embedded decisions

SR wN =

If you can classify an exotic contract according to these char-
acteristics you will be able to determine the following:

What kind of pricing method should best be used.
Whether you can re-use some old code.

How long it will take you to code it up.

How fast it will eventually run.

Time dependence is when the terms of an exotic contract spec-
ify special dates or periods on or during which something
happens, such as a cash flow, or early exercise, or an event
is triggered. Time dependence is first on our list of features,
since it is a very basic concept.

e Time dependence in an option contract means that our
numerical discretization may have to be lined up to
coincide with times at which, or periods during which,
something happens.

e This means that our code will have to keep track of time,
dates, etc. This is not difficult, just annoying.
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Cash flows are when money changes hands during the life of
the contract (as opposed to an initial premium or a final pay-
off). When there is a cash flow the value of the contract will
instantaneously jump by the amount of the cash flow.

e When a contract has a discretely paid cash flow you
should expect to have to apply jump conditions. This also
means that the contract has time dependence, see above.

e Continuously paid cash flows mean a modification,
although rather simple, to the governing equation.

Path dependence is when an option has a payoff that depends
on the path taken by the underlying asset, and not just the
asset’s value at expiration. Path dependency comes in two
varieties, strong and weak.

Strong path dependent contracts have payoffs that depend
on some property of the asset price path in addition to the
value of the underlying at the present moment in time; in the
equity option language, we cannot write the value as V(S, ).
The contract value is a function of at least one more indepen-
dent variable. Strong path dependency comes in two forms,
discretely sampled and continuously sampled, depending on
whether a discrete subset of asset prices is used or a contin-
uous distribution of them.

e Strong path dependency means that we have to work in
higher dimensions. A consequence of this is that our code
may take longer to run.

Weak path dependence is when a contract does depend on
the history of the underlying but an extra state variable is
not required. The obvious example is a barrier option.

e Weak path dependency means that we don’t have to work
in higher dimensions, so our code should be pretty fast.
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Dimensionality refers to the number of underlying indepen-
dent variables. The vanilla option has two independent
variables, S and ¢, and is thus two dimensional. The
weakly path-dependent contracts have the same number of
dimensions as their non-path-dependent cousins.

We can have two types of three-dimensional problem. The
first type of problem that is three dimensional is the strongly
path-dependent contract. Typically, the new independent
variable is a measure of the path-dependent quantity on
which the option is contingent. In this case, derivatives of
the option value with respect to this new variable are only of
the first order. Thus the new variable acts more like another
time-like variable.

The second type of three-dimensional problem occurs when
we have a second source of randomness, such as a second
underlying asset. In the governing equation we see a second
derivative of the option value with respect to each asset. We
say that there is diffusion in two dimensions.

e Higher dimensions means longer computing time.

e The number of dimensions we have also tells us what kind
of numerical method to use. High dimensions mean that we
probably want to use Monte Carlo; low means finite
difference.

The order of an option refers to options whose payoff, and
hence value, is contingent on the value of another option.
The obvious second-order options are compound options, for
example, a call option giving the holder the right to buy a
put option.

e When an option is second or higher order we have to solve
for the first-order option, first. We thus have a layer cake,
we must work on the lower levels and the results of those
feed into the higher levels.
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e This means that computationally we have to solve more
than one problem to price our option.

Embedded decisions are when the holder or the writer has some
control over the payoff. He may be able to exercise early, as
in American options, or the issuer may be able to call the
contract back for a specified price.

When a contract has embedded decisions you need an
algorithm for deciding how that decision will be made.

That algorithm amounts to assuming that the holder of the
contract acts to make the option value as high as possible for
the delta-hedging writer. The pricing algorithm then amounts
to searching across all possible holder decision strategies
for the one that maximizes the option value. That sounds
hard, but approached correctly is actually remarkably
straightforward, especially if you use the finite-difference
method. The justification for seeking the strategy that
maximizes the value is that the writer cannot afford to sell
the option for anything less, otherwise he would be exposed
to ‘decision risk.” When the option writer or issuer is the one
with the decision to make, then the value is based on seeking
the strategy that minimizes the value.

e Decision features mean that we’d really like to price via
finite differences.

e The code will contain a line in which we seek the best
price, so watch out for > or < signs.

Examples

Accrual is a generic term applied to contracts in which an
amount gradually builds up until it is paid off in a lump sum.
An example would be an accrual range note in which for
every day that some underlying is within a specified range

a specified amount is accrued, to eventually be paid off in a
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lump sum on a specified day. As long as there are no deci-
sion features in the contract then the accrual is easily dealt
with by Monte Carlo simulation. If one wants to take a partial
differential approach to modelling then an extra state variable
will often be required to keep track of how much money has
been accrued.

American option is one where the holder has the right to
exercise at any time before expiration and receive the payoff.
Many contracts have such early exercise American features.
Mathematically, early exercise is the same as conversion of a
convertible bond. These contracts are priced assuming that
the holder exercises so as to give the contract its highest
value. Therefore a comparison must be made between the
value of the option assuming you don’t exercise and what
you would get if you immediately exercised. This makes
finite differences a much more natural numerical method for
pricing such contracts than Monte Carlo.

Asian option is an option whose payoff depends on the
average value of the underlying during some period of the
option’s life. The average can be defined in many ways, as
an arithmetic or geometric mean, for example, and can use

a large set of data points in a continuously sampled Asian
or only a smaller set, in the discretely sampled Asian. In

an Asian tail the averaging only occurs over a short period
before option expiration. There are closed-form formulae

for some of the simpler Asian options based on geometric
averages, and approximations for others. Otherwise they can
be priced using Monte Carlo methods, or sometimes by finite
differences. Because the average of an asset price path is
less volatile than the asset path itself these options can be
cheaper than their equivalent vanillas, but this will obviously
depend on the nature of the payoff. These contracts are
very common in the commodity markets because users of
commodities tend to be exposed to prices over a long period
of time, and hence their exposure is to the average price.
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Asset swap  is the exchange of one asset for interest payments
for a specified period.

Balloon option is an option where the quantity of option bought
will increase if certain conditions are met, such as barriers
being triggered.

Barrier option has a payoff that depends on whether or not

a specified level of the underlying is reached before expi-
ration. In an ‘out’ option if the level is reached (triggered)
then the option immediately becomes worthless. In an ‘in’
option the contract is worthless unless the level is triggered
before expiration. An ‘up’ option is one where the trigger
level is above the initial price of the underlying and a ‘down’
option is one where the trigger level is below the initial price
of the underlying. Thus one talks about contracts such as
the ‘up-and-in call’ which will have the same payoff as a call
option but only if the barrier is hit from below. In these con-
tracts one must specify the barrier level, whether it is in or
out, and the payoff at expiration. A double barrier option
has both an upper and a lower barrier. These contracts are
bought by those with very specific views on the direction of
the underlying, and its probability of triggering the barrier.
These contracts are weakly path dependent. There are for-
mulae for many types of barrier option, assuming that volatil-
ity is constant. For more complicated barrier contracts or
when volatility is not constant these contracts must be val-
ued using numerical methods. Both Monte Carlo and finite
differences can be used but the latter is often preferable.

Basis swap is an exchange of floating interest payments of
one tenor for floating interest payments of another tenor,

a six-month rate for a two-year rate for example. Since the
two payments will generally move together if the yield curve
experiences parallel shifts, the basis swap gives exposure to
non-parallel movements in the yield curve such as flatten-
ing or steepening. More generally basis swap refers to any
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exchange in which the two floating rates are closely related,
and therefore highly correlated.

Basket option has a payoff that depends on more than one
underlying. A modest example would be an option that gives
you at expiration the value of the higher performing out of
two stocks. Another example would be a contract that pays
the average of the values of 20 stocks at expiration provided
that value is above a specified strike level. These contracts
can be valued straightforwardly by Monte Carlo simulation as
long as there is no early exercise feature. You would not use
finite-difference methods because of the high dimensionality.
If the contract is European, non-path dependent with all of
the underlyings following lognormal random walks with con-
stant parameters, then there is a closed-form formula for the
value of the contract, and this can be calculated by numerical
integration (quadrature). Basket options are popular in for-
eign exchange for those with exposure to multiple exchange
rates. They can also be used as options on your own index.
Although pricing these contracts can be theoretically straight-
forward they depend crucially on the correlation between the
underlyings. These correlations can be very difficult to esti-
mate since they can be quite unstable.

Bermudan option is one where the holder has the right to
exercise on certain dates or periods rather than only at
expiration (European exercise) or at any time (American
exercise). Bermudan options cannot be worth less than their
European equivalent and cannot be worth more than their
American equivalent.

Binary option has a payoff that is discontinuous. For example a
binary call pays off a specified amount if the underlying ends
above the strike at expiration and is otherwise worthless. A
one-touch pays off the specified amount as soon as the strike
is reached; it can be thought of as an American version of the
European binary. These contracts are also called digitals.
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Break/Cancellable forward is a forward contract, usually FX,
where the holder can terminate the contract at certain times
if he so wishes.

Coupe option is a periodic option in which the strike gets reset
to the worst of the underlying and the previous strike. Similar
to a cliquet option, but cheaper.

Call option is an option to buy the underlying asset for a
specified price, the strike or exercise price, at (European) or
before (American) a specified data, the expiry or expiration.
The underlying can be any security. They are bought to
benefit from upward moves in the underlying, or if volatility
is believed to be higher than implied. In the latter case the
buyer would delta hedge the option to eliminate exposure
to direction. Calls are written for the opposite reasons, of
course. Also a holder of the underlying stock might write

a call to gain some premium in a market where the stock
is not moving much. This is called covered call writing.
Simultaneous buying of the stock and writing a call is a
buy-write strategy. For calls on lognormal underlyings

in constant or time-dependent volatility worlds there are
closed-form expressions for prices. With more complicated
underlyings or volatility models these contracts can be
priced by Monte Carlo or finite difference, the latter being
more suitable if there is early exercise.

Other contracts may have call features or an embedded call.
For example, a bond may have a call provision allowing the
issuer to buy it back under certain conditions at specified

times. If the issuer has this extra right then it may decrease
the value of the contract, so it might be less than an equiv-
alent contract without the call feature. Sometimes the addi-
tion of a call feature does not affect the value of a contract,
this would happen when it is theoretically never optimal to
exercise the call option. The simplest example of this is an
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American versus a European call on a stock without any divi-
dends. These both have the same theoretical value since it is
never optimal to exercise early.

Cap is a fixed-income option in which the holder receives

a payment when the underlying interest rate exceeds a speci-
fied level, the strike. This payment is the interest rate less the
strike. These payments happen regularly, monthly, or quar-
terly, etc., as specified in the contract, and the underlying
interest rate will usually be of the same tenor as this interval.
The life of the cap will be several years. They are bought for
protection against rises in interest rates. Market practice is to
quote prices for caps using the Black '76 model. A contract
with a single payment as above is called a caplet.

Chooser option is an option on an option, therefore a
second-order option. The holder has the right to decide
between getting a call or a put, for example, on a specified
date. The expiration of these underlying options is further in
the future. Other similar contracts can be readily imagined.
The key to valuing such contracts is the realization that

the two (or more) underlying options must first be valued,
and then one values the option on the option. This means
that finite-difference methods are the most natural solution
method for this kind of contract. There are some closed-form
formulee for simple choosers when volatility is at most time
dependent.

Cliquet option is a path-dependent contract in which amounts
are locked in at intervals, usually linked to the return on
some underlying. These amounts are then accumulated and
paid off at expiration. There will be caps and/or floors on
the locally locked-in amounts and on the global payoff. Such
contracts might be referred to as locally capped, globally
floored, for example. These contracts are popular with
investors because they have the eternally appreciated upside
participation and the downside protection, via the exposure
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to the returns and the locking in of returns and global floor.
Because of the locking in of returns and the global cap/floor
on the sum of returns, these contracts are strongly path
dependent. Typically there will be four dimensions, which
may in special cases be reduced to three via a similarity
reduction. This puts the numerical solution on the Monte
Carlo, finite difference border. Neither are ideal, but neither
are really inefficient either. Because these contracts have

a gamma that changes sign, the sensitivity is not easily
represented by a simple vega calculation. Therefore, to be
on the safe side, these contracts should be priced using a
variety of volatility models so as to see the true sensitivity to
the model.

Constant Maturity Swap (CMS) is a fixed-income swap. In the
vanilla swap the floating leg is a rate with the same matu-
rity as the period between payments. However, in the CMS
the floating leg is of longer maturity. This apparently trivial
difference turns the swap from a simple instrument, one that
can be valued in terms of bonds without resort to any model,
into a model-dependent instrument.

Collateralized Debt Obligation (CPO) is a pool of debt instruments
securitized into one financial instrument. The pool may
consist of hundreds of individual debt instruments. They

are exposed to credit risk, as well as interest risk, of the
underlying instruments. CDOs are issued in several tranches
which divide up the pool of debt into instruments with
varying degrees of exposure to credit risk. One can buy
different tranches so as to gain exposure to different levels of
loss. As with all correlation products they can be dangerous,
so trade small.

The aggregate loss is the sum of all losses due to default. As
more and more companies default so the aggregate loss will

increase. The tranches are specified by levels, as percentages
of notional. For example, there may be the 0-3% tranche,
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and the 3-7% tranche, etc. As the aggregate loss increases
past each of the 3%, 7%, etc., hurdles so the owner of that
tranche will begin to receive compensation, at the same rate
as the losses are piling up. You will only be compensated
once your attachment point has been reached, and until the
detachment point. The pricing of these contracts requires a
model for the relationship between the defaults in each of
the underlying instruments. A common approach is to use
copulas. However, because of the potentially large number
of parameters needed to represent the relationship between
underlyings, the correlations, it is also common to make sim-
plifying assumptions. Such simplifications might be to assume
a single common random factor representing default, and a
single parameter representing all correlations.

Collateralized Debt Obligation squared (CPO?) is a CDO-like contract
in which the underlyings are other CDOs instead of being the
simpler risky bonds.

Collateralized Mortgage Obligation (CM0) is a pool of mortgages
securitized into one financial instrument. As with CDOs there
are different tranches allowing investors to participate in dif-
ferent parts of the cash flows. The cash flows in a mortgage
are interest and principal, and the CMOs may participate in
either or both of these depending on the structure. The dif-
ferent tranches may correspond to different maturities of the
underlying mortgages, for example. The risk associated with
CMOs are interest rate risk and prepayment risk, therefore it
is important to have a model representing prepayment.

Compound option is an option on an option, such as a call on
a put which would allow the holder the right to buy a spec-
ified put at a later date for a specified amount. There is no
element of choice in the sense of which underlying option to
buy (or sell).
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Contingent premium option is paid for at expiration only if the
option expires in the money, not up front. If the option
expires below the strike, for a call, then nothing is paid, but
then nothing is lost. If the asset is just slightly in the money
then the agreed premium is paid, resulting in a loss for the
holder. If the underlying ends up significantly in the money
then the agreed premium will be small relative to the payoff
and so the holder makes a profit. This contract can be valued
as a European vanilla option and a European digital with the
same strike. This contract has negative gamma below the
strike (for a call) and then positive gamma at the strike and
above, so its dependence on volatility is subtle. The holder
clearly wants the stock to end up either below the strike (for
a call) or far in the money. A negative skew will lower the
price of this contract.

Convertible bond is a bond issued by a company that can, at
the choosing of the holder, be converted into a specified
amount of equity. When so converted the company will issue
new shares. These contracts are a hybrid instrument, being
part way between equity and debt. They are appealing to the
issuer since they can be issued with a lower coupon than
straight debt, yet do not dilute earnings per share. If they are
converted into stock that is because the company is doing
well. They are appealing to the purchaser because of the
upside potential with the downside protection. Of course,
that downside protection may be limited because these
instruments are exposed to credit risk. In the event of default
the convertible bond ranks alongside debt, and above equity.

These instruments are best valued using finite-difference
methods because that takes into account the optimal
conversion time quite easily. One must have a model for
volatility and also risk of default. It is common to make risk
of default depend on the asset value, so the lower the stock
price the greater the probability of default.
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Credit Default Swap (CPS) is a contract used as insurance
against a credit event. One party pays interest to another for
a prescribed time or until default of the underlying instru-
ment. In the event of default the counterparty then pays the
principal in return. The CDS is the dominant credit derivative
in the structured credit market. The premium is usually paid
periodically (quoted in basis points per notional). Premium
can be an up-front payment, for short-term protection. On the
credit event, settlement may be the delivery of the reference
asset in exchange for the contingent payment or settlement
may be in cash (that is, value of the instrument before
default less value after, recovery value). The mark-to-market
value of the CDS depends on changes in credit spreads.
Therefore they can be used to get exposure to or hedge
against changes in credit spreads. To price these contracts
one needs a model for risk of default. However, commonly,
one backs out an implied risk of default from the prices of
traded CDSs.

Diff(erential) swap is an interest rate swap of floating for fixed
or floating, where one of the floating legs is a foreign inter-
est rate. The exchange of payments are defined in terms of
a domestic notional. Thus there is a quanto aspect to this
instrument. One must model interest rates and the exchange
rate, and as with quantos generally, the correlation is impor-
tant.

Digital option is the same as a binary option.

Exponential Collateralized Debt Obligation (ECPO) You've heard of
CDOs. You've heard of CDO squared. So why not CDO cubed?
Hell, why not ¢(PO? That’s an ECDO. Or what about LCDO?
The logarithm of a CDO, after all CDOs can only go to zero
now minus infinity is attainable! No, these contracts don’t
exist, | made them up. I made up the ECDO while listening,
many years pre-global financial crisis, to what I thought were
the stupidest models in the hope that a bit of satire might
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make people realize how dangerous these products could be.
You've read the news, the message did not get across!

Extendible option/swap is a contract that can have its expiration
date extended. The decision to extend may be at the control
of the writer, the holder or both. If the holder has the right
to extend the expiration then it may add value to the con-
tract, but if the writer can extend the expiry it may decrease
the value. There may or may not be an additional premium
to pay when the expiration is extended. These contracts are
best valued by finite-difference means because the contract
contains a decision feature.

Floating Rate Note (FRN) is a bond with coupons linked to a
variable interest rate issued by a company. The coupon will
typically have a spread in excess of a government interest
rate, and this spread allows for credit risk. The coupons
may also have a cap and/or a floor. The most common
measure of a floating interest rate is the London Interbank
Offer Rate or LIBOR. LIBOR comes in various maturities,
one-month, three-month, six-month, etc., and is the rate of
interest offered between Eurocurrency banks for fixed-term
deposits.

Floor is a fixed-income option in which the holder receives a
payment when the underlying interest rate falls below a spec-
ified level, the strike. This payment is the strike less the inter-
est rate. These payments happen regularly, monthly, or quar-
terly, etc., as specified in the contract, and the underlying
interest rate will usually be of the same tenor as this interval.
The life of the floor will be several years. They are bought for
protection against falling interest rates. Market practice is to
quote prices for floors using the Black '76 model. A contract
with a single payment as above is called a floorlet.

Forward is an agreement to buy or sell an underlying,
typically a commodity, at some specified time in the future.
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The holder is obliged to trade at the future date. This is in
contrast to an option where the holder has the right but not
the obligation. Forwards are OTC contracts. They are linear
in the underlying and so convexity is zero, meaning that the
volatility of the commodity does not matter and a dynamic
model is not required. The forward price comes from a
simple, static, no-arbitrage argument.

Forward Rate Agreement (FRA) is an agreement between two
parties that a specified interest rate will apply to a specified
principal over some specified period in the future. The value
of this exchange at the time the contract is entered into is
generally not zero and so there will be a transfer of cash from
one party to the other at the start date.

Forward-start option is an option that starts some time in

the future. The strike of the option is then usually set to

be the value of the underlying on the start date, so that

it starts life as an at-the-money option. It is also possible

to have contracts that begin in or out of the money by a
specified amount. Although the option comes into being at a
specified date in the future it is usually paid for as soon as
the contract is entered into. In a Black-Scholes world, even
with time-dependent volatility, these contracts have simple
closed-form formulee for their values. Provided the strike is
set to be a certain fraction of the underlying at the start date
then the value of a vanilla call or put at that start date is
linear in the price of the underlying, and so prior to the start
date there is no convexity. This means that forward-start
options are a way of locking in an exposure to the volatility
from the option’s start date to the expiration.

Future is an agreement to buy or sell an underlying, typi-
cally a commodity, at some specified time in the future. The
holder is obliged to trade at the future date. The difference
between a forward and a future is that forwards are OTC and
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futures are exchange traded. Therefore futures have stan-
dardized contract terms and are also marked to market on
a daily basis. Being exchange traded they also do not carry
any credit risk exposure.

Hawai’ian option is a cross between Asian and American.

Himalayan option is a multi-asset option in which the best per-
forming stock is thrown out of the basket at specified sam-
pling dates, leaving just one asset in at the end on which
the payoff is based. There are many other, similar, mountain
range options.

HYPER option High Yielding Performance Enhancing Reversible
options are like American options but which you can exercise
over and over again. On each exercise the option flips from
call to put or vice versa. These can be priced by introducing
a price function when in the call state and another when in
the put state. The Black-Scholes partial differential equation
is solved for each of these, subject to certain optimality con-
straints.

Index amortizing rate swap is just as a vanilla swap, an agreement
between two parties to exchange interest payments on some
principal, usually one payment is at a fixed rate and the other
at a floating rate. However, in the index amortizing rate swap
the size of the principal decreases, or amortizes, according
to the value of some financial quantity or index over the life
of the swap. The level of this principal may be determined
by the level of an interest rate on the payments dates. Or the
principal may be determined by a non-fixed income index. In
the first example we would only need a fixed-income model,
in the second we would also need a model for this other
quantity, and its correlation with interest rates. In an index
amortizing rate swap the principal typically can amortize on
each payment date. On later payment dates this principal can
then be amortized again, starting from its current level at the
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previous payment date and not based on its original level.
This makes this contract very path dependent. The contract
can be priced in either a partial differential equation frame-
work based on a one- or two-factor spot-rate based model,
or using Monte Carlo simulations and a LIBOR market-type
model.

Interest rate swap is a contract between two parties to
exchange interest on a specified principal. The exchange may
be fixed for floating or floating of one tenor for floating of
another tenor. Fixed for floating is a particularly common
form of swap. These instruments are used to convert a
fixed-rate loan to floating, or vice versa. Usually the interval
between the exchanges is set to be the same as the tenor
of the floating leg. Furthermore, the floating leg is set at

the payment date before it is paid. This means that each
floating leg is equivalent to a deposit and a withdrawal of
the principal with an interval of the tenor between them.
Therefore all the floating legs can be summed up to give one
deposit at the start of the swap’s life and a withdrawal at
maturity. This means that swaps can be valued directly from
the yield curve without needing a dynamic model. When the
contract is first entered into the fixed leg is set so that the
swap has zero value. The fixed leg of the swap is then called
the par swap rate and is a commonly quoted rate. These
contracts are so liquid that they define the longer-maturity
end of the yield curve rather than vice versa.

Inverse floater is a floating-rate interest-rate contract where
coupons go down as interest rates go up. The relationship
is linear (up to any cap or floor) and not an inverse one.

Knock-in/out option are types of barrier option for which the
payoff is contingent on a barrier level being hit/missed before
expiration.
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LIBOR-in-arrears swap is an interest rate swap but one for which
the floating leg is paid at the same time as it is set, rather
than at the tenor later. This small difference means that there
is no exact relationship between the swap and bond prices
and so a dynamic model is needed. This amounts to pricing
the subtle convexity in this product.

Lookback option is a path-dependent contract whose payoff
depends on the maximum or minimum value reached

by the underlying over some period of the option’s life.
The maximum/minimum may be sampled continuously or
discretely, the latter using only a subset of asset prices over
the option’s life. These contracts can be quite expensive
because of the extreme nature of the payoff. There are
formulae for some of the simpler lookbacks, under the
assumption of a lognormal random walk for the underlying
and non-asset-dependent volatility. Otherwise they can be
valued via finite-difference solution of a path-dependent
partial differential equation in two or three dimensions, or by
Monte Carlo simulation.

Mortgage Backed Security (MBS) is a pool of mortgages that
have been securitized. All of the cash flows are passed on
to investors, unlike in the more complex CMOs. The risks
inherent in MBSs are interest rate risk and prepayment risk,
since the holders of mortgages have the right to prepay.
Because of this risk the yield on MBSs should be higher than
yields without prepayment risk. Prepayment risk is usually
modelled statistically, perhaps with some interest rate effect.
Holders of mortgages have all kinds of reasons for prepaying,
some rational and easy to model, some irrational and
harder to model but which can nevertheless be interpreted
statistically.

Outperformance option is an option where the holder gets the
best performing out of two or more underlyings at expira-
tion. This option can be valued theoretically in a lognormal
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random walk, constant parameter world, since it is not path
dependent and there is a closed-form solution in terms of a
multiple integral (in the same number of dimensions as there
are underlyings). This amounts to a numerical quadrature
problem which is easily achieved by Monte Carlo or quasi
Monte Carlo methods. The theory may be straightforward but
the practice is not since the price will depend on the corre-
lations between all of the underlyings, and these parameters
are usually quite fickle.

Parisian option is a barrier option for which the barrier feature
(knock in or knock out) is only triggered after the underlying
has spent a certain prescribed time beyond the barrier. The
effect of this more rigorous triggering criterion is to smooth
the option value (and delta and gamma) near the barrier to
make hedging somewhat easier. It also makes manipulation of
the triggering, by manipulation of the underlying asset, much
harder. In the classical Parisian contract the ‘clock’ mea-
suring the time outside the barrier is reset when the asset
returns to within the barrier. In the Parisian contract the
clock is not reset but continues ticking as long as the under-
lying is beyond the barrier. These contracts are strongly path
dependent and can be valued either by Monte Carlo simu-
lation or by finite-difference solution of a three-dimensional
partial differential equation.

Pass through is a security which collects payments on vari-
ous underlying securities and then passes the amounts on
to investors. They are issued by Special Purpose Vehicles
and can be made to avoid appearing on balance sheets. This
achieves a variety of purposes, some rather nefarious.

Passport option is a call option on the trading account of

an individual trader, giving the holder the amount in his
account at the end of the horizon if it is positive, or zero

if it is negative. For obvious reasons they are also called
perfect trader options. The terms of the contract will specify
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what the underlying is that the trader is allowed to trade,
his maximum long and short position, how frequently

he can trade and for how long. To price these contracts
requires a small knowledge of stochastic control theory.

The governing partial differential equation is easily solved

by finite differences. Monte Carlo would be quite difficult to
implement for pricing purposes. Since the trader very quickly
moves into or, more commonly, out of the money, the option
is usually hedged with vanilla options after a while.

Put option is the right to sell the underlying stock. See the
‘Call option’ since comments about pricing methodology,
embedded features, etc., are equally applicable. Deep
out-of-the-money puts are commonly bought for protection
against large downward moves in individual stocks or against
market crashes. These out-of-the-money puts therefore tend
to be quite expensive in volatility terms, although very cheap
in monetary terms.

Quanto is any contract in which cash flows are calculated
from an underlying in one currency and then converted to
payment in another currency. They can be used to eliminate
any exposure to currency risk when speculating in a foreign
stock or index. For example, you may have a view on a UK
company but be based in Tokyo. If you buy the stock you
will be exposed to the sterling/yen exchange rate. In a quanto
the exchange rate would be fixed. The price of a quanto will
generally depend on the volatility of the underlying and the
exchange rate, and the correlation between the two.

Rainbow option is any contract with multiple underlyings. The
most difficult part of pricing such an option is usually know-
ing how to deal with correlations.

Range note is a contract in which payments are conditional
upon an underlying staying within (or outside) a specified
range of values.
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Ratchet is a feature that periodically locks in profit.

Repo is a repurchase agreement. It is an agreement to sell
some security to another party and buy it back at a fixed
date and for a fixed amount. The price at which the secu-
rity is bought back is greater than the selling price and the
difference implies an interest rate called the repo rate. Repos
can be used to lock in future interest rates.

Reverse repo is the borrowing of a security for a short period
at an agreed interest rate.

straddle is a portfolio consisting of a long call and a long put
with the same strike and expiration. Such a portfolio is for
taking a view on the range of the underlying or volatility.

Strangle is a portfolio of a call and a put, the call having a
higher strike than the put. It is a volatility play like the strad-
dle but is cheaper. At the same time it requires the underly-
ing to move further than for a straddle for the holder to make
a profit.

$TRIPS stands for Separate Trading of Registered Interest
and Principal of Securities. The coupons and principal of nor-
mal bonds are split up, creating artificial zero-coupon bonds
of longer maturity than would otherwise be available.

Swap is a general term for an over-the-counter contract in
which there are exchanges of cash flows between two parties.
Examples would be an exchange of a fixed interest rate for

a floating rate, or the exchange of equity returns and bond
returns, etc.

Swaption is an option on a swap. It is the option to enter into
the swap at some expiration date, the swap having prede-
fined characteristics. Such contracts are very common in the
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fixed-income world where a typical swaption would be on a
swap of fixed for floating. The contract may be European so
that the swap can only be entered into on a certain date, or
American in which the swap can be entered into before a cer-
tain date or Bermudan in which there are specified dates on
which the option can be exercised.

Total Return Swap (TRS) is the exchange of all the profit or
loss from a security for a fixed or floating interest payment.
Periodically, one party transfers the cash flows plus any posi-
tive value change of a reference asset to the other party, this
includes interest payments, appreciation, coupons, etc., while
the other party pays a fixed or floating rate, probably with
some spread. The difference between a total return swap
and a default swap is that a default swap simply transfers
credit risk, by reference to some designated asset whereas

a total return swap transfers all the risks of owning the des-
ignated asset. Total return swaps were among the earliest
credit derivatives. TRSs existed before default swaps, but
now default swaps are the more commonly traded instru-
ments. The maturity is typically less than the maturity of the
underlying instrument. A TRS therefore provides a means of
packaging and transferring all of the risks associated with

a reference obligation, including credit risk. TRSs are more
flexible than transactions in the underlyings. For example,
varying the terms of the swap contract allows the creation
of synthetic assets that may not be otherwise available. The
swap receiver never has to make the outlay to buy the secu-
rity. Even after posting collateral and paying a high margin,
the resulting leverage and enhanced return on regulatory cap-
ital can be large.

Ultras give a multiple of an index’s performance on a daily
basis, and that multiple can be positive or negative. Suppose
you have an ultrashort giving a multiple of minus two and
suppose that the returns on an index over a week are 2%, 3%,
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—1%, 2% and —3%. The ultrashort would then have a value
given by the compounding of —4%, —6%, 2%, —4% and 6%.

Variance swap is a swap in which one leg is the realized vari-
ance in the underlying over the life of the contract and the
other leg is fixed. This variance is typically measured using
regularly spaced data points according to whatever variance
formula is specified in the term sheet. The contract is pop-
ular with both buyers and sellers. For buyers, the contract

is a simple way of gaining exposure to the variance of an
asset without having to go to all the trouble of dynamically
delta hedging vanilla options. And for sellers it is popular
because it is surprisingly easy to statically hedge with vanilla
options to almost eliminate model risk. The way that a vari-
ance swap is hedged using vanillas is the famous ‘one over
strike squared rule.” The variance swap is hedged with a con-
tinuum of vanilla options with the quantity of options being
inversely proportional to the square of their strikes. In prac-
tice, there does not exist a continuum of strikes, and also one
does not go all the way to zero strike (and an infinite quantity
of them).

The volatility swap is similar in principle, except that the
payoff is linear in the volatility, the square root of variance.
This contract is not so easily hedged with vanillas. The dif-
ference in prices between a volatility swap and a variance
swap can be interpreted via Jensen’s Inequality as a con-
vexity adjustment because of volatility of volatility. The VIX
volatility index is a representation of SP500 30-day implied
volatility inspired by the one-over-strike-squared rule.
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' he following are the dozen most popular quant books in
the wilmott.com bookshop since December 2001.

Paul Wilmott Introduces Quantitative
F inance » Second Edition by Paul Wilmott

‘The style is pedagogical and yet very lively and easygoing.
As only great teachers can, Wilmott makes even the most
obtuse mathematics seem easy and intuitive.” Marco Avel-
laneda

Publisher John Wiley & Sons Ltd
Publication date 2007

Format Paperback + CD

ISBN 9780470319581

introduces

QUANTITATIVE
FINANCE

An introductory text for students based on the three-volume
research-level book PWOQF2, see below. The book covers
much of the foundation material for students approaching the
subject from an applied mathematician’s perspective. There
are chapters on derivatives, portfolio management, equity



Chapter 11: Popular Quant Books 4’85

and fixed income, as well as the numerical methods of Monte
Carlo simulation, the binomial method and finite-difference
methods.

Paul Wilmott on Quantitative
Finance, second Edition by Paul Wilmott

‘Paul Wilmott on Quantitative Finance, Second Edition, is even
better than his unsurpassed First Edition. He combines the
insights of an incisive theorist with his extensive practical
experience. His teaching style is clear and entertaining. I rec-
ommend the book to everyone in the “quant” community,
from beginner to expert, both for learning and for reference.’
Ed Thorp

Publisher John Wiley & Sons Ltd

Publication date 2006

Format Hardback, three volumes in slip case, + CD
ISBN 9780470018705

QUANTITATIVE
FINANCE

A research-level book containing the tried and trusted tech-
niques, the analysis of models and data, and cutting-edge
material. Contains models and research that cannot be found
in other textbooks.
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Advanced Modelling in Finance Using
Excel ano VBA by Mary Jackson and Mike

Staunton

Publisher John Wiley & Sons Ltd
Publication date 2001

Format Hardback + CD

ISBN 9780471499220

i MARY JACKSON
| « . MIKE STAUNTON
|

v
e

The book adopts a step-by-step approach to understanding
the more sophisticated aspects of Excel macros and VBA pro-
gramming, showing how these programming techniques can
be used to model and manipulate financial data, as applied to
equities, bonds and options. The book is essential for finan-
cial practitioners who need to develop their financial mod-
elling skill sets as there is an increase in the need to analyse
and develop ever more complex ‘what if’ scenarios.
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Option Valuation under Stochastic
Volatil lt}/ by Alan Lewis

‘This exciting book is the first one to focus on the pervasive
role of stochastic volatility in option pricing. Since options
exist primarily as the fundamental mechanism for trading
volatility, students of the fine art of option pricing are
advised to pounce.’ Peter Carr

Publisher Finance Press
Publication date 2000
Format Paperback

ISBN 0967637201

Option Valuation
Stochastic
Volatility

"

This book provides an advanced treatment of option pric-
ing for traders, money managers, and researchers. Providing
largely original research not available elsewhere, it covers the
new generation of option models where both the stock price
and its volatility follow diffusion processes.
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These new models help explain important features of
real-world option pricing that are not captured by the
Black-Scholes model. These features include the ‘smile’
pattern and the term structure of implied volatility. The book
includes Mathematica code for the most important formula
and many illustrations.

The Concepts and Practice of
Mathematical Finance by Mark Joshi

‘Mark Joshi’s work is one of the most thoughtful books in
applied finance [ know. It is both intuitive and mathematically
correct and it deals with very deep concepts in derivatives
pricing while keeping the treatment simple and readily under-
standable.” Riccardo Rebonato

Publisher Cambridge University Press
Publication date 2003

Format Hardback

ISBN 0521823552

The COncepts
and Practice of
Mathematical
Finance

M.S. Joshi

Uniquely, the book includes extensive discussion of the
ideas behind the models, and is even-handed in examining
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various approaches to the subject. Thus, each pricing
problem is solved using several methods. Worked examples
and exercises, with answers, are provided in plenty, and
computer projects are given for many problems. The author
brings to this book a blend of practical experience and rigor-
ous mathematical background, and supplies here the working
knowledge needed to become a good quantitative analyst.

C++ Design Patterns and Derivatives
P ricing by Mark Joshi

“This book is thought-provoking and rewarding. Even for the
less experienced programmer, the presentation is readily
accessible, and the coded examples can be directly used to
solve real-life problems.’ Journal of the American Statistics
Association, Ana-Maria Matache

Publisher Cambridge University Press
Publication date 2004

Format Hardback

ISBN 0521832357

.

C++ Design
Patterns and
Derivatives
Pricing

Mark Joshi
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Design patterns are the cutting-edge paradigm for program-
ming in object-oriented languages. Here they are discussed,
for the first time in a book, in the context of implementing
financial models in C++.

Assuming only a basic knowledge of C++ and mathematical
finance, the reader is taught how to produce well-designed,
structured, re-usable code via concrete examples. Each
example is treated in depth, with the whys and wherefores of
the chosen method of solution critically examined.

Heard on the Street by Timothy Crack

Publisher Timothy Crack
Publication date 2008
Format Paperback

ISBN 0970055269

HEARD ON THE STREET:
Quantita
WWall Street Job Intervicws

The book contains over 170 quantitative questions collected
from actual investment banking, investment management, and
options trading job interviews. The interviewers use the same
questions year after year and here they are! These questions
come from all types of interviews (corporate finance, sales
and trading, quantitative research, etc.), but they are espe-
cially likely in quantitative capital markets job interviews.
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The questions come from all levels of interviews (undergrad-
uate, MBA, PhD), but they are especially likely if you have,
or almost have, an MBA. The questions cover pure quanti-
tative/logic, financial economics, derivatives, and statistics.
Each quantitative question in the book is accompanied by a
very detailed solution and by helpful advice.

The latest edition also includes about 125 non-quantitative
actual interview questions.

Monte Carlo Methods in Finance vy
Peter Jackel

‘Few expert practitioners also have the academic expertise
to match Peter Jackel’s in this area, let alone take the
trouble to write a most accessible, comprehensive and yet
self-contained text.” Carol Alexander

Publisher John Wiley & Sons Ltd
Publication date 2002

Format Hardback

ISBN 9780471497417




4’92 Frequently Asked Questions in Quantitative Finance

Monte Carlo Methods in Finance adopts a practical flavour
throughout, the emphasis being on financial modelling and
derivatives pricing. Numerous real-world examples help the
reader to foster an intuitive grasp of the mathematical and
numerical techniques needed to solve particular financial
problems. At the same time, the book tries to give a detailed
explanation of the theoretical foundations of the various
methods and algorithms presented.

Credit Derivatives Pricing Models vy
Philipp Schéonbucher

‘Philipp Schonbucher is one of the most talented researchers
of his generation. He has taken the credit derivatives world
by storm.” Paul Wilmott

Publisher John Wiley & Sons Ltd
Publication date 2003

Format Hardback

ISBN 9780470842911

Madels, Pricing and Implementation
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Credit Derivatives Pricing Models provides an extremely
comprehensive overview of the most current areas in credit
risk modeling as applied to the pricing of credit derivatives.
As one of the first books to uniquely focus on pricing, this
title is also an excellent complement to other books on the
application of credit derivatives. Based on proven techniques
that have been tested time and again, this comprehensive
resource provides readers with the knowledge and guidance
to effectively use credit derivatives pricing models.

Principles of Financial Engineering vy
Salih Neftci

“This is the first comprehensive hands-on introduction to
financial engineering. Neftci is enjoyable to read, and finds
a natural balance between theory and practice.” Darrell Duffie

Publisher Academic Press
Publication date 2004
Format Hardback

ISBN 0125153945

~ Financial
Engineering

S e
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On a topic where there is already a substantial body of liter-
ature, Salih Neftci succeeds in presenting a fresh, original,
informative, and up-to-date introduction to financial engi-
neering. The book offers clear links between intuition and
underlying mathematics and an outstanding mixture of mar-
ket insights and mathematical materials. Also included are
end-of-chapter exercises and case studies.

Options, Futures, and Other
Derivatives by John Hull

Publisher Prentice Hall
Publication date 2008
Format Paperback
ISBN 0136015891

OTHER DERIVATIVES

fFOHN C. HULL

For advanced undergraduate or graduate business, eco-
nomics, and financial engineering courses in derivatives,
options and futures, or risk management. Designed to bridge
the gap between theory and practice, this successful book
continues to impact the college market and is regarded

as ‘the bible’ in trading rooms throughout the world. This
edition has been completely reworked from beginning to
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end to improve presentation, update material, and reflect
recent market developments. Though nonessential math-
ematical material has been either eliminated or moved to
end-of-chapter appendices, the concepts that are likely to be
new to many readers have been explained carefully, and are
supported by numerical examples.

The Complete Guide to Option Pricing
Formulas by Espen Gaarder Haug

‘The truth of the matter is that if [ am being so positive about
this book, it’s because I know for a fact that it has saved lives
more than once.” Alireza Javaheri

Publisher McGraw-Hill Professional
Publication date 2007

Format Hardback

ISBN 0071389970

SLLETLL 10 0 b N
e i)

THE COMPLETE GUIDE TO

Pricine

hn mﬂas

When pricing options in today’s fast-action markets, expe-
rience and intuition are no longer enough. To protect your
carefully planned positions, you need precise facts and tested
information that has been proven time and again.
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The Complete Guide to Option Pricing Formulas is the first and
only authoritative reference to contain every option tool you
need, all in one handy volume: Black-Scholes, two asset bino-
mial trees, implied trinomial trees, Vasicek, exotics.

Many important option-pricing formulee are accompanied by
computer code to assist in their use, understanding, and
implementation.
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The Most Popular Search Words and Phrases
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The following are some of the most common search
words or phrases on wilmott.com, and a few comments
on each. If other people want to know about these, then
maybe you should too.

American option An option which can be exercised at any time
of the holder’s choosing prior to expiration. See page 464.

Arbitrage Arbitrage is the making of a totally riskless profit in
excess of the risk-free rate of return. See page 27.

Asian option  An option whose payoff depends on the average
value of the underlying asset over some time period prior to
expiration. See page 464.

Asset swap  The exchange of two investments, or the cash
flows to those investments, between two parties.

Barrier option An option which either comes into being or
becomes worthless if a specified asset price is reached before
expiration. See page 465.

Base correlation A correlation used in a CDO model to repre-
sent the relationship between all underlyings from zero up to
a given detachment point. For example, the 0-3% and a 3-6%
tranches are separate instruments but between them one can
price a 0-6% tranche and so back out an implied correlation
from 0-6%, that is the base correlation. See page 469.

Basket A collection of financial instruments. In a basket
option the payoff depends on the behaviour of the many
underlyings. See page 466.

Bermudan swaption An option to enter into a swap that may be
exercised on any of a specified number of dates.
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¢++ An enhanced version of the C programming language
developed by Bjarne Stroustrup in 1983. The enhancements
include classes, virtual functions, multiple inheritance, tem-
plates, etc.

Calibration Determining parameters (possibly state and time
dependent) such that one’s theoretical prices match traded
prices. Also called fitting. This is a static process using a
snapshot of prices. Calibration does not typically involve
looking at the dynamics or time series of the underlying. See
page 203.

Callable A contract which the issuer or writer can buy back
(call). The amount he has to pay and the dates on which he
can exercise this right will be specified in the contract.

Cap A fixed-income contract paying the holder when the
underlying interest rate exceeds a specified level. See
page 468.

¢p0 A Collateralized Debt Obligation is a pool of debt instru-
ments securitized into one financial instrument. See page 469.

¢ps A Credit Default Swap is a contract used as insurance
against a credit event. One party pays interest to another for
a prescribed time or until default of the underlying instru-
ment. See page 472.

CFA Chartered Financial Analyst. A professional designation
offered by the CFA Institute for successfully completing three
examinations. The syllabus includes aspects of corporate and
quantitative finance, economics and ethics.

¢Ms Constant Maturity Swap is a fixed-income swap in which
one leg is a floating rate of a constant maturity (from the date
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it is paid). A convexity adjustment is required for the pricing
of these instruments. See page 469.

Convertible An instrument that can be exchanged for another
of a different type. A convertible bond is a bond that can be
turned into stock at a time of the holder’s choosing. This
gives an otherwise simple instrument an element of option-
ality. See page 471.

Convexity Related to the curvature in the value of a derivative
(or its payoff) with respect to its underlying. A consequence
of Jensen’s Inequality for convex functions together with ran-
domness in an underlying is that convexity adds value to a
derivative. A positive convexity with respect to a random
underlying or parameters increases the derivative’s value,

a negative convexity decreases value. In equity derivatives
convexity is known as gamma.

Copula A function used to combine many univariate distribu-
tions to make a single multivariate distribution. Often used
to model relationships between many underlying in credit
derivatives. See page 229.

Correlation Covariance between two random variables divided
by both of their standard deviations. It is a number between
(and including) minus one and plus one that measures the
amount of linear relationship between the two variables.
Correlation is a parameter in most option-pricing models in
which there are two or more random factors. However, the
parameter is often highly unstable.

CQF Certificate in Quantitative Finance, a part-time qualifi-
cation offered by Wilmott and 7city Learning which teaches
the more practical aspects of quantitative finance, includ-
ing modelling, data analysis, implementation of the models
and, crucially, focuses on which models are good and which
aren’t.
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Default probability The probability of an entity defaulting or
going bankrupt. A concept commonly used in credit risk
modelling where it is assumed that default is a prob-
abilistic concept, rather than a business decision.

Pricing credit instruments then becomes an exercise in
modelling probability of default, and recovery rates. See
page 448.

Delta The sensitivity of an option to the underlying asset. See
page 78.

Digital An option with a discontinuous payoff. See page 472.

Dispersion  The amount by which asset, typically equity,
returns are independent. A dispersion trade involves a basket
of options on single stocks versus the opposite position in an
option on a basket of stocks (an index).

Duration The sensitivity of a bond to an interest rate or yield.
It can be related to the average life of the bond.

Exotic A contract that is made to measure, or bespoke, for a
client and which does not exist as an exchange-traded instru-
ment. Since it is not traded on an exchange it must be priced
using some mathematical model. See pages 459-482.

Expected loss The average loss once a specified threshold has
been breached. Used as a measure of Value at Risk. See
page 52.

Finite difference A numerical method for solving differential
equations wherein derivatives are approximated by differ-
ences. The differential equation thus becomes a difference
equation which can be solved numerically, usually by an iter-
ative process.
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Gamma The sensitivity of an option’s delta to the underlying.
Therefore it is the second derivative of an option price with
respect to the underlying. See page 79.

GARCH Generalized Auto Regressive Conditional Het-
eroskedasticity, an econometric model for volatility in which
the current variance depends on the previous random
increments.

Hedge To reduce risk by exploiting correlations between finan-
cial instruments. See page 77.

Hybrid  An instrument that exhibits both equity and
fixed-income characteristics, and even credit risk. An example
would be a convertible bond. Pricing such instruments
requires knowledge of models from several different areas of
quantitative finance.

Implieo Used as an adjective about financial parameters
meaning that they have been deduced from traded prices.
For example, what volatility when put into the Black-Scholes
formula gives a theoretical price that is the same as the
market price? This is the implied volatility. Intimately related
to calibration.

Levy A probability distribution, also known as a stable
distribution. It has the property that sums of independent
identically distributed random variables from this distribution
have the same distribution. The normal distribution is a
special case. The Lévy distribution is of interest in finance
because returns data matches this distribution quite well. See
page 383.

LIBOR London Interbank Offered Rate. An interest rate at
which banks offer to lend funds to other banks in the London
wholesale money market. It is quoted at different maturities.
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Being a standard reference rate it is often the underlying
interest rate in OTC fixed-income contracts.

Market maker Someone who gives prices at which he will buy
or sell instruments, in the hope of making a profit on the
difference between the bid and offer prices. They are said
to add liquidity to the market.

MBs A Mortgage Backed Security is a pool of mortgages that
have been securitized. See page 477.

Mean reversion  The returning of a quantity to an average level.
This is a feature of many popular interest rate and volatility
models, which may exhibit randomness but never stray too
far from some mean.

Monte Carlo A name given to many methods for solving mathe-
matical problems using simulations. The link between a prob-
abilistic concept, such as an average, and simulations is clear.
There may also be links between a deterministic problem and
a simulation. For example, you can estimate = by throwing
darts at a square, uniformly distributed, and counting how
many land inside the inscribed circle. It should be 7 /4 of the
number thrown. To get six decimal places of accuracy in =
you would have to throw approximately 10! darts, this is the
downside of Monte Carlo methods, they can be slow.

Normal distribution A probability distribution commonly used
to model financial quantities. See page 219.

PPE Partial differential equation, as its name suggest an
equation (there must be an ‘equals’ sign), involving deriva-
tives with respect to two or more variables. In finance almost
all PDEs are of a type known as parabolic, this includes the
famous heat or diffusion equation. See page 22.
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Quantlib  Definition taken from www.quantlib.org: ‘QuantLib is a
free/open-source library for modelling, trading, and risk man-
agement in real-life.’

Quanto  Any contract in which cash flows are calculated from
an underlying in one currency and then converted to pay-
ment in another currency. See page 479.

Regression  Relating a dependent and one or more independent
variables by a relatively simple function.

Risk The possibility of a monetary loss associated with
investments. See page 38.

Risk neutral Indifferent to risk in the sense that a return in
excess of the risk-free rate is not required by a risk-neutral
investor who takes risks. To price derivatives one can imag-
ine oneself in a world in which investors are risk neutral.
Options are then priced to be consistent with the market
prices of the underlying and future states of the world. This
is because the risk premium on the stock is already incor-
porated into its current price, and the price of risk for the
option and its underlying should be the same. Working in a
risk-neutral world is a shortcut to that result. See page 109.

$ABR An interest rate model, by Pat Hagan, Deep Kumar,
Andrew Lesniewski and Diane Woodward, that exploits
asymptotic analysis to make an otherwise intractable
problem relatively easy to manage. See page 446.

skew The slope of the graph of implied volatility versus
strike. A negative skew, that is a downward slope going from
left to right, is common in equity options.

smile The upward curving shape of the graph of implied
volatility versus strike. A downward curving profile would be
a frown.
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Sobol” A Russian mathematician responsible for much of the
important breakthroughs in low-discrepancy sequences, now
commonly used for simulations in finance. See page 240 and
www.broda.co.uk.

Stochastic Random. The branch of mathematics involving the
random evolution of quantities usually in continuous time
commonly associated with models of the financial markets
and derivatives. To be contrasted with deterministic.

Structured products Contracts designed to meet the specific
investment criteria of a client, in terms of market view, risk
and return.

swap A general term for an over-the-counter contract in
which there are exchanges of cash flows between two parties.
See page 492.

Swaptions An option on a swap. They are commonly Bermu-
dan exercise. See page 480.

VaR Value at Risk, an estimate of the potential downside
from one’s investments. See pages 42 and 52.

Variance swap A contract in which there is an exchange of the
realized variance over a specified period and a fixed amount.
See page 482.

Volatility The annualized standard deviation of returns of an
asset. The most important quantity in derivatives pricing.
Difficult to estimate and forecast, there are many competing
models for the behaviour of volatility. See page 162.

Yield curve A graph of yields to maturity versus maturity (or
duration). Therefore a way of visualizing how interest rates
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change with time. Each traded bond has its own point on the
curve.

Esoterica
And finally, some rather more exotic word or phrase
searches, without any descriptions:

Art of War; Atlas Shrugged; Background check; Bloodshed;
Bonus; Deal or no deal; Death; Depression; Drug test; Female;
Gay; How to impress; James Bond; Lawsuit; Lonely; Sex; Suit;
Test; The; Too old

From this final list one should be able to build up a personal-
ity profile of the typical quant.



Chapter 13

Brainteasers
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The following Brainteasers have been taken from
wilmott.com. They are all the type of questions you could
easily face during a job interview. Some of these questions
are simple calculation exercises, often probabilistic in nature
reflecting the importance of understanding probability
concepts, some have a ‘trick’ element to them, if you can
spot the trick you can solve them, otherwise you will
struggle. And some require lateral, out-of-the-box, thinking.

The Questions

Russian roulette 1 have a revolver which holds up to six bullets.
There are two bullets in the gun, in adjacent chambers. I am
going to play Russian roulette (on my own!), [ spin the bar-
rel so that [ don’t know where the bullets are and then pull
the trigger. Assuming that I don’t shoot myself with this first
attempt, am I now better off pulling the trigger a second time
without spinning or spin the barrel first?
(Thanks to pusher.)

Matching birthdays You are in a room full of people, and you
ask them all when their birthday is. How many people must
there be for there to be a greater than 50% chance that at
least two will share the same birthday?

(Thanks to baghead.)

Another one about birthdays At a cinema the manager announces
that a free ticket will be given to the first person in the
queue whose birthday is the same as someone in line who
has already bought a ticket. You have the option of getting in
line at any position. Assuming that you don’t know anyone
else’s birthday, and that birthdays are uniformly distributed
throughout a 365-day year, what position in line gives you
the best chance of being the first duplicate birthday?
(Thanks to amit7ul.)
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Biased coins You have n biased coins with the kth coin having
probability 1/(2k + 1) of coming up heads. What is the proba-
bility of getting an odd number of heads in total?

(Thanks to FV.)

Two heads When flipping an unbiased coin, how long do you

have to wait on average before you get two heads in a row?

And more generally, how long before n heads in a row.
(Thanks to MikeM.)

Balls in a bag Ten balls are put in a bag based on the result
of the tosses of an unbiased coin. If the coin turns up heads,
put in a black ball, if tails, put in a white ball. When the bag
contains ten balls hand it to someone who hasn’t seen the
colours selected. Ask them to take out ten balls, one at a
time with replacement. If all ten examined balls turn out to
be white, what is the probability that all ten balls in the bag
are white?

(Thanks to mikebell.)

Sums of uniform random variables The random variables xi,x2,
X3, ... are independent and uniformly distributed over 0 to 1.
We add up n of them until the sum exceeds 1. What is the
expected value of n?

(Thanks to balaji.)

Minimum and maximum correlation If X, Y and Z are three random
variables such that X and Y have a correlation of 0.9, and
Y and Z have correlation of 0.8, what are the minimum and
maximum correlation that X and Z can have?

(Thanks to jiantao.)

Airforce One One hundred people are in line to board Airforce
One. There are exactly 100 seats on the plane. Each pas-
senger has a ticket. Each ticket assigns the passenger to a
specific seat. The passengers board the aircraft one at a time.
GW is the first to board the plane. He cannot read, and does
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not know which seat is his, so he picks a seat at random and
pretends that it is his proper seat.

The remaining passengers board the plane one at a time. If
one of them finds their assigned seat empty, they will sit in
it. If they find that their seat is already taken, they will pick
a seat at random. This continues until everyone has boarded
the plane and taken a seat.

What is the probability that the last person to board the
plane sits in their proper seat?
(Thanks to Wilbur.)

Hit-and-run taxi There was a hit-and-run incident involving a

taxi in a city in which 85% of the taxis are green and the

remaining 15% are blue. There was a witness to the crime

who says that the hit-and-run taxi was blue. Unfortunately

this witness is only correct 80% of the time. What is the prob-

ability that it was indeed a blue car that hit our victim?
(Thanks to orangeman44.)

Annual returns Every day a trader either makes 50% with prob-
ability 0.6 or loses 50% with probability 0.4. What is the prob-
ability the trader will be ahead at the end of a year, 260 trad-
ing days? Over what number of days does the trader have the
maximum probability of making money?

(Thanks to Aaron.)

Dice game You start with no money and play a game in which
you throw a dice over and over again. For each throw, if 1
appears you win $1, if 2 appears you win $2, etc. but if 6
appears you lose all your money and the game ends. When
is the optimal stopping time and what are your expected win-
nings?

(Thanks to ckc226.)
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100 kg of berries You have 100 kg of berries. Ninety-nine
percent of the weight of berries is water. Time passes and
some amount of water evaporates, so our berries are now
98% water. What is the weight of berries now?

Do this one in your head.
(Thanks to NoDoubts.)

Urban planning There are four towns positioned on the cor-
ners of a square. The towns are to be joined by a system of
roads such that the total road length is minimized. What is
the shape of the road?

(Thanks to quantie.)

Closer to the edge or the centre? You have a square and a
random variable that picks a random point on the square
with a uniform distribution. What is the probability that
a randomly selected point is closer to the centre than to
the edge?

(Thanks to OMD.)

Snowflake Start with an equilateral triangle. Now stick
on to the middle of each side equilateral triangles with
side one third of the side of the original triangle. This
gives you a Star of David, with six points. Now add on
to the sides of the six triangles yet smaller triangles,
with side one third of the ‘parent’ triangle and so on
ad infinitum. What are the perimeter and area of the final
snowflake?

(Thanks to Gerasimos.)

The doors There are 100 closed doors in a corridor. The first
person who walks along the corridor opens all of the doors.
The second person changes the current state of every second
door starting from the second door by opening closed doors
and closing open doors. The third person who comes along
changes the current state of every third door starting from
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the third door. This continues until the 100th person. At the
end how many doors are closed and how many open?
(Thanks to zilch.)

Two thirds of the average Everyone in a group pays $1 to enter
the following competition. Each person has to write down
secretly on a piece of paper a number from 0 to 100 inclu-
sive. Calculate the average of all of these numbers and then
take two thirds. The winner, who gets all of the entrance fees,
is the person who gets closest to this final number. The play-
ers know the rule for determining the winner, and they are
not allowed to communicate with each other. What number
should you submit?

(Thanks to knowtorious and the Financial Times.)

Ones and zeros Show that any natural number has a multiple
whose decimal representation only contains the digits 0
and 1. For example, if the number is 13, we get
13 x 77 = 1001.

(Thanks to idgregorio.)

Bookworm There is a two-volume book set on a shelf, the vol-
umes being side by side, first then second. The pages of each
volume are two centimetres thick and each cover is two mil-
limetres thick. A worm has nibbled the set, perpendicularly
to the pages, from the first page of the first volume to the
last page of the second one. What is the length of the path
he has nibbled?

(Thanks to Vito.)

Compensation A number of quants are at dinner, and start dis-

cussing compensation. They want to calculate the average

compensation among themselves, but are too embarrassed to

disclose their own salaries. How can they determine the aver-

age compensation of their group? They do not have pens or

paper or any other way of writing down their salaries.
(Thanks to Arroway.)



Chapter 13: Brainteasers 5’3

Einstein’s brainteaser There are five houses of five different
colours. In each house lives a person of a different national-
ity. Those five people drink different drinks, smoke cigarettes
of a different brand and have a different pet. None of them
has the same pet, smokes the same cigarette or drinks the
same drink.

We know:

The Englishman lives in the red house.

The Swede has a dog as a pet.

The Dane drinks tea.

The green house is on the left of the white one.

The person who lives in the green house drinks coffee.

The person who smokes Pall Mall raises birds.

The owner of the yellow house smokes Dunhill.

The man who lives in the house that is in the middle

drinks milk.

The Norwegian lives in the first house.

e The man who smokes Blends lives next to the one who has
cats.

e The man who raises horses lives next to the one who

smokes Dunhill.

The man who smokes Bluemaster drinks beer.

The German smokes Prince.

The Norwegian lives next to the blue house.

The man who smokes Blends is neighbour of the one who

drinks water.

Question: Who has the fish?
(Thanks to NoDoubts.)

Gender ratio A country is preparing for a possible future war.
The country’s tradition is to send only males into battle and
so they want to increase the proportion of males to females
in the population through regulating births. A law is passed
that requires every married couple to have children and they
must continue to have children until they have a male.



5’4’ Frequently Asked Questions in Quantitative Finance

What effect do you expect this law to have on the makeup of
the population?
(Thanks to Wilbur.)

Covering a chessboard with dominoces You have a traditional
chessboard, eight by eight square. From a single diagonal,
any diagonal, you remove two squares. The board now has
just 62 squares. You also have 31 domino tiles, each of which
is conveniently the same size as two of the chessboard
squares. Is it possible to cover the board with these
dominoes?

(Thanks to alphaquantum.)

Aircraft armour Where should you reinforce the armour on
bombers? You can’t put it everywhere because it will make
the aircraft too heavy. Suppose you have data for every hit
on planes returning from their missions, how should you use
this information in deciding where to place the armour rein-
forcement?

(Thanks to Aaron.)

Hanging a picture You have a framed picture with a string
attached to it in the usual manner. You have two nails on
the wall. The problem is to try to hang the picture on the
wall such that if you remove either one of the nails then the
frame falls down.

(Thanks to wannabequantie.)

Ages of three children A census taker goes to a house, a woman
answers the door and says she has three children. The cen-
sus taker asks their ages and she says that if you multiply
their ages, the result is 36. He says he needs more info so
she tells him that the total of their ages is the address of the
building next door. He goes and looks, then comes back and
says he still needs more information. She tells him that she
won’t answer any more questions because her eldest child is
sleeping upstairs and she doesn’t want to wake him.
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What are the children’s ages?
(Thanks to tristanreid.)

The Monty Hall problem You are a contestant on a gameshow,
and you have to choose one of three doors. Behind one
door is a car, behind the others, goats. You pick a door,
number 2, say, and the host, who knows what is behind
each door, opens one of the other two doors, number 3,
say, and reveals a goat. He then says to you, ‘Do you
want to change your mind, and pick door number 1?7’
Should you?

Ants on 4 circle ' You have a circle with a number of ants scat-
tered around it at distinct points. Each ant starts walking at
the same speed but in possibly different directions, either
clockwise or anticlockwise. When two ants meet they imme-
diately change directions, and then continue with the same
speed as before. Will the ants ever, simultaneously, be in the
same positions as when they started out?

(Thanks to OMD.)

Four switches and a lightbulb Outside a room there are four
switches, and in the room there is a lightbulb. One of the
switches controls the light. Your task is to find out which
one. You cannot see the bulb or whether it is on or off from
outside the room. You may turn any number of switches
on or off, any number of times you want. But you may only
enter the room once.

(Thanks to Tomfr.)

Turnover In a dark room there is a table, and on this table
there are 52 cards, 19 face up, 33 face down. Your task is to
divide the cards into two groups, such that in each group
there must be the same number of face up cards. You can’t
switch on a light, ask a friend for help, all the usual disal-
loweds. Is this even possible?

(Thanks to golftango and Bruno Dupire.)
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Muddy faces A group of children are playing and some of them
get mud on their foreheads. A child cannot tell if he has mud
on his own forehead, although he can see the mud on the
foreheads of any other muddy children. An adult comes to
collect the children and announces that at least one of the
children has a dirty forehead, and then asks the group to
put up their hand if they know that they have mud on their
forehead. How can each child determine whether or not their
forehead is muddy without communicating with anyone else?
(Thanks to weaves.)

The Oracle at Pelphi On January 1lst you go to the Oracle at Del-
phi who tells you the opening and closing prices of a small
non-dividend-paying stock every trading day for the rest of
the year. Every opening price is the same as the closing price
the day before. You have a 0.5% one-way transaction cost
in buying or selling the stock, and can buy every day at the
opening price and sell every day at the closing price...if you
choose. On the last day of the year you must not own the
stock. What is the best you can do, having this perfect fore-
sight? Every day you can buy stock at the opening price if
you don’t own it, and sell stock at the closing price if you do
own it. Keep the problem simple, no leveraging, no short sell-
ing, no options or futures, etc.

(Thanks to cdmurray80.)

Miss Moneypenny You need to hire a secretary. There are n
possible candidates to interview and you want to find the
best, the most talented. The problem is that there is great
demand for secretaries, so if you want to make sure that you
get one you’ll have to offer her the job on the spot. Once she
walks out of the door she’s gone. You start interviewing can-
didates one after the other, they can all be ranked, so this
one is better than that, or that one is worse than another,
etc. There are no ties. But the order in which they are inter-
viewed is random. What is the best strategy for maximizing
the probability of getting the best secretary?
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Pirate puzzle There are 10 pirates in a rowing boat. Their
ship has just sunk but they managed to save 1,000 gold
doubloons. Being greedy bastards they each want all the loot
for themselves but they are also democratic and want to
make the allocation of gold as fair as possible. But how?

They each pick a number, from 1 to 10, out of a hat. Each
person in turn starting with number 1, decides how to divvy
up the loot among the pirates in the boat. They then vote.

If the majority of pirates approve of the allocation then the
loot is divided accordingly, otherwise that particular pirate
is thrown overboard into the shark-infested sea. In the lat-
ter case, the next pirate in line gets his chance at divvying
up the loot. The same rules apply, and either the division of
the filthy lucre gets the majority vote or the unfortunate soul
ends up in Davy Jones’s locker.

Question, how should the first pirate share out the spoils so
as to both guarantee his survival and get a decent piece of
the action?
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The Answers

Russian roulette

[ have a revolver which holds up to six bullets. There are
two bullets in the gun, in adjacent chambers. [ am going to
play Russian roulette (on my own!), | spin the barrel so that
I don’t know where the bullets are and then pull the trigger.
Assuming that I don’t shoot myself with this first attempt,
am | now better off pulling the trigger a second time without
spinning or spin the barrel first?

(Thanks to pusher.)

Solution

This is a very typical, simple probability Brainteaser. It
doesn’t require any sophisticated or lateral thought. Just
pure calculation.

Whenever you spin the barrel you clearly have a two in six,
or one in three chance of landing on a chamber containing a
bullet.

If you spin and pull the trigger on an empty chamber, what
are the chances of the next chamber containing a bullet?
You are equally likely to be at any one of the four empty
chambers but only the last of these is adjacent to a cham-
ber containing a bullet. So there is now a one in four chance
of the next pull of the trigger being fatal. Conclusion is that
you should not spin the barrel. After surviving two pulls of
the trigger without spinning the barrel the odds become one
in three again, and it doesn’t matter whether you spin or not
(at least it doesn’t matter in a probabilistic sense). After sur-
viving that ‘shot’ it becomes fifty-fifty and if you are success-
ful four times in a row then the next shot will definitely be
fatal.
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Matching birthoays

You are in a room full of people, and you ask them all when
their birthday is. How many people must there be for there
to be a greater than 50% chance that at least two will share
the same birthday?

(Thanks to baghead.)

Solution

This is a classic, simple probability question that is
designed to show how poor is most people’s perception of
odds.

As with many of these type of questions it is easier to ask
what are the chances of two people not having the same
birthday. So suppose that there are just the two people in
the room, what are the chances of them not having the same
birthday? There are 364 days out of 365 days that the sec-
ond person could have, so the probability is 364/365. If there
are three people in the room the second must have a birth-
day on one of 364 out of 365, and the third must have one
of the remaining 363 out of 365. So the probability is then
364 x 363/365%. And so on. If there are n people in the room
the probability of no two sharing a birthday is

364!
(365 — n)I3651-1°

So the question becomes, what is the smallest n for which
this is less than one half? And the answer to this is 23.

Another one about birthdays

At a cinema the manager announces that a free ticket will
be given to the first person in the queue whose birthday
is the same as someone in line who has already bought a
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ticket. You have the option of getting in line at any position.
Assuming that you don’t know anyone else’s birthday, and
that birthdays are uniformly distributed throughout a 365-day
year, what position in line gives you the best chance of being
the first duplicate birthday?

(Thanks to amit7ul.)

Solution
This is solved by an application of Bayes’ theorem.
Prob(A N B) = Prob(A|B) Prob(B).

You need to calculate two probabilities, first the probability
of having the same birthday as someone ahead of you in the
queue given that none of them has a duplicate birthday, and
second the probability that none of those ahead of you have
duplicate birthdays. If there are n people ahead of you then
we know from the previous birthday problem that the second

0.035 4
Probability
0.03 -
0.025
0.02 -
0.015 4

0.01 4

0.005 4

0 T T T T T
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probability is
364!

(365 — n)!3657-1°
The first probability is simply n/365. So you want to maxi-

mize
n 364!
(365 — n)!365"°

This is shown as a function of n above. It is maximized when
n =19 so you should stand in the 20th place. This maximizes
your chances, but they are still small at only 3.23%.

Biased coins

You have n biased coins with the kth coin having probability
1/(2k + 1) of coming up heads. What is the probability of get-
ting an odd number of heads in total?

(Thanks to FV.)

Solution
I include this as a classic example of the induction method.
Use p, to denote the required probability.

After n — 1 tosses there is a probability p,_; that there have
been an odd number of heads. And therefore a probability of
1 — pp—1 of there having been an even number of heads. To
get the probability of an odd number of heads after another
toss, n in total, you multiply the probability of an odd num-
ber so far by the probability of the next coin being tails and
add this to the product of the probability of an even number
and the probability of getting a head next:

)+ a=pun

(1= .
Pn p’”( 2n+ 1 2n+1
This becomes
-1 1
Prn=Pnto 1 T ont 1
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Now we just have to solve this difference equation, with the
starting value that before any tossing we have zero probabil-
ity of an odd number, so py = 0. If we write p, = a,/(2n+ 1)
then the difference equation for a, becomes the very
simple

a, = anp_1+ 1.

The solution of this with ag = 0 is just n and so the required

probability is
n

2n+1°

Pn =

Two heads

When flipping an unbiased coin, how long do you have to

wait on average before you get two heads in a row? And

more generally, how long before n heads in a row.
(Thanks to MikeM.)

Solution

It turns out that you may as well solve the general
problem for n in a row. Let N, be the number of tosses
needed to get n heads in the row. It satisfies the recursion
relationship

1 1
Nn = E(anl + 1) + E(anl + 1 +Nn)

This is because with probability % we get the required head,
and with probability % we get a tail and will have to start the
whole thing anew. Therefore we obtain

Ny =2N,1 + 2.

This has solution
N, =21 2,

This means six tosses on average to get two heads in
a row.
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Balls in a bag

Ten balls are put in a bag based on the result of the tosses
of an unbiased coin. If the coin turns up heads, put in a
black ball, if tails, put in a white ball. When the bag contains
ten balls hand it to someone who hasn’t seen the colours
selected. Ask them to take out ten balls, one at a time with
replacement. If all ten examined balls turn out to be white,
what is the probability that all ten balls in the bag are white?
(Thanks to mikebell.)

Solution
This is a test of your understanding of conditional proba-
bility and Bayes’ theorem again. First a statement of Bayes’

th .
corem Prob(B|A)Prob(A)
Prob(B)
Prob(A) is the probability of A, without any information
about B, this is unconditional probability. Prob(A|B) means

probability of A with the extra information concerning B, this
is a conditional probability.

Prob(A|B) =

In the balls example, A is the event that all of the balls in the
bag are white, B is the event that the balls taken out of the
bag are all white. We want to find Prob(A|B).

Clearly, Prob(A) is just '° = 0.000976563. Trivially Prob(B|A)
is 1. The probability that we take ten white balls out of

the bag is a bit harder. We have to look at the probability
of having n white balls in the first place and then picking,
after replacement, 10 white. This is then Prob(B). It is
calculated as

10

10! 1 n\ 10
———— 5 (75 ) =0.01391303.
g nl(10 — n)! 210 (10) 0.01391303

And so the required probability is 0.000976563/0.01391303 =
0.0701905. Just over 7%.
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Sums of uniform random variables

The random variables x1,x2,X3,... are independent and uni-
formly distributed over 0 to 1. We add up n of them until the
sum exceeds 1. What is the expected value of n?

(Thanks to balaji.)

Solution

There are two steps to finding the solution. First what is the
probability of the sum of n such random variables being less
than 1. Second, what is the required expectation.

There are several ways to approach the first part. One way is
perhaps the most straightforward, simply calculate the prob-
ability by integrating unit integrand over the domain in the
upper right ‘quadrant’ between the point (0,0, ... ,0) and the
plane x; + x2 + - - - + x, = 1. This is just

1 1-x1 1—x1—x9 1—x1—Xx9—...—Xp_1
f / / / 1 dx,...dxs dxy dx.
0 Jo 0 0

After doing several of the inner integrals you will find that the
answer is simply %

From this it follows that the probability that the sum goes
over 1 for the first time on the nth random variable is

(-3) - () ="

The required expectation is the sum of n(n —1)/n!=1/(n —
2)! from 2 to infinity, or equivalently the sum of 1/n! for n
zero to infinity. And this is our answer, e.

Minimum and maximum correlation

If X, Y and Z are three random variables such that X and Y
have a correlation of 0.9, and Y and Z have correlation of 0.8,
what are the minimum and maximum correlation that X and
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Z can have?
(Thanks to jiantao.)

Solution
The correlation matrix

1 pxy pxz
exy 1 pyz
exz pyz 1

must be positive semi-definite. A bit of fooling around with
that concept will result in the following constraints

—JA = 03 = 02 + pxvovz < pxz = /(1 = 02D — P2
+ pxypyz.

For this particular example we have 0.4585 < pyy < 0.9815.
It is interesting how small the correlation can be, less than
one half, considering how high the other two correlations
are. Of course, if one of the two correlations is exactly 1
then this forces the third correlation to be the same as the
other.

Airforce One

One hundred people are in line to board Airforce One. There
are exactly 100 seats on the plane. Each passenger has a
ticket. Each ticket assigns the passenger to a specific seat.
The passengers board the aircraft one at a time. GW is the
first to board the plane. He cannot read, and does not know
which seat is his, so he picks a seat at random and pretends
that it is his proper seat.

The remaining passengers board the plane one at a time. If
one of them finds their assigned seat empty, they will sit in
it. If they find that their seat is already taken, they will pick
a seat at random. This continues until everyone has boarded
the plane and taken a seat.
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What is the probability that the last person to board the
plane sits in their proper seat?
(Thanks to Wilbur.)

Solution

First of all let me say that the President is now BO, not GW,
but then the gag about not being able to read wouldn’t work.
This problem sounds really complicated, because of all the
people who could have sat in the last person’s seat before
their turn. Start by considering just two people, GW and you.
If GW sits in his own seat, which he will do 50% of the time,
then you are certain to get your allocated seat. But if he sits
in your seat, again with 50% chance, then you are certain to
not get the right seat. So a priori result, 50% chance. Now if
there are three people, GW either sits in his own seat or in
your seat or in the other person’s seat. The chances of him
sitting in his own seat or your seat are the same, and in the
former case you are certain to get your correct seat and in
the latter you are certain to not get it. So those two balance
out. If he sits in the other person’s seat then it all hinges on
whether the other person then sits in GW’s seat or yours.
Both equally likely, end result 50-50 again. You can build on
this by induction to get to the simple result that it is 50-50
whether or not you sit in your allocated seat.

Hit-and-run taxi

There was a hit-and-run incident involving a taxi in a city in
which 85% of the taxis are green and the remaining 15% are
blue. There was a witness to the crime who says that the
hit-and-run taxi was blue. Unfortunately this witness is only
correct 80% of the time. What is the probability that it was
indeed a blue car that hit our victim?

(Thanks to orangeman44.)

Solution
A classic probability question that has important conse-
quences for the legal and medical professions.
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Suppose that we have 100 such incidents. In 85 of these the
taxi will have been green and 15 blue, just based on random
selection of taxi colour. In the cases where the taxi was green
the witness will mistakenly say that the car is blue 20% of
the time, i.e. 17 times. In the 15 blue cases the witness will
correctly say blue 80% of the time, i.e. 12 times. So although
there were only 15 accidents involving a blue taxi there were
29 reports of a blue taxi being to blame, and most of those
(17 out of 29) were in error. These are the so-called false pos-
itives one gets in medical tests.

Now, given that we were told it was a blue taxi, what is
the probability that it was a blue taxi? That is just 12/29
or 41.4%.

Annual returns

Every day a trader either makes 50% with probability 0.6 or
loses 50% with probability 0.4. What is the probability the
trader will be ahead at the end of a year, 260 trading days?
Over what number of days does the trader have the maxi-
mum probability of making money?

(Thanks to Aaron.)

Solution

This is a nice one because it is extremely counterintuitive. At
first glance it looks like you are going to make money in the
long run, but this is not the case.

Let n be the number of days on which you make 50%. After
260 days your initial wealth will be multiplied by

1.5" 0.5260-",
So the question can be recast in terms of finding n for which
this expression is equal to 1:

2601In0.5 2601In2

=105 _Inl5 In3 _ 6404
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The first question then becomes: What is the probability of

getting 165 or more ‘wins’ out of 260 when the probability of
a ‘win’ is 0.6? The answer to this standard probability ques-
tion is just over 14%.

The average return per day is
1 —exp(0.6In1.540.4In0.5) = —3.34%.

The probability of the trader making money after one day is
60%. After two days the trader has to win on both days to
be ahead, and therefore the probability is 36%. After three
days the trader has to win at least two out of three, this has
a probability of 64.8%. After four days, he has to win at least
three out of four, probability 47.52%. And so on. With an hori-
zon of N days he would have to win at least NIn2/In3 (or
rather the integer greater than this) times. The answer to the
second part of the question is therefore three days.

As well as being counterintuitive, this question does give a
nice insight into money management and is clearly related
to the Kelly criterion. If you see a question like this it is
meant to trick you if the expected profit, here 0.6 x 0.5 +
0.4 x (—0.5) = 0.1, is positive with the expected return, here
—3.34%, negative.

Dice game

You start with no money and play a game in which you throw
a dice over and over again. For each throw, if 1 appears you
win $1, if 2 appears you win $2, etc. but if 6 appears you lose
all your money and the game ends. When is the optimal stop-
ping time and what are your expected winnings?

(Thanks to ckc226.)
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Solution
Suppose you have won an amount S so far and you have to
decide whether to continue. If you roll again you have an
expected winnings on the next throw of

15-S

1 1 1 1 1 1
€X1+€X2+€X3+6X4+6X5_6X52T'

So as long as you have less than 15 you would continue.
The expected winnings is harder.

You will stop at 15, 16, 17, 18 and 19. You can’t get to 20
because that would mean playing when you have 15, and
throwing a 5. So we must calculate the probabilities of reach-
ing each of these numbers without throwing a 6. At this point
we defer to our good friend Excel. A simple simulation of
the optimal strategy yields an expected value for this game
of $6.18.

100 kg of berries

You have 100 kg of berries. Ninety-nine percent of the weight
of berries is water. Time passes and some amount of water
evaporates, so our berries are now 98% water. What is the
weight of berries now?

Do this one in your head.
(Thanks to NoDoubts.)

Solution

The unexpected, yet correct, answer is 50 kg. It seems like a
tiny amount of water has evaporated so how can the weight
have changed that much?
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There is clearly 1 kg of solid matter in the berries. If that
makes up 2% (100 less 98%) then the total weight must be
50 kg.

Urban planning

There are four towns positioned on the corners of a square.
The towns are to be joined by a system of roads such that
the total road length is minimized. What is the shape of the
road?

(Thanks to quantie.)

Solution

One is tempted to join the towns with a simple crossroad
shape but this is not optimal. Pythagoras and some basic cal-
culus will show you that the arrangement shown in the figure
is better, with the symmetrically placed crosspiece in the
middle of the ‘H’ shape having length 1 — 1/+4/3 if the square
has unit side. Obviously there are two such solutions.
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Closer to the edge or the centre?

You have a square and a random variable that picks a ran-
dom point on the square with a uniform distribution. What is
the probability that a randomly selected point is closer to the
centre than to the edge?

(Thanks to OMD.)

Solution

Many people will think that the required probability is the
same as the probability of landing in the circle with diameter
half the side of the square. But this is not the case. The line
separating closer to centre from closer to edge is a parabola.
The answer is

(—1 + «/5)2 + % (3 - 2«/5)3/2.

Snowflake

Start with an equilateral triangle. Now stick on to the middle
of each side equilateral triangles with side one third of the
side of the original triangle. This gives you a Star of David,
with six points. Now add on to the sides of the six triangles
yet smaller triangles, with side one third of the ‘parent’ tri-
angle and so on ad infinitum. What are the perimeter and area
of the final snowflake?

(Thanks to Gerasimos.)

Solution

First count how many sides there are as a function of number
of iterations. Initially there are three sides, and then 3 x 4.
Every iteration one side turns into four. So there will be 3.4"
after n iterations. The length of each side is one third what
it was originally. Therefore after n iterations the perimeter

will be N
G)
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multiplied by the original perimeter. It is unbounded as n
tends to infinity.

The area increases by one third after the first iteration. After
the second iteration you add an area that is number of sides
multiplied by area of a single small triangle which is one

ninth of the previously added triangle. If we use A, to be the
area after n iterations (when multiplied by the area of initial

triangle) then
1 4 n—1
An =An_1+§<§> .

So o .
1 4 8
Ap=1+ = — | ==
n=l43) (9) 5
=0
The final calculation exploits the binomial expansion.

This is the famous Koch snowflake, first described in 1904,
and is an example of a fractal.

The doors

There are 100 closed doors in a corridor. The first person
who walks along the corridor opens all of the doors. The
second person changes the current state of every second
door starting from the second door by opening closed doors
and closing open doors. The third person who comes along
changes the current state of every third door starting from
the third door. This continues until the 100th person. At the
end how many doors are closed and how many open?
(Thanks to zilch.)

Solution

This is a question about how many divisors a number has.
For example the 15th door is divisible by 1, 3, 5 and 15. So
it will be opened, closed, opened, closed. Ending up closed.
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What about door 37? Thirty-seven is only divisible by 1 and
37. But again it will end up closed. Since only squares have
an odd number of divisors we have to count how many
squares there are from 1 to 100. Of course, there are only 10.

Two thirds of the average

Everyone in a group pays $1 to enter the following competi-
tion. Each person has to write down secretly on a piece of
paper a number from 0 to 100 inclusive. Calculate the aver-
age of all of these numbers and then take two thirds. The
winner, who gets all of the entrance fees, is the person who
gets closest to this final number. The players know the rule
for determining the winner, and they are not allowed to com-
municate with each other. What number should you submit?
(Thanks to knowtorious and the Financial Times.)

Solution
This is a famous economics experiment, which examines
people’s rationality among other things.

If everyone submits the number 50, say, then the winning
number would be two thirds of 50, so 33. Perhaps one should
therefore submit 33. But if everyone does that the winning
number will be 22. Ok, so submit that number. But if every-
one does that...You can see where this leads. The stable
point is clearly 0 because if everyone submits the answer 0
then two thirds of that is still 0, and so 0 is the winning num-
ber. The winnings get divided among everyone and there was
no point in entering in the first place.

In discussions about this problem, people tend to carry
through the above argument and either quickly conclude
that 0 is ‘correct’ or they stop the inductive process after a
couple of iterations and submit something around 20. It may
be that the longer people have to think about this, the lower
the number they submit.
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This is a nice problem because it does divide people into the
purely rational, game-theoretic types, who pick 0, and never
win, and the more relaxed types, who just pick a number
after a tiny bit of thought and do stand a chance of winning.

Personal note from the author: The Financial Times ran this
as a competition for their readers a while back. (The prize
was a flight in Concorde, so that dates it a bit. And the cost
of entry was just the stamp on a postcard.)

I organized a group of students to enter this competition, all
submitting the number 99 as their answer (it wasn’t clear
from the rules whether 100 was included). A number which
could obviously never win. The purpose of this was twofold,
() to get a mention in the paper when the answer was
revealed (we succeeded) and (b) to move the market (we
succeeded in that as well).

There were not that many entries (about 1,500 if I remember
rightly) and so we were able to move the market up by one
point. The FT printed the distribution of entries, a nice expo-
nentially decaying curve with a noticeable ‘blip’ at one end!
The winner submitted the number 13.

I didn’t tell my students this, but I can now reveal that I
secretly submitted my own answer, with the purpose of
winning ... my submission was 12. Doh!

Ones and zeros

Show that any natural number has a multiple whose decimal
representation only contains the digits 0 and 1. For example,
if the number is 13, we get 13 = 1001.

(Thanks to idgregorio.)
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Solution

Consider the n+ 1 numbers 1, 11, 111, 1111, etc. Two of them
will be congruent modulo n. Subtract the smaller one from
the bigger one. You will get a number containing only 0’s
and 1’s.

Bookworm

There is a two-volume book set on a shelf, the volumes being
side by side, first then second. The pages of each volume
are two centimetres thick and each cover is two millime-
tres thick. A worm has nibbled the set, perpendicularly to
the pages, from the first page of the first volume to the last
page of the second one. What is the length of the path he has
nibbled?

(Thanks to Vito.)

Solution

Just four millimetres. Think about where the first page of the
first volume and the last page of the second volume will be
relative to each other.

Compensation

A number of quants are at dinner, and start discussing
compensation. They want to calculate the average com-
pensation among themselves, but are too embarrassed to
disclose their own salaries. How can they determine the
average compensation of their group? They do not have
pens or paper or any other way of writing down their
salaries.

(Thanks to Arroway.)
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Solution

One of the quants adds a random number to his salary. The
total he then whispers to his neighbour on the right. This
person adds his own salary to the number he was given,
and whispers it to the person on his right. This continues all
around the table until we get back to the first quant who sim-
ply subtracts his random number from the total and divides
by the number of quants at the table. That is the average
compensation of the group.

Einstein’s brainteaser

There are five houses of five different colours. In each house
lives a person of a different nationality. Those five people
drink different drinks, smoke cigarettes of a different brand
and have a different pet. None of them has the same pet,
smokes the same cigarette or drinks the same drink.

We know:

e The Englishman lives in the red house.

e The Swede has a dog as a pet.

e The Dane drinks tea.

e The green house is on the left of the white one.

e The person who lives in the green house drinks coffee.
e The person who smokes Pall Mall raises birds.

e The owner of the yellow house smokes Dunhill.

e The man who lives in the house that is in the middle

drinks milk.

The Norwegian lives in the first house.

e The man who smokes Blends lives next to the one who has
cats.

e The man who raises horses lives next to the one who
smokes Dunbhill.

e The man who smokes Bluemaster drinks beer.

e The German smokes Prince.

e The Norwegian lives next to the blue house.
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e The man who smokes Blends is neighbour of the one who
drinks water.

Question: Who has the fish?
(Thanks to NoDoubts.)

Solution

This was a question posed by Einstein who said that 98% of
people can’t solve it. More likely 98% of people can’t be both-
ered. And in these days of Su Doku, the percentage of people
who can solve it will be higher.

Oh, and the answer is the German.

(Historical note: Smoking was something that the poor

and the uneducated used to do. For an explanation of the
process, see Newhart, R. ‘Introducing tobacco to civilization’:
‘What you got for us this time, Walt...you got another
winner for us? Tob-acco...er, what’s tob-acco, Walt? It’s

a kind of leaf, huh...and you bought eighty tonnes of
it”!l.. . Let me get this straight, Walt...you've bought eighty
tonnes of leaves?...This may come as a kind of a surprise
to you Walt but...come fall in England, we’re kinda upto
our...It isn’t that kind of leaf, huh?...Oh! what kind is it
then...some special kind of food?...not exactly?...Oh,

it has a lot of different uses...Like...what are some of
the uses, Walt? ... Are you saying “snuff,” Walt?... What’s
snuff? ... You take a pinch of tobacco...(ha ha ha)...and
you shove it up your nose...(ha ha ha)...and it makes
you sneeze?...(ha ha ha)...Yeh, | imagine it would, Walt!
Hey, Goldenrod seems to do it pretty well over here! It
has other uses though, huh?...you can chew it!...Or

put it in a pipe!...or you can shred it up...and put it in
a piece of paper...(ha ha ha)...and roll it up...(ha ha
ha)...don’t tell me, Walt, don'’t tell me...(ha ha ha)...you
stick it in your ear, right? (ha ha ha)...Oh!...between
your lips!... Then what do you do, Walt?...(ha ha ha)...
you set fire to it!...(ha ha ha) Then what do you do,
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Walt?...(ha ha ha)...You inhale the smoke, huh!... (ha ha
ha) You know, Walt...it seems you can stand in front of
your own fireplace and have the same thing going for you!)

Gender ratio

A country is preparing for a possible future war. The coun-
try’s tradition is to send only males into battle and so they
want to increase the proportion of males to females in the
population through regulating births. A law is passed that
requires every married couple to have children and they
must continue to have children until they have a male.

What effect do you expect this law to have on the makeup of
the population?
(Thanks to Wilbur.)

Solution
A bit of a trick question, this, and open to plenty of interest-
ing discussion.

The obvious answer is that there is no effect on the gender
ratio. However, this would only be true under certain assump-
tions about the distribution of the sexes of offspring among
couples. Consider a population in which each couple can only
ever have boys or only ever have girls. Those who have boys
could stop after one child, whereas those who have girls can
never stop having children, with the end result being more
girls than boys. (Of course, this might not matter since the
goal is for there to be more males, there is no requirement
on the number of females.) And if there is any autocorrelation
between births this will also have an impact. If autocorrela-
tion is 1, so that a male child is always followed by a male,
and a female by a female, then the ratio of males to females
decreases, but with a negative correlation the ratio increases.
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Covering a chessboard with dominoes

You have a traditional chessboard, eight by eight square.
From a single diagonal, any diagonal, you remove two
squares. The board now has just 62 squares. You also have
31 domino tiles, each of which is conveniently the same size
as two of the chessboard squares. s it possible to cover the
board with these dominoes?

(Thanks to alphaquantum.)

Solution

No, since a domino always occupies a white and a black
square! If you remove two from the same diagonal then
they will have the same colour, leaving you with 32 of one
colour and 30 of the other, so it is impossible to cover two
squares.

Aircraft armour

Where should you reinforce the armour on bombers? You

can’t put it everywhere because it will make the aircraft too

heavy. Suppose you have data for every hit on planes return-

ing from their missions, how should you use this information

in deciding where to place the armour reinforcement?
(Thanks to Aaron.)

Solution

The trick here is that we only have data for aircraft that sur-
vived. Since hits on aircraft are going to be fairly uniformly
distributed over all places that are accessible by gunfire one
should place the reinforcements at precisely those places
which appeared to be unharmed in the returning aircraft.
They are the places where hits would be ‘fatal.” This is a true
Second World War story about the statistician Abraham Wald
who was asked precisely this.
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Hanging a picture

You have a framed picture with a string attached to it in the

usual manner. You have two nails on the wall. The problem

is to try and hang the picture on the wall such that if you

remove either one of the nails then the frame falls down.
(Thanks to wannabequantie.)

Solution
Here’s one solution:

/TON

It’s quite simple to ‘mathematize’ this problem as follows.
Use x to denote wrapping once around the first nail in the
clockwise direction, with x> meaning wrap the string around
the first nail twice and, crucially, x~! means wrapping anti-
clockwise around the first nail. Similarly y etc. for the second
nail. To solve this problem you need an expression involving
products of x’s and y’s and their inverses which is not the
identity (for the ‘identity’ means no wrapping and the picture
falls!) but such that when either the x or the y are replaced
with the identity (i.e. removed!) the result becomes the iden-
tity! (You have that multiplication by the identity leaves x
and y unchanged, that x x~! =x~!x =1, that x y # y x and
that 1-1 = 1)

One such solution is x y x~! y~!. Check the maths and then
draw the picture.

The above picture is represented by x y~1 x~! y.
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Ages of three children

A census taker goes to a house, a woman answers the door
and says she has three children. The census taker asks their
ages and she says that if you multiply their ages, the result
is 36. He says he needs more info so she tells him that the
total of their ages is the address of the building next door.
He goes and looks, then comes back and says he still needs
more information. She tells him that she won’t answer any
more questions because her eldest child is sleeping upstairs
and she doesn’t want to wake him.

What are the children’s ages?
(Thanks to tristanreid.)

Solution
First suitably factorize 36: (1,1,36), (1,4,9), (1,2,18), (1,3,12),
(1,6,6), (2,3,6), (2,2,9), (3,3,4).

When the census taker is unable to decide from the informa-
tion about nextdoor’s house number we know that nextdoor
must be number 13, because both (1,6,6) and (2,2,9) add

up to 13. All of the other combinations give distinct sums.
Finally the mother refers to the ‘eldest child,” and this rules
out (1,6,6) because the two older children have the same age.
Conclusion the ages must be 2, 2 and 9.

Caveat: (1,6,6) is technically still possible because one of the
six-year olds could be nearing seven while the other has only
just turned six.

The Monty Hall problem

You are a contestant on a gameshow, and you have to
choose one of three doors. Behind one door is a car, behind
the others, goats. You pick a door, number 2, say, and the
host, who knows what is behind each door, opens one of the
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other two doors, number 3, say, and reveals a goat. He then
says to you, “Do you want to change your mind, and pick
door number 1?”

Should you?

Solution
This is a classic question and is based on the real-life Ameri-
can gameshow called Let’s Make a Deal.

Assuming that you prefer cars to goats then the correct
thing to do is change door. (There is a twist though, to be
explained at the end.) However, as you will probably know
if you ever watch a magic show, people are more often than
not reluctant to change their minds for reasons to do with
belief in fate, and possible regret. (If you choose the wrong
door and don’t change then that was fate, it just wasn’t your
lucky day. If you choose correctly and then change then it is
your ‘fault.”)

Some people think the answer to this question is counterintu-
itive. [ don’t. But let’s do the maths anyway.

Suppose you don’t change door. The probability of you hav-
ing already picked the correct door remains at one in three.
It’s easy to see this, just imagine that you didn’t hear the
gameshow host, or you had your eyes closed when being
given the option to change.

That leaves a probability that if you change to the only other
possible remaining door, the probability is two thirds. There-
fore change.

You can also argue as follows, assuming the car is behind
door 1:

e You pick door 1. Host opens one of the other doors, it
doesn’t matter which. You change. You lose.
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e You pick door 2. Host must open door 3, because the car
is behind door 1! You change, and win.

e You pick door 3. Host must open door 2, because the car
is behind door 1. You change, and win.

Hence the odds.

And now the twist. Imagine the following scenario. You are
going for a quant interview. You are doing well, and the inter-
viewer casually says ‘Have you heard of the Monty Hall prob-
lem?’ You reply that you have. The interviewer picks up three
paper cups and a coin. He asks you to turn away while he
puts the coin under one of the cups. ‘Ok, you can look now.
We are going to play a little game. If you can find the coin I
will give you a job.’” Fantastic, you think, knowing Monty Hall
you are confident of a two thirds chance of getting the job!

‘Pick a cup.” You pick cup number 1.
What happens next is subtle.

The interviewer lifts up cup number 2 to reveal nothing.
‘Would you like to change your mind?’ Of course, you would!
So you say yes, the interviewer lifts up cup number 3 to
reveal...nothing! You leave unemployed.

That was one scenario. It happens one third of the time.
There is another scenario though. Go back to when you
picked cup number 1. And without any comment, the
interviewer picks up that cup, and beneath it, nothing! That
happens two thirds of the time, and again no job.

Do you see what happened? The interviewer was only playing
Monty Hall when it was to his advantage to do so. When you
pick the wrong cup initially, as you will more often than not,
then it’'s not Monty Hall! After all, the interviewer didn’t say
you were going to play the Monty Hall game, he only asked if
you’d heard of it. Subtle, but it cost you the job.
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This is related to a true story of a friend of mine, a very
clever person, going for a job to work for a household-name
quant. My friend was asked about Monty Hall by a quant who
only knew the basics of the problem, but my friend knew
about the game-theory aspects. An argument ensued and my
friend did not get the job, despite clearly being brighter than
the interviewer!

Ants on a circle

You have a circle with a number of ants scattered
around it at distinct points. Each ant starts walking at
the same speed but in possibly different directions,
either clockwise or anticlockwise. When two ants meet
they immediately change directions, and then continue
with the same speed as before. Will the ants ever,
simultaneously, be in the same positions as when they
started out?
(Thanks to OMD.)

Solution

What are the chances of that happening? Surely all that
bouncing around is going to shuffle them all up. Well, the
answer, which you’'ve probably now guessed, is that, yes,
they do all end up at the starting point. And the time at
which this happens (although there may be earlier times
as well) is just the time it would take for one ant to go
around the entire circle unhindered. The trick is to start
by ignoring the collisions, just think of the ants walking
through each other. Clearly there will then be a time at
which the ants are in the starting positions. But are the ants
in their own starting positions? This is slightly harder to
see, but you can easily convince yourself, and furthermore
at that time they will also be moving in the same direction
they were to start with (this is not necessarily true of
earlier times at which they may all be in the starting
positions).
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Four switches and a lightbulb

Outside a room there are four switches, and in the room
there is a lightbulb. One of the switches controls the light.
Your task is to find out which one. You cannot see the bulb
or whether it is on or off from outside the room. You may
turn any number of switches on or off, any number of times
you want. But you may only enter the room once.

(Thanks to Tomfr.)

Solution
The trick is to realize that there is more to the bulb than
light.

Step one: turn on switches 1 and 2, and go and have some
coffee. Step two: turn off 1 and turn on 3, then go quickly
into the room and touch the lamp.

It is controlled by switch 1 if it is hot and dark, 2 if it is hot
and light, 3 if it is cold and light, 4 if it is cold and dark.

Turnover

In a dark room there is a table, and on this table there are
52 cards, 19 face up, 33 face down. Your task is to divide the
cards into two groups, such that in each group there must
be the same number of face-up cards. You can’t switch on a
light, ask a friend for help, all the usual disalloweds. Is this
even possible?

(Thanks to golftango and Bruno Dupire.)

Solution
An elegant lateral thinking puzzle, with a simple solution.

Move any 19 cards to one side and turn them all over. Think
about it!
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The use of an odd number, 19 in this case, can be seen as
either a clue or as a red herring suggesting that the task is
impossible.

Muddy faces

A group of children are playing and some of them get mud on
their foreheads. A child cannot tell if he has mud on his own
forehead, although he can see the mud on the foreheads of
any other muddy children. An adult comes to collect the chil-
dren and announces that at least one of the children has a
dirty forehead, and then asks the group to put up their hand
if they know that they have mud on their forehead. How can
each child determine whether or not their forehead is muddy
without communicating with anyone else?

(Thanks to weaves.)

Solution

If there is only one child with mud on his forehead he will
immediately know it because all of the other children are
clean. He will therefore immediately raise his hand.

If there are two children with muddy foreheads they will not
immediately raise their hands because they will each think
that perhaps the adult is referring to the other child. But
when neither raises his hand both will realize that the other
is thinking the same as he and therefore both will raise their
hands.

Now if their are three muddy children they will follow a sim-
ilar line of thinking but now it will take longer for them all to
realize they are muddy. And so on for an arbitrary number of
muddy children.

To make this work we really need something to divide time
up into intervals, a bell perhaps, because no doubt not all
children will be thinking at quite the same speed!
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The Oracle at Delphi

On January 1st you go to the Oracle at Delphi who tells you
the opening and closing prices of a small non-dividend-paying
stock every trading day for the rest of the year. Every
opening price is the same as the closing price the day
before. You have a 0.5% one-way transaction cost in buying
or selling the stock, and can buy every day at the opening
price and sell every day at the closing price...if you
choose. On the last day of the year you must not own the
stock. What is the best you can do, having this perfect
foresight? Every day you can buy stock at the opening price
if you don’t own it, and sell stock at the closing price if
you do own it. Keep the problem simple, no leveraging,
no short selling, no options or futures, zero interest
rate, etc.

(Thanks to cdmurray80.)

Solution

We must determine at the start of each day whether to buy
if we are neutral, stay neutral or sell if we are long, and do
so in a way that maximizes our wealth. How hard can that

be? Approached correctly this is a straightforward problem
in ‘dynamic programming.’

Before we start, one trivial observation: Days of consecutive
gains/losses may as well be treated as a single day, so that
the stock effectively goes up, down, up, down, etc., on con-
secutive days.

Introduce some symbols:

L; = The maximum wealth you can have at the end of day i,
given that you must hold the stock at the end of day i

and

N; = The maximum wealth you can have at the end of day i,
given that you must be neutral at the end of day i.
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Now imagine that we have found the optimal strategy up to
and including day i — 1. At the end of that day either you own
the stock or you don’t. What should we do on day i? If we are
long on day i — 1 then we either stay long or sell (losing on
transaction costs in the process). If we are neutral on day

i — 1 then we either stay neutral or go long (losing on trans-
action costs in the process). Optimization is then achieved
simply by looking at which of the alternatives is better. If

we end up long on day i/ we can only have got there from
two states, long already, or flat the day before and have just
bought:

Li = max((1 + R)Li—1, (1 = B)(1 + R)N;-1)

where R; is the return over day i and k is the transaction
cost, 0.5% in this example. This simply asks which is better
out of staying long or selling and going flat.

Similarly
N; = max(N;—1,(1 — R)L;_1).

The following image may be of some help in understanding
this.

The above is easily coded up, as a simple loop, you just need
to add the initial conditions that Ly = 0 and Ny = 1, represent-
ing the initial wealth, and then the final result is max(Ny, (1 —
R)Ly), where M is the total number of days.

Long, L, 1 Stay long

v

Long, L; Either (1+R)L._4 or
(1=K (1+R)N;4

Sell

Buy

Neutral, N { Stay flat , Neutral, N, Either N, ; or (1-K)L;
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Miss Moneypenny

You need to hire a secretary. There are n possible can-
didates to interview and you want to find the best, the
most talented. The problem is that there is great demand
for secretaries, so if you want to make sure that you get
one you’ll have to offer her the job on the spot. Once she
walks out of the door she’s gone. You start interviewing
candidates one after the other, they can all be ranked,
so this one is better than that, or that one is worse
than another, etc. There are no ties. But the order in
which they are interviewed is random. What is the best
strategy for maximizing the probability of getting the best
secretary?

Solution

This problem is known in mathematical circles as the Sec-
retary Problem, the Marriage Problem, the Sultan’s Dowry
problem, etc.

The best strategy is first to interview a number applicants
with no intention of accepting any of them, call this num-
ber m < n. Then continue interviewing the rest one by one
and then offer the job to the next one that is better than all
of the ones previously interviewed, i.e. better than all the
first m candidates that you interviewed but rejected out of
hand. This is an example of an optimal stopping problem (not
dissimilar to the problem of when to exercise an American
option!). The question then becomes how many to interview,
i.e. what is m?

Let’s suppose that you have interviewed and rejected the
first m applicants. You now interview the (m + 1)th. You

will accept this one if she is better than the first m. What
is the probability that the (m + 1)th applicant is the best
out of all n? This one is easy. The probability that this is
the best applicant is the same as any one being the best,
ie. 1/n.
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What is the probability of choosing candidate m + 2 and her
turning out to be the best of all? This is harder because
you have to have rejected candidate m + 1 as being worse
than the first m and candidate m + 2 has to be the best

of all. Well, the probability of m + 2 actually being the

best out of all candidates is still 1/n but she will only
being offered the job if the best applicant out of the first
m+ 1 is also the best applicant out of the initial rejected
m. Now that’s easy. Imagine lining up the m + 1 rejected
applicants in order of increasing talent from left to right,
what is the probability that the very best of these is not

at the right-hand end? Just m/(m + 1). So the probability

of candidate m + 2 being the best and being accepted

is n(mLH)

Next what is the probability of choosing candidate m + 3
and her turning out to be the best? Again we have the
1/n probability of her being the best. And the probability
of the previous best being in the first m out of the total
rejected m+ 2 is m/(m + 2). So the required probability

2 m
IS S

Keep going in this vein, and add up all the probabilities to
find that the probability of hiring the best applicant using
this strategy is

m (1 1 1 1
— =+ + ++ :
n\m m+1 m+2 n—1

And this is what we have to maximize!

If n =3 then m =1, i.e. interview the first applicant with no
intention of accepting. And then start interviewing with the
intention of accepting. This gives you a probability of 0.5 of
choosing the best.

If n =4 then m = 1. This gives you a probability of 11/24 of
choosing the best.
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If n =15 then m = 2. This gives you a probability of 13/30 of
choosing the best.

The secretary question is often posed with the extra ‘...for n
large....” What is the optimal stopping time as n — co?

The probability of success can be written as

m nfl1 mfl1
n(Li-Th)

Since

n
1
lim (Z ) =y, the Euler constant, 0.57722...
n—oo i 1

the probability of success can be approximated for large n

(and assuming that m is also large) by

Zn()

The maximum of this is easily found by differentiating with
respect to m/n and we find in the limit of large n that m =
n/e where e. So you should interview a fraction 1/e of all
candidates before contemplating hiring anyone!

Pirate puzzle

There are 10 pirates in a rowing boat. Their ship has just
sunk but they managed to save 1,000 gold doubloons. Being
greedy bastards they each want all the loot for themselves
but they are also democratic and want to make the allocation
of gold as fair as possible. But how?

They each pick a number, from 1 to 10, out of a hat. Each
person in turn starting with number 1, decides how to divvy
up the loot among the pirates in the boat. They then vote.
If the majority of pirates approve of the allocation then the
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loot is divided accordingly, otherwise that particular pirate
is thrown overboard into the shark-infested sea. In the lat-
ter case, the next pirate in line gets his chance at divvying
up the loot. The same rules apply, and either the division of
the filthy lucre gets the majority vote or the unfortunate soul
ends up in Davy Jones’s locker.

Question: how should the first pirate share out the spoils so
as to both guarantee his survival and get a decent piece of
the action?

Solution

This is obviously one of those questions where you have to
work backwards, inductively, to the solution for 10 pirates.
Along the way we’ll see how it works for an arbitrary number
of pirates.

Let’s start with two pirates, with 1,000 doubloons to share.
Pirate 2 gets to allocate the gold. Unless he gives it all

to Pirate 1 the vote will be 50:50 and insufficient to save
him. Splash! We are assuming here that an equal split of
votes isn’t quite enough to count as a majority. So he gives
Pirate 1 the entire hoard, and prays that he lives. (Of course,
Pirate 1 could say hard luck and dump Pirate 2 overboard
and still keep the money.)

Now on to the three-pirate case. In making his allocation
Pirate 3 must consider what would happen if he loses the
vote and there are just two pirates left. In other words, he
should make his allocation so that it is preferred to the next
scenario by sufficient numbers of pirates to ensure that he
gets a favourable vote.

Pirate 3 allocates 1,000 to himself and nothing to the others.
Obviously Pirate 3 will vote for this. And so will Pirate 2, if
he votes against in the hope of getting some loot he will find
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himself in the two-pirate situation...in which case he could
easily end up over the side.

Pirate 3 Pirate 2 Pirate 1
0 1000
1000 0 0

Now to four pirates. Pirate number 3 is not going to vote
for anything number 4 says because he wants Pirate 4 in
the deep. So there’s no point in giving him any share at all.
Pirates 2 and 1 will vote for anything better than the zero
they'd get from the three-pirate scenario, so he gives them
one each and 998 to himself.

Pirate 4 Pirate 3 Pirate 2 Pirate 1

1000

1000 0

998 0

With five pirates similar logic applies. Pirate 4 gets zero. Then
Pirate 5 needs to get two votes from the remaining three
pirates. What is the cheapest way of doing this? He gives one
to Pirate 3 and two to either of Pirates 2 and 1. Pirate 5 gets
the remaining 997.

Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1

1000 0

1000 0 0

998 0 1 1

997 0 1 2/0 0/2
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Pirate 6 needs four votes to ensure survival, his own plus
three others. He'll never get Pirate 5 so he needs three votes
from Pirates 4, 3, 2 and 1. Pirate 4 is cheap, he only needs

1 doubloon. But how to get two votes from the remaining
Pirates 3, 2 and 1?

There are clearly several options here. And we are going to
have to think carefully about the actions of the Pirates when
faced with uncertainty.

Imagine being Pirate 2 when Pirate number 6 is allocating
the gold. Suppose he gives you zero, what do you do? You
may as well vote against, because there is a chance that on
the next round you will get two doubloons. If Pirate 6 gives
you two doubloons you should vote in favour. Things cannot
be improved on the next round but may get worse. If given
one doubloon now, what should you do? Next round you
will either get zero or two. A tricky choice. And a possibly
personal one.

But it is up to Pirate 6 to make sure you are not faced with
that tricky decision which may result in his expulsion from
the boat.

The conclusion is that Pirate 6 should give two
doubloons to any of Pirates 3, 2 and 1. It doesn’t matter
which.

Pirate 6 Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1

1000 0

1000 0 0

998 0 1 1

997 0 1 2/0 0/2

995 0 1 2/2/0 2/0/2 0/2/2
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On Pirate 7’s turn he will give zero to Pirate 6, one to Pirate 5
and two to any of Pirates 4 down to 1, again it doesn’t matter
which two, they will both now vote in his favour.

Pirate 7 Pirate 6 Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1

1000 0
1000 0 0
998 0 1 1
997 0 1 2/0 0/2
995 0 1 2/2/0 2/0/2 0/2/2
995 0 1| Two doubloons to any two of these four

Now we settle down into a rhythm. Here’s the entire alloca-
tion table.

Pirate 10 | Pirate 9 Pirate 8 Pirate 7 Pirate 6 Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1
1000 0
1000 0 0
998 0. 1 1
997 0. 1 2/0 0/2
995 0 1 2/2/0 2/0/2 0/2/2
995 0 1] Two doubloons to any two of these four
993 0, 1| Two doubloons to any three of these five
993 0, 1| Two doubloons to any three of these six
991 0 1 Two doubloons to any four of these seven

This Brainteaser is particularly relevant in quantitative
finance because of the backward induction nature of the
solution. This is highly reminiscent of the binomial model in
which you have to calculate today’s option price by working
backwards from expiration by considering option prices at
different times.

Another of these backward induction types is the famous
Brainteaser, the unexpected hanging. In this problem we
have a prisoner who has been condemned to be executed
in ten days’ time and an unusually considerate executioner.
The executioner wants the prisoner to suffer as little mental
anguish as possible during his last days and although the
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prisoner knows that sometime in the next ten days he will
be executed he doesn’t know when. If the executioner can
surprise him then the prisoner will be able to enjoy his last
few days, at least relatively speaking. So, the executioner’s
task is to wake the prisoner up one morning and execute him
but must choose the day so that his visit was not expected
by the prisoner.

Let’s see how to address this problem by induction back-
wards from the last of the ten days. If the prisoner has not
been executed on one of the first nine days then he goes to
bed that night in no doubt that tomorrow he will be woken
by the executioner and hanged. So he can’t be executed on
the last day, because it clearly wouldn’t be a surprise. Now,
if he goes to bed on the night of the eighth day, not having
been executed during the first eight days then he knows he
can’t be executed on the last day because of the above, and
so he knows that he must be executed tomorrow, day nine.
Therefore it won’t be a surprise and therefore the execution
can’t happen on the ninth day either. We have ruled out the
last two days, and by working backwards we can rule out
every one of the ten days.

On day four the prisoner is awoken by the executioner, and
hanged. Boy, was he surprised!

Where did our backward induction argument go wrong? Ok,
now I can tell you that this brainteaser is called the unex-
pected hanging paradox. There have been many explanations
for why the prisoner’s logic fails. For example, because the
prisoner has concluded that he can’t be hanged, then to sur-
prise him is rather simple.



Chapter 14

Paul & Dominic's Guide to
Getting a Quant Job
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l f you enjoyed this book, and are looking for a job in
quantitative finance, you might be interested in Paul &
Dominic’s Guide to Getting a Quant Job. To whet your appetite
there follows the opening sections of the first version of this
famous guide. For details on how to get the full guide in its
latest version email paul@wilmott.com.

Introduction

This guide is for people looking for their first or second job
in Quant Finance, the theory being that after a few years you
ought to know most of this stuff.

Making a difference If the hiring process is working well, the
people seen by the bank will be roughly the same quality and
from comparable backgrounds. Thus you need to stand out
in order to win. We speak to a lot of recruiting managers, and
we find that the difference between the one who got the job,
and the person who came second is often very small for the
employer, but obviously rather more important for you.

You have to walk a line between standing out, and not seem-
ing too much for them to handle.

Understand the process Interviewing people is a major industry all
by itself, multiply the number of applicants by the number of
interviews they attend and you sometimes wonder how any
useful work ever gets done. Certainly this thought occurs to
interviewers on a regular basis. They want it to end, soon,
and although it is important to get the right people almost no
one enjoys the process, and this is made worse by the fact
that >80% of the work is wasted on those you never hire.
Thus a core objective must be to make life as easy for the
interviewer as possible. This means turning up on time, but
not too early, being flexible on interview times, and trying to
be pleasant.
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What you need to prove

You are smart

You can work with people

You can get things done

You can manage yourself and your time
You are committed to this line of work.

Kissing frogs Like trying to find a prince by kissing frogs, you
have to accept that it is rare for your first attempt to suc-
ceed, so you must be prepared for a long haul, and to pursue
multiple options at the same time. This means applying to
several banks, and not being deterred by failure to get into a
particular firm.

Writinga CV

A CV is not some passive instrument that simply tells a
recruiter why he should interview you, it also to some extent
sets the agenda for the questions you will get when he meets
you. Thus it is important to choose what you disclose as a
balance between what you think he wants and the areas in
which you are confident in answering questions.

Read the job specification You should think of how you can
present your skills and experience so as to be as close a
match as possible. At one level this might sound obvious,
but you should be aware that in many banks your CV will
not be read by the hiring manager at all. Although at P&D
we’ve actually done this stuff, it is often the case that CVs
are filtered by people with little or no skills in finance.
Often they resort to looking for keywords. Thus you should
not rely upon the interviewer working out that if you have
done subject X, you must have skills Y and Z. If you believe
those skills are critical for this job, then make sure this
can easily be spotted. Read the specification carefully, and
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if it specifically asks for a skill or experience, then include
whatever you can to illustrate your strengths. If you believe
particular skills to be critical, mention them in your covering
letter as well (or if you believe the headhunter is especially
dim).

Make sure you can be contacted Make sure your contact details
are reliable and that you regularly monitor the relevant
email account(s) and telephones. It is sad when someone’s
CV shows great promise, but he doesn’t respond in time

to be interviewed. If you are at university, be aware that
your current email address may stop working soon after you
complete your course. GMail is to be preferred over Yahoo
for a personal email address.

Get it checked Have your CV and covering letter proofread by
a native English speaker. This is important because people
really do judge your ability by how you express yourself.
Quant Finance is an international sport, with speakers of
every language, and the ability to communicate difficult ideas
is important, and if you can’t get the name of your university
correct, it makes one wonder if you can explain your views
on jump diffusion. Also CVs use a particular style of English,
which is subtly different from the one you learned in school.
As there are a lot more applicants than jobs, the early stages
are optimized to filter out those who stand no chance of get-
ting in. Thus you must take considerable care to make sure
you don’t fail at an early stage because of trivial errors.

Covering letter In your covering email, mention where you saw
the advertisement and, importantly, which job you are apply-
ing for. If you don’t say which job you are applying for, you
are relying upon the person receiving your application to
guess correctly. That does not always happen, and the larger
the firm, the lower the probability, and at the very least it
makes their lives harder, which is not the way to start the
relationship.
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A good format for a covering letter is to respond to the job
specification point by point. State your ability to handle each
item, together with why you think you can do it. This makes
your CV more digestible, and shows that you are serious
about the application.

Opinion is divided about whether you should have
some ‘statement of intent.’ If you can think of something
useful to say here, by all means put it, but be aware
that a lot of new entrants to the market ‘want to
pursue a career in finance with a leading

firm.’

Above we emphasize getting your CV checked, and
this applies especially to the covering letter. Some
managers discard the CV unread if the letter is

sloppy.

Fonts and layout Some things ON YOUR CV are
important, and you may want tO draw their attention
to them. Do not do this excessively. It is really irritat-
ing. The only time breaking THIS rule nas worked tc
our knowledge Was a hardcore programmer who
learned the POStscript language that PCs use to
talk directly to printers and he developed A pro-
gram that printed his CV @S concentric spirals of text
in varying size. Viewed on SCreen it would slowly
spin. YES, Dominic hired him.

If you're not prepared to spend at least a month
learning reverse Polish notation, use a standard
template. (Stick 10 twO main font families, a sanserif,
such as Arial, for large headings, and a serif font, such
as Times, for main body text.)
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PPF Make a PDF if possible. These have a more professional
feel than Word documents, they do not have virus problems
(yet) and they retain original fonts and layout. Whatever soft-
ware you use, print it out to make sure that what you see is
really what you get. Perhaps view on, and print from, another
PC to double check.

Name Give your document a name that will be meaningful
to the recruiter. Call it YourNameHere.pdf and not CV.pdf in
the spirit of making it easier for the recruiter. It’s not nice
to have a large number of files with the same name, and it’s
actually quite easy to get your CV written over by the CV by
someone else who also called it CV.

Dates Make sure your dates ‘join up’ as much as possible.
Some people in the recruitment process worry about gaps.

Be honest If you claim skills in some area, it’s a good bet
that you will be asked questions about it. The CV should
be a fair and positive statement of what you have to
offer. No one expects you to share your history of skin
diseases, but you'll be expected to back the talk with
action.

Show that you can 0o things By this point in your life you've
soaked up a lot of information, and acquired skills, which is,
of course, good. But a big question in the inquisitor’s mind
is whether you can translate this into real actions that are
finished, complete and correct. One can pass most exams by
getting answers wrong, but by showing good working, and an
understanding of the principles. However, banks aren’t really
all that happy if you lose a pile of money by getting ‘nearly’
the right answer, where you put a minus when it should have
been a plus. They like to see projects where you've started,
worked to a goal and completed without having to have your
hand held. This is a big reason why they like PhDs since it’s
a powerful argument that you can complete things. However,
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if you're going for a PhD-level job, you still have to beat
others who have reached that level.

Projects completed are good, and you should be prepared
to answer questions on them. The people who interview you
will often have your sort of academic background, so these
questions may be deep.

You may have changed direction in your career, and you
should be prepared to answer why you made any given
choice. It is important to be able to show that you didn’t just
‘give up’ on an area when it got tough.

Interests and hobbies Several of the people you meet will want
to understand what sort of personality you have, or indeed
whether you actually have one.

In finance you spend more of your waking hours with your
colleagues than the person you marry, so it is good to
present yourself as interesting as well as smart. They all
want to feel you can work with others, so the cliché of
‘reading, walking and listening to music,” doesn’t really cut
it. Certainly you shouldn’t fake an interest in something, but
do try to find something with which you can speak with a
little passion. One candidate had somehow acquired a formal
qualification in stage combat. Although it’s relatively rare for
quants to need to fight each other with swords, it’s the sort
of thing that catches people’s eyes, and can make a crucial
difference. It also gives the non-specialist people who you
will meet something they can talk to you about.

Last job first In your CV your most recent/current employment
should stand out and be relevant to the job for which

you are applying. Someone reading your CV may never

get beyond this one piece of information. Make sure your
dates are correct. As part of the pre-employment screen

at most banks, they check your past employment, and
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people have had offers withdrawn because of mistakes
on this.

Paul % Dominic When applying to P&D, we also like to see a
simple list of the various skills you have acquired, together
with some estimate of how good you are. If you're new to QF
then it won’t be obvious which are most important, that’s our
job, so include as many as possible.

Multiple Vs Finally, there is no reason why you should have
only one CV. Presumably your entire life doesn’t fit on two
pages, so you can turn out a variety that each emphasize dif-
ferent aspects of your experience and education. You may
take this as an exercise to work out the optimal number of
variants, and you will quickly find out that it is not one. This
is made more acute by the fact that failed CVs get little if any
feedback. Think of it as shooting in the dark. If you don’t hear
a scream when you fire in one direction, you aim somewhere
else.

Finding banks In this document, we use the term ‘bank’ for the
firm you want to work for. It is of course the case that quants
work for many types of outfit, including brokers, the govern-
ment, hedge funds, insurers, thrifts, consultancies, building
societies, and in the case of P&D, for a headhunting firm. The
wilmott.com website mentions any number of firms, and before
you approach anyone it's good to do a few searches so that
you know the nature of the target.

If you're still linked with your college then it has many
resources to help you. Most have a careers office with
directories of banks, and they will have some contacts with
banks in that country. The library will have directories,

and of course there is Google and Yahoo! for getting a list
of targets. All large firms have entry-level programmes of
some form, and you can relatively easily find a good number
to apply for. At this stage numbers are important, since
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the ratio of new entrants to the market to jobs is quite
high.

Interviews

Be prepared  Before you go for the interview, find out the
names of the people you are seeing, and do a Google on
their name, as well as the bank/business unit you are joining.
Try to avoid the error made by one candidate who could
not understand why the interviewer was so interested in one
part of her thesis. The candidate had quoted papers by the
interviewer, but somehow managed to fail to connect the
interviewer’s name with the paper.

Be confident Almost no one at banks actually enjoys interview-
ing people; some even see it as a form of punishment. That
means they only interview you if there’s a good chance they
will want to hire you. Most people who are considered for
any job never even get a first interview.

Be punctual This shouldn’t need saying. If you can’t be on
time for your interview how can they expect you to put in
12-hour days? If you are going to be late (and assuming it
was unavoidable), telephone ahead with an accurate ETA.
The best strategy is to schedule having a coffee before the
interview, a little caffeine and sugar may well help, and this
is a useful time buffer. Probably the worst bit about being
late is not what it does to the interviewer, but what it does
to you. The idea is to present yourself as cool, smart and in
control. If you've been stressed out dealing with transport
you knock a few points off your performance.

set traps Although some questions are set in advance, most
interviewers like to drill down based upon your answers.
Thus you should try to mention areas where you feel
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confident in answering hard questions. This is best done
subtly, by phrases like ‘this is quite like X, but the answer is
Y,” where X is a bastion of your competence; or by saying
thoughtfully ‘this isn’t like X at all,” if you feel you are being
drawn into an area where you will sink.

Show you can 0o things We mention this in the CV section, and
here’s a chance to ‘casually’ drop in things you've done that
show you can dig in and finish the job. It’'s OK to mention
problems you overcame, and the lessons you learned from
initial difficulties. Good managers are sceptical of people who
claim to glide effortlessly through life, and don’t want to be
there when such a person hits a rock. Practical ability is
therefore something that you will need to demonstrate a little
more than theory. You wouldn’t have reached this point if
you didn’t have a respectable record for absorbing theory, so
the next step is to see if you can apply what you've learned.
When asked your motivation for moving into finance, it’s
worth asking yourself if this is a reason.

Questions for the interviewer It is a good idea to have a question
thought out in advance - it makes you look interested in the
position. You have two objectives when they ask if you have
questions for them.

Getting the message across A question can be a good way of bring-
ing in things you want them to know, or to emphasize a point
you want them to remember. You can ask the importance of
your experience in MC, C++ or PDEs to the work you’d be
doing. This gets the message across, either as a reminder or
to bring it to their notice.

Find out more about the job  Good questions are on the direction
for the team over the next year, and how your work would
help them to get where they want to be. It shows interest,
and may give a better insight into what you really will be
doing. Although they are interviewing you, it is also the case



Chapter 14: Paul & Dominic’s Guide to Getting a Quant Joh 567

that they are selling the job to you, since they want you to
accept if they offer. So it’s up to you to work out whether it’s
a good job or not.

Remember, do not ask things that you should already know.
You should discuss the job and the bank as much as you
can with your recruiting consultant ahead of the interview
and consult websites and any recruitment brochures. You
don’t want to give the interviewer the impression that you
aren’t interested enough in their bank to find out about it
before the interview. Interviewers often say that this is the
thing that really irritates them most at interviews. Instead,
it is good to preface a question with a statement about
some achievement that the bank is proud of (i.e. talks at
length about their website or on recruitment materials)
e.g. ‘1 know your office won the International Finance
Press Award for Being a Bank last year, but could you
tell me...’

Appearance

Good clothes It is entirely possible, in your interview process,
that every person you meet is not wearing a suit; some may
not have shaved. That doesn’t make it wise for you to turn up
in ‘smart casual.” How you look is not a big deal for quants,
you're being paid to think. However, some people do get
remembered for the wrong reason, and it can undermine your
application a little. You should feel comfortable, and if that
means a bit of perfume or good cufflinks then that’s fine, but
see below.

Neatness is goo0 More important than colour of cloth or design
of tie, is the general impression of being in control of how
you look. This means wearing it well, and being ordered in
your appearance. It is worth checking this before you go into
the bank.
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Colours Black is the new black. White is nice for shirts and
for no other visible item of clothing. Shoes should be clean
and preferably black for men, and muted tones for women. A
particular issue for women is the poor workmanship in most
of their shoes. Do not attempt to walk long distances in new
shoes that hurt your feet so badly they bleed (we know one
person who stained the carpet with her blood). Make sure
your clothes fit — badly fitting clothes do not look presentable
and if your trousers are too tight you (and everyone else)
will find this distracts from the matter at hand. There are
some complexions that are generally complemented by cer-
tain colours, and apparently in some circles ‘brown’ is seen
as a colour for your clothing. It is not; it merely says things
about you that are never said to your face.

Dark blue is good as well.
Ties are best boring, novelty is bad.

Another reason for white shirts is that they don’t show
sweat, some colours do this terribly and it’s not the image
you want to project. A good shirt doesn’t crease badly in
wear.

Jewellery  This will never help you get a job, no matter how
expensive or fashionable. Thus if you have any doubt at all,
don’t wear it. If you're female and you have some brooch or
bracelet, that’s fine, but there’s no upside for a man at all

in bling. Cufflinks of course are fine, as long as they are not
‘novelty’ — you have no idea as to the sense of humour your
interviewer may have; he may not have one at all. Some bank-
ing people spend quite appalling amounts on their watches,
so don’t even try to compete.

Perfume and aftershave Feel free to smell nice, but make sure
that it’s not too strong.
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Make-up The following is for women. If you're a male reader,
you really should not be reading this paragraph and we are
rather concerned that you are. Unless you really never wear
make-up, a small amount is a good idea. Again, this gives the
impression that you are making an effort and will possibly
counter the deadening effect of all the monochrome clothing
you are wearing. It should be discreet (i.e. no bright colours)
and presentable rather than intending to make you look pret-
tier. There are jobs that you can obtain by being attractive,
but they are rarely fun and never intellectually rewarding.
Any make-up should always be well applied - if you can’t get
eyeliner on straight, don’t put it on, and never wear nail pol-
ish if there is any chance it will chip before the interview.

What People Get Wrong

Zeroth law of holes When you find yourself in a hole, stop dig-
ging. You will be asked questions for which you can’t think
of any answer at all. Some interviewers make the questions
harder until that point is reached. The trick is to cut your
losses. With any luck they will just move on, unless it’s a
critical topic. Of course if it’s critical then it’s game over
anyway. What you must avoid is wasting time wandering
like the lost spirit of ignorance over a vast formless expanse
of your incompetence. A good response is to look them in
the eye after a little thought, then simply say ‘Don’t know,
sorry.’

The exception to this are the ‘all the tea in China’ questions
where you are asked to estimate some quantity like the
number of bull testicles consumed by McDonald’s customers
per year. You aren’t expected to know the answer to these,
indeed knowing it would seem rather strange. They want to
see how well you can estimate an unknown quantity and how
you think.
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But the biggest hole catches people who get very nervous
when things go wrong. This is about the most negative per-
sonality defect you might have in a bank. When you realize
you've said something dumb, stop, say something like ‘let me
think about that for a second,” and correct yourself. Make
the pause work for you. Think the answer through, and show
that you are capable of recovering. Remember that no one
can talk about things at the edge of their competence for 4-5
hours without saying something silly. You don’t have to be
defect free, but self-knowledge and recovery will score you
vital points.

Sleep reqularly, sleep often Probably the most common error
we’ve seen is not getting enough sleep the night before. As
we said earlier, the difference between you and your competi-
tors is tiny, and losing a small percentage of your thinking
ability through being tired has an exponential effect on your
probability of getting a job. Hours in a bank can be quite
hard, so it’s really not a good idea to mention feeling tired.
Not only will they not be impressed, but if you get drawn
into a conversation about how it degrades your performance
it won’t end well. Conversely, a cup of coffee doesn’t do any
harm, but we have seen people who clearly had drunk rather
too much, and it didn’t work well for them.

Make eye contact You need to make sure you look at your
interrogators, they can smell fear. No need to stare at them,
just remind yourself to look at them when they or you are
speaking.

Apply for the right job You may feel you are a unique individ-
ual, and an obvious match for the job. Sadly, that often turns
out not to be the case. If you are applying for a job called
‘Henchman to Assistant Quant’s Minion—PD0701067,” then
do try to include that in your application, prominently. If you
don’t include this, then you are critically dependent upon
whoever opens your application guessing.
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Don’t send a blue €V Just don’t, OK?

Barbarians The word barbarian comes from the ancient
Greeks who took anyone who didn’t speak Greek as making
‘bar bub bar’ noises, like a drunk Homer Simpson, not
Barbarian as in the icy commanding tones of Governor
Schwarzenegger. Although Dr Simpson has enjoyed careers as
an astronaut, rock star and nuclear engineer, few of us would
hire him as a quant. It's important to get the right balance
between gushing at people so fast that they have trouble
following you, or being too quiet. You should try to practise
looking at the reaction of people talking to you, and if the
interviewer is clearly trying to move on, you usually should
accept that. If you think of the conversation style used when
first meeting someone you find attractive, you won'’t go far
wrong. (Just remember it’s a first date.)

It is also the case that no one wants to discriminate against
those who aren’t English speakers. This is good, but means
that if you aren’t understood they may just skip over what
you say, rather than pass comment on your accent. This

is especially true when having a telephone interview where
you will not get visual feedback, and the sound quality is
degraded.

Read your €V Make sure that your CV is correct. A surprisingly
large number have dates that are clearly wrong, or that by
accident give the wrong impression. These worry interviewers
a lot, and if your dates don’t match, this can lose you an offer
when they do the basic background check on all employees.
Also read it to work out which questions it might provoke
them to ask, ‘Why did you pick X?,’ ‘I see you've done a lot
of Y, here’s a hard question about it.’

Mobile phone interviews We're old people (>35), and thus some-
times use quaint phone technology which involves long wires
physically connecting us to a huge ancient Unix computer
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miles away (yes, we still use miles). A typical quant has done
enough physics to know that you can actually talk down cop-
per wires rather than a 1 mm thick cell phone that has more
processing capacity than its owner.

Sadly, the quality of cell phone speech is hideously degraded,
and on many systems you can’t both talk at the same time.
This is occasionally awkward when both speakers have the
same first language, but if both have English as a second lan-
guage neither comes out of the conversation impressed with
the other.

Do not attempt to do a phone interview on a cell phone.

Focus Forging a rapport with the interviewer is a good thing,
but some interviews drift off topic as the people involved
chat. However, there is a time budget for each interview, and
most managers have specific objectives in checking your abil-
ity. If they don’t get covered it can hurt your progress to the
next stage. Although it is the interviewer’s responsibility to
get things done, it’s your problem if he doesn’t. This is where
the politeness we mention elsewhere is important. When you
feel that time is moving against you, ask to make sure that
everything he needs to know is covered.

Asking questions Actually there are stupid questions. Bad ques-
tions are ones which embarrass the interviewer, or force
him into a corner; that’s his job, not yours. Do not try to
score points off the interviewer; either you fail and look silly,
or worse still, you succeed. It's a bad idea to bring up any
screw-ups that the bank has been involved in, or where the
manager has to admit that he hasn’t read your CV.

Buzzwords Your interrogator will often come from a similar
background to you, but even within maths and physics there
are many specializations that are mutually incomprehensi-
ble. You're just emerging from a discipline where you think
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in terms of these names and equations and it’s easy to emit a
stream of noises that your interviewer can barely understand.
It’s actually worse if he is from a similar background, since
he may feel embarrassed to ask what you actually mean. You
lose points here. But it is generally polite to enquire about
the background of your audience when asked to explain some
part of your work. This both shows consideration, and pre-
vents you making this error.

Show some market insight This doesn’t mean you have to know
the ticker symbols of all SP500 stocks, but it does mean you
should be able to comment on the reliability of models, what
are their common pitfalls and how the quant and the trader
might communicate about this. If you can quantify some
practical phenomenon that is rarely discussed in academic
literature then you will impress. (7ip: Because banks are
often delta hedging, everything usually boils down to gamma
and/or volatility.)

It is also worth reading The Economist before the interview.
Some interviewers are keen to see if you have awareness of
the world in general. The Economist may disturb some people
since it covers other countries and has no astrology column
or coverage of golf.

Brainteasers There are several different types of brainteasers
you might get asked, all designed to test how your mind
works under pressure, and to try to gauge how smart you
are, rather than how much you have learned.

o Straightforward calculation. Example: How many trailing
zeros are there in 100 factorial?

e Lateral thinking. Example: Several coworkers would like to
know their average salary. How can they calculate it,
without disclosing their own salaries?

e Open to discussion. Example: What’s the probability that a
quadratic function has two real roots?
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o Off the wall. Example: How many manhole covers are there
within the M25?

Work through the Brainteaser Forum on wilmott.com. You can
practice for IQ tests, and the more you do, the better your
score. Brainteasers are no different. And you’d be surprised
how often the same questions crop up.

It’s worth having a few numbers at your fingertips for the
‘manhole covers.” One manager recently told us in rather
despairing tones of the stream of candidates who didn’t have
even a rough approximation to the population of the coun-
try they were born and educated in. Several put the pop-
ulation of Britain between 3 and 5 million (it's around 60
million). A good trick when ‘estimating’ is to pick numbers
with which it is easy to do mental arithmetic. Sure you can
multiply by 57, but why expose yourself to silly arithmetic
errors.

In many types of question, the interviewer wants to hear your
train of thought, and has simply no interest in the actual
answer. Thus you need to share your thoughts about how
you get to each stage. You also should ‘sanity check’ your
answers at each step, and make sure he is aware that you're
doing it. This is a soft skill that’s very important in financial
markets where the money numbers you are manipulating are
rather larger than your credit card bill.

At entry level we also see people being asked what we call
‘teenage maths.” You've probably been focusing on one area
of maths for some years now, and to get this far you've
probably been good at it. However, some banks will ask you
to do things like prove Pythagoras’ theorem, calculate = to
a few decimal places, or prove that the sum of N numbers
is N(N + 1)/2. That last fact being surprisingly useful in
brainteasers.
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Be polite  Your mother told you this would be important one
day, this is the day. ‘Please,” ‘thank you,” and actually look-
ing as if you are listening are good things. Fidgeting, playing
with your tie, or looking like you'd rather be somewhere else
aren’t polite. Standing when people come into the room is
good. Occasionally you will find it appropriate to disagree,
this is good, but get in the habit of using phrases like I'm
not sure if that’s the case, perhaps it is....’

You can’t just wake up one day and be polite on a whim.
(Hint: ‘Pretty Woman’ is fiction, we know this for a fact.) With-
out practice, it may even come over as sarcasm. In some
languages ‘please’ and ‘thank you’ are implied in the context
of the sentence, and that habit can spill over into English.
Break that habit, break it now.

Practise sounding positive about things.

Of the things you can change between now and your inter-
view, this one may have the biggest payback. If you've been
doing calculus for a decade, you aren’t going to improve
much in a week. However, you become better at presenting
yourself as someone who’s easy to work with.

This is so important because your team will spend more
waking hours together than most married couples, and
senior people want to know you will ‘fit in.” Like much of
this whole process it’'s a game. No one really cares if you
have a deep respect for your fellow man, but if you can
emulate it well under pressure it’s a difference that makes no
difference.

Be true to yourself You are selling yourself, so obviously you
will be putting a positive spin on things. However, this is a
career, not a job. If you feel the job may really not be what
you want, then it’s important that you think that through. If



576 Frequently Asked Questions in Quantitative Finance

in the interview you hear something that sounds bad, ask
about it. This does not have to be confrontational; you can
use phrases like ‘How does that work out in practice?’ and
‘What sort of flexibility is there to choose the work?’ when
told you're going to be counting buttons for the first six
months.

Do not sound as if you work for Accenture Even if you do work for
Accenture or Arthur Andersen, you don’t want to sound like
you do. Avoid the sort of management speak that resembles
Dilbert cartoons. A common type of interview question is of
the form: ‘You find that something has gone terribly wrong,
what would you do about it.” An Accenture answer is ‘I would
see it as a challenge that would allow me to work as a good
team player, as part of the global synergy’; or perhaps you
might respond ‘I will grasp the opportunity to show excellent
leadership in integrity’ which is interview suicide.

This part may sound quite silly, but there is a growing trend
for some universities to have formal coaching in interview
technique. In theory this should be very useful. In theory.
The real practice is rather scary. It frustrates interviewers a
lot to be faced with an obviously bright candidate who par-
rots clichés that some consultant has fed into him. We say at
the beginning that you need to stand out, and given that the
people you are competing with may well include people from
your institution, it does you very little good.

By all means listen to these people, but take it with a pinch
of salt. When you know little about the process, it’s easy to
give too much weight to the few things you get told.

Interview overlap It is tempting to schedule lots of interviews
as closely together as possible, because travel does eat into
your budget. You should be very conservative about the
amount of time you allow for each interview. It’s not easy to
get a manager to speed up his process because you want to
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get across town to talk to one of his competitors. The worry
about time, just like lateness, can reduce your effectiveness,
so make sure this doesn’t come up.

To find out more about this quant-job guide please
send either of us an email (Dominic Connor,
dominic@pauldominic.com, or Paul Wilmott, paul@wilmott.com).
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definition 162-3
actuaries
concepts 97-9, 158
definition 97
incomplete markets 158
Adaptive Market Hypothesis
see also Efficient Markets
Hypothesis
concepts 88-9
definition 88
AGARCH, concepts 177
Ahmad, R. 344, 365
Ahn, Hyungsok 279, 345, 357
Alexander, Carol 491
‘alien invasions’, risk management
guidelines 272, 273-4
alpha concepts 60
‘alternative’ history of derivatives
18-19
American options 19, 32, 134, 135,
136-7, 236-9, 279-80, 464-82,
498
concepts 236-9, 464, 498
definition 464, 498
free-boundary problems 236-9
optimal-stopping times 236-9,

Andreason, Jesper 402
applied mathematicians 9-10, 352
approximation tools
see also asymptotic analysis;
finite-difference methods
concepts 23, 25, 145-9, 233-5,
255-8, 433-4
definition 25
arbitrage
concepts 27-9, 62-4, 111-12,
192-3, 216-18, 249, 276-80,
285-6, 324-7, 360, 498
definition 27-8, 498
examples 27
Jensen’s inequality 316, 324-7
no-arbitrage assumptions 27-9,
31-2, 58-9, 85, 111-12,
170-1, 195, 196-9, 216-18,
224-5, 277-80, 285-6, 361-7,
377-9, 406
practical exploitation difficulties
28-9
types 28, 285-6
volatility arbitrage 285-6
Arbitrage Pricing Theory (APT)
CAPM 62-4
concepts 62-4
definition 62
examples 62
Aristotle 256
arithmetic averages 123-4
art, mathematics used in
quantitative finance 375
Artzner, P. 40, 44, 52
Asian options
concepts 123-4, 135, 137, 464,
498
definition 464, 498
Hawai’ian options 475
asset allocation theory
see also portfolio theory
concepts 4-5
asset swaps, definition 465, 498
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asymptotic analysis
see also approximation tools
concepts 14, 25, 233-5, 433-4,

446
definition 25, 233, 433-4
examples 233
SABR interest rate model 233,
235, 446, 504

stochastic volatility 235, 433-4
transaction costs 234-5
uses 233-5, 433-4, 446

at-the-money options (ATM) 27-8,
172, 294-5, 324

attribution issues, coherent risk
measures 54

auctions 261-2

auditors, critique 300-2

authors of models 250-1, 371-2

autocorrelation
concepts 72-3, 185-7
definition 185

autoregressive models 164, 174-8
see also GARCH...

Avellaneda, Marco 12-13, 39, 332,
356-7, 484

averages 23, 123-4, 158, 367-71,
see also actuaries

Bachelier, Louis 2, 100
backward Kolmogorov equation

see also diffusion...; transition...

concepts 125-8
definition 125, 127
examples 125
balloon options, definition 465
bankruptcies 7, 143, 150, 448-50,
501
see also Poisson process
banks
behavioural finance 281-4,
298-302
capital adequacy requirements
270
critique 270-4, 293-6, 297-302,
317-81
due diligence failings 301-2
failed banks 270-4, 293-6,
299-302, 371
fears/predictions for the future
294-6, 315-6

job applications 564-5
risk management 270-4
Barrett, John 11
barrier options
concepts 25, 80, 133-4, 136-7,
245-7, 327-42, 355-8, 461,
465-6, 476, 478, 498
definition 465, 476, 498
volatilities 245-7, 327-35, 465
base correlation, concepts 4069, 498
basis swaps, definition 465-6
basket options
concepts 335-42, 371, 466, 498
definition 466, 498
bastard Greeks 118, 119, 206-7,
245-7, 278-8, 329-5
concepts 245-7, 278-80, 329-5
definition 245, 329
examples 245
vega 245-7, 278-80, 329-5
bear markets 368-9
Bear Stearns 270-1
‘Beatles effect’ 354
behavioural finance 88-9, 254-8,
261-2, 281-4, 298-302, 318-22,
378-9
game theory 319-20
herding behaviour 283, 298,
318-22, 378
honesty/dishonesty spectrum
300-2
risk management 281-4
Bermudan options
concepts 466, 481, 498
definition 466, 498
Bernhard, Arnold 19
best-kept secrets in quantitative
finance 250-1, 371-2
beta 60, 92, 397
bid-offer spreads 29, 31, 190, 268-9
binary options
concepts 119, 135, 137, 139, 431,
454-8, 466, 471, 501
definition 466
binomial model
see also finite-difference
methods
assumptions 27
Black-Scholes model derivation
method 412-15



concepts 2-3, 10, 24, 27, 132-5,
155-6, 372-3, 377-9, 412-15
continuous-time limit 412-15
critique 372-3, 377-9
lessons 377-9
limitations 372-3, 377-9
replication methods 155-6
bisection method 168
bivariate normal copula example
231
Black '76 approximations 124,
198-9, 223-4, 440-2, 468
concepts 440-2, 468
uses 440-2, 468
Black, Fischer 6-7, 124, 196, 276-8
Black and Karasinski model 444
Black-Scholes derivation methods
401-27
Black-Scholes model
see also geometric Brownian
motion; implied volatility;
partial differential equations
accountants 402, 419, 422-6
assumptions 27, 129-31, 168-9,
223-5, 257, 275-80, 323-6,
327-35, 343-6, 402-27
binomial model derivation
method 412-15
bonds 196-7
CAPM derivation method 416
change-of-numeraire derivation
method 407-9
concepts 5-12, 24-7, 78-9, 97-8,
107-31, 148-9, 154, 162-6,
168-73, 179-83, 196-7, 201,
203, 209-11, 221-5, 257, 260,
275-80, 286, 292, 322-4,
328-5, 343-6, 358-67,
401-27, 430-4, 453-8, 474-5
constant volatility assumption
224, 275-80, 323-4, 328-5,
402, 454
continuous hedging assumption
223-5, 343-6, 402-3, 422-6
critique 122, 165, 169, 223-5,
257, 260, 275-80, 292, 343-6,
402-27
definition 129-31
derivation methods 401-27
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deterministic volatility (surface)
forecast model 165, 171,
411-12

diffusion equation derivation
method 420-2

equation 129-30, 162, 401-27

formulae 402-27, 454-8

the Greeks 453-8

historical background 403

improvements 280

limitations 122, 165, 169, 223-5,
260, 275-80, 292, 343-6,
402-27

local-time derivation method
409-10

lognormal distribution
assumption 224, 402

martingales derivation method
405-9

Mellin transform derivation
method 419-20

no-arbitrage assumption 224-5,
277-80, 361-7, 406

parameters-as-variables
derivation method 410-12

returns distribution assumption
224-5, 402, 422-4

robustness assessment 223-5,
257, 275-80, 334-5, 343-6

science in finance 260, 275-80

Taylor series derivation method
417-19

transaction costs assumption
223-4, 276-80, 324, 402, 410

twelve different derivation
methods 401-27

utility function derivation
method 417

bond options
see also fixed-income securities
concepts 10, 13, 440-2
bonds 10, 13, 19, 27, 31, 63, 89,

191-5, 196-9, 203-4, 239, 265-6,

347-50, 370-1, 435-51, 471

accuracy of models in different
markets 370-1

Black 76 approximations 124,
198-9, 223-4, 440-2, 468

Black-Scholes model 196-7
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bonds (continued)
convertible bonds 19, 239,
265-6, 347-50, 471, 500
EMH 89
forward interest-rate curves
191-5, 249, 437-40, 446-8
swaps 31, 192-5
bootstrapping
see also forward interest-rate
curves; interest-rate
modelling
concepts 191-5,
439-40
definition 191, 439
discount factors 191-5, 439-40
examples 191
borrowed securities, concepts 117,
224-5
boundary/final conditions 133-4,
136-7, 236-9
Boyle, Phelim 7-8, 9, 143-4
see also Monte Carlo
simulations
Brace, Alan 13, 198, 447-8
Brace, Gatarek and Musiela (BGM)
see also LIBOR Market Model
concepts 13, 198, 447-8
definition 447-8
brainteasers 507-56
answers 518-56
questions 508-29
break/cancellable forward contracts,
definition 467
Brennan and Schwartz model 444
brokers 84-5
Bronzin, V. 18
Brown, Robert 2, 100
Brownian motion (BM)
see also geometric...;
jump-diffusion models
concepts 2-4, 7, 100-2, 107-8,
111-12, 113-15, 150-1,
152-4, 293-4, 392-3, 405,
410, 421, 434
critique 102, 293-4
definition 100, 421
examples 100
historical background 2-4
inverse normal distributions
392-3

properties 100-1
uses 100-2, 113-15, 150, 152-4,
293-4
Buffett, Warren 87
Buffon’s needle 141-2
‘butterfly effect’ 23
butterfly spreads 170-1

C++ 499
calibration
see also implied volatility; yield
curves
commonest mistakes 323-4,
358-67
concepts 10, 13, 197-9, 201-5,
211, 278-80, 315, 316, 323-4,
351, 355-67, 411-12, 499,
502
critique 204, 323-4, 355-67
definition 201, 203, 499
examples 203
instability problems 365-7
inverse problems 364-5
lessons 323-4, 358-67
non-linear models 355-8
popularity 359-67
problems’ list 365
call options
company valuations 7, 448-9
concepts 6, 7, 18, 77, 134-5,
137, 139, 167-73, 236-9,
402-27, 431, 440-51, 455-8,
467-8, 470-82, 499
definition 467-8
put—call parity 18-19, 27, 30-2,
77-8
capital adequacy requirements,
banks 270
Capital Asset Pricing Model (CAPM)
APT 62-4
Black-Scholes model derivation
method 416
concepts 4-5, 48, 58-61, 92,
164, 416
definition 58
examples 58
MPT 58-61, 62-4
multi-index versions 60
Capital Market Line, definition 56-7
caplets



concepts 441, 468
definition 468
caps
Black 76 approximations 440-1,
468
concepts 192-5, 198-9, 440-1,
468-9, 476, 499
definition 468, 499
cardinal utility, definition 93
careers 263-4, 362-3
Carr, Peter 487
cash-flows feature of exotic options
460-1
Cauchy distributions 396
central difference approximations,
finite-difference methods 147-9
Central Limit Theorem (CLT)
see also normal distributions
concepts 33-7, 40, 46-7, 91,
97-9, 158, 219-22, 224-5,
227-8, 369-70, 384-6
conditions 36, 40
definition 33
examples 33, 158
lognormal distributions 227-8
certainty equivalent wealth
see also utility function
concepts 95-6, 160-1
definition 95
Certificate in Quantitative Finance
(CQF) 500
CFAs 499
CGARCH, concepts 178
change-of-numeraire derivation
method, Black-Scholes model
407-9
chaos
see also deterministic financial
modelling
concepts 23, 275
charm
see also delta
concepts 119, 455-8
definition 119, 455
chartists see technical analysis
Cheyette, Oren 11
chi-square distributions 182-4,
387-8
Chicago Board Options Exchange
(CBOE) 6
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chooser options
concepts 239, 468
definition 468
classical putdowns 289-91
cliquet options
see also coupe...
concepts 334-5, 467, 468-9
definition 468-9
closed-form solutions
see also Black-Scholes model
commonest mistakes 350-2
concepts 122-4, 165, 233-4,
350-2, 402-27, 454
critique 350-2, 454
definitions 124
lessons 350-2
quants 122-4, 176, 350-2, 454
cognitive behavioural therapy (CBT)
298
coherent risk measures
see also expected shortfalls
attribution issues 54
concepts 40, 44-5, 52-4
definition 40, 52-3
examples 52
monotonicity property 53-4,
333-4, 342
positive homogeneity property
53-4
sub-additivity property 52-5
translation invariance property
53-4
cointegration
see also stationarity
concepts 71-3
correlations 71-3
definition 71
examples 71
Granger causality 73
Collateralized Debt Obligations
(CDOs)
concepts 14, 254-8, 267-9, 294,
295-6, 299, 333, 340-2,
353-4, 371, 469-70, 472,
498-9
correlation problems 340-2, 371,
469-70, 498
definitions 469-70, 472-3, 498,
499
experiments 267-9
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Collateralized Debt Obligations
(CDOs) (continued)
fears/predictions for the future
295-6
science in finance 267-9
Collateralized Debt Obligations
squared, definition 470, 472
Collateralized Mortgage Obligations
(CMOs)
concepts 470, 477
definition 470
colour
see also gamma
concepts 119, 454-8
definition 119, 455
commodities 226-8, 370-1, 430-4
accuracy of models in different
markets 370-1
model types 430-4
common contracts 459-82
commonest mistakes in quantitative
finance 313-81
commonsense lessons 313-81
company valuations, call options 7,
448-9
compensation schemes 15, 141,
294-6, 299, 318-21, 367-8
complete markets
see also replication methods
commonest mistakes 322-4
concepts 153, 155-9, 208-11,
217-18, 248-9, 322-4, 344-6
critique 322-4
definition 155, 322-3
examples 155
lessons 322-4
complexity issues, quantitative
finance 98-9, 293-6, 306, 314,
371-7
compound options, definition 470
conferences 289-91, 297-8
Connor, Dominic 557-77
Constant Maturity Swaps (CMS),
definition 469, 499-500
contingent premium options,
definition 471
continuity property of Brownian
motion 101-2
continuous financial modelling
see also differential equations

concepts 23-6, 145-9, 176-8,
279-80, 384, 412-15
definition 24
continuous hedging assumption
see also delta hedging
Black-Scholes model 223-5,
343-6, 422-6
continuous-time processes
see also random walks
concepts 2, 100-2, 176-8,
412-15
continuously sampled path
dependency 461
contracts
common contracts 459-81
value of a contract 200-2,
261-2, 368-71
conversion see put—call parity
convertible bonds
concepts 19, 239, 265-6, 347-50,
471, 500
definition 471, 500
convex functions
see also Jensen’s inequality
concepts 103-4, 120, 171, 194-5,
206-7, 293, 295-6, 324-7,
482, 500
definition 103, 500
convexity 103-4, 120, 130-1, 171,
194-5, 206-7, 293, 295-6, 324-7,
437-8, 482, 500
Black-Scholes model 130-1, 171
concepts 130-1, 171, 295-6,
437-8, 482, 500
definition 437, 500
fears/predictions for the future
295-6
copulas
see also default risk
concepts 14, 229-32, 340-2, 470,
500
credit derivatives 229-32, 340-2,
470
definition 229, 230, 500
examples 229, 231-2
tail index 231-2
uses 229-32, 340-1, 470
correlations
see also copulas



accuracy of models in different
markets 370-1
CDOs 340-2, 371, 469-70, 498
cointegration concepts 71-3
commonest mistakes 335-42
concepts 4, 42-5, 49-51, 55-7,
71-3, 79, 81-2, 107-8,
110-12, 188-90, 214-15,
229-32, 255, 267-9, 272-4,
294-6, 297-8, 316-22,
335-42, 370-1, 469-70, 498,
500, 509
critique 294-6, 297-8, 316-22,
335-42, 370-1
definition 500fears/predictions
for the future 295-6, 370-1
lessons 335-42
MPT 55-7, 62-4, 221, 316-22
regimes 337-42
serial autocorrelation 185-7
coupe options
see also cliquet...
definition 467
Cox, Ingersoll and Ross model
(CIR) 197, 217, 443
Cox, John 9, 416
Cox, Ross and Rubinstein model,
concepts 9
Crack, Timothy, Heard on the
Streets 490-1
Crank-Nicolson implicit method,
concepts 135
crash coefficient
concepts 49-51
definition 49
crash hedging see Platinum hedging
crashes 46, 81-2, 164, 265, 273-4,
275, 347-50, 357
CrashMetrics
see also Platinum hedging;
stress-testing; worst-case
scenarios
concepts 40, 48-51, 81-2, 273,
357
definition 40, 48
examples 48
usefulness 48, 50, 81-2, 273
credit, model types 448-50
Credit Default Swaps (CDSs)
concepts 254-8, 472, 481, 499
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definition 472, 481, 499
credit derivatives
accuracy of models in different
markets 371
concepts 13-14, 229-32, 254-8,
267-9, 294, 295-6, 299,
315-6, 371, 469-70, 472,
499-500
copulas 229-32, 340-2, 470
pricing models 229-32, 267-9,
294, 295-6, 299, 315-6, 371,
469-70, 472
credit markets, accuracy of models
in different markets 371
credit rating agencies, critique
14-15, 298-9, 300-2
credit ratings 14-15, 298-9, 300-2
credit risk
concepts 7, 13-14, 38, 229-32,
254-8, 448-60, 501
definition 38
model types 448-50, 472
reduced-form model types 448-9
structural model types 448-9
cubic splines 193
cumulative distribution functions
230-2
CVs 559-65
cynics 202, 358

de la Vega, J. 18
default risk, concepts 7, 13-14,
35-6, 209-11, 212-15, 229-32,
254-8, 448-50, 470, 472, 501
delta 18-19, 28, 78-9, 110-12,
116-20, 145-6, 164-5, 179-84,
249, 334, 343-6, 402-27, 455-8,
501
see also charm; gamma; vanna
calculation methods 179-81,
455-8
concepts 78-9, 116-20, 145-6,
164-5, 179-84, 249, 334,
343-6, 455-8, 501
definition 116-17, 145, 179-80,
249, 343, 455, 501
delta hedging
see also continuous hedging
assumption; dynamic
hedging; hedging
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delta hedging (continued)
concepts 18-19, 28, 78-82, 83,
85, 109-12, 116-17, 164-5,
179-84, 190, 237-8, 324,
343-6, 463, 467
definition 28, 78-9, 85, 116-17,
179, 343
examples 179
hedging volatility 85, 164-5,
179-84
methods 179-84, 467
model risk 80, 222
optimizations 182, 236-9, 345-6
transaction costs 182-3
delta-neutral positions, concepts
117, 347-50
demand and supply 200-2, 261-2,
316, 322-4, 368-9
derivatives-pricing uses, Monte
Carlo simulations 142-4
Derman, Emanuel 12, 253-8, 276,
285
deterministic financial modelling
concepts 22-6, 141-4, 165,
191-2, 196-9, 323-4
definition 23
deterministic volatility model,
concepts 12, 109-10, 165, 171,
323-4, 411-12
difference equations
see also binomial model;
finite-difference...
concepts 23, 24, 145-9
definition 24
differential equations
see also backward
Kolmogorov...; forward
Kolmogorov...; partial...;
stochastic...
concepts 3-4, 7, 8-9, 22-6, 101,
125-8, 132-5, 138-9, 145-9,
160-1, 176-8, 236-9,
442-3
free-boundary problems 236-9
differential swaps, definition 472
diffusion 100-2, 125-8, 130-1, 133,
150-1, 152-4, 171, 173, 197,
236-9, 331-2, 364-5, 375-7,
420-2
see also Brownian motion

diffusion-type equations
see also backward
Kolmogorov...;
Black-Scholes...; Brownian
motion; finite-difference...;
forward Kolmogorov...;
Monte Carlo...
concepts 2-3, 125-8, 130-1, 133,
150-1, 171, 173, 197, 236-9,
331, 375-7, 420-2, 503
digital options see binary options
dimensionality feature of exotic
options 460, 462
directors, compensation schemes
15, 141, 294-6, 299, 318-21,
367-8
discount factors
bootstrapping 191-5, 439-40
concepts 191-5, 196-9, 435-51
discounting term, Black-Scholes
model 131
discrete financial modelling
see also difference equations
concepts 23-6, 145-9, 176,
279-80, 344-6, 384, 417-19,
422-5
definition 24
discretely sampled path
dependency 461
discretization tools
concepts 23, 25
definition 25
dishonesty/honesty spectrum 300-2
dispersion trading
concepts 188-90, 501
critique 189-90
definition 188, 501
examples 188
distortion risk theory 426
distributions 37, 43-7, 55-7, 102,
177, 182-4, 219-22, 226-8,
383-400
see also lognormal...; normal...;
Poisson...
beta distributions 397
Cauchy distributions 396
chi-square distributions 182-4,
387-8
exponential distributions 397-8
Gamma distributions 393-8



Gumbel distributions 47, 231,
388
inverse normal distributions
392-3
Laplace distributions 394-6
Lévy distributions 36-7,
398-400, 502
logistic distributions 394-5
Pareto distributions 391,
399-400
popular probability distributions
383-400
returns 37, 43-7, 55-7, 102,
219-22, 226-8, 384-400
Student’s t-distributions 177, 390
uniform distributions 392
Weibull distributions 47, 389
diversification 48-51, 55-7, 272,
279-80, 295-6, 316-22
see also portfolio theory
commonest mistakes 316-22
concepts 272, 279-80, 295-6,
316-22
examples 317-19
financial modelling 295-6,
317-22
lessons 316-22
risk management guidelines 272,
279-80, 295-6, 316-22
dividend yield 80, 119, 432, 455-8
see also rho
dividends 32, 80, 119, 130-1, 402,
432, 455-8
put-call parity 32
Doleans-Dade martingales, 374-5
dollar convexity, definition 437
Dow Jones Industrial Index 185-6
drift term 131, 160-1, 196-9, 235
Black-Scholes model 131
due diligence failings 301-2
Duffie, Darrell 493
dumbed-down textbooks,
mathematics used in
quantitative finance 277, 293-4,
314, 372-7
Dupire, Bruno 12, 411
duration
see also yield curves
concepts 196-9, 436-7, 501,
505-6
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definition 436-7, 501, 505-6
dynamic arbitrage
see also arbitrage
definition 28
dynamic hedging
see also delta hedging
concepts 5, 12-13, 78-82, 97-9,
109-12, 117, 160, 179-84,
265-6, 279-80, 324, 332-5,
337-42, 343-6, 369-70,
449-50, 463
definition 78, 117, 179
examples 179
methods 179-84
rehedging/rebalancing concepts
117, 181-4, 343, 344-6

easy-to-calibrate models 122-4
econometric forecast/model
volatility approaches, concepts
164, 174-8
econometricians, quants 176, 255,
303-6
economies of scale 353
economists 9-10, 255, 303-6
efficient frontier, definition 56-7
Efficient Markets Hypothesis (EMH)
see also Adaptive Market
Hypothesis; market efficiency
bond markets 89
concepts 87-9
critique 89
definition 87
forms 87-8
studies 89
‘efficient’ portfolios 4
EGARCH, concepts 177
Einstein, Albert 2
elliptic partial differential equations,
concepts 376
embedded decisions feature of
exotic options 134, 136-7, 460,
463, 467-8
emotions 261-2, 366-7
Epstein—-Wilmott Yield Envelope
194-5
equations 129-30, 162, 401-27,
429-51
see also individual equations;
models
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equilibrium models 64, 216-18
see also Capital Asset Pricing
Model
concepts 216-18
definition 216
examples 216
no-arbitrage approach contrasts
216-18
equity markets, accuracy of models
in different markets 367-71
equity models, types 430-4
equity options 8-9, 367-8, 430-4
see also option...
Equity Tranche CDO experiment
267-9, 342, 469-70, 498
equivalent measures
concepts 113-15
definition 114
ethics, risk management 271-2
Euler equation 233-4, 388
European options 11, 27-8, 30-2,
134-5, 137, 138-9, 154, 237-44,
431-4, 440-1, 455-8, 466-82
excess returns
EMH 87-9
market price of risk 208-11,
365-7, 442-4, 445-6
exchange rates 35-6, 63, 119, 165
exotic options
see also Asian...; barrier...
cash-flows feature 460-1
concepts 12-13, 79-80, 84, 88,
134, 276-80, 355-8, 358,
368-9, 376, 404, 460-1, 501
definition 460-3, 501
dimensionality feature 460, 462
embedded decisions feature 134,
136-7, 460, 463, 467-8
important features 460-3
order feature 462-3
path-dependence feature 460,
461-2, 465
pricing models 201-2, 358
time-dependence feature 460
expected losses 52-3, 501
see also Value at Risk
expected returns 4, 22, 55-7, 59-61,
74-6, 406, 416, 501
expected shortfalls
see also coherent risk measures

concepts 53-4

expiration 30-2, 467
see also time horizons
put—call parity 30-2

explicit method, finite-difference
methods 135, 147-9

Exponential Collateralized Debt
Obligations (ECDOs), definition
472-3

exponential distributions 397-8

exponentially weighted moving
averages (EWMAs)
see also GARCH...
concepts 175-8

extendible options/swaps, definition
473

Extreme Value Theory (EVT)
concepts 46-7, 273-4
definition 46
examples 46

failed banks 270-4, 293-6, 299-302,
371
Fama, Eugene 5, 87-9
see also market efficiency
fast models 122-4
fat tails 19, 153, 220-2, 278-80, 400
see also kurtosis; skew...
Faure, H. 5, 240
fears/predictions for the future
294-6, 315-6, 366-7
the feedback effects in illiquid
markets 265-6, 324, 346-50
FIEGARCH, concepts 178
FIGARCH, concepts 177
final conditions 133-4, 136-7, 236-9
financial crisis from 2007 14-15,
98-9, 254-8, 267-74, 287, 293-6,
298-9, 315-6
financial modelling
see also Black-Scholes...;
continuous...; deterministic...;
discrete...; interest-rate...;
probabilistic...
accuracy in different markets
367-71
asymptotic analysis 14, 25,
233-5, 433-4, 446
authors of models 250-1, 371-2



CDOs 254-8, 267-9, 294, 316,
340-2, 371, 469-70, 498
compensation schemes 318-21
concepts 22-6, 28-9, 38, 78, 80,
122-4, 216-18, 222, 250-1,

253-8, 371-7, 429-51

credit risk models 448-50

critique 250-1, 253-8 313-81

demand and supply 200-2,
261-2, 316, 322-4, 368-9

desirable properties 122-3

diversification 272, 279-80,
295-6, 317-22

equity/FX/commodities 430-4

fixed-income securities 432-48

Hippocratic oath 258

idolatry problems 257-8

list of models 22-6

manifesto 253-8

model risk 38, 80, 222, 278-80,
368-9

precision issues 316, 367-71

quants 122-4, 176, 250-1, 253-8,
371-7

requirements 122-4, 223-5, 257,
267-9, 275-80, 306, 314-81

robust models 122-4, 223-5,
257, 267-9, 275-80, 306, 314,
334-5, 343-6, 374-7

science in finance 260-95

finite-difference grids, concepts
146-9
finite-difference methods

see also binomial model

central difference
approximations 147-9

concepts 2-3, 23, 24, 25, 130-1,
132-5, 139, 145-9, 197-8,
377-9, 464, 501

Crank-Nicolson implicit method
135

critique 132-5, 139, 145-9,
377-9

definition 132-3, 145, 501

efficiency considerations 134

examples 132, 145

explicit method 135, 147-9

implementation features 132-4,
139

interest-rate products 135
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one-sided difference
approximations 147-9
path dependency 133-5, 137,
139, 430-1, 462
programme of study 134-5
two-factor problems 135, 235,

444-6
uses 132-5, 139, 145-9, 197-8,
377-9, 501

finiteness property of Brownian
motion 100-2
first-derivative terms, partial
differential equations 213-15
Fitzgerald, Desmond 162
fixed-income securities
see also bond...; interest-rate...
accuracy of models in different
markets 370-1
Black 76 approximations 124,
198-9, 223-4, 440-2, 468
concepts 8-9, 10, 13, 191-5,
196-9, 365-7, 370-1,
435-48
forward interest-rate curves
191-5, 249, 437-40, 446-8
Girsanov’s theorem 115
model types 435-48
prices as expectations 448
Floating Rate Notes (FRNs),
definition 473
floorlets, concepts 441, 473
floors
Black 76 approximations 440-1
concepts 192-5, 198-9, 440-1,
468-9, 476
definition 473
fluid mechanics 120, 233
Fokker-Planck equation see forward
Kolmogorov equation
Fong, G. 217-18, 444
Fong and Vasicek model 444
forecast/model volatility
approaches, concepts 85, 1636,
174-8, 285-6
Forums on wilmott.com 275, 372,
374-5
forward interest rates 13, 191-5,
196-9, 233-5, 248-9, 327,
437-42, 446-8
see also LIBOR...; SABR...
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forward interest-rate curves
see also bootstrapping
concepts 191-5, 249, 437-40,
446-8
definition 249
interpolation techniques 193-5
forward Kolmogorov equation
see also diffusion...; transition...
concepts 125-8, 408-9, 411-12
definition 125, 126
examples 125, 126-7
forward prices, concepts 248-9
Forward Rate Agreements (FRAs),
definition 474
forward volatility
see also volatilities
concepts 164-6, 327
definition 164
forward-start options, definition 474
forwards 31, 64, 77-8, 104, 248-9,
326, 467, 473-4
see also over-the-counter
concepts 467, 473-4
definitions 467, 473-4
spot price relationship 31, 64,
77-8, 437-40
fractals, concepts 3, 101
Frank copula example 231
Fréchet distributions 46
Fréchet-Hoeffding upper bound
copula example 231
free-boundary problems
American options 236-9
concepts 236-9
definition 236
examples 236
frequently asked questions (FAQs)
21-251
frustrations with quants 297-9
futures
concepts 84, 104, 214, 326,
474-5
definition 474-5
margins 84
FX 35-6, 63, 119, 165-6, 226-8,
370-1, 430-4, 472
accuracy of models in different
markets 370-1
differential swaps 472
model types 430-4

Galileo 254-5
game theory 319-20
gamma
see also colour; delta; speed
concepts 79, 85, 117, 119,
147-8, 171-2, 180-4, 187,
188-90, 223-4, 265-6, 329-5,
340-2, 344-50, 387, 393-8,
397, 455-8, 471, 502
definition 117, 147, 455, 502
distributions 393-8
gamma hedging
see also hedging
concepts 79, 117, 119, 187,
223-4, 265-6
definition 79, 117
gamma-neutral strategy, concepts
117
GARCH type econometric forecast
volatility models
see also variance
concepts 164, 174-8, 433, 502
definition 174-6, 502
family members 177-8
Gatarek, Darius 13, 198, 447
see also Brace, Gatarek and
Musiela
Gaussian distributions see normal
distributions
GDP 63
General motors 303
Generalized Error distributions
177-8
geometric averages 123-4, 464
geometric Brownian motion
see also Black-Scholes model;
Brownian motion concepts 7
Gerber, H.U. 425
Girsanov’s theorem
see also risk-neutrality
concepts 113-15, 374-5
definition 113
examples 113
fixed-income securities 115
uses 113-15, 374-5
Goldman Sachs 276, 296
Granger causality
see also cointegration
definition 73
greed 300-2, 353-4, 366-7



the Greeks 54, 116-21, 139, 329-5,
402-27, 453-8
see also charm; colour; delta;
gamma; rho; speed; theta;
vanna; vega; vomma
bastard Greeks 118, 119, 206-7,
245-7, 278-80, 329-5
Black-Scholes model 453-8
concepts 116-21, 139, 329-5,
402-3, 453-8
definition 116
European binary calls 457
European binary puts 458
European call options 455
European put options 456
examples 116
shadow Greeks 120
Green’s functions
concepts 23, 26
definition 26
Greenspan, Alan 304-5
Grossman-Stiglitz paradox 89
Gumbel distributions 47, 231, 388
Gumbel-Hougaard copula example
231

Hagan, Pat 14, 446
half Kelly
see also Kelly criterion
concepts 76
Halton, J.H. 5, 240
Hamada, M. 425
Hammersley, J.M. 5, 240
Handscomb, D.C. 5
Harrison, J.M. 405
Harrison, Mike 9-10
Haselgrove, C.B. 5
Haug, Espen Gaarder, 275, 277-8
Derivatives: Model on Models
(Haug) 18-19
The Complete Guide to Option
Pricing Formulas 327-8,
495-6
Hawai'ian options, definition 475
hazard rate, concepts 449-50
Heath, David 10-11, 13, 137, 197-9,
446-7
Heath, Jarrow and Morton (HJM)
see also yield curve...
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concepts 10-11, 13, 137, 197-9,
446-7
definition 446-7
hedge funds 5, 14-15, 42, 44-5, 84,
98-9, 266, 273, 276-80, 288,
293-6, 302, 321, 367-8
hedging
see also delta...; dynamic...;
gamma...; static...; vega...
concepts 18-19, 28, 77-82, 83-4,
85, 97-9, 107-8, 109-12,
116-17, 129-31, 164-5,
179-84, 220-2, 223-5, 265-6,
279-80, 323-4, 343-6, 402-3,
422-3, 502
continuous hedging
Black-Scholes assumption
223-5, 343-6, 402-3, 422-6
critique 97-9, 323-4
definition 77, 502
errors 181-4, 278-80, 324,
344-6, 425
examples 77
feedback effects in illiquid
markets 265-6, 324, 346-50
margin hedging 81
marking to market 85, 180-4
model-independent/dependent
hedging classifications 77-8,
85
partial differential equations
403-4, 408
Platinum hedging 49-50, 81-2
SAC uses 186-7
superhedging 80
types 77-82
volatilities 85, 164-5, 179-84,
279-80
hedging volatility
concepts 85, 164-5, 179-84
definition 164
herding behaviour 283, 298, 318-22,
378
Heston stochastic volatility model
124, 165-6, 263, 285-6, 297,
351-2, 356-7, 360, 367, 433
Higgins, L.R. 18
high peaks 19
see also kurtosis; skew...
Himalayan options, definition 475
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Hippocratic oath, financial
modelling 258

historical background of
quantitative finance 2-19, 97-9,
263-4, 275-92, 377-9

historical volatility
see also volatilities
concepts 162-6, 175-8
definition 162, 163

Ho and Lee 10, 197, 217-18, 360,
443
see also yield curve...

Ho, Thomas 10

Hoggard, T. 356

honesty/dishonesty spectrum 300-2

Hua, P. 357

Hull, John, Options, Futures, and
Other Derviatives 197, 217-18,
315, 351, 432-3, 443-4, 445,
494-5

Hull and White model 197, 217-18,
315, 351, 432-3, 443-4, 445

hybrid instruments
see also convertible bonds
definition 502

HYPER options, definition 475

hyperbolic partial differential
equations, concepts 376-7

hypercubes 241

IBM 329
idolatry problems, financial
modelling 257-8
IGARCH, concepts 177
illiquid markets, feedback effects of
hedging 265-6, 324, 346-50
implied correlation, dispersion
trading 188-90
implied forward rates
concepts 438-40
definition 438
implied volatility
see also Black-Scholes model;
volatilities; volatility smiles
concepts 31-2, 84-5, 163-6,
167-73, 179-84, 188-90,
201-2, 278-8, 286, 328-5,
361-2, 434, 502, 504
definition 163-4, 502
put—call parity 31-2

stochastic implied volatility 434
uses 164, 179-80, 201-2, 278-8,
286, 434

in options 327-35, 465, 476, 478
see also barrier...

in-the-money options (ITM) 249, 471

incomplete markets
actuaries 158
concepts 153, 155-9, 208-11,

217-18

definition 155, 157
jump-diffusion models 157, 323

independent and identically
distributed (i.i.d) 33-4, 221, 228

index amortizing rate swaps,
definition 475-6

index options, dispersion trading
188-90, 475-6, 501

indices 185-7, 188-90, 226-8
dispersion trading 188-90
serial autocorrelation 185-7
volatilities 188-90

induction method

infinite variance, concepts 36-7

infinite volatility, concepts 36-7

information flows, market efficiency
5, 87-9

information ratio
see also tracking error
definition 92

Ingersoll, J. 197, 217, 443
see also Cox...

initial margin
see also margin...
definition 81

instability problems of calibration
365-7

instantaneous forward rate curves
concepts 192-5
definition 192

instantaneous risk of default see
hazard rate

instantaneous volatility see actual
volatility

insurance economics 170-1, 347-50,
426

integrations, financial problems
240-4

intensity parameter of the Poisson
process 150-1, 152-4



interest rate options
see also bond...; option...
concepts 8-9, 10-11, 13, 14,
35-6, 135, 137, 142-4, 197-9,
435-51
SABR interest rate model 14,
233, 235, 446, 504
interest rate swaps, definition 476
interest rates
see also forward...; rho; swaps
concepts 8-9, 10, 13, 14, 63, 80,
110-12, 119-20, 135, 137,
142-4, 191-5, 196-9, 249,
282-4, 305, 365-7, 432-51,
476
LIBOR 473, 502-3
put—call parity 30-2
risk 365-7, 477
stochastic interest rates 13,
196-9, 432-4
term structure of interest rates
196-9, 360-1
interest-rate modelling
see also bootstrapping; LIBOR
Market Model
BGM 13, 198, 447-8
Black and Karasinski model 444
Brennan and Schwartz model
444
CIR 197, 217, 443
concepts 10-11, 13, 137, 196-9,
216-18, 250-1, 435-48
Fong and Vasicek model 444
HIM 10-11, 13, 137, 197-9,
446-7
Ho and Lee model 10, 197,
217-18, 360, 443
Hull and White model 197,
217-18, 315, 351, 432-3,
443-4, 445
LMM 115, 132, 137, 142-4,
196-9, 216-18, 447-8, 476
Longstaff and Schwartz model
445
model types 435-48
prices as expectations 448
SABR interest rate model 14,
233, 235, 446, 504
spot rate models 442-6
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two-factor models 135, 235,
444-6
types 196-9, 250-1, 435-51
Vasicek model 8-9, 10, 197,
216-18, 250, 351, 443,
internal rate of return (IRR) 435-6
interpolation techniques, forward
interest-rate curves 193-5
interviews for jobs 565-77
intuition 242-3, 255-6
inverse floaters, definition 476
inverse normal distributions 392-3
inverse problems
calibration 364-5
definition 12, 364
investment banks 270
‘.ists’ 263-4
Ito, Kiyosi 3-4
Ito’s lemma
see also stochastic calculus;
Taylor series
concepts 3-4, 106-8, 115, 219,
403-6, 417-18
definition 4, 106, 107-8
examples 106
jumps 108
usefulness 107-8, 219, 403-4,
417-18

Jackel, Peter, Monte Carlo Methods
in Finance 491-2
Jackson, Mary, Advanced Modelling
in Finance Using Excel and VBA
486
Jarrow, Robert 10-11, 197-9, 446-7
see also Heath, Jarrow and
Morton
Javaheri, Alireza 495
Jensen, Bjarke 402
Jensen’s inequality
see also convex functions
arbitrage 316, 324-7
commonest mistakes 324-7
concepts 103-5, 120, 194-5,
196-7, 206-7, 316, 324-7,
482, 500
critique 324-7
definition 103, 324-5, 500
lessons 324-7
uses 103-5, 324-7, 482
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joint distributions of multiple
underlyings, copulas 229-32
Jones, Jesse 194-5
Joshi, Mark
The Concepts and Practice of
Mathematical Finance 488-9
C++ Design Patterns and
Derivatives Pricing 489- 90
journals, critique 287-8
JP Morgan 270
jump-diffusion models
see also Brownian...; Poisson...
concepts 150-1, 152-4, 157, 171,
173, 323-4, 434, 449-50
definition 150, 152
incomplete markets 157, 323
jumps 108, 150-1, 152-4, 163, 166,
209-11, 221-2, 434
see also Poisson process
Ito’s lemma 108

Kamara, A. 31-2
Kani, Iraj 12, 411
kappa see vega
Kelly criterion
concepts 74-6
definition 74
examples 74
half Kelly 76
Kelly fraction, concepts 75-6
Keynes, John Maynard 318
Knight, F.H. 39-40
knock-in barriers 476, 478
knock-out barriers 133-4, 465, 476,
478
Koksma-Hlawka inequality,
concepts 241-2
Kreps, David 9-10, 405
Kruizenga, R.J. 19
Kumar, Deep 14, 446
kurtosis 19, 169-70, 220-2, 224-5
see also fat tails; high peaks;
skew...
volatility smiles 169-70, 278-80

Lambda 366

Laplace distributions 394-6

lectures 289-91, 297-8

Lee, Sang-Bin 10, 197, 217-18,
443-4

see also Ho and Lee
legal risk, definition 38
Lesniewski, Andrew 14, 446
lessons, commonsense lessons for
quants 313-81
leverage 265-6
Lévy, Arnon 12-13, 332, 356-7
Lévy distributions, concepts 36-7,
398-400, 502
Lewis, Alan, Option Volatility under
Stochastic Volatility 487-8
Li, David 13-14
see also credit derivatives
LIBOR 473, 502-3
LIBOR Market Model (LMM) 115,
132, 137, 142-4, 196-9, 216-18,
447-8, 476
see also forward interest rates;
interest-rate modelling
concepts 196-9, 216-18, 476
definition 196
examples 196
uses 196-9, 476
LIBOR-in-arrears swaps, definition
477
linear equations, concepts 25, 134,
137, 139, 305, 326-7, 352-7, 367,
376-7
Lintner, John 4-5
Lo, Andrew 88-9
local-time derivation method,
Black-Scholes model 409-10
logarithms of random numbers,
concepts 37
logistic distributions 394-5
lognormal distributions
Black-Scholes assumptions 224,
402
CLT 227-8
concepts 224, 226-8, 384-6,
430-2
definition 226, 384-6
examples 226
uses 226, 384-6, 430-2
lognormal random walks
concepts 2, 126-8, 138-9, 152-4,
157-8, 240-4, 261-2, 403-4,
430-2, 466
multi-dimensional models 431-2



lognormal stochastic differential
equations, concepts 3-4

London as a financial centre,
fears/predictions for the future
296

long positions 182-4, 347-50, 422-4

Long Term Capital Management
(LTCM) 7, 81

Longstaff and Schwartz model 445

lookback options
concepts 135, 137, 477
definition 477

low-discrepancy sequence theory
see also quasi random numbers
blu-tack analogy 242-3
concepts 5, 11, 138-9, 240-4
definition 240
examples 240
intuition 242-3

Lyons, Terry 12-13

Macaulay duration, concepts 436-7
McNeil, A. 46-7
macro economics

mathematics 3

variables 63-4
Madoff’'s Ponzi scheme 300-2
magicians, mathematics used in

quantitative finance 281-4
maintenance margin

see also margin...

definition 81
Mandelbrot, B. 19
Manhattan Project 142
manifesto, financial modelling 253-8
margin hedging, definition 81
marginal distributions, concepts

230-2
margins, concepts 81, 84
marked to model

concepts 84-5

definition 84
market efficiency

see also Efficient Markets

Hypothesis

concepts 5, 87-9

examples 87

forms 87-8
market makers

definition 503
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model risk 222, 278-8
Market Portfolio
concepts 56-7, 64, 91
definition 56
market price of risk
see also Sharpe ratio
concepts 208-11, 214, 217-18,
365-7, 442-4, 445-6
market risk, definition 38
markets, accuracy of models in
different markets 367-71
marking to market
concepts 83-6, 180-4, 472
definition 83
examples 83
hedging 85, 180-4
OTC contracts 84-5
regulatory requirements 83
volatilities 84-5
Markov property of Brownian
motion 101-2, 185, 198
Markowitz, Harry 4, 55-7, 60
see also Modern Portfolio

Theory
martingales
Black-Scholes model derivations
405-9
concepts 22, 101, 111-12, 157,
374-5, 405-6

Matache, Ana-Maria 489
mathematicians 9-10, 293-6
mathematics used in quantitative

finance

art 375

complexity issues 293-6, 306,
314, 371-7

concepts 22-6, 265-6, 281-4,
287-8, 293-6, 314, 335-42,
371-7

dumbed-down textbooks 277,
293-4, 314, 372-7

fun aspects 293, 371-2

magicians 281-4

science in finance 281-4, 314,
335-42, 371-7

sweet spot 314-5, 376-7

Maximum Likelihood Estimation

(MLE)

assumptions 66

concepts 65-70, 176-8
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Maximum Likelihood Estimation
(MLE) (continued)
definition 65
examples 65-70, 176-8
quants’ salaries 69-70
volatilities 68-70, 176-8
mean 4, 33-7, 66-7, 68-70, 71-3,
76, 104-5, 230-2, 384-400,
433-4, 503
mean reversion, concepts 433-4,
503
Measure Theory Police 297, 374
measures
see also Girsanov’s theorem
concepts 113-15
Mellin transform derivation method,
Black-Scholes model 419-20
Merton, Robert 6-7, 57, 97, 153-4,
275-80, 448-9
see also Black-Scholes model;
jump-diffusion models
Metallgesellschaft 81
Metropolis, Nicholas 142
Mezzanine Tranche CDO experiment
267-9, 342, 469-70, 498
micro economics, mathematics 3
Millet, T. 31-2
Mills, F.C. 19
Mitchell, W.C. 19
model risk
concepts 38, 80, 222, 278-80,
368-9
definition 38, 80, 222
delta hedging 80,
market makers 222
model-dependent arbitrage,
definition 28
model-independent arbitrage,
definition 28
model-independent relationships,
concepts 31, 77-8
model-independent/dependent
hedging classifications 77-8, 85
models/equations
see also financial modelling;
individual models/equations
credit risk models 448-50, 472
economic models 303-6
equity/FX/commodities 430-4
fixed-income securities 435-48

types 429-51
Modern Portfolio Theory (MPT)
CAPM 58-61, 62-4
concepts 4, 55-7, 58-61, 91,
160-1, 221-2, 316-22
definition 55-6
examples 55
modified duration, concepts 436-7
Modigliani-Modigliani (M2) measure
see also Sharpe ratio
concepts 91-2
definition 91
monotonicity property of coherent
risk measures 53-4, 333-4, 342
Monte Carlo simulations
concepts 2-3, 8, 11, 43-5, 123,
130-1, 132, 135-7, 139,
141-4, 197-8, 241-4, 315,
331-2, 406, 462-79, 503
critique 136-7, 139, 141-4, 241
definition 135-6, 141, 503
derivatives-pricing uses 142-4
efficiency considerations 137
examples 132, 141
historical background 142
implementation features 136-7,
139
interest rate products 137,
142-4
portfolio statistics uses 142-4
programme of study 137
quasi-Monte Carlo numerical
quadrature method 242-4
uses 132, 135-7, 139, 141-4,
197, 241-4, 406, 462-79, 503
Moore, Gerald 11
moral hazard 15
Mortgage-Backed Securities (MBS)
concepts 206-7, 254-8, 270-4,
327, 4717, 503
definition 477, 503
Morton, Andrew 10-11, 197-9,
446-7
see also Heath, Jarrow and
Morton
Mossin, Jan 4-5
moving averages 164
moving window volatility
concepts 175
definition 175



multi-asset options 11, 137
multi-dimensional lognormal random
walks 431-2
multi-index versions, CAPM 60
Musiela, Marek 13, 198, 447
see also Brace, Gatarek and
Musiela

Navier-Stokes equation 233-4,
351-2
Neftci, Salih, Principles of Financial
Engineering 493-4
Nelson, S.A. 18
Net Asset Value, concepts 84
Newton-Raphson technique 168
NGARCH, concepts 177
Niederreiter, H. 240
no-arbitrage models 27-9, 31-2,
58-9, 85, 111-12, 170-1, 195,
196-9, 216-18, 224-5, 277-80,
285-6, 361-7, 377-9, 406
equilibrium approach contrasts
216-18
non-linear differential equations
134-5, 137, 139, 305, 324-7,
352-7, 369-70
normal distributions
see also Central Limit Theorem
(CLT)
assumptions 219-22
Brownian motion properties
101-2, 153-4
concepts 2, 33-7, 40, 42-5,
68-9, 90-2, 101-2, 123,
138-9, 153-4, 177, 219-22,
226-8, 273, 276-80, 384-6,
418-19, 422-3, 503
definition 384-6, 503
returns’ assumptions 219-22,
384-6
uses 226-8, 384-6
numerical methods
see also finite-difference
methods; Monte Carlo
simulations
concepts 2-3, 22-6, 130-1,
132-40, 141-4, 145-9, 374,
377-9, 501
definition 132
examples 132
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numerical quadrature method
132, 138-9, 240-4, 315

uses 132-40, 377-9, 501

numerical quadrature method

concepts 132, 138-9, 240-4, 315,
466

critique 138-9

definition 138

efficiency considerations 138-9

methods 138-9

programme of study 139

uses 132, 138-9, 240, 466

obfuscation/education issues,
quants 314
Oliver, M. 19
one-sided difference approximations,
finite-difference methods 147-9
operational risk, definition 38
optimal-stopping times 236-9
American options 236-9
definition 236
optimizations, delta hedging 182,
236-9, 345-6
Option Adjusted Spread (OAS)
206-7
see also yield curves
concepts 206-7
definition 206
examples 206
options
see also American...;
Black-Scholes...; call...;
European...; put...
the Greeks 454-8
replication methods 155-9,
323-4, 346-50
swaptions 198-9, 203, 441-2,
480-1, 505
types 8-11, 367-8, 464-82
options pricing 5-12, 27, 78-9,
97-8, 107-31, 148-9, 154,
162-73, 179-83, 196-7, 201, 203,
209-11, 221-5, 260, 275-80, 286,
292, 328-5, 343-6, 358-67,
401-27, 429-51, 464-82, 487-8
see also Black-Scholes...
actuaries 97-9, 158
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options pricing (continued)

binomial model 2-3, 10, 24, 27,
132-5, 155-6, 372-3, 377-9,
412-15

bond options 8-9, 10, 13, 440-2

common contracts 459-81

concepts 2-19, 22-6, 31-2,
77-82, 97-9, 104-5, 109-12,
126-8, 145-9, 200-2, 261-2,
327-8, 429-51, 487-8

Cox, Ross and Rubinstein model
9

deterministic volatility model 12,
109-10, 165, 323-4, 411-12

historical background of
quantitative finance 2-19,
97-9, 263-4, 275-80, 377-9

incomplete/complete markets
153, 155-9, 208-11, 217-18,
322-4, 343-6

interest rate options 8-9, 10-11,
13, 14, 35-6, 135, 137, 142-4,
197-9

marking to market 83-6, 180-4,
472

Monte Carlo simulations 2-3, §,
11, 43-5, 123, 130-1, 132,
135-7, 139, 141-4, 197,
241-4, 331-2, 406, 462-79,
503

no-arbitrage assumptions 27-9,
31-2, 58-9, 85, 111-12,
170-1, 195, 196-9, 216-18,
224-5, 277-80, 285-6, 361-7,
377-9, 406

probability theory 9-10

real probabilities 160-1

risk-neutrality valuations 109-12,
142-4, 160-1, 169-70, 176-8,
209-11, 248-9, 325-7, 408-9,
432-4

SABR interest rate model 14,
233, 235, 446, 504

SAC uses 186-7

Uncertain Volatility Model
12-13, 39-40, 166, 344-5,
356-7

unofficial historical background
of quantitative finance 18-19

value of a contract 200-2,
261-2, 368-71
volatility smiles 170-3, 278-80
order feature of exotic options
462-3
ordinal utility, definition 93
Ornstein—Uhlenbeck process 433
Orwell, George 371
other people’s money (OPM) 295-6,
318
out options 327-35, 465, 476, 478
see also barrier...
out-of-the-money options (OTM),
concepts 7, 49, 52-3, 164,
167-73, 201-2, 320, 323, 479
outperformance options, definition
477-8
over-the-counter (OTC) 81, 84-5,
376, 474, 480
see also forwards
marking to market methods
84-5

pairs trading
concepts 71-3
definition 73
parabolic partial differential
equations
see also backward
Kolmogorov...;
diffusion-type...; forward
Kolmogorov...
concepts 125-8, 129-31, 133-5,
376-7, 503
parameters
parameter risk definition 38
parameters-as-variables
derivation method 410-12
sensitivities 327-35, 454-8
parameters-as-variables derivation
method, Black-Scholes model
410-12
Paras, Antonio 12-13, 332, 356-7
Pareto distributions 391, 399-400
Parisian options, definition 478
partial differential equations
see also backward
Kolmogorov...;
Black-Scholes...; elliptic...;



forward Kolmogorov...;
hyperbolic...; parabolic...
classes 376-7
concepts 7, 8-9, 22-6, 114-15,
120, 123-4, 129-31, 133,
145-9, 162, 197-8, 212-15,
233, 376-7, 402-27, 449, 475,
478, 503
definition 120, 376, 503
examples 212
hedging 403-4, 408
reverse engineering 212-15
terms 212-15
pass through securities, definition
478
passport options, definition 478-9
path dependency 133-5, 137, 139,
154, 430-1, 460, 461-2, 465
payoff formulae 454-8
performance measures
see also returns; risk
concepts 90-2
definition 90
examples 90
information ratio 92
market efficiency 5, 87-9
Modigliani-Modigliani measure
91-2
Sharpe ratio 90-2, 208-9
Sortino ratio 91-2
Treynor ratio 92
PGARCH, concepts 178
physicists 9-10, 254-5, 263-4
Platinum hedging
see also CrashMetrics; hedging
concepts 49-50, 81-2
definition 49, 81
types 82
Pliska, Stan 9-10, 405
Poisson distribution
concepts 386-7
definition 386-7
Poisson process
see also jump-diffusion models
concepts 7, 108, 150-1, 152-4,
166, 386-7, 434, 449-50
definition 150, 152, 386-7
forecast/model volatility
approaches 166
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intensity parameter 150-1,
152-4
uses 150-1, 152-4, 166, 386-7,
449-50
Ponzi schemes 300-2
popular probability distributions
383-400
portfolio insurance 348-50
portfolio statistics uses, Monte
Carlo simulations 142-4
portfolio theory
see also asset allocation theory
concepts 4-5, 55-7, 58-61, 91,
316-22
diversification 48-51, 55-7, 272,
279-80, 295-6, 316-22
portfolios 12-13, 42-5, 48-51, 52-3,
55-7, 143-4, 176, 272, 279-80,
295-6, 316-22, 368-71, 422-4
CrashMetrics 40, 48-51, 81-2,
273, 357
pricing 12-13
VaR 42-5, 52-3, 143-4, 176
positive homogeneity property of
coherent risk measures 53-4
Poulsen, Rolf 402
power-lay decay 36-7
pragmatic scientists 266, 276-80
precision issues, critique 316,
367-71
prepayment risk, definition 477
present values 30-2, 213-15, 448
previsible processes
concepts 113-15
definition 114
prices
demand and supply 200-2,
261-2, 316, 322-4, 368-9
lognormal distributions 224,
226-8, 384-6
property prices 270-1
value of a contract 200-2,
261-2, 368-71
prices as expectations, fixed-income
securities 448
pricing models
see also Black-Scholes...;
options pricing
actuaries 97-9, 158
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pricing models (continued)
CDOs 254-8, 267-9, 294, 299,
340-2, 371, 469-70, 498
copulas 229-32, 340-1, 470
credit derivatives 229-32, 267-9,
294, 295-6, 299, 315-8, 371,
469-70, 472
critique 250-1, 253-8, 259-306,
313-81
demand and supply 200-2,
261-2, 316, 322-4, 368-9
exotic options 201-2, 358
portfolios 12-13
real probabilities 160-1
risk-neutrality 109-12, 142-4,
160-1, 169-70, 176-8,
209-11, 248-9, 325-7, 377-9,
408-9, 421-2, 432-4
risky assets 4-5
types 429-51
probabilistic financial modelling
concepts 22-6, 141-4
definition 23
probabilities 3, 65-70, 160-1, 176-8,
216-18, 255-6, 272-4, 383-400,
508-56
brainteasers 508-56
MLE 65-70, 176-8
real probabilities 160-1
risk management guidelines
272-3, 281-4
wars 3
probability density function 66-70,
125-8, 138-9, 169-70, 220,
226-8, 384-400
probability distributions
see also distributions
popular probability distributions
383-400
probability theory
concepts 9-10, 22-6, 33-7,
38-41
options pricing 9-10
risk concepts 38-41
product copula example 231
profits, precision issues 367-71
programme of study
finite-difference methods 134-5
Monte Carlo simulations 137

numerical quadrature method
139

property prices 270-1
put options

concepts 18-19, 27, 30-2, 49,
134-5, 137, 164, 167-73,
236-9, 348-50, 402-27, 431,
440-51, 456-8, 470-82

definition 479

put—call parity

concepts 18-19, 27, 30-2, 77-8
definition 30

dividends 32

implied volatility 31-2
violations 31-2

putdowns 289-91

quantitative finance

authors of models 250-1, 371-2

best-kept secrets 250-1, 371-2

classical putdowns 289-91

commonsense lessons 313-81

complexity issues 98-9, 293-6,
306, 314, 371-7

critique 14-15, 97-9, 215, 250-1,
254-8, 313-81

dumbed-down textbooks 277,
293-4, 314, 372-7

fears/predictions for the future
294-6, 315-6

financial crisis from 2007 14-15,
98-9, 254-8, 267-74, 287,
293-6, 298-9, 315-6

fun aspects 293, 371-2

guidelines 272-4, 279-80, 281-4,
294-6, 313-81

historical background 2-19,
97-9, 263-4, 275-80, 377-9

linear equation uses 25, 134,
137, 139, 305, 326-7, 352-7,
367, 376-7

mathematics 22-6, 265-6, 281-4,
287-8, 293-6, 314, 335-42,
371-7

popular probability distributions
383-400

pragmatic scientists 266, 276-80

research papers 287-8, 297-9,
314, 372-4, 426

results and ideas 289-91, 305-6



‘same old same old’ critique
287-8
science in finance 260-95
unofficial historical background
18-19
QuantLib, definition 504
quantos
concepts 472, 479, 504
definition 479, 504
quants
actuaries 97-9
authors of models 250-1,
371-2
careers 263-4, 362-3
classical putdowns 289-91
closed-form solutions 122-4,
176, 350-2, 454
commonest mistakes in
quantitative finance 313-81
commonsense lessons 313-81
concepts 69-70, 97, 176, 250-1,
253-8, 263-4, 287-8, 293-6,
313-81
critique 97-9, 250-1, 253-8,
313-81
CVs 559-65
definition 97
econometricians 176, 255, 303-6
failed banks 270-4, 293-6,
299-302, 371
financial modelling 122-4, 176,
250-1, 253-8, 371-7
frustrations 297-9
guidelines 272-4, 279-80, 281-4,
294-6, 313-81
interviews for jobs 565-77
‘.ists’ 263-4
obfuscation/education issues 314
pragmatic scientists 266, 276-80
recruitment processes 558-77
salaries 69-70, 97, 296, 376
‘same old same old’ critique
287-8
skills 559-60, 573-4
value of a contract 200-2,
261-2, 368-71
quartic splines 193
quasi random numbers
see also low-discrepancy
sequence theory
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concepts 5, 11, 138-9, 240-4

quasi-Monte Carlo numerical
quadrature method, concepts
242-4

Radon-Nikodym derivatives 315
rainbow options, definition 479
random numbers, concepts 5, 33-7,
101, 138-9, 240-4
random walks
see also Brownian motion;
continuous-time processes
concepts 2, 8-9, 11, 23, 100-2,
106-8, 126-8, 135-7, 138-9,
142-4, 152-4, 157-8, 209-11,
226-8, 240-4, 261-2, 374-5,
403-4, 409, 412-15, 430-2,
466, 478
randomness, definition 38-40, 209
range notes, definition 479
Rasmussen, Henrik 2
ratchets, definition 480
real probabilities, options pricing
160-1
real-world measure
see also Girsanov’s theorem
risk-neutral world 113-15, 157,
176-8
realized volatility see historical
volatility
rebalancing concepts 117, 155-9,
181-4, 343
Rebonato, Riccardo 488
reduced-form model types, credit
risk 448-9
REGARCH, concepts 177
regression, definition 504
regulatory requirements
critique 298-9, 300-2
marking to market 83
rehedging concepts 117, 181-4,
343-6
Reinach, AM. 19
relative risk aversion function
concepts 94-6
definition 94
replication methods
see also complete markets
concepts 155-9, 200-2, 265-6,
323-4, 346-50
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replication methods (continued)
definition 155
examples 155
repos, definition 480
research papers 287-8, 297-9, 314,
372-4, 426
results and ideas, quantitative
finance 289-91, 305-6
returns
see also hedging; performance
measures
CAPM 4-5, 48, 58-61, 62-4, 92,
164, 416
distributions 37, 43-7, 55-7,
102, 219-22, 226-8, 384-400,
422-4
EMH 87-9
excess returns 87-9, 208-11,
365-7
market price of risk 208-11,
214, 217-18, 365-7, 4424,
445-6
MPT 4, 55-7, 62-4, 77, 91,
160-1, 221
normal distribution assumptions
219-22, 384-6
Sharpe ratio 90-2, 208-9
reverse engineering
failed banks 274
partial differential equations
212-15
risk management guidelines 274
reverse repos, definition 480
reward-to-variability ratio see
Treynor ratio
Reynolds number 233-4
rho
see also dividend yield; interest
rates
concepts 119, 455-8
definitions 119, 455
Richardson, Lewis Fry 2-3, 378
risk
see also hedging; performance
measures; standard deviation
coherent risk measures 40,
44-5, 52-4
concepts 3, 4, 38-41, 42-5,
77-82, 87-8, 90-2, 368-71,
504

CrashMetrics 40, 48-51, 81-2,
273, 357
default risk 7, 13-14, 35-6,
209-11, 212-15, 229-32,
254-8, 448-50, 470, 472, 501
definitions 38-40, 504
EMH 87-9
EVT 46-7, 273-4
examples 38
market price of risk 208-11,
214, 217-18, 365-7, 4424,
445-6
mathematical definitions 38-40
MPT 4, 55-7, 62-4, 77, 91,
160-1, 221
types 38-9, 58
VaR 42-5, 52-3, 143-4, 176,
271-2, 505
risk aversion
see also utility function
concepts 94-6, 157, 161, 210-11
definition 94
risk management 83-6, 254, 270-4,
281-4, 293-6, 313-81
‘alien invasions’ 272, 273-4
behavioural finance 281-4
commonsense lessons 313-81
critique 270-4, 279-80, 281-4,
293-6, 313-81
diversification guidelines 272,
279-80, 295-6, 316-22
ethics 271-2
fears/predictions for the future
295-6, 315-6
guidelines 272-4, 279-80, 281-4,
294-6, 313-81
marking to market effects 83-6
probabilities 272-3, 281-4
reverse engineering of a failed
bank 274
science in finance 270-4, 281-4
VaR 271-2
worst-case scenarios 272-4,
276-80, 281-4, 357
risk-adjusted drift, concepts 210-11
risk-free interest rates 130-1, 208,
212-15, 249, 404, 450
risk-free returns 27, 56-7, 87-9,
109-12, 404, 416, 450, 498
risk-neutral drift, concepts 210-11



risk-neutrality 3, 13, 18, 104-5,
109-12, 113-15, 127-8, 135-7,
142-4, 153-4, 160-1, 169-70,
176-8, 209-11, 224-5, 240-4,
248-9, 325-7, 343-6, 377-9,
408-9, 412-15, 421-2, 432-4,
442-7, 504
see also Girsanov’s theorem
concepts 109-12, 113-15, 127-8,
135-7, 142-4, 153-4, 160-1,
169-70, 176-8, 209-11,
224-5, 248-9, 325-7, 343-6,
377-9, 408-9, 412-15, 421-2,
432-4, 442-7, 504

critique 110-12, 160, 248-9,
343-6

definition 504

examples 110

stupid sayings 248-9

valuations 109-12, 142-4, 160-1,
169-70, 176-8, 209-11,
248-9, 325-7, 377-9, 408-9,
412-15, 421-2, 432-4

risky assets, pricing models 4-5

robust models 122-4, 223-5, 257,
267-9, 275-80, 306, 314, 334-5,
343-6, 374-7

rogue traders, fears/predictions for
the future 294-6

root-mean-square-average volatility
223, 224, 431

Ross, Stephen 9, 62, 197, 217, 443
see also Cox...

Rubinstein, Mark 9, 12, 348, 411,
416-17
see also Cox, Ross and

Rubinstein model

S&P500 46, 72-3, 167-8, 188,
219-20, 482
SABR interest rate model 14, 233,
235, 446, 504
asymptotic analysis 233, 235,
446, 504
definition 504
salaries, quants 69-70, 97, 296, 376
salesmen, fears/predictions for the
future 295-6
‘same old same old’ critique 287-8
sample space, concepts 113-15
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Samuelson, Paul 3
Savoy auctions 261-2
scams 301
scenario analysis 270-4, 281-4
Scholes, Myron 6-7, 275-80
see also Black-Scholes model
Schronbucher, Philipp, Credit
Derivatives Pricing Models 7, 347,
434, 492-3
science in finance 260-95
accuracy of models in different
markets 367-71
Black-Scholes model 260,
275-80
CDOs 267-9
diversification 272, 279-80,
316-22
feedback effects in illiquid
markets 265-6, 324, 346-50
‘..ists’ 263-4
mathematics used in
quantitative finance 281-4,
314, 335-42, 371-7
risk management 270-4, 281-4
supply and demand 261-2, 316,
322-4, 368-9
true sensitivities 267-9
second-derivative terms, partial
differential equations 214-15
secrets in quantitative finance
250-1, 371-2
self-financing strategy 405-6
semi-strong form EMH, concepts
87-8
semivariance
concepts 40, 91-2
definition 40
Senior Tranche CDO experiment
267-9, 342, 469-70, 498
sensitivities
see also Greeks
parameters 327-35, 454-8
science in finance 267-9
serial autocorrelation (SAC)
concepts 185-7
definition 185
examples 185
hedging 186-7
options pricing 186-7
uses 185-7
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series solutions, concepts 23, 25
shadow Greeks, concepts 120
Shannon, Claude 5
Sharpe ratio
see also market price of risk;
Modigliani-Modigliani...
concepts 90-2, 208-9
definition 90
Sharpe, William 4-5, 57, 60
Sherris, M. 425
Shiu, E.S.W. 425
short options, margins 84
short selling 30-1, 77, 84, 117,
224-5, 422-4
short-term interest rates, concepts
9, 10-11, 31, 64, 77-8, 196-9,
305, 437-40
simulation tools
see also Monte Carlo...
concepts 2-3, 8, 11, 23, 24-5,
42-5, 123-4, 141-4, 198-9,
349-50, 503
definition 24
VaR 42-5, 143-4, 271-2
skew
see also kurtosis; volatility
smiles
concepts 19, 167-73, 220-2,
224-5, 278-80, 323, 331-5,
360-1, 454, 471, 504
definition 167, 504
smooth-pasting condition, concepts
238-9
Sobol’, ILM. 5, 240, 505
Social Services 301
soft sciences 304-6, 314-5
see also economists
Sortino performance measure,
concepts 40
Sortino ratio, definition 91-2
source term (term independent of
V), partial differential equations
213-15
South Korea 340
Special Purpose Vehicles 478
specific risk
concepts 58-61
definition 58
speculation 116-17, 239, 265-6,
346-50

speed
see also gamma
concepts 455-8
definition 455
spot interest rates, concepts 9,
10-11, 31, 64, 77-8, 196-9, 305,
437-40
spot price relationship 31, 64,
77-82, 83-6, 437-40
spot rate models, concepts 442-6
spreadsheets 263-4
square-root rule 25-6, 424-5, 433
squared Bessel processes 315
stable distributions see Lévy
distributions
standard deviation
see also risk; volatilities
concepts 4, 33-7, 38-41, 42-5,
55-7, 59-61, 65-70, 71-3, 76,
90-2, 109-12, 153-4, 160-1,
162-6, 228, 230-2, 383-400,
431
Sharpe ratio 90-2
static arbitrage
see also arbitrage
definition 27-8
static hedging
see also hedging
concepts 5, 12-13, 80-2, 265-6,
355-8, 369
definition 80
stationarity
see also cointegration
concepts 71-3
definition 72
statistical arbitrage, definition 28
statistics 255-6
Staunton, Mike, Advanced Modellng
in Finance Using Excel and VBA
486
sticky delta model 165
sticky strike model 165
stochastic, definition 505
stochastic calculus
see also Ito’s lemma
concepts 3-4, 9, 97, 106-8,
145-9, 219, 261-2, 275-80,
403-6, 409-10, 432-4,
442-4



stochastic differential equations,
concepts 3-4, 101, 138-9, 145-9,
160-1, 176-8, 226-8, 336-8,
403-6, 432-4, 442-4
stochastic implied volatility 434
stochastic interest rates
see also LIBOR Market Model
concepts 13, 196-9, 446
stochastic spot rate models 13,
196-9
stochastic volatility 120, 124, 154,
158-9, 165-6, 171-2, 222, 235,
263-4, 285-6, 297, 323-4, 335,
351-2, 356-7, 432-4, 487-8
asymptotic analysis 235, 433-4,
446
concepts 165-6, 171-2, 222, 235,
263-4, 285-6, 297, 323,
432-4, 487-8
model types 432-4
uses 165, 171-2, 263, 285-6,
297, 323, 432-4, 487-8
stock price, put-call parity 18-19,
27, 30-2
stop-loss strategies 409-10
straddles
concepts 188-90, 238-9, 480
definition 480
strangles, definition 480
stress-testing
see also CrashMetrics;
uncertainty; Value at Risk
concepts 39-40, 48-51, 271-2,
328-9, 334-5
strike price 18-19, 27, 30-2, 167-73
see also volatility smiles
put—call parity 18-19, 27, 30-2
STRIPs, definition 480
strong form EMH, concepts 87-8
Stroustrup, Bjarne 499
structural model types, credit risk
448-9
structured products, definition 505
Student’s t-distributions 177, 390
sub-additivity property of coherent
risk measures 52-5
subprime mortgage crisis 14-15,
254-8, 267-74, 287, 293-6,
298-9, 315-6
superhedging
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see also hedging
concepts 80
supply and demand 200-2, 261-2,
316, 322-4, 368-9
swaps
bonds 31, 192-5
concepts 31, 191-5, 203-4,
441-2, 465-6, 469, 472-7,
480-2, 499-506
definition 480, 505
forward interest-rate curves
191-5, 441-2
types 465-6, 469, 472-3, 475-7,
480-2, 505
swaptions
concepts 198-9, 203, 441-2,
480-1, 505
definition 441, 480-1, 505
sweet spot, mathematics used in
quantitative finance 314-5,
376-7
systematic risk
concepts 58-61
definition 58

tail index, concepts 231-2

Taleb, Nassim Nicholas 303, 329

Taylor series
see also Ito’s lemma
Black-Scholes model derivation

method 417-19
concepts 76, 104, 106-8, 326,
415, 417-19, 436-7

definition 417-18

technical analysis 275-6

term independent of V, partial
differential equations 213-15

term structure of interest rates
196-9, 360-1

terms, partial differential equations
212-15

terrorist attacks 157

textbooks 256-7, 293-4, 314, 372-3

TGARCH, concepts 178

theta
concepts 117-18, 147-8, 455-8
definition 117, 147, 455

Thorp, Ed 5, 2-8, 485

time decay term, Black-Scholes
model 130-1
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time horizons 42-3, 117-18, 119,
143-4, 147-8, 162-3, 455-8,
464, 467
see also expiration
charm 119
colour 119, 455
finite-difference grids 146-9
theta 117-18, 147-8, 455-8
VaR calculations 42-3, 143-4
volatilities 162-3

time-dependence feature of exotic
options 460

timeline in quantitative finance 1-19

tools
concepts 22-6, 335-6
list 23-6

Total Return Swaps (TRSs),
definition 481

tracking error
see also information ratio
concepts 92

tracking the index
see also cointegration
concepts 72-3

‘trade small and trade often’ lesson
321-2

traders, commonsense lessons
313-81

transaction costs 14, 112, 157,
182-3, 209-11, 223-5, 234-5,
276-80, 324, 402, 410
asymptotic analysis 234-5
Black-Scholes model 223-4,

276-80, 324, 402, 410
delta hedging 182-3
transition probability density
function
see also backward
Kolmogorov...; forward
Kolmogorov...

concepts 125-8, 169-70, 408-9,
411-12

definition 125-6

translation invariance property of
coherent risk measures 53-4

trapezium rule 240-1

Treasury economists 305-6

Treynor ratio
concepts 92
definition 92

true sensitivities, science in finance
267-9

trustworthiness tests 302

two-factor models 135, 235, 444-6

Ulam, Stanislav 142
see also Monte Carlo
simulations
ultras, definition 481-2
Uncertain Volatility Model, concepts
12-13, 39-40, 166, 332-4, 356-7
uncertainty
see also stress-testing;
worst-case scenarios
definition 38-40
uniform distributions 392
unofficial historical background of
quantitative finance 18-19
up-and-in call options 465
up-and-out call options 327-35, 465
utility function
see also certainty equivalent...;
risk aversion
Black-Scholes model derivation
method 417
concepts 93-6, 160-1, 183, 202,
211, 417
definition 93
examples 93

V term, partial differential
equations 213-15

Value at Risk (VaR)
see also stress-testing
concepts 42-5, 52-3, 143, 176,

271-2, 501, 505
critique 44-5, 52
definition 42, 501, 505
examples 42
risk management guidelines
271-2

time horizons 42-3
usefulness 44, 176, 271

value of a contract
concepts 200-2, 261-2, 368-71
definition 200

vanna
see also delta
concepts 120, 455-8
definition 120, 455



variance 4, 33-7, 100-2, 104-5,
174-8, 221-2, 326-7, 384-400,
431, 482
concepts 174-8, 221-2, 326-7,
384-400, 431, 482

GARCH type econometric
forecast volatility models
164, 174-8, 433, 502

variance swaps, definition 482, 505

Vasicek, Oldrich 8-9, 10, 197,
216-18, 250, 351, 443, 444
see also interest rate options

vega
see also volatilities; vomma
bastard Greeks 245-7, 278-80,

329-5
concepts 79-80, 118-19, 245-7,
278-80, 329-5, 454-8
definition 118, 455
vega hedging
see also hedging
concepts 79-80, 118-19
definition 79-80, 118-19
VIX volatility index 482
volatilities
see also actual...; historical...;
implied...; standard
deviation; stochastic...;
vanna; vega

arbitrage 285-6

barrier options 245-7, 327-35,
465

commonest mistakes 327-35

concepts 4, 12, 28, 42-5, 54, 73,
78-82, 84-5, 118-20, 129-31,
157-9, 162-6, 174-8, 223-5,
285-6, 295-6, 327-35, 505

critique 162-6, 285-6, 327-35

definitions 162-6, 505

deterministic volatility model 12,
109-10, 165, 171, 323-4,
411-12

econometric forecast/model
volatility approaches 164,
174-8

EWMAs 175-8

examples 162

fears/predictions for the future
295-6
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forecast/model volatility
approaches 85, 163-6, 174-8,
285-6
GARCH type econometric
forecast volatility models
164, 174-8, 433, 502
hedging 85, 164-5, 179-84,
279-80
indices 188-90
infinite volatility 36-7
lessons 327-35
marking OTC contracts 84-5
MLE 68-70, 176-8
moving window volatility 175
Poisson process forecast/model
volatility approach 166
root-mean-square-average
volatility 223, 224, 431
time horizons 162-3
types 162-6, 175-8
uncertain forecast/model
volatility approach 166
Uncertain Volatility Model
12-13, 39-40, 166, 332-5,
356-7
uses 162-6, 176
volatility arbitrage, concepts 285-6
volatility risk
concepts 38, 115, 158-9, 335,
357
definition 38, 158
volatility smiles 154, 167-73,
278-80, 360-1, 504
see also implied volatility; strike
price
concepts 167-73, 278-80, 504
construction method 168
definition 167-8, 504
kurtosis 169-70, 278-80
options pricing 170-3, 278-80
volatility swaps, definition 482
volatility of volatility 233-5, 295-6,
446, 482
see also kurtosis
asymptotic analysis 233-5, 446
volga see vomma
vomma
see also vega; volatility
concepts 120, 455-8
definition 120, 455
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warrants 19
wars, probabilities 3
weak-form EMH, concepts 87-8
wearable computers 5
Weibull distributions 47, 389
Whalley, A.E. 183, 356
White, A. 197, 217-18, 351, 443-4,
445
see also Hull and White model
Wiener, Norbert 3
Wiener process see Brownian
motion
Wilde, Oscar 202, 358
Wilmott magazine 288
Wilmott, Paul 11, 183, 194-5, 253-8,
275-80, 288, 315, 335, 344, 345,
356-8, 363, 365, 419, 500,
557-77
Paul Wilmott Introduces
Quantitative Finance, Second
Edition 484
Paul Wilmott on Quantitative
Finance 485
wilmott.com 275, 372, 374-5,
497-506, 508, 558, 577
Woodward, Diana 14, 446
worst-case scenarios
see also CrashMetrics

concepts 39-40, 46, 48-51, 166,
272-4, 276-80,
281-4, 332-5, 357
risk management guidelines
272-4, 276-80, 281-4
worth, value of a contract
200-2

Yakovlev, D.E. 419
yield curves
see also duration; Option
Adjusted Spread; yield to
maturity
concepts 10-11, 13, 191-5,
196-9, 203-4, 206-7, 355-67,
436, 505-6
definition 436, 505-6
Yield Envelope 194-5
yield to maturity (YTM) 196-9,
435-6, 505-6
see also yield curves

zero probability sets 111-12

zero-coupon bonds 192-5, 405-6,
435-51

zero-sum games 265-6, 349

zeta see vega

Zhabin, D.N. 419

Index compiled by Terry Halliday
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