

Optimization Methods in Finance

Optimization methods play a central role in financial modeling. This textbook is devoted
to explaining how state-of-the-art optimization theory, algorithms, and software can be
used to efficiently solve problems in computational finance. It discusses some classical
mean–variance portfolio optimization models as well as more modern developments
such as models for optimal trade execution and dynamic portfolio allocation with trans-
action costs and taxes. Chapters discussing the theory and efficient solution methods for
the main classes of optimization problems alternate with chapters discussing their use
in the modeling and solution of central problems in mathematical finance.

This book will be interesting and useful for students, academics, and practitioners
with a background in mathematics, operations research, or financial engineering.

The second edition includes new examples and exercises as well as a more detailed
discussion of mean–variance optimization, multi-period models, and additional material
to highlight the relevance to finance.

Gérard Cornuéjols is a Professor of Operations Research at the Tepper School of
Business, Carnegie Mellon University. He is a member of the National Academy of
Engineering and has received numerous prizes for his research contributions in integer
programming and combinatorial optimization, including the Lanchester Prize, the
Fulkerson Prize, the Dantzig Prize, and the von Neumann Theory Prize.

Javier Peña is a Professor of Operations Research at the Tepper School of Business,
Carnegie Mellon University. His research explores the myriad of challenges associated
with large-scale optimization models and he has published numerous articles on opti-
mization, machine learning, financial engineering, and computational game theory. His
research has been supported by grants from the National Science Foundation, including
a prestigious CAREER award.

Reha Tütüncü is the Chief Risk Officer at SECOR Asset Management and an adjunct
professor at Carnegie Mellon University. He has previously held senior positions at
Goldman Sachs Asset Management and AQR Capital Management focusing on quanti-
tative portfolio construction, equity portfolio management, and risk management.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Optimization Methods in Finance

Second Edition

GÉRARD CORNUÉJOLS
Carnegie Mellon University, Pennsylvania

JAV IER PEÑA
Carnegie Mellon University, Pennsylvania

REHA TÜTÜNCÜ
SECOR Asset Management

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107056749
DOI: 10.1017/9781107297340

First edition © Gérard Cornuéjols and Reha Tütüncü 2007
Second edition © Gérard Cornuéjols, Javier Peña and Reha Tütüncü 2018

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2007
Second edition 2018

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-05674-9 Hardback

Additional resources for this publication at www.cambridge.org/9781107056749

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Contents

Preface page xi

Part I Introduction 1

1 Overview of Optimization Models 3

1.1 Types of Optimization Models 4

1.2 Solution to Optimization Problems 7

1.3 Financial Optimization Models 8

1.4 Notes 10

2 Linear Programming: Theory and Algorithms 11

2.1 Linear Programming 11

2.2 Graphical Interpretation of a Two-Variable Example 15

2.3 Numerical Linear Programming Solvers 16

2.4 Sensitivity Analysis 17

2.5 *Duality 20

2.6 *Optimality Conditions 23

2.7 *Algorithms for Linear Programming 24

2.8 Notes 30

2.9 Exercises 31

3 Linear Programming Models: Asset–Liability Management 35

3.1 Dedication 35

3.2 Sensitivity Analysis 38

3.3 Immunization 38

3.4 Some Practical Details about Bonds 41

3.5 Other Cash Flow Problems 44

3.6 Exercises 47

3.7 Case Study 51

4 Linear Programming Models: Arbitrage and Asset Pricing 53

4.1 Arbitrage Detection in the Foreign Exchange Market 53

4.2 The Fundamental Theorem of Asset Pricing 55

4.3 One-Period Binomial Pricing Model 56

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

vi Contents

4.4 Static Arbitrage Bounds 59

4.5 Tax Clientele Effects in Bond Portfolio Management 63

4.6 Notes 65

4.7 Exercises 65

Part II Single-Period Models 69

5 Quadratic Programming: Theory and Algorithms 71

5.1 Quadratic Programming 71

5.2 Numerical Quadratic Programming Solvers 74

5.3 Sensitivity Analysis 75

5.4 *Duality and Optimality Conditions 76

5.5 *Algorithms 81

5.6 Applications to Machine Learning 84

5.7 Exercises 87

6 Quadratic Programming Models: Mean–Variance Optimization 90

6.1 Portfolio Return 90

6.2 Markowitz Mean–Variance (Basic Model) 91

6.3 Analytical Solutions to Basic Mean–Variance Models 95

6.4 More General Mean–Variance Models 99

6.5 Portfolio Management Relative to a Benchmark 103

6.6 Estimation of Inputs to Mean–Variance Models 106

6.7 Performance Analysis 112

6.8 Notes 115

6.9 Exercises 115

6.10 Case Studies 121

7 Sensitivity of Mean–Variance Models to Input Estimation 124

7.1 Black–Litterman Model 126

7.2 Shrinkage Estimation 129

7.3 Resampled Efficiency 131

7.4 Robust Optimization 132

7.5 Other Diversification Approaches 133

7.6 Exercises 135

8 Mixed Integer Programming: Theory and Algorithms 140

8.1 Mixed Integer Programming 140

8.2 Numerical Mixed Integer Programming Solvers 143

8.3 Relaxations and Duality 145

8.4 Algorithms for Solving Mixed Integer Programs 150

8.5 Exercises 157

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Contents vii

9 Mixed Integer Programming Models: Portfolios with Combinatorial

Constraints 161

9.1 Combinatorial Auctions 161

9.2 The Lockbox Problem 163

9.3 Constructing an Index Fund 165

9.4 Cardinality Constraints 167

9.5 Minimum Position Constraints 168

9.6 Risk-Parity Portfolios and Clustering 169

9.7 Exercises 169

9.8 Case Study 171

10 Stochastic Programming: Theory and Algorithms 173

10.1 Examples of Stochastic Optimization Models 173

10.2 Two-Stage Stochastic Optimization 174

10.3 Linear Two-Stage Stochastic Programming 175

10.4 Scenario Optimization 176

10.5 *The L-Shaped Method 177

10.6 Exercises 179

11 Stochastic Programming Models: Risk Measures 181

11.1 Risk Measures 181

11.2 A Key Property of CVaR 185

11.3 Portfolio Optimization with CVaR 186

11.4 Notes 190

11.5 Exercises 190

Part III Multi-Period Models 195

12 Multi-Period Models: Simple Examples 197

12.1 The Kelly Criterion 197

12.2 Dynamic Portfolio Optimization 198

12.3 Execution Costs 201

12.4 Exercises 209

13 Dynamic Programming: Theory and Algorithms 212

13.1 Some Examples 212

13.2 Model of a Sequential System (Deterministic Case) 214

13.3 Bellman’s Principle of Optimality 215

13.4 Linear–Quadratic Regulator 216

13.5 Sequential Decision Problem with Infinite Horizon 218

13.6 Linear–Quadratic Regulator with Infinite Horizon 219

13.7 Model of Sequential System (Stochastic Case) 221

13.8 Notes 222

13.9 Exercises 222

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

viii Contents

14 Dynamic Programming Models: Multi-Period Portfolio Optimization 225

14.1 Utility of Terminal Wealth 225

14.2 Optimal Consumption and Investment 227

14.3 Dynamic Trading with Predictable Returns and Transaction Costs 228

14.4 Dynamic Portfolio Optimization with Taxes 230

14.5 Exercises 234

15 Dynamic Programming Models: the Binomial Pricing Model 238

15.1 Binomial Lattice Model 238

15.2 Option Pricing 238

15.3 Option Pricing in Continuous Time 244

15.4 Specifying the Model Parameters 245

15.5 Exercises 246

16 Multi-Stage Stochastic Programming 248

16.1 Multi-Stage Stochastic Programming 248

16.2 Scenario Optimization 250

16.3 Scenario Generation 255

16.4 Exercises 259

17 Stochastic Programming Models: Asset–Liability Management 262

17.1 Asset–Liability Management 262

17.2 The Case of an Insurance Company 263

17.3 Option Pricing via Stochastic Programming 265

17.4 Synthetic Options 270

17.5 Exercises 273

Part IV Other Optimization Techniques 275

18 Conic Programming: Theory and Algorithms 277

18.1 Conic Programming 277

18.2 Numerical Conic Programming Solvers 282

18.3 Duality and Optimality Conditions 282

18.4 Algorithms 284

18.5 Notes 287

18.6 Exercises 287

19 Robust Optimization 289

19.1 Uncertainty Sets 289

19.2 Different Flavors of Robustness 290

19.3 Techniques for Solving Robust Optimization Models 294

19.4 Some Robust Optimization Models in Finance 297

19.5 Notes 302

19.6 Exercises 302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Contents ix

20 Nonlinear Programming: Theory and Algorithms 305

20.1 Nonlinear Programming 305

20.2 Numerical Nonlinear Programming Solvers 306

20.3 Optimality Conditions 306

20.4 Algorithms 308

20.5 Estimating a Volatility Surface 315

20.6 Exercises 319

Appendices 321

Appendix Basic Mathematical Facts 323

A.1 Matrices and Vectors 323

A.2 Convex Sets and Convex Functions 324

A.3 Calculus of Variations: the Euler Equation 325

References 327

Index 334

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Preface

The use of sophisticated mathematical tools in modern finance is now common-

place. Researchers and practitioners routinely run simulations or solve differential

equations to price securities, estimate risks, or determine hedging strategies.

Some of the most important tools employed in these computations are opti-

mization algorithms. Many computational finance problems ranging from asset

allocation to risk management, from option pricing to model calibration, can

be solved by optimization techniques. This book is devoted to explaining how

to solve such problems efficiently and accurately using the state of the art in

optimization models, methods, and software.

Optimization is a mature branch of applied mathematics. Typical optimization

problems have the goal of allocating limited resources to alternative activities in

order to maximize the total benefit obtained from these activities. Through

decades of intensive and innovative research, fast and reliable algorithms

and software have become available for many classes of optimization prob-

lems. Consequently, optimization is now being used as an effective manage-

ment and decision-support tool in many industries, including the financial

industry.

This book discusses several classes of optimization problems encountered in

financial models, including linear, quadratic, integer, dynamic, stochastic, conic,

and nonlinear programming. For each problem class, after introducing the rele-

vant theory (optimality conditions, duality, etc.) and efficient solution methods,

we discuss several problems of mathematical finance that can be modeled within

this problem class.

The second edition includes a more detailed discussion of mean–variance opti-

mization, multi-period models, and additional material to highlight the relevance

to finance.

The book’s structure has also been clarified for the second edition; it is now

organized in four main parts, each comprising several chapters. Part I guides

the reader through the solution of asset liability cash flow matching using lin-

ear programming techniques, which are also used to explain asset pricing and

arbitrage. Part II is devoted to single-period models. It provides a thorough

treatment of mean–variance portfolio optimization models, including derivations

of the one-fund and two-fund theorems and their connection to the capital asset

pricing model, a discussion of linear factor models that are used extensively

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.001
https://www.cambridge.org/core

xii Preface

in risk and portfolio management, and techniques to deal with the sensitivity of

mean–variance models to parameter estimation. We discuss integer programming

formulations for portfolio construction problems with cardinality constraints, and

we explain how this is relevant to constructing an index fund. The final chapters

of Part II present a stochastic programming approach to modeling measures of

risk other than the variance, including the popular value at risk and conditional

value at risk.

Part III of the book discusses multi-period models such as the iconic Kelly cri-

terion and binomial lattice models for asset pricing as well as more elaborate and

modern models for optimal trade execution, dynamic portfolio optimization with

transaction costs and taxes, and asset–liability management. These applications

showcase techniques from dynamic and stochastic programming.

Part IV is devoted to more advanced optimization techniques. We introduce

conic programming and discuss applications such as the approximation of covari-

ance matrices and robust portfolio optimization. The final chapter of Part IV

covers one of the most general classes of optimization models, namely nonlinear

programming, and applies it to volatility estimation.

This book is intended as a textbook for Master’s programs in financial engi-

neering, finance, or computational finance. In addition, the structure of chapters,

alternating between optimization methods and financial models that employ

these methods, allows the book to be used as a primary or secondary text

in upper-level undergraduate or introductory graduate courses in operations

research, management science, and applied mathematics. A few sections are

marked with a ‘∗’ to indicate that the material they contain is more technical

and can be safely skipped without loss of continuity.

Optimization algorithms are sophisticated tools and the relationship between

their inputs and outputs is sometimes opaque. To maximize the value from using

these tools and to understand how they work, users often need a significant

amount of guidance and practical experience with them. This book aims to

provide this guidance and serve as a reference tool for the finance practitioners

who use or want to use optimization techniques.

This book has benefited from the input provided by instructors and students

in courses at various institutions. We thank them for their valuable feedback

and for many stimulating discussions. We would also like to thank the colleagues

who provided the initial impetus for this book and colleagues who collaborated

with us on various research projects that are reflected in the book. We especially

thank Kathie Cameron, the late Rick Green, Raphael Hauser, John Hooker,

Miroslav Karamanov, Mark Koenig, Masakazu Kojima, Vijay Krishnamurthy,

Miguel Lejeune, Yanjun Li, François Margot, Ana Margarida Monteiro, Mustafa

Pınar, Sebastian Pokutta, Sanjay Srivastava, Michael Trick, and Lúıs Vicente.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.001
https://www.cambridge.org/core

Part I

Introduction

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

1 Overview of Optimization Models

Optimization is the process of finding the best way of making decisions that

satisfy a set of constraints. In mathematical terms, an optimization model is a

problem of the form

min
x

f(x)

s.t. x ∈ X ,
(1.1)

where f : Rn → R and X ⊆ Rn.

Model (1.1) has three main components, namely the vector of decision vari-

ables x :=
[
x1 · · · xn

]T ∈ Rn; the objective function f(x); and the constraint

set or feasible region X . The constraint set is often expressed in terms of equalities

and inequalities involving additional functions. More precisely, the constraint set

X is often of the form

X = {x ∈ Rn : gi(x) = bi, for i = 1, . . . ,m, and hj(x) ≤ dj , for j = 1, . . . , p},
(1.2)

for some gi, hj : Rn → R, i = 1, . . . ,m, j = 1, . . . , p. When this is the case, the

optimization problem (1.1) is usually written in the form

min
x

f(x)

s.t. gi(x) = bi, for i = 1, . . . ,m

hj(x) ≤ dj , for j = 1, . . . , p,

or in the more concise form

min
x

f(x)

s.t. g(x) = b

h(x) ≤ d.

We will use the following terminology. A feasible point or feasible solution to

(1.1) is a point in the constraint set X . An optimal solution to (1.1) is a feasible

point that attains the best possible objective value; that is, a point x∗ ∈ X
such that f(x∗) ≤ f(x) for all x ∈ X . The optimal value of (1.1) is the value

of the objective function at an optimal solution; that is, f(x∗) where x∗ is an

optimal solution to (1.1). If the feasible region X is of the form (1.2) and x ∈ X ,

the binding constraints at x are the equality constraints and those inequality

constraints that hold with equality at x. The term active constraint is also often

used in lieu of “binding constraint”. The problem (1.1) is infeasible if X = ∅. On

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

4 Overview of Optimization Models

the other hand, (1.1) is unbounded if there exist xk ∈ X , k = 1, 2, . . . , such that

f(xk) → −∞.

1.1 Types of Optimization Models

For optimization models to be of practical interest, their computational tractabil-

ity, that is, the ability to find the optimal solution efficiently, is a critical issue.

Particular structural assumptions on the objective and constraints of the problem

give rise to different classes of optimization models with various degrees of

computational difficulty. We should note that the following is only a partial classi-

fication based on the current generic tractability of various types of optimization

models. However, what is “tractable” in some specific context may be more

nuanced. Furthermore, tractability evolves as new algorithms and technologies

are developed.

Convex optimization: These are problems where the objective f(x) is a con-

vex function and the constraint set X is a convex set. This class of

optimization models is tractable most of the time. By this we mean that

a user can expect any of these models to be amenable to an efficient algo-

rithm. We will emphasize this class of optimization models throughout

the book.

Mixed integer optimization: These are problems where some of the variables

are restricted to take integer values. This restriction makes the con-

straint set X non-convex. This class of optimization models is somewhat

tractable a fair portion of the time. By this we mean that a model of this

class may be solvable provided the user does some judicious modeling

and has access to high computational power.

Stochastic and dynamic optimization: These are problems involving ran-

dom and time-dependent features. This class of optimization models

is tractable only in some special cases. By this we mean that, unless

some specific structure and assumptions hold, a model of this class

would typically be insoluble with any realistic amount of computational

power at our disposal. Current research is expected to enrich the class

of tractable models in this area.

The modeling of time and uncertainty is pervasive in almost every financial

problem. The various types of optimization problems that we will discuss are

based on how they deal with these two issues. Generally speaking, static models

are associated with simple single-period models where the future is modeled as

a single stage. By contrast, in multi-period models the future is modeled as a

sequence, or possibly as a continuum, of stages. With regard to uncertainty,

deterministic models are those where all the defining data are assumed to be

known with certainty. By contrast, stochastic models are ones that incorporate

probabilistic or other types of uncertainty in the data.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

1.1 Types of Optimization Models 5

A good portion of the models that we will present in this book will be convex

optimization models due to their favorable mathematical and computational

properties. There are two special types of convex optimization problems that we

will use particularly often: linear and quadratic programming, the latter being an

extension of the former. These two types of optimization models will be discussed

in more detail in Chapters 2 and 5. We now present a high-level description

of four major classes of optimization models: linear programming, quadratic

programming, mixed integer programming, and stochastic optimization.

Linear Programming

A linear programming model is an optimization problem where the objective is a

linear function and the constraint set is defined by finitely many linear equalities

and linear inequalities. In other words, a linear program is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

for some vectors c ∈ Rn,b ∈ Rm,d ∈ Rp and matrices A ∈ Rm×n,D ∈ Rp×n.

The term linear optimization is sometimes used in place of linear programming.

The wide popularity of linear programming is due in good part to the availability

of very efficient algorithms. The two best known and most successful methods

for solving linear programs are the simplex method and interior-point methods.

We briefly discuss these algorithms in Chapter 2.

Quadratic Programming

Quadratic programming, also known as quadratic optimization, is an extension

of linear programming where the objective function includes a quadratic term.

In other words, a quadratic program is a problem of the form

min
x

1
2x

TQx+ cTx

s.t. Ax = b

Dx ≥ d

for some vectors and matrices Q ∈ Rn×n, c ∈ Rn, b ∈ Rm, d ∈ Rp, A ∈ Rm×n,

D ∈ Rp×n. It is customary to assume that the matrix Q is symmetric. This

assumption can be made without loss of generality since

xTQx = xTQ̃x

where Q̃ = 1
2 (Q+QT), which is clearly a symmetric matrix.

We note that a quadratic function 1
2x

TQx + cTx is convex if and only if the

matrix Q is positive semidefinite (xTQx ≥ 0 for all x ∈ Rn). In this case the

above quadratic program is a convex optimization problem and can be solved

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

6 Overview of Optimization Models

efficiently. The two best known methods for solving convex quadratic programs

are active-set methods and interior-point methods. We briefly discuss these algo-

rithms in Chapter 5.

Mixed Integer Programming

A mixed-integer program is an optimization problem that restricts some or all of

the decision variables to take integer values. In particular, a mixed integer linear

programming model is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

xj ∈ Z, j ∈ J

for some vectors and matrices c ∈ Rn, b ∈ Rm, d ∈ Rp, A ∈ Rm×n, D ∈ Rp×n

and some J ⊆ {1, . . . , n}.
An important case occurs when the model includes binary variables, that is,

variables that are restricted to take values 0 or 1. As we will see, the inclusion

of this type of constraint increases the modeling power but comes at a cost in

terms of computational tractability. It is noteworthy that the computational and

algorithmic machinery for solving mixed integer programs has vastly improved

during the last couple of decades. The main classes of methods for solving

mixed integer programs are branch and bound, cutting planes, and a combination

of these two approaches known as branch and cut. We briefly discuss these

algorithms in Chapter 8.

Stochastic Optimization

Stochastic optimization models are optimization problems that account for ran-

domness in their objective or constraints. The following formulation illustrates

a generic type of stochastic optimization problem

min
x

E(F (x, ω))

x ∈ X .

In this problem the set of decisions x must be made before a random outcome

ω occurs. The goal is to optimize the expectation of some function that depends

on both the decision vector x and the random outcome ω. A variation of this for-

mulation, that has led to important developments, is to replace the expectation

by some kind of risk measure � in the objective:

min
x

�(F (x, ω))

x ∈ X .

There are numerous refinements and variants of the above two formulations. In

particular, the class of two-stage stochastic optimization with recourse has been

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

1.2 Solution to Optimization Problems 7

widely studied in the stochastic programming community. In this setting a set

of decisions x must be made in stage one. Between stage one and stage two

a random outcome ω occurs. At stage two we have the opportunity to make

some second-stage recourse decisions y(ω) that may depend on the random

outcome ω.

The two-stage stochastic optimization problem with recourse can be formally

stated as

min
x

f(x) + E[Q(x, ω)]

x ∈ X .

The recourse term Q(x, ω) depends on the first-stage decisions x and the random

outcome ω. It is of the form

Q(x, ω) := min
y(ω)

g(y(ω), ω)

y(ω) ∈ Y(x, ω).

The second-stage decisions y(ω) are adaptive to the random outcome ω because

they are made after ω is revealed. The objective function in a two-stage stochastic

optimization problem contains a term for the stage-one decisions and a term for

the stage-two decisions where the latter term involves an expectation over the

random outcomes. The intuition of this objective function is that the stage-one

decisions should be made considering what is to be expected in stage two.

The above two-stage setting generalizes to a multi-stage context where the

random outcome is revealed over time and decisions are made dynamically at

multiple stages and can adapt to the information revealed up to their stage.

1.2 Solution to Optimization Problems

The solution to an optimization problem can often be characterized in terms of

a set of optimality conditions. Optimality conditions are derived from the math-

ematical relationship between the objective and constraints in the problem. Sub-

sequent chapters discuss optimality conditions for various types of optimization

problems. In special cases, these optimality conditions can be solved analytically

and used to infer properties about the optimal solution. However, in many cases

we rely on numerical solvers to obtain the solution to the optimization models.

There are numerous software vendors that provide solvers for optimization

problems. Throughout this book we will illustrate examples with two popular

solvers, namely Excel Solver and the MATLAB�-based optimization modeling

framework CVX. Excel and MATLAB files for the examples and exercises in the

book are available at:

www.andrew.cmu.edu/user/jfp/OIFbook/

Both Excel Solver and CVX enable us to solve small to medium-sized problems

and are fairly easy to use. There are far more sophisticated solvers such as the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

8 Overview of Optimization Models

commercial solvers IBM�-ILOG� CPLEX�, Gurobi, FICO� Xpress, and the ones

available via the open-source projects COIN-OR or SCIP.

Optimization problems can be formulated using modeling languages such as

AMPL, GAMS, MOSEL, or OPL. The need for these modeling languages arises

when the size of the formulation is large. A modeling language lets people use

common notation and familiar concepts to formulate optimization models and

examine solutions. Most importantly, large problems can be formulated in a

compact way. Once the problem has been formulated using a modeling language,

it can be solved using any number of solvers. A user can switch between solvers

with a single command and select options that may improve solver performance.

1.3 Financial Optimization Models

In this book we will focus on the use of optimization models for financial problems

such as portfolio management, risk management, asset and liability management,

trade execution, and dynamic asset management. Optimization models are also

widely used in other areas of business, science, and engineering, but this will not

be the subject of our discussion.

Portfolio Management

One of the best known optimization models in finance is the portfolio selection

model of Markowitz (1952). Markowitz’s mean–variance approach led to major

developments in financial economics including Tobin’s mutual fund theorem

(Tobin, 1958) and the capital asset pricing model of Treynor
1

, Sharpe (1964),

Lintner (1965), and Mossin (1966). Markowitz was awarded the Nobel Prize in

Economics in 1990 for the enormous influence of his work in financial theory and

practice. The gist of this model is to formalize the principle of diversification

when selecting a portfolio in a universe of risky assets. As we discuss in detail in

Chapter 6, Markowitz’s mean–variance model and a wide range of its variations

can be stated as a quadratic programming problem of the form

min
x

1
2γ · xTVx− μTx

Ax = b

Dx ≥ d.

(1.3)

The vector of decision variables x in model (1.3) represents the portfolio holdings.

These holdings typically represent the percentages invested in each asset and

thus are often subject to the full investment constraint 1Tx = 1. Other common

constraints include the long-only constraint x ≥ 0, as well as restrictions related

to sector or industry composition, turnover, etc. The terms xTVx and μTx in

the objective function are respectively the variance, which is a measure of risk,

1
“Toward a theory of market value of risky assets”. Unpublished manuscript, 1961.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

1.3 Financial Optimization Models 9

and the expected return of the portfolio defined by x. The risk-aversion constant

γ > 0 in the objective determines the tradeoff between risk and return of the

portfolio.

Risk Management

Risk is inherent in most economic activities. This is especially true of financial

activities where results of decisions made today may have many possible different

outcomes depending on future events. Since companies cannot usually insure

themselves completely against risk, they have to manage it. This is a hard task

even with the support of advanced mathematical techniques. Poor risk manage-

ment led to several spectacular failures in the financial industry in the 1990s

(e.g., Barings Bank, Long Term Capital Management, Orange County). It was

also responsible for failures and bailouts of a number of institutions (e.g., Lehman

Brothers, Bear Stearns, AIG) during the far more severe global financial crisis of

2007–2008. Regulations, such as those prescribed by the Basel Accord (see Basel

Committee on Banking Supervision, 2011), mandate that financial institutions

control their risk via a variety of measurable requirements. The modeling of reg-

ulatory constraints as well as other risk-related constraints that the firm wishes

to impose to prevent vulnerabilities can often be stated as a set of constraints

RM(x) ≤ b. (1.4)

The vector x in (1.4) represents the holdings in a set of risky securities. The

entries of the vector-valued function RM(x) represent one or more measures of

risk and the vector b represents the acceptable upper limits on these measures.

The set of risk management constraints (1.4) may be embedded in a more

elaborate model that aims to optimize some kind of performance measure such

as expected investment return.

In Chapter 2 we discuss a linear programming model for optimal bank planning

under Basel III regulations. In this case the components of the function RM(x)

are linear functions of x. In Chapter 11 we discuss more sophisticated risk

measures such as value at risk and conditional value at risk that typically make

RM(x) a nonlinear function of x.

Asset and Liability Management

How should a financial institution manage its assets and liabilities? A static

model, such as the Markowitz mean–variance portfolio selection model, fails

to incorporate the multi-period nature of typical liabilities faced by financial

institutions. Furthermore, it penalizes returns both above and below the mean.

A multi-period model that emphasizes the need to meet liabilities in each

period for a finite (or possibly infinite) horizon is often more appropriate. Since

liabilities and asset returns usually have random components, their optimal

management requires techniques to optimize under uncertainty such as stochastic

optimization.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

10 Overview of Optimization Models

We discuss several asset and liability management models in Chapters 3, 16,

and 17. A generic asset and liability management model can often be formulated

as a stochastic programming problem of the form

max
x

E(U(x))

Fx = L

Dx ≥ 0.

(1.5)

The vector x in (1.5) represents the investment decisions for the available assets

at the dates in the planning horizon. The vector L in (1.5) represents the

liabilities that the institution faces at the dates in the planning horizon. The

constraints Fx = L, Dx ≥ 0 represent the cash flow rules and restrictions

applicable to the assets during the planning horizon. The term U(x) in the

objective function is some appropriate measure of utility. For instance, it could

be the value of terminal wealth at the end of the planning horizon. In general,

the components F,L,D are discrete-time random processes and thus (1.5) is

a multi-stage stochastic programming model with recourse. In Chapter 3 we

discuss some special cases of (1.5) with no randomness.

1.4 Notes

George Dantzig was the inventor of linear programming and author of many

related articles as well as a classical reference on the subject (Dantzig, 1963). A

particularly colorful and entertaining description of the diet problem, a classical

linear programming model, can be found in Dantzig (1990).

Boyd and Vandenberghe (2004) give an excellent exposition of convex opti-

mization appropriate for senior or first-year graduate students in engineering.

This book is freely available at:

www.stanford.edu/~boyd/cvxbook/

Ragsdale (2007) gives a practical exposition of optimization and related

spreadsheet models that circumvent most technical issues. It is appropriate for

senior or Master’s students in business.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340.002
https://www.cambridge.org/core

2 Linear Programming: Theory
and Algorithms

Linear programming is one of the most significant contributions to computational

mathematics made in the twentieth century. This chapter introduces the main

ideas behind linear programming theory and algorithms. It also introduces two

easy-to-use solvers.

2.1 Linear Programming

A linear program is an optimization problem whose objective is to minimize or

maximize a linear function subject to a finite set of linear equality and linear

inequality constraints. By flipping signs if necessary, a linear program can always

be written in the generic form:

min
x

cTx

s.t. Ax = b

Dx ≥ d

for some vectors and matrices c ∈ Rn,b ∈ Rm,d ∈ Rp,A ∈ Rm×n,D ∈ Rp×n.

The terms linear programming model or linear optimization model are also used

to refer to a linear program. We will use these terms interchangeably throughout

the book.

The following two simplified portfolio construction examples illustrate the use

of linear programming as a modeling tool.

Example 2.1 (Fund allocation) You would like to allocate $80,000 among four

mutual funds that have different expected returns as well as different weights in

large-, medium- and small-capitalization stocks.

Capitalization Fund 1 Fund 2 Fund 3 Fund 4

Large 50% 30% 25% 60%
Medium 30% 10% 40% 20%
Small 20% 60% 35% 20%

Exp. return 10% 15% 16% 8%

12 Linear Programming: Theory and Algorithms

The allocation must contain at least 35% large-cap, 30% mid-cap, and 15%

small-cap stocks. Find an acceptable allocation with the highest expected return

assuming you are only allowed to hold long positions in the funds.

This problem can be formulated as the following linear programming model.

Linear programming model for fund allocation
Variables:

xi: amount (in $1000s) invested in fund i for i = 1, . . . , 4.

Objective:

max 0.10x1 + 0.15x2 + 0.16x3 + 0.08x4.

Constraints:

0.50x1 + 0.30x2 + 0.25x3 + 0.60x4 ≥ 0.35 ∗ 80 (large-cap)

0.30x1 + 0.10x2 + 0.40x3 + 0.20x4 ≥ 0.30 ∗ 80 (mid-cap)

0.20x1 + 0.60x2 + 0.35x3 + 0.20x4 ≥ 0.15 ∗ 80 (small-cap)

x1 + x2 + x3 + x4 = 80 (money to allocate)

x1, . . . , x4 ≥ 0 (long-only positions).

Example 2.2 (Bond allocation) A bond portfolio manager has $100,000 to

allocate to two different bonds: a corporate bond and a government bond. These

bonds have the following yield, risk level, and maturity:

Bond Yield Risk level Maturity

Corporate 4% 2 3 years
Government 3% 1 4 years

The portfolio manager would like to allocate the funds so that the average risk

level of the portfolio is at most 1.5 and the average maturity is at most 3.6 years.

Any amount not invested in the bonds will be kept in a cash account that is

assumed to generate no interest and does not contribute to the average risk level

or maturity. In other words, assume cash has zero yield, zero risk level, and zero

maturity.

How should the manager allocate funds to the two bonds to maximize yield?

Assume the portfolio can only include long positions.

This problem can be formulated as the following linear programming model.

Linear programming model for bond allocation
Variables:

x1, x2: amounts (in $1000s) invested in the corporate and government

bonds respectively.

Objective:

max 4x1 + 3x2.

2.1 Linear Programming 13

Constraints:

x1 + x2 ≤ 100 (total funds)

2x1 + x2

100
≤ 1.5 (risk level)

3x1 + 4x2

100
≤ 3.6 (maturity)

x1, x2 ≥ 0 (long-only positions)

or equivalently

max 4x1 + 3x2

s.t.

x1 + x2 ≤ 100 (total funds)

2x1 + x2 ≤ 150 (risk level)

3x1 + 4x2 ≤ 360 (maturity)

x1, x2 ≥ 0 (long-only positions).

The linear programming model in Example 2.1 can be written more concisely

using matrix–vector notation as follows:

max rTx

s.t. Ax = b

Dx ≥ d

x ≥ 0,

where r =

⎡⎢⎢⎣
0.10

0.15

0.16

0.08

⎤⎥⎥⎦, A =
[
1 1 1 1

]
, b = 80, D =

⎡⎣0.5 0.3 0.25 0.6

0.3 0.1 0.4 0.2

0.2 0.6 0.35 0.2

⎤⎦, and

d =

⎡⎣2824
12

⎤⎦.
Likewise, the linear programming model in Example 2.2 can be written as

max rTx

s.t. Ax ≤ b

x ≥ 0,

for r =

[
4

3

]
, A =

⎡⎣1 1

2 1

3 4

⎤⎦, and b =

⎡⎣100150

360

⎤⎦.
A linear programming model is in standard form if it is written as follows:

min cTx

s.t. Ax = b

x ≥ 0.

The standard form is a kind of formatting convention that is used by some

solvers. It is also particularly convenient to describe the most popular algorithms

for solving linear programming, namely the simplex and interior-point methods.

14 Linear Programming: Theory and Algorithms

The standard form is not restrictive. Any linear program can be rewritten in

standard form. In particular, inequality constraints (other than non-negativity)

can be rewritten as equality constraints after the introduction of a so-called slack

or surplus variable. For instance, the linear program from Example 2.2 can be

written as

max 4x1 + 3x2

s.t.

x1 + x2 + x3 = 100

2x1 + x2 + x4 = 150

3x1 + 4x2 + x5 = 360

x1, x2, x3, x4, x5 ≥ 0.

More generally, a linear program of the form

min cTx

s.t. Ax ≤ b

x ≥ 0

can be rewritten as

min cTx

s.t. Ax+ s = b

x, s ≥ 0.

It can then be rewritten, using matrix notation, in the following standard form:

min

[
c

0

]T [
x

s

]
s.t.

[
A I

] [x
s

]
= b[

x

s

]
≥ 0.

Unrestricted variables can be expressed as the difference of two new non-negative

variables. For example, consider the linear program

min cTx

s.t. Ax ≤ b.

The unrestricted variable x can be replaced by u−v where u,v ≥ 0. Hence the

above linear program can be rewritten as

min cT(u− v)

s.t. A(u− v) ≤ b

u,v ≥ 0.

2.2 Graphical Interpretation of a Two-Variable Example 15

It can also be rewritten, after adding slack variables and using matrix notation,

in the following standard form:

min

⎡⎣ c

−c

0

⎤⎦T ⎡⎣uv
s

⎤⎦
s.t.

[
A −A I

] ⎡⎣uv
s

⎤⎦ = b

⎡⎣uv
s

⎤⎦ ≥ 0.

2.2 Graphical Interpretation of a Two-Variable Example

Banks need to consider regulations when determining their business strategy. In

this section, we consider the Basel III regulations (Basel Committee on Bank-

ing Supervision, 2011). We present a simplified example following the paper of

Pokutta and Schmaltz (2012). Consider a bank with total deposits D and loans

L. The loans may default and the deposits are exposed to early withdrawal. The

bank holds capital C in order to buffer against possible default losses on the

loans, and it holds a liquidity reserve R to buffer against early withdrawals on

the deposits. The balance sheet of the bank satisfies L+R = D+C. Normalizing

the total assets to 1, we have R = 1 − L and C = 1 −D. Basel III regulations

require banks to satisfy four minimum ratio constraints in order to buffer against

different types of risk:

Capital ratio:
C

L
≥ r1

Leverage ratio: C ≥ r2

Liquidity coverage ratio:
R

D
≥ r3

Net stable funding ratio:
αD + C

L
≥ r4,

where the ratios r1, r2, r3, r4, α are computed for each bank based on the riskiness

of its loans and the likelihood of early withdrawals on deposits. To illustrate,

consider a bank with r1 = 0.3, r2 = 0.1, r3 = 0.25, r4 = 0.7, α = 0.3. Expressing

the four ratio constraints in terms of the variables D and L, we get

D + 0.3L ≤ 1

D ≤ 0.9

0.25D + L ≤ 1

0.7D + 0.7L ≤ 1.

Figure 2.1 displays a plot of the feasible region of this system of inequalities in

the plane (D,L).

Given this feasible region, the objective of the bank is to maximize the margin

income mDD+mLL that it makes on its products; where mD is the margin that

16 Linear Programming: Theory and Algorithms

Leverage Ratio

0 1

Feasible region

Deposits D

Loans L

Net Stable Funding Ratio

Capital Ratio

Objective

1

Liquidity Coverage Ratio

Figure 2.1 Basel III regulations

the bank makes on its deposits and mL is the margin charged on its loans. For

example, if mD = 0.02 and mL = 0.03, the best solution that satisfies all the

constraints corresponds to the vertex D = 0.571, L = 0.857 on the boundary of

the feasible region, at the intersection of the lines 0.25D + L = 1 and 0.7D +

0.7L = 1. This means that the bank should have 57.1% of its liabilities in deposits

and 42.9% in capital, and it should have 85.7% of its assets in loans and the

remaining 14.3% in liquidity reserve. The fact that an optimal solution occurs

at a vertex of the feasible region is a property of linear programs that extends

to higher dimensions than 2: To find an optimal solution of a linear program,

it suffices to restrict the search to vertices of the feasible region. This geometric

insight is the basis of the simplex method, which goes from one vertex of the

feasible region to an adjacent one with a better objective value until it reaches

an optimum. An algebraic description of the simplex method that can be coded

on a computer is presented in Section 2.7.1.

2.3 Numerical Linear Programming Solvers

There are a variety of both commercial and open-source software packages for

linear programming. Most of these packages implement the algorithms described

in Section 2.7 below. Next we illustrate two of these solvers by applying them to

Example 2.1.

Excel Solver

Figure 2.2 displays a printout of an Excel spreadsheet implementation of the

linear programming model for Example 2.1 as well as the dialog box obtained

when we run the Excel add-in Solver. The spreadsheet model contains the three

2.4 Sensitivity Analysis 17

components of the linear program. The decision variables are in the range B4:E4.

The objective is in cell F3. The left- and right-hand sides of the equality con-

straint are in the cells F4 and H4 respectively. Likewise, the left- and right-

hand sides of the three inequality constraints are in the ranges F8:F10 and

H8:H10 respectively. These components are specified in the Solver dialog box.

In addition, the Solver options are used to indicate that this is a linear model

and that the variables are non-negative.

Figure 2.2 Spreadsheet implementation and the Solver dialog box for the fund
allocation model

MATLAB CVX

Figure 2.3 displays a CVX script for the same problem. The script can be run

provided the freely available CVX toolbox is installed.

Either Excel Solver or MATLAB CVX find the following optimal solution to

the problem in Example 2.1:

x∗ =

⎡⎢⎢⎣
0.0000

12.6316

46.3158

21.0526

⎤⎥⎥⎦ ,

and the corresponding optimal objective value 10.9895 (recall that the units are

in $1000s).

2.4 Sensitivity Analysis

In addition to the optimal solution, the process of solving a linear program also

generates some interesting sensitivity information via the so-called shadow prices

18 Linear Programming: Theory and Algorithms

Figure 2.3 MATLAB CVX code for the fund allocation model

or dual values associated with the constraints. Assume that the constraints of a

linear program, and hence the shadow prices, are indexed by i = 1, . . . ,m. The

shadow price y∗i of the ith constraint has the following sensitivity interpretation:

If the right-hand side of the ith constraint changes by Δ, then the optimal

value of the linear program changes by Δ · y∗i as long as Δ is within a

certain range.

Both Excel Solver and MATLAB CVX compute the shadow prices implicitly.

To make this information explicit in Excel Solver we request a sensitivity report

after running it as shown in Figure 2.4.

Figure 2.4 Requesting sensitivity report in Solver

Figure 2.5 displays the sensitivity report for Example 2.1.

2.4 Sensitivity Analysis 19

Figure 2.5 Sensitivity report

The values y∗i can be found in the column labeled “Shadow Price”. In addi-

tion, the “Allowable Increase” and “Allowable Decrease” columns indicate the

range of change for each right-hand side of a constraint where the sensitivity

analysis holds. For example, if the right-hand side of the large-capitalization

constraint

0.5x1 + 0.3x2 + 0.25x3 + 0.6x4 ≥ 28

changes from 28 to 28+Δ, then the optimal value changes by −0.231579·Δ. This

holds provided Δ is within the allowable range [−6.6666, 6]. If the requirement

on large-cap stocks is reduced from 35% to 30%, the change in right-hand side is

Δ = −0.05∗80 = −4, which is within the allowable range. Therefore the optimal

objective value increases by −0.231579 · (−4) = 0.926316. Because our units are

in $1000, this means that the expected return on an optimal portfolio would

increase by $926.32 if we relaxed the constraint on large-cap stocks by 5%, from

35% to 30%.

The shadow prices of the non-negativity constraints are the “Reduced Cost”

displayed in the initial part of the sensitivity report. This is also the convention

for more general lower and upper bounds on the decision variables. Observe that

in Example 2.1 the reduced costs of the non-zero variables are zero. The reduced

costs also have a deeper meaning in the context of the simplex algorithm for

linear programming as described in Section 2.7.1 below.

A linear programming model is non-degenerate if all of the allowable increase

and allowable decrease limits are positive. The above linear programming model

is non-degenerate.

In CVX this information can also be obtained by including a few additional

pieces of code to save the dual information in the dual variables y,z as shown

in Figure 2.6.

20 Linear Programming: Theory and Algorithms

Figure 2.6 MATLAB CVX code with dual variables

Both solvers yield the following dual values: y∗ = 0.22, z∗ =

⎡⎣−0.231579

−0.005263

0

⎤⎦ .

We note that some solvers may flip the sign of the dual values. In particular,

the output of the above CVX code yields the values −0.22 and

⎡⎣0.2315790.005263

0

⎤⎦ . It is

important to be mindful of this subtlety when interpreting the dual information.

The ambiguity can be easily resolved by thinking in terms of sensitivity analysis.

In this particular example, it is clear that the shadow price of the first constraint

should be non-negative as more capital should lead to a higher return. Likewise,

it is clear that the shadow prices of the other constraints should be non-positive

as more stringent diversification constraints, e.g., higher percentage in large cap,

reduces the set of feasible portfolios and hence can only lead to portfolios with

return less than or equal to the optimal return of the original problem.

2.5 *Duality

Every linear program has an associated dual linear programming problem. The

properties of these two linear programs and how they are related to each other

have deep implications. In particular, duality enables us to answer the following

kinds of questions:

• Can we recognize an optimal solution?

• Can we construct an algorithm to find an optimal solution?

• Can we assess how suboptimal a current feasible solution is?

The attentive reader may have noticed that dual variables were already men-

tioned in Section 2.4 when discussing sensitivity analysis with CVX. This is not a

2.5 *Duality 21

coincidence. There is a close connection between duality and sensitivity analysis.

The vector of shadow prices of the constraints of a linear program corresponds

precisely to the optimal solution of its dual.

Consider the following linear program in standard form, which we shall refer

to as the primal problem:

min cTx

s.t. Ax = b

x ≥ 0.

(2.1)

The following linear program is called the dual problem:

max bTy

s.t. ATy ≤ c.
(2.2)

Sometimes it is convenient to rewrite the constraints in the dual problem as

equality constraints by means of slack variables. That is, problem (2.2) can also

be written as

max bTy

s.t. ATy + s = c

s ≥ 0.

(2.3)

There is a deep connection between the primal and dual problems. The next

result follows by construction.

Theorem 2.3 (Weak duality) Assume x is a feasible point for (2.1) and y is a

feasible point for (2.2). Then

bTy ≤ cTx.

Proof Under the assumptions on x and y it follows that

bTy = (Ax)Ty = (ATy)Tx ≤ cTx.

The following (not so straightforward) result also holds.

Theorem 2.4 (Strong duality) Assume one of the problems (2.1) or (2.2) is

feasible. Then this problem is bounded if and only if the other one is feasible. In

that case both problems have optimal solutions and their optimal values are the

same.

We refer the reader to Bertsimas and Tsitsiklis (1997) or Chvátal (1983) for

a proof of Theorem 2.4. This result is closely related to the following classical

properties of linear inequality systems.

Theorem 2.5 Assume A ∈ Rm×n and b ∈ Rm. In each of the following cases

exactly one of the systems (I) or (II) has a solution but not both.

(a) Farkas’s lemma

Ax = b, x ≥ 0, (I)

ATy ≤ 0, bTy < 0. (II)

22 Linear Programming: Theory and Algorithms

(b) Gordan’s theorem

Ax = 0, x � 0, (I)

ATy > 0. (II)

(c) Stiemke’s theorem

Ax = 0, x > 0, (I)

ATy � 0. (II)

The equivalence between Theorems 2.4 and 2.5 is explored in Exercises 2.11

and 2.12.

We next present a derivation of the dual problem via the so-called Lagrangian

function. This derivation has the advantage of introducing an important concept

that we will encounter again in later chapters. Associated with the optimization

problem (2.1) consider the Lagrangian function defined by

L(x,y, s) := cTx+ yT(b−Ax)− sTx.

The constraints of (2.1) can be encoded using the Lagrangian function via the

following observation: For a given vector x

max
y,s
s≥0

L(x,y, s) =

{
cTx if Ax = b and x ≥ 0

+∞ otherwise.

Therefore the primal problem (2.1) can be written as

min
x

max
y,s
s≥0

L(x,y, s). (2.4)

On the other hand, observe that L(x,y, s) = bTy+ (c−ATy− s)Tx. Hence for

a given pair of vectors (y, s)

min
x

L(x,y, s) =

{
bTy if ATy + s = c

−∞ otherwise.

The dual problem is obtained by flipping the order of the min and max operations

in (2.4). Indeed, observe that the dual problem (2.3) can be written as

max
y,s
s≥0

min
x

L(x,y, s).

A similar procedure can be applied to obtain the dual of a linear program that

is not necessarily in standard form. For example, the primal problem

min cTx

s.t. Ax ≥ b

x ≥ 0

(2.5)

can be written as

min
x

max
y≥0, s≥0

L(x,y, s),

2.6 *Optimality Conditions 23

for L(x,y, s) = cTx+ yT(b−Ax)− sTx. In this case the dual problem is

max
y≥0, s≥0

min
x

L(x,y, s),

and can be rewritten as

max
y

bTy

s.t. ATy ≤ c

y ≥ 0.

(2.6)

Again the weak and strong duality properties hold for the pair of problems (2.5)

and (2.6).

Consider the linear programming model of Example 2.1, namely

max
x

rTx

s.t. Ax = b

Dx ≥ d

x ≥ 0.

(2.7)

We give a derivation for its dual. Observe that (2.7) can be recast as

max
x

min
y,w,s

w≥0, s≥0

L(x,y,w, s)

for

L(x,y,w, s) = rTx+ yT(b−Ax) +wT(Dx− d) + sTx

= bTy − dTw + xT(r−ATy +DTw + s).

It follows that its dual min
y,w,s

w≥0, s≥0

max
x

L(x,y, s, z) can be rewritten as

min
y,z

bTy − dTw

s.t. ATy −DTw ≥ r

w ≥ 0.

(2.8)

An alternative way to obtain the dual (2.8) is to rewrite (2.7) in standard form

and derive its standard dual. The latter turns out to be equivalent to (2.8). (See

Exercise 2.6.)

2.6 *Optimality Conditions

Consider again the linear programming problem (2.1). A powerful consequence

of Theorem 2.4 is a set of optimality conditions that completely characterize the

solutions to both (2.1) and (2.2).

24 Linear Programming: Theory and Algorithms

Theorem 2.6 (Optimality conditions) The vectors x ∈ Rn and (y, s) ∈ Rm×Rn

are respectively optimal solutions to (2.1) and (2.3) if and only if they satisfy the

following system of equations and inequalities:

ATy + s = c

Ax = b

x, s ≥ 0

xisi = 0, i = 1, . . . , n.

(2.9)

The equations xisi = 0 are known as the complementary slackness condi-

tions. They imply that, if a dual constraint (ATy)i ≤ ci holds strictly (that is,

(ATy)i < ci), then the corresponding primal variable xi must be 0. And con-

versely, if xi > 0, the corresponding dual constraint is tight, that is, (ATy)i = ci.

The optimality conditions (2.9) provide an avenue for constructing algorithms

to solve the linear programming problems (2.1) and (2.3). To lay the groundwork

for discussing them, we next state two interesting results concerning the optimal

solutions of a linear programming problem and its dual.

Theorem 2.7 (Strictly complementary solutions) Assume A ∈ Rm×n is full row

rank, b ∈ Rm, and c ∈ Rn are such that both (2.1) and (2.2) are feasible. Then

there exist optimal solutions x∗ to (2.1) and (y∗, s∗) to (2.3) such that

x∗ + s∗ > 0.

For a matrix A and a subset B of its columns, let AB denote the submatrix of

A containing the columns in B. For a square non-singular matrixD, the notation

D−T stands for (D−1)T.

Theorem 2.8 (Optimal basic feasible solutions) Assume A ∈ Rm×n is full row

rank, b ∈ Rm, and c ∈ Rn are such that both (2.1) and (2.2) are feasible. Then

there exists a partition B ∪N = {1, . . . , n} with |B| = m and AB non-singular,

such that

x∗
B = A−1

B b, x∗
N = 0, y∗ = A−T

B cB

are optimal solutions to (2.1) and (2.2) respectively.

2.7 *Algorithms for Linear Programming

We next sketch the two main algorithmic schemes for solving linear programs,

namely the simplex method and interior-point methods. Our discussion of these

two important topics is only intended to give the reader a basic understanding

of the main solution techniques for linear programming. For a more detailed and

thorough discussion of these two classes of algorithms, see Bertsimas and Tsit-

siklis (1997), Boyd and Vandenberghe (2004), Chvátal (1983), Renegar (2001),

and Ye (1997).

We follow the usual convention of assuming that the problem of interest is in

standard form as in (2.1) and (2.3) and A has full row rank.

2.7 *Algorithms for Linear Programming 25

2.7.1 The Simplex Method

One of the most popular algorithms for linear programming is the simplex

method. It generates a sequence of iterates that satisfy Ax = b,x ≥ 0,ATy+s =

c and xisi = 0, with i = 1, . . . , n. Each iteration of the algorithm aims to make

progress towards satisfying s ≥ 0. Theorem 2.6 guarantees that the algorithm

terminates with an optimal solution when this goal is attained. The dual simplex

method is a variant that generates a sequence of iterates satisfying Ax = b,

ATy + s = c, s ≥ 0, and xisi = 0, for i = 1, . . . , n. Each iteration of the

algorithm aims to make progress towards satisfying x ≥ 0.

The simplex method relies on the property stated in Theorem 2.8. The gist of

the method is to search for an optimal basis; that is, a subset B ⊆ {1, . . . , n} as

in Theorem 2.8. To motivate and describe the algorithm we next introduce some

terminology and key observations.

A basis is a subset B ⊆ {1, . . . , n} such that |B| = m and AB is a non-

singular matrix. A basis B defines the basic solution x̄ = (x̄B , x̄N) where x̄B =

A−1
B b, x̄N = 0. Observe that x̄ solves the system of equations Ax = b. The

vector x̄ is a basic feasible solution if in addition x̄ ≥ 0. A basis B also defines

the reduced cost c̄ = c −ATA−T
B cB . The following fact suggests the main idea

for the simplex method.

Proposition 2.9 Assume B ⊆ {1, . . . , n} is a basis. Let x̄ and c̄ be respectively

the corresponding basic solution and reduced cost vector. If x̄ ≥ 0 and c̄ ≥ 0 then

x̄ is an optimal solution to (2.1). Furthermore, in this case ȳ = A−T
B c̄B is an

optimal solution to (2.2).

An optimal basis is a basis that satisfies the conditions x̄ ≥ 0 and c̄ ≥ 0 stated

above. Given a basis B that is not optimal, the main idea of the simplex method

is to generate a better basis by replacing an index from B. To that end, a possible

avenue is as follows. Suppose B is a basis with a basic feasible solution x̄. If B

is not an optimal basis, then c̄j < 0 for some j �∈ B. Thus for α > 0 the point

x(α) defined by

xB(α) = x̄B − αA−1
B Aj ,

xj(α) = α, xi(α) = 0 for all other indices i �∈ B ∪ {j}

satisfies

cTx(α) = cTx̄+ αc̄j < cTx̄.

Hence we can get a point with better (lower) objective value than the current

basic feasible solution x̄. We would like this new point to remain feasible. Unless

the problem is unbounded, there is a length α∗ ≥ 0 that makes one of the current

basic components � of x drop to zero while keeping all of them non-negative.

When α∗ > 0, a basis with a better basic feasible solution can be obtained by

replacing � with j. The simplex method modifies the basis in this way, even in the

degenerate case when α∗ = 0, which may occur in some iterations. Algorithm 2.1

gives a formal description of the simplex method.

26 Linear Programming: Theory and Algorithms

Algorithm 2.1 The simplex method

1: start with a basis B ⊆ {1, . . . , n} such that x̄ is a basic feasible solution

2: while c̄ �≥ 0 do

3: choose an index j such that c̄j < 0

4: compute u = A−1
B Aj

5: if u ≤ 0 then HALT; the problem is unbounded end if

6: let α∗ := min
i:ui>0

x̄i

ui
=

x̄�

u�
7: form a new basis by replacing � with j

8: update the basic feasible solution by replacing x̄ with x(α∗)

9: end while

Observe that the basic feasible solution x̄ and the reduced cost c̄ corresponding

to a basis B satisfy x̄N = 0 and c̄B = 0 where N = {1, . . . , n} \ B. Hence the

simplex method only needs to keep track of x̄B and c̄N . We next illustrate the

simplex method in the linear programming model from Example 2.2. If we start

with the initial basis B = {3, 4, 5} the algorithm proceeds as follows.

Iteration 1: B = {3, 4, 5}, x̄B =
[
x̄3 x̄4 x̄5

]T
=
[
100 150 360

]T
, c̄N =[

c̄1 c̄2
]T

=
[
−4 −3

]
�≥ 0. Choose j = 1 as the new index to enter

the basis. Compute u =
[
u3 u4 u5

]
= A−1

B Aj =
[
1 2 3

]T
and

α∗ := min
i:ui>0

x̄i

ui
=

150

2
=

x̄4

u4
. Hence � = 4 is the index leaving the

basis. Update the basis and basic feasible solution to B = {3, 1, 5} and

x̄B =
[
x̄3 x̄1 x̄5

]T
=
[
25 75 135

]T
.

Iteration 2: B = {3, 1, 5}, x̄B =
[
x̄3 x̄1 x̄5

]T
=
[
25 75 135

]T
, c̄N =[

c̄2 c̄4
]
=
[
−1 0

]T �≥ 0. Choose j = 2 as the new index to enter

the basis. Compute u =
[
u3 u1 u5

]T
= A−1

B Aj =
[
1/2 1/2 5/2

]T
and α∗ := min

i:ui>0

x̄i

ui
=

25

1/2
=

x̄3

u3
. Hence � = 3 is the index leaving the

basis. Update the basis and basic feasible solution to B = {2, 1, 5} and

x̄B =
[
x̄2 x̄1 x̄5

]T
=
[
50 50 10

]T
.

Iteration 3: B = {2, 1, 5}, x̄B =
[
x̄2 x̄1 x̄5

]T
=
[
50 50 10

]T
, c̄N =[

c3 c4
]T

=
[
2 1

]T ≥ 0. Hence B is an optimal basis and

x̄ =
[
50 50 0 0 10

]T
is an optimal solution.

Notice how, geometrically, the simplex iterations move from one vertex of the

feasible region to an adjacent vertex until an optimum solution is identified. See

Figure 2.7.

2.7 *Algorithms for Linear Programming 27

x1

x2

(75,0)

(50,50)

(0,0)

100

100 120

Figure 2.7 Simplex iterations

2.7.2 Dual Simplex Method

The above version of the simplex method is a primal version that generates

primal feasible iterates and aims for dual feasibility. The dual simplex method

generates dual feasible iterates and aims for primal feasibility. The logic behind

the algorithm is similar. Suppose B is a basis with reduced cost c̄ ≥ 0. This

means that ȳ = A−T
B cB is a dual feasible solution with slack c̄ = c−ATy ≥ 0.

If B is not an optimal basis, then x̄� < 0 for some � ∈ B. Let e� ∈ Rn denote the

vector with �th component equal to 1 and all others equal to 0. For α > 0 the

vector y(α) defined by

y(α) = ȳ − αA−T
B e�

satisfies

bTy(α) = bTȳ − αx̄� > bTȳ.

Observe that the slack of y(α) is

c(α) = c̄+ αATA−T
B e�.

Hence we can get a point with better (lower) objective value than the current

basic feasible solution x̄. Unless the problem is unbounded, there is a length

α∗ ≥ 0 that makes one of the non-basic components j of c(α) drop to zero while

keeping all of them non-negative. In this case a basis with a better dual solution

can be obtained by replacing � with j. Algorithm 2.2 gives a formal description

of the dual simplex method.

We illustrate the dual simplex in the following variation of Example 2.2.

Suppose we add the constraint

6x1 + 5x2 ≤ 500.

28 Linear Programming: Theory and Algorithms

Algorithm 2.2 Dual simplex method

1: start with a basis B ⊆ {1, . . . , n} such that the reduced cost c̄ is non-negative

2: while x̄ �≥ 0 do

3: choose an index � ∈ B such that x̄� < 0

4: compute v = ATA−T
B e�

5: if v ≥ 0 then HALT; the problem is unbounded end if

6: let α∗ := min
i:vi<0

c̄i
|vi|

=
c̄j
|vj |

7: form a new basis by replacing � with j

8: update the dual feasible solution by replacing ȳ with y(α∗)

9: end while

After adding the relevant new slack variable the new linear program is

min −4x1 − 3x2

s.t.

x1 + x2 + x3 = 100

2x1 + x2 + x4 = 150

3x1 + 4x2 + x5 = 360

6x1 + 5x2 + x6 = 500

x1, x2, x3, x4, x5, x6 ≥ 0.

If we start with the initial basis B = {1, 2, 5, 6} the algorithm proceeds as

follows.

Iteration 1: B = {1, 2, 5, 6}, c̄N =
[
c̄3 c̄4

]T
=
[
2 1

]T ≥ 0, and

x̄B =
[
x̄1 x̄2 x̄5 x̄6

]T
=
[
50 50 10 −50

]T �≥ 0.

Choose � = 6 as the index to leave the basis. Compute v = ATA−T
B e� =[

0 0 −4 −1 0 1
]T

and α∗ := min
i:vi<0

c̄i
|vi|

=
2

4
=

c̄3
|v3|

. Hence j = 3

is the index entering the basis. Update the basis, reduced cost, and basic

solution respectively to B = {1, 2, 5, 3}, c̄N =
[
c̄4 c̄6

]
=
[
0.5 0.5

]T
,

and x̄B =
[
x̄1 x̄2 x̄5 x̄3

]T
=
[
62.5 25 72.5 12.5

]T
. The new

basic solution is non-negative and hence it is an optimal solution.

2.7.3 Interior-Point Methods

In contrast to the simplex method, interior-point methods generate a sequence

of iterates that satisfy x, s > 0. Each iteration of the algorithm aims to make

progress towards satisfying Ax = b,ATy + s = c, and xisi = 0, i = 1, . . . , n.

Throughout this section we use the following notational convention: Given

a vector x ∈ Rn, let X ∈ Rn×n denote the diagonal matrix defined by Xii =

xi, i = 1, . . . , n, and let 1 ∈ Rn denote the vector whose components are all ones.

2.7 *Algorithms for Linear Programming 29

The optimality conditions (2.9) can be restated as⎡⎣ATy + s− c

Ax− b

XS1

⎤⎦ =

⎡⎣00
0

⎤⎦ , x, s ≥ 0.

Given μ > 0, let (x(μ),y(μ), s(μ)) be the solution to the following perturbed

version of the above optimality conditions:⎡⎣ATy + s− c

Ax− b

XS1

⎤⎦ =

⎡⎣ 0

0

μ1

⎤⎦ , x, s > 0.

The first condition above can be written as rμ(x,y, s) = 0 for the residual vector

rμ(x,y, s) :=

⎡⎣ATy + s− c

Ax− b

XS1− μ1

⎤⎦ .

The central path is the set {(x(μ),y(μ), s(μ)) : μ > 0}. It is intuitively clear that

(x(μ),y(μ), s(μ)) converges to an optimal solution to both (2.1) and (2.3) as μ

goes to 0. This suggests the following algorithmic strategy: Suppose (x,y, s) is

“near” (x(μ),y(μ), s(μ)) for some μ > 0. Use (x,y, s) to move to a better point

(x+,y+, s+) “near” (x(μ+),y(μ+), s(μ+)) for some μ+ < μ.

It can be shown that if a point (x,y, s) is on the central path, then the

corresponding value of μ satisfies xTs = nμ. Likewise, given x, s > 0, define

μ(x, s) :=
xTs

n
.

To move from a current point (x,y, s) to a new point, we use the so-called

Newton step; that is, the solution to the following system of equations:⎡⎣0 AT I

A 0 0

S 0 X

⎤⎦⎡⎣Δx

Δy

Δs

⎤⎦ =

⎡⎣c−ATy − s

b−Ax

μ1−XS1

⎤⎦ . (2.10)

Algorithm 2.3 presents a template for an interior-point method.

Algorithm 2.3 Interior-point method

1: choose x0, s0 > 0

2: for k = 0, 1, . . . do

3: solve the Newton system (2.10) for (x,y, s) = (xk,yk, sk) and μ :=

0.1μ(xk, sk)

4: choose a step length α ∈ (0, 1] and set (xk+1,yk+1, sk+1) = (xk,yk, sk)+

α(Δx,Δy,Δs)

5: end for

30 Linear Programming: Theory and Algorithms

The step length α in step 4 should be chosen so that xk+1, sk+1 > 0 and

the size of rμ(x
k+1,yk+1, sk+1) is sufficiently smaller than rμ(x

k,yk, sk). A line-

search procedure as the one described in Algorithm 2.4 is a popular strategy for

choosing the step length α.

Algorithm 2.4 Line search to select the step length α

1: let αmax := max{α : (xk,yk, sk) + α(Δx,Δy,Δs) ≥ 0}
2: start with α := 0.99αmax

3: while ‖rμ((xk,yk, sk) + α(Δx,Δy,Δs))‖ ≥ (1− 0.01α)‖rμ(xk,yk, sk)‖ do

4: α := α/2

5: end while

In contrast to the primal and dual simplex methods, which in principle gen-

erate either primal or dual feasible iterates and terminate after finitely many

iterations, interior-point methods typically generate infeasible iterates and con-

verge to the optimal solution in the limit. In practice, the convergence is so fast

that in a few iterations the algorithm yields iterates that are within machine

precision of an exact optimal solution. The algorithm can also be enhanced to

detect infeasibility. It relies on the fact that when the primal or dual problem is

infeasible, the norm of the residual rμ(x,y, s) cannot be driven to zero.

When applied to Example 2.2 starting from x0 = s0 =
[
100 · · · 100

]T
, y0 =

0, the above interior-point algorithm generates the following sequence of iterates.

(For ease of notation we only display the first two entries of each iterate.)

Iteration 0 1 2 · · · 8 9

x1 100 19.7084 17.2976 · · · 49.9383 49.9962
x2 100 57.3930 41.6795 · · · 50.0436 50.0011

2.8 Notes

The simplex method was developed by George Dantzig (1963). Clever implemen-

tations of the simplex method, such as the revised simplex and simplex tableau,

perform iterations far more efficiently than what a naive recalculation of the

basic solution and reduced cost from scratch at each iteration would involve.

Detailed discussions on these implementations and other related issues can be

found in the books by Bertsimas and Tsitsiklis (1997) and Chvátal (1983).

Interior-point methods for linear programming were introduced in a land-

mark paper by Karmarkar (1984) and subsequently triggered a massive burst of

research in optimization during the 1990s and early 2000s. The books by Renegar

(2001), Ye (1997), and Roos et al. (2005) present the main developments on this

topic.

2.9 Exercises 31

State-of-the-art linear programming solvers such as CPLEX, MOSEK, Gurobi,

and others use implementations of both the simplex and interior-point methods.

These solvers can easily solve linear programs with millions of variables and

constraints.

2.9 Exercises

Exercise 2.1 Draw the feasible region of the following two-variable linear

program:

max 2x1 − x2

x1 + x2 ≥ 1

x1 − x2 ≤ 0

3x1 + x2 ≤ 6

x1, x2 ≥ 0.

Determine the optimal solution to this problem by inspection.

Exercise 2.2 Consider the following two-variable linear program:

min 2x1 + 3x2

x1 + x2 ≥ 5

x1 ≥ 1

x2 ≥ 2.

Prove that x∗ =

[
3

2

]
is an optimal solution by showing that the objective value

of any feasible solution is at least 12. Hint: Use an appropriate combination of

the constraints.

Exercise 2.3 Consider the linear programming problem

max cTx

Ax ≤ b

x ≥ 0,

where

A =

[
1 1 1 1 1

5 4 3 2 1

]
, b =

[
3

14

]
, cT =

[
6 5 4 3 5 4

]
.

Solve this problem using the following strategy:

(a) Find the dual of the above primal linear program. The dual has only two

variables. Solve the dual by inspection after drawing a graph of its feasible

set.

(b) Using the optimal solution to the dual problem and the optimality condi-

tions, determine what primal constraints are binding and what primal vari-

ables must be zero at an optimal solution. Using this information, determine

the optimal solution to the primal linear program.

32 Linear Programming: Theory and Algorithms

Exercise 2.4

(a) Give an example of a two-variable linear program that is infeasible.

(b) Give an example of a two-variable linear program that is unbounded.

Exercise 2.5 Consider the linear programming problem

max c1x1 + · · · + cnxn

s.t. a1x1 + · · ·+ anxn = b

x1, . . . , xn ≥ 0,

where b > 0 and cj , aj > 0, j = 1, . . . , n. Characterize the optimal solution(s) to

this problem. Could there be more than one?

Exercise 2.6

(a) Write the linear programming model in Example 2.1 (fund allocation) in

standard form. More precisely, show that for suitable Ã, b̃, c̃, x̃ the linear

programming model in Example 2.1 can be rewritten as

min
x̃

c̃Tx̃

Ãx̃ = b̃

x̃ ≥ 0.

Hint: Introduce additional variables.

(b) Show that the standard dual of the model in part (a), namely

max
ỹ

b̃Tỹ

ÃTỹ ≤ c̃,

is equivalent to (2.8).

Exercise 2.7 Consider the linear programming problem (2.5). In principle the

dual of this problem can be obtained as follows: First, rewrite it in standard

form (2.1) by using slack variables. Then obtain the “standard” dual, as in (2.2),

for the problem rewritten in this standard form. Prove that the dual problem

obtained in this fashion is equivalent to (2.6).

Exercise 2.8 Consider the following investment problem over T years, where

the objective is to maximize the value of the investments in year T . We assume

a perfect capital market with the same annual lending and borrowing rate r > 0

each year. We also assume that exogenous investment funds bt are available in

year t, for t = 1, . . . , T . Let n be the number of possible investments. We assume

that each investment can be undertaken fractionally (between 0 and 1). Let atj
denote the cash flow associated with investment j in year t. Let cj be the value of

investment j in year T (including all cash flows subsequent to year T discounted

at the interest rate r).

The linear program that maximizes the value of the investments in year T is

the following. Denote by xj the fraction of investment j undertaken, and let yt
be the amount borrowed (if negative) or lent (if positive) in year t:

2.9 Exercises 33

max

n∑
j=1

cjxj + yT

s.t. −
n∑

j=1

a1jxj + y1 ≤ b1

−
n∑

j=1

atjxj − (1 + r)yt−1 + yt ≤ bt for t = 2, . . . , T

0 ≤ xj ≤ 1 for j = 1, . . . , n.

(a) Write the dual of the above linear program.

(b) Solve the dual linear program found in part (a).

Hint: Note that some of the dual variables can be computed by backward

substitution.

(c) Write the complementary slackness conditions.

(d) Deduce that the first T constraints in the primal linear program hold as

equalities.

(e) Use the complementary slackness conditions to show that the solution

obtained by setting xj = 1 if cj +
∑T

t=1(1 + r)T−tatj > 0, and xj = 0

otherwise, is an optimal solution.

(f) Conclude that the above investment problem always has an optimal solution

where each investment is either undertaken completely or not at all.

Exercise 2.9 Consider the following variation of Exercise 2.5 where there are

upper bounds ui on each of the variables:

max c1x1 + · · · + cnxn

s.t. a1x1 + · · ·+ anxn ≤ b

0 ≤ xi ≤ ui for i = 1, . . . , n.

Assume that b > 0 and all ai, ci, ui are also strictly positive for i = 1, . . . , n.

Furthermore, assume
c1
a1

≥ c2
a2

≥ · · · ≥ cn
an

.

Write the problem in standard form and apply the simplex method to it. What

steps will the simplex method take? In other words, in what order will the

variables enter and leave the basis?

Exercise 2.10 Install and get acquainted with CVX. This package is freely

available and extremely easy to install and use. It can be downloaded from

http://cvxr.com/cvx/download/.

Write a MATLAB script that takes as inputs an m × n matrix A, an m-

dimensional vector b, and an n-dimensional vector c and solves the optimization

problem

min cTx

s.t. Ax = b

x ≥ 0.

34 Linear Programming: Theory and Algorithms

(a) Test your script on instances generated as follows:

>> m=1, n=5, b=1, c=ones(n,1), A=rand(m,n);

and

>> m=1, n=5, b=1, c=rand(n,1), A=ones(m,n);

Are the results consistent with your answer to Exercise 2.5?

(b) Test your script on instances generated as follows:

>> m=2, n=6, b=rand(m,1), c=rand(n,1), A=rand(m,n);

>> m=2, n=10, b=rand(m,1), c=rand(n,1), A=rand(m,n);

>> m=4, n=10, b=rand(m,1), c=rand(n,1), A=rand(m,n);

>> m=4, n=20, b=rand(m,1), c=rand(n,1), A=rand(m,n);

Do you notice anything peculiar about the number of non-zero entries in the

optimal solution x in each case?

Exercise 2.11 Use Theorem 2.4 to prove Theorem 2.5. To that end, proceed

as follows.

(a) (Farkas’s lemma) Consider the linear programming problem

min bTy

s.t. ATy ≤ 0.

Show that the dual of this problem is

max 0

s.t. Ax = b

x ≥ 0.

Now apply Theorem 2.4.

(b) (Gordan’s theorem) Proceed as in (a) but this time start with the linear

programming problem

max t

s.t. ATy − 1t ≥ 0.

(c) (Stiemke’s theorem) Proceed as in (a) and (b) but this time start with the

linear programming problem

max t

s.t. Ax = 0

x− 1t ≥ 0.

Exercise 2.12 Use Theorem 2.5 to prove Theorem 2.4.

Exercise 2.13 To break the circular argument in the above two exercises,

prove Theorem 2.5 using the following hyperplane separation theorem: If S ⊆ Rn

is closed and convex and x �∈ S then there exists a hyperplane separating x and

S. That is, there exists a ∈ Rn \ {0} and b ∈ R such that aTx < b ≤ aTy for all

y ∈ S.

3 Linear Programming Models:
Asset–Liability Management

This chapter presents a classical application of linear programming to covering

known liabilities by constructing a dedicated fixed-income portfolio. When the

liabilities span multiple years, the model assumes that the only sources of risk

are changes in the term structure of interest rates. We also discuss a short-term

financing problem.

3.1 Dedication

Consider the problem of funding a stream of liabilities that extends over the

future. Assume the forecast of liabilities is accurate. This problem arises in

certain practical situations such as the liabilities of a pension fund. It also

arises in non-financial institutions planning acquisitions, expansion, or product

development. A dedicated bond portfolio is a portfolio of bonds constructed today

and whose cash flows offset the liabilities.

Example 3.1 (Bond dedication) Suppose a pension fund needs to cover some

liabilities in the next six years. Cash requirements (in million $) are:

Year 1 2 3 4 5 6

Required 100 200 800 100 800 1200

Suppose the pension fund can invest in ten government bonds with the cash

flows and current prices in Table 3.1.

Find the least expensive portfolio of bonds whose cash flows will be sufficient

to cover the cash requirements. Assume surplus cash can be carried from one

year to the next but earn no interest.

We can formulate this problem as the following linear programming model.

Linear programming model for bond dedication

Variables:

xj : amount of bonds j in the portfolio, for j = 1, . . . , 10;

st: surplus cash in year t, for t = 1, . . . , 6.

36 Linear Programming Models: Asset–Liability Management

Table 3.1

Year
1 2 3 4 5 6 Price

Bond 1 10 10 10 10 10 110 109
Bond 2 7 7 7 7 7 107 94.8
Bond 3 8 8 8 8 8 108 99.5
Bond 4 6 6 6 6 106 93.1
Bond 5 7 7 7 7 107 97.2
Bond 6 5 5 5 105 92.9
Bond 7 10 10 110 110
Bond 8 8 8 108 104
Bond 9 7 107 102
Bond 10 100 95.2

Objective:

min 109x1 + 94.8x2 + · · ·+ 102x9 + 95.2x10.

Constraints:

10x1 + 7x2 + · · ·+ 7x9 + 100x10 = 100 + s1
10x1 + 7x2 + · · ·+ 107x9 +s1 = 200 + s2

...

110x1 + 107x2 + 108x3 +s5 = 1200 + s6
xj ≥ 0, j = 1, . . . , 10

st ≥ 0, t = 1, . . . , 6.

Notice that we can write the equality constraints also as

10x1 + 7x2 + · · ·+ 7x9 + 100x10 −s1 = 100

10x1 + 7x2 + · · ·+ 107x9 +s1 − s2 = 200
...

110x1 + 107x2 + 108x3 +s5 − s6 = 1200

xj ≥ 0, j = 1, . . . , 10

st ≥ 0, t = 1, . . . , 6,

or as

10x1 + 7x2 + · · ·+ 7x9 + 100x10 −100 = s1
10x1 + 7x2 + · · ·+ 107x9 +s1 − 200 = s2

...

110x1 + 107x2 + 108x3 +s5 − 1200 = s6
xj ≥ 0, j = 1, . . . , 10

st ≥ 0, t = 1, . . . , 6.

In general, for a given problem with liabilities projected over m points in time

over the future, the stream of liabilities is a vector:

3.1 Dedication 37

Date 1 2 · · · m

Required L1 L2 · · · Lm

Suppose we can use n bonds with the following cash flows and prices:

Date 1 2 · · · m Prices

Bond 1 F11 F21 · · · Fm1 p1
...

...
...

Bond j F1j F2j · · · Fmj pj
...

...
Bond n F1n F2n · · · Fmn pn

The linear programming formulation of the cash matching problem is as follows.

Linear programming model for bond dedication (general version)
Variables:

xj : amount of bonds j in the portfolio, for j = 1, . . . , n;

st: surplus cash in year t, for t = 1, . . . ,m.

Linear programming model:

min

n∑
j=1

pjxj

s.t.

n∑
j=1

F1jxj − s1 = L1

n∑
j=1

Ftjxj + st−1 − st = Lt, t = 2, . . . ,m

xj ≥ 0, j = 1, . . . , n

st ≥ 0, t = 1, . . . ,m.

The problem can be written more concisely as follows:

min pTx

s.t. Fx+Rs = L

x ≥ 0

s ≥ 0,

where

F =

⎡⎢⎣F11 · · · F1n

...
. . .

...

Fm1 · · · Fmn

⎤⎥⎦ , R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 · · · 0

1 −1 0 0 · · · 0

0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 1 −1 0

0 0 · · · 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

38 Linear Programming Models: Asset–Liability Management

p =

⎡⎢⎣p1...
pn

⎤⎥⎦ , L =

⎡⎢⎣L1

...

Lm

⎤⎥⎦ .

3.2 Sensitivity Analysis

As noted in Section 2.4, when a linear programming model is solved, the dual

solution yields a great deal of sensitivity information, or information about what

happens when data values are changed. Recall the sensitivity interpretation

associated with the shadow price. Assume λ is the shadow price of a constraint:

If the right-hand side of a constraint changes by Δ, then the optimal

objective value changes by λ ·Δ, as long as the change of the right-hand

side is within the allowable increase or decrease.

This concept is particularly insightful in the bond dedication problem. In a

nutshell, the sensitivity information of the linear optimization model leads to an

implied term structure as we next explain. Recall our linear programming model

for portfolio dedication:

min

n∑
j=1

pjxj

s.t.

n∑
j=1

F1jxj − s1 = L1

n∑
j=1

Ftjxj + st−1 − st = Lt, t = 2, . . . ,m

xj ≥ 0, j = 1, . . . , n

st ≥ 0, t = 1, . . . ,m.

The shadow price of constraint at time t is the extra amount of money needed

today to cover an extra unit of liability at time t. In other words, the shadow price

λt gives the discount factor for time t. The current portfolio therefore implies

the following term structure of interest rates:

rt =
1

(λt)1/t
− 1.

3.3 Immunization

Consider again the problem of covering a stream of liabilities (L1, . . . , Lm) due at

m different dates in the future. In principle, the stream of liabilities is equivalent

to a lump sum of cash today equal to its present value, obtained by discounting

the future liabilities. Setting aside an amount equal to this present value seems

simpler than constructing a dedicated portfolio. A problem with this approach

3.3 Immunization 39

is that it is fully exposed to interest-rate risk. By contrast, a dedicated portfolio

is not subject to interest-rate risk since it matches the liabilities at the time they

occur. Immunization is an approach that reduces interest-rate risk as compared

to the simple-minded present value approach, but it does not completely protect

against it as dedication would. The advantage is that immunized portfolios

are typically cheaper than dedicated portfolios. The idea is simple: construct

a portfolio with the same present value as the stream of liabilities, and further

require that this present value has the same sensitivity to changes in interest

rates as the stream of liabilities.

More precisely, suppose r1, . . . , rm is the term structure of risk-free interest

rates. This means that the value rt is the yield on a risk-free zero-coupon bond

with maturity t. In other words, rt is the interest rate that applies to money

invested between now and time t. By discounting each of the cash flows with the

appropriate discount rate, it follows that the present value (PV) of a stream of

cash flows (F1, . . . , Fm), where Ft occurs at time t, is

PV =
F1

1 + r1
+

F2

(1 + r2)2
+ · · ·+ Fm

(1 + rm)m
.

If interest rates shift by δ, we get

PV(δ) =
F1

1 + r1 + δ
+

F2

(1 + r2 + δ)2
+ · · ·+ Fm

(1 + rm + δ)m
.

Notice that

PV(δ)− PV ≈ −δ

(
F1

(1 + r1)2
+

2F2

(1 + r2)3
+ · · ·+ mFm

(1 + rm)m+1

)
.

This motivates the following concept.

Definition 3.2 The Fisher–Weil dollar duration (DD) of the stream of cash

flows (F1, . . . , Fm) is

DD :=
m∑
t=1

tFt

(1 + rt)t+1
.

An immunized portfolio is a portfolio of bonds whose present value and dura-

tion match those of the stream of liabilities. In optimization terms, this corre-

sponds to a portfolio that satisfies the following constraints:

n∑
j=1

PVjxj = PVL

n∑
j=1

DDjxj = DDL.

A closer look at the difference between PV and PV(δ) suggests that we can

get an even better matching of sensitivity to changes in the term structure by

looking at second-order terms:

40 Linear Programming Models: Asset–Liability Management

PV(δ)− PV ≈ −δ

m∑
t=1

tFt

(1 + rt)t+1
+

1

2
δ2

m∑
t=1

t(t+ 1)Ft

(1 + rt)t+2
.

This leads to the so-called Fisher–Weil dollar convexity (DC) of (F1, . . . , Fm):

DC :=

m∑
t=1

t(t+ 1)Ft

(1 + rt)t+2
,

as well as the Fisher–Weil convexity (C):

C :=
1

PV

m∑
t=1

t(t+ 1)Ft

(1 + rt)t+2
.

A portfolio can therefore be further immunized by matching present value, dollar

duration, and dollar convexity:

n∑
j=1

PVjxj = PVL

n∑
j=1

DDjxj = DDL (3.1)

n∑
j=1

DCjxj ≥ DCL.

Here the subindices j = 1, . . . , n and L refer to the bonds and liabilities respec-

tively. Note that since having net positive convexity is favorable, the last con-

straint is an inequality constraint.

The immunization constraints (3.1) are generally less stringent than the bond

dedication constraints, namely

n∑
j=1

F1jxj − s1 = L1

n∑
j=1

Ftjxj + st−1 − st = Lt, t = 2, . . . ,m

xj ≥ 0, j = 1, . . . , n

st ≥ 0, t = 1, . . . ,m.

(3.2)

Indeed, if the surplus variables st, t = 1, . . . ,m, are all zero in (3.2), then

some straightforward algebra shows that any x1, . . . , xn satisfying (3.2) also

satisfies (3.1).

The previous discussion assumes that interest is compounded at discrete time

intervals, e.g., annually or semiannually. In some practical circumstances cash

flows may occur at irregular times. In those cases it could be more convenient to

assume that interest is continuously compounded. Suppose rt is the continuously

3.4 Some Practical Details about Bonds 41

compounded spot rate for a risk-free zero-coupon bond with maturity t. Then the

present value of a stream of cash flows (F1, . . . , Fm) is

PV =
m∑
t=1

Fte
−t·rt .

Consequently its dollar duration is

DD =
m∑
t=1

tFte
−t·rt ,

and its dollar convexity is

DC =
m∑
t=1

t2Fte
−t·rt .

A nice feature of continuous compounding is that the formulas for an irregular

stream of cash flows (Ft1 , . . . , Ftm) are very similar:

PV =

m∑
i=1

Ftie
−ti·rti ,

DD =

m∑
i=1

tiFtie
−ti·rti ,

DC =

m∑
i=1

t2iFtie
−ti·rti .

The kind of immunization via duration and convexity enforced by the con-

straints (3.1) provides hedging against parallel shocks in the term structure.

This implicitly assumes a one-factor interest risk model. There are enhancements

based on a multi-factor interest risk model. Two popular ones are the key-rate

model and the shift–twist–butterfly model as discussed in Tuckman (2002). The

logic of immunization naturally extends to a multi-factor interest risk model. In

such a context an immunized portfolio should be hedged against changes in each

of the risk factors.

3.4 Some Practical Details about Bonds

There are certain details about the way bonds are quoted and traded in actual

exchanges. The discussion below applies only to plain vanilla treasury bonds. For

a more detailed discussion, see Fabozzi (2004) or Tuckman (2002).

42 Linear Programming Models: Asset–Liability Management

Principal Value, Coupon Payments, Clean and Dirty Prices

The principal value, or par, or principal of a bond is the amount that the issuer

agrees to repay the bondholder. The term to maturity of a bond is the time

remaining until principal payment. The maturity date of a bond is that date

when the issuer will pay the principal.

The coupon rate or nominal rate of a bond is the annual interest that the

issuer pays the bondholder. Treasury bonds pay their coupons semiannually. For

example, a bond with an 8% coupon rate and a principal of $1,000 will pay a

$40 installment to the holder every six months. At the maturity date, it will pay

the $40 installment plus the $1,000 principal.

When an investor purchases a bond between coupon payments, the investor

must compensate the seller of the bond for the coupon interest earned since the

last coupon payment. This is called the accrued interest and is computed based

on the proportion of time since the last coupon payment. The convention for

United States treasuries is not to include the accrued interest in the price quote.

This price is called the clean price or simply the price. It is customary to present

the price quote as a percentage of the par value of the bond. The clean price

plus the accrued interest is called the dirty price or full price.

For example, suppose that on February 15, 2051 investor B buys a treasury

bond with $10,000 face value, 5.5% coupon rate that matures on January 31,

2053. In this case the coupon payment is $275 = 2.75% of $10,000 and the

accrued interest is
15

181
· 275 = 22.79.

Suppose the price quote on February 15, 2051 is 101.145. Then the full price of

the bond, that is, the price paid by the buyer to the seller, is $10,114.5+$22.79

= $10,137.29.

Yield Curve and Term Structure

Recall that the yield of a bond is the interest rate that makes the discounted

value of the cash flows match the current price of the bond. By convention,

the yield is quoted on an annual basis. The treasury yield curve is the curve of

yields for on-the-run (most recently auctioned) treasuries. It should be noted

that the yield curve is not the same as the term structure of interest rates. This

is the case because treasuries with maturity greater than one year are not zero-

coupon bonds. Indeed, the term structure of interest rates is actually a theoretical

construct that must be estimated from actual bonds.

There are various ways of estimating the term structure. A quick and dirty

(perhaps too dirty) approach is to ignore the difference described above and to

use the yield curve as a proxy for the term structure of interest rates.

A second approach is to use the following bootstrapping approach: Use several

coupon-bearing bonds with various maturities. Determine the spot rate implied

3.4 Some Practical Details about Bonds 43

by the bond with the shortest maturity. Use that knowledge to compute the spot

rate implied by the bond with the next shortest maturity and so on. For example,

suppose we have a 0.5-year 5.25% bill, a 1-year 5.75% note, and a 1.5-year 6%

note. For simplicity assume they all are trading at par. Let z1, z2, z3 denote the

one-half annualized 0.5-year, 1-year, and 1.5-year spot rates.

Using the 0.5-year bond, we readily get

z1 = 0.0525 · 0.5 = 0.02625.

Using $100 as par, the cash flows for the 1-year bond are

0.5-year: 0.0575 · 100 · 0.5 = 2.875

1-year: 0.0575 · 100 · 0.5 + 100 = 102.875.

Now compute its present value using the spot rates z1, z2 and equate that to its

current price:

100 =
2.875

1 + z1
+

102.875

(1 + z2)2
.

Because we already know z1, we can solve for z2 and obtain

z2 = 0.028786.

Repeat with the 1.5-year bond: Using $100 as par, the cash flows for the 1.5-year

bond are

0.5-year: 0.06 · 100 · 0.5 = 3

1-year: 0.06 · 100 · 0.5 = 3

1.5-year: 0.06 · 100 · 0.5 + 100 = 103.

Now compute its present value using the spot rates z1, z2, z3 and equate that to

its current price:

100 =
3

1 + z1
+

3

(1 + z2)2
+

103

(1 + z3)3
.

Because we already know z1, z2, we can solve for z3 and obtain

z3 = 0.030063097.

Thus the annualized spot rates are

r0.5 = 0.0525, r1 = 0.057572, r2 = 0.06012.

Yet a third, and much more elaborate, approach to estimating the term struc-

ture is to take into consideration all bonds with similar characteristics available

in the market and perform an elaborate regression model. This approach requires

advanced statistical techniques and is beyond the scope of this book. For a related

discussion see Campbell et al. (1997) and Heath et al. (1992)

It should also be noted that the previous two estimation approaches only give

spot rates at specific points in time. The spot rates at other times can be obtained

by interpolation. The simplest type of interpolation is piecewise linear.

44 Linear Programming Models: Asset–Liability Management

3.5 Other Cash Flow Problems

The dedication model discussed in Section 3.1 belongs to the broader class of

cash flow problems. A firm faces a stream of both positive (inflows) and negative

(outflows) flows of cash. The negative flows are considered liabilities that must

be met when they occur. To meet the liabilities, the firm can purchase a variety

of instruments each with a different cash flow pattern.

The following short-term financing problem is of this kind. Corporations

routinely face the problem of financing short-term cash commitments. Linear

programming can help in figuring out an optimal combination of financial

instruments to meet these commitments. For illustration, consider the following

problem. For the sake of exposition, we keep the example small.

Example 3.3 (Short-term financing) A company has the following short-term

financing problem (net cash flow requirements are given in $1000s).

Month J F M A M J

Net cash flow −150 −100 200 −200 50 300

The company has the following sources of funds:

• A line of credit of up to $100,000 at an interest rate of 1% per month.

• It can issue 90-day commercial paper bearing a total interest of 2% for the

3-month period.

• Each month excess funds can be invested at an interest rate of 0.3% per

month.

There are many questions that the company might want to answer. Is it eco-

nomical to use the line of credit in some of the months? If so, when? How much?

What interest payments will the company need to make between January and

June? Linear programming gives us a mechanism for answering these questions

quickly and easily.

Linear programming model for short-term financing problem

Variables:

xj : amount drawn from the line of credit in month j, for j = 1, . . . , 5

yj : amount of commercial paper issued in month j, for j = 1, . . . , 3

zj : excess funds in month j, for j = 1, . . . , 6.

Objective:

max z6.

3.5 Other Cash Flow Problems 45

Constraints: Cash balance constraints in each month and bounds on xj , yj
and zj :

x1 + y1 − z1 = 150

x2 + y2 − 1.01x1 + 1.003z1 − z2 = 100

x3 + y3 − 1.01x2 + 1.003z2 − z3 = −200

x4 − 1.02y1 − 1.01x3 + 1.003z3 − z4 = 200

x5 − 1.02y2 − 1.01x4 + 1.003z4 − z5 = −50

− 1.02y3 − 1.01x5 + 1.003z5 − z6 = −300

xj ≤ 100 for j = 1, . . . , 5

xj ≥ 0 for j = 1, . . . , 5

yj ≥ 0 for j = 1, . . . , 3

zj ≥ 0 for j = 1, . . . , 5.

Solving this linear program using either Excel Solver or MATLAB CVX, we

obtain the following optimal solution:

x∗ =

⎡⎢⎢⎢⎢⎣
0

0

0

0

52

⎤⎥⎥⎥⎥⎦ , y∗ =

⎡⎣ 150

100

151.944

⎤⎦ , z∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

351.944

0

0

92.497

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus the company can attain an optimal wealth of $92,497 in June. To achieve

this, the company will issue $150,000 in commercial paper in January, $100,000

in February and $151,944 in March. In addition, it will draw $52,000 from its

line of credit in May. Excess cash of $351,944 in March will be invested for one

month.

Figure 3.1 displays the Excel Solver sensitivity report for this model.

The key columns for sensitivity analysis are the “Reduced Cost” and “Shadow

Price” columns. Recall that the shadow price u of a constraint C has the following

interpretation:

If the right-hand side of the constraint C changes by an amount Δ, the

optimal objective value changes by u ·Δ as long as Δ is within a certain

range.

The above sensitivity information allows us to perform various kinds of “what

if” analysis.

• For example, assume that net cash flow in January were −200 (instead of

−150). By how much would the wealth of the company decrease at the

end of June? The answer is in the shadow price of the January constraint,

u = −1.0373. The right-hand side of the January constraint would go

from 150 to 200, an increase of Δ = 50, which is within the allowable

46 Linear Programming Models: Asset–Liability Management

Figure 3.1 Sensitivity report for short-term financing model

increase (89.17). So the wealth of the company in June would decrease by

1.0373·50,000 = $51,865.

• Now assume that net cash flow in March were 250 (instead of 200). By how

much would the wealth of the company increase at the end of June? Again,

the change Δ = −50 is within the allowable decrease (151.944), so we can

use the shadow price u = −1.02 to calculate the change in objective value.

The increase is (−1.02) · (−50) = $51,000.

• Assume that the negative net cash flow in January is due in part to the

purchase of a machine worth $100,000. The vendor allows the payment to

be made in June at an interest rate of 3% for the 5-month period. Would

the wealth of the company increase or decrease by using this option? What

if the interest rate for the 5-month period were 4%? The shadow price of the

January constraint is −1.0373. This means that reducing cash requirements

in January by $1 increases the wealth in June by $1.0373. In other words,

the break-even interest rate for the 5-month period is 3.73%. So, if the

vendor charges 3%, we should accept, but if he charges 4% we should not.

Note that the analysis is valid since the amount Δ = −100 is within the

allowable decrease.

3.6 Exercises 47

Next, let us consider the reduced costs. Recall that these are the shadow prices

of the upper and lower bounds placed directly on the variables. The reduced cost

of a variable is non-zero only when the variable is equal to one of its bounds.

Assume x is equal to its lower bound b and its reduced cost is c. There are two

useful interpretations of the reduced cost c.

• First, if the value of x is set to a value b+Δ for Δ > 0 instead of its optimal

value b then the objective value is changed by c ·Δ. For example, what

would be the effect of financing part of the January cash needs through the

line of credit? The answer is in the reduced cost of the first variable. Because

this reduced cost −0.0032 is strictly negative, the objective function would

decrease. Specifically, each dollar financed through the line of credit in

January would result in a decrease of $3.2 in the wealth of the company in

June.

• The second interpretation of c is that its magnitude |c| is the minimum amount

by which the objective coefficient of x must be changed in order for the

variable x to move away from its bound in an optimal solution. For example,

consider the first variable again. Its value is zero in the current optimal

solution, with objective function z6. However, if we changed the objective

to z6+0.0032x1, it would now be optimal to use the line of credit in January.

In other words, the reduced cost on x1 can be viewed as the minimum rebate

that the bank would have to offer (payable in June) to make it attractive

to use the line of credit in January.

3.6 Exercises

Exercise 3.1 You need to create a portfolio to cover the following stream of

liabilities for the next six future dates:

Date 1 2 3 4 5 6

Required 500 200 800 200 800 1200

You may purchase the bonds in Table 3.2.

The term structure of risk-free interest rates is:

Date 1 2 3 4 5 6

Rate 5.04% 5.94% 6.36% 7.18% 7.89% 8.39%

(a) Formulate a linear programming model to find the lowest-cost long-only

dedicated portfolio that covers the stream of liabilities with the bonds above.

Assume surplus balances can be carried from one date to the next but earn

no interest. What is the cost of your portfolio? What is the composition of

your portfolio?

48 Linear Programming Models: Asset–Liability Management

Table 3.2

Year
Bond 1 2 3 4 5 6 Price

1 10 10 10 10 10 110 109
2 7 7 7 7 7 107 94.8
3 8 8 8 8 8 108 99.5
4 6 6 6 6 106 93.1
5 7 7 7 7 107 97.2
6 6 6 6 106 96.3
7 5 5 5 105 92.9
8 10 10 110 110
9 8 8 108 104
10 6 6 106 101
11 10 110 107
12 7 107 102
13 100 95.2

(b) Formulate a linear programming model to find the lowest-cost portfolio that

matches the present value and dollar duration of the stream of liabilities.

What is the cost of your portfolio? How do the two present values change

if interest rates decrease by one percentage point? How do they change if

interest rates increase by one percentage point? How do they change if the

interest rates in dates 1 and 2 decrease by one percentage point, the rates in

dates 3, 4, and 5 remain the same, and the rate in date 6 increases by one

percentage point?

(c) Use the linear programming sensitivity information from part (a) to deter-

mine the implied term structure of interest rates.

(d) Suppose that the stream of liabilities changes to:

Date 1 2 3 4 5 6

Required 100 200 800 500 800 1200

Find the new optimal dedicated portfolio and determine the new implied

term structure. Is it different from the one you obtained in part (c)? Can

you provide an intuitive explanation for the difference or lack thereof?

(e) Assume the liabilities occur at irregular time intervals:

Date 1.25 2.5 3.5 4.5 5.75 6.5

Required 500 200 800 200 800 1200

(i) Repeat part (b) for this irregular stream of liabilities.

3.6 Exercises 49

You will need to do some kind of interpolation to estimate the term

structure at the relevant times. You will also need to make an assumption

about how to discount at irregular time intervals.

(ii) Repeat part (a) for this irregular stream of liabilities.

(f) Formulate a linear programming model to find the lowest-cost long-only

dedicated portfolio that covers the stream of liabilities:

Date 1 2 3 4 5 6

Required 500 200 800 400 700 900

with the following new set of bonds:

Bond 1 2 3 4 5 6 Price Rating

1 10 10 10 10 10 110 108 B
2 7 7 7 7 7 107 94 B
3 8 8 8 8 8 108 99 B
4 6 6 6 6 106 92.7 B
5 7 7 7 7 107 96.6 B
6 6 6 6 106 95.9 B
7 5 5 5 105 92.9 A
8 10 10 110 110 A
9 8 8 108 104 A
10 6 6 106 101 A
11 10 110 107 A
12 7 107 102 A
13 100 95.2 A

This time assume that at most 50% of your portfolio’s value can be in

bonds rated B. Again, assume surplus balances can be carried from one date

to the next but earn no interest. What is the cost of your portfolio? What

is the composition of your portfolio?

Exercise 3.2 Suppose today is November 30, 2052. A pension fund will need to

cover the following stream of liabilities over the subsequent four years (in million

dollars):

5/31/53 11/30/53 5/31/54 11/30/54 5/31/55 11/30/55 5/31/56 11/31/56

12 10 10 10 9 9 9 15

To cover these liabilities, the pension fund intends to use a portfolio comprised

of the following 14 US treasury notes:

50 Linear Programming Models: Asset–Liability Management

Description Coupon Maturity date Clean price

US TREAS NTS 3.500% 05/31/2053 3.5 5/31/53 101.563
US TREAS NTS 0.500% 05/31/2053 0.5 5/31/53 100.188
US TREAS NTS 2.000% 11/30/2053 2 11/30/53 101.746
US TREAS NTS 0.250% 11/30/2053 0.25 11/30/53 100.078
US TREAS NTS 2.250% 05/31/2054 2.25 5/31/54 102.941
US TREAS NTS 0.250% 05/31/2054 0.25 5/31/54 100.023
US TREAS NTS 2.125% 11/30/2054 2.125 11/30/54 103.656
US TREAS NTS 0.250% 11/30/2054 0.25 11/30/54 100.016
US TREAS NTS 2.125% 05/31/2055 2.125 5/31/55 104.461
US TREAS NTS 1.375% 11/30/2055 1.375 11/30/55 103.031
US TREAS NTS 3.250% 05/31/2056 3.25 5/31/56 109.738
US TREAS NTS 1.750% 05/31/2056 1.75 5/31/56 104.570
US TREAS NTS 2.750% 11/30/2056 2.75 11/30/56 108.879
US TREAS NTS 0.875% 11/30/2056 0.875 11/30/56 101.516

(a) Compute the dirty (full) price of each of the above 14 bonds. For consistency,

assume today is November 30, 2052.

(b) Formulate a linear programming model to find the lowest-cost dedicated

portfolio that covers the stream of liabilities. To eliminate the possibility of

any interest risk, assume a 0% reinvestment rate on cash balances carried

from one date to the next. Assume no short sales are allowed. What is the

cost of your portfolio? What is the composition of your portfolio?

(c) Use the linear programming sensitivity information from part (b) to deter-

mine the term structure of interest rates implied by the portfolio.

Exercise 3.3 Prove that, if s1 = s2 = · · · = sm = 0 in (3.2), each of the

immunization constraints in (3.1) is implied by the dedication constraints (3.2).

Exercise 3.4 A company will face the following cash requirements in the

next eight quarters (positive entries represent cash needs while negative entries

represent cash surpluses):

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

100 500 100 −600 −500 200 600 −900

The company has three borrowing possibilities.

• A 2-year loan available at the beginning of Q1, with a 1% interest per quarter.

• The other two borrowing opportunities are available at the beginning of every

quarter: a 6-month loan with a 1.8% interest per quarter, and a quarterly

loan with a 2.5% interest for the quarter.

• Any surplus can be invested at a 0.5% interest per quarter.

3.7 Case Study 51

Formulate a linear program that maximizes the wealth of the company at the

beginning of Q9.

Exercise 3.5 Generate the sensitivity report for Exercise 3.4 with your favorite

LP solver.

(a) Suppose the cash requirement in Q2 is 300 (instead of 500). How would this

affect the wealth in Q9?

(b) Suppose the cash requirement in Q2 is 100 (instead of 500). Can the sensi-

tivity report be used to determine the wealth in Q9?

(c) One of the company’s suppliers may allow deferred payments of $50 from

Q3 to Q4. What would be the value of this?

Exercise 3.6 A home buyer can combine several mortgage loans to finance

the purchase of a house. Regulations impose limits on the amount that can be

borrowed from certain sources as well as a limit on the total reimbursement each

month. Let B be the borrowing needs and T the number of months over which the

loans will be paid back. There are n different loan opportunities available. Loan

i has a fixed interest rate ri, a length Ti ≤ T and a maximum amount borrowed

bi. The monthly payment on loan i is not required to be the same every month,

but a minimum payment mi is required each month. Furthermore, we would like

the total monthly payment p over all loans to be constant. Formulate a linear

program that finds a combination of loans that minimizes the home buyer’s cost

of borrowing.

Hint: In addition to variables xti for the payment on loan i in month t, it may

be useful to introduce a variable for the amount of outstanding principal on loan

i in month t.

3.7 Case Study

Let y denote the current year. A municipality sends you the following liability

stream (in million dollars):

12/15/y 6/15/y+1 12/15/y+1 6/15/y+2 12/15/y+2 6/15/y+3 12/15/y+3 6/15/y+4
11 9 8 7 9 10 9 12

12/15/y+4 6/15/y+5 12/15/y+5 6/15/y+6 12/15/y+6 6/15/y+7 12/15/y+7 6/15/y+8
9 6 5 7 9 7 8 7

Questions
1. Determine the current term structure of treasury rates, and find the present

value, dollar duration, and dollar convexity of the stream of liabilities. Please

explain the main steps (interest rates, discount factors, compounding, etc.)

followed in your calculations. You can find current data on numerous websites

such as

http://finance.yahoo.com/bonds

http://fixedincome.fidelity.com/fi/FILanding

52 Linear Programming Models: Asset–Liability Management

2. Identify at least 30 fixed-income assets that are suitable for a dedicated

portfolio. Use assets that are considered risk-free, e.g., US government non-

callable treasury bonds, treasury bills, or treasury notes. Display a succinct

summary of the main characteristics of the bonds you chose (prices, coupon

rates, maturity dates).

3. Formulate a linear programming model to find the lowest-cost dedicated

portfolio that covers the stream of liabilities. To eliminate the possibility

of any interest risk, assume a 0% reinvestment rate on cash balances carried

from one date to the next. Assume no short sales are allowed. What is the

cost of your portfolio? What is the composition of your portfolio?

4. Use the linear programming sensitivity information to determine the term

structure of interest rates implied by the portfolio. Use a plot to compare it

with the current term structure of treasury rates.

5. Formulate a linear programming model to find the lowest-cost portfolio that

matches the present value, dollar duration, and dollar convexity of the stream

of liabilities. Assume no short sales are allowed. What is the cost of your

portfolio? How much would you save by using this immunization strategy

instead of dedication? Is your portfolio immunized against non-parallel shifts

in the term structure? Explain why or why not.

6. Combine a cash matching strategy for the liabilities during the first three

years and an immunization strategy based on present value, duration and

convexity for the liabilities during the last five years. Compare the cost of

this portfolio with the cost of the two previous portfolios.

7. The municipality would like you to make a second bid: What is your best

dedicated portfolio of risk-free bonds you can create if short sales are allowed?

Did you find arbitrage opportunities? Did you take into consideration the

bid–ask spread? Did you set limits on the transaction amounts? Discuss the

practical feasibility of your solution.

4 Linear Programming Models:
Arbitrage and Asset Pricing

In this chapter, we prove the fundamental theorem of asset pricing and we give

several applications, from arbitrage detection in the foreign exchange market, to

pricing of options, and clientele effects in bond portfolio management.

4.1 Arbitrage Detection in the Foreign Exchange Market

The foreign exchange market includes the trading of currencies. It is one of the

markets with largest trading volume. Given two currencies at any particular time,

say the US dollar and the euro, there are two exchange rates between them: one

dollar will buy r1 euros, and one euro will buy r2 dollars. It is evident that an

arbitrage opportunity would arise if r1r2 > 1 since one could simultaneously

convert 1 dollar into r1 euros and the r1 euros into r1r2 > 1 dollars. These two

transactions would net r1r2 − 1 dollars without any risk.

An interesting related question is: Can one detect a similar type of arbi-

trage opportunity involving more than two currencies? In particular, consider

the following hypothetical exchange rates among the currencies USD (US Dol-

lars), EUR (Euros), GBP (British Pounds), AUD (Australian Dollars), and JPY

(Japanese Yen).

USD EUR GBP AUD JPY

USD 1 0.639 0.537 1.0835 98.89
EUR 1.564 1 0.843 1.6958 154.773
GBP 1.856 1.186 1 2.014 184.122
AUD 0.9223 0.589 0.496 1 91.263
JPY 0.01011 0.00645 0.00543 0.01095 1

A simple verification shows that there are no arbitrage opportunities involving

only two currencies. However, could there be one involving more than two cur-

rencies? Could you simply eyeball such an opportunity? If you cannot, can you

prove that such an opportunity does not exist?

We next show how to answer these questions using linear programming. For

convenience, use i = 1, . . . , 5 to index the above five currencies USD, EUR,

GBP, AUD, and JPY in that order. We let aij denote the exchange rate from

54 Linear Programming Models: Arbitrage and Asset Pricing

currency i to currency j. For instance a34 = 2.014 and a25 = 154.773. To model

a set of transactions with potential for arbitrage, consider the following decision

variables:

• xij : amount of currency i converted to currency j.

• yk: net amount of currency k after all transactions.

These variables are related via the following constraints:

yk =

5∑
i=1

aikxik −
5∑

j=1

xkj , k = 1, . . . , 5.

An arbitrage would exist if there is a set of transactions so that after all transac-

tions the net amount for each currency is non-negative and at least one of them

is strictly positive. To find such a set of transactions we could solve the following

linear programming problem:

max y1

s.t. yk =

5∑
i=1

aikxik −
5∑

j=1

xkj , k = 1, . . . , 5

xij ≥ 0

yk ≥ 0.

However, if there is indeed an arbitrage opportunity, then the above problem

would be unbounded. We can easily amend the above model so that the arbitrage

can be revealed by introducing a bound on the objective function:

max y1

s.t. yk =
5∑

i=1

aikxik −
5∑

j=1

xkj , k = 1, . . . , 5

y1 ≤ 1

xij ≥ 0

yk ≥ 0.

Solving this linear programming model, we find that indeed there are arbitrage

opportunities. However, to obtain $1 in arbitrage, we have to exchange about

1669.172 US dollars into 1066.601 euros, then convert these euros into 899.1446

pounds, then convert these pounds into 1810.877 Australian dollars, and finally

change these Australian dollars into 1670.172 US dollars. The arbitrage oppor-

tunity is so tight that, depending on the numerical precision used, a linear

programming solver may not find it. Furthermore, even if a solver does find

it, the tightness of the arbitrage may render it impractical when accounting for

market frictions such as transaction costs.

4.2 The Fundamental Theorem of Asset Pricing 55

4.2 The Fundamental Theorem of Asset Pricing

One of the most widely studied problems in financial mathematics is the pricing

of contingent claims. These are securities whose price depends on the value of

another underlying security. Under the assumption of no arbitrage, the price of

such a contingent claim should match the price of a portfolio that replicates the

payoff of the contingent claim. This basic principle underlies the powerful option

pricing machinery dating back to the pioneering work of Merton (1973) and Black

and Scholes (1973). The absence of arbitrage and the replication argument can

be cleverly stated in terms of a so-called risk-neutral probability measure. The

latter concept can be equivalently stated in terms of a stochastic discount factor

or a positive linear pricing rule.

We next use linear programming duality to give a formal derivation of the

equivalence between the absence of arbitrage and the existence of a risk-neutral

probability measure for the special case of a simple economy in a single-period

framework. Assume the economy contains m assets. Let S0 :=
[
S1
0 · · · Sm

0

]T
denote the vector of prices per share of the m assets at time 0 (beginning of the

period). Assume there are n possible states Ω = {ω1, . . . , ωn} at time 1 (end of

the period). Let S1(ωj) =
[
S1
1(ωj) · · · Sm

1 (ωj)
]T

denote the vector of prices

per share of the m assets at time 1 in state ωj .

An arbitrage opportunity in this economy is an opportunity to make money

without any cost and without any risk. Mathematically, an arbitrage opportunity

is a portfolio of the m assets that has non-positive cost, yields non-negative

payoffs in all future states, and in addition either has strictly negative cost

or generates a strictly positive payoff in some future state. In other words, an

arbitrage portfolio is a set of holdings y1, . . . , ym in the m assets such that

ST
0y ≤ 0, S1(ωj)

Ty ≥ 0, j = 1, . . . , n

and such that at least one of these inequalities is strict.

A positive linear pricing rule is a set of positive numbers x1, . . . , xn such that

S0 =

n∑
j=1

S1(ωj)xj , i = 1, . . . ,m.

Proposition 4.1 In the above single-period economy with m assets and n future

states there is no arbitrage if and only if there exists a positive linear pricing rule.

Proof Let S :=
[
S1(ω1) · · · S1(ωn)

]
. An arbitrage portfolio is precisely a

solution to the following system of inequalities:[
S −S0

]T
y � 0. (4.1)

Similarly, a positive linear pricing rule is precisely a solution to the following

system of inequalities:

Sx = S0

x > 0.
(4.2)

56 Linear Programming Models: Arbitrage and Asset Pricing

Observe that (4.2) has a solution if and only if the following system of inequalities

has a solution: [
S −S0

]
u = 0

u > 0.
(4.3)

Hence it suffices to show that (4.1) does not have a solution if and only if (4.3)

has a solution. This readily follows from Theorem 2.5(c).

The existence of a positive linear pricing rule can be equivalently stated in

terms of a stochastic discount factor or in terms of a risk-neutral measure. In

both of these interpretations the set of future states Ω = {ω1, . . . , ωn} is seen as

a probability space. Assume Ω is endowed with a probability measure P. Then

the future payoff of each asset i can be seen as a random variable Si : Ω → R. A

stochastic discount factor is a random variable D : Ω → R such that

S0 = E(DS1) =
n∑

j=1

D(ωj)S1(ωj)P(ωj), i = 1, . . . ,m.

For convenience, assume there is a risk-free asset in the above economy; that is,

an asset i such that Si
0 = 1 and Si

1(ωj) = 1 + r for j = 1, . . . , n. A risk-neutral

probability measure is a probability measure Q in the space Ω = {ω1, . . . , ωn}
such that

S0 =
1

1 + r
Ẽ(S1) =

1

1 + r

n∑
j=1

S1(ωj)Q(ωj).

Here Ẽ indicates that the expectation is taken with respect to the risk-neutral

probability measure Q, as opposed to the original probability measure P.

We can now formally state the fundamental theorem of asset pricing.

Theorem 4.2 (Fundamental theorem of asset pricing) Consider the above single-

period economy with n future states and m assets, one of which is risk-free. The

following conditions are equivalent:

(i) There are no arbitrage opportunities.

(ii) There exists a positive linear pricing rule.

(iii) There exists a positive stochastic discount factor.

(iv) There exists a risk-neutral probability measure.

Proposition 4.1, which gives the equivalence between (i) and (ii), provides the

crux of the proof of Theorem 4.2. The proofs of the other equivalences are a

straightforward exercise.

4.3 One-Period Binomial Pricing Model

This section illustrates the pricing of a contingent claim on an underlying risky

security in a simple one-period binomial model. This model provides the building

4.3 One-Period Binomial Pricing Model 57

block for the powerful and widely used multi-period binomial pricing model that

we will discuss in Chapter 15.

Consider a single-period economy with a risk-free asset and a risky asset. Let

r denote the risk-free rate and S0 denote the price per share of the risky asset

at time 0. Assume there are two possible future states Ω = {H,T} at time 1.

Assume the price per share of the risky asset at time 1 is S1(H) = u ·S0 in state

H and S1(T) = d · S0 in state T for some “up” and “down” factors u > d > 0:

S0
����

����

S1(H) = uS0

S1(T) = dS0

In this economy there is no arbitrage if and only if u > 1 + r > d and in this

case the risk-neutral probability measure should satisfy

S0 =
1

1 + r
(Q(H)S1(H) +Q(T)S2(T)) =

S0

1 + r
(Q(H)u+Q(T)d)

1 = Q(H) +Q(T).

Therefore,

Q(H) =
1 + r − d

u− d
, Q(T) =

u− 1− r

u− d
. (4.4)

It is customary to write p̃ := Q(H) and q̃ := 1− p̃ = Q(T) as shorthand for the

risk-neutral probabilities and p = P(H) and q = 1 − p = P(T) for the actual

probabilities:

Consider the problem of pricing a contingent claim on the risky asset with the

following payoff structure:

V0 =? ����

����

V1(H)

V1(T)

For example, the contingent claim could be a European call option – that is,

a contract with the following conditions. At time 1, the holder of the option has

the right, but not the obligation, to purchase a share of the risky asset, known

as the underlying security, for a prescribed amount, known as the strike price.

Thus the payoff of a European call option with strike K is V1 = (S1 −K)+ :=

max{S1 −K, 0}. The payoff structure of this option in our one-period binomial

model is as follows:

V0 =? ����

����

V1(H) = (uS0 −K)+

V1(T) = (dS0 −K)+

A European put option is a similar contract, except that it confers the right to

sell the underlying security for a prescribed strike price.

The fundamental theorem of asset pricing implies that the fair price V0 of a

general contingent claim with payoffs V1(H) and V1(T) is

58 Linear Programming Models: Arbitrage and Asset Pricing

V0 =
1

1 + r
(p̃V1(H) + q̃V1(T)).

Furthermore, the binomial pricing model yields the following delta-hedging for-

mula to construct a portfolio of the underlying risky asset and the risk-free asset

that replicates the payoff of the contingent claim. At time 0 construct a portfolio

with Δ shares of the underlying risky asset and B shares of the risk-free asset

where

Δ :=
V1(H)− V1(T)

S1(H)− S1(T)
=

V1(H)− V1(T)

S0(u− d)
, B :=

uV1(T)− dV1(H)

(1 + r)(u− d)
.

A straightforward verification shows that this portfolio replicates the payoff of

the contingent claim. That is, the payoff of the portfolio (Δ, B) is as follows:

ΔS0 +B ����

����

ΔS1(H) + (1 + r)B = V1(H)

ΔS1(T) + (1 + r)B = V1(T)

Thus the value of this replicating portfolio at time 0 must be V0 to rule out

arbitrage. Indeed, the value of the replicating portfolio at time 0 is

ΔS0 +B =
(1 + r)(V1(H)− V1(T)) + uV1(T)− dV1(H)

(1 + r)(u− d)

=
1

1 + r
(p̃V1(H) + q̃V1(T)) = V0.

Example 4.3 Suppose stock XYZ has share price S0 = 40 today. Suppose the

share price of stock XYZ a month from today will either double or halve with

equal probabilities:

S0 = 40 ����

����

S1(H) = 80

S1(T) = 20

Assume also that the one-month risk-free rate is zero. Consider a European

call option to buy one share of XYZ stock for $50 a month from today. What is

the fair price of this option?

In Example 4.3 we have u = 2, d = 1
2 and r = 0. Thus the risk-neutral

probabilities are p̃ = 1
3 and q̃ = 2

3 . Next, observe that a month from now the call

option with strike price $50 will be worth $30 = $80− $50 in the H state and it

will be worthless in the T state. Thus the fair price of the option is the price of

the following contract:

? ����

����

(80− 50)+ = 30

(20− 50)+ = 0

The fundamental theorem of asset pricing implies that the fair price of this

contract is

30 · p̃+ 0 · q̃ = 30 · 1
3
= 10.

4.4 Static Arbitrage Bounds 59

Furthermore, from the delta-hedging formula it follows that a replicating portfo-

lio can be constructed by buying 1
2 share of stock XYZ and borrowing 10 shares of

the risk-free asset. Observe that the value of this replicating portfolio at time 0 is

1

2
· 40− 10 = 10.

Using the risk-neutral probability measure we can also price other derivative

securities on the XYZ stock. For example, consider a European put option on

the XYZ stock with strike price $60 and with the same expiration date:

? ����

����

(60− 80)+ = 0

(60− 20)+ = 40

It readily follows that the fair price of this option is

0 · p̃+ 40 · q̃ = 40 · 2
3
=

80

3
.

Observe that in the one-period binomial pricing model the risk-neutral prob-

ability is unique and the payoff of any contingent claim can be replicated via

delta-hedging. In general, uniqueness of the risk-neutral probability corresponds

to completeness of the market. The latter concept means that the payoff of any

contract can be replicated with a portfolio of the existing underlying assets in

the economy as detailed in Exercise 4.6.

4.4 Static Arbitrage Bounds

The no-arbitrage approach discussed in Section 4.2 has the drawback that it

assumes only a finite number of possible future states. In this section, we do not

make this assumption. Instead, we assume that there is a finite set of derivative

securities written on the same underlying asset and with the same maturity.

We show how the no-arbitrage approach can be used to obtain so-called static

arbitrage bounds on the price of a new derivative security implied by the prices

of the other derivative securities. As in Section 4.2, the gist of this approach is

to use linear programming to detect arbitrage opportunities in a single-period

economy. This discussion is based on Herzel (2005).

Consider an underlying security with a (random) price ST at a future time T .

Consider n derivative securities written on this security that mature at time T ,

and have piecewise linear payoff functions Ψi(ST), each with a single breakpoint

Ki, for i = 1, . . . , n. The obvious motivation is the collection of calls and puts

written on the underlying security with strike prices Ki, i = 1, . . . , n. More

precisely, if the ith derivative security were a European call with strike price Ki,

we would have Ψi(ST) = (ST −Ki)
+. If it were a European put with strike price

Ki, we would have Ψi(ST) = (Ki − ST)
+.

60 Linear Programming Models: Arbitrage and Asset Pricing

We shall assume without loss of generality that the Kis are in increasing order.

Also, we let pi denote the current price of the ith derivative security. Consider a

portfolio x =
[
x1 · · · xn

]T
of the derivative securities 1 to n and let Ψx(ST)

denote the payoff function of the portfolio:

Ψx(ST) =
n∑

i=1

Ψi(ST)xi.

The cost of the portfolio x is given by

n∑
i=1

pixi. (4.5)

To determine whether there exists an arbitrage opportunity in the above set

of n derivative securities, we consider the following question: Is it possible to

construct a portfolio of the derivative securities 1, . . . , n with negative cost and

whose payoff function Ψx(ST) at time T is non-negative for all ST ∈ [0,∞)?

Since non-negativity of Ψx(ST) corresponds to “no future obligations” such a

portfolio would be an arbitrage opportunity.

Since all Ψi(ST)s are piecewise linear, so is Ψx(ST) with breakpoints in

K1, . . . ,Kn. Note that a piecewise linear function is non-negative over [0,∞)

if and only if it is non-negative at 0 and all the breakpoints, and if the slope

of the function is non-negative to the right of the largest breakpoint. In other

words, Ψx(ST) is non-negative for all ST ≥ 0 if and only if the following three

conditions hold:

(i) Ψx(0) ≥ 0,

(ii) Ψx(Kj) ≥ 0, j = 1, . . . , n,

(iii) [(Ψx)′+(Kn)] ≥ 0.

These three conditions can be written as the following system of linear

inequalities:

n∑
i=1

Ψi(0)xi ≥ 0

n∑
i=1

Ψi(Kj)xi ≥ 0, j = 1, . . . , n

n∑
i=1

(Ψi(Kn + 1)−Ψi(Kn))xi ≥ 0.

(4.6)

Since all Ψi(ST)s are piecewise linear, the quantity Ψi(Kn + 1) − Ψi(Kn) gives

the right derivative of Ψi(ST) at Kn and the expression in the last constraint is

the right derivative of Ψx(ST) at Kn. The system of linear inequalities (4.6) can

be more succinctly written as

Kx ≥ 0

4.4 Static Arbitrage Bounds 61

for

K :=

⎡⎢⎢⎢⎢⎢⎣
Ψ1(0) · · · Ψn(0)

Ψ1(K1) · · · Ψn(K1)
...

...

Ψ1(Kn) · · · Ψn(Kn)

Ψ1(Kn + 1)−Ψ1(Kn) · · · Ψn(Kn + 1)−Ψ(Kn)

⎤⎥⎥⎥⎥⎥⎦ .

It thus follows that the above type of arbitrage opportunity exists if and only if

the following problem has a solution:

Kx ≥ 0, pTx < 0.

Next, we focus on the special case where the derivative securities under con-

sideration are European call options with strikes Ki for i = 1, . . . , n. In this case

Ψi(ST) = (ST −Ki)
+ and hence

Ψi(Kj) = (Kj −Ki)
+.

In this case, (4.6) can be written as

Ax ≥ 0 (4.7)

for

A =

⎡⎢⎢⎢⎢⎢⎣
K2 −K1 0 0 · · · 0

K3 −K1 K3 −K2 0 · · · 0
...

...
...

. . .
...

Kn −K1 Kn −K2 Kn −K3 · · · 0

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦ .

This formulation is obtained by removing the first two constraints of (4.6) which

are redundant in this particular case. Using this formulation, we obtain the

following theorem giving necessary and sufficient conditions for a set of call

option prices to contain no arbitrage opportunities.

Theorem 4.4 Let K1 ≤ K2 ≤ · · · ≤ Kn denote the strike prices of European

call options written on the same underlying security with the same maturity. For

i = 1, . . . , n let pi denote the price of the ith call option. There are no arbitrage

opportunities if and only if the prices pi, i = 1, . . . , n, satisfy the following

conditions:

(i) 0 ≤ pn ≤ pn−1 ≤ · · · ≤ p1.

(ii) The piecewise linear function C : [K1,Kn] → R with breakpoints K1, . . . ,Kn

defined by C(Ki) := pi, i = 1, . . . , n, is convex.

The previous approach can be further extended to infer both lower and upper

bounds on the current price pnew of a new derivative with maturity T and payoff

Ψnew(ST) given prices of other derivatives on the same underlying security and

with the same maturity. As before, assume Ψnew(ST) and Ψi(ST) are piecewise

62 Linear Programming Models: Arbitrage and Asset Pricing

linear functions each with a single breakpoint K and Ki, i = 1, . . . , n, respec-

tively. Assume K1 ≤ K2 ≤ · · · ≤ Kn and let pi denote the current price of the

ith derivative security.

Assume there is no arbitrage involving the n derivatives with payoffs Ψi(ST),

for i = 1, . . . , n. The previous reasoning applied to the larger set of n + 1

derivatives shows that there is no arbitrage if and only if the following two

conditions hold:

• First, pnew ≥ pTx for any portfolio x =
[
x1 · · · xn

]T
such that

Ψnew(ST) ≥ Ψx(ST) for all ST ≥ 0.

• Second, pnew ≤ pTx for any portfolio x =
[
x1 · · · xn

]T
such that

Ψnew(ST) ≤ Ψx(ST) for all ST ≥ 0.

In words, the first condition states that the price of the new derivative has to be

at least as large as the price of any sub-replicating portfolio of the old securities.

Likewise, the second condition states that the price of the new derivative has

to be at most as large as the price of any super-replicating portfolio of the

old securities. The above two conditions automatically yield the following static

arbitrage bounds on p.

Lower bound :

p�new := max pTx

s.t. Ψnew(ST) ≥ Ψx(ST) for all ST ≥ 0.

Upper bound :

punew := min pTx

s.t. Ψnew(ST) ≤ Ψx(ST) for all ST ≥ 0.

The piecewise linearity of Ψnew(ST) and Ψi(ST), i = 1, . . . , n, implies that both

inequalities Ψnew(ST) ≥ Ψx(ST) for all ST ≥ 0, and Ψnew(ST) ≥ Ψx(ST) for

all ST ≥ 0 can be formulated as a finite system of linear inequalities. Therefore,

both the upper and lower static arbitrage bounds can be formulated as linear pro-

gramming models. In particular, for the special case where Ψi(ST) = (ST −Ki)
+,

for i = 1, . . . , n, and Ψnew(ST) = (ST −K)+ with K1 ≤ K ≤ Kn the static arbi-

trage upper bound punew on p can be written as the following linear programming

model (Exercise 4.10):

punew := min pTx

s.t. Ax ≥ b,
(4.8)

4.5 Tax Clientele Effects in Bond Portfolio Management 63

where

A =

⎡⎢⎢⎢⎢⎢⎣
K2 −K1 0 0 · · · 0

K3 −K1 K3 −K2 0 · · · 0
...

...
...

. . .
...

Kn −K1 Kn −K2 Kn −K3 · · · 0

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎣
(K2 −K)+

(K3 −K)+

...

(Kn −K)+

0

⎤⎥⎥⎥⎥⎥⎦ .

4.5 Tax Clientele Effects in Bond Portfolio Management

This section presents a model proposed by Ronn (1987) to elicit clientele effects

induced by taxes in the bond market. Related models were also proposed by

Hodges and Schaefer (1977) and Schaefer (1982). The crux of the model is to

formulate a linear program that exploits the price differential of bonds given

their after-tax cash flows. To do so, the model finds a long–short portfolio that

simultaneously buys “underpriced” bonds and sells “overpriced” bonds while

ensuring non-negative cash flows throughout the lives of the bonds.

Next we describe the details of the model. Assume the bond market includes

N bonds with the following characteristics:

• The ask and bid prices of bond j are paj and pbj respectively for j = 1, . . . , N.

• Each unit of bond j generates a cash flow atj at date t for j = 1, . . . , N

and t = 1, . . . , T. These cash flows are after-tax coupon and/or principal

payments.

• The minimal risk-free reinvestment rate at future dates t = 1, . . . , T is ρ.

Linear programming model for tax clientele effects in the bond market

Variables:

xa
j : number of units of bond j bought, for j = 1, . . . , N

xb
j : number of units of bond j sold, for j = 1, . . . , N

zt: surplus cash flow at date t, for t = 1, . . . , T .

Objective:

max

N∑
j=1

pbjx
b
j −

N∑
j=1

pajx
a
j .

64 Linear Programming Models: Arbitrage and Asset Pricing

Constraints: Cash balance constraints in each date and bounds on xa
j , x

b
j ,

and zt:

z1 =

N∑
j=1

a1jx
a
j −

N∑
j=1

a1jx
b
j

zt = (1 + ρ)zt−1 +

N∑
j=1

atjx
a
j −

N∑
j=1

atjx
b
j , for t = 2, . . . , T

xa
j , x

b
j ≥ 0, for j = 1, . . . , N

zt ≥ 0, for t = 1, . . . , T

xa
j , x

b
j ≤ 1, for j = 1, . . . , N.

(4.9)

Some comments are in order. The above objective function is the net difference

between the value of the short positions and long positions of the portfolio. The

short positions have to settle at the bid prices whereas the long positions have

to settle at the ask prices. Because of this distinction, the constraints xa
j , x

b
j ≥ 0

are required. To ensure that the portfolio is risk-free, we require the surplus cash

flows zt to be non-negative for each date t.

The resulting linear program admits two main types of solutions. Either all

bonds are priced within the bid–ask spread. In that case the optimal value of

the linear program is zero and it is trivially attained by not taking any short or

long positions. On the other hand, if there are exploitable price differentials in

the bonds, the linear program chooses long and short holdings so as to maximize

the difference between the values of the long and short positions. In that case

the optimal value is positive. To avoid unbounded values, the model includes the

upper bounds xa
j , x

b
j ≤ 1 on the long and short holdings.

Note that the model requires bonds with perfectly forecastable cash flows.

Thus, non-callable bonds and notes are deemed appropriate, but callable bonds

are excluded.

The proposed model explicitly accounts for the taxation of income and capital

gains for specific investor classes. This means that the cash flows need to be

adjusted for the presence of taxes. For a discount bond (that is, when paj < 100),

the after-tax cash flow of bond j at date t is

atj = ctj(1− τ),

where ctj is the coupon payment at date t and τ is the ordinary income tax rate.

At maturity, the after-tax cash flow of bond j is

atj = (100− paj)(1− g) + paj ,

where g is the capital gains tax rate.

On the other hand, for a premium bond (that is, when paj > 100), the premium

is amortized against ordinary income over the life of the bond, giving rise to an

after-tax coupon payment of

atj =

[
ctj −

paj − 100

nj

]
(1− τ) +

paj − 100

nj
,

4.7 Exercises 65

where nj is the number of coupon payments remaining to maturity.

A premium bond also makes a non-taxable repayment of

atj = 100

at maturity.

Major categories of taxable investors are domestic banks, insurance companies,

individuals, non-financial corporations, and foreigners. In each case, one needs

to distinguish the tax rates on capital gains versus ordinary income.

As an example, consider tax-exempt investors. For this class of investors,

Schaefer (1982) observed that the “purchased” portfolio contains high coupon

bonds and the “sold” portfolio is dominated by low coupon bonds. This can be

explained as follows: The preferential taxation of capital gains for (most) taxable

investors causes them to gravitate towards low coupon bonds. Consequently, for

tax-exempt investors, low coupon bonds are “overpriced” and not desirable as

investment vehicles.

4.6 Notes

The fundamental theorem of asset pricing is central to the mathematical finance

literature. The connection between arbitrage and risk-neutral pricing underlies

the classical work of Merton (1973) and Black and Scholes (1973). More explicit

and formal statements on the relation between absence of arbitrage and existence

of stochastic discount factors in single-period as well as in multi-period settings

were developed by Ross (1976), Harrison and Kreps (1979), and Harrison and

Pliska (1981). The textbooks by Back (2010), Duffie (2001), and Shreve (2000)

give a detailed treatment of this important topic.

4.7 Exercises

Exercise 4.1 The Excel spreadsheet “Exercise 4.1 FX model” gives cross-

currency exchange rates among the currencies USD, EUR, GBP, AUD, and JPY.

Use a linear programming model to detect if these exchange rates contain an

arbitrage opportunity. To do so, use the following decision variables:

xij : amount of currency i converted to currency j.

yk: net amount of currency k after all transactions.

Is there an arbitrage opportunity? If the answer is yes, then describe it, for

example: “Convert 1000 USD to EUR then to JPY then back to USD to net

1 USD without putting money in.”

Exercise 4.2 Let S0 be the current share price of a “risky” security and

assume that there are two possible share prices for this security at a future

66 Linear Programming Models: Arbitrage and Asset Pricing

time T : ST (u) = S0 · u and ST (d) = S0 · d, where u > d > 0. Assume there is

also a “risk-free” security with current share price 1 and future share price 1+ r

at time T . Show that there is no arbitrage opportunity involving the risky and

risk-free securities if and only if u > 1 + r > d.

Exercise 4.3 Assume that the XYZ stock is currently priced at $40. At the

end of the next period, the price of XYZ is expected to be in one of the following

two states: 40 · u or 40 · d. We know that d < 1 < 5
4 < u but we do not know

d or u. The interest rate is zero. If a European call option with strike price $50

is priced at $10 while a European call option with strike price $40 is priced at

$13, and we assume that these prices do not contain any arbitrage opportunities,

what is the fair price of a European put option with a strike price of $40?

Exercise 4.4 Assume that the XYZ stock is currently priced at $40. At the

end of the next period, the price of XYZ is expected to be in one of the following

two states: 40 · u or 40 · d. We know that d < 1 < u but we do not know d or u.

The interest rate is r = 0. European call options on XYZ with strike prices of

$30, $40, $50, and $60 are priced at $10, $7, $10/3, and $0. Which one of these

options is mispriced? Why?

Exercise 4.5 Prove the equivalences (ii) ⇔ (iii) ⇔ (iv) in Theorem 4.2.

Exercise 4.6 Consider the setting of Proposition 4.1. Assume there is no

arbitrage and thus a positive linear pricing rule exists.

(a) Show that the linear pricing rule is unique if and only if the matrix S has

full column rank.

(b) Consider a new asset with payoff Sm+1
1 (ωj) per share in state ωj at time 1.

Show that if the linear pricing rule is unique then there exists a portfolio

y =
[
y1 · · · ym

]T
of the m old assets that replicates the payoff of the new

asset; that is,
m∑
i=1

Si
1(ωj)yi = Sm+1

1 (ωj), j = 1, . . . , n.

(c) Conclude that to rule out arbitrage, the price Sm+1
0 at time 0 of the new

asset must be equal to

ST
0y =

m∑
i=1

Si
0yi.

Exercise 4.7 Prove Theorem 4.4.

Exercise 4.8 Both Theorem 4.4 and the linear programming model (4.8)

implicitly assume that the ith call can be bought or sold at the same price pi.

In real markets, there is always a gap between the price a buyer pays for a

security and the amount the seller collects called the bid–ask spread.

4.7 Exercises 67

Assume that the ask price of the ith call is pai and its bid price is pbi with

pai > pbi . Develop analogs of Theorem 4.4 and of (4.8) in the case where we can

only purchase the calls at their ask prices or sell them at their bid prices.

Exercise 4.9 Consider all the call options on the S&P 500 index or on a highly

traded security that expire on the same day, about three months from today.

Their current prices can be downloaded from the website of the Chicago Board

of Options Exchange at www.cboe.com or several other market quote websites.

Formulate the linear programming problem (4.7) (or, rather, the version you

developed for Exercise 4.8 since market quotes will include bid and ask prices)

to determine whether these prices contain any arbitrage opportunities.

Sometimes, illiquid securities (those that are not traded very often) can have

misleading prices since the reported price corresponds to the last transaction

in that security, which may have happened several days ago, and if there were

to be a new transaction, this value would change dramatically. As a result, it

is quite possible that you will discover false “arbitrage opportunities” because

of these misleading prices. Repeat this exercise but this time use only prices

of call options that have had a trading volume of at least 100 on the day you

downloaded the prices.

Exercise 4.10 Prove that, for the special case where Ψi(ST) = (ST − Ki)
+,

with i = 1, . . . , n, and Ψnew(ST) = (ST − K)+ with K1 ≤ K ≤ Kn, the

static arbitrage upper bound punew on p can be written as the following linear

programming model:

punew := min pTx

s.t. Ax ≥ b,

where

A =

⎡⎢⎢⎢⎢⎢⎣
K2 −K1 0 0 · · · 0

K3 −K1 K3 −K2 0 · · · 0
...

...
...

. . .
...

Kn −K1 Kn −K2 Kn −K3 · · · 0

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎣
(K2 −K)+

(K3 −K)+

...

(Kn −K)+

0

⎤⎥⎥⎥⎥⎥⎦ .

Exercise 4.11 The purpose of this exercise is to see whether the results

observed by Schaefer (1982) (see Section 4.5) occur in the current bond market.

Only use non-callable bonds and notes.

Consider first the class of tax-exempt investors. Using current data, form the

optimal “purchased” and “sold” bond portfolios using the linear program pre-

sented in Section 4.5. Do you observe the same tax clientele effect as documented

by Schaefer for British government securities; namely, the “purchased” portfolio

contains high coupon bonds and the “sold” portfolio is dominated by low coupon

bonds.

68 Linear Programming Models: Arbitrage and Asset Pricing

Repeat the same analysis with different types of taxable investors.

(a) Is there a clientele effect in the pricing of US government investments,

with tax-exempt investors, or those without preferential treatment of capital

gains, gravitating towards high coupon bonds?

(b) Do you observe that not all high coupon bonds are desirable to investors

without preferential treatment of capital gains? Nor are all low coupon bonds

attractive to those with preferential treatment of capital gains. Can you find

reasons why this may be the case?

The dual price, say ut, associated with the cash balance constraint at date t in

(4.9) represents the present value of an additional dollar at time t. Explain why.

It follows that ut may be used to compute the term structure of spot interest

rates Rt, given by the relation

Rt =

(
1

ut

)1/t

− 1.

Compute this week’s term structure of spot interest rates for tax-exempt

investors.

Part II

Single-Period Models

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

5 Quadratic Programming: Theory
and Algorithms

5.1 Quadratic Programming

A quadratic program is an optimization problem whose objective is to minimize

or maximize a quadratic function subject to a finite set of linear equality and

inequality constraints. By flipping signs if necessary, a quadratic program can be

written in the generic form:

min
x

1
2x

TQx+ cTx

s.t. Ax = b

Dx ≥ d

(5.1)

for some vectors and matrices c ∈ Rn, b ∈ Rm, d ∈ Rp, A ∈ Rm×n, D ∈ Rp×n,

Q ∈ Rn×n. As observed in Chapter 1 we may assume that Q is a symmetric

matrix. The term quadratic programming model is also used to refer to a quadratic

program. We will use these terms interchangeably throughout the book.

Quadratic programming models arise in a variety of practical contexts. The

seminal mean–variance model of Markowitz and most of its variants for portfolio

selection are quadratic programs as we illustrate in Example 5.1 below and

discuss in full detail in Chapter 6. The popular ordinary least-squares and lasso

estimation procedures in linear regression are also quadratic programs. Quadratic

programs are also often solved as subproblems in the solution of more general

nonlinear optimization problems.

Observe that the constraint set in (5.1) is convex since it is a system of

linear inequalities. Furthermore, the objective function of (5.1) is convex when

Q is a positive semidefinite matrix. Throughout this chapter we assume that

Q is symmetric and positive semidefinite. Therefore problem (5.1) is a convex

program.

A quadratic programming model is in standard form if it is written as follows:

min
x

1
2x

TQx+ cTx

s.t. Ax = b

x ≥ 0.

(5.2)

Example 5.1 (Asset allocation) Assume the one-year returns of the asset classes

large stocks, small stocks, and bonds have the following correlations and standard

deviations:

72 Quadratic Programming: Theory and Algorithms

Large Small Bonds Standard deviation

Large 1 0.6 0.2 0.12
Small 0.6 1 0.5 0.20
Bonds 0.2 0.5 1 0.05

Determine the asset allocation of minimum risk, that is, find a portfolio com-

prised of these three asset classes whose return has the lowest standard deviation.

Assume the portfolio can only hold long positions in each of the asset classes.

This problem can be formulated as a quadratic programming model. To that

end, first construct the covariance matrix V of asset returns: this is the matrix

whose (i, j) entry is the covariance of asset i and asset j; that is, ρij · σi · σj .

Using matrix notation and ‘◦’ to denote the componentwise product of matrices,

the covariance matrix can be computed as

V =

⎡⎣ 1 0.6 0.2

0.6 1 0.5

0.2 0.5 1

⎤⎦ ◦

⎡⎣0.120.20

0.05

⎤⎦ [0.12 0.20 0.05
]

=

⎡⎣ 1 0.6 0.2

0.6 1 0.5

0.2 0.5 1

⎤⎦ ◦

⎡⎣0.0144 0.024 0.006

0.024 0.04 0.01

0.006 0.01 0.0025

⎤⎦
=

⎡⎣0.0144 0.0144 0.0012

0.0144 0.04 0.005

0.0012 0.005 0.0025

⎤⎦ .

We are now ready to describe the quadratic programming formulation for

the above asset allocation problem. (A more detailed discussion is given in

Chapter 6.)

Quadratic programming model for asset allocation
Variables:

xi: percentage of the portfolio invested in asset i for i = 1, 2, 3.

Objective (minimize the variance of the portfolio return):

min
x

xTVx = min
x1,x2,x3

(
0.0144x2

1 + 0.04x2
2 + 0.0025x2

3 + 0.0288x1x2

+ 0.0024x1x3 + 0.01x2x3

)
Constraints:

x1 + x2 + x3 = 1 (percentages add up to one)

x1, x2, x3 ≥ 0 (long-only positions).

Observe that even in this small example the quadratic objective is much

more concise and easier to write using matrix notation.

We now discuss the special case of a convex quadratic program without con-

straints. As Example 5.3 below illustrates, this kind of model arises naturally in

the ordinary least-squares procedure.

5.1 Quadratic Programming 73

Consider a quadratic program without constraints:

min
x

1
2x

TQx+ cTx. (5.3)

The optimality conditions in this case are as follows.

Theorem 5.2 Let c ∈ Rn, Q ∈ Rn×n and assume Q is symmetric and positive

semidefinite. If (5.3) is bounded, then it attains its minimum. Furthermore, a

point x ∈ Rn is an optimal solution to (5.3) if and only if

Qx+ c = 0. (5.4)

When Q is positive definite, the problem (5.3) has the unique minimizer x =

−Q−1c. When Q is positive semidefinite but not positive definite, the matrix Q

is singular and the problem (5.3) is either unbounded or has multiple solutions.

Example 5.3 (Ordinary least squares) Assume (xi, yi), for i = 1, . . . , N, is

a random sample drawn from the joint distribution of X,Y where X,Y are

respectively Rp-valued and R-valued random variables. Using the training data

(xi, yi), with i = 1, . . . , N, estimate a vector of coefficients β for the linear model

Y = βTX + ε.

The most popular approach to this problem is to find the estimate of β that

solves the following least-squares problem:

min
β

N∑
i=1

(βTxi − yi)
2.

Observe that

N∑
i=1

(βTxi − yi)
2 = (Xβ − y)T(Xβ − y) = βTXTXβ − 2yTXβ + yTy

for

X =

⎡⎢⎣x
T
1
...

xT
N

⎤⎥⎦ , y =

⎡⎢⎣ y1...
yN

⎤⎥⎦ .

Hence the least-squares problem can be formulated as follows.

Quadratic programming formulation for least-squares estimation.
Variables:

β: vector of coefficients in the linear model Y = βTX + ε.

Objective:

min
β

1
2β

TQβ − bTβ,

where Q := XTX, b = XTy.

Constraints: None.

74 Quadratic Programming: Theory and Algorithms

By applying Theorem 5.2 we obtain the widely known solution to the

least-squares problem:

β̂ := Q−1b = (XTX)−1XTy,

provided the N × p matrix X has full column rank. This latter condition usually

holds in the typical practical situation when there are more observations than

predictor variables; that is, when N > p. However, the case N < p occurs

as well. In this kind of situation the matrix X is never full column rank so

the ordinary least-squares approach is not appropriate. Section 5.6.2 describes

two popular variants for this kind of situation, namely ridge regression and

lasso regression, both of which can be seen as modifications of the ordinary

least-squares procedure.

5.2 Numerical Quadratic Programming Solvers

As with linear programming, there are a variety of highly efficient, fast, and

reliable commercial and open-source software packages for convex quadratic

programming. Most of these packages implement versions of the algorithms

sketched in Section 5.5 below. We illustrate two of these solvers by applying

them to Example 5.1.

Excel Solver

Figure 5.1 displays a printout of an Excel spreadsheet implementation of the

quadratic programming model for Example 5.1 as well as the dialog box obtained

when we run the Excel add-in Solver. The spreadsheet model contains the three

components of the quadratic program. The decision variables are in the range

B20:D20. The objective function is in cell E22. The Excel formula in this cell,

using matrix operations, is as follows:

MMULT(B20 : D20, MMULT(B16 : D18, TRANSPOSE(B20 : D20))).

The left-hand and right-hand sides of the equality constraint are in cells E20 and

G20 respectively.

MATLAB CVX

Figure 5.2 displays a CVX script for the same problem. The script can be run

provided the freely available CVX toolbox is installed.

Using either of these solvers we obtain the optimal solution to the problem in

Example 5.1:

x∗ =

⎡⎣0.08970

0.9103

⎤⎦ .

5.3 Sensitivity Analysis 75

Figure 5.1 Spreadsheet implementation and the Solver dialog box for the asset
allocation model

Figure 5.2 MATLAB CVX code for the asset allocation model

5.3 Sensitivity Analysis

As is the case for linear programming, the process of solving a quadratic program

also generates some interesting sensitivity information via the so-called Lagrange

multipliers associated with the constraints. Assume the constraints of a quadratic

program, and hence the Lagrange multipliers, are indexed by i = 1, . . . ,m.

The Lagrange multiplier y∗i of the ith constraint has the following sensitivity

interpretation:

If the right-hand side of the ith constraint changes by Δ, then the optimal

value of the quadratic program changes by approximately Δ · y∗i for

small Δ.

76 Quadratic Programming: Theory and Algorithms

Unlike the shadow prices of a linear program, the Lagrange multipliers only

give an approximation of the change in the optimal objective value. The situation

is akin to how the derivative of a quadratic (or more general nonlinear) function

at a particular point gives an approximation of the change in the function value

when that point changes.

Both Excel Solver and MATLAB CVX compute the Lagrange multipliers

implicitly. To make this information explicit in Excel Solver, we request a

sensitivity report after running Solver as shown in Figure 5.3.

Figure 5.3 Requesting sensitivity report in Solver

Figure 5.4 displays the sensitivity report for Example 5.1. The values y∗i can

be found in the column labeled “Lagrange Multiplier”. In CVX this information

can also be obtained by including a line of code to save the dual information y

as shown in Figure 5.5. Both solvers yield the dual value y∗ = 0.0047669.

5.4 *Duality and Optimality Conditions

As in linear programming, there is a dual quadratic program associated with

every primal quadratic programming problem, and this dual can be obtained via

the Lagrangian function. Throughout this section consider the primal quadratic

5.4 *Duality and Optimality Conditions 77

Figure 5.4 Sensitivity report

Figure 5.5 MATLAB CVX code with dual variables

program

min
x

1
2x

TQx+ cTx

s.t. Ax = b

Dx ≥ d,

(5.5)

where c ∈ Rn, Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm, D ∈ Rp×n, d ∈ Rp, and Q is

symmetric and positive semidefinite.

The Lagrangian function associated with (5.5) is

L(x,y, s) := 1
2x

TQx+ cTx+ yT(b−Ax) + sT(d−Dx).

The constraints of (5.5) can be encoded via the Lagrangian function through the

following observation: For a given vector x

max
y,s
s≥0

L(x,y, s) =

{
1
2x

TQx+ cTx if Ax = b and Dx ≥ d

+∞ otherwise.

78 Quadratic Programming: Theory and Algorithms

Therefore the primal problem (5.5) can be written as

min
x

max
y,s
s≥0

L(x,y, s).

The dual problem is obtained by flipping the order of the min and max opera-

tions:

max
y,s
s≥0

min
x

L(x,y, s).

It is easy to see that the dual problem can be written as follows:

max
x,y,s

bTy + dTs− 1
2x

TQx

s.t. ATy +DTs−Qx = c

s ≥ 0.

(5.6)

In particular, when the primal problem is in standard form (5.2), the dual

problem is

max
x,y,s

bTy − 1
2x

TQx

s.t. ATy −Qx+ s = c

s ≥ 0.

Observe that the dual problem of a quadratic program is again a quadratic

program. Note that, unlike the case of linear programming, some primal-like

variables x also appear in the dual problem. As in linear programming, there is

a deep connection between the primal problem (5.5) and its dual (5.6). The next

result follows by construction.

Theorem 5.4 (Weak duality) Assume x is a feasible point for (5.5) and (x̃,y, s)

is a feasible point for (5.6). Then

bTy + dTs− 1
2 x̃

TQx̃ ≤ 1
2x

TQx+ cTx.

Proof If x and (x̃,y, s) satisfy the above assumptions then

bTy + dTs− 1
2 x̃

TQx̃ ≤ (Ax)Ty + (Dx)Ts− 1
2 x̃

TQx̃

= (ATy +DTs)Tx− 1
2 x̃

TQx̃

= (c+Qx̃)Tx− 1
2 x̃

TQx̃

= 1
2x

TQx+ cTx− 1
2 (x− x̃)TQ(x− x̃)

≤ 1
2x

TQx+ cTx.

The following much deeper result also holds.

5.4 *Duality and Optimality Conditions 79

Theorem 5.5 (Strong duality) Assume one of the problems (5.5) or (5.6) is

feasible. Then this problem is bounded if and only if the other one is feasible. In

that case both problems have optimal solutions and their optimal values are the

same.

We refer the reader to Güler (2010) or Nocedal and Wright (2006) for a proof

of Theorem 5.5. This result is closely tied to certain kinds of separation theorems

for convex sets. For details see Güler (2010, chapters 6 and 11). A powerful

consequence of Theorem 5.5 is the following characterization of the solutions to

both (5.5) and (5.6).

Theorem 5.6 (Optimality conditions) The vectors x ∈ Rn and (x̃,y, s) ∈ Rn ×
Rm × Rp are optimal solutions to (5.5) and (5.6) respectively if and only if

Qx = Qx̃ and

Qx+ c−ATy −DTs = 0

Ax− b = 0

Dx− d ≥ 0

s ≥ 0

(Dx− d)isi = 0, i = 1, . . . , p.

(5.7)

For a quadratic program in standard form (5.2), the optimality conditions (5.7)

can be written as follows:

−Qx+ATy + s = c

Ax = b

x ≥ 0

s ≥ 0

xisi = 0, i = 1, . . . , n.

(5.8)

Observe that (5.8) nicely extends the optimality conditions (2.9) for linear pro-

gramming in standard form.

The optimality conditions (5.7) can be seen as “saddle-point” conditions for

the Lagrangian function

L(x,y, s) = 1
2x

TQx+ cTx+ yT(b−Ax) + sT(d−Dx).

We next discuss the special case of a quadratic program with equality con-

straints only. Consider the problem

min
x

1
2x

TQx+ cTx

s.t. Ax = b,
(5.9)

where c ∈ Rn, Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm, and Q is symmetric and positive

semidefinite. In this case the optimality conditions (5.7) simplify to

Qx+ c−ATy = 0

Ax− b = 0.
(5.10)

80 Quadratic Programming: Theory and Algorithms

The optimality conditions (5.10) in turn can be stated in terms of the Lagrangian

function of (5.9):

L(x,y) = 1
2x

TQx+ cTx+ yT(b−Ax).

Indeed observe that (5.10) can be succinctly written as

∇L(x,y) = 0.

When Q is positive definite and A has full row rank, problem (5.9) has a unique

minimizer x and a unique Lagrange multiplier y given by[
x

y

]
=

[
Q −AT

A 0

]−1 [−c

b

]
.

In particular, if Q is positive definite and A has full row rank, then the minimizer

and vector of Lagrange multipliers for the problem

min
x

1
2x

TQx

s.t. Ax = b
(5.11)

are respectively

x∗ = Q−1AT(AQ−1AT)−1b

y∗ = (AQ−1AT)−1b.

Example 5.7 (Asset allocation) Consider the same problem as in Example 5.1

but assume this time that the portfolio is allowed to hold short positions.

The formulation for this modification of Example 5.1 is straightforward: just

drop the non-negativity constraint on the variables. Thus we obtain the quadratic

programming model

min
x

1
2x

TVx

s.t. 1Tx = 1.

From the above discussion it readily follows that the optimal solution and

Lagrange multiplier are

x∗ =
1

1TV−11
V−11

y∗ =
1

1TV−11
.

For the particular value ofV in Example 5.1 we get the following optimal solution

and Lagrange multiplier

x∗ =

⎡⎣ 0.1934

−0.1406

0.9472

⎤⎦ , y∗ = 0.001897074.

5.5 *Algorithms 81

5.5 *Algorithms

We next sketch extensions of the two main algorithmic schemes for linear pro-

gramming discussed in Chapter 2. The first scheme, namely active-set methods,

can be seen as an analog of the simplex method. The second scheme, namely

interior-point methods, is a straightforward extension from the linear program-

ming to the quadratic programming context.

5.5.1 Active-Set Methods

Active-set methods are based on the following key observation. Assume x̄ is an

optimal solution to (5.5) and

I := {i = 1, . . . , p : (Dx̄− d)i = 0}.

Then the optimality conditions (5.7) can be rewritten as

Qx+ c−ATy −DT
I sI = 0

Ax− b = 0

DIx− dI = 0

sI ≥ 0.

(5.12)

If we ignore the last constraint sI ≥ 0, the remaining conditions in (5.12) are

precisely the optimality conditions of the problem

min
x

1
2x

TQx+ cTx

s.t. Ax = b

DIx = dI .

(5.13)

This suggests an algorithmic strategy to solve (5.5): guess the active set I

and solve the subproblem (5.13). If the solution x̄ to this subproblem satisfies

the other conditions in (5.7) then stop. Otherwise, make a new guess for I.

Algorithm 5.1 gives a possible version of this strategy.

Each main iteration of Algorithm 5.1 requires solving the following subproblem

for some current trial solution x̄ and trial active set I:

min
Δx

1
2 (Δx)TQΔx+ (Qx̄+ c)TΔx

s.t. AΔx = 0

DIΔx = 0.

(5.14)

To update the trial solution we also need to compute the step length

α := min

{
1, min

i�∈I
DiΔx<0

di −DiΔx

DiΔx

}
. (5.15)

82 Quadratic Programming: Theory and Algorithms

Algorithm 5.1 Active-set method

1: choose x0 feasible for (5.5) and I0 ⊆ {i : Dix0 = di, i = 1, . . . , p}
2: for k = 0, 1, . . . do

3: solve (5.14) for I = Ik and x̄ = xk

4: if Δx = 0 then

5: compute the Lagrange multipliers s̄I of (5.14) for I = Ik and x̄ = xk

6: if s̄I ≥ 0 then HALT x̄ is an optimal solution to (5.5)

7: else

8: let j := argmini∈I s̄i, Ik+1 := Ik\{j}, and xk+1 := xk

9: end if

10: else

11: compute α via (5.15) for I = Ik and let xk+1 := xk + αΔx

12: if αk has a blocking constraint j then Ik+1 := Ik ∪ {j}
13: else Ik+1 := Ik
14: end if

15: end if

16: end for

We say that the step length α computed in (5.15) has a blocking constraint,

j �∈ I, if

α = min
i�∈I

DiΔx<0

di −DiΔx

DiΔx
=

dj −DjΔx

DjΔx
< 1.

And we say that α has no blocking constraints when

α = 1 < min
i�∈I

DiΔx<0

di −DiΔx

DiΔx
.

5.5.2 Interior-Point Methods

For notational convenience and without loss of generality we assume that the

problem of interest is in standard form (5.2).

As in the linear programming case (Section 2.7.3), interior-point methods

generate a sequence of iterates that satisfy x, s > 0. Each iteration of the

algorithm aims to make progress towards satisfying −Qx+ATy+s = c,Ax = b,

and xisi = 0, with i = 1, . . . , n.

As before we use the following notational convention: Given a vector x ∈ Rn,

let X ∈ Rn×n denote the diagonal matrix defined by Xii = xi, with i = 1, . . . , n,

and let 1 ∈ Rn denote the vector whose components are all 1s. The optimality

conditions (5.8) can be restated as⎡⎣−Qx+ATy + s− c

Ax− b

XS1

⎤⎦ =

⎡⎣00
0

⎤⎦ , x, s ≥ 0.

5.5 *Algorithms 83

Given μ > 0, let (x(μ),y(μ), s(μ)) be the solution to the following perturbed

version of the above optimality conditions:⎡⎣−Qx+ATy + s− c

Ax− b

XS1

⎤⎦ =

⎡⎣ 0

0

μ1

⎤⎦ , x, s > 0.

The first condition above can be written as rμ(x,y, s) = 0 for the residual vector

rμ(x,y, s) :=

⎡⎣−Qx+ATy + s− c

Ax− b

XS1− μ1

⎤⎦ .

The central path is the set {(x(μ),y(μ), s(μ)) : μ > 0}. It is intuitively clear that

(x(μ),y(μ), s(μ)) converges to an optimal solution to both (5.2) and its dual.

This suggests the following algorithmic strategy. Suppose (x,y, s) is “near”

(x(μ),y(μ), s(μ)) for some μ > 0. Use (x,y, s) to move to a better point

(x+,y+, s+) “near” (x(μ+),y(μ+), s(μ+)) for some μ+ < μ.

It can be shown that if a point (x,y, s) is on the central path, then the

corresponding value of μ satisfies xTs = nμ. Likewise, given x, s > 0, define

μ(x, s) :=
xTs

n
.

To move from a current point (x,y, s) to a new point, we use the so-called

Newton step; that is, the solution to the system of equations⎡⎣−Q AT I

A 0 0

S 0 X

⎤⎦⎡⎣Δx

Δy

Δs

⎤⎦ =

⎡⎣c+Qx−ATy − s

b−Ax

μ1−XS1

⎤⎦ . (5.16)

Algorithm 5.2 presents a template for an interior-point method.

Algorithm 5.2 Interior-point method for quadratic programming

1: choose x0, s0 > 0

2: for k = 0, 1, . . . do

3: solve the Newton system (5.16) for (x,y, s) = (xk,yk, sk) and μ :=

0.1μ(xk, sk)

4: choose a step length α ∈ (0, 1] and set (xk+1,yk+1, sk+1) = (xk,yk, sk)+

α(Δx,Δy,Δs)

5: end for

The step length α in step 4 should be chosen so that xk+1, sk+1 > 0 and

the size of rμ(x
k+1,yk+1, sk+1) is sufficiently smaller than rμ(x

k,yk, sk). A line-

search procedure such as the one described in Algorithm 2.4 in Chapter 2 can

be used for choosing the step length α.

84 Quadratic Programming: Theory and Algorithms

5.6 Applications to Machine Learning

We next discuss some iconic applications of quadratic programming to machine

learning. We must note that the literature on optimization models in machine

learning is vast and continues to grow at a rapid pace. For a more detailed

discussion on this timely subject, we refer the reader to the excellent textbooks

by Friedman et al. (2001), Sra et al. (2012), and Vapnik (2013).

5.6.1 Binary Classification and Support Vector Machines

Classification problems constitute an important class of problems in financial

mathematics that can be solved using optimization models and techniques. In a

classification problem we have a vector of features describing an entity and the

goal is to analyze these features to determine which class each entity belongs to,

among two (or more) classes. For example, the classes might be “growth stocks”

and “value stocks”, and the entities (stocks) may be described by a feature vector

that contains elements such as stock price, price–earnings ratio, growth rate for

the previous periods, growth estimates, etc.

Mathematical approaches to classification often start with a training exercise.

One is supplied with a list of entities, their feature vectors, and the classes they

belong to. From this information, one tries to extract a mathematical structure

for the entity classes so that additional entities can be classified using this

mathematical structure and their feature vectors. For two-class classification,

a hyperplane is probably the simplest mathematical structure that can be used

to separate the feature vectors of these two different classes. Of course, there

may not be any hyperplane that separates two sets of vectors. When such a

hyperplane exists, we say that the two sets can be linearly separated.

Consider feature vectors ai ∈ Rn for i = 1, . . . , k1 corresponding to class 1,

and vectors bi ∈ Rn for i = 1, . . . , k2 corresponding to class 2. If these two vector

sets can be linearly separated, a hyperplane wTx = γ exists with w ∈ Rn, γ ∈ R

such that

wTai ≥ γ, for i = 1, . . . , k1

wTbi ≤ γ, for i = 1, . . . , k2.

To have a “strict” separation, we often prefer to obtain w and γ such that

wTai ≥ γ + 1, for i = 1, . . . , k1

wTbi ≤ γ − 1, for i = 1, . . . , k2.

In this manner, we find two parallel lines (wTx = γ + 1 and wTx = γ − 1) that

form the boundaries of the class 1 and class 2 portions of the vector space; see

Figure 5.6.

There may be several such parallel lines that separate the two classes. Which

one should one choose? A good criterion is to choose the lines that have the

5.6 Applications to Machine Learning 85

w

w

x

w x

Figure 5.6 Linear separation of two classes of data points

largest margin (distance between the lines). In machine learning, this type of

classification model is known as a support vector machine (Friedman et al., 2001;

Vapnik, 2013).

(i) Consider the following quadratic problem:

min
w,γ

‖w‖22
aTi w ≥ γ + 1, for i = 1, . . . , k1
bT
i w ≤ γ − 1, for i = 1, . . . , k2.

(5.17)

The objective function of this problem is equivalent to maximizing the

margin between the lines wTx = γ + 1 and wTx = γ − 1 (see Exercise 5.6).

(ii) The linear separation idea we presented above can be used even when

the two vector sets {ai} and {bi} are not linearly separable. (Note that

linearly inseparable sets will result in an infeasible problem in formulation

(5.17).) This is achieved by introducing a non-negative violation variable

for each constraint of (5.17). Then, one has two objectives: to minimize

the total of the constraint violations and to maximize the margin. One

can formulate a quadratic programming model that combines these two

objectives using an adjustable parameter that can be chosen in a way to

put more weight on violations or margin, depending on one’s preference (see

Exercise 5.7).

86 Quadratic Programming: Theory and Algorithms

5.6.2 Ridge and Lasso Regression

Recall the regression problem described in Example 5.3, namely to estimate the

linear model

Y = βTX + ε,

where X and Y are Rp-valued and R-valued random variables, by using some

training data (xi, yi), with i = 1, . . . , N .

We next discuss the case when N < p. This case poses a classical and modern

challenge in data science. Indeed, this kind of case is increasingly common

as modern technology facilitates the collection of data. The expression high-

dimensional problems in the data science literature (Friedman et al., 2001) is

often used to describe problems where p � N . Examples of high-dimensional

problems abound in computational biology and genomics, and other instances

will likely emerge. In those contexts N corresponds to the number of individuals,

e.g., patients, in some study. Due to physical limitations, N may only be of

the order of a few hundred. In contrast, the number of features p that can be

gathered, e.g., gene measurements, could be of the order of tens of thousands.

When p < N the p × p matrix XTX has rank at most N < p and thus the

least-squares approach

min
β

‖XTβ − y‖22

is inadequate because the optimality conditions lead to an underdetermined

system of equations

(XTX)β = XTy.

We next describe two popular modifications to the ordinary least-squares

approach that aim to rectify this difficulty, namely ridge regression and lasso

regression.

Ridge regression adds a quadratic penalty term to the objective function in

the least-squares model

min
β

‖XTβ − y‖22 + λ‖β‖22, (5.18)

where λ > 0 is a tuning parameter. The effect of the penalty term is to shrink the

regression coefficients towards zero. The magnitude of λ determines the shrinking

effect. In the limit when λ → ∞ the solution to the ridge regression model is

β = 0. On the other hand, when λ = 0 ridge regression and ordinary least

squares coincide.

The optimality conditions for (5.18) yield the following system of equations:

(XTX+ λI)β −XTy = 0.

Thus the solution to (5.18) is

β = (XTX+ λI)−1XTy.

5.7 Exercises 87

On the other hand, the lasso regression model, proposed in a seminal paper

by Tibshirani (1996), adds a 1-norm penalty term to the objective function in

the least-squares model

min
β

‖XTβ − y‖22 + λ‖β‖1, (5.19)

where λ > 0 is a tuning parameter. The effect of the penalty term is again to

shrink the regression coefficients towards zero. However, the properties of the

1-norm have a far more interesting effect. The penalty term λ‖β‖1 makes some

of the regression coefficients be equal to zero. In particular, the solutions to the

lasso regression model (5.19) are typically sparse and the level of sparsity is

controlled by the tuning parameter λ. Lasso regression can be formulated as a

quadratic program (see Exercise 5.9). Unlike ridge regression, there is no closed-

form formula for the solution to lasso regression.

5.7 Exercises

Exercise 5.1 Assume c ∈ Rn and Q ∈ Rn×n is symmetric. Show that the

function

f(x) = 1
2x

TQx+ cTx

is convex if and only if Q is positive semidefinite.

Assume c ∈ Rn and Q ∈ Rn×n is symmetric and positive semidefinite but not

positive definite. Show that the problem

min
x

1
2x

TQx+ cTx

is either bounded or has infinitely many optimal solutions.

Exercise 5.2 Let c ∈ Rn. Show that the solution to

min
x

1
2‖x‖22 − cTx

s.t. 1Tx = 1

x ≥ 0

is

x = (λ1+ c)+,

where λ ∈ R is a suitable threshold value such that 1T(λ1+ c)+ = 1.

Exercise 5.3 Let c,d ∈ Rn. Assume d > 0 and D = (Diag(d)). Show that the

solution to

min
x

1
2x

TD−1x− cTx

s.t. 1Tx = 1

x ≥ 0

88 Quadratic Programming: Theory and Algorithms

is

x = (λd+Dc)+,

where λ ∈ R is a suitable threshold value such that 1T(λd+Dc)+ = 1.

Exercise 5.4 Write a CVX MATLAB script that takes as inputs c ∈ Rn, Q ∈
Rn×n, A ∈ Rm×n, b ∈ Rm and solves the optimization problem

min 1
2x

TQx+ cTx

s.t. Ax = b

x ≥ 0.

Test your script on instances generated as follows:

>> m=1, n=5, c=randn(n,1), Q=eye(n), A=ones(m,n), b=1;

and

>> m=1, n=5, c=randn(n,1), Q=diag(rand(n,1)), A=ones(m,n), b=1;

Are the results consistent with Exercises 5.2 and 5.3?

Exercise 5.5 Consider a quadratic program with non-negativity inequality

constraints only:

min
x

1
2x

TQx+ cTx

s.t. x ≥ 0.
(5.20)

There is some intuition behind the optimality conditions: at an optimal solution

the non-negativity constraints split into binding and non-binding constraints.

The former behave like equality constraints whereas the latter can be treated as

if they did not exist. Suppose I ⊆ {1, . . . , n} is the set of binding constraints and

J = {1, . . . , n} \ I. This reasoning suggests that we think of the problem

min
x

1
2x

TQx+ cTx

s.t. xI = 0,

whose optimality conditions are

(Qx+ c)I − sI = 0

(Qx+ c)J = 0

xI = 0.

(5.21)

Prove that this intuition is indeed correct.

Exercise 5.6 Consider the quadratic problem (5.17) presented in Section 5.6.1.

(a) Show that the objective function of this problem is equivalent to maximizing

the margin between the lines wTx = γ + 1 and wTx = γ − 1.

(b) Write the optimality conditions for problem (5.17).

(c) Write the dual.

5.7 Exercises 89

Exercise 5.7 The linear separation idea presented in Section 5.6.1 can be used

even when the two vector sets {ai} and {bi} are not linearly separable. This

is achieved by introducing a non-negative violation variable for each constraint

of (5.17). Then, one has two objectives: to minimize the total of the constraint

violations and to maximize the margin. Develop a quadratic programming model

that combines these two objectives using an adjustable parameter that can be

chosen in a way to put more weight on violations or margin, depending on one’s

preference.

Exercise 5.8 The classification problems discussed in the two previous exer-

cises can also be formulated as linear programming problems, if one agrees to

use the 1-norm rather than the 2-norm of w in the objective function. Recall

that ‖w‖1 =
∑

i |wi|. Show that if we replace ‖w‖22 by ‖w‖1 in the objective

function of (5.17), we can write the resulting problem as a linear program. Show

also that this new objective function is equivalent to maximizing the distance

between wTx = γ + 1 and wTx = γ − 1 if one measures the distance using the

∞-norm ‖g‖∞ = maxi |gi|.

Exercise 5.9 Show that the lasso regression model (5.19) can be equivalently

formulated as

min
x

1
2x

TQx+ cTx

s.t. Dx ≥ d

for some suitable Q, c,D,d.

6 Quadratic Programming Models:
Mean–Variance Optimization

6.1 Portfolio Return

Consider an investment environment where there is a universe of n risky assets.

In the next few chapters we will be concerned with a one-period model of the

problem of investing in these n risky assets. Assume a portfolio must be selected

at some initial time t0 and held until time t. Let v0 =
[
v1,0 · · · vn,0

]T
and v =[

v1 · · · vn
]T

denote the vectors of asset prices at times t0 and t respectively.

The vector v0 is known whereas v is a vector of random variables. A vector

h ∈ Rn of share holdings in each of the assets defines a portfolio whose values at

time t0 and t are W0 := vT
0h and W := vTh respectively. The value W0 is known

at time t0 whereas W is a random variable. The gist of portfolio construction is

to choose h to optimize some measure of satisfaction on the random variable W .

It is customary to use the initial portfolio value W0 as a reference and to write

the above problem in terms of the portfolio return

rP =
W −W0

W0
.

The return of asset i, which is the same as that of a portfolio entirely invested

in asset i, is similarly defined as

ri =
vi − vi,0

vi,0
.

Instead of the vector of holdings h ∈ Rn, the portfolio construction problem is

often stated in terms of percentage holdings x ∈ Rn where

xi =
hivi,0
W0

=
hivi,0∑n
j=1 hjvj,0

.

Observe that W = vTh can be equivalently written as

rP =

n∑
i=1

rixi = rTx.

In spite of its wide popularity, this convention runs into difficulties in some

cases. For example, the above quantity rP does not make sense for a long–short

portfolio associated with a pairs trading strategy. More broadly, the quantity rP
does not make sense for a situation where the initial value of a portfolio W0 is

6.2 Markowitz Mean–Variance (Basic Model) 91

zero as when one enters a futures contract or constructs a long–short portfolio

with equal long and short cash positions.

As Meucci (2005, 2010) nicely puts it, this difficulty can be amended by

assuming that returns are measured relative to some predefined basis value b as

opposed to the initial portfolio value W0. In some cases, it is natural to choose

b = W0 but it is more proper to think of b as a general reference point. To make

this idea more precise, we associate with each asset and portfolio a basis b that

satisfies the following four properties:

• The basis b for a long position of an asset is positive.

• The basis b is measured in the same unit as the asset values.

• The basis is homogeneous: the basis of k shares of an asset is k times the basis

of one share.

• The basis is known at time t0.

Equipped with this concept, we get a formal and unambiguous definition of asset

and portfolio returns:

ri =
vi − vi,0

bi
, rP =

W −W0

bP
.

Likewise, we obtain a formal and unambiguous definition of percentage holdings:

xi =
hibi
bP

.

Once again, the identity W = vTh can be equivalently written as

rP = rTx.

Throughout this chapter x =
[
x1 · · · xn

]T
will denote the vector of percent-

age holdings of a portfolio in a universe of n risky assets. When it is applicable

and evident from the context, we shall assume the usual basis values bi = vi,0
and bP = W0 respectively.

6.2 Markowitz Mean–Variance (Basic Model)

Markowitz’s key insight into the above one-period investment problem was to

consider the expected value and standard deviation of the return as measures of

performance and risk respectively. The portfolio selection problem can then be

formally stated as a quadratic programming model. To simplify our discussion

of this model, we will proceed in three incremental steps. First, we will look at

the case when there are only two assets; second, we will look at the case when

there are three risky assets; and finally, we will see the general case with any

number of risky assets.

92 Quadratic Programming Models: Mean–Variance Optimization

Two Assets

Suppose we are combining two assets whose random returns are r1 and r2. Let

μ1 := E(r1), μ2 := E(r2),

and

σ2
1 := var(r1), σ2

2 = var(r2), σ12 = cov(r1, r2) = ρ · σ1 · σ2.

In this case a portfolio of these two assets is determined by the proportion

invested in one of the two assets. Let x denote the proportion in asset 1. Thus

the portfolio return is

rP = x · r1 + (1− x) · r2,

the portfolio expected return is

μP := E(rP) = x · E(r1) + (1− x) · E(r2)
= x · μ1 + (1− x) · μ2,

and the portfolio variance is

σ2
P = x2σ2

1 + (1− x)2σ2
2 + 2 · x(1− x) · ρ · σ1 · σ2.

In the special case when one of the assets, say asset 2, is the asset with risk-free

return rf we get

μP = x · μ1 + (1− x) · rf = rf + (μ1 − rf)x, σ2
P = x2σ2

1 .

In this case the portfolio selection is particularly simple: a target level of expected

return μP corresponds to one particular portfolio obtained by choosing x =

(μP − rf)/(μ1 − rf). The situation with three assets leads to a more interesting

situation.

Three Risky Assets

Suppose now that there are three assets with random returns r1, r2, and r3. As

before, let

μj = E(rj), σ2
j := var(rj) for j = 1, 2, 3,

and

σij := cov(ri, rj) = ρij · σi · σj for i, j = 1, 2, 3.

Now a portfolio determines the holdings in the three assets. Let xj denote

the proportion (weight) invested in asset j, for j = 1, 2, 3. Notice that these

proportions should add up to one if the portfolio is fully invested in the three

assets:

x1 + x2 + x3 = 1.

Similar to what we did before, the portfolio return is

rP = r1x1 + r2x2 + r3x3.

6.2 Markowitz Mean–Variance (Basic Model) 93

So the portfolio expected return is

μP = μ1x1 + μ2x2 + μ3x3,

and the portfolio variance is

σ2
P = σ2

1x
2
1 + σ2

2x
2
2 + σ2

3x
2
3 + 2(σ12x1x2 + σ23x2x3 + σ13x1x3).

Observe that now there are multiple portfolios that can achieve a target expected

level of return. A portfolio is efficient if it has minimum risk for a given target

return, or equivalently, if it has the maximum expected return for a given target

risk. This naturally leads to the following quadratic programming formulation.

To find a portfolio of minimum risk (variance) with expected return at least μ̄

solve the following mean–variance optimization model:

min
x

3∑
i=1

σiix
2
i + 2

3∑
i=1

3∑
j=i+1

σijxixj

s.t. μ1x1 + μ2x2 + μ3x3 ≥ μ̄

x1 + x2 + x3 = 1.

The efficient frontier is the set of efficient portfolios. The efficient frontier is often

“visualized” by plotting the expected return against the standard deviation of

the efficient portfolios. To generate portfolios on the efficient frontier, we can

minimize variance, for varying target return μ̄:

min
x

3∑
i=1

σiix
2
i + 2

3∑
i=1

3∑
j=i+1

σijxixj

s.t. μ1x1 + μ2x2 + μ3x3 ≥ μ̄

x1 + x2 + x3 = 1.

We can also maximize return, for varying target variance σ̄2 > 0:

max
x

μ1x1 + μ2x2 + μ3x3

s.t.

3∑
i=1

σiix
2
i + 2

3∑
i=1

3∑
j=i+1

σijxixj ≤ σ̄2

x1 + x2 + x3 = 1.

Or we can maximize quadratic utility, for varying risk aversion γ > 0:

max
x

μ1x1 + μ2x2 + μ3x3 −
γ

2

(3∑
i=1

σiix
2
i + 2

3∑
i=1

3∑
j=i+1

σijxixj

)
s.t. x1 + x2 + x3 = 1.

Any Number of Risky Assets

Let us now take a leap to the most general case. Assume we have n risky assets.

Let r ∈ Rn be the n-dimensional random vector of returns, i.e., ri denotes the

94 Quadratic Programming Models: Mean–Variance Optimization

return of asset i between times t0 and t. Let μ ∈ Rn denote the vector of expected

returns, and V ∈ Rn×n denote the return covariance matrix. More precisely,

μ =

⎡⎢⎣μ1

...

μn

⎤⎥⎦ , V =

⎡⎢⎣σ11 · · · σ1n

...
. . .

...

σn1 · · · σnn

⎤⎥⎦ ,

where μi := E(ri), σij := cov(ri, rj), i, j = 1, . . . , n.

From the linearity properties of expectation, it follows that the expected return

and variance of a given portfolio x =
[
x1 · · · xn

]T
of the risky assets are

respectively

μTx =

n∑
j=1

μjxj

and

xTVx =

n∑
i=1

n∑
j=1

σijxixj =

n∑
i=1

σiix
2
i + 2

n∑
i=1

n∑
j=i+1

σijxixj .

The problem of selecting a portfolio can be formally stated as a tradeoff between

these two components. A fully invested portfolio is efficient if it has minimum

risk for a given level of return, or equivalently if it has maximum expected return

for a given level of risk.

A fully invested efficient portfolio can then be characterized as the solution to

the following quadratic program:

max
x

μTx− 1
2γ · xTVx

1Tx = 1
(6.1)

for some risk-aversion coefficient γ > 0.

The set of efficient portfolios can also be obtained as the set of solutions to

the quadratic program:

min
x

xTVx

s.t. μTx ≥ μ̄

1Tx = 1,

(6.2)

and also as the set of solutions to

max
x

μTx

s.t. xTVx ≤ σ̄2

1Tx = 1

(6.3)

by varying μ̄ and σ̄ respectively. The exercises at the end of the chapter sketch

how to give a formal proof of the equivalence of the above three models.

We shall refer to the equivalent mean–variance models (6.1), (6.2), and (6.3) as

the basic mean–variance models as they include only the following three essential

components: mean and variance of return, and the full investment constraint.

Observe that these three optimization models are convex because the quadratic

function x �→ xTVx is convex as the covariance matrixV is positive semidefinite.

6.3 Analytical Solutions to Basic Mean–Variance Models 95

Section 6.3 below details several interesting insights that can be gained from the

solution to these basic mean–variance models.

As we discuss later in this chapter, the types of mean–variance models used

in portfolio construction typically include a number of additional constraints.

Asset Allocation and Security Selection

There are two distinct levels of portfolio analysis that are amenable to mean–

variance models. The conventional top-down investment approach to portfolio

construction consists of two main steps, namely asset allocation and security

selection.

On the one hand, the asset allocation decision is concerned with portfolio

choices among broad asset classes. At the coarsest level, these asset classes could

be stocks, bonds, and cash. At a more refined level, some of these broad asset

classes could be subdivided. For instance, stocks can be divided according to

geography or market capitalization. The asset allocation decision involves only

a small number of assets, typically ranging from a handful to a dozen or so. It

generally involves simple constraints such as budget constraints and upper and

lower bounds on individual positions.

On the other hand, the security selection decision is concerned with the specific

securities within each particular asset class. For instance, if the relevant asset

class is equities in the S&P 500 market index, then the security selection problem

is concerned with the specific portfolio holdings at the individual stock level.

The security selection problem typically involves a large number of securities,

ranging from a few hundred to potentially thousands. It also involves a myriad

of constraints and is often formulated relative to a predefined benchmark, as we

discuss in more detail in Section 6.5.

6.3 Analytical Solutions to Basic Mean–Variance Models

The solution to the basic mean–variance models described in Section 6.2 can

be characterized by relying on the tools introduced in Chapter 5. Throughout

this section we assume that the covariance matrix of asset returns V is positive

definite. In particular, V−1 exists.

Minimum Risk and Characteristic Portfolios

Consider the simplified version of (6.1) that is obtained in the limit when γ → ∞:

min
x

xTVx

1Tx = 1.
(6.4)

96 Quadratic Programming Models: Mean–Variance Optimization

The model (6.4) corresponds to the problem of finding the minimum-risk fully

invested portfolio. We discussed this problem in Example 5.7 where the optimal

solution was shown to be

x∗ =
1

1TV−11
V−11.

A related problem that is often of interest is to find the minimum-risk portfolio

with unit exposure to a vector of attributes a associated with the assets. As

we will see later, some interesting attributes could be the betas of the assets

relative to a benchmark, the asset volatilities, or the asset expected returns. The

characteristic portfolio of a vector of attributes a is the solution to the problem

min
x

xTVx

aTx = 1.
(6.5)

Using the solution of (5.9) obtained in Chapter 5, it follows that the solution to

(6.5) is

x∗ =
1

aTV−1a
V−1a.

Observe that a characteristic portfolio x∗ = (1/aTV−1a)V−1a is not necessarily

fully invested as its components may not necessarily add up to one. Observe that

the variance of the characteristic porfolio x∗ = (1/aTV−1a)V−1a is

(x∗)TVx∗ =
1

aTV−1a
.

Two-Fund Separation Theorem

Consider the basic mean–variance model

max
x

μTx− 1
2γ · xTVx

1Tx = 1
(6.6)

for some risk-aversion coefficient γ > 0. We next derive an interesting result

often called the two-fund separation theorem. The theorem states that every fully

invested efficient portfolio is a combination of two particular efficient portfolios.

Applying the optimality conditions (5.10) from Theorem 5.6 to problem (6.6)

we obtain the solution

x∗ = λ · 1

1TV−1μ
V−1μ+ (1− λ) · 1

1TV−11
V−11

where λ = 1TV−1μ/γ. The following two-fund theorem readily follows.

Theorem 6.1 (Two-fund theorem) Consider model (6.6) for some γ > 0. There

exist two efficient portfolios (funds), namely

1

1TV−1μ
V−1μ and

1

1TV−11
V−11,

6.3 Analytical Solutions to Basic Mean–Variance Models 97

such that every efficient portfolio, that is, every solution to (6.6), is a combina-

tion of these two portfolios.

Observe that one of the two portfolios in the two-fund theorem is the minimum-

risk portfolio (1/1TV−11)V−11 and the other one is a multiple of the charac-

teristic portfolio (1/μTV−1μ)V−1μ of the vector of attributes μ.

One-Fund Separation Theorem

We next derive the one-fund or mutual fund separation theorem. This result is

similar in spirit to the two-fund separation theorem. It states that if there is a

risk-free asset, then every efficient portfolio is a combination of the risk-free asset

and a particular fund.

Consider the case when, in addition to the universe of n risky assets, there

is an additional asset n + 1 with risk-free return rf . In this case, problem (6.1)

extends as follows

max
x,xn+1

μTx+ rf · xn+1 − 1
2γ · xTVx

1Tx+ xn+1 = 1.
(6.7)

By substituting xn+1 = 1 − 1Tx in the objective and dropping the constraint,

problem (6.7) can be rewritten as the following unconstrained optimization

problem:

max
x

(μ− rf1)
Tx− 1

2γ · xTVx.

Applying the optimality conditions (5.4) from Theorem 5.2, we obtain the fol-

lowing solution to (6.7):

x∗ =
1

γ
·V−1(μ− rf1) = λ · 1

1TV−1(μ− rf1)
V−1(μ− rf1), x

∗
n+1 = 1− 1Tx∗,

where λ = 1TV−1(μ− rf1)/γ. The following one-fund theorem readily follows.

Theorem 6.2 (One-fund theorem) Suppose the investment universe includes

n risky assets and a risk-free asset. Then there exists a fully invested efficient

portfolio (fund) namely

1

1TV−1(μ− rf1)
V−1(μ− rf1)

such that every efficient portfolio – that is, every solution to (6.7) for some γ > 0

– is a combination of this portfolio and the risk-free asset.

The portfolio [1/1TV−1(μ− rf1)]V
−1(μ − rf1) is called the tangency port-

folio. This name is motivated by the geometric interpretation illustrated in

Figure 6.1. Consider the plot of expected return versus standard deviation for

the efficient frontier portfolios. The portfolio [1/1TV−1(μ− rf1)]V
−1(μ− rf1)

lies exactly at the tangency point on this frontier defined by the straight line

98 Quadratic Programming Models: Mean–Variance Optimization

emerging from the point (0, rf). The point (0, rf) corresponds to the expected

return versus standard deviation of the risk-free asset. The tangency line is also

known as the capital allocation line (CAL) as it corresponds to portfolios with

different allocations of capital between the tangency portfolio and the risk-free

asset.

0

rf

Figure 6.1 Tangency portfolio

Capital Asset Pricing Model (CAPM)

Under suitable equilibrium assumptions the tangency portfolio discussed above

yields the main mathematical foundation for the capital asset pricing model

(CAPM), a fundamental asset pricing model in financial economics. The key

step in this derivation is that, in equilibrium, the tangency portfolio is precisely

the market portfolio xM . That is,

xM =
1

1TV−1(μ− rf1)
V−1(μ− rf1). (6.8)

From (6.8) we readily obtain

VxM =
1

1TV−1(μ− rf1)
(μ− rf1), (6.9)

and

xT
MVxM =

(μ− rf1)
TxM

1TV−1(μ− rf1)
=

μM − rf
1TV−1(μ− rf1)

, (6.10)

where μM = μTxM is the expected value of the market portfolio return.

Combining (6.9) and (6.10) we get

μ−rf1 = 1TV−1(μ−rf1)VxM =

(
1

xT
MVxM

VxM

)
(μM −rf) = β ·(μM −rf),

(6.11)

6.4 More General Mean–Variance Models 99

where β = (1/xT
MVxM)VxM . The above can be equivalently stated as

μj − rf = βj(μM − rf), where βj =
σj,M

σ2
M

for j = 1, . . . , n. (6.12)

Equation (6.11) or its equivalent (6.12) is the formal statement of the capital

asset pricing model (CAPM). The CAPM postulates that the excess return of

asset j is determined entirely by its beta coefficient times the excess return of

the market.

In the expression (6.12), σj,M denotes the covariance between the return of

asset j and the return of the market portfolio, and σ2
M denotes the variance of

the market portfolio return. The last two quantities in turn have the following

expressions in terms of the covariance matrix V:

σj,M = cov(rj , rM) = (VxM)j , σ2
M = var(rM) = xT

MVxM .

6.4 More General Mean–Variance Models

The basic mean–variance model discussed in the previous section provides the

foundation of modern portfolio theory. However, when mean–variance models

are used as a normative tool in portfolio construction, it is common to use

modifications of the basic model by including additional constraints and possibly

additional terms in the objective.

Common Constraints

Aside from a target expected return or a target variance, the only portfolio

constraint in the basic mean–variance model is the full investment constraint

1Tx = 1.

Furthermore, this constraint disappears if the portfolio is allowed to include

holdings in a risk-free asset. In both cases the individual portfolio holdings could

in principle take arbitrary positive and negative values as there is no explicit

restriction on them. This motivates the following types of constraints that are

often included in a mean–variance model:

• Budget constraints, such as fully invested portfolios.

• Upper and/or lower bounds on the size of individual positions.

• Upper and/or lower bounds on exposure to industries or sectors.

• Leverage constraints such as long-only, or 130/30 constraints.

• Turnover constraints.

The above types of constraints replace the single portfolio constraint

1Tx = 1

100 Quadratic Programming Models: Mean–Variance Optimization

by a more elaborate set of constraints of the form

Ax = b

Dx ≥ d.

Consequently, we get the following general version of the basic mean–variance

model (6.1):

max
x

μTx− 1
2γ · xTVx

Ax = b

Dx ≥ d.

(6.13)

The set of portfolios obtained via the model (6.13) can also be obtained via the

following two equivalent models. The first one enforces a target expected return:

min
x

xTVx

s.t. μTx ≥ μ̄

Ax = b

Dx ≥ d.

(6.14)

The second one enforces a target variance of return:

max
x

μTx

s.t. xTVx ≤ σ̄2

Ax = b

Dx ≥ d.

(6.15)

The models (6.13), (6.14), and (6.15) are still convex quadratic optimization

models. Unlike the basic mean–variance model, they generally do not have an

analytical closed-form solution due to the additional inequality constraints. How-

ever, they can be solved numerically very efficiently via optimization solvers.

We next discuss how some of the above five types of constraints can be

incorporated into a mean–variance model. The first three types of constraints

have straightforward formulations. We concentrate on the last two, namely,

leverage constraints and turnover constraints. A long-only constraint can readily

be enforced via x ≥ 0. A relaxed version of this constraint, popular in certain

contexts, is not to rule out leverage altogether but to limit it. For instance, a

“130/30” leverage constraint means that the total value of the holdings in short

positions must be at most 30% of the portfolio value. In general, suppose that

we want the value of the total short positions to be at most L. This means that

we want to enforce the following restriction:

n∑
j=1

min(xj , 0) ≥ −L ⇔
n∑

j=1

max(−xj , 0) ≤ L.

Although this is a correct mathematical formulation of the constraint, it is not

ideal for computational purposes because of the non-smooth terms max(−xj , 0).

6.4 More General Mean–Variance Models 101

In particular, if a constraint were written in this form the resulting mean–

variance model would not be a quadratic program. To formulate this constraint

efficiently in the quadratic optimization model, we trade terms of the form

max(−xj , 0) for new terms involving possibly new variables and linear inequal-

ities. To that end, add the new vector of variables y =
[
y1 · · · yn

]T
and

constraints

x ≥ −y
n∑

j=1

yj ≤ L

y ≥ 0.

A turnover constraint is a constraint on the total change in the portfolio

positions. This constraint is generally included as a way to limit certain kinds

of costs such as taxes and transaction costs. Suppose that we have an initial

portfolio x0 =
[
x0
1 · · · x0

n

]T
and we want to ensure that the new portfolio

incurs a total turnover no larger than h. This means that we want to enforce the

restriction
n∑

j=1

|x0
j − xj | ≤ h.

To formulate this constraint efficiently in the quadratic optimization model, add

the new vector of variables y =
[
y1 · · · yn

]T
and constraints

xj − x0
j ≤ yj

x0
j − xj ≤ yj
n∑

j=1

yj ≤ h

(see Exercise 6.3). The total turnover
n∑

j=1

|x0
j − xj | is also sometimes called the

two-sided turnover.

Maximizing the Sharpe Ratio

The three equivalent mean–variance models (6.13), (6.14), and (6.15) define a

frontier of efficient portfolios. These portfolios are determined by some optimal

tradeoff of expected return and variance, or equivalently, standard deviation of

return. The ratio of expected return to standard deviation, called Sharpe ratio

or reward-to-risk ratio, singles out the efficient portfolio that offers the highest

reward per measure of risk.

102 Quadratic Programming Models: Mean–Variance Optimization

Definition 6.3 (Sharpe ratio) The Sharpe ratio of a given portfolio x =[
x1 · · · xn

]T
is the ratio of its expected return to its volatility (standard

deviation) of return:

Sharpe ratio :=
μTx√
xTVx

.

As we further elaborate in the next sections, sometimes μ may not necessarily

stand for the vector of expected absolute returns but instead it may make sense

for μ to stand for the vector of expected relative returns. In particular, if there is

a risk-free asset, in the above definition of the Sharpe ratio it is usual to assume

that μ stands for the vector of expected excess returns. The excess return of an

asset is simply the difference of its return and the risk-free return.

As an alternative or a complement to the equivalent mean–variance mod-

els (6.13), (6.14), and (6.15), consider the problem of finding the efficient portfolio

with maximum Sharpe ratio. The natural formulation for this problem is the

following:

max
x

μTx√
xTVx

s.t. Ax = b

Dx ≥ d.

(6.16)

This natural formulation is evidently not a quadratic optimization model. Fur-

thermore, the formulation is not convex as the objective function is not convex.

We next show that this problem can be recast as a quadratic convex optimization

problem via a suitable homogenization. To this end, make the following mild

assumptions:

• There is a feasible portfolio x such that μTx > 0.

• The matrices A,D and vector μ satisfy the following technical condition:

Az = 0, Dz ≥ 0 ⇒ μTz ≤ 0.

The latter condition readily holds when the following stronger but easier

to verify condition holds:

Az = 0, Dz ≥ 0 ⇒ z = 0.

The above assumptions ensure the soundness of the approach described next. To

see what goes wrong when these assumptions do not hold, see the exercises at

the end of the chapter.

The gist of the reformulation of (6.16) as a quadratic optimization problem

is the following homogenization. Consider the change of variables obtained by

putting z := κx, where κ > 0 is a new scalar variable. The problem (6.16) can

6.5 Portfolio Management Relative to a Benchmark 103

be rewritten as

max
z,κ

μTz√
zTVz

s.t. A
z

κ
= b

D
z

κ
≥ d

κ > 0.

(6.17)

The assumption μTx > 0 for some feasible x implies that we can choose κ > 0

such that μTz = 1. Using this together with the second assumption, it follows

that the problem (6.17) is equivalent to

min
z,κ

zTVz

s.t. μTz = 1

Az− bκ = 0

Dz− dκ ≥ 0

κ ≥ 0.

(6.18)

As the exercises at the end of the chapter detail, this approach also yields the

following characterization of the portfolio with maximum Sharpe ratio in the

case when we only include the full investment constraint 1Tx = 1.

Proposition 6.4 Suppose the minimum-risk portfolio (1/1TV−11)V−11 has

positive expected return; that is, μTV−11 > 0. Then the solution to the following

maximum Sharpe ratio problem

max
x

μTx√
xTVx

s.t. 1Tx = 1
(6.19)

is the tangency portfolio

x∗ =
1

1TV−1μ
V−1μ.

6.5 Portfolio Management Relative to a Benchmark

In an investment portfolio, the security selection problem is concerned with deter-

mining the holdings of specific securities within a given asset class. It is customary

to manage and evaluate the portfolio of securities relative to some predefined

benchmark portfolio that represents a particular asset class. The benchmark

portfolio provides a reference point. It serves the role of the market portfolio

if the investment universe is restricted to the particular asset class that the

benchmark represents. The management of a portfolio of securities relative to a

benchmark could be passive or active. The goal of the former is to replicate the

benchmark whereas the goal of the latter is to beat the benchmark.

104 Quadratic Programming Models: Mean–Variance Optimization

Systematic (Beta) and Individual (Alpha) Returns

Both passive and active management rely on a fundamental decomposition of

individual securities return into systematic and individual (or residual) compo-

nents. The former is the component of return that can be explained by the

security exposure to the benchmark. The latter is the component of return that

is idiosyncratic to the individual security.

To make the above decomposition more precise, assume the investment uni-

verse determined by a particular asset class includes n individual securities. Let

ri denote the excess return of security i for i = 1, . . . , n. Let rB denote the excess

return of the benchmark.

The return of security i can be decomposed via the following linear regression

model:

ri = βirB + θi,

where θi is the component of return uncorrelated to rB ; that is, cov(rB , θi) = 0.

The coefficient βi is the beta of security i relative to the benchmark B and is

given by

βi :=
cov(ri, rB)

var(rB)
.

The term βirB is the systematic component of return of security i. The term θi
is the residual component of return of security i. The alpha of security i is the

expected value of the residual return θi:

αi = E(θi).

Consider a portfolio of securities with percentage holdings x =
[
x1 · · · xn

]T
.

The above type of decomposition also applies to the portfolio return

rP := rTx = r1x1 + · · ·+ rnxn.

That is, we can decompose the portfolio return rP as

rP = βP rB + θP ,

where the systematic and residual components of the portfolio return are respec-

tively

βP rB = (βTx)rB = (β1x1 + · · ·+ βnxn)rB

and

θP = θTx = θ1x1 + · · ·+ θnxn.

Furthermore, it is easy to see that the beta and alpha of the portfolio are

respectively

βP = βTx = β1x1 + · · ·+ βnxn

and

αP = E(θP) = αTx = α1x1 + · · ·+ αnxn.

6.5 Portfolio Management Relative to a Benchmark 105

Active Return, Tracking Error, Information Ratio

Consider a portfolio with percentage holdings x =
[
x1 · · · xn

]T
. The active

return of the portfolio is the difference between the portfolio return and the

benchmark return:

rTx− rB .

If the portfolio of benchmark holdings is xB =
[
xB
1 · · · xB

n

]
, then rB = rTxB

and thus the active return can also be written as

rTx− rB = rT(x− xB).

The vector x− xB is the vector of active holdings of the portfolio.

The active risk or tracking error ψ2 of a portfolio is the standard deviation of

the portfolio active return. In other words,

ψ2 := var(rT(x− xB)).

Some straightforward matrix calculations show that if V is the covariance matrix

of securities returns, then

ψ2 = var(rT(x− xB)) = (x− xB)TV(x− xB).

A straightforward calculation also shows that the active risk can be decomposed

as

ψ2 = (βP − 1)2σ2
B + ω2

P ,

where σ2
B = var(rB) and ω2

P = var(θP). The first term (βP − 1)2σ2
B is the

component of active risk due to the active beta βP − 1 of the portfolio. The

second term ω2
P is the portfolio residual risk. Observe that the active risk and

residual risk are the same when βP = 1.

The information ratio is a cousin of the Sharpe ratio defined in Section 6.2.

Definition 6.5 (Information ratio) The information ratio (IR) of a portfolio

P is the ratio of expected residual return to volatility (standard deviation) of

residual return:

IRP :=
αP

ωP
.

Portfolio Optimization with Benchmark Considerations

The consideration of a benchmark in portfolio construction typically leads to

mean–variance models that include some adjustments and constraints induced

by the benchmark.

The following are some of the most common adjustments and constraints when

a mean–variance model is used for portfolio construction relative to a benchmark:

• Use expected residual returns αTx instead of expected total return μTx.

• Use active risk ψ2 = (x− xB)TV(x− xB) instead of total risk xTVx.

106 Quadratic Programming Models: Mean–Variance Optimization

• Bounds on the size of active positions. These adjustments and constraints are

typically of the form

Li ≤ xi − xB
i ≤ Ui, i = 1, . . . , n,

that restrict the deviations between the portfolio holdings and the bench-

mark holdings.

• Bounds on the beta of the portfolio. Again this type of constraint is typically

of the form

L ≤ βTx− 1 ≤ U.

As an example, the optimization problem might be

max
x

αTx

s.t. (x− xB)TV(x− xB) ≤ ψ̄2

1Tx = 1

L ≤ βTx− 1 ≤ U.

(6.20)

6.6 Estimation of Inputs to Mean–Variance Models

The estimation of input parameters, namely the covariance matrix of returns V

and the vector of total expected returns μ or residual expected returns α, is one

of the most critical and challenging steps in the use of mean–variance models. We

next describe some of the central ideas that underlie most popular approaches

to this fundamental problem. A comprehensive treatment of this subject is well

beyond the scope of this book. Thus we only describe the key building blocks of

factor models. We refer the reader to the textbooks of Grinold and Kahn (1999)

and Litterman (2003) and to the articles by Rosenberg (1974) and Ledoit and

Wolf (2003, 2004) as well as the references therein for further details on the

vast variety of techniques and approaches that can be used for estimating the

mean–variance input parameters V and μ.

Throughout this section assume the investment universe has n assets and let ri
denote the excess return of asset i for i = 1, . . . , n. Let r ∈ Rn denote the vector

of excess returns. A rudimentary approach to estimate μ and V via sample

means and sample covariances is based on historical data. More precisely, given

a time series of realized excess returns r(1), r(2), . . . , r(T), the vectors of sample

means and sample covariance are respectively

μ̂ :=
1

T

T∑
t=1

r(t), V̂ :=
1

T − 1

T∑
t=1

(r(t)− μ̂)(r(t)− μ̂)T.

The vector μ̂ and matrix V̂ provide estimates of μ and V. However, these

estimators have three major shortcomings:

• The sample mean and sample covariance do not incorporate other data that

could contain useful forecasting information.

6.6 Estimation of Inputs to Mean–Variance Models 107

• For an investment universe with n assets, there are a total of n + 1
2n(n+1)

= 1
2n(n + 3) different parameters to estimate. Although this could be

manageable for a small asset allocation model, it is not viable for an

equity portfolio management model, as the number of securities n in a

stock universe could easily range in the hundreds or thousands.

• The sample mean and sample covariance inevitably contain a fair amount of

estimation errors, which, as we further explain in the next chapter, are

magnified by the mean–variance optimizer.

The first two shortcomings above can be largely mitigated by assuming some

kind of structure in the portfolio returns r, as the following subsections detail.

The next chapter is devoted entirely to the third shortcoming.

Single-Factor Model

The task of estimating a risk model can be drastically simplified by assuming

that each asset has two components of risk: market risk and residual risk. This is

a single-factor risk model. Historically this model was introduced by Sharpe as

an intellectual precursor of the capital asset pricing model (CAPM). The model

assumes that excess returns are decomposed as in the following regression model:

ri = βirM + θi.

Here βi is the beta of asset i, and θi is its residual return, uncorrelated with

rM . The model also assumes that the residual returns θi are uncorrelated with

each other. The rationale for the model is that a single common factor rM ,

typically the return of the market portfolio, accounts for all of the common

shocks between pairs of assets. The parameter βi is also called the factor loading

or factor exposure of asset i. The component θi is also called the residual or

specific return of asset i, as it is the portion of ri not accounted for by the

common factor rM .

A bit of algebra shows that in this model the expected return of asset i is

E(ri) = βiE(rM) + E(θi),

the covariance between two different assets i and j is

cov(ri, rj) = βiβjσ
2
M ,

and the variance of asset i is

var(ri) = β2
i σ

2
M + ω2

i ,

where σ2
M = var(rM), ω2

i = var(θi).

Using matrix–vector notation, the single-factor risk model assumption can be

succinctly written as

r = βrM + θ

108 Quadratic Programming Models: Mean–Variance Optimization

and the vector of expected returns and covariance matrix can be written as

E(r) = βE(rM) + E(θ), V = σ2
MββT +D,

where D is the diagonal matrix D = diag(ω2
1 , . . . , ω

2
n) = cov(θ).

We observe that under the single-factor model, the estimation of the covariance

matrix only requires the estimation of β, σ2
M , andD. That is a total of n+1+n =

2n+ 1 parameters in contrast to the 1
2n(n+ 1) parameters for a non-structured

covariance matrix. The particular structure of the covariance matrix for a single-

factor risk model also enables the derivation of some interesting properties of

minimum-risk portfolios. (See the exercises at the end of the chapter.)

A basic estimation of the parameters of a single-factor model can be performed

as follows. Assume we have some historical data of realized returns r(1), . . . , r(T)

as well as the corresponding returns for the factor rM (1), . . . , rM (T). Use these

data to run n simple linear regressions

ri = αi + βirM + εi, i = 1, . . . , n.

Each of these linear regressions yields estimates β̂i of βi, α̂i of E(θi), and ω̂i of

var(εi) = var(θi). Using the historical data rM (1), . . . , rM (T) for the factor, we

can also obtain an estimate σ̂2
M of var(rM).

The above basic regression method can be enhanced to produce more accurate

estimates. In particular, it is known that the quality of the estimates of β can

be improved via a shrinkage procedure as explained by Blume (1975). The basic

idea, which can be traced back to the classical work of Stein (1956), is that

improved estimates on β can be obtained by taking a convex combination of the

raw estimates β̂ and 1:

(1− τ)β̂ + τ1,

for some shrinkage factor τ . The articles of Ledoit and Wolf (2003, 2004) elabo-

rate further on using shrinkage for improved estimates of the covariance matrix.

Efron and Morris (1977) present a related and entertaining discussion of shrink-

age estimation applied to baseball statistics.

The estimates of σM and of ωi can also be improved by using techniques

such as exponential smoothing and generalized autoregressive conditional hetero-

skedasticity (GARCH) (Campbell et al., 1997; Engle, 1982).

The CAPM is related to, although not the same as, a single-factor risk model.

In the context of a single-factor model where the factor is the market portfolio

rM , the CAPM postulates

E(ri) = βiE(rM).

In other words, the expected value of the asset-specific return is zero. The CAPM

thus gives a straightforward estimation procedure for the vector of expected

returns μ = E(r), namely μ̂ := β̂μ̂M , where β̂ and μ̂M are estimates of β and

E(rM) respectively. As we discuss in Section 6.6 below, other alternatives for

estimating expected returns are often used in equity portfolio management.

6.6 Estimation of Inputs to Mean–Variance Models 109

Constant Correlation Models

A second way of imposing structure on the asset returns is to assume that the cor-

relation between any two different assets in the investment universe is the same.

Under this assumption, the estimation of the covariance matrix only requires

an estimate of each individual asset volatility σi and the average correlation ρ

between different pairs of assets. This yields a “quick and dirty” estimate of the

covariance matrix given by

cov(ri, rj) = ρσiσj , i �= j.

In this model the estimation of the covariance matrix only requires estimates of

σ and ρ. That is a total of n+ 1 parameters.

Under the reasonable assumption that ρ > 0, the constant correlation model

can be seen as the following kind of single-factor model with predetermined

factor loadings. Assume the following single-factor model for volatility scaled

excess returns:
ri
σi

= f + θi,

where f is a common factor to all scaled returns and θi is a specific scaled

return on asset i. It is easy to see that this particular single-factor model yields

a constant correlation model with ρ being the variance of the single factor f .

Using matrix notation, the constant correlation covariance matrix can be

written as

V = ρσσT + (1− ρ)diag(σ)2.

A basic estimation procedure for this model is straightforward: first, using his-

torical data, compute estimates σ̂i of σi and estimates ρ̂ij of each correlation ρij
for all i �= j. Finally, take the average

ρ̂ :=
1

n(n− 1)

∑
i�=j

ρ̂ij

as an estimate of ρ.

Multiple-Factor Models

Multiple-factor models are a generalization of the single-factor model discussed

above. These models are based on the assumption that the return of each asset

can be explained by a small collection of common factors in addition to some

other specific return. Aside from simplifying the estimation task, multiple-factor

models provide a useful breakdown of risk, incorporate some economic logic,

and are fairly flexible. The majority of quantitative money managers rely on

multi-factor models provided by third-party vendors such as MSCI, Axioma,

Northfield, etc. for the management of equity portfolios.

110 Quadratic Programming Models: Mean–Variance Optimization

A multi-factor model assumes that excess returns are as follows:

ri =

K∑
k=1

Bikfk + ui,

where

• ri: excess return of asset i

• Bik: exposure of asset i to factor k

• fk: rate of return of factor k

• ui: specific (or residual) return of asset i.

It is convenient to rewrite the relation above in matrix form as

r = Bf + u.

A bit of matrix algebra shows that the expected value and covariance of r are

respectively

E[r] = BE[f] + E[u], V = BFBT +Δ,

where F = cov(f) and Δ = cov(u). Observe that Δ is diagonal since the ui are

assumed to be uncorrelated with each other.

The construction and estimation of a multi-factor model hinges on the choice

of factors. For an equity universe, the following three main classes of factors are

commonly used:

• Macroeconomic factors: inflation, economic growth, etc.

• Fundamental factors: earning/price, dividend yield, market cap, etc.

• Statistical factors: principal component analysis, hidden factors.

Empirical evidence suggests that the second type of fundamental factors works

better than the other two (Connor, 1995). This is also the prevalent class of

factors used by most risk model providers. In this approach we have

r = Bf + u,

where the matrix of factor loadings B is predetermined. The estimation of the

corresponding covariance matrix is as follows. Using historical data for the asset

returns, infer the corresponding historical data for factor returns by solving each

of the weighted least-squares problems

min(r(t)−Bf(t))TD−1(r(t)−Bf(t)).

The matrix D is a diagonal matrix whose entries are estimates of the asset

variances. A common proxy is to use instead the reciprocal of the market capi-

talizations of the assets. The solution to this weighted least-squares problem is

f(t) = (BD−1BT)−1BTD−1r(t).

6.6 Estimation of Inputs to Mean–Variance Models 111

Each row of the matrix (BD−1BT)−1BTD−1 can be interpreted as a factor

mimicking portfolio.

Equipped with this historical data of factor returns, we can estimate the factor

covariance matrix. The residuals u(t) := r(t)−Bf(t) can then be used to estimate

the covariance matrix Δ of asset-specific returns.

The connection between the CAPM and single-factor models has an analogous

counterpart in the context of multi-factor models, namely the arbitrage pricing

theory (APT). A combination of an arbitrage argument and the assumption that

the set of factors f account for all of the common shocks to the returns of all

assets in the investment universe implies that

E(r) = BE(f).

Like the CAPM, the APT model also yields a straightforward estimation proce-

dure for μ = E(r).

Estimation of Alpha

In a benchmark-relative context, an estimate of expected residual returns α is

typically the relevant estimate instead of an estimate of expected total return μ.

According to the CAPM or the more general APT model, the expected residual

returns are zero. However, numerous articles have documented certain anomalies

that are systematically associated with the over- and underperformance of the

return of securities after controlling for their systematic component of return.

Some of these anomalies include the SMB (small minus big market capitalization)

and HML (high minus low book-to-price) factors introduced in the classical

article by Fama and French (1992).

A generic approach for generating alpha is to rely on signals unveiled via

a judicious type of analysis. A signal could be an empirical observation such as

momentum that suggests that the recent performance (good or bad) of individual

securities will persist in the near term. A signal could also be a financial principle

such as “firms with low book-to-price ratio will outperform” or “firms with higher

earnings per share will outperform”.

The following is a reasonable and popular rule of thumb for transforming a

signal into a forecast of alpha (for a detailed discussion see Grinold and Kahn

(1999)):

alpha = (residual volatility) · IC · score.

Here the residual volatility is the standard deviation of residual return. The score

is a numerical score associated with the signal. The score is assumed to be scaled

so that its cross-sectional mean and standard deviation are respectively 0 and 1.

Finally, the information coefficient IC is a measure of the forecasting quality of

the signal; that is, the correlation between the raw signal score and the residual

return.

112 Quadratic Programming Models: Mean–Variance Optimization

In addition to proper scaling, the signal score should be neutralized so that

the alphas do not include biases or undesirable bets on the benchmark or on risk

factors. As we illustrate in the exercises at the end of the chapter, neutralization

can be achieved in various ways, as there are multiple portfolios that hedge out

a bet on the benchmark or on other risk factors.

6.7 Performance Analysis

How can the performance of a portfolio manager be evaluated? Are the ex post

results due to skill or luck? The goal of performance analysis is to answer

these questions. The efficient market hypothesis suggests that skillful active

management is impossible. However, there is considerable evidence against the

efficient market hypothesis (Shleifer, 2000).

Empirical results also suggest that an average active fund manager underper-

forms their benchmark on a risk-adjusted basis. Furthermore, empirical evidence

also shows that good performance does not persist: The winners this year are

almost as likely to be winners or losers next year. These are bleak conclusions

about asset management. So how could we tell which asset managers are the

good ones?

The fundamental goal of performance analysis is to separate skill from luck.

The simplest type of performance analysis is a cross-sectional comparison of

returns over some time period. This would distinguish winners from losers.

However, these kinds of comparisons have several drawbacks. First, they typically

do not represent the complete universe of investment managers but only those

in existence during a specific time period. They generally contain survivorship

bias. Perhaps worst of all, cross-sectional comparisons do not adjust for risk. By

contrast, time-series analysis of returns can do a better job at separating skill

from luck by measuring both return and risk. An even more complete picture

can be obtained via time-series analysis of returns and portfolio holdings.

Return-Based Performance Analysis (Basic)

The development of the CAPM and the notion of market efficiency in the 1960s

encouraged academics to tackle the problem of performance analysis. According

to the CAPM, consistent exceptional returns are unlikely. Academics devised

tests to check if the theory was correct. As a byproduct the first performance

analysis techniques emerged. One approach, proposed by Jensen, consists of

regressing the time series of realized portfolio excess returns against benchmark

excess return:

rP (t) = αP + βP rB(t) + εP (t).

Jensen’s alpha is simply the intercept αP of this regression. According to the

CAPM, this intercept is zero. The regression yields not only alpha and beta,

6.7 Performance Analysis 113

but t-statistics that give information about their statistical significance. The

t-statistic for αP is

t-stat =
αP

SE(αP)
.

As a rule of thumb, a t-statistic of 2 or more indicates that the performance of

the portfolio is due to skill rather than luck. Assuming normality, the probability

of observing such a large t-statistic purely by chance is smaller than 5%.

The t-statistic and the information ratio are closely related. The main differ-

ence between them is that the information ratio is annualized. By contrast, the

t-statistic scales with the number of years of data. If we observe returns over a

period of T years, the information ratio is approximately the t-statistic divided

by the square root of the number of years of observation:

IR ≈ t-stat√
T

.

The standard error of the information ratio is approximately

SE(IR) ≈ 1√
T
.

A simple alternative to Jensen’s approach is to compare Sharpe ratios for the

portfolio and the benchmark. A portfolio with

r̄P
σP

>
r̄B
σB

,

where r̄ denotes mean excess return over the period, has demonstrated positive

performance. Once again, the statistical significance of this relationship is rele-

vant for distinguishing luck from skill. If we assume that the standard errors of

the portfolio and benchmark volatilities are fairly small compared to r̄ standard

errors, then the standard error of the Sharpe ratio is approximately 1/
√
N , where

N is the number of observations. Hence a statistically significant demonstration

of skill occurs when

r̄P
σP

− r̄B
σB

> 2

√
2

N
.

Return-Based Style Analysis

Style analysis was developed by Nobel laureate William Sharpe (1992). The

popularity of this concept was aided by a study (Brinson et al., 1991) concluding

that 91.5% of the variation in returns of 82 mutual funds could be explained

by the allocation to bills, stocks, and bonds. Later studies considering asset

allocation across a broader range of asset classes have shown that as much as

97% of fund returns can be explained by asset allocation alone.

Style analysis attempts to determine the effective asset mix of a fund using

only the time series of returns for the fund and for a number of carefully chosen

114 Quadratic Programming Models: Mean–Variance Optimization

asset classes. Like a factor model approach, style analysis assumes that portfolio

returns have the form

rP (t) =
m∑
j=1

wjfj(t) + uP (t),

where the fj(t) are the returns of m benchmark asset classes. The holdings

wj , j = 1, . . . ,m, represent the style of the portfolio. That is, the effective allo-

cation to the m asset classes that could be replicated via a passive portfolio. The

term uP (t) represents the selection return; that is, the portion of the portfolio

return that style cannot explain. The effective holdings can be estimated via the

quadratic program

min
w

var(uP (t))

s.t.

m∑
j=1

wj = 1

wj ≥ 0, j = 1, . . . ,m.

(6.21)

Notice that there are two key differences between this model and conventional

multiple regression. First, the weights are constrained to be non-negative and to

add up to 1. Second, instead of minimizing the sum of squared errors
T∑

t=1

uP (t)
2,

we minimize the variance of these quantities. The reason for the first restriction is

that the wj are to be interpreted as an effective asset allocation representing the

style of the fund. In essence, they create a fund-specific benchmark. The reason

for the second restriction is that we want to allow for a non-zero selection effect

by the fund manager. The model finds the style that minimizes the variance of

this effect. Once the optimal weights are determined, the average value of uP (t)

gives the value added by the manager’s selection skills, which can be negative or

positive.

Assume the data available for style analysis are the return time series rP (t),

f1(t), . . . , fm(t) for t = 1, . . . , T . For ease of notation, put

r :=

⎡⎢⎣rP (1)...

rP (T)

⎤⎥⎦ , F :=

⎡⎢⎣f1(1) · · · fm(1)
...

. . .
...

f1(T) · · · fm(T)

⎤⎥⎦ , 1 :=

⎡⎢⎣1...
1

⎤⎥⎦ .

Then the objective function in (6.21) can be written as

var (r− Fw) =
1

T
‖r− Fw‖2 − 1

T 2
(1T(r− Fw))2

=

(
‖r‖2
T

− (1Tr)2

T 2

)
− 2

(
rTF

T
− 1Tr

T 2
1TF

)
w

+wT

(
1

T
FT

(
I − 1

T
11T

)
F

)
w.

6.9 Exercises 115

Style analysis provides an improvement tool for measuring performance. The

constructed style usually tracks the performance of the fund more accurately

than a predefined benchmark. Style analysis has also some limitations. For

instance, the weights may not necessarily match the style disclosed by the fund

manager. However, as Sharpe puts it: “If it acts like a duck, it is ok to assume it is

a duck.” Style analysis also makes the simplifying assumptions that the weights

are constant. This is clearly not the case in actively managed funds, even without

active trading. There exist some variations of style analysis that allow for weights

to change. The model gets a bit more technical because it needs to incorporate

some “regularization” term that prevents the weights from changing too much

too often.

6.8 Notes

The mean–variance model was introduced in the seminal article of Markowitz

(1952). The CAPM was developed by Treynor
1

, Sharpe (1964), Lintner (1965),

and Mossin (1966), by building on the mean–variance approach of Markowitz.

In recognition of their work on portfolio choice and the CAPM, Sharpe and

Markowitz were jointly awarded the 1990 Nobel Prize in Economics. Both Lint-

ner and Mossin passed away before 1990 and Treynor’s manuscript was never

published.

The textbook by Grinold and Kahn (1999) is a classical reference in active

portfolio management. In their textbook, Grinold and Kahn developed and relied

extensively on characteristic portfolios.

6.9 Exercises

Exercise 6.1 The purpose of this exercise is to prove the two-fund theorem

(Theorem 6.1).

(a) Find the Lagrangian function L(x, θ) for (6.1).

(b) Solve the optimality conditions ∇L(x, θ) = 0 to conclude that the optimal

solution to (6.1) is

x∗ = λ · 1

1TV−1μ
V−1μ+ (1− λ) · 1

1TV−11
V−11

where λ = 1TV−1μ/γ.

Exercise 6.2 Assume μ and V are respectively the vector of expected returns

and covariance matrix of n risky assets. Assume V is non-singular and μ̄ >

μTV−11/1TV−11. Consider the mean–variance optimization problem

1
“Toward a theory of market value of risky assets”. Unpublished manuscript, 1961.

116 Quadratic Programming Models: Mean–Variance Optimization

min xTVx

s.t. μTx ≥ μ̄

1Tx = 1.

(6.22)

Now consider the following variations:

max μTx

s.t. xTVx ≤ σ̄2

1Tx = 1,

(6.23)

and

max μTx− 1
2γ · xTVx

s.t. 1Tx = 1.
(6.24)

Let x∗ be the optimal solution to (6.22). Find appropriate values of σ̄ and γ so

that the optimal solutions to (6.23) and (6.24) are also x∗.

Exercise 6.3 Prove that
n∑

j=1

|x0
j − xj | ≤ h

if and only if there exists a vector y =
[
y1 · · · yn

]T
such that

xj − x0
j ≤ yj

x0
j − xj ≤ yj
n∑

j=1

yj ≤ h.

Exercise 6.4 Prove that under the two assumptions made in Section 6.4, the

maximum Sharpe ratio problem (6.16) is indeed equivalent to (6.18).

Exercise 6.5 The purpose of this exercise is to prove Proposition 6.4.

Assume the covariance matrix of asset returns V is positive definite and the

minimum- risk portfolio (1/1TV−11)V−11 has positive expected return; that

is, μTV−11 > 0.

(a) Show that (6.19) can be rewritten as follows:

min
z,κ

zTVz

s.t. μTz = 1

1Tz− κ = 0

κ > 0.

(6.25)

(b) Show that the solution to (6.25) is

z∗ =
1

μTV−1μ
V−1μ

κ∗ = 1Tz∗.

6.9 Exercises 117

(c) Use part (b) to conclude that the solution to (6.19) is indeed

x∗ =
1

1TV−1μ
V−1μ.

(d) *Show that if μTV−11 < 0 then (6.19) is bounded but does not attain

its maximum value. Use this fact to illustrate why the two assumptions

made in Section 6.4 cannot simply be dropped without making some other

assumptions.

Exercise 6.6 The Excel spreadsheet “Exercise 6.6 Six Stocks” provides hypo-

thetical estimates of the expected return and variance–covariance matrix for a

set of six stocks.

(a) Set up a quadratic programming model to determine the long-only minimum-

variance portfolio that can be constructed with the six stocks. What is the

expected return of your minimum-variance portfolio?

(b) Set up the classical Markowitz model with long-only constraints. Solve your

model for at least six different levels of expected return ranging from the

level found in part (a) up to the largest expected return level for which

there are feasible portfolios. What is the value of such largest return level?

Use your results to generate the expected return versus standard deviation

plot for the efficient frontier.

(c) Assume the “benchmark” is a portfolio equally divided among the six stocks.

Compute the beta of each stock (with respect to this benchmark) and the

consensus (i.e., CAPM) returns assuming the risk-free rate is zero.

(d) Assume that your current portfolio is the benchmark, i.e., it is equally

divided among the six stocks. Include an additional total turnover constraint

of 70% in the model from part (b). Determine the new optimal portfolio for

a desired expected return somewhere in the middle of the range used in

part (b). Is it possible to find portfolios with any return level in the range

in part (b)? If it is not, can you explain why?

(e) Find the portfolio with maximum Sharpe ratio subject to all constraints in

part (d). Again, assume the risk-free rate is zero.

Exercise 6.7 The Excel spreadsheet “Exercise 6.7 Twenty Stocks” contains

estimated expected values, standard deviations, and correlations of monthly

returns for a set of 20 large-capitalization stocks from the S&P 500.

(a) Find the fully invested long-only portfolio with minimum variance.

Find the numerical values of the first two and last two positions in your

portfolio (i.e., those of BOL, NE, and XTO, ABC). These numbers are

between 0 and 1.

Find the numerical value of the variance of the portfolio (in bps2).

118 Quadratic Programming Models: Mean–Variance Optimization

(b) Assume the benchmark is an equally weighted portfolio of the 20 assets.

Determine the beta of each asset relative to this benchmark.

Find the numerical values of the beta of the first two stocks and last stock.

(c) Find the fully invested long-only portfolio with highest expected return that

satisfies the following constraints:

• The size of every position is at most 10%.

• The portfolio has beta equal to 1.

Find the numerical values of the first and last positions in your portfolio.

Find the numerical value of the expected return of the portfolio (in bps).

(d) Assume the risk-free rate is zero. Find the fully invested long-only portfolio

with highest Sharpe ratio that satisfies the following constraints:

• The size of every position is at most 10%.

• The portfolio has beta equal to 1.

Find the numerical values of the positions 15 and 16 in your portfolio (i.e.,

those of LH and R).

Find the numerical value of the Sharpe ratio of the portfolio.

Exercise 6.8 Suppose M is the market portfolio in a universe of securities.

According to the CAPM, the excess return of each security is given by

ri = βirM + εi,

where εi is the zero-mean, security-specific risk, and rM is the market excess

return. For simplicity assume the risk-free rate is zero.

Suppose that via a thorough security analysis a manager identifies an active

portfolio A whose return is

rA = αA + βArM + εA;

let ω2
A = var(εA) denote the residual variance of the active portfolio A.

Consider a portfolio P obtained by investing a proportion w in the active

portfolio A and the remaining proportion 1− w in the market portfolio:

rP (w) = wrA + (1− w)rM .

(a) Find the expressions for the expected return and variance of the portfolio P .

(b) Assume βA = 1, αA > 0, and μM > 0. Show that the portfolio P with

highest Sharpe ratio is attained for the following proportion value:

w0 =
αA/ω

2
A

μM/σ2
M

.

Furthermore, show that, for this proportion value, the Sharpe ratio of the

portfolio is

S2
P = S2

M + IR2
A =

(
μM

σM

)2

+

(
αA

ωA

)2

.

6.9 Exercises 119

Exercise 6.9 Suppose the covariance matrix of a universe of N stocks has the

following single-factor risk model form:

V = σ2
MββT +D.

Here σ2
M is the single-factor risk, β =

[
β1 · · · βN

]T ∈ RN is the vector of

stock loadings on that factor, and D = diag(ω2
1 , . . . , ω

2
N) where each ω2

i is the

idiosyncratic risk of stock i for i = 1, . . . , N .

(a) Recall that the Sherman–Morrison–Woodbury matrix inverse formula is

(A+ uv�)−1 = A−1 − A−1uv�A−1

1 + v�A−1u

provided A−1 exists and 1 + v�A−1u �= 0. Use this formula to show that

V−1 = D−1 − σ2
M

1 + σ2
MβTD−1β

·D−1ββTD−1.

(b) *Using (a) conclude that the holdings of the minimum-variance fully invested

portfolio (1/1TV−11) ·V−11 are given by

xi =
σ2
MV

ω2
i

(
1− βi

βLS

)
, i = 1, . . . , N,

where

σ2
MV =

1

1TV−11

is the variance of the minimum-variance portfolio and βLS is the following

long–short threshold beta:

βLS =
1 + σ2

MβTD−1β

σ2
MβTD−11

.

(c) *Show that the holdings of the long-only minimum-variance portfolio of the

N stocks are given by an expression similar to that in part (b) above:

xi =
σ2
LMV

ω2
i

(
1− βi

βL

)+

, i = 1, . . . , N,

where σ2
LMV is the variance of the long-only minimum-variance portfolio

and βL is a suitable long-only threshold beta.

Exercise 6.10 Suppose the covariance matrix of a set of assets has the following

constant-correlation form: for some ρ ∈ (0, 1)

Vii = σ2
i , Vij = ρσiσj , for i = 1, . . . , n, and j = 1, . . . , n, with i �= j.

In matrix form, we can write the above constant-correlation matrix as follows:

V = ρσσT + (1− ρ)Diag(σ)2,

where σ is the vector with components σi, i = 1, . . . , n.

120 Quadratic Programming Models: Mean–Variance Optimization

(a) Use the Sherman–Morrison–Woodbury formula to show that

V−1 =
1

1− ρ
Diag(θ)2 − ρ

(1− ρ)(1 + (n− 1)ρ)
θθT,

where θ is the vector with components θi = 1/σi, i = 1, . . . , n.

(b) Conclude that the holdings xi, i = 1, . . . , n, of the fully invested, minimum-

risk portfolio are as follows:

xi =
yi∑n
j=1 yj

,

where

yi =
1

(1− ρ)σ2
i

⎡⎣1− ρ

(1− ρ)(1 + (n− 1)ρ)

n∑
j=1

σi

σj

⎤⎦ .

(c) Assume all of the assets have the same volatility: that is, σ1 = σ2 = · · · =
σn = σ. Prove that the variance of the fully invested portfolio of minimum

variance is

σ2
min =

σ2(1 + (n− 1)ρ)

n
.

Exercise 6.11 The purpose of this exercise is to detail the derivation of factor

portfolios used in the construction of risk models. Consider the following factor

model for a vector of returns

r = Bf + u,

where B is a given matrix of factor loadings and the factors f are to be con-

structed. A common approach to construct the factors f is to solve the following

kind of weighted least-squares problem:

min
f

(r−Bf)TD−1(r−Bf), (6.26)

where D is a symmetric (often diagonal) positive definite matrix.

(a) Show that the gradient of the multivariate function f �→ (r−Bf)TD−1(r−
Bf) is

2(BTD−1B)f − 2BTD−1r.

(b) Conclude that the solution to (6.26) is

f = (BTD−1B)−1BTD−1r.

(c) Consider the special case when B = b has only one column, i.e., there is only

one factor f . Conclude that in this case the above optimal f is the return of

the following “characteristic portfolio”:

1

bTD−1b
D−1b.

(d) Consider again part (c) and the very special case when the entries of b are 1

(a “buy” list) and −1 (a “sell” list) and D is a diagonal matrix. Show that

in this case the characteristic portfolio in part (c) is a long–short portfolio

6.10 Case Studies 121

with long holdings in the “buy list” and short holdings in the “sell list”.

Describe the values of the portfolio holdings when D = I.

Exercise 6.12 Consider two portfolio managers. One has 25 years of perfor-

mance history, with a realized Sharpe ratio of 0.5. The other one has only four

years of performance history but with a realized Sharpe ratio of 0.75. Which

one would you prefer to invest in and why? The objective is to minimize the

likelihood that you will lose money. Returns can be assumed to be stationary

and normally distributed.

6.10 Case Studies

Asset Allocation

The goal of this case study is to apply and test mean–variance optimization

models as a tool for asset allocation.

(1) Choose between four and ten asset classes and collect their monthly, quar-

terly, or annual historical returns over a meaningful horizon (several years

or decades). Collect also any other relevant data that may help you forecast

expected returns. Briefly discuss why you would like to choose these assets

and why the selected horizon is appropriate.

(2) Use the first 67% portion of your data to compute the expected returns and

the variance–covariance matrix for these assets. (Use the remaining 33% for

out-of-sample testing.)

(3) Set up the classical Markowitz model without short sales and solve it in

Excel Solver or MATLAB for various levels of expected return.

(4) Evaluate, compare, and report your results in-sample and out-of-sample.

(5) Discuss the results of your model.

Covariance Estimation

The goal of this case study is to compare various approaches to covariance

estimation and risk diversification.

(1) Select a universe of at least 25 stocks. Some possible choices are the Dow

Jones Industrial Average, the S&P 100, and the Nasdaq 100. If you feel

ambitious, you may choose a larger universe. Your purpose is to construct

the most diversified fully invested portfolio in this universe. Collect weekly

or monthly historical returns for securities in your universe over a horizon

of a few years.

(2) Use the first 67% portion of historical data for “model calibration” (estimates

of covariance matrix) and the remaining 33% for out-of-sample testing.

(3) Use the in-sample data to generate the following two estimates of the covari-

ance matrix: the sample covariance, and a single-factor model covariance.

For the latter, you need to choose a suitable benchmark portfolio. Some

122 Quadratic Programming Models: Mean–Variance Optimization

reasonable choices are a value-weighted portfolio and an equally weighted

portfolio.

(4) Using the two estimates of the covariance matrices computed in (3), find

minimum-risk fully invested portfolios (both long–short and long-only).

(5) Compare the results of your models on out-of-sample data. Generate plots

of the value of the different portfolios on out-of-sample data.

(6) Repeat (5) using a rolling-time window assuming that all portfolios are

rebalanced monthly. Compare these models with value-weighted and equally

weighted portfolios.

Report statistics such as out-of-sample mean and standard deviation of

results, and average portfolio turnover. Comment on your results.

Active Portfolio Management

The goal of this case study is to apply mean–variance optimization as a tool for

active portfolio management. If you are well versed with the Bloomberg terminal,

you may use Bloomberg’s portfolio analytics capabilities PORT.

(1) Choose at least 20 securities within an asset class (e.g., stocks in the Dow

Jones, the S&P 500, the NASDAQ, or the Russell 3000) and find their

weekly or monthly historical returns over a meaningful horizon. Collect also

relevant additional data for alpha estimation. For instance, Fama–French

factors (book-to-market ratio, size, momentum), or any other factors that

you can use to rank your stocks. Briefly discuss your selection of securities

and data.

(2) Choose a suitable “benchmark portfolio”. For instance, if you chose stocks

from the S&P 500, a reasonable benchmark would be a value-weighted

portfolio of the sets of selected assets.

(3) Use the first 67% portion of historical data for “model calibration” (estimates

of covariance matrix, betas, alphas, etc.) and the remaining 33% for out-of-

sample testing.

(4) Use the in-sample data to estimate the covariance matrix, betas and alphas

of your stocks. The most straightforward way to estimate the betas of your

stocks is via linear regression. This would also give you a rudimentary esti-

mate of the alphas. However, these are “realized” estimates, i.e., they are

backward looking. Instead you may try to forecast alphas (i.e., be forward

looking) via one of the following approaches:

• Momentum factor: rank stocks according to how they have performed in

the recent three to twelve months.

• Other factors: rank stocks according to other factors such as the Fama–

French factors, price-to-earnings ratio, debt-to-equity ratio, or some

combination of these.

6.10 Case Studies 123

(5) Set up an optimization model with the goal of constructing portfolios that

outperform the benchmark. Discuss your selection of objective and con-

straints in your model.

(6) Test the results of your model on out-of-sample data. You may want to

do this for various combinations of constraint levels (e.g., small and large

levels of tracking errors, small and large levels of active positions, turnover

constraint). The most interesting way of doing this is via a “rolling-time

window”. To that end, proceed as follows:

(a) Partition the out-of-sample data into m equally sized time intervals, e.g.,

month-long intervals.

(b) Using the estimates from (4), find the optimal portfolio. Assume you

hold this portfolio over the first of the m out-of-sample time intervals.

(c) Next, shift the in-sample time window used in step (b). Keep the

length of the in-sample time window unchanged. Use this new in-sample

time window to update your estimates of covariance matrix, betas,

and alphas. Find the new optimal portfolio. Assume you will hold this

portfolio over the next out-of-sample time interval.

(d) Repeat step (c) until you reach the last (mth) out-of-sample time

interval.

Report and comment on your results.

7 Sensitivity of Mean–Variance
Models to Input Estimation

One of the most salient drawbacks of mean–variance optimization is its high

sensitivity to the estimation of input parameters. The sensitivity is due to the

very nature of the optimization process: if there are assets whose returns appear

to be superior, the portfolios generated by an optimization procedure will try to

take advantage of these apparently superior assets by overweighting the holdings

on those positions. Unfortunately in a practical setting there is inevitable noise

in the estimation of inputs to a mean–variance model. Small perturbations in the

values of the inputs may lead to large swings in the composition of the portfolio.

This unfortunate phenomenon is basically due to the fact that the optimizer is

overly responsive given the quality of the inputs typical in portfolio construction.

A related phenomenon is the fact that the composition of portfolios is often

non-intuitive. Theoretical and empirical evidence indicates that the estimate of

expected returns is more critical than the estimate of the covariance matrix.

The sensitivity of mean–variance models to input estimation manifests itself

in the differences among the true, estimated, and actual efficient frontiers, terms

coined by Broadie (1993). The true efficient frontier is the one computed with

the true (unobservable) expected returns and covariance matrix. The estimated

frontier is the one computed with estimates of these parameters. The actual

frontier is defined as follows: take the portfolios in the estimated frontier and

calculate their true expected returns and variances. The actual frontier always

lies below the true frontier. In principle the estimated frontier may lie anywhere

with respect to the true frontier. However, due to the optimization process, if the

estimation errors have zero mean, the estimated frontier is likely to lie above the

true frontier. In that case the actual frontier would be well below the estimated

frontier. Equivalently, the ex post performance of estimated efficient portfolios

would typically be substantially worse than their ex ante performance suggested

by the mean–variance model. Figure 7.1 illustrates the typing relative placement

of the three frontiers.

The following specific example illustrates the sensitivity of mean–variance

models to the quality of the inputs.

Consider a simple portfolio optimization problem with three assets whose

expected returns and covariance matrix are

μ =

⎡⎣0.110.10

0.05

⎤⎦ , V =

⎡⎣0.250 0.225 0.045

0.225 0.250 0.045

0.045 0.045 0.090

⎤⎦ . (7.1)

Sensitivity of Mean–Variance Models to Input Estimation 125

0
variance

mean estimated

true

actual

Figure 7.1 Efficient frontiers

Figure 7.2 displays the composition of long-only efficient portfolios for this

problem.

Figure 7.2 Area chart of long-only efficient portfolios for μ and V as in (7.1)

The picture makes sense from the pure optimization standpoint: assets 1 and 2

are similar but the expected return of asset 1 is slightly larger. Hence for higher

target expected returns, the efficient portfolios have a much larger holding in

asset 1 than in asset 2. However, from the portfolio construction standpoint this

is unintuitive: assets 1 and 2 are very similar and, for all practical purposes,

exchangeable because the slight difference could easily be due to estimation

error. Therefore, it would be more intuitive for the positions of these two assets

to be roughly the same. We can also look at the problem in a different way:

Suppose the expected returns of assets 1 and 2 were slightly perturbed so that

they are swapped. Then the composition of the efficient portfolios would change

drastically. This again is a fairly counterintuitive and unnatural behavior.

The input sensitivity of mean–variance models is a central issue in portfolio

management and has been a subject of intense study. There is a tremendous

upside potential in finding appropriate ways of harnessing the power of portfolio

optimization without getting caught on this major shortcoming. We will next

126 Sensitivity of Mean–Variance Models to Input Estimation

describe some of the most popular techniques that aim at mitigating this prob-

lem. The techniques can be classified in two main categories. The first category of

techniques tries to improve the quality of the inputs to the portfolio optimization

problem. The second category of techniques aims to tweak the optimization pro-

cedure. One of the most widely used techniques in the first category is the Black–

Litterman model introduced by Fisher Black and Bob Litterman at Goldman

Sachs Asset Management. We will discuss this technique in some detail. We will

also briefly describe another related technique based on Bayesian adjustments.

We will subsequently discuss some techniques in the second category, namely

resampled efficiency and robust optimization.

7.1 Black–Litterman Model

The basic idea of the Black–Litterman model is to tilt the market equilibrium

returns to incorporate an investor’s views. In principle a classical mean–variance

model requires estimates of expected returns for all assets in the investment

universe considered. This is typically an enormous task. Investment managers

are unlikely to have detailed knowledge of all securities at their disposal. Typi-

cally, they have a specific area of expertise. Furthermore, some modern trading

strategies are associated not with absolute but with relative rankings of securities.

For instance, a pairs trading strategy corresponds to a forecast that one stock will

outperform another one. The key insight of Black and Litterman was that there is

a suitable way of combining the investor’s views with the market equilibrium. The

exposition of the Black–Litterman model below is based on Black and Litterman

(1992), Fabozzi et al. (2007), and Litterman (2003).

Basic Assumption and Starting Point

The Black–Litterman model is an equilibrium-based model, meaning that the

expected returns of the assets should be consistent with the market equilibrium

unless the investor has some specific views. In other words, an investor without

any views on the market should hold the market. We shall let π denote the

equilibrium return vector, and V the covariance matrix of the asset returns.

The true expected return vector μ is unknown. As a starting point, we assume

that the equilibrium return vector serves as a reasonable prior estimate of the

true return vector in the sense that

μ ∼ N(π,Q).

That is, μ is a multi-normal random vector with expected value π and covariance

matrix Q. The matrix Q represents the confidence on the equilibrium returns as

an estimate of expected returns.

7.1 Black–Litterman Model 127

Expressing Investors’ Views

A key ingredient of the Black–Litterman model is to incorporate investors’ views

on the expected returns. The framework is fairly flexible. An investor may have a

few different views, each of them involving either a single asset (an absolute view)

or several assets (a relative view). Formally, a collection of views is expressed as

Pμ = q+ ε, ε ∼ N(0,Ω).

Each row in the equation Pμ = q + ε is a view that represents a forecast. The

term ε represents the degree of confidence in the views. The covariance matrix Ω

is typically a diagonal matrix. A weak view is a view with large variance; a strong

view is a view with small variance. In the extreme, a certain view is a view with

zero variance. Each of the views can be absolute or relative as described above.

For a concrete example, consider an asset allocation problem with seven asset

classes: Australia, Canada, France, Germany, Japan, United Kingdom, United

States. Suppose we have two views:

• Return on Germany will be 12%.

• UK will outperform US by 2%.

These views can be expressed as

μ4 = 12% + ε1

μ6 − μ7 = 2%+ ε2.

In matrix notation this corresponds to Pμ = q+ ε for

P =

[
0 0 0 1 0 0 0

0 0 0 0 0 1 −1

]
, q =

[
12%

2%

]
, ε =

[
ε1
ε2

]
.

Merging Investors’ Views and Market Equilibrium

The key insight of the Black–Litterman model is a proper way to combine the

investor’s views with the prior market equilibrium. First, consider the simpler

case when the views are assumed to be certain; that is, Ω = 0 or equivalently

the vector of expected returns must be tilted to satisfy the views Pμ = q. In

this case the posterior estimate of μ given the prior μ ∼ N(π,Q) and the views

Pμ = q is

μ̂ = π +QPT(PQPT)−1(q−Pπ). (7.2)

Some matrix algebra shows that indeed Pμ̂ = q. That is, the posterior estimate

satisfies the views Pμ = q.

In the more general case when the views are not certain, the posterior estimate

of μ given the prior μ ∼ N(π,Q) and the views Pμ = q+ε, with ε ∼ N(0,Ω), is

μ̂ = π +QPT(PQPT +Ω)−1(q−Pπ). (7.3)

128 Sensitivity of Mean–Variance Models to Input Estimation

When Ω is non-singular, μ̂ also has the following equivalent expression:

μ̂ = (Q−1 +PTΩ−1P)−1(Q−1π +PTΩ−1q). (7.4)

Observe that the expression (7.2) for certain views can be recovered from (7.3)

by taking Ω = 0.

We next give a derivation of the formula (7.4) for the posterior estimate of

μ when Ω is non-singular. The exercises at the end of the chapter show how

the derivation can be tweaked for any Ω. Stack the two equations for the market

equilibrium π = μ+επ, επ ∼ N(0,Q), and for the investor’s views q = Pμ+εq,

εq ∼ N(0,Ω) as

y = Mμ+ ε, ε ∼ N(0,Σ)

for

y =

[
π

q

]
, M =

[
I

P

]
, Σ =

[
Q 0

0 Ω

]
.

The estimation problem can be stated as the following weighted least-squares

problem:

min
μ

(y −Mμ)TΣ−1(y −Mμ).

The optimality conditions for this problem yield

2MTΣ−1Mμ− 2MTΣ−1y = 0.

Hence we obtain

μ̂ = (MTΣ−1M)−1MTΣ−1y

= (Q−1 +PTΩ−1P)−1(Q−1π +PTΩ−1q)

= π +QPT(PQPT +Ω)−1(q−Pπ).

We end this section with a couple of general remarks.

First we note that the Black–Litterman model can be thought of as an “inverse

optimization problem”: If one views the market equilibrium as the optimum

solution of a portfolio optimization problem, what data would produce this

outcome? In particular, given investor views, what choice of μ would best fit the

market equilibrium solution? This leads to the least-squares problem formulated

above, whose solution μ̂ has the expression (7.3) that we just computed. This

“inverse optimization” philosophy was proposed by Bertsimas et al. (2012). It has

the added flexibility of allowing investor views on volatility and market dynamics.

We also note that the analysis in the Black–Litterman model relies heavily

on the assumption that the error term ε ∼ N(0,Q) is normally distributed.

When this is not the case, the Black–Litterman framework is still meaningful

but the analysis is more complex and a closed-form solution like (7.3) does

not usually exist. However, a numerical solution may be possible using the

nonlinear programming algorithms discussed in Chapters 18 and 20 (Kocuk and

Cornuéjols, 2017).

7.2 Shrinkage Estimation 129

7.2 Shrinkage Estimation

Another approach to improve the quality of estimated expected returns is based

on shrinkage estimators. These types of estimators are rooted in the classical

finding of Stein (1956) that biased estimators may, in a formal fashion, be

superior to the unbiased sample mean. As we detail below, the central idea

is that the estimation can be improved by shrinking the sample mean towards a

target. The non-technical article of Efron and Morris (1977) gives an enlightening

discussion of an application of this approach to the estimation of baseball batting

averages.

To formalize ideas, consider the problem of estimating the mean of an N -

dimensional multivariate normal variable r ∼ N(μ,V) from a set of observations

r1, . . . , rT . For a given estimate μ̂, consider the quadratic loss function

L(μ̂,μ) := (μ− μ̂)TV−1(μ− μ̂). (7.5)

For a given loss function, the risk of an estimator is E(L(μ̂,μ)), where the expec-

tation is taken over the space of samples r1, . . . , rT . An estimator is inadmissible

if there exists another estimator with lower risk.

For the quadratic loss function (7.5) and N = 1, 2, it is known that the optimal

estimator is the sample mean r̄ := (1/T)(r1 + · · ·+ rT). By contrast, for N > 2,

the James–Stein shrinkage estimator

μ̂JS := (1− w)r̄+ wμ0 1

has lower risk than the sample mean r̄ for

w = min

(
1,

N − 2

T (r̄− μ01)TV(r̄− μ01)

)
.

Here T is the number of observations, and μ0 is an arbitrary number. The vector

μ01 and the weight w are referred to as the shrinkage target and shrinkage

factor respectively. Although some choices of μ0 are better than others, what is

surprising is that in theory μ0 could be any fixed number. This fact is called the

Stein paradox.

The James–Stein shrinkage estimator can be seen as a combination of two

estimators:

(1) an estimator with little or no structure (like the sample mean);

(2) an estimator with a lot of structure (the shrinkage target).

The exact combination of these two estimators is determined by a certain shrink-

age intensity. As we discuss below, this same shrinkage approach has been

successfully applied to obtain improved estimators of covariance matrices and

beta exposures.

The following shrinkage estimator proposed by Jorion (1986) is fairly popular

in the financial literature. The estimator was derived via an empirical Bayesian

130 Sensitivity of Mean–Variance Models to Input Estimation

approach. As a shrinkage target, use the vector μ01 for

μ0 :=
r̄TV−11

1TV−11
,

and as a shrinkage intensity, use

w :=
N + 2

N + 2 + T (r̄− μ01)TV−1(r̄− μ01)
.

Shrinkage can also be applied to other estimation problems. For instance,

Ledoit and Wolf (2003, 2004) propose shrinkage approaches for covariance esti-

mation in the same spirit as the James–Stein shrinkage estimator: shrink the

sample covariance matrix V̄ (an unstructured estimator) towards a highly struc-

tured target estimator V0:

V̂LW := (1− w)V̄ + wV0.

The shrinkage target estimator V0 could be a single-factor estimator, an esti-

mator of the covariance matrix with constant correlation, a diagonal matrix, or

a multiple of the identity matrix.

Shrinkage is also routinely used for estimating benchmark exposures in a

stock universe. Let ri, i = 1, . . . , N , denote the excess returns of stocks in the

investment universe and rB denote the excess return of the benchmark. Recall

that the beta of stock i captures the benchmark portion of the return on stock

i via the linear model

ri = βirB + θi.

The value of βi is the benchmark exposure of stock i. Given historical realizations

of ri, for i = 1, . . . , N , and rB , we can obtain estimates β̂i of βi for i = 1, . . . , N

via ordinary least-squares linear regression. The forecasts given by these natural

estimators tend to overestimate the betas of stocks with high benchmark expo-

sure and underestimate the betas of the stocks with low benchmark exposure.

Improved forecasts can be obtained by shrinking the betas obtained from the

least-squares procedures towards one (the benchmark beta):

β̂ = (1− w)β̄ + w1,

where β̄ denotes the vector of beta estimates from the least-squares procedure.

A common rule of thumb in the above shrinkage estimators of covariance

matrix and vector of betas is to use a shrinkage intensity w = 1/2 for esti-

mates based on 60-month long historical data. A thorough discussion on the

appropriate choice of shrinkage intensity can be found in Ledoit and Wolf (2003,

2004) and Blume (1975). Portfolio optimization can be viewed as a stochastic

optimization problem (see Chapter 10). Shrinkage is relevant in this more general

context as well (Davarnia and Cornuéjols, 2017).

The exercises at the end of this chapter suggest some computational experi-

ments that illustrate the effectiveness of shrinkage estimators.

7.3 Resampled Efficiency 131

7.3 Resampled Efficiency

A different approach to address the sensitivity of mean–variance optimization to

estimation error is to apply the bootstrap technique from statistics. The bootstrap

technique is a method to estimate standard errors and confidence intervals of

statistics of a dataset via random resampling from the dataset with replacement.

The application of bootstrapping to mean–variance optimization was initially

explored by Jorion (1992) and later further developed and marketed by Michaud

and Michaud (2008). The basic idea is to consider the joint problem of parameter

estimation and portfolio construction as a statistical procedure: the efficient port-

folios can be seen as a statistic on a set of financial data used for estimation. The

resampled efficiency technique proposed by Michaud and Michaud proceeds by

applying bootstrapping to this statistical process. Suppose there is a procedure

that estimates the vector of expected returns and covariance from historical

data. Use the available data to produce these estimates and compute efficient

portfolios. Repeat this same process either by sampling from these estimates, or

by bootstrapping the available data to obtain new estimates of expected returns

and covariances. All these estimates are statistically equivalent. For each of them,

we can generate the corresponding set of efficient portfolios. The collection of all

of these portfolios forms some sort of equivalence region. We would like to take

some average of the equivalence region so that the effects of estimation error

are mitigated. However, it is not obvious how to average since the equivalence

region contains portfolios with low and high variance. We do not want to mix

“apples and oranges”. Michaud and Michaud’s suggestion is to average portfolios

that are in some equivalent risk-return bucket. To that end, we propose the

following procedure: For each efficient frontier, save m evenly distributed efficient

portfolios. Rank them 1 to m. Then take averages of same-rank portfolios from

all efficient frontiers.

This resampling procedure can be more precisely described as follows (see

Algorithm 7.1). Suppose we have a procedure to produce estimates μ̂ and V̂

from a history of T periods of historical data.

Algorithm 7.1 Resampling procedure

1: for i = 1, . . . , S do

2: simulate a new history of T periods by resampling the original history

3: use the simulated history to generate new estimates μ̂i and V̂i

4: use μ̂i and V̂i to generate m equally spaced efficient portfolios

x1,i, . . . ,xm,i

5: end for

To generate the resampled efficient portfolios, take averages of equally ranked

132 Sensitivity of Mean–Variance Models to Input Estimation

efficient portfolios generated above:

xj,resampled :=
1

S

S∑
i=1

xj,i.

The resampled efficient frontier is the expected return versus standard deviation

chart of the resampled efficient portfolios with the original estimates μ̂ and V̂.

There are a number of limitations to resampling (Scherer, 2002). The entire

process is only a heuristic; there is no sound theory to support why the process

should mitigate the effects of estimation error. The methodology does have the

feature of generating portfolios that look well diversified, and this is generally

well received. However, this feature can be attributed to the role of variability

in the averaging process. The process is intense computationally, as it multiplies

the work involved in conventional mean–variance optimization. Furthermore, the

procedure does not provide any clear mechanism to facilitate the incorporation

of views as in the Black–Litterman model.

7.4 Robust Optimization

Robust optimization is a fairly recent development that considers uncertainty in

some parameters directly in the optimization problem. The general idea of robust

optimization is to generate a solution that is good for all possible realizations

of the uncertain parameters. Consider a minimization problem with inequality

constraints

min
x

f(x,p)

s.t. gi(x,p) ≤ 0, i = 1, . . . ,m.
(7.6)

Here the vector p stands for some parameters that define the objective and

constraints functions.

Consider first the case when the uncertain parameters occur in the constraints

only. Assume that the set of parameters p is uncertain but it is known to be in

some uncertainty set U . In this case a robust version of (7.6) is one where the

optimization is performed over points that are feasible for all possible realizations

of the uncertain parameters p ∈ U ; that is,
min
x

f(x)

s.t. max
p∈U

gi(x,p) ≤ 0, i = 1, . . . ,m.

On the other hand, consider the case when the uncertain parameters occur in

the objective only. In this case a robust version of (7.6) is one that finds the

solution that would be best, given the worst possible realization of the uncertain

parameters p ∈ U ; that is,
min
x

max
p∈U

f(x,p)

s.t. gi(x) ≤ 0, i = 1, . . . ,m.

7.5 Other Diversification Approaches 133

If uncertain parameters occur in both the objective and constraints, then the

robust version is as follows:

min
x

max
p∈U

f(x,p)

s.t. max
p∈U

gi(x,p) ≤ 0, i = 1, . . . ,m.

As we detail in Chapter 19, for suitable types of uncertainty sets the above robust

versions can be rewritten as an optimization problem that is manageable albeit

via more involved optimization machinery.

7.5 Other Diversification Approaches

The challenges associated with expected return estimation and the input sensitiv-

ity of mean–variance models have given rise to quantitative portfolio construction

approaches that eschew expected return estimation and focus on managing risk

only. We next discuss some popular approaches of this kind that have led to

the development of a variety of investment products in the asset management

industry.

AssumeV is the covariance matrix of asset returns in some investment universe

and σ is the vector of volatilities (standard deviations) of the asset returns. In

particular, the diagonal entries of V are the squares of the entries of σ.

The minimum-risk portfolio is the portfolio in the efficient frontier of minimum

variance. In the absence of constraints, this portfolio is the solution to the

following quadratic programming model:

min
x

xTVx

s.t. 1Tx = 1.

That is,

x∗ =
1

1TV−11
V−11.

For the special case V = I (the N × N identity matrix) the minimum-risk

portfolio is the so-called equally weighted portfolio

x∗
i =

1

N
, i = 1, . . . , N,

where N is the number of assets in the universe.

On the other hand, if V is diagonal, that is, V = diag(σ)2, then the portfolio

components are proportional to the inverse of the squares of the volatilities:

x∗
i =

1/σ2
i∑N

i=1 1/σ
2
i

, i = 1, . . . , N.

In particular, this portfolio is the value-weighted portfolio if the capitalization of

asset i is used as a proxy for 1/σ2
i .

134 Sensitivity of Mean–Variance Models to Input Estimation

We next discuss two more recent diversification approaches, namely risk parity

and maximum diversification. To that end, we first discuss the related concept

of risk contribution. Observe that the risk (standard deviation) of a portfolio

x = (x1, . . . , xN) is given by

σP (x) =
√
xTVx.

If we compute the partial derivative of this portfolio with respect to xi, we obtain

the marginal contribution to risk of asset i:

MCRi(x) =
∂σP (x)

∂xi
=

(Vx)i√
xTVx

, i = 1, . . . , N.

The contribution to risk of asset i is:

CRi(x) = xi ·MCRi(x) =
xi · (Vx)i√

xTVx
, i = 1, . . . , N.

Observe that
N∑
i=1

CRi(x) =
√
xTVx = σP (x).

Consequently, we say that x is a risk-parity portfolio if all the assets in the

portfolio have the same contribution to risk; that is, if

CRi(x) =
σP (x)

N
, i = 1, . . . , N.

Again, in the special case when V = diag(σ)2, the fully invested risk-parity

portfolio is

x∗
i =

1/σi∑N
i=1 1/σi

, i = 1, . . . , N.

For a general covariance matrix V and portfolio constraints, it may not be

possible to attain perfect risk parity. In this case, we can instead minimize some

kind of measure of deviation from risk parity. Here are some choices for examples

of these kinds of measures proposed in the literature:

DRP1(x) =
N∑
i=1

N∑
j=1

(xi · (Vx)i − xj · (Vx)j)
2

DRP2(x) =
N∑
i=1

(
xi · (Vx)i
xTVx

− 1

N

)2

DRP3(x) =

N∑
i=1

∣∣∣∣xi · (Vx)i
xTVx

− 1

N

∣∣∣∣ .
The optimization problem associated with minimizing any of these deviation

measures is in general quite a bit more challenging than other mean–variance

models, as these problems are not convex. The development of efficient numerical

7.6 Exercises 135

algorithms to solve these kinds of optimization problems is a topic of current

research.

Another approach to diversification is maximum diversification (Choueifaty

and Coignard, 2008). More precisely, maximize the diversification ratio

σTx√
xTVx

,

where σ is the vector of asset volatilities. A motivation for this approach can

be given as follows: Observe that the diversification ratio is proportional to

the Sharpe ratio if μ is proportional to σ. Hence maximizing diversification

is equivalent to maximizing the Sharpe ratio under the assumption that the

expected returns of the assets are proportional to their volatilities.

In the absence of other constraints, the fully invested maximum diversification

portfolio is the solution to the optimization problem

min
x

σTx√
xTVx

s.t. 1Tx = 1.
(7.7)

In the special case when V = diag(σ)2, the solution to (7.7) coincides with the

fully invested risk-parity portfolio:

x∗
i =

1/σi∑N
i=1 1/σi

, i = 1, . . . , N.

7.6 Exercises

Exercise 7.1 The purpose of this exercise is to provide a derivation of the

Black–Litterman posterior formula.

(a) Consider the case when views are certain; that is, when Ω = 0. In this case

if we stack the equations for the prior and for the views we get[
π

q

]
=

[
μ+ επ
Pμ

]
, επ ∼ N(0,Q).

The estimation problem can then be stated as the following constrained

weighted least-squares problem:

min
μ

(π − μ)TQ−1(π − μ)

s.t. Pμ = q.

(i) Write down the optimality conditions for this constrained problem.

(ii) Show that after solving the optimality conditions we obtain

μ̂ = π +QPT(PQPT)−1(q−Pπ).

136 Sensitivity of Mean–Variance Models to Input Estimation

(b) Now consider the case Ω =

[
Ω11 0

0 0

]
, where Ω11 is non-singular. This

corresponds to the case when the views can be split in two blocks and the

second block of views are certain:

Pμ =

[
P1μ

P2μ

]
=

[
q1 + ε1

q2

]
, ε1 ∼ N(0,Ω11).

In this case if we stack the equations for the prior and for the views we

get ⎡⎣π

q1

q2

⎤⎦ =

⎡⎣ μ+ επ
P1μ+ ε1

P2μ

⎤⎦ ,

[
επ
ε1

]
∼ N(0,Σ), Σ =

[
Q 0

0 Ω11

]
.

The estimation problem can then be stated as the following constrained

weighted least-squares problem:

min
μ

[
π − μ

q1 −P1μ

]T
Σ−1

[
π − μ

q1 −P1μ

]
s.t. P2μ = q2.

(i) Write down the optimality conditions for this constrained problem.

(ii) Show that after solving the optimality conditions we obtain

μ̂ = π +QPT(PQPT +Ω)−1(q−Pπ).

(c) *Reduce the case when Ω is a general covariance matrix to the case dis-

cussed in step (b). To that end, use the following fact from matrix algebra:

if Ω is symmetric and positive semidefinite, then there exists an orthogonal

matrix U and a diagonal matrix Λ with non-negative entries such that

Ω = UΛUT. Use U to make a change of variables so as to write the views

as in step (b) and conclude that the expression (7.3) for the posterior μ̂

holds.

Exercise 7.2 The purpose of this exercise is to explore the effect of estima-

tion error on the computation of efficient portfolios by comparing the “true”,

“estimated”, and “actual” efficient frontiers. To that end, assume the expected

return and covariance matrix in the Excel spreadsheet “Exercise 7.2 & 7.3 Eight

Assets” are the “true” values for the expected returns and covariances for a set

of eight assets. These are monthly expected returns and covariances.

Next, using these “true” values and assuming a multivariate normal distribu-

tion for the returns, generate monthly returns for ten years. You may find the

MATLAB multivariate normal random number generator mvnrnd useful for this

purpose.

(a) Compute the sample mean and the sample covariance matrix of the returns

you generated.

7.6 Exercises 137

(b) Compute at least ten long-only efficient portfolios along the efficient frontier

based on the estimates found in part (a). Choose efficient portfolios whose

expected returns range from that of the long-only minimum-variance portfo-

lio to that of the long-only portfolio with maximum expected returns. Save

these efficient portfolios.

(c) Now compute the “actual” expected returns and standard deviations for the

portfolios found in step (b). These are the values of true expected returns

and standard deviation of these portfolios.

(d) On the same figure plot the “estimated” efficient frontier found in (b), the

“actual” frontier from step (c), and the “true” frontier (the one we would

get if we used the true parameters).

(e) Repeat the above steps (generate a ten-year history, estimate, compute effi-

cient portfolios) a few times. What do you observe?

Exercise 7.3 The Excel spreadsheet “Exercise 7.2 & 7.3 Eight Assets” provides

monthly expected returns and covariance matrix for eight asset classes.

(a) Find the long-only portfolio with maximum Sharpe ratio, assuming a zero

risk-free interest rate.

(b) Assume your initial portfolio is equally divided among the eight asset classes.

Repeat step (a) but under the additional restriction that the two-sided

turnover is at most 60%.

(c) Assume the benchmark is an equally divided portfolio and the risk-free

interest rate is zero. Find the vector of equilibrium returns π.

(d) Suppose an investor has the following two views:

View 1: the return on Euro bonds will be 0.40%.

View 2: the return on an equally weighted portfolio of USA and UK stocks

will be 1.2%.

Use the Black–Litterman model to merge these views with the equilibrium

returns. Assume the investor has total confidence in the views.

Exercise 7.4 Consider the problem of finding the maximum diversified fully

invested portfolio in a universe of n risky assets:

max
x

σTx√
xTVx

s.t. 1Tx = 1.

Here σ is the vector of assets volatilities and V is the covariance matrix.

(a) Show that the maximum diversified portfolio (i.e., the solution to the above

problem) is

xMD :=
1

1TV−1σ
·V−1σ.

138 Sensitivity of Mean–Variance Models to Input Estimation

(b) Use part (a) to show that

xMD :=
σ2
MD

σA
·V−1σ,

where σMD and σA are respectively the volatility of xMD and the weighted

average volatility of the assets in xMD. In other words,

σ2
MD = xT

MDVxMD, σA = σTxMD.

(c) Suppose the covariance matrix has the following constant-correlation form:

For some ρ ∈ (0, 1)

Vii = σ2
i , Vij = ρσiσj , for i = 1, . . . , n, and j = 1, . . . , n, with i �= j.

In matrix form, we can write the above constant-correlation matrix as fol-

lows:

V = ρσσT + (1− ρ)Diag(σ)2,

where σ is the vector with components σi, i = 1, . . . , n.

Show that in this case the holdings of the maximum diversified portfolio

xMD are given by

xi =
1∑n

i=1 1/σi
· 1

σi
, i = 1, . . . , n.

Exercise 7.5 The purpose of this exercise is to visualize how the covariance

matrix gets distorted when it is estimated using a finite set of observations. The

exercise also explores how a shrinkage technique of Ledoit and Wolf can mitigate

this kind of distortion.

(a) Assume n = 10 assets have returns that follow a multivariate normal distri-

bution with expected returns equal to zero and true covariance matrix equal

to the n× n diagonal matrix

V =

⎡⎢⎢⎢⎢⎢⎣
0.8

0.85
. . .

1.2

1.25

⎤⎥⎥⎥⎥⎥⎦ .

(The diagonal entries are equally spaced at 0.05 intervals.)

Generate T = 120 samples rt, t = 1, . . . , T , from this joint distribution.

Each of these samples rt ∈ R10 is drawn from the ten-dimensional multivari-

ate normal distribution N(0,V). You may find the MATLAB multivariate

normal random number generator mvnrnd useful for this purpose.

7.6 Exercises 139

(i) Use the T samples to estimate the sample covariance matrix V̂ as

follows. Let r̄ := (1/T)
∑T

t=1 rt, zt := rt − r̄, t = 1, . . . , T, and

V̂ :=
1

T

T∑
t=1

ztz
T
t .

Plot the eigenvalues both of the true covariance matrix V and of the

estimated covariance V̂ on the same plot. Do you observe anything

peculiar?

(ii) Using the estimated covariance V̂ find the estimated minimum-risk fully

invested portfolio x̂. Compute the estimated minimum variance x̂TV̂x̂,

the actual minimum variance x̂TVx̂, and the true minimum variance

(x∗)TVx∗, where x∗ is the true minimum-risk fully invested portfolio

for V. What do you observe?

(iii) Repeat parts (i) and (ii) several times (anywhere from a handful to a

few thousand times). What do you observe?

(b) We will next apply the shrinkage technique of Ledoit and Wolf. To that end,

let λi, i = 1, . . . , n, denote the eigenvalues of the sample covariance matrix

V̂ and λ̄ := (1/n)
∑n

i=1 λi. Define C := λ̄I and

α := min

⎛⎜⎜⎜⎜⎝ 1

T
·

1

T

T∑
t=1

trace((ztz
T
t − V̂)2)

trace((V̂ −C)2)
, 1

⎞⎟⎟⎟⎟⎠ .

Finally consider the shrunken matrix

V̄ := (1− α)V̂ + αC.

(i) Plot the eigenvalues of the true covariance matrix V, of the sample

covariance V̂, and of the shrunken covariance V̄ on the same plot.

What do you observe now?

(ii) Using the shrunken covariance V̄ find the estimated minimum-risk fully

invested portfolio x̄. Compute the estimated minimum variance x̄TV̄x̄,

the actual minimum variance x̄TVx̄, and the true minimum variance

(x∗)TVx∗, where x∗ is the true minimum-risk fully invested portfolio

for V. What do you observe? Are the results any different from part

(a)(ii)?

(iii) Repeat parts (i) and (ii) several times (anywhere from a handful to a

few thousand times). What do you observe? Are the results any different

from part (a)(iii)?

8 Mixed Integer Programming:
Theory and Algorithms

8.1 Mixed Integer Programming

The types of optimization models that we have discussed so far, namely linear

and quadratic programming, allow variables to take a continuum of values. In

particular, the numerical solutions to these kinds of models may have fractional

values. For instance, the solution to a portfolio construction model could suggest

a plan to purchase 3205.76 shares of stock XYZ. In many cases it is natural to

round this value and to interpret it as a suggestion to purchase 3205 or even

3200 shares of stock XYZ. However, if a variable in an optimization model is

associated with choosing among two or more alternatives, for example, as in the

capital budgeting problem described below, then a model that suggests taking

fractions of each of the alternatives would be of limited value. Instead, a binary

decision, namely “to choose” or “not to choose”, needs to be made for each

alternative.

In general, an integer variable in an optimization model is a variable that is

restricted to take integer values only. A mixed integer program is an optimization

problem with the constraint that some of the variables must take integer values.

In particular a mixed integer linear program is a problem of the form

min
x

cTx

s.t. Ax = b

Dx ≥ d

xj ∈ Z, j ∈ J

(8.1)

for some vectors c ∈ Rn, b ∈ Rm, d ∈ Rp, matrices A ∈ Rm×n, D ∈ Rp×n, and

subset J ⊆ {1, . . . , n} of the variables. When all variables are restricted to be

integer, that is, when J = {1, . . . , n}, the problem (8.1) is called a pure integer

linear program.

An important case occurs when a model includes binary variables; that is,

variables that are restricted to take the value 0 or 1. When all the variables in

a mixed integer program are of this kind, it is called a binary program. As the

examples below show, binary variables enable the modeling of important realistic

features such as logical constraints, cardinality and threshold constraints, and

others. However, this improvement in modeling power comes with a tradeoff in

computational cost. The presence of a significant number of integer variables in

8.1 Mixed Integer Programming 141

an optimization problem can make it extremely difficult or impossible to solve

unless there is a specific exploitable structure.

Example 8.1 (Capital budgeting) Suppose we have a capital of 19 million dollars

for long-term investment and have identified four investment opportunities with

the following investment requirements and net present values (in million dollars):

Investment 1 Investment 2 Investment 3 Investment 4

Required investment 7 10 6 3
Net present value 9 11 7 4

What investments should we choose to maximize our total net present value?

Each investment is a “take it or leave it” opportunity: the investment must be

funded entirely or not at all.

This problem can be formulated as the following binary linear programming

model.

Binary linear programming model for capital budgeting

Variables:

xi =

{
1 if investment i is undertaken

0 otherwise
for i = 1, . . . , 4.

Objective, in millions of dollars:

max 9x1 + 11x2 + 7x3 + 4x4

Constraints:

7x1 + 10x2 + 6x3 + 3x4 ≤ 19 (budget constraint)

xi ∈ {0, 1} for i = 1, . . . , 4 (binary variables).

The optimal solution to the linear programming relaxation of this model,

obtained by relaxing the binary constraints xi ∈ {0, 1}, for i = 1, . . . , 4, to

0 ≤ xi ≤ 1, for i = 1, . . . , 4, is

x∗ =

⎡⎢⎢⎣
1

0.3

1

1

⎤⎥⎥⎦ .

This is not a feasible solution as x∗
2 is not binary. If we round x∗

2 to 0 we get a

feasible solution. However, a better (and in fact the optimal) solution is

x∗ =

⎡⎢⎢⎣
0

1

1

1

⎤⎥⎥⎦ .

142 Mixed Integer Programming: Theory and Algorithms

This could be counterintuitive as Investment 1 has the best “bang for the buck”;

that is, has the highest ratio of net present value to investment requirement.

The presence of binary variables also readily enables the modeling of logical

restrictions. For example, the logical restriction

If Investment 2 is made then Investment 4 must also be made

can be modeled via the constraint

x2 ≤ x4.

Similarly, the logical constraint

If Investment 1 is made then Investment 3 must not be made

can be modeled via the constraint

x1 + x3 ≤ 1.

Example 8.2 (Clustering) Clustering is a popular technique in data analysis.

It is concerned with partitioning a collection of objects into subsets or “clusters”

so that the objects within each cluster are more closely related with each other

than with objects assigned to different clusters. Suppose we wish to partition a

collection of N objects into K < N clusters based on some kind of similarity

measure:

ρij = similarily measure between objects i, j.

To give a financial flavor to this example, assume the objects to be clustered are

N stocks and the similarity measure ρij is the correlation between the returns

of stocks i and j.

We next describe a possible approach to the above clustering problem via

binary programming. This approach is closely related to the popular K-median

problem. Before diving into the binary programming formulation, we describe

some of the main ideas. Assume the objects are indexed 1, . . . , N and are to

be partitioned into the K clusters C1, . . . , CK . A key idea is to designate an

element j� in each cluster C� as the centroid of cluster C�. This choice suggests

the following natural measure of the similarity within cluster C�:∑
i∈C�

ρi,j�

and in turn it gives the following overall measure of the quality of the clusters

C1, . . . , CK :
K∑
�=1

∑
i∈C�

ρi,j� .

The following crucial observation is key in our formulation. The centroid j�
represents the elements in cluster C�. Indeed, each cluster contains precisely the

objects assigned to its centroid, and the clusters are completely determined by

8.2 Numerical Mixed Integer Programming Solvers 143

the choice of the centroids. These ideas are formalized in the following binary

linear programming model.

Binary linear programming model for clustering
Variables:

yj =

{
1 if j is a centroid

0 otherwise
for j = 1, . . . , N.

xij =

{
1 if i is represented by j

0 otherwise
for i, j = 1, . . . , N.

Objective:

max

N∑
j=1

N∑
i=1

ρijxij .

Constraints:

N∑
j=1

yj = K (choose K centroids)

N∑
j=1

xij = 1, for i = 1, . . . , N (each object must be
represented by one centroid)

xij ≤ yj , for i, j = 1, . . . , N (i is represented by j

only if j is a centroid)

xij , yj ∈ {0, 1} for i, j = 1, . . . , N (binary variables).

Another correct formulation is obtained if we replace the third set of N2

constraints

xij ≤ yj , for i, j = 1, . . . , N

with the set of N constraints

N∑
i=1

xij ≤ Nyj , for j = 1, . . . , N.

8.2 Numerical Mixed Integer Programming Solvers

Excel Solver

The steps required for solving a mixed integer (or binary) linear program in

Excel Solver are nearly identical to those for solving linear programs. The only

new step is to state that some variables are integer (or binary).

Figure 8.1 displays a printout of an Excel spreadsheet implementation of the

binary linear programming model for Example 8.1 as well as the dialog box

obtained when we run the Excel add-in Solver. The spreadsheet model con-

tains the three components of the binary program. The decision variables are

144 Mixed Integer Programming: Theory and Algorithms

in the range B7:E7. The left-hand side of the budget constraint is in cell B9

and the objective function is in cell B10. The Excel formulas in cells B9 and B10

are SUMPRODUCT(B4:E4,B7:E7) and SUMPRODUCT(B5:E5,B7:E7) respectively. In

addition to these components, notice the constraint

B7:E7 = binary

in the Solver dialog box.

Figure 8.1 Spreadsheet implementation and the Solver dialog box for the capital
budgeting model

MATLAB CVX

Figure 8.2 displays a CVX script for the same problem.

Figure 8.2 MATLAB CVX code for capital budgeting model

Using either of these solvers we obtain the optimal solution:

x∗ =

⎡⎢⎢⎣
0

1

1

1

⎤⎥⎥⎦ .

8.3 Relaxations and Duality 145

8.3 Relaxations and Duality

A relaxation of an optimization model

min
x

f(x)

s.t. x ∈ X
is another optimization model

min
x

f̃(x)

s.t. x ∈ X̃

that satisfies X ⊆ X̃ and f̃(x) ≤ f(x) for x ∈ X . In other words, a relaxation is

a less stringent optimization model obtained by “relaxing” some of the original

constraints and “relaxing” its objective function. Relaxation plays a central role

in a variety of algorithms for solving mixed integer programs. We next describe

two widely used types of relaxations for mixed integer programming, namely

linear programming and Lagrangian relaxations.

8.3.1 Linear Programming Relaxation

The linear programming relaxation of the mixed integer linear program (8.1) is

the linear program obtained by dropping the integrality constraints; that is,

min
x

cTx

s.t. Ax = b

Dx ≥ d.

(8.2)

Similarly, the linear programming relaxation of a mixed binary linear program

min
x

cTx

s.t. Ax = b

Dx ≥ d

xj ∈ {0, 1}, j ∈ J

(8.3)

is the linear program

min
x

cTx

s.t. Ax = b

Dx ≥ d

0 ≤ xj ≤ 1, j ∈ J.

(8.4)

The proof of the following proposition is straightforward and we leave it as an

exercise.

Proposition 8.3 Consider the mixed integer program (8.1) and its linear

programming relaxation (8.2). Then the following facts hold.

(a) The optimal value of the relaxation (8.2) is less than or equal to the optimal

value of the mixed integer linear program (8.1).

146 Mixed Integer Programming: Theory and Algorithms

(b) If the relaxation (8.2) is infeasible, then so is the mixed integer linear pro-

gram (8.1).

(c) If the optimal solution x∗ of the relaxation (8.2) satisfies x∗
j ∈ Z for j ∈ J

then x∗ is also an optimal solution to the mixed integer linear program (8.1).

The analogous facts also hold for the mixed binary linear program (8.3) and

its linear relaxation (8.4). Proposition 8.3 suggests a possible avenue for solving

(8.1): solve the (more tractable) linear programming relaxation (8.2). If this

solution satisfies the relevant integrality constraints, then we have solved (8.1).

If not, the lower bound obtained by solving (8.2) provides valuable information.

For instance, if we can find a feasible solution to (8.1), then the quality of this

solution can be assessed by comparing it with the lower bound obtained from

solving (8.2). The sections below elaborate on this idea. In particular, Section 8.4

sketches algorithms that solve mixed linear integer programs by systematically

solving a sequence of linear programming relaxations.

Proposition 8.3 also leads to the following somewhat counterintuitive conclu-

sion about integer programming formulations. As noted in Example 8.2, there

could be several correct and thus equivalent integer linear programming formula-

tions to a given problem. Among them, it is generally better to have a formulation

with a “tight” linear programming relaxation. Typically, a formulation with more

constraints has a tighter linear programming relaxation and hence might be easier

to solve.

8.3.2 Lagrangian Relaxation

The Lagrangian framework discussed in previous chapters can be extended to

obtain relaxations of an optimization model. The intuitive idea is to obtain a

relaxation of a model by shifting a set of “difficult” constraints to the objective.

To be more precise, consider an optimization problem of the form

min
x

cTx

s.t. Ax = b

x ∈ X ,

(8.5)

where the combined set of constraints Ax = b, x ∈ X is “difficult” but the set of

constraints x ∈ X is “easy”. (We will discuss a concrete example of this situation

in Section 8.3.3.) A relaxation for (8.5) can be obtained as follows. Assume u is

a vector of suitable dimension and consider the following problem without the

difficult constraints:

L(u) := min
x

cTx+ uT(b−Ax)

s.t. x ∈ X .
(8.6)

The problem (8.6) is a Lagrangian relaxation of (8.5). The following proposition

is in the same spirit as Proposition 8.3. Again, its proof is straightforward and

we leave it as an exercise.

8.3 Relaxations and Duality 147

Proposition 8.4 Consider the optimization problem (8.5) and its Lagrangian

relaxation (8.6) for some vector u. Then the following facts hold.

(a) The optimal value L(u) of the relaxation (8.6) is less than or equal to the

optimal value of (8.5).

(b) If the optimal solution x∗ of the relaxation (8.6) satisfies Ax∗ = b then x∗

is also an optimal solution to (8.5).

The Lagrangian dual of (8.5) is the problem of finding the best Lagrangian

relaxation

max
u

L(u),

where L(u) is the optimal value of (8.6). We note that the function u �→ L(u)

is concave; that is, u �→ −L(u) is convex. Thus the Lagrangian dual is a convex

optimization problem.

The Lagrangian relaxation and Lagrangian dual also extend to problems where

the set of difficult constraints involves both equalities and inequalities. We simply

need to be a bit careful about the sign of the multipliers for the inequality

constraints. Consider the optimization problem

min
x

cTx

s.t. Ax = b

Dx ≥ d

x ∈ X .

(8.7)

Given vectors u,v of suitable dimension with v ≥ 0 we obtain the following

Lagrangian relaxation:

L(u,v) := min
x

cTx+ uT(b−Ax) + vT(d−Dx)

s.t. x ∈ X .
(8.8)

We have the following extended version of Proposition 8.4.

Proposition 8.5 Consider the optimization problem (8.7) and its Lagrangian

relaxation (8.8) for some vectors u,v with v ≥ 0. Then the following facts hold.

(a) The optimal value L(u,v) of the relaxation (8.8) is less than or equal to the

optimal value of (8.7).

(b) If the optimal solution x∗ of the relaxation (8.8) satisfies Ax∗ = b, Dx∗ ≥ d,

and vT(Dx∗ − d) = 0, then x∗ is also an optimal solution to (8.7).

The Lagrangian dual of (8.7) is

max
u,v

L(u,v)

s.t. v ≥ 0.

148 Mixed Integer Programming: Theory and Algorithms

8.3.3 A Heuristic based on Lagrangian Relaxation for Clustering

We next describe a particularly successful application of Lagrangian relaxation

for the clustering problem introduced in Example 8.2, namely,

Z := max

N∑
i=1

N∑
j=1

ρijxij

s.t.

N∑
j=1

yj = K

N∑
j=1

xij = 1 for i = 1, . . . , N

xij ≤ yj for i, j = 1, . . . , N

xij , yj ∈ {0, 1} for i, j = 1, . . . , N.

(8.9)

The above model can be solved by general-purpose solvers such as Excel

Solver or CVX, or even commercial solvers like Gurobi or CPLEX, only for rela-

tively small values of N . One of the main difficulties is that the model involves

N2 + N binary variables and N2 + N + 1 constraints. For a modest value of

N like N = 100, the model becomes unmanageable if tackled by a standard

solver. At the same time, in practical clustering problem instances N can easily

range in the hundreds or thousands. A heuristic based on Lagrangian relaxation

developed by Cornuéjols et al. (1977) can compute approximate solutions to (8.9)

for virtually unlimited values of N . We next describe the main ideas behind this

heuristic. Consider the following Lagrangian relaxation to (8.9): given a vector

of multipliers u =
[
u1 · · · uN

]T
let

L(u) := max
x,y

N∑
i=1

N∑
j=1

ρijxij +

N∑
i=1

ui

(
1−

N∑
j=1

xij

)

s.t.

N∑
j=1

yj = K

xij ≤ yj , i, j = 1, . . . , N

xij , yj = 0 or 1, i, j = 1, . . . , N.

(8.10)

This Lagrangian relaxation has moved the “difficult” constraints
∑N

j=1 xij =

1, with i = 1, . . . , N , to the objective via the multipliers u and has kept the

remaining constraints as the “easy” ones. This Lagrangian relaxation satisfies

the following key properties:

Property 1: L(u) ≥ Z, where Z is the optimal value of (8.9). This is an

immediate consequence of Proposition 8.3.

8.3 Relaxations and Duality 149

Property 2: For a given u, (8.10) is easy to solve. To see this, first notice that

L(u) := max
x,y

N∑
i=1

N∑
j=1

(ρij − ui)xij +

N∑
i=1

ui

s.t.

N∑
j=1

yj = K

xij ≤ yj , i, j = 1, . . . , N

xij , yj ∈ {0, 1}, i, j = 1, . . . , N.

Given y, this shows that xij should be set to its upper bound yj or to its

lower bound 0, depending on whether the objective coefficient ρij − ui

of xij is positive or negative. Therefore L(u) can be rewritten as

L(u) = max
y

N∑
j=1

Cjyj +

N∑
i=1

ui

s.t.

N∑
j=1

yj = K

yj ∈ {0, 1}, j = 1, . . . , N

(8.11)

for Cj :=
∑N

i=1 max(0, ρij − ui). Finally, observe that the solution to

(8.11) is readily computable: Sort the Cj in decreasing order, say Cj1 ≥
Cj2 ≥ · · · ≥ CjN . The optimal solution to (8.11) is obtained by setting

ȳj1 = · · · = ȳjK = 1 and the remaining ȳjs to zero. We get L(u) =∑K
t=1 Cjt +

∑N
i=1 ui.

Property 3: Based on the optimal solution ȳ of L(u) obtained in Property 2,

one can get a heuristic (ad hoc) solution (x̄, ȳ) for (8.9) and an assess-

ment of how good it is.

• Each u gives the upper bound L(u) ≥ Z and the following heuristic

feasible solution x̄ to (8.9). Let ȳ solve (8.11). Next, for each

i = 1, . . . , N , assign i to the most similar centroid among the K

centroids such that ȳj = 1. That is, let j(i) = argmaxj:ȳj=1ρij and

let x̄ be as follows:

x̄ij =

{
1 if j = j(i)

0 otherwise.

• If
∑

i,j ρij x̄ij and L(u) are close to each other, then we have a near-

optimal solution. To see this, observe that
∑

i,j ρij x̄ij ≤ Z ≤ L(u).

Thus if
∑

i,j ρij x̄ij and L(u) are close to each other, they must be

close to the optimal value Z as well.

150 Mixed Integer Programming: Theory and Algorithms

• To get the best upper bound L(u) together with a heuristic solution

of the above kind, solve

min
u

L(u).

This turns out to be a manageable convex optimization problem.

In particular, it is amenable to a subgradient algorithm that we

describe in Chapter 20.

8.4 Algorithms for Solving Mixed Integer Programs

The modeling power of mixed integer programming comes with some cost. Mixed

integer programming belongs to the class of NP-hard computational problems

(Conforti et al., 2014). In layman’s terms, this means that, unlike convex opti-

mization problems, which can be solved with fast and reliable numerical algo-

rithms, the same cannot be expected for mixed integer programs. The algorithms

that we describe next can in principle solve any mixed integer linear programs in

finitely many steps. However, the NP-hardness of integer programming implies

that for some problem instances the computational cost incurred by these algo-

rithms could be insurmountable even for any foreseeable amount of computa-

tional power.

The two most popular generic methods for solving mixed integer linear

programs are cutting planes and branch and bound. Both of these methods rely

extensively on linear programming relaxations. A cutting plane is a new linear

constraint to the linear programming relaxation that “cuts off” non-integer

solutions without cutting off any feasible solution of the original mixed integer

linear program. The method of cutting planes was proposed by Dantzig et

al. (1954) in the context of the traveling-salesman problem, and by Gomory

(1958, 1960) for pure integer linear programs and mixed integer linear programs,

respectively. The method is based on solving a sequence of increasingly tighter

linear programming relaxations by adding cutting planes until a solution to the

mixed integer linear program is found. On the other hand, Land and Doig (1960)

proposed a “branch-and-bound” method to solve mixed integer linear programs.

Branch and bound is an enumerative procedure based on dividing the original

problem into a number of smaller problems (branching) and evaluating their

quality based on their linear programming relaxations (bounding). Branch and

bound was the most effective technique for solving mixed integer linear programs

for multiple decades. However, in the 1990s, cutting planes made a resurgence.

Current state-of-the-art integer programming solvers combine cutting planes

and branch and bound into an overall procedure called “branch and cut”, a term

coined in Padberg and Rinaldi (1987).

8.4 Algorithms for Solving Mixed Integer Programs 151

8.4.1 Branch-and-Bound Method

The gist of the branch-and-bound method can be easily grasped via a couple of

examples. Consider the following integer linear program (see Figure 8.3):

max x1 + x2

s.t. −x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1, x2 ≥ 0

x1, x2 ∈ Z.

(8.12)

x2

max x1 + x2

x1

Figure 8.3 A two-variable integer program

Step 1. Solve the linear programming relaxation of (8.12), namely

max x1 + x2

s.t. −x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1, x2 ≥ 0.

The solution is x̄ =
[
1.5 3.5

]T
with objective value 5. Thus 5 is an

upper bound on the optimal value of (8.12). The vector x̄ =
[
1.5 3.5

]T
is not a feasible solution to (8.12) since the entries of x̄ are fractional.

How can we exclude this fractional solution while preserving the feasible

integral solutions? One way is to branch: create two new linear programs,

one with the additional constraint x1 ≤ 1, and the other with the

additional constraint x1 ≥ 2. Clearly, any solution to the integer program

must be feasible to one or the other of these two problems. We will solve

both of these linear programs.

152 Mixed Integer Programming: Theory and Algorithms

Step 2. Solve the first of the two new linear programs:

max x1 + x2

s.t. −x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1 ≤ 1

x1, x2 ≥ 0.

The solution is x̄ =
[
1 3

]T
with objective value 4. This is a feasible

integral solution to (8.12). So now we have the upper bound 5 and the

lower bound 4 on the optimal value of (8.12).

Step 3. Solve the second new linear program:

max x1 + x2

s.t. −x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1 ≥ 2

x1, x2 ≥ 0.

The solution is x̄ =
[
2 1.5

]T
with objective value 3.5. Because this

value is worse than the lower bound of 4 that we already have, we do not

need any further branching. We conclude that the vector x̄ =
[
1 3

]T
with objective value 4 found in Step 2 is an optimal solution to (8.12).

The solution of the above integer program by branch and bound required the

solution of three linear programs. These problems can be arranged in a branch-

and-bound tree, see Figure 8.4. Each node of the tree corresponds to one of the

problems that were solved.

x1 = 1.5, x2 = 3.5
z = 5

x1 = 1, x2 = 3
z = 4

x1 = 2, x2 = 1.5
z = 3.5

x1 ≤ 1 x1 ≥ 2

Figure 8.4 Branch-and-bound tree for (8.12)

We can stop the enumeration at a node of the branch-and-bound tree for three

different reasons (when they occur, the node is said to be pruned).

Pruning by integrality occurs when the corresponding linear program has an

optimal solution that is integral. This occurred in Step 2 in the above

example.

8.4 Algorithms for Solving Mixed Integer Programs 153

Pruning by bounds occurs when the objective value of the linear program at

that node is worse than the value of the best feasible solution found so

far. This occurred in Step 3 in the above example.

Pruning by infeasibility occurs when the linear program at that node is infea-

sible. This did not occur in any of the steps in the above example.

We next illustrate the branch-and-bound method is a slightly modified instance

that leads to a larger branch-and-bound tree. Consider the integer linear pro-

gram:

max 3x1 + x2

s.t. −x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1, x2 ≥ 0

x1, x2 ∈ Z.

(8.13)

Figure 8.5 depicts the branch-and-bound tree for this problem.

x1 = 1.5, x2 = 3.5

x1 = 1, x2 = 3 x1 = 2, x2 = 1.5

x1 ≤ 1 x1 ≥ 2

x1 = 2, x2 = 1

x2 ≤ 1 x2 ≥ 2

x1 ≤ 2 x1 ≥ 3

z = 8

z = 6 z = 7.5

z = 7.375

z = 7

x1 = 2.125, x2 = 1

Figure 8.5 Branch-and-bound tree for (8.13)

Algorithm 8.1 sketches the branch-and-bound method for a general mixed

integer linear program of the form (8.1). The branch-and-bound method keeps a

list of linear programming problems obtained by relaxing the integrality require-

ments on the variables and imposing constraints such as xj ≤ uj or xj ≥ lj . Each

such linear program corresponds to a node of the branch-and-bound tree. It will

be convenient to let Ni denote both a node and its corresponding linear program

in the branch-and-bound tree. Let xi and zi denote respectively the optimal

solution and optimal value of the linear program Ni with the convention zi = ∞

154 Mixed Integer Programming: Theory and Algorithms

if Ni is infeasible. Let N0 denote the root node of the branch-and-bound tree: it

corresponds to the linear programming relaxation (8.2) of (8.1). Throughout the

algorithm we let L denote the list of nodes that must still be solved. These are

the nodes that have not been pruned nor branched on. Throughout the algorithm

x∗ denotes the best feasible solution found so far and zU its objective value. The

value zU is also the best upper bound on the optimal value z of (8.1) so far.

Initially, the bound zU can be derived from a heuristic solution to (8.1), or it

can be set to +∞ if no heuristic solution is available.

Algorithm 8.1 Branch-and-bound method

1: L := {N0}, zU := +∞, x∗ := ∅ (initialization)

2: if L = ∅ then HALT and return the vector x∗ end if (termination)

3: choose and delete a node Ni from L and solve it (select next node to solve)

4: if zi ≥ zU then go to step 2 end if (prune Ni)

5: if xi is feasible for (8.1) then (update upper bound and prune)

zU := zi; x
∗ := xi

delete from L all nodes Nk with zk ≥ zU
go to step 2

6: else (branch from Ni)

choose j ∈ J such that x̄i
j �∈ Z

branch on variable xj , that is, construct two new linear programs

N1
i : add the new constraint xj ≤ �x̄i

j� to Ni

N2
i : add the new constraint xj ≥ �x̄i

j� to Ni

add N1
i , N

2
i to L and go to step 2

7: end if

There are a variety of strategies for node selection (step 3) and for branching

(step 6). Even more important to the success of branch and bound is the ability

to prune the tree (steps 4 and 5). This will occur when zU is a good upper

bound and when zi is a good lower bound. For this reason, it is crucial to have a

formulation of (8.1) whose linear programming relaxation has an optimal value

zLP as close as possible to the optimal value z of (8.1).

8.4.2 Cutting-Plane Method

A valid inequality for a mixed integer linear program is a linear inequality

that is satisfied by all feasible solutions. A cutting plane of a mixed integer

linear program is a valid inequality that cuts off some solutions to its linear

programming relaxation.

As we noted in Proposition 8.3, if an optimal solution of the linear program-

ming relaxation satisfies the integrality constraints of a mixed integer linear

program, then it is an optimal solution to the mixed integer linear program.

The gist of cutting-plane methods is the observation that, when the latter does

8.4 Algorithms for Solving Mixed Integer Programs 155

not occur, the linear programming relaxation can be strengthened by adding a

cutting plane that cuts off its optimal solution.

Gomory (1960) proposed the following approach for solving mixed integer

linear programs. Assume the variables in the problem are non-negative and

satisfy the equality constraint∑
j∈J

ajxj +
∑
j �∈J

ajxj = b. (8.14)

Assume that b is not an integer and let f0 be its fractional part, i.e. b = �b�+f0,

where 0 < f0 < 1. For j ∈ J , let aj = �aj�+ fj , where 0 ≤ fj < 1. Replacing in

(8.14) and moving sums of integer products to the right, we get∑
j∈J: fj≤f0

fjxj +
∑

j∈J: fj>f0

(fj − 1)xj +
∑
j �∈J

ajxj = k + f0,

where k is some integer. Using the fact that k ≤ −1 or k ≥ 0, we must have

either

−
∑

j∈J: fj≤f0

fj
1− f0

xj +
∑

j∈J: fj>f0

1− fj
1− f0

xj −
∑
j �∈J

aj
1− f0

xj ≥ 1

or ∑
j∈J: fj≤f0

fj
f0

xj −
∑

j∈J: fj>f0

1− fj
f0

xj +
∑
j �∈J

aj
f0

xj ≥ 1.

This is of the form
∑

j cjxj ≥ 1 or
∑

j djxj ≥ 1, which implies
∑

j max(cj , dj)xj ≥
1 because the variables xj are non-negative.

Which is the larger of the two coefficients cj and dj in our case? The answer

is easy since one coefficient is positive and the other is negative for each variable

xj . Therefore, we get∑
j∈J: fj≤f0

fj
f0

xj +
∑

j∈J: fj>f0

1− fj
1− f0

xj +
∑

j �∈J: aj>0

aj
f0

xj −
∑

�∈J: aj<0

aj
1− f0

xj ≥ 1.

(8.15)

Inequality (8.15) is valid for all x ≥ 0 that satisfy (8.14) with xj integer for

j ∈ J . It is called a Gomory mixed integer cut.

We illustrate the use of Gomory cuts on problem (8.12). To that end, we first

add slack variables x3 and x4 to turn the inequality constraints into equalities:

max x1 + x2

s.t. −x1 + x2 + x3 = 2

8x1 + 2x2 + x4 = 19

x1, x2, x3, x4 ≥ 0

x1, x2 ∈ Z.

Solving the linear programming relaxation by the simplex method we get the

156 Mixed Integer Programming: Theory and Algorithms

optimal basis B = {1, 2} and so the constraints of the linear programming

relaxation can be written as

x1 − 0.2x3 + 0.1x4 = 1.5

x2 + 0.8x3 + 0.1x4 = 3.5

x1, x2, x3, x4 ≥ 0.

The corresponding basic solution is x3 = x4 = 0, x1 = 1.5, x2 = 3.5 with

objective value z = 5. This solution is not integer. Let us generate the Gomory

cut corresponding to the equation

x1 − 0.2x3 + 0.1x4 = 1.5.

We have f0 = 0.5, f1 = f2 = 0, a3 = −0.2 and a4 = 0.1. Applying formula

(8.15), we get the Gomory cut

0.2

1− 0.5
x3 +

0.1

0.5
x4 ≥ 1, i.e., 2x3 + x4 ≥ 5.

Since x3 = 2+x1−x2 and x4 = 19−x1−2x2, we can express the above Gomory

cut in terms of x1, x2:

3x1 + 2x2 ≤ 9.

Figure 8.6 Formulation strengthened by a cut

Adding this cut to the linear programming relaxation, we get the following

8.5 Exercises 157

strengthened linear programming relaxation (see Figure 8.6):

max x1 + x2

s.t. −x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

3x1 + 2x2 ≤ 9

x1, x2 ≥ 0.

The optimal solution to this linear program is x1 = 1, x2 = 3 with objective

value z = 4. Since x1 and x2 are integer, this is the optimal solution to (8.12).

8.5 Exercises

Exercise 8.1 As the leader of an oil exploration drilling venture, you must

determine the best selection of four out of eight possible sites. Label the sites

s1, s2, . . . , s8 and the expected profits associated with each as p1, p2, . . . , p8.

(a) If site s3 is explored, then sites s1 and s2 must also be explored. Furthermore,

regional development restrictions are such that

(b) exploring sites s6 and s7 will prevent you from exploring site s8;

(c) exploring at least one of the sites s3 or s4 will prevent you from exploring

site s5.

The eight expected profits are pi = i for i = 1, . . . , 8. Formulate an integer

program to determine the best exploration scheme and solve numerically with

Solver.

Exercise 8.2 Consider the following projects for possible investments. For each

project, you are given the NPV as well as the cash outflows required during each

year (in millions of dollars).

NPV Year 1 Year 2 Year 3 Year 4

Project 1 30 12 4 4 0
Project 2 30 0 12 4 4
Project 3 20 3 4 4 4
Project 4 15 10 0 0 0
Project 5 15 0 11 0 0
Project 6 15 0 0 12 0
Project 7 15 0 0 0 13
Project 8 24 8 8 0 0
Project 9 18 0 0 10 4
Project 10 18 0 0 4 10

No partial investment is allowed in any of these projects. The firm has 18 million

dollars available for investment each year.

158 Mixed Integer Programming: Theory and Algorithms

(a) Formulate an integer linear program to determine the best investment plan.

(b) Formulate the following conditions as linear constraints.

(i) Exactly one of the projects 4, 5, 6, 7 must be invested in.

(ii) If Project 1 is invested in, then Project 2 cannot be invested in.

(iii) If Project 3 is invested in, then Project 4 must also be invested in.

(iv) If Project 8 is invested in, then either Project 9 or Project 10 or both

must also be invested in.

(v) If either Project 1 or Project 2 is invested in, then neither Project 9

nor Project 10 can be invested in.

Exercise 8.3 Consider the problem

max 20x1 + 10x2 + 10x3

s.t. 2x1 + 20x2 + 4x3 ≤ 15

6x1 + 20x2 + 4x3 = 20

x1, x2, x3 ≥ 0

x1, x2, x3 ∈ Z.

Solve its linear programming relaxation. Then, show that it is impossible to

obtain a feasible integral solution by rounding the values of the variables.

Exercise 8.4

(a) Compare the feasible solutions of the following three integer linear programs:

max 14x1 + 8x2 + 6x3 + 6x4

s.t. 28x1 + 15x2 + 13x3 + 12x4 ≤ 39

x1, x2, x3, x4 ∈ {0, 1},
(i)

max 14x1 + 8x2 + 6x3 + 6x4

s.t. 2x1 + x2 + x3 + x4 ≤ 2

x1, x2, x3, x4 ∈ {0, 1},
(ii)

max 14x1 + 8x2 + 6x3 + 6x4

s.t. 2x1 + x2 + x3 + x4 ≤ 2

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x1 + x4 ≤ 1

x1, x2, x3, x4 ∈ {0, 1}.

(iii)

(b) Compare the relaxations of the above integer linear programs obtained by

replacing x1, x2, x3, x4 ∈ {0, 1} by 0 ≤ xj ≤ 1 for j = 1, . . . , 4. Which is the

best formulation among (i), (ii), (iii) for obtaining a tight bound from the

linear programming relaxation?

Exercise 8.5 Prove Proposition 8.3.

Exercise 8.6 Prove Proposition 8.4.

8.5 Exercises 159

Exercise 8.7 Prove that the function u �→ L(u) defined in (8.6) is a concave

function.

Exercise 8.8 Prove Proposition 8.5.

Exercise 8.9 Let zLP denote the value of the linear programming relaxation

(8.2) and let zLD be the Lagrangian dual of the following Lagrangian relaxation

of (8.1):

L(u) := min
x

cTx+ uT(b−Ax)

s.t. Dx ≥ d

xj ∈ Z, j ∈ J.

Prove that zLP ≤ zLD.

Exercise 8.10 Use the branch-and-bound method to solve the binary linear

programming model:

max 8x1 + 11x2 + 6x3 + 4x4

s.t. 6.7x1 + 10x2 + 5.5x3 + 3.4x4 ≤ 19

8x1 + 2x2 ≤ 19

x1, x2, x3, x4 ∈ {0, 1}.
Compare the number of nodes in the branch-and-bound tree with the following

naive brute-force enumeration approach: check each of the 24 = 16 possible

values of x =
[
x1 x2 x3 x4

]T
with xi ∈ {0, 1}, for i = 1, . . . , 4, and pick the

best feasible solution among them.

Exercise 8.11 Solve the integer linear programs of Exercise 8.4 using your

favorite solver. In each case, report the number of nodes in the enumeration

tree. Is it related to the tightness of the linear programming relaxation studied

in Exercise 8.4(b)?

Exercise 8.12 Modify the branch-and-bound method (Algorithm 8.1) so that

it stops as soon as it has found a feasible solution that is guaranteed to be within

5% of the optimum.

Exercise 8.13 Consider the integer program

max 10x1 + 13x2

s.t. 10x1 + 14x2 ≤ 43

x1, x2 ≥ 0

x1, x2 ∈ Z.

(a) Introduce a slack variable and solve the linear programming relaxation by

the simplex method.

Hint: You should find the following optimal tableau:

max x2 + x3

s.t. x1 + 1.4x2 + 0.1x3 = 4.3

x1, x2, x3 ≥ 0

160 Mixed Integer Programming: Theory and Algorithms

with basic solution x1 = 4.3, x2 = x3 = 0.

(b) Generate a Gomory mixed integer (GMI) cut that cuts off this solution.

(c) Multiply both sides of the equation x1+1.4x2+0.1x3 = 4.3 by the constant

k = 2 and generate the corresponding GMI cut. Repeat for k = 3, 4 and 5.

Compare the five GMI cuts that you found.

(d) Add the GMI cut generated for k = 3 to the linear programming relaxation.

Solve the resulting linear program by the simplex method. What is the

optimum solution of the integer program?

9 Mixed Integer Programming
Models: Portfolios with
Combinatorial Constraints

This chapter presents several applications of integer and mixed integer pro-

gramming, namely combinatorial auctions, the lockbox problem, constructing an

index fund, and portfolio optimization with cardinality and threshold constraints.

All of these applications involve combinatorial features that can be modeled via

binary variables.

9.1 Combinatorial Auctions

A combinatorial auction is an auction that involves the concurrent sale of multi-

ple items. Examples include Federal Communications Commission (FCC) spec-

trum auctions, electricity markets, pollution right auctions, and auctions for

airport landing slots. In these kinds of auctions, bidders have preferences for

sets of items usually called bundles. The value that a bidder has for a bundle

may not necessarily be equal to the sum of the values that the bidder has for

individual items in the bundle. To take the bidders’ preferences into consider-

ation, combinatorial auctions allow bidders to submit bids on combinations of

items.

Specifically, let M be the set of items that the auctioneer has to sell and N

the set of bidders. A bid is a pair (S, bj(S)) where S ⊆ M , for j ∈ N , and bj(S)

is the price that bidder j is willing to pay for the bundle S. The combinatorial

auction problem or winner selection problem is the problem of identifying which

bids should be accepted to maximize the auctioneer’s revenue. This problem can

be formulated as a binary linear program.

Binary linear programming model for the combinatorial auction problem
Variables:

x(S, j) =

{
1 if bundle S is allocated to bidder j

0 otherwise

for S ⊆ M, j ∈ N.

Objective:

max
∑
S⊆M

∑
j∈N

bj(S)x(S, j).

162 Mixed Integer Programming: Portfolios with Constraints

Constraints:∑
S⊆M :i∈S

∑
j∈N

x(S, j) ≤ 1 for i ∈ M

(allocated bundles do not overlap).

x(S, j) ∈ {0, 1} for S ⊆ M, j ∈ N

(binary variables).

In some combinatorial auctions, bidders are awarded at most one of the bundles

that they bid on, even when these bundles are disjoint. This is easy to model by

adding the constraint∑
S⊆M

x(S, j) ≤ 1 for j ∈ N (each bidder receives at most one bundle).

For example, if there are four items for sale and the following bids have been

received: B1 = ({1}, 6), B2 = ({2}, 3), B3 = ({3, 4}, 12), B4 = ({1, 3}, 12),
B5 = ({2, 4}, 8), B6 = ({1, 3, 4}, 16), the winners can be determined by the

following integer program:

max 6x1 + 3x2 + 12x3 + 12x4 + 8x5 + 16x6

s.t. x1 + x4 + x6 ≤ 1 (item 1 is allocated at most once)

x2 + x5 ≤ 1 (item 2 is allocated at most once)

x3 + x4 + x6 ≤ 1 (item 3 is allocated at most once)

x3 + x5 + x6 ≤ 1 (item 4 is allocated at most once)

xj ∈ {0, 1} for j = 1, . . . , 6.

If bids B4 and B5 come from the same bidder who wants at most one of these

two bundles, it suffices to add the constraint

x4 + x5 ≤ 1.

If there are multiple units ui of each item i ∈ M , then a bid can be more

broadly defined as a pair (λ, bj(λ)) where λ is an M -vector with entries λi ∈
{0, 1, . . . , ui}, i ∈ M , that indicates the desired number of units λi of each item

i ∈ M . Let Λ denote the set of all these M -vectors. The previous model is

replaced by

max
∑
λ∈Λ

∑
j∈N

bj(λ)x(λ, j)

s.t.
∑
λ∈Λ

∑
j∈N

λix(λ, j) ≤ ui for i ∈ M

x(λ, j) ∈ {0, 1} for λ ∈ Λ, j ∈ N.

There are further variations of the above formulations that incorporate additional

features such as constraints on the kinds of bids the auctioneer accepts and

constraints on the kinds of bundles that can be allocated to bidders (De Vries

and Vohra, 2003). The gist of these models is essentially the same as those

discussed above.

9.2 The Lockbox Problem 163

9.2 The Lockbox Problem

Consider a national firm that receives checks from all over the United States. Due

to the vagaries of the Postal Service, as well as the banking system, there is a vari-

able delay from when the check is postmarked (and hence the customer has met

her obligation) and when the check clears (and when the firm can use the money).

For instance, a check mailed in Pittsburgh sent to a Pittsburgh address might

clear in just two days. A similar check sent to Los Angeles (L.A.) might take four

days to clear. It is in the interest of the firm to have the check clear as quickly as

possible since then the firm can use the money. In order to speed up this clearing,

firms open offices (called lockboxes) in different cities to handle the checks.

Example 9.1 Suppose we receive payments from four regions (West, Mid-

west, East, and South). The average daily value from each region is as follows:

$300,000 from the West, $120,000 from the Midwest, $360,000 from the East,

and $180,000 from the South. We are considering opening lockboxes in L.A.,

Cincinnati, Boston, and/or Houston. Operating a lockbox costs $90,000 per year.

The average days from mailing to clearing is given in Table 9.1. Which lockboxes

should we open?

From L.A. Cincinnati Boston Houston

West 2 4 6 6
Midwest 4 2 5 5
East 6 5 2 5
South 7 5 6 3

Table 9.1 Clearing times

First we must calculate the losses due to lost interest for each possible assign-

ment. For example, if the West sends to Boston, then on average there will be

$1,800,000 (= 6×$300, 000) in process on any given day. Assuming an investment

rate of 10%, this corresponds to a yearly loss of $180,000. We can calculate the

losses for the other possibilities in a similar fashion to get Table 9.2.

From L.A. Cincinnati Boston Houston

West 60 120 180 180
Midwest 48 24 60 60
East 216 180 72 180
South 126 90 108 54

Table 9.2 Lost interest (’000)

The intuition for the formulation of the lockbox problem is similar to that of

the formulation of the K-median model for clustering discussed in Chapter 8.

We use a set of binary variables to model the lockboxes to open and another set

of binary variables to model what lockbox serves each region.

164 Mixed Integer Programming: Portfolios with Constraints

Binary linear programming model for the lockbox problem
Variables:

yj =

{
1 if lockbox j is opened

0 otherwise
for j = 1, . . . , 4.

xij =

{
1 if region i is served by lockbox j

0 otherwise
for i, j = 1, . . . , 4.

Objective: minimize total yearly costs

min

4∑
i,j=1

cijxij + 90

4∑
j=1

yj ,

where cij is the (i, j) entry in Table 9.2.

Constraints:

N∑
j=1

xij = 1, for i = 1, . . . , 4

(each region must be assigned to one lockbox)

xij ≤ yj , for i, j = 1, . . . , 4

(region i is assigned to lockbox j only if j is opened)

xij , yj ∈ {0, 1} for i, j = 1, . . . , 4

(binary variables).

As we observed for the binary programming formulation for clustering dis-

cussed in Example 8.2, the above formulation would also be correct if we replaced

the 42 = 16 constraints

xij ≤ yj , i, j = 1, . . . , 4,

with the four constraints
4∑

i=1

xij ≤ 4yj , j = 1, . . . , 4.

However, we should note that the solution to the linear programming relaxation

of the first formulation (with more constraints) is

x11 = x21 = x33 = x43 = y1 = y3 = 1, and all other variables zero,

which has binary entries and hence is an optimal solution to the binary linear

programming model. Therefore the firm should open two lockboxes, one in the

Eastern region and one in the West.

By contrast, the solution to the linear programming relaxation of the second

formulation (with fewer constraints) is

x11 = x22 = x33 = x44 = 1, y1 = y2 = y3 = y4 = 0.25,

and all other variables zero,

which does not give any useful information about the binary linear programming

model.

This example highlights how different equivalent integer programming formu-

lations can have very different properties with respect to their associated linear

program.

9.3 Constructing an Index Fund 165

9.3 Constructing an Index Fund

An old and recurring debate about investing lies in the merits of active versus

passive management of a portfolio. Active portfolio management tries to achieve

superior performance by using technical and fundamental analysis. On the other

hand, passive portfolio management relies entirely on diversification to achieve

a desired performance. There are two types of passive management strategies:

“buy and hold” or “indexing”. In the first one, assets are selected on the basis of

some fundamental criteria and there is no active selling or buying of these stocks

afterwards (see the chapters on dedication (Chapter 3) and portfolio optimization

(Chapter 6)). In the second approach, absolutely no attempt is made to identify

mispriced securities. The goal is to choose a portfolio that mirrors the movements

of a broad market population or a market index. Such a portfolio is called an

index fund. Given a target population of n stocks, one selects K stocks (and

their weights in the index fund) to represent the target population as closely as

possible.

In the last 30 years, an increasing number of investors, both large and small,

have established index funds. Simply defined, an index fund is a portfolio

designed to track the movement of the market as a whole or some selected

broad market segment. The rising popularity of index funds can be justified

both theoretically and empirically.

Market efficiency: If the market is efficient, no superior risk-adjusted returns

can be achieved by stock picking strategies since the prices reflect all the

information available in the marketplace. Additionally, since the market

portfolio provides the best possible return per unit of risk, to the extent

that it captures the efficiency of the market via diversification, one may

argue that the best theoretical approach to fund management is to invest

in an index fund.

Empirical performance: Considerable empirical literature provides strong

evidence that, on average, money managers have consistently under-

performed the major indices. In addition, studies show that, in most

cases, top performing funds for a year are no longer amongst the top

performers in the following years, leaving room for the intervention of

luck as an explanation for good performance.

Transaction cost: Actively managed funds incur transaction costs, which

reduce the overall performance of these funds. In addition, active

management implies significant research costs. Finally, fund managers

may have costly compensation packages that can be avoided to a large

extent with index funds.

Here we take the point of view of a fund manager who wants to construct an

index fund. Strategies for forming index funds involve choosing a broad market

index as a proxy for an entire market, e.g. the Standard & Poor’s list of 500

stocks (S&P 500). A pure indexing approach consists in purchasing all the issues

166 Mixed Integer Programming: Portfolios with Constraints

in the index, with the same exact weights as in the index. In most instances,

this approach is impractical (many small positions) and expensive (rebalancing

costs may be incurred frequently). An index fund with K stocks, where K is

substantially smaller than the size n of the target population, seems desirable.

The clustering approach introduced in Chapter 8 can be used to aggregate the

stocks in a broad market into a smaller more manageable index fund. This

approach will not necessarily yield mean/variance-efficient portfolios but will

produce a portfolio that closely replicates the underlying market population.

We describe a two-step heuristic approach for constructing an index fund.

First, select K stocks to be included in the portfolio. Second, determine weights

for these stocks so that the portfolio is as close as possible to the benchmark.

The motivation for this two-step approach is that each of the stocks selected in

the portfolio is a proxy for a portion of stocks in the index.

The first step, that is, the selection of the K stocks to be included in the

portfolio, can be formulated as the binary linear programming formulation for

clustering for Example 8.2 in Chapter 8. Recall that the model is based on the

following data:

ρij = similarity between stock i and stock j.

An example of this is the correlation between the returns of stocks i and j. But

one could choose other similarity measures ρij .

Recall the binary linear programming formulation for the clustering problem:

max

n∑
i=1

n∑
j=1

ρijxij

s.t.

n∑
j=1

yj = K

n∑
j=1

xij = 1 for i = 1, . . . , n

xij ≤ yj for i, j = 1, . . . , n

xij , yj ∈ {0, 1} for i, j = 1, . . . , n.

As discussed in Chapter 8, the variables yj describe which stocks j are in the

portfolio (yj = 1 if j is selected in the portfolio, 0 otherwise). For each stock

i = 1, . . . , n, the variable xij indicates which stock j in the portfolio is most

similar to i (xij = 1 if j is the most similar stock in the portfolio, 0 otherwise).

Once the set of K stocks has been selected, a simple approach to the second

step of portfolio construction is as follows. Assume j1, . . . , jK are the selected

stocks and C1, . . . , CK are the corresponding clusters. That is, C� is the set of

stocks represented by stock j� for � = 1, . . . ,K. Set the weight of each selected

stock j�, � = 1, . . . ,K, proportional to the total market capitalization of the

9.4 Cardinality Constraints 167

stocks in C�:

xj� :=

∑
i∈C�

Vi

n∑
i=1

Vi

, � = 1, . . . ,K,

where Vi is the market capitalization of stock i.

The second step can alternatively be tackled via a linear or a quadratic

programming model. The variables in the model are the portfolio weights on

the selected stocks. A reasonable objective is to minimize a measure associated

with the quality of tracking such as active risk – this would lead to a quadratic

programming problem. Alternatively, one can minimize mean absolute deviation

and obtain a linear programming problem. The constraints could include bounds

on beta, sector exposures, and other attributes to find weights of the selected

stocks so that the portfolio is as close as possible to the benchmark.

9.4 Cardinality Constraints

In this section, we present a different approach for tracking a basket of assets, e.g.,

an index, with a small group of stocks. In contrast to the two-step approach in the

previous section, we model the index replication problem in one step, as a mixed

integer programming problem with cardinality constraints. For concreteness,

consider that case when we want to track a benchmark with a portfolio containing

a predetermined maximum number of stocks. Assume xB is the vector of holdings

in the benchmark, and x is the vector of holdings in the portfolio. Suppose we

want to include at most K stocks in the tracking portfolio. If we have an estimate

of the covariance matrix of the universe of stocks in the index, then the problem

can be informally stated as follows:

min (x− xB)
TV(x− xB)

s.t. 1Tx = 1

x ≥ 0

xj > 0 for at most K distinct j = 1, . . . , n.

(9.1)

In order to model the problem formally, we introduce a new set of binary variables

whose role is to model the logical condition of whether each particular stock is

included in the portfolio:

yj =

{
1 if xj > 0

0 otherwise.

168 Mixed Integer Programming: Portfolios with Constraints

The problem (9.1) can be reformulated as the following mixed quadratic program:

min (x− xB)V(x− xB)

s.t. 1Tx = 1

xj ≤ yj for j = 1, . . . , n
n∑

j=1

yj ≤ K

x ≥ 0

yj ∈ {0, 1} for j = 1, . . . , n.

(9.2)

Observe that the linking constraint xj ≤ yj in (9.2) is a mathematical way of

encoding the logical connection between xj and yj : the variable xj is positive only

when yj = 1. Furthermore, the constraint
∑n

j=1 yj ≤ K enforces the condition

that at most K of the x variables are positive.

Consider now a more general mean–variance model with cardinality con-

straints where we now allow short positions:

min xTVx

s.t. μTx ≥ μ̄

Ax = b

Cx ≥ d

xj �= 0 for at most K distinct j = 1, . . . , n.

(9.3)

The above approach extends provided that there is a lower bound �j and an

upper bound uj on the value of each holding xj for j = 1, . . . , n. In this case

the cardinality constraint can be formulated via a new set of binary variables

yj , j = 1, . . . , n, together with the linking constraints

�jyj ≤ xj ≤ ujyj for j = 1, . . . , n.

The problem (9.3) can be reformulated as the following mixed quadratic program:

min xTVx

s.t. μTx ≥ μ̄

Ax = b

Cx ≥ d

�jyj ≤ xj ≤ ujyj for j = 1, . . . , n
n∑

j=1

yj ≤ K

yj ∈ {0, 1} for j = 1, . . . , n.

(9.4)

9.5 Minimum Position Constraints

The same kind of linking constraints �jyj ≤ xj ≤ ujyj used in the mixed

binary programming formulation (9.4) can be used to enforce another common

practical consideration: minimum position constraints. Although diversification

9.7 Exercises 169

into a broad universe of assets generally has merits, there is a potential downside:

some positions may become very small. Too many small positions typically gen-

erate higher research and monitoring costs. Consequently, investment managers

enforce minimum position constraints. This means that if a stock j is included in

the portfolio, then the holding xj in that stock must surpass a minimum thresh-

old �j > 0. Consider a general mean–variance model with minimum position

constraints:

min xTVx

s.t. μTx ≥ μ̄

Ax = b

Cx ≥ d

xj > 0 ⇒ xj ≥ �j for j = 1, . . . , n.

(9.5)

Provided there is an upper bound uj on the value of each holding xj , for j =

1, . . . , n, and proceeding as above, the problem (9.5) can be reformulated as the

following mixed quadratic program:

min xTVx

s.t. μTx ≥ μ̄

Ax = b

Cx ≥ d

�jyj ≤ xj ≤ ujyj for j = 1, . . . , n

yj ∈ {0, 1} for j = 1, . . . , n.

(9.6)

9.6 Risk-Parity Portfolios and Clustering

Consider a situation where you are trying to construct a risk-parity portfolio as

explained in Section 7.5. We would like to allocate equal risk to a set of assets, but

several of them may be very similar. By using the risk-parity strategy directly,

you end up overweighting the characteristics those assets share. Instead, you can

cluster the assets first, and then allocate risk evenly to each cluster. This is more

consistent with the spirit of “risk parity”. This first step can be accomplished

using the clustering approach suggested in Example 8.2.

9.7 Exercises

Exercise 9.1 In a combinatorial exchange, both buyers and sellers can submit

combinatorial bids. Bids are like in the multiple item case, except that the values

λi can be negative, as can the prices pj(λ), representing selling instead of buying.

Note that a single bid can be buying some items while selling other items.

Write an integer linear program that will maximize the surplus generated by

the combinatorial exchange.

170 Mixed Integer Programming: Portfolios with Constraints

Exercise 9.2 You have $250,000 to invest in the following possible investments.

The cash inflows/outflows are as follows:

Year 1 Year 2 Year 3 Year 4

Investment 1 −1.00 1.18

Investment 2 −1.00 1.22

Investment 3 −1.00 1.10

Investment 4 −1.00 0.14 0.14 1.00

Investment 5 −1.00 0.20 1.00

For example, if you invest one dollar in Investment 1 at the beginning of

Year 1, you receive $1.18 at the beginning of Year 3. If you invest in any of these

investments, the required minimum level is $100,000 in each case. Any or all

the available funds at the beginning of a year can be placed in a money market

account that yields 3% per year. Formulate a mixed integer linear program to

maximize the amount of money available at the beginning of Year 4. Solve the

integer program using your favorite solver.

Exercise 9.3 Consider a lockbox problem where cij is the cost of assigning

region i to a lockbox in region j, for i, j ∈ {1, . . . , n}. Suppose that we wish to

open exactly K lockboxes where K is a given integer, 1 ≤ K ≤ n.

(a) Formulate as an integer linear program the problem of opening K lockboxes

so as to minimize the total cost of assigning each region to an open lockbox.

(b) Formulate in two different ways the constraint that regions cannot send

checks to closed lockboxes.

(c) For the following data

K = 2 and (cij) =

⎡⎢⎢⎢⎢⎣
0 4 5 8 2

4 0 3 4 6

5 3 0 1 7

8 4 1 0 4

2 6 7 4 0

⎤⎥⎥⎥⎥⎦ ,

compare the linear programming relaxations of your two formulations in

part (b).

Exercise 9.4 You currently own a portfolio of eight stocks. Using the

Markowitz model, you computed the optimal mean–variance portfolio. The

weights of these two portfolios are shown in the following table:

Stock A B C D E F G H

Your portfolio 0.12 0.15 0.13 0.10 0.20 0.10 0.12 0.08

M/V portfolio 0.02 0.05 0.25 0.06 0.18 0.10 0.22 0.12

You would like to rebalance your portfolio in order to be closer to the mean–

variance portfolio. To avoid excessively high transaction costs, you decide to

9.8 Case Study 171

rebalance only three stocks from your portfolio. Let xi denote the weight of

stock i in your rebalanced portfolio. The objective is to minimize the quantity

|x1 − 0.02|+ |x2 − 0.05|+ |x3 − 0.25|+ · · ·+ |x8 − 0.12|,

which measures how closely the rebalanced portfolio matches the mean–variance

portfolio.

Formulate this problem as a mixed integer linear program. Note that you will

need to introduce new continuous variables in order to linearize the absolute

values and new binary variables in order to impose the constraint that only

three stocks are traded.

9.8 Case Study

The goal of this case study is to construct a parsimonious fund that tracks a

pre-specified market index.

(1) Choose a stock market index (with at least 25 stocks) to be tracked. Some

possible choices are the Dow Jones Industrial Average, the S&P 100, and

the Nasdaq 100. If you feel ambitious, you may choose a larger index.

Collect recent historical data over a meaningful horizon. Make sure you

include more observations (ideally many more) than the number of stocks in

the index. A reasonable choice is a few years (two or three) of weekly data,

or a few more (six or seven) of monthly data. For larger indices, you may

want to consider daily data.

Use the first 70% of your data for calibrating your model; that is, for

parameter estimation, choice of stocks, choice of weights, etc. Use the remain-

ing 30% for out-of-sample testing.

(2) Use some kind of clustering or variable selection approach to choose a small

subset of stocks from the investment universe. Complete the process by

assigning weights to the selected stocks using the following simple rule:

Mimic the weighting method used in the index. For example, for a market-

value-weighted index, assign the weight of each selected stock according to

the market value of all the stocks that it represents. You can also attempt

to replicate various attributes of the market index, such as exposure to

particular sectors, industries, etc.

(3) Compare the performance of the constructed fund and that of the actual

stock market index. To this end, test the results of your model(s) on out-of-

sample data. This is more interesting if done via a rolling-time window.

(4) Construct index funds with different number of stocks. Compare their per-

formance.

(5) Study the effect of rebalancing the index fund by periodical adjustment of

the weights of the selected stocks. Try different periods for rebalancing: one

week, one month, etc.

172 Mixed Integer Programming: Portfolios with Constraints

(6) Propose some alternative models and compare their results with those of

the basic model. You may want to consider combinations of the following

possible variations. Be as creative as you wish:

(i) Use a weighted objective function in the stock selection problem.

(ii) Use a second optimization problem to assign the weights. For example,

you can set the weights to minimize the tracking error (active variance)

between the fund and the overall index.

(iii) Match attributes of the index such as beta, and/or exposures to factors

such as industries, sectors, etc.

10 Stochastic Programming:
Theory and Algorithms

Stochastic optimization is concerned with optimizing decision variables under

uncertainty. As an example, Markowitz’s mean–variance model can be seen as

a stochastic optimization model. Stochastic optimization covers a wide class of

models in a variety of disciplines. It is often associated with the terms dynamic

programming, stochastic programming, and stochastic control, among others. We

devote several chapters to this important and vast topic. This chapter concen-

trates on single-period/two-stage models. This provides a foundation for more

general multi-period/multi-stage models that will be discussed in Chapters 12

through 16.

10.1 Examples of Stochastic Optimization Models

The next three examples inherently involve making decisions under uncertainty.

Example 10.1 (The newsvendor problem) A vendor purchases a particular

commodity to satisfy some demand that occurs later over some time period.

The demand D is random. The per-unit ordering cost, back-ordering cost, and

holding costs are known to be c, p, and h, respectively. The total cost incurred

by the vendor if he purchases x units and the demand turns out to be D is

F (x,D) = c · x+ p ·max(D − x, 0) + h ·max(x−D, 0).

The problem is to decide the order quantity x that minimizes the expected total

cost E[F (x,D)].

Example 10.2 (Utility-based optimization) An investor with endowment W0

needs to decide how to invest this initial capital over a planning horizon. The

investor’s preferences for her final wealth W are expressed via a concave utility

function U(W). Assume r is the vector of random returns on the assets that the

investor can purchase over the planning horizon. The investor wishes to choose

a portfolio x ∈ X that maximizes the expected utility E[U(W)] of her final

wealth W :

W = W0(1 + rTx).

174 Stochastic Programming: Theory and Algorithms

Example 10.3 (Optimal consumption and investment) An individual may con-

sume some portion C0 of her initial endowment W0 now and invest the remaining

capital W0 − C0 for consumption at a future time. Assume r is the vector of

random returns on the assets in which she can invest her remaining capital

W0 − C0. Investing in a portfolio x will thus produce a random wealth W =

(W0 −C0)(1+ rTx). What should her consumption C0 and investment decisions

x ∈ X be to maximize her total expected utility

U0(C0) + E[U1(W)].

10.2 Two-Stage Stochastic Optimization

Consider the following generic type of optimization problem under uncertainty.

At time 0 we need to make a set of decisions x subject to some constraint set

X . Between time 0 and time 1 a random outcome ω is revealed. Our goal is to

choose x to minimize the expectation of some objective function F (x, ω) that

depends both on x as well as on the random outcome ω. This generic stochastic

optimization problem has the following formal formulation:

min
x

E(F (x, ω))

x ∈ X .
(10.1)

The particular form of F (x, ω) may define various types of problems, as we saw

in Examples 10.1, 10.2, and 10.3. The function F (x, ω) could be more involved:

In a problem with recourse the function F (x, ω) depends on decisions that can

be made after the uncertainty ω is revealed.

Stochastic optimization with recourse is a refinement of the generic formula-

tion (10.1). In this class of problems a first set of decisions x must be made here

and now at time 0. Between time 0 and time 1 a random outcome ω occurs.

Then at time 1 we have the opportunity to make a new round of wait-and-see

decisions y(ω) after the random ω is revealed. This leads to a two-stage stochastic

optimization with recourse problem formally stated as follows:

min
x

f(x) + E[Q(x, ω)]

x ∈ X .
(10.2)

The recourse term Q(x, ω) depends on the initial set of decisions x and on the

random outcome ω, and it is of the form

Q(x, ω) := min
y(ω)

g(y(ω), ω)

y(ω) ∈ Y(x, ω).

The set of decisions y(ω) are the recourse decisions. They are adaptive to the

random outcome ω. This means that unlike x they are allowed to depend on ω.

10.3 Linear Two-Stage Stochastic Programming 175

Example 10.4 (Newsvendor problem revisited) In this case the total cost is

F (x,D) = c · x+ p ·max(D − x, 0) + h ·max(x−D, 0).

We want to solve

min
x≥0

E[F (x,D)] = min
x≥0

(c · x+ E [p ·max(D − x, 0) + h ·max(x−D, 0)])

= min
x≥0

(c · x+ E[Q(x,D)]) ,

where the recourse term Q(x,D) is

Q(x,D) := min
y,z

py + hz

s.t. y ≥ D − x

z ≥ x−D

y, z ≥ 0.

Note that here the recourse decisions y and z are easy to compute once the

demand D and the number of units purchased x are known, namely y = (D−x)+

and z = (x−D)+.

Sometimes it is preferable to consider a more general model obtained by

replacing the objective E(F (x, ω)) in (10.1) with �(F (x, ω)) where �(·) is a real-

valued function. In particular, it is common to let �(·) be a risk measure as

illustrated in the following example. We formally define and discuss risk measures

in more detail in Chapter 11.

Example 10.5 (Mean–variance revisited) Let r denote the vector of random

asset returns in an investment universe and let μ and V denote respectively the

expected value and covariance matrix of r. The classic mean–variance model

min
x

1
2γ · xTVx− μTx

x ∈ X
can be written as the stochastic optimization problem

min
x

�(rTx)

x ∈ X
for the risk measure � defined by

�(Z) = 1
2γ · σ2(Z)− E(Z).

10.3 Linear Two-Stage Stochastic Programming

A linear two-stage stochastic program is a problem of the form

min
x

cTx+ E[Q(x, ω)]

s.t. Ax = b

x ≥ 0,

176 Stochastic Programming: Theory and Algorithms

where the recourse term Q(x, ω) is the value of another linear program:

Q(x, ω) := min
y

q(ω)Ty(ω)

s.t. T(ω)x+W(ω)y(ω) = h(ω)

y(ω) ≥ 0.

Here the parameters q(ω),T(ω),W(ω),h(ω) are random, and ω represents a

random outcome ω ∈ Ω that is revealed between stage 0 and stage 1. It is

customary and convenient to think of ω itself as the array of random parameters

ω = (q,T,W,h). The vector x represents the first-stage decisions. These must be

made without knowing the random draw ω. The vector y(ω) denotes the second-

stage decisions. These may depend on the random draw ω. To ease notation, this

type of problem is often written in the following form:

min E[cTx+ qTy]

s.t. Ax = b

Tx+Wy = d

x ≥ 0

y ≥ 0,

(10.3)

but we should keep in mind that the tuple of uncertain parameters ω =

(q,T,W,h) is revealed between time 0 and time 1 and the recourse variables y

may depend on this outcome.

10.4 Scenario Optimization

Scenario optimization is a computational approach to stochastic optimization.

The gist of this approach is to assume a discrete distribution for the random

outcome. More precisely, assume the set of possible random outcomes is a dis-

crete probability space Ω = {ω1, . . . , ωS}, with probability distribution pk =

P(ωk), k = 1, . . . , S. The elements in Ω are the possible realizations or scenarios

ωk = (qk,Tk,Wk,hk)

of the stochastic components of the model.

Under this assumption, the stochastic optimization problem (10.3) can be

written as the following deterministic equivalent:

min
x,yk

cTx+

S∑
k=1

pk(q
T
kyk)

s.t. Ax = b

Tkx+Wkyk = hk for k = 1, . . . , S

x ≥ 0

yk ≥ 0 for k = 1, . . . , S.

(10.4)

The deterministic equivalent problem has S copies of the second-stage decision

variables and hence can be significantly larger than the original problem before

10.5 *The L-Shaped Method 177

we considered the uncertainty of the parameters. Fortunately, the constraint

matrix has a very special sparsity structure that can be exploited as we explain

in Section 10.5 below.

Example 10.6 (Newsvendor problem revisited) Suppose the demand D in the

newsvendor problem has a discrete distribution. More precisely, suppose the

scenarios for the demand D are D1, . . . , DS and P(D = Di) = pi for i = 1, . . . , S.

Hence the newsvendor problem min
x≥0

E[F (x,D)] where

F (x,D) = c · x+ p ·max(D − x, 0) + h ·max(x−D, 0)

has the following deterministic equivalent:

min
x,y,z

c · x+ p ·
S∑

k=1

piyi + h ·
S∑

k=1

pizi

s.t. yi ≥ Di − x, i = 1, . . . , S

zi ≥ x−Di, i = 1, . . . , S

x ≥ 0

y, z ≥ 0.

10.5 *The L-Shaped Method

The constraint matrix of (10.4) has the following form:⎡⎢⎢⎢⎣
A

T1 W1

...
. . .

TS WS

⎤⎥⎥⎥⎦
Observe that the blocks W1, . . . ,WS of the constraint matrix are only interre-

lated through the blocksT1, . . . ,TS which correspond to the first-stage decisions.

In other words, once the first-stage decisions x have been fixed, (10.4) decomposes

into S independent linear programs. The Benders decomposition method is an

algorithm that takes advantage of this type of structure. This method is also

called the L-shaped method in the stochastic programming literature. The idea

behind this method is to solve a “master problem” involving only the variables x

and a series of independent “recourse problems” each involving a different vector

of variables yk. The master problem and recourse problems are linear programs.

The size of these linear programs is much smaller than the size of the full model

(10.4). The recourse problems are solved for a given vector x and their solutions

are used to generate inequalities that are added to the master problem. Solving

the new master problem produces a new x and the process is repeated. More

specifically, let us write (10.4) as

178 Stochastic Programming: Theory and Algorithms

min
x

cTx+ P1(x) + · · ·+ PS(x)

s.t. Ax = b

x ≥ 0

(10.5)

where

Pk(x) = min
yk

pkq
T
kyk

s.t. Wkyk = hk −Tkx

yk ≥ 0

(10.6)

for k = 1, . . . , S. The dual of the linear program (10.6) is:

Pk(x) = max
uk

(hk −Tkx)
Tuk

s.t. WT
kuk ≤ pkqk.

(10.7)

For simplicity, assume (10.7) is feasible, which is the case of interest in many

applications. The recourse linear program (10.6) will be solved for a sequence of

vectors xi, for i = 0, 1, 2, The initial vector x0 can be obtained by solving

min
x

cTx

s.t. Ax = b

x ≥ 0.

(10.8)

For a given vector xi, two possibilities can occur for the recourse linear program

(10.6): either (10.6) has an optimal solution or it is infeasible.

If (10.6) has an optimal solution yi
k, and ui

k is the corresponding optimal dual

solution, then (10.7) implies that

Pk(x) ≥ (ui
k)

T(Tkx
i −Tkx) + Pk(x

i).

This inequality, which is called an optimality cut, can be added to the current

master linear program. Initially, the master linear program is just (10.8).

If (10.6) is infeasible, then the dual problem is unbounded. Let ui
k be a

direction where (10.7) is unbounded, that is, (hk −Tkx
i)Tui

k > 0 and WT
ku

i
k ≤

pkqk. Since we are only interested in first-stage decisions x that lead to feasible

second-stage decisions yk, the following feasibility cut can be added to the current

master linear program:

(ui
k)

T(hk −Tkx) ≤ 0.

After solving the recourse problems (10.6) for each k, we have the following

upper bound on the optimal value of (10.4):

UB = cTxi + P1(x
i) + · · ·+ PS(x

i),

where we set Pk(x
i) = +∞ if the corresponding recourse problem is infeasible.

10.6 Exercises 179

Adding all the optimality and feasibility cuts found so far (for j = 0, . . . , i) to

the master linear program, we obtain:

min
x,z1,...,zS

cTx+
S∑

k=1

zk

s.t. Ax = b

(uj
k)

T(Tkx
j −Tkx) + Pk(x

j) ≤ zk for some pairs (j, k)

(uj
k)

T(hk −Tkx) ≤ 0 for the remaining pairs (j, k)

x ≥ 0.

Denoting by xi+1, zi+1
1 , . . . , zi+1

S an optimal solution to this linear program, we

get a lower bound on the optimal value of (10.4):

LB = cTxi+1 + zi+1
1 + · · ·+ zi+1

S .

The Benders decomposition method alternately solves the recourse problems

(10.6) and the master linear program with new optimality and feasibility cuts

added at each iteration until the gap between the upper bound UB and the lower

bound LB falls below a given threshold. It can shown that UB−LB converges to

zero and indeed reaches zero after finitely many iterations. For details see Birge

and Louveaux (1997, chapter 5).

10.6 Exercises

Exercise 10.1 Consider the utility-based portfolio optimization described in

Example 10.2. Suppose r has a multivariate normal distribution and the investor

has logarithmic utility function

U(W) = log(W).

Suppose X is a convex set. Prove that the utility maximization problem

max E(U(W))

s.t. W = W0 · (1 + rTx)

x ∈ X

is equivalent to the mean–variance problem

min 1
2 γ̃ · xTVx− μTx

x ∈ X

for some suitable level of risk aversion γ̃.

Exercise 10.2 Repeat the above exercise when the investor has power utility

function

U(W) =
1

1− γ
·W 1−γ

for some risk-aversion constant γ > 0, γ �= 1.

180 Stochastic Programming: Theory and Algorithms

Exercise 10.3 Consider the newsvendor problem described in Example 10.1.

Suppose the demand D has a continuous cumulative distribution function Φ;

that is, Φ(x) = P(D ≤ x). Show that the solution to the newsvendor problem

min
x≥0

(c · x+ E [p ·max(D − x, 0) + h ·max(x−D, 0)])

is

x∗ = Φ−1

(
p− c

p+ h

)
.

Exercise 10.4 The purpose of this exercise is to formalize the optimality cut

described in Section 10.5. For x = xi assume (10.6) has an optimal solution yi
k,

and let ui
k be the corresponding optimal dual solution.

(a) Show that Pk(x
i) = (ui

k)
T(hk −Tkx

i).

(b) Show that Pk(x) ≥ (ui
k)

T(hk −Tkx) for all x.

(c) Conclude that Pk(x) ≥ (ui
k)

T(Tkx
i −Tkx) + Pk(x

i) for all x.

11 Stochastic Programming Models:
Risk Measures

This chapter discusses several popular risk measures. In particular, we introduce

two widely used risk measures, value at risk and its refinement conditional

value at risk. We show that the problem of finding a portfolio that minimizes

conditional value at risk is amenable to stochastic programming techniques.

11.1 Risk Measures

In the classical Markowitz model, variance (equivalently standard deviation) is

used as a measure of risk. This measure of risk is relatively easy to compute, and,

as we have seen in Chapter 6, leads to a quadratic programming model when we

are interested in finding efficient portfolios.

As we illustrate below, variance has some shortcomings as a measure of risk.

This has motivated the introduction of other risk measures.

Dispersion Measures

Let r denote the (random) return of an asset. The variance

σ2 = var(r) = E((r − μ)2)

is a measure of dispersion of the distribution of r. Another dispersion measure

is the mean absolute deviation (MAD) favored by Konno and Yamazaki (1991):

E(|r − μ|).

For the special case of normally distributed returns, the mean absolute deviation

and the standard deviation are equivalent. Indeed, the following property is a

straightforward exercise in probability:

Proposition 11.1 If r ∼ N(μ, σ2) then E(|r − μ|) =
√
2/π σ.

A major difference between mean absolute deviation and standard deviation

is their sensitivity to outliers. The mean absolute deviation is more robust

to outliers. When the distribution of joint returns is represented via a set of

scenarios, the computation of efficient portfolios for the mean absolute deviation

can be formulated as a linear program. This offers an alternative with potential

182 Stochastic Programming Models: Risk Measures

advantages as we will show next. Suppose the investment universe has n assets

with (random) returns r1, r2, . . . , rn. Let μj = E(rj), j = 1, . . . , n.

Recall the portfolio optimization problem that finds the minimum-variance

portfolio among a set of portfolios X :

min
x

var(rTx) = E
([

(r− μ)Tx
]2)

s.t. x ∈ X .

Consider now the model obtained by using instead the mean absolute deviation

as a measure of risk:

min
x

E
(∣∣(r− μ)Tx

∣∣)
s.t. x ∈ X .

(11.1)

Not only does the computation of efficient portfolios based on formulation (11.1)

involve solving a linear program as opposed to a quadratic program, but also

the linear program solves the problem directly over the set of scenarios thereby

circumventing the estimation of the covariance matrix.

Mean Absolute Deviation via Scenario Optimization

Assume the possible scenarios for the vector of returns r =
[
r1 · · · rn

]T
are

rk =
[
rk1 · · · rkn

]T
, k = 1, . . . , S,

and scenario k occurs with probability pk, k = 1, . . . , S. Then we can write the

above mean absolute deviation model (11.1) as

min
x,w

S∑
k=1

pkwk

s.t. wk = |(rk − μ)Tx| for k = 1, . . . , S

x ∈ X .

We now turn this formulation into a linear program as follows:

min
x,w

S∑
k=1

pkwk

s.t. wk ≥ (rk − μ)Tx for k = 1, . . . , S

wk ≥ −(rk − μ)Tx for k = 1, . . . , S

x ∈ X .

Note that, because pk > 0 for k = 1, . . . , S and the objective is minimized, wk in

an optimal solution satisfies at equality the constraint with the larger right-hand

side, that is, wk = |(rk − μ)Tx|.

11.1 Risk Measures 183

Downside Risk Measures

Dispersion measures, such as variance and mean absolute deviation, measure the

degree of uncertainty in the random return. These measures treat both positive

and negative deviations from the mean as equally risky. In particular, these types

of measures are blind to skewed distributions.

We will next discuss two popular downside risk measures:value at risk and

conditional value at risk. Value at risk (VaR) was first introduced by a team

at J.P. Morgan and made available through RiskMetrics. VaR is used by many

financial institutions to track and report the market risk exposure of their trading

portfolios.

VaR is a measure of the worst possible loss that a portfolio may sustain with

a pre-specified likelihood. For that reason, VaR is generally measured in dollar

terms, instead of percentage units. The formal definition is as follows. Assume

that Y is a (random) loss function, and α ∈ (0, 1) is a confidence level (typically

99%, 95%, or 90%). The α value at risk of Y is the (1 − α) quantile of Y ; that

is, the value γ such that

P(Y ≥ γ) = 1− α.

We shall denote this value by VaRα(Y).

The value at risk has the following interpretation. Given a loss function Y and

a confidence level α ∈ (0, 1), the loss Y will exceed γ with probability (1 − α).

In the special case when the loss function is normally distributed, it is easy to

compute VaR via well-known quantiles of the normal distribution.

Example 11.2 If Y ∼ N(μ, σ2) then

VaR0.95(Y) = μ+ 1.645σ, VaR0.99(Y) = μ+ 2.33σ.

When Y has a discrete distribution, VaR can be computed by sorting the

values of Y as detailed in the following example.

Example 11.3 Assume there are S possible scenarios for the loss Y :

P(Y = yk) = pk, k = 1, . . . , S,

where

y1 ≤ y2 ≤ · · · ≤ yS .

Then

VaRα(Y) = yK ,

where K is the smallest index such that

S∑
i=K

pi ≥ 1− α.

184 Stochastic Programming Models: Risk Measures

In spite of its wide popularity, VaR is known to have the following two major

shortcomings (see the exercises at the end of this chapter):

• VaR is not “subadditive”: The VaR of two positions combined may be greater

than the sum of the VaR of each, meaning that diversification can actually

increase VaR.

• VaR does not distinguish loss size beyond the VaR threshold.

These deficiencies of VaR led Artzner et al. (1999) to propose the following formal

set of properties that a reasonable risk measure ρ(Y) of a loss function Y should

satisfy:

• Monotonicity: If Y ≥ 0 then ρ(Y) ≥ 0.

• Subadditivity: ρ(Y + Z) ≤ ρ(Y) + ρ(Z).

• Positive homogeneity: For c > 0, ρ(cY) = cρ(Y).

• Translational invariance: For any c ∈ R, ρ(Y + c) = ρ(Y) + c.

A risk measure is coherent if it satisfies the above four properties. Neither

standard deviation nor VaR are coherent. However, there is a modification of VaR

that is coherent, namely the conditional value at risk introduced by Rockafellar

and Uryasev (2000). Conditional value at risk (CVaR) is also known as expected

tail loss.

CVaR can be motivated as follows. Since VaRα(Y) is the most we can lose

with probability α, it is equivalent to saying that with probability (1 − α) the

loss Y will be at least VaRα(Y). CVaR is the answer to the following question:

What should we expect the value of that loss to be? More precisely, CVaR is

defined as follows. Given a loss function Y and confidence level α ∈ (0, 1), the

conditional value at risk is the expected loss Y , conditional on this loss being at

least VaRα(Y):

E(Y |Y ≥ VaRα(Y)).

We shall denote this expected value as CVaRα(Y).

Again, in the special case when the loss function is normally distributed, it is

easy to compute CVaR by using properties of the quantiles and expected tails

of the normal distribution.

Example 11.4 If Y ∼ N(μ, σ2) then

CVaR0.95(Y) = μ+ 2.06σ, CVaR0.99(Y) = μ+ 2.67σ.

When Y has a discrete distribution, CVaR can be computed by sorting the

values of Y .

11.2 A Key Property of CVaR 185

Example 11.5 Assume Y takes values yk, k = 1, . . . , S, in S possible scenarios:

P(Y = yk) = pk, k = 1, . . . , S,

where

y1 ≤ y2 ≤ · · · ≤ yS .

Then

CVaRα(Y) =
1

1− α

S∑
i=K

piyi,

where K is the smallest index such that
S∑

i=K

pi = 1− α.

Note that here we may have to split the probability pK .

11.2 A Key Property of CVaR

We next present a key property of CVaR that makes it possible to solve portfolio

optimization problems with CVaR via convex optimization.

Proposition 11.6 Assume Y is a loss function. Then for α ∈ (0, 1)

CVaRα(Y) = min
γ

(
γ +

1

1− α
E[max(Y − γ, 0)]

)
.

Furthermore, the optimal solution (i.e., the minimizer) γ̄ of this problem is

VaRα(Y).

As consequence of Proposition 11.6, it follows that CVaR is subadditive.

Indeed, CVaR is a coherent risk measure (see exercises at the end of the chapter

for details). Another consequence of Proposition 11.6 is that CVaR can be

computed as the following linear two-stage stochastic program:

CVaRα(Y) = min
γ

[γ + E (Q(γ, Y))] ,

where

Q(γ, Y) := min
z

1

1− α
· z

s.t. z ≥ Y − γ

z ≥ 0.

More concisely

CVaRα(Y) = min
γ,z

γ +
1

1− α
· E(z)

s.t. z ≥ Y − γ

z ≥ 0.

186 Stochastic Programming Models: Risk Measures

In this formulation the first-stage and second-stage decision variables are γ and z

respectively. Notice that z is adapted to the random outcome Y . In the particular

case when Y is discrete and takes values yk, for k = 1, . . . , S, in S possible

scenarios (not necessarily sorted):

P(Y = yk) = pk, k = 1, . . . , S,

we obtain the following linear programming formulation for CVaRα(Y).

Variables:

γ, z1, . . . , zS .

Linear programming formulation of CVaR:

min
γ,z

γ +
1

1− α

S∑
k=1

pkzk

s.t. zk ≥ yk − γ, for k = 1, . . . , S

zk ≥ 0, for k = 1, . . . , S.

An advantage of this formulation is that it allows us to minimize the

CVaR of a portfolio via linear programming as we next explain.

11.3 Portfolio Optimization with CVaR

The discussion in this section is based on Andersson et al. (2001). This study

uses CVaR for measuring and controlling the credit risk of a portfolio of bonds.

The loss function of interest is the loss due to credit risk; that is, the loss that the

portfolio may suffer due to default or credit migration in its positions. This type

of loss function is characterized by having a large likelihood of no loss and a small

likelihood of a substantial loss. The loss distribution is heavily skewed. In this

case, standard mean–variance analysis to characterize market risk is inadequate.

VaR and CVaR are more appropriate criteria for minimizing portfolio credit risk.

Distribution of Future Values for One Single Bond

Consider a risky bond and a fixed time horizon, e.g., one year. The future value of

the bond depends on the forward curve that applies to its coupon payments. The

forward curve in turn depends on the current rating of the bond. The benchmark

future value of the bond is the future value of the bond if there is no change on

its credit rating. However, in the event of credit migration, the future value of

the bond may differ from the benchmark value. In particular, if the credit rating

deteriorates, the coupon payments will be subject to higher discount values and

the future value of the bond will be lower than its benchmark value.

For a concrete illustration, suppose the one-year forward interest curves for

the S&P credit ratings are as follows:

11.3 Portfolio Optimization with CVaR 187

Category Year 1 Year 2 Year 3 Year 4

AAA 0.036 0.0417 0.0473 0.0512
AA 0.0365 0.0422 0.0478 0.0517
A 0.0372 0.0432 0.0493 0.0532
BBB 0.041 0.0467 0.0525 0.0563
BB 0.0555 0.0602 0.0678 0.0727
B 0.0605 0.0702 0.0803 0.0852
CCC 0.1505 0.1502 0.1403 0.1352

Suppose the probabilities of credit rating migration for A, BBB, and B in one

year are as follows:

Rating at year end

Initial rating AAA AA A BBB BB B CCC Default

A 0.09% 2.27% 91.05% 5.52% 0.74% 0.26% 0.01% 0.06%
BBB 0.02% 0.33% 5.95% 86.93% 5.30% 1.17% 0.12% 0.18%
B 0.00% 0.11% 0.24% 0.43% 6.48% 83.47% 4.07% 5.20%

Assuming a 50% recovery rate in default, the possible future values of a five-

year, 6% BBB bond with face value 100 are as follows:

Year-end rating Future value Probability

AAA 109.352908 0.0002
AA 109.1723709 0.0033
A 108.6429921 0.0595
BBB 107.5309439 0.8693
BB 102.0063855 0.053
B 98.08591318 0.0117
CCC 83.6257912 0.0012
Default 50 0.0018

For example, for BBB rated bonds, the future value 107.5309439 was obtained

as follows:

107.5309439 = 6 ·
(
1 +

1

1.041
+

1

1.04672
+

1

1.05253
+

1

1.05634

)
+ 100 · 1

1.05634
.

Credit Risk Optimization for a Portfolio of Bonds

Now suppose we construct a portfolio of risky bonds. Assume there are n risky

bonds and let xj be the percentage of portfolio invested in bond j. Then the loss

function of our portfolio is

188 Stochastic Programming Models: Risk Measures

Y (x) := (b− ω)Tx =

n∑
j=1

(bj − ωj)xj ,

where each bj is the future bond value of bond j with no credit migration, and

ωj is the (random) possible future bond value of bond j with credit migration.

Suppose we want to select the portfolio in the constraint set X with minimum

CVaRα. In other words, we want to solve

min
x

CVaRα(Y (x))

x ∈ X .

Suppose that the possible scenarios for the vector of future bond values ω =[
ω1 · · · ωn

]T
are

ωk =
[
ωk
1 · · · ωk

n

]T
, k = 1, . . . , S.

Then by Proposition 11.6, this problem has the following formulation:

min
γ,x,z

γ +
1

1− α

S∑
k=1

pkzk

s.t. zk ≥ (b− ωk)Tx− γ, k = 1, . . . , S

zk ≥ 0, k = 1, . . . , S

x ∈ X
γ free.

(11.2)

If the constraint set X is defined by linear constraints, then (11.2) is a linear

program.

Scenario Generation in the Credit-Risk Example

When there is a single bond, the probability distribution of the possible future

values of the bond depends on the probability of credit migration and the bond

value in each of these scenarios. For instance, for the S&P ratings, the scenarios

correspond to the ratings AAA, AA, A, BBB, BB, B, CCC, and default. The

likelihood of each of these scenarios is given by the migration matrix, which

estimates the probability of migrating from one rating to the others over a

specified time period.

The discrete distribution readily yields the set of possible scenarios for the

bond. Scenarios can also be generated via normal sampling as Figure 11.1 sug-

gests (assuming we are working with a BB bond).

More precisely, normal sampling goes as follows:

• compute Z-scores associated with the probabilities of each of the scenarios,

11.3 Portfolio Optimization with CVaR 189

Asset return over one year

ZAAZAZBBBZBBZBZCCCZDef

Downgrade to B

Firm defaults

Upgrade to BBBFirm remains
BB rated

Figure 11.1

• draw samples from a standard normal distribution,

• use the Z-scores to determine the sampled scenario.

Some interesting challenges arise in the scenario generation when we need

to work with multiple bonds. Under the simple assumption that the credit

migrations are statistically independent, we can generate scenarios via discrete

sampling or independent normal sampling. Notice that, although discrete, the

joint probability distribution for a set of ten or more bonds is extremely large.

Hence it is generally impractical to exhaustively generate the entire set of sce-

narios.

In the case when credit migrations are correlated, the scenario generation

problem becomes more interesting. In this case a possible solution is to use

correlated normal sampling. That is, draw samples from a correlated joint mul-

tivariate random variable. Then map each of the components in the random

sample to a possible credit rating of the bonds. Some statistical packages, like

the statistics toolbox in MATLAB, readily provide routines to sample from cor-

related multivariate normal variables. However, it is easy to generate correlated

normal sampling from independent normal sampling. More precisely, to sample

from a general n-dimensional normal distribution N(μ,V), proceed as follows:

• Let LLT = V be the Cholesky factorization of the covariance matrix V.

• Sample n standard independent normals xi ∼ N(0, 1).

• Put y = μ+ Lx.

• The resulting variable y has the desired distribution y ∼ N(μ,V).

Solution of a Real-World Bond Example

Andersson et al. (2001) considered a portfolio of 197 bonds from 29 different

countries with a market value of $8.8 billion and duration of approximately

190 Stochastic Programming Models: Risk Measures

five years. Their goal was to rebalance the portfolio in order to minimize credit

risk. The one-year portfolio credit loss was generated using a Monte Carlo

simulation: 20,000 scenarios of joint credit states of obligators and related losses.

The distribution of portfolio losses had a long fat tail, as expected. The authors

rebalanced the portfolio by minimizing CVaR using formulation (11.2). For α =

99%, the original bond portfolio had an expected portfolio return of 7.26%. The

expected loss was 95 million dollars with a standard deviation of 232 million. The

VaR was 1.03 billion dollars and the CVaR was 1.32 billion. After optimizing the

portfolio (with expected return of 7.26%), the expected loss was only 5000 dollars,

with a standard deviation of 152 million. The VaR was reduced to 210 million and

the CVaR to 263 million dollars. So all around, the characteristics of the portfolio

were much improved. Positions were reduced in bonds from Brazil, Russia, and

Venezuela, whereas positions were increased in bonds from Thailand, Malaysia,

and Chile. Positions in bonds from Colombia, Poland, and Mexico remained high

and each accounted for about 5% of the optimized portfolio.

11.4 Notes

As early as the 1970s and 1980s, some major financial institutions developed

internal systems for risk management. The best known of these systems was

RiskMetrics developed in the late 1980s at J.P. Morgan when chairman Dennis

Weatherstone requested his staff provide a “4:15pm” daily one-page report

measuring and explaining the risks and potential losses over the next 24 hours

across the bank’s entire portfolio. The RiskMetrics system featured and

popularized the use of value at risk as a risk measure. The interest in a rigorous

treatment of risk measures led a set of prominent scholars to develop a formal

theory of coherent measures of risk in a landmark paper (Artzner et al., 1999).

Conditional value at risk is one of the most popular coherent measures of risk.

11.5 Exercises

Exercise 11.1 Construct a counterexample to show that VaR is not necessarily

subadditive. In other words, construct two loss functions Y, Z and a confidence

level α ∈ (0, 1) so that

VaRα(Y + Z) > VaRα(Y) + VaRα(Z).

Exercise 11.2 Show that a coherent risk measure ρ satisfies: if X ≥ Y then

ρ(X) ≥ ρ(Y).

Hint: Use the monotonicity and subadditivity of coherent risk measures.

Exercise 11.3 The purpose of this exercise is to prove Proposition 11.6 under

some additional assumptions. Assume Y is a continuous loss function with den-

sity f(y) and α ∈ (0, 1). Let g(γ) be defined as

11.5 Exercises 191

g(γ) := γ +
1

1− α

∫ ∞

−∞
max(y − γ, 0) f(y) dy.

(a) Show that

g′(γ) = 1− 1

1− α

∫ ∞

γ

f(y) dy.

(b) Let γ̄ be the minimizer of the optimization problem

min
γ

g(γ).

Use part (a) to show that

VaRα(Y) = γ̄.

(c) Let γ̄ be as in part (b). Use parts (a) and (b) to show that

CVaRα(Y) = g(γ̄).

Exercise 11.4 Use Proposition 11.6 to prove that CVaR is subadditive; that is,

CVaRα(Y +W) ≤ CVaRα(Y) + CVaRα(W)

for any two loss functions Y,W and α ∈ (0, 1).

Exercise 11.5

(a) Suppose a loss function Y has normal distribution with mean μ and variance

σ2; that is, Y ∼ N(μ, σ2). For α ∈ (0, 1) determine both VaRα(Y) and

CVaRα(Y) in terms of the standard normal cumulative function

Φ(x) =

∫ x

−∞

1√
2π

e−t2/2dt.

In particular, show that

VaR0.95(Y) = μ+ 1.645σ, CVaR0.95(Y) = μ+ 2.06σ.

(b) Suppose a loss function Y has lognormal distribution with log mean μ

and log variance σ2, that is, log(Y) ∼ N(μ, σ2). For α ∈ (0, 1) determine

both VaRα(Y) and CVaRα(Y) in terms of the standard normal cumulative

function

Φ(x) =

∫ x

−∞

1√
2π

e−t2/2dt.

Exercise 11.6 The Excel spreadsheet “Exercise 11.6 Twelve Portfolios” pro-

vides scenarios (based on historical data) for the joint annual returns of 12

industry portfolios in the US market.

(a) Any given portfolio attains its “worst” return in some scenario. For example,

a “NoDur” portfolio attained its worst return in 1931 whereas a “Hlth”

portfolio attained its worst return in scenario 1929.

Find a long-only portfolio that maximizes the worst possible return.

192 Stochastic Programming Models: Risk Measures

(b) Find the long-only portfolio that maximizes the expected return while ensur-

ing that its worst possible return is no lower than 2% below what you found

in part (a).

Exercise 11.7 The Excel spreadsheet “Exercise 11.7 Three Bonds” provides a

(hypothetical) discrete distribution for the future value of three different bonds.

In each case, the first value is the “benchmark” future value in the case of

no credit quality change. For simplicity assume the three bonds have the same

current value, say $100.

The spreadsheet also has the joint distribution for the future values of the

three bonds (64 = 4 ∗ 4 ∗ 4 possible scenarios) assuming that the probability

distributions are independent.

(a) For a given bond portfolio x =
[
x1 x2 x3

]T
, use the loss function dis-

cussed in Section 11.3,

Y = (b− ω)Tx =
3∑

j=1

(bj − ωj)xj ,

where bj is the benchmark future value of bond j, and ωj is the random

future value of bond j for j = 1, 2, 3. Determine the VaR0.95 and CVaR0.95

values of the portfolio x =
[
0.4 0.1 0.5

]T
.

(b) Set up a CVaR optimization model to find a portfolio x =
[
x1 x2 x3

]T
with xj ≥ 0, x1 + x2 + x3 = 1, with the same benchmark future value as

that of the portfolio
[
0.4 0.1 0.5

]T
, and with minimum CVaR0.95. What

is the VaR0.95 value of the optimal portfolio? What is the optimal portfolio?

Exercise 11.8 The Excel spreadsheet “Exercise 11.8 Six Bonds” provides a

(hypothetical) discrete distribution for the annual return of six different bonds.

The return of each individual bond only has two possible values. The first

value is the “benchmark” return in the case of no credit quality downgrade. The

second value is the return in the case of credit downgrade.

The Excel file also contains the joint distribution for the returns of the six

bonds (64 = 26 possible scenarios) assuming that the probability distributions

are independent.

Suppose you currently have $100 and need to fulfill an obligation of $115 in

a year. You intend to invest the $100 in the six bonds to try to meet the $115

obligation. You realize that because of the bonds’ credit risks you may not be

able to meet this financial goal in some scenarios. In such a case you will need

extra money to cover the shortfall; that is, the difference between the obligation

and whatever you can cover. For instance, if the bond portfolio in a year is worth

$105< $115, then the shortfall would be $10=$115− $105. On the other hand,

if the bond portfolio in a year is $120> $115, then the shortfall would be zero.

11.5 Exercises 193

(a) Formulate a linear programming model to determine how much should be

invested in each bond so that the expected value of the shortfall a year from

now is minimized. Assume the portfolio must be long-only.

Formulate your linear programming model in Excel and solve it.

What is the composition of the optimal portfolio, that is, the amount of

money in bond i, for i = 1, . . . , 6?

What is the expected value of the shortfall?

What is the value of the worst (largest) possible shortfall?

(b) Define the loss function of your bond portfolio as the value of the liability

minus the value of your portfolio.

(i) Compute the numerical value of CVaR0.95 of this loss function if your

portfolio is equally divided among the six bonds.

(ii) Find the long-only portfolio of these six bonds that minimizes CVaR0.95.

What is the optimal CVaR0.95 value of this portfolio?

Part III

Multi-Period Models

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

12 Multi-Period Models: Simple
Examples

The next few chapters will be devoted to multi-period models. Unlike the single-

period models we have discussed so far, multi-period models incorporate the

dynamic nature inherent when decisions are made at different stages. The deci-

sions to be made at each particular stage can adapt to information collected

in previous stages. In this chapter we discuss the following fundamental multi-

period models: the Kelly criterion for repeated gambles, dynamic portfolio opti-

mization with myopic strategies, and optimal scheduling of trades to control

execution costs. The strong assumptions made in these models allow us to solve

them with relatively simple techniques. Subsequent chapters will introduce more

involved techniques for multi-period models, namely dynamic programming and

stochastic programming. We will rely on these techniques to tackle more elaborate

financial optimization models.

12.1 The Kelly Criterion

The Kelly criterion is a classical formula derived to maximize the average rate

of growth of a gambler’s fortune in a sequence of bets published in the land-

mark paper by Kelly (1956). The formula has appeal among some investment

professionals. In particular, there are claims that many successful investors,

including Edward Thorp, Warren Buffett, and Bill Gross, use Kelly-like methods.

The popular book Fortune’s Formula (Poundstone, 2005) gives a non-technical

and engaging description of the Kelly criterion and its role in gambling and

investing.

The Kelly formula can be explained as follows. Suppose a gambler can enter

a bet with two possible outcomes: lose the entire amount bet or win the amount

bet. Assume the probability of winning is p. Suppose a gambler starts with some

initial wealth W0 and can take this gamble repeatedly. What fraction of her

current wealth should she bet each time?

To answer this question, let Wn be the gambler’s wealth after n gambles. The

rate of growth of the gambler’s fortune is

g =
1

n
log

Wn

W0
.

198 Multi-Period Models: Simple Examples

Suppose the gambler bets a fraction f of her current wealth each time. Then

Wn = (1 + f)k(1− f)n−kW0,

where k is the number of wins (out of the n gambles).

Therefore we get

g =
k

n
log(1 + f) +

n− k

n
log(1− f).

Taking expectations, we get

E(g) = p log(1 + f) + (1− p) log(1− f).

This function of f attains its maximum at f = 2p − 1. That is, by betting the

fraction 2p− 1 each time, the gambler maximizes the expected growth rate g.

The above reasoning and formula can be extended to gambles where the payoff

does not necessarily match the amount bet, and to gambles with a non-binary

outcome. We can indeed see the Kelly criterion as a special case of the dynamic

portfolio optimization model discussed next.

12.2 Dynamic Portfolio Optimization

Our first dynamic portfolio optimization model concerns the expected utility

of final wealth, assuming the portfolio can be rebalanced at intermediate steps.

More specifically, suppose that an investor starts at t = 0 with an initial endow-

ment W0. At times t = 0, . . . , T − 1 the investor invests her wealth Wt in a

portfolio of one risk-free asset and any number of risky assets. The investor’s

goal is to maximize the utility of terminal wealth U(WT) at time T for a suitable

utility function U(W). We next describe a formal model for this dynamic port-

folio optimization problem. To that end, we introduce the following convenient

notation:

• Rt+1 = gross random returns of the assets in period [t, t+ 1],

Rf,t+1 = gross risk-free return in period [t, t+ 1],

Rp,t+1 = gross random return of the investor’s portfolio in period [t, t+ 1].

• Decision variables: xt = holdings (percentages) in the risky assets at time t.

• Inter-temporal constraints (also known as law of motion):

Wt+1 = Wt ·Rp,t+1

= Wt ·
(
Rf,t+1 + (Rt+1 −Rf,t+11)

Txt

)
, t = 0, . . . , T − 1.

• Objective: max E[U(WT)].

12.2 Dynamic Portfolio Optimization 199

12.2.1 Optimality of Myopic Policies

The solution of a multi-period model typically requires dynamic or stochastic

programming techniques that we will cover in later chapters. However, under

suitable assumptions the above model is sufficiently simple that we can solve it

directly. Observe that the final accumulated wealth at stage T is

WT = W0 ·
T∏

t=1

Rp,t.

We will primarily consider the class of constant relative risk-aversion utilities

given by the power utility U(W) = W 1−γ/(1− γ) with risk aversion γ > 0, γ �= 1

and the logarithmic utility U(W) = log(W). Observe that log(W) = limγ→1

W 1−γ/(1− γ).

For a power utility U(W) = W 1−γ/(1− γ) we get

(1− γ) · U(WT) = W 1−γ
T = W 1−γ

0 ·
T∏

t=1

R1−γ
p,t .

For logarithmic utility U(W) = log(W), we get

U(WT) = log(W0) +

T∑
t=1

log(Rp,t).

From these expressions for the utility of final wealth, we can readily reach the

following conclusions:

• If the risk-free return Rf,t = Rf is the same for t = 1, . . . , T and the risky

returns Rt are independent for t = 1, . . . , T , then each xt is the solution to

a single-period problem. In other words, a myopic policy is optimal.

• If the risk-free return Rf,t = Rf is the same for t = 1, . . . , T and the

risky returns Rt are independent and identically distributed (i.i.d.) for

t = 1, . . . , T , then all xt are the same.

• For U(W) = log(W), a myopic policy is optimal regardless of the distribution

of the returns Rt, Rf,t, for t = 1, . . . , T .

The above conclusions can be related to the following two classical puzzles of

finance (Kritzman, 2002):

• Half stocks all the time or all stocks half the time?

• Time diversification: Is it true that lengthening the investment horizon reduces

risk?

The first puzzle can be more precisely stated as follows. Suppose there is a

risky asset “stocks” with expected return μ and standard deviation σ, and a

risk-free asset with return r < μ. Consider the following two possible dynamic

investment strategies:

• balanced strategy (50%, 50%) in every period;

• switching strategy (100%, 0%) half of the time and (0%, 100%) the other half.

200 Multi-Period Models: Simple Examples

Suppose the risk-free return is constant, the stock returns are i.i.d. across time,

and an investor has a power utility. Which of the two strategies is preferable?

The second puzzle can be more precisely stated as follows. Suppose there is

a risky asset “stocks” with expected return μ and standard deviation σ, and a

risk-free asset with return r < μ. Suppose the risk-free return is constant, the

stock returns are i.i.d. across time, and an investor has a power utility with risk

aversion γ > 0. Is it true that if the investor’s investment horizon is T � 1 then

she should initially hold a higher percentage of her portfolio in stocks than if her

horizon is T = 1? In his book, Kritzman (2002) expertly discusses the answers

to these puzzles as well as a few others.

12.2.2 An Example Where a Myopic Policy Is Not Optimal

It is important to understand that the above conclusion concerning the opti-

mality of myopic policies relies on strong assumptions on the asset returns, the

investor’s utility, and the fact that the investor only receives an initial endowment

at time 0 and maximizes her utility of wealth at the final time T . The following

simple example illustrates a case when a myopic policy is not optimal.

• Consider a three-stage (two-period) problem, i.e., T = 2.

• At t = 0 we can invest in a one-period bond or a two-period zero-coupon

bond.

• At t = 0 we know that the risk-free interest rate is Rf,1 = 1.1.

• At t = 0 we know that at t = 1 the risk-free interest rate will be as follows:

Rf,2 =

{
1.12 with prob 1/2,

1.08 with prob 1/2.

• The one-period bond is a contract that can be entered at t = 0 and delivers

$1.1 at time t = 1 for each dollar invested.

• The two-period bond is a contract that can be entered at t = 0 and delivers

$1.2096 at time t = 2 for each dollar invested. The value of the two-period

bond at time t = 1 depends on the risk-free interest rate at that time. Its

value V at t = 1 per dollar invested is the 1.2096 final payout discounted

at the applicable rate:

V =

⎧⎪⎨⎪⎩
1.2096

1.12
= 1.08 with prob 1/2,

1.2096

1.08
= 1.12 with prob 1/2.

• A myopic investor is one with investment horizon T = 1; a long-term investor

is one with investment horizon T = 2.

• What would a risk-averse myopic investor do at time 0?

• What would a risk-averse long-term investor do at time 0?

12.3 Execution Costs 201

12.3 Execution Costs

The efficient management of trading costs is a challenge to all institutional

investors. These costs are associated with commissions, bid–ask spreads, oppor-

tunity costs of waiting, and the price impact of trading. These types of costs

generally have a substantial impact on investment performance. For instance,

a classical study of Pérold (1988) shows that a hypothetical “paper” portfolio

constructed according to Value Line rankings outperforms the market by almost

20% during the period from 1965 to 1986. However, the actual portfolio – the

Value Line Fund – outperformed the market by only 2.5% per year. The dif-

ference between these figures arises from execution costs. This “implementation

shortfall” is surprisingly large and highlights the importance of execution-cost

control, particularly for institutional investors whose trades often constitute a

large fraction of the average trading volume of many stocks. A common and

intuitive practice is to spread large execution orders over a period of time, e.g.,

a few hours or days. This scheduling of trades aims to find a balance between

two conflicting objectives: on the one hand, fast execution generates large market

impact and consequently generates large costs. These costs are related to liquidity

as well as leakage of information. On the other hand, delayed execution reduces

market impact but comes at the expense of greater uncertainty and opportunity

risk. Suitable models of price dynamics and market impact lead to insightful

conclusions on the tradeoff faced between these extremes.

One of the first formal models for trade execution was proposed by Bertsimas

and Lo (1998) and is based on dynamic programming techniques. As we will

see, their model shows that, under suitable conditions, the naive strategy of

dividing a large order equally across the trading period minimizes expected

trading cost. However, the model concentrates on expected cost only and does

not take into consideration the risk (variance) of trading costs. This led Almgren

and Chriss (2000) to propose a model that finds an optimal tradeoff between

expected cost and risk. We next discuss the Almgren–Chriss trade execution

model in detail. In its original form, this model can be presented in a rela-

tively simple conceptual framework. Furthermore, the Almgren–Chriss model

underlies several more elaborate execution models developed over the last few

years.

12.3.1 Almgren–Chriss Trade Execution Model

We first introduce formal definitions associated with a trading strategy and price

dynamics for the execution of a sell program for a single security. The definitions

and model for a buy program are similar.

Assume we hold a block of X units of a security that needs to be liquidated

by time T . Divide the time interval [0, T] into N intervals of length τ := T/N ,

and define the discrete times tk = kτ , for k = 0, 1, . . . , N.

202 Multi-Period Models: Simple Examples

Define a trading trajectory as a vector

x =
[
x0 x1 · · · xN

]T
.

Here xk = the number of units that we plan to hold at time tk. We have boundary

conditions associated with our initial holding, i.e., x0 = X, and liquidation at

time T , i.e., xN = 0.

The trading trajectory implies a trade list

y =
[
y1 · · · yN

]T
,

where yk = xk−1 − xk. Each yk is the number of units sold in the time interval

[tk−1, tk].

An execution trading strategy is a rule for determining the trade size yk given

the information available at time tk−1.

We also need a model for the price dynamics of the security. Assume the

initial security price (at time 0) is S0. The security price evolves according to

two exogenous factors, volatility and drift, and one endogenous factor, market

impact. Volatility and drift are assumed to be the result of market forces that

occur independently of our trading. On the other hand, as market participants

begin to detect the volume we are selling, they naturally adjust their bids down-

ward. We distinguish two types of market impact: temporary and permanent.

Temporary impact is the change in price in a single time interval due to the

imbalance between supply and demand occurring as a result of our trading.

Permanent impact is the equilibrium change in price due to our trading that

lasts for the entire life of our liquidation.

Assume the security price evolves according to a discrete arithmetic random

walk in addition to a term that accounts for permanent impact. The security

price at time tk is given by

Sk = Sk−1 + στ1/2ξk − τg
(yk
τ

)
for k = 1, . . . , N. Here σ represents the asset volatility, ξk ∼ N(0, 1), and the

permanent impact g(v) depends on the average rate of trading v = yk/τ during

the interval [tk−1, tk].

We next incorporate the temporary market impact. The intuition is that a

trader that liquidates yk units during the interval [tk−1, tk] may see the price

decrease as a result of limited liquidity. We assume that this effect is short-lived

and in particular liquidity returns after each time interval. To model this impact,

we incorporate a price impact function h(v) that affects the actual price per share

received for trade yk:

S̃k = Sk−1 − h
(yk
τ

)
.

However, the effect of h(v) does not appear in the next market price Sk.

Given the above trading model, we can compute the execution cost resulting

from trading along a certain trajectory. The captured value of a trading trajectory

12.3 Execution Costs 203

is the total revenue obtained after liquidation. Some straightforward calculations

show that this equals

N∑
k=1

S̃kyk = S0X +
N∑

k=1

(
στ1/2ξk − τg

(yk
τ

))
xk −

N∑
k=1

ykh
(yk
τ

)
. (12.1)

The total cost of trading or implementation shortfall is the difference between

the initial book value of the position and the captured value:

C(x) = S0X −
N∑

k=1

S̃kyk =

N∑
k=1

ykh
(yk
τ

)
−

N∑
k=1

(
στ1/2ξk − τg

(yk
τ

))
xk.

Consequently, given the above price dynamics, it follows that the expected

shortfall E(x) and variance of shortfall V (x) are respectively

E(x) := E(C(x)) =

N∑
k=1

(
ykh

(yk
τ

)
+ τg

(yk
τ

))
and

V (x) = σ2
N∑

k=1

τx2
k.

The units of E(x) are dollars, and the units of V (x) are dollars squared.

For simplicity of exposition, we will make the following assumptions:

• the temporary impact function is linear h(v) = ηv;

• there is no permanent impact;

• τ = 1.

It is possible to extend the model and results when these assumptions are relaxed.

Under the above assumptions, the expected shortfall is

E(x) =
N∑

k=1

ykh(yk) = η

N∑
k=1

y2k.

Consider the problem of finding the trading trajectory that minimizes expected

shortfall:

min
y

η

N∑
k=1

y2k

s.t.

N∑
k=1

yk = X.

It is easy to see that the solution to this problem is the equally divided trade list

yk =
X

N
, k = 1, . . . , N.

204 Multi-Period Models: Simple Examples

This corresponds to the linear trajectory

xk =
N − k

N
X, k = 1, . . . , N.

This linear trajectory has a natural connection to the so-called volume-weighted

average price (VWAP) strategy. The VWAP over the trading period [0, T] is

defined as

VWAP :=

N∑
k=1

VkSk

N∑
k=1

Vk

=

N∑
k=1

ukSk.

Here Vk stands for the volume traded during the kth time interval [tk−1, tk] and

uk stands for the percentage of daily volume traded during the same interval.

The VWAP strategy trades in proportion to the traded volume during an

interval, i.e., it is the following strategy:

yk := ukX.

It is easy to see that the VWAP strategy minimizes expected shortfall when the

temporary impact function is linear in the fraction of total volume traded, i.e.,

when h(yk) = η · (yk/Vk).

Observe that the linear trajectory

xk =
N − k

N
X, k = 1, . . . , N

has expected shortfall

E(x) = η
X2

N

and variance

V (x) =
(N − 1)(2N − 1)

6N
σ2X2.

Consider the extreme urgency strategy that liquidates the entire position during

the first period:

y1 = X, y2 = · · · = yN = 0, x1 = · · · = xN = 0.

This trajectory has variance zero and expected shortfall ηX2.

12.3.2 Efficient Frontier of Optimal Execution

The two execution strategies above suggest that we consider a tradeoff between

the two objectives E(x) and V (x). In analogy to Markowitz’s mean–variance

framework, Almgren and Chriss (2000) define an execution strategy to be effi-

cient if no other strategy has both lower expected shortfall and lower variance.

12.3 Execution Costs 205

Just like in the mean–variance context, there are several equivalent formulations

for efficient execution strategies. A computationally convenient formulation is:

min
x

E(x) + λV (x)

s.t. x0 = X

xN = 0

(12.2)

for some risk-aversion parameter λ > 0. For convenience, put U(x) := E(x) +

λV (x). We can think of U as a “disutility” function. Using the expressions for

expected value and variance of shortfall, we obtain

U(x) = η

N∑
k=1

(xk − xk−1)
2 + λσ2

N∑
k=1

x2
k.

In particular, U(x) = E(x) + λV (x) is a convex quadratic function. The opti-

mality conditions for (12.2) are

∂U

∂xk
(x) = 2(λσ2 + 2η)xk − 2η(xk−1 + xk+1) = 0,

for k = 1, 2, . . . , N − 1, together with the boundary conditions

x0 = X, xN = 0.

The latter system of equations can be written as⎡⎢⎢⎢⎢⎢⎣
2 + λσ2/η −1 0 · · · 0

−1 2 + λσ2/η −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 2 + λσ2/η −1

0 · · · 0 −1 2 + λσ2/η

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

...

xN−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X

0
...

0

⎤⎥⎥⎥⎦
and x0 = X, xN = 0.

For N large, the discussion below shows that the solution to this system of

equations is approximately

xj =
sinh(κ(N − j))

sinh(κN)
·X, j = 0, 1, . . . , N,

where κ is the urgency parameter,

κ :=

√
λσ2

η
.

Efficient Frontier in Continuous Time

We can extend the results from the previous section to the continuous-time

setting. The mathematics is a bit cleaner and more elegant. This is an idealized

model where we assume that the trade can be executed continuously over the

time interval [0, T].

206 Multi-Period Models: Simple Examples

In this case we need to determine a continuous trading trajectory x(t), t ∈
[0, T], with boundary conditions x(0) = X, x(T) = 0. We extend the security

price dynamics to the continuous-time setting. Again, for simplicity we shall

assume that there is only temporary impact. The price dynamics for the market

price is an arithmetic Brownian motion

S(t) = S(0) + σB(t),

and the actual execution price received at time t is

S̃(t) = S(t)− ηy(t),

where y(t) := −ẋ(t) is the rate of execution at time t.

From properties of the stochastic integral, we get the following expression for

the execution shortfall:

C(x) = XS(0)−
∫ T

0

S̃(t)y(t)dt = η

∫ T

0

ẋ(t)2dt− σ

∫ T

0

x(t)dB(t).

Therefore the expected shortfall E(x) and variance of shortfall V (x) are as

follows:

E(x) = η

∫ T

0

ẋ(t)2dt, V (x) = σ2

∫ T

0

x(t)2dt.

An efficient execution trajectory is the solution to the following problem:

min
x(t)

∫ T

0

(ηẋ(t)2 + λσ2x(t)2)dt

s.t. x(0) = X

x(T) = 0.

This is a problem in calculus of variations. The Euler equation for this prob-

lem (see formula (A.1) in Section A.3) yields the following ordinary differential

equation:

ẍ(t) =
λσ2

η
· x(t),

with boundary conditions

x(0) = X, x(T) = 0.

The solution to this differential equation is

x(t) =
sinh(κ(T − t))

sinh(κT)
·X, t ∈ [0, T],

where κ is an “urgency” parameter, defined by

κ :=

√
λσ2

η
.

The parameter κ has the following nice interpretation. The reciprocal θ := 1/κ is

measured in units of time and can be interpreted as the “half-life” of the trade.

12.3 Execution Costs 207

More precisely, when T → ∞, the trade is reduced by a factor of e = 2.71828 . . .

by time θ.

It is insightful to verify the units of the various parameters of our model. The

units of σ2, η, and λ are as follows:

σ2 :
currency2

volume2 · time

η :
currency · time

volume2

λ :
1

currency
.

Recall that the urgency parameter is

κ =

√
λσ2

η
.

Therefore, the units of θ = 1/κ are indeed units of time.

Multiple-Security Portfolios

The previous execution model and results can be extended to the case when

we need to liquidate a whole portfolio X =
[
X1 · · · Xm

]T
of m securities.

In this case, the trading trajectory is a sequence of m-dimensional vectors xk =[
x1k · · · xmk

]T
, for k = 0, . . . , N . The trade list is also a sequence of m-

dimensional vectors yk = xk−1 − xk, k = 1, . . . , N .

For simplicity we shall assume that there is only a linear temporary impact

and τ = 1. Hence the security prices Sk follow a multi-dimensional random walk:

Sk = Sk−1 + ξk.

Here ξk ∼ N(0,Σ), where Σ is the covariance matrix of the m security prices.

We assume Σ to be symmetric and positive definite.

The prices actually received are

S̃k = Sk −Hyk,

where H is symmetric and positive semidefinite.

Proceeding as before, we get the following expressions for expected shortfall

and variance of shortfall respectively:

E(x) =
N∑

k=1

yT
kHyk =

N∑
k=1

(xk − xk−1)
TH(xk − xk−1)

and

V (x) =

N∑
k=1

xT
kΣxk.

208 Multi-Period Models: Simple Examples

Now the set of efficient trading strategies is characterized by the solutions to the

quadratic program:

min
x

E(x) + λV (x)

s.t. x0 = X

xN = 0.

This is again a convex quadratic optimization problem. Its solution is

⎡⎢⎢⎢⎣
x1

x2

...

xN−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
2H + λΣ −H 0 · · · 0

−H 2H + λΣ −H · · · 0
...

. . .
. . .

. . .
...

0 · · · −H 2H + λΣ −H

0 · · · 0 −H 2H + λΣ

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣
HX

0
...

0

⎤⎥⎥⎥⎦
and x0 = X, xN = 0.

Unlike for the one-security model, the above solution may not necessarily

satisfy the monotonicity constraints xk ≤ xk−1, with k = 1, . . . , N . This means

that the above strategy may have trades that are “buys” at intermediate steps,

even though the execution is meant to liquidate a vector of positions. If this

possibility is not desirable, we can introduce the constraints xk ≤ xk−1, for k =

1, . . . , N, into the optimization problem for efficient trajectories. The resulting

model no longer has a closed-form solution but it is still a quadratic program.

For particularly large portfolios, the size of the quadratic programs poses an

interesting computational challenge.

Adaptive Strategies

The models described above in discrete and continuous time assume static tra-

jectories. That is, the trajectories do not respond to changes during execution. It

is conceivable that an adaptive strategy that depends on the initial portion of the

trajectory could do better. In order to solve these kinds of optimization problems

we need to rely on dynamic programming techniques. These are generally more

challenging optimization problems. The next chapter introduces this powerful

technique.

12.3.3 Trade Execution Models in Practice

A trade execution model used by an institutional investor typically includes

other bells and whistles that we have not discussed, such as short-term alpha,

spread, permanent impact, and temporary impact. These additional features

can be incorporated in the model discussed in Section 12.3.1. An important

empirical observation is that, instead of a linear market impact, other forms

of market impact such as 1/2 or 3/5 powers of volume traded appear to be

more appropriate. In these cases the optimal execution problem is no longer a

quadratic program but it is still a convex program.

12.4 Exercises 209

The estimation of market impact is a challenging practical problem. One

difficulty is the need for data at the execution level. Furthermore, even when

such data are available, market impact is not directly observable. Instead, we can

only observe the total realized impact, which includes permanent and temporary

impact as well as some random noise. Almgren et al. (2005) estimate the market

impact using linear regression, based on a large dataset of US equity brokerage

executions from Citigroup. The model is used to calibrate a version of the

Almgren–Chriss model with nonlinear temporary costs and is validated with

out-of-sample backtesting.

12.4 Exercises

Exercise 12.1 Show that the Kelly criterion can be seen as a special case of

the dynamic portfolio optimization problem with the logarithmic utility of the

final wealth and a peculiar pair of risk-free and risky assets. Conclude that if

the payoff for each dollar invested is b instead of 1, then the optimal fraction to

bet is

(b+ 1)p− 1

b
.

Exercise 12.2 Consider the following variation of the Kelly criterion. Suppose

at each betting round the gambler can bet on two independent gambles. For each

of the two gambles the following applies: if a gambler bets one dollar, then she

wins one dollar with probability p and loses the dollar she bet with probability

1− p.

Suppose the gambler starts with some initial wealthW0 and repeatedly bets on

the above two gambles. Determine the fractions f1, f2 of wealth that she should

bet at each round in each of the two gambles to maximize the average growth

rate of her wealth.

Exercise 12.3 Recall the example described in Section 12.2.2. You may choose

to prove the statements below formally or to verify them numerically. For the

latter, you may use the Excel spreadsheet “Exercise 12.3 Two Periods”.

(a) Suppose a myopic investor is risk-neutral; that is, her objective is to maxi-

mize E(W1) by investing her initial wealth in a long-only portfolio composed

of the one-period and the two-period bonds. Show that the investor would

be indifferent between the one- and the two-period bonds. In other words,

any long-only portfolio is optimal for the investor.

(b) Suppose a myopic investor has power utility with risk-aversion parameter

γ > 0; that is, her objective is to maximize E
(
W 1−γ

1 /(1− γ)
)
. Show that

the investor would prefer to hold her entire portfolio in the one-period bond.

(c) Suppose a long-term investor is risk-neutral; that is, her objective is to

maximize the expected wealth E(W2) at time 2. Show that the investor

210 Multi-Period Models: Simple Examples

would choose to place her entire portfolio in the one-period bond at t = 0

and roll it over at the risk-free rate at t = 1.

(d) Suppose a long-term investor has power utility with risk-aversion parameter

γ > 1; that is, her objective is to maximize E
(
W 1−γ

2 /(1− γ)
)
. Show that

the investor would prefer to hold part of her entire portfolio in the two-period

bond. Furthermore, show that the higher the risk aversion γ, the higher the

holding in the two-period bond.

Exercise 12.4 Prove identity (12.1) in the Almgren–Chriss model.

Exercise 12.5 Consider the following variation of the one-asset trading model

of Almgren and Chriss. Assume the security price at period k is

Sk = Sk−1 + ξk

and the actual security price received at period k is

S̃k = Sk−1 − hk(yk),

where hk(yk) = cyk/vk, c is a constant, and vk is the volume traded during the

kth interval [k − 1, k].

(a) Write down the expression for the shortfall, as a function of the trading

trajectory
[
x0 x1 · · · xN

]T
and/or the trading list

[
y1 · · · yN

]T
.

(b) Write down the formulation for the problem of finding the trading list[
y1 · · · yN

]T
that minimizes expected shortfall.

(c) Prove that the solution to the problem in part (b) is the VWAP strategy

yk =
vk∑N
j=1 vj

X, k = 1, . . . , N.

Exercise 12.6 Suppose today (year t = 0) you have an initial endowment

W0 = $10,000. Now (beginning of year 0), and at the beginning of the next 19

years, you can allocate your wealth to two investment choices:

1. A risk-free asset “cash” that generates a 5% annual return.

2. A risky asset “stocks” with annual return that is normally distributed with

mean 10% and standard deviation 20%.

Let W20 denote the endowment at the end of the 20-year investment period

(i.e., beginning of year 20).

Consider the following three investment strategies:

1. Buy and hold: Invest the initial endowment 50% in cash and 50% in stocks

and never rebalance.

2. Balanced: Rebalance the portfolio at the beginning of every year to a 50%

cash and 50% stocks mix.

3. Switching: Alternate each year between 100% cash and 100% stocks.

12.4 Exercises 211

The Excel spreadsheet “Exercise 12.6 Twenty Years” contains a random sam-

ple of the risk-free and risky returns over a 20-year period.

(a) Compute the total accumulated return achieved by each of the three strate-

gies. That is,

W20

W0
− 1.

(b) Compute the annualized return achieved by each of the three strategies.

That is, (
W20

W0

)1/20

− 1.

(c) Use your favorite simulation software to generate 10,000 random samples of

the risk-free and risky returns over a 20-year period. Report the sample mean

and sample variance of the total accumulated return and of the annualized

return for each of the three strategies.

(d) Produce charts (e.g., histograms) to visualize the distribution of total accu-

mulated and annualized returns achieved by the three strategies. Which

strategy seems to have a higher expected annualized return? Which one

seems to have a higher variance of annualized return?

(e) Which strategy would you prefer? Why?

13 Dynamic Programming: Theory
and Algorithms

Dynamic programming is an approach to model and solve multi-period decision

problems. The fundamental principle of dynamic programming is the Bellman

equation, a certain kind of optimality condition. As we detail in this chapter, the

central idea of the Bellman equation is to break down a multi-stage problem into

multiple two-stage problems. Under suitable conditions, the Bellman equation

yields a recursion that helps in characterizing the solution and in computing it.

Before embarking on a formal description, we illustrate the dynamic program-

ming approach via some examples.

13.1 Some Examples

Example 13.1 (Matches puzzle) Suppose there are 30 matches on a table and

I play the following game with a clever opponent: I begin by picking up 1, 2,

or 3 matches. Then my opponent must pick 1, 2, or 3 matches. We continue

alternating until the last match is picked up. The player who picks up the last

match loses. How can I (the first player) be sure of winning?

Solution. If I can ensure that it will be my opponent’s turn when 1 match remains,

I certainly win. Let us work backwards one step: If I can ensure that it will be

my opponent’s turn when 5 matches remain, I will also win. The reason for this

is that no matter what he does when there are 5 matches left, I can make sure

that when he has his next turn, only 1 match will remain. Hence it is clear

that I win if I can force my opponent to play when 5 matches remain. We can

continue working backwards and conclude that I will ensure victory if I can force

my opponent to play when 5, 9, 13, 17, 21, 25, or 29 matches remain. Since

the game starts with 30 matches on the table, I can ensure victory by picking

1 match at the beginning, bringing the number down to 29.

Example 13.2 (Knapsack problem) Given a set of items, each with a certain

weight and value, select the collection of items with total maximum value such

that their total weight does not exceed some fixed weight limit W .

Solution. Let wt > 0 and vt > 0 be the weight and value respectively of item t for

t = 1, . . . , n. The knapsack problem can be formulated as an integer program and

13.1 Some Examples 213

solved via the technique covered in Chapter 8.2. We next illustrate an alternative

approach via dynamic programming. Consider the problem as a sequence of

binary decisions xt ∈ {0, 1} corresponding to “include” or “do not include”

item t for t = 1, . . . , n. To find the optimal selection of items, we can work

“backwards” as we did in the matches puzzle. Let Wt be the remaining amount

of weight available at stage t = 1, . . . , n with W1 = W , and let Jt(Wt) denote

the value of an optimal collection of items if we started selecting items at stage t

with remaining weight limit Wt. The value function Jt(Wt) satisfies the following

backward recursion for t = 1, 2, . . . , n− 1:

Jt(Wt) =

{
Jt+1(Wt) if wt > Wt

max{Jt+1(Wt), Jt+1(Wt − wt) + vt} if wt ≤ Wt.
(13.1)

Our goal is to obtain the value J1(W) and the corresponding optimal collection

of items. The steps that lead to J1(W) in the above recursion are tied to the

optimal decisions x∗
t for t = 1, . . . , n − 1. On the one hand, x∗

t = 0 corresponds

to Jt(Wt) = Jt+1(Wt); that is, do not select item t. On the other hand, x∗
t = 1

corresponds to Jt(Wt) = Jt+1(Wt −wt) + vt. Observe that for 0 ≤ Wn ≤ W the

last-stage value function satisfies

Jn(Wn) =

{
0 if wn > Wn

vn if wn ≤ Wn.

Example 13.3 (Optimal consumption problem) Assume that now (beginning

of year 0) you have an initial amount of wealth W0 > 0. At the beginning of

year t you choose to consume Ct dollars and invest the rest of your wealth in

one-year treasury bills. You can consume at most the wealth available in year t.

Consuming Ct in year t provides a utility U(Ct). On the other hand, each dollar

invested in one-year treasury bill yields 1+r dollars cash at the beginning of the

next year. Suppose you want to maximize your total utility of consumption over

the next T years:

max
C0,...,CT

T∑
t=0

U(Ct).

How much should you consume each year?

Solution. The key to solving the optimal consumption problem is again to work

“backwards” in time just like we did in the matches puzzle and knapsack problem.

Let Wt denote the amount of wealth available at the beginning of year t and let

Jt(Wt) be the total utility of consumption from year t to year T if we start at year

t with wealth Wt. The value function Jt(Wt) satisfies the following backwards

recursion for t = 0, 1, 2, . . . , T − 1:

Jt(Wt) = max
0≤Ct≤Wt

{Jt+1((Wt − Ct) · (1 + r)) + U(Ct)} (13.2)

and the maximizer C∗
t is the optimal consumption level at year t. Observe that

for WT ≥ 0 the last-stage value function satisfies

JT (WT) = U(WT)

214 Dynamic Programming: Theory and Algorithms

attained at the optimal consumption level C∗
T = WT .

13.2 Model of a Sequential System (Deterministic Case)

We next introduce the formal notation and terminology of dynamic program-

ming. The presentation follows the approach popularized in the classical book of

Bertsekas (2005). For ease of exposition, we first consider the deterministic case.

That is, the context without random components.

A sequential system is defined by the following elements.

Stages: These are the points in time when decisions are made. We will normally

consider t = 0, 1, . . . , T or t = 1, 2, . . . , T .

States: The state of the system at a particular stage is the information that is

relevant for subsequent decisions. We will generally denote the state at

stage t as st, for t = 0, 1, . . . , T . Sometimes it is convenient to include

also a “final state” sT+1.

Decisions: These are also called controls or actions that we can make at each

stage and that affect the behavior of the system. We will generally denote

the decisions as xt, for t = 0, 1, . . . , T .

Law of motion: This defines how the state of the system evolves. A general

law of motion has the form

st+1 = ft(st,xt), t = 0, 1, . . . , T.

Assume we are interested in optimizing some overall objective function

T∑
t=0

gt(st,xt) + gT+1(sT+1), (13.3)

where each gt(st,xt), for t = 0, 1, . . . , T, and gT+1(sT+1) is some cost or reward

per stage. This defines a sequential decision problem: find xt, for t = 0, 1, . . . , T,

to minimize the total cost or maximize the reward (13.3).

Both Examples 13.2 and 13.3 can be readily stated in this framework.

Dynamic programming formulation for the knapsack problem
Stages: t = 1, 2, . . . , n.

State at stage t: remaining weight capacity Wt.

Decision at stage t: binary variable xt ∈ {0, 1} indicating whether to include

item t or not. This decision is constrained to be xt = 0 if wt > Wt as in

this case the weight of item t exceeds the remaining weight capacity.

Law of motion: the remaining weight capacity at stage t + 1 is the one from

stage t reduced by wt if item t is included. Otherwise they are the same.

More precisely,

Wt+1 = Wt − wtxt, t = 1, 2, . . . , n− 1.

13.3 Bellman’s Principle of Optimality 215

Objective: maximize the total value of the selected items

max
t=1,...,n

n∑
t=1

vtxt.

Dynamic programming formulation for the optimal consumption problem
Stages: t = 0, 1, 2, . . . , T.

State at stage t: available wealth Wt. It is also convenient to assume that

terminal wealth WT+1 = 0.

Decision at stage t: consumption Ct ∈ [0,Wt].

Law of motion: the wealth at stage t+1 is the portion of wealth from stage t

that was not consumed increased by a factor 1 + r. More precisely,

Wt+1 = (Wt − Ct)(1 + r), t = 0, 1, 2, . . . , T.

Objective: maximize the total utility of consumption

max
C0,...,CT

T∑
t=0

U(Ct).

13.3 Bellman’s Principle of Optimality

The heart of dynamic programming is a principle of optimality due to Bellman.

Its flavor was suggested by the solutions to Examples 13.1, 13.2, and 13.3.

To state the principle precisely, we need a bit of notation. Suppose we are

maximizing total reward

J(s0) := max
x0,...,xT

{
T∑

t=0

gt(st,xt) + gT+1(sT+1)

}
.

Consider the “tail problem” that starts at stage t:

Jt(st) := max
xt,...,xT

{
T∑

τ=t

gτ (sτ ,xτ) + gT+1(sT+1)

}
.

Bellman’s optimality principle can be stated as follows. The value-to-go functions

Jt(st) satisfy the recursive relationship

Jt(st) = max
xt

{gt(st,xt) + Jt+1(ft(st,xt))} . (13.4)

The recursive relationship (13.4) is called the Bellman equation. Observe that

the recursive relationships (13.1) and (13.2) are exactly the Bellman equation

(13.4) in the particular context of Examples 13.2 and 13.3 respectively.

There is a certain jargon associated with the solution to a sequential decision

problem and Bellman’s optimality principle. The function Jt(st) is called the

value-to-go function at stage t. If the objective is to minimize a total cost,

216 Dynamic Programming: Theory and Algorithms

sometimes it is called the cost-to-go function. The solution x∗
t (st) of Bellman’s

equation (13.4) at stage t is called an optimal decision rule at stage t. Notice that

this solution depends on the state st at stage t. The vector of optimal decision

rules (x∗
0(·), . . . ,x∗

T (·)) is called the optimal policy.

Bellman’s optimality principle can be phrased as:

If (x∗
0(·), . . . ,x∗

T (·)) is an optimal policy for the entire problem, then

(x∗
t (·), . . . ,x∗

T (·)) is an optimal policy for the tail problem beginning at

stage t.

13.4 Linear–Quadratic Regulator

We next illustrate Bellman’s optimality principle with a popular model from

control engineering called the linear–quadratic regulator. It provides the founda-

tion for a model of dynamic investment with transaction costs and predictable

returns that we will discuss in the next chapter. The linear–quadratic regulator

is a model for the problem of steering the location st of an object towards the

origin via a control input ut. Instead of a constraint on the location of the object,

the linear–quadratic regulator imposes a penalty for deviating from the origin.

Assume the states and controls evolve according to the following linear law of

motion:

st+1 = Ast +But, t = 0, 1, . . . , N − 1.

Assume we have a quadratic cost function

N−1∑
t=0

(sTt Qst + uT
t Rut) + sTNQsN ,

where Q,R are symmetric positive definite matrices of appropriate sizes.

The goal is to determine the optimal sequence of controls ut, t = 0, 1, . . . , N−1,

that minimize the above cost when the initial position of the object is s0:

J(s0) := min
u0,...,uN−1

{
N−1∑
t=0

(sTt Qst + uT
t Rut) + sTNQsN

}
.

We next apply the backwards dynamic programming principle. For the last stage

N we evidently have

JN (sN) = sTNQsN .

13.4 Linear–Quadratic Regulator 217

For stage N − 1 we have the Bellman equation

JN−1(sN−1) = min
uN−1

{
sTN−1QsN−1 + uT

N−1RuN−1 + JN (sN)
}

= min
uN−1

{
sTN−1QsN−1 + uT

N−1RuN−1

+(AsN−1 +BuN−1)
TQ(AsN−1 +BuN−1)

}
= min

uN−1

{
sTN−1QsN−1 + sTN−1A

TQAsN−1 + 2sTN−1A
TQBuN−1

+uT
N−1(R+BTQB)uN−1

}
.

The latter is a convex quadratic function of uN−1. To find its minimum, we

compute its gradient and equate it to zero to obtain:

2BTQAsN−1 + 2(R+BTQB)uN−1 = 0.

Thus, the optimal control at stage N − 1 is

u∗
N−1 = −(R+BTQB)−1BTQAsN−1 = LN−1sN−1,

where

LN−1 = −(R+BTQB)−1BTQA.

Plugging this value of u∗
N−1 in the above expression for JN−1(sN−1) we get

JN−1(sN−1) = sTN−1QsN−1 + sTN−1A
TQAsN−1

− sTN−1A
TQB(R+BTQB)−1BTQAsN−1

= sTN−1KN−1sN−1,

where

KN−1 = Q+AT(Q−QB(R+BTQB)−1BTQ)A.

Next we will prove by induction that

Jt(st) = sTt Ktst, u
∗
t = Ltst,

where

KN = Q,

Kt = Q+AT(Kt+1 −Kt+1B(R+BTKt+1B)−1BTKt+1)A, t = N − 1, . . . , 0,

and

Lt = −(R+BTKt+1B)−1BTKt+1A, t = N − 1, . . . , 0.

218 Dynamic Programming: Theory and Algorithms

We already showed that the above holds for t = N − 1. Assume that it holds for

t+ 1. At stage t we have the Bellman equation

Jt(st)

= min
ut

{
sTt Qst + uT

t Rut + Jt+1(st+1)
}

= min
ut

{
sTt Qst + uT

t Rut + (Ast +But)
TKt+1(Ast +But)

}
= min

ut

{
sTt Qst + sTt A

TKt+1Ast + 2sTt A
TKt+1But + uT

t (R+BTKt+1B)ut

}
.

The latter is a convex quadratic function of ut. To find its minimum, we compute

its gradient and equate it to zero to obtain:

2BTKt+1Ast + 2(R+BTKt+1B)ut = 0.

Thus, the optimal control at stage t is

u∗
t = −(R+BTKt+1B)−1BTKt+1Ast = Ltst,

where

Lt = −(R+BTKt+1B)−1BTKt+1A.

Plugging this value of u∗
t in the above expression for Jt(st) we get

Jt(st) = sTt Qst + sTt A
TKt+1Ast − sTt A

TKt+1B(R+BTKt+1B)−1BTKt+1Ast

= sTt Ktst,

where

Kt = Q+AT(Kt+1 −Kt+1B(R+BTKt+1B)−1BTKt+1)A.

13.5 Sequential Decision Problem with Infinite Horizon

Infinite horizon problems are often appropriate models for problems where there

is no terminal stage, such as investments for an endowment or a foundation. They

are also often appropriate to model problems with very long time horizons. The

infinite horizon setting tends to simplify some issues since the dependence of the

value function on t can be eliminated.

Consider an infinite horizon problem whose law of motion is of the form

st+1 = f(xt, st)

and whose objective function is

max
x0,x1,...

∞∑
t=0

θt · g(xt, st),

where θ ∈ (0, 1) is a given discount factor. Define the value-to-go function V (·) as

V (s0) := max
x0,x1,...

∞∑
t=0

θt · g(xt, st).

13.6 Linear–Quadratic Regulator with Infinite Horizon 219

Observe that at any intermediate stage t we have

V (st) := max
xt,xt+1,...

∞∑
τ=t

θτ−t · g(xτ , sτ).

Thus, in this case the Bellman equation can be written as

V (st) = max
xt

g(xt, st) + θ · V (st+1).

13.6 Linear–Quadratic Regulator with Infinite Horizon

Consider now the infinite horizon version of the linear–quadratic regulator that

we discussed in Section 13.4. The goal now is to determine the optimal sequence

of controls ut, t = 0, 1, . . . , that minimizes the following cost:

V (s0) := min
u0,u1,...

{ ∞∑
t=0

(sTt Qst + uT
t Rut)

}
.

A common technique to solve the Bellman equation (and similar differential

equations) is “ansatz”, which can be loosely described as “make an educated

guess and later verify”. In this problem, we try the following quadratic ansatz

for the form of the value function:

V (st) = sTt Kst

for some symmetric positive definite matrix K.

With this educated guess we now apply the Bellman equation (infinite horizon

case):

V (st) = min
ut

[
sTt Qst + uT

t Rut + V (st+1)
]

= min
ut

[
sTt Qst + uT

t Rut + (Ast +But)
TK(Ast +But)

]
= min

ut

[
sTt Qst + sTt A

TKAst + 2sTt A
TKBut + uT

t (R+BTKB)ut

]
.

The latter is a convex quadratic function of ut. To find its minimum, we compute

its gradient and equate it to zero to obtain:

2BTKAst + 2(R+BTKB)ut = 0.

Thus, the optimal control at stage t is

u∗
t = −(R+BTKB)−1BTKAst = Lst,

where

L = −(R+BTKB)−1BTKA.

220 Dynamic Programming: Theory and Algorithms

Plugging this value of u∗
t in the above Bellman equation we get

V (st) = sTt Qst + sTt A
T(K−KB(R+BTKB)−1BTK)Ast.

Hence for the above guess to be correct, we must have:

K = Q+AT(K−KB(R+BTKB)−1BTK)A.

This is the so-called Ricatti equation. Under suitable assumptions on Q,R,A,B,

this equation is known to have a unique symmetric positive definite solution K.

Consider the following special case: A = B = I and R = λQ with λ > 0. In

this case the law of motion is

st+1 = st + ut

and the Ricatti equation is

K = Q+K−K(λQ+K)−1K.

We thus obtain

Q = K(λQ+K)−1K.

To solve for K, try to find a solution of the form K = aQ. Plugging this in the

above equation yields

1 =
a2

λ+ a
.

This is a quadratic equation in a with two roots, but only one that is positive,

namely

a =
1 +

√
1 + 4λ

2
.

Therefore we get

K = aQ =
1 +

√
1 + 4λ

2
Q,

and consequently

L = − 1 +
√
1 + 4λ

2λ+ 1 +
√
1 + 4λ

I.

In particular, the optimal control at time t is

ut = − 1 +
√
1 + 4λ

2λ+ 1 +
√
1 + 4λ

st.

Note that when λ = 0, there is no direct cost associated with the control variable

ut and therefore it is optimal to select ut to minimize the cost of st+1 = st +

ut, which is given by sTt+1Qst+1. Clearly, this is minimized when st+1 = 0, or

equivalently, when ut = −st. On the other hand, for λ > 0, the cost λuT
t Qut

keeps ut from reaching all the way to −st. Instead, ut is a scalar multiple of −st,

where the scalar multiple is less than 1. In addition, the larger λ, the higher the

cost of the control variable ut, and therefore the smaller this scalar multiple.

13.7 Model of Sequential System (Stochastic Case) 221

13.7 Model of Sequential System (Stochastic Case)

The above dynamic programming machinery has a straightforward extension to a

more general context that includes a stochastic component in the law of motion.

A stochastic sequential system is an extension of the deterministic case. Like a

deterministic sequential system, the main components of a stochastic sequential

system are stages, states, decisions, and law of motion. The first three are exactly

as before. On the other hand, the law of motion of a stochastic sequential system

is of the more general form

st+1 = ft(st,xt, ωt), t = 0, 1, . . . , T.

As before, st,xt are the state and action at stage t and st+1 is the state at stage

t+ 1. In addition, ωt is some random disturbance that occurs at stage t.

Assume we are interested in optimizing some overall objective function

E

[
T∑

t=0

gt(st,xt, ωt) + gT+1(sT+1)

]
, (13.5)

where each gt(st,xt, ωt), t = 0, 1, . . . , T, and gT+1(sT+1) is a cost or a reward

per stage. This defines a stochastic sequential decision problem: find xt, t =

0, 1, . . . , T, to minimize or maximize the expected total cost or reward (13.5).

Bellman’s optimality principle also extends in a natural fashion. Suppose we

are maximizing the expected reward

J(s0) := max
x0,...,xT

E

[
T∑

t=0

gt(st,xt, ωt) + gT+1(sT+1)

]
.

Consider the “tail problem” that starts at stage t:

Jt(st) := max
xt,...,xT

E

[
T∑

τ=t

gτ (sτ ,xτ , ωτ) + gT+1(sT+1)

]
.

Bellman’s optimality principle can be stated as follows. The value-to-go functions

Jt(st) satisfy the following Bellman equation:

Jt(st) = max
xt

Et [gt(st, xt, ωt) + Jt+1(ft(st, xt, ωt))] . (13.6)

The stochastic case also has an infinite horizon version. Consider an infinite

horizon problem with a law of motion of the form

st+1 = f(xt, st, ωt)

and objective function

max
x0,x1,...

E

[∞∑
t=0

θt · g(xt, st, ωt)

]
,

222 Dynamic Programming: Theory and Algorithms

where θ ∈ (0, 1) is a given discount factor.

Define the value-to-go function V (·) as

V (s0) := max
x0,x1,...

E

[∞∑
t=0

θt · g(xt, st, ωt)

]
.

Observe that at any intermediate stage t we have

V (st) := max
xt,xt+1,...

E

[∞∑
τ=t

θτ−t · g(xτ , sτ , ωτ)

]
.

In this case the Bellman equation can be written as

V (st) = max
xt

Et [g(xt, st, ωt) + θ · V (st+1)] .

13.8 Notes

Dynamic programming was introduced by Bellman (1954, 1957), who stated

the fundamental principle of optimality. Dynamic programming is pervasive in

many disciplines, including finance, economics, biology, management, etc. The

book of Bertsekas (2005) is a popular modern reference on this topic. The book

by Porteus (2002) gives a treatment on dynamic programming with focus on

inventory theory.

13.9 Exercises

Exercise 13.1 Consider the following puzzle. There are 40 matches on a table.

You begin by picking up 1, 2, 3, or 4 matches. Then your opponent must pick 1,

2, 3, or 4 matches. The two of you continue taking turns until the last match is

picked up. The player who picks up the last match loses.

(a) Can you find a strategy that guarantees your victory? If so, how?

(b) What if the initial number of matches is 39, 38, 37, or 36 instead of 40?

(c) Suppose the game starts with 40 matches and you and your opponent take

turns as above but the player who picks up the last match wins. Can you

find a strategy that guarantees your victory? If so, how?

Exercise 13.2 Consider the following capital budgeting example from

Chapter 8:

max 9x1 + 11x2 + 7x3 + 4x4

s.t. 7x1 + 10x2 + 6x3 + 3x4 ≤ 19

xi ∈ {0, 1}, i = 1, . . . , 4.

Observe that this is a knapsack problem. Prove that the vector x∗ =
[
0 1 1 1

]T
is an optimal solution to this problem by showing that it satisfies the Bellman

equation.

13.9 Exercises 223

Exercise 13.3 Consider the optimal consumption problem described in

Example 13.3. Suppose the consumer has a logarithmic utility of consumption

U(Ct) = log(Ct).

(a) Show that the optimal consumption and value-to-go function at stage T are

respectively C∗
T (WT) = WT and JT (WT) = log(WT).

(b) Assume r = 0. Use the Bellman equation and induction to show that the

optimal consumption and value-to-go function at stages t = 0, 1, . . . , T − 1

are respectively Ct(Wt) = W0/(T − t+ 1) and Jt(Wt) = (T − t+1) log(Wt).

(c) Assume r > 0. Use the Bellman equation and induction to find the optimal

consumption and value-to-go function at stages t = 0, 1, . . . , T − 1.

Exercise 13.4 Consider the following infinite horizon variation of the previous

consumption problem. Assume the consumer lives forever and her objective is to

maximize the following total discounted utility of consumption

∞∑
t=0

θt · log(Ct)

for some θ ∈ (0, 1). Use the following educated guess (“ansatz”) for the optimal

value function:

V (Wt) = a · log(Wt) + b

for some constants a, b with a > 0. Use the Bellman equation to verify this

educated guess and determine the optimal consumption rule C∗
t (Wt) and optimal

value function V (Wt) (that is, the values of a and b). For simplicity, assume r = 0.

Exercise 13.5 Consider the following variation of the optimal consumption

problem described in Example 13.3. At each stage t the amount of non-consumed

wealth Wt − Ct can be split between treasury bills and an index fund. Funds

placed in treasury bills earn an annual risk-free return r > 0 whereas the funds

placed in the index fund earn a risky return rt with expected value E(rt) = μ > r

and variance var(rt) = σ2 > 0. Assume the returns are i.i.d. across different

periods.

Use dynamic programming to formulate the following optimal investment and

consumption problem: Determine the consumption Ct ∈ [0,Wt] and fraction of

wealth xt ∈ R invested in the index fund at stage t = 0, 1, . . . , T that maximize

the total expected utility of consumption

max
C0,...,CT
x0,...,xT

E

[
T∑

t=0

U(Ct)

]
over the next T years. Proceed as follows.

(a) Write the law of motion; that is, the equation that describes the state Wt+1

in terms of the state Wt and decisions Ct, xt at stage t.

(b) Write the Bellman equation for the value-to-go function Jt(Wt).

224 Dynamic Programming: Theory and Algorithms

(c) Consider the special case of logarithmic utility of consumption U(Ct) =

log(Ct). Use the Bellman equation and induction to determine the optimal

consumption C∗
t and investment fraction x∗

t as well as the value-to-go func-

tion Jt(Wt) at stage t for t = 0, 1, . . . , T.

(d) Indicate how your model changes if the fraction of wealth xt invested in the

index fund at each stage t is subject to the constraint xt ∈ [0, 1]. (That is,

no leverage is allowed in the investment portfolio.)

14 Dynamic Programming Models:
Multi-Period Portfolio Optimization

This chapter describes four types of dynamic portfolio optimization problems

that are amenable to dynamic programming technology. The first two deal

respectively with optimization of final wealth and its extension, optimal

consumption and investment. These two classical models date back multiple

decades. The last two problems are much more modern developments. One of

them is a model for dynamic trading when returns are predictable and trading

is costly. The other one is a model for dynamic portfolio optimization that

incorporates capital gains taxes.

14.1 Utility of Terminal Wealth

Let us revisit the dynamic portfolio optimization model with initial endowment

and utility of terminal wealth that we discussed in Chapter 12. However, this

time we consider a more general setting where there are forecasting variables

available at each stage. Such forecasting variables could be associated with a

factor model. For instance, they could be macroeconomic indicators, or certain

measurable parameters of a particular asset or firm.

As before, suppose that an investor starts at t = 0 with an initial endowment

W0. At times t = 0, . . . , T −1 the investor invests her wealth Wt in a portfolio of

risk-free and risky assets. The investor’s goal is to maximize the expected utility

of terminal wealth U(WT) at time T for some utility function U(·). Define the

following convenient notation:

• Rf,t+1 = gross risk-free return in period [t, t+ 1];

• rt+1 = vector of excess returns of the risky assets in period [t, t+ 1];

• Rp,t+1 = gross random return of the investor’s portfolio in period [t, t+ 1];

• zt = forecasting state variables available at stage t;

• Wt = wealth at stage t.

We have the inter-temporal budget constraint:

Wt+1 = Wt ·Rp,t+1 = Wt · (Rf,t+1 + rTt+1xt), t = 0, . . . , T − 1.

The specific components of this sequential decision problem are as follows:

Stages: these are t = 0, . . . , T − 1.

226 Dynamic Programming Models: Multi-Period Optimization

State at stage t: this is (Wt, zt).

Decision variables at stage t: these are the vector xt of portfolio holdings

(percentages) in the risky assets.

Law of motion: this is the same as the above inter-temporal constraint

Wt+1 = Wt · (Rf,t+1 + rTt+1xt), t = 0, . . . , T − 1.

We next apply Bellman’s optimality principle. In this case the value-to-go

function is

Jt(Wt, zt) = max
xt,...,xT−1

Et(U(WT))

= max
xt,...,xT−1

Et

[
U

(
Wt ·

T−1∏
τ=t

(Rf,τ+1 + rTτ+1xτ)

)]
.

At the final stage T we get

JT (WT , zT) = U(WT).

For earlier stages, we have the Bellman equation

Jt(Wt, zt) = max
xt

Et [Jt+1(Wt+1, zt+1)]

= max
xt

Et

[
Jt+1(Wt(Rf,t+1 + rTt+1xt), zt+1)

]
.

In the special case of power utility U(W) = W 1−γ/(1− γ), where γ > 0, we

rewrite the Bellman equation as follows. Define ψt(zt) := Jt(1, zt). Then it is

easy to see that the Bellman equation is equivalent to

ψt(zt) = max
xt

Et

[
(Rf,t+1 + rTt+1xt)

1−γ · ψt+1(zt+1)
]
.

We can draw the following interesting conclusions from here. On the one hand,

if rt+1 and zt+1 are independent at time t, then the term on the right-hand side

above satisfies

Et

[
(Rf,t+1 + rTt+1xt)

1−γ · ψt+1(zt+1)
]

= Et

[
(Rf,t+1 + rTt+1xt)

1−γ
]
· Et (ψt+1(zt+1)) . (14.1)

Thus, to find xt we need to solve

max
xt

Et

[
(Rf,t+1 + rTt+1xt)

1−γ

1− γ

]
= max

xt

Et [U(Rp,t+1)] .

In this case the optimal policy is myopic.

On the other hand, if rt+1 and zt+1 are correlated, then (14.1) no longer holds.

In this case xt may include some kind of “inter-temporal hedging component”.

The intuition is that the correlation between rt+1 and zt+1 would induce some

kind of serial dependence in our returns. In other words, the current forecasted

return rt+1 conveys information about future returns. Unlike the myopic strategy,

the optimal dynamic strategy incorporates this serial dependence.

14.2 Optimal Consumption and Investment 227

14.2 Optimal Consumption and Investment

Consider an extension of the previous dynamic portfolio optimization model

where the goal is to maximize an expected utility that combines two terms:

consumption along the planning horizon and terminal wealth. The latter com-

ponent is sometimes called bequest.

There are three key differences from the previous model. First, there is an

additional decision variable Ct ∈ [0,Wt] at each stage t that denotes the amount

of wealth the investor consumes at stage t. Second, the objective function is

max
x0,...,xT−1
C0,...,CT−1

E

(
T−1∑
t=0

U(Ct) +B(WT)

)

for some utility functions U(C) and B(W). Third, the new law of motion, or

inter-temporal budget constraint, is

Wt+1 = (Wt − Ct) ·Rp,t+1 = (Wt − Ct) · (Rf,t+1 + rTt+1xt), t = 0, . . . , T − 1.

To simplify our discussion we consider the case when there are no forecasting

variables zt. In particular this implies that the returns on the risky assets are

independent across different time periods. At the final stage T we have the

following value-to-go function

JT (WT) = B(WT).

For earlier stages, we have the Bellman equation

Jt(Wt) = max
Ct,xt

Et [Jt+1(Wt+1) + U(Ct)] .

The first-order optimality conditions yield

U ′(Ct) = Et

[
J ′
t+1(Wt+1)Rp,t+1

]
and

Et

[
J ′
t+1(Wt+1)rt+1

]
= 0.

The first one is obtained by differentiating with respect to Ct and the second

one is obtained by differentiating with respect to xt.

If we plug the optimal Ct,xt back into the Bellman equation and differentiate

with respect to the state variable Wt, we obtain the following envelope condition:

U ′(Ct) = J ′
t(Wt).

In the special case of a logarithmic utility of consumption and bequest U(C) =

log(C), B(W) = log(W), we can draw a more explicit conclusion about the

problem. In this case the Bellman equation yields the following expressions for

the value function and optimal consumption:

Jt(Wt) =
log(Wt)

T − t+ 1
+ bt

228 Dynamic Programming Models: Multi-Period Optimization

and

C∗
t (Wt) =

Wt

T − t+ 1
.

The specific value bt and the optimal portfolio x∗
t (Wt) depend on the joint

probability distribution ofRf,t+1 and rt+1. By contrast, the optimal consumption

C∗
t (Wt) only depends on Wt.

14.3 Dynamic Trading with Predictable Returns and
Transaction Costs

We next discuss a recent model due to Gârleanu and Pedersen (2013) for dynamic

portfolio optimization when asset returns are predictable by signals and trading

is costly. This problem is quite timely and especially relevant for active investors.

The optimal trading policy should balance various tradeoffs. Fast trading gen-

erates more alpha and lower risk but also higher transaction costs. Slow trading

does the opposite. On the other hand, there may be fast signals that require

quick action and slow signals associated with longer-lasting alpha. The model

that we discuss next provides an insightful solution to this problem.

Consider a universe of assets, whose returns evolve according to the following

law of motion:

rt+1 = Bft + ut+1.

Here ft is a vector of factor returns that predict asset returns, B is a matrix

of exposures or sensitivities of the asset returns to factor returns, and ut is an

idiosyncratic zero-mean noise term with constant covariance matrix

vart(ut+1) := Σ.

The vector of factor returns ft is known to the investor at time t and evolves

according to

Δft+1 = −Φft + εt+1,

where Δft+1 = ft+1 − ft.

Trading is costly. The transaction cost associated with trading the vector of

shares Δxt = xt − xt−1 is

TC(Δxt) =
1
2ΔxT

t ΛΔxt

for some symmetric positive definite matrix Λ.

The model objective is

max
x0,x1,...

E0

[∞∑
t=0

(1− ρ)t+1
(
rTt+1xt −

γ

2
xT
t Σxt

)
− (1− ρ)t

2
ΔxT

t ΛΔxt

]
.

Gârleanu and Pedersen (2013) apply a dynamic programming approach to

characterize the optimal trading strategy. We summarize the main results below.

14.3 Dynamic Trading with Predictable Returns and Costs 229

The state at time t is the pair (xt−1, ft). The value-to-go function is

V (xt−1, ft) = max
xt,xt+1,...

Et

[∞∑
τ=t

(1− ρ)τ+1−t
(
rTτ+1xτ − γ

2
xT
τΣxτ

)
− (1− ρ)τ−t

2
ΔxT

τΛΔxτ

]
.

Hence the Bellman equation is

V (xt−1, ft) =max
xt

{
−1

2
ΔxT

t ΛΔxt

+(1− ρ)
(
Et(r

T
t+1xt)−

γ

2
xT
t Σxt + Et [V (xt, ft+1)]

)}
.

We make an educated guess and later verify (ansatz) the following quadratic

form for the value function:

V (xt, ft+1) = − 1
2x

T
t Axxxt + xT

t Axf ft+1 +
1
2 f

T
t+1Aff ft+1 + a0.

Using this ansatz, it can be shown that the optimal trading policy is

xt = xt−1 + Λ−1Axx (aimt − xt−1)

where

aimt = A−1
xxAxf ft.

The Bellman equation also yields expressions for the matrices Axx,Axf ,Aff .

See the exercises at the end of the chapter. In the special case Λ = λΣ we obtain

xt =
(
1− a

λ

)
xt−1 +

a

λ
aimt,

where

a =
−(γ(1− ρ) + λρ) +

√
(γ(1− ρ) + λρ)2 + 4γλ(1− ρ)2

2(1− ρ)
.

Next, we get a more explicit expression of the aim portfolio. To that end, first

observe that the myopic solution in the absence of transaction costs is precisely

the solution to the static Markowitz model at time t; that is,

Markowitzt = (γΣ)−1Bft.

Again we consider the special case Λ = λΣ. For z := γ/(γ + a) we get

aimt = z · Markowitzt + (1− z)Et(aimt+1)

=
∞∑
τ=t

z(1− z)τ−tEt(Markowitzτ).

Furthermore, the portfolio aimt has a similar form to Markowitzt provided the

forecasting signals are appropriately scaled down:

aimt = (γΣ)−1B

(
I+

a

γ
Φ

)−1

ft.

230 Dynamic Programming Models: Multi-Period Optimization

The optimal strategy is characterized by two principles. First, aim in front of

the target. Second, trade partially towards the current aim. More precisely, the

optimal updated portfolio is a linear combination of the existing portfolio and an

aim portfolio. The latter is a weighted average of the current Markowitz portfolio

(the moving target) and the expected Markowitz portfolios on all future dates

(where the target is moving).

14.4 Dynamic Portfolio Optimization with Taxes

Taxes pose a significant friction to most investors in financial markets. There

are a variety of taxes that apply in different ways to income, dividends, and

capital gains. It is common to ignore taxes in traditional finance and portfolio

theory. This simplification is in part due to the difficulties involved in modeling

the effects of taxes.

Capital taxes introduce a peculiar type of challenge in portfolio management.

Since the sale of an appreciated asset triggers a capital gain tax liability, there is

a tradeoff between the benefits of diversification versus the tax costs triggered by

rebalancing the portfolio. In addition to the tradeoff between diversification and

taxes, many individual investors also have to deal with both a tax-deferred and

a taxable account. In this context an investor faces an asset location problem

in addition to the usual asset allocation problem. Asset location refers to the

problem of how the investor should locate her portfolio holdings across the tax-

deferred and taxable accounts.

Basic Case: Tax Management Only

In the United States tax code, capital gains and losses are triggered when assets

are sold. This feature means that the investor could manage her assets in ways

that reduce her tax liabilities by choosing when to realize gains or losses. In this

section we describe some models for optimal tax trading.

One of the earliest and most basic models for optimal tax trading was intro-

duced by Constantinides (1983). In this model it is assumed that the tax rate

on capital gains is independent of the length of the holding period. It is also

assumed that capital losses generate tax rebates. Finally, it is assumed that

there are no transaction costs, no capital loss restrictions, and no wash-sale

restrictions. A wash sale occurs when an asset is sold at a capital loss and the

same or substantially identical one is also purchased within 30 days before or after

the sale. Under these assumptions the optimal tax-trading strategy is relatively

simple: Realize losses as soon as they occur and defer gains indefinitely. By

realizing losses, the investor gets a tax rebate. If the investor did not realize the

loss as soon as it happened, the opportunity for a tax rebate could disappear.

Constantinides’s model can be extended to account for proportional transaction

costs. If there are proportional transaction costs, then the optimal tax-trading

strategy would still be to defer gains but to realize losses only beyond a certain

threshold. The exact size of the threshold depends on the size of the transaction

14.4 Dynamic Portfolio Optimization with Taxes 231

In a more elaborate follow-up article Constantinides (1984) proposed a model

that considers a more realistic setting where the tax rate depends on the length

of the holding period. In this model the sale of assets with long-term status is

taxed at a rate lower than that of assets with short-term status. In this case the

optimal tax-trading strategy still calls for realizing losses as soon as they occur.

In addition and somewhat surprisingly, it is also sometimes optimal to sell (and

immediately repurchase) assets with an embedded long-term gain. The rationale

for this action is that there is a “re-start” option associated with resetting the

tax basis and having the opportunity to realize short-term losses. The value of

this re-start option depends on the asset volatility and the ratio of the short-term

and long-term capital tax rates. The following example provided by C. Spatt
1

illustrates this phenomenon.

Example 14.1 Consider an asset with current price P0 = $20. Suppose that

at dates t = 0, 1 we have

Pt+1 =

{
Pt + k with probability 0.5

Pt − k with probability 0.5.

Assume an investor buys one share of this asset at date t = 0. Our goal is

to determine the trading strategy (realize/not realize) at dates t = 1, 2 that

minimizes expected taxes.

(a) First consider the following case. The short-term and long-term capital gain

tax rates are respectively τs = 0.5, and τ� = 0.5y, where 0 < y < 1. The sale

of shares held for one period can be treated as either short-term or long-term

depending on what is more advantageous to the investor. The sale of shares

held for two periods is treated as long-term. Assume there are no transaction

costs.

In this case at dates t = 1 and t = 2 it is optimal to realize losses.

At date t = 1 it is optimal to realize a long-term gain if y < 0.5. See

Exercise 14.2.

(b) Now consider the case when the capital gain tax rate is τ = 0.2 for both

long-term and short-term gains or losses. Assume a transaction cost of 0.5

per share traded.

In this case at date t = 2 it is optimal to realize a loss if k > 1.25.

At date t = 1 it is optimal to realize a loss if k > 5.

Since short-term and long-term rates are the same, it is optimal not to

realize gains at any date.

Portfolio Choice with Taxes

We now turn our attention to the problem of dynamic portfolio choice in the

presence of capital gains taxes. The model below is a simplified version of a

model proposed by Dammon et al. (2001).

1
Personal communication.

232 Dynamic Programming Models: Multi-Period Optimization

We consider an economy with a risky and a risk-free asset where investors

live for T periods. We also assume that in this economy investors are endowed

with some initial capital and their goal is to maximize some expected utility of

consumption Ct at dates t = 0, 1, . . . , T and bequest WT at date T . The return of

the risk-free asset between date t− 1 and date t is r. The price of the risky asset

is serially independent and follows a binomial process. Let Pt denote the price of

the risky asset at date t. Let nt and mt denote respectively the number of shares

of the risky and risk-free assets held right after trading at date t. Throughout

the model we will assume no shorting, i.e., we will impose the constraints nt ≥ 0

and mt ≥ 0.

We assume that capital gains are taxed at a rate τ , and capital losses are

credited at the same rate. To compute the capital gain triggered by an asset

sale, we assume that the tax basis P ∗
t for the shares at date t is the weighted

average price of those shares. Therefore, the tax basis P ∗
t evolves according to

the following law of motion:

P ∗
t =

⎧⎨⎩
nt−1 · P ∗

t−1 + (nt − nt−1)
+ · Pt

nt−1 + (nt − nt−1)+
if P ∗

t−1 < Pt

Pt if P ∗
t−1 ≥ Pt.

Right after trading at date t, the realized capital gain or loss Gt is given by

Gt =

{
(nt−1 − nt)

+(Pt − P ∗
t−1) if P ∗

t−1 ≤ Pt

nt−1(Pt − P ∗
t−1) if P ∗

t−1 ≥ Pt.

We have the following inter-temporal balance of wealth equation that relates the

portfolio holdings at dates t−1 to the portfolio holdings at dates t = 1, . . . , T−1:

ntPt +mt + Ct = nt−1Pt +mt−1(1 + r)− τGt.

Similarly, at date T we have

WT = nT−1PT +mT−1(1 + r)− τGT .

The portfolio choice problem can be stated as a dynamic programming problem

where the state variables at date t are (Pt, P
∗
t−1, nt−1,mt−1), the actions at time

t are (nt,mt, Ct) and the objective is

max
Ct,nt,mt

E

[
T∑

t=0

U(Ct, t) +B(WT)

]
.

The following example illustrates the striking effect of taxes in portfolio choice.

Example 14.2 Assume that at date t = 0 the holdings are n−1 > 0 and

m−1 = 0. In other words, our entire portfolio is invested in the risky asset.

Assume r = 0, P0 = 1, 0 < 1− k < P ∗
−1 = 1− δ < 1, and

P1 =

{
P0 + k with prob 1/2

P0 − k with prob 1/2.

Assume T = 1 and our goal is to determine the portfolio holdings at date t = 0

so as to maximize some utility of final wealth E(U(W1)). Since there is no

14.4 Dynamic Portfolio Optimization with Taxes 233

consumption at date t = 0 we have

n0P0 +m0 = n−1P0 +m−1 − τ(n−1 − n0)
+(P0 − P ∗

−1).

Thus

m0 = (n−1 − n0)(1− τδ).

And so the only variable in our problem is n0 subject to the constraints 0 ≤
n0 ≤ n1.

Furthermore, the balance of wealth equation yields

W1 = n0P1 +m0 + τn0(P
∗
0 − P1)

+

=

{
n0(τδ + k) + n−1(1− τδ) with prob 1/2

n0(τk − k) + n−1(1− τδ) with prob 1/2.

It is evident that in the absence of taxes (τ = 0), the optimal holding of the

risky asset is n0 = 0 for any positive level of risk aversion. However, it is easily

checked numerically that n0 may vary all the way between 0 and n−1 for positive

values of τ . In particular, for τ = 0.2, δ = 0.1, k = 0.2 we get n0 = 0.8352 for

the logarithmic utility function.

The numerical solution to the more general model in Dammon et al. (2001)

reveals the following interesting insights. As expected, it is optimal to realize

capital losses as soon as they occur. Since diversification is more valuable to

young investors, it is optimal for them to sell assets with large embedded capital

gains to rebalance their portfolios. On the other hand, elderly investors defer

most capital gains. Because in the US tax code there is a tax forgiveness at

death, it is optimal for elderly investors to increase their allocations to equity as

they approach their terminal age.

If in addition to some initial endowment an investor receives income, then

the following insights are again revealed by a numerical solution to the model.

Young investors hold more equity, very much in line with popular financial

planning advice. Because of capital gain taxes, it is optimal to use income to

adjust asset allocation instead of selling assets with embedded capital gains. In

years immediately prior to retirement it is optimal to reduce equity allocation,

again in line with popular financial planning advice. Finally, beyond retirement

it is optimal to have a gradual increase in equity holdings.

Asset Allocation and Asset Location

The availability of various kinds of tax-deferred retirements accounts such as

401K, 403(b), IRA, and Keough give investors the ability to shelter some of their

assets from taxes. Since assets may be held both in a tax-deferred as well as in

a taxable account, the location decision has important implications on portfolio

choice. Dammon et al. (2004) developed a model to study this problem. Via

an arbitrage argument, they show that it is optimal to allocate assets to the

tax-deferred account in descending order of tax exposure until the limit of the

234 Dynamic Programming Models: Multi-Period Optimization

tax-deferred account is reached. In particular, the assets with the highest taxable

yields, such as taxable bonds, should go in the tax-deferred account. If the limit of

the tax-deferred account is reached, then assets with lower taxable yields should

be allocated to the taxable account.

The numerical solution to the model in Dammon et al. (2004) also shows

that, the larger the fraction of wealth in the tax-deferred account, the higher the

fraction of total wealth allocated to assets with higher taxable yield.

14.5 Exercises

Exercise 14.1 Consider the optimal consumption and investment model dis-

cussed in Section 14.2.

(a) Prove the envelope condition by proceeding as follows. Let C∗
t (Wt) and

x∗
t (Wt) denote the optimal consumption and optimal portfolio at stage t

respectively. Thus

Jt(Wt) = Et

[
Jt+1

[
(Wt − C∗

t (Wt)) · (1 + rTt+1x
∗
t (Wt))

]
+ U(C∗

t (Wt))
]
.

Use the chain rule to differentiate both sides above with respect to Wt. Then

use the optimality conditions for the Bellman equation to show that the

expression for the derivative of the right-hand side simplifies to U ′(C∗
t (Wt)),

thereby giving the envelope condition

J ′
t(Wt) = U ′(C∗

t (Wt)).

(b) Consider the special case U(C) = log(C), B(W) = log(W). Use induction

to prove the following expressions for the value function and optimal con-

sumption:

Jt(Wt) =
log(Wt)

T − t+ 1
+ bt

and

C∗
t (Wt) =

Wt

T − t+ 1
,

where bt depends on the joint distribution of Rf,t+1, rt+1.

Exercise 14.2 Consider the model for short-term versus long-term taxes

described in Example 14.1.

(a) Suppose the short-term and long-term capital gain tax rates are respectively

τs = 0.5, and τ� = 0.5y, where 0 < y < 1.

Prove that indeed at dates t = 1 and t = 2 it is optimal to realize losses,

and at date t = 1 it is optimal to realize a long-term gain if y < 0.5.

14.5 Exercises 235

(b) Suppose the capital gain tax rate is τ = 0.2 for both long-term and short-

term gains or losses and there is a transaction cost of 0.5 per share traded.

Prove that at date t = 2 it is optimal to realize a loss if k > 1.25, and at

date t = 1 it is optimal to realize a loss if k > 5. Prove that it is optimal not

to realize gains at any date.

Exercise 14.3 Consider the model for portfolio choice with taxes described in

Example 14.2.

(a) Prove that for τ = 0 then the optimal holding of the risky asset at t = 0 is

n0 = 0 for any risk-averse concave utility function U(W).

(b) Check numerically that for τ = 0.2, δ = 0.1, k = 0.2, and logarithmic utility

function U(W) = log(W), the optimal holding at t = 0 is n0 = 0.8352.

Exercise 14.4

(a) Consider the following minimum-variance portfolio optimization problem

with risky assets, transaction costs, and no constraints:

min
x

{
1

2
xTVx+

1

2
(x− x0)

T R(x− x0)

}
. (14.2)

Here x0 is some initial portfolio, V is the covariance matrix of asset returns,

and R is a symmetric positive definite matrix that models the transaction

cost incurred in changing the initial portfolio x0 to the new portfolio x.

Prove that the solution to (14.2) is

x∗ = (V +R)−1Rx0.

(b) Now consider a multi-period version of the previous problem. Assume the

investor starts with an initial portfolio x0 and her objective is

min
x1,...,xT

T∑
t=1

(
1

2
xT
t Vxt +

1

2
(xt − xt−1)

TR(xt − xt−1)

)
.

Apply dynamic programming to solve this problem. Proceed as follows:

• the stages are t = 1, . . . , T ;

• the state at stage t is xt−1, that is, the portfolio previously set at stage

t− 1;

• the action at stage t is the vector of holdings xt;

• the cost at stage t is the quadratic term

1

2
xT
t Vxt +

1

2
(xt − xt−1)

TR(xt − xt−1).

(i) Show that the optimal optimal decision rule x∗
T and the value-to-go

function JT (xT−1) at the last stage T are

x∗
T = (V +R)−1RxT−1

and

JT (xT−1) =
1

2
xT
T−1KTxT−1,

where KT = R−R(V +R)−1R.

236 Dynamic Programming Models: Multi-Period Optimization

(ii) Use the Bellman equation and induction to prove that the optimal deci-

sion rule x∗
t and the value-to-go function Jt(xt−1) at each stage t = T−1,

T − 2, . . . , 1 are of the form

x∗
t = Ltxt−1

and

Jt(xt−1) =
1

2
xT
t−1Ktxt−1

for some suitable matrices Lt and Kt.

(c) Now consider an infinite horizon version of the previous problem. Assume

there is only one risky asset, the investor starts with an initial portfolio x0

and her objective is

min
x1,x2,...

∞∑
t=1

(q
2
x2
t +

r

2
(xt − xt−1)

2
)
.

Use the following educated guess (“ansatz”) for the optimal value function:

V (xt−1) =
k

2
x2
t−1 (14.3)

for some constant k > 0. In other words, our educated guess is that the value

function starting at stage t with state xt−1, namely

V (xt−1) := min
xt,xt+1,...

∞∑
τ=t

(q
2
x2
τ +

r

2
(xτ − xτ−1)

2
)
,

is of the form (14.3) for some constant k > 0.

Use the Bellman equation to verify this educated guess, determine the

optimal decision rule x∗
t , and find the value of k in terms of q, r.

Give expressions for both k and the optimal portfolio x∗
t that are as explicit

as possible.

Exercise 14.5

(a) Consider the mean–variance portfolio optimization problem with risk-free

asset and no constraints:

max
x

{
μTx− γ

2
xTVx

}
. (14.4)

Here μ is the vector of excess returns, V is the covariance matrix, x is the

vector of holdings in risky assets, and γ > 0 is a risk-aversion constant.

Prove that the solution to (14.4) is

x∗ =
1

γ
V−1μ.

(b) Now consider a variation of the previous problem that includes a quadratic

term for transaction costs:

max
x

{
μTx− γ

2
xTVx− λ

2
(x− x0)

T V(x− x0)

}
. (14.5)

Here x0 is some initial portfolio and λ > 0 is a transaction cost constant.

14.5 Exercises 237

Prove that the solution to (14.5) is

x∗ =
1

γ + λ
V−1μ+

λ

γ + λ
x0.

(c) Now consider a multi-period version of the previous problem. Assume the

objective is

max
x1,...,xT

E

[
T∑

t=1

(
μT

t xt −
γ

2
xT
t Vxt −

λ

2
(xt − xt−1)

T V(xt − xt−1)

)]
.

This assumes that the vector of expected returns may vary with time but not

the covariance matrix. Apply dynamic programming to solve this problem.

Proceed as follows:

• the stages are t = 1, . . . , T ;

• the state at stage t is (xt−1,μt);

• the action at stage t is the vector of holdings xt;

• the reward at stage t is the quadratic term

μT
t xt −

γ

2
xT
t Vxt −

λ

2
(xt − xt−1)

T V(xt − xt−1).

(i) Show that the optimal decision rule x∗
T and the value-to-go function

JT (xT−1,μT) at the last stage T are

x∗
T = aV−1μT + bxT−1,

and

JT (xT−1,μT) =
c

2
μT

TV
−1μT +

d

2
xT
T−1VxT−1 + eμT

TxT−1,

for some constants a, b, c, d, e.

(ii) *Assume μt has the following (simple and somewhat unrealistic) law of

motion:

μt+1 = μ̄+ ρ(μt − μ̄) + εt,

where μ̄, ρ are constants, |ρ| < 1, and εt is a vector of independently

normally distributed random shocks each with mean 0 and variance 1.

Use the Bellman equation and induction to prove that the optimal deci-

sion rule x∗
t and the value-to-go function Jt(xt−1,μt) at each stage t =

T − 1, T − 2, . . . , 1 are

x∗
t = atV

−1μt + btxt−1,

and

Jt(xt−1,μt) =
ct
2
μtV

−1μt +
dt
2
xT
t−1Vxt−1 + etμ

T
t xt−1 + ft,

for some constants at, bt, ct, dt, et, ft.

15 Dynamic Programming Models:
the Binomial Pricing Model

One of the most common uses of dynamic programming in financial mathematics

is through lattice models. In particular, the binomial lattice model of Cox et al.

(1979) has become an indispensable tool for pricing derivative securities. This

chapter describes this model and the underlying dynamic programming principles

for the pricing of European options and the pricing and optimal exercising of

American options.

15.1 Binomial Lattice Model

The binomial lattice provides a model for the price movements of a risky asset.

It can be seen as a multi-period version of the single-period binomial model

discussed in Section 4.3. The binomial lattice model describes the price of a

risky asset at some discrete times 0, 1, . . . , N . A basic period length, such as a

week, day, or second, is assumed to elapse between any two consecutive times.

The model assumes that if the share price of the risky asset is Sk at time k then

the share price Sk+1 at time k+1 can take two values, namely Sk+1 = u ·Sk and

Sk+1 = d · Sk where u > d > 0 are multiplicative factors (u stands for “up” and

d for “down” factors). The probabilities assigned to these two possible states are

p and 1 − p respectively, where 0 < p < 1. The multi-stage price structure can

be represented on a lattice as illustrated in Figure 15.1.

After k time periods, the asset price can take k+1 different values. If the price

at stage 0 is S0, then the price Sk at stage k is ujdk−jS0 if there are j up moves

and k − j down moves. Observe that there are
(
k
j

)
possible paths to reach the

node corresponding to j up moves and t−j down moves after t periods. Therefore

the probability that the price is ujdk−jS0 in stage k is
(
k
j

)
pj(1− p)k−j because

between two consecutive times the probability of an up move is p whereas that

of a down move is 1− p.

15.2 Option Pricing

Using the above binomial lattice model for the price process of an underlying

risky asset, the value of an option on this asset can be computed by dynamic pro-

gramming by using backward recursion, working from the maturity date (timeN)

15.2 Option Pricing 239

S

uS

dS

d2S

u2S

udS

u3S

u2dS

ud2S

d3S

0 1 2 3 Time

Figure 15.1 Asset price in the binomial lattice model

back to time 0 (the current time). The approach fits within the stochastic setting

introduced in Section 13.7. More precisely, the stages of the dynamic program

are the discrete times k = 0, . . . , N . The state at stage k is the asset price Sk.

Thus Sk can take the k+1 possible values defined by the k+1 nodes in the kth

layer of the lattice. The state SN at the final stage N is the terminal state. The

law of motion for the asset price is as follows:

Sk+1 =

{
uSk with probability p

dSk with probability q = 1− p

for k = 0, 1, . . . , N. However, the following adjustment of utmost importance

must be made: for option pricing purposes, we do not use these actual probabil-

ities p and q = 1 − p but instead the risk-neutral probabilities p̃ and q̃ = 1 − p̃

as explained below.

15.2.1 European Options

Consider a European option contract that matures at time N with payoff g(SN)

for some function g(·) of the underlying asset price SN . For instance, if the

contract is a European call option maturing at time N with strike price K, the

payoff at maturity is g(SN) = (SN−K)+. Similarly, if the contract is a European

put option maturing at time N with strike price K, the payoff at maturity is

g(SN) = (K − SN)+.

Let Vk(Sk) denote the value of the option at stage k when the asset price is Sk.

This is the value-to-go function in our dynamic program. The value of the option

at stage 0 is given by V0(S0). This is the quantity that we have to compute in

order to solve the option pricing problem. At the final time N the value-to-go

function is given by the payoff of the option contract. That is,

VN (SN) = g(SN).

Since we are dealing with a European option, we can compute the value Vk(·)

240 Dynamic Programming Models: the Binomial Pricing Model

in terms of Vk+1(·). The single-period subproblem between stages k and k+1 is

identical to the single-period binomial model discussed in Section 4.3. Therefore,

the value Vk(Sk) can be obtained via the risk-neutral probabilities (4.4), namely

p̃ =
1 + r − d

u− d
and q̃ =

u− 1− r

u− d
,

where r is the one-period return on the risk-free asset between time k and time k+

1. Thus for European options the value-to-go functions Vk(·) can be recursively

computed as

Vk(Sk) =
1

1 + r
(p̃Vk+1(uSk) + q̃Vk+1(dSk)) . (15.1)

Example 15.1 Consider a binomial lattice model with N = 3, u = 2, d =
1
2 , r = 0.25, and S0 = 40 as depicted in Figure 15.2. Compute the price of a

European call option with strike price K = 50.

40

80

20

10

160

40

320

80

20

5

0 1 2 3 Time

Figure 15.2 Binomial lattice with u = 2, d = 0.5, S0 = 40, N = 3

For these values of u, d, r the risk-neutral probabilities are

p̃ = q̃ =
0.75

1.5
=

1

2
.

The option value V3(S3) = (S3 − 50)+ at the final stage 3 is as follows:

V3(5) = V3(20) = 0, V3(80) = 30, V3(320) = 270.

Next, applying (15.1) we get V2(S2):

V2(10) = 0, V2(40) =
1

1.25
· 30
2

= 12, V2(160) =
1

1.25
· 30 + 270

2
= 120.

Applying (15.1) again we get V1(S1):

V1(20) =
1

1.25
· 12
2

= 4.8, V1(80) =
1

1.25
· 120 + 12

2
= 52.8.

15.2 Option Pricing 241

Finally applying (15.1) one more time, we get the option value V0(S0):

V0(40) =
1

1.25
· 4.8 + 52.8

2
= 23.04.

Example 15.2 Consider a binomial lattice model with N = 3, u = 2, d = 1
2 ,

r = 0.25, and S0 = 40. Compute the price of a European put option with strike

price K = 60.

Again the risk-neutral probabilities are p̃ = q̃ = 1
2 . We can proceed as in

Example 15.1. The option value V3(S3) = (60− S3)
+ at the final stage 3 is

V3(5) = 55, V3(20) = 40, V3(80) = V3(320) = 0.

Next, applying (15.1) we get V2(S2):

V2(10) =
1

1.25
· 55 + 40

2
= 38, V2(40) =

1

1.25
· 40
2

= 16, V2(160) = 0.

Applying (15.1) again we get V1(S1):

V1(20) =
1

1.25
· 38 + 16

2
= 21.6, V1(80) =

1

1.25
· 16
2

= 6.4.

Finally applying (15.1) one more time, we get the option value V0(S0):

V0(40) =
1

1.25
· 21.6 + 6.4

2
= 11.2.

15.2.2 American Options

Consider now an American option contract that can be exercised at any time

k = 0, 1, . . . , N with payoff g(Sk) for some function g(·) of the underlying asset

price Sk. The key difference between this type of American option contract and

the above type of European option contract is the possibility of early exercise.

Because of this additional feature in the contract, the pricing problem of an

American option needs to account for the optimal exercise timing of the option.

This is accomplished via an adjustment to the previous recursion in the calcula-

tion of the value function.

Once again, at the final time N the value-to-go function is given by the payoff

of the option contract. That is,

VN (SN) = g(SN).

The computation of the value-to-go function Vk(·) in terms of Vk+1(·) needs to

reflect the possibility of early exercise. To that end, the recursive formula (15.1)

needs to be amended as follows:

Vk(Sk) = max

{
1

1 + r
(p̃Vk+1(uSk) + q̃Vk+1(dSk)) , g(Sk)

}
. (15.2)

In words, the value of the option at stage k is the maximum of the following two

quantities: the first one is the discounted value of the option at stage k+1 or the

242 Dynamic Programming Models: the Binomial Pricing Model

payoff obtained if the option is exercised immediately. When the latter is larger,

it is optimal to exercise the option at stage k.

Example 15.3 Consider a binomial lattice model with N = 3, u = 2, d = 1
2 ,

r = 0.25, and S0 = 40. Compute the price of an American call option with strike

price K = 50.

Again the risk-neutral probabilities are p̃ = q̃ = 1
2 . The option value V3(S3) =

(S3 − 50)+ at the final stage 3 is

V3(5) = V3(20) = 0, V3(80) = 30, V3(320) = 270.

Next, applying (15.2) we get V2(S2):

V2(10) = 0, V2(40) = max

{
1

1.25
· 30
2
, (40− 50)+

}
= 12,

V2(160) = max

{
1

1.25
· 30 + 270

2
, (160− 50)+

}
= 120.

Observe that regardless of the value of S2, it is not optimal to exercise the option

at stage 2.

Applying (15.2) again we get V1(S1):

V1(20) =max

{
1

1.25
· 12
2
, (20− 50)+

}
= 4.8,

V1(80) =max

{
1

1.25
· 120 + 12

2
, (80− 50)+

}
= 52.8.

Observe that regardless of the value of S1, it is not optimal to exercise the option

at stage 1.

Finally applying (15.2) one more time, we get the option value V0(S0):

V0(40) = max

{
1

1.25
· 52.8 + 4.8

2
, (40− 50)+

}
= 23.04.

Observe that there is no difference in price and in exercise policy between the

American and the European call options.

Example 15.4 Consider a binomial lattice model with N = 3, u = 2, d = 1
2 ,

r = 0.25, and S0 = 40. Compute the price of an American put option with strike

price K = 60.

Once again, the risk-neutral probabilities are p̃ = q̃ = 1
2 . The option value

V3(S3) = (60− S3)
+ at the final stage 3 is

V3(5) = 55, V3(20) = 40, V3(80) = V3(320) = 0.

Next, applying (15.2) we get V2(S2)

V2(10) = max

{
1

1.25
· 55 + 40

2
, (60− 10)+

}
= 50,

V2(40) = max

{
1

1.25
· 40
2
, (60− 40)+

}
= 20, V2(160) = 0.

15.2 Option Pricing 243

Observe that it is optimal to exercise the option at stage 2 when S2 = 10 and

S2 = 40.

Applying (15.2) again we get V1(S1)

V1(20) = max

{
1

1.25
· 50 + 20

2
, (60− 20)+

}
= 40,

V1(80) = max

{
1

1.25
· 20
2
, (60− 80)+

}
= 8.

Observe that it is optimal to exercise the option at stage 1 when S1 = 20.

Finally applying (15.2) one more time, we get the option value V0(S0)

V0(40) = max

{
1

1.25
· 40 + 8

2
, (60− 40)+

}
= 20.

Observe that it is optimal to exercise the option at this stage.

Notice that the prices of the American and European calls in Example 15.1

and Example 15.3 are identical. This happens because there is nothing to gain by

early exercising of the American call. By contrast, there is a substantial difference

in the prices of the American and European puts in Example 15.2 and Example

15.4. This happens because sometimes it is advantageous to exercise an American

put early. The results of these examples illustrate the following far more general

property of American options.

Theorem 15.5 Consider the binomial lattice model described in Section 15.1,

and an American option contract on the underlying risky asset that can be

exercised at any time k = 0, 1, . . . , N with payoff g(Sk) for some function g(·).
If r ≥ 0 and the function g(·) is convex and satisfies g(0) = 0, then the value of

the American option contract is the same as that of a European option contract

with payoff g(SN) that can only be exercised at stage N . In other words, early

exercising of the American option yields no advantage.

Proof By (15.2), it suffices to show that the following equation and inequality

hold for k = 0, 1, . . . , N − 1:

Vk(Sk) =
1

1 + r
(p̃Vk+1(uSk) + q̃Vk+1(dSk)) ≥ g(Sk). (15.3)

First, observe that for k = 0, 1, . . . , N − 1

Sk =
1

1 + r
(p̃uSk + q̃dSk), (15.4)

since p̃, q̃ are the risk-neutral probabilities.

Next, we prove (15.3) by (backward) induction on k. The assumptions on the

function g(·), equation (15.4), and VN (SN) = g(SN) imply that

g(SN−1) = g

(
r · 0 + p̃uSN−1 + q̃dSN−1

1 + r

)
≤ r

1 + r
· g(0) + 1

1 + r
(p̃g(uSN−1) + q̃g(dSN−1))

=
1

1 + r
(p̃VN (uSN−1) + q̃VN (dSN−1)).

244 Dynamic Programming Models: the Binomial Pricing Model

Therefore (15.3) holds for k = N−1. Suppose (15.3) holds for k = j+1 ≤ N−1.

The assumptions on g(·), equation (15.4), and the induction hypothesis imply

that

g(Sj) = g

(
r · 0 + p̃uSj + q̃dSj

1 + r

)
≤ r

1 + r
· g(0) + 1

1 + r
(p̃g(uSj) + q̃g(dSj))

≤ 1

1 + r
(p̃Vj+1(uSj) + q̃Vj+1(dSj)).

Hence (15.3) holds for k = j as well.

15.3 Option Pricing in Continuous Time

The binomial lattice model can be seen as a discrete version of a popular

continuous-time geometric Brownian motion model. We next sketch some of the

main ideas and results of this continuous model and its relation to the binomial

lattice model discussed above. A full treatment of this topic is beyond the scope

of this book. We refer the reader to Shreve (2000) for a detailed exposition of

this topic.

Suppose the continuous-time price St, with t ∈ [0, T], of a risky asset evolves

according to the stochastic differential equation

dSt

St
= μdt+ σdWt, (15.5)

where μ and σ are constants representing the instantaneous drift and volatility

of the asset price St, and Wt is a Brownian motion. The stochastic differential

equation (15.5) can be seen as a continuous-time analog of the one-period up or

down price movement in the binomial lattice model. The solution to (15.5) is the

continuous-time process

St = S0e
(μ−σ2/2)t+σWt , (15.6)

which can equivalently be written as

log
St

S0
=

(
μ− σ2

2

)
t+ σWt.

Techniques from stochastic calculus have led to the development of pricing

models for a wide variety of options provided the underlying risky asset is

modeled via a suitable stochastic differential equation. In particular, in their

seminal and ground-breaking work Black and Scholes (1973) and Merton (1973)

derived a pricing formula for a European option on an underlying risky asset with

a price process modeled as a geometric Brownian motion. In particular, consider

a call option maturing at time T > 0 with payoff (ST −K)+. Assume the price

of the underlying risky asset is as in (15.6) and the risk-free asset compounds

continuously at an instantaneous rate r ≥ 0; that is, the price Bt of the risk-free

15.4 Specifying the Model Parameters 245

asset is

Bt = B0e
rt.

The Black–Scholes–Merton model yields the following explicit formula for the

price Vt(St) at time t ∈ [0, T] of a European call option with payoff (ST −K)+:

Vt(St) = Φ(d1)St − Φ(d2)Ke−r(T−t), (15.7)

where

Φ(x) =
1

2π

∫ x

−∞
e−t2/2dt, d1 =

1

σ
√
T − t

[
log

(
St

K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t.

The Black–Scholes–Merton model also yields the following formula for the

price Vt(St) at time t ∈ [0, T] of a European put option with payoff (K − ST)
+:

Vt(St) = Φ(−d2)Ke−r(T−t) − Φ(−d1)St,

where Φ(·), d1, d2 are the same as above.

The binomial lattice model can be seen as a discrete approximation of the

geometric Brownian motion. The following section and Exercise 15.4 at the end

of the chapter elaborate on this approximation.

15.4 Specifying the Model Parameters

To specify the binomial lattice model, one needs to choose values for u, d, and

p. This is done by matching the mean and volatility of the asset price to the

mean and volatility of the above binomial distribution. Because the model is

multiplicative (the price S of the asset being either u · S or d · S in the next

stage), it is convenient to work with log(Sk+1/Sk).

Let Sk denote the asset price in stages k = 0, . . . , N . Let μ and σ be the

mean and volatility of ln(SN/S0). (We assume that this information about the

asset is known.) Let Δ = 1/N denote the length between consecutive stages.

Then for k = 0, 1, . . . , N − 1 the mean and volatility of ln(Sk+1/Sk) are μΔ and

σ
√
Δ respectively. In the binomial lattice, a direct computation shows that for

k = 0, 1, . . . , N − 1 the mean and variance of ln(Sk+1/Sk) are p lnu+(1− p) ln d

and p(1−p)(lnu−ln d)2 respectively. Matching these values we get two equations:

p lnu+ (1− p) ln d = μΔ

p(1− p)(lnu− ln d)2 = σ2Δ.

Note that there are three parameters but only two equations, so we can set

d = 1/u as in Cox et al. (1979). Then the equations simplify to

(2p− 1) lnu = μΔ

4p(1− p)(lnu)2 = σ2Δ.

246 Dynamic Programming Models: the Binomial Pricing Model

Squaring the first and adding it to the second, we get (lnu)2 = σ2Δ + (μΔ)2.

This yields

u = e
√

σ2Δ+(μΔ)2

d = e−
√

σ2Δ+(μΔ)2

p =
1

2

(
1 +

1√
1 + σ2/μ2Δ

)
.

When Δ is small, these values can be approximated as

u ≈ eσ
√
Δ

d ≈ e−σ
√
Δ

p ≈ 1

2

(
1 +

μ

σ

√
Δ
)
.

In other words, for small Δ

log
Sk+1

Sk
≈

⎧⎪⎨⎪⎩
σ
√
Δ with probability

1

2

(
1 +

μ

σ

√
Δ
)

−σ
√
Δ with probability

1

2

(
1− μ

σ

√
Δ
)
,

which is a discrete approximation of (15.5).

As an example, consider a binomial model with 52 periods of one week each.

Consider also a stock with current known price S0 and random price S52 a year

from today. We are given the mean μ and volatility σ of ln(S52/S0), say μ = 10%

and σ = 30%. What are the parameters u, d, and p of the binomial lattice? Since

Δ = 1
52 is small, we can use the second set of formulas:

u ≈ e0.30/
√
52 = 1.0425

d ≈ e−0.30/
√
52 = 0.9592

p ≈ 1

2

(
1 +

0.10

0.30
√
52

)
= 0.523.

15.5 Exercises

Exercise 15.1 Apply Theorem 15.5 to show that the price of a European call

option and an American call option with the same strike price and expiration

date are the same in the binomial lattice model. Why does Theorem 15.5 not

apply for put options?

Exercise 15.2 Compute the value of an American call option on a stock with

current price equal to $100, strike price equal to $102, and expiration date four

weeks from today. The yearly volatility of the logarithm of the stock return is

σ = 0.30. The risk-free interest rate is 4%. Use a binomial lattice with N = 4.

15.5 Exercises 247

Exercise 15.3 Compute the value of an American put option on a stock with

current price equal to $100, strike price equal to $98, and expiration date five

weeks from today. The yearly volatility of the logarithm of the stock return is

σ = 0.30. The risk-free interest rate is 4%. Use a binomial lattice with N = 4.

Exercise 15.4 This is a computational exercise. Repeat Exercises 15.2 and

15.3 using a binomial lattice with N = 10, N = 100, and N = 1000. Compare

the results obtained for the call option with those given by the Black–Scholes–

Merton formula (15.7).

16 Multi-Stage Stochastic
Programming

Stochastic programming is a computational approach to stochastic optimization.

Stochastic programs have been studied for several decades (see, e.g., Birge and

Louveaux, 1997; Shapiro et al., 2009). Typically, the approach hinges on a

reformulation of the stochastic optimization problem as a deterministic one via

a scenario tree. Computational and algorithmic advances have made stochastic

programming techniques applicable to various classes of real-world problems.

16.1 Multi-Stage Stochastic Programming

Multi-stage stochastic optimization can be seen as a generalization of the generic

class of stochastic optimization model discussed in Chapter 10. Let 0, 1, . . . , T

index a set of stages where decisions are to be made. Assume that between two

consecutive stages t − 1 and t some random outcome ωt is revealed. At each

stage t = 0, 1, . . . , T we make a set of non-anticipatory decisions xt that can only

depend on the random information revealed up until that stage. Schematically,

the process can be seen as follows:

decision

x0
�

random

draw ω1
�

decision

x1
�

random

draw ω2
� · · ·� random

draw ωT
�

decision

xT

A multi-stage stochastic minimization problem is the following kind of multi-fold

version of the two-stage stochastic model (10.2) discussed in Chapter 10:

min
x0

g0(x0) + E[Q1(x0, ω1)]

x0 ∈ X0,
(16.1)

where the recourse term Q1(x0, ω1) similarly depends on the decisions to be

made at later stages:

Q1(x0, ω1) := min
x1

g1(x1, ω1) + E[Q2(x1, ω2)]

x1 ∈ X1(x0, ω1),

with

Qt(xt−1, ωt) := min
xt

gt(xt, ωt) + E[Qt+1(xt, ωt+1)]

xt ∈ Xt(xt−1, ωt),

16.1 Multi-Stage Stochastic Programming 249

for t = 2, . . . , T − 1, and the last-stage recourse term QT (xT−1, ωT) is of the

form

QT (xT−1, ωT) := min
xT

gT (xT , ωT)

xT ∈ XT (xT−1, ωT).

The multi-stage optimization problem (16.1) can also be written as

min
x0∈X0

g0(x0)+E

[
min

x1∈X1(x0,ω1)
g1(x1, ω1) + · · ·+ E

[
min

xT∈XT (xT−1,ωT)
gT (xT , ωT)

]]
.

Consider the special case of linear multi-stage stochastic optimization, where the

components are linear. More precisely, each gt(xt, ωt) = cTt xt for some vector ct
and each inter-temporal constraint xt ∈ Xt(xt−1, ωt) is of the form

Btxt−1 +Atxt = bt, xt ≥ 0,

where ωt = (ct,At,Bt,bt) is only revealed at stage t. In this case we often write

min
x0,x1,...,xT

E
[
cT0x0 + cT1x1 + · · · + cTTxT

]
s.t. A0x0 = b0

B1x0 + A1x1 = b1

B2x1 + A2x2 = b2

...
...

BTxT−1 + ATxT = bT

x0, x1, . . . xT ≥ 0.

(16.2)

Example 16.1 (Financial planning example) Assume an investor has initial

wealth W0 at t = 0. At stage t she can invest in two asset classes: bonds and

stocks. The (random) gross return on bonds from time t− 1 to t is Rb,t and the

(random) gross return on stocks from t− 1 to t is Rs,t. Assume that the investor

needs to meet liabilities Lt at times t = 1, . . . , T . She wants to maximize her

expected wealth at time T (after covering the liabilities). Assume no shorting is

allowed.

Formulation of the financial planning example
Variables:

xt: amount of money invested in bonds at stage t, for t = 0, . . . , T −1;

yt: amount of money invested in stocks at stage t, for t = 0, . . . , T −1;

WT : wealth at time T

max E(WT)

s.t. x0 + y0 = W0

Rb,txt−1 +Rs,tyt−1 = Lt + xt + yt, t = 1, . . . , T − 1

Rb,TxT−1 +Rs,T yT−1 = LT +WT

xt, yt ≥ 0, t = 0, 1, . . . , T − 1

WT ≥ 0.

250 Multi-Stage Stochastic Programming

Notice that in this model the parameters Rb,t and Rs,t are unknown

prior to time t.

16.2 Scenario Optimization

As discussed in Chapter 10 for the two-stage case, a multi-stage optimization

model can be recast as a deterministic equivalent if each of the random out-

comes has a discrete distribution. In this case for each stage t = 1, 2, . . . , T

there is a finite set of possible values or realizations {ω1
t , . . . , ω

S
t } for the random

outcome ωt. These sets of realizations can be described by an event tree as

depicted in Figure 16.1 for a problem with three stages. In this particular tree,

the random variables ω1 and ω2 have two- and five-valued discrete distributions

respectively. The tree structure is associated with the discrete filtration gener-

ated by the discrete-time random process ω[t] := (ω1, ω2, . . . , ωt), t = 1, . . . , T .

In particular, each possible value of ω2 has a unique predecessor value of ω1. We

further elaborate on this tree structure below.

0 1 2 Stage

Figure 16.1 Event tree for a three-stage model

The set of scenarios described by the event tree in turn yield a deterministic

equivalent of a multi-stage stochastic optimization model. We next illustrate

this equivalence for the stochastic optimization model described in Example 16.1

in a particularly simple event tree. We subsequently describe the deterministic

equivalent for linear multi-stage stochastic programs in more general event trees.

Example 16.2 (Financial planning revisited) Consider the model described in

Example 16.1. Suppose T = 2 and there are two equally likely outcomes (“H”

and “T”) for the joint returns (Rb,t, Rs,t) over each period, say

(Rb,t(H), Rs,t(H)) = (1.14, 1.25) and (Rb,t(T), Rs,t(T)) = (1.1, 1.06).

Figure 16.2 illustrates the corresponding scenario tree. In this event tree the

labels “H” and “T” on the edges indicate the specific outcome between two

16.2 Scenario Optimization 251

consecutive stages. Observe that each of the four scenarios HH,HT, TH, TT in

the event tree occurs with probability 1/4.

H

T

H

T

H

T

0 1 2 Stage

Figure 16.2 Event tree for financial planning model

The scenario tree in turn yields a deterministic equivalent formulation for the

financial planning stochastic optimization model. In the deterministic equivalent

the stage 0 decisions are made at the root of the tree and thus may not depend

on any of the random outcomes. The stage 1 decisions may depend on the initial

path H or T realized up to stage 1 in the event tree. Finally, the stage 2 decisions

may depend on the path HH, HT , TH, or TT realized up to stage 2 in the event

tree. The corresponding adaptiveness of the variables and constraints is explicitly

reflected in the following deterministic equivalent formulation.

Scenario optimization model

Variables:

x0, y0: money in bonds and stocks at t = 0;

x1(H), x1(T), y1(H), y1(T): money in bonds and stocks at t = 1;

W2(HH),W2(HT),W2(TH),W2(TT): wealth at t = 2

max
1

4
· (W2(HH) +W2(HT) +W2(TH) +W2(TT))

s.t. x0 + y0 = W0 (stage 0)

1.14x0 + 1.25y0 = L1 + x1(H) + y1(H) (stage 1, path H)

1.1x0 + 1.06y0 = L1 + x1(T) + y1(T) (stage 1, path T)

1.14x1(H) + 1.25y1(H) = L2 +W2(HH) (stage 2, HH)

1.1x1(H) + 1.06y1(H) = L2 +W2(HT) (stage 2, HT)

1.14x1(T) + 1.25y1(T) = L2 +W2(TH) (stage 2, TH)

1.1x1(T) + 1.06y1(T) = L2 +W2(TT) (stage 2, TT)

x0, y0, x1(H), x1(T), y1(H), y1(T) ≥ 0

W2(HH),W2(HT),W2(TH),W2(TT) ≥ 0.

252 Multi-Stage Stochastic Programming

The above scenario optimization approach is quite flexible. In particular,

consider a variation of the above financial planning model where the objective

is maxE (U(WT)) for some concave utility function U(W). The corresponding

deterministic equivalent has exactly the same variables and constraints as the

one above and the following objective:

max
1

4
(U(W2(HH)) + U(W2(TH)) + U(W2(HT)) + U(W2(TT))) .

Furthermore, if U(·) is piecewise linear, then the problem can be recast as a

linear program. (See Exercise 16.1.)

Consider now the general multi-stage linear stochastic program (16.2). Suppose

each random vector ωt = (ct,At,Bt,bt) has a discrete distribution and consider

their event tree representation. The description of the deterministic equivalent

relies on the following notation. Let

Ωt := {ωk
t = (ckt ,A

k
t ,B

k
t ,b

k
t) : k = 1, . . . , St}

be the set of possible realizations of the random variable ωt for some integer St ≥
1 and for each stage t = 1, . . . , T . Let pkt = P(ωt = ωk

t), with k = 1, . . . , St, t =

1, . . . , T . The set Ωt = {ω1
t , . . . , ω

St
t } corresponds to the nodes in layer t of the

event tree, which can be conveniently denoted (t, 1), . . . , (t, St) as illustrated in

Figure 16.3.

(0, 1)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

0 1 2 Stage

Figure 16.3 Event tree for a three-stage model with node labels

Observe that in the event tree there is always a single root node (0, 1) in layer 0.

Furthermore, for each t = 1, . . . , T − 1 each node (t, k) has a unique predecessor

(t−1, k̂) in the immediately preceding layer of the tree. For instance, in the event

tree depicted in Figure 16.3 the predecessors of each of the nodes in layer 2 is a

unique node in layer 1 as follows

1̂ = 2̂ = 1, 3̂ = 4̂ = 5̂ = 2.

Observe that the probability of a non-terminal node equals the combined prob-

ability of its direct descendants; that is, for t = 1, . . . , T and for every node

16.2 Scenario Optimization 253

(t− 1, �) we have

p�t−1 =
∑

(t,k):k̂=�

pkt .

Consider the multi-stage linear stochastic program (16.2) and assume the

random outcomes are described via a suitable event tree. We next detail the

variables, objective, and constraints of the corresponding deterministic linear

program equivalent.

Variables: Stage 0 variables: x0.

Stage t variables can be adapted to the St possible paths up to stage

t; that is,

xk
t , k = 1, . . . , St.

Objective: The deterministic equivalent of the objective function

minE
[
cT0x0 + cT1x1 + · · ·+ cTTxT

]
= minE

[
cT0x0 +

T∑
t=1

cTt xt

]
is

min cT0x0 +
T∑

t=1

St∑
k=1

pkt (c
k
t)

Txk
t .

Constraints: The deterministic equivalent of each inter-temporal constraint

Btxt−1 +Atxt = bt, xt ≥ 0,

is the set of constraints

Bk
t x

k̂
t−1 +Ak

t x
k
t = bt, xk

t ≥ 0, for k = 1, . . . , St.

Observe that these constraints link the stage t variables xk
t associated

with the layer t nodes (t, k) with the variable associated with their

predecessor (t− 1, k̂).

Thus the complete deterministic equivalent of (16.2) is as follows:

min cT0x0 +

S1∑
k=1

pk1(c
k
1)

Txk
1 + · · · +

ST∑
k=1

pkT (c
k
T)

Txk
T

s.t. A0x0 = b0

Bk
1x0 + Ak

1x
k
1 = bk

1 , k = 1, . . . , S1

Bk
2x

k̂
1 + Ak

2x
k
2 = b2, k = 1, . . . , S2

...
...

Bk
Tx

k̂
T−1 + Ak

Tx
k
T = bk

T , k = 1, . . . , ST

x0, xk
1 , . . . xk

T ≥ 0.

(16.3)

254 Multi-Stage Stochastic Programming

For example, if T = 2 and the event tree is as depicted in Figure 16.3, then

the deterministic equivalent is

min cT0x0 + p11(c
1
1)

Tx1
1 + p21(c

2
1)

Tx2
1 + p12(c

1
2)

Tx1
2 + p22(c

2
2)

Tx2
2 + p32(c

3
2)

Tx3
2

+ p42(c
4
2)

Tx4
2 + p52(c

5
2)

Tx5
2

s.t. A0x0 = b0

B1
1x0 + A1

1x
1
1 = b1

1

B2
1x0 + A2

1x
2
1 = b2

1

B1
2x

1
1 + A1

2x
1
2 = b1

2

B2
2x

1
1 + A2

2x
2
2 = b2

2

B3
2x

2
1 + A3

2x
3
2 = b3

2

B4
2x

2
1 + A4

2x
4
2 = b4

2

B5
2x

2
1 + A5

2x
5
2 = b5

2

x0, x1
1, x2

1, x1
2, x2

2, x3
2, x4

2, x5
2 ≥ 0.

Observe that the constraint matrix in the above model has the following

structure: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0

B1
1 A1

1

B2
1 A2

1

B1
2 A1

2

B2
2 A2

2

B3
2 A3

2

B4
2 A4

2

B5
2 A5

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The constraint matrix for the general deterministic equivalent (16.3) has a similar

type of structure.

There are alternative ways of labeling the nodes and branches in the event

tree. In particular, the simple binary branching in Example 16.2 readily suggests

the natural edge labeling depicted in Figure 16.2. In that case the nodes in layer

t can alternatively be labeled via the t-long sequence of labels along the path

from the root node. This kind of edge labeling may appear more intuitive but

it could become cumbersome in other cases when there are different numbers of

branches at each non-terminal node.

Note that the size of the deterministic equivalent of a multi-stage stochastic

program increases rapidly with the number of stages. For example, for a problem

with 11 stages and a binary event tree, there are 210 = 1024 scenarios and

therefore the linear program (16.3) may have several thousand constraints and

variables, depending on the number of variables and constraints at each node.

Modern commercial codes can handle such large linear programs, but a moderate

increase in the number of stages or in the number of branches at each stage could

16.3 Scenario Generation 255

make (16.3) too large to solve by standard linear programming solvers. When

this happens, it is critical to exploit the special structure of (16.3) to solve the

model efficiently.

The Benders decomposition (or L-shaped method) introduced in Section 10.5

can also be used for multi-stage problems (16.3) in a straightforward way: The

stages are partitioned into a first set that gives rise to the “master problem”

and a second set that gives rise to the “recourse problems”. For example in a

six-stage problem, the variables of the first two stages could define the master

problem. When these variables are fixed, (16.3) decomposes into separate linear

programs each involving variables of the last four stages. The solutions of these

recourse linear programs provide optimality or feasibility cuts that can be added

to the master problem. As discussed in Section 10.5, upper and lower bounds

are computed at each iteration and the algorithm stops when the difference

drops below a given tolerance. Using this approach, Gondzio and Kouwenberg

(2001) were able to solve an asset liability management problem with over four

million scenarios, whose linear programming formulation (16.3) had 12 million

constraints and 24 million variables. This linear program was so large that storage

space on the computer became an issue. The scenario tree had six levels and

13 branches at each node. In order to apply Benders’ decomposition, Gondzio and

Kouwenberg divided the six-period problem into a first-stage problem containing

the first three periods and a second-stage problem containing periods four to six.

This resulted in 2197 recourse linear programs, each involving 2197 scenarios.

These recourse linear programs were solved by an interior-point algorithm. Note

that Benders’ decomposition is ideally suited for parallel computations since the

recourse linear programs can be solved simultaneously. When the solution of all

the recourse linear programs is completed (which takes the bulk of the time), the

master problem is then solved on one processor while the other processors remain

idle temporarily. Gondzio and Kouwenberg tested a parallel implementation on

a computer with 16 processors and they obtained an almost perfect speedup,

that is a speedup factor of almost k when using k processors.

16.3 Scenario Generation

A key aspect of multi-stage stochastic programming is the generation of scenarios

so that the deterministic equivalent formulation (16.3) accurately represents the

underlying stochastic optimization problem.

There are two separate issues. First, one needs to model the correlation over

time among the random parameters. For a pension fund, such a model might

relate wage inflation (a random parameter that influences the liability side) to

interest rates and stock prices (random parameters that influence the asset side).

Below we discuss a simple autoregressive model that can be used for this purpose.

A second issue is the construction of a scenario tree from these inter-temporal

statistical models: A finite number of scenarios must reflect as accurately as

256 Multi-Stage Stochastic Programming

possible the random processes modeled in the previous step, suggesting the need

for a large number of scenarios. On the other hand, the linear program (16.3) can

only be solved if the size of the scenario tree is reasonable, suggesting a limited

number of scenarios. To reconcile these two conflicting objectives, it might be

crucial to use variance reduction techniques. We address these issues in this

section.

Autoregressive Model

In order to generate the random parameters underlying the stochastic program,

one needs to construct an economic model reflecting the correlation between the

parameters. Historical data may be available. The goal is to generate meaningful

time series for constructing the scenarios. One approach is to use an autoregres-

sive model.

Specifically, if rt denotes the random vector of parameters in period t, an

autoregressive model is defined by

rt = D0 +D1rt−1 + · · ·+Dprt−p + εt,

where p is the number of lags used in the regression, D0,D1, . . . ,Dp are time-

independent constant matrices, which are estimated through statistical methods

such as maximum likelihood, and εt is a vector of i.i.d. random disturbances

with mean zero.

To illustrate this, consider a problem where the vector rt consists of three

random parameters: st, bt, and mt are the rates of return of stocks, bonds, and

the money market, respectively, in year t. An autoregressive model with p = 1

has the form:⎡⎣ st
bt
mt

⎤⎦ =

⎡⎣d1d2
d3

⎤⎦+

⎡⎣d11 d12 d13
d21 d22 d23
d31 d32 d33

⎤⎦⎡⎣ st−1

bt−1

mt−1

⎤⎦+

⎡⎣ εst
εbt
εmt

⎤⎦ , t = 2, . . . , T.

Assuming independent error terms εst , ε
b
t , and εmt , and using historical data,

one can find the parameters d1, d11, d12, d13 in the first equation,

st = d1 + d11st−1 + d12bt−1 + d13mt−1 + εst ,

using standard linear regression tools that minimize the sum of squared errors

εst . Useful statistics, such as the standard error σs of the estimates st, can also

be obtained. Similarly for bt and mt.

Constructing Scenario Trees

The random distributions relating the various parameters of a stochastic pro-

gram must be discretized to generate a set of scenarios that is adequate for its

deterministic equivalent. Too few scenarios may lead to approximation errors.

On the other hand, too many scenarios will lead to an explosion in the size of

16.3 Scenario Generation 257

the scenario tree, leading to an excessive computational burden. In this section,

we discuss a simple random sampling approach and two variance reduction tech-

niques: adjusted random sampling and tree fitting. Unfortunately, scenario trees

constructed by these methods could contain spurious arbitrage opportunities.

We end this section with a procedure to test that this does not occur.

Random Sampling
One can generate scenarios directly from the autoregressive model introduced in

the previous section:

rt = D0 +D1rt−1 + · · ·+Dprt−p + εt,

where εt ∼ N(0,Σ) are independently distributed multivariate normal distribu-

tions with mean 0 and covariance matrix Σ.

In our example with three random parameters st, bt, and mt, and independent

error terms εst , ε
b
t , ε

m
t , the matrix Σ is a 3 × 3 diagonal matrix, with diagonal

entries σs, σb, σm. Thirty branches or so may be needed to get a reasonable

approximation of the distribution of the rates of return in stage 1. For a problem

with three stages, 30 branches at each stage represent 27,000 scenarios. With

more stages, the size of the linear program (16.3) explodes. Kouwenberg (2001)

performed tests on scenario trees with fewer branches at each node (such as a

five-stage problem with branching structure 10–6–6–4–4, meaning ten branches

at the root, then six branches at each node in the next stage and so on) and

he concluded that random sampling on such trees leads to unstable investment

strategies. This occurs because the approximation error made by representing

parameter distributions by random samples can be significant in a small sce-

nario tree. As a result the optimal solution of (16.3) is not optimal for the

actual parameter distributions. How can one construct a scenario tree that more

accurately represents these distributions, without blowing up the size of the

linear program (16.3)?

Adjusted Random Sampling
An easy way of improving upon random sampling is as follows. Assume that each

node of the scenario tree has an even number K = 2k of branches. Instead of

generating 2k random samples from the autoregressive model, generate k random

samples only and use the negative of their error terms to compute the values on

the remaining k branches. This will fit all the odd moments of the distributions

correctly. In order to fit the variance of the distributions as well, one can scale

the sampled values. The sampled values are all scaled by a multiplicative factor

until their variance fits that of the corresponding parameter.

Tree Fitting
How can one best approximate a continuous distribution by a discrete distribu-

tion with K values? In other words, how should one choose values vk and their

probabilities pk, for k = 1, . . . ,K, in order to approximate the given distribution

258 Multi-Stage Stochastic Programming

as accurately as possible? A natural answer is to match as many of the moments

as possible. In the context of a scenario tree, the problem is somewhat more

complicated since there are several correlated parameters at each node and there

is interdependence between periods as well. Hoyland and Wallace (2001) propose

to formulate this fitting problem as a nonlinear program. The fitting problem

can be solved either at each node separately or on the overall tree. We explain

the fitting problem at a node. Let Sl be the values of the statistical properties

of the distributions that one desires to fit, for l = 1, . . . , s. These might be

the expected values of the distributions, the correlation matrix, the skewness,

and kurtosis. Let vk and pk denote the vector of values on branch k and its

probability, respectively, for k = 1, . . . ,K. Let fl(v,p) be the mathematical

expression of property l for the discrete distribution (for example, the mean

of the vectors vk, their correlation, skewness, and kurtosis). Each property has

a positive weight wl indicating its importance in the desired fit. Hoyland and

Wallace formulate the fitting problem as

min
v,p

∑
l

wl(fl(v,p)− Sl)
2

s.t.
∑
k

pk = 1

p ≥ 0.

(16.4)

One might want some statistical properties to match exactly. As an example,

consider again the autoregressive model:

rt = D0 +D1rt−1 + · · ·+Dprt−p + εt,

where εt ∼ N(0,Σ) are independently distributed multivariate normal distribu-

tions with mean 0 and covariance matrix Σ. To simplify notation, let us write ε

instead of εt. The random vector ε has distribution N(0,Σ) and we would like

to approximate this continuous distribution by a finite number of disturbance

vectors εk occuring with probability pk, for k = 1, . . . ,K. Let εkq denote the qth

component of vector εk. One might want to fit the mean of ε exactly and its

covariance matrix as well as possible. In this case, the fitting problem is

min
ε1,...,εK ,p

l∑
q=1

l∑
r=1

(
K∑

k=1

pkε
k
q ε

k
r − Σqr

)2

s.t.
K∑

k=1

pkε
k = 0∑

k

pk = 1

p ≥ 0.

Arbitrage-Free Scenario Trees
Approximating the continuous distributions of the uncertain parameters by a

finite number of scenarios in the linear program (16.3) typically creates modeling

16.4 Exercises 259

errors. In fact, if the scenarios are not chosen properly or if their number is

too small, the supposed “linear programming equivalent” could be far from being

equivalent to the original stochastic optimization problem. One of the most

disturbing aspects of this phenomenon is the possibility of creating arbitrage

opportunities when constructing the scenario tree. When this occurs, model

(16.3) is flawed as it would be distorted by the arbitrage opportunities. Klaassen

(2002) was the first to address this issue. In particular, he shows how arbitrage

opportunities can be detected ex post in a scenario tree. See Exercise 16.3 for

details. When arbitrage opportunities exist, a simple solution is to discard the

scenario tree and to construct a new one with more branches. Klaassen also

discusses what constraints to add to the nonlinear program (16.4) in order to

preclude arbitrage opportunities ex ante. The additional constraints are nonlin-

ear, thus increasing the difficulty of solving (16.4).

16.4 Exercises

Exercise 16.1 Consider the following variation of the “financial planning”

problem discussed in Section 16.1:

• Assume there are four stages, 0 through 3 (i.e., T = 3).

• Over each period we have two equally likely outcomes for joint returns of

bonds and stocks: (14%, 25%) and (10%, 6%).

• Initial wealth W0 = 55. L1 = L2 = 0. Final liability L3 = 70.

(a) Use a multi-stage scenario optimization approach to determine the sequence

of investment decisions so that the liability is met at T = 3, and the expected

value of the remaining wealth is maximized. Your investment decisions at

each stage must be non-anticipatory. That is, they can only depend on the

scenario path up to that stage.

(b) Modify your model to solve the following variation: Instead of the single

liability at stage 3, the following sequence of liabilities must be met at stages

1, 2, 3:

L1 = 20, L2 = 20, L3 = 25.

(c) Assume this time that L1 = L2 = 0 and that the final liability is L3 = 90.

Since this is too high, it is clear that, regardless of the investment decisions,

the final wealth W3 will be negative in some scenarios. Modify your model to

maximize instead E(U(W3)), where the utility function U(W) is as follows:

U(W) =

{
W if W ≥ 0

3W if W < 0.

It is preferable for your model to be a linear program for computational

purposes. For that purpose, you need to recast the objective

max E(U(WT))

260 Multi-Stage Stochastic Programming

so that the resulting model is a linear program. To do so, observe that

U(W) = min{W, 3W} and use a suitable set of new variables.

Exercise 16.2 Consider the following dynamic portfolio problem.

• At time t = 0 you have an initial endowment W0.

• At time t = 0, 1, . . . , T − 1 you invest a fraction xt of your wealth in a risky

asset and the remaining fraction 1−xt in a risk-free asset. The risk-free and

risky asset returns between t and t+ 1 are rf,t+1 and rs,t+1 respectively.

• At time t = 1, . . . , T you receive an exogenous and deterministic income of It.

Let Wt denote your wealth at time t = 0, 1, . . . , T . Your goal is to maximize

utility of final wealth E(U(WT)).

(a) Write the law of motion for Wt.

(b) Assume that between t and t + 1 there are two equally likely outcomes H

and T . The risky return rs,t+1 in each of these scenarios is as follows:

• In outcome H: rs,t+1 = 0.5.

• In outcome T : rs,t+1 = −0.4.

Assume a zero risk-free return, rf,t+1 = 0, in both scenarios.

Suppose T = 2. Write down the “law of motion” for W1 and W2 in each

relevant scenario using the above numerical values for rf,t+1, rs,t+1.

(c) Assume W0 = 1 and I1 = I2 = 0.1. Use scenario optimization and Excel

Solver or MATLAB to solve the two-period portfolio optimization problem

max
x0,x1

E

[
W 1−γ

2

1− γ

]
for γ = 0.4, 0.7, 0.9.

(d) Repeat part (c) but this time assume W0 = 1 and I1 = I2 = 0.

(e) Repeat part (c) but this time assume W0 = 1 and I1 = I2 = 0.2.

(f) Can you infer anything from the numerical results in (c), (d), and (e) about

long-term investment when you know you will receive income along the

investment horizon?

Exercise 16.3 Recall from Section 4.2 in Chapter 4 that an arbitrage oppor-

tunity is an opportunity to make money without any cost and without any risk.

Consider a particular node at some stage t− 1 ≥ 0 in a scenario tree whose set

of immediate descendants in stage t is K. For each k ∈ K let rk ∈ Rn denote the

vector of asset returns of a set of n assets realized in branch k between stages

t− 1 and t.

(a) Show that an arbitrage opportunity exists if there is an asset allocation

x =
[
x1 · · · xn

]
such that

n∑
j=1

xj ≤ 0,

n∑
j=1

(rk)Tx ≥ 0,

where at least one inequality is strict.

16.4 Exercises 261

(b) Show that the condition in part (a) holds if and only if the following condition

does not hold: there exist yk > 0, for k ∈ K, such that∑
k∈K

ykr
k = 1.

Hint: Apply the same kind of reasoning used in Section 4.2.

(c) Use part (a) and part (b) above to modify the nonlinear program (16.4) in

order to formulate a fitting problem at a node that does not contain any

arbitrage opportunities.

17 Stochastic Programming Models:
Asset–Liability Management

17.1 Asset–Liability Management

The financial health of any company, and in particular of financial institutions,

is reflected in the balance sheet of the company. Proper management of the

company requires attention to both sides of the balance sheet – assets and

liabilities. Asset–liability management offers sophisticated mathematical tools

for an integrated management of assets and liabilities.

Asset–liability management recognizes that static, one-period investment plan-

ning models (such as mean–variance optimization) fail to incorporate the multi-

period nature of the liabilities faced by the company. A multi-period model that

emphasizes the need to meet liabilities in each period for a finite (or possibly

infinite) horizon is often required. Since liabilities and asset returns usually have

random components, their optimal management requires techniques to optimize

under uncertainty. In particular, stochastic programming approaches have been

effective for these kinds of problems.

The main components of the asset–liability management problem are the

stream of (random) liabilities faced by the firm, spread out over time, and the

(random) returns of the assets that the firm may use for investments. Positions

can be adjusted at each intermediate stage, adapting to the information revealed

up to that stage. This is closely related to the financial planning example pre-

sented in Example 16.1.

The model assumes a planning horizon of T periods. Let Ri,t denote the gross

return of asset i between time t− 1 and t, for i = 1, . . . , n and t = 1, . . . , T . Let

Lt denote the liability at time t = 1, . . . , T . Suppose we want to maximize the

expected wealth of the firm at time T .

Multi-stage stochastic programming formulation
Variables:

xi,t: amount invested in asset i at time t, for i = 1, . . . , n and t = 0, 1, . . . , T − 1.

17.2 The Case of an Insurance Company 263

Objective:

max E

[
n∑

i=1

Ri,Txi,T−1 − LT

]

s.t.
n∑

i=1

Ri,txi,t−1 = Lt +

n∑
i=1

xi,t, for t = 1, . . . , T − 1

xi,t ≥ 0, for i = 1, . . . , n, t = 1, . . . , T − 1.

The equality constraint in this formulation states that the surplus left after

liability Lt is covered will be invested in the amounts xi,t in asset i for i =

1, . . . , n.

The objective selected in the model above is to maximize the expected wealth

at the end of the planning horizon. In practice, one might have a different objec-

tive. For example, in some cases, minimizing value at risk (VaR) or conditional

value at risk (CVaR) might be more appropriate. Other priorities may dictate

other objective functions.

To address the issue of the most appropriate objective function, one must

understand the role of liabilities. Pension funds and insurance companies are

among the most typical arenas for the integrated management of assets and

liabilities.

17.2 The Case of an Insurance Company

We consider the case of a Japanese insurance company, the Yasuda Fire and

Marine Insurance Co. Ltd., following the work of Cariño et al. (1994). In this case,

the liabilities are mainly savings-oriented policies issued by the company. Each

new policy sold represents a deposit, or inflow of funds. Interest is periodically

credited to the policy until maturity, typically three to five years, at which time

the principal amount plus credited interest is refunded to the policyholder. The

crediting rate is typically adjusted each year in relation to a market index like

the prime rate. Therefore, we cannot say with certainty what the future liabilities

will be. Insurance business regulations stipulate that interest credited to some

policies be earned from investment income, not capital gains. So, in addition

to ensuring that the maturity cash flows are met, the firm must seek to avoid

interim shortfalls in income earned versus interest credited. In fact, it is the risk

of not earning adequate income quarter by quarter that the decision makers view

as the primary component of risk at Yasuda.

The problem is to determine the optimal allocation of the deposited funds into

several asset categories: cash, fixed-rate and floating-rate loans, bonds, equities,

real estate, and other assets. Since we can revise the portfolio allocations over

time, the decision we make is not just among allocations today but among

264 Stochastic Programming Models: Asset–Liability Management

allocation strategies over time. A realistic dynamic asset–liability model must

also account for the payment of taxes. This is made possible by distinguishing

between interest income and price return.

A stochastic linear program is used to model the problem. The linear program

has uncertainty in many coefficients. This uncertainty is modeled through a finite

number of scenarios. In this fashion, the problem is transformed into a very

large-scale linear program of the form (16.3). The random elements include price

return and interest income for each asset class, as well as policy crediting rates.

We next describe the main components of the multi-stage stochastic program-

ming model.

Stages: The stages of the model are indexed by t = 0, 1, . . . , T .

Variables:

xi,t = market value in asset i at stage t for i = 1, . . . , n and t = 0, 1, . . . , T .

wt = interest income shortfall at stage for t = 1, . . . , T .

vt = interest income surplus at stage for t = 1, . . . , T .

Random parameters in the stochastic linear program:

RPi,t = price return of asset i between stage t−1 and stage t, for i = 1, . . . , n

and t = 1, . . . , T.

RIi,t = interest income of asset i between stage t − 1 and stage t, for i =

1, . . . , n and t = 1, . . . , T.

Ft = deposit inflow between stage t− 1 and stage t, for t = 1, . . . , T.

Pt = principal payout between stage t− 1 and stage t, for t = 1, . . . , T.

It = interest payout between stage t− 1 and stage t, for t = 1, . . . , T.

gt = rate at which interest is credited to policies between stage t−1 and stage

t, for t = 1, . . . , T.

Lt = liability valuation at stage t.

Parameterized objective function components:

ct(·) = piecewise linear convex penalty for shortfall at time t.

The goal of the model is to allocate funds among available assets to maximize

expected wealth at the end of the planning horizon T minus the expected penal-

ized shortfall accumulated through the planning horizon. The problem can be

17.3 Option Pricing via Stochastic Programming 265

formulated as the following multi-stage stochastic program:

max E

[
n∑

i=1

xi,T −
T∑

t=1

ct(wt)

]

s.t.
n∑

i=1

xi,t −
n∑

i=1

(1 +RPi,t +RIi,t)xi,t−1 = Ft − Pt − It for t = 1, . . . , T

asset accumulation
n∑

i=1

RIi,txi,t−1 + wt − vt = gtLt−1 for t = 1, . . . , T

interest income shortfall

Lt = (1 + gt)Lt−1 + Ft − Pt − It for t = 1, . . . , T

liability accumulation

xi,t ≥ 0, wt ≥ 0, vt ≥ 0. (17.1)

In the model discussed in Cariño et al. (1994), the stochastic linear program

(17.1) is converted into a large linear program using a finite number of scenarios

to deal with the random elements in the data. Creation of scenario inputs is

made in stages using a tree. The tree structure can be described by the number

of branches at each stage. For example, a 1–8–4–4–2–1 tree has 256 scenarios.

Stage t = 0 is the initial stage. Stage t = 1 may be chosen to be the end of

Quarter 1 and has eight different branches in this example. Stage t = 2 may be

chosen to be the end of Year 1, with each of the previous eight branches giving rise

to four new branches, and so on. For the Yasuda Fire and Marine Insurance Co.

Ltd., a problem with seven asset classes and six stages gives rise to a stochastic

linear program (17.1) with 12 constraints (other than non-negativity) and 54

variables. Using 256 scenarios, this stochastic program is converted into a linear

program with several thousand constraints and over 10,000 variables. Solving

this model yielded extra income estimated to be about US $80 million per year

for the company.

17.3 Option Pricing via Stochastic Programming

The option pricing problem discussed in Chapter 15 and modeled via the

binomial lattice can alternatively be formulated as a stochastic programming

problem. As should be expected, the two approaches are equivalent under the

assumptions made for the binomial lattice model. However, there is additional

flexibility in the stochastic programming approach that makes it applicable under

less restrictive assumptions. In particular, we will discuss how the stochastic

programming approach can easily model transaction costs. This is an important

practical issue that cannot be incorporated in the binomial lattice model.

We will work with the following similar setting to that in Chapter 15. Let St,

for t = 0, 1, . . . , N, denote the share price of a risky asset at times t = 0, 1, . . . , N .

Assume the economy also has a risk-free asset whose interest rate is r in each

period [t− 1, t] for t = 1, . . . , N .

266 Stochastic Programming Models: Asset–Liability Management

European Options

Consider a European option contract that matures at time N with payoff g(SN)

for some function g(·) of the underlying asset price SN . The following stochastic

program provides a model for the lowest-cost portfolio of the underlying asset

and the risk-free asset that can be constructed at time 0 and be subsequently

rebalanced to super-replicate the payoff g(SN) of the European option contract.

Variables:

xt = amount of shares of the risky asset at time t for t = 0, . . . , N − 1.

yt = amount of money in the risk-free asset at time t for t = 0, . . . , N − 1.

Objective:

min S0x0 + y0
s.t. SNxN−1 + (1 + r)yN−1 ≥ g(SN)

Stxt−1 + (1 + r)yt−1 ≥ Stxt + yt, t = 1, . . . , N − 1.

(17.2)

Consider the following binomial tree model for the risky prices. Assume that

there are exactly two possible random outcomes (“H” and “T”) between time

t − 1 and t for t = 1, . . . , N . For the simplest case N = 1, the binomial tree

model yields the following deterministic equivalent of (17.2):

min S0x0 + y0
s.t. S1(H)x0 + (1 + r)y0 ≥ g(S1(H))

S1(T)x0 + (1 + r)y0 ≥ g(S1(T)).

(17.3)

Observe that the linear programming dual of (17.3) is

max g(S1(H))v(H) + g(S1(T))v(T)

s.t. S1(H)v(H) + S1(T)v(T) = S0

(1 + r)v(H) + (1 + r)v(T) = 1

v(H), v(T) ≥ 0,

(17.4)

which in turn can be rewritten via the change of variables p̃ := (1 + r)v(H) and

q̃ := (1 + r)v(T) as

max
1

1 + r
(g(S1(H))p̃+ g(S1(T))q̃)

s.t.
1

1 + r
(S1(H)p̃+ S1(T)q̃) = S0

p̃+ q̃ = 1

p̃, q̃ ≥ 0.

(17.5)

Without loss of generality assume S1(H) ≥ S1(T). Furthermore, assume

S1(H) > S1(T) as otherwise the pricing problem of the option contract is

trivial. It follows that (17.5) is feasible if and only if S1(T) ≤ (1+r)S0 ≤ S1(H).

In this case the only feasible solution to (17.5) is

p̃ =
(1 + r)S0 − S1(T)

S1(H)− S1(T)
, q̃ =

S1(H)− (1 + r)S0

S1(H)− S1(T)
,

17.3 Option Pricing via Stochastic Programming 267

and thus the optimal value of (17.3) and (17.4) is

1

1 + r
(p̃g(S1(H)) + q̃g(S1(T))).

Observe that this price is exactly the same (as it should be) as the one obtained

via the one-period binomial model discussed in Section 4.3 when the single-

period economy has no arbitrage. A similar duality argument shows that in the

absence of arbitrage the stochastic programming model (17.2) is equivalent to

the binomial lattice approach for the general multi-period case; that is, when

N > 1. The following example illustrates this equivalence.

Example 17.1 Suppose n = 2, r = 1
4 , and the prices S0, S1, S2 of the risky

asset are as indicated at the nodes of the binomial tree depicted in Figure 17.1.

Assume that the two branches emerging from each node are equally likely.

Determine the price of a European put option maturing at time N = 2 with

strike price 50; that is, with payoff g(S2) = (50− S2)
+.

In this case the deterministic equivalent of (17.2) is

min 40x0 + y0
s.t. 80x0 + 1.25y0 ≥ 80x1(H) + y1(H)

20x0 + 1.25y0 ≥ 20x1(T) + y1(T)

160x1(H) + 1.25y1(H) ≥ (50− 160)+ = 0

40x1(H) + 1.25y1(H) ≥ (50− 40)+ = 10

40x1(T) + 1.25y1(T) ≥ (50− 40)+ = 10

10x1(T) + 1.25y1(T) ≥ (50− 10)+ = 40.

The optimal solution to this linear program is

x1(H) = −0.0833, y1(H) = 10.6666, x1(T) = −1, y1(T) = 40, (17.6)

x0 = −0.2666, y0 = 20.2666

and thus its optimal value is 9.6.

On the other hand, the binomial lattice approach would yield the risk-neutral

probabilities p̃ = q̃ = 1
2 . Consequently, the value V1(S1) of the option at time 1

is

V1(80) =
1

1.25
· 0 + 10

2
= 4, V1(20) =

1

1.25
· 10 + 40

2
= 20;

and the value V0(S0) of the option at time 0 is

V0(40) =
1

1.25
· 4 + 20

2
= 9.6.

The (super-)replicating portfolio (17.6) can also be recovered via delta-hedging.

American Options

Consider now an American option contract that can be exercised at any time t =

0, 1, . . . , N with payoff g(St) for some function g(·) of the underlying asset price

268 Stochastic Programming Models: Asset–Liability Management

H

T

H

T

H

T

40

80

20

160

40

40

10

0 1 2 Stage

Figure 17.1 Binomial tree for option pricing example

St. The stochastic program (17.2) has the following straightforward modification

for finding a lowest-cost portfolio of the underlying asset and the risk-free asset

that can be constructed at time 0 and be subsequently rebalanced to super-

replicate the payoff of the American option contract:

min S0x0 + y0
s.t. SNxN−1 + (1 + r)yN−1 ≥ g(SN)

Stxt−1 + (1 + r)yt−1 ≥ max{Stxt + yt, g(St)}, t = 1, . . . , N − 1.

The latter problem in turn can be equivalently stated as follows:

min S0x0 + y0
s.t. SNxN−1 + (1 + r)yN−1 ≥ g(SN)

Stxt−1 + (1 + r)yt−1 ≥ Stxt + yt, t = 1, . . . , N − 1

Stxt−1 + (1 + r)yt−1 ≥ g(St), t = 1, . . . , N − 1.

(17.7)

Again for a binomial event tree model the above stochastic programming

approach is equivalent to the binomial lattice approach discussed in Chapter 15

in the absence of arbitrage.

Transaction Costs

The stochastic programming models (17.2) and (17.7) can be readily extended

to incorporate proportional transaction costs. Observe that in the absence of

transaction costs a transaction to sell w shares of the risky asset when its price is

S will generate a revenue equal to wS. By contrast, if a proportional transaction

cost θ applies to the sell transaction then the revenue would instead be (1−θ)wS.

Similarly, if a proportional transaction cost θ applies to a buy transaction of w

shares, then the cost of the transaction would be (1 + θ)wS.

The stochastic programming model (17.2) can be modified as follows to

account for a proportional transaction cost θ applicable to each buy or sell

17.3 Option Pricing via Stochastic Programming 269

transaction of the risky asset:

min S0x0 + θ|S0x0|+ y0
s.t. SNxN−1 + (1 + r)yN−1 − θ|SNxN−1| ≥ g(SN)

Stxt−1 + (1 + r)yt−1 − θ|St(xt − xt−1)| ≥ Stxt + yt, t = 1, . . . , N − 1.
(17.8)

Similarly, the stochastic programming model (17.7) can also be modified to

account for the same kind of transaction costs as follows:

min S0x0 + θ|S0x0|+ y0
s.t. SNxN−1 + (1 + r)yN−1 − θ|SNxN−1| ≥ g(SN)

Stxt−1 + (1 + r)yt−1 − θ|St(xt − xt−1)| ≥ Stxt + yt, t = 1, . . . , N − 1

Stxt−1 + (1 + r)yt−1 − θ|Stxt| ≥ g(St), t = 1, . . . , N − 1.
(17.9)

Observe that the stochastic programs (17.9) and (17.8) include some term with

absolute values in the objective and constraints. The models can be recast as

linear stochastic programs by introducing some extra variables and constraints,

as the following example illustrates.

Example 17.2 Suppose n = 2, r = 1
4 , and the prices S0, S1, S2 of the risky

asset are as indicated at the nodes of the binomial tree depicted in Figure 17.1.

Assume that the two branches emerging from each node are equally likely.

Determine the price of a European put option maturing at time N = 2 with

strike price 50; that is, with payoff g(S2) = (50 − S2)
+. Assume a proportional

transaction cost θ applies to every buy or sell transaction.

In this case the deterministic equivalent of (17.8) is

min 40x0 + y0 + 40θu0

s.t. 80x0 + 1.25y0 − 80θv1(H) ≥ 80x1(H) + y1(H)

20x0 + 1.25y0 − 20θv1(T) ≥ 20x1(T) + y1(T)

160x1(H) + 1.25y1(H)− 160θw1(H) ≥ (50− 160)+ = 0

40x1(H) + 1.25y1(H)− 40θw1(H) ≥ (50− 40)+ = 10

40x1(T) + 1.25y1(T)− 40θw1(T) ≥ (50− 40)+ = 10

10x1(T) + 1.25y1(T)− 10θw1(T) ≥ (50− 10)+ = 40

u0 ≥ x0, u0 ≥ −x0

v1(H) ≥ x1(H)− x0, v1(T) ≥ −x1(T) + x0

w1(H) ≥ x1(H), w1(H) ≥ −x1(H)

w1(T) ≥ x1(T), w1(T) ≥ −x1(T).

Table 17.1 shows the optimal value and holdings x0, y0, x1(H), y1(H), x1(T), y1(T)

of the optimal super-replicating portfolio for various levels of transaction cost θ.

270 Stochastic Programming Models: Asset–Liability Management

Table 17.1

θ Optimal value x0 y0 x1(H) y1(H) x1(T) y1(T)

0 9.6 −0.26666 20.26666 −0.08333 10.66666 −1 40
0.01 9.93044 −0.26879 20.57443 −0.08251 10.66666 −0.9901 40
0.05 11.24337 −0.27546 21.71077 −0.07937 10.66666 −0.95238 40
0.1 12.84987 −0.28052 22.94857 −0.07576 10.66666 −0.90909 40

17.4 Synthetic Options

An important issue in portfolio selection is the potential decline of the portfolio

value below some critical limit. How can we control the risk of downside losses? A

possible answer is to create a payoff structure similar to a European call option.

While a corporate investor may be able to construct a diversified portfolio,

there may be no option market available on this portfolio. One solution may be

to use index options. However, exchange-traded options with sufficient liquidity

are limited to maturities of about three months. This makes the cost of long-term

protection expensive, requiring the purchase of a series of highly priced short-

term options. For large institutional or corporate investors, a cheaper solution

is to artificially produce the desired payoff structure using available resources.

This is called a synthetic option strategy. A model of this kind was proposed by

Zhao and Ziemba (2001) and can be described as follows.

Problem parameters:

W0 = investor’s initial wealth

T = investor’s planning horizon

R = gross return of a riskless asset for one period

Ri,t = gross return for asset i at time t

θi,t = transaction cost for purchases and sales of asset i at time t.

The gross returns Ri,t above are random, but their distributions are known.

Variables:

xi,t = amount allocated to asset i at time t

Ai,t = amount of asset i bought at time t

Di,t = amount of asset i sold at time t

yt = amount allocated to riskless asset at time t.

We formulate a stochastic program that produces the desired payoff at the

end of the planning horizon T , much in the flavor of the stochastic programs

developed in the previous section. Let us first discuss the constraints.

The initial portfolio must satisfy

y0 + x1,0 + . . .+ xn,0 = W0.

17.4 Synthetic Options 271

Similarly, the portfolio at time t must satisfy

xi,t = Ri,txi,t−1 +Ai,t −Di,t for t = 1, . . . , T

yt = Ryt−1 −
n∑

i=1

(1 + θi,t)Ai,t +

n∑
i=1

(1− θi,t)Di,t for t = 1, . . . , T.

One can also impose upper bounds on the proportion of any risky asset in the

portfolio:

0 ≤ xi,t ≤ mt

⎛⎝yt +

n∑
j=1

xj,t

⎞⎠ ,

where mt is chosen by the investor.

The value of the portfolio at the end of the planning horizon is

v = RyT−1 +
n∑

i=1

(1− θi,T)Ri,Txi,T−1,

where the summation term is the value of the risky assets at time T .

To construct the desired synthetic option, we split v into the riskless value of

the portfolio Z and a surplus z ≥ 0 which depends on random events. Using a

scenario approach to the stochastic program, Z is the worst-case payoff over all

the scenarios. The surplus z is a random variable that depends on the scenario.

Thus

v = Z + z, z ≥ 0.

We consider Z and z as variables of the problem, and we optimize them

together with the asset allocations x and other variables described earlier. The

objective function of the stochastic program is

max E(z) + μZ,

where μ ≥ 1 is the risk aversion of the investor. The risk aversion μ is given

data. When μ = 1, the objective is to maximize expected return. When μ is very

large, the objective is to maximize “riskless profit”.

Example 17.3 Consider an investor with initial wealth W0 = 1 who wants to

construct a portfolio comprising one risky asset and one riskless asset using the

“synthetic option” model described above. We next describe the deterministic

equivalent of this model for a two-period planning horizon, i.e. T = 2, and an

event tree with four scenarios. The construction is similar to that in Example

16.2. Suppose the return on the riskless asset is a non-random value R per period

and there are two equally likely possible random outcomes (“H” and “T”) over

each time period. Let Rt(H) and Rt(T) denote the return of the risky asset

in the period [t − 1, t] when the outcome is H and T respectively. Suppose the

transaction cost for purchases and sales of the risky asset is a non-random value θ.

272 Stochastic Programming Models: Asset–Liability Management

The scenario tree in this case is identical to that depicted in Figure 16.1 for

Example 16.2. The deterministic equivalent of the multi-stage stochastic linear

program in this case is as follows:

max 1
4 (z(HH) + z(HT) + z(TH) + z(TT)) + μZ

s.t. y0 + x0 = 1

x1(H) = R1(H)x0 +A1(H)−D1(H)

x1(T) = R1(T)x0 +A1(T)−D1(T)

y1(H) = Ry0 − (1 + θ)A1(H) + (1− θ)D1(H)

y1(T) = Ry0 − (1 + θ)A1(T) + (1− θ)D1(T)

z(HH) + Z = Ry1(H) + (1− θ)R2(H)x1(H)

z(HT) + Z = Ry1(H) + (1− θ)R2(T)x1(H)

z(TH) + Z = Ry1(T) + (1− θ)R2(H)x1(T)

z(TT) + Z = Ry1(T) + (1− θ)R2(T)x1(T)

x0, y0, x1(H), x1(T), y1(H), y1(T), A1(H), D1(H), A1(T), A2(T) ≥ 0

z(HH), z(HT), z(TH), z(TT) ≥ 0

Z free.

Zhao and Ziemba (2001) introduce and apply the above generic synthetic

option model to an example with three assets (cash, bonds, and stocks) and

four periods (a one-year horizon with quarterly portfolio reviews). The quarterly

return on cash is constant at ρ = 0.0095. For stocks and bonds, the expected

logarithmic rates of returns are s = 0.04 and b = 0.019 respectively. Transaction

costs are assumed to be 0.5% for stocks and 0.1% for bonds. The scenarios needed

in the stochastic program are generated using an autoregression model which is

constructed based on historical data (quarterly returns from 1985 to 1998; the

Salomon Brothers bond index and S&P 500 index respectively). Specifically, the

autoregression model is

st = 0.037− 0.193st−1 + 0.418bt−1 − 0.172st−2 + 0.517bt−2 + εt
bt = 0.007− 0.140st−1 + 0.175bt−1 − 0.023st−2 + 0.122bt−2 + ηt,

where the pair (εt, ηt) characterizes uncertainty. Zhao and Ziemba used a random

sampling approach to estimate the joint distribution of (εt, ηt). From this joint

distribution of (εt, ηt) a set of 20 pairs can be selected to estimate the empirical

distribution of (εt, ηt). In this way, a scenario tree with 160,000 (= 20 × 20 ×
20× 20) paths describing possible outcomes of asset returns is generated for the

four periods.

The authors solved the resulting large deterministic linear program. We discuss

some of the results obtained when this linear program is solved for a risk aversion

of μ = 2.5. The value of the terminal portfolio is always at least 4.6% more than

the initial portfolio wealth and the distribution of terminal portfolio values is

skewed to larger values because of dynamic downside risk control. The expected

return is 16.33% and the volatility is 7.2%. It is interesting to compare these

values with those obtained from a static Markowitz model. The expected return

is 15.4% for the same volatility but no minimum return is guaranteed. In fact,

17.5 Exercises 273

in some scenarios, the value of the Markowitz portfolio is 5% less at the end of

the one-year horizon than it was at the beginning.

It is also interesting to look at a typical portfolio (one of the 160,000 paths)

generated by the synthetic option model (the linear program was set up with an

upper bound of 70% placed on the fraction of stocks or bonds in the portfolio).

Portfolio value at

Quarter t Cash Stocks Bonds the end of Quarter t

1 12% 18% 70% 103

2 41% 59% 107

3 70% 30% 112

4 30% 70% 114

17.5 Exercises

Exercise 17.1 For a non-dividend paying stock, collect data on four or five

call options for the nearest maturity (but at least one month). Calculate the

implied volatility for each option; that is, the value of σ that makes equation

(15.7) hold for the market prices of the call options. Solve the option pricing

problem (17.7) when the number of stages is seven using the implied volatility

of the at-the-money option to construct the tree.

Exercise 17.2 Repeat Exercise 17.1 allowing for transaction costs, with dif-

ferent values of θ, to see if the volatility smile can be explained by transaction

costs. Specifically, given a value for σ and for θ, calculate option prices and see

how they match up to observed prices. Try θ = 0.001, 0.005, 0.01, 0.02, 0.05.

Exercise 17.3 Develop a synthetic option model in the spirit of that used by

Zhao and Ziemba (2001), adapted to the size limitation of your linear program-

ming solver. Compare with a static model.

Part IV

Other Optimization
Techniques

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

18 Conic Programming: Theory
and Algorithms

Conic programming refers to a class of convex optimization problems that gen-

eralizes linear and quadratic programming. The gist of conic programming is to

replace the non-negativity constraint with a conic constraint.

18.1 Conic Programming

A conic program in standard form is an optimization problem of the form

min
x

cTx

s.t. Ax = b

Dx− d ∈ K
(18.1)

for some vectors and matrices c ∈ Rn, b ∈ Rm, d ∈ Rp, A ∈ Rm×n, D ∈ Rp×n

and some closed convex cone K ⊆ Rp.

When K = Rp
+ the problem (18.1) is a linear program. However, conic pro-

gramming is far more general. We next discuss two particularly important classes

of conic programs, namely second-order and semidefinite programming.

18.1.1 Second-Order Programming

The second-order cone, also known as the Lorenz cone or the ice-cream cone, is

defined as follows:

Ln =

{
x =

[
x0

x̄

]
∈ Rn : ‖x̄‖2 ≤ x0

}
.

See Figure 18.1.

A second-order program is a problem of the form (18.1) where K is a direct

product of second-order cones; that is,

K = Ln1
× · · · × Lnr

for some positive integers n1, . . . , nr.

We next illustrate the modeling power of second-order programming by show-

ing that a convex quadratically constrained quadratic program can be recast

as a second-order program. In particular, second-order programming generalizes

both linear programming and convex quadratic programming.

278 Conic Programming: Theory and Algorithms

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
3

{(x
1
, x

2
, x

3
): x

1
≥ ||(x

2
, x

3
)||}

x
2

x 1

Figure 18.1 Second-order cone

Consider a convex quadratically constrained quadratic program of the form

min
x

cT0x+ 1
2x

TQ0x

s.t. cTi x+ 1
2x

TQix ≤ bi, i = 1, . . . ,m,
(18.2)

where ci ∈ Rn, Qi ∈ Sn+ for i = 0, 1, . . . ,m and bi ∈ R for i = 1, . . . ,m. Here Sn+
denotes the family of n× n positive semidefinite matrices.

Observe that (18.2) can be rewritten as

min
x,t

t

s.t. cT0x+ 1
2x

TQ0x ≤ t

cTi x+ 1
2x

TQix ≤ bi, i = 1, . . . ,m.

(18.3)

The following step is key in the formulation of (18.2) as a second-order program:

given Q ∈ Sn+, c ∈ Rn, b ∈ R the quadratic inequality

cTx+ 1
2x

TQx ≤ b

can be formulated as a second-order cone constraint. To see that, observe that

because Q ∈ Sn+ there exists L ∈ Rn×p such that Q = LLT (in particular the

Cholesky factorization satisfies this requirement). Therefore

cTx+ 1
2x

TQx ≤ b ⇔ cTx+ 1
2‖L

Tx‖2 ≤ b ⇔

⎡⎣b− cTx+ 1

b− cTx− 1√
2LTx

⎤⎦ ∈ Lp+2.

It thus follows that (18.3) and in turn (18.2) can be rewritten as the following

18.1 Conic Programming 279

second-order program:

min
x,t

t

s.t.

⎡⎣t− cT0x+ 1

t− cT0x− 1√
2LT

0x

⎤⎦ ∈ Lp0+2

⎡⎣bi − cTi x+ 1

bi − cTi x− 1√
2LT

i x

⎤⎦ ∈ Lpi+2, i = 1, . . . ,m,

where Li ∈ Rn×pi such that Qi = LiL
T
i for i = 0, 1, . . . ,m.

Tracking Error and Volatility Constraints

In the context of quantitative asset management, portfolios are typically chosen

relative to some predetermined benchmark, as we discussed in Section 6.5. As a

consequence, it is common to use a constraint on the active risk (also known as

tracking error) instead of, or in addition to, the total risk.

More precisely, suppose x denotes the vector of percentage holdings in a

portfolio. Let r and rB denote respectively the vector of asset returns and the

benchmark return. Recall that the active return is the difference rTx−rB between

the portfolio return and the benchmark return. The active risk is the variance

of the active return. If xB denotes the vector of percentage holdings in the

benchmark, then the active risk can be written as

var(rT(x− xB)) = (x− xB)TV(x− xB),

where V is the covariance matrix of asset returns.

A typical mean–variance model for benchmark-relative portfolio management

has the following form:

max
x

αTx

s.t. (x− xB)TV(x− xB) ≤ ψ̄2

Ax = b

Cx ≤ d.

(18.4)

Note that this is not a quadratic program because it has a nonlinear constraint.

However, the problem (18.4) is a convex quadratically constrained quadratic

program of the form (18.2) discussed in Section 18.1.1. Therefore, it has a

straightforward formulation as a second-order conic program.

The above model can be readily extended to include multiple measures of

risk. For instance, the following model, which is an extension of the model dis-

cussed by Jorion (2003) that enforces upper bound constraints on both total risk

and tracking error, also has a straightforward second-order conic programming

280 Conic Programming: Theory and Algorithms

formulation:

max
x

αTx

s.t. (x− xB)TV(x− xB) ≤ ψ̄2

xTVx ≤ σ̄2

Ax = b

Cx ≤ d.

(18.5)

18.1.2 Semidefinite Programming

Some applications, such as the approximation of covariance matrices discussed

below, lead to conic optimization models involving the space of symmetric matri-

ces and the cone of positive semidefinite matrices described next. Let Sn denote

the space of n × n symmetric matrices. Although this space is equivalent to

Rn(n+1)/2, it is more convenient and customary to treat it as a space of matrices.

A matrix X ∈ Sn is positive semidefinite if

uTXu ≥ 0 for all u ∈ Rn.

It is a common convention to write X � 0 to indicate that X ∈ Sn is positive

semidefinite. The cone of positive semidefinite matrices Sn+ is defined as

Sn+ := {X ∈ Sn : X � 0}.

See Figure 18.2.

0 0.2 0.4 0.6 0.8 1

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
11

X=[X
11

 X
12

; X
21

 X
22

] positive semidefinite

X
22

X
12

=
X

21

Figure 18.2 Cone of positive semidefinite matrices

A semidefinite program is a problem of the form (18.1) where K is the cone of

positive semidefinite matrices.

18.1 Conic Programming 281

Endow the space Sn of symmetric n×n matrices with the following Frobenius

inner product. For X,S ∈ Sn let

X • S := trace(XS) =
∑
i,j

XijSij .

A semidefinite program is in standard form if it is written as

min
X

C •X
s.t. AX = b

X � 0,

where C ∈ Sn, b ∈ Rm, and A : Sn → Rm is a linear mapping.

Approximating Covariance Matrices

We next illustrate the modeling power of semidefinite programming by showing

that a covariance estimation problem can be recast as a semidefinite program.

To that end, recall that any proper covariance matrix must be symmetric and

positive semidefinite. Suppose V̂ ∈ Sn is an estimate of a covariance matrix that

is not necessarily positive semidefinite and consider the problem of finding the

positive semidefinite matrix that is closest to V̂; that is,

min
X

‖X− V̂‖
s.t. X � 0.

(18.6)

This problem can be formulated as

min
X,t

t

s.t. ‖X− V̂‖ ≤ t

X � 0.

If the norm ‖X− V̂‖ is the Frobenius norm

‖X− V̂‖F :=

√∑
i,j

(Xij − V̂ij)2,

then the constraint ‖X − V̂‖F ≤ t can be written as a second-order cone

constraint and it follows that the above covariance estimation problem (18.6)

can be written as a conic program over the Cartesian product of a second-order

cone and a semidefinite cone. As we detail in the exercises at the end of this

chapter, problem (18.6) can also be formulated as a conic program over a suitable

semidefinite cone for other choices of norms such as the operator norm or the

infinity norm.

282 Conic Programming: Theory and Algorithms

18.2 Numerical Conic Programming Solvers

During the last three decades there have been major advancements in the theory,

algorithms, and software for conic programming. In particular, the software

packages SeDuMi and SDPT3 are MATLAB-based, freely available solvers for conic

programs. The commercial software vendors Gurobi and MOSEK also offer solvers

for conic programs. These solvers constitute the engine behind the MATLAB

modeling language CVX that we have discussed in previous chapters.

Both SeDuMi and SDPT3 as well as most other software packages are designed

to solve a conic program in the following standard form:

min
x

cTx

s.t. Ax = b

x ∈ K,

where the cone K is a Cartesian product of the form Rf × R�
+ × Ln1

× · · · ×
Lnr

×Sd1
+ ×· · ·×Sdk

+ . In other words, the conic constraint x ∈ K models a vector

x that has a block of f free components, followed by a block of � non-negative

components, followed by r blocks of second-order cone-constrained components,

and finally followed by k blocks of semidefinite-constrained components. The

package SeDuMi uses the following syntax:

>> [x,y,info] = sedumi(A,b,c,K) ;

Here K is a MATLAB structure with fields K.f, K.l, K.q, K.s detailing the

dimensions of the above blocks. The matrix and vectors A, b, c should be of the

appropriate dimensions.

The package SDPT3 uses a similar syntax. It should be noted that although

the process of formatting a particular problem in the appropriate SeDuMi or

SDPT3 format is relatively routine, the particular details and steps could in some

cases introduce errors. The modeling environment provided by CVX performs that

formatting in an automated fashion.

18.3 Duality and Optimality Conditions

As in linear and quadratic programming, there is a dual conic program associated

with every primal conic program. The construction of the dual conic program

relies on the following more fundamental construction. Let K ⊆ Rp be a closed

convex cone. The dual cone K∗ ⊆ Rp of K is defined as

K∗ := {s ∈ Rp : sTx ≥ 0 for all x ∈ K}.

It is easy to see that K∗ ⊆ Rp is also a closed convex cone.

Just as we did for linear and quadratic programming, the dual problem can

be derived via the following Lagrangian function associated with (18.1):

L(x,y, s) := cTx+ yT(b−Ax) + sT(d−Dx).

18.3 Duality and Optimality Conditions 283

The constraints of (18.1) can be encoded via the Lagrangian function. For a

given vector x

max
y,s

s∈K∗
L(x,y, s) =

{
cTx if Ax = b and Dx− d ∈ K
+∞ otherwise.

Therefore the primal problem (18.1) can be written as

min
x

max
y,s

s∈K∗
L(x,y, s).

The dual problem is obtained by flipping the order of the min and max opera-

tions:

max
y,s

s∈K∗
min
x

L(x,y, s).

It is easy to see that the dual problem can be written as follows:

max
y,s

bTy + dTs

s.t. ATy +DTs = c

s ∈ K∗.

(18.7)

In particular, when the primal problem is in the following standard form,

min
x

cTx

s.t. Ax = b

x ∈ K,

the dual problem is

max
y,s

bTy

s.t. ATy + s = c

s ∈ K∗.

Observe that the dual problem of a conic program is again a conic program.

As in linear and quadratic programming, there is a deep connection between

the primal problem (18.1) and its dual (18.7). The following result follows by

construction.

Theorem 18.1 (Weak duality) Assume x is a feasible point for (18.1) and

(y, s) is a feasible point for (18.7). Then

bTy + dTs ≤ cTx.

Proof If x and (y, s) satisfy the above assumptions then

bTy + dTs ≤ (Ax)Ty + (Dx)Ts

= (ATy +DTs)Tx

= cTx.

284 Conic Programming: Theory and Algorithms

In contrast to linear and quadratic programming, strong duality does not

always hold for conic programming. Fortunately, strong duality holds under a

mild regularity assumption. The conic program (18.1) satisfies the Slater condi-

tion if there exists x ∈ Rn such that

Ax = b, Dx− d ∈ relint(K),

where relint(K) denotes the relative interior of the set K.

Similarly, the conic program (18.7) satisfies the Slater condition if there exists

y ∈ Rm and s ∈ relint(K∗) such that

ATy +DTs = c.

Theorem 18.2 (Strong duality) Suppose the problems (18.1) and (18.7) satisfy

the Slater condition. Then both problems have optimal solutions and their optimal

values are the same.

We refer the reader to Güler (2010) or Renegar (2001) for a proof of Theorem

18.2. The following characterization of the solutions to both (18.1) and (18.7)

readily follows from Theorem 18.1 and Theorem 18.2.

Theorem 18.3 (Optimality conditions) The vectors x ∈ Rn and (y, s) ∈ Rm ×
Rn are optimal solutions to (18.1) and (18.7) respectively if

c−ATy −DTs = 0

Ax− b = 0

Dx− d ∈ K
s ∈ K∗

sT(Dx− d) = 0.

(18.8)

The following partial converse also holds: if (18.1) and (18.7) satisfy the Slater

condition then they both have optimal solutions x and (y, s) that satisfy (18.8).

For a conic program in standard form, the optimality conditions (18.8) can be

written as follows:

ATy + s = c

Ax = b

x ∈ K
s ∈ K∗

sTx = 0.

(18.9)

18.4 Algorithms

By relying on the structure of the cone K, the main algorithmic template of

interior-point methods, such as the one described in Chapter 2 and in Chapter

5, can be extended to a larger class of conic programs. The central idea is to

generate a sequence of points that converges to a solution to (18.9). We next

18.4 Algorithms 285

sketch the gist of interior-point methods for semidefinite programming. For a

full and in-depth treatment of this interesting material we refer the reader to the

seminal articles by Nesterov and Todd (1997, 1998) and Schmieta and Alizadeh

(2001, 2003) and the textbooks by Nesterov (2004), Nesterov and Nemirovskii

(1994), and Renegar (2001).

For convenience of exposition, we consider a semidefinite program in standard

form:

min
X

C •X
s.t. AX = b

X � 0,

(18.10)

where C ∈ Sn, b ∈ Rm, and A : Sn → Rm is a linear mapping. As the exercises

at the end of this chapter detail, the dual of (18.10) is the semidefinite program

min
y,S

bTy

s.t. A∗y + S = C

S � 0,

(18.11)

whereA∗ : Rm → Sn denotes the adjoint ofA; that is, the unique linear mapping

satisfying

(AX)Ty = X •A∗y

for all X ∈ Sn and all y ∈ Rm.

We will rely on the following key property of positive semidefinite matrices:

X,S ∈ Sn+ and X • S = 0 ⇒ XS = 0. (18.12)

From Theorem 18.3 and (18.12) it follows thatX and (y,S) are optimal solutions

to (18.10) and (18.11) respectively if

A∗y + S = C

AX = b

XS = 0

X,S � 0.

(18.13)

As in the linear programming case, interior-point methods for semidefinite pro-

gramming generate a sequence of iterates that satisfy X,S � 0. Each iteration of

the algorithm aims to make progress towards satisfying A∗y+S = C, AX = b,

and XS = 0.

Given μ > 0, let (X(μ),y(μ),S(μ)) be the solution to the following perturbed

version of the above optimality conditions:⎡⎣A∗y + S−C

AX− b

XS

⎤⎦ =

⎡⎣ 0

0

μI

⎤⎦ , X,S � 0.

The first condition above can be written as rμ(X,y,S) = 0 for the residual

286 Conic Programming: Theory and Algorithms

vector:

rμ(X,y,S) :=

⎡⎣A∗y + S−C

AX− b

XS− μI

⎤⎦ .

The central path is the set {(X(μ),y(μ),S(μ)) : μ > 0}. It is intuitively clear

that (X(μ),y(μ),S(μ)) converges to an optimal solution to both (18.10) and

(18.11). This suggests the following algorithmic strategy: suppose (X,y,S) is

“near” (X(μ),y(μ),S(μ)) for some μ > 0. Use (X,y,S) to move to a better

point (X+,y+,S+) “near” (X(μ+),y(μ+),S(μ+)) for some μ+ < μ.

It can be shown that if a point (X,y,S) is on the central path, then the

corresponding value of μ satisfies X • S = nμ. Likewise, given X,S � 0, define

μ(X,S) :=
X • S
n

.

To move from a current point (X,y,S) to a new point, we use a suitable Newton

step; that is, the solution to the following system of equations obtained as a

linearization of the system of nonlinear equations rμ(X,y,S) = 0:⎡⎣0 A∗ I

A 0 0

F 0 G

⎤⎦⎡⎣ΔX

Δy

ΔS

⎤⎦ =

⎡⎣C−ATy − S

b−AX

μX−1 − S

⎤⎦ (18.14)

for some suitably chosen mappings F,G that depend on the current X,S. The

details of these mappings are somewhat technical and related to nuances con-

cerning the space of symmetric n × n matrices. Further details can be found

in Renegar (2001) and in the exercises at the end of the chapter.

Algorithm 18.1 presents a template for an interior-point method for semidefi-

nite programming.

Algorithm 18.1 Interior-point method for semidefinite programming

1: choose X0,S0 � 0

2: for k = 0, 1, . . . do

3: solve the Newton system (18.14) for (X,y,S) = (Xk,yk,Sk) and μ :=

0.1μ(Xk,Sk)

4: choose a step length α ∈ (0, 1] and set (Xk+1,yk+1,Sk+1) =

(Xk,yk,Sk) + α(ΔX,Δy,ΔS)

5: end for

The step length α in step 4 should be chosen so that Xk+1,Sk+1 � 0 and

the size of rμ(X
k+1,yk+1,Sk+1) is sufficiently smaller than rμ(X

k,yk,Sk). A

line-search procedure such as the one described in Algorithm 2.4 in Chapter 2

can be used for choosing the step length α.

18.6 Exercises 287

18.5 Notes

The seminal works of Alizadeh (1991) and Nesterov and Nemirovskii (1994)

triggered a massive burst of research activity in optimization. This eventually

led to a mature theory and computational technology for solving important

classes of conic programs, notably second-order and semidefinite programming.

A particularly important development was the extension of primal–dual interior-

point methods to conic programs over symmetric cones by Nesterov and Todd

(1997, 1998). Such cones include the non-negative orthant, the second-order

cone, the semidefinite cone, and Cartesian products of them. The textbook

by Renegar (2001) gives an excellent exposition of the main advances in conic

programming.

The software packages SeDuMi and SDPT3 were developed respectively by the

late Sturm (1999) and by Toh et al. (1999). These two packages are some of the

default engines used by the MATLAB-based modeling language CVX.

18.6 Exercises

Exercise 18.1 Recall that the trace of a square matrix M ∈ Rn×n is

trace(M) =

n∑
i=1

Mii.

Suppose A ∈ Rm×n,B ∈ Rn×p, and C ∈ Rp×m. Show that the trace satisfies

the following property:

trace(ABC) = trace(CAB).

Exercise 18.2

(a) Suppose X ∈ Sn+. Show that

trace(X) = 0 ⇒ X = 0.

(b) Suppose L ∈ Rn×m. Show that LLT ∈ Sn+. The converse is true also but it

is harder to show: if X ∈ Sn+ then there exists L ∈ Rn×m for some m such

that X = LLT.

(c) Show an example of two matrices X,S ∈ Sn such that XS �∈ Sn.

(d) Prove (18.12). That is, show that

X,S ∈ Sn+, trace(XS) = 0 ⇒ XS = 0.

Hint: Observe that this is not immediate from part (a) because by part (c)

a priori we do not even know if XS ∈ Sn. To get around this difficulty, use

part (b), Exercise 18.1, and part (a).

288 Conic Programming: Theory and Algorithms

Exercise 18.3 Show that the Lorenz cone and the semidefinite cone are “self-

dual.” In other words, show that

(Ln)
∗ = Ln

and

(Sn+)
∗ = Sn+.

Exercise 18.4 This exercise shows that semidefinite programming includes as

special cases both linear and second-order programming.

(a) Suppose x ∈ Rn and X = diag(x) ∈ Sn. Show that

x ≥ 0 ⇔ X � 0.

(b) Suppose x =

[
x0

x̄

]
∈ Rn and X =

[
x0 x̄T

x̄ x0In−1

]
∈ Sn. Show that

x ∈ Ln ⇔ X � 0.

(c) Use (a) and (b) to conclude that any linear program or second-order program

can be recast as a semidefinite program.

19 Robust Optimization

In many optimization models the inputs to the problem are either not known at

the time the problem must be solved, are computed inaccurately, or are otherwise

uncertain. Since the solutions obtained can be quite sensitive to these inputs, one

serious concern is that we are solving the wrong problem, and that the solution

we find is far from optimal for the correct problem. Robust optimization is an

approach to optimization problems with data uncertainty to obtain solutions

that are good for all or most possible realizations of the uncertain parameters.

19.1 Uncertainty Sets

In robust optimization, the description of the parameter uncertainty is formal-

ized via uncertainty sets. Uncertainty sets can represent or may be formed by

difference of opinions on the possible values of problem parameters, alternative

estimates of parameters generated via statistical techniques from historical data,

Bayesian, or other estimation techniques. The size of the uncertainty set is

typically determined by the level of desired robustness.

Some of the most common types of uncertainty sets encountered in robust

optimization models include the following:

• Uncertainty sets representing a finite number of scenarios generated for the

possible values of the parameters:

U = {p1,p2, . . . ,pk}.

• Uncertainty sets representing the convex hull of a finite number of scenarios

generated for the possible values of the parameters (these are sometimes

called polytopic uncertainty sets):

U = conv{p1,p2, . . . ,pk}.

• Uncertainty sets representing an interval description for each uncertain param-

eter:

U = {p : l ≤ p ≤ u}.

Confidence intervals encountered frequently in statistics can be the source

of such uncertainty sets.

290 Robust Optimization

• Ellipsoidal uncertainty sets:

U = {p : p = p0 +Mu, ‖u‖ ≤ 1}.

These uncertainty sets can also arise from statistical estimation in the form

of confidence regions; see Goldfarb and Iyengar (2003). In addition to their

mathematically compact description, ellipsoidal uncertainty sets have the

nice property that they smooth the optimal value function (Werner, 2010).

It is a non-trivial task to determine the uncertainty set that is appropriate for

a particular model as well as the type of uncertainty sets that lead to tractable

problems. As a general guideline, the shape of the uncertainty set will often

depend on the sources of uncertainty as well as the sensitivity of the solutions to

these uncertainties. The size of the uncertainty set, on the other hand, will often

be chosen based on the desired level of robustness. When uncertain parameters

reflect the “true” values of moments of random variables, as is the case in

mean–variance portfolio optimization, we simply have no way of knowing these

unobservable true values exactly. In such cases, after making some assumptions

about the stationarity of these random processes, we can generate estimates of

these true parameters using statistical procedures. Goldfarb and Iyengar (2003),

for example, show that if we use a linear factor model for the multivariate returns

of several assets and estimate the factor loading matrices via linear regression, the

confidence regions generated for these parameters are ellipsoidal sets and they

advocate their use in robust portfolio selection as uncertainty sets. To generate

interval-type uncertainty sets, Tütüncü and Koenig (2004) use bootstrapping

strategies as well as moving averages of returns from historical data. The shape

and the size of the uncertainty set can significantly affect the robust solutions

generated. However, with few guidelines backed by theoretical and empirical

studies, their choice remains a mix of art and science.

19.2 Different Flavors of Robustness

As we next describe, different types of robustness arise depending on what

parameters of a problem are uncertain, and depending also on what exactly

constitutes a “good” robust solution.

Constraint Robustness

Constraint robustness refers to situations where the uncertainty is in the con-

straints and we seek solutions that remain feasible for all possible values of

the uncertain inputs. This type of solution is required in many engineering

applications. Typical instances include multi-stage problems where the uncertain

outcomes of earlier stages have an effect on the decisions of the later stages and

the decision variables must be chosen to satisfy constraints no matter what

happens with the uncertain parameters of the problem.

19.2 Different Flavors of Robustness 291

Here is a precise mathematical model for finding constraint-robust solutions.

Consider an optimization problem of the form

min
x

f(x)

s.t. G(x,p) ∈ K.
(19.1)

In this problem x is the vector of decision variables, f(x) is the (certain) objective

function, G and K are the structural elements of the constraints assumed to be

certain, and p is the vector of possibly uncertain parameters of the problem.

Consider an uncertainty set U that contains all possible values of the uncertain

parameters p. Then, a constraint-robust optimal solution can be found by solving

the following problem:

min
x

f(x)

s.t. G(x,p) ∈ K, for all p ∈ U .
(19.2)

The feasible set in the robust optimization model (19.2) is the intersection of the

feasible sets:

S(p) = {x : G(x,p) ∈ K}, p ∈ U .

We note that there are no uncertain parameters in the objective function of the

problem (19.1). However, this is not a restrictive assumption. An optimization

problem with uncertain parameters in both the objective function and con-

straints can be easily reformulated to fit the form in (19.1). Indeed, the problem

min
x

f(x,p)

s.t. G(x,p) ∈ K

is equivalent to the problem

min
x,t

t

s.t. f(x,p) ≤ t

G(x,p) ∈ K.

This last problem has all its uncertainties in its constraints only.

Objective Robustness

Another important robustness concept is objective robustness. This refers to

solutions that will remain close to optimal for all possible realizations of the

uncertain problem parameters. Since such solutions may be difficult to obtain,

especially when uncertainty sets are relatively large, an alternative goal for

objective robustness is to find solutions whose worst-case behavior is optimized.

The worst-case behavior of a solution corresponds to the value of the objective

function for the worst possible realization of the uncertain data for that partic-

ular solution. We now develop a mathematical model that addresses objective

292 Robust Optimization

robustness. Consider an optimization problem of the form:

min
x∈S

f(x,p).

Here, S is a (certain) feasible set and f(x,p) is the objective function that

depends on uncertain parameters p. As before, let U denote the uncertainty set

that contains all possible values of the uncertain parameters p. Then an objective

robust solution can be obtained by solving the saddle-point problem

min
x∈S

max
p∈U

f(x,p).

As indicated at the end of the previous subsection, objective robustness can be

seen as a special case of constraint robustness via a suitable reformulation. How-

ever, it is important to distinguish between these two problem variants as their

“natural” robust formulations lead to two different classes of optimization for-

mulations. Robust-constraint problems naturally lead to optimization problems

with infinitely many constraints whereas robust-objective problems naturally

lead to saddle-point problems. There are different methodologies available for

each of these two problem classes.

Relative Robustness

The focus of constraint and objective robustness models on an absolute measure

of worst-case performance is not consistent with risk tolerances of many decision

makers. Instead, we may prefer to measure the worst case in a relative manner,

relative to the best possible solution under each scenario. This leads us to the

notion of relative robustness. Consider the optimization problem

min
x∈S

f(x,p), (19.3)

where p is uncertain with uncertainty set U . To simplify the description, we

restrict our attention to the case with objective uncertainty and assume that the

constraints are certain. Given a fixed p ∈ U , let z∗(p) denote the optimal value

function

z∗(p) := min
x∈S

f(x,p).

Furthermore, define the optimal solution map

x∗(p) = argmin
x∈S

f(x,p).

Note that z∗(p) can be extended-valued and x∗(p) can be set-valued. To motivate

the notion of relative robustness we first define a measure of regret associated

with a decision after the uncertainty is resolved. If we choose x as our vector

and p is the realized value of the uncertain parameter, the regret associated with

choosing x instead of an element of x∗(p) is defined as

r(x,p) = f(x,p)− z∗(p) = f(x,p)− f(x∗(p),p).

19.2 Different Flavors of Robustness 293

Note that the regret function is always non-negative and can also be regarded

as a measure of the “benefit of hindsight”. Now, for a given x ∈ S consider the

maximum regret function:

R(x) := max
p∈U

r(x,p) = max
p∈U

f(x,p)− z∗(p).

A relative robust solution to problem (19.3) is a vector x that minimizes the

maximum regret:

min
x∈S

max
p∈U

f(x,p)− z∗(p). (19.4)

While they are intuitively attractive, relative robust formulations can also be sig-

nificantly more difficult than the standard absolute robust formulations. Indeed,

since z∗(p) is the optimal value function and involves an optimization problem

itself, the problem (19.4) is a three-level optimization problem as opposed to the

two-level problems in absolute robust formulations. Furthermore, the optimal

value function z∗(p) is rarely available in analytic form, is typically non-smooth,

and is often hard to analyze. Another difficulty is that if f is linear in p, as is often

the case, then z∗(p) is a concave function. Therefore, the inner maximization

problem in (19.4) is a convex maximization problem and is difficult for most U .
A simpler variant of (19.4) can be constructed by deciding on the maximum

level of regret to be tolerated beforehand and by solving a feasibility problem

instead with this level imposed as a constraint. For example, if we decide to limit

the maximum regret to R, then the problem to solve becomes the following: find

an x satisfying x ∈ S such that

f(x,p)− z∗(p) ≤ R, for all p ∈ U .

If desired, one can then perform a bisection search on R to find its optimal

value. Another variant of relative robustness models arises when we measure the

regret in terms of the proximity of our chosen solution to the optimal solution

set rather than in terms of the optimal objective values. For this model, consider

the following distance function for a given x and p:

d(x,p) = inf
x∗∈x∗(p)

‖x− x∗‖.

When the solution set is a singleton, there is no optimization involved in the

definition. As above, we then consider the maximum distance function

D(x) = max
p∈U

d(x,p) = max
p∈U

inf
x∗∈x∗(p)

‖x− x∗‖.

For relative robustness in this new sense, we seek x that solves

min
x∈S

max
p∈U

d(x,p). (19.5)

This variant is an attractive model for cases where we have time to revise our

decision variables x, perhaps only slightly, once p is revealed. In such cases, we

294 Robust Optimization

will want to choose an x that will not need much perturbation under any scenario,

i.e., we seek the solution to (19.5). This model can also be useful for multi-period

problems where revisions of decisions between periods can be costly. Portfolio

rebalancing problems with transaction costs are examples of such settings.

19.3 Techniques for Solving Robust Optimization Models

In this section we review a few of the commonly used techniques for the solution

of robust optimization problems. The tools we discuss are essentially reformula-

tion strategies for robust optimization problems so that they can be rewritten as a

deterministic optimization problem with no uncertainty. In these reformulations,

we look for economy, so that the new formulation is not much bigger than the

original, “uncertain” problem, and tractability, so that the new problem can be

solved efficiently using standard optimization methods.

The variety of the robustness models and the types of uncertainty sets rule out

a unified approach. However, there are some common threads and the material

in this section can be seen as a guide to the available tools which can be

combined or appended with other techniques to solve a given problem in the

robust optimization setting.

Sampling

One of the simplest strategies for achieving robustness under uncertainty is to

sample several scenarios for the uncertain parameters from a set that contains

possible values of these parameters. This sampling can be done with or with-

out using distributional assumptions on the parameters and produces a robust

optimization formulation with a finite uncertainty set. If uncertain parameters

appear in the constraints, we create a copy of each such constraint corresponding

to each scenario. Uncertainty in the objective function can be handled in a similar

manner. Consider the generic uncertain optimization problem

min
x

f(x,p)

s.t. G(x,p) ∈ K, for all p ∈ U .

If the uncertainty set U is a finite set, i.e., U = {p1,p2, . . . ,pk}, the robust

formulation is obtained as follows:

min
x,t

t

s.t. f(x,pi) ≤ t, i = 1, . . . , k

G(x,pi) ∈ K, i = 1, . . . , k.

Note that no reformulation is necessary in this case and the duplicated

constraints preserve the structural properties (linearity, convexity, etc.) of the

original constraints. Consequently, when the uncertainty set is a finite set the

resulting robust optimization problem is larger but theoretically no more difficult

19.3 Techniques for Solving Robust Optimization Models 295

than the non-robust version of the problem. The situation is somewhat similar

to stochastic programming formulations. Examples of robust optimization

formulations with finite uncertainty sets can be found, for example in Rustem

and Howe (2002).

Conic Optimization

Moving from finite uncertainty sets to continuous sets such as intervals or ellip-

soids presents a theoretical challenge. The robust version of an uncertain con-

straint that has to be satisfied for all values of the uncertain parameters in a

continuous set results in a semi-infinite optimization formulation. These problems

are called semi-infinite since there are infinitely many constraints but only finitely

many variables.

Fortunately, for some types of uncertainty sets, it is possible to reformulate

their robust semi-infinite programming versions using a finite set of conic con-

straints. To illustrate this, consider the following simple linear program:

max
x

rTx

s.t. 1Tx = 1

x ≥ 0.

(19.6)

What is the optimal solution to this linear program?

Now suppose the objective coefficients are uncertain with ellipsoidal uncer-

tainty, e.g., suppose the objective coefficient vector r can be any element in the

uncertainty set

U =

{
r : ‖r− μ‖2 ≤ δ

}
,

where μ is the “nominal” value of r. The robust version of (19.6) is

max
x

min
r∈U

rTx

s.t. 1Tx = 1

x ≥ 0.

Some simple calculations show that for a given x

min
r∈U

rTx = μTx− δ · ‖x‖2.

Thus the robust version of (19.6) is

max
x

μTx− δ · ‖x‖2
s.t. 1Tx = 1

x ≥ 0.

296 Robust Optimization

The latter problem can be rewritten as the following conic program:

max
x,t

μTx− δ · t
s.t. 1Tx = 1[

t

x

]
∈ Ln+1

x ≥ 0.

More generally, suppose r has the following ellipsoidal uncertainty set:

U = {r : (r− μ)TΣ−1(r− μ) ≤ δ2}

for some symmetric and positive definite matrix Σ. Then the robust version of

(19.6) is

max
x

μTx− δ ·
√
xTΣx

s.t. 1Tx = 1

x ≥ 0,

which again can be formulated as a conic program. Observe the resemblance

between the latter model and Markowitz’s mean–variance model.

The machinery of robust optimization can be applied to mean–variance port-

folio optimization to mitigate the effects of estimation errors in the expected

returns and/or in the covariance matrix (Ceria and Stubbs, 2006; Goldfarb and

Iyengar, 2003). The basic idea is to consider the mean–variance optimization

problem in one of its forms, e.g.,

max
x

μTx− 1
2γ · xTVx

s.t. Ax = b

Cx ≤ d,

(19.7)

and assume μ belongs to some uncertainty set,

U = {μ : (μ− μ̂)TΣ−1(μ− μ̂) ≤ δ2}.

Then the robust version of (19.7) is

max
x

μ̂Tx− δ ·
√
xTΣx− 1

2γ · xTVx

s.t. Ax = b

Cx ≤ d.

(19.8)

We next show that (19.8) is a conic program. To that end, it suffices to find

a conic representation of the objective function. Let R ∈ Rn×p,L ∈ Rn×q be

such that Σ = RRT and V = LLT. Both R and L exist because Σ and V are

positive semidefinite. By introducing new variables s, t, the problem (19.8) can

19.4 Some Robust Optimization Models in Finance 297

be rewritten as the following conic program:

max
x,s,t

μ̂Tx− δ · s− 1
2γ · t

s.t.

[
s

Rx

]
∈ Lp+1

⎡⎣t+ 1

t− 1

2Lx

⎤⎦ ∈ Lq+2

Ax = b

Cx ≤ d.

Saddle-Point Characterizations

For the solution of problems arising from objective uncertainty, the robust solu-

tion can be characterized using saddle-point conditions when the original prob-

lem satisfies certain convexity assumptions. The benefit of this characterization is

that we can then use algorithms such as interior-point methods already developed

and available for saddle-point problems. As an example of this strategy, consider

the objective-robust formulation discussed in Section 19.2:

min
x∈S

max
p∈U

f(x,p). (19.9)

We note that the dual of this robust optimization problem is obtained by chang-

ing the order of the minimization and maximization problems:

max
p∈U

min
x∈S

f(x,p). (19.10)

Under mild assumptions on f, S,U , there exists a saddle-point solution (x∗,p∗) ∈
S × U such that

f(x∗,p) ≤ f(x∗,p∗) ≤ f(x,p∗) for all x ∈ S, p ∈ U .

This characterization is the basis of the robust optimization algorithms given

in Tütüncü and Koenig (2004).

19.4 Some Robust Optimization Models in Finance

Since many financial optimization problems involve future values of security

prices, interest rates, exchange rates, etc., which are not known in advance

but can only be forecasted or estimated, such problems fit perfectly into the

framework of robust optimization. We next describe some examples of robust

optimization formulations for a variety of financial optimization problems.

298 Robust Optimization

Robust Profit Opportunities in Risky Portfolios

Consider an investment environment with n financial securities whose future

price vector r ∈ Rn is a random variable. Let p ∈ Rn represent the current

prices of these securities. If the investor chooses a portfolio x =
[
x1 · · · xn

]
that satisfies

pTx < 0

and the realization of the random variable r satisfies

rTx ≥ 0 (19.11)

then there is an arbitrage opportunity: an investor could make money by

constructing the portfolio x with negative cash flow (pocketing money) and

subsequently collecting the non-negative cash flow rTx of the portfolio x.

Since arbitrage opportunities generally do not persist in financial markets, one

might be interested in the alternative and weaker profitability notion where the

non-negativity of the portfolio is only guaranteed to occur with high probability.

More precisely, consider the following relaxation of (19.11):

P(rTx ≥ 0) ≥ 0.99. (19.12)

Let μ and Q represent the expected future price vector and covariance matrix

of the random vector r. Then E(r) = μTx and stdev(rTx) =
√

xTQx. If the

random vector r is Gaussian, then (19.12) is equivalent to

μTx− θ ·
√

xTQx ≥ 0,

where θ = Φ−1(0.99) and Φ is the standard normal cumulative distribution.

Therefore, if we find an x satisfying

μTx− θ ·
√

xTQx ≥ 0, pTx < 0,

for a large enough positive value of θ, we have an approximation of an arbitrage

opportunity. Note that, by relaxing the constraint pTx < 0 as pTx ≤ 0 or as

pTx ≤ −ε, we obtain a conic feasibility system. Therefore, the resulting system

can be solved using the conic optimization approaches.

We next explore some portfolio selection models that incorporate the uncer-

tainty of problem inputs.

Robust Portfolio Selection

This section is adapted from Tütüncü and Koenig (2004). Recall that Markowitz’s

mean–variance optimization problem can be stated in the following form, which

combines the reward and risk in the objective function:

max
x∈X

μTx− γ

2
· xTQx. (19.13)

Here μ and Q are respectively estimates of the vector of expected values and

covariance of returns of a universe of securities, and γ is a risk-aversion constant

19.4 Some Robust Optimization Models in Finance 299

used to trade off the reward (expected return) and risk (portfolio variance). The

set X is the set of feasible portfolios which may carry information on short-

sale restrictions, sector distribution requirements, etc. Since such restrictions are

predetermined, we can assume that the set X is known without any uncertainty

at the time the problem is solved.

Recall also that solving the problem above for different values of γ we obtain

the efficient frontier of the set of feasible portfolios. The optimal portfolio will be

different for individuals with different risk-taking tendencies, but it will always

be on the efficient frontier.

One of the limitations of this model is its need to accurately estimate the

expected returns and covariances. In Bawa et al. (1979), the authors argue that

using estimates of the unknown expected returns and covariances leads to an

estimation risk in portfolio choice, and that methods for optimal selection of

portfolios must take this risk into account. Furthermore, the optimal solution

is sensitive to perturbations in these input parameters – a small change in

the estimate of the return or the variance may lead to a large change in the

corresponding solution; see, for example, Michaud and Michaud (2008). This

attribute is unfavorable since the modeler may want to periodically rebalance

the portfolio based on new data and may incur significant transaction costs to

do so. Furthermore, using point estimates of the expected return and covariance

parameters does not fulfill the needs of a conservative investor. Such an investor

would not necessarily trust these estimates and would be more comfortable

choosing a portfolio that will perform well under a number of different scenarios.

Of course, such an investor cannot expect to get better performance on some of

the more likely scenarios, but will have insurance for more extreme cases. All

these arguments point to the need of a portfolio optimization formulation that

incorporates robustness and tries to find a solution that is relatively insensitive

to inaccuracies in the input data. Since all the uncertainty is in the objec-

tive function coefficients, we seek an objective robust portfolio, as outlined in

Section 19.2.

For robust portfolio optimization we consider a model that allows return and

covariance matrix information to be given in the form of intervals. For exam-

ple, this information may take the form “the expected return on security j is

between 8% and 10%” rather than claiming that it is 9%. Mathematically, we

will represent this information as membership in the following set:

U = {(μ,Q) : μL ≤ μ ≤ μU , QL ≤ Q ≤ QU , Q � 0}, (19.14)

where μL,μU ,QL,QU are the extreme values of the intervals we just mentioned.

The restriction Q � 0 is necessary since Q is a covariance matrix and, therefore,

must be positive semidefinite. These intervals may be generated in different ways.

An extremely cautious modeler may want to use historical lows and highs of

certain input parameters as the range of their values. One may generate different

estimates using different scenarios on the general economy and then combine the

resulting estimates. Different analysts may produce different estimates for these

parameters and one may choose the extreme estimates as the endpoints of the

300 Robust Optimization

intervals. One may choose a confidence level and then generate estimates of

covariance and return parameters in the form of prediction intervals.

We want to find a portfolio that maximizes the objective function in (19.13) in

the worst-case realization of the input parameters μ andQ from their uncertainty

set U in (19.14). Given these considerations the robust optimization problem

takes the following form

max
x∈X

min
(μ,Q)∈U

μTx− γ

2
· xTQx. (19.15)

This problem can be expressed as a saddle-point problem and be solved using

the technique outlined in Halldórsson and Tütüncü (2003).

Relative Robustness in Portfolio Selection

We consider the following simple three-asset portfolio model from Ceria and

Stubbs (2006):

max μTx

s.t. TE(x) ≤ 0.1

1Tx = 1

x ≥ 0,

(19.16)

where x =
[
x1 x2 x3

]
and

TE(x) =

√√√√√√
⎡⎣x1 − 0.5

x2 − 0.5

x3

⎤⎦T ⎡⎣0.1764 0.09702 0

0.9702 0.1089 0

0 0 0

⎤⎦⎡⎣x1 − 0.5

x2 − 0.5

x3

⎤⎦.
This is essentially a two-asset portfolio optimization problem where the third

asset represents the proportion of the funds that are not invested. The first two

assets have standard deviations of 42% and 33% respectively and a correlation

coefficient of 0.7. The “benchmark” is the portfolio that invests funds half-and-

half in the two assets. The function TE(x) represents the tracking error of the

portfolio with respect to the half-and-half benchmark and the first constraint

indicates that this tracking error should not exceed 10%. The second constraint

is the budget constraint; the third enforces no shorting. We depict the projection

of the feasible set of this problem onto the space spanned by variables x1 and x2

in Figure 19.1.

We now build a relative robustness model for this portfolio problem. We

assume that the covariance matrix estimate is certain. We consider a very simple

uncertainty set for the expected return estimates consisting of three scenarios

represented with the three arrows in Figure 19.2. These three scenarios cor-

respond to the following values for μ: (6, 4, 0), (5, 5, 0), and (4, 6, 0). When

μ = (6, 4, 0) the optimal solution is (0.831, 0.169, 0) with objective value 5.662.

Similarly, when μ = (4, 6, 0) the optimal solution is (0.169, 0.831, 0) with objec-

tive value 5.662. When μ = (5, 5, 0) all points between the previous two optimal

19.4 Some Robust Optimization Models in Finance 301

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 19.1 The feasible set of the mean–variance model (19.16)

solutions are optimal with a shared objective value of 5.0. Therefore, the relative

robust formulation for this problem can be written as follows:

min
x,t

t

s.t. 5.662− (6x1 + 4x2) ≤ t

5.662− (4x1 + 6x2) ≤ t

5− (5x1 + 5x2) ≤ t

TE(x) ≤ 0.1

1Tx = 1

x ≥ 0.

(19.17)

Instead of solving the problem where the optimal regret level is a variable (t

in the formulation), an easier strategy is to choose a level of regret that can

be tolerated and find portfolios that do not exceed this level of regret in any

scenario. For example, choosing a maximum tolerable regret level of 0.75 we get

the following feasibility problem:

5.662− (6x1 + 4x2) ≤ 0.75

5.662− (4x1 + 6x2) ≤ 0.75

5− (5x1 + 5x2) ≤ 0.75

TE(x) ≤ 0.1

1Tx = 1

x ≥ 0.

This problem and its feasible set of solutions is illustrated in Figure 19.2.

302 Robust Optimization

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alternative
expected
return
estimates

Tolerable
Regret

Portfolios with
limited regret

under all scenarios

Figure 19.2 Set of solutions with regret less than 0.75 for the mean–variance
model (19.16)

19.5 Notes

Robust optimization was introduced by Ben-Tal and Nemirovski (1998, 2002)

and independently by El Ghaoui and Lebret (1997) and El Ghaoui et al. (1998).

The textbook by Ben-Tal et al. (2009) gives a thorough discussion on the subject,

including an extensive list of references.

Although robust optimization is widely popular in a variety of disciplines, it

is not as widespread in financial optimization yet. There are strong supporters

of its potential in finance (Ceria and Stubbs, 2006; Goldfarb and Iyengar, 2003;

Tütüncü and Koenig, 2004). There are also some skeptics (Scherer, 2007).

19.6 Exercises

Exercise 19.1 Consider the optimization problem

max μTx− 1
2γ · xTVx

1Tx = 1,
(19.18)

where V is a positive definite covariance matrix of asset returns, μ is a vector

of expected returns, and γ > 0 is a risk-aversion constant. Assume V is certain

but μ is uncertain.

(a) Let z(μ) denote the optimal value of (19.18). Show that μ �→ z(μ) is a

quadratic convex function.

(b) Let U denote the uncertainty set for μ. Formulate both the absolute and

relative robust optimization versions of (19.18).

19.6 Exercises 303

(c) Show that the absolute and relative robust optimization versions for the

uncertainty sets U = {μ1, . . . ,μk} and U = conv{μ1, . . . ,μk} are equivalent.

Exercise 19.2 (Robust least squares) Let P ∈ Rm×n, with q ∈ Rm, and

consider the least-squares problem

min
v

‖Pv − q‖2. (19.19)

The purpose of this exercise is to compare the above usual least-squares problem

with a robust version.

(a) Suppose the matrix P can take any value in the ellipsoidal uncertainty set

U = {P : ‖P− P̄‖ = ρ},

where ‖P − P̄‖ is either the operator norm or the Frobenius norm of the

matrix P− P̄.

Show that the robust version min
P∈U

min
v

‖Pv − q‖2 of (19.19) is equivalent

to the problem

min
v

‖P̄v − q‖2 + ρ‖v‖2. (19.20)

(b) Set P,q as follows:

> P = [1, 0 ; 1, 0.001 ; 10, -0.01] ;

> q = [1 2 0]’ ;

Use the MATLAB command

> v = P \ q

to find the solution v∗ to (19.19) for the above values of P,q.

What is the value of v∗ and the value of ‖Pv∗ − q‖2 that you found?

(c) Now consider the matrix Q obtained by adding a small random perturbation

to P

> Q = P + 0.05*randn(3,2)

What is the value of ‖Qv∗ − q‖2 for the solution v found in (a)? Repeat

this a few (two or three) times. What do you observe?

(d) Now use the robust formulation (19.20) to find a robust solution v∗ to (19.19)

for ρ = 0.1.

What is the value of v∗ and the value of ‖Pv∗−q‖2 that you found? How

different are they from the usual least-squares answers found in part (b)?

(e) Repeat part (c) for the robust solution v that you found in (d). How different

is the behavior now?

Exercise 19.3 Consider the convex quadratic inequality

xT(AAT)x− 2bTx+ γ ≤ 0,

304 Robust Optimization

where the parameters (A,b, γ) belong to the uncertainty set

U =

{
(A,b, γ) = (A0,b0, γ0) +

k∑
j=1

uj(A
j ,bj , γj) : ‖u‖2 ≤ 1

}

for some fixed (Aj ,bj , γj), for j = 0, 1, . . . , k.

Show that the (infinite) robust quadratic constraint

xT(AAT)x− 2bTx+ γ ≤ 0 for all (A,b, γ) ∈ U

holds if and only if there exist zj , yj , for j = 1, . . . , k, and λ such that

Ajx = zj , j = 0, 1, . . . , k

(bj)Tx = yj , j = 0, 1, . . . , k

λ ≥ 0⎡⎣γ0 + 2y0 − λ (y + 1
2γ)

T (z0)T

y + 1
2γ λI ZT

z0 Z I

⎤⎦ � 0,

where y =
[
y1 · · · yk

]T
, γ =

[
γ1 · · · γk

]T
, and Z =

[
z1 · · · zk

]
.

Conclude that the robust version of the optimization problem

min
x

cTx

s.t. xT(AAT)x− 2bTx+ γ ≤ 0

for the above kind of uncertainty set U can be written as a semidefinite program.

20 Nonlinear Programming: Theory
and Algorithms

It is sometimes necessary to consider more general nonlinear programs than the

ones we have already studied: linear, quadratic, or conic programs. We give a

brief introduction to this vast topic, and we discuss an application to estimating

a volatility surface.

20.1 Nonlinear Programming

Consider a very general optimization problem of the form

min
x

f(x)

s.t. gj(x) = bj , for j = 1, . . . ,m

hi(x) ≤ di, for i = 1, . . . , p,

or the equivalent more concise form

min
x

f(x)

s.t. g(x) = b

h(x) ≤ d,

(20.1)

where f, gj , hi : Rn → R. In the special case when all functions f, gj , hi are

linear, problem (20.1) is a linear program as discussed in Chapter 2. When some

of the functions f, gj , hi are nonlinear, problem (20.1) is a nonlinear program.

Many practical problems are naturally formulated as nonlinear programs. We

already saw quadratic programming and conic programming in earlier chapters.

However, the family of problems that can be formulated as nonlinear programs is

enormous, as many, if not most, imaginable kinds of constraints and objectives

can be cast in terms of nonlinear functions. (For some noteworthy examples,

see the exercises at the end of the chapter.) The immense modeling power

of nonlinear programming comes at a cost: unlike linear, quadratic, and conic

programming, which have a solid theory and are solvable via a few algorithmic

templates, both the theory and methods to solve general nonlinear programs

are far more complicated. Different types of nonlinear programs, determined by

structural properties of the objective and constraint functions, are amenable to

different types of algorithms. The subsequent sections sketch the main theory

and most popular algorithmic ideas. A comprehensive treatment of this vast

306 Nonlinear Programming: Theory and Algorithms

topic is beyond the scope of this textbook. We refer the reader to the excellent

references Bertsekas (1999), Güler (2010), and Nocedal and Wright (2006) for

more details.

20.2 Numerical Nonlinear Programming Solvers

There are numerous software packages for solving nonlinear programs. The fol-

lowing are some popular ones. We list them according to the class of algorithms

(discussed in Section 20.4) that they are based on:

(1) CONOPT, GRG2, Excel SOLVER. These solvers are based on the generalized

reduced-gradient method.

(2) MATLAB optimization toolbox, SNOPT, NLPQL. These solvers are based on

sequential quadratic programming.

(3) MINOS, LANCELOT. These solvers are based on an augmented Lagrangian

approach.

(4) MOSEK, LOQO, IPOPT. These solvers are based on interior-point methods.

20.3 Optimality Conditions

In this section we consider the class of nonlinear programs (20.1) where the

functions f, gi, hj are once or twice continuously differentiable. The optimality

conditions for linear and convex quadratic programs extend to this more general

context, albeit some new technicalities arise. In particular, for a general nonlinear

program the theory described below applies to local minima.

Let X := {x ∈ Rn : g(x) = b, h(x) ≤ d} denote the feasible set of (20.1).

A point x∗ ∈ X is a local minimum of (20.1) if there exists r > 0 such that

f(x∗) ≤ f(x) for all x ∈ Br(x
∗) ∩ X , where Br(x

∗) denotes the ball of radius r

around x∗; that is,

Br(x
∗) := {x ∈ Rn : ‖x− x∗‖ ≤ r}.

A point x∗ ∈ X is a strict local minimum of (20.1) if there exists r > 0 such that

f(x∗) < f(x) for all x ∈ Br(x
∗) ∩ X .

Unconstrained Case

For ease of exposition we first describe the optimality conditions for the simpler

case without constraints. Consider the unconstrained optimization problem

min
x∈Rn

f(x), (20.2)

where f : Rn → R.

20.3 Optimality Conditions 307

Theorem 20.1 (First-order necessary conditions) Suppose f is continuously

differentiable. If a point x∗ ∈ Rn is a local minimum of (20.2) then ∇f(x∗) = 0.

The above necessary conditions can be sharpened when the objective function

is twice differentiable.

Theorem 20.2 (Second-order necessary and sufficient conditions) Suppose f is

twice continuously differentiable.

(a) If a point x∗ ∈ Rn is a local minimum of (20.2) then ∇f(x∗) = 0 and

∇2f(x∗) � 0.

(b) If x∗ ∈ Rn is such that ∇f(x∗) = 0 and ∇2f(x∗) � 0 then x∗ is a strict

local minimum of (20.2).

Constrained Case

Consider now the general constrained problem (20.1). The optimality conditions

for (20.1) rely on the following technical condition.

Definition 20.3 Let x ∈ X . Define I(x) := {i : hi(x) = di}. The point x

satisfies the linear independence constraint qualification if the set of gradient

vectors

{∇gj(x) : j = 1, . . . ,m} ∪ {∇hi(x) : i ∈ I(x)}

is linearly independent.

Theorem 20.4 (First-order necessary conditions) Suppose f, gi, hj are continu-

ously differentiable. If a point x∗ ∈ X is a local minimum of (20.1) and satisfies

the linear independence constraint qualification, then there exist some Lagrange

multipliers y ∈ Rm and s ∈ Rp such that

∇f(x∗) +
∑m

j=1 yj∇gj(x
∗) +

∑p
j=1 si∇hi(x

∗) = 0

s ≥ 0

si(hi(x
∗)− di) = 0, for i = 1, . . . , p.

(20.3)

Observe that the first block of equations in (20.3) can be written as

∇xL(x
∗,y, s) = ∇f(x∗) +∇g(x∗)y +∇h(x∗)s = 0,

where L(x,y, s) is the following Lagrangian function for (20.1):

L(x,y, s) := f(x) + yT(g(x)− b) + sT(h(x)− d),

and where

∇g(x) =
[
∇g1(x) · · · ∇gm(x)

]
and ∇h(x) =

[
∇h1(x) · · · ∇hp(x)

]
.

Observe the nice analogy to the first-order conditions for the unconstrained case.

We next give second-order necessary and sufficient conditions. The precise

308 Nonlinear Programming: Theory and Algorithms

statements of the second-order conditions involve the following tangent subspace.

Let x ∈ X . The tangent subspace T (x) is defined as

T (x) := {d ∈ Rn : ∇gj(x)
Td = 0, j = 1, . . . ,m, and ∇hi(x)

Td = 0, i ∈ I(x)}.

Theorem 20.5 (Second-order necessary conditions) Suppose f is twice continu-

ously differentiable. If a point x∗ ∈ Rn is a local minimum of (20.2) and satisfies

the linear independence constraint qualification, then there exist y ∈ Rm and

s ∈ Rp such that (20.3) holds and

dT(∇2
xL(x

∗,y, s))d ≥ 0

for all d ∈ T (x∗).

Theorem 20.6 (Second-order sufficient conditions) Suppose f is twice contin-

uously differentiable and x∗ ∈ Rn satisfies the linear independence constraint

qualification. If there exist y ∈ Rm and s ∈ Rp such that (20.3) holds as well as

hi(x
∗) = di ⇒ si > 0, and

dT(∇2
xL(x

∗,λ,μ))d > 0

for all non-zero d ∈ T (x∗), then x∗ is a local minimum of (20.1).

Convex Case

As we detail next, the optimality conditions described above simplify and

strengthen substantially when the underlying problem is convex.

Proposition 20.7 Assume the objective function f in (20.2) is convex and

differentiable. Then x∗ is an optimal solution to (20.2) if and only if ∇f(x∗) = 0.

Proposition 20.8 Assume the objective function f in (20.1) is convex, the

equality constraint functions gi are linear, and the inequality constraint functions

hj are convex. Furthermore assume all f, gi, hj are differentiable. Then x∗ is an

optimal solution to (20.1) if and only if there exist y ∈ Rm, s ∈ Rp such that

∇xL(x
∗,y, s) = 0, g(x∗) = b, h(x∗) ≤ d, s ≥ 0, sT(h(x∗)− d) = 0.

20.4 Algorithms

Unconstrained Case

We next describe three main algorithmic approaches to solving an unconstrained

optimization problem of the form (20.2), namely the gradient descent method,

Newton’s method, and the subgradient method. These methods in turn provide the

foundation for the more elaborate methods for solving constrained optimization

problems.

20.4 Algorithms 309

Gradient Descent
Suppose the objective function f in (20.2) is differentiable. In this case a simple

method for solving (20.2) is based on going downhill on the graph of the function

f . The gradient gives the direction of fastest initial increase and thus its negative

is the direction of fastest initial decrease. This can also be motivated by the first-

order Taylor approximation of f around a point x: for p small we have

f(x+ p) ≈ f(x) +∇f(x)Tp.

Among all p of fixed norm, the one pointing in the direction −∇f(x) minimizes

the right-hand side.

Algorithm 20.1 gives a formal description of the gradient descent method.

Algorithm 20.1 Gradient descent method

1: choose x0 ∈ Rn

2: for k = 0, 1, . . . do

3: choose a step length αk > 0 and set xk+1 = xk − αk∇f(xk)

4: end for

The choice of step length α is a critical detail in the implementation of the

gradient descent algorithm. If α is too large, the algorithm may fail to converge to

a solution because the objective value could even increase after one iteration. On

the other hand, if α is too small, the algorithm will be too slow. This issue applies

not only to the gradient descent method but to any method that aims to move

along a direction p. Suppose p ∈ Rn is a descent direction at the current point

xk; that is, ∇f(xk)Tp < 0. A popular approach is to choose the step length large

enough and perform backtracking; that is, shrink αk by a multiplicative constant

smaller than one until the following sufficient decrease condition holds for some

predetermined μ ∈ (0, 1):

f(xk + αkp) ≤ f(xk) + αk · μ · ∇f(xk)Tp. (20.4)

The sufficient decrease requirement in (20.4) is called the Armijo–Goldstein

condition. The first-order Taylor approximation for f around x ensures that

(20.4) holds for sufficiently small αk provided f is differentiable and d is a

descent direction. Algorithm 20.2 describes this kind of backtracking. This type

of backtracking is also often called line search.

Algorithm 20.2 Backtracking to select the step length αk

1: choose αk > 0 and β, μ ∈ (0, 1)

2: while (20.4) fails do αk = β · αk

3: end while

310 Nonlinear Programming: Theory and Algorithms

Newton’s Method
The gradient descent method uses only first-order information to choose the

descent direction at each main iteration. There are several approaches to incor-

porate additional information and speed up convergence. Newton’s method yields

a substantially improved direction by incorporating second-order information. In

its pure form each step of Netwon’s method for (20.2) updates a trial point x to

the new point

x+ = x−∇2f(x)−1∇f(x).

The latter update can be motivated by considering the second-order Taylor

approximation to f around x:

f(x+ p) ≈ f(x) +∇f(x)Tp+
1

2
pT∇2f(x)p.

Observe that when ∇2f(x) � 0 the Newton step p := −∇2f(x)−1∇f(x) mini-

mizes the right-hand side.

Newton’s method also applies to solving nonlinear equations. Consider the

system of nonlinear equations

F (x) = 0 (20.5)

where F : Rn → Rn is a differentiable function. Let F ′(x) denote the Jacobian

matrix of F , that is, the n× n matrix with (i, j) component

F ′(x)ij =
∂fi(x)

∂xj
,

where f1(x), . . . , fn(x) are the components of F (x).

In its pure form, Newton’s method for (20.5) updates a trial point x to the

new point

x+ = x− F ′(x)−1F (x).

The latter update can be motivated by considering the first-order Taylor approx-

imation to F around x:

F (x+ p) ≈ F (x) + F ′(x)p.

The Newton step p = −F ′(x)−1F (x) makes the above right-hand side equal to

zero.

Observe that Newton’s method for the unconstrained optimization problem

(20.2) is exactly the same as Newton’s method for solving the system of nonlinear

equations ∇f(x) = 0.

Newton’s method has a much faster rate of convergence than gradient descent

provided the initial iterate is sufficiently close to the solution. On the other

hand, when the initial iterate is far from the solution, the above pure form of

Newton’s method may fail to converge. The latter drawback can be rectified by

performing some backtracking along the Newton step direction as described in

Algorithm 20.3. The step length αk can be chosen via the backtracking procedure

20.4 Algorithms 311

described in Algorithm 20.2 to ensure the Armijo–Goldstein sufficient decrease

condition (20.4) holds. For the Newton direction d = −∇2f(xk)
−1∇f(xk), a

natural and customary initial step length at each step is αk = 1.

Algorithm 20.3 Newton’s method with backtracking

1: choose x0 ∈ Rn

2: for k = 0, 1, . . . do

3: choose a step length αk ∈ (0, 1] via backtracking and set xk+1 = xk−
αk∇2f(xk)−1∇f(xk)

4: end for

Subgradient Method
In the special case when the objective function f is convex, the gradient descent

method can be extended to non-smooth functions; that is, functions that are

not necessarily differentiable. Non-smooth functions arise often in optimization.

In particular, the Lagrangian relaxation heuristic for (8.9) described in Section

8.3.3 yields the minimization of a non-smooth convex function.

Let f : Rn → R be a convex function. A point g ∈ Rn is a subgradient of f at

x ∈ Rn if for all y ∈ Rn

f(y)− f(x) ≥ gT(y − x).

The subdifferential of f at x, denoted ∂f(x), is the set of subgradients of f at x.

The subdifferential of a convex function is non-empty at every point. The

following example illustrates the subdifferential of a simple non-smooth function.

Consider the convex function f : R → R defined by f(x) = |x|. In this case we

have

∂f(x) =

⎧⎨⎩
1 if x > 0

−1 if x < 0

[−1, 1] if x = 0.

Algorithm 20.4 describes the subgradient method for (20.2) when f is a convex

function. Observe that it is a natural extension of Algorithm 20.1.

Algorithm 20.4 Subgradient method

1: choose x0 ∈ Rn

2: for k = 0, 1, . . . do

3: choose gk ∈ ∂f(xk) and a step length αk > 0, and set xk+1 = xk−
αkgk

4: end for

For non-smooth functions, the choice of step length αk for the subgradient

method cannot be chosen via a backtracking procedure as the Armijo–Goldstein

condition (20.4) cannot be guaranteed in the absence of differentiability. Various

312 Nonlinear Programming: Theory and Algorithms

choices have been proposed in the literature. The following two generic types of

step lengths are particularly simple and popular. The first one is to choose fixed

sizes αk = α > 0 for all k. The second one is to choose slowly diminishing sizes

such that
∞∑
k=0

α2
k < ∞,

∞∑
k=0

αk = ∞.

Constrained Case

Generalized Reduced Gradient
The main idea behind the generalized reduced gradient method is to reduce a

constrained problem to a sequence of unconstrained problems in a space of

lower dimension. To illustrate this procedure, consider the special case when

the equality constraints are linear:

min
x

f(x)

s.t. Ax = b
(20.6)

for some A ∈ Rm×n. Without loss of generality we may assume that A has

full row rank as otherwise either some constraints are redundant or the problem

is infeasible. Since A has full rank, we can partition both A and x as follows:

A =
[
AB AN

]
and x =

[
xB

xN

]
for some subset B ⊆ {1, . . . , n} such that AB

is non-singular. Therefore

Ax = b ⇔ ABxB +ANxN = b ⇔ xB = A−1
B (b−ANxN).

Consequently, problem (20.6) is equivalent to the following reduced space uncon-

strained minimization problem:

min
xN

f̂(xN)

where

f̂(xN) = f(A−1
B (b−ANxN),xN).

Consider a more general program with nonlinear equality constraints:

min
x

f(x)

s.t. g(x) = b.
(20.7)

We can extend the above approach by approximating the nonlinear equality

constraints with their first-order Taylor approximation. More precisely, suppose

the current point is xk. Consider the modification of (20.7) obtained by replacing

g(x) = b with its first-order Taylor approximation

min
x

f(x)

s.t. g(xk) +∇g(xk)T(x− xk) = b.
(20.8)

20.4 Algorithms 313

Observe that the latter problem is of the form (20.6) and is thus amenable to

the type of reduced space approach described above. Algorithm 20.5 describes a

template for a generalized reduced gradient approach to problem (20.7). The step

length α at each iteration is typically chosen to balance both goals of objective

function reduction and constraint satisfaction.

Algorithm 20.5 Generalized reduced gradient

1: choose x0

2: for k = 0, 1, . . . do

3: solve the linearized constraints problem (20.8) to find a search direction

Δxk

4: choose a step length α > 0 and set xk+1 = xk + αΔxk

5: end for

The generalized reduced gradient approach can be extended to deal with

inequality constraints as well via an active-set approach like that discussed in

Chapter 5. The basic idea is that the active inequalities can be treated as equality

constraints. The challenge of course is to determine the correct set of active

inequalities at the optimal solution.

Sequential Quadratic Programming
The central idea of sequential quadratic programming is to capitalize on algo-

rithms for quadratic programming to solve more general nonlinear programming

problems of the form (20.1). Given a current iterate xk, problem (20.1) can be

approximated with the following quadratic program:

min
x

f(xk) +∇f(xk)T(x− xk) + 1
2 (x− xk)TBk(x− xk)

s.t. g(xk) +∇g(xk)T(x− xk) = b

h(xk) +∇h(xk)T(x− xk) ≤ d,

(20.9)

where

Bk = ∇2
xxL(x

k,yk, sk)

is the Hessian of the Lagrangian function with respect to the x variables and

(yk, sk) is the current estimate of the vector of Lagrange multipliers.

Algorithm 20.6 describes a template for a sequential quadratic programming

approach to problem (20.7). Once again, the step length α at each iteration

is typically chosen to balance both goals of objective function reduction and

constraint satisfaction.

Interior-Point Methods
Interior-point methods, formerly discussed in Chapters 2 and 5, can be extended

to general nonlinear programming under suitable differentiability conditions. The

gist of the method is to solve the optimality conditions (20.3).

314 Nonlinear Programming: Theory and Algorithms

Algorithm 20.6 Sequential quadratic programming

1: choose x0,y0, s0

2: for k = 0, 1, . . . do

3: solve the quadratic program (20.9) to find a search direction

(Δxk,Δyk,Δsk)

4: choose a step length α > 0 and set (xk+1,yk+1, sk+1) = (xk,yk, sk)+

α(Δxk,Δyk,Δsk)

5: end for

Similar to the linear and quadratic programming cases, interior-point methods

generate a sequence of iterates that satisfy some inequalities strictly and each

iteration of the algorithm aims to make progress towards satisfying the optimality

conditions (20.3). The algorithm inevitably becomes a bit more elaborate for

nonlinear programs because of the nonlinearities in the constraints.

As before we use the following notational convention: given a vector s ∈ Rp,

let S ∈ Rp×p denote the diagonal matrix defined by Sii = si, for i = 1, . . . , n,

and let 1 ∈ Rp denote the vector whose components are all 1s. The optimality

conditions (20.3) can be restated as⎡⎢⎢⎣
∇f(x) +∇g(x)y +∇h(x)s

g(x)− b

h(x) + z− d

SZ1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0

0

0

0

⎤⎥⎥⎦ , s, z ≥ 0.

Given μ > 0, let (x(μ),y(μ), z(μ), s(μ)) be the solution to the following

perturbed version of the above optimality conditions:⎡⎢⎢⎣
∇f(x) +∇g(x)y +∇h(x)s

g(x)− b

h(x) + z− d

SZ1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0

0

0

μ1

⎤⎥⎥⎦ , s, z > 0.

The first condition above can be written as rμ(x,y, z, s) = 0 for the residual

vector:

rμ(x,y, z, s) :=

⎡⎢⎢⎣
∇f(x) +∇g(x)y +∇h(x)s

g(x)− b

h(x) + z− d

SZ1− μ1

⎤⎥⎥⎦ .

The central path is the set {(x(μ),y(μ), z(μ), s(μ)) : μ > 0}. Under suitable

assumptions (x(μ),y(μ), z(μ), s(μ)) converges to a local optimal solution to

(20.3). This suggests the following algorithmic strategy: Suppose (x,y, z, s) is

“near” (x(μ),y(μ), z(μ), s(μ)) for some μ > 0. Use (x,y, z, s) to move to a better

point (x+,y+, z+, s+) “near” (x(μ+),y(μ+), z(μ+), s(μ+)) for some μ+ < μ.

It can be shown that if a point (x,y, z, s) is on the central path, then the

20.5 Estimating a Volatility Surface 315

corresponding value of μ satisfies zTs = pμ. Likewise, given z, s > 0, define

μ(z, s) :=
zTs

p
.

To move from a current point (x,y, z, s) to a new point, we use the Newton

step for the nonlinear system of equations rμ(x,y, z, s) = 0; that is,

(Δx,Δy,Δz,Δs) = −r′μ(x,y, z, s)
−1rμ(x,y, z, s). (20.10)

Algorithm 20.7 presents a template for an interior-point method.

Algorithm 20.7 Interior-point method for nonlinear programming

1: choose x0,y0 and z0, s0 > 0

2: for k = 0, 1, . . . do

3: solve the Newton system (20.10) for (x,y, z, s) = (xk,yk, zk, sk) and μ :=

0.1μ(zk, sk)

4: choose a step length α ∈ (0, 1] and set (xk+1,yk+1, zk+1, sk+1) =

(xk,yk, zk, sk) + α(Δx,Δy,Δz,Δs)

5: end for

The step length α in step 4 should be chosen via a backtracking procedure

so that zk+1, sk+1 > 0 and the size of rμ(x
k+1,yk+1, zk+1, sk+1) is sufficiently

smaller than rμ(x
k,yk, zk, sk).

20.5 Estimating a Volatility Surface

We conclude this chapter with a description of nonlinear programming to esti-

mate the volatility surface. The discussion in this section is based on Coleman

et al. (1999a,b).

The Black–Scholes–Merton (BSM) equation for pricing European options is

based on a geometric Brownian motion model for the movements of the underly-

ing security. Namely, one assumes that the underlying security price St at time

t satisfies

dSt

St
= μdt+ σdWt, (20.11)

where μ is the drift, σ is the (constant) volatility, and Wt is the standard

Brownian motion. Using this equation and some standard assumptions about

the absence of frictions and arbitrage opportunities, one can derive the BSM

partial differential equation for the value of a European option on this underlying

security. Using the boundary conditions resulting from the payoff structure of the

particular option, one determines the value function for the option. For example,

for the European call and put options with strike K and maturity T , we obtain

316 Nonlinear Programming: Theory and Algorithms

the following formulas:

C(K,T) = S0Φ(d1)−Ke−rTΦ(d2), (20.12)

P (K,T) = Ke−rTΦ(−d2)− S0Φ(−d1), (20.13)

where

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 = d1 − σ
√
T ,

and Φ(·) is the cumulative distribution function for the standard normal distri-

bution. In the formula r represents the continuously compounded risk-free and

constant interest rate and σ is the volatility of the underlying security that is

assumed to be constant.

The risk-free interest rate r, or a reasonably close approximation to it, is often

available, for example from Treasury bill prices in US markets. Therefore, all one

needs to determine the call or put price using these formulas is a reliable estimate

of the volatility parameter σ. Conversely, given the market price for a particular

European call or put, one can uniquely determine the implied volatility of the

underlying security (implied by this option price) by solving the equations above

with the unknown σ.

Empirical evidence against the appropriateness of (20.11) as a model for the

movements of most securities is abundant. Most such studies refute the assump-

tion of a volatility that does not depend on time or underlying price level. Indeed,

studying the prices of options with the same maturity but different strikes,

researchers observed that the implied volatilities for such options exhibited a

“smile” structure, i.e., higher implied volatilities away from the money in both

directions, decreasing to a minimum level as one approaches the at-the-money

option from up or down. This is clearly in contrast with the constant (flat)

implied volatilities one would expect had (20.11) been an appropriate model for

the underlying price process.

There are quite a few models that try to capture the volatility smile, including

stochastic volatility models, jump diffusions, etc. Since these models introduce

non-traded sources of risk, perfect replication via dynamic hedging as in the BSM

approach becomes impossible and the pricing problem is more complicated. An

alternative that is explored in Coleman et al. (1999b) is the one-factor continuous

diffusion model:

dSt

St
= μ(St, t)dt+ σ(St, t)dWt, t ∈ [0, T], (20.14)

where the constant parameters μ and σ of (20.11) are replaced by continuous

and differentiable functions μ(St, t) and σ(St, t) of the underlying price St and

time t. Here T denotes the end of the fixed time horizon. If the instantaneous

risk-free interest rate r is assumed constant and the dividend rate is constant,

20.5 Estimating a Volatility Surface 317

given a function σ(S, t), a European call option with maturity T and strike K

has a unique price. Let us denote this price with C(σ(S, t),K, T).

While an explicit solution for the price function C(σ(S, t),K, T) as in (20.12)

is no longer possible, the resulting pricing problem can be solved efficiently via

numerical techniques. Since μ(S, t) does not appear in the generalized BSM

partial differential equation, all one needs is the specification of the function

σ(S, t) and a good numerical scheme to determine the option prices in this

generalized framework.

So, how does one specify the function σ(S, t)? First of all, this function should

be consistent with the observed prices of currently or recently traded options on

the same underlying security. If we assume that we are given market prices of

m call options with strikes Kj and maturities Tj in the form of bid–ask pairs

(βj , αj) for j = 1, . . . , n, it would be reasonable to require that the volatility

function σ(S, t) is chosen so that

βj ≤ C(σ(S, t),Kj , Tj) ≤ αj , j = 1, . . . , n. (20.15)

To ensure that (20.15) is satisfied as closely as possible, one strategy is to

minimize the violations of the inequalities in (20.15):

min
σ(S,t)∈H

n∑
j=1

[βj − C(σ(S, t),Kj , Tj)]
+
+ [C(σ(S, t),Kj , Tj)− αj]

+
. (20.16)

Above, H denotes the space of measurable functions σ(S, t) with domain R+ ×
[0, T] and [u]+ = max{u, 0}. Alternatively, using the closing prices Cj for the

options under consideration, or choosing the mid-market prices Cj = (βj+αj)/2,

we can solve the following nonlinear least-squares problem:

min
σ(S,t)∈H

n∑
j=1

(C(σ(S, t),Kj , Tj)− Cj)
2
. (20.17)

This is a nonlinear least-squares problem since the function C(σ(S, t),Kj , Tj)

depends nonlinearly on the variables, namely the local volatility function σ(S, t).

While the calibration of the local volatility function to the observed prices

using the objective functions in (20.16) and (20.17) is important and desirable,

there are additional properties that are desirable in the local volatility function.

The most common feature sought in existing models is regularity or smoothness.

For example, in Lagnado and Osher (1997) the authors try to achieve a smooth

volatility function by modifying the objective function in (20.17) as follows:

min
σ(S,t)∈H

n∑
j=1

(C(σ(S, t),Kj , Tj)− Cj)
2
+ λ‖∇σ(S, t)‖2. (20.18)

Here, λ is a positive tradeoff parameter and ‖ · ‖2 represents the L2-norm in H.

Large deviations in the volatility function would result in a high value for the

norm of the gradient function, and by penalizing such occurences, the formulation

above encourages a smoother solution to the problem. The most appropriate

318 Nonlinear Programming: Theory and Algorithms

value for the tradeoff parameter λ must be determined experimentally. To solve

the resulting problem numerically, one must discretize the volatility function on

the underlying price and time grid. Even for a relatively coarse discretization of

the St and t spaces, one can easily end up with an optimization problem with

many variables.

An alternative strategy is to build the smoothness into the volatility function

by modeling it with spline functions. The use of the spline functions not only

guarantees the smoothness of the resulting volatility function estimates but

also reduces the degrees of freedom in the problem. As a consequence, the

optimization problem to be solved has many fewer variables and is easier. This

strategy is proposed in Coleman et al. (1999b) and we review it below.

We start by assuming that σ(S, t) is a bi-cubic spline. While higher-order

splines can also be used, cubic splines often offer a good balance between flex-

ibility and complexity. Next we choose a set of spline knots at points (S̄i, t̄i)

for i = 1, . . . , k. If the value of the volatility function at these points is given

by σ̄j := σ(S̄j , t̄j), the interpolating cubic spline that goes through these knots

and satisfies a particular end condition (such as the natural spline end condition

of linearity at the boundary knots) is uniquely determined. In other words, to

completely determine the volatility function as a natural bi-cubic spline (and

therefore to determine the resulting call option prices) we have k degrees of

freedom represented with the choices σ̄ = (σ̄1, . . . , σ̄k). Let Σ(S, t, σ̄) be the

bi-cubic spline local volatility function obtained by setting σ(S̄j , t̄j) := σ̄j . Let

C(Σ(S, t, σ̄), S, t) denote the resulting call price function. Then the analog of the

objective function (20.17) is

min
σ̄∈Rk

n∑
j=1

(C(Σ(S, t, σ̄),Kj , Tj)− Cj)
2
. (20.19)

One can introduce positive weights wj for each of the terms in the objective

function above to address different accuracies or confidence in the call prices

Cj . One can also introduce lower and upper bounds li and ui for the volatilities

at each knot to incorporate additional information that may be available from

historical data, etc. This way, we form the following nonlinear least-squares

problem with k variables:

min
σ̄∈Rk

f(σ) :=

n∑
j=1

wj (C(Σ(S, t, σ̄),Kj , Tj)− Cj)
2

(20.20)

s.t. l ≤ σ̄ ≤ u.

It should be noted that the formulation above will not be appropriate if there

are many more knots than prices, that is, if k is much larger than n. In this case,

the problem will be underdetermined and solutions may exhibit “overfitting”.

There should be fewer knots than available option prices.

The problem (20.20) is a standard nonlinear optimization problem except that

the objective function f(σ̄) and in particular the function C(Σ(S, t, σ̄),Kj , Tj)

20.6 Exercises 319

depends on the decision variables σ̄ in a complicated and non-explicit manner.

Since most of the nonlinear optimization methods we discussed in the previous

section require at least the gradient of the objective function (and sometimes its

Hessian matrix as well), this may sound alarming. Without an explicit expression

for f , its gradient must be estimated either using a finite difference scheme or

using automatic differentiation. Coleman et al. (1999b) implement both alterna-

tives and report that local volatility functions can be estimated very accurately

using these strategies. They also test the hedging accuracy of different delta-

hedging strategies, one using a constant volatility estimation and another using

the local volatility function produced by the strategy above. These tests indicate

that the hedges obtained from the local volatility function are significantly more

accurate.

20.6 Exercises

Exercise 20.1 Suppose f : Rn → R is a differentiable function at the point

x ∈ Rn. Consider the first-order Taylor approximation to f around x:

f̂(p) := f(x) +∇f(x)Tp.

Show that if ∇f(x) �= 0 then the solution to the problem

min
‖p‖≤1

f̂(p)

is

p∗ = − 1

‖∇f(x)‖∇f(x).

In other words, it is the unitary vector in the direction of negative gradient.

Exercise 20.2

(a) Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Show that the mixed binary program

min cTx

s.t. Ax ≤ b

xj ∈ {0, 1}, j ∈ J

is equivalent to the nonlinear program

min cTx

s.t. Ax ≤ b

xj(1− xj) = 0, j ∈ J.

(b) Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Show that the mixed integer program

min cTx

s.t. Ax ≤ b

xj ∈ Z, j ∈ J

320 Nonlinear Programming: Theory and Algorithms

is equivalent to the nonlinear program

min cTx

s.t. Ax ≤ b

sin(πxj) = 0, j ∈ J.

Exercise 20.3 Let n be a positive integer. Show that for suitable differentiable

functions f,g,h the statement

“There exist x, y, z ∈ Z all different such that xn + yn = zn.”

can be equivalently stated as

“The optimal value of

min f(x)

s.t. g(x) ≤ 0

h(x) = 0

is zero.”

What does that suggest about the difficulty of solving generic nonlinear pro-

gramming problems?

Appendices

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Appendix Basic Mathematical Facts

A.1 Matrices and Vectors

For two positive integers m and n, let Rm×n denote the space of m×n matrices

with real entries. The transpose of an m× n matrix

A =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤⎥⎥⎥⎦ ∈ Rm×n

is the n×m matrix

AT =

⎡⎢⎢⎢⎣
a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

⎤⎥⎥⎥⎦ ∈ Rn×m.

A square matrix A ∈ Rn×n is symmetric if AT = A.

The product of two matrices A = (aik) ∈ Rm×n and B = (bkj) ∈ Rn×p is the

matrix C = AB = (cij) ∈ Rm×p defined componentwise as follows:

cij =

n∑
k=1

aikbkj , i = 1, . . . ,m, j = 1, . . . , p.

Observe that the matrix product AB is well defined if the number of columns

of A and the number of rows of B match.

The identity matrix I ∈ Rn×n is the matrix with components equal to 1 on the

diagonal and all other components equal to 0. Observe that for all A ∈ Rm×n,

B ∈ Rn×p we have AI = A and IB = B. If A,B ∈ Rn×n and AB = BA = I,

then we say that B is the inverse of A and write B = A−1.

The following kinds of matrix–vector products arise often. Suppose

c :=

⎡⎢⎢⎢⎣
c1
c2
...

cn

⎤⎥⎥⎥⎦ , Q :=

⎡⎢⎢⎢⎣
q11 q12 · · · q1n
q12 q22 · · · q2n
...

...
. . .

...

q1n q2n · · · qnn

⎤⎥⎥⎥⎦ , x :=

⎡⎢⎢⎢⎣
x1

x2

...

xn

⎤⎥⎥⎥⎦ .

324 Basic Mathematical Facts

Then

cTx =
[
c1 · · · cn

] ⎡⎢⎣x1

...

xn

⎤⎥⎦ = c1x1 + · · ·+ cnxn

and

Qx =

⎡⎢⎣q11 · · · q1n
...

. . .
...

q1n · · · qnn

⎤⎥⎦
⎡⎢⎣x1

...

x3

⎤⎥⎦ =

⎡⎢⎣q11x1 + · · ·+ q1nxn

...

q1nx1 + · · ·+ qnnxn

⎤⎥⎦ .

So

xTQx =
[
x1 · · · xn

] ⎡⎢⎣q11x1 + · · ·+ q1nxn

...

q1nx1 + · · ·+ qnnxn

⎤⎥⎦
=

n∑
i=1

n∑
j=1

qijxixj

= q11x
2
1 + · · ·+ qnnx

2
n + 2q12x1x2 + 2q23x2x3 + · · ·+ 2qn−1,nxn−1xn.

A symmetric matrix M ∈ Rn×n is positive semidefinite if xTMx ≥ 0 for all

x ∈ Rn and it is positive definite if it satisfies the stronger condition xTMx > 0

for all non-zero x ∈ Rn.

A.2 Convex Sets and Convex Functions

A set S ⊆ Rn is convex if for all x,y ∈ S the straight segment joining x and y

is contained in S; that is,

[x,y] := {λx+ (1− λ)y : λ ∈ [0, 1]} ⊆ S.

The following are types of convex sets that appear often in optimization models.

It is easy to verify that they are indeed convex sets.

Half-space: Given a non-zero a ∈ Rn and b ∈ R the half-space

{x ∈ Rn : aTx ≤ b}

is convex.

Intersections of convex sets: Given a collection Si ⊆ Rn, for i ∈ I, of convex

sets, their intersection
⋂

i∈I Si is a convex set.

A.3 Calculus of Variations: the Euler Equation 325

Affine images and preimages: Given a convex set S ⊆ Rn, matrices A ∈ Rm×n,

B ∈ Rn×p and vectors a ∈ Rm, b ∈ Rn, the sets

A(S) + a = {Ax+ a : x ∈ S} ⊆ Rm

and

B−1(S + b) := {v ∈ Rp : Bv − b ∈ S} ⊆ Rp

are convex.

Suppose S ⊆ Rn is a convex set. A function f : S → R is convex if, for all

x,y ∈ S and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

A common way of dealing with the domain of a function is to consider extended

valued functions; that is, functions defined on the whole space Rn and allowed to

take the value ∞. The domain of an extended valued function f : Rn → R∪{∞}
is the set

dom(f) := {x ∈ Rn : f(x) < ∞}.

An alternative and equivalent definition of convexity is the following. An

extended valued function f : Rn → R ∪ {∞} is convex if the set

epigraph(f) := {(x, t) ∈ Rn+1 : f(x) ≤ t}

is convex. Observe that if f is convex, then its domain is a convex set. Further-

more, if f is convex then for all � ∈ R the sublevel set {x ∈ Rn : f(x) ≤ �} is a

convex set.

The following relationship between differentiability and convexity is particu-

larly useful to verify that functions are convex.

Theorem A.1 Suppose f : S → R is twice differentiable on the open set

S ⊆ Rn and C ⊆ S is a convex set. Then f is convex on C if and only if ∇2f(x)

is positive semidefinite for all x ∈ C.

As an immediate consequence of Theorem A.1 it follows that every affine

function f(x) = cTx+ b is convex. It also follows that a quadratic function

f(x) =
1

2
xTQx+ cTx+ b

is convex if and only if Q is positive semidefinite.

A.3 Calculus of Variations: the Euler Equation

The calculus of variations is the analog of calculus that works with function-

als rather than functions. Functionals are often integrals of functions. Many

problems in the calculus of variations arose from the need to find a function

326 Basic Mathematical Facts

that optimizes a given functional. The Euler equation for the minimization of

a functional subject to boundary conditions is a kind of first-order optimality

condition for the problem

min
x

∫ T

0

L(t, x(t), ẋ(t))dt, x(0) = x0, x(T) = xT .

The optimal solution x∗(t) must satisfy the differential equation

Lx =
d

dt
Lẋ. (A.1)

Equation (A.1) is called the Euler equation. For a derivation of this optimality

condition as well as a detailed discussion on the interesting subject of calculus

of variations, see Fleming and Rishel (1975).

References

Alizadeh F. (1991). Combinatorial Optimization with Interior Point Methods and

Semi-definite Matrices. PhD thesis, University of Minnesota.

Almgren R. and N. Chriss (2000). Optimal execution of portfolio transactions.

Journal of Risk, 3:5–39.

Almgren R., C. Thum, E. Hauptmann, and H. Li (2005). Direct estimation of

equity market impact. Risk, 18:58-62.

Andersson F., H. Mausser, D. Rosen, and S. Uryasev (2001). Credit risk opti-

mization with conditional value-at-risk criterion. Mathematical Programming,

89:273-291.

Artzner P., F. Delbaen, J. Eber, and D. Heath (1999). Coherent measures of risk.

Mathematical Finance, 9:203–228.

Back K. (2010). Asset Pricing and Portfolio Choice Theory. Oxford University

Press.

Basel Committee on Banking Supervision (2011). Basel III: A Global Regulatory

Framework for More Resilient Banks and Banking Systems. Technical Report,

Bank for International Settlements.

Bawa V.S., S.J. Brown, and R.W. Klein (1979). Estimation Risk and Optimal

Portfolio Choice. North-Holland.

Bellman R. (1954). The theory of dynamic programming. Bulletin of the

American Mathematical Society, 60:503–515.

Bellman R. (1957). Dynamic Programming. Princeton University Press.

Ben-Tal A. and A. Nemirovski (1998). Robust convex optimization. Mathematics

of Operations Research, 23(4):769–805.

Ben-Tal A. and A. Nemirovski (2002). Robust optimization – methodology and

applications. Mathematical Programming, 92(3):453–480.

Ben-Tal A., L. El Ghaoui, and A. Nemirovski (2009). Robust Optimization.

Princeton University Press.

Bertsekas D. (1999). Nonlinear Programming. Athena Scientific.

Bertsekas D. (2005). Dynamic Programming and Optimal Control. Athena

Scientific.

Bertsimas D. and A. Lo (1998). Optimal control of execution costs. Journal of

Financial Markets, 1:1–50.

Bertsimas D. and J. Tsitsiklis (1997). Introduction to Linear Optimization.

Athena Scientific.

328 References

Bertsimas D., V. Gupta, and I.Ch. Paschalidis (2012). Inverse optimization: a

new perspective on the Black–Litterman model. Operations Research, 1389–

1403.

Birge J. and F. Louveaux (1997). Introduction to Stochastic Programming.

Springer.

Black F. and R. Litterman (1992). Global portfolio optimization. Financial

Analysts Journal, 48:28–43.

Black F. and M. Scholes (1973). The pricing of options and corporate liabilities.

Journal of Political Economy, 81:637–659.

Blume M. (1975). Betas and the regression tendencies. Journal of Finance,

30:785–795.

Boyd S. and L. Vandenberghe (2004). Convex Optimization. Cambridge Univer-

sity Press.

Brinson G., B. Singer, and G. Beebower (1991). Determinants of portfolio

performance. Financial Analysts Journal, 47:40–48.

Broadie M. (1993). Computing efficient frontiers using estimated parameters.

Annals of Operations Research, 45(1):21–58.

Campbell J., A. Lo, and A. MacKinlay (1997). The Econometrics of Financial

Markets. Princeton University Press.

Cariño D., T. Kent, D. Myers, C. Stacy, M. Sylvanus, A. Turner, K. Watanabe,

and W. Ziemba (1994). The Russell–Yasuda Kasai model: an asset/liability

model for a Japanese insurance company using multistage stochastic program-

ming. Interfaces, 24(1):29–49.

Ceria S. and R. Stubbs (2006). Incorporating estimation errors into portfolio

selection: robust portfolio selection. Journal of Asset Management, 7:109–127.

Choueifaty Y. and Y. Coignard (2008). Toward maximum diversification. Journal

of Portfolio Management, 40–51.

Chvátal V. (1983). Linear Programming. W.H. Freeman.

Coleman T.F., Y. Kim, Y. Li, and A. Verma (1999a). Dynamic Hedging in a

Volatile Market. Technical Report, Cornell Theory Center.

Coleman T.F., Y. Kim, Y. Li, and A. Verma (1999b). Reconstructing the

unknown volatility function. Journal of Computational Finance, 2:77–102.

Conforti M., G. Cornuéjols, and G. Zambelli (2014). Integer Programming.

Springer.

Connor G. (1995). The three types of factor models: a comparison of their

explanatory power. Financial Analysts Journal, 51:42–46.

Constantinides G. (1983). Capital market equilibrium with personal tax. Econo-

metrica, 51:611–636.

Constantinides G. (1984). Optimal stock trading with personal taxes: impli-

cations for prices and the abnormal January returns. Journal of Financial

Economics, 13:65–89.

Cornuéjols G., M. Fisher, and G. Nemhauser (1977). Location of bank accounts

to minimize float: an analytical study of exact and approximate algorithms.

Management Science, 23:229–263.

References 329

Cox J., S. Ross, and M. Rubinstein (1979). Option pricing: a simplified approach.

Journal of Financial Economics, 7:229–263.

Dammon R., C. Spatt, and H. Zhang (2001). Optimal consumption and

investment with capital gains taxes. Review of Financial. Studies, 14:583–616.

Dammon R., C. Spatt, and H. Zhang (2004). Optimal asset location and alloca-

tion with taxable and tax-deferred investing. Journal of Finance, 59:999–1038.

Dantzig G. (1963). Linear Programming and Extensions. Princeton University

Press.

Dantzig G. (1990). The diet problem. Interfaces, 20(4):43–47.

Dantzig G., R. Fulkerson, and S. Johnson (1954). Solution of a large-scale

traveling-salesman problem. Operations Research, 2:393–410.

Davarnia D. and G. Cornuéjols (2017). From estimation to optimization via

shrinkage. Operations Research Letters, 45:642–646.

De Vries S. and R. Vohra (2003). Combinatorial auctions: a survey. INFORMS

Journal on Computing, 15(3):284–309.

Duffie D. (2001). Dynamic Asset Pricing Theory. Princeton University Press.

Efron B. and C. Morris (1977). Stein’s paradox in statistics. Scientific American,

236:119–127.

El Ghaoui L. and H. Lebret (1997). Robust solutions to least-squares problems

with uncertain data. SIAM Journal on Matrix Analysis and Applications,

18(4):1035–1064.

El Ghaoui L., F. Oustry, and H. Lebret (1998). Robust solutions to uncertain

semidefinite programs. SIAM Journal on Optimization, 9(1):33–52.

Engle R. (1982). Autoregressive conditional heteroscedasticity with estimates of

the variance of United Kingdom inflation. Econometrica, 50:987–1007.

Fabozzi F. (2004). Bonds, Markets, Analysis and Strategies, fifth edition.

Prentice-Hall.

Fabozzi F., P. Kolm, D. Pachamanova, and S. Focardi (2007). Robust Portfolio

Optimization and Management. Wiley.

Fama E. and K. French (1992). The cross-section of expected stock returns.

Journal of Finance, 67:427–465.

Fleming W. and R. Rishel (1975). Deterministic and Stochastic Optimal Control.

Springer.

Friedman J., T. Hastie, and R. Tibshirani (2001). The Elements of Statistical

Learning, volume 1. Springer.

Gârleanu N. and L. Pedersen (2013). Dynamic trading with predictable returns

and transaction costs. Journal of Finance, 68(6):2309–2340.

Goldfarb D. and G. Iyengar (2003). Robust portfolio selection problems.

Mathematics of Operations Research, 28(1):1–38.

Gomory R.E. (1958). Outline of an algorithm for integer solutions to linear

programs. Bulletin of the American Mathematical Society, 64:275–278.

Gomory R.E. (1960). An Algorithm for the Mixed Integer Problem. Technical

Report RM-2597, The Rand Corporation.

330 References

Gondzio J. and R. Kouwenberg (2001). High performance for asset liability

management. Operations Research, 49:879–891.

Grinold R. and R. Kahn (1999). Active Portfolio Management: A Quantitative

Approach for Producing Superior Returns and Controlling Risk, second edition.

McGraw-Hill.

Güler O. (2010). Foundations of Optimization. Springer.

Halldórsson B. and R. Tütüncü (2003). An interior-point method for a class

of saddle-point problems. Journal of Optimization Theory and Applications,

116(3):559–590.

Harrison J. and D. Kreps (1979). Martingales and arbitrage in multiperiod

security markets. Journal of Economic Theory, 20:381–408.

Harrison J. and S. Pliska (1981). Martingales and stochastic integrals in the

theory of continuous trading. Stochastic Processes and their Applications,

11:215–260.

Heath D., R. Jarrow, and A. Morton (1992). Bond pricing and the term

structure of interest rates: a new methodology for contingent claims

valuation. Econometrica, 60:77–105.

Herzel S. (2005). Arbitrage opportunities on derivatives: a linear programming

approach. Dynamics of Continuous, Discrete and Impulsive Systems. Series B:

Applications and Algorithms, 12:589–606.

Hodges S. and S. Schaefer (1977). A model for bond portfolio improvement.

Journal of Financial and Quantitative Analysis, 12:243–260.

Hoyland K. and S.W. Wallace (2001). Generating scenario trees for multistage

decision problems. Management Science, 47:295–307.

Jorion P. (1986). Bayes–Stein estimation for portfolio analysis. Journal of

Financial and Quantitative Analysis, 21:279–292.

Jorion P. (1992). Portfolio optimization in practice. Financial Analysts Journal,

48:68–74.

Jorion P. (2003). Portfolio optimization with tracking-error constraints.

Financial Analysts Journal, 59:70–82.

Karmarkar N. (1984). A new polynomial time algorithm for linear programming.

Combinatorica, 4:373–395.

Kelly J.L. (1956). A new interpretation of information rate. Bell System

Technical Journal, 35:917–926.

Klaassen P. (2002). Comment on “Generating scenario trees for multistage

decision problems”. Management Science, 48:1512–1516.

Kocuk B. and G. Cornuéjols (2017). Incorporating Black–Litterman Views

in Portfolio Construction When Stock Returns Are a Mixture of Normals.

Technical Report, Carnegie–Mellon University, Pittsburgh.

Konno H. and H. Yamazaki (1991). Mean-absolute deviation portfolio optimiza-

tion model and its applications to Tokyo stock market. Management Science,

37(5):519–531.

References 331

Kouwenberg R. (2001). Scenario generation and stochastic programming models

for asset liability management. European Journal of Operational Research,

134:279–292.

Kritzman M. (2002). Puzzles of Finance: Six Practical Problems and their

Remarkable Solutions. Wiley.

Lagnado R. and S. Osher (1997). Reconciling differences. Risk, 10:79–83.

Land A.H. and A.G. Doig (1960). An automatic method of solving discrete

programming problems. Econometrica, 28:497–520.

Ledoit O. and M. Wolf (2003). Improved estimation of the covariance matrix of

stock returns with an application to portfolio selection. Journal of Empirical

Finance, 10:602–621.

Ledoit O. and M. Wolf (2004). A well-conditioned estimator for large-dimensional

covariance matrices. Journal of Multivariate Analysis, 88:365–411.

Lintner J. (1965). The valuation of risk assets and the selection of risky

investments in stock portfolios and capital budgets. Review of Economics and

Statistics, 47:13–37.

Litterman B. (2003). Modern Investment Management: An Equilibrium

Approach. Wiley.

Markowitz H. (1952). Portfolio selection. Journal of Finance, 7:77–91.

Merton R. (1973). Theory of rational option pricing. Bell Journal of Economics

and Management Science, 4:141–183.

Meucci A. (2005). Risk and Asset Allocation. Springer.

Meucci A. (2010). Return calculations for leveraged securities and portfolios.

GARP Risk Professional, October:40–43.

Michaud R. and R. Michaud (2008). Efficient Asset Management. Oxford

University Press.

Mossin J. (1966). Equilibrium in a capital asset market. Econometrica,

34:768–783.

Nesterov Y. (2004). Introductory Lectures on Convex Optimization: A Basic

Course. Kluwer Academic.

Nesterov Y. and A. Nemirovskii (1994). Interior-Point Polynomial Algorithms

in Convex Programming. SIAM.

Nesterov Y. and M. Todd (1997). Self-scaled barriers and interior-point methods

for convex programming. Mathematics of Operations Research, 22:1–42.

Nesterov Y. and M. Todd (1998). Primal–dual interior-point methods for

self-scaled cones. SIAM Journal on Optimization, 8:324–364.

Nocedal J. and S. Wright (2006). Numerical Optimization. Springer.

Padberg M. and G. Rinaldi (1987). Optimization of a 532-city symmetric travel-

ing salesman problem by branch and cut. Operations Research Letters, 6:1–7.

Pérold A. (1988). The implementation shortfall: paper versus reality. Journal of

Portfolio Management, 14:4–9.

Pokutta S. and C. Schmaltz (2012). Optimal bank planning under Basel III

regulations. Capco Institute Journal of Financial Transformation, 34:165–174.

332 References

Porteus E. (2002). Foundations of Stochastic Inventory Theory. Stanford Uni-

versity Press.

Poundstone W. (2005). Fortune’s Formula: The Untold Story of the Scientific

Betting System that Beat the Casinos and Wall Street. Hill and Wang.

Ragsdale C. (2007). Spreadsheet Modeling & Decision Analysis: A Practical

Introduction to Management Science, fifth edition. Thomson South-Western.

Renegar J. (2001). A Mathematical View of Interior-Point Methods in Convex

Optimization. SIAM.

Rockafellar T. and S. Uryasev (2000). Optimization of conditional value-at-risk.

Journal of Risk, 2:21–41.

Ronn E. I. (1987). A new linear programming approach to bond portfolio

management. Journal of Financial and Quantitative Analysis, 22:439–466.

Roos C., T. Terlaky, and J.-Ph. Vial (2005). Interior Point Methods for Linear

Optimization, second edition. Springer.

Rosenberg B. (1974). Extra-market components of covariance in security returns.

Journal of Financial and Quantitative Analysis, 9(2):263–274.

Ross S. (1976). The arbitrage theory of capital asset pricing. Journal of

Economic. Theory, 13:341–360.

Rustem B. and M. Howe (2002). Algorithms for Worst-Case Design and

Applications to Risk Management. Princeton University Press.

Schaefer S.M. (1982). Tax induced clientele effects in the market for British

government securities. Journal of Financial Economics, 10:121–159.

Scherer B. (2002). Portfolio resampling: review and critique. Financial Analysts

Journal, 58:98–109.

Scherer B. (2007). Can robust portfolio optimization help to build better

portfolios? Journal of Asset Management, 7:374–387.

Schmieta S. and F. Alizadeh (2001). Associative and Jordan algebras, and

polynomial time interior-point algorithms for symmetric cones. Mathematics

of Operations Research, 26(3):543–564.

Schmieta S. and F. Alizadeh (2003). Extension of primal–dual interior point

algorithms to symmetric cones. Mathematical Programming, 96(3):409–438.

Shapiro A., D. Dentcheva, and A. Ruszczynski (2009). Lectures on Stochastic

Programming: Modeling and Theory. SIAM.

Sharpe W. (1964). Capital asset prices: a theory of market equilibrium under

conditions of risk. Journal of Finance, 19(3):425–442.

Sharpe W. (1992). Asset allocation: management style and performance mea-

surement. Journal of Portfolio Management, 18(2):7–19.

Shleifer A. (2000). Inefficient Markets. Oxford University Press.

Shreve S. (2000). Stochastic Calculus for Finance, volumes I and II. Springer.

Sra S., S. Nowozin, and S. Wright (2012). Optimization for Machine Learning.

MIT Press.

Stein C. (1956). Inadmissibility of the usual estimator for the mean of multivari-

ate normal distribution. In Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability, pp. 197–206.

References 333

Sturm J. (1999). Using SeDuMi 1.02, a Matlab toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11:625–653.

Tibshirani R. (1996). Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society, 58:267–288.

Tobin J. (1958). Liquidity preference as behavior towards risk. Review of

Economic Studies, 25(2):65–86.

Toh K., M. Todd, and R. Tütüncü (1999). SDPT3 – a MATLAB software

package for semidefinite programming. Optimization Methods and Software,

11:545–581.

Tuckman B. (2002). Fixed Income Securities: Tools for Today’s Markets. Wiley.

Tütüncü R. and M. Koenig (2004). Robust asset allocation. Annals of Operations

Research, 132:157–187.

Vapnik V. (2013). The Nature of Statistical Learning Theory. Springer.

Werner R. (2010). Costs and Benefits of Robust Optimization. Technical Report,

Technical University of München.

Ye Y. (1997). Interior-Point Algorithms: Theory and Analysis. Wiley.

Zhao Y. and W.T. Ziemba (2001). A stochastic programming model using an

endogenously determined worst case risk measure for dynamic asset allocation.

Mathematical Programming, 89(2):293–309.

Index

accrued interest, 42

active constraint, see binding constraint

active return, 105

active risk, 105

active set, 313

active-set methods, 81

adaptive decision, 7

adjoint, 285

Almgren–Chriss model, 201

alpha

Jensen, 113

t-statistic, 113

alpha of a security, 104

APT, 111

arbitrage, 55

arbitrage pricing theory, see APT

Armijo–Goldstein condition, 309

asset allocation, 95

asset–liability management, 262

auction

combinatorial, 161

autoregressive model, 256

backtracking, 309

Basel III, 15

basic feasible solution, 25

basis, 25

optimal, 25

Bellman’s optimality principle, 215, 216, 221

Benders decomposition, 255

Benders decomposition method, 177

bequest, 227

beta

long–short threshold, 119

beta of a security, 104

bid, 161

bid–ask spread, 66

binary program, 140

binding constraint, 3

binomial lattice, 238

binomial lattice model, 238

binomial pricing model, 56

Black–Litterman model, 126

Black–Scholes–Merton equation, 245

Black–Scholes–Merton option pricing
formula, 316

blocking constraint, 82

bond

clean price, 42

coupon rate, 42

dirty price, 42

maturity date, 42

term to maturity, 42

yield, 42

bond allocation, 12

bond portfolio

dedicated, 35

boostrapping, 131

branch-and-bound method, 150, 151

branch-and-bound tree, 152

branch-and-cut method, 150

branching, 151

Brownian motion, 315

BSM formula, 316

bundle, 161

capital allocation line, 98

capital asset pricing model, see CAPM

CAPM, 98, 108, 111, 112

captured value, 202

cash flow problems, 44

central path, 29, 83

clientele effects, 63

clustering, 142

combinatorial auction problem, 161

complementary slackness conditions, 24

conditional value at risk, see CVaR

cone

second-order, 277

symmetric, 287

conic program, 277

dual, 282

primal, 282

constraint

turnover, 101

constraint set, 3

consumption, 174

contingent claim, 55

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Index 335

convex function, 325

convex optimization, 4

convex set, 324

cutting plane, 154

cutting-plane method, 150, 154

CVaR, 181, 184

decision variables, 3

descent direction, 309

deterministic model, 4

diffusion model, 316

dispersion measure, 181

diversification, 134

maximum, 135

drift, 244

dual cone, 282

dual problem, 21

efficient frontier, 93, 124

estimator

inadmissable, 129

James–Stein shrinkage, 129

risk, 129

Euler equation, 206

event tree, 250

excess return, 102

factor exposure, see factor loading

factor loading, 107

factor model, 106

factor portfolio, 120

Farkas’s lemma, 21, 34

feasibility cut, 178

feasible point, 3

feasible region, 3

feasible solution, see feasible point

Fisher–Weil convexity, 40

Fisher–Weil dollar convexity, 40

Fisher–Weil dollar duration, 39

Frobenius inner product, 281

fund allocation

linear programming model, 12

fundamental theorem of asset pricing, 56

geometric Brownian motion model, 244

Gomory mixed integer cut, 155

Gordan’s theorem, 22, 34

gradient descent method, 309

homogenization, 102

hyperplane separation theorem, 34

ice-cream cone, see cone, second-order

immunization, 39

immunized portfolio, 39

implementation shortfall, see total cost of
trading

implied volatility, 273

index fund, 165

infeasible problem, 3

information ratio, 105

insurance company ALM problem, 263

interior-point method, 28

infeasibility, 30

nonlinear programming, 313

quadratic program, 83

Jacobian, 310

Jensen’s alpha, 112

Kelly criterion, 197

L-shaped method, 177

Lagrange multiplier, 75

Lagrangian dual, 147

Lagrangian function, 22, 77

lasso regression, 87

line search, 309

line-search procedure, 30

linear independence constraint qualification,
307

linear optimization model, see linear
programming model

linear program, 11

linear programming, 5

linear programming model, 11

non-degenerate, 19

standard form, 13

linear–quadratic regulator, 216

lockbox problem, 163

Lorenz cone, see cone, second-order

loss function, 193

MAD, 181

market completeness, 59

Markowitz mean–variance, 91

Markowitz mean–variance model, 8

master problem, 177

matrix

inverse, 323

positive semidefinite, 5, 280

mean absolute deviation, see MAD

mean–variance, 71, 296

stochastic optimization, 175

mean–variance model

basic, 94

general, 100

mean–variance optimization model, 93

minimum position constraints, 168

mixed integer linear program, 140

mixed integer optimization, 4

mixed integer program, 140

mixed integer programming, 6

multi-period model, 4

multiple-factor risk model, 109

newsvendor problem, 173, 175, 177

Newton step, 29, 286

Newton’s method, 310

nonlinear program, 305

NP-hardness, 150

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

336 Index

objective function, 3
one-fund separation theorem, 97
optimal decision rule, 216
optimal policy, 216
optimal solution, 3
optimal value, 3
optimality conditions, 24
optimality cut, 178, 180
optimization

robust, 289
option

American, 241
European, 239

option pricing, 238

par, see principal value
pension fund, 263
performance analysis, 112
portfolio

benchmark, 103
characteristic, 96
efficient, 93
equally weighted, 133
factor mimicking, 111
minimum risk, 95
risk-parity, 134
tangency, 97
value-weighted, 133

portfolio management, 8
portfolio optimization

dynamic, 198
positive linear pricing rule, 55
primal problem, 21
principal, see principal value
principal value, 42
program

semidefinite, 280
pruning a node, 152
pure integer linear program, 140

quadratic program, 71
dual, 76
primal, 76
standard form, 71

quadratic programming, 5
sequential, 313

quadratic programming model, see quadratic
program

random sampling, 257
adjusted, 257

recourse, 7
recourse problem, 177
reduced cost, 25
reduced gradient

generalized, 312
regret, 292
relaxation, 141, 145

linear programming, 145

resampled efficiency, 131

residual vector, 83

reward-to-risk ratio, see Sharpe ratio

Ricatti equation, 220

ridge regression, 86

risk contribution, 134

marginal, 134

risk management, 9

risk measure, 6, 175, 181

coherent, 184

risk-neutral probability measure, 55

robust portfolio optimization, 299

robustness, 289

constraint, 290

objective, 291

relative, 292

sampling, 294

saddle-point problem, 292

scenario optimization, 176

scenario tree, 248

arbitrage-free , 258

scenario trees

construction, 256

second-order program, 277

security selection, 95, 103

selection return, 114

semidefinite program

standard form, 281

sensitivity, 18, 38, 75

separation theorem, see hyperplane

sequential system, 214

shadow price, 17, 38

Sharpe ratio, 101, 116

shrinkage estimators, 129

shrinkage factor, 129

shrinkage procedure, 108

shrinkage target, 129

signal, 111

simplex method, 25

dual, 25, 27

single-factor risk model, 107

slack variable, 14

Slater condition, 284

static model, 4

Stein paradox, 129

Stiemke’s theorem, 22, 34

stochastic and dynamic optimization, 4

stochastic discount factor, 56

stochastic model, 4

stochastic optimization, 6, 173, 174

two-stage with recourse, 6

with recourse, 174

stochastic program

linear two-stage, 175

stochastic programming, 248

multi-stage, 248

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

Index 337

stochastic sequential decision problem, 221
stochastic sequential system, 221
strong duality theorem, 21
style analysis, 113
subdifferential, 311
subgradient, 311
subgradient method, 311
support vector machine, 85
surplus variable, 14
synthetic option, 270
synthetic option strategy, 270

tangent subspace, 308
term structure, 39

implied, 38
total cost of trading, 203
tracking error, see active risk
tractability, 4
trade list, 202
trading strategy

execution, 202
trading trajectory, 202
treasury yield curve, 42
tree fitting, 257

two-fund separation theorem, 96
two-fund theorem, 115

unbounded problem, 4
uncertainty set, 289

ellipsoidal, 290
urgency, 206
utility, 173

logarithmic, 199
power, 199
quadratic, 93

value at risk, see VaR
conditional, see CVaR

value-to-go function, 215
VaR, 183

α, 183
volatility, 244
volatility smile, 316
volume-weighted average price (VWAP),

204

weak duality theorem, 21
winner selection problem, see combinatorial

auction problem

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107297340
https://www.cambridge.org/core

	Optimization Methods in Finance, 2nd Edition
	Contents
	Preface
	Part I: Introduction
	1 Overview of Optimization Models
	1.1 Types of Optimization Models
	1.2 Solution to Optimization Problems
	1.3 Financial Optimization Models
	1.4 Notes

	2 Linear Programming: Theory and Algorithms
	2.1 Linear Programming
	2.2 Graphical Interpretation of a Two-Variable Example
	2.3 Numerical Linear Programming Solvers
	2.4 Sensitivity Analysis
	2.5 *Duality
	2.6 *Optimality Conditions
	2.7 *Algorithms for Linear Programming
	2.7.1 The Simplex Method
	2.7.2 Dual Simplex Method
	2.7.3 Interior-Point Methods

	2.8 Notes
	2.9 Exercises

	3 Linear Programming Models: Asset–Liability Management
	3.1 Dedication
	3.2 Sensitivity Analysis
	3.3 Immunization
	3.4 Some Practical Details about Bonds
	3.5 Other Cash Flow Problems
	3.6 Exercises
	3.7 Case Study

	4 Linear Programming Models: Arbitrage and Asset Pricing
	4.1 Arbitrage Detection in the Foreign Exchange Market
	4.2 The Fundamental Theorem of Asset Pricing
	4.3 One-Period Binomial Pricing Model
	4.4 Static Arbitrage Bounds
	4.5 Tax Clientele Effects in Bond Portfolio Management
	4.6 Notes
	4.7 Exercises

	Part II: Single-Period Models
	5 Quadratic Programming: Theory and Algorithms
	5.1 Quadratic Programming
	5.2 Numerical Quadratic Programming Solvers
	5.3 Sensitivity Analysis
	5.4 *Duality and Optimality Conditions
	5.5 *Algorithms
	5.5.1 Active-Set Methods
	5.5.2 Interior-Point Methods

	5.6 Applications to Machine Learning
	5.6.1 Binary Classification and Support Vector Machines
	5.6.2 Ridge and Lasso Regression

	5.7 Exercises

	6 Quadratic Programming Models: Mean–Variance Optimization
	6.1 Portfolio Return
	6.2 Markowitz Mean–Variance (Basic Model)
	6.3 Analytical Solutions to Basic Mean–Variance Models
	6.4 More General Mean–Variance Models
	6.5 Portfolio Management Relative to a Benchmark
	6.6 Estimation of Inputs to Mean–Variance Models
	6.7 Performance Analysis
	6.8 Notes
	6.9 Exercises
	6.10 Case Studies

	7 Sensitivity of Mean–Variance Models to Input Estimation
	7.1 Black–Litterman Model
	7.2 Shrinkage Estimation
	7.3 Resampled Efficiency
	7.4 Robust Optimization
	7.5 Other Diversification Approaches
	7.6 Exercises

	8 Mixed Integer Programming: Theory and Algorithms
	8.1 Mixed Integer Programming
	8.2 Numerical Mixed Integer Programming Solvers
	8.3 Relaxations and Duality
	8.3.1 Linear Programming Relaxation
	8.3.2 Lagrangian Relaxation
	8.3.3 A Heuristic based on Lagrangian Relaxation for Clustering

	8.4 Algorithms for Solving Mixed Integer Programs
	8.4.1 Branch-and-Bound Method
	8.4.2 Cutting-Plane Method

	8.5 Exercises

	9 Mixed Integer Programming Models: Portfolios with Combinatorial Constraints
	9.1 Combinatorial Auctions
	9.2 The Lockbox Problem
	9.3 Constructing an Index Fund
	9.4 Cardinality Constraints
	9.5 Minimum Position Constraints
	9.6 Risk-Parity Portfolios and Clustering
	9.7 Exercises
	9.8 Case Study

	10 Stochastic Programming: Theory and Algorithms
	10.1 Examples of Stochastic Optimization Models
	10.2 Two-Stage Stochastic Optimization
	10.3 Linear Two-Stage Stochastic Programming
	10.4 Scenario Optimization
	10.5 *The L-Shaped Method
	10.6 Exercises

	11 Stochastic Programming Models: Risk Measures
	11.1 Risk Measures
	11.2 A Key Property of CVaR
	11.3 Portfolio Optimization with CVaR
	11.4 Notes
	11.5 Exercises

	Part III: Multi-Period Models
	12 Multi-Period Models: Simple Examples
	12.1 The Kelly Criterion
	12.2 Dynamic Portfolio Optimization
	12.2.1 Optimality of Myopic Policies
	12.2.2 An Example Where a Myopic Policy Is Not Optimal

	12.3 Execution Costs
	12.3.1 Almgren–Chriss Trade Execution Model
	12.3.2 Efficient Frontier of Optimal Execution
	12.3.3 Trade Execution Models in Practice

	12.4 Exercises

	13 Dynamic Programming: Theory and Algorithms
	13.1 Some Examples
	13.2 Model of a Sequential System (Deterministic Case)
	13.3 Bellman’s Principle of Optimality
	13.4 Linear–Quadratic Regulator
	13.5 Sequential Decision Problem with Infinite Horizon
	13.6 Linear–Quadratic Regulator with Infinite Horizon
	13.7 Model of Sequential System (Stochastic Case)
	13.8 Notes
	13.9 Exercises

	14 Dynamic Programming Models: Multi-Period Portfolio Optimization
	14.1 Utility of Terminal Wealth
	14.2 Optimal Consumption and Investment
	14.3 Dynamic Trading with Predictable Returns and Transaction Costs
	14.4 Dynamic Portfolio Optimization with Taxes
	14.5 Exercises

	15 Dynamic Programming Models: the Binomial Pricing Model
	15.1 Binomial Lattice Model
	15.2 Option Pricing
	15.2.1 European Options
	15.2.2 American Options

	15.3 Option Pricing in Continuous Time
	15.4 Specifying the Model Parameters
	15.5 Exercises

	16 Multi-Stage Stochastic Programming
	16.1 Multi-Stage Stochastic Programming
	16.2 Scenario Optimization
	16.3 Scenario Generation
	16.4 Exercises

	17 Stochastic Programming Models: Asset–Liability Management
	17.1 Asset–Liability Management
	17.2 The Case of an Insurance Company
	17.3 Option Pricing via Stochastic Programming
	17.4 Synthetic Options
	17.5 Exercises

	Part IV: Other Optimization Techniques
	18 Conic Programming: Theory and Algorithms
	18.1 Conic Programming
	18.1.1 Second-Order Programming
	18.1.2 Semidefinite Programming

	18.2 Numerical Conic Programming Solvers
	18.3 Duality and Optimality Conditions
	18.4 Algorithms
	18.5 Notes
	18.6 Exercises

	19 Robust Optimization
	19.1 Uncertainty Sets
	19.2 Different Flavors of Robustness
	19.3 Techniques for Solving Robust Optimization Models
	19.4 Some Robust Optimization Models in Finance
	19.5 Notes
	19.6 Exercises

	20 Nonlinear Programming: Theory and Algorithms
	20.1 Nonlinear Programming
	20.2 Numerical Nonlinear Programming Solvers
	20.3 Optimality Conditions
	20.4 Algorithms
	20.5 Estimating a Volatility Surface
	20.6 Exercises

	Appendices
	Appendix: Basic Mathematical Facts
	A.1 Matrices and Vectors
	A.2 Convex Sets and Convex Functions
	A.3 Calculus of Variations: the Euler Equation

	References
	Index

