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Preface

This book is intended for readers who are quite familiar with probability
and stochastic processes but know little or nothing about finance. It is
written in the definition/theorem/proof style of modern mathematics and
attempts to explain as much of the finance motivation and terminology as
possible.

A mathematical monograph on finance can be written today only be-
Cause of two revolutions that have taken place on Wall Street in the latter
half of the twentieth century. Both these revolutions began at universities,
albeit in economics departments and business schools, not in departments
of mathematics or statistics. They have led inexorably, however, to an esca-
lation in the level of mathematics (including probability, statistics, partial
differential equations and their numerical analysis) used in finance, to a
point where genuine research problems in the former fields are now deeply
mtertwined with the theory and practice of the latter.

The first revolution in finance began with the 1952 publication of “Port-
folio Selection,” an early version of the doctoral dissertation of Harry
MarkOWitz. This publication began a shift away from the concept of try-
g to identify the “best” stock for an investor, and towards the concept
of trying to understand and quantify the trade-offs between risk and re-
ytum inherent in an entire portfolio of stocks. The vehicle for this so-called
Mean—variance analysis of portfolios is linear regression; once this analysis
'S complete, one can then address the optimization problem of choosing
the portfolio with the largest mean return, subject-to keeping the risk (i.e.,
the variance) below a specified acceptable threshold. The implementation
of Markowity’s ideas was aided tremendously by William Sharpe, who de-
Veloped the concept of determining covariances not between every possible

I I PRIE of stocks, but between each stock and the “market.” For purposes of
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the above optimization problem each stock could then be characterized by
its mean rate of return (its “a”) and its correlation with the market (its
«3"). For their pioneering work, Markowitz and Sharpe shared with Mer-
ton Miller the 1990 Nobel Prize in economics, the first ever awarded for
work in finance.

The portfolio-selection work of Markowitz and Sharpe introduced math-
ematics to the “black art” of investment management. With time, the
mathematics has become more sophisticated. Thanks to Robert Merton
and Paul Samuelson, one-period models were replaced by continuous-
time, Brownian-motion-driven models, and the quadratic utility function
implicit in mean—variance optimization was replaced by more general in-
creasing, concave utility functions. Model-based mutual funds have taken a
permanent seat at the table of investment opportunities offered to the pub-
lic. Perhaps more importantly, the paradigm for thinking about financial
markets has become a mathematical model. This affects the way we now un-
derstand issues of corporate finance, taxation, exchange-rate fluctuations,

and all manner of financial issues.
The second revolution in financ
market for derivative securities.
mated by the Bank for Internation
worldwide, involving every sector o
estimate, the size of the derivative secu
fold in five years. The foundational work here was done by Fisher Black,
Robert Merton, and Myron Scholes in the early 1970s. Black, Merton, and
Scholes were seeking to understand the value of the option to buy one share
of a stock at a future date and price specified in advance. This so-called
European call-option derives its value from that of the underlying stock,
whence the name derivative security. The basic idea of valuing a European
call-option is to construct a hedging portfolio, 1.e., a combination of shares
from the stock on which the call is written and of shares from a money mar-
ket, so that the resulting portfolio replicates the option. At any time, the
option should be worth exactly as much as the hedging portfolio, for other-
wise some astute trader (“arbitrageur”) could make something for nothing
by trading in the option, the stock, and the money market; such trading
would bring the prices back into line. Based on this simple principle, called
absence of arbitrage, Black and Scholes (1973) derived the now famous for-
mula for the value of the European call-option, which bears their name
and which was extended by Merton (1973) in a variety of very significant
ways. For this foundational work, Robert Merton and Myron Scholes were
awarded the 1997 Nobel Prize in economics.
While options and other derivative securities can be used for speculation,
their primary appeal is to investors who want to remove some of the risk
associated with their investments or businesses. The sellers of derivative
securities are faced with the twin problems of pricing and hedging them,
and to accomplish this, current practice is to use Brownian-motion-based

e is connected with the explosion in the
Already in 1992, this market was esti-
al Settlements to be a $4 trillion business
f the finance industry. According to this
rities market had increased eight-
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d . .
:1}113 ; etl}.sle;f ;f:qdprl:les. Wltlilout such models and the analytical tractability
1t vide, the market for derivative securitie
to its present mammoth proportions. ies couldnot have growns
thfrzfore proceeding further in this brief description of modern finance
are two myths about the mathematical theory of finance th :
need to explode. e
E 2;1;{(1; fjri: m}trth is that this research is only about how to “beat the
3 is true that much of the i imizati
portfolio optimization k i
out of the first revolution in fi i “the markeb"
nance is about how to “beat th ”
but a substantial com 1 . D
ponent is about how to understand
. the market for
Zthfar p.urposes,'s.uch as regulatlon. The second revolution in finance, the
e;vatlve securities explosion, is not about beating the market at a.ll,
ufacilzr see(;ond'giyth maintains that since the finance industry does not ;nan‘
angible commodities, such as refrigerat i 1 y
be engaged in nothing but a T et Tom s
zero-sum game, “robbing Peter t .
In fact, the role of financial instituti in . il
institutions in a decentralized i
facilitate the flow of capi i red m produetion. An
pital to sectors of society engaged i i
efficient finance industry wi ili ‘s flow at the lea e
y will facilitate this flow at the | i
making available to the manufacturi o e,
cturing sector a wi i i
by g or a wide variety of instruments
. S(J}());:)s(;dei,' forf exixmple, a manufacturer who contemplates expansion of
uction facilities and who chooses to finan i i
! ' : . ce this expansion by bor-
E;)wmgﬁ;agltal, 1n'effect' taking a mortgage on the new facilities. The };erms
izﬁi:m) e (;)r va}rlla}l:le interest rate, term, prepayment options, collateral
under which the manufacturer is willin , :
: g to borrow mone
- : : may not
g ;;liyt n:lix}tlzhﬁthe ter mz under which any particular lender is willi}rllg toypro—
: nance industry should take the invest
B o e vestments that lenders are
: ring and recombining them
provide a loan the manufact is willi A
urer is willing to accept. T 1
s : ctur pt. The finance indust
aﬂm'lld perform this function in a wide variety of settings and manage I;y
EHS s0 as to be exposed to minimal risk e
et '
B ollllst s;s;):si lthaLttthe manufacturer is unable to plan effectively if he
1able-rate mortgage, and so insi
- : ; insists on a fixed-rate mort, .
inveing al§o t.hat an investment bank makes the mortgage, using m%ilgee
. X 3.
(va,riaf)le;‘v'lt}tl it bty d:posmors expecting to receive payments at the curre’n)t,
interest rate. The bank is obliged
| : 1ged to make monthly payments to
interelsrtlvr(:ttors, thj amounts of these payments fluctuate with the }I’)revailing
. es, faLn may be larger or smaller than what the bank receives
8 c0nstf::t actzr(;r. "To remove the risk associated with this position, the
0 b
ey S a' edge. It may, for example, choose to sell short a numb
§, 1.e., receive money now in exch i i
T - xchange for a promise to deliver bonds
oo Pl ia%vgrl and w1tll l'lave to buy eventually. If interest
et 0 pay 1ts investors more than it recei
om the manufact 5 i -
Promised to deliver will f; e L
r will fall. If the bank chooses its position carefully, its
o
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additional liability to its investors will be exactly offset by the downward
movement of bond prices, and it will thus be protected against increases
in the interest rate. Of course, decreases in interest rates will cause bond
prices to rise, and the bank should choose its hedging position so as to be
protected against this eventuality as well.

As one can see from this overly simplistic example, a proliferation of
financial instruments can enhance the efficiency of an economy. The bank
in this example “synthesizes” a fixed-rate mortgage using variable-rate in-
vestments and a position in the bond market. Such synthetic securities
are the “products” of investment banks; while no one would claim that
every “product” of this type contributes to the well-being of the nation,
there is no doubt that an economy that has available a large variety of
such products has a comparative advantage over one with a more limited
offering. The firm that “manufactures” such products can do so only if
it has reliable models for pricing and hedging them. Current models are
built using stochastic calculus, are fit to the data by careful statistical
estimation procedures, and require accurate and fast real-time numerical
analysis.

This book is about some of these models. It treats only a small part of
the whole picture, leaving completely untouched the issues of estimation
and numerical analysis. Even within the range of models used in finance,
we have found it necessary to be selective. Our guide has been to write
about what we know best, namely areas of research in which we have had
some level of personal involvement. Through the inclusion of an extensive
bibliography and of notes at the end of each chapter, we have tried to
point the reader toward some of the topics not touched. The bibliography
is necessarily incomplete. We apologize to those whose work should have
been included but is not. Such omissions are unintentional, and due either
to ignorance or oversight.

In order to read this book one should be familiar with the material
contained in the first three chapters of our book Brownian Motion and
Stochastic Calculus (Springer-Verlag, New York, 1991). There are many
other good sources for this material, but we will refer to the source we
know best when we cite specific results.

Here is a high-level overview of the contents of this monograph. In Chap-
ter 1 we set up the generally accepted, Brownian-motion-driven model for
financial markets. Because the coefficient processes in this model are them-
selves stochastic process, this is nearly the most general continuous-time
model conceivable among those in which prices move continuously. The
model of Chapter 1 allows us to introduce notions and results about port-
folio and consumption rules, arbitrage, equivalent martingale measures, and
attainability of contingent claims; it divides naturally into two cases, called
complete and incomplete, respectively.

Chapter 2 lays out the theory of pricing and hedging contingent claims
(the “synthetic” or “derivative” securities described above) in the context

Preface xi

of a complete market. To honor the origins of the subject and to acquaint
the reader with some important special cases, we analyze in some detail the
pricing and hedging of a number of different options. We have also included
a section on “futures” contracts, derivative securities that are conceptually
more difficult because their value is defined recursively.

Chapter 3 takes up the problem of a single agent faced with optimal con-
sumption and investment decisions in the complete version of the market
model in Chapter 1. Tools from stochastic calculus and partial differential
equations of parabolic type permit a very general treatment of the asso-
ciated optimization problem. This theory can be related to Markowitz’s
mean—variance analysis and is ostensibly about how to “beat the market,”
although another important use for it is as a first step toward understand-
ing how markets operate. Its latter use is predicated on the principle that
a good model of individual behavior is to postulate that individuals act in
their own best interest. '

Chapter 4 carries the notions and results of Chapter 3 to their logical
conclusion. In particular, it is assumed that there are several individuals
in the economy, each behaving as described in Chapter 3; through the
law of supply and demand, their collective actions determine the so-called
equilibrium prices of securities in the market. Characterization of this equi-
librium permits the study of questions about the effect of interventions in
the market.

In Chapter 5 we turn to the more difficult issue of pricing and hedg-
ing contingent claims in markets with incompleteness or other constraints
on individual investors’ portfolio choices. An approach based on “fictitious
completion” for such a market, coupled with notions and results from con-
vex analysis and duality theory, permits again a very general solution to
the hedging problem.

Finally, Chapter 6 uses the approach developed in Chapter 5 to treat
the optimal consumption /investment problem for such incomplete or con-
strained markets, and for markets with different interest rates for borrowing
and investing.

Note to the Reader

We use a hierarchical numbering system for equations and statements.
The k‘—_th equation in Section j of Chapter ¢ is labeled (j.k) at the place
where it occurs and is cited as (7.k) within Chapter 4, but as (i.5.k) outside
Cl‘l‘apter i. A definition, theorem, lemma, corollary, remark, or exercise is
a “statement,” and the k-th statement in Section j of Chapter i is labeled
J-{C Statement at the place where it occurs, and is cited as Statement j-k
Within Chapter i but as Statement i.j.k outside Chapter i.
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1

A Brownian Model of
Financial Markets

1.1 Stocks and a Money Market

Throughout this monograph we deal with a financial market consisting
of N + 1 financial assets. One of these assets is instantaneously risk-free,
and will be called a money market. Assets 1 through N are risky, and
will be called stocks (although in applications of this model they are often
commodities or currencies, rather than common stocks). These financial
assets have continuous prices evolving continuously in time and driven by
a D-dimensional Brownian motion. The continuity of the time parameter
and the accompanying capacity for continuous trading permit an elegance
of formulation and analysis not unlike that obtained when passing from
difference to differential equations. If asset prices do not vary continuously,
at least they vary frequently, and the model we propose to study has proved
1ts usefulness as an approximation to reality. Our assumption that asset
Prices have no jumps is a significant one. It is tantamount to the assertion
that there are no “surprises” in the market: the price of a stock at time ¢
Can be perfectly predicted from knowledge of its price at times strictly prior
0 £. We adopt this assumption in order to simplify the mathematics; the
a'dditional assumption that asset prices are driven by a Brownian motion is
little more than a convenient way of phrasing this condition. Some literature
Ol continuous-time markets with discontinuous asset prices is cited in the
Botes at the end of this chapter. The extent to which the results of this
monograph can be extended to such models has not yet been fully explored.
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2 1. A Brownian Model of Financial Markets:

Let us begin then with a complete probability space (Q,F,P) on
which is given a standard, D-dimensional Brownian motion W(t) =
(W(t),... WD) (t)),0 < t < T. Here prime denotes transposition, so
that W (t) is a column vector. We assume that W (0) = 0 almost surely. All
economic activity will be assumed to take place on a finite horizon [0, T,

where T is a positive constant.! Define
FY) L o{W(s); 0<s<t}, Vte[o,T], (1.1)

to be the filtration generated by W (-), and let A/ denote the P-null subsets
of FW (T). We shall use the augmented filtration

Ft) 2 o(FY()UN), Yte[o,T). (1.2)

One should interpret the o-algebra F(t) as the information avatlable to
investors at time t, in the sense that if w € {1 is the true state of nature
and if A € F(t), then at time ¢ all investors know whether w € A. Note
that F(0) contains only sets of measure one and sets of measure zero, so
every F(0)-measurable random variable is almost surely constant.

Remark 1.1: The difference between {FW (t)}o<t<r and {F(t)}oi<T 18
a purely technical one. The filtration {F(t)}o<t<T is left-continuous, in the
sense that

f(t):a” U F) |, vte©T), (1.3)

0<s<t

and {F% (t)}o<t<r is also left-continuous. The filtration {F(t)}o<e<T 18
right-continuous in the sense that

Fity= (| F(s), VYte[o,T), (1.4)

t<s<T

but {FY (t) }o<e<r is not right-continuous (see Karatzas and Shreve (1991),
Section 2.7, for more details). Equations (1.3), (1.4) express the notion
alluded to in the first paragraph of this section, that “there are no surprises
in the flow of information” in this model.

Remark 1.2: Every local martingale relative to the filtration {F(@)} has
a modification whose paths are continuous (Karatzas and Shreve (1991),
Problem 3.4.16); we shall always use this continuous modification. We shall
also encounter processes Y (-) that are right-continuous with left-hand lim-
its and whose total variation Y (t) is finite on each interval [0,2],0 <t < T.
We shall refer to these as finite-variation RCLL processes. In our context,

tThere are a few places in this book, namely, Sections 1.7, 2.6, 3.9, and 3.10,
where the planning horizon is [0, 00).
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1.1 Stocks and a Money Market 3

an {F(t)}-semimartingale will be the sum of a (continuous) local mar-
tingale and a finite-variation RCLL process. The decomposition of such a
semimartingale into a local martingale and a finite-variation RCLL process
is unique, up to an additive constant.

We introduce now a money market and N stocks. The precise conditions
on these assets are given in Definition 1.3; here we content ourselves with
giving the main properties of these objects.

A share of the money market has price So(t) at time ¢, with Sp(0) = 1.
The price process Sq(-) is continuous, strictly positive, and {F(¢)}-adapted
with finite total variation on [0,T]. Being of finite variation, Sp(-) -
be decomposed into absolutely continuous and singularly continuous parts
Sg°(-) and S§°(-), respectively. We can then define

s £56°(t) A [t dSEe(u)

r(t) S A(t) = ], Solw) (1.5)
so that
dSo(t) = So(t)[r(t) dt + dA(t)], VYte[0,T), (1.6)
or equivalently,
t
So(t) = exp{/o r(u)du + A(t)}.,‘ vtelo,T]. (1.7)

In the special case that Sp(-) is itself absolutely continuous, so that
A(-) =0, the price of the money market evolves like the value of a savings
account whose instantaneous (risk-free) interest rate at time t is r(t). This
18 the case the reader should keep in mind. The risk-free rate process r(:)
18 random and time-dependent, but r(t) is 7 (t)-measurable, so the current
risk-free rate is known to all-investors.

Next we introduce N stocks with prices-per-share S)(t),...,Sn(t)

gt time ¢t and with S;(0),...,Sn(0) positive constants. The processes
1(), .(-) are continuous, strictly positive, and satisfy stochastic
differer(fls | @ nations

C\IIISIODGIIE\I D
a5, (F) =T, (¢) lbn(t) dt + dA(t)+ Y ona(t) dWD(L)] (1.8)
d=1

V‘tG[O,T],nzl, LA

t e

e . .

‘ ]f(tShOW in Appen.dlx B that every continuous, strictly positive, and

of thj)s};adapted semlma}‘tingale satisfies a stochastic differential equation
orm, where A(-) is some {F(t)}-adapted, singularly continuous pro-

C o
B iseii In (1.8), how.ever, A(') is not an arbitrary such process, but rather it
l € one defined in (1.5). We also show in Appendix B that if the ({F(¢)}-
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adapted, singularly continuous) process A(') in (1.8) were not given by Fhe
expression of (1.5), then an arbitrage opportunity would exist. The notion
of arbitrage is defined in Section 4.

The solution of the equation (1.8) is

t D t
Sn(t)zsn(O)eXp{ / > ona(s) dW D (s) + /0 bn(s)
0
D

d=1
- %Zoid(s)} ds + A(t)}, vte[0,T), n=1,...,N. (19)
d=1

Consequently, the singularly continuous process A(-) does not enter the
discounted stock prices

t D Y
Su(t) = 5.(0) exp{/ > onals) dW(d)(s)'*'/O [bn(s) —7(s)
0
D

So(t) d=1
—%Zaid(s)} ds},‘v’tE[O,T], n=1,...,N. (1.10)
d=1

In some applications, the stocks have associated dividend rate processes.
We model these as real-valued processes &,(-), where 6,(t) is the rate of
dividend payment per dollar invested in the stock at time . Adding the
dividend rate process into (1.8), we can define the yield (per share) processes

by Y,(0) = S,(0) and

dY,(t) = Sn(t) [bn(t) dt + dA(2)

D
+ 3 Gna(t) dWD () +6a(t) db|, n=1,...,N, (111)
d=1 i |

or equivalently,
¢
Y. (t) = Sn(t) +/ Sp(u)b,(u) du,Vt € [0,T], n=1,...,N. (1.12)
0

We set Yo(t) = So(t),0<t<T. . N
We formalize this discussion with the following definition.

Definition 1.3: A financial market consists of

(i) a probability space (22, F, P); .
(ii) a positive constant T, called the terminal time;
(iii) a D-dimensional Brownian motion {W(t), F(t);0 St< T} defined
on (£, F, P), where {F(t)}o<:<r is the augmentation (by the null
sets in FW(T)) of the filtration {F" (t)}o<t<r generated by W (-);

w
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(iv) a progressively measurable risk-free rate process r(-) satisfying
fOT [r(t)| dt < oo almost surely (a.s.);
(v) a progressively measurable, N-dimensional mean rate of return
process b(-) satisfying fOT Ib(t)]| dt < o0 a.s.;
(vi) a progressively measurable, N-dimensional dividend rate process
6(-) satisfying fOT 16(t)]| dt < oo a.s.;
(vii) a progressively measurable, (N x D)-matrix-valued volatility process
o(-) satisfying 277:1 Zle fOT o2,(t)dt < 00 as,
(viii) a vector of positive, constant initial stock prices S(0) = (S,(0),. ..,
~ SN(0)5
(ix) a progressively measurable, singularly continuous, finite-variation
process A(-) whose total variation on [0, is denoted by A(t).

We refer to this financial market as M = (r(-),b(-), ("), a(), S(0), A(-)).

Given a financial market M as above, the money market and stock price
processes are determined by (1.7), (1.9), and then (1.5), (1.6), (1.8), and
(1.10) hold. The initial conditions of the asset prices are nearly irrelevant.
For investment purposes, the essential feature of an asset is its rate of
price change and dividend payment relative to the current price, and these
relative rates are captured by r(-),b(-),o(-),8(-), A(-). Thus, for notational
simplicity we have taken the liberty of declaring Sp(0) = 1. We could also
have set the initial prices of the stocks equal to one, but have chosen not to
do so because some of the formulas developed later are more informative
when the dependence on S;(0),. .., Sn(0) is explicitly displayed.

Remark 1.4: Much of the existing finance literature is based on Markov
models, and exploits the connections between such models and partial
differential equations. Such a model typically has a K-dimensional state-
Process 1(-) with a given initial condition (0), and is driven by a stochastic
differential equation of the form

dip(t) = p(t, 9 (2)) dt + p(t, ¥ (t)) dW (2), (1.13)

Where 4 : [0,T] x R¥ — R¥ and p: [0,T] x RX — L(RP;RX) (the set of
KxD matrices) are jointly Borel measurable and satisfy conditions (e.g.,
Lipschitz continuity in their second argument) that guarantee the existence
of a unique solution to (1.13). The coefficients of the market model are taken
0 be measurable functions r : [0,T] x RX — R,b : [0,T] x RK — RV,
6:[0, 7] x R - RV, and o : [0,T] x R — L(RP;RK) with A(-) =0,
80 that the dependence of r(t,v(t)), b(t, ¥(t)), 6(t,%(t)), and o (t,1(t)) on
the sample point w € Q occurs only through the dependence of ¥(t) on w.
The simplest Markov model is the one with constant coefficients; in this
model r,b,8, and ¢ are constants, A() = 0, and there is no need for a
State-process. From time to time we shall specialize the results of our more
general model to obtain various classical Markov model results.
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1.2 Portfolio and Gains Processes

In this section we model portfolio decisions and their consequences for an
investor faced with the market in Definition 2.1. We begin with an informal
discussion of an investor who makes decisions in discrete time, and this
leads us eventually to Definition 2.1, which pertains to continuous trading.

LetO=ty <t) < - <tm — T be a partition of [0,T]. For n = 1,...,N
and m=0,...,M — 1, let ny(ty) denote the number of shares of stock n
held by the investor over the time interval [tm, tm+1)- Let no(tm) denote the
number of shares held in the money market. Forn =0,1,. .., N the random
variable 7 (tm) must be F(t,,)-measurable; in other words, anticipation of
the future (insider trading) is not permitted.

Let us define the associated gains process by the stochastic difference

equation

G(0) =0, (2.1)
N
G(tm+1) = G(tm) = Z nn(tm)[Yn(tm+1) - Yn(tm)]’ (2'2)
n=0

m=0,...,M—1

Then G(t,,) is the amount earned by the investor over the time interval
[0,tm]. On the other hand, the value of the investor’s holdings at time t,,

is Z,ILO N (tm)Sn(tm). We have
N
G(tm) = Zn'n(tm)sn(tm), m= 0,...,M,
=0

if and only if there is no infusion or withdrawal of funds over [0, T]. In this
case the trading is called “self-financed.”

Now suppose that 7(-) = (no(-),-.-,7n(-))" is an {F(t)}-adapted process
defined on all of [0,T], not just the partition points to, . ..,tas. The associ-
ated gains process is now defined by the initial condition G(0) = 0 and the
stochastic differential equation

N
dG(t) =) nn(t) dYa(t)- @2y
n=0
We take this equation as an axiom; references rela&ed to this point are
cited in the Notes, Section 1.8. Defining mn(t) = Na(t)Su(t),n(:) =
(m1(-), .- -,7n(-))’, and recalling (1.6), (1.11), we may rewrite (2.2)" as
dG(t) = [mo(t) + 7' (t)1)(r(t) dt + dA(2)) + 7' (£)[b(¢) + 5(t) —r(t)1]dt
+ 7' (t)o(t) dW (1), (2.3)
where 1 denotes the N-dimensional vector with every component equal to
one. Note that 7, (t) is the dollar amount invested in security n, not the
number of shares held.

-
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D«(e)ﬁnfiltion 2.1: Cons.ifier a financial market M = (r(-),b(-),8(-),o(-)
S( )lét()) as in Definition 1.3. A portfolio process (mo(-), n(-)) for, this’
mar i (c;)nswgs of ?n}_ ({.)7-; (t)}-progressively measurable, real-valued pro-
cess mo(-) and an t)}-progressively measurable, RV _val

a() = (71(), ..., ()’ such that LI iepenees

T
/0 Imo(t) + ' (£)1) [ ()] dt + dA(E)] < oo, (2.4)
T
/0 ]W'(t)(b(t) +6(t) — r(t)1)| dt < oo, (2.5)
i
| /0 o’ @)m(t) 2 dt < oo (2.6)

hold almost surely. The gains process G(-) associated with (mo(:),m()) is
“ s / ¢
G(t) = /Q [mo(s) + 7'(9)1](r(s) ds + dA(s)) + /0 ' (s)[b(s) + 6(s)
< r(s)1] ds + /0 '(s)o(s)dW(s), 0<t<T. @.7)

The portfolio process (mo(-), 7(-)) is said to be self-financed if
G(t) = mo(t) + 7'(t)1, Vte[o,T). (2.8)

IIl OlheI WOI‘d e Va]
S, !11 ue Of the pOI 1710110 at e‘/er;’ tl.n:le 15 equa] to tl]e galns
Qalned ﬁorll IllveStmentS up tO that tlI’He.

REIIIa.[ k 2 . 2 . D ﬁ -di i
enne tlle N dlmenSlODal V
‘ ) GCtOI Of ETCESS yleld (OVeI the

e a
R(t) = /0 [b(w) + 6(u) — r(u)1] du + / o(u)dW(u), 0<t<T, (2.9)
: <

and simplify (2.7) as

G(t) = /0 (mo(s) + 7' (s)1)[r(s) ds + dA(s)] + /t n'(s)dR(s), 0<t<T.

0
(2.10)
It ] ;
(mo(-), 7()) is self-financed, then (2.10) reads in differential form
G(t)
dG(t) = —£% d
(t) So(®) dSo(t) + n'(t) dR(t), (2.10)

and has the solution

G(t) = Solt) /0 ﬁﬁ'(u) dR(w); 0<t<T. @2.11)
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The integrand b(-)+8(-)—(-)1 appearing in (2.9) is called the risk premium
process; its mth component is regarded as the compensation, in terms of
mean growth rate, received by an agent willing to incur the risk of investing
in the nth stock.

If we are given only an {F (t)}-progressively measurable, R"-valued pro-
cess 7(-) satisfying (2.5) and (2.6), we can consider the process G(-) of (2.11)
and then define mo(-) by the self-financing condition (2.8). Because G(-) de-
fined by (2.11) is continuous, each of its paths is bounded on [0, T}, and
(2.4) follows from Definition 1.3 (iv) and (ix). It develops that (mo(-), 7(-))
is a self-financed portfolio process. Thus, in order to specify a self-financed
portfolio, we need only specify m(-). Slightly abusing terminology, we will
refer sometimes to 7(-) alone as a portfolio process.

As defined above, a portfolio process (mo(-),m(-)) is subject to few re-
strictions. In particular, o(-) may take negative values, which corresponds
to borrowing from the money market. The investor is subject to the same
“interest rate” regardless of whether he is a borrower or a lender. Finally,
the position 7, (-) in stock n may be negative, for n = 1,..., N; such short-
selling of stocks is permitted in real markets, subject to some restrictions.
In Chapters 5 and 6 we study models in which short-selling is either pro-
hibited or constrained and/or the interest rate for borrowing exceeds 7(t).
Other related work is cited in the Notes.

The definition of the gains process in (2:7) does not take into account any
cost for trading. An idealized market in which there are no transaction costs
is called frictionless, and most of the existing theory of finance pertains only
to frictionless markets. Models with transaction costs are reviewed in the
Notes to Chapters 2 and 3.

The conditions (2.4)—(2.6) are imposed on portfolio processes in Defini-
tion 2.1 in order to ensure the existence of the integrals in (2.7). If these
were the only conditions imposed on portfolio processes, then “outrageous”
behavior could occur, as the following example demonstrates.

Example 2.3 (Doubling strategy): In a discrete-time betting situation,
a doubling strategy is to place an initial bet and then to double the size of
the bet after each loss until a win is finally obtained. If the initial stake
is $1 and the first win occurs on the nth bet, then the accumulated losses

"o 2k =2" —1 (prior to the win) are more than offset by the win of 2™.
When the outcomes of successive bets are independent and identically dis-
tributed, and the probability of winning on any one bet is positive, then
the probability of an eventual win is one. In such a situation, a doubling
strategy offers a sure way to make money. Unfortunately, a gambler us-
ing a doubling strategy must be prepared to bet arbitrarily many times,
and to incur arbitrarily large accumulated losses, while waiting for the
eventual win.

In continuous time, the analogue of a doubling strategy can be imple-
mented on a finite time interval. Consider a financial market with one

-
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st.o;k driven by a one-dimensional Brownian motion (N = D = 1) and
WItthi'(') = 0,b(-) = 0,0(-) = 1,6() = 0,A(-) = 0. For a self-financed
portfolio process (mo(-), 7(-)) the gains process is

t
G(t) :/0 w(s)dW(s), Vte[0,T]

We sh9w that for each a > 0, it is possible to construct a self-financed
portfolio (mo(-),m(-)) such that G(T) = a a.s. Thus, by investin ircle

money market with constant price per share and a st(;ck with zerogme 5§
rate of return and zero dividends, the investor can make arbitrarilv 1 o
amounts of money almost surely! re

tTo C(l)nstruct such a portfolio, we consider the stochastic integral I(t) =
Jo \/ 7= AW (w), which is.a martingale on [0, T') with quadratic variation

(1>(t)=/0t T‘i_"uzlog(%), Vte[0,T).

The ipverse of (I)(") is the mapping s — T — Te™* from [0, c0) to [0,T)
The time-changed stochastic integral I(s) = I(T — Te ) ’has quadr’atic'

variation (I)(s) = s and is thus a Brownian i
motion defined for 0 <
(Karatzas and Shreve (1991), Theorem 3.4.6). Consequently o |

limg; 71 (t) = limgtool(s) = 00,  limyy7I(8) = limpo0f(s) = —o0

and therefore

To Sinf{t €[0,T); I(t)=a} AT

satisfies 0 < 7, < T a.s. Define 7(t) =
Ta) — 7(t) for all ¢ € [0,T]. Then (mo(-)

1 1
(77¢)2 lit<r,} and mo(t) = I(t A
With corresponding gains process ’

7(-)) is a self-financed portfolio

- tATo 1
G(t)_/0 Tt W =1, viep Tl (212)

In particular, we have G(T) = a almost surely.

limf:’h; Cg;zgzs_prgce;s of (2.12) is not bounded from below, indeed, we have

OmTlded fro— b(l ) a.s. and Eth) = 0Vt € [0,T), so that if G(-) were

e Sinm G? ;w, then Fatou’s lemma would imply EG(T) < 0 (im-

E 1, 2 3ce ( )=a>0 a.s..). To rule out the behavior evident in
ple 2.3 we impose the following conditions on portfolio processes.

Definit; .
(2'5)123210112 (.3‘7.4 An {F(t)}-adapted, RV-valued process 7 () satisfying
(2.6) is said to be tame if the discounted gains semimartingale

- E 0 ,
So(t) Mg (t) é/0 S_o(u—)w (u)dR(u), 0<t<T, (2.13)
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is almost surely bounded from below by a real constant that does not
depend on t (but possibly depends on (). If (mo(-),m(-)) is a portfolio
process and 7(-) is tame, we say that the portfolio process (mo(-), (")) is
tame.

As already noted, the portfolio process () of Example 2.3 is not tame,
since the corresponding gains process G() = Mg () of (2.12) is not bounded
from below. The assumption of tameness rules out doubling strategies such
as the one encountered in Example 2.3; see Remark 5.7 for a stronger
assertion along these lines. Observe, however, that even a tame portfolio can
exhibit the “opposite”.of the behavior encountered in Example 2.3. Indeed,
for the same market as in that example and for any o > 0, one can easily
construct a tame, self-financed portfolio process for which G(T) = —«
almost surely, for any given real number o > 0. Such a suicide strategy
need not be ruled out by model assumptions; it will be eliminated from
consideration by “hedging” criteria or optimality criteria, to be formulated

and imposed later.

1.3 TIncome and Wealth Processes

An investor may have sources of income and expense other than those due
to investments in the assets discussed so far. In this section, we include this

possibility in the model.

Definition 3.1: Let M be a financial market (Definition 1.3). A cumu-
lative income process T'(t),0 <t < T, is a semimartingale, i.e., the sum of

a finite-variation RCLL process and a local martingale.
We interpret I'(t) as the cumulative wealth received by an investor on the

time interval [0,¢]. In particular, the investor is given initial wealth I'(0).
Consumption by the investor can be captured by a decrease in ().

ket, I'(-) a cumulative income

Definition 3.2¢ Let M be a financial mar
The wealth process associated

process, and (mo(-),7(-)) 2 portfolio process.
with (T(), mo("), (*)) is

X(t) ET@) +G), (3.1)

where G(-) is the gains process of (2.7). The portfolio (mo(+),m(+)) is said
to be I'(-)-financed if
X(t) = mo(t) + 7'(®)L, Vte[0,T]. (3.2)

Remark 3.3: For a ['(-)-financed portfolio (mo(+), m(-)), using the vector
of excess yield process R(-) of (2.9) we may write the wealth equation (3.2)

-
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in differential form as

X(®)

dX(t) =dI(t) + mdsﬂ(t) + 7' (t) dR(t)
=dl'(t) + X (t)[r(t) dt + dA@t)] + n'
s O]+ (&) [b(t) +6(t) — r(t)1] d;g .

by analogy with (2.10) ]
Y ), and therefore the discounted wealth process is given

X(t) dl'(u) :
=T(0 1 ’
So(t) @+ /(o,t] So(u) +/o So(u)" (w)dR(u), 0<t<T. (3.4)

ThlS es not mnv IV 1 Il I an 3] ]e(:()Ve]e(l “()]“ rid
fOIIIlll.la dO Oolve ()(‘)’ whnic C b
and lts COrIT eSpOIIdlIlg Wealth pI‘OCESS }( (‘) Of (34) via (32) AS Wlt]l Se(lf—)

fin .
anced portfolios (Remark 2.2), we will sometimes refer to 7(-)

a portfolio process. alone as

1.4  Arbitrage and Market Viability

Definiti : i
ﬁnancedl(l))rctrff;io II; . ﬁnanma.l market M we say that a given tame, self-
Bains process C/() PfOCZGSS 7(-) 1s an arbitrage opportunity if the assoc,iated
with positive prob ob-l(- 11) SatlSﬁ?S G(T) > 0 almost surely and G(T) > 0
- g probability. A financial market M in which no such arbi

s exist 1s said to be vigble. SR

Here i
1 =elrerl(s')ag Szgr(njnle gf a( 7)narket M that is not viable. Take N = D — 1

=1r()=0,6()=0,0()=1,and b() = 5 s the Bessel
N = nd b(-) o(y> Where Q(-) is the Bessel

1
dQ(t) = (W) - 2) dt +dW(t), Q)= 1.

Just . i
E lgs 8_f;)g3t)he clfssmal Bessel process (e.g. Karatzas and Shreve (199
- L we have P[Q(t) > 0,Y0 < ¢t < 1] = 1. Indeed, Q(.) i .
- :lfsel IEI)/rE)(;ess with dimension d = 3 under the probabi’lity(.) ko
. es t) — 2t a Brownian moti 1 e
K ' ' otion and is equival
g $ process G(") corresponding to the constant portf(?lioV: (e)nt—ti) sPt.' Tf;lle
-] = atlsiies

1

d dG(t) = Q@ @ T aW),6(0) =0,
and thus =
t<1]- lG((stg thg(t)+2't_l. Now, this process satisfies P[G(t) > -1,V
B (o that () i ﬂ'g) is a tan‘le portfolio) as well as G(1) = 1+ Q(,l)

A theory of msti S0 an arbitrage opportunity). |
- el athematical ‘ﬁnan(;e must be restricted to viable m
that exploits it age opportunity exists in a market, the portfoli o

ploits 1t can be scaled to make EG(T) arbitrarily largeloaﬁilocz-sﬁ
sti

0<
>1
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keep G(T) > 0 almost surely. An investment opportunity in which there
is no possibility of loss and the expected gain is arbitrarily large does
not correspond to the reality available to most of us. Furthermore, it
makes optimization meaningless. This section explores the mathematical
ramifications of the assumption of market viability.

Theorem 4.2: If a financial market M is viable, then there erists a
progressively, measurable process 0(-) with values in RP, called the market
price of risk, such that for Lebesgue-almost-everyt € [0,T) the risk premium
b(t) + 8(t) — r(t)L s related to 0(t) by the equation

b(t) + 6(t) — r(t)l = a()0(t) a5 (4.1)

Conversely, suppose that there exists a process 0(-) that satisfies the above

requirements, as well as

T
/0 |19(3)||2 ds < oo a.s. (4.2i)

i T o T
Elexp{— | 0'(s)dW(s)— ! l6(s)1>ds p | = 1. (4.2ii)
0 2 Jo

Then the market M 1is viable.

The idea behind Theorem 4.2 is the following. Suppose that for all (¢,w)
in some subset of [0, T] x Q with positive product measure, one can find 7 (t)
such that 7' (t)o(t) = 0 but 7' (t) (b(t)+6(t)—r(t)1] # 0. It is clear from (3.4)
that this portfolio holds a combination of stocks that entails no risk but has
5 nonzero mean rate of return and hence exposes an arbitrage opportunity.
Thus, for a viable market, every vector in the kernel (o’ (t)) of o’ (t) should
be orthogonal to b(t) + &(t) —r(t)1. But from linear algebra we know that
the orthogonal complement of the kernel of o’ (t) is the range of o(t). Except
for the issue of progressive measurability, Theorem 4.2 is just the assertion
that b(t) + 6(t) — r(t)1 is in the range of o(t). The following lemmas make
this argument rigorous by addressing the relevant measurability issues; the
reader may wish to skip these on first reading and proceed directly to
Corollary 4.8.

Notation 4.3: Let L(RP;R") denote the space of N x D matrices.
For such a matrix o, let K(o) and K(o') denote the kernels of ¢ and o,

respectively:
K(o) = {z € RP;0z =0}, K(o') = {y € RV;0'y = 0}.
Let R(0) and R(o’) denote the range spaces of these matrices:
R(o) = {oz;z € RP}, R(o)={oyiy € RMY.

Then K+(0) = R(0') and K1L(o') = R(c), where the superscript 1 de
notes orthogonal complement. Let proj,, denote the orthogonal projection
mapping onto a subspace M.

-
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Lemma 4.4: The mappings (z,0) — PIOjx(e)(z) and (z,0) —

Projx (o) () from RPx L(RP; RY), and the mappings (y,0) — projx(, (y)
and (y,0) — Projx (o1 (y) from RY x L(RP;RN) are Borel measu’i((zab’l)e !
F"ROOF. We Igreat only the first of the four mappings under consid

tion. Let L(RP;RY) be endowed with the operator norm and nstlh “the
Borel U—?.lgebra generated by the associated topology. Let RP Wld thls
have their Borel o-algebras, and let all product spaceé have the a;‘:iodlfct

Borel o-algebras. Finally, 1 N
‘ ' v, let @ be the set of vectors in RV wi i
coordinates, so QY is a countable, dense subset of RV it retional

Define the Borel-measurable function F : RP x L(R?;RY) — R by
F(z, 2 -
(2,0) qle%fN lz—0o'qll, VzeRP, e LRP;RY).

E‘}(ljng){(j,g)t;; € R(O‘I')} C {(2,0); F(s,0) = 0}. On the other hand, if

L ,” __0 ,B en thereivls a sequence {¢,}52, C Q" such that lim ||;—

: qn: p-— + ! ecallllse' RY = /C(O'Il) @® K1 (0'), we can decompose egg}lwq as

h,;]ear ;1 ns W :31.8 pn € I§(a ):Tn € K+(0”). Restricted to K1(o") nthe
apping o’ is invertible. Since ¢'r, — 2z, the sequence {r ,}°°

nJfn=1

converges to some r € K1 (¢') that sati B
- <hovn that (o) satisfies 0'r = z. Therefore, z € R(0”).

{(2,0); 2 € R(0")} = {(2,0); F(z,0) = 0}, (4.3)
and thus this is a Borel set. Consequently,
{(z,0,€) e RP x LR”;RY) x R”; £ = proj(ey(2)}
={(z,0,8); £€K(0), (z—§) LK(0)} !
| ~{(@,0,6); €0=0, z—¢£eR(") (4.4)
18 also a Borel set. Define Q : R? x L(R?; RM) — RP by

Q(I) U) é pI’OjK(a_) (.’E),

Vz eRP, o€ L(RP;RY).
The set in (4.4) is the graph

Cr(Q) £ {(z,0,¢); (z,0) €RP x LRP;RY), £=Q(z,0)}

on- Havin
g a Borel graph, .
for any Borel set B C IRI’)J, \?;E‘;\S;be a Borel-measurable function. Indeed,

{(2,0), .
(#,0);Q(z,0) € B} = PIojgo oY) Gr(Q) N (RP x L(RP;RY) x B)

and the one-to- jecti
o one-to-one projection of a Borel set is Borel (Parthasarathy (1967)

hapter I, Theorem 3.9).
O

Corollar
! y 4.5: The ;
Pf‘ogTessively mea,surabgzocess pro‘]’C(U'(t))[b(t) + 6(t) - T'(t),]_-], 0<t<T, s




© KL(o'(t)) = R(a(t)) for Lebesgue-almost-every ¢ almost surely.
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Lemma 4.6: If the financial market M is viable, then b(t)+6(t) —r(t)l €
R(o(t)) for Lebesgue-almost-every t € [0,T) almost surely.

PROOF. We define for 0 <t < T,
p(t) = projx(er (e b(t) + 6(t) — r()1];

p(t) ;
n(t) = { o P70

0 if p(t) = 0,

so that n(-) is a bounded, progressively measurable process. Condi-
tions (2.5), (2.6) are satisfied by 7(:) because of conditions (iv) and
(vi)~(viii) of Definition 1.3. Using Remark 2.2, we develop from () a
self-financed portfolio (mo(-), 7(+)) with associated gains process

T
G(T) = So(T) /0 lg)o((tz)nl{p(t)aw} din

Because G(T') > 0 almost surely, viability implies that G(T') must be zero
almost surely. It follows that p(t) = 0 for Lebesgue-almost-every t almost

surely, and this is equivalent to the assertion that b(t) + 6(t) —r(t)l €
o

Lemma 4.7: Consider the mapping ¥1 : {(¥, o) € RN x L(RP;RN);y €
R(0)} — RP defined by the prescription that ¥1(y,0) is the unique € €
Kt (o) such that o€ = y. Consider also the mapping ¥z : {(z,0) € RP x
L(RP;RN);z € R(0)} — RN defined by the prescription that Pa(z,0)
is the unique n € K+(o') such that o'n = z. Both ¢y and v are Borel

measurable.

PROOF. We establish the Borel measurability of 1, only. Define
A = {(50,6) € RN x L(RP;RY) x RP;y € R(0),§ € R(o"), 08 =y}

The set {(0,£); & € R(o')} was shown in the proof of Lemma 4.4 to be

Borel, and the same argument applies to {(y,0); y € R(o)} Therefore,
A is a Borel set. But A is the graph of 11, and just as in Lemma 4.4 we
conclude that ¥, is a Borel-measurable function. m]

PROOF OF THEOREM 4.2. According to Lemmas 4.6 and 4.7, the
progressively measurable process

a(t) 2 ¥ (b(t) + 8ty — ()], a(t)) (4.5)

is defined and satisfies (4.1) for Lebesgue-almost-every ¢ € [0, T}, almost
surely. This proves the first part of the theorem.

On the other hand, suppose that the R .valued process 0(-) is progres-
sively measurable and satisfies the conditions (4.1) and (4.2). For any tame

1.4 Arbitrage and Market Viability

"
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portfolio 7(-) the associated discounted gains process can be written as

™ G(t) d TI"(’U,) Lo
So) ~ Jo Solw) “FW= | S’ (W dWolu), 0<i<T
(cf. (2.11)). Here Wo(t) 2 W(t)+ [' 0 . . .
under the probability measur(e) fo (s)ds,0 <t < T, is Brownian motion

Po(A) & el [ 1 T
Ro(4) E[u p{ LR ne(s>u2dsH,Aef(T>

(from the Girsanov theorem, §3.5 i
» §3.5 in Karatzas and Shreve (1991)). Th
the lower-bounded process M™(-) is a local martingale under }2(3 herilcst;

also a super i : o
permartingale: Ey (E)_((T)) < EgM7™(0) = 0. This shows that it

is impossible to have an arbitra, ; .
ge opportunity (i.e.
PIGT) > 0] = 1 and PIG(T) S 0] 5 0y 7 T connet have both

hCorollax;y 4.8: . A viable market can have only one money market, and
den;e on 5 one 'msk-fre‘e rate. In other words, if the nth stock pays no, divi-
ends and entails no risk (i.e., the nth row of o(-) is identically zero), then

bu(-) = 7(-) and Su(-) = $.(0)So(-).

PROOF. If the nth stock were as described, Theorem 4.2 would then imply

Tl( ) ( ) u n
t eve y t O y 3
t}la-(t )b (t) 7 t fOI Lebesg e—almOS I alm St Surel y SO S ( ) ‘

Corollary 4.9: For a viab .
i, a viable market, the excess-yield process R(-) of (2.9)

R(t) = /0 o(w)0(u) du+ dW(u)), 0<t<T, (4.6)
Where 0(-) satisfies (4.1).

Rem : -y
aCterizziirI:( ‘:}-110- Within the framework of a viable market, when char-
. i; e wealth processes that can be achieved through investment
: sume—without loss of generality—th ’
5 n d - y at the number N of st
Theoiiltg:f:ter thqn the dz‘menswn D of the underlying Brownian {nit(z)‘s]:ls
- 1v;=, basis for this claim is that if there are more than D stocks.
dependeni (l)i them cartl) be duplicated by forming mutual funds (i.e., (¢ w)—’
: near combinations) of other il
in ’;he model can be reduced. ) s, and thus the number of stocks
e} o . e 5
A 0(31il;e th{s intuition precise, let M be a viable market with N > D. and
i ::: dln Theore~m 4.2. Deﬁx‘le a progressively measurable, (D >£ D)-
e thpr;)icess () by specifying that the rows of &(t) be obtained
cOmbinatiogn ef st N — D rows of o(t) that can be written as linear
€ rows of s of their predecessors. Then the subspace of RP spanned b
of o(t) is the same as the subspace spanned by the rows of &(t)y
k]
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and thus for every I'(-)-financed portfolio process (mo(-), m(+)) in the market
M, there is a D-dimensional, progressively measurable process 7(+) such
that 7' (t)o(t) = @ (t)a(t) for every t € [0, T). Therefore,

7' (t) dR(t) = =’ (t)o (t)[6(t) dt + dw (t)] = 7' (t)a(t)[(t) dt + aw (t)],
and the discounted wealth process corresponding to a I'(-)-financed
portfolio can be written as

X@®) _ dh(w)  [* 1 s
500 0 Jio Sow) + [ oy oo d
t 1 - .
u /0 SO(U)W(U)U(U)dW(u) (4.7)

(see (3.4)). This discounted wealth process can be achieved in the D-stock
market M = (r(-),7(")lp + 5(-)8(-),0,5(-), 5(0), A(")), where S(0) is a
D-dimensional vector of initial stock prices and 1p is the D-dimensional
vector with every component equal to 1. In particular, the vector of excess

yield processes for the reduced model is
t

R@t) = /0 5(u)0(u) du + / &(w) dW (u)

(]

(cf. (2.9)), and in terms of it the representation (4.7) for the discounted
wealth process becomes

KO w0 d(w [ 1 zw)dRw), 0<t<T.

+ 4
So(t) : 0. So(u)  Jio,g So(w)

The D stocks in this reduced market form a subset of the N stocks available
in the original market; the composition of this subset may depend on (t,w),
albeit in a progressively measurable fashion.

Remark 4.11: For a viable market, the progressively measurable process
8(-) constructed in (4.5) satisfies both (4.1) and

o(t) € Kt (o(t)) a.s. (4.8)

for Lebesgue-almost-every t € [0,T). Elementary linear algebra shows that
6(-) is uniquely determined by these conditions. If Rank(c(t)) = N, then

8(t) = o (1) (a(H)’ (1)) ' b(®) + 8() (D)1 (4.9)

1.5 Standard Financial Markets

Motivated by the developments of the previous section, in particular The-
orem 4.2 and Remark 4.10, we introduce here the notion of a standard
financial market model. It is mostly with such models that we shall be

dealing in the sequel.
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Definition 5.1: A financial market model M is said to be standard if
(i) it is viable;
(ii) the number N of stocks is not
{ : greater than the di i
underlying Brownian motion; 1 the dimension I of the

(iii) the D-dimensional i
, progressively measurable market pri i
process 6(-) of (4.1), (4.8) satisfies ket price of sk

pr
/0 16()]12 dt < oo (5.1)

almost surely; and
(iv) the positive local martingale

N ) t S,
Zp(t) = exp {—/0 6'(s) dW (s) — %/0 ||9(s)||2ds} , 0<t<T,

is in fact a martingale. o2

For a standard ket .
F(T) by market, we define the standard martingale measure Py on
Py(A =
0(A) = E[ZO(T)lA], VA € F(T). (5.3)

Note that a set in F(T) has P, i
o-measure zero if and only if it has P-
zero. We say that Py and P are equivalent on F(T). ’ e

Re :
mark 5.2: The process Zy(-) of (5.2) is a local martingale, because

dZo(t) = —Zo(t)8'(t) AW (), Zo(0) = 1 (5.4)

or equivalently,

t
Zo(t)zl—/o Zo(s)8'(s) AW (s), Vte [0,T) (5.5)

A - . .
well-known sufficient condition for Zo(-) to be a martingale, due to
¥

Novikov, i 4
lkov, is that Efexp{3 [, [18(t)||>dt}] < oo (Karatzas and Shreve (1991)

Section 3.5.D). I : . .
i . )- In particular, if §(-) is bounded in ¢ and w, then Zy(+) is a

-3:  According to Gir 5
(1991), Section 3.5) the process sy thegwem (Hamnfoag gnd Bheve

>

t

Wo(t) = W(t) +/ B(s)ds, Vtel0,T

18 a D-dimensional B i (') o .

{f(t)} R e nrlzvgrfu;;l motion under f’g, relative to the filtration

2 : 0 t(), the excess yield process of (2.9) and (4.6)
en as R(t) = [ o(u)dWo(u), the discounted gains process



q‘l\l

H"
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becomes

GO _ pr 2 t—l—ﬂ'uau u
So(t) =M, (t)_/o So(u) (u)o(u) dWo(u) (6.7)

(see (2.11) and (2.13)), and the discounted wealth process of (3.4)
corresponding to a I'(-)-financed portfolio is

X0 _ __dl"(u) t —1—7r' u)o(u u
YO —ro+ [ G mree@ e, osisT
(5.8)

We see that P, permits a presentation of the excess yield process in which
the risk premium term fot [b(u) +6(u) —r(u)1)du has been absorbed into the
stochastic integral. This term represents the difference in return, including
dividends, between the stocks and the money market. See Remark 5.11 for

an elaboration of this point.

Remark 5.4: By definition, a cumulative income process I'(:) is a semi-
martingale under the original measure P;i.e., I'(t) =T(0) +Dfe () +Tim(t),
where I'/?() is a finite-variation RCLL process and I'*™(.) is a P-local mar-
tingale, both beginning at zero. The process I'(-) is also a semimartingale
under Py, i.e., has the unique decomposition

I'(t) =I(0) + T (t) + Tg™(t), 0<t<T,

where F(’;”(-) is a finite-variation RCLL process with total variation on
[0,¢] denoted by [y”(t), and rém(.) is a Py-local martingale, again with
Tf?(0) = T§™(0) = 0. Indeed, according to Theorem 3.5.4 in Karatzas and
Shreve (1991),

Fem(E) =T (2) + / t ¢ (s)d(T™, W)(s),
0

D) =10 - [ W),

In particular, T™(-) = 0 if and only if '§™() = 0, in which case rfv() =

" ()-

Definition 5.5: A cumulative income process is said to be integrable if
T dlg" (u)

o So(u)

where we use the notation of Remark 5.4 and Ep denotes the expectation
corresponding to Fo.

Eyp < oo, £y /T —1—d(1‘f’">(u) < 00 (5.9)
, “Jo S§(w) ¢ ’ .

1.5 Standard Financial Markets 19

T.heorem 5.6: Under the standard martingale measure Py, the process of
discounted wealth minus discounted cumulative income

X)) dT'(u)
RO /(Mm, 0<t<T, (5.10)

corresponding to any tame I'(-)-financed portfolio is a local martingale and
bounded from below, hence a supermartingale. In particular
’

: [ X(T) dl ()

So(T) ~ Jioxy Solw) <TY(0). (5.11)

El’he process in (5.10) 1 ; . ) _
i (5.11). (5.10) is a martingale under Py if and only if equality holds

ROOF. From (5.7), (5.8) we see that the process in (5.10) has the

ochastic integral representation

™ ¢ 1 !
M§(t) = /0 mﬂ (w)o(u) dWo(u), 0<t<T.

his process is a local martjngale, and because 7(-) is tame, it is bounded
om'below. A local martnkqgy which is bounded from below is a super-
artingale because of Fato ma. A supermartingale is a martingale if

only if it has constzn&):&%ﬂa-@'gion. m]

erfl?trk 5.7:‘ The proof of Theorem 5.6 shows that the expectation on
eft-hand side of (5.11) is defined and finite. For an integrable cumula-

Ve income process, the Pp-expectations of the individual terms sﬂ(% and
dl(uw) __ drf? (u) T gr'™ ’

0.7 #(55 = f(O,T] To(# il %IETU) are also defined and finite.

mark 5.8: The process

Ho(t) 2 Zo(t)

< v o
So(®)’ 0<t<T, (5.12)
e:t cz}illled the state price density process, will play a key role in subse-
e 1(13] ap:lers (e.g: , Remark 2.2.4). Using Hy(-), we can rewrite conditions

- g Pt € martingale measure P in terms of the original probability

e P. For example, when T'“"(.) = 0, (5.9) can be rewritten as

T
E/o Hp(u) dT¥" (u) < . (5.13)

lying Ito’
g 1t6’s rule to the product of Zy(t) and SEO%%, we obtain from (5.8)

o0X® - [ Hotw)arw =10) + ' Ho(w)lo' (u)e(a)
; 0

= X(u)l(w)]) dW(u),0<t<T (5.14)
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is a local martingale under the original measure P. If this local martingale
is also a supermartingale, we obtain the restatement of (5.11) in terms of P:

E [HO(T)X(T) - Ho(u)dr(u)] < T(0). (5.15)

(0,7

We already know that this inequality holds under the conditions of The-
orem 5.6; but because of Fatou’s lemma it also holds whenever 7(-) is

I'(-)-financed and

Ho()X(t) - | Ho(w)dl(u) 20, Vie[0,T],
o)

holds a.s., even if m(-) is not tame and even if Zo(+) of (5.2) is not a
martingale (so that the measure Py of (5.3) is not a probability).

The concept of a tame portfolio (7o(-),7(")) (Definition 2.4) was intro-
duced to get some control on the semimartingale MZ(-). Under P, this
semimartingale is in fact a local martingale, and this suggests a new,

noncomparable concept.

Definition 5.9: An {F(t)}-adapted, RV-valued process 7(-) satisfying
(2.5) and (2.6) is said to be martingale-generating if under the probability
measure P, of (5.3), the local martingale Mg (-) of (5.7) is a martingale. If
(mo(-), w(+)) is a portfolio process and 7(-) is martingale-generating, we say
that the portfolio process (mo(-), 7(-)) is martingale-generating.

Remark 5.10: If I'(:) = 0, then the wealth process is the gains process.
For a tame portfolio process 7 (-), (5.11) shows that Eo[g)((:;))] < 0. For a
martingale-generating portfolio process 7(-), Eo [%{%] = 0. In either case,

arbitrage (Definition 4.1) is ruled out.

Remark 5.11: In the notation of (5.6) and (4.1), we may rewrite (1.10)
in differential form as

d (S"(t)) + Sn(t) 8 (t) dt

So(t) So(t)
S [y >
= So(t) 3" ona(t) AW D (E) + [ba(t) + 8n(t) — 7(2)] dt
d=1

Sn(t) &
So(?) dZZI na(t) AW ().

A |
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This shows that under the martingale measure Py of (5.3), the process

Sn(t) .
D) - eXp {/0 6n(u) du} (5.16)
D t D t '
=.5,(0) exp {;/0 Ona(u) dWéd)(u) - %;/0 o2 4(u) du} ,
0<t<T,

is an exponential local martingale, and hence a supermartingale. If the
entries of the volatility matrix o(-) satisty the Novikov condition

Ey

T 1 D )
G {/0 3 ;ffﬁd(u)du}] <00 (5.17)

(e.g.,' Karatzas and Shreve (1991), Section 3.5D), then the exponential local
martingale (5.16) is in fact a martingale under Py, and this justifies calling
Fo a “martingale measure.”

1.6 Completeness of Financial Markets

An important purpose of a financial market, perhaps even the principal
purpose, is to afford investors the opportunity to hedge risk inherent in
their other activities. Consider an agent who knows, at time t = OA that
at some future time T' he must make a payment B(w), but the size (’)f the
payment depends on a number of factors that are still undetermined and
not within his control. This agent would like to set aside a fixed amount of
money z at time ¢t = 0 and be assured that this will enable him to make
the payment at time T. A conservative strategy would be to set aside an
amqunt equal to the maximal possible payment size, sup,, ., B(w), if this
maximal sizg is finite! A more reasonable strategy entails :(ftting as’ide less
(I)Izlotn:y,l:)ut investing it ip such a way that if the actual payment size turns
t the0 e large, the cgpltal ha§ 1n'the meantime grown to match it. This
- tgr;)}fess of @edgzng t}.w' risk inherent in the random payment, which
e following definition.

22311})niti0n Gil Let M be a standard financial market, and let B be an
-measurable rand i B - L
B o ndom variable such that So(T) 18 almost surely bounded
B

B [W] % o8 (6.1)

(1) We say that B is financeable, if there is a tame, z-financed port-

I folio process (mo(-),n(-)) whose associated wealth process satisfies
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B
So(T)
almost surely. )
(ii) We say that the financial market M is complete if every F(T)-
measurable random variable B, with 501(37,) bounded from below and
satisfying (6.1), is financeable. Otherwise, we say that the market is
incomplete.

T 1 ,
£ 5t /0 o™ e Wl (6.2)

Proposition 6.2: A standard financial market M 1s complete if and only
if for every F (T)-measurable random variable B satisfying

|B|
E < 3
o [y < o0 63)
and with = defined by (6.1), there is a martingale-generating, z-financed
portfolio process (mo(), (")) satisfying (6.2).

PROOF. Suppose the market is complete and B is an F (T)-measurable
random variable that satisfies (6.3). Then there exist tame, z-financed

portfolio processes (rE(-), 7 (-)) with

+ 7

almost surely, where BE i max{+B,0} and =4 LB [E‘?(—iﬁ] Taking
expectations in (6.4) with respect to P,, we see that the lower-bounded
local martingale (hence supermartingale) I s-oltu_)(”i(u))/ o(u) dWo(u),0 <
t < T, has constant expectation (equal to zero) under P,. Hence, () is
martingale-generating. Subtracting one version of (6.4) from the other, we
obtain (6.2), where 7(:) = at () — () is also martingale-generating.

Now suppose that for any 7 (T)-measurable random variable B, such that
ﬁT—) is almost .surely bounded from below and satisfies (6.1), there exists
a martingale-generating z-financed portfolio process (mo(-), (")) satisfying
(6.2). Taking conditional expectations in (6.2), we obtain that

to1 B p |
/OW” (w)o(u) dWo(u) = — + Eo [S—O(ﬁ\}'(t)], 0<t<T

is bounded from below. It follows that (mo(-), w(-)) is tame, 501(37,) is

financeable, and thus M is complete. m}

Remark 6.3: In the context of Definition 6.1, if an z-financed, tame
portfolio (mo(-),m(-)) can be found whose associated wealth process X(-)

satisfies X(T) = B almost surely, then Eg [%] = z, and the last
sentence in Theorem 5.6 asserts that sﬂo(l) is a martingale under Pp.

o

»
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Consequently, X (-) is uniquely determined by the equation

X(t) B
mﬂ%[m’ﬂﬂ], Uit I, (6.5)

Equation (6.5) also holds if (mg(-),n()) is martingale-generating.

The remark and example that follow offer additional insights on the
hotion of financeability; they can be skipped on first reading.

Remark 6.4: The question arises why Definition 6.1 permits only z-
financed portfolios with x defined by (6.1). We first argue that for y < z
the(‘e can be no tame, y-financed portfolio whose associated wealth proces.;
sqtzsﬁes X(T) > B almost surely. Indeed, if X(-) is the wealth associated
with a tame, y-financed portfolio and X (T) > B, then (5.11) implies

X(T)

Som| =V (6.6)

It is sometimes possible to find a representation of % of the form
0

B "o
So@ — ¥t /0 Sow) ™ Wow) dWo(u), (6.7)

Where y > = and (7?0(-), 7(-)) is a tame, y-financed portfolio, even when B
1S not financeable in the sense of Definition 6.1 (see Example 6.5); but the
associated discounted wealth process E SO g ’

s =yt f ST (wolu dW,
cannot then be a martingale, because . e et A

X(0) X(T)
Ey|l—=|=y>z=E

[50(0)} ! ° | 5(T)

'f?rle properti'es of random variables B that permit a representation of the

m (6.7) with y > z are not well understood. Moreover, one could argue

that y-financed portfolio processes leading to discounted wealth processes

that are not martin
gales under Py are undesirable and
from consideration. and should be excluded

E .

ur)lc;n]lp'le 6.5: pon51der a financial market M with one stock, with an

'r(.)ei }(’)lng two-dimensional Brownian motion (N =1,D = 2) and with

thed_- ,0() = 0,.6 =0,0(-) = [1,0], A() = 0. For a portfolio process 7 (-)
1scounted gains process is G(t) = fot 7(s) dW1)(s). As in Example 2.3

deﬁne
a g 1
O Y, (1)
(t) /0 7 WW(s), 0<t<T, (6.8)
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so that limsrI(t) = oo and lim,;7I(t) = —oo almost surely. Set
7 2inf{t € [0,T);2 + I(t) = exp(W(t) —t/D}AT,
T
1
BLoyI(r)=2+ / Lory 7 WD), (6.9)
{ -

and notice that P[r < T} =1 and that the portfolio 7(t) = (T—t)‘% Lie<r}
is tame, because G(-) > —2. Equation (6.9) provides a representation for
B of the form (6.7) with y = 2. In this example, Py = P and

E(B) = E[GXP(W(z)(T) - 7/2)] =1<y.

If B had a representation of the form (6.2), then from (6.5) there would

exist a tame portfolio process 7(-) satisfying

1+ /t m(s) dWM(s)
0
= E[exp(W(z)(T) —7/2) | F(t)]
= exp(W(z)(t /\'T) - t/\T)

=1+ /Ot Lis<ry exp(W(z)(S) - 5/2) dW®(s). (6.10)

This is clearly impossible (e.g., the martingale on the left-hand side of (6.10)
has zero cross-variation with W (), but the martingale on the right-hand

side of (6.10) has nonzero cross-variation with W (-)).

The theory of complete markets is simpler and much better developed
than the theory of incomplete markets. Chapters 2-4 are devoted to com-
plete markets, while Chapters 5 and 6 explore incomplete markets. For a
standard financial market, the two cases are easily distinguished by the

following theorem.

Theorem 6.6: A standard financial market M is complete if and only
if the number of stocks N is equal to the dimension D of the underlying
Brownian motion and the volatility matriz o(t) is nonsingular for Lebesgue-

a.e. t € [0,T) almost surely.

The remainder of this section is devoted to the proof of Theorem 6.6.
A standard financial market M is fixed throughout, (Q,F,P) and
{F(t)}o<t<r are as in Definition 1.3, the processes 6(-), Zo(-) and the
measure Py are as in Definition 5.1, and Wo(-) is given by (5.6).

Martingale representation property under Py):  Let {Mo(t),

Lemma 6.7 (
n there is a progressively

F(t);0 < t < T} be a martingale under Py. The

-
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measurable, RN -valued process ©(+) such that

i
2
| ety as < oo (6.11)

at
Mo(t) = Mo(0) + | ‘
0(0) 1 @'(s)dWo(s), 0<t<T, (6.12)
hold almost surely.

PROOF. This lemma is almo
’ - st a restatement of the standard
211(;1; 1t)hef(;;€1ﬂ for martingales as stochastic integrals (Karatzas ;i%r(’éss:; o
e ﬁlt,rati szr?? 3.4.}5 and Problem 3.4.16). The only complication is th:i
- fph; I(lf))t} ‘:‘s/ t(h)e ;fmintation by null sets of the filtration gen-
, o(-). Therefore, we revert t igi ili
measure P and represent the Lévy P-martingale PErOiTTE SRy

N(t) £ E[Zo(T)Mo(T)|F(8)], 0<t< T,

as a stochastic integral with respect to W (:), namely
t
N(t) =N(0)+/ Y(s)dW(s), 0<t<T
0 —= = ]

where (-) is a pro i
. gressively measurable, RN-val isfyi
éi.rlel). x?lss)lgnllfle[lcalculation known as “Bayes’s :3lzfd(epé0C§S:r§?zt;fYIIl§
ve , Lemma 3.5.3) shows that M, — By[A g
N(t)/Zo(t), and Itd’s formula yields ¢ Mol = R =

1
dMy(t) = m[wl(t) + N(t)0'(t)] dWo(t),

so that (6.11), (6.12) hold with

(0) = 5 o Wlt) + N (D)
Zo(®) (®)o(t)].
Condition (6.11) for
: 3 ¢(-) follows from the s "
and the fact that th i ame condition for (), (5.1),
. e paths of Zo¢) @nd N(-) are continuous on [0, 7] almost
[}

C . .
orollary 6.8 (Sufficiency in Theorem 6.6): If N = D and o(t) ¢
18

nonsingular 701 Lebes = -
: que almost-e 7
: : l ‘ very t € [O, T] almost surely, then the

PR, i
OOF. We verify the condition of Proposition 6.2. Let B be an

F(T)-measurable r :
ando o
Po-martingale m variable satisfying (6.3), and define the Lévy

Mo(t) = E, [% [ ]-'(t)] L 0<t<T
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This martingale has a representation as in (6.12), and with

(8 & So(t)e' (o~ (), 0<t<T,

we have (6.2). Condition (2.6) follows from (6.11); condition (2.5) follows
from the almost sure inequalities

/ " 1 (5)(b(s) + 6(s) —r{s)D)| ds
Jor
T
L / So(u)' (w)8(w) du
0

T T
< max So(w)- [ ol du- / 10| du < oo,
— 0<u<lT 0 0

where we have used (4.9) and the Cauchy-Schwarz inequality. We construth
mo(-) as in Remark 2.2.

Lemma 6.9: There is a bounded, Borel-measurable mapping V3
L(RP;RN) — RP such that

Y3(0) € K(o), (6.13)
ba(0) 20 if K(0) # {0} (6.14)
for every o € L(RP;RY).
PrROOF. Let {e},e,...,ep} be a basis for RP, and define
min{i; projic)(es) # 0} if K(o) # {0},
LG it k(o) = {0},

¥3(0) = proji(s)(en(e))-

The Borel-measurability of 43 follows from Lemma 4.4. a
PROOF OF NECESSITY IN THEOREM 6.6. Using the function v3 from
Lemma 6.9, define the bounded, progressively measurable process ¢(t) =
W3(o(t)) that satisfies (t) € K(a(t)) for all ¢ € [0,T)], and (t) # O
whenever K(o(t)) # {0}. Next, define the F(T)-measurable random

variable

i T
B £ S(T) 1+/ ¢'(u) dWo(U)] :
0
Clearly, EO[S_L%] < oo and EO[EOI(;—T)] = 1. Market completeness and

Proposition 6.2 imply the existence of a martingale-generating portfolio
process 7 for which

4 T _ B [ pwdwew). (6.15)
/()mw(u)a(u)dwo(u)—so(T) 1 /Ocp() o(w).
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The stochastic integrals fot %ﬂ"(u)a(u) dWp(u) and fot ¢'(u) dWo(u) are
both martingales under Py. Conditioning both sides of (6.15) on F(t), we
see that these stochastic integrals agree. This implies that the integrands
agree, so o'(t)m(t) = So(t)p(t) for Lebesgue-a.e. t € [0,T) almost surely.
This shows that (t) € R(a'(t)) = K1(o(t)). By construction, ¢(t) €
K(a(t)), so ¢(t) = 0, which happens only if K(a(t)) = {0}. Thus, N = D
and o(t) is nonsingular for Lebesgue-a.e. t € [0, 7] almost surely. Q.

Remark 6.10: In a complete market M, there is a unique market price
of risk process §(-) satisfying (4.1), defined by

0(t) = (@) B +8() —r(1))), 0<t<T.  (6.16)

1.7 Financial Markets with an Infinite
Planning Horizon'

The time parameter in the financial market of Definition 1.3 takes values
in the interval [0, 7], where the planning horizon T is finite. In order to
consider certain financial instruments such as perpetual American options,
we introduce in this section the notion of a financial market on [0, co).

For the construction of this section, we need to work with Wiener mea-
sure on the “canonical” space of continuous, R?-valued functions, rather
than with a general probability space on which D-dimensional Brownian
motion is defined. Let 2 = C([0,00))P be the space of continuous func-
tions w : [0,00) — RP. On this space we define the coordinate mapping
process W (t,w) = w(t),0 < t < oo,w € Q. As in Section 1, we denote by
F¥(t) = o{W(s);0 < s < t} the o-field generated by W(-) on [0,¢], i.e.,
the smallest o-algebra containing all sets of the form {w € Q;w(s) e T},
where s ranges over [0,¢] and I' ranges over the collection of Borel subsets
Of RP. We set % (00) = o(Upgsco0 FW (£))-

Let P be Wiener measure on F W (o), i.e., the probability measure under
Which {W (t);0 < t < oo} is a D-dimensional Brownian motion. Let F be
the completion of F% (c0) under P; i.e., F 2 a(FW(00) UN), where

NE{NCO 3BeF%() with NCB and P(B) =0}

15 the collection of P-null sets of F% (c0). We call (Q, F, P) the canonical
Probability space for D-dimensional Brownian motion.
For each T € [0, 00), we define

N ={NCQ 3BeF™(T) with NCB and P(B)=0}

——

T'.I'his section can be omitted on first reading; its results will be used only in
Sections 2.6, 3.9, and 3.10.
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to be the collection of P-null sets in F% (T'), and we define the augmented
filtration

FO@E) Ea(FV(R)UNT), 0<t<T.

This is the filtration we have called {F(t);0 <t < T} heretofore; in this
section we indicate explicitly its dependence on T'.
Definition 7.1: A stochastic process Y = {Y(t);0 <t < oo} is said
to be restrictedly progressively measurable or restrictedly adapted if for ev-
ery T € [0,00), there exists T € [T, 00) such that the restricted process
{Y(#);0 <t <T}is {(FO@)0 <t < T}-progressively measurable or.
adapted, respectively.
Definition 7.2: A financial market M = (r(-),b(-),8(-), ("), S(0), A(-))
on the infinite planning horizon [0, 00) consists of
(i) a D-dimensional Brownian motion W = {W(t);0 <t < oo} that is
the coordinate mapping process on the canonical probability space
(%, B
(ii) restrictedly progressively measurable processes 7(-),b(-),6(-),a(),
and A(-), as described in Definition 1.3, satisfying the integrability
conditions of Definition 1.3 for every finite T’
(iii) a vector of positive, constant initial stock prices S(0) = (S1(0),.--,
Sn(0))"-
It is easily verified that the asset price processes in M are restictedly

progressively measurable. In order to simplify the presentation, we define
a standard, complete financial market in terms of the conditions obtained

in Theorem 6.6.
Definition 7.3: A financial market M = (r(-),b(-),8(-),a(-), 5(0), A(-))
on an infinite planning horizon is standard and complete if

(i) the number of stocks N equals the dimension D of the driving

Brownian motion;
(ii) the volatility matrix o(t) is nonsingular for Lebesgue-a.e. t € [0,00)

almost surely;
(iii) the positive local martingale

Zo(t) 2 exp {-/0 6'(s) dW (s) — —;—/0 16(s)1I? ds} , 0<t<oo,
(7.1)

is in fact a P-martingale, where

6(t) 2 o7 (B)[b() + 8(8) — r(t)1], O <t < oo (7.2)

Of course, a process is a martingale only relative to some filtration. In
Definition 7.3 (iii) we mean that for each T' € [0, 00), there is a T' € [T, 00)
such that the restricted process {Zo(t);0 < t < T} is a P-martingale
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relative to {F(T)(t);0 < t < T}. (One should say, more precisely, that Zo(-)

is “restrictedly” a martingale; one could likewise speak of processes being

“restricted” semimartingales, submartingales, etc.) As in Definition 7.3, we

shall generally omit the modifier “restricted.” ’
With () defined by (7.2), we set

1>

t
Wo(t) = W(t) +/ f(s)ds, 0<t< oo. (7.3)
0
By analogy with (5.3), we may define for each T € [0, 00) th i
mensuro B on FW (T) by [0,00) the martingale

PT(A) 2 E[Zo(T)14], YA€ FY(T). (7.4)

Under P{, the restricted process {Wy(t);0 < t < T} is a Brownian motion.
F‘urt}:g‘r)mor(?, for 0 < t < T, the probability measure POT is equivalent to P
on F(T)(t); i.e., a set in FT)(t) is a PT-null set if and only if it is a P-null
set.

Proposition 7.4: There is a unique probability measure Py on
A !
FW(00) = a(W(s); 0<s<00)

such that Py agrees with each P¥ on FW(T), for any T < co. In particular,
{Wy(t);0 <t < oo} is a D-dimensional Brownian motion under P,.

PROOF. The family {PT }o<T<oo given by (7.4) is consistent: if 0 < T <
S < oo, then PT and Py agree on FW(T). Thus, a (finitely ad&tivé
set function Py, with Py()) = 0, Py(Q) = 1, is well-defined on the algebra
G = Up<r<oo FV (T) by the recipe

Py(A) 2 E[Zo(T)1a]; AeF¥(T), 0<T < oo.

"The question is whether this P is also countably additive on G, and thus, by
the Carathéodory extension theorem, uniquely extendable to a probabi’lity
measure on F* (c0) = o(G).

The countable additivity of Py on G is a consequence of the extension
theorems in Parthasarathy (1967), pp. 140-143, as we now explain. For
€ach T € [0, 00), the measurable space (2, FV (T)) is o-isomorphic to the
complete, separable metric space Qr = C ([0,T))P of RP-valued, continu-
gl_lslfunctlons on [0, T], equipped with the supremum norm and the Borel
tha %ebra. B{]“ generated by the collection of open subsets of Q7. Indeed

€ “truncation mapping” nr : @ — Qr defined by ’

mr(w)(t) = w(t), vtel0,T], weq,

W .
?SIIBC;SW]: (T) and Br into a one-to-one correspondence. Therefore,
1321 (T)) is a “standard Borel space” (Parthasarathy (1967), pp. 133
)- Let {T;,}2, be a strictly increasing sequence in (0, 00) and {4, } L
n fp—=
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a decreasing sequence in F" (00) such that each A, is an atom of F% (Ty,).
Then, for every n,

An={weQ w(t)=wn(t), Vte[0,Tn]}
for some wy, € Qr,. Setting Top = 0 and

Woolt) =wn(t), Vt€ [Tn1,Tn), n=12...,

we see from the inclusions 4; 2 Ag D --- that wee € N2, Ay, so that
N2, A, # 0. From Theorem 4.2, p. 143 of Parthasarathy (1967), we con-
clude that there is a unique probability measure Py on (€, F W(o0)) such
that P¥(A) = Po(A) forall A€ FW(T)and 0 < T < 0. a

Remark 7.5: For each T € [0,00) and t € [0, T], the o-algebra FI(t) is
a sub-o-algebra of the completion of F W(T) with respect to P, and so Fp
is defined for all sets in (T (t). On F(T)(¢), the two measures P and Fp

are equivalent.

The infinite-horizon model is made difficult by the fact that P and Po
are not necessarily equivalent on F* (00). In fact, it is not hard to check
that P and P, are equivalent on F% (0o) if and only if the P-martingale
Zo(") of (7.1) is uniformly integrable. To see how things can go wrong if
this condition fails, consider the following example.

Example 7.6: Suppose N =D =1,7(:)=7r>0,b()=b>r+ %,
6(-)=0, o(-) = 1, A(-) = 0. Then Wo(t) = W(t) + (b—r)t and

Si(t) _ 5,(0) exp [W(t) + (b =4 %> t]

SO(t) =
_ 5,(0)exp [Wo(t) . %tj 0<t<oo

According to the law of large numbers for Brownian motion (Karatzas and
Shreve (1991), Problem 2.9.3 and solution, p. 124), as t — oo we have

Kt(ﬁ — 0 P-a.s, _I/V(;_(t) — 0 Pya.s.

This means that the event A 2 {lim; o0 %(‘%% = oo} satisfies P(A) = 1,

Po(A) = 0, whereas the event B = {limy 00 %%% = 0} satisfies P(B) =0,

Py(B) = 1. Notice also that the P-martingale Zo(t) = exp[—(b— rW(t) —
(b— 7)2t/2] of (7.1) is not uniformly integrable. Indeed, lim;_o Zo(t) = 0,
P-almost surely, but EZy(t) = 1 for all ¢ € [0, co).

Example 7.6 shows that if for ¢ € [0, 00) we were to augment F" (¢) by the
Po-null sets of F* (c0), we would obtain a o-algebra Fo(t) on which P and
P, would disagree. Indeed, there may exist sets A € Fo(t) for which P(A)is
not defined and for which B; € FW(t), B2 € FW (t) can be found satisfying
Py(AAB,) = Po(AABz) = 0 but P(B;) # P(B3). For this reason, we
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choose to work with the family of filtrations {F(T) (t)}o<i<r, indexed by
T € [0,00), rather than with the augmentation of {FW ()}o<t<co by the
Po-null sets of FW (c0). -

Definition 7.7: Consider a financial market M = (r(-),b(-),8(-),0(),
S(0), A(:)) on [0,00). A portfolio process (mo(-),n(-)) is as described in
Definition 2.1, except that now we require mo(-) and 7(-) to be restrict-
edly progressively measurable and we require (2.4)-(2.6) to hold for every
finite 7. We say that #(:) is tame if the Pp-local martingale

M) 2 /0 Sotu)w’(u)a(u)dWo(u), 0<t< oo, (7.5)

is almost surely bounded from below by a constant not depending on t.
We say that w(-) is martingale-generating if {M™(t);0 < t < oo} is a.
Py-martingale.

A cumulative income process I'(:) = {[(t);0 < t < oo} is a P-
semimartingale and hence a “restricted” Pp-semimartingale. We say that
I'(:) is integrable if (5.9) is satisfied for every T € [0,00). We say that
(mo(:), () is ['(:)-financed if (3.3) holds for every T € [0, 00). In this case
the wealth process is given by

R daifw)  [* 1

500 = "0 [, 5o+ H@T @@, osi<o.
(7.6)

1.8 Notes

Sections 1-3: Finance models that allow continuous trading constitute a
b}lrgeoning field of mathematical research. In the notes to Chapter 3 we
discuss the origin of these models within the capital asset pricing con-
text. Their application to the hedging of contingent claims is presented in
Chapter 2, and the related history is summarized in the notes to that chap-
ter. For broad and exhaustive surveys of the issues of finance, including
continuous-time models, one may consult the books of Cox and Rubin-
stein (1985), Dothan (1990), Duffie (1988, 1992), Huang and Litzenberger
(1988), Hull (1993), Ingersoll (1987), Jarrow (1988), Merton (1990), Jarrow
and Turnbull (1995), Baxter and Rennie (1996), Pliska (1997), Musiela and
Rutkowski (1997). The book by Malliaris and Brock (1982) surveys stochas-
tic models used in economics and finance. Additional surveys and/or lecture
Botes include Malliaris (1983), Miiller (1985), Karatzas (1989, 1996), Lam-
berton and Lapeyre (1991); this latter text, along with Duffie (1992) and
_Wllmott, Dewynne, and Howison (1993, 1995), can be consulted for numer-
leil and computational aspects of the theory. Questions of convergence of
discrete-time and/or discrete-state models to their continuous-time coun-
terparts are discussed, among others, by Cox, Ross, and Rubinstein (1979),
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Madan, Milne, and Shefrin (1989), Nelson and Ramaswamy (1990), He
(1990, 1991), Amin (1991), Amin and Khanna (1994), Cutland, Kopp, and
Willinger (1991, 1993a,b), Kind, Liptser, and Runggaldier (1991), Willinger
and Taqqu (1991), Duffie and Protter (1992), Eberlein (1992), Dengler
(1993), and Bick and Willinger (1994). Recent books on numerical meth-
ods of general applicability in this area are Kloeden and Platen (1992),
Kushner and Dupuis (1992), Talay and Tubaro (1997).

For early work on the subject, it is instructive to see the articles in the
volume edited by Cootner (1964), in particular the translation of the fa-
mous dissertation by Bachelier (1900); this work is the first instance of
both a mathematical treatment of Brownian motion and its application to
finance. The use of Brownian-motion-based models of stock prices derives
from the efficient market hypothesis, which asserts that all public infor-
mation useful for making investment decisions is already incorporated in
market prices. According to the efficient market hypothesis, past stock
prices may be useful for purposes of estimating parameters in the distri-
bution of future prices, but do not provide information that permits an
investor to outperform the market. In particular, if there is public informa-
tion which implies that a stock price is certain to rise, then it would have
already risen. The efficient market hypothesis is still subject to some debate,
although a substantial amount of empirical and theoretical justification has
accumulated in its favor; see, e.g., Kendall (1953), Osborne (1959), Sprenkle
(1961), Boness (1964), Alexander (1961), and Fama (1965). Originally, the
mathematical content of the efficient market hypothesis was expressed as
the belief that returns on stock prices follow a discrete-time random walk.
Samuelson (1965a) proposed a discrete-time martingale model of security
prices, a mathematical concept also in keeping with the efficient market
hypothesis. A more recent theoretical examination of this matter is given
by Samuelson (1973); see also Black (1986). The discrete-time martingale
model is criticized on the basis of empirical studies by LeRoy (1989). Non-
technical discussions can be found in Bernstein (1992), Chapters 5-7, and
Malkiel (1996).

The model presented in this chapter is an outgrowth of the “geometric”
Brownian motion model introduced by Samuelson (1965b) to capture the
limited-liability nature of corporation ownership. It was formulated within
the framework of Itd’s stochastic calculus by Merton (1969, 1971) and of
the calculus for more general stochastic processes by Harrison and Kreps
(1979), Harrison and Pliska (1981, 1983). The independence between past
and future increments of the driving Brownian motion enforces the effi-
cient market hypothesis in this model, provided that the model is viable
(Definition 4.1). The efficient market hypothesis does not claim any par-
ticular distribution for stock prices, although it is often confused with the
assumption of stock prices modeled by geometric Brownian motion and
hence having a log-normal distribution. This distribution provides a rea-
sonable fit to the data, but other distributions are known to be better (see,

A 2
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e.g., Fama (1965), Officer (1972), Hsu et al. (1974), Hagerman (1978), Kon
(1984), Madan and Seneta (1990), Lo (1991)). For the huge subjects of
statistical estimation and econometrics in the context of financial markets,
we send the reader to the April 1994 volume of the journal Mathematical
Finance, and to the recent monograph by Campbell, Lo, and MacKinley
(1997).

The model of this chapter allows for the stock-price coefficients to be
themselves random processes, which affords much greater generality than
the log-normal model. Various special cases of this model besides the
constant-coefficient case of Samuelson (1965b) have been studied. Cox and
Ross (1976) examined a constant elasticity of variance model, in which
stock prices have the form

dS(t) = bS(t) dt + 0S72(t) dW(2),

where b, o > 0 and 0 < v < 2 are constant and W(-) is a Brownian mo-
tion; see also Beckers (1980), Schroder (1989). Another alternative, due to
Follmer and Schweizer (1993), contains the geometric Ornstein—Uhlenbeck
process as a special case. Some works on hedging and/or optimization in
models that allow for jumps in the stochastic equations (1.8), and thus do
not fall within the purview of this text, are Aase (1993), Back (1991), Bates
(1988, 1992), Beinert and Trautman (1991), Dritschel and Protter (1997),
Elliott and Kopp (1990), Jarrow and Madan (1991b,c), Jones (1984), Jar-
row and Rosenfeld (1984), Jeanblanc-Picqué and Pontier (1990), Madan
and Seneta (1990), Madan and Milne (1991), Mercurio and Runggaldier
(1993), Merton (1976), Naik and Lee (1990), Pham (1995), Schweizer (1988,
1991, 1992a,b), Scott (1997), Shirakawa (1990, 1991), Xue (1992), Zhang

(1993).

A nonnegativity constraint on wealth was used by Harrison and Pliska
(1981) to rule out doubling strategies. The notion of a tame portfolio, used
here for the same purpose, also appears implicitly in Karatzas, Lehoczky,
and Shreve (1987) and Dybvig and Huang (1988). Heath and Jarrow (1987)
achieve the same end by imposing margin requirements.

Sections 4~6: The example of a nonviable market, which is based on the
three-dimensional Bessel process and appears right after Definition 4.1, is
due to A.V. Skorohod (private communication by S. Levental). Related
Tesults can be found in Delbaen and Schachermeyer (1995b).

The absence of arbitrage opportunities is implied by the existence of
an equivalent probability measure, under which discounted prices (plus
discounted cumulative dividends, if dividends are present) become martin-
gal(?s. This is essentially a rephrasing of the classical principle behind the
2ptlonal sampling and martingale systems theorems, according to which

One cannot win for certain by betting on a martingale” (e.g., Doob (1953),
Chung (1974)).

.TO what extent is the converse true? In other words, if “one cannot
Win for certain by betting on a given process” (i.e., if the process does not
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support arbitrage opportunities), then is this process a martingale, perhaps
under an equivalent probability measure? For discrete-parameter processes,
affirmative answers to this question were provided by Harrison and Kreps
(1979), Harrison and Pliska (1981), and Tagqu and Willinger (1987) for
finite probability spaces (see also Ross (1976) and Cox and Ross (1976)
for earlier work along similar lines), and by Dalang, Morton, and Willinger
(1990) for general probability spaces and multidimensional processes. This
last work uses arguments based on measurable selection results and on
the separating hyperplane theorem of convex analysis; the same result has
since been derived, using somewhat simpler arguments, by Kabanov and
Kramkov (1994a) and by Rogers (1995a). Related papers are Willinger and
Taqqu (1988), Back and Pliska (1991), Kusuoka (1992), Schachermayer
(1992). All these results on the relation between “no arbitrage” and the
existence of an equivalent martingale measure bear a striking similarity to
de Finetti’s (1937, 1974) theory of coherent subjective probabilities and
inferences; see Heath and Sudderth (1978), Boykov (1996), and the survey
papers of Sudderth (1994), Ellerman (1984).

For general continuous-parameter processes, the question at the begin-
ning of the previous paragraph becomes significantly more complex, and
the results much harder and deeper. Absence of arbitrage is in general
not sufficient for the existence of an equivalent martingale measure, and
stronger conditions are needed; cf. Kreps (1981), Schachermayer (1993,
1994). Work related to the results of Sections 4 and 5 has been done by
Stricker (1990), Delbaen (1992), Lakner (1993), Delbaen and Schacher-
mayer (1994a,b, 1995a—, 1996b, 1997a—c), Fritelli and Lakner (1994, 1995)
who use rather refined functional-analytic tools (see also the earlier work
by Duffie and Huang (1986)), and Levental and Skorohod (1995).

In particular, Levental and Skorohod (1995) consider a market M as in
Definition 1.3 with N = D and invertible volatility matrix o(-), and define
6(-) via (6.16), Wy(-) via (5.6) whenever 6(-) is integrable,

t
¢ 2 inf {t € (r, T);/ 0(s)||? ds = oo} AT, (8.1)
N t
ZO)(t) 2 Ljpeciry exp | — /0 1ir<10'(s) dW(s)
L 1ir<sI0(s)1? d 0<t<T
- "2' b {rSs}” (5)” S, = t<1T, (8'2)
for r € [0, T, as well as

t+h
a2 inf {t e [o,:r);/ 16(s)||? ds = 00,V h € (0, T -t]} AT. (8.3)
t ]
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They show that M is viable if and only if both
Pla=T]=1 and EZ"(T)=1,Yre[0,T] (8.4)
hold. In particular, under the condition (5.1), M is viable if and only if

{there exists a probability measure Fp, equivalent to P,} (8.5)

under which Wy(-) becomes Brownian motion.

In the absence of condition (5.1), they define approzimate arbitrage as a
sequence of tame portfolios {m,(-)}52, with corresponding gains processes
{Gn(")}32, satisfying lim, o P[Gn(T) > 0] = 1 and limy o0 P[Gn(T) >
8] > 6,¥n € N for some § > 0 (cf. Stricker (1990), Duffie (1992), Kabanov
and Kramkov (1994b) for related notions); then they show that (8.5) is'
equivalent to the absence of approzimate arbitrage. This latter condition
is stronger than viability (absence of arbitrage), as these authors demon-
strate by example. In a similar vein, see the recent results of Delbaen and
Schachermayer (1997b) for general semimartingale price processes, which
might well be the “last word” on this subject.

The relations between market completeness and uniqueness of the equiv-
alent martingale measure were brought out in the fundamental papers of
Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), and more
recently in Ansel and Stricker (1992, 1994), Artzner and Heath (1995),
Chatelain and Stricker (1992, 1994), Delbaen (1992), Jacka (1992), Jarrow
and Madan (1991a,b), Miiller (1989), and Taqqu and Willinger (1987).

In the context of a complete market as in Section 6, what happens if the
agent starts at ¢ = 0 with initial capital y > 0 strictly less than the quantity
z = E°[B/S,(T)] of (6.1)? Remark 6.4 shows that there can exist no tame,
y-financed portfolio with corresponding wealth process X¥7(.) satisfying
P[X%™(T) > B] =1 for 0 < y < z. In other words, it is then not possible
to hedge the contingent claim B without risk, and the agent might wish
simply to maximize the probability P[X¥™(T) > B| of achieving a perfect
hedge, over a suitable subclass of tame y-financed portfolios m(-). One is
thus led to a stochastic control problem of the so-called “goal type.” Such
problems have been studied by Kulldorff (1993); see also Heath (1993),
Karatzas (1996), pp. 55-59, Follmer & Leukert (1998), and Spivak (1998).
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Contingent Claim Valuation in a
Complete Market

2.1 Introduction

A derivative security (also called contingent claim; cf. Definition 2.1 and
discussion following it) is a financial contract whose value is deried from
the value of another underlying, more basic, security, such as a stock or a
bond. Common derivative securities are put options, call options, forward
contracts, futures contracts, and swaps. These securities can be used for
both speculation and hedging, but their creation and marketing are based
much more on the latter use than the former. Some derivative securities
are traded on exchanges, while others are arranged as private contracts
between financial institutions and their clients. The world-wide market in
derivative securities is in the trillions of dollars.

In order better to understand the concept of derivative securities, let
us begin by considering one of the older derivative securities, a forward
contract. Under this contract, one agent agrees to sell to another agent
some commodity or financial asset at a specified future date at a specified
delivery price. Corporations that need a certain amount of a commodity at
a future date often buy a forward contract for delivery of that commodity.
Corporations that expect to be paid at a future date in a foreign currency
sell forward contracts on that currency. In the first case the corporation
would promise to receive delivery of the commodity, whereas in the second
case it would promise to deliver the currency. In both cases, the corporation
is using the forward contract to lock in a price in advance, i.e., to hedge
uncertainty. Forward contracts can also be used for speculation; a forward
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contract on an asset requires no initial cash outlay by either party, and for
this reason allows speculators much higher leverage than can be obtained
by purchasing and holding the underlying assets.

Futures contracts are like forward contracts, except that unlike forwards,
futures are traded on exchanges and are consequently subject to a number
of regulations. The principal rule is that an agent must deposit money
into a margin account at the time the contract is entered, and this margin
account is credited or debited daily to reflect movement in the futures’ price.
If the margin-account balance falls too low, the agent must replenish it.
This whole process is called marking-to-market. Unlike the case of options
discussed below, forward and futures contracts are designed so that their
initial cost to both parties is zero.

Derivative securities that became popular more recently are the various
options on stocks. Options have been traded on public exchanges since 1973.
The holder of a Furopean call option has the right, but not the obligation,
to buy an underlying security at a specified date (ezpiration date) for a
contractually specified amount (strike price), irrespective of the market
value of the security on that date. The Furopean put option is the same
as the European call option, except that it entitles the holder to sell. The
American call option and the American put option entitle the holder to
buy or sell, respectively, at any time prior to a specified expiration date.
Besides the European and American options (which, incidentally, are both
traded worldwide, although exchange-traded stock options are typically
American), there is a variety of more “exotic” options. Options allow risk
to be hedged in various ways. The most obvious one is that an investor who
OWns a security but intends to sell it by a known future date can buy a put
option on the same security and thus be guaranteed at least the strike price
when the security is sold. If the security price rises above the strike price,
the investor is still able to sell the security at its market value. By taking
Combinations of long and short positions in puts and calls, investors can
Create a variety of customized contingent claims. Because one of the likely
Possibilities available to the holder of an option is to “receive a positive
amount and pay nothing,” arbitrage-based considerations suggest that the
Option’s present worth should be positive.

First appearing in 1981, a swap is a contract between two agents in
Which cash flows are traded. A common situation is that one agent has
income due to variable-rate interest on some investment, and the other
has income due to fixed-rate interest on a different investment. Because
of their different financial situations, the agents may wish to trade some
Part of their income streams. This trade is usually arranged by a financial
stitution, which guarantees the contract.

The existence of derivative securities leads to two mathematical ques-
tions: pricing and hedging. The price of publicly traded derivative securities
I8 set by the law of supply and demand, but many derivative securities are
Private contracts in which both parties would like to be assured that a “fair”
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price has been reached. Even for publicly traded derivative securities, the
fact that they are described in terms of an underlying security, whose price
and price history are known, suggests that there should be some way of
theoretically determining a “fair” price. Arbitrageurs are vigilant for dis-
crepancies between the market price of derivatives and their estimation of
the fair price, and immediately take positions in the derivative security
when they perceive such a discrepancy.

More recently, model-based pricing of derivative securities has become
the basis of risk management. A typical risk-management question is how
much a portfolio value will be affected by a certain movement in underlying
asset prices. If the portfolio contains derivative securities, a mathematical
model is needed to answer this question.

The hedging of a derivative security is the problem faced by a financial
institution that sells to a client some contract designed to reduce the client’s
risk. This risk has been assumed by the financial institution, which would
now like to take a position in the underlying security, and perhaps in other
instruments as well, so as to minimize its own exposure to risk. Assumption
of client risk is a principal service of financial institutions; managing this
risk well is a necessary prerequisite for offering this service.

In a complete market model, as set forth in Definition 1.6.1, there are
definitive solutions to both the problem of pricing and the problem of hedg-
ing derivative securities. This method of solution is known as arbitrage
pricing theory, because it proceeds from the observation. that an incor-
rectly priced derivative security in a complete market presents an arbitrage
opportunity. A correctly priced derivative security 1n a complete market
is redundant, in the sense that it can be duplicated by a portfolio in the
nonderivative securities. The portfolio that achieves this duplication is the
hedging portfolio, which the seller of the derivative security can use to re-
move the risk incurred by the sale. Of course, the existence of the hedging
portfolio prompts one to ask why an agent would buy rather than duplicate
a derivative security. It appears that this occurs because markets are not
frictionless. In order to duplicate a derivative security by portfolio manage-
ment, an agent would have to develop a mathematical model, pay brokerage
fees, and gather information about the statistics of the market. Agents avoid
these costs by striking a deal with another agent (intermediated by an ex-
change or a financial institution) or by paying a fee to a financial institution.
A financial institution has modeling expertise and smaller transaction costs
than its clients because of the volume of its transactions and the fact that
many of these take place in-house.

We present the arbitrage pricing theory for European contingent claims
in Section 2.2, and for American contingent claims in Section 2.5. Special
cases of European contingent claims, such as forward and futures contracts,
are treated in Section 2.3, whereas Section 2.4 computes the prices and
hedging portfolios for European call and put options as well as for a certain
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type of path-dependent option (Example 4.5) in the context of a model
with constant coefficients. In particular, Example 4.1 derives the celebrated
Black and Scholes (1973) formula for the price of a European call option
in a model with constant interest rate and volatility. The development of
the arbitrage pricing theory for American contingent claims (Section 2.5) is
based on the theory of optimal stopping, which we survey in Appendix D;
special cases, such as the American call and put options, are studied ir;
detail in Sections 2.6 and 2.7, respectively.

2.2 European Contingent Claims

Throughou‘g this chapter we shall operate in the context of a complete, stan-
dard ﬁrfanczal market M (Definitions 1.1.3, 1.5.1, 1.6.1 and Theorem 1.6.6).
~ In particular, the price of the money market is governed by

dSo(t) = So(t)[r(t) dt + dA(t)] (2.1)
and the prices of the stocks satisfy

N
dS, (t) = Sn(t) [bn(t) dt + dA(t) + Z Ona(t) AW @ (t)} ,n=1,...,N,
d=1
4 ' (2.2)
with o(t) = (0n4(t))1<n,a<n nonsingular for Lebesgue-almost-every t €
[0, T] almost surely. Recall that So(0) = 1 and S (0), . .., Sn(0) are positive
constants.

Deﬁniti‘on. 2.1: A Europegn contingent claim (ECC) 15 an integrable
cumulative income proces@o simplify the notation, we shall always
assume that C(0) = 0 almo 15.

CVISIDI%

European contingent claﬁé”;}?'ﬁsought and sold. The buyer, who is said

tz assume a long position in the claim, pays some nonrandom amount I'(0)
; htlme Z€To a.qd is thereby entitled to the cumulative income process C(-).
e seller (writer, issuer), who is said to assume a short position, receives

I'(0) at ?ime zero and must provide C(-) to the buyer. Thus, the seller has
Cumulative income process

T(t)=T()-C(t), 0<t<T. (2.3)

O'Et}flsllseller’s objective is to choose a martingale-generating, I'(-)-financed
@ 1>0 é)rocess (mo(+),m(+)) such that his corresponding wealth satisfies
- glmpst surely. 1n other words, the seller wants to “hedge” the
k. agc;mtmn in the contingent claim by trading in the market in such a
- 0 make the necessary payments and still be solvent at the final

» almost surely. Recall from (1.5.8) that the seller’s discounted wealth
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process satisfies

X)) B dC(u) t .
=TI(0 /(O,t] So(u) +/0 Solw) (u) (u)dWo(u), 0Lt S(T)
2.4

So(t)

have, upon taking Pp-expectations in (2.4), that

2 dC(u)
z 2 Ey { /( omi 5o (u)} <T(0). (2.5)

This provides a lower bound on the time-zero price I'(0) the seller must

charge for the ECC C(-).

Suppose the seller charges the amount z. Because the market was as-
sumed to be complete and the cumulative income process C(') is integrable
(Definition 1.5.5), the random variable So(T) [ f(o,T] %%] is financeable:
there is a martingale-generating portfolio #(-) satisfying

© dC(u) /T 1 .,
=x+ — @' (u)o(u) dWo(u) a.s. 2.6)
/(O,T] So(u) o So(u) (o) (v) (

(see Proposition 1.6.2). Define X (") by (2.4) with z replacing I'(0) and #(:)
replacing 7 (-), namely,

If () is martingale-generating and if X (T) > 0 holds almost surely, we
t

X [ d0w [ 7 ,
T =" foy Tl T ST BEHETT )

Then (2.6) shows that X(T) = 0 almost surely. With 7o(t) £ X(@)-#'(t)1,
the seller has found a martingale-generating, I'(-)-financed “hedging” port-
folio (#o(-), (")) that results in nonnegative wealth at time T, with
I'(0) = z. Thus, the seller of the contingent claim can charge z (but no less)
for the ECC C(-) and use the portfolio (#o(-),#(-)) to hedge his position.

Now let us take conditional expectations with respect to F (t) under the
probability measure Py in (2.6) to obtain

1 _ dC(u)
T +/0 So(u)w (uw)o(u) dWy(u) = Eo [/(‘o,r] 5o() } ]-'(t)} CD<t<T.

Substitution into (2.4") yields

X(t) _  dC(w) |
m =4 [/(t,T] So(u) ’ ]:(t)} , 0st<T. (2.7)

This provides a simple representation for the seller’'s wealth process
corresponding to the hedging portfolio.

The buyer of the contingent claim can, if he wishes, hedge his position
by the reverse strategy. He has income process —I'(-), and (—#o(), —7())
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is a (—I'(-))-financed portfolio process corresponding to the wealth process
—X(-) (and, in particular, final wealth —X(T') = 0 almost surely).

The above discussion shows that the “fair price” at time zero for the ECC
C(') is z given by (2.5). To wit, if the ECC were traded at any other price,
then either the seller or the buyer would have an arbitrage opportunity.

We are also interested in the price of the ECC at other times ¢ € [0,T].
Subtracting (2.4) evaluated first at T and then at ¢, we obtain

X(T) X)) / dC (u)
(

E@T) i W t,T) So(u)

T
+/t Sol(u) W’(u)a(u) dWO(u), 0 S t —<— T.
(2.8)

We imagine that at time ¢, an agent sells the remainder (excluding any pay-
ment at time t) of the ECC C(-) for a price X (t) (measurable with respect
to F(t)), invests X () in the market, pays out the contingent claim between
times ¢t and T', and wants to have X (T) > 0 almost surely. Prompted by
these considerations, we make the following definition.

Definition 2.2: Let C(-) be a European contingent claim. For ¢ € [0, T]
the value of C(-) at t, denoted by VECC(t), is the smallest (in the sense of
a.s. domination) F(t)-measurable random variable £ such that if X (t) =&
in (2.8), then for some martingale-generating portfolio process 7 () we have
X (T) > 0 almost surely. The value VECC(0) at time ¢t = 0 is called the
(arbitrage-based) price for the ECC at t = 0.

Proposition 2.3: The value at time t of a European contingent claim

C() is

VECC 4y — Y. dC(u) 1
(t) = So(8) - Eo [ /(m Sl | 7o)

, 0<t<T. (2.9)

~ In particular, VECC(0) =z as in (2.5).

PROOF. If X(T) > 0in (2.8) and () is martingale-generating, then

X(t) F o dC(u)
S 25 [ /(m = ’ ]-'(t)} , 0<t<T, (2.10)

thich shows that VFCC(t) must be at least as large as the right-hand side
P (2'9){ But the wealth process X(-) of (2.4"), corresponding to the pair
(7o(-),#(-)) whose existence was established above, satisfies (2.10) with

€quality (see (2.7)). It follows that VECC(t) = X(t), which is (2.9). a

Iflieemark 2.4: We may use “Bayes’s rule” (Karatzas and Shreve (1991),
E mma '3.5.3) to convert (2.9) to a conditional expectation with respect to
€ original probability measure P, namely

1 .
VECC(4) = Ho(t)E [ o Ho(u) dC(u) ‘ ]-'(t)} , 0<t<T,
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where Ho(u) L % (u)/So(w) is the state price density process. In particular,
the fair price of the claim at t = 0 is

VECC(0)=E Ho(u) dC(u).
(0,71
Remark 2.5: Unlike much of the finance literature, our d‘eﬁnitipn of
VECC(.) is set up so that PECCHRY e almost surely. This is consistent

with our convention that processes have RCLL paths, a convention that

. Clu) - X . 1
requires the integral J Y %0_(%)2 in (2.9) to be over the half-open interva

¢c(r—) = C(T) — C(T—), so a final jump
t,T)]. From (2.9) we have VE¢¢(T'-) ! inal j
i(n C']() causes the same final jump in VfECC(-). In particular, if B is an
F(T)-measurable random variable satisfylng

1Bl ] (2.11)
E < 00 .
° [SO(T)
and C(') is given by
0 if0<t<T,
c(t) = {B ;f =T, (2.12)

then we have
VECC(t) = So(t) - Eo [-S—O% 1 f(t)] , 0<t<T, (213)
0.

VECC(T-) =B, VEOU(T)= (2.14)

Definition 2.6: Let C(-) be a European contingent claim, and deﬁrlle
[(:) = VECC(0) - C(). The martingale-generating, T'(-)-financed portfolio

process (#o(-), #(-)) satisfying

vECC@y / dC (u)
So(t) 0.4 So(u)
i1 A )o(w) dWolu), 0<t<T, (2.15)
+ [ gt e Wal)
fot) = VECC(t) —#'(t)l, 0st=T, (2.16)

is called the hedging portfolio for (a short position in) C(-).

Remark 2.7: The representation (2.9) allows us to write (2.15) as
g T dC(u)
/0 ﬁ'(u)a(u) dW()(’U,) = EO li/(O’T] S()(U) ’ f(t)\

So(u)
dC'(u)
- [/(O,T] So(“)] ’

o
IN

t<T,
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or, in differential form,

#()a(t) dWo(t) = So(t) - ds (EO [ /(0 ., ‘;f((:)) |f(t)D. (2.17)

his formula sometimes enables us to determine #(-) explicitly.

.3 Forward and Futures Contracts

nsider an F (T')-measurable random variable B satisfying (2.11). We re-
rd B as the market value at time T' of some asset, such as a stock or
mmodity. In this section, we define the forward and futures prices for
is asset.

Suppose that at time zero an agent buys a contract obligating him to
rchase the above asset for the nonrandom delivery price ¢ on the delivery
e T. The seller of this contract, who is taking the short position, agrees
deliver the asset at time T in exchange for g, even though the market
e at time T is B. According to Remark 2.5, the value process for this
ract is

VFC(t;q) = So(t) - Eo [;(_T‘; \ ]-'(t)] , Oz E (3.1)
ided that
Foy

ple 3.1 (Forward contract to purchase a stock that pays no divi-
):  Suppose the contract is to purchase one share of the first stock,
B = S,(T). If the first stock pays no dividends and o(-) satisfies the
ikov condition (1.5.17) with n = 1, then Remark 1.5.11 implies

VFO(t;q) = 51(t) - aSo(t) - Bo[l/So(T)F@)], 0<t<T.  (33)

addition Sy(T') is nonrandom, the hedging portfolio is particularly
. The agent assuming the short position sells the contract for
(0;9) = 5,(0) — S—o'((IT) at time zero, buys one share of the stock at
51(0), and borrows S_O%T) from the money market. At time T, his
y-market debt has grown to q. He delivers the first stock, receives the
€Ty price ¢, and pays off his money-market debt.

€ quantity of interest in finance is the forward price of an asset, defined
llows.

Dition 3.2: Let B be an F(T)-measurable random variable, and
(2.11), (3.2) hold. The forward price process f(-) for B is
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defined by
) & BB/S@IFO) oy p .
Eo[1/So(T)1F (1))
From (3.1) we see immediately that f () is the unique, F(t)-measurable
solution to the equation

VEO( £(2)) = 0. (35)
In other words, at time ¢ the value is zero for the contract to buy at date
T the asset at delivery price f(t).
Example 3.3 (Forward price of a stock that pays no di.vidends ) If B =
S,(T), the first stock pays no dividends, and o(-) .satlsﬁes the Novikov
condition (1.5.17) with n = 1, then (3.3) and (3.5) yield
ft) = S0/50 __ g<i<T (3.6)
Eo[1/So(T)|F(2)}

Example 3.4 (Forward price of a stock with nonrandom dividend rate):

If B = 8,(T), the dividend rate process 61(-) is nonrandom and the pro-
are uniformly bounded, then the forward price

cesses 011(+)y- -, 01N (")

Si1()/So(t) . '_ T T u}, 0<t<T. (3.7)
10 = B1/Se@)F 0] p{ /t i

Si(t) t }
To see this, observe from (1.5.16) that the process St XP { Jo 61(u)du

is a Py-martingale, so the numerator of (34) is

T
Eo[$y(T)/So(D)F (1)) = 208 exp {— / 61(u) du} |

Example 3.5 (Forward price of a stock u_)z'th nonrandom dividend. paﬁ/—
ments, when the money market is nonrandom): If B. = 8,(T), if the
dividend-payment p(-) = 61 (-)S1(-) and money-market prices So(-) are non-
random, and if o(-) satisfies the Novikov condition (1.5.17) with n = 1, then
according to Remark 1.5.11 the process

S1(t) t p(u) " <T,
so(t)“L/0 TR |

is a martingale under Py. From (3.4) we have
5 (7 ) |
f(t) = So(T) [m - /t S—o(_zﬁdu} : (3.8)

When a commodity rather than a stock is being priqed, there can be 1:
storage cost, which corresponds to negative p(-) in this example. In tha
case, (3.8) is called the cost-of-carry formula.
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Forward contracts on assets are not always available, and if they are, they
re available only with delivery price equal to the forward price. Thus, at
he time of purchase, the forward contract has value zero. After purchase,
he value of the contract is typically nonzero. In particular, just before the
delivery date T, a forward contract bought at time zero has value

_ Eo[B/So(T)]

FC(mp_, =B _ = T n/Q Ty
VT SO0) =B /0) =B -5 e

As the value of a forward contract moves away from zero, one of the
rties to the contract might become concerned about the possibility of
ault by the other party. The worried party might wish to see the other
ty deposit money into an escrow account. Any such stipulation would,
course, change the nature of the contract and render inappropriate the
asoning that led to the forward price formula (3.4). '

This leads us to the concept of the futures price o(t) for an asset with
ket value B at time T'. This futures price process is set such that at
ery time ¢ € [0, T), the futures contract has value zero. Suppose one party
Is (for $0) such a contract to another party at time ¢. At time ¢+ dt, the
ures price has moved by an amount ¢(t + dt) — ¢(t). According to the
visions of the contract, if p(t + dt) — ¢(t) is positive, the party holding
short position must transfer this amount of money to the party holding
long position. If @(t + dt) — ¢(t) is negative, the transfer of money
in the other direction. This way, the futures contract is “continuously
ttled”t and the value of the contract is always zero. The futures price
an asset must agree with the market price on the delivery date. We are
ready for a precise definition.

finition 3.6: Let B be an F(T)-measurable random variable, and let
:) be a European contingent claim whose value is zero for all ¢ € [0,T]
10st surely, and that satisfies ¢(T) = B. Then we say that () is a
ures price process for B,

rem 3.7: Let B be an F(T')-measurable random variable satisfying
(B?) < 00, and assume that So(-) is bounded from above and away from
» uniformly in (t,w) € [0,T] x Q. Then the futures price process for B
ts, is unique, and is given by

o(t) = Eo|B|F(t), 0<t<T (3.9)

"The mechanism for the transfer of money is provided by the margin ac-
ts set up by brokers dealing in futures. Money is credited or debited to these
Ounts daily, depending on the movement of futures prices. Investors can with-

Jmoney when the balance exceeds a certain threshold, and are subject to a
g1n call if the balance falls too low.
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PROOF. We first show that the square-integrable Py-martingale ¢(-)
defined by (3.9) satisfies the conditions of Definition 3.6. Define

I(t)é/0 gs(;‘jdgo(u), Ot Ty (3.10)

which is also a square-integrable martingale under Pp. From Proposi-
tion 2.3, the value process for ¢(-) is

Ve(t) = Solt) - Boll(T) — I(t)|F(t)] =0, 0<t<T. (3.11)

It is obvious that ¢(T) = B.

We next prove uniqueness. Suppose ¢(+) is any ECC satisfying the condi-
tions of Definition 3.6. With I(-) as in (3.10) we have (3.11), which implies
that I(-) is a martingale under Fp. Hence o(t) = fot So(u)dI(u),0<t<T
is also a local martingale, so ¢f¥(-) = 0,¢%(:) = ¢(*), and

¥
Eo(I)(T) = Eo /0 gg—lw—)dm(u) amo

by (1.5.9). Since I(:) is a square-integrable martingale, ¢(-) is also. In
particular, ¢(t) = Eolp(T)|F(t)] = Eo[B|F(t),0<t<T. O

Remark 3.8: Because the value of a futures contract is always zero, an
investor who holds a position in futures can “close out” that position at any
time and at no cost. This is in fact the fate of most futures contracts; the
position is closed out before maturity. If a long position in a futures contract
is not closed out prior to maturity T, then in actual markets the investor
must receive delivery of the asset at market price B. Since purchasing the
futures at some time ¢ € [0, T, the investor has received a total cash flow of
ftT dp(s) = B — ¢(t), and so after the terminal payment of B the investor
has paid the net amount ¢(t) between times ¢ and 7. In this sense, the
investor has purchased the asset for the futures price (t) prevailing at the
time the futures contract was entered. However, the payment of (t) occurs
continuously prior to maturity, whereas for a forward contract the payment
occurs at maturity.

It is common in finance to approximate futures prices by forward prices.
The relationship between these two quantities is described in the following
corollary.

Corollary 3.9 (Forward-futures spread): Under the conditions of Theo-
rem 8.7, we have
COVO [B, I/So(T)|.7:(t)]
t) = o(t) + ,
10 = 20+ T, [1/80(T) F(0)

0<t<T,

where

CovalX, YIF(2)] 2 Bo {[X - Bo(XIF(&))] - [Y - Ba(Y1F()} | FO}-

2.4 European Options in a Constant-Coefficient Market 47

In particular, the forward price f(0) a ) i j
. grees with the future pri ;
nd only if B and 1/So(T) are uncorrelated under Py. price 04

ROOF. DBecause

Covo[X, Y|F(2)] = Eo[XY|F(8)] — Eo[X|F(t)] - Eo[Y]F(2)],
may rewrite (3.4) as

Eo[1/So(T)|F(2)]
e result follows from Theorem 3.7. C

-
Clearly, f(t) = @(t)V0<t<T if th ‘ .
Rrvinictic (noorandom). e money-market price So(T) is

i

4 FEuropean Options in a
" Constant-Coefficient Market

this lsection we present examples of European options in the context of
omplete, standard market with constant risk-free rate r(-) = r, dividend
vect'or 6(:) = 6 = (61,...,6n), volatility matrix o(-) = o, and with

)=0
dSo(t) = So(t)rdt

L dS () = Sa(t) [bn (t)dt + i Ond dW(d)(t)J

d=1

(4.1)

= S (t) [(r—én)dt+20nddWéd)(t)J, n=1,...,N (4.2)
d=1

e(nle.si')sﬁl far:(}il (1.6.1?). Qne Of. these is the Black—Scholes formula. Com-

o ;t market is equivalent to nonsingularity of o. For this

P is, ) necessary to assume that the vector b(-) of mean rates of
constant, and consequently, the market price of risk process

0(t) = o~ [b(t) + 6 — r1] (4.3)
f I}ecessarily constant either.
ving (4.1), (4.2), we obtain Sy(t) = "t and

Sn(u) = hy, (u—t, S(t), o(Wo(u) — Wo(t))), 0<t<u<T
n=1,...,N, o
(4.4)

re b - |
h:[0,00) x RY x RN — RY is the function defined by

t £ 1
n( ’p’y) Dn €Xp [(r_‘sn—iann)t‘i‘yn], 7’7,=1,...,N', (45)
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!/

and @ 2 (@nt)1<n<e<n = oo’ . Here we denote by S(t) = (S1(t),. -, Sn(t))
the vector of stock prices. B .
Consider an ECC of the type C(t) =0,0 <t < T., and C(T) = ¢(S(T));
here ¢ : RY — R is a continuous function satisfylng E0|c.p(S.(T))| < .
According to Proposition 2.3, the value process for this claim is
VECC (1) = e 7T~ Eo[p(S(T))| F(1)]
— T T0 By [ (T — 1,50, o (W(T) ~ Wo(0))) | #(0)

1

{grg)

because Wy(-) is a Brownian motion under Py, relatiYe to the filtration
{F(t)}o<t<T- From these considerations, we see that with

2 N
e~ [en p(h(s, T, o’z))(—%Tl)N—/; exp{— ”;ﬂ }dz, s>0,z€RY,
s=0,z € Rf,

(4.6)

o2 =Y e,

the value process of the ECC is
VECC (1) = e T Ey[p(S(T))|F(t)] = u(T—t,5(t), 0<t<T. (4.7)

Using Remark 2.7, it is possible to compute the hedging portfolio. Indee.d,1
under appropriate growth conditions on the functiog @ (e.g.3 polynoniuab1
growth in both ||z|| and 1/||z||), the function u of (4.6) is the unique classica.

solution of the Cauchy problem

Y 0%u

1
2 Zl ?4:1 It G O
al Ou ou .
O py=22, on (0,T] x RY,
+Zl(r — 6n)Zn i T gy O (0,7 i
1(0,z) = p(z), VTE€E RY, (4.8)

by the Feynman-Kac theorem (e.g., Karatzas and Shreve .(1991), Theoé
rem 5.7.6 and Remark 5.7.8). Applying It&’s rule and invoking the secon
representation of dS,(t) in (4.2), we obtain

N N u )
du(T—t,S(t)) = ru(T—t,S(t)) dt+Y_ Y _ 0neSn(t) 5o (Tt S() dWo

n=1 {=1

or equivalently,

Solt) - de ("—(T%(t)s@) — #(t)o dWa(t)

2.4 European Options in a Constant-Coefficient Market 49

with #(-).= (#1(-),...,#n("))’ given by
Ou

0z,

Ta(t) = Sn(t) 5 —(T —t,8(t)), 0<t<T, (4.9)
forn=1,...,N. Recalling (4.7) and Remark 2.7, we conclude that #(-) is
indeed the hedging portfolio of Definition 2.6. At any time t, this portfolio
holds ;I—’i(T —t,5(t)) shares of the nth stock, n = 1,..., N. The hedging
portfolio also has a component

N
fio(t) = (T —1,5(t)) — Y #a(t), 0<t<T, (4.10)
n=1

recording holdings in the money market.

- It should be noted in (4.6), (4.7) and (4.9), (4.10) that the value of the
ECC and the hedging portfolio depend on , §, and o, but not on the vector
b(-) of mean rates of return of the stocks. This fact makes the formulae

Particularly attractive, because the mean rates of return can be difficult to
'stimate in practice.

xample 4.1 (European call option): A European call option on the
1st stock in our market is the ECC given by C(t) =0, 0<t< T and
(T) = (S1(T) — q)*. The nonrandom constant q > 0 is called the strike
ice, and T' is the ezpiration date. The random variable (S, (T)-¢g)t is
e value at time T of the option to buy one share of the first stock at
he (contractually specified) price . If $;(T) > g, this option should be
ercised by its holder; the stock can be resold immediately at the market
ice, at a profit of S)(T) — ¢. If S;(T) < ¢, the option should not be
ercised; it is worthless to its holder.

With o(z) = (z1 - ¢)™", the Gaussian integration in (4.6) can be carried
ut explicitly, to yield

ECC [ zie7%@(py (s, 71; )
Piziq) = —qe " ®(p-(s,21;9)), 0<s<T, =z €(0,00),

(-Tl - (I)+, s=0, z€ (O, oo)’
(4.11)

ere

VoT J_so

This is the celebrated Black and Scholes (1973) option pricing formula.
hedging portfolio is (see (4.9), (4.10))
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avECC
3I1

7ECC(t) = VECO(T — ¢, 81(t);9) — S1(t)

(T —t, Sl(t);q)s 7r2Ecc(t) == ”Igcc(t) =0,

avECC
6I1

rECC (t) = S1(t)

(T —t,51(t)g),0 <t < T.
(4.12)

Exercise 4.2: Show that the function u(s,z1) = uECC (s,11;q) of (4.11)

satisfies

F 6—::%(5,131) > U(S,Il), o< s < T’ T € (0’ OO),

and hence that we have
rECC@)y <0, 0<t<T, (4.12)

I

from (4.12). In other words, the hedging portfolio for a (short position in
a) European call option always borrows.

Example 4.3 (European put option): The European put option confers
to its holder the right to sell a stock at a future time at a prespecified
price. We model a put on the first stock as the ECC with C(t) = 0 for
0<t<Tand C(T)=(q— S1(T))*. Because (¢ — S1(T))" = —(81(T) -
q) + ($1(T) - g)*, holding a long position in a European put is equivalent
to holding simultaneously a short position in a forward contract and a long
position in a European call. This is the so-called put-call parity relationship.
We have already priced the European call; the forward contract is easily

priced, as we now describe.
First note from Remark 1.5.11 that

es—(r—él)tsl(t) £s (0) n /t e-(r—&l)u[dsl (u) — (r - 51)51 (u) du].
0

t ‘ ,
S1(u) S1(u)
=5:(0 +/ B [d(——) + Z—L61 du
1( ) A S()(u) Sg(u) 1
is a martingale under Py. Consequently, the forward contract value process
(see (3.1)) is
S()(t) - Eq \:w ' f‘(t):\ — 6—61(T_t).sl(t) o e—r(T—t)q
| — WFO(T — 1, 5,8 0)

where

uFC(s,21;q) £ €%z — g, (413)

The hedging portfolio is (see (4.9), (4.10))
AFO) =0 T-08,(1), wFC(t)=-=mR°(t) =0,

()= —e"Ttq, 0<t<T. (4.14)
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In other wprds, at time ¢ = 0 the contract is sold for e=417§;(0) — e~"T

The sel-ler invests the proceeds in the first stock and in the mlon . ki -y
respectively, buying e=%7 gshares of stock and borrowing e“’"Teyfrmal (;f’
money marke.:t. Dividends are reinvested in the stock. The yieldq e(r)mht .
of the stock is Y;(-) defined by (1.11), and the number of sharespownsec;l rlz

xFC()
=%y ) S0 we have the stochastic differential equation

| FC
cht=7r1 (t) _ _FC 7 N
| 7FC(¢) S dVi(t) =77 C@t) [(br +61)dt + > g dWD ()|,
d=1 !
hose solution is
FC(; _ FC( 61t 91() _ s (7
i C(t) = 7FC(0)e 50 =" a(T-0g (¢).

t time T, the agent owns one share of the stock, which he delivers at

ice g. This ¢ is the amount of money n
s y needed to pay off the debt to the

Returning to the European put option, we define
FcC (

EP .2
u (s, 2159) = —uF9(s,2159) + uFC (s, 215 ). (4.15)

e value process for the E is uB¥

) e European put is u™ (T'—t, S;(t); ¢). The hedging
EP(,\ _ __F

T (t) = -1, C@t) +75C(t), 0<t<T, n=0,1,...,N. (4.16)

xalg%!e 4.4: Consider an ECC of the form C(t) =0, 0< ¢t < T
ctio(n %1— w(S1(T)), wbere x [0,00) — R is a convex function. Such a
as a nondecrea51ng, right-continuous derivative D%y satisfying

ola) = p(0)+ [ "Dtolg)dq, =30 (4.17)

~g-,eKa.ratz'as anc% Shreve (1991), Problems 3.6.20 and 3.6.21).
establish an integration-by-parts formula for D+¢. There is a unique
ure u on the Borel subsets of [0, 00) characterized by !

#((a,b]) = D*p(b) — D*p(a), 0<a<b.

P:R —0,00)b i i
T [(z)d) _ela function of class C*, with support in [0, 1] and
0 P z = 1. Define a sequence of mollifications of ¢ by

@)= [ o (a+2) o)z =n | etwptny —na)ay

I each ¢, is of class O i i
n » and limy o0 o1 (q) = ©(q), limn .00 7, (q) =

¥(g) for all g 2 0. Furthermore, for any bounded, Borel-measurable



‘u\
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function g : [0,00) — R, we have

b .
lim | g(q)¢'l(a) da = /( s, 0<a<h

n— oo

a fact that can be proved by first considering functions g that are indicators
of intervals. If g is a C* (R)-function, we may let n — oo in the integration-
by-parts formula

o(B)P(b) — g(@)Pa(@) — /

a a

to obtain

b
g(b)D+<p(b)—g(a)D+<p(a)—/ g'(q)D* p(q) dq=/ g(q)p (dg). (4.18)

)
a
We now fix z; > 0 and apply (4.18) with g(q) = (; — ¢)t,a =0 and
b = z,, to obtain

o(z1) — p(0) — 11 D*p(0) = / (1 —aytu(de)  (419)
(0,00)

b

in conjunction with (4.17). Formula (4.19) allows us to compute the value
process for the contingent claim C(T) = p(S1(T)) at the beginning of this
example. Indeed, this contingent claim has the value process

=T~ Eg[o(S(D)F ()] = e 7T Eq [cp(O) + D% p(0) - S1(T)

& / ($1(T) = @)t u(da)|F (t)]
(0,00)
— e "T=95(0) + DT p(0) - uFC(T — ¢, 51(£);0)

+/ uBC(T — t,81(t); )u(dq)
(0,00)

(cf. (4.7)), where u”'® is defined by (4.13) and uZ9 by (4.11).

Example 4.5 (A path-dependent option): Let us take N = 1,0 =011>
0 and assume that b,(-) is deterministic, so the one-dimensional Brow-
nian motions W(-) and Wy(-) both generate the filtration {F(t)}o<t<T"
We assume without loss of generality that we are on the canonical space
Q = C([0,T}), the space of real-valued continuous functions on [0,T7], and
that Wy, is the coordinate mapping process Wo(t) = w(t),0 <t < T, for all
w €

Consider an ECC of the form C(¢) =0 for 0 < ¢ < T and C(T) = G(w),
where G : C([0,T]) — R is a functional satisfying under Py the conditions
(E.4)-(E.6) of Appendix E. Then from the Clark formula (E.7), the value

2. i i
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process (2.9) for the above ECC is
E —r(T—
VECC(t) = e T o [G(Wo) | F(8)]
= e-T(T_t)EoG(Wo)
¢
+e—r(T—t) .
’ Eo[aG(Wo, (S, T])I}—(S)]dWO(S)
From Remark 2.7 we see that the hedging portfolio is
1
)= = —r(T=t
m(t) = e ) Eol0G(Wo; (¢, T1)| F (1)),
wo(t) = VECC(t) — 7, ().
n particular, if
C(T) = max S,(t) = s
1504 1 (t) = S,(0) -OrsntaéxT exp [(r — %) t+0W0(t)]} ,
(4.20)

we have a so-called look-back option (LBO)

For the look-back option of (4.20), ;Ne have G(W,
:P][gma‘xogth(Wo(tz‘F vt)], where v £ L — 2. With Vif()t) Wo(t)

S M(t) = maxo<s<t W(s), we obtain from'Example E.5 of Append?x(t%)'-*-

51(0) -

e

m(6) = e T08,(0) [ LT 1, Kit) - (o)

~ o0
+ae”W(t)/ 7 :
- T —t,&)e’
M(t)-W(t) ( §erde),

= e "I E, [G(Wo)|F(t)]

- e—r(T—t)S1 (0) [ealﬁf(t) W Kae
+ oe? .(t)/ AT
} —t,8)e’%de
‘ M) - W (2) ( E)e ’

ere f is defined in (E.11). We ded .
ok-back option of (4.20) his valuee uce from this last formula that the

VEBO(0) = e=7T 5, (0) { l+o /0 Ooef’b (T, b)db}

= e TS, (0) {1 +a/0°°e°" [1 — (b \—/%T)J db

LBO(t)

53
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9.5 American Contingent Claims

American contingent claims differ from European contingent claims in that
the buyer of an American contingent claim can opt, at any time of his
choice, for a lump-sum settlement of the claim. The amount of this set-
tlement is specified by a stochastic process, which is part of the claim’s
description. In this section, we define the value of an American contingent
claim and characterize it in terms of the Snell envelope of the discounted

payoff for the claim.

Definition 5.1: An American contingent claim (ACC) consists of a cu-

mulative income process C(-) satisfying C(0) = 0 almost surely, and of an

{F(t)}-adapted, RCLL lump-sum settlement process L(-). We assume that
the discounted payoff process

A dC(u)  L(t) .

Y(t) = = ) <t<T, (5.1)

)= Jon Sotw) 50 )

is bounded from below, uniformly in ¢ € [0,T] and w € €2, and continuous

(jumps in C(-) and L(-) occur at the same time and offset one another, i.e.,

they are of equal size and opposite direction), and satisfies

Eo [ sup Y(t)] < . (5.2)

0<t<T

Just as with a European contingent claim, the buyer (or holder) of an
ACC, who is said to assume a long position in the claim, pays some nonran-
dom amount v at the initial time and is thereby entitled to the cumulative
income process C(-). The seller, who is said to assume a short position,
receives v at time zero and provides C(-) to the buyer. Here, however, the
buyer also gets to choose an {F(t)}-stopping time 7 : Q — [0, T, called the
ezercise time. At time 7, the buyer forgoes all future income from C(:) and
receives instead the lump-sum settlement L(7). Thus, once 7 is chosen, the
cumulative income process to the seller is

Lt)=7—CEAT) = L(T)lg>ry, 0S8 <T. (5.3)

In particular, on the event {r = 0}, the seller receives ¥(0) = 7 — r(0)
at the initial time and nothing more. The buyer has cumulative income
process —I'(:).

For many American contingent claims, C (-) = 0. This is the case, for ex-
ample, with American options. An American call option entitles its holder
to buy one share of a stock, say the first one, at any time prior to T
at a specified strike price ¢ > 0; it is modeled by setting C(-) = 0,
Lty = (S:1(t) - @)™ :

A prepayable mortgage is a more complex American contingent claim.
We model this by assigning the long position to the borrower, since the
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borrower gets to choose the time of prepayment. The original principal is
—v, —C(t) is the cumulative mortgage payment made up to time ¢, —L(t)
is the remaining principal after any payment at time ¢, and T is tl,le term
of the mortgage. Every upward jump in —C{(:) corresponds to a regularly
scheduled payment and creates a downward jump of equal magnitude in
—L(-), so the discounted payoff process Y{(-) is continuous.

- As with a European contingent claim, the seller of an ACC must choose a
portfolio to hedge the risk associated with his short position. This hedging is
compl'icated by his uncertainty about the exercise time r appearing in (5.3)

The simplest case is when 7 = T', because then the hedging and pricing are:
like thoge of a European claim. In this case, the seller’s cumulative income
process is given by v — C(t) — L(T)1{4=ry for 0 <t < T, and if n(-) is a
martingale-generating portfolio, the wealth process is given by

X(t) I dC(u) L(T)

SO(t) . (O,t] SO(U) So(T) 1{t=T}

t 1
+/0 A m'(u)o(u)dWo(u), 0<t<T (5.4)

(see (1.5.8)). The seller wants X(T') > 0, or equivalently,
dC(uv)  L(T) S|
Y(T) = / + < / /
or1 o) 5@ =" Jy o™ ™

most surely. To ensure that he can make the lump-sum payment if the
uyer should §top prematurely, the seller also wants X (t) > L(t) a.s. for
<t < T. This condition, coupled with (5.5), yields

dC(u)  L(t)
0,4 So(u) ~ So(t)

o(u) dWy(u) (5.5)

Y(t) =

t
1
< /
<~ +/0 So(u)ﬁ (w)o(u) dWo(u) a.s. Vte[0,T]. (5.6)
uppose (5.6) ho}ds. Since both sides are continuous in ¢, the probability-
o event on which the inequality is violated can be chosen not to depend

n t. Therefore, the inequalit if t i i
; R y holds if ¢ is replaced by an d
king values in [0, T): v oy random tme T

v o [ 4w LD [ 1
) /(0,1] So(u) + So(7) £ ’Y+A So(u)ﬁ (u)o(u) dWy(u) a.s.
(5.6)

his is just the statement that the seller, with cumulative income pro-

88 (5.3), has nonnegative wealth after settling the ACC at any exercise
€ 7 chosen by the buyer.

efinition 5.2: Let (C(-),L(-)) be an Ameri i
043 , L(- merican contingent im.
lue of the claim at time zero is B Bt
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VACC(O) £ inf {7 € R; there exists a martingale-generating

portfolio process 7(-) satisfying (5.6)}.

A hedging portfolio for (C(-),L(")) is a martingale-generating portfolio
process 7(-) satisfying (5.6) when v = VACC(Q).

Theorem 5.3: We have
VACC(0) = sup EoY(7), (5.7)

T€So, T
where So, 1 s the set of stopping times taking values in [0, T]. Furthermore,
there is a stopping time T* attaining this supremum and there is a hedging
portfolio 7(-) such that

g

Y-('T*)=VACC(0)+/T :
0

So () 7' (u)o(u) dWo(u) a.s. (5.8)

Remark 5.4: Equation (5.8) asserts that if the seller uses the hedging
portfolio 7(-) and the buyer chooses the stopping time 7*, then after settle-
ment the seller has wealth X (7*) = 0. The buyer, whose cumulative income
process is the negative of that of the seller, can hedge his long position with
—#(-) and after settlement have wealth —X (*) = 0. The stopping time 7"
is an optimal ezercise time for the buyer of the ACC.

PROOF OF THEOREM 5.3. By the addition of a constant, if necessary,
the process Y(-) can be assumed nonnegative, and we can bring the
results of Appendix D to bear. According to Theorem D.7, there is a Fo-
supermartingale {£(t), F(t); 0 <t < T} with RCLL paths, called the
Snell envelope of Y (-), such that

£(t) > Y(t) forall t € [0,T)
almost surely, and
£(v) = ess sup,esv’TEo[Y('r)lf(v)] a.s., YveSor, (5.9)
where S,.1 = {r € Sr;v < 7 < T as} In particular, £0) =
SUP; s, 1 EoY (7). According to Theorem D.12, the stopping time
Sinf{te[0,T); £t)=Y@)}IAT

satisfies £(0) = EoY (7%).

Theorem D.13 asserts that £(-) = M (-) — A(-), where M() is a uniformly
integrable RCLL martingale under Fp, and A(-) is an adapted, continu-
ous, nondecreasing process with A(0) = A(7") = 0 as. Because of our
a,ssumptAion of market completeness, the F(T)-measurable random vari-
able B = So(T)M(T) is financeable; i.e., there is a martingale-generating
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portfolio process 7(-) satisfying

r o
M(T) = £(0) + /0 So (W) dWo(w) (5.10)

(cf. Proposition 1.6.2). Taking conditional expectations with respect to F(t)
in (5.10), we obtain

Y (t) <&(t) = M(t) — A(t)

=60 - A0+ | g (Wot) do(w
< £(0) + /0 Sol(u) #'(u)o(u) dWo(u), 0<t<T. (5.11)

It follows immediately that VACC(0) < £(0).

Now suppose that (5.6) is satisfied for some v € R and some martingale-

gEeI;ﬁEa‘;lng po\;tfolio Igocesi 7(-); take expectations in (5.6') to obtain
(7 Vo .

V?QCC(O)__ ¥ € So,r. It develops that £(0) < 4, and thus £(0) <

Havi.ng thus established £(0) = VACC(0), we see from (5.11) that #(-) is

3, hedging portfolio and (5.8) holds. |

Rerr.nark 5.5: The martingale M (-) in the proof of Theorem 5.3 is actually
continuous, as one can see by considering the second equality in (5.11).
Hence, the Snell envelope £(-) is also continuous.

Remark 5.6: If y = VACC(0), and #(-) = #(-) is the hedging portfolio
of Th.eorem 5.3, then (5.6) holds and implies (5.6') for any random time
T t.aklng values in [0,T]. Thus, even if the purchaser of the contingent
claim is allowed to choose 7 with knowledge of future prices, the seller of

the claim is not exposed to any risk if he uses the hedging portfolio of
heorem 5.3. a

We wish to extend the notion of the value of an ACC to times other than
€ro. Suppose that an ACC is given, and consider that at time s € [0, T]
bl_lyer pays the amount (s) (an F(s)-measurable random variable) to
cewve the remaining income process {C(t) — C(s); t € [s,7]} up to a
OPping time 7 € S, 1, at which time he receives the lump sum L(7). The
gument that led to'(5.6) now leads to the condition for the seller’s desired

0,s] So(uw) (s, So(u) ~ Solt)
( e L
;0(?) + : SO(U)W(U)U(U) dWo(u) a.s.,
vielsT) (5.12)
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Definition 5.7: Let (C(-),L(-)) be an American contingent claim. The
value of the claim at time s € [0,T], denoted by VACC(5s), is the smallest
F(s)-measurable random variable v(s) such that (5.12) is satisfied by some
martingale-generating portfolio process w(:).

Theorem 5.8: For s € [0,T], we have

' 1
(0.s] So(u) dC(u)] ; (5.13)

where £(+) is the Snell envelope of Y(-) and satisfies (5.9). Furthermore,
the stopping time

VACC(s) = So(s) [&(s) -

Te = inf{t € [s,T);€(t) = Y(OIAT

satisfies £(s) = E[Y(73)|F(s)]as., and with #(-) the hedging portfolio of
Theorem 5. 3 equality holds in (5 12) at 7
) ) dC( ) VACC /
Y7 = = dW, a.8.
- [ 5 [ s e doa)
(5.14)

PROOF. Replace t in (5.12) by an arbitrary 7 € S, and take conditional

expectations, to obtain
d
]_/ Clu) _ vs) L.
(0.5]

EolY ()| F(s)
and thus
VACC (s)

- dC(u)
é) - |
)~ Jo So@) = Sole)
For the reverse inequality, let t € [s,T] be given and observe from (5.11)
that

a.s. (5.15)

IA

S o(u) dWo(u) — [A(t) — A(s)]-
0 u
Because Y (t) < £(t) and A( ) — A(s) > 0, we have
B dC(u) B dC(u)
Ho /(O,s] So(u) =¢0) /(O,s] So(u)
B dC(u) ! At
<to- [ Tt [ s e awa(w

This shows that (5.12) is satisfied with

A(s) _ dC(u)
So(s) =80) - /(O,s] So(u)’
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‘whence

vACS(s) dC(u)
Sols) 8- /(O,s] 5@

‘ Replafing t by 77 in (5.16), we obtain equality because Y (7,
and A(77) — A(s) = 0 (Theorem D.13, especially (D.34)). =

Remark 5.9: Just as in Remark 5.4, we see here that the buyer of the
ACC can hedge his position with the portfolio process —#(-) if he calls for
settlement at time 7). Equation (5.14) is the statement that after settle-
ent, both buyer. and seller will have zero wealth. The stopping time 7] is
n optimal ezercise time in S,,1 for the buyer of the ACC. ’

ema'rk 5.10: Let (C(:),L(-)) be an American contingent claim. If the

yer is f.orced.to choose the exercise time 7 = T, then the value of the

im at time s is determined by formula (2.9) for European claims, namely
L(T)

dC(u)
Ey / +
(s,7] So(uw) — So(T)
he difference between the “American value”

- dC(u) |
OR S |

d this “European value” is called the early exercise premium

VECC(s) = So(s)

VACC () = Sols)

e(s) 2 VACC(s) -

VECC(S), 0<s<T. (5.17)
cause,
T dC(u) 3 L(T) L
L Sow) T S ~ ) =8I = M(T) - AT,
have
e(s
5oy~ £6) ~ BolY (DIF ()] = BolAT)|F ()] — A(s)
1 [T So(uw)dA -
= o / %lﬂﬂ} , 0<s<T (5.18)

us, ;from (2.9) of Proposition 2.3, the early exercise premium is itself

S(:/(aul)l;Aprocess for an ECC, namely, the cumulative income process

A (u), 0 <t < T. We shall offer some precise computations for
and A(-) in the case of the American put option in Section 2.7.

mark 5.11: Setting s = 0 in (5.18), we see that
e(0) = sup EgY (1) — EgY(T).

TESo, T
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It is an easy consequence of the optional sampling theorem (e.g., Karatzas
and Shreve (1991), pp. 19-20) that f the discounted payoff process Y ()
is a Py-submartingale, then €(0) = 0, and the ACC of Definition 5.1 is
equivalent to its ECC counterpart. Then, of course, the exercise time 7 = T
is optimal for the holder of the ACC (although earlier exercise might also

be optimal).

2.6 The American Call Option

This section develops a variety of results for American call options. We
show that the value of an American call does not exceed the price of the
underlying stock. If the call is perpetual, i.e., the expiration time is T' = 00,
and the stock pays no dividends, then, regardless of the exercise price, the
value of the call agrees with the price of the stock, but there is no optimal
exercise time. If T' < oo and the stock pays no dividends, the American call
need not be exercised before maturity, and therefore its value is the same
as that of a European call. All these facts are simple consequences of the
optional sampling theorem.

The latter part of this section is devoted to a perpetual American call
on a dividend-paying stock, when most of the coefficient processes in the
model are constant. In this case, it is optimal to wait to exercise the call
until the underlying stock price rises to a threshold, although this may
never happen. The threshold is characterized in Theorem 6.7.

In this section we are concerned with an Ame@ on a single stock,
and we simplify notation by assuming that this ™ only stock. Thus,
we set N = D =1 and we write S(-), ('), b(')%&lﬂgin place of S;(-),
0'11('), b]('), and 61()

To cast an American call option on the stock, with exercise price g > 0,
into the framework of American contingent claims (Definition 5.1), we set
C(-) =0, L(t) = (S(t) — @)*, and thus the discounted payoff process is

— o)t .
(S0 -9 &)
So(t)
For a finite planning horizon (ezpiration date) T, let us denote by VAC(t;T)

the value of the American call at time ¢ € [0, T]. According to Theorem 5.8,
we have

Y(t) =

VAC(t; T)
So(t)

where S; 7 is the set of {F(t)}-stopping times taking values in [¢, T]. We
note from Remark 1.5.11 that when 6(-) > 0, then

;)((tt)) = 5(0) - exp {/Ot o () dWo(u) — /Ot' (_;.,,2(“) + 5(u)> du} ,
0<t<T, - (63)

= .ess Suprest,TEo[Y(T)lf(t)]’ 0<t<T, (6.2)
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is a nonnegative Pp-supermartingale, and the optional sampling theorem
(Karatzas and Shreve (1991), Theorem 1.3.22) implies

VAC(t; T) = Sp(t) - ess SUP.¢s, 7 £o [(;)((7;)) SO%T) ) + J }_(t)]
S(r)

< So(t) - ess sup,cs, . EFo F(t)
‘ So(7)
<S(t), 0<t<T

In other words, the value of an American call with finite expiration date
never exceeds the price of the underlying stock.

Theorem 6.1: With T < 060, assume that the stock pays no diwn-

dends, So(-) is almost surely nondecreasing, and o(-) satisfies the Novikov
condition (cf. (1.5.13))

T
Ey lexp {—;— /0, o?(u) du}} < 0. (6.4)

Then an American call on the first stock need not be exercised before
maturity, and its value is the same as that of a European call (cf. (2.13)):

+
VAC(4,T) = So(t) Eo [(S(T’ : ) \f(t)], 0<t<T

So(T)  So(T)

PROOF. Jensen’s inequality and the fact that Sp(-) is nondecreasing can

be used to show that Y'(-) of (6.1) is a Py-submartingale. The result follows
from Remark 5.11. i

We now turn our attention to perpetual American call options. Let
us assume that the financial market has an infinite planning horizon
(Definition 1.7.2), and recall the discussion of such markets in Section 1.7.

Definition 6.2: Consider the discounted payoff process Y (-) of (6.1),
defined for all t € [0,00). Following Definition 5.7, for s € [0,00) we
define the value at time s of the perpetual American call option on the
stock, denoted by VAC(s;00), to be the minimal random variable v(s) that
18 F ('T)(s)-measurable for some T € [s,00) and for which there exists a
artingale-generating portfolio process 7 (-) satisfying almost surely

() £ 1,
Y(t)sgo(s))+/s S ™ (W) dWo(w), Vi€ [s,00). (65

If (6.5) holds, then the continuity of both sides of (6.5) allows one to
choose, for each k € N, a P-null and Py-null set Ny in F (Tk)(k) for some
T € [k,00), such that (6.5) holds for all ¢t € [s,k] and all w € Q\Ni.
Consequently, (6.5) holds for all t € [s,00) and all w € Q\ Usre, Nk. Thus,
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ifr:Q— [s oo] is any random time, we have (cf. (5.6"))

tita / So(u)

This is the assertion that an agent who sells the option for 7(s) at time
s and, having no further income, invests the amount 7(u) in the stock at
all times u € [s,00), will have sufficient wealth to pay off the option if the
buyer chooses to exercise it at any finite time.

w)o(u) dWo(u), P and Py a.s. on {7 < co}.

Theorem 6.3: Assume that the stock pays no dividends, that Sp(-) is
almost surely nondecreasing with Pyllim;_.oo So(t) = oo] = 1, and that
o(-) satisfies the Novikov condition (6.4). Then the value of the perpetual
American call on the stock is equal to the current stock price:

VAC(s;00) = S(s), 0<s<o0, as.

PrROOF. For 0 < s < t < oo, we have immediately from (6.1) and
Remark 1.5.11 that

S@t) _ S(s) t S
So(t) ~ So(s) " Js So(w)
which suggests taking m(u) = S(u), i.e., holding one share of stock at all
times. This 7(-) is martingale-generating, since S(t)/So(t) is a martingale.
Thus, from (6.6) and Definition 6.2, we obtain v(s) < S(s).

On the other hand, whenever (6. 5) holds for some random variable ¥(s)
and some martingale-generating portfolio #(-), we have for t € [s,00) and

sufficiently large T € [t,00):

S(s) (T)
'J: (s ] ® | So(t) So(t)
¥(s)

So(s) — aFo [s @)
sEo[Y(t)|f<T’(s)]< 50"

Letting ¢ — oo we obtain S(s) < y(s), and thus S(s) is the minimal random
variable that can replace ¥(s) in (6.5). m

Y(t) < o () AW (u), (6.6)

s <t < oo

Remark 6.4: The proof of Theorem 6.3 reveals that the seller of the
perpetual American call should hedge by holding one share of the stock,
and when this hedging portfolio is used and y(s) = VAC(s;T) = S(s), the

‘inequality (6.5) becomes

S(t) s (S(t) q )+
>Y(t) = — .
Solt) ~ (® So(t)  Sol(t)
This inequality is strict for all finite ¢, which means that there is no optimal

ezercise time (see Remarks 5.4, 5.9) for the purchaser of the option.

For the remainder of this section we shall assume that

o()=0>0, 6(-)=6>0, r()=r>6 (6.7)
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are constant, although b(-) may not be. Then the stock price process is

S(t) = S(0) exp {a’W(t) - %0'215 + /t b(w) du}
0
= S(0) exp {oWo(t) + (r — 6 — 0?/2)t}. (6.8)

We consider the perpetual American call on the stock with exercise price
q>0.
. The proof of Theorem 5.3 cannot be easily adapted to the present sit-
uation, because here the expiration date is T = oo; we do not have a
filtration parametrized by t € [0, co] and satisfying the usual conditions of
right-continuity and augmentation by null sets. Nonetheless, Theorem 5.3
suggests that the value VA4C(t;00) of the perpetual call at time zero can
be found by maximizing EoY (7) over “stopping times” 7, where

0<t <o,

4 e—?‘t(S(t) - q)+’
v 2 { : =t (6.9)
It should be noted from (6.8) that 0 < Y'() < e~"tS(t) = S(0) exp{oWy(t)—
(6 + 20?)t}, 0 < t < oo, whence
Y(0)=0= tl_lglg Y(t), Po-as. (6.10)

From (6.‘8) we see that the process S(-) is Markovian under Py, so we expect
the maximizing “stopping time” to be a hitting time, i.e., to be of the form
A
H, =inf{t > 0;S(t) > a}

«=inf{t20;Wo(t)+ (.7";6—%0) log (5(0))} (6.11)

for some a € (0,00). Because H, is the first time the Py- Browman ‘motion
Wo(t)+ vt with drift 3—5—— =
0 vt with drift v = = o hits or exceeds the level y = 2 log(3 0))

we have Ege~"He = 1 for a < S( ), and for a > S(0) we have the follow-
ing transform formula for the hitting time of (6.11) (Karatzas and Shreve
(1991), Exercise 3.5.10):

) Eo (e—rHa,) = exp [uy —yV 2+ 27"] = (%@)7 )

A
bhere v = %[—-u + V2 4 2r]. Note that ~ satisfies the quadratic equation

0% 4 ovy—r =0 (6.12)
B : :
N T
l<ny< ¥ (6.13)

2 l@—9*(/a)’, 0<z<a,
ga()—{ ) ’ 0<a§:
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It is now easily verified that
ga(z) = Egle ™M= (S(H,) — q)*|S(0) =z], a>0, z>0.
We want to maximize this quantity over a > 0.
Lemma 6.5: We have
9a(z) < go(z), Yz >0, a>0,
where b 2 vq/(v — 1) € (g,00).

Proor. The function ¢(a) 2 (a—q)/a” is increasing on (0, b), decreasing
on (b,00), and thus has its maximum on (0,00) at b. Let z > 0, a > 0 be
given. We have

a<mb<z=>go(z) = (2 —q)" = gs(2);
a<z<b=gy(z)=(z— " = (¢(2))"2" < ¢(b)z" = gu();
a>1z>b=> gu(z) = (#(a))T2" < (¢(x)) 2" = (z — )" = go(2);
a>1,b>1=>g.(z) = (¢(a))Tz” < B(b)z” = go(x). a

Lemma 6.6: The function g = gy is convex, of class C*((0,00))(C?
((0,00)\{b}), and satisfies the variational inequality

max {%02129” +(r—8)zg' —rg, f - 9} =0 on (0,00)\{b},

where f(x) 2 (x — q)*. More precisely, we have

%021‘2g”(z) + (r — 8)zg'(z) —rg(z) = {(1,(61 rg) <0, g i ill),"< b,
| (6.14)
g(z) > f(z), 0<z<b, (6.15)
o) = f(z), T2b. (6.16)

PROOF. In order for g, to be of class C'(0,00), we must have a > ¢
Even if a > q, we must also have equality between g,(a—) = 1(a — ¢) and
g\ (a+) = 1. This equality is equivalent to @ = b, so g, is the only function
in the family {ga}a>0 that is of class C'. (Here we have an instance of the
“smooth fit’ condition, common in optimal stopping.)

The remainder of the lemma follows from straightforward computation,
taking (6.12) into account. The positivity of 6z — rq when = > b follows
from (6.13). Inequality (6.15) follows from ¢(b) > ¢(z), valid for 0 < z < b,
where ¢ is the function used in the proof of Lemma, 6.5. o

Theorem 6.7 (McKean (1965)): Under the assumption (6.7), the value
process for a perpetual American call option is given by

VAC(t;00) = 9(S(1)), <t < oo,
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where the function g is

g(z) = {ib_—qq,)(%)v’ . o ) (6.17)

and ¥ 2 LV 2r—v), v = =8 _ 1o, and b g 5% . Furthermore,
9(S(0)) = sup, EoY (r) = sup, Eole~"" (S(r) — )*], (6.18)
where the supremum is over all random times T satisfying
Yt € [0,00), 3T € [t,00) suchthat {r <t} e FD(¢). (6.19)
The random time

Hy 2 inf{t > 0; S(t) > b}
atisfies (6.19) and attains the supremum in (6.18).

ROOF. Itd’s rule for convex functions (e.g., Karatzas and Shreve (1991),
heorem 3.6.22 and Problem 3.6.7(i)) implies

d(e™"'g(S(t))) = e S(t)g' (S(t))o dWo(t) — e ™ (8S(t) — ra)1(s(t)>b)dt

=dM(t) — dA(t), (6.20)
here
t
A ~—Tru
M(t) = / e~ S(u)g'(S(u))o dWo(u) (6.21)
0
a Py-martingale (because ¢’ is bounded), and
A
A(t) = /0 e "(6S(u) — rq) L {s(u)>b}du (6.22)

nondecreasing (because z > b implies 6z — rq > 0). For every random
me 7 satisfying (6.19) and every t € [0, 00), we have then

9(S(0)) = Eole ™ ""g(S(r At)] + EoA(T A1)
> Eole "™ (S(r A1) - g) ), (6.23)

here we have used (6.15) and (6.16).
To let t — oo in (6.23), we need to dominate the right-hand side. But

sup Y (t) = “THSH) — o)t
OStspoo () ogsllfoo[e (S() q)]

< 5(0) exp [0- sup {Wo(t) — (é = _‘Z) tH
0<t<oo o 2 |
< 5(0) exp{cW.},
ere W, is the maximum value attained by the Py-Brownian motion

o(t) — Bt, 0 < t < oo, with negative drift, where 8 = g + & > 0. Accord-
to Karatzas and Shreve (1991), Exercise 3.5.9, W, has the exponential
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distribution Py[W, € d§] = 28e~2Bd¢, ¢ > 0, and consequently,

o (_sup Y(t)) = 5 [ sup (e -]

0<t<oo <t<oo
S(0)Bo
6

< 5(0) /0 o 287 2P)¢ g¢ = <oo. (6.24)

Inequality (6.24) and the dominated convergence theorem allow us to let
t — oo in (6.23) and obtain, thanks to (6.10),
9(5(0)) > Eo[Lir<aoye” " (S(7) —9)] = EoY (7) (6.25)

for every random time 7 satisfying (6.19).
Let us now consider 7 = Hy. We have A(Hp) = 0 and g(S(Hp)) = g(b) =
(b—q)* = (S(H,) — q)* almost surely on {H} < 00}, so (6.23) becomes

9(5(0)) = Eollim,<eye™ "™ (S(Hp) ~@) 1+ Eo[Lia, >t~ 9(S(®))]- (6.26)
But
Eoll{m>e " 9(S(®))] < Boe™*S(t) = S(0)e™* —0
as t — 00, so passage to the limit in (6.26) yields
9(S(0)) = Bo[1(m,<c0p e " (S(Hy) — )] = EoY (Hy), (6.27)

thanks to (6.10). In conjunction with (6.25), this establishes (6.18) and
shows that 7 = Hp attains the supremum in (6.18).

The discounted payoff process for the American call is Y'(-) of (6.9), and
according to Definition 6.2 its value at t = 0 is the minimal constant ~(0)
satisfying

t
e T(S(t) — q)T < v(0) + / e "r(u)o dWo(u), 0<t<oo, (6.28)
0
P,-almost surely, for some martingale-generating portfolio 7(-). But (6.28)
implies
Eole ") (S(Hy A1) — 9)*] <7(0), 0<i< oo,
and letting t — oo we obtain g(S(0)) < ~(0). Therefore, g(S(0)) <

VAC(0; 00). On the other hand, (6.15), (6.16), and (6.20)-(6.22) imply

e H(S(t) — g)F <eTTg(S(1))

< g(S(0) + /Ot e ™ S(u)g'(S(u))o dWo(u), 0=t <00,
(6.29)

Py-almost surely, which shows that V4€(0;00) = ¢(S(0)). It is an easy
exercise in the Markov property for S(-) to extend this result and obtain
VAC(t,00) = g(S(t)), 0 < t < o0 =
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emark 6.8: From (6.29) we see that a hedging portfolio for the seller
of the American call is
m(u) = S(u)g'(S(u)), 0<u< oo

particular, the-seller should hold more of the stock as the price rises,
holding one share whenever the price reaches or exceeds b. The buyer of the
1l should exercise it as soon as the price reaches or exceeds b. From (6.8),
6.11) we see that P[H}, < oo] can be either one or strictly less than one;
either case Py[H, < oo| can be either one or strictly less than one,
epending on the model parameters.

emark 6.9: In Theorem 6.7, the process

&) 2 {(e),‘”g(S(t)), 0 5t Zoc,

a continuous supermartingale with decomposition £(t) = M(t) — A(t)
in (6.20)—(6.22). Furthermore, £(¢) > Y(t), 0 < t < oo, and it can be
own that £(-) is the minimal supermartingale that dominates the process
(-) of (6.9) in this way. In other words, £(-) is the Snell envelope of Y (-).
all, however, that all these processes are only known to be restrictedly
ogressively measurable in the sense of Definition 1.7.1, and terms like
permartingale” are to be understood only in this restricted sense. For
is reason, the theory of Appendix D is not directly applicable.

mark 6.10: In the setting of Theorem 6.7, the early exercise premium
the perpetual American call can be defined as

(0) £ VA°(0;00) — VE(0;.00),

ere the value of the “perpetual European call”

VEC(0,00) £ lim Eole™(S(T) - )]

ero because of (6.8); hence

e(0) = V4€(0,00) = g(5(0)). (6.30)
ormal application of (5.18), (6.22) yields the formula

e(0) = EgA(o0) = /000 e " Eo[(6S(t) — 7q)1{s(t)>b}) dt, (6.31)

ich agrees with (6.30), although the computational verification is long
painful.

{ The American Put Option

‘shall concentrate inh this section on the American put option with ex-
S€ price ¢ > 0 and finite expiration date T € (0, o). As in Section 2.6,
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we set N = D = 1 and suppress the indices on S1(-),011(:), b1(:), and 61 (-).
Furthermore, we assume that

o()=e>0, 6-)=6>0, r()=r>0 (7.1)
are constant, so that the stock price is given by
S(t)y = S(0)H(t), (7.2)
where
H(t) g exp {O'W(t) - %02.t + /Ot b(u) du}

= exp{oWy(t) + (r — 6 — a?/2)t}. (7.3)

We shall characterize the value of the American put as the unique solution
to a free boundary problem, and we shall obtain regularity results and some
explicit formulae for this solution.

The discounted payoff process for the American put is

Y(t)=eT (g~ S(E)T. (7.4)
According to Theorem 5.3, the value of the put with expiration T, when
S(0) =z, is
p(T, x) . sup Egle " (g—zH(1))*], 0<z<o0, 0<T <oo, (75)
T7€Se, T

and from the strong Markov property of S(-) we can compute the Snell
envelope of Y (-) as

€2 sup Ep[Y(r)|F(®)] =e p(T—1,5(t), 0<t<T. (7.6)
TES:, T
The proof of Theorem 5.3 shows that the optimal exercise time for the
American put option with initial stock price S(0) = x is given by
m 2inf{te [0,T} p(T—,50)=(@-S®)}. (D)

This stopping time takes values in [0, T] because p(0, S(T)) = (g — S(THt,
and it attains the supremum in (7.5). The proof of Theorem 5.3 also shows
that the stopped process

{e_r(“\"")p(T —(tAT2), S(tATg)),F(t); 0<t<T} (7.8)

is a Py-martingale.

Proposition 7.1: The optimal expected payoff function p : [0,00)% —
[0,00) is continuous and dominates the option’s “intrinsic value”

p@) 2 (¢-n)*, 0<z <00 (7.9)

2.7 The American Put Option 69

ROOF. Fix (T,z) € [0,00)? and let 7, be given by (7.7). Because z; —

< (21 — 25)* for any z1, 22 € R, we have for any y € [0, 00) that

p(T,z) — p(T,y) < Eole™"™{(q — zH(2))* ~ (¢ — yH(7z))*}]
<(y—2) Bole "™ H(r,)] < o — yl,

cause e "*H(t) is a Pp-supermartingale and H(0) = 1. Interchanging

he roles of z and y, we obtain |p(T,z) — p(T,y)| < |z — yl, so p(T, z) is
ipschitz continuous in x. Now let us define

W(t) £ By dax, (1~ e”H(s))+] .

cause of the bounded convergence theorem, lim;jp(t) = 0. Let 0 <
< T, and z € [0,00) be given. Set

=inf{t € (0,T2); p(Ta—t,zH(t)) = (q—zH®)T}IATy, 11 = rATh.
hen with S(t) = zH(t), we have

L < p(Tz,z) — p(Th, ) < Egle™ "™ (g ~ S(72))* — """ (g — S(n))™]

< Ep(e”"™S(n1) —e "™ 8(m))*

< Eofe™"™S(n) - Bal(L— min_ exp{o(Wa(t) ~ Wo(Th)

= (6+0%/2)(t - TV)NT|F(T)]}
=FEo{e™ " S(n)} - ¢(To — ) < zyp(Tz — Th).

f(?llows that p(T,z) is uniformly continuous in T. The function p
minates ¢, because we can always take 7 = 0 in (7.5). a

Although we are primarily interested in p(T, z) for finite T, we digress to
msider the behavior of this function at T' = o0o. Let us suppose that the
anc.ial market has infinite planning horizon (Definition 1.7.2). Following
: tion 6.2, we define the value at time s of the perpetual American put
won on the stock, denoted by VAP (s;00), to be the minimal random
lable ~(s) that is F(T)(s)-measurable for some T' € [s,00) and for which

I‘f exists a martingale-generating portfolio process 7 (-) satisfying almost
ely

=rt d
€ "(g— S(t)T <e"y(s) +/ e ™' (u)o(u) dWo(u), s <t < oo.

have the following counterpart to Theorem 6.7.

eorem 7.2: Assume (7.1). The wvalue process for the perpetual
erican put option is VAT (t;00) = p(S(t)), 0 <t < 0o, where

-z, 0 S z S 3
w2 { G, 2ie (710)
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Here 5 2 — v + 75 2r),v = 58
Furthermore,

and ¢ = 39/(7 - 1) < q.

p(5(0)) = sup Eole ™" (¢ — S())7], (7.11)

where the supremum is taken over alAl random times T satisfying (6.19) and
is achieved by the random time K, = inf{t > 0; S(t) < c}.

Much as in Section 6, we compute

Ege ™K = exp [uy —lylVv? + 21‘] (S(O )

for S(0) > ¢, where now y = % log( S(O)) is negative. Note that ¥ satis-
fies (6.12), but rather than (6. 13) we now have ¥ < 0, (r — §) < r (recall
that r — & is allowed to be negative). The function p is convex, of class
C((0,00)) N C?%((0,00)\{c}), and satisfies the variational inequality

PROOF.

1 590 L 1N _Jbér-rg<0, 0<z<g¢,

302 p"(z) + (r — §)zp'(z) — rp(z) = {0’ £ (7.12)
p(z)=(¢g—z)", 0<z<c (7.13)
p(z) > (¢ —z)7, z>c (7.14)

All the claimed results can now be obtained by simple modifications of the
proof of Theorem 6.7. The convergence arguments are easier than before
because e "(g—S(¢))* is bounded. In particular, the bounded convergence
theorem implies

p(S(0)) = lim Eole "<\ (q — S(K: AT))]. (7.15)

O

Corollary 7.3: With p(T,z) defined by (7.5) and p(x) defined by (7.10),
we have p(T,z) < p(z) for allT € [0,00),z € [0,00), and im7 o0 p(T, ) =
p(z).

PROOF For z = 0, the definitions give p(T,0) = ¢ = p(0) for all T' €
[0,00). For & € (0,00), (7.11) implies p(T,z) < p(z) for all T € [0,00);
but (7 15) shows p(z) < limy_, (T, ), and the result follows. o

Lemma 7.4: The mappings T — p(T,z); z — p(T,z), and T — = +
p(T, ) are nondecreasing, nonincreasing, and nondecreasing, respectively,
and the latter two are convez.

PROOF. The first two monotonicity assertions are obvious, so let us
establish the third. With 0 < z < y < co, we have

p(T, y) - p(T, ‘T) = p(T, y) - EO[e—-TTI (q - -'I:H(Tz))+]

> Eole "™ {(q — yH(72))" — (¢ — zH(7:))"}]
2(z-y) Eole ™ H()] 2z -y
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because e”"*H(t) is a supermartingale with H(0) = 1. The convexity of
z — p(T,z) follows easily from that of z — (q — z)*, and leads to the
convexity of z — = + p(T, x). O

Lemma 7.5: For every (T,z) € (0,00)?, we have 0 < p(T,z) < q.

PROOF. Only the positivity needs discussion. For 0 < z < ¢, we have
p(T,z) > (g —z)* > 0. For z > g, let 7 = T Ainf{t > 0;zH(t) < £} and
observe that

P(T,2) 2 Bole ™" (g~ zH()*] 2 SEgle " 1pemy) >0. U
‘We define the continuation region
C = {(T,z) € (0,00)%

’nd consider its sections

p(T;z) > (¢ — x)*}

Cr ={z € (0,00); p(T,z)>(¢—x)*}, T €(0,00).

ecause p is continuous, C is open in (0, 00)? and each Cr is open in (0, 00).

roposition 7.6: For every T € (0,00), there is a number c¢(T) € (0, q)
uch that Cr = (c(T'),00). The function T — c(T) is nonincreasing, upper
emicontinuous, and left Acontmuous on (0,00); thus it may be extended
y the definitions c(0+) = limp o ¢(T), ¢(o0) e limr_,oo ¢(T). We have
(0+) < ¢ and c(00) = ¢, as defined in Theorem 7.2.

ROOF. For T € (0,00), suppose z € Cr and y > z. From Lemmas 7.4,
.5 we have

p(Tyy) 2p(Tx)+z-y>(g—z)  +z—-y>q-y

d p(T,y) > 0, whence p(T,y) > (g—y)* and y € Cr. This shows that Cr
the form (¢(T'),00). Since T — p(T,z) is nondecreasing, we have for
y€>0,6> 0 that p(T +e¢,c(T)+6) > p(T,c(T) +6) > (g—c(T) - 6)*.
herefore, c(T + ¢) < ¢(T) + 6. Since § > 0 is arbitrary, ¢(T + ¢) < ¢(T),
hich shows that ¢(-) is nonincreasing.
Now take any sequence {T,}32, in (0,00) with limit Ty € (0, 00) and
n—oo ¢(T1,) = cp. Because C is open and (T, c(Ty)) ¢ C for every n, we
Ve (To,co) ¢ C and thus cg < ¢(Tp). In other words, limg_7,¢(T) < (Tp)
I every Ty € (0,00). This proves the upper semicontinuity of ¢(-), and
ce c(-) is nonincreasing, ¢(T—) = ¢(T).
From Lemma 7.5 we have p(T,z) > 0 = (g — z)* for z > g, s0 ¢(T) < ¢
all T€(0,00). It follows that ¢(0+) < ¢. From Corollary 7.3 we have
=)t < p(T,c) < plc) = (g—¢)t, s0 ¢(T) > c for all T € (0, 00), and
00) > ¢. But for z > ¢, limp_,o0 p(T, z) = p(z) > (¢—z)* (see (7.14)), so
00) < c. Finally, we have ¢(T) > ¢(co) = ¢ > 0 for all T € (0, ). o

heorem 7.7: The optimal expected payoff function p of (7.5) 1s the
ique solution on C of the initial-boundary value problem
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Lf=0 in C={(tz)e (0,00)% z>c)} (7.161)
flt,e(t) =qg—c(t), 0<t <00, (7.16ii)
f(0,z) = (g—z)*, ¢(0) <z < oo (7.16iii)

lim max |f(t,z)]=0 VT € (0,00), (7.16iv)

z—o00 0<t<T

where Lf - 1022 for + (r = 8)xfo —7f — ft. In particular, the partial
derivatives pye, Pz, and py ezist and are continuous in C.

| ProoF. Clearly, p satisfies the boundary conditions (7.16ii) and (7.16iii).
In order to verify the equation (i) for p, let us take a point (t,z) € C
| and aArectangle R = (t1,t2) x (z1,22) with (t,2) € R C C. Denote by
R 2 OR\[{t2} x (z1,72)] the “parabolic boundary” of this rectangle,
and consider the initial-boundary value problem

Lf=0,inR,
f=p, on HR.

Because 7, > c(t) > 0, the classical theory for parabolic equations (eg.,
H Friedman (1964), Chapter 3) guarantees the existence of a unique solution
f with fezz, fz, and f; continuous. We have to show that f and p agree

| on R.
Let (to,zo) € R be given, and consider the stopping time in Soto—t,

\ given by
F2inf{fe0to—t); (to— 08 20H(8)) € BR} A (to — t1)
and the process
1 N(8) £ e~ f(to — 0,70H(B)), 0<6<to—ts.

From Itd’s rule, it follows that N(- A7) is a bounded Py-martingale, and
| ‘ thus
|

| f(to,z0) = N(0) = EoN(r) = Bole™p(to— 7, H(7))].

\‘ But (to — 7,20H(7)) € C implies

” T T 2 inf{6 € [0,%0); p(to — 0, z0H(8)) = (g — zoH ()T} Ato
(cf. (7.7)), and so the optional sampling theorem and (7.8) yield

“ Eole""plts — 7,20 H(r))] = p(to, 20)-

[ \ Thus f and p agree on R, and hence pgz, Pz, and p; are defined, continuous,
it and satisfy (7.16i) at the arbitrary point (¢,z) € C.
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To check (7.16iv), let T € (0,00) be given. For (t,z) € [0,T
define (cf. (7.7)) (t,2) € [0,T] x (0,00),

7. 2inf{6 € [0,t); p(t—6,zH(8)) = (¢ — zH(6))*} At

and notice p(t,z) = Eple ""=(q — zH(7,))t]. Set £ ;

» T . px - 1nf{9 €
[0,00); zH(8) < g}, so that 7, > p; on {p, <t} and 7, =t on {p, > t}
Then ’ |

0 < p(t,2) < gBo[lip.<ye™ ] + Eollip,>pe ™ (g — zH(1))*]
< qPO[p_r < T]

and lim, .o, Po[p; < T] = 0.

- For uniqueness, let f defined on C be a solution of (7.16). Note that
for each T'€(0,00), f is bounded on {(t,z)€[0,T] x [0, 00);x > c(t)}. For
> ¢(T) define M(t) £ e~ "tf(T — t,zH(t)),0<t<T, and 7, 2 T A
inf{te[0, T]; H(t) < c(T —1)}. It&’s rule shows that {M(tA7,),0 < ¢ < T}
a bounded Fp-martingale. Since 7, attains the supremum in (_75)_ we
ave from optional sampling that ,

J(T,2) = M(0) = EoM(r;) = Eole™™ f(T — 7, 2H(r,))]
= Eole™"™(q - 2H(r,))*] = p(T, ). 0

Tl}eorem 7.7 asserts that p is smooth enough to permit the application
f Ito’s rule to the Snell envelope £(t) = e~ "tp(T —t, S(t)) of (7.6), as long
(T —t, S(t)) €C, or equivalently, S(t) > ¢(T —t). On the other hand, in
e region {(t,z) €[0,00)% z < c(t)} we have p(t,z) = q — z, which is also
ooth. At issue then is the smoothness of p across the boundary z = c(t)
e have the following result. ”

tlémma 7.8: FizT € (0, oo): The convez function x — p(T, x) is of class
» even at x = ¢(T). In particular, p,(T,c(T)) = —1.

IIKOOF. Becal.Jse p(T,z) = g—x for 0 < z < ¢(T), we have p, (T, c(T)—) =
A - The convexity of z — p, (T, z), which was proved in Lemma 7.4, implies
at po (T, c(T)+) is defined and p,(T,c(T)+) > —1.

Thus, it suffices to show pg(T,c(T)+) < —1. To this end, set z = ¢(T)
d define :

Tote 2 inf{t€[0,T); (z + €)H(t) < ¢(T = )} AT

4 . .
€ 2 0, 50 74, is nondecreasing in ¢ and 7, = 0. Because c() is
Onincreasing, we have
z
AT.
z+ €

ree <int {07 H() <
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The law of the iterated logarithm for the Fo-Brownian inotion Wo(-) implies
that P[mino<t<a H(t) < 1] =1 for every a > 0, and therefore

Tere L0 as €10 (7.17)
almost surely. We also have
p(T,z+¢€) = Eole” "™+ (g~ (z + €)H (Te4e))¥]
= Eole™"=*<(q — zH (7o4¢)) 7]
— Bole™"™+ (g~ 2H(T24))" — (¢ = (@ + ) H(Tate)) )]
<p(T,z) - EO[l{Tx+s<T}e_"=+E ((g = zH(Tz+¢))
— (g - (z+ &) H(724<)))]
— Bollqr,,.=rye (g - eH(D)* - (g - (z + &) H(D) )]
<p(T,z)—¢- E0[1{7m+5<T}e_"I+EH(Tz+E)]
=p(T,z) —¢- Eole™" ™+ H(Tz4)]
+& - Eo[lr,,.=mye "TH(T)],
for € > 0, from which it follows that
p(T,z+) < 151{18 Eoll{r,,.=mye "TH(T)] - lelff)l Eole™"™** H(Taye)] = =
For the last equality we have used (7.17) and the uniform integrability of
the supermartingale e " H(t),0 <t < T, in (7.3). o

Theorem 7.9: Fiz T € (0,00). The Snell envelope &(t) = e "tp(T —
t,S(t)) of (7.6) has the Doob-Meyer decomposition

£(t)=M(t) - At), 0<t<T, (7.18)
where
M(#) 2 p(T, S(0)) + o /0 T4 S(u)pa(T — u, S(w)) dWo(u)  (7.19)

is a Py-martingale and

t
A o
Alth= /0 e T4(rq — 6S(u))1{S(u)<c(T-u)} AU (7.20)

is nondecreasing. In particular,
6c(0+) < rq. (7.21)

PROOF. We mollify the function p(-,-) in order to apply Itd’s rule. Let
¢ R2 — [0,00) be a C* function integrating to 1 and having support in
[0,1)2. For € > 0, define

(o o] oo
(¢, z) 2 /0 /0 p(t + eu, z + ev)((u,v) dudv

LS ol id s—t y—-«z
L[ [Crene (S ) e

P, / /

P(t, z) = limp{(t, ),

Lp(t, €) = lim Lp©
p(t,z) = lim £p)(t, z),
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3?!(22(

z__/ [ riome (i
I

_ /0,_-(3) Pz (s, y)((
- s% Ow '[w—pz(s, e(s)+)¢ (
“ */w Pez(8,y)¢ (s;t
! / / Pra(s, y)C(

= /0 /0 Pzz(t +Eu,z+ ev){(u,v) dudv,

Vtz)e

en p&)()) is2 of class C°° on (0,00)2. Because p.(t,-) is continuous, for
,z) € (0,00)% we may integrate by parts to obtain

Pt z) = __// sy@(

) dyds

I (f‘t’y;

:/ / Pe(t + €u, z + ev)((u, v) dudv,

&€

y._

(6)
(t,z) / / pe(t + eu, x + ev)((u, v) dudv,

e g, denotes the partial derivative of ¢ with respect to its ith variable.
€ Iormulas show that pg ©) and Lp®) are bounded on compact subsets

(0’00)27

(555 ae
(s_—t c(s)—x)
= _E)dy:I ds

x
) dyds

) dyds
) dyds

ki

£

el
=5 wu

x # c(t).
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According to Itd’s rule,
e tpEN(T —t,8(¢t)) = p°(T, S(0)) + /0 t e T LpEN(T — u, S(u))du
+o /0 t e~ S(w)pl (T — u, S(u))dWo(u), 0<t<T. (7.22)

For each u€ (0,T), we have Py[S(u) = ¢(T — u)] = 0, so f; e ™ Lp(T —
u, S(u))du is defined and equal to fg e ™ (6S(u) — Tq)1{S(u)<c(T—u)}du
a.s. Letting € | 0 in (7.22) we obtain (7.18), first for 0 < ¢ < T and
then, by letting ¢t T T in (7.18), for t = T as well.

The process M(-) in (7.19) is a martingale because —1 < p; < 0 and
Ey fo S?(u)du < oo. To see that A(-) is nondecreasing, we recall that a
decomposmon like (7.18) of a process into a continuous martingale M ()
and a continuous, bounded-variation process A(-) is unique (Karatzas and
Shreve (1991), Problem 3.3.2). But the Snell envelope £ (-), being a bounded
supermartingale, has a Doob-Meyer decomposition as a continuous mar-
tingale minus a continuous, nondecreasing process (e.g., Theorem D.13 in
Appendix D). Consequently, this Doob-Meyer decomposition must be the
decomposmon of (7.18), which shows that A(-) is nondecreasing. Since
Po[S(u) < ¢(T — u)] > 0 for every u€ (0,T], this can be the case only if
rq— 6c(T u) > 0 for Lebesgue-almost-every u € (0, T]. In particular, (7.21)
must hold. a

Proposition 7.10: The free-boundary function c(:) : [0, o0) — (0,q) i
continuous, with ¢(0+) = q if r > 6, and c(0+) = rg/6 if r < 6.

PROOF. Let us define ¢(0) £ g if r > 6 and ¢(0) — rq/6 if r < 6. We know
from Proposition 7.6 that c(-) is left continuous and nondecreasing. To
prove right continuity we shall suppose ¢(to) > c(to+) for some to€(0,0)
and obtain a contradiction.
Under the assumption c(tg) > c(to+), define z; - Lle(to) + c(tot)] <
c(to) < ¢(0). Let t € (to,00) and z € (c(t), 1) be given. From (2.7. 16i) and
the fact that p(-, z) is nondecreasing, we have

1
—UQzme(t, z) > (6 — r)zps(t, ) + rp(t, T).

2
Now, p(t, ) > (g—z)* > g—z1 > 0,s0if r > 6, we may use the inequalities
-1 < po(t,z) < 0 to write éazzzpm(t z) > r(q — z1) > 0. On the other
hand, if r < 4, we have

1
50212pm(t,z) >—(6—r)z1+r(g—71) =r¢— 671 >0

because 6z, < 6¢(0+) = rg (see (7.2)). In either case,

5 2rg- (vl

a7 0, Vte(ty,00), zE€(c(t), 1)

Dax (ty -'L‘) >N
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A
= (g — &), te(to, ), and zo€(c(to+),

p(t, 20) — p(c) = / () () [Paa(t, €)

vhere we have used the relations

p(tc(t) = o(c(t),  pa(t, c(t)) = @'(c(t)).

etting t | to and using the continuity of p, we obtain p(to, zo) > (g—z0)t+

n(zo— c(to+))? > q—xo. If follows that c(to) < o, a contradiction to the
finition of ;.

z1), we compute

"(©)dgdy > Sn(zo - cft))?,

0
orollary 7.11: Fiz T€(0,00). The Snell envelo e
pe 6 Tt T —
S(t)) of (7.6) admits the representation “ - "
§(t) = Eole™ (g — S(D)*IF (1)) + Eo[A(T) - A®)IF()], 0<t<T,
(7.23)

ere A(-) is defined by (7.20).
OOF. From Theorem 7.9 we have

g = S(T))*|F(t)] = Eolé(T)|F(t)]

Eo[M(T)|F(t)] — EolA(T)|F (t)]

M(t) - At) - Eo[A (T) = A@®)IF ()]

£(t) — Eo[A(T) — A(t)|F (1)), 0<t<T. O
Corollary 7.11 facilitates the explicit computation of the value
B(T,z;q) = p(T,z) at time zero of the American put with expiration

> 0 and exercise p/r;ge g > 0, when §(0) = z. Of course, the value at
e te[0, T is just u4P(T —t, S(t); q). According to Corollary 7.11,

U’A.P(Ta T q) = p(Ty .’1,‘) .

O[e—rT(

I

I

EP(T,z;q) +e(0), 0<T<oo, (7.24)
ere, in the notation of (4.11), (4.13), and. (4.15),
P(T,2;9) = Bole ™ (q - S(T))*]
= —uF(T, z;q) + uPC(T, z; q)
= qe”"T[1 - ®(p_(T,z;9))] — 2e T [1 - B(p, (T, z; 0))]
(7.25)
the value of the associated European put, and

i
0)é/ Eyle
0

B 1 7(T:z;u) a2
= E/o /_oo e™TT [rg— bz exp {owvu
2
+(r—6-0°/2)u}] dwdu (7.26)

1{S(u)<c(T u)}(rq - 6S l du
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with
T, 32 2 % [log (iTI‘—“)) (r—b-0 /2)u] .o

In particular, e(0) is the early exercise premium of Remark 5.10. In the
special case of § = 0 (no dividends), the early exercise premium

pT
e(0) =rq- Eo /0 e 1S (w)<e(T—u)} U

L o /0 " g (0\1/6 [log (C(TI‘ “)) —(r—o? /2)uD du

is the value of an income process that pays at rate rq whenever the stock
price is in the region where the put should be exercised.

The formula (7.24) for the value of the American put still involves the
unknown free-boundary function ¢(-) via its presence in (7.27). To obtain
information about this free boundary, we can use in (7.24) the fact that
p(T,z) = g —z for 0 < z < ¢(T). When 6 = 0, this leads to the equation

g—z=qe " T[1 - &(p_(T, z;9)) — [l — B(p+(T,; 9))]

+rq /OT e TP (;—\/a [Iog (C—(T—z_—“)) —(r— 02/2)u]) du,
vz € [0,¢(T)). (7.28)

It can be shown (cf. Jacka (1991)) that the equation (7.28) characterizes c()
uniquely, among all nonincreasing left-continuous functions with values in
(0, ). In particular, setting z = ¢(T') in (7.28) yields the integral equation

c(T)

O(p4 (T, c(T); ) = 1 — e T [1 = @(p- (T, (T); D))}

- ol (i)

— (r—o® /2)u] ) du (7.29)

for ¢(T),0 < T < oc. The initial condition for ¢(-) when § = 0, given in
Proposition 7.10, is ¢(0) = g. Little (1998) shows further that (7.29) can
be reduced to a nonlinear Volterra integral equation for ¢(-).

Theorem 7.7 characterizes the optimal expected payoff function p(-7)
in terms of the free-boundary function ¢(-), and this has finally led t0
formula (7.24) for p(-,-), also in terms of ¢(-). We have seen that (7.24)
indirectly provides information about c(*) (e.g., (7.28), (7.29)). We close
this section with a direct characterization, along the lines of Theorem 7.7,
of the pair of functions (p(:,-), c(-))-

Consider the problem of finding a pair of functions f : [0,00)2 - R and
d : [0,00) — (0,q] such that:

f is continuous on [0, 00)?, (7.301)

d is nonincreasing and left-continuous on [0, 00), (7.30ii)

fty fzy and [, are defined and continuous on the
open (because of (7.30ii)) set D 2 {(t,z) € (0,00)%z > d(t)}, (7.30iii)

A
d(0) = d(0+) < %q if §>r, (7.30iv)

] al
Lf =0 in D, where Lf = 5(;%%, +(r=8)zxfe—1f—fi, (7.30v)

ft,z) > (g—z)*, V(t,z)€[0,00)? (7.30vi)
fit,z)=(g—z), Vte[0,00), 0<z<d(t), (7.30vii)
f(0,z) =(g—xz)*, Vz € [d(0),0), (7.30viii)
Jim max |f(t,)| =0, VT €(0,00), (7.30ix)
fo(t,d(®)+) = -1, Yt € (0,00). (7.30x)

ecall the function ¢(z) = (¢ — z)* of (7.9), and define the set:

o (b xlog irzs
[0,00) x [0, %) if 6 > 7.

G, the function ¢ is smooth, and
Lo(t,z) =6z —rqg <0, V(t,z) € G. (7.31)

,d) satisfies (7.30), then f agrees with ¢ on the set {(¢t,z) € [0, 00)%0 <
< d(t)} C G. Thus, the free boundary divides (0,00)? into two open
ons, D and (0,00)%\D, such that

Lf=0, f>¢; on D, (7.32i)
Lf<0, f=¢; on (0,00)%\D. (7.32ii)

ough we do not know that f is smooth across the boundary between

);egions, (7.30x) guarantees that f, is defined and continuous. on.
00)“.

eorem 7.12: The pair of functions (p(-, ), c(-)) is the unique solution
the free-boundary problem (7.30).

OOF. We know from Propositions 7.1, 7.6, the definition of C, The-
m 7.7, Lemma 7.8, and relation (7.21) that (p(-,),c(-)) solves (7.30).
pose (f(-,-),d(-)) is any solution to (7.30). Fix (T, ) € [0,00)? and use
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the mollification argument of Theorem 7.9 to obtain the formula
e (T —t,8(t)) = MY (t) — Af(t), 0<t< T,A
where £ = S(0), MY() is the Pp-local-martingale M/(t) = f(T, z) +
aft e TS (u) f- (T — u, S(u))dWo(u), and Af(:) is the nondecreasing (be-
§ Y f@) 2 ffemul (rq — 6S(u))du. Let
cause of (7.31)) process A/ (t) = [je {S(w)<d(T-u)}

{7.}52, be a sequence of stopping times with 7, T T almost surely z%nd
suZhnt—hat {M!(t A7,);0 <t <T} is a Po-martingale. For any stopping

time 7 € So,r we have
Eo[e"r(TAT")f(T — (T ATR),S(T ATR))] = f(T,z) — EoAf (7 AT,). (7.33)

The function f is bounded on [0, T] x [0,00) (see (7.30i, ix), so passage to
the limit in (7.33) yields

Eole™"" f(T — 7,8(r))] = f(T,x) — EoA (1), Y1 € Sor-

From (7.30vi) and the nonnegativity of Af (), we conclude that Eo [;31 . 5q))—
S(m))*] < f(T,z) for all T € So r, whence p(T,z) < f(T,z) (reca I(3 .th.
On the other hand, defining 7, = T Ainf{t > 0; S(t) < d(T - 1)} to_e e
hitting time of the closed set [0, 00)%\D, we have f(T.— T, ng))_r—rz((q -
S(rz))* (from (7.30vii, viii), and A/ (7;) = 0, so (7.6;4) implies Eple q
S(2))*] = f(T,z). It follows that p = f on [0, 00)". ' T

To show that the functions c(-) and d(-) are equal, it suffices to establis
equality between the open sets

c2 ()€ (0,0)% plt,z) > (@—2)}={(t,z)€ (0,007 z>c(t)}

(7.34)

—r'r(

and
D £ {(t,2) € (0,00)% z > d(t)}.

7=
For (t,z)€C, we have Lp(t,z) = 0, which means that (t,z) & (0,00)*\D
(see (7,.30ii). Therefore, C C D, but since both C and D are open, we mus(;
have in fact C C D. The roles of C and D in this argument may be reverse

O
to obtain D C C.

2.8 Notes

In order to implement the contingent-claim pricing th}aory presented in tlllslcs)
chapter, it is necessary not only to know the currenF interest rate, but tahat
to have a model for the evolution of interest ra?e:s into the future, so i
the statistics of the process So(-) appearing in pricing fqrmulas such Iz;s (v-ed
can be computed. Such a model should be cqx.ls1stent with cgrrgnt o §ert Y
yields of default-free bonds of various maturities, each of which is sub(;ec a
the same pricing formula (2.9). Furthermore, the' model ghould include r o
domness in a way that enables it to remain consistent with observed yie

f
as time evolves. The construction of such models belongs to the study ©
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the term structure of interest rates, a subject not developed in this mono-
graph. The most general term-structure model is that of Heath, Jarrow, and
Morton (1992, 1996), although many other models are also popular among
practitioners. For example, we refer the reader to the exhaustive treatment
of this subject in the recent monographs by Musiela and Rutkowski (1997a)
and Bisiére (1997), to Chapters 7 and 9 of Duffie (1992), to the papers by
Artzner and Delbaen (1989), Bjork, Di Masi, Kabanov, and Runggaldier
(1997), Bjork, Kabanov, and Runggaldier (1997), Black, Derman, and
Toy (1990), Brace, Gatarek, and Musiela (1997), Brennan, and Schwartz
(1979, 1982) (but see Hogan (1993)) n (1992), Cox, Ingersoll, and Ross
(1985b), Dothan (1978), Duffie a ' (1994, 1996), Dybvig (1997), El
Karoui, Myneni, and Viswanathan , El Karoui and Rochet (1989),
Ho and Lee (1986), Hull and WhitaY:a9eses) amshidian (1990, 1997b), Lit-
terman and Scheinkman (1988), Miltersen (1994), Miltersen, Sandmann,
and Sondermann (1997), Musiela and Rutkowski (1997b), Richard (1978),
Rogers (1997), Sandmann and Sondermann (1993), and Vasicek (1977), and
to the survey papers by Rogers (1995b) and Bjork (1997) for up-to-date
overviews. A less mathematical introduction to the issues of interest-rate
instruments is provided by Sundaresan (1997).

Section 3: The distinction between forward and futures contracts has been
only relatively recently recognized (see Margrabe (1976), Black (1976a))
and even more recently understood. Cox, Ingersoll, and Ross (1981) and
Jarrow and Oldfield (1981) provide a discrete-time, arbitrage-based analy-
8is of the relationship between forwards and futures, whereas Richard and
Sundaresan (1981) study these claims in a continuous-time, equilibrium
setting. Myneni (1992b) has used stochastic calculus to revisit the formu- .
1as of Cox et al. (1981). Our presentation of this material is similar to that
of Duffie and Stanton (1992), which also considers options on futures. In
Particular, our Corollary 3.9 on the forward-futures spread may be found
in Duffie and Stanton (1992), and also in Chapter 7 of Duffie (1992). For
additional reading on forward and futures contracts, one may consult An-
derson (1984), Dubofsky (1992), Duffie (1989), Edwards and Ma (1992),
Merrick (1990), Musiela and Rutkowski (1997), Sutcliffe (1993).

Sections 2 and 4: The modern theory of the pricing of options (or, more
generally, contingent claims) in a complete market begins with the seminal
articles of Samuelson (1965a), Samuelson and Merton (1969), Black and
Scholes (1973), and Merton (1973a). The arbitrage-based approach of these
Sections, which is not restricted to markets with constant coefficients, has
1ts origins in the articles of Ross (1976) and Cox and Ross (1976), and
Matures with Harrison and Kreps (1979); this latter paper, along with
the seminal Harrison and Pliska (1981, 1983), clarified the mathematical
Stucture of the problem and worked out its connections with martingale
theory. The early work on option pricing is nicely surveyed in Smith (1976)
and Miiller (1985). Nontechnical discussions can be found in Bernstein
(1992), Chapter 11, and Malkiel (1996), Chapter 11. Grabbe (1983), Barron
(1990), Barron and Jensen (1990, 1991), Korn (1992), and Bergman (1995)

)
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have derived option pricing formulas when the interest rate for borrowing is
greater than the interest rate for investing. See also Section 6.8 of this text.
Cox, Ross, and Rubinstein (1979) provide a simple yet powerful discrete-
time model for option pricing. Ocone and Karatzas (1991) have used the
Malliavin calculus to identify hedging portfolios; Colwell, Elliott, and Kopp
(1991) have relied on the Markov property for the same purpose. Carr and
Jarrow (1990) use Brownian local time to resolve the paradox of hedging
an option using the stop-loss start—gain strategy. Lamberton and Lapeyre
(1993) and Madan and Milne (1993) discuss contingent-claim valuation
when one is investing in a “basis” of assets.

The Black-Scholes option pricing formula (4.11) heralded a revolution
marked by the widespread creation of derivative securities whose prices
are set as much by theoretical considerations as by market forces. One of
the basic insights of this formula is that it singles out the wvolatility of the
underlying stock-price process as the crucial parameter. The success of the
Black—Scholes model has been such that prices are often quoted now in
terms of the volatility parameters implied by it.

Empirical evidence has shown, however, that the constant volatility
model that supports the pricing formula (4.11) should not be used inju-
diciously (see, for instance, Blattberg and Gonedes (1974), Black (1976b),
MacBeth and Merville (1979), Christie (1982), Bhattacharya (1983), Ru-
binstein (1983, 1985), Scott (1987) and the references cited there). Several
procedures for estimating stock volatilities have been proposed; for pro-
cedures based on the extreme values of stock prices, see Garman and
Klass (1980), Parkinson (1980), Beckers (1983), Rogers and Satchell (1991).
Procedures for estimating stochastic volatility are described by Andersen
(1994), Taylor (1994). :

The formulae of Example 4.5 on path-dependent (or “look-back”) op-
tions appear in Goldman, Sosin, and Gatto (1979). Our treatment was
inspired by the preprint of Follmer (1991), who credits Martin Schweizer
with the idea of using the Clark formula in this context. Shepp and Shiryaev
(1993, 1994) introduced some perpetual American look-back options with
discounted payoff of the type

Y(t) =e ™ max S(u), 0<t< o0
0<u<t
with r > 0, which were later also studied by Duffie and Harrison (1993)-
For the rather difficult study of Asian options, i.e., path-dependent options
with (terminal) payoff of the type C(-) =0 on [0,T) and

1 [T r
C(T) = (T /0 S(t)dt—q)

depending on the average stock price over a given time interval, we refer the
reader to the papers of Carverhill and Clewlow (1990), Kemna and Vorst
(1990), Conze and Viswanathan (1991), Turnbull and Wakeman (1991), Ge-

2.8 Notes 83

man and Yor (1992, 1993), Bouaziz et al. (1994), Kramkov and Vishnyakov
(1994), and Rogers and Shi (1995) or Karatzas (1996), p. 23.

Apother example of a path-dependent option is the so-called barrier
option of the type C(-) =0 on [0,T) and

C(T) = (S(T) — @) 1frery with 7, 2inf{t > 0;5(t) > £} (8.1)
and 0 < .5' (0),g < h < o0; i.e., a European call option that is activated only
if a certain upper barrier is hit before the expiration date. See, for instance
Merton (1973), Cox and Rubinstein (1985), Rubinstein (1991) Karatza,s,
(1996)', pp- 21-22, and Broadie, Glasserman, and Kou (1996,, 1997) for
nume:rlcal methods. One can think of several types of barrier options, de-
pending on whether the barrier lies above or below the initial stock p,rice
and on the function of the barrier (i.e., whether hitting the barrier activates,
or de‘a‘ctlvates the option); all of these have received attention, as has the
“Parisian option” (cf. Chesney et al. (1997)), a barrier-type option that is
activated only if the price process spends a sufficient, prespecified amount
of time above the upper barrier h of (8.1). There are also the double-barrier
options, which, for example, are deactivated if the stock price hits either an
upper or a lower barrier before expiration; see Kunimoto and Ikeda (1992)
Geman and Yor (1996), Rogers and Zane (1997), Jamshidian (1997a) and,
elsser (1997). Yet another example of a path-dependent option is th’e S0-
led guantile option, apparently first studied by Miura (1992); see also
kahori (1995), Dassios (1995), Yor (1995), and Fujita (1997). Tile reader
can consult Rubinstein (1991) for definitions and pricing formulae for a
number of exotic options, and Carr (1993) and Zhang (1997) for more
comprehensive treatments of the topic. '
The notion of compound options, or options on options, is not as far-
fetched as one might think. Stock can be viewed as an option on the value
of a firm; the value of a share of stock in a firm cannot become negative
because if the value of the firm’s assets falls below its level of debt thé
stockholders have the option of declaring bankruptcy. Thus, a stock o;;tion
can be r‘egar('ied as an option on an option. Analysis of compound options
- cont'aln(lad in Geske (1979) and Selby and Hodges (1987). In theory, one
an price a compound option by simply regarding the underlying option
; gen'e?atlng a European contingent claim C(-) that is substituted into
.t.he pricing formula (2.9). Similarly interesting are the exchange options of
e type C(T') = (51(T) — S2(T))*, which give their holder the right to
Xchange, on their expiration date t = T, one asset for another; in the con-
TXt of a model wi.th constant volatilities, the pricing of such options admits
Closed-form solutions of the Black-Scholes type, as was demonstrated b
-MargraEe (}978) (see also Davis (1996) or Karatzas (1996), p. 24). '
cagltet 4 arblti{rage—based” gpproach of these sections is not directly appli-
P mar }fts that are z'ncomplete, or subject to portfolio constraints or
B ns (guc as transaction c‘osts or taxes); in such markets, contingent
h‘ms typically c.annot be replicated exactly using self-financed portfolios.
1s problem arises, for example, when the volatility of the underlying
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stock is stochastic in a way that cannot be hedged by investment in the
stock and the money market (e.g., Hull and White (1987, 1988a)). One
possible approach, then, is to relax the requirement that portfolios be self-
financed (Definition 1.2.1), by requiring that the difference of the two sides
in (1.2.8) be a martingale—and not identically equal to zero, as postulated
by (1.2.8). A portfolio with this property was called mean-self-financed by
Féllmer and Sondermann (1986). These authors introduced this notion and
then established that for any square-integrable contingent claim and dis-
counted price processes that are martingales, there exists a portfolio whose
value is almost surely equal to that of the contingent claim at time T
and that possesses a certain “risk-minimizing” optimality property; such
a portfolio is unique and mean-self-financing. The Follmer—Sondermann
approach was extended by Schweizer (1988, 1990, 1991, 1992a, 1995a)
and Féllmer and Schweizer (1991) to semimartingale price processes; in
these papers, mean-self-financing portfolios were characterized in terms of
a stochastic functional equation, which was shown to have a solution un-
der the assumption that a certain minimal martingale measure exists. This
measure has the property that although it turns prices into martingales, 1t
does not otherwise change the structure of the model. Using this minimal
equivalent martingale measure, Schweizer (1992b) solved a mean-variance
hedging problem in a particular incomplete market problem, generalizing
earlier results of Richardson (1989) and Duffie and Richardson (1991);
an excellent survey of these results is Schweizer (1993). Numerical algo-
rithms based on this point of view are provided by Hofmann, Platen, and
Schweizer (1992). For these and related quadratic optimization problems,
see also Schil (1994), Schweizer (1995b), Musiela and Rutkowski (1997),
Section 4.2, for discrete-time results, and Schweizer (1994, 1996), Delbaen
and Schachermayer (1996a), Delbaen, Monat, et al. (1997), Pham et al:
(1997) for continuous-time results.

A different, stochastic-control-based, approach to the pricing and hedging
problems in incomplete markets was pioneered by El Karoui and Quenez
(1991, 1995), building on a duality construction developed by Xu (1990),
who was in turn inspired by Bismut (1973) (see the Notes to Chapters
5 and 6 for a fuller discussion of this history). This approach insists on
self-financeability of portfolios, but abandons the requirement of exact du-
plication of the contingent claim; instead, it requires that the value of
the portfolio at the terminal time T dominate the contingent claim almost
surely. The results of El Karoui and Quenez (1991, 1995) were extended
by Cvitanié and Karatzas (1993) and Karatzas and Kou (1996, 1998) (see
also Kramkov (1996a,b), Follmer and Kramkov (1997)) to the case of gen-
eral convex constraints on portfolio choice (of which market incompleteness
is but a very special case), and to the case of different interest rates for
borrowing and for lending. We take up this topic in Chapter 5.

The arbitrage pricing theory for contingent claims assumes that there
are no costs for transactions, and typical hedging portfolios require an in-
finite amount of trading. Figlewski (1989) conducted a simulation study
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th;lcélds.hows tbat transaction costs have a significant impact on the cost
o dglng qptlons. Indeed, Soner, Shreve, and Cvitanié (1995) recentl
proved a conjecture, first formalized by Davis and Clark (1994), that i nhy
presence of proportional transaction costs in the continu;)us—, el
the cbeapest way to construct a hedge that dominates a European call
t;onkls the tF1v1al and unsatisfactory method of buying one share of ;)111)_
E h<i)c on which the call option is written and holding it until expira.tion(?
(1959 7coniectur(? was 'also proved independently by Levental and Skorohoci
{199 a).Contfmtlclpa.tlon of this negative result, Leland (1985) had consid
ntinuous-time model in which trades oc i i |
B s o L : cur at discrete times, and
ppage” 1s unavoidable. However, th
of the transaction remains finite
' | , and the Black-Scholes partial diff
:Laltegﬁlatlon (the one-dimensional version of (4.8)) remaiﬁs valjid le;cf:n;
be;ta.wee I:e tvolgtlhty o must be replaced by a larger constant. As t,he tirge
E ra.' es approaches zero, the hedge slippage disappears, the ad
jus ('e volatility approaches infinity, and the value of the Euro;,)ean cali
%)E;ﬁz;ches (tihe yalue obtained by Soner et al. (1995). See also Hoggard
Safariar}ll, (E;J;) 97\)7V1;mott (11994), Avellaneda and Parés (1994), Kabanov g
» tor work that builds on and extend P
1 : ilds o nds Leland’s approach.
Imitizssge;ya%;;rggch todorl)\?lortl) pricing in the presence of transacI;)iI:)n costs
es and Neuberger (1989), is to assign utili n
crepancy between the terminal value of a : i T
' tfolio and the termi
of the option, and to set u i — ot
) . p an optimal portfolio control bl
\l\):i,lfs a}l)ong these lines are Constantinides (1986, 1993 1997)pr1;)an:I,sni13($))I;)e
15, Panas, and Zariphopoulou (1993) Davi,s , ’ ,
' : 993), and Panas (1994), Davi
Z;l:ii %Z}giopouiou 21395), Cvitani¢ and Karatzas (1996) Cs)nsta)r;tin?(;,;z
1iphopoulou (1997). Barles and Soner (1998 , ili
approach to derive a nonlinear Black— e th'e s
Pricing with transaction costs. eSS P S pTeT optien
thiilethe dlscr;e.te—time binomial model of Cox, Ross, and Rubinstein (1979)
] are replicating and dominating portfoli 5 i ,
. ' . . portfolios even in the
al;légls\z;ctlon costs; see Bensald, Lesne, Pages, and Scheinkman (13?)625)%1% (l):
» R(:lrtsl(toSS&)kQin;?)(;l)rls(i)rLghe, Naik, and Uppal (1993), as well as I\/,IusiZla
i , Chapter 2. For additional work i
: : h
gzgiactlon costs, see Gilster and Lee (1984), Dermod; I;ngdgglcgkalgalger
Shiral,{;f%), ;—Ienrotte (1993), Dewynne, Whalley, and Wilmott (19943')r
. Ja an Konno (1995), Grannan and Swindle (1996) Kusuoke;
(1997), (;)U.lnl {:),fld Kallal (1995b), Cvitani¢ and Karatzas (1996), Kabanov
and/or, Co\gstslr;i;,t il(jha.m,tial,nd Touzi (1998). Work on optimal i;lvestment
n i the i is ci
| piriy presence of transaction costs is cited in the
1 . . .
. rai;();czfirfekmti otf Incompleteness arises when, due to additional sources
i ss that cannot be perfectly hedged lity 4
4 . : ! y hedged, the volatility is st -
(198;331;13/8 8w<))rkJon this subject is by Wiggins (1987), Hﬂlyazds %ﬁ?ﬁe
o ,(1989)35, h;)h(xilson and Shaqno (1987), Scott (1987), Chesnay and
» Schroder (1989), and is nicely surveyed in Hul] (1993), Merton

time model,
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(1990), Musiela and Rutkowski (1997). El Karoui, Jeanblanc-Picqué, and
Viswanathan (1992) construct dominating portfolios when the (stochas-
tic) volatility is known to take values either inside or outside a given
interval; see also El Karoui, Jeanblanc-Picqué and Shreve (1998), Hob-
son (1998), Eberlein and Jacod (1997), and Frey and Sin (1997). Stein and
Stein (1991) discuss the distribution of asset prices in such models with
stochastic volatility, while Hofman, Platen, and Schweizer (1992), Heston
(1993), Dupire (1993, 1994), Platen and Schweizer (1994), (1998), Lyons
(1995), Avellaneda, Levy, and Paras (1995), Avellaneda and Paras (1996),
Renault and Touzi (1995), Pham and Touzi (1996), Cvitani¢, Pham, and
Touzi (1997), Romano and Touzi (1997), Scott (1997), Frey and Sin (1997),
Sin (1996), Lazrak (1997a,b), deal with various aspects of hedging contin-
gent claims in the framework of such models. Hobson and Rogers (1998)
dea] with similar questions within stochastic volatility models which are
complete.

Randomness in the volatility can arise also as the result of “feedback
effects” that relate stock price to the value or debt of a firm, or are due
to the trading of large investors or to “finite elasticity” in the market. For
option-pricing results in such models, which need not be incomplete, see
for instance Cox and Ross (1976), Rubinstein (1983), and the more recent
papers by Bensoussan et al. (1994, 1994/95), Cvitani¢ and Ma (1996), Frey
and Stremme (1997), Frey (1998), Papanicolaou and Sircar (1997), Platen
and Schweizer (1998) and Hobson and Rogers (1998).

For the very important and huge subject of real options—concerning
whether or not a firm should invest in new technology or equipment, or hire
additional workforce, or develop new products, etc.—which is not touched
upon in this book at all, we refer the reader to the monograph by Dixit
and Pindyck (1994).

Sections 5-7: A general arbitrage-based theory for the pricing of Amer-
ican contingent claims and options begins with the articles of Bensoussan
(1984) and Karatzas (1988); see Myneni (1992a) for a survey and additional
references, and Karatzas and Kou (1998) for the hedging of American con-
tingent claims under portfolio constraints. Theorems 6.1, 6.3 are taken
from Merton (1973a), which contains a wealth of information and still
makes excellent reading. Theorem 6.7 is due to McKean (1965), a “com-
panion” paper to Samuelson (1965a). Van Moerbeke (1976) formulates
the free-boundary problem associated with that of Theorem 6.7 but on
a finite-time horizon; no explicit solution seems possible in that case, but
the author obtains results on the existence and smoothness of the optimal
exercise boundary. Peter Carr pointed out that the right-hand sides of for-
mulae (6.30) and (6.31) must agree, and he provided the key part of the

“long and painful” computational verification. The results of Section 7 on
the American put option are taken from Jacka (1991). For related work see
the references in Myneni (1992a), in particular the paper by Carr, Jarrow,
and Myneni (1992), who provide a finance explanation of the early exercise
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premium formula (7.26), as well as Beaghton (1988), Broadie and Detem
, ; ple
('1995, 1997),' Carr and Jarrow (1990), El Karoui and Karatzas (1995), El-
1Z1c}>1tt, N(Iyggg)l, and Viswanathan (1990), Jamshidian (1992), Kim (1990)
ang (1 , Pham (1995), Mastroeni and Matzeu (1995), Muli i |
Pratelli (1996). (1999), Mulinacer and
' Appro?cimations and/or numerical solutions for the valuation of Amer-
ican options have been proposed by several authors, including the early
work of Black (1975) and Brennan and Schwartz (1977); see also Jaillet et
a!. (1990) ‘for a ?reatment of the American option optimal stopping problem
via varlatlonal‘mequalities, which leads to a justification of the Brennan—
Schwartz algorithm. Kramkov and Vishnyakov (1994) work out formulas for

hedging portfolios. Roughly speaking, the most popular methods currently
in use are:

(i) Binomial trees and their extensions; see for example Cox, Ross, and
Rubinstein (1979), and Lamberton (1993, 1995a) for the converg,ence
of the associated binomial and /or finite difference schemes, as well as
Boyle (1988), Hull and White (1988b), Rogers and Stapleton (1998)

Figlewski and Gao (1997), Reimer and Sandmann (1995). ,
Numerical solution of PDEs and Variational Inequalities; see, for
example, Carr and Faguet (1994), Carr (1998), Wilmott, Dewynne
and Howison (1993, 1995). ,
Analytic approximations, such as those in Parkinson (1977), John-
son (1983), Geske and Johnson (1984), MacMillan (1986), (5mberg
(1987), Barone-Adesi and Whaley (1987), Bunch and Johnson (1992)

Meyer apd Van der Hoek (1995), Broadie and Detemple (1996), Ches-,
211(3766];‘,'1110'0@ and Gibson (1993), Gao, Huang, and Subrahmanyam
Monte Carlo and quasi-Monte Carlo simulation, as in Tilly (1993)

Barraquand and Pudet (1996), who deal with path-dependent Amer-,
Ican contingent claims, and Broadie and Glasserman (1997). Other
papers on option price calculation by Monte Carlo simulation are
Boyle (1977), Boyle, Evnine, and Gibbs (1989), Duffie and Glynn
(1995), Paskov and Traub (1995), Barraquand and Martineau (1995)

Boyle, Broadie, and Glasserman (1997), Schoenmakers and Heemink,
(1997). Lehoczky (1997) surveys Monte Carlo variance reduction
methods for finance applications.

(ii)

(i)

(iv)

i Barles et afl.‘ (1995) and Lamberton (1995b) study asymptotic proper-
€s Of' the critical stock-price near expirations. For surveys of the extant
Umerical work on American and path-dependent contingent claims, the in-
Tested reader should consult Carverhill and Webber (1990), Hull,(1993),

1 gigg)Vilmott, Dewynne, and Howison (1993) and Broadie and Detemple




3

Single-Agent Consumption
and Investment

3.1 Introduction

This chapter solves the problem of an agent who begins with an initial en-
dowment and who can consume while also investing in a standard, complete
market as set forth in Chapter 1. The objective of this agent is to maxi-
mize the expected utility of consumption over the planning horizon, or to
maximize the expected utility of wealth at the end of the planning horizon,
or to maximize some combination of these two quantities. Except for the
completeness assumption, the market model is quite general, allowing the
coeficient processes to be stochastic processes that are not even assumed
to be Markovian. Specializations of this model to the case of deterministic
and even constant coeflicients are provided in Sections 3.8 and 3.9. Tl}e
problem of this chapter is revisited in the context of incomplete markets in
Chapter 6. ‘
The agent acting in this chapter is assumed to be a “small investor,”.ln
the sense that his actions do not influence market prices. Chapter 4 consid-
ers the equilibrium problem of several agents whose joint actions determinfé
market prices through the law of supply and demand. The model of this
section is a basic building block in such equilibrium models, and these,
in turn, are the basis for a theory of financial markets. Such equilibrium
models can be used, for example, to study possible effects of taxation a.nd
market regulation. The Notes to this chapter contain a further discussion
of the relationship between this material and capital-asset pricing models.

3.1 Introduction 89

In addition to its role in theoretical studies of financial markets, the
model of this section can form the basis of portfolio management. This
requires, of course, that the investment manager either assume a utility
function or else elicit a utility function from the client whose money is being
managed. We show in Section 3.10 that maximization of the logarithm of
terminal wealth results in maximization of the growth rate of wealth, and
this is consequently a frequently used utility function. The class of utility
functions of the form U®)(z) = z?/p for z > 0, where p # 0 is a number
strictly less than one, are also commonly used. For this one-parameter
family of utility functions, the Arrow-Pratt index of relative risk aversion,

A 0? 0
J(z) = —x@U(p)(x)/aU(p)(x),
=1-p,
decreases with increasing p. One can elicit from an investor some measure
of risk aversion and attempt to determine the corresponding utility function
from this one-parameter family.

Sections 3.2 and 3.3 describe the market model and the set of consump-
tion and portfolio processes from which the investor in this market is free
to choose. Section 3.4 introduces the notion of utility function. We allow
these functions to take the value —oo on a half-line extending to —oo, which
effectively places a lower constraint on consumption and/or wealth. Section
3.6 solves the problem of an agent who seeks to maximize expected utility
from consumption plus expected utility from terminal wealth. The method
of solution uses the convez dual function (Legendre transform) of the utility
function. Related to this concept, we introduce and study the convex dual
of the value function for the problem of Section 3.6. This foreshadows a du-
ality theory that plays a critical role in the analysis of incomplete markets
in later chapters.

Section 3.7 considers the problem of maximization of expected utility
from consumption only, and the antithetical problem of maximization of
expected utility from terminal wealth only. These problems are related to
that of Section 3.6 in the following way. Given an initial endowment z, an
agent who wishes to maximize the expected utility of consumption plus the
€xpected utility of terminal wealth can partition his initial endowment into
two parts, z; and x,, such that z = z, + 5. Beginning with initial endow-
ment 24, the agent should solve the problem of maximizing expected utility
from consumption only; with z2, he should solve the problem of maximiz-
Ing expected utility from terminal wealth only. The superposition of these
two solutions is then the solution to the problem of maximizing expected
utility from consumption plus expected utility from terminal wealth. The
Partition of wealth that accomplishes this decomposition of the problems
1S derived in Section 3.7.

The results of Sections 3.6 and 3.7 are specialized to models with de-
terministic coefficients in Section 3.8. For such models a Markov-based
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analysis is provided, including the development of the Hamilton-Jacobi-
Bellman equation and the optimal consumption and portfolio processes as
feedback functions of the agent’s wealth. The Hamilton—Jacobi-Bellman
equation of Section 3.8 is a second-order parabolic differential equation.
When the model coefficients are constant and the planning horizon is in-
finite, the Hamilton—Jacobi-Bellman equation is a second-order ordinary
differential equation, and lends itself to very explicit analysis; this is the
subject of Section 3.9.

3.2 The Financial Market

As in Chapter 2, we shall work in this chapter in the context of a complete,
standard financial market M = (r(-),b(-),6(-),0(-), 5(0), A(*)) (see Defini-
tions 1.1.3, 1.5.1, 1.6.1 and Theorem 1.6.6). In particular, the price of the
money market is governed by

dSo(t) = So(t) [r(t) dt + dA(2)], (2.1)
and the prices of the stocks satisfy
N .
dSu(t) = Sa(t) |ba(t) dt +dA(E) + 3 ona(t) W D(2) |,
d=1

=il ooy IV (2.2)

with 0(t) = (0nd(t));<n,a<n nonsingular for Lebesgue-almost-every ¢ €

[0, T] almost surely. In Sections 3.9 and 3.10, we place the financial market
on the infinite planning horizon [0, 0) (Deﬁmtlons 1.7.2, 1.7.3). Recall
that Sp(0) = 1 and S1(0), ..., Sn(0) are positive constants, and recall from
(1.6.16), (1.5.6), (1.5.2), d (1 5.12) the processes

000 £ o~ 0lbte) +50) 1] (23)
Wo(t)éW(tH 0(s) ds, (2.4)
0
b . t i ¢ ;
20 2ep{- [oawe -3 [ oy, @)
a Zo(t)
Hy(t) = So(t)' (2.6)

In a standard market, the exponential local martingale Zo(-) is in fact a
martingale, which permits the definition of the standard martingale mea-
sure Py (see Definition 1.5.1 and equation (1.5.3)). Except in Section 3.8,
we shall present the analysis of this chapter in a way that uses only the
local martingale property of Zo(-) and avoids the use of Py altogether. This
permits the present analysis also to be used in the study of constrained and
incomplete markets in Chapter 6.
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Until further notice, we take T to be finite and restrict attention to
the finite-horizon model on [0,7]. For this model, one of the following
conditions will be imposed.

Assumption 2.1: The state price density process Hy satisfies

T
E [/{; Hy(t) dt:l < 0.

The state price density process Hy satisfies

EHy(T) < .

Assumption 2.2:

Assumption 2.3: The state price density process Hy satisfies

T
E / Hy(t) dt + Ho(T)| < o0.
0

~ A sufficient condition for these assumptions is that Sp(-) be bounded
ay from zero on [0, T, so that Ho(-) is bounded from above by a constant
es the nonnegative supermartingale Zy(-).

3 Consumption and Portfolio Processes

agent will act in the financial market of the previous section by choosing
onsumption process and a portfolio process. In this section, these entities
defined, and it is shown as a consequence of the admissibility condi-
(3.2) that these processes must satisfy the budget constraint (3.4). It
rther shown that if one starts with a consumption process and a non-
ative random variable that satisfy the budget constraint, then there is a
ing portfolio that, together with the given consumption process, results
terminal wealth equal to the given nonnegative random variable.

finition 3.1:

able, nonnegative process c(-) satisfying fo
ely.

A consumption process is an {.7-' )} -progressively mea-
t)dt < o0, almost

N agent with initial endowment x -> 0 who chooses a consumption

ess c(-) will have a cumulative income process I'(t) = __- fo ) du,0 <
T'. If this investor chooses a I'(-)-financed portfoho process 7r( ), then

508<))rresponding wealth process X*7(.) will be governed by equation

Xz,c,'rr(t) B
So(t) —a:=/0 so(u / So(w) )o (u) dWo(u),
D<t<T. (3.1)
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Definition 3.2: Given z > 0, we say that a consumption and portfolio
process pair (¢, ) is admissible at z, and write (¢, 7) € A(z), if the wealth
process X®%™(.) corresponding to z,c, 7 satisfies

X®em() >0, 0<t<T, (3.2)
almost surely. For z < 0, we set A(z) = (.
Remark 3.3: From (1.5.14), we have

[
—m+/ Hy(u) [0 (u

0<t<T. (3.3)

H X$C7|'

— X®T(w)0(w)] dW (u)

When (¢, 7) € A(z), the left-hand side of (3.3) is nonnegative, and so the
It integral on the right side is not only a local martingale under P, but
also .a supermartingale (Fatou’s lemma). This implies that the so-called

budget constraint

is satisfied for every (c,n) € A(x). The budget constraint has the satisfy-
ing interpretation that the expected “discounted” terminal wealth plus the
expected “discounted” total consumption cannot exceed the initial endow-
ment. Here the “discounting” is accomplished by the state price density
process Hy.

w) du + Ho(T)X®=*™(T)| < z (3.4)

Remark 3.4: Bankruptcy is an absorbing state for the wealth process
X2e™(.) when (c,m) € A(z); if wealth becomes zero before time T, it
stays there, and no further consumption or investment takes place. To see
this, note that because the left-hand side of (3.3) is a supermartingale, so
is the process Ho(t)X®7™(t),0 < t < T, for every (c,m) € A(z). With
70 2 T Ainf {t € [0,T]; X(t) = 0}, we have then

X7 (t,w) =0, Vte€ lnw)T],

for P-almost-every w € {ro < T} (e.g., Karatzas and Shreve (1991), Prob-
lem 1.3.29). On the other hand, the optional sampling theorem applied to
the left-hand side of (3.3) gives

[ / Ho(t)c(t) dt + Ho(T)X®™(T)

f(To)} < Ho(70)X (7o)

almost surely, and thus, for P-a.e. w € {79 < T},

c(t,w) = 0,7(t,w) =0 for Lebesgue-a.e.t € [ro(w), T].
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The budget constraint (3.4) is not only a necessary condition for ad-
missibility, but is also a sufficient condition, in a sense that we now
explain.

Theorem 3.5: Let z > 0 be given, let ¢(-) be a consumption process, and
let £ be a nonnegative, F(T)-measurable random variable such that

| [ e

Then there exists a portfolio process m(-) such that the pair (c,m) is
admissible at £ and £ = X>%™(T).

w) du + Ho(T)E| = . (3.5)

PROOF. Let us define J(t) £ fot Ho(u)c(u) du and consider the nonnega-
tive martingale

A
M(t) = E [J(T) + Ho(T)E|F(2)] ,

According to the martingale representation theorem (e.g., Karatzas and
Shreve (1991), Theorem 3.4.15 and Problem 3.4.16), there is a progressively
measurable, R%-valued process v(-) satisfying

0<t<T.

T
WMéAnwwwM<m

¢
Mit)==z +/ P (u)dW(u), 0<t<T.
0
Dparticular, M(-) has continuous paths, and

IM||le = 0rga<xT|M( )| < o0

most surely. Similarly, ”J“oo = Mmaxo<t<T J(t), “50”00 é maXo<t<T S()(t)‘,

A
d k = maxo<¢<T 1/Zo(t) are finite almost surely.
Define a nonnegative process X(-) by

X(t) a 1 (BN
So((t = Zo(t) [ / Ho(u)e(u) du + Ho(T)§ }'(t)}
1

= %ol [M(t) - J(t)], (3.6)

> that X(0) = M(0) = z. It6’s rule implies
X)) _e®) 4, L
. (So(t)> T So(®) dt + Sol@) " (t)o(t) dWo(t),

ere

(@' (1)) [w(t) + (M(2) — J(£)) 6(t))] - (3.7)

1
o(t)
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We check that =(-) satisfies (1.2.5), (1.2.6), and hence is a portfolio pro-
cess. From Remark 1.6.10 and equation (1.5.1), we have that 6(t) =

o= 1(t) [b(t) + 6(t) — r(t)1] satisfies [|6]lz = (fy 110(t)I2dt)? < oo almost
surely. Therefore,

/T |7 () (b(t) + 6() — r(t)1)] dt
0

[T St) , B .
_/0 Zo(t) )8(8) + 161" (M(t) — J(¢)) ‘ dt
< &1Solloo [lIl12118ll2 + 116113 (1M lloo + 117 ]]eo)]

< 0o

almost surely, and (1.2.5) holds. Similarly,

T ot — [ 5D Jren
| lomnrae= [ 2w +60) () - ) | a
< w2)SollZ 1915 + 12 (1Mo + 1]0)

+ 1813 (1Mo + 10)?] < 00

almost surely, and (1.2.6) holds as well.
We conclude that

X)) / c(u) du /
=I-— wuauqu 0<t<T,
So(®) : o) So(a) (u)o(u) dWo(u),
and comparison with (3.1) shows that X(-) = X®%"(.). Since X(t) >
0 for 0 < t < T, the pair (¢,7) is admissible. Finally, X(T) =
7 (T)E[HO(T VE|F(T)] = £ almost surely: O

3.4 Utility Functions

The agent in this chapter desires to maximize his utility. In this section
we develop the properties of the utility functions we consider. We also
introduce the conver dual of a utility function.

Definition 4.1: A utility function is a concave, nondecreasing, upper
semicontinuous function U: R — [—o0, 00) satisfying:

(i) the half-line dom(U) = {z € R;U(z) > —oo} is'a nonempty subset of
[0, 00);

(ii) U’ is continuous, positive, and strictly decreasing on the interior of
dom(U), and

A

U’(00) zll.lgo U'(z) =0. (4.1)
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We set
z 2inf{z € R;U(z) > —o0} (4.2)

go that T € [0,00) and either dom(U) = [Z, 00) or dom(U) = (T, 00).
We define

U'(z+) £ lim U (), (4.3)

8o that U'(z+) € (0, o0

Here are some common utility functions. Take p € (—o0, 1) \ {0} and set

A :EP/P, > 0,
U(p)(z) = hm&lO é’p/p’ z=0, (44)
—00, z < 0.
For p =0, set
(0) logz, x>0,
UO(z) & { il | (4.5)

he Arrow—Pratt index of risk aversion, — U'((?): for U is 1 — p. Other

tility functions are U(P)(z — %), where T is a positive constant.

Let U be a utility function with T given by (4.2). The strictly decreasing;

ntinuous function U’: (Z, o) 20 (0,U’(Z+)) has a strictly decreasing,

ntinuous inverse I: (0, U’ (Z+)) 223 (z, 00). We set I(y) = T for U'(z+) <
< 00, so that I is defined, finite, and continuous on the extended half-line
? m]’ a‘nd

U (Iy) = {%(f v S g;}(?go (4.6)
IU(z))=z, T<z<o00. (4.7)

finition 4.2: Let U be a utility function. The conver dual of U is the
ction

A
U(y) = sup{U(z) —zy}, yeR. (4.8)
z€R
Except for the presence of some minus signs, U is the Legendre—Fenchel

nsform of U (Rockafellar (1970), Ekeland and Temam (1976)). Indeed,
we define the convex function

f(z) 2 ~U(z), z€R, (4.9)

€n the Legendre-Fenchel transform of f is

, NOE :lelg{wy ~f(@)}=U(-y), yeR (4.10)
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Lemma 4.3: Let U and T be as in Definition 4.1, I as in (4.6), (4.7),

and let U be the conver dual of U. Then U : R — (—o00,00] is conver,

nonincreasing, lower semicontinuous, and satisfies

(1)

. U (I(y)) — yI(y), y >0,
U(y) = { U(co) £ limy 0o U(z), y=0, (4.11)

\ 60, y < 0.
(ii) The derivative U’ is defined, continuous, and nondecreasing on

(0, 00), and
U'(y) =-I(y), 0<y<oo. (4.12)
(iii) For all z € R,
U(z) = inf {U(y) + zy}- (4.13)
y€ER

(iv) For fized z € (T,00), the function y ﬁ(y) + Ty 15 uniquely
minimized over R by y = U’'(z); i.e.,

U(z) = U (U'(z)) + zU' (). (4.14)

PROOF. According to Rockafellar (1970), Theorem 12.2, the function U
is lower semicontinuous, convex, takes values in (—o0, oo|, and is related to
U via (4.13). Equation (4.11) is easily verified directly from the definition
of U.

According to Rockafellar (1970), Theorem 23.5, the function £ — U(§) —
y€ is maximized at £ = z if and only if —z € Bﬁ(y). But for 0 < y < oo,
this function is uniquely maximized by £ = I(y), whence (4.12) holds. From
(4.12) we see that U’ is continuous and nonincreasing on (0, co).

Finally, for fixed z € (Z,0), the convex function y — U (y) + zy has
derivative —I(y) + z for y € (0,00). This derivative is zero at y = U’(z)
(see (4.7)), which gives us (iv). o
Remark 4.4: We shall usually consider utility functions U for which T

given by (4.2) is zero. For such a function, we shall impose sometimes the
following additional conditions:

(a) z— zU’'(z) is nondecreasing on (0, c0); (4.15)
(b) For some § € (0,1),v € (1,00), we have
BU'(z) > U'(yz) Vz € (0,00). (4.16)

The first of these conditions is equivalent to

(c)y — yU'(y) is nondecreasing on (0, U’(0+))
(set y = U'(z) and use (4.7), (4.12)). (4.15")

Condition (c) implies that

z:— U(e*) isconvexonR; (4.15")
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Furthermore, for a utility function U of class C?(0,0), condition (4.4)
implies that the so-called Arrow-Pratt index of relative risk aversion
a zU"(x)

@) 2 -y (4.17)

does not exceed 1.
Condition (4.16) is equivalent to having

U'(By) > +U'(y) Yy € (0,U'(0+)) forsomef € (0,1),7 € (1,00)
(4.16")
(just replace = by —U'(y) in (4.16), and then apply U’ to both sides of

the resulting inequality). By iterating (4.16’), one obtains the apparently
stronger statement

VB3 € (0,1),3y € (1,00) suchthat U'(8y) > U’ (y) Vy € (0,U’'(0+)).
(4.16")

It should also be noted, in the notation of (4.4), (4.5), that for v > 0 and
0 < p < 1, condition (4.4) is satisfied by the function

a U@ . >0
U(z) = {_OO(IJF’Y) izov

hereas (4.16) is satisfied by U® for all p € (—o0, 1).

.0 The Optimization Problems

e formulate three optimization problems for an agent. This agent is some-
imes called a small investor because his actions do not affect the prices of
ancial assets.

efinition 5.1: A (time-separable, von Neumann-Morgenstern) pref-
rence structure is a pair of functions U;:[0,7] Xx R — [—o00,00) and
2:R — [~00,00) as described below:

(i) For each t € [0,T], Uy (¢,-) is a utility function (Definition 4.1), and
the subsistence consumption

2(t) £ inf {c € R;Uy(t,c) > —o0}, 0<t<T, (5.1)

N 1s a continuous function of ¢, with values in [0, 00);
(i) U; and U{ (where the prime denotes differentiation with respect to
the second argument) are continuous on the set

Dy 2 {(t,0) € [0,T] x (Qoo) &> 2(t)} 5 (5.2)
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(iii) Us is a utility function, with subsistence terminal wealth defined by
7 2 inf {z e R;Uz(z) > —o0}. (5.3)

Let an agent have an initial endowment z € R and a preference struc-
ture (U;,Uz). The agent can consider three problems whose elements of
control are the admissible consumption and portfolio processes in A(z) of
Definition 3.2.

Problem 5.2: Find an optimal pair (¢;,71) € .4;(z) for the problem

Vi(x) = sup
(c,;m)€AL(x)

E / U (t,c(t (5.4)

of maximizing expected total utility from consumption over [0, T, where

T
Ay(z) 2 {(c, n) € .A(:l:);E/0 min [0, Uy (t, ¢(t))] dt > -oo} +  [B5)

Problem 5.3: Find an optimal pair (e2,72) € A2(z) for the problem

Va(z) 2 sup  EU (X™°™(T)) (5.6)

(e,m)EAL ()
of maximizing expected utility from terminal wealth, where
As(z) £ {(c,7) € Az T))] > —o0}. (5.7
Problem 5.4: Find an optimal pair (c3,73) € A3(z) for the problem

); Emin [0, Us (X®™(

Va(z) sup FE

7
/ Uy (¢, c(t)) dt + Us (X=°(T)) (5.8)
(c,m)EAz(x) 0

of maximizing expected total utility from both consumption and terminal
wealth, where

As(z) £ Ai(z) N Az (). (5.9)

Of course, since A(z) = 0 for z < 0, we have A;(z) = 0 for < 0 and
1 =1,2,3. We adopt the convention that the supremum over the empty set
is —oo. In the next sections we shall strive to compute the value functions
Vi, Va2, and V3 of these problems and to characterize (or even compute)
optimal pairs (¢c;,7;),% = 1,2,3, that attain the suprema in (5.4), (5.6),
and (5.8), respectively.

Remark 5.5: In Problems 5.2-5.4, we could allow U, (respectively, Us)
also to depend on w € 2 in an {F(t)}-progressively measurable (respec-
tively, F(T')-measurable) manner. The analysis of the subsequent sections
would be unaffected.

In the remainder of this section, we develop for future use technical re-
sults concerning some of the functions introduced here. The reader may
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wish to postpone this material until these results are actually used in
subsequent sections.

Remark 5.6: Let (U;,Usz) be a preference structure.

(i) Because ¢(-) is continuous, there exists a finite number ¢ such that & >
Z V maxg<i<r ¢(t). From the continuity of U; on Dy D [0, T x [é, 00),
we have
T
/ \Us(t,8)| dt + [Ua(8)] < oo. (5.10)
0

Furthermore, under the respective Assumptions 2.1-2.3, the respec-
tive quantities

T
2E / Ho(t)a(t) dt, AXa(oo) 2 E[Ho(T)z], (5.11)
{ / Ho()e(t) dt + Ho(T)Z (5.12)
are finite.
il) From (4.1), we have lim._,o, Uj(t,¢) = 0 for all t € [0, T]. In fact, the

following stronger statement holds:

lim max Uj(t,c) =0, (5.13)

c—00 0<t<T

as one can see by considering, for fixed ¢ > 0, the nested sequence
of compact sets K, (¢) 2 {te0,T);Ui(t,¢+n)>¢€}, n=1,2,....
These sets have empty intersection, so for some integer n, we have
K, (e) = 0.

ark 5.7: For Problem 5.4, the agent must have initial wealth at least
) in order to avoid expected utility of —oo. Indeed, for this problem,

preference structure forces the constraints G
e(t) >¢t), aetel0,T), (5.14)
XI,C,W(T) 2 T (515)

ost surely, for otherwise E[f0 Ui (t,c(t)) dt + Uz (X=%™(T))] would be

- But (5.14), (5.15), and (5.12) imply

[ / Hy(t)e(t) dt + Ho(T)X™™(T)| > Xs(00). (5.16)

lling the budget constraint (3.4), we see that V3 = —oo on the half-line
1 A3(00)). For z = X3(00), any (c,7) € Asz(z) satisfying (5.14), (5.15)

actually satisfy c(t) = ¢(t), X®%™(T) = T. According to Theorem
there is in fact a portfolio process 7 for which X*3(°):%%(T) = Z, and
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we conclude that

(T
/ U, (t,e(t)) dt + Uz(T), = = X3(00),
—Ooo, z < X3(00).

From (5.10), this last expression is well-defined, although it may be —oo,
in which case Az (X3(00)) = 0@ and V3 (X3(o0)) = —o0, in accordance with
(5.17). Similar arguments show that

| /T Uy (t,8(t) dt, == AX)(0),
0

Vi(z) = (5.18)
-0 z < X1(00),
_ (@), ==X(),
Valz) = { —00, I < Xa(00). (5.19)
Let (U,,Us) be a preference structure. For fixed t € [0, T], the function
Li(t,-) 1 (0, 00] 2 [¢(t), 00), satisfying the analogue
/ _Iy 0 <y <Uj(tet)+),
RN =G o, Bbnn 2y ce O

of (4.6), is strictly decreasing on (0, U; (¢, E(t)+)], is identically equal to
(t) on [U] (t,2(t)+) ,00], and is continuous on all of (0, co]. Similar remarks
apply to the function I : (0,00] — [Z, 00) that satisfies

0 ) = { %z )

Lemma 5.8: The function I, of (5.20) is jointly continuous on [0,T] X
(0, 00].

0 <y < Uiz +),

ULE+) <y < 0. (5.21)

PROOF. Let (to,%0) € [0,T] x (0,00] be given, and let {(t,,yn)},., be
a sequence in the same set with limit (to,yo). Define ¢, = I, (tn,yn),n =
0,1, .... We need to show that ¢y = limy, 0 Cn.

Let us consider separately the two cases:

Case 1: yp < Uj (to, ¢(to)+)-

For some v > 0, we have yo < Uj(to,¢(to) + 7). Continuity of ¢ and of
U} on D, implies y, < Uj (tn,¢(tn) + ) for n sufficiently large, and thus
cn > E(tn) +v and

o, U (L, € (5.22)

The sequence {c,}5%, is bounded, for otherwise (5.13) would imply
0 = lim, . Uj(tn,cn) = lim,_, . yn, which violates the assumption
lim, oo Yn = Yo > 0. Any accumulation point ¢§ of {c,}32, must sat-
isfy ¢ > ©(to) + ; thus, the continuity of U] on D, and (5.22) imply
yo = Uj(to, cy) and ¢ = I (to, yo) = co. Consequently, lim, o ¢, = co-
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ase 2: yo > Uj (to,c(to)+).

Now we have ¢y = ¢©(ty). We divide the index set into N 2
n > Liyn > Ul (tn, e(ta)+)} and Ny £ {n > 1;yn < U} (tn,&(tn)+)}. For
n € N1, we have ¢, = ©(tn), so limpen, ¢ = €(to) = co, as desired. For
€ N,, we have ¢, > €(t,), and thus (5.22) holds; we can argue as in
ase 1 that {c, }nen, is bounded. If {c,}ren, Were to have an accumula-
jon point ¢ > €(tg), then the argument of Case 1 would imply cg = co,
hich violates the Case 2 assumption. Hence, every accumulation point ¢j
f {c, }nen, satisfies c§ = ¢(to) = co. O

.6 Utility from Consumption
and Terminal Wealth

Theorem 6.3 and Corollary 6.5 below we provide a complete solution
Problem 5.4 of maximizing expected utility from consumption plus
xpected utility from terminal wealth. We follow this with a number of
amples of this solution. Theorem 6.11 begins the study of the dual value
ction for this problem.

Let a preference structure (U, Uz) be given. We define the function

T
EE /0 Ho(®)Ts (t,yHo(t)) dt + Ho(T)L(yHo(T)) | , 0 <y < oo.

(6.1)

ssumption 6.1: X3(y) < oo, Vy € (0,00).

Remarks 6.8, 6.9 below give conditions that imply the validity of this
sumption.

mma 6.2: Under Assumption 6.1, the function X5 is nonincreas-
q andAcontz'nuous on (0,00), and Astr’ictly decreasing on (0,r3), where
(0+) = limy, o X3(y) = 00, X3(00) = limy_o0 X3(y) s given by (5.12),
d

rs £ sup {y > 0; X3(y) > X3(00)} > 0. (6.2)

particular, the function X3 restricted to (0,73) has a strictly decreasing

erse function Ys: (Xg(oo), oo) onte (0,73), so that

X3 (V3(z)) =2, V€ (A3(00),00). (6.3)

OOF. Since I)(t,-) and I2(-) are nonincreasing, so is X3(-). The right
ntinuity of X3(-) and the equation X3(0+) = oo are consequences of
€ monotone convergence theorem and, in the latter case, the equalities
(£,0+) = I,(0+) = co. The left continuity of X3(-) follows from Assump-
N 6.1 and the dominated convergence theorem. Likewise, agreement with
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(5.12) follows from the dominated convergence theorem and the equalities
lime oo 1 (t, €) = &(t), limg—oo I2(z) = T. )

It remains to show that Xj is strictly decreasing on (0, r3). For y € (0,73),
we have X3(y) > X3(00), and thus, either yHo(t,w) < U, (t,e(t)+) for all
(t,w) in a set of positive product measure, or else yHo(T,w) < Uj(z+) for
all w in an event of positive P measure. But Jy(t,-) (respectively, L(})) is
strictly decreasing on (0, U] (t,€(t)+)) (respectively, on (0, U3(Z+))). Thus,
either one of the above inequalities is enough to imply A3(y — 8) > A3(y)
for all & € (0, y). O

We are now prepared to solve Problem 5.4. In light of Remark 5.7,
specifically (5.17), we need only consider initial wealth z in the domain
(X3(c0), 00) of Y3(-). For such an z, we know from (3.4) and Theorem
3.5 that Problem 5.4 amounts to maximizing E[fOT Us (t,c(t)) dt + Uaz(€)]
over pairs (c,£), consisting of a consumption process c(-) and a nonnega-
tive F(T)-measurable random variable &, that satisfy the budget constraint

(3.4), namely, E[fOT Ho(t)e(t)dt + Ho(T)€] < z. Now, if y > 0is a “La-
grange multiplier” that enforces this constraint, the problem reduces to the
unconstrained maximization of

T .
+y (z —E { /0 Ho(t)e(t) dt + HO(T)gD .

But this expression is (> ]

T
E [/ Ur(t, c(t)) dt + Ua(€)
0

CVISION

T
zy + E/o [Ur(t, c(t)) — yHo(t)c(t)] dt + E [Ua(€) — yHETTYR ===

<zy+FE

T :
/0 Us(t,yHo(t)) dt + (72(1/H0(T)):| )

with equality if and only if
C(t) = Il(t,yHo(t)), 0 S t S T and £ = IQ(yH()(T))

(recall (4.8) and Lemma 4.3(i)). Quite clearly, y = Ys(z) is the only value
of y > 0 for which the above pair (c,§) satisfies the budget constraint
with equality. Thus, for every & € (X3(00), 00), we are led to the candidate
optimal terminal wealth

¢ £ L(Ys(x)Ho(T)) (6.4)

and the candidate optimal consumption process
c3(t) 2 L(t, Va(@)Ho(t)), 0<t<T. (6.5)
From (6.1), (6.3), we have

T
E [ | Howestu dut Ho(T)es| = Ko Dala) == (66)

3.6 Utility from. Cénsumption and ' Terniinal Wealth 103

and Theorem 3.5 guarantees the existence of a candidate optimal portfolio
rocess m3(-) such that (c3,73) € A(z) and & = X®°3™3(T).

heorem 6.3: ‘Suppose that both Assumptions 2.8 and 6.1 hold, let x €
A3(00), 00) be given, let €3 and c3(-) be given by (6.4), (6.5), and let m3(-)
e such that (cs,m3) € A(z), £3 = X™™(T). Then (cs,73) € A3(z), and
3, m3) s optimal for Problem 5.4:

/2 ‘
Vg(l‘) =F /0 Uy (t,Cg(t)) dt + U, ()(:':’ca'ﬂ-3 (T)) . (67)

OOF. We first show that (c3,73) € Asz(z). With é as in Remark 5.6,
1a 4.3(1) and Definition 4.2 imply

Us (¢, ¢3(t)) — Ya(x) Ho(t)ca(t) = U (t, s(x) Ho(t))
Z Ul(ta é) - y3(z)H0(t)éa

Ua(&3) — Vs(z) Ho(T)&s =Us (V3(z) Ho(T))
> Us(€) — V3(z)Ho(T)é,

consequently,

T

E { /0 min [0, U (¢, c3(t))] dt + min [0, U2(§3)]}
T

> /0 min [0, U (¢, &)] dt + min [0, Uy (&)]

T
—yg(l‘)éE {/0 H()(t) dt + H()(T)}
> —00.

ext, we sbow that (c3,73) attains the supremum in (5.8). Let (c, 7) be
ther pair in Aj;(z). Using Lemma 4.3(i) again, we have
U (8 es(t)) — YVs(x)Ho(t)es(t) > Un (¢, ¢(t)) — YVa(x)Ho(t)e(t), (6.8)
Ua(t,€3) — Ys(z)Ho(T)¢s = Uz (X™°™(T))
—Y3(z)Ho(T) X" (T), (6.9)
thus

T
B /0 Uy (t, cs(t)) dt + Us(t, )

>E

=
/0 Ut (t,c(t)) dt + Uz (X “”’“'”(T))}

T
+Y3(z)E [/0 Ho(t)es(t) dt + Ho(T)Es
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& » i
_Wi(2)E /0 Ho(t)e(t) dt + Ho(T) X5 (T)

T
>F /0 Ui((¢,c(2)) dt + U (X®™(T))

because of (6.6) and the budget constraint (3.4) satisfied by (c, 7). O

Remark 6.4: Assume that V3(z) < oo. Inequality (6.8) is strict unless
c(t) = c3(t), and likewise (6.9) is strict unless X *™(T) = £3. It follows that
up to almost-everywhere equivalence under the product of Lebesgue mea-
sure and P, ¢3(-) is the unique optimal consumption process and &3 is the

unique optimal terminal wealth. This implies also that mw3(-) is the unique

optimal portfolio process, again up to almost-everywhere equivalence.

Corollary 6.5: Under the assumptions of Theorem 6.3, the optimal wealth
process X3(t) = X©°73(t) is

Xs3(t) =

f(t)] 0<t<T

/ Ho(u)es(u) du + Ho(T)E

H (t
(6.10)
Furthermore, the optimal portfolio w3 is given by
! ¢3(t)
o (t)ms(t) = 4 o) + X3(t)6(t), (6.11)

in terms of the integrand 3(-) in the stochastic integral representation
Ms(t) =z + [ ¥s(u) dW (u) of the martingale

Ms(t) & f(t)] 0<t<T (6.12)

/ Ho(u)es(w) du + Ho(T)Es

The value function V3 is then given as

Va(z) = G5 (Vs3(z)), A3(00) <z < 00, (6.13)

where
Galy) 2 / U (&, Iy (¢, yHo(t))) dt + Uz (I (yHo(T))) | , 0 <y < oo
(6.14)
PrOOF. The formula for X3(-) comes directly from (3.6), which also pro-

vides the formula for M3(-) in terms of Ho(:) and converts (3.7) to (6.11).
Equations (6.13), (6.14) are just restatements of (6.4), (6.5), and (6.7). U

Example 6.6: U,(t,z) = Uy(z) = logz, V(t,z) € [0,T] x (0, 00).
In this case, I; (t,y) = I(y) = 1/y for 0 < y < oo, X3(y) = (T +1)/y for
0 < y < 00, and Y3(z) = (T + 1)/z for 0 < z < co. The optimal terminal
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wealth, consumption, and wealth processes are given respectively by

S=TT 1)H0<T)’

.z B T+1-t)z _
TR 10 T hme

In particular, the martingale M3(-) of (6.12) is identically equal to z, so
¥(:) =0, and the optimal portfolio, given by (6.11), is

m3(8) = (a(8)o’(£) ™" [b(t) + 8(t) — r(1)1] X3 (2),

Furthermore,

cs(t) = 0<t<T.

0<t<T  (6.15)

4
Gs(y)=—(T+1)logy — E/ log Ho(t) dt — Elog Ho(T), 0<y < oo,
0

/ ‘T
T
Va(z) = (T + 1) log (T—-I-1> - E/o log Ho(t) dt — E'log Ho(T),
0<z< oo
This example is extended in Example 7.11.

xample 6.7: U, (t,z) = Us(x) = —x”

<1l p#0.
We have I (t,y) = L(y) = y/®=Y for 0 < y < oo, and

Y(t,z) € [0,T] x (0, 00), with

T .
Xa(y) = y71E /0 (Ho(£))"/®~V dt + (Ho(T))P/®~V)

= X3(1)y1/(17—1)’ 0<y< oo,

z p=1
y3(l') = (m) s 0<z<o0.
€ optimal terminal wealth and the optimal consumption process are
n as
£y = Ho(T))Y/ (P~ 1)’ ¢ 1/(p— 1)
g1y (@) es(t) = 5 opy (Holt)
(t) i F p/(p=1) /p—1 |
£ L p— p/p—
3 X3(1)H0(t)E /t (Ho(w)) du+ (Ho(T))"'? f(t)} .
Ly, |
1
G3(y) = I_)X3(1)y}7/(p—1), 0< y < o0,
1 -
Vi(z) = 5(X3(1))1 PP, 0<z<oo.
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We may write (Ho(t))"/®™" = m(t)A(t), where
t £
m) 2o {2 [a)+ [ ran] + 557 [l w,

t 2 t )
A(t)_é_exp{I% /0 e'(u)alW(u)—Tl’”_—pF /0 ||6(u)||2du}.

If r(), A("), and 6(-) are deterministic, then m() is deterministic and
A(') is a martingale, so

E [(Hg(u))”/ (»-1) ‘f-'(t)] —mwA(t), 0<t<u<T.

With N(t) 2 [! m(s) ds + m(t), we have X3(1) = N(T) and

T
X3(t) = —N—(:;% |:/t m(u) du + m(T)} ;
Ca(t) = —p m(t)Xa(t)

S m(u) du + m(T)’

xr i
Mi(0) = 5z [A(t) ( / m(u) du + m(T>>

—f /Ot m(u)A(u) du]

P T
dM;s(t) = N (/t m(u)du +m(T) | dA(t)
= Hg(t)Xg(t)T%G’(t) AW (2).

This last expression yields the optimal portfolio 73(-) of (6.11) as

(6.16)

m3(t) = (o(t)a’(t)) " [b(t) + 6(t) — r(t)1] X3(t)

1-p
for the case of deterministic (), A(-), and 6(-).

Remark 6.8: If 7(-), A(-), and 6(-) are bounded uniformly in (t,w), but
not necessarily deterministic, then in Example 6.7, the function'm'(-) can
be bounded independently of (¢,w), and A(-) is a martingale. This implies
that

Xs(y) = y/P-VE [/()T m(t)A(t) dt + m(T)A(T)| < oo, Vy>0,

so Assumption 6.1 is satisfied; in particular, V3(z) < oo ‘for 'all z>0.1It
is then clear that for any utility functions U; and U; satisfying a growth
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condition of the form
Ui(t,z) + Ua(z) < k(1 +27), V(t,z) € [0,T] x (0,00),

where 0 < £ < o0 and 0 < p < 1, the boundedness of r(-), A(-), and 6(")
implies V3(z) < oo for all z > 0.

Remark 6.9:
(i) Suppose that

both U (¢, ) and Us(-) satisfy condition (4.16) with 6.17
the same constants § and v, for all t € [0, T]. ‘ (6.17)

It follows then, using (4.12) and (4.16"), that if X3(y) < oo for some
y > 0, then Assumption 6.1 holds.
(i) Assumption 6.1 is also implied by the condition

(6.18)

sup Ii(t,y) + I(y) < ky™?, Vye€ (0,00),
0<t<T

for some k > 0, p > 0, provided that at least one of the following
conditions also holds:

0 < p £1 and Assumption 2.3 holds, (6.19)

or
A(-),7(-), and 6(-) are uniformly bounded in (t,w) € [0,T] x €.

(6.20)
Indeed, under (6.18), (6.19), we have

X3(y) < ky PE {/OT (I1VH@)dt+ Qv HO(T))} <oo, z>0.

On the other hand, under (6.18) and (6.20), let us write (Ho(t))'™* =
m(t)A(t), where

m) 2 e { (- 1[40 + [ 70 | +3000-1) tlw(u)nzdu} |

and,
t 3 t
A®) 2 exp {(p -1 [ o@aww - 317 / ||6(u)||2du}

is a martingale; because of (6.20), m(-) is bounded by some constant
K, and thus

X3(y) <y PKE

) |
/ A(t)dt + A(T)} <Ky, y>0.
4]
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Remark 6.10: The case Z = 0 and U(0+) = oo.

In this case, I3(y) > 0 for all y > 0, and the random variable &3 of (6.4)
is strictly positive almost surely, as is the optimal wealth process X3(t) of
(6.10) for 0 <t < T. We can define the portfolio proportion

A m3(t)
)2 22
p3( ) Xg(t)
a process which is obviously {F(t)}-progressively measurable and satisfies
fOT lp3(¢)||? dt < oo almost surely. The components of ps(t) represent the
proportions of wealth X3(t) invested in the respective assets at time t €
[0,T), and equation (3.1) for X3(-) becomes
Xs(t) " es(u) du /t Xs(u) ,
= + pa(u)o(u) dWy(u
5o~ Jo Sotw) T Jo Sotuy P27 L)
In (6.15) and (6.16) of Examples 6.6 and 6.7, p3(t) depends on the market
processes and the utility functions, but not on the wealth of the agent.

0<t<T

06 ET.

We close this section with the observation that the value function V3 is
a utility function in the sense of Definition 4.1, and we find its derivative
and convex dual. Recall from Remark 5.7 and Corollary 6.5 that

( Gs (Vs(x)), z > X3(00),
Va(z) = { Jo Uy (t,2(t)) dt + Up(T), == Xa(o0), (6.21)
\ —o0, T < Xg(OO)

Theorem 6.11: Let Assumptions 2.8 and 6.1 hold, and assume V3(z) <
oo for all z € R. Then V3 satisfies all the conditions of Definition 4.1, and

X3(o0) = inf {z € R; V3(z) > —o0}, (6.22)
Vi(z) = Ys(z), Vz € (X3(00),0), (6.23)
Va(y) = Gs(y) — yA3(y) ) (6.24)

T ~
=B / Ui (t,yHo(t)) dt + Uz (yHo(T)) |, Yy € (0,00),

0

Vily) = ~X(), Vy € (0,00), (6.25)
where
Va(y) 2 suﬁ {Va(z) —zy}, yeR (6.26)
z€

PROOF. We first prove the concavity of V3. Let z1,z2 € [X3(00),00) be

given, and let (c1,7m1) € As(z1), (cz,m2) € A3(x2) also be given. It is easily
verified that for A;, Az € (0,1) with A\; + X2 = 1, the consumption/portfolio
pair (C, 7I') é ()\161 + Azcg, AT+ )\271'2) is in Ag(.’E) with z é A1z + A2Z2
and

XI’C’”(") — Alxml,chﬂ'l(.) + )\2X12vc2v7"2(-).
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Consequently,
T
ME ./0 Ui (t,¢1(t)) dt + Uy (X*F1evm (T))]

+XE

i
/0 Ui (t,co(t)) dt + Uy (X *2020m2 (T))J

<E

T
/o Ui (t,c(t)) dt + Uz (X IM(T))J

:S V3(I)
= Vg()\ll‘l + )\2.’172).

aximizing over (¢, m) € As(x;) and (c2,m2) € A3(z3), we obtain
AVs(21) + A2Va(z2) < Va( Mz + Apza).

It is easily seen that V3 is nondecreasing. Furthermore, for each z €
3(00), 00), we constructed in Theorem 6.3 a policy (c3,m3) € Az(x)
ich shows that V3 > —co on (X3(c0), 00); (6.22) follows.

‘A concave function is continuous on the interior of the set where it is

ite. Therefore, to establish the upper semicontinuity of V3, we need only
ow that

1

. T
im  Vi(z) = /0 U (8,2(t)) dt + Us(Z). (6.27)

x| X3(00)

t limrlxs(oo) Vi(x) = limy1., G3(y), where r3, defined by (6.2), possesses

property that X3 is constant on [r3, 00). We consider separately the
€s 13 = 00 and r3 < 0. If r3 = 00, then

lm 1 (L yHo(0) =2(0),  lim L (wH(T) =7, (6.29)
that the monotone convergence theorem and the finiteness of Gs3(y) =
(X3(y)) for 0 < y < r3 imply

T
lim Ga(w) = [ U3 (62(0) e + (o),
eSired. If r3 < 00, then the constancy of X3 on [r3,00) implies r3 Ho(t) >
(,&(t)+) for Lebesgue-almost-every t € [0, 7] and r3Ho(T) > Uz’(f+—)
0st surely. This implies (6.28), and the rest follows.
le) t?énl )to (6.2(4). The second equation in (6.24) follows directly from
» \0.1), and (6.14). For the first, let Q(y) = G5(y) — yX. for 0 <
0, and observe from (4.8) that v for

U (8, e(t))

< Ur (8, yHo(t)) + yHo(t)c(t), 0 <t < T,
U (X™™(T)) <

U,
Uz (yHo(T)) + yHo(T) X =™ (T)
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hold alnost surely for any y > 0, £ > A3(c0), and (c,m) € As(z).
Consequently, from the budget constraint (3.4), we have

T
E [ / U (¢, c(t)) dt + Us (X”“’(T))]
0 E

<Qy) +yE [ /0 ' Ho(t)c(t) dt + Ho(T) X" (T)]
< Qy) +zy, (6.29)
with equality if and only if
c(t) = I (t,yHo()),  X™™(T) = I (yHo(T)), (6.30)
and

T
E [ / Ho(t)c(t) dt + Ho(T)X ™" (T)] =z
0 N

Taking the supremum in (6.29) over (¢,7) € A(z), we obtain V3(z) <
Q(y) + zy for all z € R, and thus Vs(y) < Q(y) for gll y > O Fo.r the
reverse inequality, observe that equality holds in (6.29) if (6.30) is satisfied

and z = Xs(y). This gives Q(y) = Vi (Xs(y)) — yXs(y) < Va(y). This
completes the proof of (6.24) and shows that for y > 0, the maximum In

6.26) is attained by z = X3(y). - '
( To)prove (6.25), we use (4.11) and (4.12) to write for any utility function

U and for 0 < 2 <y < o0,

yI(y) — 2I(z) - / " 1€ de = yI(y) — 21(2) + T (y) — U ()
— U Iy) - U (I(2). (6.31)

Therefore,

Y
yXay) — 2(2) — / Xs(N) d\

g
:E/
0.

yHo(T) Lr(yHo(T)) — zHo(T)I2(2Ho(T)) —/zHo(T)

yHo(t)

yHo(t)I1(t,yHo(t)) — zHo(t)I1(t, 2Ho(t)) —/ I(¢,€) d&] dt

zHo(t)

yHo(T)

+ F 12(6) dé}

= E/T[Ul(t,ll(t, yHo(t))) i Ul(t, Il(t, ZHo(t)))] dt
0

+ E[Us(I2(yHo(T))) — Uz2(I2(2Ho(T)))] )
= G3(y) — Ga(2), (6.
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equivalently
~ ~ y
Viy) — Th(z) = —/ X(\d\, 0<z<y<oo,  (6.33)

d (6.25) follows.

‘According to Rockafellar (1970), Theorem 23.5, for z* > AX3(occ) and
> 0 we have y € OVz(z*) if and only if z* attains the maximum in
26). We have already seen that this maximum is attained by A3z(y),
the sole element in OV3(x*) is V3(z*). Equation (6.23) follows, and im-
s that VJ is continuous, positive, and strictly decreasing on (Xs3(00), 00),
limg o0 V3(z) = lim, o V3(z) = 0. Thus V3 satisfies property (ii) of
ition 4.1 and is a utility function. m]

ark 6.12: From (6.13) we have Gz(y) = V3 (A3(y)) for all y €
(00)). If X5(y) exists, then G5(y) also exists and is given by the

G3(y) = V3 (Xs(y)) As(y) = yX3(y), 0 <y < Xz(co), (6.34)

re we have used (6.23).

- Utility from Consumption or Terminal Wealth

rem 7.3 below provides a complete solution to Problem 5.2 of maxi-
tion of expected utility from consumption alone, and Theorem 7.6 does
same for Problem 5.3 of maximization of expected utility from termi-
wealth alone. This section also contains examples of these solutions
xamines the dual value functions for Problems 5.2 and 5.3. Theorem
shows how to combine the solutions of these two problems to obtain
lution of Problem 5.4 of maximization of expected utility from con-
tion plus expected utility from terminal wealth. In particular, the dual
function for Problem 5.4 is the sum of the dual value functions for
lems 5.2 and 5.3.

t a preference structure (U}, Us) be given. We define the functions

X1 (y) ZE /T Ho(t) I (t,yHo(t))dt|, 0<y < oo, (7.1)
0

Xa(y) £ E [Ho(T) (yHo(T))], 0 <y < oo. (7.2)
Ption 7.1:  X,(y) < oo, Vy € (0,00).
ption 7.2: Aa(y) < oo, Vye€(0,00).

arks 6.8 and 6.9 can be trivially modified to provide sufficient con-
for Assumptions 7.1 and 7.2 to hold. Similarly, Remark 6.8 can be
ed to obtain conditions that guarantee V;(z) < 0o and Va(z) < oo.
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Just as we proved Lemma 6.2, we can show that for each 7 = 1,2, under
Assumption 7.7, the function X; is nonincreasing and continuous on (0, 00)
with X;(0+) = oo and with X;(00) = limy_.oc &i(y) given by (5.11). With

r: 2 sup{y > 0; Xi(y) > Xi(o0)} >0, i=1,2, (7.3)

X; is strictly decreasing on (0,7;) and, when restricted to (0,7;), has a
strictly decreasing inverse function Y;: (&;(00),00) ont (0,7:).

The proof of the following theorem parallels the proof of Theorem 6.3
and Corollary 6.5.

Theorem 7.3 (Maximization of the expected utility from consumption):
Let Assumptions 2.1 and 7.1 hold, let z € (X1(00),00) be given, and define

a(t) 2 L, (z)Hot), 0<t<T. (7.4)

(i) There exists a portfolio my(-) such that (c1,m) € Ai(z), X&™(T) =
0, and the pair (c1,m ) is optimal for Problem 5.2, 1.e.,

T
V] (.’E) = E/O U] (t, Cy (t)) dt.

(ii) The optimal wealth process X;(t) = X™°0™(t) is

Hy(t)

1 %
X,(t)= w—=F [/ Hy(u)ci(u) du f(t)} , 0<t<T (7.5)
t i

(iii) The optimal portfolio my(-) is given by

o eme) = XD 1 x o), (7.6)

Ho(t)

where ;1 (-) is the integrand in the stochastic integral representation
M(t)=z+ fot ¥, (v) dW (u) of the martingale

T
M2 E l / Ho(u)ex (u) du }'(t)} .
0

(iv) The value function Vi is given by Vi(z) = G1(Qh(z)) for all T >
X1 (00), where

Gl(y) é E/OT Ul (ta Il(tayHO(t))) dta 0< Yy < 00. (77)

It is now not difficult to see that the value function V; is given by (cf:

(6:21))

G (), 2> Xy (),
Vi(z) = E/ Ui(t,e(t)) dt, == X1(c0), (7.8)
0
—00, r < X] (OO)
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Imitating the proof of Theorem 6.11, we can show that V; has the following
properties.

Theorem 7.4: Let Assumptions 2.1 and 7.1 hold, and assume V;(z) < oo
for all z € R. Then Vi satisfies all the conditions of Definition 4.1, and

X1(00) = inf {z € R; V1 (z) > —o0},
Yl,(z) = yl(l‘), vz e (Xl OO),OO),
1(y) = G1(y) — yXi(y)

[}

- ,
E {/0 Uy (t,yHo(t)) dt}, Yy €(0,00),

Vi(y) = -Xi(y), Yy e (0,00), (7.9)

where
oF A
Vi(y) =sup {Vi(z) — 2y}, yeR
TER
Example 7.5 (Subsistence consumption): Suppose
Ui(c) = {log(c—f)z €<e<oo,
o oH -0 <c<g,

where € is a positive constant that consumption must exceed at all times.
heAn II(ZQ =T+ (1/y) and Xi(y) = chy + (T/y) for 0 < y < 0o, where
= J8) fo Hg('t).d.t. In order to ensure that consumption can exceed ¢ at
times, the initial endowment z must exceed X1(00) = chy. We have

(z) =T/(z —ch,) for z > ¢h,, and the opti :
) ptimal cons t
ocesses from (7.4), (7.5) are MImption and:wealtly

.’I,‘—Ehl
alt)= =——=+¢
1() THg(t)+c’

1 [T-¢ g
- m {T(z—6h1)+6E [/t Ho(u) du

nally, Gy(y) = ~T'logy — EfOT log Hy(t) dt, so

f(t)} } |

‘ i
Vi(z) = Tlog(z — hy) - Tlog T — E/ log Hy(t)dt, z > ch,.
0

If So(") is deterministi ;
wnistic, we can derive the optimal portfoli ici
der this condition, , P portfolio explicitly.

T — T
Xi(t) = Wo(i)(z — thy) + 2So(t) </t %) ,
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Ml (t) =¢cF OT gzg—z; du ]:(t):| +z— Ehl
't T du
=lc u+7T —— +x —¢h,
= C/O Ho(u) du + Zo(t) s So(w) + c

T du

dM;(t) = —z( | (u)) Zo(t)0' (t) dW (2).

It follows from (7.6) that

T du
m(t) = (') [Xl ) -5 | gay|

t
Tt

—eh) (o)’ ()t §(t) —r(t)l).
s U ORI UCRLURCH

The analogues of Theorems 7.3, 7.4 for Problem 5.3 are the following.

Theorem 7.6 (Maximization of utility from ter@nal wealth): Let
Assumptions 2.2 and 7.2 hold, let © € (X2(00),00) be given, and let

&=L (V2 (z)Ho(T)) -

(i) With cp =0, there ezists a portfolio 72(-) such that (cz,m2) € As(z),
Xzeam2(T) = &, and the pair (c2,m2) is optimal for Problem 5.3,

i.€.,

Va(a) = EU(X™™(T)).

(ii) The optimal wealth process Xa(t) = X™ ™ (t) is

Xa(t) = %(t)E[Ho(T)&U:(t)], 0<t<T.

(iii) The optimal portfolio mo(+) is given by

o (t)ma(t) = ;/’Iz((tt)) + Xa(t)6(2),

where 1y is the integrand in the stochastic integral representation.
My(t) = z + [y ¥(w) dW () of the martingale

Ma(t) & Ho(t)X2(t).

(iv) The value function Va is given by Va(x) = G2(Va(z)) for all z >
Xa(00), where

G2(y) = EU, (I;(yHo(T))), 0<y<oo.
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Summarizing information about V5, we have the formula

[ G2(V2(2)), 2> Xz(co),
Va(z) = { Us(2), z = Xy(00), (7.10)
- —0Q, < XQ(OO)

Theorem 7.7: Let Assumptions 2.2 and 7.2 hold, and assume Va(z) < 0o
for allz € R. Then V; satisfies all the conditions of Definition 4.1, and

Va(z) = Ya(z), Va € (Xz(00),00),
Va(y) = Ga(y) — yXa(y)
= EU; (yHo(T)), Wy € (0,00),
V(y) = —Xa(y) Vy € (0,00), (7.11)

ETE
Va(y) £ sup {Va(z) ~ 2y}, weR
€

mark 7.8: If X](y) and X;(y) exist, then just as in Remark 6.12, we
ve for i = 1,2, 3,
Gi(y) =yX/(y), 0<y < Xi(o0). (7.12)
ample 7.9 (Portfolio insurance): Suppose
_Jlog(z—7), T<z< o0,
Us(z) = {—oo, —00 < z < T,
ére T is a positive constant below which terminal wealth is not permitted

fall. We have X3(y) = Thy + (1/y) for 0 < y < oo, where hy 2= EHy(T).
order to ensure that terminal wealth can exceed T, the initial wealth
t exceed X;(00) = Thy. We have Y, () = 1/(x — Thy) for z > Ths, and
optimal consumption and wealth processes are c2(t) =0 and

Xa(t) = Folﬁ {z — Thy + ZE[Ho(T)|F ()]}

lly, G2(y) = —logy — Elog Hy (T), so
Va(z) = log(z — Thy) — Elog Hy(T), x > Thy.

i.n Example 7.5, we can derive the optimal portfolio explicitly when
) is deterministic. Under this condition,

My(t) 2 Ho(t)Xs(t) = = — Thy + Zf?g))
dM; (t) = d(Ho() Xa(t)) = — 5o Zo(0)0' () AWV (1),

~ So(T)
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It follows that

IRl PRAAIES »
= "o @O O)7 (o) +8() ~ rt)L).

In the remainder of this section we examine the relationship among the
value functions and the optimal policies for Problems 5.2-5.4. Consider an
agent with initial endowment z > X3(00) who divides this wealth into two
pieces, z; > X)(00) and z2 > Aa(00), so that 1 + 22 = . For the piece
1, he constructs the optimal policy (c1,m) € Ai(z1) of Theorem 7.3 for
the problem of maximization of utility from consumption only. With the
piece zo, he constructs the optimal policy (cg,m2) € Az(z2) of Theorem
7.6 for the problem of maximization of utility from terminal wealth only.
Note that X=¢t™(T) = 0 and c2(-) = 0, so the superposition (c,T) =
(¢1 + ca, ™ + m2) of the policies (c1,71), (ce, T2) is in Asz(z), results in the
wealth process X® o™ (t) = XZ1eu™(t) 4 X*2¢72(t), and satisfies

. _
Vi(z1) + Va(z2) = E [ /0 Us(t, c(t)) dt + Uz (X=o™(T)) | < Va().

Therefore,

sup{Vi(z1) + Va(z2); 71 € R,z € R,z1 + 22 = z} < V3(z), Vz€eR,
(7.13)

where we have used (6.21), (7.8), and (7.10) to extend these considerations
to all z, 1, and z2 in R.

Moreover, the reverse of inequality (7.13) holds. Again, we consider only
z > X3(00), relying on (6.21), (7.8), and (7.10) for the rest. For z > Xs(00),
let (c3,73) € Asz(z) be the optimal policy of Theorem 6.3 for the problem
of maximization of utility from consumption and terminal wealth. Define

A . A
2 2F /0 Ho(t)es(t) dt, o2 2 E [Ho(T)X™™(T)],

so that z, + 2 = z (see (6.6)). Theorem 3.5 guarantees the existence

of a portfolio process #;(-) such that X®-°»#1(T) = 0 and (c3,%1) €

Ai(zy); therefore, E fOT U, (t,c3(t))dt < Vi(z;). This same theorem guar-
antees the existence of a portfolio process #(-) such that with é& = 0,
we have XT»é2®2(T) = X®c73(T) and (G,72) € Az(z2); therefore,
EUy(X=¢™3(T)) < Va(z2). We have then

T
Va(z) = E /0 Us(t, ca(t)) dt + EUs(X=™(T))
<Vi(z) + Va(z2).
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Theorem 7.10: Let Assumptions 2.3 and 6.1 hold. Then
Va(z) = sup{Vi(z1) + Va(z2);z1 + 22 = 7} Vz € R. (7.14)

If, in addition, Vi(z) < oo for all z € R and i = 1,2, then for each
z € (A3(00),00) the supremum in (7.14) is attained by =, = X,(V3(z)),
zo = X2(Vs(z)). In particular,

Va(z) = Vi (X1(3(2))) + Va (X2(Vs(2))),

and

Vz € (X3(00),00) (7.15)

Va(y) = Viy) + Va(y), Vy € (0,00). (7.16)

PrOOF. For fixed 2 € (A3(00),00), let us consider the ‘concave func-
tion f:R — [—o00,00) defined by f(z;) £ Vi(z1) + Va(z — ;). Under the
assumption that V; < oo for i = 1,2, f is finite on the open interval
(&1(00), z — A2(00)). Outside the closure of this interval, f takes the value
—00. Now, f'(z1) = Vi(z1) — Va(z — 1) for Xi(00) < 7, < = — Xp(00),
nd f’ is continuous and strictly decreasing on this interval, with

f' (XKi(00)+) =71 = Ya(z — X1 (00)),

f' ((g="2(00))—) = Vi(z — X3(00)) — 1,
where r; and r, a@by (7.3). There are three possibilities:
i) f (% (c0)+) SIS

il) (% (00)+) > 0, f (& ~ Xy(o0))-) <0,
i) f (= — %(00)~) > 0.

In case (ii), the maximum in (7.14) is attained by the unique value z, €
1(00), z — X(00)) where f'(z1) =0, i.e., Vi (z1) = do(z — z,). We check
t 1 = X1(Ys3(z)) solves this equation, to wit,

Y1 (X1 (Vs(z))) = Vi(z)
= V2 (X2(Vs(2)))
= V2 (X3(Vs(z)) — X1 (Vs(2)))
= Y2 (z — X1 (Vs(7))) -

In case (i), the supremum in (7.14) is attained by z; = X; (00). In this
€, we h‘ave r1 £ V(z — Ai(00)), or equivalently, Xa(ry) > z — &;(00).
S mplies X3(r;) = Xj(r1) + Aa(r1) = Xi(o0) + Xo(r1) > z, so that
§ Y3(z) and Xj(c0) = Xi(r1) > Xi(Vs(z)) > X (00) because A; is
Increasing. Thus A} (oc0) = &) (Vs3(z)), as claimed.

Case (iii) is dispatched by interchanging the subscripts 1 and 2 in the

ment for case (i).

We have shown that the supremum in (7.14) is attained by z, =
Os(2), 2 = o - 21(5(2) = X%(D3(2) — X (Vs5(2)) = X(Wi(a)
» (7.15) holds. Equation (7.16) follows immediately from (6.24), (7.9),

);
11), and the definitions of G; and X; for i = 1,2,3. I):|
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Example 7.11: Let

log(c —¢), €t<c<oo,
(o) = { 5~

—00, —oc0<c<g,
as in Example 7.5 (subsistence consumption), and let

log(z — %), T <z <00,
U2(m) = {——oo, —-00<zx<TI,

as in Example 7.9 (portfolio insurance). Then
X3(y) = Xi(y) + Xa(y) = Thy + Thy + (T +1)/y,

so Vi(z) = (T'+1)/(z — ¢thy — Thy) and

Tx +¢hy — TThy
Xl(yii(m)) = T+1

It follows from Theorem 7.10 that
Va(z) = Vi (X1 (Va(x))) + Va (X2(V3(x)))
_ _ T
= (T +1)log (ﬂl”Q) - E/ log Ho(t) dt — E log Ho(T).
b 0

x —chy + TThy

) X2(y3(m)) = Tt 1

T+1

When € = 7 = 0, we recover the formula for V3 obtained in Example 6.6.

3.8 Deterministic Coefficients

In this section we specialize the results of Section 3.6 to the case of A(:) EA(/)
and continuous, deterministic functions r(-):[0,7] — R, 6(-): [0, T]'—> R
and o(-):[0,T] — L(RN;RY), the set of N x N matrices. In this case,
stock prices and the money-market price become Markov processes. We
will focus on obtaining an explicit formula for the optimal portfohg w3(+)
of Theorem 6.3, whose existence was established there but for which no
useful representation apart from (6.11) was provided. We shall show that
the value function for Problem 5.4 is a solution to the nonlinear, §econd-
order parabolic Hamilton—Jacobi-Bellman partial differential equgtllon one
would expect (Theorem 8.11), and that subject to a growth condition, the
dual value function is the unique solution of a linear second-order parapollc
partial differential equation (Theorem 8.12). Several examples are prov1fied-1
" We shall represent both the optimal portfolio w3(-) and also the optlm?J;l
consumption rate process cz(-) in “feedback form” on the level of wealt
Xg() of (610), 'i.e.,

es(t) = C(t, Xa(t), ms(t) = (¢, Xs(8)), 0<t<T,  (81)

for suitable functions C: [0, T] x (0,00) — [0, 00) and II: [Q, T] x (0,00) Tl
RN (cf. Theorem 8.8), which do not depend on the initial wealth. Suc
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a representation shows that in the case of deterministic coefficients, the
current level of wealth is a sufficient statistic for the utility maximization
Problem 5.4: an investor who computes his optimal strategy at time ¢ on
the basis of his current wealth only can do just as well as an investor
who keeps track of the whole past and present information F(t) about the
market! Similar results hold for Problems 5.2 and 5.3; the interested reader
will find their derivation to be straightforward.

Throughout this section, the following two assumptions will be in force.
'These are not the weakest assumptions that support the subsequent anal-
“ysis, but they will permit us to proceed with a minimum of technical fuss.
For more general results, the reader is referred to Ocone and Karatzas
(1991), Section 6.

Assumption 8.1: We have A(-) = 0, and the processes r(-), 6(-), and
a(-) are nonrandom, continuous (and hence bounded) functions on [0,T],

nd () and ||6(-)|| are in fact Hélder continuous, i.e., for some K > 0 and
€ (0,1) we have

Ir(t1) = r(t2)] < Kltr —ta]?,  [16(t1) - 6(t2)ll| < K[t1 — t2]

or all ty,ty € [0,T]. Furthermore, ||6(-)| is bounded away from zero. In
particular, there are positive constants ky, ko such that

0 <k <|O(t)]| < Kz <00, Vtel0,T]

lmost surely.

Because of Novikov’s condition (e.g., Karatzas and Shreve (1991) Section
:6D), Assumption 8.1 guarantees that the local martingale Zy(-) of (2.5)
in fact a martingale. This permits the construction of the martingale
asure Py of (1.5.3) under which the process Wy(-) is a Brownian motion.

e have not needed this probability measure in previous sections, but we
Il make use of it in this section.

sumption 8.2: The agent’s preference structure (U, Uy) satisfies
(i) (polynomial growth of I; and I,) there is a constant v > 0 such that.

Lt,y) <v+y™" Y(t,y) €[0,T] x (0, 00),
L(y) <v+y™" Vye (0,00);

ii) (polynomial growth of Uy o I} and U; o I;) there is a constant ¥>0
such that
Ul(till(t’y)) Z it B y"/ V(t,y) € [OaT] X (07'00),
Ua(L2(y)) 2 —y —y" ¥y € (0, 00);

i) (Holder continuity of I) for each yo € (0,00), there exist constants
(o) > 0, K(yo) > 0, and p(yo) € (O, 1) such that
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1 (t,y) — Li(t,y0)) < K(v0)|y — vo|?¥) Vvt € [0,T],
Vy € (0,00) N (yo — €(y0), yo + €(¥0));

(iv) either for each t € [0,T], I1(t,y) = ayll(t y) is defined and strictly
negative for all y in a set of positive Lebesque measure, or else I;(y)
is defined and strictly negative for all y in a set of positive Lebesgue
measure.

Remark 8.3: Because I;(t,-) and [ are nonincreasing, Assumption
8.2(i), (ii) and Remark 5.6(ii) imply the existence of a constant v > 0
such that
(L) <v+y +y7 Y(ty) €[0,T] x (0,00),
[Uz(L2(y)] < v+y"+y™7 Vy € (0,00).

Furthermore, for each yo € (0,00) and €(yo), K (yo), and p(yo) as in As-
sumption 8.2(iii), the mean value theorem implies for all y € (0,00) N (yo -

€(¥o), Yo + €(yo)) that

[U1(t, I (8, ) — Un (8, Lo (¢, 90))| < Uy (2, e(8) |1t y) — L1 (E, o)
< MK (y0)ly — yol”™,

where «(t) takes values between I, (t,y) and I;(t,y0) and M is a bound on
the continuous function Uj (¢, I,(t,n)) as (¢,7n) ranges over the set [0,T] X
[(0,00) N (yo — €(yo), Yo + €(¥0))]. In other words, U, o I; enjoys the same
kind of Holder continuity posited in Assumption 8.2(iii) for ;.

We introduce the process

Y(t’y)(S)éyeXP{ / du—/ 0 (u) dW (u __/ e ||2du}
=yexp{ /t ()du—-/ 8’ (u) dWo(u)

i3 [ lwlPag, t<a<T, 52
t

for any given (t,y) € [0,T] x (0,00). The process Y (*¥)() is a diffusion.

with linear dynamics:

dY &9 (5) = Y &) (s)[—r(s) ds — 0'(s) AW (s)]

W) (5)[—r(s) ds + ||8(s)||* ds — &' (s) dWo(s)],
Y9 (t) = y, and Y(t’y)(s) = yY&y(s) = yHy(s)/Ho(t), where Ho(s)
is given by (2.6). With these properties in mind, and using the Markov

property for Y ®¥)(.) under the martingale measure Py, as well as “Bayes’s
rule” of Lemma 3.5.3 in Karatzas and Shreve (1991), we may rewrite the
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expression (6.10) for the optimal wealth as follows:
1 T s
X3(t) = mE { /t Zo(s)e_ft (5, 2Y O () ds

T |
+ Zo(T)e™ J g Ly @) 7y

]-'(t)]

T s
- EO / e_ft r(u)duII (S,Y(O,z)(s))ds
t

T .
te Jo g 02 (T))

f(t)]
—X(tYO9), o<t<T, (8.3)

here z = V3(z), Eo denotes expectation with respect to the martingale
neasure Py, and X:[0,T] x (0,00) — (0, 00) is given by

A [T
X(t,y) = Bo / e I T (5 Y e (5)) s

t
i )

+eJe T(")dulg(yY(t’l)(T))J : (8.4)
e Markov property for Y(%)(.) under P implies that

» ‘
E [ /t YD ()1 (5,Y 49 (s)) ds + Y9 (T) L (Y ) (T))

F (t)]

a function of Y *¥)(t) = y, i.e., is deterministic. Therefore,

T s
X(t,y) = Eo {Eo [/ e i A (s, Y (5)) ds
t

o)

Zo(T) [ 1T
=E{ 2 )E[/ e LT o ) 5, V9 5)) ds

o(?)
]-'(t)] }
1

) T
=_E {ZO(T)E [/t YO ()T (s, Y9 (s)) ds

T
+e ft T(“)d"]2 (y(tay) (T))

- fT r(u)du
+e Ji ZO(T)IQ(Y(W)(T))

Y
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)

T
/ YY) ()1, (s, YY) (s)) ds
t

+ YO D)L (¥ 9(T))

-
Y

+ Y (T)L(Y®D(T)) |, (8.5)

and X(-,-) is an extension of the function X3(-) = X(0, ) defined by (6.1).
We should properly write X3(t, y) rather than X'(¢,y), to indicate that this
function is associated with Problem 5.4. However, we do not carry out an
analysis for Problems 5.2 and 5.3 under the assumption of deterministic
coefficients, and hence permit ourselves the convenience of suppressing the
subscript.

Lemma 8.4: Under Assumptions 8.1, 8.2, the function X defined by (8.4)
is of class C([0,T] x (0,00)) N C2([0,T) x (0,00)) and solves the Cauchy
problem

2(t,9) + 16027,y 1,) + (6O = () 3%, (8,9) — rOX ()
= —IL(t,y) on[0,T) x (0,00), (8.6)
X(T,y) = Ix(y) on (0, 00). (8.7)

Furthermore, for each t € [0,T), X(t,) is strictly decreasing with
X(t,04) = o0 and

X(t,00) 2 lim X(t,y)= /t A ,(- /t;sr(u)du) o(s) ds

y—o0

+ exp (— /Tr(u)du> @ (8.8)

Consequently, for t € [0,T), X(t,-) has a strictly decreasing inverse

onto

function Y(t,); (X(t, 00),00) 2 (0,00), i.e.,
X(t,V(t z) =z, Vze (X(to00),00), (8.9)

and Y is of class C1'? on the set
DE{(t,z)€[0,T)xR; x> X(t,0)}. (8.10)

Fort = T, we have X(T,:) = ILy(-), which is strictly decreasing on the
interval (0,U5(T+)), and we have X (T, 00) = T. The inverse of X(T,")
(T, = Us(+), which also satisfies (8.9). The function Y is continuous on
the set {(t,z) € [0,T] x R;z > X (t,00)}.
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PROOF. Consider the Cauchy problem

w(t) + G100 Pt + (FIOOI = rt) ) ) = Bt

=-IL(te"), 0<t<T, neR, (8.11)
u(T,n) = I(e"), neR (8.12)

he classical theory of partial differential equations (e.g., Friedman (1964),
ection 1.7) implies that there is a function u of class C([0,7] x R) N
1.2([0, T) x R) satisfying (8.11), (8.12). Furthermore, for each € > 0, there
s a constant C(e) such that

lu(t,n)| < C(e)e™, VneR. (8.13)

We fix (t,y) € [0,T) x (0,00) and use It6’s rule in conjunction with (8.2)
d (8.11) to compute

8
d [e_ 5 Wy (s, log YY) (s))]

=—e J; rwdu g (s, Y (5)) ds (8.14)
i T(")d“un(s, log Y &%) (5))8' (s) dWo(s).
or each positive integer n, we define

é = l 1 . (t,y)
Tai= (T n) Ainf {s € [t,T); ilogY (s)| > n},,

that maxo<s<r, |Uun(s,log Y ¥ (s))| is bounded, uniformly in w € €.
egrating (8.14) and taking expectations, we obtain

u(t,logy) = By /t gy (— /t i r(u)du) (s, Y®¥(s)) ds

+ Egexp (—/ ’ r(u)du) u(Tn, log Y("y)(rn)),
¢

€ monotone convergence theorem implies
T o
u(t,logy) = Eo / e T (6, Y9 () ds
t

+ lim Ege o T(")duu(rn., logY®¥)(7,)).  (8.15)

n—o0

Now

. i m — T'r:u
lim o™ J." "7, log Y9 (7)) = e e T By e (1)) (8.16)

ost surely, and we wish to prove that

g = ffEm uw — T'r 4
lim Eoe [ 7y (7, log Y ) (r,.)) = Epe™ /. WLy e(T)).
(8.17)
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To obtain (8.17) from (8.16), we need a dominating function. We can use
(8.2) and (8.13) to write

e_ f:'n r('u;)duu (irn’ logy(t,y) (Tn))‘

< Cle f [r(u)|du c(logY“ ¥ (7n))?

T
< C(e f IrCldu oy {e [| log y| +/ —r(u) +
¢

/ts 9'(u) dWy(u) ]2} .

Equation (8.17) will follow from the dominated convergence theorem, once

we show that
‘ ) )
exp 4 € sup < 0.
t<s<T

We may extend 6(-) beyond [0,T] by setting 6(t) 2 6(T) for t > T, and
we can set

1
Sl6)?

+ sup
t<s<T

E, /t "0 (w) dWo(w) (8.18)

s t+s
M(s) = / ' (u) dWo(u), s>0.
/8,
We have

t4-s
(M)(s) = /t |6(u)||? du < K3s, Vs € [0,00),

and (M)(.) is strictly increasing. Under Py, B(7) = M{M)~(r)), 0 <
7 < 00, is a standard Brownian motion (e.g., Karatzas and Shreve (1 991),

Theorem 3.4.6). Moreover, with T = k(T —t), we have
. )
B.2 sup |B(r)|> sup |M(s) = sup / 6’ (u) dWo(u)| .
0< <7 0<s<T—t t<s<T |Jt

We show that for € > 0 sufficiently small,
E‘QGEB3 < Q.

Let By = supy<,<7B(1) and B_ = supg<,<7(—B(7)), so that B, =
max{By,B_}. The density for both B, and B_ is (e.g., Karatzas and
Shreve (1991), Remark 2.8.3)

—= 7Y/ gp,

F(b) db = Po{By € db} = b> 0.

We define F(b) = [,° f(x) dz, and write

Eoefo =— / e’ dPy{B. > b}
/0
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<1 +/ Po{B. > b} d(e*")
1]

<142 / P de®)

<1+2 lim F(b )et’ /f b)e<t db,

which is finite for 0 < e < 1/(27).
Choosing € € (0,1/(27)) so tha.t (8.18) holds, we obtain (8.17), and (8.15)
yields

(8.19)
CcY%([0,T) x

Y(t,y) € [0,T] x (0, 00).
x (0,00)) N

X(t,y) = u(t, logy),
It follows immediately that X is of class C([0,T)
(0,00)) and satisfies (8.6) and (8.7).

We next use Assumption 8.2(iv) to show that X, (t,y) < 0. For specificity,
et us assume that I5(y) is defined and strictly negative for all y in a set
C (0, 00) having positive Lebesgue measure. Because I;(¢,-) and I, are
nonincreasing, we have for ¢ € [0,T), y > 0, and h > 0 that

%[X(t,y) — X(t,y + h)|

T
- riu)au 1
> e J O By By (1))

nder Pj, the random variable ftT 0'(u) dWo(u) =
normally distributed, with mean zero and standard deviation p
(M)(T — t). Setting m = ft (=r(u) + [|6(w)]|?/2) du, we have

~ L((y + YO (T))].

B((M)(T - 1))
A

L((y + R)Y & (1))

1 1 2
. _ m—pw\) _ m—pw —w*/2
> o /N 5 [I2 (ye )= L ((y+h)e™ )] e dw.

etting h | 0 and using Fatou’s lemma, we obtain

EOE[Iz(yY(t'I)(T)) -

~2,(6) > ~ = [ e (uen ) e 2w > 0.

om the implicit function theorem we have the existence of the function
that satisﬁes (8.9) for all t € [0,T), is of class C? on D, and is contin-
on {(t,z) € [0,T] x R;z > X(t,00)}. Relation (8.8) follows from the
itions of Ii(t,-) and I in Section 3.5 and the dominated convergence
orem., O

emark 8.5: From (8.14) and (8.19), we have
oo T (5, Y O9(5) ) = = Ty o,y O ()

= YO (5)%, (5, YO (5))0' (s) dWo(s)),
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which leads to the following useful integral formula for 0 <t < T, y > 0:

t t s
o~ o Ty YO () 4 / o= Jo T (o YO0 (5)) ds
0

3 s
= X(0,y) — /0 ol Ay 09) (5) X, (s, YO (5))6/ (s) dWo(s). (8.20)

Remark 8.6: The proof of Lemma 8.4 also shows that X is the unique
C([0,T)] x (0,00)) N CY2([0,T) x (0,00)) solution to the Cauchy problem
(8.6), (8.7) among those functions f satisfying the growth condition

Ve > 0, 3C(e) such that | f(t,y)| < C(e)e<1=¥)’* (¢, y) € [0,T] x (0, 00).
(8.21)

Indeed, if f is a solution to (8.6), (8.7) satisfying (8.21), then u(t,n) =

f(t,e")is a solution to (8.11), (8.12) satisfying the growth conditon (8.13)
for every € > 0. From (8.19) we see that f agrees with X'

Remark 8.7: We noted in Remark 5.7 that if an agent’s initial wealth
X3(0) lies below X(0,00), then every consumption/portfolio process pair
results in an expected utility of —oo. If X3(0) = X' (0, 00), then one should
take c3(t) = €(t), 0 <t < T, choose m3(-) such that X3(T") = Z, and this
results in expected utility fOT U (t,€(t)) dt + Ua(T), which is either finite or
—o00. Under Assumption 8.1, the portfolio 73(-) that produces this result
is m3 = 0. Indeed, with this choice of ¢3(-) and 73(:), the wealth equation
(3.1) becomes

¢ 't rs
XXO0hesms (1) — oo "W (0 00) — / e~ S Tig(g) g
0
= X(t, OO),

where we have used (8.8). We have then the feedback form (8.1) for optimal
consumption and investment when wealth at time ¢ is X'(¢, 00):

C(t, X (t,00)) = &), M(t, X(t,00)) =0, 0<t<T. (8.22)

We now derive the feedback form for optimal consumption and
investment when wealth at time ¢ exceeds X(t, 00).

Theorem 8.8: Under the Assumptions 8.1 and 8.2, the feedback form
(8.1) for the optimal consumption/portfolio process pair (c3,m3) for
Problem 5.4 is given by

C(t,z) & L(t, V(¢ 1)), (8.23)

fi(t,2) 2 ~(0'(0)0(0) 5 -, (829

for0 <t <T and x € (X(t,00),00).
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PROOF. We have from (8.3) that when the initial wealth z at time 0
exceeds X EO, o0), then the optimal wealth X3(t) at time t € [0,T] is
X(t, Y ©Y(@)(£)). In other words,

YOYON (1) = (¢, Xa(t)),
and (6.5) becomes
es(t) = Li(t, Y(0,2) YOV (1)) = I, (¢, V(t, X3(t))),

which establishes (8.23). With y = Y(0,z) and using (8.3), we may write
(8.20) as
X3(t) * cs(s)

< () SEZx= tM 1 i) f
So() " Jo 5o(s) ™ /0 Sos) ! ’y(s’Xs(s)))e(s)dv(Vo(s)).
8.25

But from (8.9), we have X, (t, Y(t,z)) = 1/V,(t, z) for all z > X(¢t, 00), and
comparison of (8.25) with the wealth equation (3.1) shows that the optimal
portfolio satisfies

T ({)o(t) = —9'(“%;3(8)))’

justifying (8.24). o

Remark 8.9 (Merton’s mutual fund theorem): Formula (8.24) for the
optimal portfolio shows that under the assumptions of Theorem 8.8, the.
gent should always invest in stocks according to the proportions

(o' (£))760(t) = (a(t)o ()" b(t) + 6(t) — r(B)1],

independently of the utility functions Uy, U,. This permits the formation of
mutual fund so that independently of his wealth and preference structure,
e agent is indifferent whether he invests in the assets individually or
vests only in the mutual fund and the money market. For example, we
ay form a mutual fund by imagining an agent who begins with initial
ealth 1 and seeks to maximize Elog X(T). The behavior of this agent
described in Example 7.9 with = 0; the optimal wealth is X,(t) =
/Ho(t), and the optimal portfolio is ma(t) = (o/(t))~20(t)/Ho(t). (We
Ow in Section 10 that as T' — oo, this agent is maximizing the growth
ate of wealth.) We think of X2(t) as the price per share of a mutual fund
at holds a portfolio m3(t) in the N stocks and (1/Hy(t)) — 74 (¢)1 in the
ney market. In particular, each dollar invested in the mutual fund results
the vector (0/(t))~16(t) of dollar investments in the stocks. The essence
Theorem 8.8 is that any other agent solving Problem 5.4 is satisfied
have the only investment opportunities be the money market and this
Utual fund. At time ¢ and with wealth level z, this other agent invests
Y(t,z) /Yz(t, ) dollars in the mutual fund. This amount depends on the
ent’s wealth z and preference structure (Uy,Us), but the mutual fund
elf does not.
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Finally, we develop the Hamilton-Jacobi-Bellman (HJB) equation asso-
ciated with Problem 5.4. To do that, we must extend the value function
Vs of (5.8) to include the time variable. Given (t,7) € [0,T] x R, and
given a consumption/portfolio process pair (c(-),7(-)), the wealth process
X*%#e7(.) corresponding to (c,7) with initial condition (t,z) is given by
(cf. (3.1))

_f T(u)duthcﬂ' —.T,‘—/ f r(v)d’u ’U,)d

o [ B o awoo)
t<s<T. (8.26)

We say that (c,7) is admissible at (t,x) and write (c,7) € A(t,z) if
X557 (s) > 0 almost surely for all s € [t, T]. We set

T
As(t,z) & {(c, 7)€ At,z); E /t min{0, Uy (s, ¢(s))] ds

+ E (min [0, U, (Xt”:’c”’(T))]) > —oo}
and define

Vit,x) 2 sup F
(e,m)EA3(t,z)

5 !
/t Uir(s,e(8))ds + Uy (Xt”:’c’"(T))} . (8.27)

Because we do not consider the time-dependent variations of Problems 5.2
and 5.3, we allow ourselves the convenience of writing V (¢, z) rather than
V3(t,z) in (8.27).

By analogy with (6.14), we introduce the function

Gty 2 E

t

L |
| Ui (s s wy () ds v, (Iz(yY‘“)(T)))} ;
(ty) € 0,T] x (0,00),  (8.28)

so that G(0, -} = G3(-) of (6.14). Under Assumptions 8.1 and 8.2, we have
(ct. (6.21))

(t, V(t, x)), if z > X(t, 00),
Vitz)= {ft Ui(s,e(s)) ds + Ua(Z), if z = X(t,00), (8.29)
—00, if £’ < X(t, 00).

Of course,

V(T,z) = Uy(z), Vre€eR. (8.30)
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In particular, V(t,z) < oo for all (t,z) € [0,T] x R. Moreover (cf. (6.27)),

By VG / Ur(s,8(s)) ds + Un(@), Vte[0,T).  (8.31)
x| X(t,00)

Lemma 8.10: Under Assumptions 8.1 and 8.2, the function G defined
by (8.28) is of class C([0,T] x (0,00)) N CH2([0,T) x (0,00)), and among
such functions that also satisfy the growth condition (8.21), G is the unique
solution to the Cauchy problem

Gi(t,9) + 100 Gon (t,) — (G 1,9) (5.32)
=-Ui(t,1(t,y)) on[0,T) x (0,00),
G(T,y) = Ualla(y))  on (0,00) (5.33)

Furthermore,
G(t,y) — G(t, 2) = yX(t,y) — 2X(t,2)
y
—/ X, N dA 0< 2z <y < oo, (8.34)
z

Gy(t,y) = yXy (),
Gyy(t,y) = Xy(t,y) + yXyy(t,y), 0<t<T, y>0. (8.35)
ROOF. The proof of (8.32) and (8.33) is like the proof of (8.6) and (8.7),

xcept that now we use Remark 8.3 and take u:[0,7] x R — R to be the
([0,T] x (0,00)) N C¥2([0,T) x (0,00)) solution of the Cauchy problem

)+ FI0O ) ~ (+0)+ IO ) 830
=-U(¢, Li(t,€e")), 0<t<T, neR,
’U,(T, T)) = Ug(t, Ig(t, e")), neR. (837)

0’s rule, (8.2), and (8.36) imply that (cf. (8.14))

du(s,log Y9 (s5)) = Uy (s, I (s, Y ¥ (s))) ds
(s, log YO ()0 (5) dWW (s),

d so (cf. (8.15), (8.17))

u(t,logy) = E / ' Ui(s, In(s, Y 4¥)(s))) ds + EUs (I (Y *¥)(T)))
= G(t,y)'

Dsequently, G solves the Cauchy problem (8.32), (8.33).

Equation (8.34) is just (6.32) with initial time ¢ rather than initial time
10. Equation (8.35) follows from differentiation of (8.34). Uniqueness
OWs as in Remark 8.6. a
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Theorem 8.11 (Hamilton-Jacobi-Bellman equation): Under Assump-
tions 8.1 and 8.2, the value function V(t,z) of (8.29), (8.30) is of
class C1* on the set D of (8.10), continuous on the set {(t,x) &
[0,T] x (0,00); > X(t,00)}, and satisfies the boundary conditions (8.30),
(8.31) (where V(t,X(t,00)+) may be —oo). Furthermore, V satisfies the
Hamilton—Jacobi~Bellman equation of dynamic programming;:

1
Velt,2) + max | Sllo’ (t)7|*Vas(t, 7)

0<e<oo
TERN

+ (r(t)z — c+ 7'o(t)6(t))Ve(t,z) + Ui(t,c)| =0 on D. (8.38)

In particular, the value function V3(-) of (5.8) is V(0,-), and the maz-
imization in (8.38) is achieved by the pair (C(t,x),I1(t,z)) of (5.23),
(8.24).

Proor. Differentiating (8.9) and (8.29) and using the formula (8.35), we
obtain for (t,z) € D,

Xt(ta y(ta 1,‘)) il Xy(t’ y(t’z))yt(t’ I) = Oa
Xy(t’ y(t’ z))yz(t’z) =1,

Vi(t,z) = Gu(t, Y(¢, 7))
Gy(t’ y(ta z))yt(t’ 1,‘),
Ve(t, z) = Y(¢t, ),
Vs () = Wolt, T

Using these formulas, we can rewrite the left-hand side of (8.38) as

Gt(ta y(t’ 1:)) + Gy (t’ y(t’ I))yt(ta 1,‘) + T(t)zy(t’ I)
+ max [U1(t, ) — cY(t, x)]

||0 O7l2Ya(t, ) + 7' (1)8(8) V(¢ 7) | .(8.39)

+max
TER

Both expressions to be maximized are strictly concave. Setting their deriva-
tives equal to zero, we verify that (8.23) and (8.24) provide the maximizing
values of ¢ and w, respectively. Substitution of these values converts the
expression of (8.39) into

Gi(t, V(t,z)) + Gy(t, Y(t, 2)) e (t, z) + r(t)zV(t, 7)
+ U1 (t, Il(t y(t I))) — y(t, I)Il(t,y(t, I))
1 o VRt )
- Lo

=(t,z)
Setting y = Y(t, ), so that z = X(t,y), we can use (8.35) and (8.32) to
write this in the simpler form
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Ge(t,y) — yXe(t, y) + r(yX (t,y) + Ur(t, u(t, y))
~yh(6,y) - 310017, (t,0)
= = SI0OIPY Gy (1) + TGy t,1) — yXult,9)
Oy () - vhi(69) — 5100172, (6)
= |06 ) + G101 0 6,0) + (OOI — DDy (e1)

—rX(t,y) + Li(t, y)]~

According to Lemma 8.4, this last expression is zero. Ej

Theorem 8.11 provides only a necessary condition for the value function
V; it is not claimed that V is the only function that is of class C!*? on
D and satisfies (8.38) with boundary conditions (8.30), (8.31). In order to
make such a uniqueness assertion, one would have also to impose some

owth condition as z approaches co. Instead of pursuing this approach, it
Eeasier to derive a necessary and sufficient condition for the conver dual
of V, defined by the formula

V(t,y) £ sup{V(t,z) - 7y}, yeR.
z€ER

n contrast to the noniinear partial differential equation (8.38), which gov-
ns the value function V', the dual value function V satisfies the linear

ia] differential equation (8.44) below. The function V can be recovered
rom V by the Legendre transform inversion formula (cf. (4.13))

Vit,z) = 32£{17(t,y) +zy}, zER

heorem 8.12 (Convex dual of V(t,-)): Let Assumptions 8.1 and 8.2
ld. Then, for each t € [0,T), the function V(t,-) satisfies all the
nditions of Definition 4.1, and

(t,00) = inf{z € R; V(t,z) > —o0}, (8.40)
Va(t,z) = Y(t,7), Vz € (X(t,00),00), (8.41)

V(t,y) = G(t,y) - yX(t, ) _ (8.42)
—J / U1 (s,yY 0 (s))ds + Ta(yY EO(T)) |, Wy € (0,00),
Vilt,y) = ~X(t,y), Wy e (0,00). (8.43)

oreover, V' is of class C([0, T] x (0, 00)) N CY2([0, T) x
Cauchy problem

(0,00)) and solves
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Tult,w) + 3 100 Py Vi (1) — rOWVi () = ~Th(t,0) (8.49)
on [0,T) x (0,0),
V(T,y) = Ua(y), (8.45)
y € (0, 00).

If o is a function satisfying (8.44), (8.45), Uy is of class C([0,T] x (0,00))N
CH2([0,T) x (0,00)), and ¥ and @, satisfy the growth condition (8.21), then

§=V, —o,=X, G=10-yi,

PROOF. All the claims (8.40)—(8.43) made here for fixed t € [0,T) are
contained in Theorem 6.11, taking T in that theorem to be T' —t here.
When t = T, (8.40)—(8.43) and (8.45) follow directly from the definitions.

Equation (8.42), Lemma 8.4, and Lemma 8.10 show that V has the
claimed degree of smoothness. Equations (8.42), (8.32), (8.6), and (4.11)
yield (8.44). ’

If  has the properties stated, then differentiation of (8.44) and (8.45),
using (4.12), shows that —, satisfies (8.6), (8.7). According to Remark
8.6, —v, = X. Furthermore, ¥ — y@, solves (8.32), (8.33), and from Lemma
8.10 we see that G = ¥ — y,. From (8.42) we now have V=4 a

The following examples illustrate the use of Theorem 8.12 to compute
the value function and the optimal consumption and portfolio processes in
feedback form.

Example 8.13: Fix p € (—oo, 1) \ {0} and set
Ui(t,c) = UPNc —&(t)), Us(z)=UP(z-7),
where U(®) is defined by (4.4) and &: [0,T] — [0, 00) is continuous. Then
Li(t,y) =¢(t) + /7Y,
Outy) = 29?00 ey, 0<t<T, y>0,

L(t,y) =% +y"/*1),

= 1—
Ua(y) = — Pyp/e=) _zy, y > 0.
We seek a solution o of (8.44), (8.45) of the form
5 1 =Py o/ (-1
w(t,y) = —=k(t)y?/ P~ — £(t)y. (8.46)
p

This function solves (8.44), (8.45) if and only if
K'(t) + a(t)k(t) = —1, €'(t) — r(t)i(t) = —¢(t), 0<t < T,
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‘where

() 2 2 [HI01? + 0 )| (8.47)

and
k(T)=1, ¢{T)=17.

From these conditions, we see that

T r T 5
k(t) = efz gt [1 +/ e fs ) ds} , (8.48)
t

T T sr )
Z(t) -- e—ft riishes T+ / efs; (D E(s) d.5:| : (8.49)
t

The function #: [0, T] x (0, 00) — R defined by (8.46)—(8.49) satisfies (8.44),
(8.45), and

By (t,y) = —k(t)y P — (1)

is of class C([0,T] x (0,00)) N C12([0,T) x (0,00)). Furthermore, both @
d @, satisfy the growth condition (8.21). According to Theorem 8.12, v
ees with V,

1
X(t,y) = k(t)y*/ @V + £(t), G(t,y) = ;k(t)y”/"’—”, 0<t<T,y>0,

]

d consequently, for 0 <t < T,




|
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where U is defined by (4.5) and @: [0,T] — [0, 00) is continuous. Then.
hit) =0+,
Ui(t,y) = —logy — 1—¢(t)y, D<t<T,y>0,
)=+, Day) = —logy~1-7u, y>0
We seek a solution ¥ of (8.44), (8.45) of the form
¥(t,y) = —k(t)logy — m(t) — £(t)y.
This function solves (8.44), (8.45) if and only if
k(t) =T —t+1,

T
m(t) =1+ / [1— (T — s +1)(r(s) + |0(s)]2/2)] ds,

and ¢(-) is given by (8.49). Again, we see that ¥ and

k(t)

ty(t,y) = ———= — €(1)

satisfy the growth condition (8.21), so Theorem 8.12 implies that © agrees

with V and

X(t,y) = ’—? FUt), Gty) = k(t)(1 — logy) — m(z).

Consequently, for 0 <t < T,

X(t7 OO) = Z(t)a
k()

Y(t,z)= — 0 vz > £(t),
V(t,z) = k(t)log (I ;(f)(t)> +k(t) —m(t) Vx> (1),
Clt,z) = &(t) + = ;(f)(t) vz > 0(b),

I(t,2) = ('(8) '0() (@ — £(t) Ve > ().

Remark 8.15: If we take r, §, and o to be constant in Examples 8.13,
8.14, we have

6 N—1gpt n—1 =
aH(t, z) = —(o")T 00 (t) = (o) 8(—re(t) + E(t)).
It can easily happen that some or all of the components of —%H(t, z) are
positive, a somewhat counterintuitive situation. In particular, suppose that
there is only one stock and ¢ and # have the same sign (as they will when-
ever the mean rate of return on the stock exceeds the interest rate). Then
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gt—H(t, ) has the same sign as —rf(t) + (t). If &(T) > rZ = rf(T), then
(%H(t, z) > 0 for t near T. In this case, as the terminal time approaches,
for a fixed level of wealth the optimal portfolio invests more heavily in the
stock.

Example 8.16 (Constant coefficients): Consider the case that r(:) =

r>0,0() =6 # 0, and 0(-) = o are constants, and A(-) = 0. Set
4= 10]|*> > 0. Assume that

U(t,z) = e uy(z), Us(z) =e “Tug(z), 0<t<T, z> 0, (8.50)

where o > 0 and u;:(0,00) — R, uy:(0,00) — R are thrice continuously
differentiable utility functions

(u(2))* (ug (2))?
1 =0 fo > 2, lim % i
B " ) I some a 1 () exists, (8.51)
u(0) > —oo. (8.52)

or k=1,2. Let iy denote the inverse of u}, k = 1,2.

The functions of Theorem 8.12 can be computed explicitly, following
aratzas, Lehoczky, and Shreve (1987), as follows. Denote by Ay and A_
he respective positive and negative roots of the quadratic equation A% —
r—a—7vA—r=0, and set .

i1(y)
B /0 (, ()¢,

Al - 1 YA+ yIHA-
800) & Za(00) ~ s [ - ),
. 1 142, I+A
) 2 ()~ i [ - 0],
) £ 9(v) - sv)
b l ) 3 g 1 yl+)\+
2 = L)+ s [ )

1+A_
y+

= mJ—(y)} 5

! [10 ® it — B )t] ¢ 0
g — r—= ’ » Z,q >0,
ot q Y q

W(t, z;q) = 4 T 2P+ (t,7;9)) — geTD(p_(t,739), 0<t<T,
=’ (Z—q)+, t=07
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by analogy with Example 2.4.1. Then
yX(ty) = s(y) + / (miz(n) = s(m)"v(T —t,m;y)dn, (8.53)
0

. ul_(m) o

o

Clt,y) = 9ly) + (u (0)

+ /w(uQ(h(n)) —g(m)"v(T —t,m;y)dn, (8.54)
0

and thus

V(t, y) = G(t, y) - yX(t, y)
—a(T-t)
= 1(3) + (10 - )

+ " (@) — k)T~ timsy)dn,  (8.55)
0

where i is the convex dual (Definition 4.2) of uy. See Karatzas, Lehoczky,
and Shreve (1987) for details.
Conditions (8.51), (8.52) and Assumption 8.2 are satisfied by
1
ug(r) = =2, >0,

p
for any p € (0,1) (p may depend on k). Although condition (8.52) is not
satisfied by ux(z) = logz, the formulas obtained above still hold and sim-
plify considerably for this case (see Remarks 4.7, 5.5 in Karatzas, Lehoczky,
and Shreve (1987)).

3.9 Consumption and Investment on an
Infinite Horizon

In this section and the next we consider a complete, standard financial
market on an infinite horizon, as set forth in Section 1.7. In particular,
on an underlying probability space (€2, F, P), there is an N-dimensional
Brownian motion W = {W(¢);0 < t < oo}, and we shall use the no-
tion of restricted progressive measurability (Definition 1.7.1) relative to this
Brownian motion. .
For this market we shall be interested in Problem 9.5 below of maximiz-
ing expected utility from consumption over the infinite planning horizon.
The solution of this problem is similar to that obtained from Problem
5.2 of maximizing expected utility from consumption over a finite plz?m-
ning horizon. After developing the expected results for the market Wfth
general coefficient processes, we turn our attention to the market with
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constant coeflicients and utility function of the form (9.21). In this case,
explicit computations become possible (e.g., Theorems 9.14, 9.18, 9.21).
The Hamilton-Jacobi-Bellman equation takes the form of a nonlinear,
second-order ordinary differential equation (Theorem 9.20), and the dual

value function satisfies a linear, second-order ordinary differential equation
(Theorem 9.21).

Definition 9.1: A consumption process on the infinite planning horizon
is a nonnegative, restrictedly progressively measurable process satisfying
fOT c(t) dt < oo almost surely for every T € [0, 00).

An agent with initial £ > 0 who chooses a consumption process c(-)

will have a cumulative income process I'(t) S fot c(u) du, 0 < t < oo.

If this investor chooses a I'(-)-financed portfolio process m(-), then his
corresponding wealth process X7 () will be governed by equation (1.7.6):

X=emt) _  [fe(u)du f1,
O /0 Sow) T /0 Sola) " (W (W) dWo(w),
0<t<oo (9.1)

Definition 9.2: Given z > 0, we say that a consumption and portfolio
process pair (¢, 7) on the infinite planning horizon is admissible at z, and
write (c,7) € A(z), if the wealth process X*“™(.) corresponding to «, ¢, 7
satisfies

X®e™() >0, 0<t< oo
almost surely. For z < 0, we set A(z) = 0.

Remark 9.3: Just as in Remark 3.3, we have for any (¢, 7) € A(z) that
EfOT Ho(u)e(u)du < z for every T € [0, o0). Letting T — oo and using

the monotone convergence theorem, we obtain the infinite horizon budget
constraint

E Ho(u)c(u)du < z. (9.2)
Theorem 9.4: etz >0 be gwen and let c(-) be a consumption process

oo

E Ho(u)e(u) du = z. (9.3)
0

Then there exists a portfolio process w(-) such that (c,) is admissible at z.
The corresponding wealth process is

O (L) = #(t)E [Zw Hy(u)e(u) du

f(t)} , 0<t<oo. (9.4)
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PROOF. Given T € [0,00), define
ér= ﬁE [ /T h Ho(u)c(u) du ]—'(T)] .
Then
/ Ho(uw)e(u) du + Ho(T )§Tl =,

and Theorem 3.5 implies the existence of a portfolio process mp =
{mr(t);0 <t < T} such that the corresponding wealth process.

X®ORT () = So(2) [x—/o So(u / So(u)

satisfies X*4™T(¢) > 0 almost surely for 0 < t < T and X®%"7(T) = &7,
According to Remark 3.3,
/ Ho(u)c(u) du,

is a nonnegative supermartingale under P, but since

J / Ho(w)c(u) d }

o) dWa(w)].

0<t<LT

Mr(t) & Ho(t) X=" (¢) 0<t<T

EMy(T) = { [/ Ho(u)c(u) du| F

=
= MT(O)’

the process {My();0 < ¢t < T} is in fact a martingale. Consequently, for
0<t<T" <T < oo, we have the almost sure equalities

Ho(t)X™<7 (t) =

=FE HO(T)§T+/t Hy(u)e(u) du| F

=E ’—/‘X’ Ho(u)c(u) du

#0)|

— E Ho(T,)ﬁT' +/t H()(‘U,)C(U) du

o)

=E -MT/ (T") — /Ot Ho(u)c(u) du

7]
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= MT/ / H()(U C(U

a HO( )chnT/

(9.5)

Since both X*¢"7(.) and X*%™r'(.) are continuous, we have X®¢7r t) =
X®emr(t) for all t € [0,T"] almost surely. This implies

/0 W(”T(U)

and thus 77 (¢) = 7 (t) for Lebesgue-almost-every ¢ € [0, T'] almost surely.

We now define
m(t) = Zl[n 1@@’ L, 0<t< oo,

CVISION

TECHNOLOGIES

= mr(u))o(u)dWo(u) =0, Vi€ [0,T],

and we have
X (1) = Z Lin-1,m ()X () 2 0, Vi € [0, 00)

most surely. For fixed ¢ > 0, choose the integer n such that n—1 < ¢ < n.

hen (9.5) implies
E [ /t " Ho(w)e(u)dul ]—'(t)]

ost surely, which establishes (9.4). o

XTem (t)

= Xzycyﬂn (t) .

Let a function U): [0, 00) x R — [—00, 00) be given such that:

i) For each t € [0,00), Ui(t,-) is a utility function in the sense of
Definition 4.1, and the subsistence consumption

c(t) 2 inf{c € R;Uy(¢,¢) > —o0},

is a continuous function of ¢, with values in [0, 00);

ii) Uy and U] (where prime denotes differentiation with respect to the
second argument) are continuous on the set

0<t < oo,

Do £ {(t,¢) € (0,00); ¢ > &(t)}.
FOr each ¢t € [0,00), we construct I,(t,-): (0, oo] 29 — [e(t), 00) satisfying
20). Lemma 5.8 extends to show that I 1 is jointly continuous on [0, 00) x
o).

Let an agent have an initial endowment z € R. The problem of this
tion is the following,.

[0,00) x

Oblem 9.5: Find an optimal pair (Cooy Too) € Aoo() for the problem

Vo(z) 2 sup E/ Ui (t, c(t)) dt
(ey7m)EAs(z) JO



140 3. Single-Agent Consumption and Investment.

of maximizing expected total utility from consumption over [0, 00), where
o0
Aco(T) 2 {(c, m) € A(z); E'/ min|0, U; (t, c(t))] dt > —oo} .
0

We recall that A(z) = @ for z < 0 and that the supremum over the
empty set is —oo. To avoid trivialities, we impose the following condition
throughout.

Assumption 9.6: There is at least one £ > 0 such that V() is finite.

Remark 9.7: With £ as in Assumption 9.6, there must exist some
(6,7) € Aco(Z) such that E [°min[0,U(t,é(t))]dt > —oo, and, in
addition, Ef0°° Ui (t,é(t)) dt < V(&) < oo. Simply stated, é(-) satisfies

E / ULt &(8)| di < oo (9.6)
0

Remark 9.8: It is not difficult to compute Voo(z) in the case that z <
E [;° Ho(t)¢(t) dt. Indeed, we have

o0

/oo Uit,e(t)dt, ==E [ H(t)e(t)dt,
- 0 0

(o o)
—o0, z<E [ Hy(t)e(t)dt.
0
To verify this, note that when z < E f0°° Hy(t)e(t) dt, the budget constraint
(9.2) shows that Ax(z) = 0, and so V(z) = —oo. If on the other hand
z=FE f0°° Hy(t)e(t) dt, then (9.2) shows that the only possible admissible
consumption process is ¢(-) itself. Theorem 9.4 guarantees the existence
of a portfolio 7(-) such that (¢,7) € A(z). If [;° min[0,Us(t,2(t))] dt >
—00, then (¢,7) is the sole member of A (z), and hence is optimal. If
Jo min[0, Uy (¢,€(t))] dt = —oo, then [ Ui(t,c(t)) dt is defined and equal
to —oo because ¢(-) is dominated by é(-) satisfying (9.6). Moreover, in this
case Ao (z) = 0, 50 Voo(z) = —00. In either case, we have (9.7).

Voo(2) (6.7

We now define
Xoo(y) 2 E /0 h Ho()11 (¢, yHo(t)) dt, 0 <y < oo. (9.8)
A sufficient condition for the following assumption is given in Propostion
9.14.
Assumption 9.9: X (y) < oo, Vye€(0,00).

The following lemma is proved in the same way as Lemma 6.2.

Lemma 9.10: Under Assumption 9.9, the function X, is nonin
creasing and continuous on (0,00) and strictly decreasing on (0,7c0)s

where Xoo(04) = limyjo Xoo(y) = 00, Xoo(00) _ limy o0 Xoo(y) =
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Jo Ho(t)e(t) dt, and

Foo 2 8Up {y > 0; Xoo (y) > Koo (00)} > 0. (9.9)

In particular, the function X, restricted to (0,70) has a strictly decreasing
inverse function YVoo: (Xoo(00), 00) 229 (0,7), so that

Xoo Voo(®)) = 7, V& € (Xoo(00), 00). (9.10)

For z € (Xu(00),00), we define the candidate optimal consumption
process

Coo(t) 2 L1 (t, Voo (z)Ho(t)), 0 <t < oo. (9.11)
‘From (9.8), (9.10), we have

E/Ooo Hy(u)coo (u) du = z,

and Theorem 9.4 guarantees the existence of a candi

i date optimal portfoli
policy Teo(-) such that (cog,700) € A(z). ptimal portfolio

Theorem 9.11: .Suppose that both Assumptions 9.6 and 9.9 hold, let z €
(Xoo (00), 00) be given, let Coo(") be given by (9.11), and let 7o, be such that
Coos o) € A(z). Then (Cooy Teo) € Aoo(T) and (CooyToo) is optimal for

Voo(z) = E'/ Ui(t, co(t)) dt. (9.12)
0
tie optimal wealth process Xo.(-) = X®CoorToo (L) g

1 o0
0Xioo (1) = Hg(t)E [/t Hy(u)coo (1) du

d the value function V,, is given as

f(t)J ,0<t<oo,  (9.13)

Xoo(00) < T < 00, (9.14)

here

Cooly) 2 E /0 U (t T (t, yHo(£)) dt, 0 < y < oo, (9.15)

OOF. The proof of the optimality of (cs, o) is the same as the proof
Theorem 6.3, except that now we use the process é(-) of Remark 9.7 in
Oce of the constz.mt ¢ of the proof of Theorem 6.3. Equation (9.13) comes
m (9.4). Equation (9.14) is just a restatement of (9.12). o

As in Section 3.6, we examine the convex dual of Vo, defined by

A
Voo (y) = sup{Vio(z) — 2y}, y e R.
TER
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Recall from Remark 9.8 and Theorem 9.11 that

Goo(Vool(Z)), T > Xoo(00),
Veol(x) = { f0°° Ur(t,c(t)) dt, z = Xy(00), (9.16)
—00, T < Xoo(00).

The proof of Theorem 6.11 is easily adapted to prove the following resuit.

Theorem 9.12: Let Assumptions 9.6 and 9.9 hold, and assume Vo (z) <
00 for allz € R. Then V, satisfies all the conditions of Definition 4.1, and

Xoo(00) = inf{z € R; Vo (z) > —00}, (9.17)
Vi (x) = Voolz), VI € (Xoo(00),00), (9.18)
Voo () = Goo(y) — yXoo () (9.19)

=B [ GiuHa®)d Yy e (0,00)
0
Vio(y) = —Xoo(y), ¥y € (0,00). (9.20)

For the remainder of this section, we impose the following condition.

Assumption 9.13: The processes r(-) = and 0(:) = 0 are constants,
1
r>0, 226 >0,
the process A(:) is identically zero, and the function Uy is of the form.
Ui(t,c) = e PU(c), te0,00), c€R, (9.21)

where U is a utility function (Definition {.1) and 3 is a positive discount
factor.

Under Assumption 9.13, we have
Lty =1 (eﬂty) , te0,00), 0<y< o0, (9.22)
where I is related to U by (4.6), (4.7). We set (cf. (4.2))
= inf{c € R;U(c) = —o0}.
Because 7 > 0, 8 > 0, and v > 0, the quadratic equation
¥0® = (r=B+7)p—B=0 (9:23)

has two roots, one negative and the other greater than 1. We denote the
negative root of (9.23) by p, and the positive root by p2. More specifically,

pié%[(7‘_5"‘7)+(”1)i\/Fﬂ+7)2+475]’ i=12 (024

Theorem 9.14: Let Assumption 9.13 hold. Then the condition

/1 n~P11(n)dn < oo (9.25)
0
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a5 equivalent to Assumption 9.9. Under this condition,

) 1 .
Xoo y) = = ——= [ pl_l/ —p1 |
W= = (V7 ), 4y

Yy

oQ

n~?*1(n) dn} ;

0<y<oo,
(9.26)

is finite, twice continuously differentiable, satisfies X"
(0, 00), and fies X (y) < 0 for ally €

1 .
S161PY* X0 () + (16117 — 7 + B) yXLo () — rdoo(y) = ~I(y),

0<y<oo (9.27)
PROOF. Under Assumption 9.13, equation (9.8) becomes

Xooly) = E /0 " exp{—(r + 1)t — #W (1))

I(yexp{—(r — B+ 7)t — O W(t)}) dt

:/_:/Ow\/%exp{—(r-l-'y)t—w 2’yt—w2/2}
-I(yexp{—(r—,@-l—’y)t—w 27t}) dt dw.

olding't > 0 fixed, we can make the change of variable z — (r=B+vy)t+
V27t in the outer integral and then use the Laplace transform formula

oo 1 R ~\/ap
—a/(4t) ,—pt 3, _ € ,
/0 —me e Pdt = 7 a>0, p>0, (9.28)

obtain

'Xoo(y) = /:; %exp{z(’"%g_ﬂ} I (ye—z)

oo 2
/ Lexp{_""v__(7"_'3""7)2"‘4’%3
o Vmt 4t 4~

t} dtdz

e " 1 .
: /—Qo Vo—prarras )

sexp{% [Z(r—ﬂ—’v)—IZI\/(T—5+7)2+4’75]} dz

1 oo
= — (p1—1)z —z
Y(p2 — p1) [/0 ¢ I(ye™) dz

0
+/ e(Pz—l)zI (ye—z) dZJ .:

v —00

e Sl;z:nge of variable n = ye~7 leads to equation (9.26). The integral
>7I I(n) dn converges because I is nonnegative and nonincreasing and
1. The equivalence of (9.25) and Assumption 9.9 is now apparent.
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From (9.26) it is clear that X is twice continuously differentiable. Direct
computation verifies (9.27). To show that X’ (y) < 0, we use integration
by parts for Riemann—Stieltjes integrals to compute

A 1 [ Yy 2
X = -1 P1—2/ —PLI(n) dn
() Py po—— b(Pl )y o () dn
+(p2 — 1)y ? / n~?*1(n) dn]
Yy
1 [ 2t e 0 7
= 3o=p |V *lminf (0~ () + ¢ 2/0 7 P+ dl(n)

o0
+y” 72 / nPeH dI(n)]a
y
But (9.25) implies liminf, o (n_91+11(n)) = 0, and both the above
Riemann-Stieltjes integrals are strictly negative because I is strictly
decreasing. Q

Under Assumptions 9.9 and 9.13, X, is a bijection from (0,00) to
(0, X(00)), and so its inverse Vo, maps (0, Xo(00)) onto (0, c0). The im-
plicit function theorem implies that ), is continuously differentiable, and
in fact,

XL (Voo (2)Vo(2) =1, V2 € (Xoo(00), 00). (9.29)

Corollary 9.15: Under Assumptions 9.9 and 9.13, the feedback form for
the optimal consumption/portfolio process pair (Coo, Too) for Problem 9.5 is
given by

C(z) = I(Veo(=)), (9.30)

I(z) = —(a')"lazzgg (9.31)

for € (Xo(00),00).
PROOF. We introduce the process
Y (s) S yexp{~(r +7)s — 6'W(s)}
=yexp{—(r —7)s — §'Wo(s)},
which satisfies
dY W) (s) = YO)(s)[(2y — ) ds — 0’ dWo(s)),
YW (s) = yYD(s) = yHo(s)-

In terms of this process, we have the representation

YXooly) = B [ / T YW (o) 1(eP YW (s)) ds] |
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and the Markov property implies that

E [ /t g YW (5)1(eP-Dy®)(s)) ds

]—'(t)J =Y O () X (Y ¥ (2)).

Let z > .Xoo(oo) be given and set y = Y, (z). The optimal wealth process
with initial condition z, given by (9.13), is (see (9.11), (9.22))

1 o0
Xoo(t) mE [/t Ho(s)I (yeP*Ho(s)) ds

= WE [ /t Tyt (o)1 (ef“s-f)Y(ye"’)(s))’f (t)J

= Xoo (Y (1))
= X (ePty W)(1))
= Xoo (yeP Ho(t)) . (9.32)

In particular, the optimal consumption process is

7|

coo(t) =1 (yeﬁtHO(t)) = I(yoo(Xoo(t)))’ (9‘33)

which verifies (9.30).

F}rlom It6’s rule in conjunction with (9.27) and (9.33) applied to (9.32),
e have

d(e "X (t)) = d(e " Xoo (ePty W) (1))
= —e Moo (t) dt — PV W) (1) XL (PY W) (1)) dWy (t),

nd comparison with (9.1) shows that the optimal portfolio process is
Too(t) = —(0) T10eP Y W (1) X (ePtY W) (2)).

ut eﬁtY(y)(t) = YVoo(Xoo(t)), and because of (9.29), X' (ePry®) (1)) —
/y(I)o(Xoo(t))- This proves (9.31). ) Xoo(e (t) =

emark 9.16: Just as in the finite-horizon model with deterministic co-
cients, discussed in Section 3.8, Merton’s mutual fund theorem (Remark

51))5 holds for the infinite-horizon, constant-coefficient model of Corollary

We next compute the function G oo 0f (9.15). The following lemma enables
to establish the finiteness of this function.

mma 9.17:  Under Assumption 9.13, we have

/y e U(I(m)|dn < 0o Vy € (0, 00). (9.34)
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If, in addition, Assumption 9.9 (or equivalently, relation (9.25), holds),
then

Ay n P U ()] dn < 00, Vy € (0, 00). (9.35)

PROOF. Fix y € (0,00). From (6.31) we have for any 7 € (0, 00) that

UUI) = VW) - 1) + i) + [ 1Ok (930

Therefore,
o0 i 1
| rewamlin < Sy o) - vw)
y

+/yoon"’?l(n)dn+Aw/ynn“’2"11(€)d€dn'

Fubini’s theorem implies

/y h / ") de dy = . / Cerr(e)de

1 o0

Sl —p2 g
sp2 (y)/yﬁ £
< 00,

because p; > 1. Relation (9.34) follows.
From (9.36), we also have

/0 e U (n)) dn < —p—lly-mwu(y)) ~yl(g)

Y ¥ Iy
~—p1 —p1—1 ]
+/Q n I(n)dn+/0 /77 n I(¢) d¢ dn,

and Fubini’s theorem implies

vy 1y
L[t dean= - [Meorea
0 Jy P1 Jo
From Assumption 9.9 in the form (9.25), we have (9.35). o

Theorem 9.18: Let Assumptions 9.9 and 9.13 hold. Then the function
Goo of (9.15) is given by
Goolt) = - [y”‘ / eI m) dn
°° 7(p2 — p1) 0

wv [T ) dn), 0<y <o, (037
Yy
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is finite, twice continuously differentiable, and satisfies

SVOIPPCLG) + (8~ MyGL(3) ~ BGwt) = ~UU), 0<y< oo

(9.38)
Furthermore,

! Goo (y) — G (z) = yXo (y) =250 (z)
= / ’ Xo(N)dA, 0<2z<y< oo, (9-39)
Goo(y) =y (y), Gooly) = Xo(y) + yX(y), y > 0. (9.40)

PROOF. By computations similar to those in the proof of Theorem 9.14,
using again the Laplace transform formula (9.28), we have for 0 < y < 00,

Goo(y) = E/Oooe‘ﬁ‘U(I (ve® Hy(t))) dt

[ et

U (I(yexp{—(r B+t —w 27t)) dt dw

= [ e {0 b ey

./“L p{ 2 (r—B+7)?+4v8
0

exp{ ——— —
vt 4t 4~

t} dtdz

=f ! U (1~
Vo B ra (e

-exp{% [z(f—ﬂ+7)—|z|\/(f—ﬂ+7)2+47ﬂ” dz

= sy [ e e

+/_(;o ef* U (I(ye_z)) dzJ ,

and the change of variable M = ye * gives us (9.37). Finiteness of G,
follows from Lemma 9.17, and (9.38) can be verified by direct computation.

Equation (9.39) is proved in the same manner as (6.32), and from (9.39)
We obtain (9.40). O

Corollary 9.19: Under Assumptions 9.9 and 9.13, the value function
Voo(z) given by (9.16) is finite for all x € (Koo (00), 00).

Theorem 9.20 (Hamilton-Jacobi-Bellman equation): Let Assumptions
9.9 and 9.13 hold. Then the value function V., is twice continuously
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differentiable on (X (00),00) and satisfies the Hamilton—-Jacobi-Bellman
equation of dynamic programming,

—fBVoo(z) + max %lla’ﬂ“zVo’(’J () + (rz —c+n'od)V. (z) + U(c)] =0,
0<c< o0
TERN

T > Xoo(00).
(9.41)

PrOOF. Equations (9.16), (9.29), and (9.40) imply
Voo (@) = Voo(),  Vii(2) = Vi (2), @ > Xog(00).
We may thus rewrite the left-hand side of {(9.41) as

= BGx(Voo(T)) + rzdeo(z) + s [U(c) — Voo ()]

+ max [llla'wllzyéo(m) +1r'00y°°(m)] .
reRN |2

The maximizing values of ¢ and 7 are given by (9.30) and (9.31), respec-
tively. Substituting these values into (9.41) and setting y = YVoo(z), so
T = Xeo(y), we obtain

~BGon(y) + ryXoo(y) + U(IW)) ~ yT() — 16142 Xla(u).

Using (9.38) and (9.40), we reduce this expression to
1 1
= lOIPY* G (y) = (B = )yGio(y) + ryXoo () — uI(y) — 511617y* Xio )
1
=[SO + (I - 7+ 8)1200) ~ rRelt) + 1)

which is zero because of (9.27). o

Theorem 9.21: Let Assumptions 9.9 and 9.18 hold. Then
1

Yy o0
‘700 —= o1 ~P1=177 () dn + pz/ =P2=177 () d ],
) = [y /O n (mdn+y = (m) dn

0 <y < oo,
(9.42)

is finite, twice continuously differentiable, and
1 = ~ ~ .
SIOIPY* VL (W) + (B =)y Ve (y) — BVao(y) = =U(y), 0<y < oco. (9.43)
PrOOF. According to Theorems 9.12, 9.14, and 9.18,
Voo (y) = Goo(y) ~ yXoo ()
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1 { i "
=— ! i (U(I —-nl d
Yo =pp) |V /077 W (m) ~nl(n) dn

+yﬂ2/y pP21 (UI(n)) —nI(n)) dnJ , 0<y < oo.

Equation (9.42) follows from (4.11). Equation (9.43) can be proved by direct
computation. O

Example 9.22: For p < 1, p # 0, take U(e) = UP)(c —¢), given by (4.4),
where € > 0 is constant. Then

10) =400 2, UU) = S0, Gy) = LByl g
p p '
for all y > 0. Let
§2 B—rp— I
1-—
Then (9.25) is equivalent to § > 0, which is certainly the case if p < 0, but
can fail to be if 0 < p < 1. Under the assumption § > 0, we have

o0

1-p2 ., o 3
() = 322 /oy _ Yoy

op

The optimal consumption and portfolio processes in feedback form are

Clz) = ﬁ (m - E) +8, (z) = 1L(a')—la (m - §) >

=No

r r

The optimal wealth process, given by (9.32), is

Xoo(t)z(‘a)’«—;)exp{lip(r—ﬂ+'y)t+ﬁ0'W(t)}+ , t>0.

S lo

Remark 9.23: For 0 < p < 1 and U(c) = UP)(c —€), where € > 0. is
Constant, condition (9.25), or equivalently, the inequality

6(6)= 8-rp- £ >0,
w2

is not only sufficient but also necessary for the value function Voo () to be
finite for = > ¢/r. We see this by varying the discount factor 8 > 0. Let us
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write V2 rather than V to indicate explicitly the dependence of th.e value

function on 3. Because e~PtU(c) is decreasing in 3, the value function V2
A ,

must also be decreasing in 8. For 8 > By = rp + (yp/(1 — p)), Example

9.22 shows that

1-p -\ P &
1/1- c C
p \ 6(B) 4 r
Consequently,
lim VA(z) =00, z> E,
BlBo r

which implies V2(z) = oo for all z > ¢/r and 8 < fo.

Example 9.24: Take U(c) = U®(c — ©), given by (4.5), where ¢ > 0 is
constant. Then
I6) = +% UU()=~logy, T(y)=—logy—7y—1, y>0
y .

Condition (9.25) holds, and we have

Xw(y)=@+§, y>0,
i) = 2 (- 2) L 253
Gooly) = —%loger % y>0,
Veo(Z) = %logﬂ (z— g) + 7‘_54, T > g,
Voo (y) = —%logy— ETy + T_Z# y>0.
The optimal consumption and portfolio processes in feedback form are
Clz) =8 (:c - §) +2, T(z) = (o)1 (:c - g) oz §

The optimal wealth process, given by (9.32), is

RN (z - g) exp{(r — B+t +0W({t)} + g t>0.

3.10 Maximization of the Growth Rate of Wealth

Let us consider as a special case of Problem 5.3 the ma.ximizatiorll of
Elog (X®=*™(T)) over consumption/portfolio process pairs (c, ). Slpce
there is no utility from consumption, we may, without loss of generality,
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restrict attention to pairs (c, ) for which ¢(-) = 0 (see Theorem 7.6(1)).
Example 7.9 with Z set equal to zero shows that for any initial endowment
z > 0, the optimal wealth process X(-) and the optimal portfolio process
mo(-) are given by

Xa(t) = 2/ Ho(t), (10.1)
mo(t) = (0(t)o' (1)) (b(t) + 8() — r(O)1) Xa(t).  (102)

Note that the expressions (10.1), (10.2) do not depend on the terminal
time T'. This is a very special property of the logarithmic utility function;
we shall exploit it below to show that the portfolio process ma(-) of (10.2)
solves the problem of maximization of the growth rate of wealth over the
infinite horizon [0, 0o).

We use the complete, standard financial market on an infinite horizon,
as set forth in Section 1.7. Let £ > 0 be given. Recall from Definition 9.2
that a consumption/portfolio process pair (¢, 7) is said to be admissible at
 if the corresponding wealth process is almost surely nonnegative at all
times; the set of all such processes is denoted by A(z). Since we shall only
be considering c(-) = 0, we shall simplify the notation by writing 7 € A(x)
rather than (0,7) € A(z) and X®7(.) rather than X=0.7(.). Within the
class A(z) of portfolio processes, there is the smaller class of portfolios
() for which Emin{0,log X*™(T)} > —oo for all T € [0, 0), and we
shall denote by 4, o (z) this collection. For 7 € Az,00(z), the expectation
Elog X*™(T) is well-defined for all T € [0, 00). Since

.
o X=7(T) = loga + AT) + [ [r(0)+ S1ots) 1]

T
+/ 6'(s) dW (s), (10.3)
0
asufficient condition for my(-) to be in A2 0o(x) is that both

- VTI' € [0, 00) there exists a nonrandom constant kg > —oco |
» (104)

1

such that A(T) + /T [r(s) + %“9(3)”2} ds > —kT a.s.
0

T
E/ 16(s)IPds <00, ¥V T e[0,00) (10.5)
0

old. Condition (10.4) implies for each fixed T that So(T) is bounded away
fom zero, which implies in turn that Assumption 2.2 holds.

When (10.4), (10.5) hold, it is straightforward to verify that ma(-) of
10.2) maximizes the ezpected growth rate of wealth

limsup %E log X*™(T)

T—oo
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over all m € Aj oo(z). Indeed, from the first paragraph of this section we
know that Flog X*™(T) < Elog X®™(T) for all 7 € A (z) for each
fixed T € [0, 00), whence

1
limsup = E log X>™ (T < limsup ' log X™™(T)
T—o00 T T

T—o0

T—oo

+ /0 y [}(s)+%||e(s)||'~’J ds}.

The following theorem shows that mo(-) is also optimal in the almost sure
sense for this long-term growth problem. Because this is not a statement
about expectations, it is not necessary to assume (10.4), (10.5), and we can
show that m2(-) is optimal in the class .A(z) rather than the smaller class

.'42’00 (.’B)

Theorem 10.1: Let z > 0 be given. For any portfolio process 7 € A(z),
we have almost surely

= lim sup %E {A(T)

1
lim sup 1 log X*™(T) < limsup — log X*72(T). (10.6)
T Tooo 1

T—o0

In other words, for P-almost every w € Q, the portfolio process ma(-)
mazimizes the actual rate of growth limsupy_, % log X (T,w) of wealth
from investment over all admissible portfolios m(-).

PROOF. For any 7 € A(z), the ratio
R(E) & Xo )/ X*™(t) = - Ho())X™" (1
satisfies (cf. Remark 3.3)
dR() = ~ Ho(0)lo' (1) ~ X="(00(0)) W (1)

and is, therefore, a nonnegative local martingale and supermartingale. As
such, R(-) satisfies the inequality

66"P{ sup R(t) > 66"} <ER(n)<R0)=1, ¥YneN 0<6<1
n<t<oo

(cf. Karatzas and Shreve (1991), Problem 1.3.16 and Theorem 1.3.8(ii))-
Fix 6 € (0,1). Then

ZP{ sup log R(t) > 6n} < Ze_‘s" < 00,
n=1

. n<t<oo
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and the Borel-Cantelli lemma implies the existence of an integer-valued
random variable N5 such that

log R(t,w) < én <6t VYn> Ng(w) Vt>n

for P-almost every w € Q. In particular, for all such w, we have

1
sup < log R(t,w) <6 Vn > Ns(w),
to>n b

hence:
. 1 P 1 .
limsup - log X*™(t,w) < limsup - log X®™(t,w) + 6,
t—o0 t t—o0 t
and inequality (10.6) follows from the arbitrariness of § € (0,1). ]

Corollary 10.2: Assume that the processes r(-) and 6(-) are constants r
and 0, and that the process A() is identically zero. Then the optimal rate
of growth for the wealth process, given by the right-hand side of (10.6), is
r+ 467

PrOOF. Use (10.3) and the observation that limp_,o FW(T) = 0
almost surely. 0O
3.11 Notes

The modern mathematical theory of finance begins with Markowitz (1952,
1959), who conceived the idea of trading off the mean return of a portfolio
against its variance. In a one-step, discrete-time model, one can buy an
initial portfolio of stocks, and the value of this portfolio after one step is a
random variable. Dividing the difference between this random variable and
the initial value of the portfolio by the initial value of the portfolio, one
obtains the (random) return associated with the portfolio. A given portfolio
is said to be efficient if every portfolio that has mean return greater than
that of the given portfolio also has a greater variance of return. Markowitz
argues that one should hold only efficient portfolios. Tobin (1958) extends
the portfolios of risky assets considered by Markowitz, to include linear
combinations of these portfolios with a risk-free asset. There is then a dis-
tinguished portfolio of risky assets, called the market portfolio, such that
any other portfolio can be dominated in the mean—variance sense by a lin-
€ar combination of the market portfolio and the risk-free asset. This result
18 often called a separation theorem, because the problem of optimal invest-
ment separates into the two problems of (1) finding the market portfolio
and (2) determining the optimal allocation between the market portfolio
and the risk-free asset.

There may be several ways to construct the market portfolio from the
Tisky assets, but regardless of the particular assets that are used to build
the market portfolio, the mean and variance of its return are uniquely de-
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termined. Furthermore, the covariance of the return between any other
risky asset and the market portfolio (the so-called § of that asset, when
normalized by the variance of the market portfolio) is also uniquely de-
termined. This leads to the capital asset pricing model of Sharpe (1964),
Lintner (1965), Mossin (1966). According to this model, every risky asset
must have a mean return that exceeds the risk-free return by a certain risk
premium, which can be computed from that asset’s 8. If an asset had a
risk premium higher than- this computed value, the definition of market
portfolio would be contradicted. If an asset had risk premium lower than
predicted, it could not be part of any market portfolio and would therefore
not be demanded; this would cause its current price to fall, which would
increase its return, bringing its risk premium into line with the capital asset
pricing formula.

The Sharpe-Lintner—Mossin capital asset pricing model is static: in-
vestments are made once, and then a return is realized. The assumption
underlying the model is that the vector of returns on risky assets has a
multivariate normal distribution, or else all agents have quadratic utility
functions. (However, Ross (1976) provides a derivation of the capital asset
pricing model from arbitrage rather than utility theory.) It is not surpris-
ing, therefore, that the risk premia computed from the model have been
found not to conform well to real data; see, e.g., Jensen (1972).

In an attempt to consider more realistic, dynamic models, Mossin (1968)
and Samuelson (1969) apply dynamic programming to solve multiperiod
problems of portfolio management. Hakansson (1970) obtains a separation
theorem in this context. However, the set of utility functions and asset
price models for which the discrete-time backward recursion of dynamic
programming can be executed analytically is rather limited. An early work
on optimal consumption in continuous time is Mirrlees (1974), which ac-
tually dates from 1965. This paper presents a heuristic argument that the
marginal utility of consumption should equal the marginal value of wealth
along an optimal trajectory (cf. (8.23), (8.41)).

In two landmark papers, Merton (1969, 1971) introduces It6 calculus and
the methods of continuous-time stochastic optimal control to the problem
of capital asset pricing. (We refer the reader to Merton (1990) for a com-
pilation of Merton’s papers and for essays that place them in context.)
By assuming a model with constant coefficients and solving the relevant
Hamilton—Jacobi-Bellman equation, Merton (1969) produces solutions to
both the finite- and infinite-horizon models when the utility function is a
power function (Examples 8.13, 9.22), the logarithm (Examples 8.14, 9.24),
or of the form 1 —e~"* for some positive constant . The mutual fund theo-
rem (Remarks 8.9, 9.16), a separation theorem described above, appears in
Merton (1971). It is often called the two-fund theorem, because the investor
is content to have his only investment opportunities be Merton’s mutual
fund and the money market. Merton (1973b) introduces a Markov stochas-
tic interest rate and a three-fund theorem, according to which the investor
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requires a second mutual fund to hedge against fluctuations in the interest
rate. Richard (1979) generalizes this result to a market with an underlying
N-dimensional Markov state and obtains an (N + 2)-fund theorem. Sethi
and Taksar (1988) resolve some boundary issues in Merton’s model, and
Merton (1989) returns to this topic. Richard (1975) introduces a random
time horizon to Merton’s model. Khanna and Kulldorff (1998) obtain the
two-fund theorem under very weak assumptions.

The original analysis of Merton’s model was wedded to the Hamilton—
Jacobi-Bellman equation and its requirement of an underlying Markov
state process. In a non-Markov model of optimal consumption without
portfolio control, Foldes (1978a,b) proves the existence of an optimal con-
sumption process and shows that the marginal utility of consumption is, up
to a discount factor, a martingale (our Zy(-) of (2.5)). In the continuous-
time model for both consumption and portfolio selection, Bismut (1975)
obtains the key formula (6.5) for optimal consumption using his stochastic
duality theory (Bismut (1973)) rather than relying on the Hamilton-
Jacobi—-Bellman equation. With the appearance of the papers by Harrison
and Kreps (1979) and Harrison and Pliska (1981, 1983), which provide a
martingale characterization of the set of terminal wealths that can be at-
tained by investment in a complete market, it became possible to solve
the optimal control problem of maximizing the expected utility of termi-
nal wealth (by appropriate choice of portfolio) without the assumption of
Markov asset prices. This was accomplished by Pliska (1986). The appli-
cation of the Harrison—Kreps—Pliska martingale methodology to reproduce
the Bismut (1973) formula for optimal consumption was worked out inde-
pendently in Cox and Huang (1989, 1991) and Karatzas, Lehoczky, and
Shreve (1987); both these papers show how to decompose the nonlinear
Hamilton—Jacobi—Bellman equation into linear partial differential equa-
tions. The presentation in this chapter follows the latter reference, with the
addition of Bismut’s stochastic duality theory. The fact that the dual value
function satisfies a linear partial differential equation was discovered by
Xu (1990). Connections with the stochastic maximum principle appear in
Back and Pliska (1987), Cadenillas (1992), Cadenillas and Karatzas (1995).
See Brock and Magill (1979) for another application of Bismut’s stochastic
duality theory to economics. Kramkov and Schachermayer (1998) provide
a necessary and sufficient condition on the utility function U; for V5 to be
a utility function and for an optimal portfolio process to exist; this would
replace our Assumption 7.2.

The further extension of the martingale methodology to the infinite-
horizon problem (Section 3.9) appears in Huang and Pages (1992). The
constant-coeflicient computations for the infinite-horizon model are due
to Karatzas, Lehoczky, Sethi, and Shreve (1986). Foldes (1990, 1991a,b,
1992), Jacka (1984), and Lakner and Slud (1991) treat the infinite-horizon
Problem with discontinuous asset price processes.
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Example 7.9 (portfolio insurance) is inspired by the work of Bagak
(1993, 1995, 1996a). Some other papers addressing portfolio insurance are
Black and Perold (1992), Brennan and Schwartz (1988, 1989), Cvitanié¢ and
Karatzas (1995), Grossman and Zhou (1993, 1996), Korn and Trautmann
(1995).

Maximization of the growth rate of a portfolio (Section 3.10) goes back
to Breiman (1961). Hakansson (1970) contains a discrete-time version of
the results we present here; see also Thorp (1971). We take the results of
Section 3.10 from Karatzas (1989). Aase and @ksendal (1988) extend these
results to allow stock prices to jump. Taksar, Klass, and Assaf (1988) and
Pliska and Selby (1994) address this problem in the presence of transaction
costs. Algoet and Cover (1988) and Cover (1984, 1991) provide algorithms
for maximizing of the growth rate of a portfolio in a very general discrete-
time model. Jamshidian (1991) examines the behavior of this algorithm in
a continuous-time model. Because it leads to maximization of the growth
rate, the logarithmic utility would seem a natural choice for money man-
agers. To temper the enthusiasm for this criterion, Merton and Samuelson
(1974) point out that maximization of the growth rate does not necessarily
maximize even approximately the expectation of a nonlogarithmic utility
at any finite time, and Samuelson (1979) argues in words of literally one
syllable that maximization of nonlogarithmic utility at a finite time is the
more desirable goal. Kulldorff (1993) and Heath (1993) solve the related
problem of maximizing the probability of reaching a goal by a fixed time.

In a continuous-time capital asset pricing model with an underlying
N-dimensional Markov state process, the risk premia of assets can be com-
puted theoretically from their covariances with a set of N +1 mutual funds.
Breeden (1979) shows that rather than using the set of all covariances,
one can in principle compute risk premia from the covariance of assets
with the consumption process of an optimally behaving investor. Like the
simple mean—variance capital asset pricing model, this consumption-based
capital asset pricing model does not conform well to actual data. In par-
ticular, individuals’ consumption patterns are smoother than predicted by
the model; see Cornell (1981), Hansen and Singleton (1982, 1983), Mehra
and Prescott (1985), Dunn and Singleton (1986), Singleton (1987). To ad-
dress this so-called equity premium puzzle, several generalizations of the
basic time-additive utility function maximization (considered in this chap-
ter) have been proposed. One of these, which models habit formation of
consumers, constructs a utility function that at each time depends on the
current level of consumption and on an average of previous levels of con-
sumption; see, e.g., Alvarez (1994), Constantinides (1990), Detemple and
Zapatero (1991, 1992), Dybvig (1993), Hindy and Huang (1989, 1992, 1993),
Hindy, Huang, and Kreps (1992), Hindy, Huang, and Zhu (1993), Sundare-
san (1989), Uzawa (1968). A more radical approach is the construction of
recursive utility, to disentangle agents’ aversion to risk from their feelings
about smoothness of consumption over time, an idea due to Kreps and
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Porteus (1978). Some papers related to recursive utility in the context of
dynamic optimal consumption and investment are Bergman (1985), Chew
and Epstein (1991), Duffie and Epstein (1992a,b), Duffie and Lions (1990),
Duffie and Skiadas (1994), Epstein and Zin (1989), Kan (1991), Ma (1991),
El Karoui, Peng and Quenez (1997), Schroder and Skiadas (1997); see also
the survey by Epstein (1990). Another way to account for the smoothness
of observed consumption is the assumption of transaction costs for changes
in level of consumption; see Grossman and Laroque (1990), Heston (1990),
Cuoco and Liu (1997). He and Huang (1991, 1994) provide conditions on
a consumption/portfolio policy that guarantee that it is optimal for some
time-additive utility function; see also Lazrak (1996).

The value function in problems of optimal consumption and invest-
ment is quite sensitive to the introduction of transaction costs; see Dumas
and Luciano (1989), Fleming, Grossman, Vila, and Zariphopoulou (1990),
Shreve and Soner (1994). The notes to Chapter 2 survey the literature
on utility-based models for option pricing in the presence of transaction
costs. Some papers dealing with the problem of an investor who seeks
to maximize expected utility of wealth and/or consumption and incurs
transaction costs for changes in portfolio are Akian, Menaldi, and Sulem
(1996), Cadenillas and Pliska (1997), Constantinides (1979, 1986), Davis
and Norman (1990), Magill (1976), Magill and Constantinides (1976), Cvi-
tani¢ and Karatzas (1996), Korn (1998), Morton and Pliska (1995), Shreve,
Soner, and Xu (1991), Shreve and Soner (1994), Weerasinghe (1996),
Zariphopoulou (1992). When transaction costs or other market frictions
(e.g., borrowing constraints, different rates for borrowing and lending) are
introduced, one can study the optimal consumption and investment prob-
lem by probabilistic techniques (e.g., Xu (1990), Shreve and Xu (1992),
Cvitani¢ and Karatzas (1992, 1993, 1996), Jouini and Kallal (1995a,b),
Karatzas and Kou (1996)) or, in a Markovian framework, by a viscosity
solution analysis of the corresponding Hamilton—Jacobi-Bellman equation
(see, in addition to the several papers already mentioned, Duffie, Fleming,
Soner and Zariphopoulou (1997), Fitzpatrick and Fleming (1991), Fleming
and Zariphopoulou (1991), Vila and Zariphopoulou (1991), Zariphopoulou
(1989)). Cuoco and Cvitanié (1998) consider optimal consumption for an in-
vestor whose actions affect the market. Other work on optimal consumption
and/or investment in incomplete markets is cited in the notes to Chapter 6.

Extension of the optimal consumption/investment model to allow for
several consumption goods can be found in Breeden (1979), Madan (1988),
Lakner (1989) and the references therein. Ocone and Karatzas (1991) use
ideas from the Malliavin calculus to compute optimal portfolios. Pikovsky
and Karatzas (1996) use enlargement of filtration techniques to study a ver-
sion of the consumption/investment problem in which the investor has some
“inside” information about the behavior of future prices; see also Elliott,
Geman, and Korkie (1997), Amendinger, Imkeller, and Schweizer (1997),
and Pikovsky (1998), as well as Kyle (1985), Duffie and Huang (1986), and
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Back (1992, 1993) for earlier work in a similar vein. Kuwana (1993, 1995)
and Lakner (1995) consider the mixed control/filtering problem, in which
the investor must estimate-the mean rate of return of the assets; see also
Karatzas (1997), Karatzas and Zhao (1998). Richardson (1989), Duffie and
Richardson (1991), and Schweizer (1992b) find minimal-variance portfolios
that achieve desired expected returns. Xu (1989) constructs a simple ex-
ample in which the optimal portfolio does not invest in the risky asset,
even when its mean rate of return dominates the risk-free rate. The opti-
mal consumption/investment model with an allowance for bankruptcy has
been considered by Lehoczky, Sethi, and Shreve (1983, 1985), Presman and
Sethi (1991, 1996), Sethi and Taksar (1992), Sethi, Taksar and Presman
(1992). Several related papers are collected in Sethi (1997).

Adler and Dumas (1983) provide a survey of the application of the
continuous-time capital asset pricing model to international finance. For
general theory on stochastic control problems, the reader can consult the
books by Fleming and Rishel (1975), Bertsekas and Shreve (1978), Elliott
(1982), Chapter 12, Fleming and Soner (1993), as well as the lecture notes
by El Karoui (1981).

4
Equilibrium in a Complete Market

4.1 Introduction

In the context of continuous-time fin 'i(si'a}markets, the equilibrium problem
is to build a model in which secu? t‘vg ices are determined by the law
of supply and demand. The primifiygs=yyihis model are the endowment
processes and the utility functions™5t"8°fiifite number of agents. We shall
assume in this chapter that all agents are endowed in units of the same
perishable commodity, which arrives at some time-varying random rate.
Agents may consume their endowment as it arrives, they may sell some
portion of it to other agents, or they may buy extra endowment from other
agents. The endowment, however, cannot be stored, and agents will wish
to hedge the variability in their endowment processes by trading with one
another. To facilitate the trading of endowment, there is a financial markel
consisting of a money market and of several stocks, in which agents may
invest (positively or negatively).

Each agent takes the security prices as given, observed stochastic pro-
cesses, and maximizes his expected utility from consumption over the finite
time horizon of the model, subject to the condition that his wealth at the
final time must be nonnegative almost surely. This problem differs from
Problem 5.2 of Chapter 3 only because the agent receives his endowment
over time rather than initially, but in the context of a complete financial
market this difference is inconsequential. The goal is to choose the prices
of the money market and of the stocks so that when each agent solves his

- optimal consumption and investment problem, at all times the aggregate
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endowment is consumed as it enters the economy and all securities are in
zero net supply. The first condition codifies the concept of a “perishable”
commodity; the second reflects the fact that for every buyer of a security,
there must be a seller.

In the model of this chapter all securities will be denominated in units
of the single perishable commodity. When the marginal utility functions of
all the individual agents are infinite at their individual “subsistence lev-
els” (see Section 4.2), then all agents’ optimal consumption processes are
always strictly above the subsistence level; in this case the equilibrium
money market price can be described solely in terms of an interest rate,
and the equilibrium prices for all stocks are determined. However, when we
allow even one agent to have finite marginal utility at the subsistence level
of consumption, then this agent may sometimes see his equilibrium optimal
consumption fall to the subsistence level. In this case we still obtain equilib-
rium prices for the money market and stocks, but the money-market price
can no longer be described in terms of an interest rate. More specifically,
the money-market price is given by the formula

So(t) = exp { /0 ) dut A(t)}

of (1.1.7), where A(-) is singularly continuous. Although A(-) is continuous
and has zero derivative at Lebesgue-almost-every time, A(-) decreases at
those times when an agent’s equilibrium optimal consumption either falls
to, or rises from, the subsistence level (see Remark 6.8). The stock prices
of this equilibrium market are given by (1.1.9), which also includes the
singularly continuous process A(-).

The inclusion of this singularly continuous component in the equilibrium
security prices could be avoided by denominating security prices in terms
of money rather than units of commodity (see Karatzas, Lehoczky, and
Shreve (1990)). In effect, whenever an agent’s consumption falls to, or rises
from, the subsistence level, there is a burst of inflation in which securities
become substantially less valuable in terms of commodity but not in terms
of money. It is interesting to note that both falling to and rising from
subsistence consumption leads to inflation; neither induces deflation.

The singularly continuous component in equilibrium security prices could
also be avoided by denominating security prices in terms of the money-
market price. This can be seen from (1.1.10); the process A(-) does not
appear in the stock prices discounted by the money-market price.

When denominating security prices in units of commodity, however, a
singularly continuous component in the security prices cannot be avoided.
It was for this reason that we set up the market model in Section 1.1 to
include this possibility. In this model, under the assumption (6.4) on the
indices of risk aversion for the individual agents, we obtain uniqueness of
the equilibrium allocations of the commodity, uniqueness of the equilibrium
money-market price, and uniqueness of the equilibrium stock prices up to
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the formation of mutual funds (see Theorem 6.4 and the discussion follow-
ing it). The equilibrium existence Theorem 6.3 and uniqueness Theorem
6.7 still hold when we permit agent endowments to arrive in a singularly
continuous way, i.e., so that the cumulative endowment is continuous but
is not necessarily described by a rate. For this reason we allow this added
degree of generality, and the singularly continuous process £(-) appearing
in the aggregate endowment equation (2.2) can contribute to the singu-
larly continuous process A(-) in the security prices. However, even without
the presence of the singularly continuous process £(-) in the aggregate en-
dowment process, the singularly continuous process A(-) will appear in the
security prices under the conditions discussed above.

The model of this chapter is a pure exchange economy, because there
are no securities associated with production. Only financial securities are
posited, which are in zero net supply. One could, however, use the equilib-
rium model to price the right to receive future endowments, and thereby
have “productive assets” that are held in positive net supply (see Re-
mark 6.6). The more challenging task of including production that can
be enhanced by forgoing current consumption is not addressed here.

We conclude with a section-by-section summary of the chapter. Section 2
describes the exogenous processes and Section 3 describes the endogenous
ones. Section 4 modifies the analysis of Chapter 3 to solve the optimal
consumption and investment problem for an agent who receives an endow-
ment process and acts as price-taker. Equilibrium is defined in Section 5,
as is the concept of a single “representative agent” (really a utility func-
tion) who aggregates with appropriate weights the individual agents (really
their utility functions). Equilibrium is characterized in terms of the rep-
resentative agent’s utility function via Corollary 5.4 and Theorem 5.6.
This reduces the question of existence and uniqueness of equilibrium to
the finite-dimensional problem of determining the appropriate weights
in the construction of the representative agent’s utility function. Theo-
rem 6.1 establishes the existence of these weights and describes the extent
to which fhey are uniquely determined. The remainder of Section 6 works
out the ramifications of Theorem 6.1 for the existence and uniqueness of
equilibrium. One of these is the consumption-based capital asset pricing
model (CCAPM) (Remark 6.7). Section 7 contains examples in which the
equilibrium consumption allocations and security prices can be exhibited
explicitly.

4.2 Agents, Endowments, and Utility Functions

We consider an economy consisting of a finite number K of agents, each of
Whom is continuously endowed in units of a single perishable commodity.
The exogenous endowment processes {ex(t);0 <t <T}lk=1,...,K, of
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these agents are assumed to be nonnegative and progressively measurable
with respect to the filtration {F(t)}o<¢<7 of Section 1.1, the augmentation
by P-null sets of the filtration generated by the N-dimensional Brownian
motion W(-) on the interval [0,T]. The aggregate endowment

K
A
€(t) =) e(t), 0<t<T, @.1)
k=1
is assumed to be a continuous, positive, bounded semimartingale:

t t t

€(t) = €(0) + /0 e(s)v(s)ds +/0 €(s) de(s) + /0 €(s)p'(s) dW (s),
0<t<T
(2.2)

Here £(-) is an {F(t)}o<¢<T - progressively measurable process with paths
that are continuous and of finite variation on [0, T}, but that are singular
with respect to Lebesgue measure (see Proposition B.1 in Appendix B).
We take £(0) = 0 and assume that the total variation of £(-) on [0, T] is
almost surely bounded. The processes v(-) and p(-) are {F(t)}-progressively
measurable and bounded; they take values in R and RY, respectively.

In addition to his endowment, each agent k has a utility function Uy, -
R — [~00,00) as described in Definition 3.4.1. We denote the subsistence
consumption for agent k by

& 2 inf{c € R; Uk(c) > —o0} (2.3)
(cf. (3.4.2)), and define aggregate subsistence consumption as
LS
g=) & (2.4)
k=1

Recall that ¢, >0 for k=1,... K.

Finally, the agents have a common discount rate 3 : [0,T] — R, which is
a nonrandom Lebesgue-integrable function, bounded from below. Agent k
will attempt to maximize his expected discounted utility from consumption

T ¢
o / e o POBy (0 (1)) dt
0

over the time horizon [0,T], where c,(-) is his consumption process.
This maximization is very similar to Problem 3.5.2 with utility function

t
e Js B A (c), a function of both ¢ € [0,7] and ¢ € R.

The endowment processes {ex(-)}{,, the utility functions {Ux(-)}5;,
and the discount rate (3(-) are the primitives of our equilibrium model.
Starting with these primitives, we shall construct an equilibrium market. It
is also possible to carry out this construction when each agent k has his own
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discount rate Bi(-), or, even more generally, when Uy is a function of both
time and consumption. However, this more general construction involves
a more complicated version of Ité’s formula than the one we employ in
Section 6. For this reason, we have restricted our attention to the situation

presented above.
In order to construct an equilibrium market, we impose throughout the

following conditions on the primitives.
Condition 2.1:

(i) For each k = 1,..., K, the function Ui(-) is of class C® on (&, o0),
satisfies U}/ (c) < 0 for all ¢ > &, and the quantity

. UIN (c)
iR Uy )

exists and is finite.
(ii) Foreach k =1,..., K, we have

ek(t) >c¢, 0<t<T, (26)

almost surely.
(iii) There exist constants 0 < v; < -y < 00 such that

Ctm<et) <y, 0<t<T, (2.7)
almost surely.

Remark 2.2: We note that

1 1 /C- Uy (n)

= = ,,—d ) C>Ev,
HOACT N A ¢

and so the existence of the limit (2.5) implies that lim,z, ﬁc—) also exists
and is finite.

4.3 The Financial Market: Consumption and
Portfolio Processes

- To give structure to the search for an equilibrium market, we set out in
this section a description of the object of our search. We seek to construct
a complete, standard financial market M as in Definitions 1.5.1, 1.6.1, but
without dividends. More specifically, we seek a money market price process
So(-) with Sp(0) = 1 and

dSo(t) = So(8)[r(¢) dt + dA()], (3.1)
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as well as N stock price processes Si(-),...,Sn(-), with S,(0) a positive
constant for each n, and

D
ASn(t) = Sn(t) |ba(t)dt + dA(R) + ) " 0ni(t) dWD(t) | ,n=1,...,N.

j=1
(3.2)

In order to guarantee completeness, the volatility matrix o(t) =
{on;(t)}1<n,j<n must be nonsingular for Lebesgue-almost-every ¢ € [0, T]
almost surely (Theorem 1.6.6).

After we have constructed an equilibrium market as described above, we
can define the market price of risk

0(t) = o~ (1) b(t) — r(®)1] (3.3)

(see (1.6.16)), and then the processes Zo(-) of (1.5.2), Wo(-) of (1.5.6), and
the standard martingale measure Py of (1.5.3). Finally, we can define the
state price density process

Zo(?) <<

of (1.5.12). To aid in the subsequent analysis, we shall require that our
equilibrium market satisfy the following condition. Unlike Condition 2.1,
which concerns the primitives of the economy and is assumed through-
out this chapter, Condition 3.1 below must be verified after the candidate
equilibrium market has been constructed.

Condition 3.1:
(i) We have

Hy(t) 2

E, [ X L <
0 loSier So(t) o
(ii) There exist constants 0 < §p < Ay < 00 such that we have almost
surely

S0 < Ho(t) <A, 0<t<T.

Once an equilibrium market has been constructed, each agent k can
choose a consumption process cx : [0, T] x Q2 — [0, 00) and a portfolio process
T 1 [0,T] x @ — RY. These are both {F(t)}-progressively measurable;
mi(-) satisfies (1.2.5), (1.2.6); and cx(-) satisfies fOT ck(t) dt < oo almost
surely. The structure of Uy implies that agent k will be interested only in
consumption processes ck () satisfying the additional condition

c(t) >en, 0<t<T, (3.5)

almost surely. The wealth process Xi(-) = X[**°*(-) as in (1.5.8), corre:
sponding to the portfolio 7(-) and the cumulative income process I'x(t) =
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fot(ek(s) — ¢x(s)) ds, is given by

t . _—
g:((;)) = /0 ek(ugo(u)k(u) du +/0 %(u)w;c(u)a(u) dWo(u), 0<t<T.
(3.6)

We take X (0) = 0.

Remark 3.2: The wealth equation (3.6) can be written in the equivalent
form

i it
Ho(t)Xk(t)+/() Ho(S)(ck(S)—fk((%’))ds:/0 Ho(s)[o(s)m(s)
— Xi()0' ()] dW(s)  (3.7)

by analogy with (3.3.3), as is seen if one applies It6’s formula to the product
of the processes X (-)/So(-) and Zo(-) in (3.6) and (1.5.5), respectively.

Definition 3.3: A consumption/portfolio process pair (ck, ) is admis-
sible for the kth agent if the corresponding wealth process X(-) of (3.6)

satisfies
Xi(t) / v
+ E
Sot) " | '

almost surely. The class of admissible pairs (¢, 7x) is denoted by Aj.

€x(u)
i & { }‘(t)J >0, 0<t<T, (3.8)

Remark 3.4: The admissibility condition says that at each time ¢, the
present wealth X (t) (which may be negative) plus the current value Sp(t)-

Eo[ ftT 5 ((Z)) du|F(t)] of future endowment (cf. Proposition 2.2.3) must be

nonnegative. This condition is equivalent to

Ho(t)Xi(t) +E

T ‘
/ Ho(uw)ex (v) du { }‘(t)J >0, 0<t<T, (3.9)
t )
almost surely, as can be seen from “Bayes’s rule” in Chapter 3, Lemma 5.3

of Karatzas and Shreve (1991).
Remark 3.5: Condition 3.1(i) guarantees that for every given (ck, m) €
Ay, the local Py-martingale
t
1
M0 2 [ o smo e, 0<<T, (3.10)
o So(u)
i also a Py-supermartingale. To see this, use Condition 2.1(iii) and (3.6),
(3.8) to write

- Xi(t) [ en(u)
M™ 02 50 ™ Jo Solw) ™

Talw) 4 ‘ }‘(t)}

> —F,
=7 So(uw)
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25 |z (7) | #0)

Under the probability measure Pp, the expression Y (t) =3 —voT .
Eo[maxogugT(%)lf(t)] is a martingale; being a nonnegative local
martingale, M™(-) — Y(:) is also a supermartingale, so M™(-) is a
supermartingale.

From this, (3.6), and (3.8) with ¢t = T, it develops that c(-) must satisfy
the budget constraint

T T
c(t) / ex(t)
dt < E, dt, 3.11
°Jo 5@y 50w (&11)
or equivalently,

T T

E/ H()(t)ck(t) dt < E/ H()(t)ek(t) dt. (312)
0 0

In any market satisfying Condition 3.1(i), and for any consumption pro-
cess ci(+) such that (ck,7x) € Ax for some portfolio process (), the
value of an agent’s consumption cannot exceed the value of his endowment,
where value is determined using the state price density process Hy(-) for
that particular market.

We have the following counterpart to Theorem 3.3.5.

Theorem 3.6: Suppose we have constructed a complete, standard finan-

ctal market satisfying Condition 3.1(i). Let cx(-) be a consumption process

in this market that satisfies (3.11) (or equivalently (3.12)) with equality,

namely

T T

¢k (t) ex(t) ’
dt = Fy — dt. 3.11

) Sal®) o Sold) o

Then there ezists a portfolio process my(-) such that (ck, k) € Ak, and the

corresponding wealth process is given by

Ey

1 T
Xi(t) = mE [/t Ho(s)(ck(s) —ex(s))ds ‘ f(t)] , 0<t<T

(3.13)
PRrOOF. In Proposition 1.6.2, take B = So(T) - fOT M%W du, so that
|B| } ' /T cx(u) + ek (w) /T ex(u)
E [ < E ——— 2 du]| <2F, =2 du
"Ly = e T So(w) °|Jo Solw) |

’ 1
<75 | ()] <=
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From the assumption of market completeness, we have the existence of a
martingale-generating portfolio process m(-) such that

7]
ck(u) — ex(u)
——————du= M™(T), 3.14
| (1) (3.14)
where M™*(-) is given by (3.10). Taking conditional expectations in (3.14),
we obtain

5 /T Mdu ‘ ]__(t)J N /t ex(u) — c(u) du
t 0

So(u) So(u)

¢
1
+ 7 (u)o(u) dWo(u),
| sme awaw)
0<t<LT
LComparison of this equation with (3.6) reveals that’

Xi(t) = So(t) - Eo /TMduI}‘(t):l, 0<t<T (3.15)

So(u)

(the initial condition X, (0) = 0 is a consequence of (3.11')), and (3.13)
follows from “Bayes’s rule” (cf. Karatzas and Shreve (1991), Lemma 3.5.3).
From (3.15) we see that the admissibility condition (3.8) is satisfied. O

4.4 The Individual Optimization Problems

- Suppose that we have constructed a complete, standard financial mar-
ket satisfying Condition 3.1, as described in the previous section. In this
market, each agent, say the kth agent, will be faced with the following
problem.

Problem 4.1: Find an optimal pair (¢, 7y ) for the problem of maximizing
~ expected discounted utility from consumption

7g ¢
E/ e_fo ﬁ(u)Uk(ck(t))dt
0
over consumption/portfolio process pairs in the set
N Tt ama
Al = < (ko k) € A E/ e Jo A “ min[0, Uk (ck(t))] dt > —oco ¢ .
0

(4.1)

. From (3.5) and the budget constraint (3.12), we see that this problem is
Interesting only if the feasibility condition

T T
i E /0 Ho(t)ex(t) dt > ¢ - E /0 Ho(t) dt (4.2)
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is satisfied; otherwise, A} = 0. If equality holds in (4.2), then the only
candidate optimal consumption process is ¢x(-) = é. According to Theo-
rem 3.6, there is then a portfolio process #(-) such that (&, #%) € Ax. This
consumption/portfolio process pair is in A, if and only if Ug(c) > —oo.

t
Regardless of whether this is the case or not, fOT e Js B duUk(Ek) dt is
well-defined (even though it may be —oo) and is the value of Problem 41,
whenever (4.2) holds as equality. This leads us to adopt the following
convention, even though 4] may be empty.

Convention 4.2: If the nonstrict feasibility condition

T T
E‘/O Ho(t)ek(t) dtiz= Ek - E‘/O H()(t) dt (43)

holds, we say that the optimal consumption process for Problem 4.1 is
€k () = €. There exists then a portfolio process #tx(-) such that (i, ;) €

Ag.
We consider now the case of strict feasibility:

T 7
E /0  Ho(t)ex(t)dt > & - E /0 Ho(t) dt. (4.4)

To treat this case, we define as in Section 3.4 the nonincreasing, continuous
function I, : (0, c0] by [¢k, 00) which, when restricted to (0,Uf(cx)), is
the (strictly decreasing) inverse of UL : (er,00) 22 (0,UL(2)). On the
interval [U’(¢x), 00}, I (') is identically equal to é.

Agent k uses the time-dependent utility function e~ Jo B duUk(c) in
t t
Problem 4.1, and the inverse of e_jo ﬂ(u)duUL(-) is g — Ik(yefo ﬂ(u)du).
Following (3.7.1), we define
T t
X(y) S E / Ho(t)I, <yefo e d"Ho(t)) dt, 0<y<oo  (45)
L :

Lemma 4.3: Under Condition 3.1(ii), the function Xk(v)Ais finite, non-
increasing, and continuous on (0,00). We define X (0+) = limy o Xk (y),
[N
X (00) = limy o0 Xi(y), and
A
i = sup{y > 0; X¢(y) > Xi(00)}. (4.6)
Then.

Xi(00) = & - E/OT Ho(t) dt, (4.7)

rk > 0, and X restricted to (0,ry) is strictly decreasing; thus, this function
to
has a continuous and strictly decreasing inverse Vi : (X (00),00) ==

(0,7k), which satifies
Xe(Ve(x)) =2, Vz € (Xi(o0),00). (4.8)
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PROOF.  Condition 3.1(ii) implies X} (y) < oo for all y € (0,00). The other
properties of A% (-) now follow from the arguments used to prove Lemma,
3.6.2. |

Remark 4.4: If ry in (4.6) is finite, then X (-) is identically equal to
k- EfOT Ho(t) dt on [rg,c0). But Ik(rkejo Al duHO(t)) 2 for0<t<T
almost surely, and so we must actually have

g (rkejo Alw) d"Ho(t)) =&, 0<t<T, (4.9)

almost surely. In other words,

reedo PR g ) S UL 5), 0<t<T, (4.10)
almost surely. If ry = oo, (4.9) and (4.10) still hold.

The omitted proof of the following theorem uses Theorem 3.6 and is
otherwise a minor modification of the proofs of Theorem 3.6.3 and Corol-
lary 3.6.5 (see also Remark 3.6.4). The statement of the theorem is close
to that of Theorem 3.7.3.

Theorem 4.5: Suppose that we have constructed a complete, standard
financial market satisfying Condition 3.1. Under the strict feasibility con-
dition (4.4), the unique optimal consumption/portfolio pair (é&,7;) € Ay
for Problem /.1 and the corresponding wealth process Xk() are gwen for
0<t<T by

(t) = Iy <ykejot Bt duHo(t)) ' (4.11)
P 1 d '
Xi(t) = mE [/t Ho(s)(ék(s) — ex(s)) ds ' f(t)J » (412)
7 Or(t) = B + Xiwo) (4.13)
where
T
Yk = Vi (E/ Ho(t)ex(t) dt) € (0,7%) (4.149)
0

and () is the integrand in the representation

M) = [ i) aw ) (4.15)

of the zero-mean P-martingale

T
Mi(t) = E [/0 Ho(s)(ek(s) — €x(s)) ds ’ f(t)J : (4.16)
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4.5 Equilibrium and the Representative Agent

We are now in a position to state the properties of the complete standard
financial market M we shall be seeking.

Definition 5.1: Let the endowment processes and utility functions
{ex, Ux}£_ | and the discount rate B(-) of Section 2 be.glv.en. We sa.y.that a
financial market M as described in Section 3 and satisfying (;(ondltlo.n 3.1
is an equilibrium market (for the economic primitives {ex, Ux} £ |, B), if the
following conditions hold.

(i) Feasibility for the agents:
vy 7
E/ Hg(t)ek(t)dt > Ck E/ Hg(t) dt, k=1,...,K. (5.1)
0 0

(ii) Clearing of the commodity market:

iék(t) =e€(t), 0<t<T, (5.2)
k=1

almost surely.
(iii) Clearing of the stock markets:

D A(t)=0, 0<t<T, (5.3)

almost surely, where 0 is the origin in RY.
(iv) Clearing of the money market:

K
D (Xi(t) - 7 (t)1) =0, 0<t<T, (5.4)
k=1 o

almost surely, where 1 is the vector (1, .. RS g

HNOLOGI

Here é&(-), #x(-), Xx(-) are the unique optimal f)'ref)énesseseint Problem 4.1;
these are given by (4.11)—(4.14) if the strict feasibility condlthn (4.4).h91.ds
for agent k, and by Convention 4.2 in the case of the nonstrict feasibility
condition (4.3).

For the remainder of this section we shall focus on characterizing sgch
an equilibrium market. Aided by this characterization, we shall establ.lsh
in the next section the existence of an equilibrium market and examine
the extent to which this equilibruim market is uniquely determined by the
economic primitives {ex, Uy }X | and 8. N

We note immediately from (3.5) and (5.2) that a necessary condition
for an equilibrium market to exist is that (t) > ¢, 0 < t < T; lbn
other words, aggregate endowment must always dominate aggregate sub-
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sistence consumption. We have imposed a somewhat stronger assumption
in Condition 2.1(iii).

We now provide a simple characterization of an equilibrium market.

Theorem 5.2: If M is an equilibrium: market, then

K
1 t
et) =31, [ —els A0 “Ho(t)), 0<t<T, (5.5)
k=1 A
where A, € [0,00),k=1,... K, satisfy the system of equations

E /0 THg(t) [Ik (%efotﬁ(“)d“Hg(t)) —ek(t)J dt=0, k=1, K

(5.6)
(If Ak = 0, we adopt the convention Ik(ﬁefo Al) dqu(t)) = Ix(00) = ¢.)
Conversely, if M is a standard, complete financial market satisfying Con-
dition 3.1, and there ezists a vector A= (A, .. 0k) € [0,00)% satisfying
(5.5) and (5.6), then M is an equilibrium market. In either case, the
optimal consumption processes for the individual agents are given by

éx(t) = Iy (A—lkefo Alu) duHo(t)) ,

PROOF. First, let us assume that M is an equilibrium market. If the
- strict feasibility condition (4.4) holds for agent k, then this agent’s opti-
- mal consumption process (4.11) is given by (5.7), with A\, € (%,oo) and

Xk(ﬁ) = EfOT Ho(t)er(t) dt (see (4.14)); this last equation is (5.6). If the
nonstrict feasibility condition (4.3) holds for agent k, then (4.6) shows that
(5.6) is equivalent to Xk(ﬁ) = Xy (00), and this equation is solved by any
A: € [0, i], with such a choice of Ak, we see from Convention 4.2 and
Remark 4.4 that (5.7) holds, where now ¢ (t) = &. Summing (5.7) over k
and using the commodity market clearing condition (5.2), we obtain (5.5).

For the second part of the theorem, we assume that M is a standard,
complete financial market satisfying Condition 3.1, and that there exists
a vector A = (M\y,...,\) € [0, 00)X satisfying (5.5) and (5.6). Since

T

k(ﬁefo PR b (4) > &,0 < ¢ < T, (5.6) implies the “feasibility for
ents” condition (5.1). Under this feasibility condition, we have Jjust seen
hat the optimal consumption process for each agent k is given by (5.7),
id now (5.5) implies the clearing of commodity markets (5.2). We sum
4.16) over k and use (5.2) to obtain Zle M;(t) = 0. From (4.15) we see
at fot Z,:il ¥i.(s) dW (s) = 0, which implies Z,:(ZI ¥i(t) = 0. Summing
I8t (4.12) and then (4.13) over k, we conclude first that Z,:il Xty =m;
0d next that o'(t) Zle Tx(t) = 0. Since o’(t) is nonsingular, we have

he Clearing of the stock markets (5.3) and then the clearing of the money
arket (5.4). o

0<t<T, k=1,...,.K (57)
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Remark 5.3: If A € [0,00)% satisfies either (5.5) or (5.6), then A
cannot be the zero vector. For suppose it were; then the right-hand side
of (5.5) would be Z,{;l ¢ = ¢, which is different from €(¢) because of
Condition 2.1(iii), and (5.6) would become

T
E/ Ho(t)(6 — ex(t)dt =0, k=1,... K,
0

so that summing up over k we would again obtain a contradiction to
Condition 2.1(iii). To simplify notation, we define

*[0, OO)K = [07 OO)K\{Q}

to be the K-dimensional nonnegative orthant with the origin 0 = (0,...,0)
removed.

Theorem 5.2 reduces the search for an equilibrium market to the search
for a vector A €* [0,00)%, and for a market with state price density Hy(-),
s0 that (5.5) and (5.6) are satisfied. We can further simplify the search by
inverting (5.5), writing the sought Hy(-) as a function of the given aggregate
endowment process €(-); cf. (5.16) below.

Let A €7 [0,00)% be given. For k = 1,..., K, the function y Ik(3E) is
identically equal to ¢ if A = 0; but if Ay > 0, it is continuous on (0, 00)
as well as strictly decreasing on (0, \cUj, (¢ )], and maps (0, A\ U} (€ )] onto
[€k,00). We set

A
A) = AU (6x)), 5.9
m(4) {kfﬂlfi%}( kU (Cr)) (5.9)
which is strictly positive since A is not the zero vector. The function
A s y
I(y; A) = E Lil=1}), 0 < oo, 5.10
(y;:4) . k</\k) <ys 0 ( )

is continuous on (0,00], is stricth decreasing on (0,m(A)], and maps
(0,m(A)] onto [¢,00) (recall that € = S°K_ &). For A €*[0, 00)*, we define

H(54) < [6,00) > (0,m(4)] (5.11)
to be the (continuous, strictly decreasing) inverse of
I(54) : 0,m(4)] > [¢,00). (5.12)
We note that I(y; A) is also defined for y > m(A), and in fact,
I(y;4) =¢, Vye [m(d),o0]. (5.13)
We have
H(I(y:4);:8) =y, Yy € (0,m(4))], 5.14)
I(H(c;A);A) =¢; Vee€ [6,00). 5.15)
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Because of Condition 2.1(jii), €(t) is in the domain of H(:;A), and we can
invert (5.5) to obtain )

Ho(t) = ¢ o %yt 8), 0<t<T
This leads to the following corollary of Theorem 5.2.

(5.16)

Corollary 5.4: A standard, complete financial market M satisfying Con-
dition 3.1 is an equilibrium market if and only if its state price density
process Ho(-) is given by (5.16), where A — Aty Ak) €%[0,00)K 4s g
solution to the system of equations ’

3 T sy 0 [Ik (%H(e(t);m) - ek(t)} dt =0,

k
k=1,... K.
(5.17)

An this case, the optimal consumption process for the kth agent is

(5.18)

Ak

In Section 6 we shall establish the existence of a solution A to (56.17).
Although S5.17) does not have a unique solution, the optimal consumption
processes ¢ (-), ..., éx(-) given by (5.18) are uniquely determined. The fol-

lowing lemma, examines one type of nonuniqueness that can occur in the
solution of (5.17).

Lemma 5.5: Define

&(t) = I (iu(e(t);m) L 0<t<T

T={ke{l1,...,K}; €x(t)=c, 0<t< T,a.s.},
T ={1, .., KN\T. (5.19)
Because of Condition 2.1(i1t), T¢ is nonempty.
Suppose A €*[0,00)% satisfies (5.17). Then k € T if and only if
H(e(t); 4)
Ak S 2= 0<tE<T
k Vi) <t<T, (5.20)
almost surely. Define A* = (A, .. A)) by
. . H(e(t)‘A)) .
. A | P-ess inf < min -~~~/ f
3 { B UE) ) TR )
Aks if ke Te,
nd note that Ak 2 k. Then m(A) = m(A™),
M) = Mt AT), 0<t<T,  (s.2)
1 1
te (et ) = 1 (rewinn),
OStSTv k= ’ '7K7 (523)

d A" also satisfies (5.17).
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From (5.17) and the fact that Ij(y) > & for all y € (0, 00], we see

= H(e(t); 4)) = &,0 < t < T, almost s)urely.
=0,

PROOF.
that k € 7 if and only if Ix(
This equality is equivalent to (5.20). Using the convention 0.- (o0
we have

ALUk (@) < H(e(t);
almost surely, and since (0,

m(A
MU (Ex) < MUi(@) <
m(A).
We compare I(y; A Zk Te(5L) with I(y; AY) = 37 Ie(55)
> kere Ik(5%). These two express1ons agree if and only if ApUL(Ck) g

y,Vk € ’T *But Af is defined so that (5.20)" holds, and from (5.15) w
obtain

A), 0<t<T, VkeT,
)] is the range of H(:;
m(4) = max{\;U;(g;); A; > 0}

(5.20)
A), this implies

It is apparent that m(A )=

H‘

e(t) = I(H(e(t); A); A) = T(H(e(2); 4); 47).-

Applying H(-; A*) to both sides and using (5.14), we obtain (5.22).
IfkeTe, (5.23) follows from (5.22) because Ay = A. If k € T, we have

1
L0 4) > () A) > Up(ex),
Ak B
and (5.23) holds with both sides identically equal to ¢x. Equations (5.22)
and (5.23) imply that A* is a solution of the system (5.17). ]

The remainder of this section develops properties of the function H(-; A)
of (5.11). We shall see, in particular, that H(-;A) is the derivative of the

function
a
U(C; A) = c1>c1 .... cK>CK Z)\kUk Ck ce R (524)
¢+ Feg=c
(We use here and elsewhere the convention 0 - (+00) = 0.)

The next theorem shows that U(-; A) is itself a utility function. It plays
the role of the utility function for a “representative agent” who assigns
“weights” A1,...,Ar to the various agents and, with proper choice of
A = (A1, ., \k), has optimal consumption equal to the aggregate endow-
ment. The weights Aq,...,Ax correspond to the “relative importance” of
the individual agents in the equilibrium market. The maximizing values
c1,...,cx in (5.24) give the optimal consumptions of the individual agents
when the aggregate endowment is c.

The reader may wish to skip on first reading the (long and technical)
proof of Theorem 5.6.

Theorem 5.6: Let A €* [0,00)K be given. Then the functzonAU (54) o f
(5.24) is a utility function as set forth in Definition 3.4.1, and ¢ = Zk_
satisfies

¢=inf{c e R; U(gA) > —oo}. (5.25)
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Moreover, U(-; A) is continuously differentiable on (c, 00) with

U'(c;A) = H(c;A), e¢> e (5.26)
Fork=1,... K, define

so that

and set

a
D = {ax}ic \{¢}
80 that D C (¢,00). The derivatives U"(-;A) and U"'(-;A) exist and are

continuous on (¢,00)\D, and their one-sided limits exist and are finite at
all points in D. Moreover,

U'(a+;A) —U"(a—;A) >0, VYaeD. (5.27)

ProOF. Using the convention that the maximum over the empty set is
—00, we see that

U(c;A) = —00 Ve € (—00,6). (5.28)

If ¢ > ¢, then the numbers ¢, = cr + Il((c — ¢) satisfy ¢, > ¢ and ¢; +
‘ + ¢k = c. From the definition (5.24) of U(c; A), we have U(c;A) >

2515 83 AkUk(ck) > —oo. Relation (5.25) follows from this inequality and

Now let ¢ > ¢ be given. For each k, set
(5.29)

K
en Zk:_l ée = I(H(c; A); A) = ¢, from (5.15). Furthermore, &, > &
r each k. If é, > ¢, for some k, then Ay > 0 and Ui(é) = %H(c; A)
N k ~ ]
hereas if ¢, = ¢, we know only that U (é;) < —'H(c A). Suppose ¢; >

,) ,EK > ¢k and ¢; + - - 4+ ¢cx = c. We have from the concavity of each
that

K
Z MeUg(ex) <

M [Uk(éx) + (cx — éx)Uk (k)]

Y (ee—)

{kiéx>ek}

+ Y MU (er ~ &)

{k;éx=0x}

[M]= HMx

1

MUk (E) + H(c A) -

-
ﬂ'
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K K
Z kU]p C}c +H C, ch—ck):
k=1 k=1
In other words, é,,...,¢éx attain the maximum in (5.24), and we obtain

the representation

A) = g)\kUk (Ik ()‘ikH(c; A))) | (g, o0),

ifferentiabili ies of I (), I( A), a
We develop the differentiability properties of Iy  I(5 4
If U (¢) = oo, then Ii(-) is of class C? on (0, 0o), v_vxth I,.(y) < 0 for all
€ (0,00). However, if U (éx) < oo, then Ix(y) = ¢ for y >
I.() = I!() = 0 on (U.(¢), ). The relation I(U.(c)) = c
k
implies

(5.30)

1 T ___w
vrtey O =gy

and Remark 2.2 and Condition 2.1(i) guarantee that when U, (¢x) < oo, we
have

for ¢ > ¢,

L(Uk(0) =

—o0 < L (Uj(e)—) <0 = L (Ui (x)+).
I (Ui(Ee)—-) < oo, I/ (Uip(cr)+) =0.

In particular, each I, (') is piecewise C? on (0, 00). The function I(y; A) =
b I1(5&) is continuous on (0,00), and the derivative formulas
k=1

N1 m Wy
o 1, ) P = Y. 3k (r)
A (y, A) Z Ak k ()\k {k; >0} /\k ‘

{k; x>0}

(5.31)

e (5.32)

show that I(-; A) is piecewise C? on (0, 00). The pOiIlltS_Of possible disczlnti(;
nuity of I'(-; A) and I"(-;A) are M U;(¢1), ... ,)\K‘UK(‘CK). At any of thes
points that is also contained in (0, m(4)), (5.31) implies

— 00 < I'(MUL(E) =5 A) < I' UL @)+ 4) < 0.

In particular, I'(-; A) is bounded below and bounded away from zero on
each closed, bounded subinterval of (0, m(A)).
Because H(I(y; A);A) =y for 0 < y < m(4A),

1
)’ I\{UL(Ex) s

This shows that H is piecewise C'. From (5.33), we also have the inequality

(5.33)

H (I(y; A);A) = y € (0,m(A (5.34)

H'(a+;4) > H'(a—;4), Ya€D. (5.35)
Differentiation of. (5.34) leads to
1
/UG08 = - Jril, € Om\ADEE K
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From (5.32) and (5.33), we see that H"(az; A)
H"(;4) is piecewise C2 on (0, m(A)).
Let ax € D be given. Since H(-

exists for all o € D; ie.,

A) is strictly decreasing on (g, 00) and

'H(ak, ) )\kU (C}c) we have
1 :
TR A) > Ui(e), Vee (¢ ap), (5.36)
k
1
0 < -H(GA) < U(&), Vee (ag,o0). (5.37)
k

For ¢ € (ax,00)\D, we compute

& o (1 () - w/( (i)

) onto

H(Gry00) == (0, Up(er)).
) For ¢ € (¢, ax)\D, we have
- H(c;4)) = 0, so once again

%[)\kUk (Ik (A—IICH(C;A)))J = H(c; A) - ;[Ik (/\lkH( A))J, (5.38)

but now with both sides equal to zero.

We have established (5. 38) forall c € (
If o) = ¢, then

where we have used (5. 37) and the fact that Uy
1s the inverse of I, : ( 1)) 28 (Ck, 00

0,U]
from (5.36) that In(5 ~H(c;A)) = ¢, and I+

oo)\{ax}, provided that ay #C.

)\kU/ (€r)= H(ag; A) = m(A) > 0. (5.39)
Therefore, A\, > 0 and (5.39) implies (5.37), which leads to (5.38) as before.

We may now sum (5. 38) over ke {1,..., K} and use the representation
(5.30) to obtain ‘

U6 8) = MG A) - I )i ) = H(ei ), vee (@

de ( s 43/ 4D OO)\D

This implies
UlcA) =

Ue+1,4) + H(n; A) dn,

Ve € (¢, 00),
et1

and since H(;
Because #(;

the function U (;

A) is continuous, differentiation yields 5.26.
A) is continuous, positive, and strictly decreasing on (¢, 0o),
b

A) is strictly concave and i Increasing on this set. Moreover,
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H(-;A) is continuous from the right at ¢, and the representation (5.30),
combined with the right continuity (upper semicontinuity) of each U(-) at
¢k, establishes the right continuity (upper semicontinuity) of U(-; A) at &.
Finally,

lim U'(c; A) = lim H(¢A) =0.

C— OO CcC— o0 ;
This concludes the proof that U(-;A) has all the properties required of
utility functions by Definition 3.4.1.

The piecewise continuity of U”(;;A) and U''(;A) on (¢, 00) follows

from the properties proved for H'(-; A) and H"(-; A). Inequality (5.35) is
(5.27). O

4.6 Existence and Uniqueness of Equilibrium

In light of Corollary 5.4, the key remaining step in the construction of an
equilibrium market is the solution of the system of equations (5.17) for A €
*[0,00)K. In contrast to the original problem of determining equilibrium
price processes, the problem at hand is finite-dimensional.

Lemma 5.5 shows that we should not expect the system of equations (5.17)
to have a unique solution A €*[0,00)¥, since H(e(t); A) and H(e(t); A*) can
agree even though A # A*. However, the equality (5.23) guarantees that
both A and A* result in the same optimal consumption processes for the
individual agents, given by (5.18).

There is, however, an additional kind of nonuniqueness in (5.17). The
representation (5.26) of the function H, along with the definition (5.24) of
the “representative agent” utility function, allows us to deduce the positive
homogeneity properties for ¢ > &n > 0, and A €*[0,00)X:

Ule;nd) =nU(c 4), (6.1)
H(c;nd) = nH(c; 4). (6.2)
It follows from (6.2) that if a vector A €*[0,00)K satisfies the equa-
tions (5.17), then so does every other vector nA with n € (0,00), on the

same ray through the origin; for all such vectors, the optimal consumption
processes are the same:

. 1
ér(t) = Ik </\—H(€(t); A))
k
il
N Ak
The first result of this section guarantees the existence of a solution

to (5.17) and provides a condition under which the equilibrium optimal
consumption processes of the individual agents are uniquely determined.
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Thgorem 6.1: There exists a vector A = (\y,..., \) € *[0,00)% sat-
isfying the system of equations (5.17). Suppose, moreover, that for each
agent k, the Arrow—Pratt “index of risk-aversion” is less than or equal to
one, namely

<1 forall cé€ (G,), k=1,...,K, (6.4)

(see Remarlc 3.4.4), and let M = (my,...,pk) € *[0,00)K be any other
solution of (5.17); then for some positive constant 7, we have almost surely

mH(e(t); 8) = H(e(t); M), 0<t<T, (6.5)
and

(0 = I (SH(e(0) v)

1
k<#k (e(t) ~)> 0<t<T, k=1,.. K (6.6)

PRQOF. We first establish ezistence. Let {e,,...,ex} be the standard
basis of unit vectors in RX and let K = {1,...,K}. For any nonempty set
B C K, denote by ‘

’ ,
Sp = {Z Acgr; M 20 VkeBand ) M =1) C*[0,00)K
=~ keB

the convex hull of {¢; }xes. For every k € K, define Ry : Sx — R by

Ri(8) 2 E /0 T e B gy ) [Ik (%H(e(t);m) - ek(t)] dt,

1 . G (6.7)
where as usual, Ik(,\—kH(e(t);/}g) = ¢ if Ay = 0. The function Ry is con-
tmuous, and hence the set F, = {A € Sk; Ri(A) > 0} is closed. Note from
(5.15) that

T t
>R =E [ 5 (e I (e(0: 0)50) — (0] dt = 0
keK 0

holds for every A € *[0,00). We claim that (0

SsC|)F, VYBCK, B#0 (6.9)
kEB

Indee.d, suppose A € Sp but A ¢ UrcpFi; then Ri(A) < 0 for all k € B.
Confiltion (2.1(ii)) implies Rx(A) < 0 for all k € K\B, so that (6.8) is con-
tradicted. From (6.9) and the lemma of Knaster—Kuratowski-Mazurkiewicz
.(1929‘) (e.g., Border (1985), p. 26), we conclude that Nkek Fi # 0. Let A be
In this set. The definition of F}, combined with (6.8), implies Ry (A) =D
for all k € K; hence A satisfies the system (5.17). )
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We next assume the risk-aversion condition (6.4) and characterize the
set of all solutions of (5.17) in terms of a particular solution A. Let 7 and
A* be as in Lemma 5.5. Suppose that M = (i, .. ., ftk) is another solution
of (5.17), and let M™ = (u3, ..., uk) be defined by the analogue of (5.21):

A | P-ess inf [ min Tw
0<e<T  Uj(ex)
Lk, if keT®

) ) if keT,

e o (6.10)

and note that p; > p.
If A, = 0 for some k, then Lemma 5.5 implies k£ € 7, and thus

P-ess inf( min M =0
o<t<T Uj(Ck)

But H(e(t); A) is bounded from below by H(~y2; A) > 0 (Condition 2.1(iii)),
so we must have U] (¢x) = oo and thus pf = 0 from (4.6). Now define

némax{%;keK,Az#O}. (6.11)
k .
Because A; = 0 implies x; = 0, we have

tr <nip, VkekK. 6.12

Furthermore, there is an index k € K such that p; = nA; > 0. From (6.12)
we have

K K ;
I(y;nA”) = ka( i) >N I (i) =I(y; M"), y>0,
k=1 % k=1 i
and thus, almost surely,
nH(e(t); A") = H(e(t); M*), 0<t<T,
or equivalently,
1 1
H(e(); A") > —H(e(t); M™), 0<t<T. (6.13)
4 M

Consider the function ¢ (y) = yli(y),0 < y < Uj(ck). With ¢ = Li(y),
we have the derivative formula
Uy (c)
’ ’ k
er(y) = Ie(y) + yLi(y) = c + =,
‘ ‘ T/
and (6.4) implies that ¢ is nonincreasing. Because both A* and M* satisfy
(5.17), we have, in the notation of (6.7),

0 < y < Up(cx),

i 1 .
0= )‘_ERE(A )
i [ e ks o (Laewian) - eoiaaw | @
0 AE AE-
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- * -
k Ky

T [ B 1 \ 1 |
SE|[ e Jo “ [‘PE (FH(ﬁ(t);M*)) = —H(E(t);M*)EE(t)} dt

(Tﬁh; shows that equality must hold in (6.13) almost surely, which yields

For any k € K, (6.5) and (6.12) imply

I, (%H(e(t);/})) =< (nizH(e(t); M))

1
> I (FH(E(t); M)) , 0<t<T. (6.14)
k

But (5.17) for both A* and M* and (6.5) gives
T [ B 1
E/o e Jo MY (e(t); AN, ( 'H(e(t);/}*)) dt

A

T s

:E/O e Jo P “H(e(t); A*)ew(t) dt
1T By du

=8 [ e Bty ayen o) a

i
T t
=E /0 e bo PO Ay e(t); A*) L, ( L H(e(t);M*)) dt.

7

1 (T s du
=1 [ e o M5 7 He(t) ") )

t
B - [fs)a o
Since ¢~ Jo Av “H(e(t); A*) is always Positive, equality must hold in (6.14)
almost surely; this and Lemma 5.5 imply (6.6). ]

Remark 6.2: Although we do not use this observation, it is interesting to
notfe that A™ and M™ in the proof of Theorem 6.1 are related via M* = pA*

In light of (6.12), we need only rule out the possibilty nA; > pr. From (6T5j
ancd the definitions (5.21), (6.10) of Aks 1% for k € T, such a k must be in
7° Lemma 5.5 applied to M shows that k € T¢ if and only if the inequality

o H(e(t); M7)
<q B WA~ Y
uk_ UL(EI‘:) ] OStSTa
does not hold almost surely, i.e., P [U,’C(Ek) > ming<i<r = H(e(t); M*)| >
* * 3 s 4 o
0. If nA; > ui, then the above inequality and (6.5), (5.22)’c imply
P [U,/C(Ek) >

. 1 .
oD, 3 M)A )] > 0;
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but for ¢ and w chosen such that UL (¢) > ;—;H(e(t,w);g\*), we have the

strict inequality

I (iH(e(t,w);A*)) > I (%H(e(t,w);a*)) =1y (%H(e(t,w);l\!*)) ,,

An k
and (6.6) fails.

To complete the construction of an equilibrium market, we appeal to
Theorem 6.1 and choose a vector A € *[0,00)¥ satisfying the system of
equations (5.17). The positive homogeneity properties of (6.1), (6.2) permit
us to assume without loss of generality that

H(e(0);A) = 1. (6.15)
Let us consider the process
n(t) S H(e(t)iA) = U'(e(t); A), 0<t<T. (6.16)

An application of Itd’s rule for differences of convex functions of mar-
tingales (e.g., Karatzas and Shreve (1991), Theorems 3.6.22, 3.7.1 and

Problem 3.6.24) yields

o) = 1+ | 07l Melehvta) + 30" (o) Do) e (s)] ds

i
+ /0 U ((s); A)e(s) d€(s)

K

+ ) [U"(ak+; 4) = U"(car—; A)) Le(ak)
k=1
+f U (e(s); A)e(o)pl(s) dW(s), 0<E<T, (6.17)

in conjunction with Theorem 5.6 and equation (2.2). Here L;(ax) is the
local time at oy of the semimartingale €(-), accumulated during [0,¢]. On
the other hand, if Hy(:) is the state price density in a standard, complete
financial market M, then the process.

¢(t) = Ho(t)efot Alu) du
= xp { — = , <t<1T 18
Zo(t)e p{ A0+ [ 6 r(u))du} 0<t<T (6.18)
satisfies the integral equation
=1~ /0 C(s) dA(s) + /0 (()(B(s) — (s)) ds

- / t C(s)0'(s)dW(s), 0<t<T. (6.19)
0
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Corollary 5..4 asserts that M is an equilibrium market if and only if n(:) =
¢ 1(ﬂ), er equivalently, in light of the decompositions (6.17) and (6.19), if and.
only i

0= 80) - gy [0 Deowe)

+ 3V I, (6.20)
0 = ~Fred Detwns), (6.21)
aw=- | t T () ()

_é U”(ak+;l;}'z;c;[£\,;(ak_; Do) (6.22)

for0 <t <T.

Theorem 6.3 (Existence of an equilibrium market): Choose A* €
*[0,00)% to satisfy (5.17) and (6.15). Define r(),0(.), and A(~) by
(6.20)-(6.22). Let o(t) = {oni(t)}1<nj<n be an arbitrary, nonsingu-
lar, matriz-valued process satisfying the integrability condition (vii) of
Definition 1.1.8, and define

b(t) 2 1)1y + o(t)8(2). (6.23)

Let't.he initial stock prices be any vector S(0) = (81(0),...,88(0) of
positive constants. Then the market M = (r(-),(-),0(), S(0), A(-)) is an
equilibrium market. "

PROOF. Because of Corollary 5.4, we need only verify that M is a stan-
dard, complete financial market satisfying Condition 3.1. (Recall that we
are omitting dividends from the markets in this chapter.) Condition 2.1(jii)
Fhe integrability of 3(-), and the boundedness of v(-) and p(-) ensure thé
Integrability of r(-) and the boundedness of 6(-). Together with the in-
tegrability condition on o(:), this guarantees that fOT |b(t)]|dt < oo a.s.
Therefore, M is a standard, complete financial market (Definitions 1.1.3
1.5.1 and Theorem 1.4.2, 1.6.6). ,

Because U('; A) is piecewise C3 on (g, 00) (Theorem 5.6) and U’(+; A) =
H(:;A) is strictly positive and continuous on (¢,00), the bounds in

Cond.it.ion 2.1(iii) imply that Ho(t) = e~ o B “N(e(t); A) satisfies
Condition 3.1(ii). To verify Condition 3.1(i), we consider

1 o —ft r(u) du—A(t)
S()(t)_e 0] s OStST

Now, 3(:) was assumed in Section 2 to be bounded from below, and all the

other terms appearing in (6.20) are bounded, so maxg<;<r e‘fot'(“) s
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bounded from above. It remains to establish

—A(t)
E[o?tag:r(e )] <%0

(6.24)

From (6.17) we see that for some real constant Cp, we have

K
S U (ax+; A) — U” (a5 A) L)
k=1 .
sa—/'W&mwk@ﬂ9MW®
0

almost surely. For o, ¢ (¢, 00) we have Li(ax) = 0, and inequality (5.27)
for ay € (¢, 00) shows that

// A U// — A L ak)
0<t<T Z[U @t (o L
K
[U” (ak+;A) — U" (e —; A) Lr (o).
k=1
These inequalities and equation (6.22) imply
K
max (~A(t)) < Cz +Cs )_[U"(ex+;4) — U"(ox—; A)] Lr(ox)
0<t<T =
o /
<Cu—Cs [ Ul Nelo) ()W (o),
0
for appropriate constants Cs, Cs3, Cy, Cs. Condition 6.24 follows. a

Theorem 6.4 (Uniqueness of the equilibrium market): Assume that
(6.4) holds. Then the equilibrium money marl?et process So(+), the state
price density process Hy(-), and the market price qf risk processﬂﬁ(-), are
uniquely determined, as are the optimal consumption processes ¢,(-), .. -
¢x () of the individual agents.

ProoF. The uniqueness of Hy(+) follows from Corollary 5.4, Thef)rem 6.1,
and the initial condition Ho(0) = 1. The uniqueness of é;(-),...,¢éx () also
follows from Theorem 6.1. The semimartingale log Ho(t) can be decom-
posed uniquely as the sum of a finite-variation process F(-) plus a local

martingale M(-). But
n—%/ﬁmwww—éemmww»

and the equation M(t) = — fo ),0 < t < T determines the
process 8(-). Knowmg 0( ) and usmg the equatlon

log Ho(t) = — /0 r(u)du— A
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03 [ 16w)1?au

A(t), and hence So(-). O

F(t)=‘—~/0 r(u)du =~ A

u)du — A

we determine — fo

We should not expect the stock mean rate of return vector b(-) and the
volatility matrix o(-) to be determined by equilibrium conditions, because
of the possibility of replacing stocks by mutual funds. Given a market M =
(r(-),8(-),0(-),5(0), A()), we can form a mutual fund by specifying an
initial value S(0) > 0 and the proportion p;(t) of the fund that is to be
invested in each stock j at time ¢. The proportion 1 — ZJ 1 P;(t) (which
may be negative, or may exceed 1) is invested in the money market. The
value of the mutual fund will then evolve according to the equation

dS(t) = S@t)[(1 - P'(t)1n)(r(t) dt + dA(t))
+ P/ () (b(t) dt +15dA(t)) + P (t)o (t) dW ()]
= S(t)[r(t) dt + dA(t) + p'(£)(b(t) — r(t)1y) dt + p'(t)o(t) dW (2)).

This is just (1.3.3) with I'(-) = (-) = 0, X(") = §(-), and =(-) = §(-)p().
Now let us choose a set of N mutual funds pi(-) = (py,(-),...,

nn()Y,...,p Vg (pn1(:),-..,pvn () such that the matrix P(t) =

(@i; (t))1<1,J<N mgular for all t € [0,7] almost surely. Then the

values S(t =QIEeN 5 " for these funds evolve according to the
stochastlc dlfferentlal equatlon
d5(t) = diag(S(t)) - [(r(¢) dt + dA(t))Ly
+ P(t)(b(t) — r(t)1) dt + P(t)o(t) dW (t)],
where diag(S(t)) denotes the N x N diagonal matrix with S (), .

in the diagonal positions. We may regard § 1(5), -
of stocks with mean rate of return vector

fr

- Sn(t)

L 8v()asa complete set

b(t) = r(t)Ly + P(2)[b(¢)

and volatility matrix

—r(t)1n] (6.25)

5(t) £ P(t)o(t). (6.26)

The associated market price of risk is

0(t) = 67 (B)[b(t) ~r(O)1n] = o~ (B)b(t) — r(t)1y] = 6(2),
the same as the market price of risk associated with the original set of
Stocks S(-),...,Sn(").

IfM=(r( ),b(-),a(-),S(-), A(")) is an equilibrium market for the prim-
itives introduced in Section 2, then so is M — (r (-),b(-),&(-),S(-),A(-)).
Indeed, since 6(-) = 6(-), the markets have a common state price density
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process Hy(-), and this is all that matters (Theorem 5.2). Thus, equilibrium
considerations cannot determine the processes b(-) and o(-).

It follows from Theorem 6.4, however, that under the risk-aversion condi-
tion (6.4), the equilibrium market is unique up to the formation of mutual
funds. 1€ M = (1(-),b(), (), S(0), A()) and A = (r(-),5(),5(), 5(0),
A(+)) are two equilibrium markets, the uniqueness of the market price of
risk implies

o (B)b(E) — r()1n] = 57 OB - r()1n].
Setting P(t) = &(t)o~1(t), we have (6.25), (6.26).

Remark 6.5: Under condition (6.4), the representative agent utility func-
tion (5.24) that results in equilibrium is determined (up to an irrelevant
multiplicative constant) purely endogenously, by the individual agents’ util-
ity functions Uy, ..., U, the discount rate 3(-), and the distribution of the
vector of endowment processes £(-) = (ex ("), - - -, €x(*)).

The paths of the equilibrium market processes r(-), A(-), and 4(-), as well
as the individual agents’ optimal consumption processes é(-), depend on
the representative agent’s utility function, the discount rate function 3(-),
the paths of the aggregate endowment process €(-), and the paths of the
processes v(-), p(-), and £(-) used in the model (2.2) of €(-). More gener-
ally, 7(-), A(*),8(-) and é(-) are adapted to the filtration {F(t)}o<:¢<T, the
augmentation by null sets of the filtration generated by the N-dimensional
Brownian motion W(-).

A more satisfactory result would be for r(-), A(-),8(-), and é(-) to be
adapted to the filtration {F%(t)}o<t<T generated by the vector £(-) =
(e1(-),-..,€x(-)) of endowment processes. This is indeed the case, under
the following conditions.

Assume that instead of (2.2), the individual agents’ endowment processes
are given by the system of functional stochastic differential equations

. .
de(t) = e(t) |ve(t, EC)) dt+ Y pis(t,EC)) AW @) |, k=1,....K,

=t

where vy : [0,T] x C([0,T])* — R and pxq : [0,T] x C([0,T])¥ — R are
progressively measurable functionals as in Definition 3.5.15 of Karatzas and
Shreve (1991). If these functionals v(t,y) = {vk(t,y) }x=1,.,x and p(t,y) =
{pci(t,y)} 15ksic ale bounded and satisfy the Lipschitz condition

lot, ) ~ v(t, ) + ot y) — p(t, 2)]| < L1+ S fly(u) - z(u)lh)

for every t € [0,T] and y, z in C([0,T])¥, then the system (6.27) has a
pathwise unique, strong solution £(t),0 < t < T. The proof is a straight-
forward modification of the standard iterative construction (e.g., Karatzas
and Shreve (1991), Theorem 5.2.9).
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The solution to (6.27) satisfies

t 1 N
ex(t) = ex(0) exp { of {uk(t,e(-)) - Zpid(t,e(-))J d
d=1

N
+ 2Pk (8, E()) dW(j)(t)}

=1

and hence is nonnegative, and positive if €x(0) is positive. Provided that at
least one € (0) is positive, we may write the differential of €(t) = Zf_l ex(t)
E -

N
de(t) = e(t)v(t) dt +€(t) Y p;(t) dWD(g),
J=1
where

vi(t, £()),
k

>

k

ex(t)
e(t)
ex(t)

p;(t)

pkj(tyg('))> g

K
vt) =3
:1
=1

e(t)

We are now in the setting of (2.2) with £(-) = 0, ezcept that now all processes
are adapted to the filtration {F¢(t)}o<,<7.

Remark 6.6: The equilibrium market in this chapter is constructed so
that the money market and all stocks are in zero net supply (cf. (5.3)
(5.4)). Within the framework of this chapter, other assets can be deﬁne(i
and priced, and these can be in positive net supply. For example, the right
to receive agent k’s endowment process is in positive net supply. The value
of this right at time £ is

il T
e [ /t Ho(w)ex(u) du [ f(t)] ,

where Hy(:) is determined by equilibrium. Any other value would result in
an arbitrage opportunity.

Remark 6.7 (The Consumption-based Capital Asset Pricing Model):

lsluppose there exists a unique equilibrium market. From (6.16)—(6.22) we
ave

dU'(e(t); A) U (e(t); A
Uity A) B(t)dt —r(t)dt — dA(t) — %Me(t)p'(t) dw (t)
= B(t)dt — dSo(t) _ 6'(t) dW (¢). (6.27)

So(t)
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We see that if there is no discounting (8(-) = 0), then the rate of growth of
the instantaneously risk-free asset is the negative of the growth rate of the
representative agent’s marginal utility from consumption. Note also that
with

s _zU"(z;4)

J(z; A) =

2= T A) (6.28)

we have

N
bu(t) —r(t) = Y _ on;(1)8;(2)
=1

N
= J(e(t); A) D on;(t)p;(t)
i=1

A8 )
= JE NG ety at

In other words, the risk premium associated with each risky asset is pro-
portional to the relative covariance between the price of that asset and
the aggregate consumption; the proportionality constant is independent of
the particular asset and equals the “index of relative risk-aversion” for the
representative agent.

The above two observations are referred to as the consumption-based
capital asset-pricing model (CCAPM) for an economy.

(6.29)

Remark 6.8: Formula (6.22) suggests that even if the singularly con-
tinuous component £(-) of the aggregate endowment process is identically
zero, the singularly continuous component A(-) of the money market price
can be nonzero. In this case, movements in the equilibrium money mar-
ket price cannot be captured by the interest rate process r(-) alone. If p(-)
is nonzero, then the local-time process t — L;(ay) strictly increases each
time €(t) = ai. If in addition, £(-) = 0, then

K oy A—— — Uy —:
Ay =-3 2 "*j{ﬁzaki)( £ 8) 1 (o) (6.30)

k=1

strictly decreases (recall (5.27)) each time €(t) = ay, for some k, and is con-
stant on each open interval in the complement of the set {t € [0, T7; e(t) =
ay for some k}. The set {t € [0,T];€(t) = ok} is empty if U;(¢) = oo;
but if U, (k) < oo, then {t € [0, T];e(t) = o} is precisely the set of time
points at which the optimal consumption process for the kth agent “falls
to” or “rises from” the subsistence level &. (Of course, “falling to” or “ris-
ing from” subsistence consumption ¢ is not a simple concept here, since

every point of the set {¢ € [0,T];€(t) = ax} is a cluster point of this set.)

Example 7.7 in the next section demonstrates that the preceding
phenomenon does occur.
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4.7 Examples

This section comprises several examples in which the various processes of
the equilibrium market can be computed more or less explicitly. In Exam-
ple 7.6 there are two agents with completely different utility functions. In
Example 7.7 there are two agents with related utility functions, except that
the optimal equilibrium consumption of one agent sometimes falls to Zero,
whereas this quantity for the other agent is always positive. When optimal
equilibrium consumption of an agent falls to zero, or rises from zero, the
money market price decreases in a singularly continuous manner, i.e., the
money market price is continuous but cannot be represented by an interest
rate. Example 7.8 considers an ergodic aggregate endowment process.

Example 7.1 (Logarithmic utility with subsistence consumption): Let
Uk (c) = log(c—&x), for ¢ > ¢,k = 1,..., K, where each & is a nonnegative
constant. Then

U'(c;A) = H(c;A) = _Z/\k, c>é.

We normalize A by setting Zi{:l Ax = €(0) — ¢, a strictly positive quantity
because of Condition 2.1(iii); then H(e(0); A) = 1. Equation (5.17) becomes

((0) ~ QB fy o Jo v (—‘k(t)‘ék) dt

e(t)—¢

/\k - t (71)
fOT & fo B(u)du du
With A\ defined by (7.1), we have
0) 2
Ho(t) = H(e(t); 4) = D¢ (7.2

e(t)—¢’
and the optimal consumption process for agent k is
. e(0)—¢ Ar(e(t) — )
C t — I = C =
k(1) k(z\k(e(t)—é)) «0)—¢ +&, k=1,...,K.

For each agent, é(t) > ¢ for all ¢, almost surely. The equilibrium market
coefficients of (6.20)—(6.22) become

e(t)r(t)  E(t)llp)l?
" te(t) - (e(tt) —-c)2”
o(t) = %”_(;, A(t) = /0 E(Eﬂ de(s).

s)—¢

ll?lxample 7.2 (Power utility with subsistence consumption): Let Uy(c) =
5(c—cp)? for ¢ > &,k = 1,..., K, where p < 1,p # 0, and each Tk is a
nonnegative constant. Then
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1-p
K 153
A
U’(c;A)=H(c:A)=[——ch=l_ak ] , e>e

o
We normalize A by setting Zle A" = €(0) — ¢, so that H(e(0); A) = 1.
Equation (5.17) becomes

(e(®)—&)T—»

2 (€O =B [ ko abon g
A = .

: (7.3)
E fOT e o B W (e(t) — e)P dt

With A defined by (7.3), we have

€(0) — a)“” ;,.

Holt) = H(e(t:) = (=2

and the optimal consumption process for agent k is

&(t) = Ik (% (Z(((t))):gé)l_p) — A7 (:((8:66) e, k=1,...,K.

For each agent, éx(t) > ¢ for all ¢, almost surely. The equilibriurn. market
coefficients of (6.20)—(6.22) become

A -pe®r(t) (1 -p)2-ped)lot)l?

r(t) = B(t) +

e(t) —¢ 2(e(t) — ) '
o) = B, aw-a-n) [ S ae,

The logarithmic formulas of Example 7.1 are recovered by setting p = 0 in
this example.

Remark 7.3: In Example 7.2 and with A given by (7.3), the ray of vectors
{nA}o<n<oo is the locus of solutions to the system of equations (7.3), even
for negative powers p. This shows that condition (6.4) is not necessary for
uniqueness in Theorem 7.1, since in this example

cUg(c) _ (1—p)

Uple)  c—&
Remark 7.4: Condition 2.1(ii) is not necessary for the construction
the equilibria in Examples (7.1) and (7.2). All that is required is that
the expressions appearing on the right-hand sides of (7.1), (7.3) be non-
negative for all k. They will be positive for at least one k because of
Condition 2.1(iii).

©>1 for c>c¢, p<O.

Example 7.5 (Constant aggregate endowment): If the aggregate en-
dowment € > ¢ is constant, then the unique vector A satisfying the
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normalization H(e; A) = 1 is

A_(L ;)
S \Ui@) Ul )

where the constants é; > ¢x are the optimal consumption rates

~

E fOT e~ o B e (t) dt
= ‘

t
fOT & fo B(w) du 4,

k=1,... K.

Constant aggregate endowment implies v(-) = 0,£(-) = 0,p(-) = 0 in (2.2),
and the local time of €(-) at every point is zero. Therefore, the equilibrium
market coeflicients (6.20)-(6.22) are

r(t) = B(t), 6(t)=0, Alt)=0, 0<t<T.

It should be noted that the individual agents’ endowments can be random
and time-varying, which means that agents may still have to trade with
one another in order to finance their constant rates of consumption.

Example 7.6 (K = 2,U,(c) =logc,Uz(c) = v/c.): In this case, we have

A 2]
Ue8) =Heh) =38 [14y/1+e(2) ], e,
2c i A1 J
and the optimal consumption rates become

2

22
&) = =0 . ) = X<t
1+ /1 +€(t)(32)? 1+ 4/1+€(t)(22)?

The positive constants A\; and A, are uniquely determined by (5.17) with
B—1:

T t
2/ e fo Alu)du 4y

0

T [ S
- ~ [ Bw) du Taen (22) | a®)
E/O € 14 1/1+€(t) (/\1) 0 dt, (7.4)

and the normalization condition (6.15) gives
2¢(0)

Tis 1+

Indeed, (7.4) determines %f, and then A, is found from (7.5).

A (7.5)
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With the vector A = (A1, A2) € (0,00)? thus determined, the formulae.
r(8) = B(t) + J(e(®) )v(®) + a0 K (e(t); 1),
o0 = Ity Dott), A() = | " T(e(s); ) d(s)

of (6.20)—(6.22), with
(e 4) = —cU"(e; 0)/U"(e; ), K (s A) = ~cU" (¢, A)/U"(c; ),
provide the coefficients of the equilibrium market model.

Example 7.7 (Money market not represented by an interest rate): This
example shows that the equilibrium money-market price can have a non-

trivial singularly continuous component A(-), even though the singularly -

continuous component £(-) of the aggregate endowment process is identi-
cally zero. There is a discussion of this phenomenon in Remark 6.8. Here
we set up a particular model exhibiting the behavior of interest.

We consider two agents (K = 2) with utility functions

loge, ¢>0,
Ul(c):{_go’ c<0

log(c+1), ¢>0,
U2(C)={_§g ) c<0

so that ¢, = ¢; = ¢ = 0. Then

=g hw={{MHh 0y
I +* Atd ] 0 <y < A,
y; A
Ayl y>)\2,
U 0<c<§;,
(A)="H(;A) = ,\1+,\2
el cz;;

In the notation of Theorem 5.6, a; = 0,2y = X;’ and D = {%} In the

natation of (5.29), (5.30),

éiz{c’ 0<ec< 3, (7.6)
¢ O<ec< e,
2 { oy (7.7)
( Mloge, O<c<
U(gA) = (A1 + A2)log(1 4+ ¢) + Ay log (,\2+,\ )
+ A2 log (Z\#K)’ Cc > %,
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and we observe that (cf. (5.27))

A1 A1 A A2
U 2pa) v (2oa) = — 2
()\ ) (Az ~) AM(Ar + Az)

We set 3(-) = 0. For the aggregate endowment, we take the process
i
et) =1 +exp{W(t/\T) - E(t/\r)z}, 0<t<T,

where 7 = inf{t € [0,T);W(t) = 1} A T. Then (') is a continuous
martingale bounded strlctly between 1 and 1 + e, and

de(t) = (e(t) = Dlp<ry dW(E), €(0) = 2.

This is of the form (2.2) with v(-) = 0,£(-) = 0, and p(t) = %1“51}-
Condition 2.1(iii) is satisfied.

Because €(t) > 1 for 0 < t < T, almost surely, we have E fOT 12;” dt >
T'. Choose x € (0,1) to satisfy

& 2¢(t)
E/O Tre@®>T (7.8)

and set €,(t) = ke(t),e2(t) = (1 — k)e(t), so that Condition 2. 1(ii) is also
satisfied. Equation (5.17) with k£ = 1 or 2 reduces to

& Al
=1(3). (7.9
where

fle) :E/Tl dt + 1+—1 E/T €(t) 1 dt. (7.10
5 {e(t)<'o‘} a & 1 (t) {e (t)>a} ( . )
Note that

T 73 3
1
=E | liqpcardt+E 1= —— ) 1{cn)>a
fla) /0 {e(t)<a} At + /()( 1+6(t))1{(t)z}dt

1 (T )
+ EEA 1+ () ]-{e(t)>a} dt
e(t -~ a)
=T E
+ - / EET B Gt dt (7.11)
From (7.10) we have f(1) = 2EfT%dt >ZTand fl+e)=T< I
Because f is continuous, there must exist o € (1,1 + ¢) such that
: T
fla) = e (7.12)

Let o* be the smallest such a. Because a* solves (7.12), (7.11) implies
Efo He()>avy dt > 0, and f(a) < f(a") forall @ > a*. For 0 < a < 1, it
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is apparent from (7.8) that f(a) > f(1) > L. Therefore, a* is the unique
solution in (0, 00) to (7.12).
From (7.9) we see that the equilibrium vector A = (A1, A2) must satisfy

% = a*. We determine A\; and A; individually from the normalization

condition
2 if 0 < €(0) < a*,
1 = H(E(O),A) = 6(0) . N
%Jlr:“—(’(\)?)-, if €(0) > o*.

We have already seen that E fOTl{e(t)>a.}dt > 0. We must also have
EfOT Lie(t)<a-} @t > 0, because Plinfo<i<7 €(t) = 1] > 0 by construction.
It follows that the process () crosses the level a* during the interval [0, T
with positive probability. Being a continuous martingale, €(:) is a time-
changed Brownian motion (Karatzas and Shreve (1991), Section 3.4B),
and hence L:(a*) increases at each t satisfying €(t) = a* (ibid, Prob-
lem 6.13(iv)). The equilibrium market coefficient processes (6.20)—(6.22)
are

1 i ]
r(t) = - [ml{e(tka‘} * ml{e(t)zw}J (t) = 1)*1<ry,

1 1
o(t) = ['E(_t)l{e(t)«l'} + Te(t)l{e(t)zw}J (e(t) = Dlge<ry,
o Li(a”)
gl a*(l+a*)’

and A(-) is nontrivial. According to (6.6) and (7.6), (7.7), the optimal
consumption processes are

a*(1 +€(t))

&1(t) = e(t)iety<ay + =

A €(t) —a*

éa(t) = #l{e(t)Za*}'

Example 7.8 (Ergodic aggregate endowment): Let us suppose that each
agent k has utility function Uy with &, = 0 and U;(0) = oo, so ¢ = 0. Let
us further suppose that the aggregate endowment process () is a time-
homogeneous diffusion on an interval Z = (1, 7;) with 0 < v, < Y2 < 00;
ie.,

He@)zar}s

de(t) = e(t)u(e(t)) dt + e(t)p(e(t)) AW (2),

where the functions v : 7 — R and p: T — R” are bounded on compact
subintervals of 7. We assume also that ||p(-)|| is bounded away from zero
on compact subintervals of Z.

We introduce the scale function

P(C)=/Ycexp{—2/7yﬁ} dy, cel,
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and the speed measure
2dc

™) = )

where 7 is a fixed point in 7, and assume that

cel,

p(m) =—00, p(12) =00, m(T) < oo. (7.13)

Then the diffusion process €(-) is ergodic with invariant measure
m(dc)/m(ZT) (cf. Proposition 5.5.22 and Exercise 5.5.40 in Karatzas and
Shreve (1991)).

Finally, suppose that 3(:) = 8 is constant. Then (6.20)(6.22) give A() =
0 and

; 1
nn=ﬂ—ﬁm@5Pﬂ&mkm44m+§wwﬁmmmmW8my

0(t) = e(t)p(e(t)) (‘%((tt))))) i

where U(-) = U(-;A) is the representative agent utility function of (5.24).
In particular,

1 "¢ " o "¢ 2
)+ SIOI =~ g atepy | L)~ (0"e()

LUE)  20(e(t)) J , (7.14)

U'(e())  e(®)llp(e(®))]?
and the mazimal growth rate from investment in this market (corresponding
to the “optimal logarithmic portfolio” #(-) = (@'(:))710(-) X (-) of (3.10.2))
is equal to the discount rate 3, as we show below.

We note first from (3.10.3) that the wealth process X (-) corresponding to

the optimal logarithmic portfolio, regardless of the positive initial condition
X (0), satisfies

— 00

N _— 1
qjl_r.nooflogX(T)zjjlm T/o [r(s)+§||0(s)||2J ds,

because () is bounded, which implies limz o, % fOT 0'(s) dW(s) = 0. The
ergodic property for €(-), in conjunction with (7.13), implies

4 T
i, £ [r(s)+ %ua(s)u?J ds

T—oo T 0
gl LT TUOU) — @) Ue)
52ma4 W“V[ T @) U(e)
cﬁQJWM
_ i L 12 U’(C)U’N(c) - (UN(C))Z B U”(c) pN(C) dc
’ mﬁll[ Ao ww'w@Jm@
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1 U\ 1 U9 p'(o) 3
=P /1 ( U'(c) ) P U') (p’(c))z] “
1 d (U"(c) L c
=h- W/w de (U’(c) p’(c)) ‘
1

U'le)  U"(m) B
=A= m(Z) [U'(’Yz)l"(’h—) U’(%)p’(vﬁ)] .

because p'(y2—) = p'(m+) = oo from (7.13).

4.8 Notes

Models of competitive equilibrium, i.e., of the way in which demand for
goods determines prices, have occupied economists for more than a century.
One of the oldest works on this subject is Walras (1874/77). A mathemat-
ical treatment of the existence and uniqueness of solutions to Walras’s
equations was given by Wald (1936), in whose work can be found an early
version of the risk-aversion index condition 6.4 (see also Rothschild and
Stiglitz (1971) for another use of this condition). The first complete proof
for the existence of equilibrium in an economy with several agents and
finitely many commodities was given by Arrow and Debreu (1954). A per-
spective on this and related work can be obtained from Arrow (1970, 1983),
Debreu (1982), and the surveys by Debreu (1959, 1983).

The classical reference on competitive equilibrium with an infinite-
dimensional commodity space is Bewley (1972). The commodity space in
this work is L, a space whose positive orthant has nonempty interior, and
this fact is necessary for the separating hyperplane argument at the heart
of the paper. To remove this interiority condition, Mas-Colell (1986) intro-
duced the concept of “uniform properness” for the preferences of agents.
In the context of the model of this chapter, and with g = 0 for all k,
uniform properness requires that U} (0) be finite for every k. A survey of
equilibrium existence theory in infinite-dimensional spaces is Mas-Colell
and Zame (1991).

The models in the above papers are not explicitly either dynamic cr
stochastic. Models that are both stochastic and dynamic have the interest-
ing feature that individuals can achieve equilibrium allocations by trading
in securities. This role of securities in spanning uncertainty in a complete
market was already recognized by Arrow (1952). Radner (1972) established
existence of equilibrium in a discrete-time dynamical market with sevgral
agents who trade with one another. Lucas (1978) set up a discrete-time
Markov model in which the optimal consumption/production of a repre-
sentative agent leads to equilibrium. This work was presaged by LeRoy
(1973). Prescott and Mehra (1980) extended the work of Lucas (1978) to a
setup with several identical agents. The analysis of a representative agent or
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several identical agents leads to the consumption-based capital asset pricing
model (CCAPM) of Merton (1973b), Breeden (1979), and Cox, Ingersoll,
and Ross (1985a); see Remark 6.7. Empirical tests of this model performed
by Breeden, Gibbons, and Litzenberger (1989) found partial agreement
with data.

The issue of existence and uniqueness of equilibrium in a continuous-time
stochastic model with nonidentical (heterogeneous) agents is inherently
infinite-dimensional, because consumption is indexed by both time and by
the “state of nature” w € Q. Duffie (1986) gave conditions sufficient for the
existence of such an equilibrium, but CCAPM was not obtained because the
analysis required the uniform properness condition of Mas-Colell (1986); see
also Duffie and Huang (1987). Duffie and Huang (1985) showed that if a
continuous-time stochastic model with heterogeneous agents has an equi-
librium, then this equilibrium can be implemented by trading in securities.
Huang (1987) provided conditions under which such an equilibrium leads
to prices that are functions of a diffusion state-process. The missing piece
in this puzzle was supplied by Duffie and Zame (1989), and independently
by Araujo and Monteiro (1989a,b), who provided functional-analytic proofs
of the existence of equilibrium without the uniform properness condition
of Mas-Colell (1986).

The approach to the questions of existence and uniqueness of equilibrium
followed in this chapter is taken from the papers Karatzas, Lehoczky, and
Shreve (1990, 1991) and Karatzas, Lakner, Lehoczky, and Shreve (1991).
The fundamental idea of assigning weights to the different agents, and
thereby reducing the problem to one of finding the proper weights, was
apparently first used by Negishi (1960). Other authors, including Magill
(1981) and Constantinides (1982), have used this method. In the model
of this chapter the Negishi method turns the infinite-dimensional problem
of finding equilibrium consumption processes into the finite-dimensional
problem of finding the proper weights. Extensions of this approach permit
a study of equilibrium in the presence of several commodities (e.g., Lakner
(1989)), of an agent who takes into account the effect of his actions on prices
(Cuoco and Cvitanié (1996), Basak (1996b)), of heterogeneous beliefs or in-
formation for agents (cf. Detemple (1986a,b), Detemple and Murthy (1993),
Basak (1996b,c), DeMarzo and Skiadas (1996, 1997), Pikovsky (1998)), of
Testrictions on stock-market participation (Detemple and Murthy (1996)),
Basak (1996¢), Basak and Cuoco (1998), Cuoco (1997)), of stochastic dif-
ferential utility (Duffie, Geoffard and Skiadas (1994)), and of the effect
that portfolio insurers have on the market (Basak (1993, 1995, 1996a),
Grossman and Zhou (1996)). Dana and Pontier (1992) and Dana (1993a,b)
have extended some of the results in Karatzas, Lehoczky, and Shreve (1990)
and have cast the arguments of this chapter into more traditional economic
terms. Dumas (1989) is similar to, but more detailed than, our Example 7.6.
Example 7.8 grew out of conversations with Dean Foster.
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When markets are incomplete, equilibrium analysis becomes more diffi-
cult. Hart (1975) provided an example of a discrete-time model in which
equilibrium does not exist. Following this, Kreps (1982), McManus (1984),
Magill and Shafer (1984), and Duffie and Shafer (1985, 1986) demon-
strated that for nearly all discrete-time models, equilibrium does exist.
Again in a discrete-time model, Duffie (1987) established the existence
of equilibrium under the assumption that all securities are purely finan-
cial, i.e., represent claims to monetary dividends rather than claims to
goods. Rubinstein (1974) provided conditions on agents’ utility functions
that lead to existence of equilibrium as if the market were complete. Lu-
cas (1978), Bewley (1986), Duffie, Geanakoplos, Mas-Colell, and McLennan
(1994), and Karatzas, Shubik, and Sudderth (1994, 1997) study discrete-
time stationary Markovian equilibria in infinite-horizon models. For more
information about discrete-time equilibrium results for incomplete market
models, the reader can consult the recent monograph by Magill and Quinzii
(1996) and its references.

Cuoco and He (1994) have extended the methodology of this chapter
to incomplete continuous-time markets; see also Cuoco and He (1993), He
and Pages (1993), Cuoco (1997) and the references therein. Equilibrium
analysis in this setting depends on the ability to solve the single-agent
optimal consumption/investment problem of Chapter 6, but in the presence
of a random endowment stream rather than an initial capital at ¢ = 0; see
the notes at the end of that chapter.

5

Contingent Claims in
Incomplete Markets

9.1 Introduction

The subject of this chapter is the arbitrage pricing and almost sure hedg-
ing of contingent claims in markets which are incomplete due to portfolio
constraints. It often occurs in such markets that a given contingent claim
cannot be hedged perfectly, no matter how large the initial wealth of the
would-be hedging agent. However, it can be the case that with sufficient
initial wealth, a hedging agent can construct a portfolio which respects the
constraints and still leads to a final wealth that dominates almost surely the
payoff of the contingent claim. This chapter distinguishes these two cases
and shows how, when possible, to construct the superreplicating portfolio
of the second case.

In Section 2 of this chapter we set up the financial market model M(K)
with constraints. In particular, there is a nonempty, closed convex set K c
R¥ . and the investing agent’s vector of wealth proportions in the N stocks
I§ required to lie in this set. The model includes such common situations
as prohibition or restriction on short-selling, prohibition or restriction on
borrowing from the money market, and incompleteness in the sense that
S0me stocks (or other sources of uncertainty) are unavailable for investment.
Given a contingent claim, which in this chapter pays off a nonnegative
amount at the final time only, we define hup(K), the upper hedging price
of the claim, to be the least initial wealth that permits construction of a
Superreplicating portfolio in the constrained market M(K). To compute
hup(K), we introduce a family of dual processes D, and with each dual
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process ¥ € D we construct an auxiliary market M,, related to the original
one. There are no portfolio constraints in the auxiliary markets, and so
the contingent claim in these markets can be priced and hedged using
the theory of Chapter 2. Let u, be the price of the contingent claim in
the (unconstrained) market M,,. Theorem 6.2, the principal result of this
chapter, is that

hup(K) = sup u,. (6.3)
veD
This supremum is infinite if and only if superreplication in the constrained
market M(K) is not possible.

In the special case of a market with constant coefficients and of a contin-
gent claim whose payoff is a function of the stock prices at the final time,
the supremum in (6.3) turns out to be the price of a related contingent
claim in the original market without portfolio constraints. This result is
obtained in Section 7.

Section 8 is a study of conditions under which the supremum in (6.3)
is attained by a so-called optimal dual process &(-). When an optimal dual
process (-) exists, the hedging portfolio process in the unconstrained mar-
ket M, satisfies the portfolio constraints in the constrained market M(K)
and replicates exactly the contingent claim almost surely.

The discussion so far has concerned the seller of a contingent claim; who
receives an initial sum of money and wishes to invest in the constrained
market M(K) so as to superreplicate the contingent claim. In Section 9
we take up the problem of the buyer of a contingent claim, who initially
either borrows from the money market or sells stock short in order to raise
capital to buy the contingent claim. The buyer wishes to manage his debt
so that the payoff of the contingent claim at the final time is sufficient to
cover this debt. The buyer also invests in a constrained market, although
the modeling of his constraint is complicated by the fact that his wealth
prior to the final time is nonpositive. We require in Section 9 that the
vector of the buyer’s wealth proportions invested in the N stocks lie in a
nonempty, closed, convex set K_ related to K. We define hjoq, (K_) to be
the largest sum the buyer can borrow and still have the payoff from the
contingent claim cover his debt almost surely at the final time. For the
buyer’s problem, our principal result is Theorem 9.10:

hlow(K—)= inf Uy, (929)

veD(b)

where D©®) is the set of bounded processes in D. Actually, the supremum in
(6.3)_could have been restricted to bounded processes v € D®) as well.

It is clear from (6.3) and (9.29) that hiw(K-) < h,,(K). Arbitrage
arguments show that the price of the contingent claim cannot lie outside
the interval [hiow(K_), hup(K)], but are incapable of determining a single
price inside the interval, unless this interval contains only one point.
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Section 10 develops the formula for the lower hedging price for contingent
claims.that are functions of the final stock prices in a market with constant
coeflicients. This formula is analogous to the one derived in Section 7 for
the upper hedging price.

9.2 The Model

In this chapter and the next, we shall work in the context of a financial

market M = (r(-),b(-),6(-), a(-), 8(0), A(-)) as in Definition 1.1.3 d
by the stochastic differential equations e

dSo(t) = So(t)[r(t) dt + dA(t)], (2.1)

D
dSn(t) = S, (t) [bn(t) dt + dA(t) + > " ona(t) dW(d)(t)J , o (2.2)
d=1

n=1,...,N,

for the money market and stock price processes, respectively. For this mar-

kst we shall assume throughout this chapter, without further mention,
that

N=D, (2.3)
the volatility matrix o(t,w) = (0nd(t, W), < acn
is bounded and nonsingular, with U_l(t,w—) R , (2.4)
bounded, uniformly in (t,w) € [0, T] x 0 |
80(T) > so a.s. for some constant sq > 0, (2.5)
T
(t)|?
/0 16(8)]1% dt < oo, as., (2.6)
Where the market price of risk process 6(-) of (1.4.9) is
hy e
6(t) 2 o B)[b(t) + 8(t) — r(t))], O<t<T, (2.7)

and § ( ) is the vector of dividend rate processes. We will have a complete
ancial market (Theorem 1.6.6) if the positive local martingale

5 t
Zo(t)éexp{_/o 6'(s) dW (s) —%/0 ||9(s)||2ds},,‘ 0<t<T, (2.8)

I‘;f (1.5.2) is a martingale. We do not always assume this property, so the
tharket may not be‘ standard in the sense of Definition 1.5.1. Here and in
€ sequel, we retain the notation (1.5.6) and (1.5.12) for the Brownian
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motion with drift (under P)

t
Wo(t) 2 W(t) +/ 0(s)ds, 0<t<T, (2.9)
0
and the state price density process
t
Ho(t) 2 20 gci<r (2.10)

So(t)’

Consider now an agent with cumulative income process I'(t) = z — C(t),
0 <t < T, where z > 0 is his initial wealth and C(-) is his cumulative con-
sumption, an {F(t)}-adapted process with nondecreasing, right-continuous
paths and C(0) = 0, C(T') < oo almost surely. A portfolio process w(-) is an
RN -valued, {F(t)}-progressively measurable process satisfying (1.2.5) and
(1.2.6) (see Remark 1.2.2); since

i T
/0 | (£)(b(t) — 8() — r(t)1)] dt
T
= /0 I (2)o(£)0(8)] dt
1/2

T vz o 1
(/ ||a'(t)w(t)||2dt) (/ ||o(t)||2dt) ,
0 0

the condition (1.2.5) follows from (1.2.6) and (2.6). Thus, under the
assumptions of this chapter, a portfolio process is an RM-valued, and
{F (t)}-progressively measurable process almost surely satisfying (1.2.6):

/T llo’ (£)m()]|* dt < oo. (2.11)
0

The wealth process X*C7(.) corresponding to the triple (z,C,7) is
determined by (1.3.4) (cf. (3.3.1)):

)
), ¢ Ol / —n(0)o(v) dWo(v), 0<t<T,
0

IN

So(t) 0,4 So(v) So(v)
(2.12)
which can also be written as ’
Mo(t) & Ho(t)X=Cm () + . ]Ho(v) dC(v)
—z+ /OVHO(U)[U'(.U)W(U) ~ XPOT()0(w)] AW (v), 0<t<T
(2.13)

(cf. (3.3.3)). By analogy with Remark 3.6.10, the corresponding portfolio-
proportion process is defined by
m(t) . c
=~ 7 "N z,0,n t
p(t) 2 Xa:,Cﬂr(t) , X ( ) #0, (214)
Des if X®Om(¢) =0,
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where p. is an arbitrary but fixed vector in K. The N-dimensional
vector p(t) = (pi(t),...,pn(t)) represents the proportions of wealth
X*C7(t) invested in the corresponding stocks at time t, whereas 7(t) =
(m(t),...,7mn(t)) are the actual amounts invested.

Let K be a nonempty, closed, convex subset of RV Interpretations of
various choices of K are provided in Examples 4.1.

Deﬁnitio.n 2.1: We say that a pair (C,7) consisting of a cumulative
consumption process and a portfolio process is admissible for the initial
wealth £ > 0 and the constraint set K, and we write (C,7) € A(z; K), if
the process X*©™(.) given by (2.12) satisfies C

X=O™(t) >0, Vte[0,T) (2.15)

almost surely, and the portfolio-proportion process p(-) defined by (2.14)
satisfies

p(t) € K for Lebesgue-a.e. t € [0,T)] (2.16)

almost surely. We denote by M(K) the financial market M of (2.1)-(2.6)
when agents are constrained to choose (C, ) so that (2.15) and (2.16) are
satisfied.

When z > 0 and (C,m) € A(z;K), the process Mo() of (2.13) is
a nonnegative local martingale, and hence a supermartingale. Taking
expectations in (2.13), we obtain the budget constraint

E [HO(T)X”J'C’"(T) + Ho(v) dC(v)J <z (2.17)

(0,71]

The following result is an extension of Theorem 3.3.5; this latter is more
restrictive in that it requires the cumulative consumption process C(-) to be
of the form C(t) = fot ¢(s) ds for some nonnegative, {F (t)}-progressively
measurable consumption process c(-). It is straightforward to check that
the proof of Theorem 3.3.5 goes through in the more general setting of
Theorem 2.2 below. 7

Theorem 2.2: Letz > 0 be given and suppose that K = RN . Let C(-) be
@ cumulative consumption process and B a nonnegative, F(T)-measurable
random variable such that

E [HO(T)B + Ho(t) dC(t)J =z (2.18)

(0,77

Then there exists a portfolio process (-) such that (C,r) € A(z; RY) and
he corresponding wealth process is given by

Xa:,w,C - 1
(t) Ho(t)E [HO(T)B-f-/(t,T] Ho(s) dC(s)

F (t)} ;

0<t<T. (2.19)
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In particular, the process Ho(t)X®©™ (t)+ fo Ho(s)dC(s), 0 < ¢ < T, is
a martingale, and X% ™ (T) = B almost surely.

5.3 Upper Hedging Price

Let us suppose that at time ¢ = 0, the agent of Section 2 agrees to make a
payment of a random amount B > 0 at the future time T'. The randomness
in the size of his payment may come from several factors, still unresolved at
time ¢ = 0 and beyond the agent’s control. For instance, B = (51(T) —q)*
describes the case of selling a European call option on the first stock, with
strike price ¢ > 0; B = (¢ — S1(T))™" is the case of a European put option.
Additional examples are presented in Chapter 2.

What is the value at time ¢ = 0 of this promise to pay B at time T?
To answer this question, let us argue as in the beginning of Section 1.6.
Suppose that at time ¢ = 0 the agent sets aside an amount x > 0 to invest in
the market M(K). He has to obey the constraint p(-) € K of this market,
but wants to be certain that at time T' his wealth X (T') will have grown
to match or exceed the size of the payment he has to make, i.e., he wants
to achieve X (T) > B almost surely. We call the smallest amount of initial
capital that enables him to do this the upper hedging price of the contingent

claim B.
We formalize this discussion with the following definition. To simplify

the presentation of this chapter, we define below a contingent claim as
a nonnegative payment at the final time only. This is a special case of
Definition 2.2.1, under which a European contingent claim was a cash flow
over an entire time interval, at any point of which the flow could be making

either positive or negative payments.
Definition 3.1:
(i) In this chapter, a tontingent claim B is defined as a nonnegative
F(T)-measurable random variable. We call
uo £ E[Ho(T)B] (3.1)

the unconstrained hedging price of B in the market M.
(i) The upper hedging price in M(K) of the contingent claim B is defined

to be
hup(K)
2 inf{z > 0;3(C, ) € A(z; K) with X*O™(T) > B, as.}.
(iii) Finally, we say that B is K -attainable if hyp(K) < oo and if there
exists a portfolio process 7 (-) such that

(0,7) € A(hup(K); K) and X ur(FW0m(T) = B as.

(3.2)

(3.3)
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IIele We mean () to be the CUInulatlve C()Ilsunl[)tl()]l [)]()(:eSS ‘]l l
at 1s

ThSuppose that there are no constraints on portfolio choice, i.e., K = RN

e inﬂvlve knon from. the theory of Chapter 2 (in particular, Section 2.2j

ex;ectaj’ hed%{r’lcg §rlce hup(RY) of the contingent claim is given by the
1on of its discounted value B/S, i

- S — /So(T’) under the standard equivalent

hup(RY) = E [Z -2 |-
up ) 0( )S()(T) b E[HO(T)B] = UQy (34)
at least when the process that Z () i i

25t wh o(-) of (2.8) is a martingale. Thi i
condition is actually superfluous; it was not used in 'I‘gheorem1283.I;.zrtzl:rll%iai3

thus not required for it ; .
it 4 Or 1ts extension, Theorem 2.2. This leads to the following

ffﬁ?":ﬁ??ﬁ?% i, the upper hedging price huy(RY) is given
= . € miimu , .
A(uo; RN with m of (3.2) is then attained by some (0, 7o) €

Xu0,0,7r0 (t) =X ¢ é 1
o) = G EHTBIFW), o<i<T,  (35)
and in particular,
Xw0m(T) = B (3.6)

holds almost surely.
PROOF. For any = € [0, o0) and (C,7) € A(z; RY) with X=6r > B

al}rlnost surely, A&he budget constraint (2.17) gives z > E[Ho(T)B] =
g(.e;nieohup(R ) > uo from (3.2). On the other hand, Theorem 2.2 Wit(il’
Xuo,0:7r i ;md ; (:)uoT }];l)rowdes the existence of a portfolio 7o(-) such that
2 ) = 3. = [ o N
- prOpOSition.O is implies A, (RY) < ug and the other assertions of
o

lf;:.tl;l?k 3.3: We call ﬂo(-) in Proposition 3.2 an unconstrained hedging
i[; 3 olio. Because o'f the uniqueness of the integrand %o(-) in the stochastic
dete;grra.l regresentzt’;l(()in of the martingale E[H,(T)B|F (8)], mo(-) is uniquely
mined, provided that we do not distineuj :
‘ guish between
agree for Lebesgue-almost-every ¢ € [0, T] almost surely. processes thet

9.4 Convex Sets and Support Functions

:’;’:}3 (;I;’:;o\c{iuied in Section 2 the.: nonempty, closed, convex set K in which the

Wo g ::ec or p(-) of portfoh(? proportions is constrained to take values.

. view NOW some basic notions from convex analysis that will be
ater on, and discuss several examples of such constraint sets K
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For a given closed, convex subset K # @ of RV, let us define (: RN —
R U {400} by
¢(v) & sup(—p'v), veRY. (4.1)
peK

This is the support function of the convex set —K. It is a closed (i.e., lower
semicontinuous), proper (i.e., not identically +00) convex function, which

is finite on its effective domain
K2 {veRY;¢(v) < oo},

a convex cone, called the barrier cone of — K (Rockafellar (1970), p. 114). In
particular, 0 € K and ((0) = 0. The function ( is positively homogeneous,

(4.2)

C(av) = af(v), YvreRN, a>0, (4.3)
and subadditive,

((w+p) <¢w)+4(w), WvpeRM. (4.4)
According to Rockafellar (1970), Theorem 13.1, p. 112,

peEK < ((v)+pr>0, WweKk. (4.5)

It will be assumed in this chapter and the next that ¢ is bounded from
below on RY:
(4.6)

C(v) > ¢, VYveRY for some ¢ € R.

Condition (4.6) is satisfied with (o = 0 if K contains the origin of R".

Examples 4.1: Let us consider the following possible constraint sets K
on portfolio proportions, all of which satisfy condition (4.6).

(i) Unconstrained case: K = RY. Then K = {0}, ¢ =0 on K.

(ii) Prohibition of short-selling: K = [0,00)N. Then K = K and ¢ =0
on K.

(iii) Incomplete market: K = {p € Bspap41 = -+~ = py = 0}, for some
Me{l,...,N —1}. Then R@RN;W = ... =wvy =0}, and
(=0onK. CVISION

(iv) Incomplete market with prolabition of short-selling: K = {p €
RYip1 20,...,pm 2 0,pM41 = -+ =pN = 0}. Then K = {v €
RY;1; >0,...,vp >0} and ( =0 on K.

(v) K is a nonempty, closed, conver cone in RY. Then K ={v €
RM; p'v > 0, Vp € K} is the polar cone of —K and ¢ = 0 on K-
This generalizes (i)—(iv). »

(vi) Prohibition of borrowing: K = {p € R¥; Z,I:,:I Pn < 1}. Then K =
{veRY;»y =---=vy <0} and {(v) = —v1 on K.

(vii) Constraints on short-selling: K = [—k,00)V for some x > 0. Then
K =[0,00)N and ((v) =k N, v, on K.
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(viii) Constraints on borrowing: K = {p € IRN;ZN_1 Prn < Kk} for some
kK>1 Then K={v e RN,y =... = <n_ T

= [ = =vny < 0} and =
gy ) } C(V) Ky
Rectangular constraints: K = Iy x - x Iy with I, = [atn, 8]
B . ns n
—00 < ap, Sh 0 Shﬂn < oo and with the understanding that I,:
1s open on the right (respectively, left) if = i
oo B ’ )if B, = 00 (respectively,

(ix)

~ N

K=R", (Ww)=-Y (ans} - Bov7)

n=1

if all the o, and 3, are finite. More generally,
K={veR"; v, >0, Vn € Sy and v, <0, YmeS_},

where S, = {n = 1,...,N; 8, = o}, S ={m=1,. . N:
am = —oo}, and the above formula for ¢ remains valid. o
We shall need the following lemma in Section 6.
Lemma 4.2: For any given {f(t)}-progressively measurable process

p:[0,T] x @ — RN, there exists an R -valued j
’ - 4 F(t)}-
measurable process v(-) such that ) e

@I <1, K@) <1, 0<t<T, (4.7)
almost surely, and for all t € [0, T] we have
pt)e K & u(t)=0,
(4.8)

POEK & ((v(t)+p (t)u(t) <0
almost surely.

PRO?VF. For n = 1,2,.. ., define kK, & {v € K; lv] < n}, and
RV XK, >R .by falp,v) =C(W)+p'v. According to the Dubins-Savage
measurable selection theorem (Dubins and Savage (1965) or Bertsekas
and Sﬁreve (1978), Proposition 7.33), there is a Borel-measurable function
©n: RY — K, such that
$(en(P)) +P'en(p) = min {¢(v) +p'v}, VpeRV,
veK,,
N

Sl?;;)t;r. P < RY, define go({)) to be ¢, (p) for the smallest positive integer 7

hlsfymg IS(gon(B)) + P'on(p) < 0; if no such n exists, define w(p) = 0.

en ¢:R™ — K is Borel measurable. According to the equivalence (4.5),

SO(P? = 0 for every p € K and ¢(p) < 0 for every p ¢ K.
Finally, we set

u(t) & (p(t))
L+ @)l + e e@)I’

Conditions (4.7) and (4.8) follow from the positive homogeneity of ¢.

0<t<T.
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5.5 A Family of Auxiliary Markets

The principal problem of this chapter can be formulated as follows: Given
a contingent claim B > 0, find a minimal initial wealth z > 0, a cumulative
consumption process C(-), and a portfolio process m(-) such the correspond-
ing portfolio-proportion process p(-) satisfies the constraint p(t) € K for
Lebesgue-almost-every t € [0, T] almost surely, and the corresponding ter-
minal wealth satisfies X" (T') > B almost surely. In order to handle the
constraint p(t) € K, we introduce dual processes, which play a role similar
to Lagrange multipliers. Corresponding to each dual process there is an
auxiliary market as described below, in which we construct unconstrained
portfolio-proportion processes.

Definition 5.1: Let H denote the Hilbert space of {F(t)}-progressively
measurable processes v: [0,T] x @ — R¥ with norm [v] given by
7
[v]? = E/ llv(t)||? dt < oco. (5.1)
0

We define the inner product

T
(v1,v2) = E/o v (t)va(t) dt

on this space, and denote by D the subset of H consisting of processes
v:[0,T] x @ — K with

E /0 " () d < oo (5.2)

We further define D® to be the set of bounded processes in D, and D™
to be the set of all processes in D for which Z,(-) defined by (5.10) below
is a martingale.

We began in Section 2 with a market
M = (r(-),b(:),6(),a(-), 5(0), A(")).
For every process v(-) € D, consider a new interest rate process
ro(t) Sr(t)+ C(v(t)), 0<t<T (5.3)
as well as a new mean rate of return vector process
bu(t) £ b(8) + v() + ¢y, 0<t<T, (54)

and construct the new market M, = (r.(-),b,(-),6(-),0(-), S(0), A(-))- In
this new market, the money market price S(()")(-) and the stock prices
{S¥)(-)}N_, obey the equations

n=1

dSP () = S @)(r() + C(t)) dt + dA(E)], (5.5)
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dS¥(t) = S (1) [(bn(t) + va(t) + C(v(t))) dt + dA(L)

. .
+ ) ondlt) dW(d)(t)J w W=, N, (5.6)
d=1

with the initial conditions
SO0)=1 and SM(0) = $,(0), n=1,. . N.

In other words,

S¥(t) = So(t) exp [ /0 t C(v(s)) ds] , (5.7)

SO(t) = S, (t) exp [ | €y + un<s))ds]  mn=1,...,N. (58)
‘The analogues of 6(-), Zo(-), Wo(-), and Ho(") in (2.7)—(2.10) are

0,(t) £ a1 (t)[b, () + 8(£) — r (£)1] (5.9)
=0(t) + o7 () (1),

Z,(t) £ exp [— /Ot 0.,(s) dW (s) — %/Ot 6.(s))? ds]
= Zo(t)exp [— / (o (s ws))’ AWo(s)
-5/ t ||a“<s)u<s)||2ds] , (5.10)

W, (t) 2 W) + /0 6, (s) ds (5.11)

(5.12)

Note that with v(-) = 0, we recover the unconstrained model of Section 2
(i.e., M = My). Note also from (4.6) that

SENTY > speeT (5.13)
almost surely; i.e., (2.5) holds in the market M,,, and because of Defini-

tlon 1.1.3(iv), (2.4), (2.6), (5.1), and (5.2), we have J' |r, ()| dt < co and

Jo 16.(®))2dt < oo almost surely. Consequently, the conditions of Defi-

Ili(ti)on 1.1.3 and the conditions (2.3)~(2.6) are satisfied by M, for every
) € D.
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Remark 5.2: If the exponential local martingale Zy(-) of (2.8), (1.5.2) is
a martingale (i.e., if the process v(-) = 0 belongs to D{™)), then we may
define the standard martingale measure Py by

Py(4) 2 A Zo(T)dP, A e F(T), (5.14)

as in (1.5.3). If 8(.) is bounded and v € D®), then ,(-) is bounded, Z,(.)
is a martingale, and we may define the standard equivalent martingale
measure P, for the market M, by

P,(4) 2 /A 2,(T)dP, A€ F(T). (5.15)

Thus, if 6(-) is bounded, we have D®) C D(™),

In the market M, the wealth process X2:©"(.) corresponding to initial
capital z > 0, cumulative consumption process C(-), and (unconstrained)
portfolio process 7(-) satisfies the equation

M —dC(S) ="l ' ! T(s)o(s qu )a OStST
v f + [ (5)0(s) AW, (s

s Joa S§7(s) o 5¢7(s)
(5.16)
(cf. (2.12)), or equivalently,
X2Om(t) dC(s)
So(t) 0:} So(s)
=4 / AE ( X0 (5)¢(v(s)) + 7r'(s)1/(s)) ds + 7' (s)o(s) dWo(s)]
wzt [ X2 - ) ((¢w(s)) + # (I0(s)) ds +p'(5)o(s) dWo(s)].

o So(s)
(5.17)

By analogy with (2.13), we have

M, (t) & H, () XZC™(t) + o ]Hu(s)dC(s)

—x+/H (s)[o’(s — X5C™(5)8,(s)] dW (s)

=z+ / H,(s)X®C7(s)[o'(s)p(s) — 0. (s)) dW(s), 0<t<T.
i (5.18)

Definition 5.3: Let v(-) € D be given. We say that a pair (C, ) cons'ist%ng
of a cumulative consumption process and a portfolio process is admz'sszble
in M, for the initial wealth £ > 0, and we write (C,7) € A,(z), if the
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process XZ'©™(.) determined by (5.16) satisfies almost surely
X2O™(¢) >0, vtelo,T). (5.19)

Remark 5.4: For z > 0and (C, ) € A,(z), the local martingale M,, (-) of
(5.18) is nonnegative, and hence a supermartingale. Fatou’s lemma implies
then the budget constraint (cf. (2.17))

E {Hu (T)X2™(T) +
! (OvT]

H,(s) dC(s)} <z (5.20)

We have the following analogue to Theorem 2.2 concerning the existence
of portfolio processes.

Theorem 5.5: Let v(-) € D and = > 0 be given. Let C(-) be a cumula-
twe consumption process, and B a nonnegative, F (T)-measurable random
variable such that

E {HV(T)B+ H(s) dC(s)J = (5.21)

(0,7}

Then there ezists a portfolio process n(-) such that (C, ) € A, (z), and the
corresponding wealth process is gwen by

1
z,C,m (t) =

< = mE {H,,(T)B + H,(s)dC(s)

(¢,T]

}"(t)} , 0<t<T.

(5.22)

In particular, the process H, () XZC (¢) +f(0 g Hu(s)dC(s), 0 <t < T, s
a martingale, and X>©™(T) = B almost surely.

9.6 The Main Hedging Result

Definition 6.1: Consider a contingent claim B as in Definition 3.1. The
unconstrained hedging price of B in the market M, is

u, 2 E [ZU(T)L

ST = E[H,(T)B], (6.1)

a nonnegative and possibly infinite quantity. If v, < oo, then an
unconstrained hedging portfolio m,(-) is any portfolio process satisfying

X0 () = X, 2 P FHMBIF®), 0<t<T. (62)
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The existence of an unconstrained hedging portfolio in Definition 6.1
follows from Theorem 5.5 with C(-) = 0. As in Remark 3.3, 7, (-) is uniquely
determined.

Theorem 6.2: For any contingent claim B, we have the representation

hup(K) = sup u, (6.3)
veD
of the upper hedging price of Definition 3.1(ii). Furthermore, if
P sup u, (6.4)
veD

1s finite, then there erists a pair (6, #) € A(i; K) with corresponding wealth
process
E[H,(T)B|F ()]

=t =R .
H,(0) , DS (6.5)

X WO () = ess sup,ep

and in particular,

x48#(T) = B (6.6)
holds almost surely.
Remark 6.3: We call #(-) a superreplicating portfolio process because it

allows an agent to begin with initial wealth h,,(K), possibly consume along

the way, and end up with terminal wealth B almost surely. If 6‘() =0

then #(-) is a replicating portfolio process, and the contingent claim B is

K -attainable (Definition 3.1(iii)).

Definition 6.4: We call the nonnegative process

E[H,(T)B|F(t)]
H,(t) ’

on the right-hand side of (6.5) the upper hedging value process for the

contingent claim B. We shall always take a right-continuous, left-limited
modification (RCLL; see Proposition 6.5 below) of this process.

0<t<T (6.7)

)?(t) 2 ess SUP,cp

We devote the remainder of this section to the proof of Theorem 6.2. Let
us start with the inequality

hup(K) > 4, (6.8)
which is obvious if h,,(K) = co. Now assume hy,(K) < oo, and consider
an arbitrary z € [0,00) for which there exists a pair (C,7) € A(z; K)
whose associated wealth process satisfies X7 (T) > B almost surely. Let
v(*) € D be given, and define

C.(t) =C() +/ SL [X,”C’”(s)((u(s)) + n'(s)v(s)] ds

X:tC‘lr(s)

5@ CWE) P @u)ds, 0<t<T,

—C(t) +
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where the portfolio-proportion process p(-), given by (2.14), satisfies the
constraint (2.16). It follows from (4.5) that C,(-) is nondecreasing, hence
a cumulative consumption process. Using the consumption and portfolio
process pair (C,, ) in the market M,, we generate the wealth process
Xz:Cvm () of (5.16), which is the unique solution of (5. 17):

Xz (1) dC(s
 So(t) " ot] So(s / So(s) [X=Em(5)¢(w(9)) + ' (s)w(s)] ds

¢
ok z,Cp, ’
o+ [ o [(Xu (w(s)) + 7 (s)w(s)) ds
+ 7'(s)o(s) dWo(s)] .
Comparing this equation with (2.12) we see that XZ:Cv»7(.) = X%Com (),
and because of the budget constraint (5.20) we obtain
z > E[H,(T)XZ%™(T)] = E[H,(T)X*%™(T)] > E[H,(T)B] = u,.

Since v(-) € D is arbitrary, we conclude that x > . This implies (6.8).
We turn to the reverse inequality

hup(K) < i, (6.9)

which is obvious if # = oo. Thus let us assume for the remainder of the
section that @ < oo, and study in some detail the properties of the upper
hedging value process (6.7). We need the following technical result.

Proposition 6.5: Under the assumption @& < oo, the upper hedging
value process X (:) of (6.7) is finite and satisfies the dynamic programming

equation
E[H, ()X (8)| F(s)]
H,(s)

X(s) = ess sup,ep , 0<s<t<T. (6.10)

Furthermore, X (') has a right-continuous, left-limited (RCLL) _modifica-

tion; choosing this modification, we have that the process H,,(- )X () is an
RCLL supermartingale for every v(-) € D.

PROOF. To alleviate the notation we write H, (s, ) 2 H,(t)/H,(s) for
0<s<t<T andset J,(t) £ E[H,(t T)B|F(t)], so that
X(t) = ess sup,cpJy(t). (6.11)
From (6.7) and (6.11), we have
X (s) = ess sup,epE[H, (s, )], (£)| F(s)]
<ess sup,pE[H,(s, t))?(t)]]-'(s)]

‘ To prove the reverse inequality, and thus (6.10), it suffices to fix an
arbitrary process v(-) € D and show that

X (s) > E[H,(s,t)X ( )F(s)] (6.12)
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almost surely. This is the supermartingale property for H,(-)X(-). With
v(-) e D ﬁxed we denote by D;, the set of all processes u(-) € D that

agree with v(-) on [0,] x Q. Since H (¢, T) depends only on the values of
u(v) of u(:) for t < v < T, we may rewrite (6.11) as

X (t) = ess Sup,ep,, Ju(t)-

But the collection {J,(t)}.ep,, is closed under pairwise maximization.
Indeed, for any two given processes p;(-) and po(-) in Dy, and set-

ting A 2 {we @, (tw) > J,(tw)} and p(v,w) = 1 (v, w)la(w) +
ﬂ?(vaw)lA“(w) € Dt,u’ we ha-ve_

Ju(t) = E[H,(t,T)B|F(t)]
= E[(1aHy (t,T) + 1acHy, (¢, T)) B| F(¢)]
= 1aE[H,, (t, T)B|F(8)] + 1ac E[H,, (¢, T) B|F (t)]
= Jus () V I, (1)

It follows from Theorem A.3 of Appendix A that there is a sequence
{ue()}$2, in Dy, such that {J,, (£)}2, is nondecreasing and

X(t) = Jim J, (2). (6.13)

The monotone c‘onvergence theorem now implies
E[H,(s,t) X (t)|F(s ]=11mE[H (8, t) . ()| F(5)]

= hm E[Hwc s, t E[H‘,,c t,T)B|F(t)]|F(s)]
=¢gﬂ%MJwWH
:“kli_)n;o o (8)
< ess sup,epJyu(s)
= X(s),

and (6.12) is established. Setting s = 0, we obtain

E[H,(6)X(t)] < X(0) = a < oo,

which shows that X (t) is finite for all ¢ € [0, T] almost surely.
It remains to show that X () has an RCLL modification. Fromi the

supermartingale property of H, ()A() for fixed v € D, and from the
right-continuity of the filtration {F(¢)}, we know that the right-hand limit

X( ML {hmsltse@X(sw) 0<t<T,
* X(T,w)=BWw), t=T

is defined and finite for every w in some set Q* € F(T) with P(*) =1
(Karatzas and Shreve (1991), Proposition 1.3.14). Here Q is the set of
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rational numbers. Furthermore, H,,(-))?+(-) is an RCLL supermartingale,
and

Xi(t) > E[H,(t,T)B|F(t)], 0<t<T

almost surely This last inequality holds for every v(-) € D, which implies
X+( ) > X(t) for every t € [0,T]. On the other hand, the right-continuity

of X (-), Fatow’s lemma, and (6.12) show that for a fixed v(-) € D, for any
t € [0,T), and for any sequence of rationals {t,}3 , converging down to ¢,

Xe(t) = E | lim H,(tt) X ()] 7 (1)
< lim inf E[H,(t, ta) X (t,)|F (t)]
<X@)

almost surely. Thus X () and X +(+) are modifications of one another. O

Remark 6.6: The supermartingale property for the nonnegative RCLL
process H,(-)X (-) implies that we have

X(t)=0, Vtel[tT)
almost surely on {7 < T}, where
#2inf{t € [0,T); X(t) =0} AT (6.14)

and )?() is defined by (6.7). Of course, if P(B > 0) = 1, then )?() is
strictly positive on [0,7] and ¥ = T almost surely.

Remark 6.7: Let B be a contingent claim. For each {F(t)}-stopping time
7 taking values in [0, T, let us define

)’Z(T) £ ess SUpP,ep ElH.( I (Ij;f( )]

For constant 7 = ¢ € [0,7), the random variable X (t) of (6.7) agrees with
X(t). However, if the stopping time 7 is not constant, then X (1(w),w)
obtained from substitution of 7(w) for ¢ in X (t,w) is defined differently
from X (r,w). Nonetheless, when we take a right-continuous modification
of X (), we have X(r) = X (7) almost surely. A similar result in a more
difficult context receives a detailed treatment in Appendix D. In the present
setting we provide a simpler proof.

Let v(-) € D be given. Because H, ())? (-) is a supermartingale with
H,(T)X (T) = H,(T)B, we have from Doob’s optional sampling theorem
that for any stopping time 7 taking values in [0, T,

H,(r)X(r) > E[H,(T)B|F(r)].
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Dividing by H,(7) and taking essential supremum over v(:) € D, we
conclude that

X(r) > X(7) (6.15)
holds almost surely.

On the other hand, a straightforward modification of the proof of Propo-
sition 6.5 shows that whenever p and 7 are stopping times satisfying
0 < p < 7 < T almost surely, then X(-) satisfies the dynamic programming
equation

X (p) = ess sup, cp ElH, (?Ii((i:))l]:(p)] . (6.16)
and, in particular,
H,(0)X(p) > EIH(MX()(p)], () € (6.17)

Because X (t) = X(t) almost surely for each deterministic time ¢, we also
have X (r) = X (7) almost surely for each stopping time 7 taking only
finitely many values. Let 7 be an arbitrary stopping time with values in
[0,T7], and construct a sequence of stopping times {7,,}2,, each of which
takes only finitely many values, and such that 7,, | 7 almost surely as n —
oo (Karatzas and Shreve (1991), Problem 1.2.24). For each set A € F(r),

the right continuity of X (-), Fatou’s lemma, and (6.17) imply

/ H,(")X(r)dP < lim / H,(rn)X () dP
A no0 J 4

n—00

/ H,(7)X(r)dP.
A

This gives us the reverse of inequality (6.15).

= lim /Hu(rn))?(rn)dP

IA

To complete the proof of Theorem 6.2 it remains to show that when
% < oo, there exists a pair (C,#) € A(%; K) such that the corresponding
wealth process X %“C7(.) satisfies almost surely

X8CH) = R(t), 0<t<T, (6.18)

with )?() given by (6.7). This will imply (6.9).
Fix v(-) € D. For the nonnegative supermartingale H,(-)X(-), define the
sequence of stopping times

n 2inf{t € [0,T); H,(t)X(t) = n} AT, n=1,2,. ... (6.19)

Since the paths of H,( BY (-) are almost surely right continuous with left-
hand limits, the paths are almost surely bounded on [0,T], and p, 1 T as
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n — oo. Each stopped supermartingale H, (¢t A pn))?(t Apn), 0 <t <T,
is bounded and has a unique Doob-Meyer decomposition (Karatza.s and
Shreve (1991), pp. 24-27 or Protter (1990), p. 94), and this leads to a
unique Doob-Meyer decomposition of the nonstopped supermartingale as

HOIO =i+ [ W06 W) - A0, 0T (620)
0

almost surely. Here

(i) Au(-) is an adapted, natural process with nondecreasing, right-
continuous paths almost surely, EA,(T) < oo, A(0) = 0;
(ii) ¥.(-) is a progressively measurable, R"-valued process satisfying the

square-integrability condition foT [l (t)]|? dt < 0o almost surely.
Remark 6.6 implies that we have, almost surely,
A,(t) = A,(7) and ¢,(t) = 0 for Lebesgue-a.e. t € [#,T].  (6.21)

Remark 6.8: The filtration {F(t)} is generated by the d-dimensional
Brownian motion W (-), and every right-continuous martingale of this filtra-
tion must be continuous because it has a stochastic integral representation
with respect to W(-). Therefore, every adapted, nondecreasing and right-
continuous process is natural (Karatzas and Shreve (1991), Definition 4.5,

23). Furthermore, if Z,(-) is a martingale (so that the market M, is
complete and standard), then every P,-martingale has a stochastic inte-
gral representation with respect to W, (-) and thus is continuous (Lemma
1.6.7). Hence, every adapted nondecreasing process is natural under P, as
well as under P.

Now let u(-) be another process in D, and compute

H#(t) - Hll(t) . )
t(79) = 29 6, - su0y aw e

+(0,(8) = 0,()) 0. () dt + (C(v(2)) — ((u(t))) @),

which implies

%) =a | 2 %0

L)X (1) [(6,(2) — 0,(2)) dW ()
+(0,() — 6,(£))'8,(2) dt + (C(v(2)) — ¢(u(?))) dt]
Hu(1), ,
u<t)

H,(1)

(6,(2) — 0,(8)) o (t) dt
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in conjunction with (6.20). But we have also d(Hu(t))?(t)) =1, (t) dW (t)—
dA,(t). Thus, equating the local martingale terms, we obtain

HUOROO0) - ) + T3 0.0 = .00,
or equivalently,
A Z ((tt)) + R(©)8,(8) = ZZ((?) + R(0)8,(2). (6.22)

Equating terms of finite variation, we obtain

R(O0.0) - 8.(0).(0) + (0.0 ~ 0. 50

= XOCR®) - ) + "j;“:(%) - fﬁ:g;,

which implies

C(t) & dA(s) _ tAs v(s "(s)o ™ (s)v(s
o [ Ty | KOO oo ol

- dA (3) B to_ . s /(s —1l(g . <
3 /(o,t] H:(.s) /0 [(X(s)¢(u(s)) + ¢ (s)o ™ (s)p(s)] ds. (6.23)

In particular, the processes ¢(-) and C(-) defined in (6.22) and (6.23) do
not depend on v(-) € D, and satisfy almost surely

C,(t)=C,(?) and ¢(t) =0, for Lebesgue-a.e. t-€ [#,T]. (6.24)

Finally, we have f(;r lle(®)||? dt < oo almost surely.
The process 6() of (6.23) is adapted, with RCLL paths. Writing (6.23)
with v(-) = 0, we obtain
= dAo(s)
&(t) = ,
( g Ho(s)

which shows that C(-) is nondecreasing; C(-) will play the role of cumulative
consumption process in (6.18). The role of portfolio process will be played
by

(6.25)

w(t) £ (o'(t) Pp(t), 0<t<T (6.26)
In terms of this process, we may rewrite (6.23) as

dA,(s)
(0,¢] H,(s)
From (6.20), (6.22), (6.26), and (6.25) with v(-) = 0, we -have

C(t) = —/0 (X (s)¢C((s))+7'(s)v(s)]ds, 0<t<T. (6.27)
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t

Ho®)X(6) =i+ [ (o) dW(s)  Ao(t)

=+ Ho(s)[o" (s)it(s) — X (5)8(s)]' dW (s)

= Hy(s)dC(s). (6.28)
4]

Comparing this with (2.13), we conclude that (6.18) holds.
Finally, we define the portfolio-proportion process

M if X
p(t) £ { X@) X5 #0, (6.29)
De, if X(t) =0,

where p, is an arbitrary but fixed vector in K. In order to conclude the
proof of Theorem 6.2, we need to show that.

P(t) € K for Lebesgue-a.e. t € [0, 7] (6.30)

holds almost surely. To this end, consider the process v(-) € D given by
Lemma 4.2. For any positive integer k, the process kv(-) is also in D, and

(6.27) gives
0 v / dAkU(S)
©0,# Heu(s)

=) +k [ " R)CWs) + 7 (s)(s)] ds

almost surely. Because v(-) satisfies (4.8), the integrand on the right-hand
side of this inequality is nonpositive, and by choosing k sufficiently large
the right-hand side can be made negative with positive probability, unless

¢(v(t)) + ' (t)v(t) = 0 for Lebesgue-a.e. t € [0, 7] (6.31)

holds almost surely. Thus (6.31) must hold, and with it, (6.30) must hold
as well. The proof of Theorem 6.2 is complete.

Definition 6.9: Assume @& < oo, let ¥ be the stopping time (6.14), let
(C,%) € A(@; K) be the pair of processes (6.26) and (6.27) constructed

in the proof of Theorem 6.2, and define p(-) by (6.29). The set of dual
processes satisfying the complementarity condition is

Dl & {v € D; {(v(t)) + p'(t)v(t) = 0 Lebesgue-a.e. t.€ [0,7], a.s.}.
(6.32)
Remark 6.10: We may rewrite (6.27) as
dA,(s)

= 0.5 Hu(s)

| RO L) +Fove)ds, o<t<T,
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and (6.30), (4.1) imply that the process fot X(s)[¢(v(s)) + p'(s)v(s)] ds is
nondecreasing,.

Remark 6.11: In the proof of Theorem 6.2 one may replace D by D®),
the set of bounded processes in D. One can thus show

hup(K) = supu, = sup u,. (6.33)
veD veD(®)

5.7 Upper Hedging with Constant Coeflicients

Throughout this section we assume that

r(-) =r,0(-) = o are constant, (7.1)
A()=0,46() =0, (7.2)
8o(-) is bounded. (7.3)

We imposed similar assumptions in Section 2.4, except that there we did
not require the dividend rate vector to be zero. Just as in that section, we
have here that the money market price process is So(t) = e™, the standard
martingale measure Py is defined, and with S(t) 2 (S1(t),..~,Sn(t)) and
¢:(0,00)N — [0,00) a Borel-measurable function, the value at time ¢t €
[0, T] of the contingent claim B = ¢(S(T)) in the unconstrained market
M(K) is given by u(T —t, S(t)), where u(T —t, z) is defined by (2.4.6). In
the present context it is convenient to write the function u(T — t,z) as

w(T —t,750) 2 e T DEpp(e1 i (¢, T), ..., anYn (8, T)),
0<t<T, z€(0,00)", (7.4)

where
Yo (t,T)
D D
2 exp {Z O (wg“)(T) ~ WD (t)) - %(T ~)Y o2, +r(T - t)} .
d=1 d=1

(7.5)

In the constrained market M(K'), Theorem 6.2 and Remark 6.11 assert
that the upper-hedging value process (Definition 6.4) for ¢(S(T")) is

X(t) = ess sup, co i (T);}(ft()T))lf (t)]

= SUP,ep®) U'V(T —t, S(t); ‘P), 0<t<T, (76)
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where
UV(T - t, Z; ‘p)
T
2 rrop, [ IO @y ), . ,zNYN(t,T))] ,

— @O [e“ﬁT ((v(s)) ds

T T
.‘p<zle‘ft wkadey iy eroar ) ”N‘S)“Y,‘V"’(t,T))] (1.7)

Y, T)
D D .
T-t
2 o {3 ons (w00 - WE00) - TS et i -0}
d=1 d=1

(7.8)

and P, is defined by (5.15).

The computations of this section exploit the fact that W, (-) is a Brownian
motion under P,, so that the distribution of the N-dimensional random
process {(Y;")(t,T),...,Y\"(t,T));0 < t < T} under P, is the same as
the distribution of the random process {(Y1(t,T),...,Yn(t,T));0 <t < T}
under Py. This would still be true if we assumed instead of (7.1) that r(:)
and o(-) are nonrandom but not necessarily constant; with minor changes,
the results of this section hold under this weaker assumption.

Theorem 7.1: Assume (7.1)-(7.83) and let B = ¢(S(T)) be a contin-

gent claim, where @: (0,00)" — [0,00) is a lower-semicontinuous function
satisfying the polynomial growth condition

0 < p(z) < C, + Caollzl|”, Vz e (0,00)" (7.9)

for some positive constants Cy, Cy, and . Define the nonnegative function

o(x) & sup [e‘“”)cp(xle-"l, —_ ,.’L‘Ne""”)] , .z €(0,00)". (7.10)
veK

Then the hypotheses of Theorem 6.2 are satisfied, and the upper-hedging
value process X (-) for the contingent claim p(S(T)) is given by

—~

X(t) = e " TOEg[3(S(T))|F ()]

=u(T -1t,S();®), 0<t<T, (7.11)
almost surely. In other words, the upper-hedging value process for the con-
tingent claim p(S(T)) in the market M(K) with constraint set K is the

same as the value of the contingent claim P(S(T)) in the unconstrained
market M(RV).
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PrROOF. We first show that

T
sup E, [e_ft C@(s)) ds

veD®)
P (zle_ Jime “YI,T),. .. zne” J e By, T))}
< Ep(z Vi, T),...,2nYn(t,T)), 0<t<T (7.12)
In light of (7.4)—(7.8), this will imply
X(t) <w(T—t,8t);¢), 0<t < T, (7.13)

almost surely. Because K is a convex cone, v(-) € D® implies that the
vector (ftT vn(s)ds,..., ftT vn(s)ds) is in K. The definition (4.1) of ¢ yields

C(/t‘:lel(S)dS,.\..,[TVN(S)dS) _§§£< / anun )
<[ s (- Zpe) o
B /t C(v(s)) ds. (7.14)

Therefore, for an arbitrary process v(-) € D®), we have

E, [e— [T cwisn as

_ % s< (v - Tu v
'go(zle ) 1Ay T, .. zwe /. N(s)dsYA(,)(t,T))}

<E, l:e—C(ftT v1(s) d's,...,ftT vn(s) ds)

T &
p (zle_ft @y Ty ye e ”(s)dsY,\(,")(t,T))}

<E3(nVV¢T),....2n ¥, T))
= Eo(o‘(zlYl (t, T), ey .’ENYN(t, T))

Multiplying by e~"(T~%) and taking the supremum over v(-) € D®), we see
that (7.13) holds.

It remains to show the reverse of inequality (7. .13). Let us fix z € (0, 00)
and choose a sequence {v(™}%_, of vectors in K such that

—¢(v¢ —plm —v; o~
sup [e < Mp(ze ™ oy h )] = #(@).
u _

For a fixed m, we define a process v(-) in D®) by setting v(s) = 0 for
0<s<tandv(s)= 7500 fort <s <T. Let z(-): [0,T) — (0,00)" be
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a continuous (nonrandom) function, with z(T') = z. Then
u (T —t,z(t); ) (7.15)
T
— T g [e— 7 cwisnas

T T
. (z (e e OBy 1) (e f Oy, T))]

(7.16)
s e——r(T—t)
B, [ Mg (21(0e VY T, aw eV Y0 T)) |
(7.17)
_ ,—r(T-t)
E, —¢(vm™) ( —u(m)y —u("‘)Y
g | € 72 .’I)l(t)e 1 l(t,T),...,.’EN(t)C N N(t,T) .
(7.18)

Because of the polynomial growth condition (7.9), we have
E, [ sup ¢ (zl(t)e"”fm)Yl t,7),..., zN(t)e‘”l(VM)YN(t, T))] < 00,
0<t<T

and using the dominated convergence theorem in (7.15), we obtain from
the lower semicontinuity of ¢ that

_ 1) > limu, (T — ¢, z(t);
hrngnf 211131() u, (T t,z(t),sO)_ltlTr;lu (T - t,z(t); p)

> e_C("(m))go (zle‘”fm), .. .,zNe_”l(Vm)) :
Taking the supremum over m and recalling (7.10) and (7.6), we see that

'nxg iTnf)?(t) > 3(S(T)). (7.19)

According to Proposition 6.5, HO(-))? (-) is a supermartingale, i.e.,

Letting v T T and using (7.19) along with Fatou’s lemma for conditional
expectations, we obtain

R0 2 g EH(DFED)IF)
0

= ¢ T R(R(ST)IF )
=u(T —t,5(t); »), 0<t<T
almost surely, and the proof is complete. a

Under the conditions of Theorem 7.1, Theorem 6.2 guarantees the
existence of (C,#) € A(d, K ) such that
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XPOR () = e TTORBST)FW], 0<t<T,  (120)
XUCH(T) = p(S(T)). (7.21)

I

In particular,

Ho()XC7(t) = E[Hy(T)@(S(T))|F(t),, 0<t<T

is a martingale, hence a local martingale. From (2.13) we see further that

Hot)X¥CR(t)+ [ Ho(s)dB(s), 0<t<T
(0,¢]

is also a local martingale. This implies that

C(t)=0, 0<t<T, (7.22)
almost surely. From (7.20), (7.21) it is apparent that;
C(T) = 3(S(T)) - (S(T)) (7.23)

almost surely, and this quantity is typically positive with positive proba-
bility. When P[C(T) > 0] > 0, the contingent claim B = ©(8(T)) is not
attainable in the sense of Definition 3.1(iii).

Of course, the portfolio process #(-) in (7.20) is just the process used to
hedge the contingent claim @(S(T")). This is given by the usual formula

$1(t) Zu(T —t, S(t); )
w(t) = | 2 L 0<t<T, (7.24)
LS (8) 52w u(T — t,5(t); §)
of (2.4.9). We summarize the preceding discussion.

Corczllary 7.2: Under the assumptions of Theorem 7.1, the portfolio pro-
cess (-) of (7.24) and the cumulative consumption process C() of (7.22),
(7.23) satisfy (C,#) € A, K) and X%C7(.) = X(-). In other words, #(-)
s a superreplicating portfolio process.

Example 7.3 (European call option): We consider one stock S ()=51()
driven by a single Brownian motion, we assume (7.1)~(7.3), and we denote
@11 by 0. A European call option corresponds to o(z) = (x — q)*, where
g 2 0 is the exercise price. We consider K = [@, 8] as in Example 4.1(ix),
with —00 < a < 0 < 8 < 0. It is tedious but straightforward to verify
that(ﬁsooifOSﬂ<l,c’ﬁ(z)zzifﬂz1,@(x)=(z—q)+ifﬂ=oo,
and for 1 < 8 < oo,

_\B-1 /. \B

R (—_ﬂ 1) (f) , if0<s< L

Gz)=4 \ ¢ B p-1" (7.25)
T —q, ifz> ﬂﬂqu

The function @ does not depend on «.
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From the above formulas and Theorems 6.2, 7.1, we see immediately
that hyp([a, B]) = oo if 0 < B < 1; no matter how large the (finite) initial
wealth, the European call cannot be hedged if the fraction of total wealth
invested in the stock is bounded above by a number strictly less than 1. If
B =1, (7.11) implies

hup([a, 1]) = X(0) = Eole "TS(T)] = 5(0).

‘The hedging portfolio is to buy and hold one share of stock (w(-) = S(-)),
and to consume S(T)—(S(T)—q)* = S(T)Aqat time t = T. If 8 = oo, the
portfolio constraint is never active; hyp ([, 00)) is the usual Black—Scholes
value. If 1 < 8 < oo,

hup([e, B]) = T Eo [3(S(0) exp{oWo(T) + (r — 0*/2)T})],  (7.26)

where @ is given by (7.25). This value, and the corresponding hedging
portfolio of (7.24), can be written down explicitly in terms of the cumulative
normal distribution.

Example 7.4 (European put option): We assume again (7.1)-(7.3) and
consider one stock. A European put option corresponds to ¢(z) = (¢g—z)7,
where ¢ > 0. We consider again K = [a, 8] with —c0c <a <0< <00 It
turns out that @ does not depend on 8. If @ = —o0, then @(z) = (z — q)™;
the portfolio constraint is not active. If & = 0, then @(z) = ¢; the cheapest
way to hedge the put, when short-selling is prohibited, is to begin with
initial capital e "Tq and keep all wealth in the money market. Finally, for
—o0 < a <0,
. ayq
qg—z, fo<z < e 1

~

P(z) = | (I_a_;_l_l’)a_1 (Iail)a ifz2%§

the value of the put is given by (7.26) with (7.27) substituted for &.

(7.27)

5.8 Optimal Dual Processes

In Section 6 we constructed the upper-hedging value process d () =

X&C7 () of (6.5), (6.7), whose final value is almost surely equal to a given
contingent claim B, and which can be generated by a cumulative consump-
tion process C(-) and a portfolio process #(-) such that the corresponding
portfolio-proportion process p(-) takes values only in the constraint set K.
The initial value @ of this wealth process is the upper-hedging price of the
contingent claim B in the constrained market M(K).

In the first part of this section we examine the question of when we
can take the consumption process C(-) to be identically zero, so that the
superreplicating portfolio process #(-) constructed in Theorem 6.2 is in
fact a replicating portfolio process. This is intimately connected with the
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existence of a dual process D(-) that attains the supremum in (6.4); we call
such a process an optimal dual process. As we see in Theorem 8.1, any such
optimal dual process must be in the set D(°) of Definition 6.9.

The analysis of the first part of this section was motivated by the incom-
plete market of Example 4.1(iii). In this example, stocks M +1,..., N are
unavailable for investment in the constrained market M(K). In the uncon-
strained market M,,, all stocks are available for investment, but the mean
rate of return of the nth stock forn = M +1, ... s N is bp(-) + vn(+), rather
than b,(-). Contingent claims, however, are still defined in terms of the
original stocks with mean rates of return (b,(-),..., bn(-)), so the change
in the mean rates of return for the investment opportunities does affect
contingent claim pricing and hedging. The essence of Theorem 8.1 and its
Corollary 8.3 is that the optimal dual process ©(-) makes this adjustment
to the mean rates of return in such a way that the unconstrained hedging
portfolio in the market M, satisfies the constraint in the market M(K).
This reduction of a constrained problem to an unconstrained one is the
traditional role of Lagrange multipliers.

In the second part of this section, Theorem 8.9 and its proof, an optimal
dual process is posited for the problem of a contingent claim paying off
at intermediate times as well as at the final time. Under this condition,
we show the existence of a hedging portfolio whose proportion process p(-)
takes values in the constraint set K.

The results of this section will not be used in subsequent developments.

Theorem 8.1: Let B be a contingent claim and assume that it defined by
(6.1) is finite. Let X(-) be the upper hedging value process defined by (6.7)

and let (é,‘fr) € A(4; K) be as in Theorem 6.2, so that X4CR() = )?()
For a given process () € D, the following conditions are equivalent:

v(-) s optimal, i.e., @i = uy, (8.1)
H, (t)f(t), 0 <t < T is a martingale, (8.2)

( B is K-attainable, and for the associated)
wealth process X7 (), the product. (8.3)

\ process Hy (1) X% (.) 4s q martingale.

Any of the above conditions implies that

o~

p() €D and PIC(t)=0, YO<t< T)=1. (8.4)

) is a supermartingale. It is a

PROOF. In view of Propositon 6.5, H; () A(.
= X(0), i.e, if and only if u, = 4.

martingale if and only if E[H,(T)X (1)]
Hence, (8.1) and (8.2) are equivalent.
Now suppose that the equivalent conditions (8.2) and (8.1) hold. Because
Hy(-)X () is a martingale, the nondecreasing process A;(-) of the Doob-
Meyer decomposition (6.20) is identically equal to zero, and Remark 6.10
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shows that the nondecreasing process C(-) of (6.25) is also nonincreasing
and hence identically zero. We have ©(-) € D(°), and (8.4) follows. Condition

(8.3) holds with w(:) = #(-). '
Finally, let us suppose that (8.3) holds. This implies

@ = E [Hy(T)X*"™(T)] = E [Hs(T)B)] = us,
which is (8.1). o
Remark 8.2: From Remark 6.10 we see that (8.4) is equivalent to
A5() =0, 0<t<T, (8.5)
almost surely.

Corollary 8.3: Suppose that there exists a process i(-) € D such that up <
oo. Suppose also that with w;(-) deﬁnewe unconstrained hedging

portfolio process in Definition 6.1 and wi}
CVISION

ps(t) & quo—(tw)(t) FRETE (1) #0,
pey if Xuo0ima () = 0,

where p. is an arbitrary but fized vector in K, we have almost surely
po(t) € K, C(2(t)) + p;(t)0(t) = 0 for Lebesgue-a.e. t € [0,T].  (8.6)

Then the equivalent conditions (8.1)—(8.3) hold, and #(-) in Theorem 8.1
is mp(-). Conversely, suppose that the equivalent conditions of Theorem 8.1
hold; then (8.6) holds as well.

PROOF. Let X;(-) = X***™(.) denote the wealth process generated by
(0,75) in the market M, given by (5.16) and (6.2). Then X,(T) = B
almost surely. Comparing (5.17) in the form

Xo(t) * Xy(s)

So®) ~ T ), So(s)

with (2.12), we see from (8.6) that X;(-) agrees with X %07 (.), the wealth
process in M given by (2.12). Furthermore, (0,7;) € A(uz; K), and Def-
inition 3.1(ii) shows that u; > hyp(K). On the other hand, Theorem 6.2
implies up < % = hyp(K). We have uy = 4, and the remaining equivalent
conditions of Theorem 8.1 follow.

For the converse, we assume that the equivalent conditions of Theo-
rem 8.1 hold. Then there is a portfolio process m(-) in the class A(%; K)
such that X%%™(T) = B almost surely, and H,(-)X%%™(.) is a martin-
gale. The unconstrained portfolio process m,(-) € Ap(uy) also satisfies
X o0 (T) = B, and H(-)X2»"™(-) is a supermartingale (Remark 5.4).

[(C(v(5)) + P (s)v(s)) ds + pi (s)or(s) dWo(s)]
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But
i = E [Hy(T)X*%™(T)]
— E[H,(T)B]
B [Ho(T) X3 (1)),
which shows that Hy(-)
coincide with Hj(-)X%0:™

Xu01r

;‘ 0™ (1) is actually a martingale, and must thus
7(-). Therefore,

(1) = X;0"™(1), 0<t<T,

almost surely. Comparlson of (2.12) and (5.17) shows that

X50me () [C(0(3)) + Ph(s)v(s)] =0, 0<s<T,

almost surely. Further comparison of (2.12) and (5.17) shows that «(-) =
75 (). Because () € A(4; K), we have p;(t) € K for Lebesgue-almost-
every t € [0,T] almost surely. O

The next result provides conditions under which v(-) = 0 is an optimal
dual process. In such a case, the unconstrained hedging price in the original
market M is the upper-hedging price. To state the result, we need to in-
troduce some notation. We denote by S the set of all stopping times taking
values in [0, T, and we say that an {F(t)}-adapted process Y (-) is of class
D0, T) if the family of random variables {Y (p)},es is uniformly integrable.
A local martingale of class D[0,T] is in fact a martingale. Finally, recall
the notation D{™) of Definition 5.1.

Theorem 8.4: Let B be a contingent claim and assume that i 2
Sup,ep Uy i finite. Assume further that

H,(-)X(-) is of class D[0,T], Vv() e D™, (8.7)

Then, for a given &(-) € D™, all four conditions (8.1)-(8.4) are equivalent
and imply

B is K-attainable, and for the associated wealth
process X ’1’0’"(-), the product process : (8.8)
Ho(1)X®%™(.) is a martingale. J

In particular, if there exists any D(-) € DU™) satisfying the equivalent
conditions (8.1)-(8.4), then v(-) = 0 is an optimal dual process, i.e.,
@i = ug. Conversely, if (8.8) holds, then (8.1)—(8.4) are satisfied for all
p(-) e DM N D),

PROOF. The equivalence of conditions (8.1)—(8.3) has already been estab-
lished, as has the implication (8.1)=>(8.4). Let us assume that (8.4) holds
for some #(-) € D™). In light of Remark 8.2, we know that A;(-) = 0, and
(6.20) shows that H,,())?() is a local martingale. Condition (8.7) allows
us to conclude that (8.2) holds.
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To obtain (8.8) from (8.1)-(8.4) we observe that if (8.4) is satisfied for
some #(-) € D™ then it is satisfied by #(-) = 0. (Note that the process
C () appearing in (8.4), given by (6.23), does not depend on (-).) With
the choice 7(-) = 0, (8.3) becomes (8.8). From (8.8) we have immediately
that

uo £ E [Ho(T)B) = E [Ho(T)X%%"(T)] = X%%7(0) = 4.

Finally, let us assume only that (8.7) and (8.8) hold. The equivalence
just proved shows that (8.1)-(8.4) all hold with #(-) = 0. But then (8.4)
holds for every £(-) € D(°), and the first paragraph of this proof shows that
(8.1)~(8.3) hold for all &(-) € D™ N D), o

The next two propositions provide conditions on the contingent claim B
that guarantee that the upper hedging price is finite and that condition
(8.7) is satisfied.

Proposition 8.5: If the contingent claim B is almost surely bounded from
above, i.e., P[0 < B < 8] =1 for some 3 € (0,00), then i 2 SUp,ep Uy 18
finite and (8.7) holds.

PrROOF. From (5.13) we have

0< H,(T)B < Sﬁe—CoTZU(T)
0

almost surely. But Z,(-) is a supermartingale and EZ,(T) < 1; hence
u, = EH,(T)B < %e‘“‘r for all v(-) € D. This proves the finiteness of 4.

Now let »(-) € D{™ and 7 € S be given. Define D, to be the set of
processes u(-) € D that agree with v(-) up to time 7. According to Remark
6.7, we may write

0< H,(r)X(7)

= H,(T) - ess supMGDE[—'}- ]

= H,(7) -ess sup,ep_, E [ "(T ‘}' }
= ess sup,ep, , E[H,(T)B|F(r )] (8.9)
because H, (1) = H,(r) for all u(-) € D;,. But
EUH(T)BIF(7)] < e T B(z,(T)\F(r)

< ﬁe_“TZu(T) = -ﬁ—e_“TZ,,(T).
So So

Because Z, (-) is a martingale, this last expression is 2 e~ T E[Z,(T)|F(7)).
We conclude that

0 < H (1) X (r) < 2 e~ B2, (T)|F(7)] (8.10)

S0



230 5. Contingent Claims in Incomplete Markets
for all stopping times 7 € S, and this implies the uniform integrability of
the collection of random variables {H,(7)X (7)}res- m

Proposition 8.6: Suppose that for somen € {1,..., N} the dividend rate
process b,() 18 bounded from below. Suppose also that with the notation
v={v1,...,vn) we have

vi ((v) + vy is bounded from below on K, (8.11)
and the contingent claim B satisfies

0< B < aS,(T)+ 8 (8.12)

almost surely for some a > 0, B > 0. Then i ) Sup,cp Uy 8 finite and
(8.7) holds.

Conversely, if 0(-) is bounded, 8,(-) is bounded from above, B = (S§,(T)—
q)t is a European call option with ezercise price ¢ > 0, and (8.11) fails,
then 4 = 00.

PROOF. Let 0,(:) = (0n1(")--.,0an (")) be the nth row of the volatility
matrix o(-). For v(-) € D, define

R0 = B0 exp{ [ 16.06)+C0(6) + 10 () ds}.

Using (5.7), (5.9), and (1.5.18), we may rewrite this as

F,(t) :-%(Zt;(t) exp {/0 [6n(8) + vn(3)] ds}

- 5,020 0w { [ uls) dWo(s) + / t [70(6) = 3020 ds}
Finally, recalling (5.10), (5.11), we conclude that
£t
-5.0z0 e [ o) dW,(5) - 1 [ 1o s}

= 5,(0) exp { /0 (onle) — BL(0)) AW (v) - 5 /0 lotw) - ou<v)||2dv} :

which is a nonnegative local martingale, and hence a supermartingale,
under P. If v(-) € D™ then W,(-) is a Brownian motion under the
probability measure P, of Remark 5.2. Because of the assumption (2.4)
of boundedness of ¢,,(-), the process

Gu(t) = exp {/Otan(v) aw, (v) — %/Ot -HGZ(U)II"’dv}

1s a martingale under P,. For 0 < s < t < T, Bayes’s rule (Karatzas and
Shreve (1991), p. 193) implies
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E[F,(t)|F(t)] = Sn(0
= 5,(0
= 5n(0
=F,(s

~—

E[Z, ()G, (t)|F(s)]
Zu($)E, [Gu(8)|F (s)]
Zu(8)Gu(s)

~— N N

In other words, F,(-) is a P-martingale for v(-) € D(™,
Let —y € R be a lower bound on 6,(-) + ¢(v(-)) + vn(-). For B as in
(8.12) and v(-) € D, we have

u, = E[H,(T)B]
< aE[H,(T)SA(T)] + BEH,(T)
< ae"TEF,(T) + Ee_c"TEZ,,(T)
S0

< ae'T8,(0) + Ee_C"T.
S0

It follows that 4 is finite.

To obtain (8.7), fix v(-) € D™, let T € S be given, and let D, be the
set of processes (-) € D that agree with v(-) up to time 7. According to
Remark 6.7,

0 < H,(7)X(r)
E[H,(T)B|F()]
HM(T),
= ess sup,ep,  E[H,(T)B|F(1)]
< ae"Tess SupueD,,,,E[Fu(T”]:(T)]

= H, (1) ess sup,cp

4 %e—c"TesssupueDmE[Zu(T)U:(T)] ‘
<eetri)+ Lo
0

= FE |ae"TF,(T) + ge“c"TZ,,(T)l .7:(7)] ;

Here, the last inequality holds because Z 4(*) is a supermartingale for every

u() € D;,, and the last equality holds because both F,(-) and Z,(")

are martingales when v(-) € D(™). This shows that the family of random
variables {H,(7)X(7)},es is uniformly integrable.

For the second part of the proposition, we assume that B = (Sn(T)—-q)t,
8(-) is bounded, and 0,(") is bounded above by some constant Ag, but (8.11)
fails. For every v € K the process v(-) = v is in D™); therefore,

E[H,(T)S.(T)] > EF,(T) - exp{—AoT — (€(v) + va)T}
= 5,(0) exp{—A¢T — (¢(v) + v,)T},
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and from Jensen’s inequality,
uy = E [H,(T)(Sa(T) — q)*]
> (B[H,(T)S,(T)] - ¢EH,(T))"
> 5,(0) exp{—AoT — (C(v) + va)T} — ie—“T.

Since (8.11) fails, this last quantity can be made arbitarily large by choice
of ve K. a

Remark 8.7: Condition (8.11) is satisfied if the convex set K contains
both the origin and the nth unit vector, and thus also the entire line
segment adjoining these two points. In this case
Un+C(V) 2 vn+ sup (—av,) = sup (av,) =v} >0, WweK.
0<a<l 0<a<1

This condition holds in Examples 4.1(i), (ii), (vi), (vii), and (viii) for all
choices of the index n. In particular, under prohibition or constraints on
either borrowing or short-selling, it is possible to find an initial wealth
large enough to permit the construction of a portfolio whose final value
almost surely dominates that of any contingent claim B satisfying (8.12).
This is also the case in Examples 4.1(iii) and (iv) for n € {1,..., M}. For
n€{M+1,...,N} in Examples 4.1(iii), (iv), condition (8.11) is violated.
Theorem 6.2 and the second part of Proposition 8.6 applied to these ex-
amples show that when a European call is written on a stock that cannot
be held by the hedging portfolio, the upper hedging price is infinite; in other
words, no matter how large the initial wealth, it i1s not possible to con-
struct a portfolio whose final value dominates almost surely the payoff of
the option.

Example 8.8 (Incomplete market): Consider the case K = {p €
RV:ppy1 = -+ = pny = 0} of Example 4.1(iii), where there are only M
stocks available for investment, but these are driven by the N-dimensional
Brownian motion W(-) with N > M. Then {(-) = 0 on the barrier cone
I?:{VERN;Vlz'--zuM:O} of —K, and thus

(W)+pv=0, VYpeK, vek.

In particular, D(°) of Definition 6.9 agrees with D.

Consider now a contingent claim B for which 4 = sup,¢p U, is finite and
for which (8.7) holds, as is the case under the conditions of Proposition 8.5
or 8.6. Theorem 8.4 shows that if the supremum in the definition of @ is
attained by some v(-) € D™, then it is attained by every v(-) € D™,
This verifies a conjecture of Harrison and Pliska (1981), p. 257; see also
Jacka (1992) and Ansel and Stricker (1994) for related results.

We conclude this section with a result that generalizes both Theorem 8.1
(as it allows for European contingent claims that make payments prior to
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expiration, somewhat like the claims introduced in Definition 2.2.1) and
Theorem 2.2 (as it deals with constrained portfolios). For simplicity, we deal
only with the case that the payment at the final time js strictly positive.

Theorem 8.9: Let C(-) be a cumulative consumption process and B: §) —
(0,00) an F(T)-measurable random variable such that

A 3
z = sup u(p) = u(d) < oo (8.13)
HED

for some ©(-) € D, where
u(p) = E [ i H,(s)dC(s) + H,,(T)BJ ., wp(-)eD. (8.14)

Then there exists a portfolio process n(-) such that X=Cm(.), the wealth
process in the original market M(RY), satisfies

1X$’C’"(t) — Xi)(t) E [ (- . Hg(s) dC(S) + Hf)(T)B

(8.15)

for 0 < ¢t < T. Furthermore, with the portfolio-proportion process p(-)
defined by

7(t)

A =, if X;
p(t) = ¢ X,(t) i Xa(t) #0, (8.16)
Dx,y Zf Xl7 (t) = 0’
where p, is an arbitrary but fized element of K (cf. (2.14)), we have
p(t) € K, for Lebesgue-a.e. t € [0,T), (8.17)

almost surely and
C@) +p' (t)o(t) =0, for Lebesgue-a.e. t € [0, 7). (8.18)
In particular, (C,7) € A(z; K), X=C™(T) = B almost surely, and
H (8) X () + - H(s)dC(s), 0<t<T, (8.19)
s a martingale. |
This result can be established by arguments similar to those used in The-

orems 6.2 and 8.1. We opt here for a different proof, based on a variational
Principle that we shall find useful in Chapter 6.

PROOF OF THEOREM 8.9. From Theorem 5.5 we know that there exists
a portfolio process 7(-) such that X7 ’C’"(-), the wealth process in the auxil-
lary market M, corresponding to initial wealth z > 0 and (C,7) € As(x),
I8 given as X,() = X29"(.) by (8.15) and satisfies
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X5 (t) . dC(s)
500 Jiou 5o09)
p 1 ~ / ~ /
—z+ /0 5os) (Ko () (0(s)) + 7' (8)2(5)) ds + 7' (s)a (s) dWo(s)]
—a+ [ Z (o) + ()55 ds + pl()o(s) dWo(s)], (5.17)

0 SO(S)

where p(-) is defined by (8.16). In order to prove the theorem, we must
show both (8.17) and (8.18). From (8.18) and the comparison of (5.17) with
(2.12), we can conclude that X7 ‘&7 (.), the wealth process in the auxiliary
market M, agrees with X®©7(.), the wealth process in the original market
M(RY). Moreover, (8.17) shows that (C,7) € M(K), so that X=C7(.) is
in fact a wealth process in the constrained market M(K).

Step 1: For any u(-) € D and any € € (0,1), the convex ¢ombination
(1 — €)0(-) + eu(-) is in D, because of the convexity of K and the positive
homogeneity and subadditivity of ¢ (see (4.3), (4.4)), which guarantee that
(1 — €)o(:) + eu(-) satisfies (5.2). We shall be interested in two particular
choices of p(-). The first is p(-) = 0, which is an element of D because
0 € K and ¢(0) = 0. The other is p(-) = D(-) + A(:) for some A(-) € D; this
p(-) is in D because K is a convex cone and thus closed under addition,
and ¢ is subadditive.

Let {7,}22, be a nondecreasing sequence of stopping times converging
up to T, and consider the random perturbation of & given by

Venl(t) 2 {él(t;’e)&(t)+eu(t), ?'ns<ttSST;:, (8.20)

= 5(t) + e(u(t) = )L gegrry, 0<EST.
Because v, ,(-) € D and 7(-) maximizes u(?) over D, we must have

u(?) — u(Ve,n)

OSEYe,nz
€

(8.21)

for every e € (0,1) and n = 1,2, ..., where

v, 2 Hy(T)B (1 B Hue,,.(T)) . ((’)T] Hy(t) (1 N Hue.n(t))‘dc(t).

€ Hy(T) € H; (%)
(8.22)
Step 2. A straightforward computation using (5.9)—(5.12) shows that
H, (t)
Aen(t) & —Zeo
o) & Tpeag

= exp l:—eN(t/\Tn) — g(N)(t/\Tn)
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where
N(t) 2 /0 (072 (s)(u(s) — 5(s)))" dWi(s), (8.24)

(N)(t) & N OCOREONS (8.25)
In the case that u(-) = 0, we have

Sl =)o (s) +en(s) = ¢ (2(s)) = (1 — €)2(s)) — ¢(9(s))
= —e(((s)),
whereas in the case that u(-) = #(-) + A(-) for some A(-) € D, we have

C(A = €)o(s) + eu(s)) = ¢ (9(s)) = ¢ (9(s) + €A(s)) — ¢ (£(s))
< e((A(s))-
We define.

{(s) = { _C(i)(s))’ if ,U,() =0,
C(A(s)), if p=10()+ A() for some A() € D,

and L(t) £ fot £(s) ds. With this notation, we may rewrite (8.23) as
Aen(t) 2 Qen(t) (8.26)
2 exp {—e(N(t ANTp) + LEAT,)) - 62—2(N)(t A Tn)} .

Step 3. For each positive integer n, we define the stopping time
A
Tn = inf ¢ t € [0, T]; |N(2)| + (N)(t) + |L(t)| > n
. t
or / 165()|[2 ds > n
0

2
' Xs(s) - )
r/0 <S(()a)(s)> lle 1(3)(”(3)_V(3))||2d32n

or /0 (L(s) + N(s))?||o’ (s)m(s)||? ds > n} AT.

Clea.rly, Tn T T almost surely as n — oo. According to the Girsanov and
Novikov theorems (e.g., Karatzas and Shreve (1991), §3.5), the process

tAT,

Won(t) £ W(t) + /0 f5(s)ds, 0<t<T, (8.27)
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is a Brownian motion under the probability measure
B, n(A) & E(Zs(r,) - 14], A€ F(T). (8.28)

Step 4. With 7,, the stopping time defined in Step 3, the process Qen()
of (8.26) has the lower bound

Qen(t) > e 0<t<T, (8.29)

and consequently

1/ H®)\  1—Ada(t)
212 B - il s K, WEtE T .
7 (1 Ho(®) ) . 0< (8.30)

almost surely, where K, = supo<€<1 1(1 — e7*") is finite. Furthermore,

—1—A.n

lim 1= Aen(t) <N({EAT,)+ L(tAT,),

el0 € o
and it follows from Fatou’s lemma that

%Ye,n < Hop(T)B(N(7a) + L(70))
+ Hy(t)(N(t A1) + L(t A1) dC(2).
(0,T]

In addition, each Y, is bounded from above by

Y, 2 K,
| (0,77

H;(T)B + H;(t) dC(t)] y

which is integrable because EY;, = K,u(?) < oo. Another application of
Fatou’s lemma yields

0 < Tim w(®) — ulven) _ mEY., <E (ll—mYen>
el0 € el0 el0 .

< E |Hs(T)B(N(73) + L())

+ Hy(8)(N(EA 1) + L(t A 7)) dC(t)} . (8.31)
(0,7]

Step 5. We next prove that (8.31) leads to
B [ B Xo O €))7 +EO A 20, nEN. (832
0
To see this, we first recall from (5.16) that

|
Xo)\ __dCE) | Xol®) o o
. (53”>(t)> T s & 5O( t)p(t) (t) dWs (t),

5.8 Optimal Dual Processes 237

_ Xa(t) X(t)
%m&ﬂmﬂmm+wm+(»($mﬂ
o+ 2B iy ) — oe)) e
S7(2)
Integration of this equation yields
Xo () L(t) + N(t)
————(L(1, N(r, — A R
%w()(()+ ()*ﬁAﬂJ g 90w
Tn X ,
o' ‘%; [P (8)(u(t) — (2) + £(t)) dt

™ Xp
+ yiﬁ-%x(rwm)

+ (L(E) + N(2))o' (t)p(t)]) W, (t).
By the choice of 7, the integrand of the Ito integral in this last expres-

sion is square-integrable, and thus has expectation zero under P; ,,. Taking
expectations under this probability measure, we obtain

EA Ho(8) X5 (8)[p' (8) (u(t) — () + ()] dt

=F I:Hg(Tn)X(Tn) +
(0,75]

Hy(t)(L(t) + N(t)) dC(t)J . (8.33)

Applying the optional sampling theorem to the martingale in (8.19), we
see that (8.15) is still valid if we replace ¢ in that equation by the stopping
time 7,,. Using this fact, we rewrite (8.33) as

EA H (8) Xo (8)[p/ () ((t) — 2(2)) + £(8)]
= F [(L(Tn )+ N(7)) (Hg(T)B + / H(t) dC(t))
(1n,T) :

+ H(t)(L(t) + N(t)) dC(t)]] :

(0,7x]

Which is the right-hand side of (8.31), hence a non i ; .
e negative tity. T
completes the proof of (8.32). g quantity. This

S4tep 6. We invoke Lemma 4.2 to obtain a process A(-) € D satisfying
(4.8), and we take u(-) = 5(-) + A(-), so that £(t) = ¢(A(t)). Equation
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(8.32) becomes
4 / " H WX M) + OB dt 20, neN.
0

which, together with (4.8), implies (8.17). From (4.5) we have immediately
that

p'(t)D(t) + ¢(P(¢)) > 0 for Lebesgue-a.e. t € [0, 7]

holds almosts surely. We next take p{-) = 0 in (8.32), so that &(t) =
—¢(P(t)), and (8.32) becomes

e[ " H ()Xo ()P 05(8) + CO@) dt <0, neN
0

which proves (8.18). o

5.9 Lower Hedging Price

In addition to (2.3)-(2.6), we impose throughout this section the assump-
tion that

the process 8(-) of (2.7) is bounded. (9.1)

This implies, in particular, that Zo(-) of (2.8) is. a martingale, that Fy
defined by

Po(A) 2 /A Zo(T)dP, A€ F(T), (9.2)

is a probability measure on F(T), and thus M = (r(-), b(-), (), o(-), S(0),
A(")) of Section 5.2 is a complete, standard financial market. . .

The seller of a contingent claim is interested in the upper-hedging price
of Section 5.3. This is the amount of money he needs to receive at time
t = 0 in order to invest in the constrained market in a way that ensures
that his final wealth will almost surely dominate his obligation to pay oﬂ
the contingent claim at the final time. The buyer, on the other hanq, is
interested in the lower-hedging price, which we shall discuss in this sect19n.
We imagine that the buyer takes a net negative wealth position, }vhlch
must include either borrowing from the money market or short-selling of
stock, in order to buy the contingent claim. The buyer finances this debt by
trading in a constrained market, and desires at the final time to have the
payment received from owning the contingent claim be sufficient to pay off
the debt without risk (i.e., with probability one). Since the payoffs of the
contingent claims in this chapter are nonnegative, the buyer’s wealth will
always be nonpositive prior to the final time. We define below the lowf%r-
hedging price to be the maximum amount of debt the buyer can gcqul‘rﬁ
initially and still be certain that the payoff of the contingent claim w1
cover his debt at the final time.
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We have modeled the constraint on the seller’s portfolio-proportion
process by a nonempty closed convex set K. For example, if there is
only one stock and borrowing in the money market is prohibited, we set
K = (—o00, 1], which enforces the no-borrowing condition by requiring that
the investor’s stock holdings can never exceed his wealth. To prevent the
buyer of the contingent claim, whose wealth is always negative or zero,
from borrowing in the money market, we should require that his short po-
sition in the stock be always at least as great as his net debt. Thus, the
proportion of his (negative) wealth invested in the stock should always lie
in the closed convex set K_ = [1, 00).

We generalize this situation by requiring that the seller’s portfolio-
proportion process lie in a nonempty, closed, convex set K c RV and the
buyer’s portfolio-proportion process lie in a companion nonempty, closed,
convex set K_ C R"V. These sets are related by the two conditions

KNK_+#0, (9.3)

; K, ifA>1,

Vpy EK,Vp_ e K_, M, +(1 —A)p_ € {K_, fA<0

We impose the assumptions (9.3) and (9.4) because they cover the examples

of interest (Examples 9.7) and result in several simplifications of notation

and exposition, such as Lemma 9.3 below. See, however, Remark 9.2 below.
We introduce the analogue

G- inf (<pv), veRY, (9.5)

(9.4)

of the support function ¢(-) in (4.1). The function ¢-(-) maps R¥ into
RU {-o0}, and —¢_(v) = Suppe_(p'v), the support function of K_, is a
closed, proper, positively homogeneous, subadditive, convex function with
effective domain

K- 2 {veRV;¢_(v) > —oo}. (9.6)
By analogy with (4.5), the function ¢—(-) satisfies
PERK_«—=( (V)+pv<0, Wek_. {9.7)

The counterpart to Lemma 4.2 for ¢-(-) is the following.

Lemma 9.1: For any given {~.7: (t) }-progressively measurable process
P:[0,T) x 2 — RV, there exists a K --valued, F(t)-progressively measurable
Process v(-) such that

IOl <1, K@) <1, o<t<T,
and for every t € [0, T], we have

p(t)E K. & v(t)=0, (9.5)
PO EK. & () +7u) >0

almost surely.
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Remark 9.2: The next lemma relates {(-) to (—(-) and K to K_. We have
imposed conditions (9.3), (9.4) in order to obtain this simplifying result.
However, the only consequence of Lemma 9.3 below that is actually used
in this section is the bound

(-(v) >, WweK_ (9.9)
for some (o € R. If K_ leads to a function (_ satisfying (9.9), then the

lower-hedging price results of this section hold, even if there is no nonempty
closed, convex set K related to K_ by (9.3), (94).

Lemma 9.3: Under conditions (9.3) and (9.4), we have K_ = K and
¢_(-)=<¢(") on K. In particular, (4.6) implies (9.9).

ProOF. Clearly, (9.3) gives (_(v) < ((v) for all ¥ € R¥. Consider an
arbitrary v € K; then —oo < {(v) < oo. For fixed A > 1 and arbitrary
p+ € K and p_ € K_, we have, thanks to (9.4),

My +A-1plv=—-ps+(1-Ap)r< sg}g(—p’l/) = ().
p

Taking the supremum of the left-hand side over py € K and p_ € K_, we
deduce
() = (A= 1)¢-(v) < ((v). (9.10)

The inequality {_ (v) > —oo follows from the finiteness of {(), which gives
K C K_. The inequality (9.10) also implies ((r) < {-(v) for all v € K.

We next consider an arbitrary v € K_, so that {_(v) is finite. Fix A < 0,
and let p, € K and p_ € K_ be arbitrary. From (9.4) we now have

Mv+ (1= Np'v = (Ap+ + (1= A)p-)'v < sup (p'v) = ~(_(v).
PEK

Taking the supremum of the left-hand side over py € K and p_ € K_
yields

— M) — (1= NG (v) < ~¢- (). (9.11)
The inequality {(v) < oo follows from the finiteness of (), which gives

K_ C K, and thus also K_ = K. The inequality (9.11) also implies ¢ (1) <
(-(v)forallv e K_ = K. o

In light of Lemma 9.3, processes v(-) mapping [0,T] x € into K also
map into K_. In this section, we shall consider the set of processes D of
Definition 5.1 and more particularly, the set D) of bounded processes
in D. According to Remark 5.2, Z,(-) is a martingale for every v(-) € D®,
and the standard martingale measure P, for the market M, is defined
by (5.15).

We shall write henceforth K and ¢(-) rather than K_ and ¢_(-), in order
to simplify notation. However, in accordance with Remark 9.2, there need
not actually be a set K and function ¢(-); in such a case, the set K_ and
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the function {_(-) should be substituted for K and ¢(-) throughout the
remainder of this section and the next.

~ Consider now an agent with cumulative income process L{t)y=x-C(¢t)
0 <t < T, where z < 0 is his initial wealth and C(-) is his cumulative con:
symption: a nondecreasing, {F(t)}-adapted process with nondecreasing,
right-continuous paths and C(0) = 0, C(T) < oo almost surely. A port-

folio process 7(-) is an RN -valued, {F (t)}-progressively measurable process
satisfying (2.11).

Definition 9.4: Given 2 < 0 and a pair (C, ) of a cumulative consump-

tion process and a portfolio process, the corresponding wealth process is
given by

X=mC(t) dC(v) IET
TS0 oy Soe) =5+ [ So() " W) dWo(v), 0<t<T,

. | . (2.12)
which can also be written as (2.13), and the corresponding portfolio-
proportion process is defined by

w(t
p(t) & ﬁﬁ(t) if X=Cm(t) # 0,

3 P*, if XI’C’W(t) =] 0‘,

where p, is an arbitrary but fixed vector in K_.

We say that a pair (C, 7) consisting of a cumulative consumption process
and a portfolio process is admissible in the market M (K_) for the initial
wealth z < 0, and we write (C,7) € A(x; K_), if p(-) satisfies the buyer’s
constraint

(2.14)

p(t) € K_ for Lebesgue-a.e. t € |0, T] (9.12)
almost surely, and
X*Cm(¢) <0, Vte[0,T]as., (9.13)
E( max X257 @1
02 50 < oo, for somey > 1. (9.14)
Remark 9.5: Consider the random variable
a | X=Cm ()]

S Rmm (9.15)

in (9.14). Because of (9.1) we have EZ{(T) < oo for every q € R, and
(9.14) coupled with Holder’s inequality implies
+ === 2
1 1 2
EoA T = E [ZO(T)A%L] < (EZJ"(T)) T (ENF <o
Hence, (9.14) implies

EyA™" < oo for some Y > 1. (9.16)
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Similarly, (9.16) coupled with Holder’s inequality implies (9.14). Indeed,
the condition

E, A" < oo for some v, > 1 (9.17)
for some v(-) € D® implies the validity of (9.17) for every v(-) € D® and
also the validity of (9.14).

Remark 9.6: Suppose (C,7) is admissible in M(K) for ¢ < 0. Let
X=C7(.) be the wealth process with initial condition z generated by (C’, 7r),
and define A by (9.15), so that EAY < oo for some y > 1. Then condition
(9.16) holds. We have

X=Cm(t) dC(v) = f1 7' (v)o(v) dWo(v), (9.18)
as T [ G =, s @@ )

and Fatou’s lemma shows that the Pp-local martingale

A g 1 ’ v
M) & /0 Sy @)ow) dWo(v)

is a Py-supermartingale. We have then the budget constraint

X=Cm(T) dC(v) z, Y(C,7) e Alz; K_), (9.19)
EO[W-*_/(O,T] So(v):|S e

which implies

| o B [ XD <oy B
. U«m so<v)}s“” E"[ So(T) ].5 T

~—

Returning to (9.18), we conclude that
X=0m(¢) N / dC(v) 5 / dC(v), 0<t<T
So(t) 04 So(v) ~ Jo,1) So(v)

Being bounded both from below and from above by Py-integrable random
variables, the Py-local martingale M (-) is in fact a Po-martingale. Moreover,
the budget constraint (9.19) holds with equality:

) [X_an /( wJ: WC,m) € A K_)  (9.20)

—A<z+ M(t)=

So(T) 0,77 So(v)

Example 9.7: The following pairs of nonempty closed, convex sets K
and K_ satisfy the conditions of (9.3) and (9.4). The corresponding convex
cone K = K_ and support function ¢(-) = ¢_(-), given in Examples 4.1,

are repeated here for reference.
(i) Unconstrained case: K = K_ = RN, K = {0}, and { =0 02 K -
(ii) Prohibition of short-selling: K = [0, o)V, K_ = (—o00,0", K =
[0,00)Y, and ¢ = 0 on K. In this case, in both the market M(K)

5.9 Lower Hedging Price 243

with X(-) > 0 and in the market M(K_) with X(-) < 0, the amount
of wealth 7, (t) = X (t)p,(t) invested in the nth stock is nonnegative
for Lebesgue-almost-all ¢ € [0, T] almost surely, for n = 1,..., N.

(iii) Incomplete market: K = K_ = {p RN:prpyr = - = py = 0}
for some M € {1,...,N — 1}, K= {veRVuy = ... =y, = 0},
and ¢ =0 on K.

(iv) Incomplete market with prohibition of short-selling: In this case,
K ={peR"p >0,....,pp > 0,ppr41 = --- = py = 0} and
K_ ={peR¥p <0,...,pp <0,ppr41 = - = py = 0}. Then
R={V€RN;V1 >0,...,upr >0}and ( =0 on K.

(v) K is a nonempty, closed convex cone in RN and K — —K. Then

K={veRVipv <0, W e K_} and ¢ = 0 on K. This
generalizes examples (i)—(iv).

(vi) Prohibition of borrowing: K = {p € R¥; Z,IIV:I Pn <1} and K_ =
{p e RY, Z;V:l Dn 2> 1}, so that the amount of money

N

N
X(t)— Y malt) = X(t) <1 = an(t))
n=1

n=1

1>

mo(t)

invested in the money market is nonnegative for Lebesgue-almost-
all ¢t € [0,T] almost surely, regardless of whether X (t) > 0 or

X(t) <0. In this case K = {v € R¥;uy = --- = vy < 0} and
{(¥)=—-v, on K.
(vii) Constraints on short-selling: K = [—k,00)N for some £ > 0. It

is not clear how one should place a short-selling constraint on an
agent whose total wealth is negative, but the only set K_ corre-
sponding to the K of this example and satisfying (9.3) and (9.4)
is K = (—o00,—k|". Regardless of the sign of X(¢), the wealth
Tn(t) = X(t)p,(t) invested in the nth stock is at least —kX(t), a
‘nonnegative quantity when X (¢) < 0. In this case K = [0,00)" and
((v) = KZ,I:J:l v, on K.

(viii) Constraints on borrowing: K = {p € RY, Zﬁ:l Prn < Kk} for some
k > 1. It is not clear how one should place a borrowing constraint
on an agent whose total wealth is negative, but the only set K_
corresponding to the K of this example and satisfying (9.3) and
(94)is K- ={pe RV,  p, > k}. The amount mo(t) invested
in the money market, defined in (vi), satisfies mo(t) > (1 — k)X (t)
regardless of the sign of X(¢). In this case, K = {v e Ry, =
<« =vy <0} and ¢(v) = —k1; on K.

Definition 9.8:

(i) A contingent claim B is a nonnegative, F(T')-measurable random
variable. We call
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A B
= B] = —— 3.1
w0 2 E[Ho(T)B] = Bo | 5.ors| (3.1)
the unconstrained hedging price of B. (This is a repetition of
Definition 3.1(i).)
(i) The lower-hedging price in M(K_) of the contingent claim B is
defined to be

hlow(K—) (921)
& _inf{z < 0,3(C, ) € A(z; K_) with X*C™(T) + B >0 as.}.

(iii) We say that B is K_-attainable if there exists a portfolio process ()
such that

(0,7) € A(z; K_) and X=%™(T)+ B=0as. (9.22)
with z = —hlow(K_)._

In other words, if the infimum in (9.21) is attained, then Ao, (K_) is the
maximal amount of initial debt the buyer of the contingent claim can afford
to acquire and still be sure that by investment in the constrained market
M(K_), he can be guaranteed (with probability one) to have nonnegative
wealth at the terminal time t = T, once the payoff of the contingent claim
has been received.

Lemma 9.9: Let B be a contingent claim. We have
0 < hyow(K-) < ug < hyp(K). (9.23)

ProoF. Taking z = 0, 7(-) = 0, and C(:) = 0, we have X=C"(.) = 0,
and X*C™(T) + B > 0 almost surely. Hence, the infimum in (9.21) is

nonpositive and hy, (K-) > 0.
The inequality ug < hyp(K) follows immediately from Theorem 6.2, but

here is an elementary argument. The inequality holds trivially if h.,(K) =
00; if hyup(K) < oo, then for any z > 0 for which there exists (C, ) €
A(z; K_) with X®C™(T) > B almost surely, the budget constraint (2.17)
gives

Ho(T)X=%™(T) + Hy(v) dC(v)

z>FE > E[Ho(T)B]| = uo,
(0,7
whernce hyp,(K) > up.
It remains to show that
hiow(K-) < ug. (9.24)

Let z < 0 be such that there exists (C,7) € A(z; K_) with X=¢™(T) +
B > 0 almost surely. According to the budget constraint (9.20),
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g [xEOT@ | dow) I B ]
E"[ So(T) *[w so(v)J &~ [SO(T)J ==t

The desired inequality (9.24) follows. ]

. Wg observe that in the presence of condition (9.1), the finiteness of ug is
implied by the condition

B 84
E [—J < oo for somey > 1. (9.25)

So(T)
Indeed, when (9.25) holds, we may proceed as in Remark 9.5 to obtain, for
every process v(.) € D), ’

B Yo
E, [—J < oo for some 7, > 1. (9.26)

So(T)
For v(-) € D®), all moments of Z,(T) are finite under both P and P,.

Another application of Holder’s inequality shows that (9.26) is equivalent
to ‘

B \™
E, [ZZ" (T) (m) J < oo forevery q, € R (9.27)

for some ~, > 1.

It turns out that condition (9.25) actually leads to a much stronger re-
sult: a chqractem‘zation of the lower-hedging price hiow (K_) in terms of
a sto?h.astzc control problem, in the spirit of Theorem 6.2. We recall the
Definition 6.1 of u,,, which can. now be written in terms of P, as

A B
u, £ E[H,(T)B|=E, |——| . 9.28
SU(T) -
Thgorgm 9.10: Assume (9.1) and (9.9), and let B be contingent claim
satisfying (9.25). The lower-hedging price of B is given by

. A,
hiow(K_)=u = uel%f(‘b) (78 (9.29)

Furthermore, there exists a pair (C, %) € A(-u, K_) with corresponding
wealth process

i HE (= g 0L E[H,(T)B|F(t)]
(t) veD® A0 , 0<t<T,  (9.30)
and in particular,
X~HOMT) + B =0 (9.31)

almost surely.

The proof of this theorem is provided after Proposition 9.13 below.
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Definition 9.11: We call the process

H,(T)B|F(t)]
H,(t) ’

on the right-hand side of (9.30), the lower-hedging value process for the

contingent claim B. We shall always take a right-continuous, left-limited
modification (see Proposition 9.13 below) of this process.

0<t<T, (9.32)

. E
X(t) 2 _ess inf, cpey [

Remark 9.12: In tAI}e unconstrained case K = K_ = RY of Example
9.5(1) we have K = K_ = {0}, so that D = D® contains only the zero
process v(-) = 0. Thus, in Theorems 6.2 and 9.10,

@ =1 = ug, hiow(K_) = up = hyp(K), C(-) =C() =0,

and
_X—uo,C‘,ir(t) — Xuo,a,‘fl‘(t) = %g)l}-(t)] = S()(t)EO [ﬁ})’ f(t):|

coincides with the process VZCC () of (2.2.13) on [0, T), whereas #(-) = #(.)
is the hedging portfolio of Definition 2.2.6.

Proposition 9.13: Assume (9.1) and (9.9). Under the additional
assumption (9.25), the lower-hedging value process
H,(T)B|F(t)]

, 0<t<T, 9.33
0 (9.33)

) E
X(t) £ _ess inf, cpw [

is finite and satisfies the dynamic programming equation

E[H, (t)X ()| F(s)]

0<s<t<T. 9.34
B L 0Ss<t<T (930

X (s) = ess sup,cpw

In particular, X(0) = —it and X(T) + B = 0 almost surely.

The process X (-) has a right-continuous, left-limited (RCLL) modifica-
tion, which we shall always choose. With this choice, and for every process
v(-) € DO, the process H,(-)X(-) is a uniformly integrable RCLL super-

martingale under P. Furthermore, for each v(-) € D®) | the process S—{,%%
0
15 a supermartingale of class D[0,T| under P,; i.e., the collection of ran-

‘dom variables —?—rji(r) s uniformly integrable under P,, where S 15
So () S
T-E!

the set of all stopping times taking values in [0,T).

PROOF. We prove first that for each v(-) € D®), the process H, (-)X(-) is
uniformly integrable under P. Let v(-) € D® and ¢ € [0, T] be given, and
denote by D§f3 the set of all processes u(-) € D® that agree with v(-) on

[0,¢] x Q. Since H,(s,t) £ H,(t)/H,(s) depends only on the values of x(v)
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for s < v < t, we may rewrite (9.33) as

X(t) =ess SUP, ¢ ) E[—H‘}l(rq;)tflf(t)]

1
= m . ess supue_fo,zE[—Hu(T)Bl]-'(t)]

g E[H,(T)B|F(t)],

TH(@)
whence
|H.()X(t)| < E[H,(T)B|F(t)], 0<t<T.

‘It follows from Jensen’s inequality and Doob’s maximal martingale
inequality that for every Y > 1,

A [ozltlgr |H, ()X (t)ly"] = (7:7‘11) T (HAT)B]™,  (9.35)

fmd the uniform integrability of H,(-)X(-) under P follows from the
Inequality

’YV
E[H (T)B]™ < e véTE [Z'yu—l T B
v v v ( ) S()(T) I
and (9.27).

We now ixgitate the proof of Proposition 6.5, with — B replacing B, and
using tbe uniform integrability of H,(-)X(-) under P instead of Fatou’s
lemma in the last step. The proof ofAProposition 6.5 also involves ran-
dom variables, now defined by Ju(t) = E[~H,(t,T)B|F(t)], which have
the property that for each process v()eD® and t € [0, T, the collection
{J“(t)}uefo’,Z is closed under pairwise maximization. It follows that the
tollection

() V 1) + B (& TVBIF @], e
of nonnegative random variables is closed under pairwise maximization, and
Theorem A.3 of Appendix A can be applied to this collection to extract a
sequence {ux(-)}2, such that {Jux ()}22, is nondecreasing and

X(0)= Jim J,, (0

(cf. (6:13)). With these modifications, we obtain from the proof of
lProposmon 6.5 all the assertions of the present proposition, except the
ast.

For the ﬁr.xal‘ assertion of Proposition 9.13 we let v(:) € D® be given and
tart by verifying the P, -supermartingale property for 0 < s <t < T:
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X(t)
= [Sé"’(t)

- Z%E[Hu(t))?(t)ms)l

f(S)‘

: RGRIT)

Yo
with

X X()
Because —S(i,,()'()—.) . Sé‘ 5 )
Yo > 1 chosgn to satisfy (9.26), thanks to which this submartingale has a
P,-integrable last element

is a nonnegative P,-submartingale, so is

5 Yo Yo
X(T) < e_'Tu(OT <_S ?T)) “
S67(T) ‘

This establishes the uniform integrability under P, of the collection of
X(1) s

random variables { 5P (1)

TES

PROOF OF THEOREM 9.10. Let z < 0 and (C,7) € A'(x; K_.) be sucil
that X=©(T)+ B > 0 almost surely. In differential notation, with X(-) =
X®C7(.) and p(-) defined by (2.12) and (2.14), we have

X)) __dCC) | XC) oty awie),
d(So(t)> =50 T SomP Do) dWo

d( X(¢) ) =d(e—fo‘<<u<s))ds§0_8>

55 (t) , »
cwi))edo swenas X 4 - [lcwnas, (_)

=" So(t) dC(t) SO(t)
= igt) [—C(V(t))dt+P'(t)"(t)dw°(t)]_S‘"—’(t)
S () dC(t) i
X(t) (t)v -
plaro [C(w(D) + P (v (t)] dt s )
+ 20 )ty aw 1
S8t

for any v(-) € D® . Integration yields

% C(s)
XI’C’W(t) "G (s) v(s)) +p'(s)v(s)] ds + dl/)
W o 5P e /“”” 537(s)

‘ tw '(v)a(s) dW,(s). (9.:36)
—a+ [ ) P
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From (9.5) and Lemma 9.3, we see that ¢(v(s)) +p'(s)v(s) is nonpositive,

as is X>C:7(5): thus the process on the left-hand side of (9.36) is bounded
from below by
z,C,m t
=it F— { -/ C(V(S))dS} > AT, g<i<r
S(")(t) L Jo '
0

where the random variable A of (9.15) satisfies (9.14) as well as (9.17). The
P,-local martingale (9.36), being bounded from below by a P,-integrable
random variable, must be a P,-supermartingale. Hence

z,C,m T z,C,mw
o X | ey
S (T) 0 S5 °(s)

dC(v) |
" /«m S8 (v)}
=Y 2 [—LJ =~—E[H,(T)B] = —u,, VveD®

S5(T)

Taking successively the infimum over z, and then over v(-) € DO we
obtain first Ay, (K -) < u, for every v(-) € DO and then

')
hlow (K—) < 72, (937)
respectively. In|

[C(v(s)) + P'(s)v(s)] ds

To prove the reverse inequality, we consider the lower-hedging value
process X (-)-of Proposition 9.13. For each v(-) € DO the P, -super-

martingale S)(is()) Is of class D0, T); thus, it admits a unique Doob-Meyer

(¢]
decompositiorn of the form

= 9 _ ot - A(t), 0<t<T (9.38)
CcVi

Here M, () is a P,-martingale, representable as a stochastic integral in the
form

M, (%) =/0t¢:,(s) dW,(s), 0<t<T,

for some {F (t)}-progressively measurable process 1,:[0,T] x Q — RN

with fOT () dt < oo almost surely (Lemma 1.6.7, applied to the
market M, ), and Ay(-) is an {F (t)}-adapted, natural (see Remark 6.8),
nondecreasing process with right-continuous paths, E,A,(T) < oo, and
A,(0) = 0.

For any two processes #(), v(-) € D® we have

SO\ 57(t)
d (S(g“)(t)) = [¢( (t) C(/—‘(t))]séﬂ)(t) dt
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and hence
L[ X® >:d< X(t) ‘S((,")(t)>
S¥(t) g o) 85 i)
_500,, S7(1) 4 4
- S(()#)(t)wu(t) qu(t) S(()“)(t) u(t)
X(2)
* 5 [Cw(t)) - C(u(t))] dt
_ 50, S Lt =101 0e) — wle))
=5 (t)wy() W,(t) + Fm (t)wu(t) B)w(2) — u())
() X(t)
S A, (t)+W[cc () — C(u(®))] dt

But (9.38) with v(-) replaced by u(-) implies
X(t
d( A0 ) — YL () AW, (1) - dAL(D).
So(t)
From the uniqueness of the Doob—Meyer decomposition, we deduce then

_Q_S_S(u g Vo (t) = Yu(t), i-e., that

ot) £ S OB (1) = SP Bwu(t), 0<t<T,  (939)
does not depend on the process.v(-) € D®), and that
ct)2 | S¥s) / (X(s) ) + ¢ (s)a ™ (s)v(s)] ds
(0,1
= [ s¥s) / (X ()C(u(s)) + ()0~ (s)uls)] ds
(0.1
(9.40)

does not depend on v(-) € D® either. We will take C(-) in (9.40) to be
the consumption process in Theorem 9.10; setting v(-) = 0 in (9.40), we

see that this process C(t) = f(O,t] S(()O)(s) dAg(s) is nondecreasing.: We set

#(t) 2 (o'(1)) " o(t), (9.41)
and define p(-) by
) X(t)#0
)23 X@) ! (9.42)
Dus if X(t) =0

(cf. (2.14)), where p. is an arbitrary vector in K_.
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With C(-), #(-), and $(-) as defined above, we have from (9.38) that for
every v(-) € DO,

X(t) b X(s) (s 5 (Vo(s) ds dC’(s)
90 300 SN+ FENd +/M Do
= —a+/ S(Vl)( )"( s)o(s)dW,(s), 0<t<T. (9.43)

With v(-) = 0, this equation reduces to (2.12), which means that
X~%C7(.) = X(-) and (9.30) holds.

It remains to verify that (C,7) € A(—u; K_). We first check that (9.14)
holds. From (9.33) we have

X(t) i - B
A B —mE[Ho(T)BIf(t)] =-FEy [SO(T).]:(t)] , (9.44)
which leads us to consider the random variable
Ao 2 sy o ] 70 (045

With v > 1as in (9.26), Doob’s maximal martingale inequality implies

’70 B Yo
EgA™ < E < 00.
| O[SO(T)]

Inequality (9.14) follows from Remark'9.5.
Finally, we must show that we have

p(t) € K_ for Lebesgue-a.e. t € [0,T] (9.46)
almost surely. Let v(-) € D® be the process corresponding to D(+) given by
Lemma 9.1. For each positive integer k, kv(-) € D®). Using (9.41), (9.42),

we may rewrite (9.40) as

0< / S (s) dAky(s)
(0,T]

=C(T +k/ X(8)[C(v(s)) + P (s)v(s)] ds.

The integrand on the right-hand side of this inequality is nonpositive (be-
cause X(-) is nonpositive and v(-) and #(-) are related by (9.8)); choosing
k sufficiently large, the right-hand side can be made negative with positive
Pprobability, unless

C(v(t)) + B(t)v(t) = 0 for Lebesgue-a.e. t € [0,T] (9.47)
holds almost surely. Thus (9.47) must hold, and with it, (9.46) as well. O

The following two propositions provide some conditions in general mar-
kets under which the lower-hedging price is either zero or positive. In the
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next section, we take up more specific computations of the lower-hedging
price in markets with constant coefficients.

Proposition 9.14: Assume (9.1) and (9.9). We have

. B é -
hiow(K_) =0 = ueuiljf") u, =0

in either of the following cases:
(i) 0 < B < 3 almost surely for some 8 > 0, and
v+ ((v) is unbounded from above on K; (9.48)

(ii) 0 < B < aSn(T) + B almost surely for some a > 0, 8> 0, and some
n=1,...,N for which the dividend rate process 6,,(-) is bounded from
below; ESY(T) < oo for some v > 1;

v+ ((v) + vy is unbounded from above on K; (9.49)
and either 3 =0 or else (9.48) holds.

PROOF. For case (i), the validity of (9.25) is immediate from (2.5), and
thus Theorem 9.10 applies. We let v(-) = v € K be a constant process in
D®) | so that

B

S(V)( T)

Taking the infimum over v € K, we see that @ = 0.

In case (ii), we first note that
Bl B ] <sBR8Vas ) < (3)7 (8" + a"ES(T)) < oo,
So(T)] =7° ! = \so "

and again (9.25) is satisfied. We next use (1.1.10) and (5. 11) to verify that

Sn
50((:)) = exp{/0 Za a(s) dW D (s / Zla,zld(s) ds

d=1

< B =
S0

i, /t(un(s) + 6,(s)) ds} , 0<t<T, (9.50)
0

is valid for every v(-) € D. Again taking v(-) = v € K to be constant, and
replacing 6, (-) by its lower bound A, we have

5 (2)

d_

< 8n(0)e” "t ATE, exp { / Zand AW (s / Zand }
0

= 8, (0)e (nt+AT
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It follows that

A
u, = FE

_B ":—c(u)T [_B
’ sg"’(T)J ‘ N [So(T)J

< e-C(")TSE + a8, (0)e~ C@+vn+M)T
0

Taking the infimum over v € K , we obtain @ = (. )

The condition on the contingent claim in Proposition 9. 14(i) is satisfied
by a European put option B = (g — §,(T))*, and the condition of Propo-
sition 9.14(ii) is satisfied with o = 1 and # =0 by a European call option
B = (8a(T) - q)*, where g > 0. The validity of (9. 48) or (9.49) depends
on the nature of the portfolio constraints. In Examples 9. 7(ii), (iv), (vii),
and (viii), condition (9.49) is satisfied for every n, and in Example 9.7 (iii)
it is satisfied if n € {M +1,..., N}, ie., for a European call option written
on a stock in which tradmg is not allowed Condition 9.48 is satisfied in
Examples 9.7(vi), (vii), and (viii).

The following proposition provides sufficient conditions for a positive
lower-hedging price for a European call option.

Proposition 9.15:  Assume (9.1) and (9.9), and suppose B = (Sr(T) —
q)* for someq>0andne{1,..., N } for which the dividend rate process
6n(-) is bounded from above, ES) ( ) < 00 for somey > 1, and

v+ ((v) + vy, is bounded from above on K. (9.51)
Then
hiow(K) = @ 2 inf u, >0
veD®)

for g > 0 sufficiently small.

PROOF. From (9.50) and the formula S(()“)( T) = So(T f () dt | we

have
—g, (5T ~q '
S(”)(T)

1 [P
eXP{ A Zand AW (t) - 2/0 Zdid(S)dS}

=1 d=1
T b
) exp {—/0 ¢(v(t)) dt})
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Letting I" denote an upper bound on ¢(V) + vn + 6,(t), valid for all v € K
and t € [0, T], almost surely, we may use Jensen’s inequality to write

T N 1 /T N \
uy > (e—I‘TEV exp {/ Zand(t) AW D (t) — 5/ Zaid(s) ds}
0 g 0 4=

+
So
g +
= (e“FT - —e‘C"T) , () e DO,
S0 i
For ¢ > 0 sufficiently small, this last expression is positive. a

9.10 Lower Hedging with Constant Coefficients

This section is the counterpart to Section 7 for the case of lower-hedging.
We show here that the lower-hedging price of a contingent claim defined in
terms of the final stock prices is the value in the unconstrained market of
a related contingent claim. The section concludes with European call and
put option examples.

As in Section 7, we assume here that (7.1)7.3) hold. We consider a con-
tingent claim of the form B = ¢(S(T')), where S(T) = (S; (T),...,Sn(T))
is the vector of final stock prices, and : (0, 00)" — [0,00) is an upper
semicontinuous function satisfying the polynomial growth condition (7.9).
The value at time ¢ € [0, T) of the contingent claim ©(S(T)) in the uncon-
strained market M(R") is u(T — t, S(t)), where u(T — t,z) is defined by
(2.4.6). In the constrained market M(K_), Theorem 9.10 asserts that the
lower-hedging value process of Definition 9.11 for e(S(T)) is

E[H,(T)e(S(T))|F(t)]

X(t) — —essinf,cpe) H,(t) (10.1)
= - Vé%f(b) u (T —t,5(t); ),

where u, (T —t,; ¢) is defined by (7.7).

Theorem 10.1: Assume (7.1)-(7.3), (9.9), and let B = o{S(T)) be a
contingent claim, where ¢:(0,00)Y — [0,00) is an upper semicontinu-
ous function satisfying the polynomial growth condition (7.9). Define the
nonnegative function

A

¢(z) ln,t; [e—du)so('rle_ula o azNe_uN )] s TE (07 OO)N' (102)

veK
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Then the hypotheses of Theorem 9.10 are satisfied, and the lower-hedging
value process X (-) for the contingent claim o(S(T)) is given by

X(t) = —e T E[p(S(T))IF (1)) (10.3)

= —u(T—1,5(t);¢), 0<t<T,
almost surely, where uw(T — t,z; ) is defined by (7.4). In other words, the
lower-hedging value process for the contingent claim p(S(T)) in the mar-

ket M(K_) with constraint set K_ is the value of the contingent claim
—@(S(T)) in the unconstrained market M(RY).

PROOF. We note first that (7.1)—(7.2) and the polynomial growth condi-
tion (7.9) ensure that B = o(S(T')) satisfies (9.25). Thus the hypotheses
of Theorem 9.10 are satisfied.

The definition (9.5) of {(-) = {_(:) yields

T T T N '
4(/ vi(s)ds, .., / uN(s)dg>épi€rg_ (— / ;pnunw)ds)

T N
z/t pier}(f_ (~;pnvn(8)> ds
q"
" / ) (10.4)

Using this inequality instead of (7.14), we may imitate the first part of the
proof of Theorem 7.1 to conclude that

inf Eu [e— ft’r C(V(S)) ds

veD®)
T T
p (zle— Ji e Py, . .. ,zNe_fe, vw{s) dsY,S,")(t, T))J
Z Egcp(.rlYl(t, T), -y .’ENYN(t, T)), 0 S t S T’. (105)
which implies the almost sure inequality
- X@t)>uT-1t,8(t);¢), 0<t<T. (10.6)

As in the proof of Theorem 7.1, we fix z € (0,00)" and let z(-) be a
continuous function mapping [0,7] into (0, )V so that z(T) = z. We
choose a sequence {v(™}%_, in K such that

- m) _ N
inf [e_“"( ))cp(alcle“’§ yee, ENE N )] = @(x).
= /
Using the dominated convergence theorem in (7.15) and the upper
semicontinuity of ¢, we obtain
limsup inf u,(T —t,z(t);p) < £1Tr¥ u (T —t,z(t); p)

11T peD®)

(M) _(m) _{m)
‘Se i )80(-T1€ “1 youe s TNE YN ),
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whereas taking the infimum over m and recalling (10.1) we see that

lir?TsTUP(—X(t)) < @(S(T)). (10.7)

According to Proposition 9.13, —Ho(-)X(-) is a uniformly integrable P-
submartingale. In particular,

—Ho(s)X(s) < ~E[Ho(t)X(#)|F(s)], 0<s<t<T.
Letting ¢ T T and using (10.7) and the uniform integrability of Ho(-)X(-),

we obtain

s 1 .
~X(s) < mE[Ho(T)SO(S(T))If(S)]

= T By p(S(T)|F(s)]
=u(T -s,5(s);¢), 0<s<T,

almost surely. This inequality, combined with (10.6), completes the
proof. ]

Example 10.2 (Prohibition of short-selling): We consider a market with
constant coefficients and one stock, i.e., N = 1. When short-selling is pro-
hibited (Example 9.7(ii), K = [0, 00), K_ = (—00,0]), we have K = [0, c0),
¢(-) =0 on K, and the function @ of (10.2) is given by

Plz) = ;Izlg p(ze™), Vz>0.

For a European call, we have

P(z) = igg(xe_" -9t =0, vz>o,

and the lower hedging value is zero. This is also the conclusion of
Proposition 9.14(ii) in a more general context. For a European put option,

¢(z) = inf(q~ze™)* = (¢—2)*, vz >0

the hedge of a long position in a European put option does not sell stock
short, and is thus unaffected by the prohibition of short-selling.

Example 10.3 (Prohibition of borrowing): We consider again a market
with constant coefficients and one stock, i.e., N = 1. When borrowing from
the money market is prohibited (Example 9.7(vi), K = (=o0; ll; &_ =
[1,00)), we have K = (=00,0], ((v) = —v on K, and the function @ of
(10.2) is given by

&(z) = ;I%f(‘) [e”p(ze™ )], vz>o.

For a European call option, we have

&(z) = irég(z —qe")r =(z-9)t, VYz>o;
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the hedge of a long position in a European call option does not borrow
from the money market and is thus unaffected by prohibition of borrowing.
For a European put,

&(z) = irég(qe" —-z)t =0, V>0,

and the lower hedging value is zero. This is also the conclusion of
Proposition 9.14(i) in a more general context.

5.11 Notes

‘The notions and results on superreplicating portfolio and upper-hedging

price were developed first for incomplete markets, by El Karoui and Quenez
(1991, 1995). These authors employed the fictitious-completion and dual-
ity approach developed by Karatzas, Lehoczky, Shreve, and Xu (1991) in
the context of utility maximization in an incomplete market (see notes to
Chapter 6), and derived the formula (6.3) for the upper-hedging price of a
contingent claim.

In a parallel development, and in a discrete-time/finite-state setting,
Edirisinghe, Naik, and Uppal (1993) noted that in the presence of leverage
constraints, superreplication may actually be “cheaper” than exact repli-
cation. Naik and Uppal (1994) studied the effects of leverage constraints
on the pricing and hedging of stock options by deriving a recursive solu-
tion scheme as a linear programming formulation for the minimum-cost
hedging problem under such constraints. For a very nice exposition of this
approach, see Musiela and Rutkowski (1997), Chapter 4.

Sections 2-6, 8: The material here comes from Cvitanié and Karatzas
(1993), who extended the approach of El Karoui and Quenez (1991, 1995) to
the case of general convex constraints on portfolio proportions and derived
the stochastic-control-type representation (6.3) for the upper-hedging price.
Crucial in this development, and of considerable independent probabililis-
tic interest, is the “simultaneous Doob-Meyer decomposition” of (6.20),
valid for all processes v(-) € D. This approach echoes the more general
themes of the purely probabilistic treatment for stochastic control prob-
lems, based on martingale theory, which was developed in the 1970s; see
Chapter 16 of Elliott (1982) and the references therein. The approach has
been extended further to more general semimartingale price processes by
Kramkov (1996a,b), Follmer and Kramkov (1998), Follmer and Kabanov
(1998). Related results, for hedging contingent claims under margin re-
quirements and short-sale constraints, appear in Heath and Jarrow (1987)
and in Jouini and Kallal (1995a), respectively. In Cvitanié and Karatzas
(1993) it is also shown how to modify the approach of this section in or-
der to obtain a stochastic control representation of the type (6.3) for the
upper-hedging price of contingent claims in the presence of a higher interest
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rate for borrowing than for investing, and how to specialize this represen-
tation to specific contingent claims such as options; see also Barron and
Jensen (1990), Korn (1992), and Bergman (1995). A similar development,
but in the context of utility maximization rather than hedging, appears in
Section 6.8.

Section 9: The material here comes from Karatzas and Kou (1996),
who studied in detail the lower-hedging price for the buyer of the contin-
gent claim, derived the representation (9.29) for it, and computed several
examples. Following an idea of Davis (1994) that seems to go back at least
to Lucas (1978), these authors also showed how to select a unique price

p=uy 2 E[H\(T)B] for some process A(-) € D (11.1)

inside the arbitrage-free interval [hyou (K _), hyup(K)], which is “fair” in the
following sense. If the contingent claim sells at price p at time ¢t = 0, and
an agent with initial capital z and utility function U diverts an amount
6 € (=2, ) to buy &/p units of the contingent claim, then p is characterized
by the requirement that the marginal maximal expected utility be zero at
6=0:

oQ

55 (0,p,z) =0, (11.2)

where

Q(6,z,p) 2 sup EU (xm-ﬁ'C'P(T) + éB) (11.3)

(C.p)EA(z—6;K) p ‘
is the resulting maximal expected utility from terminal wealth. Using no-
tions reminiscent of viscosity solutions (cf. Fleming and Soner (1993)), one
can make sense of the requirement (11.2) even when the function Q(,p,x)
is not known a priori to be differentiable; it can then be shown that pis
uniquely determined by this requirement, and can be represented in the
form (11.1) for a suitable process A(-) € D; see Karatzas and Kou (1996),
and Karatzas (1996), Chapter 6. In fact, this fair price can be computed ex-
plicitly in several interesting cases, for instance if the utility is logarithmic;
in the case of constant coefficients and cone constraints, the fair price in fact
does not depend on the particular form of the utility function or on the ini-
tial capital. There are also connections with relative-entropy minimization,
with the minimal martingale measure of Féllmer and Sondermann (1986),
Follmer and Schweizer (1991), and Hofman et al. (1992), with the utility-
based approach of Barron and Jensen (1990) for the pricing of options with
differential interest rates, and with utility-based approaches for pricing in
the presence of transaction costs (e.g., Hodges and N euberger (1989), Panas
(1993), Constantinides (1993), Davis, Panas, and Zariphopoulou (1993),
Davis and Panas (1994), Davis and Zariphopoulou (1995), Cvitani¢ and
Karatzas (1996), Section 7, and Constantinides and Zariphopoulou (1997)).
For an interesting synthesis, see the doctoral dissertation of Mercurio (1996)
and the survey article of Jouini (1997).
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The interested reader should consult Karatzas and Kou (1996) for the
derivations of these results, and Karatzas and Kou (1998) for extensions of
the results in this chapter to American contingent claims.

Sections 7, 10: The results of Section 7 are due to Broadie, Cvitani¢, and
Soner (1998) who also show by example how to extend this methodology
to cover exotic (path-dependent) options. Wystup (1998) provides a sys-
tematic development for path-dependent options. A similar methodology
has been used by Cvitani¢, Pham, and Touzi (1997, 1998) to discuss the
superreplication of contingent claims in the contexts of stochastic volatility
and transaction costs, respectively. The results of Section 10 build on those
of Section 7, and are apparently new.



6

Constrained Consumption
and Investment

6.1 Introduction

As we saw in Chapter 5, when a financial market is incomplete due to port-
folio constraints, it may no longer be possible to construct a perfect hedge
for contingent claims. This led to the introduction in that chapter of super-
replicating portfolios and upper-hedging prices for contingent claims. This
is a conservative approach to pricing, since it begins from the assumption
that agents trade only if their probability of loss is zero.

A more venerable and less conservative approach to pricing in the pres-
ence of constraints is based on utilities, or “preferences.” In this chapter
we consider the problem of optimal consumption and investment in a con-
strained financial market. The duality theory introduced in the previous
chapter plays a key role here as well. Indeed, the problem of this chapter is
well suited to duality and the related notion of Lagrange multipliers. For
each market M(K) in which portfolio proportions are constrained to lie in
a nonempty, closed convex set K, we seek to construct a related market
M in which portfolio proportions are unconstrained, but such that the op-
timal portfolio-proportion process lies in K of its own accord, so to speak.
This is the fundamental idea of Lagrange multipliers; in this context, the
Lagrange multiplier is a process 7(-). Once ?(-) has been determined, and
it can be explicitly computed in a variety of nontrivial special cases, the
optimal consumption and investment problem in the unconstrained market
M, is the one solved in Chapter 3.

%‘
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Just as in Chapter 5, the convex set K can represent prohibition or
restriction on short-selling, prohibition or restriction on borrowing from
the money market, or incompleteness in the sense that some stocks (or
other sources of uncertainty) are unavailable for investment. The analysis
of this chapter also extends to cover a market in which the interest rate for
borrowing is higher than the interest rate for investing.

Section 2 of this chapter sets out the constrained optimal consumption
and investment problem. In constrast to Chapter 3, here we consider only
the problem of consumption and investment. The problems of consumption
or investment can also be addressed by duality theory, except that there
is no satisfactory theory of existence of the optimal dual process in the
case of utility from consumption only (see Remark 5.8). Section 3 intro-
duces the related unconstrained problems, parametrized by dual processes
v(-). The central result of this chapter is Theorem 4.1, which provides four
conditions stated in terms of dual processes, equivalent to optimality in
the constrained problem. The most useful of these is condition (D), the
existence of an optimal dual process; this is adddressed in some detail in
Section 5, where examples with explicit computations are provided.

The remaining sections consider further refinements of the general theory
in important special cases. When the market coefficients are deterministic
and K is a convex cone, the .value function for the constrained problem
satisfies a nonlinear Hamilton—Jacobi-Bellman (HJB) parabolic partial dif-
ferential equation, and the value function for the dual problem satisfies a
linear HJB equation. The former provides the optimal consumption and
portfolio proportion processes in feedback form. Section 6 presents these
matters. Section 7 works out special cases of incompleteness, when the form
of K prevents investment in some of the stocks. If there are more sources
of uncertainty than assets that can be traded, the unavailable stocks can
represent these sources of uncertainty. Finally, Section 8 alters the basic
model to allow for a higher interest rate for borrowing than for nvesting.
The duality theory of Sections 4 and 5 applies to this case, and explicit
computations are again possible.

6.2 Utility Maximization with Constraints

In this chapter we return to the Problem 3.5.4 of maximizing expected
total utility from both consumption and terminal wealth, but now impose
the constraint that the portfolio-proportion process should take values in
a given nonempty, closed, convex subset K of RY. We assume through-
out this chapter that K contains the zero vector 0 in RY. As discussed in
Examples 5.4.1, the constraint set K can be used to model a variety of mar-
ket conditions, including incompleteness. We shall use again the support
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function

C(v) 2 sg}g(-—p’u), veRY, (5.4.1)
p

of (5.4.1). Because K contains the origin, we have
¢(v) >0, Vv e RY (2.1)

(i.e., (5.4.6) holds with (o = 0).

As in Chapters 2 and 3 we shall begin with a complete, standard financial
market M = (r(),b(:),6(:),0(:),S(0), A(-)), governed by the stochastic
differential equations

dSo(t) = So(t)[r(t)dt + dA(t)], (22)

i )
dSn(t) = Su(t) [(bn(t) +6a(8)) dt + dA(t) + Zand(t)dW“’(t)} , (2.3)
d=1

forn = 1,...,N. We assume that Sp(-) is almost surely bounded away
from zero, i.e.,

So(t) > sg, 0 <t < T, for some sg > 0, (2.4)

so Assumption 3.2.3 holds. The number of stocks N is equal to the dimen-
sion D of the driving Brownian motion, the volatility matrix o(t) = (0,4(t))
is nonsingular for Lebesgue-almost-every t almost surely, and the exponen-
tial local martingale Zy(-) of (1.5.2) is a martingale, so that the standard
martingale measure Py of Definition 1.5.1 is defined. We assume further
that

E/OT 16(t)||?dt < oo (2.5)

and o(-) satisfies (5.2.4). The filtration {F(t)}o<¢<7 is, as always, the aug-
mentation by P-null sets of the filtration generated by the D-dimensional
Brownian motion W (-) = (W (.),...,W(P)(.)).

As in Chapter 3 and in contrast to Chapter 5, the agent in this chap-
ter must choose a consumption rate process c¢(-) rather than a cumulative
consumption process C(-). The cumulative consumption process C(-) of
Chapter 5 is related to the consumption rate process ¢(-) of Chapter 3 and
this chapter by the formula

t
c@) = / c(s)ds, 0<t<T. (2.6)
0

Of course, not every cumulative consumption process C(-) has such a repre-
sentation. We shall be able to solve the optimality problems in this chapter
within the class of cumulative consumption processes that do.

We have then the following definition, a repeat of Definition 3.3.1.
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Definition 2.1: A consumption process is an {F(t)}-progressively mea-
surable, nonnegative process c(-) satisfying fOT c(t)dt < oo almost surely.

In contrast to previous chapters, here it will be convenient to describe
the agent’s investment decisions in terms of a portfolio-proportion pro-
cess rather than a portfolio process. Note that in the following definition
there is no square-integrability condition like (1.2.6), which was imposed
on portfolio processes.

Definition 2.2: A portfolio proportion process is an {F(t)}-progressively
measurable, RV -valued process.

For a given initial wealth z > 0, consumption process ¢(+), and portfolio-
proportion process p(-), we wish to define the corresponding wealth process
X®9P(t),0<t<T, by

X5op(t) ¢ c(u)du B EXmor(y)
o +/0 ik _:1:+/0 g P @e@dWew. @)

This is just equation (3.3.1), but with the portfolio process w(u) replaced
by X*%P(u)p(u). The solution to (2.7) is easily verified to be given by

X®or(t) "t c(u)du ]
So(t) L) [x—/o SO(U)IP(U)J '

where
N ( 2 1 t
50 2 exp { [ ot awo) - & |1 wprad. @)
0 0
However, because we have not assumed the finiteness of fOT llo' (t)p(t)||?dt,

we need to elaborate on this construction..

Lemma 2.3: Let p(-) be a portfolio proportion process, and set

2 . t o' 2du =
) mf{te[o,Tl, | e @ptl du = oo} (29)

H;re we follow the convention inf() = oo, which means that T, = 00 if
Jo o' (W)p(w)|?du < co. Then L (t) given by (2.8) is defined for 0 <t < T
on the set {1, = oo}, I,(t) is defined for 0 < t < 7, on the set {m < T},
and on this latter set we have '

t]%l;: I(t)=0 (2.10)

glmost surely.

PROOF. We define the local Py-martingale

t
M,(t) £ /0 p’(y)a(u) dWo(u), 0 <t <T AT,
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with quadratic variation (M)(t) = fot lo’(u)p(u)||?du and invert the
quadratic variation process by setting

T(s) £ inf{t > 0;(M)(t) > s}, 0<s< (M)(TAT,).

According to Karatzas and Shreve (1991), Theoregl 3.4.6 and Problem
3.4.7 (with solution on p. 232), the process B(s) = M(T(s)), 0 < s <
(M)(T A 7p), is a Brownian motion. On the set {7, < T'}, we have

1 . 1 ,
lim [M(t) — E(M)(t)} = lim [B(s) - 53] = -0

17 sToo

almost surely because limgjoo = gs) = 0 (Karatzas and Shreve (1991), Prob-
lem 2.9.3 with solution on p. 124). Because I,(t) = exp{M(t) — (M)(t)},
we have (2.10). O

For any initial wealth z > 0 and for any consumption and portfolio-
proportion process pair (c,p), the wealth process X*¢P(t) is defined for
0 <t <T A7, Moreover, if X*%P(t) > 0,0 <t < T ATy, then Lemma 2.3
implies lim;;,, X*%P(t) = 0 almost surely on the set {r, < T'}. Therefore,
the stopping time

02 inf{t € [0,T]; X®P(¢t) = 0}

satisfies 7o < 7, almost surely, and the inequality might be strict. Again,
we follow the convention inf@) = co. We shall require that c(t) = 0 for
Lebesgue-almost-every ¢ € [r, T], and then X®P(t) = 0 satisfies (2.7) for
7o <t < T'. This permits us to give the following definition for admissibility.

Definition 2.4: Given z > 0, we say that a consumption and portfolio-
process pair (c,p) is admissible at z in the unconstrained market M, and
write (c,p) € A(z), if we have

c(t) =0 for Lebesgue-a.e. t € [r, T| (2.11)

almost surely. For (c,p) € A(z), we understand X*“P(.) to be identically
zero on [7g, T|. We shall say that (c,p) is admissible at z in the constrained
market M(K), and write (c,p) € A(z; K), if (c,p) € A(z) and

p(t) € K for Lebesgue-a.e. t € [0, (2.12)

almost surely. o)

Remark 2.5: The collection of wealth processes corresponding to (c, p) €
A(z) of Definition 2.4 coincides with the collection of wealth processes
corresponding to (¢, ) € A(z) of Definition 3.3.2, where p(-) and =(-) are
related by

m(t) = XPP()p(t), 0< ¢t < T,

1
_ mﬂ'(t), 05 t < Tr,
Pt { T <t<T,

’

6.2 Utility Maximization with Constraints 265

and 7, 2 inf{t € [0,T]; X®™(t) = 0}. It is clear that each pair (¢, m) €
A(z) of Definition 3.3.2 leads to a portfolio-proportion process p(-) for
which (¢, p) € A(z) as in Definition 2.4, but the reverse construction is not
obvious because 7(-) must satisfy the square-integrability condition (1.2.6),
whereas no such condition is imposed on p(-). However, if (¢,p) € A(z) as
in Definition 2.4 is given, we note from (2.7) and with 7p defined by (2.9)
that on the set {7, < T}, the limit
b X500 (y)

B Jy s P i) =24 |

is defined. This implies that

Tp Xz,c,p(u) 2 )
L (Fag?) 1emiran<os

holds almost surely (Karatzas and Shreve (1991), Problem 3.4.11 with so-
lution on page 232), which gives the desired square-integrability property

P[fy o' @n(w)|Pau < o] =1

™ e(u)du
So(u)

Consider now an agent endowed with initial wealth > 0 and with a
preference structure Uy:[0,T] x R — [—00,00), Up: R — [—00,00) as in
Definition 3.5.1. We shall assume throughout this chapter that

¢(t) =0, Vt€[0,T], and T=0 (2.13)

in (3.5.1), (3.5.3), meaning that both U;(t,-) and Us(-) are real-valued on
(0, 00). We assume also that

Uj(t,0) = oo, V¢ € [0,T], and U3(0) = oo. (2.14)

For such an agent, we can formulate the counterpart of Problem 3.5.4 in
the constrained market M(K).

Problem 2.6: Given z > 0, find a pair (é,p) in

0
As(z; K) & { (c,p) € A(z; K); E /0 min0, U, (¢, e(t))] dt > —oo,

E(min[0, Uz(X*?(T))]) > —oo} (2.15)
which is optimal for the problem
T
V(z; K) 2 sup E / Ui(t,c(t)) dt + Uz (X™P(T))|  (2.16)
(e:p)EA3(z;K) ]

of maximizing the expected total utility from both consumption and
terminal wealth, subject to the portfolio constraint K of (2.12).

Problem 2.6 will be the object of study in this chapter. Since we consider
nejther the problem of maximizing utility from consumption only (the con-
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strained version of Problem 3.5.2) nor, except in Example 7.4, the problem
of maximizing utility from terminal wealth only (the constrained version
of Problem 3.5.3), we suppress the subscript 3 that appears on the value
function V3(z) in Problem 3.5.4. See, however, Remark 5.8.

We shall embed this problem into a family of auxiliary unconstrained
problems, formulated in the auxiliary markets {M,},ep of Section 5.5.
In terms of these auxiliary problems (Problem 3.2), we shall obtain neces-
sary and sufficient conditions for optimality in Problem 2.6 (Theorem 4.1),
general existence results based on convex duality and martingale meth-
ods (Theorem 5.4), as well as specific computations for the value function
V(-; K) and the optimal pair (é,7) that attains the supremum in (2.16)
(Examples 4.2, 6.6, and 6.7 as well as Section 7).

6.3 A Family of Unconstrained Problems

Let us consider now the counterpart of Problem 3.5.4 in the unconstrained
market M, introduced in Section 5.5. The processes v(-) are taken from
the set D of Definition 5.5.1, and these will play the role of Lagrange mul-
tipliers in the constrained Problem 2.6. In the market M,, the wealth
process X2%P(.) corresponding to initial condition £ > 0, consumption
process ¢(-), and portfolio-proportion process p(-) is given by (5.5.16), or
equivalently (5.5.17), (5.5.18), where now dC(s) in those equations is inter-
preted as ¢(s)ds, and 7 (t) in those equations is replaced by X*P(¢)p(t).
We reproduce these equations for reference:

Xzer() | / c(wdu _ / X o waw, (), (3.1)
0 0

S(")( ) S(")(u) S(V)(u)
)(iD C,P X:t c,p( )
/ 50( I
(C(v(w) +p' (Wr(w)) du + p' (W)o(u)dWo(u)],  (3:2)
H,(£) X2 / H, () (3.3)

—z+ / H, () X297 ()]0’ (w)p(s) — B, ()] dW (x).
0

Just as in the previous section, we first use (3.1) to define XZP(-) up
to the stopping time

T é lnf{t (= [0, T], X:vCJ’(t) =] 0},

which must precede 7, defined by (2.9). We have the following counterpart
to Definition 2.4.

Definition 3.1: Given z > 0, we say that the consumption and portfolio-

proportion process pair (c,p) is admissible at = in the unconstrained market
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M., and we write (c,p) € A,(z), if
c(t) =0 for Lebesgue-a.e. t € [, T (3.4)

'holds. almost surely. For (c,p) € A,(z), we understand XI%P() to be
identically equal to zero on [r,, T)e .

f’robl)el'n 3.2: Given a process v(-) € D and given z > 0, find a pair
CvyPyv) 1N

AN (z) & {(cp)eA E/ min0, Uy (¢, (t))] dt > —oo,

E (min[0, Uy (X7 (T))]) > —oo} (3.5)

which is optimal for the problem

Vi(z)2 sup E [ / ] Ui(t, c(t)) dt + Up(XZP(T)) | (3.6)
(c.p)eAL (x) 0 ’ '

of maximizing the expected total utility from both consumption and
terminal wealth without regard to the portfolio constraint K. a

Note that when v(-) = 0, the function Vo(z) is just the value function
for the unconstrained version of Problem 2.6. Consequently,

V(z; K) < Vp(z), =z > 0. (3.7

Remark 3.3: Suppose (c,p) € A(z; K), so that X®P(.) is defined by
51217) If we choose v(-) € D, then X7@P(-) is defined by (3.2). It turns out
at

XJOP(@#) 2 X™OP(t), 0<t<T, (3.8)
as we show below. In particular,
As(z; K) € AP (), 20, v() €D, (3.9)
and since the utility function U is increasing on (0, 00), we also have
V(z; K) <V, (), >0, v(-) € D. (3.10)

To derive (3.8), we set

X:fvcvp(t) == ercxp(t)
So(t)

and subtract (2.7) from (3.2) to obtain

Aft) 2

Alt) = / A@) [(C()) + P (@ (w) du+ p' (o (u)dWo(w)]

 X7er()

+ b ) (C(v(w) + P (W)v(u)) du.
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We next define the nonnegative process
16 = exp{~ [ Pt o) + 3 [ 1wl du
- (<(u(u))+p'(u)u(u))du} |
0

and compute the differential

J(H)X=57(2) ,
e W)+ O de

Integrating this equation and using the fact that A(0) = 0, we conclude
that

d(A(8)J(t) =

1 b T (u) X =P (u) ,
At) = / v(u)) + p'(w)v(u)) du. 3.11
0= 55 | Ta ) €ww) + 7 @) (311)
From the fact that v(:) € D and p(t) € K for Lebesgue-almost-every t, we
see from (5.4.5) that the integrand in (3.11) is nonnegative and hence (3.8)
holds. From (3.11), we see also that

C(v(t) +p'(t)v(t) =0 for Lebesgue-ae. t € [0,T] (3.12)

almost surely, implies
RSP () = SR () <9 € 1) (3.13)
O

almost surely. =

Because of our assumptions that Sy(-) is bounded away from zero and
that K contains the origin in RY, we have for each v(-) € D the variant

< 00 (3.14)

T
E [/0 H,(t)dt + H,(T)

of Assumption 3.2.3 for the market M,. Problem 3.2 is just the uncon-
strained Problem 3.5.4 in the auxiliary market M, ; its solution is described
in Section 3.6 and is given as follows. For every v(-) € D, introduce the

function

X)L E [HV(T)Iz(yHu(T)) + / " H, (@I (6 yHL(0) dt| , 0<y < oo
0
(3.15)

For each v(-) € D satisfying X, (y) < oo for all y > 0, the function Xu(2
maps (0,00) onto itself, with X, (0) 2 limyjo X, (y) = oo and X, (00) =
limy .o X (y) = 0.

We denote by Y, () the inverse of X, (-), which maps [0, 0] onto [0, 0],
with Y, (0) = oo and Y, (c0) = 0. For z > 0, we introduce the nonnegative
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random variable

=
B, = L(V,(z)H,(T)) (3.16)
and the nonnegative random processes
a
¢ () = L(t, Vo (z)Hy (1)), (3.17)

T
X, @) & Hul(t)E [ /t H,(u)c, (u) du + H,(T)B,

f(t)] . (3.18)

e

M,(¢) /0 H,(u)e,(u) du + H,(t)X, (t)

. v
=F [/0 H,(u)c,(u)du+ H,(T)B, f(t)J . (3.19)

defined for 0 <t < T. In particular, X,,(T) = B, almost surely, and the
process M, (+) is a P-martingale with expectation

M, (0) = EM,(T)

T
- [/o Ho@h (Y, (@) H () du+ H(T) (Y, (z) H, (T))J

According to the martingale representation theorem (Karatzas and Shreve,
(1991), Theore;n 3.4.15 and Problem 3.4.16), there is a progressively
measurable, R"-valued process ¥, (-), unique up to Lebesgue x P-almost

@here equivalence, such that fOT (1% (t)]|%dt < oo and

t
UIBON M=z [ Y(aw(s), 0<i<T, (3.20)
0
almost surely. Letting
P02 o) (el + 0.() (3.21)
we see that X, (-) satisfies (3.3); hence
Xu () = XePe (), (3.22)

and (c,,p,) attains the supremum in (3.6).
Remark 3.4: The proof of Theorem 3.6.3 applied to the market M,
shows that when z > 0 and v(-) € D satisfies X (y) < oo for all y > 0, we

have that the pair (c,,p,) belongs to the class Agu)(z) of (3.5), not just
tg the class .A(x) of Definition 2.4. This condition can actually be stated
without reference to the portfolio-proportion process pu(-) as

T
B /0 min[0, Ui (t,¢, (£))] dt > o0, B (min[0, Us(B,)]) — co.  (3.23)



270 6. Constrained Consumption and Investment

Remark 3.5: Under the simplifying assumptions (2.13), (2.14) imposed
in this chapter on our utility functions, we have I, (¢,y) > 0, Iz(y) > 0 for
all y > 0, which implies that the process ¢,(-) and the random variable
B, are strictly positive, almost surely, provided that z > 0. This in turn
implies that M, (:) and X,(-) are likewise strictly positive at all times,
almost surely.

Even if &, (y) < oo for all y > 0, it is possible that V, (z) = oo. We set

>

Dy = {v(-)€ D; X,(y) < 0o Vy € (0,00),V,.(z) < 0o Vz € (0,00)}.
(3.24)

Remark 3.6: Let v(-) € Dy be given. Then Theorem 3.6.11, applied to
the market M, shows that

V,(z) = G, O(@)), >0, (3.25)
where 7
G2 E /T Ur(L(¢,yHo(2)) dt + U2 (Ix(yH,(T))) |, 0 <y < o0.
0
(3.26)

Indeed, v(-) € Dy if and only if G, (y) < oo for all y > 0. The convex dual
of V, is given by

Vo(y) 2 sup[Vy (z) — zy]

=G, (y) —yX(y)

@ _ -
= F / Ui (t,yH,(t)) dt + U2(yHu(T)):l
0 .

<oo, 0<y<oo, (3.27)
in the notation of Definition 3.4.2. From the proof of Theorem 3.6.11 (in
particular, the arguments leading to (3.6.29), (3.6.30)), we also know that
for any given z € (0,00), y € (0,00), v(-) € Dy, and (¢, p) € .A:(;'), equality
holds in

E / "o, (t,c(t)) dt + Uz(Xff’c"’(T))J <V(z)<V,(y)+zy (3.28)
0

if and only if the equations
c(t) = I,(t,yH,(t)) for Lebesgue-a.e. t € [0,T), (3.29)
X2o2(T) = L(yH,(T)), (330

T
z2=E [ / H,(t)c(t) dt + H,(T)XZP(T)
0
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hold, the first two in the almost sure sense. Finally, from (3.6.25), we know
that the function V| is continuously differentiable, with

V.9) = -%,(y), 0<y<oo. (3.32)

In what follows, we shall need to consider Vy(y) when the auxiliary pro-
cess ¥(-) is in the class D but not necessarily in the class Dy. We take as
qur definition

i V
V.(y) S E [ /0 (¢, yHo () dt + Do (yH, (T)) | , y > 0, v()) € D\ Dy,

(3.33)

which agrees with the definition in (3.27) when v(-) € D. For v(-) € D\ Dy,
the hypotheses of Theorem 3.6.11 are not necessarily satisfied, and we may
not have the duality representation of V,(y) given in (3.27). Furthermore,
it is not immediately clear that the expectation on the right-hand side of
(3.33) is defined. Here is a resolution of these difficulties.

Proposition 3.7: Let v(-) € D and y > 0 be gwen. Then we have

T ~ —
E / min(0, 0y (¢, yH, (1))} dt > ~oo, E (minf0, Doy H, (T))]) > oo,
0
(3.34)
and
—~ A T —~— o~ ‘
2213[%(95) —zy| <V.(y) = E [/0 Ur(t,yH,(t)) dt + U2(yHu(T))} :

(3.35)
Furthermore, if V, (y) < oo, then equality holds in (3.35).

PROOF. Let z > 0 be given, and consider c(t) = %S(g")(t), p(t) =0 for
all ¢ € [0, T). For this choice (3.1), (5.5.7), (2.1), and (2.4) imply

2X=°P(T) = 2SS )(T) > zsp > 0.
Similarly,
2Tc(t) > zsg > (.
The inequality U, (t,y) > U, (, z) — zy implies that
min[0, Uy (c(8))] < min[0, U (t, yH, (¢)) + yH, (t)c(t)]
< min[0, T, (t, y H, ()] + ;—;{Zy(t).

Integrating from ¢ =0 to ¢t = T, taking expectations, and using the in-
equality EZ,(t) < 1, we obtain the first part of (3.34). The proof of the

second part is similar.
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Now, for any (¢,p) € A§"’(z), we have
Ur(t, c(t)) < Un(t,yH,(t)) + yH, (t)c(t),
Up(X3°P(T)) < Us(yH,(T)) + yH,(T)X2*P(T).
Integrating the first inequality, summing the two, and taking expectations,

we obtain

T
E / U (t,c(t)) dt + Up(X2P(T))
0

T o~ A~
<E / Oy (t, yH, (1)) dt + Da(yH,(T))
0

T
+yE [ /0 H,(t)c(t) dt + H,(T)X>?(T)

<FE + zy.

/ " Bty yH (0) dt + Doy Ha (1))
0

In the last step, we have used the budget constraint (5.5.20) for the market
M,,. The above inequality implies that

Vu(z) < E +zy, £ >0, y>0,

/ "Byt yHo (1) dt + Do (uHL(T))
0

and (3.35) follows. N
Finally, let us assume V,(y) < oo. We define ¢, (t) = L(t,yH.,(t)),
B, = I(yH,(T)) and consider for each positive integer n € N the pro-

cess cf,")(t) = cu(t)1{c,(t)<n} + Yeo(t)y>n} s well as the random variable
Bl(;n) = Bul{BVSn} + l{BV>TL}‘ We set,

3

T
RO [ / H,(t)c{™(t) dt + H,(T)B™
0

which is finite because of the assumption (3.14). There is a portfolio-
proportion process p(-) for which X=™<{f”(T) = B{™ (Theorem
5.5.5); hence

; |
E / Ur(t,c{(2)) dt + Uzws"n} — zMy < V(™) ~ 2™y
0

< il;%[Vu(m) —zy]
<V (y).

To prove that equality holds in (3.35), it suffices to show that
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n—oo

T

lim (E [ / Us(t, ™ (t)) dt + U2(B£”))J —m(")y) =V,(y). (3.36)
0

From Lemma 3.4.3 we have

T
| 0@ - ym o) a
0
T
?=-/0 (U1t h(t, yH, (8))) — yH, ()1 (¢, yH, (t))] Liym, (ty>U1(t,n)} dt
T
3 /0 [U1(t,1) — yHo (8)] Liym, )<z (e,ny} dt

T
=/0 [U1(t, yHo () Ly 1, (5)>01 2,n))
+ (Ui, 1) = yHy (1)) 1y, (ty<vz (2,3 -

The last integrand is bounded from above by U, (¢, yH, (t)) + |Uy(t, 1)|, and

because Vu(y) < 00 and (3.34) holds, EfOT[ﬁl(t,yHu(t)) + [Us (¢, 1))dt <
oo. The integrand is bounded from below by

min[0, U1 (t, yH, (t)) dt] — |Uy (¢, 1)| — yH, (t),

which also is integrable. The dominated convergence theorem implies that

T T -
lim E [Ul(t,cﬁ"’(t)) —yHu(t)cﬁ"’(t)] dt=E / Ur(t, yH, (t)) dt.
0 /0

(3.37)
A similar analysis shows that
lim E [Ux(B{") - yH,(T)BSY| = EOa(yH, (T)). (3.38)
n—od
Equation (3.36) is the sum of (3.37) and (3.38). o

Let the initial wealth z be strictly positive. Our strategy now is to find

a process U(-) € Do for which the optimal pair (cs,ps) of (3.17), (3.21) for

the unconstrained Problem 3.2 is also optimal for the constrained Problem,
2.6. In other words, we seek a process o{-) € Dy that satisfies

V(z;K)=F

/ ' Ur(t, cs(t)) dt + Us(By) | = Vi (2), (3.39)
0

and
ps(t) € K for Lebesgue-a.e. t € [0, 7] (3.40)

almost surely. Remark 3.3 shows that such a P(-) should satisfy the
“complementary slackness” condition

C(@(t)) + p;(t)o(t) = 0 for Lebesgue-a.e. t € [0, T] (3.41)

almost surely as well, so that X®¢P(T) = X2*P(T) almost surely.
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Proposition 3.8: Let z > 0 be given, and suppose for some D(-) € Dy that
(3.40) and (8.41) are satisfied. Then the pair (cs, ps) of (3.17), (8.21) is op-
timal for the constrained Problem 2.6 and V (z; K) = V(). Furthermore,
o(+) minimizes V,,(z) over v(-) € D.

PROOF. From (3.40) and Remark 3.3 we see that

o T
V(z;K) > E /0 Ul(t,c,;(t))dt+U2(X""C"’p"(T))J

T
_E / Us(t, ¢3(2)) dt + Up(X2% P (T) )}
0

= Vs(z). (3.42)

Remark 3.3 also implies that V(z; K) < V,(z) for every v(-) € D. Hence
equality holds in (3.42), and 2(-) minimizes V, (z) over v(-) € D. Since po(*)
satisfies (3.40), it is optimal for the constrained Problem 2.6. i

The necessity of conditions (3.40), (3.41) for optimality in Problem 2.6,
and their precise relationship to (3.39) and other equivalent conditions,
will be explored in the next section. We shall see there that if we can find
o(-) € Do that minimizes V,(z) over v(-) € D, then the corresponding
pair (¢, ps) is indeed optimal for Problem 2.6; in other words, there is no
“duality gap.”

Remark 3.9: Recall from Remark 3.6.8 that if the utility functions are
given by

Us(t, ) = Us(z) = %zﬁ (3.43)
for some 3 < 1, 8 # 0, and if 7(-), 6(), and A(-) are bounded, then
Xo(y) = sy =0,y >0, (3.44)

for some finite positive constant x. It follows that

T

for all z > 0, and consequently V(z; K) is finite because of (3.7). Indeed,
for this result it suffices to assume only that

Urt,z) + Us(z) < k(1+2P), 0<t<T, z>0, (3.45)

where 0 < 8 < 1 and & > 0.

If in addition to the above assumptions (which include (3.43) and (5.2.4))
we have 3 < 0 and that v(-) is in the class D® of bounded processes in D,
then 7, (-) is bounded from below (see (2.1) and (5.5.3)), 6,(-) is bounded
(see (5.5.9)), and the argument of Remark 3.6.8 shows that X, (y) has the
form (3.44) and V,(z) < oo for all z > 0. In other words, D) C Dy.
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6.4 Equivalent Optimality Conditions

For a fixed initial capital z > 0, let (¢,) be a consumption and portfolio-
progortion process pair in the class A3(z; K) of Problem 2.6, and denote
by X (-) = X*%P(.) the corresponding wealth process in the market M(K).
Consider the statement that this pair is optimal for Problem 2.6:

(A) Optimality of (¢,5): We have
- .
V(z;K)=E [/ Ur(t,é(t)) dt + Up(X(T)) | < oo. (4.1)
0

We shall characterize property (A) in terms of the following conditions
(B)~(E), which concern a given process b(+) in the class Dy of (3.24). The
notation of (3.16)-(3.18) will be used freely in what follows.

(B) Financeability of (€s(-), Bs): There exists a portfolio-proportion
process p,(-) such that the pair (€5(-),ps(*)) is in the class Asz(z; K) and

the properties
po(t) € K, {(2(t)) + pj(t)2(t) =0 for Lebesgue-a.e. t € [0,T], (4.2)
X268 () = X (4.3)

are valid almost surely.
(C) Minimality of (-): We have

Vo(z) <V, (z), Wv()eD. (4.4)
(D) Dual optimality of o(-): With y = Ys(z), we have
Vay) <Vuly), Vu()eD. (4.5)

(E) Parsimony of 9(-): We have
T
E [/0 H,(t)es (t) dt + H,,(T)B,;J <z, Vv()eD. (4.6)

The portfolio-proportion process ps(+) in (B) is not assumed to be given
by (3.21) with v(-) = &(-); this follows from (3.22), (4.3), and Remark 3.3
(see (3.13)).

We have already encountered conditions (A)—(C) in Proposition 3.8 and
the preceding discussion. Condition (D) is the “dual” version of (C) in the
sense of convex duality. Condition (E) asserts that

) |
u(v) 2 E [ /0 H,(t)es () dt + HV(T)B,;J (4.7)

the “price of the European contingent claim Bsly—7y + fot cs(s)ds, 0 <
¢t < T in the market M,,” attains its maximum over D at v(-) = (), and
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this maximum value is
[/ Hy( t)dt + Hy(T)Bs | = Xs(Vs(z)) =z (4.8)

Theorem 4.1: The conditions (B)—(E) are equivalent, and imply con-
dition (A) with (p,é) = (ps,cs). Conversely, condition (A) implies the
existence of a process 0(-) € Dy that satisfies (B)-(E) with ps(-) = p(-),
provided that the utility functions U, and U, satisfy the conditions (3.4.15),
(3.6.17).

Theorem 4.1 is the central result of this chapter. It provides necessary
and sufficient conditions for optimality in Problem 2.6. Its condition (D)
is perhaps the most important, as it will provide the cornerstone for our
general ezistence theory in Section 5, based on methods from convex duality
and martingale theories (Theorem 5.4). Condition (D) also underlies the
computations of optimal consumption and portfolio policies in Section 6.
Even without such a general existence theory, either condition (C) or (D)
is sufficient for a complete treatment of logarithmic utilities (see Examples
4.2, 7.2, and 7.3), and condition (B) suffices for treating the important
case of independent coefficients and utilities of power type (Example 7.4).
The convex-duality approach also allows us to make connections with the
Hamilton-Jacobi—Bellman theory of stochastic control in Section 6,

The important special case of incomplete markets receives special
treatment in Section 7.

PROOF OF THEOREM 4.1: We first prove that (B)=-(E). Assume (B)
and let v(-) € D be given. From Remark 3.3, we have

X20Po (1) > XPeoPo (1) = Xp(t), 0< t < T

Condition (E) now follows from Remark 5.5.4 (recalling (2.6)) and the
equality X;(T) = B;.
We next prove (E)=(D). To begin, we note that (3.4.13), (3.4.14) imply

Ua(U3(€)) + EUS(€) = Ua(€) < Ua(n) +€m, VE>0, Vn>0.  (4.9)

Assume that 0(-) satisfies (E), and let y = V;(z). Let v(-) € D be given.
Take { = By = I,(yH(T)) so that Uj(€) = yHy(T), and take n = yH, (T)
n (4.9), which becomes

Uz(yH3(T)) + yHy (T)B; < Ua(yH,(T)) + yH,(T)Bs.

Similarly,
‘[~1(t’ yH;(t)) + yHﬁ(t)C{,(t)] dt

< /OT [ﬁl(t, yH,(t)) + yHl,(t)c;,(t)] dt.
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Summing these two inequalities and taking expectations, we obtain

y)+yE

/ Hy( dt+H(T)BJ

<Vily) +yE

/ H,(t)cs(t) dt + HV(T)B,;J .
0

By assumption,

/T H,(t)cs(t) dt + Hu(T)Bor )
0

[/ H(t)eo(t) dt + Hy(T)B | > E

and we conclude that (4.5) holds.

The implications (B)=>(A) and (B)=>(C) are consequences of Proposition
38.
(C)=(D): With y = Y;(z), we have

Vo(y) = Vi (Xs(y)) — yXo(y) = V( ) —xy
SVV()—zy<2up[ —&y] < Vu(y)

from (3.25), (3.27), and Proposition 3.7.

(D)=(B): Assume (D), and let c;(-), ps(-) be given by (3.17) and (3.21),
respectively. The corresponding wealth process X;'“’’?(.) in the market
M, is defined by the equivalent equations (3.1)- (3 3), where we replace
c() by ¢3(-) and p(-) by ps(-). In light of (3.22), we have

X5 () = X (), (4.10)

where the latter is given by (3.18) with (-) replacing v(-). We divide the

remainder of the proof into six steps.

Step 1. For any u(-) € D and any € € (0,1), the convex combination
(1 —€)2(:) + eu(-) is in D, because of the convexity of K and the positive
homogeneity and subadditivity of ¢(-) (see (5.4.3), (5.4.4)), which guaran-
tee that (1 — €)(-) + eu(-) satisfies (5.5.2). We shall be interested in two
particular choices of i(-). The first is p(-) = 0, which is an element of D
because 0 € K and ¢(0) = 0. The other is u(:) = () + A(+) for some
A(-) € D; this process p(-) is in D because K is a convex cone and thus
closed under addition, and {(-) is subadditive.

Let {7,}22, be a nondecreasing sequence of stopping times converging
up to 7', and consider the small random perturbation of o(-) given by

Ven(t) S 02

I
—— "
™~

) +€(pt) = o) 1fe<r,y
1—€)o(t) +eu(t), 0<t <,
(1), Tn <t <T.
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Because ve n(-) € D and #(-) minimizes V,(y) over D, we must have

Vo, ) — Vi ()

0<EY,,=-—22" PV Vee(0,1), n=12,..., (4.11)
El Ey
where
1 L. ~
Yor 2 = | {OoyAL. (1)) - Da(yHo(T)) |
€y

) ) _‘
+A {Ba(t, yHa, . (1) —Ul(t,yH,;(t))}dt]  (412)

Step 2. A straightforward computation using (5.5.7) and (5.5.10)—(5.5.12)
shows that

a Hy, ()
Acn(t) = H ()
2
= exp [— eN({EAT) — %(N)(t/\‘rn)
tAT, i
. /0 (¢((1 = )i(s) + ens)) - ¢(o(5))) ds|
where

Nt 2 /0 (072 (5)(u(s) — 2(5))) dWa(s),
4 : o (s $) — o(s))]1%ds.
/0” (8)(1(s) ~ (s

In the case u(-) = 0, we have

C((1=€e)o(s) + ep(s)) — C(2(s)) = C((1 — €)i(s)) — {((s))

whereas in the case u(-) = 2(-) + () for some
C((A—€)i(s) +enuls)) — ¢ D(s

\./}4
—
-
m
S
8
5
3

If we define

. iEu() = #() + A() for some A() € D,
and L(t) = fo &(s) ds, we obtain the lower bound
Aen(t) 2 Qen(t)
2 exp {—e(N(t ATn) + LEA T2)) — g(N)(t A Tn)} . (4.13)
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Step 3. For each positive integer n, we introduce the stopping time

7o 2 inf {t € [0,T); [N(t)| + (N)(t) + |L®)| > n

t
or / 10:(s)|% ds > n
0

3
} ! X5(s) = oA 2
or /0 (S(u)()) lo="(s)(1(s) = &(s)|*ds > n

or / (L(s) + N(s))?||o"(s)ps(s)||? ds > n} }\T.
0

Clearly, 7, T T almost surely as n — oo. According to the Girsanov' and
Novikov theorems (e.g., Karatzas and Shreve (1991), §3.5), the process

tAT,
Won®2W()+ [ Ou(s)ds, 05t <,
0
is Brownian motion under the probability measure

Py,n(A) £ E(Z;(1a)14], A € F(T).

With this choice of 7,, the process Q. (-) of (4.13) admits the lower
bound

Qen(t)>e ™™ 0<t<T,

and consequently,

1/ H®\  1-Acn(t)
Z(.l‘ Hﬁ(t))_ ) < Kn, 0SEST  (414)

holds almost surely, where K, C SUPgcecq %(1 — e7") is finite. Further-
more,

1-Acn
hlrg_’(t) SN({EAT)+ L(EAT).
€ €

Step 4. The functions —Us(-) and —Uy(t,-) have derivatives Iy(-) and
I(t,-), respectively, and these derivatives are nonincreasing functions
(Sectlon 3.4). For U,(-) we have the inequality

Uz(yH,..(T)) — Up(yHs(T)) < yHy (T)Ip(ye™" Ho(T))(1 — Aen(T))*.
From (4.14), we see that

<OalyH, () ~ UalyHo(TY) < Yo & Ky Ho(T)La(ye™ Ho(T))
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and also that

T~ 02y, (T) ~ DauHo(T))] = yHo(D) E(yHo (TN () + L(ra)
S yHy(T)Bs[N (1) + L(7)].  (4.15)

Because EY, 2 < KnyXs(ye™™), which is finite by the assumption o(-) €
Dy, we may apply Fatou’s lemma in (4.15) to conclude that

T B (Ta(yHy.,.(T)) ~ Da(yHo(T))] < B (Ho(T)Bo[N () + L(r)]}.
(4.16)
We proceed similarly with the difference
T —~
| Ot 0) - Oty Ho @)1

to obtain in the end, by analogy with (4.16), that

T / (Tt yHo.. () — D (¢, yHo ()]t

<yE {/0 Hy(t)eo(8)[INEAT) + L(EAT,)) dt}. (4.17)
Finally, from (4.11) and (4.12) we have
IE {H,;(T)B,;[N(Tn) + L(7,)] + /: Hy(t)eos () [N(EATR) + L(EA T,)] dt}
> 0. (4.18)
Step 5. We next prove that
E/OTn Hy ()Xo (8)[ps (8) (u(t) — 2(1)) + €(B)] dt > 0, n=1,2, .. . (4.19)

To see this, we first recall from (4.10) and (3.1) that

X0\, el _ X0
’ (S(()g)(t)) ” SO S(()a)(t)l’u(t)d(t) dWs (1),

_ Xu(1) X5(t)
=3 S((, © (dL(t) + dN(t)) + (L(t) + N(t)) d (S((,")(t))
+S(()g)(t) 5 () (u(t) — o(t)) dt
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Integration of this equation yields.
Xz“/ n

Xol™). (L) + N ) + /

So ' (7n) Y

™ Xo(t)

™ L(t) + N(t)
s ()

[p’ (@)(u(t) — 2(8)) + £(t)] dt

Cp (t) dt

+ (L( )+ N())o' (t)ps(£)) dWo (2).

By the choice of 7, the integrand of the Ité integral in this last expres-
sion is square-integrable, and thus has expectation zero under P; - Taking
expectations under this probability measure, we obtain

E /0 Ho ()Xo (8) () (u(t) — 2(8)) + €()] dt (4.20)
=F [(L(Tn) + N(7n))Hp (1) X5 (1) / Hy( )+ N(@))eo(t) dt} .

An application of the optional sampling theorem to the martingale of (3.19)
shows that (3.18) is still valid if we replace ¢ in that equation by the stopping
time 7,,. Using this fact, we rewrite (4.20) as

E /0 " Ho(t) X (8)[) (1) (u(t) — 2(6)) +£(8)] dt

-
=E [(L(Tn) + N(7)) (H,;(T B, + / Hy(t)ca(t) dt)

/ Hy(8)(L(t) + N(8))es dt]}

which is the left-hand side of (4.18), hence a nonnegative quantity. This
completes the proof of (4.19).
Step 6. We invoke Lemma 5.4.2 to obtain a process A() € D satisfying
(5.4.8) with p(-) = ps(-), and take u(-) = £(-) + A(") so that () = C(A()).
The inequality (4.19) becomes

E/ Hy (8) X (8)[ph(DA(E) + CAE®)] dt >0, n=1,2,...,
0

which, together with (5.4.8), implies
ps(t) € K for Lebesgue-a.e. t € [0, T] (4.21)

almost surely. From (5.4.5) we have also that

C(2(t)) + P, (t)2(t) > 0 for Lebesgue-a.e. t € [0,T)

almost surely. We next take u(-) = 0, so that £(-) = —((2(-)), and (4.19)
becomes
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E/OT" Hy ()Xo () [p;(8)0(t) + C(2(2))]dt <0, n=1,2,...,

which proves
¢(2(t)) + p5(t)(t) = 0 for Lebesgue-a.e. t € [0, T] (4.22)

almost surely. Conditions (4.21) and (4.22) are (4.2) of condition (B).
Condition (4.3) follows from (4.2), (4.10), and Remark 3.3.

(A)=(B): This implication is proved in Appendix C; the proof may be
skipped on first reading without harm, as this implication will not be
invoked in the sequel. 0O

Example 4.2: U(t,z) = Us(z) = logz, V(t,z) € [0, T] x (0, 00).

As in Example 3.6.6, we have in this case Li(t,y) = L(y) = %, and con-
sequently, Uy(t,y) = Uz(y) = —(1 + logy) for 0 < y < oo. Furthermore,
for all processes v(-) € D, we have X (y) = L;’—l for 0 < y < oo and

V()= TJzi for 0 < z < co. In particular, Dy = D. Direct computations
show that for all v(-) € D, t € [0,T], z € (0,00) and y € (0, 00),

_ y _ z _(T+1-t)z
rToRm YT Tone Y Tione

po(t) = (071 (1))'0,(t) = (o(t)o’ (t)) ' [b(t) + 6(t) — r(t)1 +v(t)],
Vo(z) = (T + 1) log <TL+1) + f(v),
Vo(y) = —(T +1)(1 +logy) + f(v),

where

A

i
flv)=—E (/ log H,(t) dt + log H,,(T)) .
0
For v(-) € D, we have

“Elog ()= B [0+ [[ (1) + ) + J (o)) ).

so that conditions (C) and (D) amount to pointwise minimization of the
expression

1 , ~
¢(v) + EHO(t) + o7 t)v||? over ve K, (4.23)
where K, the effective domain of the function ¢(-), is the barrier cone of
—K (see (5.4.2)).
We denote by L*(R™ x RV) the set of nonsingular N x N matrices. For
vEK,f0€RY and o € L*(RN x RV), we define

1
9(v,0,0) £ ¢(v) + 516 +o7 02,
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For fixed § € RN and o € L*(RN x R"), the function v s 9(v,0,0) is
strictly convex, and thus has a unique minimizer. For each positive integer
n, we denote by K., the compact set K N {v € RV, flvll < n}, and define
gn to be the restriction of g to K, x RN x L*(RM x R™). According to
measurable selection theorems of Dubins-Savage (1965) type (see Schal
(1974), (1975) or Bertsekas and Shreve (1978), Proposition 7.33), for each

n there is a Borel-measurable function ¢,,: RY x LX (R x RN) — K, such
that

9n(pn(8,0),6,0) = min g(v,0,0), V9eRY, oc L*(RN x RN).
veK,,

Because g¢(v,0,0) — oo as ||y — oo, for fixed § € RN and o €
L*(RN x R™), the function values ¢n(f,0) are bounded uniformly in
n, and hence do not depend on n for n sufficiently large. We define
@(6,0) = lim,_,o, pn (0, o), which satisfies

9((0,0),0,0) = ming(r,0,0), V9eRY, oce L*(RY x RM).
veEK

The progressively measurable process
2(t) 2 0 (6(1),0(t)), 0<E<T,
is in D and minimizes the expression (4.23) for all ¢ € [0, T) almost surely.
The inequality
g(2(t),0(t),0(t)) < g(0,8(t),a(t)) (4.24)
gnd (2.5) imply that

. 1 2 ) T
E /0 (@) dt+ B /0 16(t) + o(t)o(t)||?dt < E /0 16N dt < o0,

and thus f(#) < oo; in particular, V;(z) < oo for all z > 0.

The implications (C)=>(A) or (D)=>(A) of Theorem 4.1 show that the op-
timal consumption, portfolio-proportion, and wealth processes for Problem.
2.6 are given by

i(t) = T _(T+1-#)z
W= T )HEE) T T+ )H(t)’
B(t) = (a(t)o’ () b(t) + 6(t) — r(t)1 + 6(t)], 0<t< T

X(t)

and the value function of (2.16) is
V(z; K) = Vo (z) = (T + 1) log <TL+1) ¥ f(D) <00, 0< 2 < 0.

It is perhaps worth noting in this example that if 6(-) satisfies the Novikov
condition E [exp {% fOT ||0(t)||2dt}] < oo mentioned in Remark 1.5.2, then
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(4.24) and (2.1) show that 6,(-) also satisfies this condition; thus both
financial markets Mg and M are “standard” (in the sense of Definition
1.5.1) and complete. O

6.5 Duality and Existence

We now turn to the dual optimization problem associated with the “primal”
constrained Problem 2.6. The dual problem is, for fixed y > 0, to minimize
V. (y) over v(-) € D, and its value function is defined by

V(y) & Jnf Vo(y), 0 <y < oo, (5.1)

in the notation of (3.27), (3.33). This problem is suggested by condition (D)
preceding Theorem 4.1, which amounts to V(y) = V; (y) for some D(-) € Dy
and y = Y;(z). The terminology “dual” comes from the fact that, as we
shall show in Propositions 5.1 and 5.2 below, the value function V() of
(5.1) is the convex dual of the concave function V(-; K) of (2.16), in the
sense of Definition 3.4.2.

We shall assume throughout this section that

V(y) < o0, 0<y < oo. (5.2)

Our plan in this section is to show that under reasonable conditions, for
any given y > 0, the dual problem (5.1) has a minimizer vy(-) € Dy; i.e.,

Wy € (0,00), 3 1,(") € Dy such that V(y) = ¥, (y) (5.3)

(see Theorem 5.3, whose proof occupies a good part of this section). We
can then argue that in conjunction with Theorem 4.1, this solution implies
the existence of an optimal consumption and portfolio-proportion pair for
the “primal” Problem 2.6 (see Theorem 5.4).

Proposition 5.1 (Weak Duality): Suppose (5.2) and (5.3) hold. Then,
for any given y € (0,00) and with z = X, (y),

(i) there exists an optimal consumption and portfolio-proportion process
pair (¢,p) € As(z; K) for Problem 2.6, and '
(ii) we have

V(y) = sup[V (& K) - £y. (5.4)
£>0
PROOF. First, let us note that (5.3), (3.10), and (3.27) imply
V(z; K) < V(y) +zy, Yy >0, Yz > 0. (5.5)

Now fix y € (0,00), let z = X, (y), and note that the assumption ‘7,,” (y) <
Vou(y) for all v(-) € D of (5.3) amounts to (4.5) with o(-) = yy(-). The
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implications (D)=(B), (D)=>(A) in Theorem 4.1 and Proposition 3.8 show
that the pair (c;(-),ps(-)) given by (3.17), (3.21) is in Ajs(z; K) and is

optimal for Problem 2.6. By (3.17), (3.22), (3.18), and (3.16),

co(t) = L (¢, yHa(t)),
X5 P(T) = X5(T) = By = L(yHu(T)),

T
z=XZP(0) = E [ / Hy(t)e(t) dt + Hy(T) XS (T) | |
0

In other words, equations (3.29)—(3.31) hold and imply equality in (3.28);
ie.,

V(y) = Vs(y) = Va(z) — 2y. (5.6)
But condition (B) also implies, via Proposition 3.8, that
Vi(z) — zy = V(z; K) — zy, (5.7)

which, of course, is bounded above by sup..o[V(¢; K) — €y]. We have
obtained the inequality

V(y) < sup[V (& K) — &yl.
£>0

The reverse inequality is obvious from (5.5), and (5.4) follows. i
Proposition 5.2 (Strong Duality): Assume that (5.2), (5.3), and
Us(o0) = 0o (5.8)

hold. Then, for any given z € (0,00), we have

V(z; K) = ;r;{)[v(y) +zy], (5.9)
and the infimum in (5.9) is attained at some y = y(z) € (0, 00) that satisfies
T =X, (y).
PROOF. From the nonincrease and convexity of Uy (¢, -) and U(-), we have,

in conjunction with (3.27), (3.33), and Jensen’s inequality,

T —~
%) 2 | Dit.uBH(0)dt + DauBHLT))

T~ (. y = (y
2/ U, (t, —) dt + Uy (—), 0<y<oo, v(-)eD, (5.10)
0 S0 S0

where s¢ is as in (2.4) and we have used (2.1). Since U2(0+) = Uy(oo) =
0o (Lemma 3.4.3), it develops that V(0+) = co and the convex function
fe(n) 2 V(n) + 21, 0 < 1 < o0, satisfies f,(0+) = co. But from (5.4),

. 3, Ty
fe(y) = gglg[V(E;K) —&yl+zy >V (E’K) +5,
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which shows that f.(co) = oo. Being convex and finite on (0, 00), the
function f, is continuous there and must attain its minimum at some y=
y(z) € (0,00). We have to show that z = X, (y)-

To see this last property, observe that

g [+ ] = g [+ )
> inf |V
SH
=V(y) +zy
=W, (y) +zy,

where v, (<) € Dy is the process of (5.3). In other words, the function v —
Vyy(uy) + zuy attains its minimum over (0,00) at u = 1. But from (3.32)
this function is continuously differentiable with derivative zy — y&,, (uy),
which has to vanish at u = 1. Thus X, (y) = z, as desired.

It remains to prove (5.9). As in Proposition 5.1 we have (5.6) and (5.7),
but now with (-) replaced by v,(-), and these equations imply

Vi@ K) =V, () + 2y = V() + oy 2 inf [Fn) +2n]

The reverse inequality is a consequence of (5.5). ]

Our next result provides sufficient conditions for requirement (5.3) to be
satisfied.

Theorem 5.3 (Existence in the dual problem): Suppose that (5.2) holds,
and that the utility functions U, (t,-), Ua(-) satisfy

Ui (t,0) = oo, 0<ilt’1£T Ui(t,0) > —c0 WVt € (0, 0), (5.11)
UQ(OO) =00, U(0)> —oo, (5.12)

as well as (3.4.15), (3.6.17). Then (5.8) holds.

We devote the remainder of this section to the proof of Theorem 5.3.
But first, let us combine it with Propositions 5.1 and 5.2 to derive the:
basic existence result for the primal, constrained Problem 2.6.

Theorem 5.4 (Existence in the primal problem):  Under the assumptions
of Theorem 5.3 we have V(z; K) < oo for every & € (0, 00), and there exists
an optimal pair (&, p) € As(x; K) for Problem 2.6. In other words, condition
(A) preceding Theorem 4.1 holds.

The. conditions (5.11), (5.12) exclude logarithmic utility functions; for
these, however, we have the direct arguments and explicit computations
presented in Example 4.2, and thus need not appeal to general existence
results.

In order to proceed with _the proof of Theorem 5.3, let us fix y > 0 and
extend the functional v — V,(y) given by (3.27), (3.33) for v(-) € D to the
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entirety of the space H of Definition 5.5.1, by setting

i
V,(y) = E /0 Ui(t,yH, (1) dt + To(wH(T) |, v() e M. (5.13)

This definition is possible under the assumptions of Theorem 5.3 because
U(t,y) = sup[Us(t,z) — zy] > Uy(t,0) > inf_Ui(t,0) > —oo, (5.14)
£>0 0<t<T
Us(y) = sup[Uz(z) — zy] > U2(0) > —o0; (5.15)
>0

thus the expectation in (5.13) may be 400, but is well-defined.
Remark 5.5: Under the conditions of Theorem 5.3,

Vo(y) =00, v()eEH\D, y>0. (5.16)

To see this, use Jensen’s inequality and the convexity of z — U, (ye*) from
(3.4.15") to write

Vo(y) 2 &+ EUs(yH,(T))
>k+ ﬁg(yeEk’g Hu(T))

~ T T
>k+Us, (sﬁeTEfo llev(t)ll2dt—Efo C(U(t))dt)
0

for a suitable constant k > —oc. If v(-) € H\ D, then EfOT ¢(v(t)) dt = 0.

Under the conditions of Theorem 5.3, U2(0) = U,(00) = o0, and v(-) €
H \ D implies (5.16).

Lemma 5.6: Fiz y > 0. Under the assumptions of Theorem 5.8, the
Junctional v — V, (y) of (5.13) is convex, coercive, that is,

Vuly) = o0 i 1] - oo, (5.17)
and lower semicontinuous; i.e.,
Vo(y) < lim,_ oV, (8) if [ —v] — 0 as n — oo.

PrOOF. Note first that
t t
log H,(t) = —A(t) —/0 r(s)ds _/0 (6(s) + o™ (s)r(s)) AW (s)
5 [ 1o+ @@l ds - [ s

Is a concave function of v(-) € D. Let vy(-),v(-) € D and a € (0,1) be
given. We have

log Howy +(1-a), (t) 2 alog H,, (t) + (1 — o) log H,, (¢). (5.18)
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The functions z — U 1(t, ye?*) and z — U (ye?) are nonincreasing (Lemma
3.4.3) and convex (equation (3.4.15”)), and so the inequality (5.18) leads
to

U1 (ty yHaul +(1—a)vs (t)) < [71 (tv yeXp(a IOg HV1 (t) = (1 - a) IOg HV2 (t)))
< aﬁl (tv yHm (t)) =+ (1 - a)fjl (tv yHt’z (t))y
and similarly,

Ua(yHan+(-as (1)) < D2 (yH,, (T)) + (1 - a)Ta(yH, , (T)).

These inequalities imply the convexity of v s V, (v).
For v(-) € H, we have

V,(y) > E/OT U, (%exp {—log Zul(t) }) dt

+ EU, | = -1
’ (so e"p{ 8 Z.(T)

|
> /O.Tﬁl (%exp{—Elog%(t)}) dt
R

> U; [ = i 2
2 /0 1 (30 exp{ 2E/0 16 ()l ds}) dt

_ P
+ U, (% exp {—%E/O ||91,(s)||2d3}) .

és [¥] — oo, condition (5.2.4) implies that EfOT 16.(s)||?ds — oo. But
U2(0+) = Uz(00) = oo, and (5.17) follows.
Finally, let {v,,(-)}32, be a sequence in H converging to a limit v(-) € H

in the norm of Definition 5.5.1. We may extract a subsequence {v,, (-)}2,
for which -

Jim Vo, (v) = lim, oo Vi,, (v),
and we seek to show that
V,(y) < lim V. .
() < lim V., (v) (5.19)
Consider the martingales
4
M, (t) 2 / 8,.(s)dW(s), 0< t<T.
0

According to the Burkholder-Davis—Gundy inequality (Karatzas and
Shreve (1991), Theorem 3.3.28),
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T
&l mmp IMun(t)—Mu(t)IQ] <KE [ 161,(5) ~ ool ds
0<t<T Jo

for some constant k, and the right-hand side approaches zero as n — oo.
Therefore, we may choose a further subsequence, also labeled {vn, ()},
along which we have

klim Un,(t) = v(t) for Lebesgue-a.e. t € [0, T,

lim sup |Z,, (t)—2Z,(t)=0
k—o0 0<t<T ke

almost surely. These equalities and the lower semicontinuity of {(-) imply

limy ooH,, (t) < H,(t), 0<t<T,

almost surely. Because (71(t, ) and Uy(-) are nondecreasing and continuous
on (0, 00), we have the almost sure inequalities

limy U1 (t,yH,,, (£) > U1t yH, (), 0<t<T,
1i_mk—'00[72(yHVnk (T)) > [72(3/HV(T))-

Moreover, (5.14), (5.15), and Fatou’s lemma give us

Jim V., (y)
> )
= lim F / Ui(t,yH,, (t))dt+ Ux(yH,, (T))}
k— 00 0 k k

e
> Uy oo [ Oi(t,yHi, () d +lim, o BT (yH,,, (T))
0
b - -
> B [ty D1(t,uHy, () dé + B [, o Dr(yH,,, (1))
J0
= Vu(y) o

T — _—
>E /0 Oy (t, yHo (t)) dt + Ua(yH, (T))

PROOF OF THEOREM 5.3: Let y > 0 be given. From Lemma 5.6 and
Proposition 2.12 in Ekeland and Temam (1976), the convex, coercive, and

lower-semicontinuous functional H 3 v — V,(y) € (—o00, 00] attains its
infimum on the Hilbert space H:

lélf{ Vi (y) = Vi(y) for some () eH.

According to Remark 5.5 and (5.2), Vp(y) = V(y) < 00, so 7(-) must be
in D. It remains to show that £(-) actually belongs to the class Dy of (3.24).
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The finiteness of V;(y) and the inequality (3.35) show that V;(z) < oo
for all z > 0. It remains to check that
Xs(n) < oo, ¥ > 0. (5.20)

From the decrease of U, (3.4.12), the decrease of I, and (3.6.17) (in
particular, (3.4.16"”)), we have

0(n) - T(o0) > Uln) T (g) -/ o

@, _. n
(ﬂ )I(ﬁ)
%nl(n), 0 <7< oo,

where § € (0,1) and v € (1,00) are as in (3.4.16"), and U(-) stands
generically for U(t, ) and Us(-). Consequently,

v

3%

N .
yXo(y) = FE [/0 yHo ()1 (t, yHo(t)) dt + yH,(T) 1o (yHa(T))J

T
<P g [ /0 Ty (t, yHy (1)) dt + Ta(y H(T))

1-3
_ (/()Tﬁl(t,oo) +(72(oo)>]

<2 [Va(y)* (/0 Ul(t,o>dt+Uz(0>>] <

where the last inequality is a consequence of (5.14) and (5.15). This proves
(5.20) for 7 = y (but not for all > 0, because ¥ depends on y). Assumption

(3.6.17") (see the sentence following that assumption) now implies that
(5.20) holds for all 5 > 0. a

Remark 5.7: It can be checked rather easily that utility functions of the
form

1 _ 1
Ui(t,z) = Be atgB Us(z) = Be_aT:Lﬁ, 0<t<T, >0,

where o > 0 and 0 < 8 < 1, satisfy all the conditions of Theorems 5.3 and
5.4.

Remark 5.8: The theory of Sections 2-5 goes through without change
if one-sets formally U; = 0 and admits only the identically zero con-
sumption process throughout. This leads to the problem of mazimizing the
expected utility from terminal wealth only. On the other hand, the condition
Us(00) = oo was used extensively in this section. The situation with regard
to existence of optimal solutions when U, = 0 is not well understood.
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6.6 Deterministic Coefficients, Cone Constraints

In this section, we consider Problem 2.6 and its dual under the assumption
that r(-), 6(-), and o(-) are continuous, deterministic functions; A(-) = 0;
and the constraint set K is a cone. The analysis proceeds through a study
of the Hamilton-Jacobi-Bellman (HJB) equations, and for this we use the
conditions placed on utility functions in Section 3.8 rather than conditions
(3.4.15), (3.6.17) used in the previous section of this chapter. In particular,
all functions U8 (z) given by (3.4.4), (3.4.5) are included, not just those
for which 0 < 8 < 1. (We use 3 for the exponent in place of p throughout
this chapter, reserving the symbol p(-) for portfolio-proportion processes.)

More specifically, we assume in this section that Assumptions 3.8.1, 3.8.2
hold, and, in addition, the following condition is satisfied.

Assumption 6.1: The process o(-) is nonrandom, o(t) is nonsingular for
every t € [0,T], and o(-) is Holder-continuous, i.e., for some k > 0 and
p € (0,1}, we have

lo(t1) — o(t2)ll < &lt1 — ta2]?, ¥ t1,t2 € [0,T].

In particular, o(-) and o~ (-) are both bounded, and o~1(-) is also Holder-
continuous.

Assumption 6.2: The constraint set K 1s a nonempty closed conver cone.

From Assumption 6.2 we see that K is the polar cone of —K, which is
Aetosed. On K, the support function {(-) is identically zero (Rock-

Our aim is to study the time-dependent generalization of Problem 2.6 via
the time-dependent generalization of Problem 3.2. Toward that end, for 0 <
t <T,z >0 and with (¢(-),p(-)) a consumption and portfolio-proportion
process pair, we define the corresponding wealth process X%%¢P(s), t <
s <T, by

Xt,r,c:P(s) s c(u)du o s M .
So(s) +/t So(u) +/t AD) P’ (w)o(u) dWo(u)

(cf. (2.7)). The process X*%P(.) reaches zero no later than the stopping
time

Te,p 2 inf {s € [t,TY; /ts ||¢7'(u)p(u)||2 du = oo}
(cf.(2.9)). We set

Tt,0 é inf {S S [t, T], Xt,a:,C,p(S) = O}a



292 6. Constrained Consumption and Investment

and define A(t, z; K) to be the set of all consumption and portfolio-process
pairs (c(-),p(-)) that satisfy the almost sure conditions

c(s) =0, Lebesgue-a.e. s¢€ [12,0,T),
p(s) € K, Lebesgue-ae. sc [t,T).

Following (2.15), (2.16), we set

As(t,z; K) = {(c,p) € As(t, z; K); E/t—T min[0, U, (s, ¢(s))]ds > —oo,

E (min[O,Ug(Xt’z’c”’(T))]) B —oo}
and define the time-dependent value function
i
V(t,z; K) 2 sup E [/ Ui(s,c(s))ds + Ug(Xt’x’c’p(T))J . (6.1)
(C,p)EA(t,I;K) i

We show below that the function V(,5K) : [0,T) x (0,00) — R of
(6.1) is continuous and satisfies the constrained Hamilton—Jacobi-Bellman
equation (see Theorem 3.8.11 for the unconstrained case)

1
Vi(t,z; K) + max [—Ha'(t)pllzﬁVm(t,r;K)
0<c<oo | 2

peEK

+ (r(t)z — c+ zp'o()0(t)) Va (¢, z; K)+ U, (4, c)J =0 (6.2)
for 0 <t < T,z > 0. By definition, V'(-,-; K) satisfies the boundary
conditions

V(t,z; K) = Ux(z), z>0, (6.3)
T
V(t, 0, K) = / Us(t,0)dt + Us(0), 0<t<T. (6.4)
t

We approach the constrained HJB equation through the dual problem.
For () € D, t € [0,T), and = > 0, we determine XE®eP(.) by the equation

(cf. (3.1))

XLmer(s) ? c(u)du ® XE®ep(u)
Wy Tl eyt )
Sp " (s) t Sp(u) t Sy (u)
t<s<T,

p'(w)o(u)dW, (u),

or its equivalent variations similar to (3.2) and (3.3). We define A, (t,z) to
be the set of all consumption and portfolio-process pairs (c,p) for which

c(s) =0, Lebesgue-a.e. s € [Tt,u’T]
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almost surely, where
Tt = inf {s € [t, T); X4®P(s) = 0}.
Following (3.5), (3.6), we set

T
Agy)(t’ z) = {(C,P) € A (t, z); E/t min[0, U (s, ¢(s))]ds > —oo,
E (min|0, Ug(Xf,’z’c’p(T))]) > —oo} ,

T .
V.(t,z) a sup E [/ Ui(s,c(s))ds + U2(Xf;z’°”’(T))J .(6.5)
(e.p)eal”) (t,z) t

For v(-) € D and t € [0,7), we introduce the processes with time
parameter s € [t, T,

Zult,5) 2 24D _ {~ [ e - [ ,HOV(U)IFdU} ,

@ =
H,(t,s) 2 Z"((j) =exp{—/tsr(u)}Zu(t, 5).

The nonnegative function

Pl

T
Xty & E [ / H,(t,5)\(s,yH, (¢, 5))ds + H, (t, T) L(yH, (¢, T))J .

0<t<T, y>0, (6.6)

is finite if v(") is in the set Dy of (3.24). In this case, X, (t, ) is a strictly de-
creasing function mapping (0, 00) onto (0, 00) and has a strictly decreasing
inverse Y, (t,-), likewise mapping {0, o0) onto (0, 00).

For v(-) € Dy we have, just as in Remark 3.6, that

Vo(t,z) = Gu(t,V(t,z)), 0<t<T, z> 0, (6.7)

where

T
GV(tv y) é E ’:[ Ul(Il(sv yHV(tvs))) ds + U2(I2(yHV(tv T)))J . (68)
Furthermore,
Vo(t,y) 2 igg[Vu(t,Z) - zy
=Gu(t,y) - YA, (t, )
D -
=F [/t Uy (3, yHu(tv 3))d3 + U2(va(t’ T))J

<oo, 0<t<T, y>0 (6.9)
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(cf. (3.27)), and for v(-) € D\ Dy, we follow (3.33) and define

T
Vult,y) £E [/ Ui(s,yH, (2, s)) ds + Ux(yH, (¢, T))J )
t
y>0, v()eD\Dy. (6.10)
Proposition 3.7 can be adapted to the time-dependent case to ensure that
i
E'/ min|0, U\ (s,yH,(t,s))]ds > —c0, E (min[O, Ug(yH,,(t,T))]) > —00,
t

and hence
T ~ —~
E [/t Uy (s, yH, (¢, s))|ds + |Uz(yH, (8, T))]J < o0 (6.11)

if V,(t,y) < oo. Also, as in (3.35), V,(¢,y) < oo implies
sup[Vi(t, 2) — ay] = Vi (y). (6.12)
From the theory of Section 6.5—in particular, from (5.4)—we expect
V(t,y) £ inf V. (t,y) (6.13)
to be the convex dual of the function V (¢, -; K) in (6.1), i.e.,
V(t,y) = V(L& K) =€y, 0SE<T y>0.  (6.14)

From Theorem 3.8.12, we also expect V to satisfy a linear partial differential
equation, which turns out to be (cf. (3.8.44))

Vi(t,y) + % mig [16(¢) + 07 Oy Vo (t,9) — By (8,9) + i (2, 1)
=0, 0<t<T, y>0, (6.15)
as well as the terminal condition
V(T,y) = Ualy), y > 0. (6.16)

Our program then is to construct V via (6.15), (6.16) and in the process
to obtain the minimizer () in (6.13). Then, Just as in Theorem 4.1, we
discover that when v(-) = 9() in (6.5), the maximizing (c,p) € Ag") (t,z)
is optimal in (6.1). Finally, we prove (6.14), (6.2) and obtain the optimal
(¢, p) for Problem 2.6 in feedback form.

We begin this program with a study of the minimization appearing in
(6.15). Given € > 0, let L (R™;R") denote the set of N x N nonsingular
matrices ¢ whose operator norm

A
lell= sup |oz|
TERN |zl =1
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sufficiently small € > 0. Define the function

h(6,0) £ inf (18 + 07 v
veEK

h(8,0) =0 +07'Y(8,0)| for8eR", occ L.(8,0).

Lipschitz continuous.
Proor. For 0,,0; € RN and 04,0, € L (RY; RY), we have

h(81,01) = h(62,02) < |61 + 07 Y (82, 02)|| — 1|82 + o5 Y (B2, 02) |
S N6y =62 + (07! ~ 051)Y (82, 02)||
<16y =62l + lo7 ! — o5 |1 T (82, 02)|

1
< |16y — 82| + 6-2||T(92,02)||||01 — o2l
But

(8,01 < llo6 + Y8, 0)|| + || — o8]
< llolllle + =116, 0) + flo|l (18]l
= llo|(r(6, ) + |I6]])
< 2o |11l

It follows that
h(6r,01) = h(62,02) < ||01 — 62| + 632||02||||52||||01 — o2,
and reversing the roles of 8,0, with 62,02, we obtain
|h(61,01) — h(82,02)| < (161 — 65
+ Zmax{loallul, loall10al} - o — osl.
In light of Lemma 6.3, we may rewrite (6.15) as

= 1 - = ~
Ve(t,9) + 102 Oy Vi (8, 9) — r(®)yVy (8, 1) + Th (8,3) = 0,
0<t<T, y>0,

<1162 =8l + llor M llloz oy — o2l T (B2, 02) |
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satisfies ||of| > €. Then |lo='|| < 1 for every o € L(RN;RN). Recall from
(5:2.4) that we have assumed o(t) € L (RV;RY) for all 0 < ¢ < T for

mapping RY x L. (RV; RN) to [0, 00). Because the mapping v — |0+~ 1y|
is strictly convex and lim, e [|6 + 07 'v|| = oo for each fixed (,0) €
RN x L (RN;RV), there is a unique minimizer v = Y(4,0)in K; ie.,

Lemma 6.3: The function h:RN x L(RV;RN) — [0,00) is locally

a
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where
2(t) = Y(6(¢), o(t)), 6:(t) = 6(¢) + o N t)b(t). (6.17)

Assumptions 3.8.1 and 6.1 guarantee that 162()Il = R(6(-),0()) is a non-
random, Hélder-continuous function, and hence all the results of Section
3.8 apply to the market M;, as we elaborate below.

Lemmas 3.8.4 and 3.8.10, coupled with Theorem 3.8.11, show that ¥(.) €
Do. According to Theorem 3.8.11, Vj(, z) is of class C*? on [0, T") x (0, o),
continuous on [0, T] x (0, co), satisfies the boundary conditions

Vo (T, T) = Uz(.’L‘), x>0,
T

V,‘,(t, 0) = / Ul(t, 0) dt + U2(O), 0<t<T,
t

and solves the HIB equation

0 1, 2 o 02
V. + max |- —Vi(t, ) 6.18
ot V(tvl‘) 0<c<oo [2 IIU (t)pll L 81‘2 ( 1‘) ( )
pERN

+(r(t)z —c+ zp'o(t)8;(t)) %V,—,(t, x) + Uy (2, C)J =0,0<t<Tz>0,

for the optimization problem without constraints on p(-). Theorem 3.8.12
implies that for all ¢ € [0, T},

%Vp(t, z) = Yot z), o> 0, (6.19)
Va(t,9) = Gs(t, y) - ys(t,y) (6.20)
T -
=E {/ Ui(s,yHy(t,s)) ds + U2 (yHy (8, T))J » ¥y >0,

0

—Valt,y) = —Xa(t,y), y>o0. 6.21
5y P60 = —Zs(t,y), y> (6.21)

Moreover, the convex dual function Vj in (6.14) is of class C'2 on [0, T") x.

(0,00), continuous on [0, T] x (0, 00), satisfies the boundary conditions
Vo(T,y) = Da(y), y > 0, (6.22)

and solves the linear, second-order equation

AYREZ o llVo Q.0 Voll, —r{t)y— o t7 U. ta
5 2 (hy) + 516211y 6y2V(t y) —r( )yayV( y) +Ui(t,y)
=0, 0<t<T, y>o0. (6.23)

Finally, every solution to (6.22), (6.23) satisfying the growth condition
(3.8.21) must agree with V.
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Theorem 6.4: Under Assumptions 3.8.1, 3.8.2, 6.1, and 6.2, and with
() given by (6.17), we have

V{t,z;K) = Vp(t,z), 0<t<T, z> 0, (6.24)

Vit,y) = Vilt,y), 0<t< T, y>0. (6.25)

The function V(-,-;K) satisfies the constrained HJB equation (6.2), and
V(:,") satisfies the linear, second-order equation (6.15). In terms of the
“feedback functions”

Clt,z) £ Li(t, Vs (t,2)), (6.26)

A ~1g. yﬁ(t’x)
e i R

the optimal consumption and portfolio-proportion processes for Problem 2.6
are giwen in “feedback form” as

&) =C, X (1), p(t) = P, X(@), o<t<T, (6.28)

0<t<T, z>0, (6.27)

with

X(t) £ Xo(t) = X, (t, 1 (0, T)Hp(8)) = X>5(t), 0<t<T, (6.29)
as in (3.18), (6.6), and (2.7).
The proof of Theorem 6.4 requires the following lemma.

Lemma 6.5: Let M (t),0<t<T, bea positive, continuous, local martin-
gale, and let : (0, o0) — R be a conver nonincreasing function satisfying
Elp(M(t))| < oo for every ¢ € [0,T]. Then O(M(t), 0 <t <T, isa
submartingale.

PROOF. Let {m}2, bea nondecreasing sequence of stopping times with
Tn 1 T almost surely and such that M@inrr),0<t< T, is a martingale
for every n. For € > 0 and x> 0, we introduce the function

oo (@)= [ 2O +@- D (e, 0<z<e
%~<x)—{fmx{¢(x),¢(e+,‘5}, Bze, (6.30)

where D*y denotes the right-hand derivative of ¢. Note that ¢, , is
bounded, convex, and nonincreasing. Jensen’s inequality implies that
Pe(M{EtNT,)),0<t< T, is a bounded submartingale. In other words,
forOSsStSTandAef(s),

/cpE,n(M(s/\Tn))dPS/cpE,N(M(t/\Tn))dP.
A A

Letting n — oo, we obtain

/ Pen(M(s)) dP < / Pen(M(t)) dP
A A
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by the bounded convergence theorem. Letting first ¢ | 0 and then k — oo,
we obtain from two applications of the monotone convergence theorem that

O
[ etenar < [ euw)ar

PROOF OF THEOREM 6.4: We first show (6.25), i.e., for every v(-) € D,
y>0,and 0<t < T,

Vz‘/(t, y) =FE

/T ﬁl (S, yHﬁ(ta 8)) ds + sz(ny,(t, T))

<E

/T fj(sv yHV(ta 3)) ds + ﬁ2(yHu(t,T))

=V.(ty). (6.31)

Of course, if V,,(t,y) = oo, this inequality is trivially true. If V, (¢,y) < oo,
we have (6.11). We will show below that

Ep(Z5(t,s)) < Ep(Z,(t,s)), 0<t<s<T, (6.32)
whenever : (0,00) — R is a convex nonincreasing function satisfying

Elp(Zs(t,9))] < 00, Elp(Z,(t,s))] < 0. (6.33)

o(2) = Uy (s, yzexp {— /t r(u) du}) ,

and then s =T and

T
w(z) = U, (yzexp {—/t r(u) du}) 1

we will obtain (6.31) from (6.32). .
To simplify notation we set ¢ = 0 in (6.32), i.e., we prove only

Ep(Zs(t) < Bp(Z,(t), 0<t<T. (6.34)

Taking first

Recall from (5.5.10) that
zot) = {~ [ g@awe - [ 1017 d).
0
Z,(t) = exp {—/t 0! (u) dW (u) — %/0 16, (w)|? du} .
0

We assume initially that for some k > 0, we have

16| 2 >0, 0<t<T, (6.35)
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and define

As(t) = /0 185 (@I du, A, () = /0 18, (2 du.  (6.36)

Because [|0;(u)]| < [|6,(u)|l, 0 < w < T, almost surely, we have A;(t) <
A,(t), 0 <t < T, almost surely. We extend 6:(") and 6,(-) to (T,00) by
setting 6, (t) = 6,(t) = 6,(T), for t > T, and subsequently extend A;(:),
Au(-) to (T, 00) via (6.36).

We next define the nondecreasing, progressively measurable process

A(t) £ inf{u > 0; Ap(u) = A, ()} > ¢
(recall here that Aj(-) is not random), so that
As(A(t) =Au®), t>0.

But A;(-) is continuously differentiable with derivative bounded from below
by k% > 0, so we may invert the above equation to conclude that A(:) is
continuously differentiable, Indeed,

ey — @I
O =T, (a1

Using the fact that 6;(-) is deterministic, we may construct a progres-
sively measurable process O(-) with values in the set of N x N orthonormal
matrices, and such that

VAR) O)85(At)) = 6,(t), t >0

holds almost surely. We define the N-dimensional vector of martingales
t
MO = (M0, My () = [ VAT O ) aW(w),
0

and note that (M;, M;)(t) = 6;A(t), t > 0, almost surely. Thus, there exists
an N-dimensional Brownian motion B(-) for which M(t) = B(A(t)),t>0
(see Karatzas and Shreve (1991), Theorem 3.4.6, for the one-dimensional
case, which can be easily extended using Lévy’s characterization of multi-
dimensional Brownian motion (bid. (1991), Theorem 3.3.16); alternatively,
this is a special case of Knight’s theorem, (ibid. (1991), Theorem 3.4.13)).
Changing variables in the formula for Z,(-) (ibid. (1991), Proposition 3.4.8),
we have

ATL() 1 AT '
Z,(A71(t)) = exp { [ wawew - [ e du}

A7)
= exp { = | VA (u) 0, (A(u) O’ (w) dW (u)
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;1 A1) 5 ' u'
= /0 165 (Au))|2A'( )d}

—rexg {— /0 "0 oA dvrw) - : /0 1661 ds}

= o |- [(aane) - [ 1017as).

This shows that Z,(A~'(t)) has the same distribution as Z;(t), and thus
Ep(Z5(t)) = Ep(Z,(A71(t))).

Lemma 6.5 implies that ¢(Z,(-)) is a submartingale. Because A—l.(t)
is a stopping time, and A~1(t) < ¢ almost surely, the optional sampling

theorem gives
Ep(Z, (A7) < Ep(Z,(t)).

We have established (6.34) under the assumption (6.35). .

Indeed, we have proved that whenever #(-) is nonrandom and satisfies
(6.35), v(-) € D, and [|6,(t)|| < [16.(¢)ll, 0 < ¢t < T, almost surely, then
(6.34) holds. If 2(-) does not satisfy (6.35), we may construct sequences
{00 () o1, {va(1)}52, such that for each n, O () is nonrandom, ||, (¢)|| >
> 162, @)l < [16,,,(t)]] for 0 <t < T, and

T 7d
im E [ |6, (t) — 65(t)||?dt = lim E / 6., (£) — 6, ()||? dt = 0.
0 70 0

n—oo
Consequently, along a subsequence (which may depend on t), we have
Z; (t) = Zp(t) and Z,, (t) — Z,(t)
almost surely. We have already shown that
Ep(Z5,(t)) < Eo(Zy, (1), n=1,2,..,

and it remains to pass to the limit. If ¢ is bounded, we may use the b.ounded
convergence theorem to do this. Even if ¢ is unbounded, the function @
of (6.30) is bounded, so

EQOe,n(Zﬁ(t)) < ESOE,K(ZV(t))'

Letting first ¢ | 0 and then kK — oo, we obtain (6.34) from tW(? applica-
tions of the monotone convergence theorem, using (6.33). Equation (6.25)
is proved. - .

From (6.25) and (6.23), we see that V satisfies the hm?a.r, second-order
partial differential equation (6.15). Because (6.25) is condition (D) of The-
orem 4.1, we have immediately that conditions (A), (B), (C), and (E)
hold. In particular, the first sentence of Theorem 4.1 asserts that the op-
timal consumption and portfolio-proportion processes for Problem 2.6 are

6.6 Deterministic Coefficients, Cone Constraints 301

é(') = co(-), P() = ps(-) given by (3.17), (3.21), the optimal processes for
Problem 3.2 in the market M;. Equation (6.24) with t = 0 follows: its
verification for ¢t # 0 is a straightforward variation of the above argument.
Applying Theorem 3.8.8 and equation (3.8.3) to the market M 7, we obtain
(6.26)—(6.29).

It remains only to show that the unconstrained HJB equation (6.18)
reduces to the constrained equation (6.2), i.e., to show that

A 1 ’ 2 26_2 - ’ N ﬁ -
R max [2 I/ P53 Ve 0,2 + (o 1000) + 50(0) 2 2 Vot )

agrees with

L 2 max 1||¢7'(t) “2128_2%@ z)+ 'a(t)O(t)IEV (t,z)
 peK |2 PI® 5z Vo b & oz V|

Now, R > L, since p'v > 0 for every p ¢ K, v € K (see (5.4.5)) and
a—iV,;(t, z) > 0. On the other hand, the maximum in the definition of R is
obtained by

%Vﬁ(tv Jj)

= (o' 65
p= W) S

= P(t,z),

according to (6.19), (6.26). But £(¢) minimizes 16(t)+o~(t)v| over v € K,
80 6 (t) is orthogonal to o1 for every v € K. In other words,
VP(t,z)=0, VweK,
and now (5.4.5) shows that P(t,z) € K and V'(t)P(t,z) = 0. It follows
that R < L. =
Example 6.6 (Constant coefficients): Consider the case of constant
r()=r>0,0()=80,0()=o0, and A() = 0. Assume that
Uit z) = e~y (), Ua(z) = e‘aTuz(z), 0<t<T, >0,

where o« > 0 and u:(0,00) — R and uy: (0,00) — R are three-times
continuously differentiable utility functions. Assume further that (3.8.51)
and (3.8.52) are satisfied and y 2 31651 > 0. Then X;(t,y), Gs(t,y), and
Va(t,y) = V(t,y) are given by (3.8.53), (3.8.54), and (3.8.55), respectively.

Example 6.7 (Utility functions of power type): Fix B € (—oo, 1)\ {0}

and assume
1 R
Ul(t,z)=U2(z):Bzﬁ, 0<t<T, z>0.

We know from Example 3.8.13 that

Xﬁ(t7y) = k(t)yﬁ_i_l, Gﬁ(t’y) o %k(t)yﬁ%f’
- ly— 8 z i
ew = et vies) - Lk(t) (@) ,
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where

t

i r — [T a(u)du |
k(t)—é—efc g [1+/ el J. ot ds}z

o2 2 [0 + 100 - 8)].

(1-p)?
It is now easily calculated, in the notation of (6.17) and Theorem 6.4, that
o zk(t) 1
== (Hy(t))71,
() = Sy o)
3 X
1

B(t) = 1= ﬁ(a(t)ﬂ'(t))_l[b(t) +6(t) — r(t)1 + 2(8)].

6.7 Incomplete Markets

We return to the general model of a complete, standarq ﬁna.n‘cia.l market §et
up in Section 6.2. There are N stocks driven by an N-dimensional B.rowman
motion, as described by (2.3). We simplify the notation by assuming that
8(-) = 0. We choose an integer M € {1,...,N — 1}, .let = N - M, and
consider the case that only the first M stocks are available for investment.

This corresponds to
K={peRY; py_1=-=py=0} (71)

as in Example 5.4.1(iii). Thus, in place of (2.2), (2.3), the relevant equations
are

dSo(t) = So(t)[r(t)dt + dA(t)), (7.2)
N
dSn(t) = 5a(1) [Ba(t)dt + dAE) + Y oad AW OB, (73)
d=1
n=1,...,M.

We denote by b(t) the M-dimensional column vector (by(t),... b (1))

and by &(t) the bounded M x N matrix (0n4(t))n=1,. ., m- By assumption,
7 d=1,...,

&(t) has full row rank for Lebesgue-almost-every ¢, almost surely. In the
market M consisting of the money market and the first M stocks, the
market price of risk process (1.4.9) is the N-dimensional vector process

8(t) 2 5 (t)(5(2)5"(£) ' [b(t) — r(t)1pr]. (7.4)
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Although in this section investment in stocks M + 1,..., N is not permit-
ted in the constrained Problem 2.6, it is useful to create the unconstrained
Problem 3.2 in which such investment is permitted. We may fashion stocks
M +1,..., N however we like, provided that we respect the assumptions of
Section 6.2. It is convenient to assume that the rows of the I, x N matrix

p(t) = (0na(t))n= M+1,..,n are orthonormal vectors spanning the kernel of
g(t); i.e., d=1,..,N

pP(t) =11, 5(H)(H)=0, 0<t<T, (7.5)

almost surely, where I}, is the L x L identity matrix. It is then easily verified
that

o) = [ (OE@®E @) | o). (7.6)

The boundedness of o(t) and o~!(t) follows from the assumption
of boundedness of 5(t) and (5(t)5'(t))"!, conditions that we impose
throughout.
To simplify later notation, we denote by a(t) the L-dimensional vector
(bar41(2), - -, bn ()’ of mean rates of return for the unavailable stocks.
With K given by (7.1) we have

K={veR%u = =y, =0}
and the class D of Definition 5.5.1 consists of all process of the form
Om
v = [—] , (7.7
£()
where Q,, is the M-dimensional zeto vector and &(-) is any R%-valued
progressively measurable process satisfying

T
5 [ P < oo 8)

The evolution of prices in the auxiliary market M, is given by (7.2), (7.3),
and

dS(t) = SO (¢) [ (an—m(t) + Ennr(t)) dt + dA(2)

N
+ 3 Po-ma() dW(d)(t)J ,n=M+1,...,N. (7.9)
d=1

We say that M, is a fictitious completion of M. The theory of this chapter
Is about choosing the process £(-) so that an agent permitted to invest in
the stocks M + 1,..., N chooses not to.

Remark 7.1: Using (7.4), (7.6), we see that the market price of risk
process 6, (-) for M, is
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= o7 lb(®) + v(t) ~ (1]
= 8(t) + £/ (D)lalt) + £() — r(D)1L] (7.10)

Note that p/(¢)[a(t) + £(t) — r(t)1,] is orthogonal to 6(t), because of (7.5).

0, (t)

Example 7.2 (Logarithmic utility, incomplete market): Ui(t,z) =
U, (z) = log z for every (t,z) € [0,T] x (0,00).

This is Example 4.2, specialized to the case of an incomplete market, i.e.,
K given by (7.1). The expression in (4.23) to be minimized over £ € RE is

L166) + £ )(a(t) + & - rOLI? = 5 16O
+ 3P0 @) + €~ IR,

and this is minimized by £(t) = 7(t)1, —a(t). In other words, D(-) satisfying
the equivalent conditions of Theorem 4.1 is

o(t) = [ﬁ(ﬁ]

and 05(-) = 6(-). This corresponds to choosing the fictitious completion
®)(.

for which %‘a% is a martingale, n = M +1,..., N. The formula for the

optimal portfolio-proportion process in Example 4.2 becomes

(3(6)5"(£) " (b(t) ~ r(t>1M>] |

U3

p(t) = [

Example 7.3 (Logarithmic utility, incomplete market, short-selling pro-
hibited): U,(t,z) = Uz(z) = logz for every (t,z) € [0,T] x (0,00).
In contrast to Example 7.2, we now take

K:{pERN, P1207,PM207PM+1=07 apMZO}
as in Example 5.4.1(iv). Because K= {v e RN: 11 >0,...,va > 0}, the
expression in (4.23) becomes
1 )
Slle L) (b(t) — r(O)1x) + o (O]

&'(t) [(6mFE) o' (1)] [b—((%;—((tt))—llﬂ

2

.

+ [F060F ©) |4 )] [g]

= L1638 ©) ™ (6(t) + 1 — r(O)L)
+o (Ol + £~ rO1)IP

e?
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=

1. T
15" @)(E®)5" ()7 (b(t) + 1 — r(t)1y)
il
+ 50" () alt) + € — r(8)1,)I1%,
and this is to be minimized over [/[¢'] € K. As in the previous example
)

the minimizing £ is £(t) = r(t)1 . %
1, — a(t). The mini >
solved from the Kuhn-Tucker conditions mizing 7 > 0 can be

(G5 (£)) 1 b(®) +t) — r(t)

1y) > 0y,
o - B ﬁ(t) ZQMv
7 (8)(@ ()" (t) 7 (b(t) + A(t) — r(t)1,,) = 0. (7.11)
Then
o [t
d ® [r(t)lL - a(t)] ’

'(£) 1 (b(t) + (t) — r(t);M)J‘

0y,

=
N
Qi
Pamn)
L
S
Qi

takes values in K because of (7.11).

Example 7.4 (“Totally unhedgeable” ¢ ; i
We take again 9 coefficients, utility of power type):

K={peRY, pyi=---=py=0) (7.12)

Suppose now that the M x N-matrix- Y
et matrix-valued process G(t) = (and(t))ZZ}""’%
a(t) = [‘7 (')IQMXL] ) (7.13)

where 0 (\) isan M x M nonsingular matrix. Suppose further that
( (), b(:), o() are adapted to the filtration
-~ A - ‘
FOLo(W(s),0<s<t), 05t <T, l

-gfenerated by the L-dimensional Brownian motion | (7.14)
W() = Whsi(),-. ., Wa ()Y J
and
B A()=0. (7.15)
Then the market M of (7.2), (7.3) takes the form
dSo(t) = r(t)So(t) dt, (7.16)
r .
B 3 o (d)
dS,(t) = Sn(t) [bn(t) at + Z Ona (t)d W (t)J sw=1,...,M; (7.17)
d=1
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it consists of the money market and of M stocks, driven by the
M-dimensional Brownian motion

W (t) = (WA(),. .., Wa(")).

But the driving Brownian motion W (\) in (7.17) is independent of W ("),
to whose natural filtration {#(t)} the coefficients r(-), by(-), and Tpgq ()
appearing in (7.16), (7.17) are adapted. We refer to this situation as one
of totally unhedgeable coefficients.

The risk inherent in the coeflicient processes is undiversifiable, and eco-
nomic intuition suggests that an investor should simply “ignore” it. While
it is by no means obvious how to implement this maxim in general, in the
case

Us(t,) = 0, Uy(x) = %xﬁ, VO<t<T, >0,  (7.18)
for some B3 < 1, B # 0, one might expect the optimal portfolio-proportion
process to be given by

B~ 156 06
which is the same formula as in a complete market with deterministic coef-
ficients (see (3.6.16) in Example 3.6.7). Formula (7.19) directs investment

o ~

()7 b(t) = () 1al, (7.19)

in stocks 1,..., M; the corresponding portfolio-proportion process in the
constrained market M(K) is
. Pt
pt) = {—0( ) } : (7.20)
UL

The remainder of this example is a proof that (7.19), (7.20) indeed do
provide the optimal portfolio-proportion process under the assumptions
(7.12)—(7.15), provided that

T i B
E {exp {ﬂ/o (r(t) + m“ o (|l > dt}] < 00, (7.21)

where
8(t) £ (@ )7 b(t) — r(t)1p),

and provided that either 8 € (0,1) or else fOTr(t)dt and fOT I 9 (t)||%dt
are bounded.

We begin by choosing a(t) = r(¢)1, aiid p(t) = (0na(t))n=pr+1,..~v t©
d=1,...,N

be of the form p(t) = [0y, |A(t)], where the M x M matrix p(t) is
orthonormal: 5(t)4'(t) = Ir. Then o(t) has the block form

- g(t)  |0mxL
= [ Opxar | A(2) 1’

6.7 Incomplete Markets 307

and the market price of risk for M(K) is

Processes in D are of the form (7.7), where (7.8) holds, and for such a
process v(-) € D we have

where

b(t) 2 7 (t)E). (7.22)
It follows that

[ 4T, 8
H,(T) =exp{ - /0 8'(t)d W (t) / " vy
0

T
- [ (ro+jiaors 101 dt} (723

and
(H,(T)™ = m,(T) A (T)A(T), (7.24)
where
‘ T
m, (T) & exp{%/o r(t) dt - (7.25)
,3 T o 70y
+ 20 -5 (/0 6 @) dt+/0 Z01& dt)} ,
[+] ) T [¢] [+] V
A (T) = exp {% /0 6'(0d W () (7.26)

T
| vy (7.27)

_ The implication (B)=>(A) in Theorem 4.1 and Remark 5.8 show that
In order to prove optimality of () in (7.20), it suffices to find a process
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v(-) € D such that
X0P(T) = LY, (z)H,(T)). (7.28)
With 5(-) given by (7.19), (7.20), we have

o W) = 1= ["O—ﬂ ,

and the left-hand side of (7.28) is easily computed from (2.7) in the form

XI,O,ﬁ(t) B X:z:,O,ﬁ(t) o, o N |
d< So(t) ) = T=A5@ ¢ @O d+dw @)

We obtain

X=09(T) = 2 exp { [ (r(t) + gl & O ) at

g / } . (7.29)

To compute the right-hand side of (7.28) we observe that Ir(y) = y71,
so that

=y7T B [(H,(1)77]
= yFT x,(1). (7.30)

B-1
Consequently, V), (z) = (ﬁﬁ) and
(Y, (z)H,(T))
2 1 Fa, i 13 1 i ”
=% exp{ / 9'(t)d W (¢) + 1—/0 (t)dW(t)

1-

Ly / ( %II 6 ()])* + %Ilﬁ(t)“Q) dt} , (7.31)

Comparing (7.29) and (7.31), we see that it suffices to construct a process
v(-) € D such that

X(l)—exp{l_ﬂ/ dt+ fﬂ) / “0 (t)]|* dt

o(t)12 = = 7 (t) dW (¢ 7.32)
- m/o (eI e + - / }(

almost, surely.
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Consider now the {F(t)}-martingale
agl B B [T e
QH)=E [exp {5/0 r(u) du + m/o 16 (w)]|* du

defined for 0 < ¢t < T and taking values in [y, 00), where v is a positive
constant. Indeed, if 8 € (0, 1), then we may take A= 307 whereas we use

ﬁwJ ,

(7.33)

the assumed boundedness of fo t)dt and fo Il 0 )[|?dt to construct ~ if
B < 0. According to the martmgale representation theorem

Q(t) = Q(0) +/ Y'(u)dW(u), 0<t<T,

for some {F(t)}- -progressively measurable (-): [0, T] x Q — RZ satisfying
fo [#(u)lI*du < 0o almost surely. We set i(t) = —ﬁd)(t). Since Q(-) is

bounded away from zero, we have fOT 2()]|*dt < oo almost surely and

) ; o m
Q(t) = Q(0) exp {—/0 V' (u) dW (u) — 5/0 [lo(w)||? du} , 0<t<T.
' (7.34)
With 7,, = 1nf{t € [0,T), fo l7(u)||*du = n} AT, we obtain from (7. 34)
32 [ 10l & =108 Q0) - EloQ(r)
<logQ(0) —logy < oo.

Letting n — oo, we conclude from the monotone convergence theorem
that Efo [7@)]1?dt < oco. Now set £(t) = p(t)o U(t) and v(t) = [E(t)]’ in

accordance with (7.22) and (7.7), and observe that v(-) € D because j(-)
is bounded. From (7.33), (7.34) we also have

70 ,3 T o
exp {ﬂ/o T‘(t)dt + m/o ” 8 (t)||2 dt}

T T
=Q(0)exp{— JRCECEEY Ilﬂ(t)IIth},

or equivalently,

B [T
{1_[, [ rwas 2o I MG (7.35)

| 2 7 -
+m/0 ||(||2dt+m/ t) dW (¢ } (Q(0)) 7.
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To prove (7.32), it suffices to show that
X, (1) = (Q(0)) ™. (7.36)
From (7.30), (7.24), we have
X,(1) = B (H,(T))*1]

= B [m.(T)  (D)A,(T)]

= B [m,(DAME (X (1) #1))],
where we have used the F(T')-measurability of &/(-). Because § (-) is {F(t)}-
progressively measurable and I/f/ (-) is independent of F(T), we see that

E[,K (T)|F(T)] = 1, just as would be the case if § () were nonrandom. We
conclude that

where we have used (7.33) to evaluate (Q(T))ﬁ and (7.34) to evaluate

8
Q0) \ T-F
(Q(T)) . But

and (7.36) follows.

6.8 Higher Interest Rate for Borrowing
Than for Investing

In this section we modify the optimal consumption and investment Problem
3.5.4 to allow the interest rate for borrowing to exceed the interest rate for
investing. The solution of this problem can be obtained via a du_al probl}?nftl
in' the spirit of Theorem 4.1, although not as a direct application of tha
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theorem. We indicate below how to make the appropriate modifications to
the arguments in Sections 2-5.

As in Section 2 we begin with a complete, standard financial market with
asset prices governed by (2.2), (2.3); we assume that (24), (2.5), and (5.2.4)
hold, and that Zy() is a martingale, so the standard martingale measure
Fo is defined. Consumption processes and portfolio-proportion processes
are as in Definitions 2.1 and 2.2, respectively.

The process Sy(-) records the value of investment in the money market.
Borrowing, on the other hand, can occur only at a premium R(-)—r(-) above
the money-market rate. More specifically, there is a bounded, nonnegative,
progressively measurable process R(-) > 7(-) such that for initial wealth
& > 0, consumption process c(-), and portfolio-proportion process p(.), the
corresponding wealth process X% (:), 0 <t < T, satisfies (cf. (2.7)),

hep L T yzep
T [ T ey ey

- /0 %(R(“) (W)@ (w)ly - 1)* du.

The last integral in (8.1) accounts for the higher interest paid when the
fraction of total wealth borrowed,

N
(¢'()Ly ~1)* = max {o, > palu) - 1} :
° n=1

is strictly positive. ¥ ton (8.1) is equivalent to
yp C\lil ION ( ) 9

AXTOP() =~ L+ (1 - p/(O1n) X P(t)(r(t) dt + dA@)  (8.2)
— (P'(W)1y — DY XTOP()(R(2) dt + dA(2))
+ XPOP()p (t)[b(t) dt + 5(¢) dt + 1, dA(t) + o(t) dW (t)].

The solution of (8.1), or equivalently, (8.2), is constructed as follows.
Define 7, by (2.9) and I(t), 0 <t < 7, by (2.8), so (2.10) holds. Set

Kp(t) 2 () exp { - [ (Rw) - r@)@ WL, - 1)+du} ,

and then define X2 (t) for 0 < ¢ < 7p by

Xmer(t) b c(u)du )
Sot) K [“" -/ s,,(u)K,,(u)J | ®3)

it is easily verified that (8.1) holds. With 7o 2 inf {¢ € [0, T; X=eP(t) = 0}
we have 79 < 7, almost surely. As in Definition 2.4 we say that (c,p) is
admissible at & in the market with higher interest rate for borrowing than

. for investing, and write (¢,p) € A(z), if (2.11) holds. For (c,p) € A(z),

the process X*°?(t) defined by (8.3) for 0 < t < 7 and set equal to 0 for
To <t < T, solves (8.1), or equivalently (8.2).
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Here is the problem that we shall study in this section.

Problem 8.1: Given z > 0, find a pair (¢, p) in the class
N R
As(z) = {(c,p) € A(z); E/ min[0, Uy (¢, ¢(t))] dt > —o0,
0
E (min[0, Us(X*<P(T))]) > —oo}
that attains

V(z) £ sup
(e:p)EAs3(z

¥

/ UL(t, c(2)) dt + Un(X®P(T))

the maximal expected utility from both consumption and terminal wealth
in the market with higher interest rate for borrowing than for investing.

We define the random, set-valued process
K@) 2 {v eRY;—(R(t) —r(t)) vy =va = = vy <O}

As in Definition 5.5.1, we denote by H the Hilbert space of {.7-' (t) }-progres-
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