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Foreword

This book began as the basis for a Ph.D. course in Market Microstructure
that I taught at Cornell University. My motivation then, as it is now, was to
provide a unified exposition and examination of the major models and
theories used in market microstructure. These modeling issues are exten-
sive, as microstructure has evolved from focusing primarily on inventory-
based problems to being focused more recently on issues typically associated
with information economics. The literature has now developed to the point
that there are several widely used paradigms, but the generality of their
results, and hence their applicability, is not well understood. Moreover, the
complexity of thc modcls requires a familiarity with rational cxpcctations

For both theorists and empirical researchers, there appcared a need for a
unified treatment of market microstructure theory, whence the origins of
this book.

This book analyzes the development of microstructure theory from the
initial inventory models through the information-based and game-theoretic
paradigms of more recent research. In this development, I explain how the
main theoretical models work, the evolution of the literature to that point,
the strengths and weaknesses of each approach, and the issues left
unaddressed. While this involves extensive discussion of the literature, the
book is not intended to be the definitive literature survey of the area. My
goal is the more modest (and more achievable} one of providing a general
perspective on the development and evolution of market microstructure
theory.

In pursuing this goal, I have chosen to focus on the topics that I find
most interesting in the field. This has the somewhat unfortunate conse-
quence that some work (particularly my own) is emphasized, while other
work is perhaps not given the attention it deserves. My focus only on
theoretical work also means that some of the most provocative work in
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market microstructure is not included simply because it is empirical in
nature. I freely acknowledge these difficulties, and hope that the sheer
dimension of the field provides at least some justification for these
shortcomings.

Finally, I would like to acknowledge the assistance of a number of people
who generously provided me with their insights and comments on these
chapters. I am particularly grateful to Peter Carr, Michael Fishman, Doug
Foster, Ananth Madhavan, Craig MacKinley, Duane Seppi, Matt Spiegel,
and S. Viswanathan for all their help. I would also like to thank Joe
Paperman for his assistance and his careful reading of the manuscript. Part
of this manuscript was completed while I was at the University of
Cambridge, and I acknowledge the support of Churchill College and the
Department of Applied Economics. Above all, I owe a particular debt of
gratitude to David Easley. His help with virtually every step of this project
is thankfully acknowledged.

M.O’H.



1
Markets and Market Making

Market microstructure is the study of the process and outcomes of
exchanging assets under explicit trading rules. While much of economics
abstracts from the mechanics of trading, the microstructure literature
analyzes how specific trading mechanisms affect the price formation
process. These mechanisms may involve a specific intermediary such as a
stock specialist or an order clerk (a saitori), employ a centralized location
such as an exchange or a futures pit, or be simply an electronic bulletin
board in which buyers and sellers indicate an interest in trading. Whatever
the specific mechanism, however, prices emerge and buyers and sellers
trade.

Interest in the role of trading mechanisms has undoubtedly been spurred
by the fragility of markets revealed by the market crash in 1987. And the
proliferation of new markets and exchanges occurring now with remark-
able speed further contributes to the appeal of the microstructure area. But
underlying the study of market microstructure is a more basic curiosity: the
desire to know how prices are formed in the economy. This subject, long
relegated to the “black box” of economics, is fundamental to understanding
how economies work to allocate goods and services.

Market microstructure research exploits the structure provided by specific
trading mechanisms to model how price-setting rules evolve in markets.
This provides the ability to characterize not only how different trading
protocols affect price formation, but also why prices exhibit particular time-
series properties. As microstructure research is set in the markets for
financial assets, this enhances our ability to understand both the returns to
financial assets and the process by which markets become efficient.

In the abstract, market microstructure research is valuable for illuminat-
ing the behavior of prices and markets. This has immediate application in
the regulation of markets, and in the design and formulation of new trading
mechanisms. An even greater payoff, however, may come from the insights
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market microstructure theories yield for empirical research. The increased
availability of detailed, and in some cases real-time, data on prices, orders,
and other market information allows for empirical investigations at a level
of detail never before possible. But our knowledge of economic behavior
over fine time intervals is not extensive, and there is need to formulate
exactly what behavior is consistent with the actions of optimizing
economic agents.

This book provides such a formulation by investigating the current state
of theoretical work in market microstructure. The goal of this book is not
to provide an encyclopedic reference of every issue addressed in market
microstructure, but rather to analyze the general paradigms used to explain
market behavior. With the extensive literature emerging in this area, as.
well as the burgeoning use of tools and techniques from information
economics, market microstructure theory may appear an amorphous
collection of models, with little in common but subject matter. Underlying
much of this research, however, is a shared focus on the information
implicit in market data, and on the learning process that translates this
information into prices. It is my hope in this book to provide a unified
framework for understanding these connections, and a consequent apprecia-
tion for the insights available from existing theoretical research.

One interesting aspect of market microstructure theory is its evolution.
While the early work investigated issues relating to the stochastic nature of
supply and demand, later work focuses more on the information-aggrega-
tion properties of prices and markets. These two approaches have not yet
been wholly merged, meaning that many interesting and important
dimensions of microstructure problems have not been addressed. These
general paradigms have been applied to a wide range of issues, however,
and it is useful to understand what these analyses have shown.

Perhaps more important are the many questions yet to be investigated in
microstructure. The evolution of financial markets has raised innumerable
policy issues relating to market structure and stability. And despite
extensive modeling, theoretical analyses have not as yet provided definitive
results on the empirical properties and behavior that security prices should
possess. Such issues will undoubtedly be the focus of research agendas over
the next decade. Before these issues can be understood, the more
fundamental issue of how markets work must be addressed. It is to this task
that we now turn.

In the remainder of this chapter, I consider the very basic question of
how prices are set in markets. I illustrate the difficulties with the traditional
view of price formation and, in particular, its failure to include any role for
explicit trading mechanisms. I then provide a brief discussion of the types of
markets used to trade financial assets. This serves as an introduction to our
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analysis in subsequent chapters of the various theoretical approaches used to
explain the evolution of prices in markets.

1.1 PRICES AND MARKETS

What determines a price? In the standard economics paradigm, it is the
intersection of supply and demand curves for a particular good. And
certainly, in equilibrium, this must be the case. But how, exactly, is this
equilibrium actually attained? What is it in the economy that coordinates
the desires of demanders and suppliers so that a price emerges and trade
occurs? Perhaps surprisingly, economics provides few answers to this
question, and therein lies the beginnings of market microstructure research.

For economists, there were two traditional approaches to the mechanics
of price formation. The first was to argue for its irrelevance. Since much of
economics involves the analysis of equilibrium, what mattered for many
questions were the properties of equilibrium prices. These properties could
be determined by simply solving for a market-clearing price; how exactly
this market clearing was achieved was not of interest. Such an agnostic
approach to price setting can be found, for example, in the rational
expectations literature.! There, the questions of interest involve how traders
use information in prices to determine their equilibrium demands. Behavior
out of equilibrium is not considered, in part because it is difficult to
reconcile ever observing such behavior, let alone characterizing what its
properties might be.

Two assets of this approach are its simplicity and its generality. Implicit
in this approach, however, is the assumption that the trading mechanism
plays no role in affecting the resulting equilibrium; that, whatever the
trading mechanism employed, the same equilibrium would arise. This
assumption is particularly troubling for markets in which traders have
differential information. As Radner [1979] notes: “A thorough analysis of
this [equilibrium] situation probably requires a more detailed specification
of the trading mechanism than is usual in general equilibrium analysis.
Nevertheless, it is tempting to try to obtain results that are as independent
as possible of the specifics of the trading mechanism, by using some suitable
concept of equilibrium.” Subsequent researchers (see Blume, Bray, and
Easley [1982] for discussion) would question whether this was, in fact,

1. A similar view can be found in the work of Hicks [1939], for example, who argued that
there were actually two types of equilibrium: a temporary one in which at a given date supply
equaled demand, and equilibrium over time, in which stationarity of supply and demand
would result in prices realized being the same as those expected to prevail. This latter
equilibrium was deemed of more importance, but in neither framework was the issue how
such market clearing obtains given consideration. For more discussion, see Radner [1982].
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achievable, but this abstraction from the trading mechanism dictated an
indifference to the underlying mechanisms that generate equilibrium
prices.?

An alternative approach to the mechanics of price setting is the fiction of
a Walrasian auctioneer. As generations of economists learned, the price
formation process could be captured by the general representation of a
Walrasian auctioneer, who aggregates traders’ demands and supplies to find
a market-clearing price. The actual mechanism by which this occurs begins
with each trader submitting his demand, or even his demand schedule, to
the auctioneer. The auctioneer announces a potential trading price, and
traders then determine their optimal demands at that price. No actual
trading occurs until each trader has a chance to revise his order. A new
potential price is suggested, traders again revise any orders, and the process
continues until there is no further revision. Equilibrium prevails where each
trader submits his optimal order at the equilibrium price, and at that price
the quantity supplied equals the quantity demanded.

This representation views market prices as arising from a tattonement, or
a series of preliminary auctions. There is no trading allowed outside of
equilibrium and incentive issues are not considered, and so there is no
difficulty of traders wishing to recontract once the “true” price is known.
Because the price is adjusted until there is no excess demand, the Walrasian
auctioneer does not take any trading position, but serves only to redirect
quantities from sellers to buyers. Moreover, this auction activity is costless,
so there are no frictions in the exchange process. The equilibrium price thus
emerges as the natural outcome of an unseen trading game in which buyers
and sellers costlessly exchange assets. .

The Walrasian auctioneer provides a simple and elegant way to envision
the price-setting process. But does it, in fact, capture the actual process by
which prices are formed? Is it the case that prices evolve as naturally as is
posited here, or are there other factors influencing price behavior? The
answers to these questions are not immediate. As we shall discuss in the
next section, in the case of financial assets, there are markets that bear at
least an approximate resemblance to the Walrasian framework. But there
are many other markets that differ dramatically, with specific market
participants playing roles far removed from the passive one of the
auctioneer. Perhaps more important is the issue of trader behavior. If
trading involves more than simply matching supplies and demands in

2. In particular, researchers would investigate whether there is any trading mechanism
that could implement a rational expectations equilibrium. The negative results found in this
rescarch suggest that the “temptation” noted by Radner may not have been a wise choice.
This issue is discussed further in Section 4.3.
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equilibrium, then the trading mechanism may have an importance of its
own.

Such concerns were raised by a number of economists, for example,
Working [1953] and Houthakker [1957]. The most direct analysis of
trading, however, was that of Demsetz [1968], who cxamined the
determination of prices in securities markets. Although Demsetz’s focus
was on the nature of transaction costs, his analysis of how the time
dimension of supply and demand affected market prices set the stage for the
formal study of market microstructure.

Demsetz began with the simple observation that trade may involve some
cost. This cost could be explicit, arising, for example, from charges levied
by a particular market, or it could be implicit, reflecting costs connected
with the immediate execution of trading. These implicit costs, referred to as
the price of immediacy, arose because, unlike in the Walrasian auction,
trading had a time dimension. In particular, while over time the number of
sellers might equal the number of buyers, at any particular point in time
such an outcome was not guaranteed. If the number of traders wishing to
sell immediately did not equal the number who wished to buy immediately,
the imbalance of trade would make it impossible to find a market-clearing
price at a given time £

Demsetz argued that this lack of equilibrium could be overcome by
paying a price for immediacy. Specifically, he argued that at any point in
time there are two sources of supply and demand in the market. On the
demand side, there is one demand arising from traders who want to buy
immediately, and another coming from traders who want to buy but do not
feel the need to do so at this particular time. The supply side of the market
is defined analogously. If there is an imbalance of traders wanting to buy
now, then either some buyers have to wait for sellers to arrive, or they can
offer a higher price to induce those waiting sellers to transact now.
Similarly, if there is an imbalance of sellers wanting to trade now, a lower
price must be bid to induce more demanders to trade now. This results in
two prices, not one, characterizing the equilibrium.

This idea that the price could contain a cost of immediacy captured an
aspect of the price process not envisioned in the Walrasian framework.
Now there were actually two supply curves and two demand curves,
reflecting the two time frames of the trading process. While a trader
willing to wait might trade at the single price envisioned in the Walrasian
framework, trades occurring immediately would not share this outcome.
This meant that even the notion of an equilibrium price was problematic.
The price depended on whether one wanted to buy or to sell, and not
simply on the willingness to trade.
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Of perhaps equal importance was the implication that the specific
structure of the market could affect the trading price. Since the size of the
price concession needed to trade immediately, i.e., the spread, depended on
the numbers of traders, factors such as volume could affect the cost of
immediacy and thus the market price. These structure issues were addressed
by Demsetz, who empirically investigated the relation of the size of the
spread and the volume of trade on the NYSE. His work suggested that the
behavior of markets, much like the behavior of firms, could only be
understood by examining their structure and organization.

If the actual mechanism used to set prices is not merely a channel to an
inevitable outcome, but rather is an input into the equilibrium price itself,
then how such mechanisms work cannot be ignored. The Demsetz model
analyzes the behavior of one simple trading mechanism, but its analysis is
clearly limited. Actual mechanisms are far more complicated than that in
this one-period model. Indeed, the list of features not included in the
Demsetz analysis is seemingly endless. Equally important, however, are the
interactions between the market mechanism and trader behavior. If the
trading mechanism matters in setting prices, then so too will it matter in
affecting traders’ order decisions. Consequently, the exogeneity of the order
process to the price-setting mechanism is unlikely to hold. The question of
how prices are set thus takes on a complexity far removed from the
simplicity of the Walrasian auctioneer.

In the remainder of this book, we examine how trading mechanisms
affect the formation of prices. While all theoretical work involves some
degree of abstraction from detail, microstructure research remains partially
grounded by the features of actual market design. Consequently, at least a
broad understanding of security market design is a prerequisite for the study
of market microstructure. In the next section, we consider some general
features of exchange markets and the alternative ways that price-setting
rules are structured in actual markets. Qur discussion will, by necessity, be
incomplete; there are myriad ways markets are currently structured, and
new market-clearing mechanisms are arising with surprising frequency. But
many markets share common features, and it is these commonalties that we
explore in subsequent chapters.

1.2 THE NATURE OF MARKETS

The process of exchange occurs in many ways. Buyers and sellers can
contact each other directly. Traders can gather at a central setting or
communicate through a computer screen. A single intermediary can arrange
every trade, or there can be numerous individuals who meet to set prices.
Whatever the setting, however, there are rules either explicit or implicit
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that govern the trading mechanism, and it is these rules that result in the
formation and evolution of market prices.

As we discussed earlier, one simple set of rules could involve a sequential
auction like that implicitly used by the Walrasian auctioneer. And, indeed,
such a market approximates the London gold fixing.? There, every morning
at approximately 10:30 representatives from each of the five London
Bullion houses meet in the offices of N. M. Rothschild to determine the
spot market price for gold. The fixing begins by the chairman of the session
suggesting an opening price.* The representatives then indicate whether
their firm is a net buyer or a net seller at that price. The chairman
announces a new price, and net buying and selling is again determined.
This process continues until a price is established at which net buying and
selling are equal, and each representative has indicated his approval by
lowering a small British flag on his desk. That price is the morning London
gold fix. A similar process is repeated in the afternoon to establish the
afternoon gold fixing.

This market captures the spirit of the Walrasian auction in that the
market-clearing price is determined through a sequential process and no
trades occur out of equilibrium. Unlike the Walrasian process, however,
the actual quantity of gold trading at the equilibrium price is unknown.
Because dealers only communicate their net positions, the total amount
traded can be virtually any amount.> Consequently, while the gold fixing
provides a price, it lacks at least one of the attributes (physical trading) that
one might expect to find in a market. Nonetheless, by iterating from net
supplies and demands to prices, the participants at the gold fixing establish a
spot price for gold.

While this process determines a market price, it does so at some cost. The
actual process takes place in one locale, there are a limited number of buyers
and sellers actually determining the price, and it 1s time consuming. Only
two prices are produced per day, so that intraday prices may be stale due to
changes in events. Compared with a market such as foreign exchange (FX),
where price quotes from a dozen or more dealers are outstanding at all
times, the gold market appears archaic and inefficient. But the gold fixing
and the FX market both produce market-clearing prices, and despite their
differences they, like all trading mechanisms, share common features.

3. This description of the London gold market is drawn from O’Callaghan [1993].

4. The price is established for the sale of at least 2,000 ounces of gold in London
deliverable in bars of 400 ounces.

5. O’Callaghan notes that while exact trading volume is not available, most of the
London market’s 100 to 200 tons of daily volume is believed to trade at the London fix.
There are, however, many other larger markets in which gold trades, the most notable being
Zurich, New York, and Hong Kong.
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Any trading mechanism can be viewed as a type of trading game in
which players meet (perhaps not physically) at some venue and act
according to some rules. The players may involve a wide range of market
participants, although not all types of players are found in every mecha-
nism. First, of course, are customers who submit orders to buy or sell. These
orders may be contingent on various outcomes, or they may be direct orders
to transact immediately. The exact nature of these orders may depend upon
the rules of the game. Second, there are brokers who transmit orders for
customers. Brokers do not trade for their own account, but act merely as
conduits for customer orders. These customers may be retail traders, or they
may be other market participants such as dealers who simply wish to
disguise their trading intentions. Third, there are dealers who do trade for
their own account. In some markets, dealers also facilitate customer orders
and so are often known as broker/dealers. Fourth, there are specialists, or
market makers. The market maker quotes prices to buy or sell the asset.
Since the market maker generally takes a position in the security (if only for
a short time while waiting for an offsetting order to arrive}, the market
maker also has a dealer function. The extent, however, to which the market
maker acts as a dealer can vary dramatically between markets.

These four categories include the main market participants, but they are
by no means exhaustive. There are intermediaries such as block traders,
who combine the brokerage and dealer functions with a broader search role.
There are scalpers in futures markets who approximate the dealer role but
hold no long-run market positions. The saitori, or order clerk, in Tokyo
clears the market, but does so by matching orders rather than actively
trading on his own account. The banks operating in the foreign markets
may act as dealers for their customers, but as customers in the interdealer
market. But while different markets have different specific players, their
underlying functions can generally be described by the four groupings
given above. ,

Where trading occurs is the second dimension of our trading mechanism.
Traditionally, the most common setting is the exchange, which is simply a
central location for trading. Orders are sent to the exchange, and all trade
execution occurs there. Exchanges are used to trade equities in New York,
Madrid, and Tokyo, futures in Chicago and Osaka, and options in San
Francisco and Frankfurt. Such a central physical location, however, is
clearly not necessary for trading to occur. Bonds trade primarily by
computer screen and telephone, as does foreign exchange. Computerized
trading networks such as Instinet and POSIT trade equities for institutional
traders in the US, while Globex is struggling to establish computerized
trading for futures. Indeed, the newly established Arizona Stock Exchange
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is nothing more than a computer network (which originally was not even
based in Arizona!).

The proliferation of trading venues means that virtually any place can be
a trading mechanism. What determines the operation of the market is thus
not its location, but rather the rules by which trades occur. These rules, the
‘third dimension of our trading game, dictate what can be traded, who can
trade, when and how orders can be submitted, who may see or handle the
orders, how orders are processed, and how prices are set. The rules may

“apply to every order submitted (such as the NYSE rule that all trades must
execute on the floor of the exchange), or there may be differential rules
governing various aspects of trading (such as the practice in London of
clearing small volume stocks differently from large volume stocks). In any
case, however, the rules determine how the mechanism works, and thus
how the outcome of the trading game is decided.

Because each mechanism has its own distinctive set of rules, it is neither
easy nor useful to describe how each trading mechanism works. But it is
possible to discuss the operation of a specific mechanism, and detail, at least
in principle, how mechanisms of that type actually work. The research in
market microstructure has often focused on the behavior of the New York
Stock Exchange, and so this seems a natural candidate to consider.

The NYSE currently trades equities for approximately 2,089 listed firms,
with daily trading volume in 1992 averaging just over 202 million shares.®
Equity trading is centered on the stock specialist, who is assigned particular
stocks in which to make a market. While each listed security has a single
specialist, the approximately 400 specialists may be assigned multiple
stocks. Current exchange protocols assign stocks to specialists based on
specialist performance and on the expected trading volume of the specific
security. Lindsay and Schaede [1990] report that specialists handled an
average of 3.7 stocks.

All trading on the exchange must go through the specialist, although the
specialist may not be a participant in every trade. Estimates of the specialist’s
participation as either a buyer or seller in 1992 averaged around 19.4
percent of trades, with the specialist’s role generally greater for less
frequently traded stocks. In addition to all market orders (orders for
immediate execution), the specialist also receives all public limit orders
(orders that are contingent on price, time, etc.), and these orders are kept in
the specialist’s book. On the NYSE, the book is not common knowledge,

6. The data used throughout this discussion is drawn from the New York Stock Exchange
Fact Book [1992]. It should also be noted chat the New York Stock Exchange also trades a
small number of bonds and, through the New York Futures Exchange, a range of futures
contracts. Qur discussion here considers only the equity trading mechanism.
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although it is often available to traders to view at the discretion of the
specialist.

Trading occurs from 9:30 a.m. to 4:00 p.m. (Eastern Standard Time)
Mondays to Fridays, with the exception of designated holidays. Trading on
the NYSE actually involves two different trading mechanisms, with a call
auction used to open trading and a continuous auction used throughout the
trading day.” In a call auction, orders accumulate and the specialist sets a
single market-clearing price at which all executed orders transact. In a
continuous auction, the specialist quotes bid and ask prices (i.e., the price at
which he or she will buy the stock and the price at which he or she will
sell), and trades occur individually.

The opening call is an important feature of the NYSE mechanism. Prior
to the call auction, market-on-open orders and limit orders accumulate. The
Opening Automated Report Service (OARS) receives all market orders up
to 30,099 shares and matches the buy and sell orders. The specialist then
knows the market order imbalance as well as the limit orders at every price,
and he or she endeavors to set a single market-clearing price. At this price,
the specialist may take a position for her own account, or she may rely
entirely on the existing limit orders to offset any market order imbalance.
One goal of the specialist is price continuity; large jumps from the previous
day’s closing price are to be avoided if at all possible.

On occasion, the imbalance in orders at the open may make it impossible
to open the market without a large price movement. In this case, the
specialist may delay the open and attempt to induce more liquidity by
announcing a provisional opening price. In general, the specialist is not
permitted to solicit orders but must instead use prices to influence order
arrivals. Once a price is determined, the stock is opened with an initial trade
of all relevant orders at the opening price.

Following the open, trading reverts to a continuous-auction mechanism.
The specialist quotes bid and ask prices to buy and sell the stock up to some
particular trade size, known as the depth. The specialist may not preempt a
standing limit order, and so the actual quote may include orders on the
book rather than the specialist’s actual trading price.® There is some debate
regarding the degree to which the specialist actually changes his quotes to

7. For infrequently traded stocks, the call auction might not be employed.

8. Limit orders are submitted contingent on a specific price. For a limit sell order, this
price is above the current ask, and conversely it is below the current bid for a limit buy. Since
there may be multiple orders submitted at a price, there must be rules for assigning priority of
execution. On the NYSE, priority is assigned by price, quantity, and time. There are also
other types of contingent orders in the market, and they, too, have priority over the market
maker in execution. These issues are considered in more detail in Chapters 6 and 7.
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reveal the “hidden” limit orders (see Mclnish and Wood [1991]), but in
principle, at least, the quote should reflect the current trading prices.

Orders arrive at the specialist’s post directly via floor traders and
electronically via the Designated Order Turnaround System (part of the
SuperDot system). Market orders of up to 2,099 shares and limit orders up
to 99,999 shares may be sent by NYSE members to the specialist. Program
trades are also submitted via the SuperDot system, and these orders
currently account for approximately 11.5 percent of all orders. Orders also
arrive via the Intermarket Trading System (ITS), which links nine US
markets (the NYSE, the American Stock Exchange, Boston, Midwest,
Cincinnati, Pacific, Philadelphia, the Chicago Board Options Exchange,
and the NASD).

The specialist must clear any submitted orders at his outstanding quotes,
but is free to change his quotes or depths at any time. A goal of the trading
mechanism is price stability and continuity, and so the specialist is expected
to move prices in minimal increments. The specific rules for price
continuity are complex and vary depending upon the underlying stock’s
price and trading volume. For 1992, 96.4 percent of all transactions
occurred with a price change of 1/8 or less. The specialist is also expected
to stabilize the market, meaning that he should not contribute to market
movements. This would preclude, for example, the specialist selling into a
falling market.

Following the market crash of 1987, the NYSE instituted limit moves
for prices, more commonly known as “circuit breakers.” These rules are
designed to restrict the behavior of the trading mechanism in periods of
great market movement. When the Dow Jones Industrial Average declines
250 points from the previous day’s close, all trading in stocks is halted for
one hour. When the decline totals 400 points, all trading is halted for two
hours. These procedures have never actually been used. Of more impor-
tance has been Rule 80A, which restricts index arbitrage (or program
trading). When the Dow Jones Industrial Average declines 50 points from
the previous close, index arbitrage-related sell orders can only be executed
on a plus (or zero) tick, meaning that orders that would depress the market
price further are not allowed; buy orders can only be executed on a minus
(or zero) tick. For individual stocks, firm-specific events may also create
difficulty in finding a fair market price, and a trading halt in that stock may
be imposed. Trading is generally resumed once new information about the
firm has been publicly released.

The rules of the NYSE define one mechanism for the trading of financial
assets. It is, however, only one of many mechanisms used for trading
securities, and, indeed, for trading equities. In Tokyo, for example, there
are no specialists; instead, intermediaries known as saitori, or order clerks,
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handle the price-setting process.® These clerks match submitted orders and
report the resulting transaction to the Exchange, but take no position
themselves. Hence, unlike the specialist, who will trade to smooth out
order imbalances, the saitori establishes a price only from the orders of
other market participants. When, as may be the case, large imbalances arise,
the saitori lowers or raises the prices until either new orders enter the
market or the price movement reaches the market’s preestablished limit.

As with the NYSE mechanism, the rules of the Tokyo Stock Exchange
provide a mechanism for determining the trading price of an asset. So, too,
do the rules of the London Stock Exchange, the Paris Bourse, and the Bolsa
in Mexico City. Yet, while it is straightforward to write down the rules
governing a trading mechanism, it is less apparent how it determines the
equilibrium behavior of prices. The difficulty is that markets are influenced
by myriad factors such as risk aversion, private information, and wealth
constraints, all of which affect the buying and selling behavior of traders
and market makers. As we will investigate in the remainder of this book,
this devolves an importance to the structure of trading and of markets, and
to the process by which prices are formed.

In the next chapter, we begin our study by examining the initial models
in market microstructure. These models view the trading process as a
matching problem in which the market maker must use prices to balance
supply and demand across time. In this approach, a key factor is the market
maker’s inventory position. An alternative approach, which we investigate
in later chapters, views the trading process as a game involving traders with
asymmetric information regarding the asset’s true value. Central to this
approach is the learning problem confronting market participants. These
inventory-based and information-based paradigms provide the general
theoretical frameworks used in market microstructure theory, and it is to
their derivation and application that we now turn.

9 This description of the Tokyo Stock Exchange is drawn from Lindsay and Schaede
[1990), who provide an intetesting description of the operations and differences of the Tokyo
and New York markets.



2
Inventory Models

In traditional research on securities markets, securities prices were typically
viewed as macroeconomic phenomena. This focus changed with the work
of Demsetz, whose depiction of the nature of bid and ask prices focused
attention on the underlying microfoundations of security markets. Viewing
the behavior of securities prices from this microeconomic perspective
provided a means of characterizing security price behavior as arising from
optimizing behavior by economic agents. This, in turn, had two important
benefits. First, since prices are typically set by a specific person or
mechanism, the study of price formation becomes the study of the behavior
of this individual or institution. The standard approximation of Walrasian
cqulhbrlum and its attendant lack of an explanation of how equilibrium
prices actually arise can be discarded. Second, this microfocus permitted
market behavior to be viewed as the aggregation of individual trader
behavior, with the consequent ability to predict how prices would change
given changes in those underlying decision problems.

In this chapter, we examine the initial theoretical analyses of the security
market microstructure. Beginning with an important paper by Garman
[1976], researchers focused on understanding how market prices arise given
the nature of the order flow and the market-clearing protocol. In analyzing
this problem, there are three distinct research paradigms that emerged in
the literature. The first, beginning with Garman, focuses on the nature of
order flow in determining security trading prices. The second approach,
typified by the work of Stoll and Ho and Stoll, investigates explicitly the
dealer’s optimization problem. The third area, including work by Cohen,
Maier, Schwartz, and Whitcomb, analyzes the effects of multiple providers
of liquidity. Central to each of these approaches are the uncertainties in the
order flow, which can result in inventory problems for the specialist or
dealers and execution problems for the trader.

13
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In this chapter, we discuss these general approaches and examine how the
market maker deals with price and inventory uncertainty. Our focus is on
ascertaining how market prices are set by specific price-setting agents in
various market settings, and how these prices change as we introduce
different types of uncertainty. As will be apparent, the market spread and
the evolution of market prices can be explained in a variety of ways, with
the result that a number of interesting properties can be predicted by these
inventory-based approaches.

What may also be apparent, however, is that some of these approaches
ultimately proved unproductive; they have been supplanted by other
approaches and paradigms (which are investigated in later chapters of this
book). Such is the nature of research, and understanding why this occurs
and what contributes to a model’s viability and longevity enhances our
ability to build better and more useful models of microstructure phenome-
na. We begin by considering how a risk neutral market maker deals with
the complex uncertainty introduced by stochastic supply and demand.

2.1 ORDER ARRIVAL AND MARKET MAKING

The equilibrium price is the price at which quantity demanded equals
quantity supplied. Predicting that this price will prevail in the market has
proven to be a useful first approximation to market outcomes. But a closer
examination of trading in securities markets raises questions as to how to
apply this paradigm as well as to its value in predicting the fine behavior of
securities prices. For example, if buyers and sellers arrive at different points
in time, to what time period do the supply and demand schedules refer?
Similarly, if orders to buy or sell are not always balanced in the selected
time period, how does the price change to reflect the order flow? Further,
can a market-clearing mechanism survive in the long run given that short-
run imbalances can arise between supply and demand?

These issues were the focus of research by Garman [1976]. Garman
argued that an exchange market could be characterized by a flow of orders
to buy and sell. These orders would arise as the solution to individual
tradcrs underlying optimization problems, but the explicit characterization
of such problems was not necessarily important. What mattered was that
orders would be submitted to the market and imbalances between supply
and demand could tcmporally arise. This imbalance gave an importance to
the “temporal microstructure,” or how the exchange between buyer and
seller actually occurred at any point in time. Garman’s focus on these
intertémporal issues thus inaugurated the explicit study of market micro-
structure.
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Treating supply and demand as stochastic processes allowed the exchange
process to be viewed from a different perspective. While previous
researchers {such as Demsetz) had noted the importance of trade imbal-
ances, the focus on the trading desires of individual traders limited their
ability to characterize how the market, as an entity, worked to resolve this
clearing problem. Viewing the order flow in isolation made the exchange
process appear more similar to stochastic matching problems found in
inventory applications and in insurance markets. This perspective also
provided a way to analyze the interaction between the specific market
clearing mechanism (or price setter) and the behavior of the order flow. In
particular, if the stochastic processes governing orders (i.e., the order arrival
rates) were affected by the price prevailing in the market, then the optimal
pricing mechanism must incorporate this relation. Moreover, since order
imbalances were certain to occur, how the exchange mechanism operated
would affect the provision of intertemporal liquidity. Such liquidity
considerations are the focus of much subsequent work, and they are treated
in more detail later in this chapter and in Chapter 8.

To examine these exchange issues, Garman considered two market-
clearing frameworks, a dealer structure and a double auction mechanism.
The double auction approach was a natural construct given the extensive
research in auction theory, but its abstraction from explicit market
characteristics was a drawback for studying specific market settings.! The
dealer approach would prove more characteristic of the mechanism found
in organized securities markets, and so we will concern ourselves with this
specification.

In Garman’s model, there is a single, monopolistic market maker who
sets prices, receives all orders, and clears trades. The dealer’s objective is to
maximize expected profit per unit of time, subject to the avoidance of
bankruptcy or failure. Failure arises in this model whenever the dealer runs
out of either inventory or cash. The market maker’s only decision is to set
an ask price, p,, at which he will fill orders wishing to buy the stock, and a
bid price, py, at which he will fill orders wishing to sell the stock.? Orders
are assumed to be for one unit of the stock. The dealer has an infinite
horizon, but only selects bid and ask prices once, at the beginning of time.

1. The double auction approach views the market as a purely matching process. Other
researchers also investigated such matching behavior, most notably Mendelson [1982].

2. This notation differs from that in Garman’s paper: he denotes his ask price as py, and his
bid price as p.. While certainly a reasonable way to define prices, this is confusing given the
convention followed by subsequent researchers of denoting bids and asks differently. For
clarity, I adopt the more standard approach.
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The uncertainty in the model arises from the arrival of the buy and sell
orders. These orders are represented as independent stochastic processes,
where the arrivals of buy and sell orders are assumed to be Poisson
distributed, with stationary arrival rate functions A,(p) and Ap(p). Buy (or
sell) orders follow a Poisson process if the waiting time between arrivals of
buy (sell) orders is exponentially distributed. More formally, letting ¢ be the
time of the last buy order, the probability of a buy order arriving in the
interval [¢, ¢t + Af] is approximately A, At for small Az. Representing orders as
Poisson processes allows Garman to capture the randomness of the order
arrival over time in a tractable manner.

With buy and sell orders following independent stochastic processes, the
flow of buys and sells to the dealer will not be synchronous. It is this
potential imbalance that is the crux of the dealer’s problem. Since the order
arrival processes are stationary but not identical, balancing his level of
inventory and cash to avoid running out of either (and therefore failing) is
not a trivial problem for the market maker. This is compounded by the
assumption that the market maker is unable to change prices “midstream”
to avoid imminent failure (an assumption both restrictive and unrealistic).
In this model, therefore, the main problem for the dealer is simply “staying
alive.”

Garman’s model involves several rather stylized assumptions. The market
maker is not. permitted to borrow either stock or money, dictating that his
position at any point in time is completely determined by the order arrival
rates. The level of demand associated with these order processes is also
assumed exogenous to the market maker. Indeed, all market parameters
except the order arrival rates are exogenous to the market marker.

These assumptions are not innocuous. While some restrictions can be
justified as applying if not to all markets then to some, others, in particular
the inability to borrow, are much less benign. The assumption of the exact
structure of the order arrival processes is particularly restrictive. As Garman
notes, Poisson order arrival rates essentially require that (1) there are a large
number of agents in the market; (2} each agent acts independently in
submitting her order; (3) no agent can generate an infinite number of orders
in a finite period; and (4) no subset of agents can dominate order
generation. This latter restriction would rule out, for example, any orders
submitted by traders acting on private information, or any synchronized
order strategies (such as portfolio insurance) that are followed by a subset of
agents. What is required here is that the order flow be stochastic without
being informative about future market or price movements. This is the
general view taken in virtually all inventory-based microstructure models.

At time 0, the market maker is assumed to hold I (0) units of cash and
I,(0) units of stock. Let I.(¢) and I(f) be the units of cash and stock at time ¢.
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Let N,(f) be the camulative numbers of shares that have sold to traders up to
time ¢ (these are the executed buy orders), and let Ni(t) be the cumulative
number of shares that have been bought from traders as of time ¢ (these are
the executed sell orders). Then inventories are governed by

I(t) = Ic(0) + paNa(f) — ppNp (1) (2.1)
and
I(f) = I(0) + Ny (£} — Na()- (2.2)

Characterizing the behavior of these inventory processes is not easy, as
they each depend on the behavior of the underlying (separate) buy and sell
order arrival processes. In general, we would like to know when these
processes violate the bankruptcy bounds since this, in turn, would give us
the expected time to failure. Similar problems involving the probability of
“ruin” are the focus of extensive research in the insurance (and gambling)
literatures. Unfortunately, calculating such a probability directly is intracta-
ble because of the multiple stochastic processes.

Garman argues, however, that we can approximate the market maker’s
position by analyzing how he changes his holdings of stock and cash over
time. In particular, suppose we define the variable Q{f) to be the
probability that I.(f) = k and the variable Ri(¢) to be the corresponding
probability that I () = k. Essentially, Qg(¢) is just the probability that at time
t the market maker has exactly k units of cash (or for Ry(f), of stock). Now
consider how this position could have arisen. In the case of stock, the
market maker could have exactly k units at time ¢ because:

1. the market maker held exactly & — 1 units of stock at time ¢t — Ar
and in the next instant an order to sell one unit to him arrives; or

2. the market maker held exactly k + 1 units of stock at time ¢ — At
and in the next instant an order to buy one unit from him arrives; or

3. the market maker is holding k units at time ¢t — At and in the next
instant nothing happens.

It might also seem that the market maker could have exactly k units of
stock at time t because at time ¢ — At he or she held some arbitrary position
k — z and over the next interval z units arrive (where z exceeds one, the
minimum order arrival size). The assumption of a Poisson process,
however, dictates that as At goes to 0, the probability of a jump greater than
the smallest amount goes to zero even faster. It follows that the probability
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of being at exactly k units of stock or of cash at time f can then be
decomposed into the three positions given above.

Suppose we now calculate the probability that the market maker has
exactly k units of cash at time ¢. To determine this probability, Garman
assumes that a unit of cash (say a dollar) arrives with rate A,p, and departs at
rate Appp. Intuitively, this corresponds to a cash inflow resulting from the
arrival of an order to buy stock from the dealer at price p,, and conversely
for the cash outflow. Using the three positions framework developed
above, note that:

1. the probability the dealer had k — 1 units of cash and in the interval
t — At receives a cash inflow is Qg — 1{t — AD[A,{p)p. Aff[1 —
o(polpy At].

2. the probability the dealer had k + 1 units of cash and in the interval
t — At has a cash outflow is Qr + 1{t — Af)[Au(pb)ps Af[1 — Au(pa)pa
At}

3. the probability that the dealer is holding k units at of cash time ¢ —
At and in the next instant nothing happens is Qu{t — Af) [1 —

Aa(pa)pa Af[1 — An(pu)ppAe].

The probability that the dealer has exactly k units of cash at time ¢ is the
sum of these probabilities, or

Qr(t) = Qp_y (¢t — A)[Xa(pa) pa Af[1 = Ay (py) P A
+ Qpyq (¢ = A [Ap (pp) b At][1 — Aa(pa) pa L] (2.3)
+ Qp(t— ANl = Aa(pa) pa A1~ Ay (o) 21, A1)

To calculate the time derivative of the probability Qu(f), we take the limit
as At — 0 of [Qp(t) — Qu(t — Af)]/Ar. This yields

U _ gy () e ()7l + Qess (O P ) )
— Qp (1) [Xa (pa) pa + Ay, (py) Pl -

This differential equation (2.4) gives the dynamics of the market maker’s
cash position. As the orders arrive throughout the day, this cash position
changes, and it is this dynamic movement that is important for the dealer.
Since he cannot augment his cash (or, for that matter, his stock) except
through trading, the question of interest is whether the market maker can
avoid running his cash position to zero, and thus failing. Using equation
(2.4), we can now address this issue. |

(2.4)
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2.1.1 The Gambler’s Ruin Problem

Before proceeding to the solution for the market maker’s failure
probabilities, it is useful to consider how such problems are solved in
general. In a typical gambler’s ruin problem, the gambler is assumed to start
with some initial wealth and wagers until either he reaches a certain
threshold level or loses all his money. The failure probability is then
calculated as a function of the odds of winning, the odds of losing, the
threshold level, and the initial wealth. The market maker context
considered here differs slightly, because there is no positive stopping point
or threshold level; the market maker’s maximum gain can be unbounded,
and she stops only when she loses her cash (or stock). In this unbounded
case, provided the odds of winning exceed the odds of losing, the ultimate
failure probability can typically be expressed as

(2.5)

odds of losing x amount of loss
odds of winning x amount of gain

)initial wealth position

If, on the other hand, the odds of losing exceed the odds of winning, then it
is easy to show that this probability is one. In either case, the gambler faces
a positive probability of ruin. But to the extent the gambler’s initial stake is
high or the odds of losing are small relative to the odds of winning, the
gambler can expect to last longer.

To show why this is true, consider the following simple gamble
involving units of stock. Suppose that a dealer “gains™ a unit of stock (i.e,,
someone sells to the dealer) with probability p and loses a unit of stock
(someone buys from him) with probability ¢, where p > 4. If the dealer
initially starts with Sg units of stock, what is the probability that he runs out
of stock (fails) at time ¢? Denote the probability of failing at time t given
that the dealer currently has S units as Pr{F|S}. Then, in the next
transaction, there is a ¢ chance that someone will take one unit away,
leaving him with S — 1 units, while there is a p chance he will get a unit of
stock, leaving him with § + 1 units. This implies that

Pr{F|S} = qPr{F|S — 1} + p Pr{F|S + 1}. (2.6)

The solution to this difference equation yields the general expected failure

probability

Pr{Fiso} = ( )80, 27)

2 |-
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which has the same general form as equation (2.5). Notice also that the
difference equation in (2.6) is essentially the same as that derived in
equation (2.4).

2.1.2 The Market Maker's Ruin Problem

In the continuous time context considered here, Garman shows that
solving equation (2.4} for the approximate failure probability from running
out of cash yields

| \ KOV
Jim Qo ()~ ()T it MG > A Go)n,

1 otherwise. (2.8)

where § is defined to be the average price (calculated as the mean of the bid
and ask prices). The corresponding stock failure probability is given by

L(0)
tl—lrrgo RO (t) ot (:\\: ((ﬁz))) if Az (Pa) < ’\b (pb) ,

=1 otherwise. (2.9)

Since A,(p,) is simply the probability of stock going out, An(pp) is the
probability of stock in, and I(0) is our initial stock holdings, equation (2.9)
is essentially the same failure probability as we derived for our example in
equation (2.7). The cash failure probability is not as straightforward,
however, as the bid and ask prices affect cash unequally. While equation
(2.8) is essentially cash out over cash in, the initial cash level in the
exponent must be normalized to account for the size of the “gamble” (i.c.,
the amount of the inflow or outflow). To solve the difference equation,
Garman approximates the cash flow effect by scaling by some g, where g is
a price between the bid and the ask.?

3. Note that this transformation is not exact because there is a units problem in converting
cash flow. In this approximation, g essentially scales the average cash flow effect. To see how
this matters, return to our simplified example but let gp be cash out, and np, be cash in. Then,
for equation (2.8) to be correct, there must be a p that solves the difference equation

(qu ) wip ~ ( ) (w—p)/p ( ) {wtpa)/p
=q 1 +n
P TPa Tpa

While such a p may exist, the resulting solution only approximates the market maker’s failure
probability.
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In this framework, as in more standard ruin problems, the dealer’s failure
probabilities are always positive. Consequently, no matter what price the
dealer sets, there is no way to guarantee that he or she will not fail. Of
perhaps more interest is that under certain conditions the dealer fails with
probability one. Equations (2.8) and (2.9) imply that to avoid certain failure
the market maker must set p, and py, so that they simultaneously satisfy

para(pa) > puAp (pp) (2.10)

and

Ap (Pb) > Aa(pa), (2.11)

provided this is possible.

These conditions dictate that a single market maker set a lower price
when he buys stock and a higher price when he sells. This results in a
spread developing, and it implies the spread is an inherent property of this
exchange market structure. This spread protects the market maker from
certain failure, but it is not a panacea: he or she still faces a positive
probability of failure.

What determines the size and placement of this spread is not immediate-
ly obvious. Since both the market maker’s inventory and cash positions will
have positive drift, characterizing price behavior or the market maker’s
inventory position is complex. To investigate the problem further requires
limiting the scope of the uncertainty. Garman first simplifies the problem
by assuming that the dealer pursues a zero-drift inventory policy. Given this
assumption, the dealer’s pricing strategy has some interesting properties.
First, by assumption, the dealer sets prices to equate the order arrival rates.
There are multiple pricing strategies that satisfy this condition, however; so
where the dealer sets his prices depends on factors other than inventory.
Given the dealer’s objective, the exact prices he sets are those which
maximize the dealer’s expected profit.

These market-clearing prices are depicted in Figure2.1. An important
property of these prices is that the dealer does not set a single market-
clearing price p* but rather sets different buying and selling prices p, and py,
respectively. This allows the dealer to extract larger rents while still
maintaining the zero-drift inventory requirement. As is typically optimal
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for a monopolist, this pricing strategy results in volume at the optimal
prices being less than would occur with competitive prices.

This pricing strategy is reminiscent of that suggested by Demsetz. Where
the analyses differ is that the Demsetz model did not incorporate the
intertemporal nature of the dealer’s problem; nor, for that matter, did it
include a dealer. To address the dealer’s intertemporal inventory problem,
Garman considers a second simplification in which the profit maximization
assumption is relaxed. Here, the dealer is assumed to set a single market-
clearing price, p* . With the dealer’s pricing strategy specified, the effect of
inventory on the dealer can be isolated.

From our earlier discussion of failure probabilities, it should not be
surprising that pursuing this simple pricing strategy results in the dealer
failing with certainty. One way to characterize the underlying difficulty is
that the market maker fails if he or she runs out of inventory or runs out of
cash. Since inventories follow a random walk, sooner or later a sequence of
trades will force either his stock position or his cash position to their
boundary. When this happens, the process meets an “absorbing barrier” and
failure occurs.

Price Ab{Pb)
Pa
Pp
Ma(Pa)
A Order arrival rate

The A functions depict the order arrival rates corresponding to orders to sell to the
market maker (&) and orders to buy from the market maker (A,). The market
maker buys stocks at p, and sells stock at p,.

Figure 2.1 The Market Maker’s Optimal Prices
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Garman’s characterization of the market-making process is thus simplis-
tic but provocative. While the behavior of prices and inventories in this
model is too mechanistic to be realistic, the demonstration of the dual
complexity the dealer faces and its implications for market viability is
insightful. This model provided an impetus for future research by
demonstrating how, even with the simplest supply and demand specifica-
tion, the actual price-setting problem faced by the dealer was quite
complex. Equally important, the model demonstrated a frailty to the
“exchange” process not suggested by previous work. One paradoxical
aspect of this analysis is the role of inventory. As Garman’s analysis
demonstrates, inventory determines the dealer’s viability. Yet in Garman’s
model, inventory per se plays no role in the dealers’ decision problem since
by assumption the dealer is allowed to set prices only at the beginning of
trading. This restriction severely limits the applicability of this model to
actual market settings in which prices continually evolve, and so the
model’s influence lies largely in its initial contribution.

A more realistic approach to the underlying problem is to consider how
the dealer’s prices change as his inventory position varies over time. This is
the approach taken by Amihud and Mendelson [1980], who reformulate
Garman’s analysis to explicitly incorporate inventory into the dealer’s
pricing problem. Using essentially the same framework as Garman,
Amihud and Mendelson show that the dealer’s position can be viewed as a
semi-Markov process in which the inventory is the state variable. The
dealer’s decision variables, again his bid and ask prices, depend on the level
of the state variable and thus change over time depending on the level of
the dealer’s inventory position.

An important assumption in this analysis is that the inventory is bounded
above and below by some exogenous parameters. This removes the
possibility that the dealer can “run out” of inventory and so removes the
failure considerations fundamental to Garman’s analysis. Since the dealer
need not worry about bankruptcy, his pricing policies are considerably
simplified. This allows Amihud and Mendelson to characterize in more
detail the link between the dealer’s inventory and his prices.

Rather than focus on the specifics of their model (which retains much of
the structure of Garman’s model), it is perhaps more useful to consider the
model’s conclusions and then return to the issue of the underlying
approach. The model yields three main results. First, the optimal bid and
ask prices are monotone decreasing functions of the dealer’s inventory
position. As the dealer’s inventory increases, he lowers both bid and ask
prices, and conversely he raises both prices as inventory falls. Such a linkage
between prices and inventory had been suggested by several authors (see,
for example, Smidt [1971]) but had not been rigorously shown before. A
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second implication of the model is that the dealer has a preferred inventory
position. As the dealer finds his inventory departing from his preferred
position, he moves his prices to bring his position back. Subsequent research
on dealer behavior (for example, Madhavan and Smidt [1993] and
Hasbrouck and Sofianos [1993]) would examine this preferred position in
more detail. Third, as was also the case in Garman, the optimal bid and ask
prices exhibit a positive spread.

These latter two results raise interesting questions about the behavior of
security prices and, by extension, about the appropriateness of the model.
Whereas in Garman the spread arose partially because of the need to reduce
failure probabilities, the spread here reflects the dealer’s efforts to maximize
profit. Since the dealer is assumed to be risk neutral and a monopolist, the
spread reflects the dealer’s “market power.” In this model, however, if the
dealer faces competition, then the spread falls to zero.* Consequently, the
spread plays no role in the viability of the market but acts essentially as a
transaction cost.

Similarly, the dealer’s preferred inventory position arises because of the
nature of the order arrival processes. The underlying asset value is
irrelevant. What determines the optimal inventory position is the “variabil-
ity” of the order arrival stochastic process, as inventory plays simply a
buffer role. Hence, regardless of what is expected to happen to the value of
the stock, the dealer holds the same preferred position. This may be an
accurate depiction of the dealer’s problem, but it seems likely that the
preferred inventory position depends on factors other than the order arrival
rates. The framework developed here, however, is not amenable to
investigating such factors.

This suggests that additional insight into the price-setting problem
requires greater emphasis on the nature of the dealer’s decision problem,
and this dictates departing from the simple stochastic process approach of
Garman and Amihud-Mendelson. This statistical approach, however, did
provide a new perspective on the difficult intermediation task required to
clear markets, and in particular it focused attention on the dynamic
behavior of markets. This dynamic focus would be an important direction
for subsequent microstructure research, although the interesting failure
difficulties posed by Garman would generally be ignored. In the next
section, we consider the dealer-based approach for modeling price-setting
behavior,

4. Interestingly, this same conclusion will arise in a much later model of liquidity, by
Grossman and Miller [1988]. In both models, competition removes any role for the spread
and hence suggests that the existence of a spread is due solely to fixed transactions costs or to
market power.
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2.2 THE DEALER’S PROBLEM

Analyzing the dealer’s decision problem requires specifying the dealer’s
objectives and constraints in more detail. Of paramount importance is the
need to delineate the risks the dealer faces and how these risks affect his
decision making. From this perspective, the dealer’s price-setting problem
takes on the more natural characterization of choosing the optimal pricing
strategy to maximize utility, with security prices arising as the outcome of
the dealer’s optimizing behavior.

One way to characterize this approach is to recognize that the dealer
must be rewarded for providing specialist’s services, in the same way that
any intermediary must be compensated. By focusing on the supply of
intermediary services, the dealer’s decision problem reduces to determining
the appropriate compensation  to offset the costs the dealer faces in
providing such services. This is the notion of the dealer as a supplier of
immediacy. A formal analysis of this dimension of the dealer’s problem was
first undertaken by Stoll [1978).

Stoll's analysis departs from the order-based analyses discussed in the
previous section by focusing on the portfolio risk the dealer function
entails. For Stoll, the market maker is simply a market participant, or trader,
who is willing to alter his own portfolio away from desired holdings to
accommodate the trading desires of other traders. As a market participant
himself, the dealer is assumed to be risk averse and therefore must be
compcnsatcd for bearing this risk. This compensation arises from the bid
and ask prices, and so the market spread reflects the “costs” the dealer faces
in bearing this risk. This role of the dealer contrasts with that presented in
the Garman and Amihud-Mendelson models, where the dealer 1s assumed
to be a risk neutral monopolist whose prices reflect largely his market
power.

Stoll focuses on determining the costs the dealer faces in providing dealer
services, or, as Demsetz defined it, “immediacy.” These costs arise from
three sources. First, there are holding costs imposed by the suboptimal
portfolio position the dealer must hold. These costs reflect the exposure risk
of the dealer, which, since the dealer is assumed risk averse, now affects his
decision making. Second, there may be order-processing costs that reflect
the nature of the trading mechanism, such as exchange fees, transfer taxes,
etc. Third, a cost may arise from trading with individuals who know more
about the stock than the dealer. This latter asymmetric information cost
will be the focus of much subsequent research (and indeed, the remainder of
this book) but is addressed in a limited manner in this research.

Stoll considers a two-date model in which the dealer maximizes the
expected utility of terminal wealth, where this wealth is a function of the
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dealer’s initial wealth and his subsegpent market-making posmons The
déiler’s decision problem is to set prices for one transaction in which he
will buy or sell the asset at time 1, with liquidation of the asset occurring at
time 2. The dealer finances his inventory by borrowing at the risk-free rate,
Rg, and conversely can lend excess funds at Rf As the time period
‘considered is short and his borrowing ability is unlimited, the market
maker’s risk of bankruptcy is zero. An important assumption in the model is
that thc dealer has some exogenous (and unchangmg) beliefs about the

“true” price "of the asset and about its “true” rate of return. This true price
is invariant in the model. S T

The dealer is assumed willing to transact if his position in utility terms
after the trade is at least as good as it would be if he did not trade. Let the
dealer’s initial wealth, Wy, be composed of the value of his initial position
in the optimal efficient portfolio, the true value Qp of his position in his
trading account, and any remaining funds. Since the dealer knows the
“true”’ value of the stock, let Q; denote the true value of a transaction in
stock i, where the true value is the true price times the number of shares, a
positive (negative) number indicating a buy (sell). Following a trade, the
dealer’s terminal wealth is then given by

W =Wo(1+R*)+ (1 4+ R)Q; — (1 +R)Q; — C)), (2.12)

where R*is the rate of return on his initial portfolio, and R;is the rate of
return on stock i. The last term in (2.12) includes the cost of carrying the
inventory (or the return on the proceeds in the case of a sale), where C; is
defined to be the present dollar cost to the dealer of trading the amount Q;.
So, for example, if the dealer buys shares with a value Q; he need only
borrow Q; - C; to finance the purchase. These costs, which are specified in
more detail shortly, can be positive or negative depending on whether the
trade in stock i raises or lowers the dealer’s inventory holding costs, and
they essentially capture the dealer’s exposure cost of holding a nonoptimal
portfolio.

The dealer is assumed to be willing to undertake any transaction that
leaves his expected utility unchanged. That is, he requires

E[U(wo(1+ RY))] = E[U(ﬁ?)]. (2.13)

Expanding both sides of (2.13) in a Taylor series expansion, dropping terms
of order higher than two, setting R¢ = 0, and simplifying the resulting
expression yields



Inventory Models 27

OF < 1 z 5
——(5; = (= —{TiPQp + 5—0,' Qi, (2-14)

W, Wo

where z is the dealer’s coefficient of relative risk aversion, Qg is the “true”
dollar value of stocks held in the dealer’s trading account (his total
inventory), G is the correlation between the rate of return on stock i and
the rate of return on the optimal efficient portfolio, and 0'% is the variance
of stock i’s return. Equation (2.14) for C{Q;) = Ci/Q; determines the
percentage dollar cost that is necessary for the dealer to be willing to take
that position Q stock i.

This cost function indicates that the dealer’s cost of providing immediacy
depends on several factors. First, the dealer’s wealth and risk preferences
enter directly, with greater initial wealth reducing his costs and greater risk
aversion increasing them. Second, the level of the dealer’s inventory
position matters, with a larger position implying a greater cost for taking on
more inventory. Similarly, the transaction size affects the total size of the
costs; the larger the trade, the more it moves the dealer from his previous
position. Of course, if the trade moves the dealer back toward his desired
holdings, then this can reduce the costs of the trade. Finally, the
characteristics of the stock as captured by its variance and correlation with
other securities also affect the cost. Each of these factors affects the costs to
the dealer of accepting a suboptimal portfolio position.

The dealer is compensated for bearing these costs through his trading
prices. If the market is competitive, then his bid and ask prices must just
compensate him for the costs of accepting the trade, and hence the bid and
ask prices can be solved for as a function of the trading cost.> Expressing
these costs in percentage terms relative to the true price P;* | the optimal bid
price, Py, for a transaction with true value Q,l? is then

(P} = Pp)/P} = ci(Q)), (2.15)
where Q]l-:' represents the ““true value” of a sale to the dealer. A similar
expression can be used to derive the optimal ask price, P,, with the resultant
spread given by

(Pa— PP} = (@) — (@) = [z/Wolo? | QI (2.16)
for 1@ | = |Q7 | = IQl.

5. One difficulty with such a competitive pricing assumption is that it implicitly requires
dealers to be identical in every dimension, including their inventory holdings. This is
unlikely to be accurate, but abstracting from this complication does indicate a lower bound on
prices in this model.
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There are several interesting features of these prices to consider. The
linearity of percentage costs in trade size means that the spread increases
linearly with trade size. And, as the spread equation does not include
inventory as an argument, this spread does not change in response to the
dealer’s trades. Where the dealer’s inventory matters is in affecting the
placement of the bid and ask prices. A large (positive) inventory causes the
dealer to face a higher cost for absorbing more inventory, and this increased
cost lowers both bid and ask prices by the same amount. A negative
inventory moves prices in the opposite direction. This prediction, that
inventory would affect the placement of the spread but not its size, is an
important and potentially testable hypothesis.®

While this analysis characterizes the effects of the dealer’s portfolio
exposure on trading prices, there can be other costs affecting prices as well.
Stoll extends the analysis to incorporate order-processing costs, which are
assumed to be a fixed fee per transaction. Such a fee structure results in a
decreasing cost function with respect to order size. With portfolio costs
increasing in trade size while processing costs decrease in trade size, the
total dealer cost function becomes U-shaped. This has the intriguing
implication that there is an optimal cost minimizing scale, or preferred
trade size, for the dealer?

This model thus provides a cogent analysis of the dealer’s pricing
behavior. In this model, inventory matters largely because of the dealer’s
inability to hedge his inventory exposure. This “risk aversion”-based spread
contrasts with the “market power” role of the spread developed by Amihud
and Mendelson or the “defense against bankruptcy” role described by
Garman. The simplicity of the Stoll model, however, raises concerns about
its generality. For example, if the dealer were risk neutral or able to
diversify, then the cost of the providing dealer services would fall
precipitously and, indeed, could fall to zero (or to the level of any order-
processing costs). This implies a natural tendency for dealers to diversify
their risk by incorporation or other means, a trend not observed on
organized exchanges such as the NYSE.? This also suggests that differences

6. This implication is empirically examined by Hasbrouck [1988] and others.

7. Stoll also considers the effect of a simple adverse selection cost, which he assumes is
independent of the scale of the transaction. This simply adds a fixed cost to the dealer’s cost
and hence widens his spread equally for every transaction. Subsequent researchers would
expand this notion of the costs of informed trading significantly. In particular, Easley and
O’Hara [1987a) would suggest that this adverse selection component would be increasing in
trade size.

8. A related issue concerns the effect of competition on the dealer’s spread. This issue is
addressed in Ho and Stoll [1983].
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in spreads between markets would be primarily due to risk-bearing abilities.
While certainly possible, it is not clear that this provides the entire
explanation. Furthermore, it is not obvious how this theory would explain
phenomena such as differences in spreads during the trading day in the
same stock.

A more fundamental difficulty is that the model minimizes the
intertemporal dimension of the dealer’s problem by assuming that the stock
is liquidated at time 2. In this sense, it is a one trade-one period model
because the dealer faces no uncertainty over how long he must hold any
inventory position. If the order flow is random, however, this length of
exposure may be an important dimension of the problem. Moreover, the
assumed exogeneity of variables such as the stock’s true price and the
portfolio’s return further restricts the risk that the dealer faces, because his
ultimate return is not a random variable. The generality of the results is
thus not apparent.

These concerns suggest that the intertemporal dimension so fundamental
to Garman and Amihud and Mendelson must also be explicitly considered
in formulating the dealer’s decision problem. In the next section we
consider the development of this approach by examining the models of Ho
and Stoll [1981] and O’Hara and Oldfield [1986].

2.3 THE INTERTEMPORAL ROLE OF INVENTORY

The Ho and Stoll [1981] model extends the intuition of the Stoll [1978]
analysis to a multiperiod framework in which both order flow and portfolio
returns are stochastic. As in Garman [1976], buy and sell orders are
represented by stochastic processes, whose order arrival rates depend on the
dealer’s pricing strategy. In this model, however, a monopolistic dealer is
assumed to maximize the expected utility of terminal wealth, and
consequently the dealer’s attitude toward risk will affect the solution. This
is a significant difference from the risk neutral intertemporal models of
Garman [1976] and Amihud and Mendelson [1980].

The model employs a finite horizon (T period) dynamic programming
approach to characterize the dealer’s optimal pricing policy.® The dealer’s
optimal pricing strategy is actually a function that specifies bid and ask
prices, pp and p,, given the level of those variables which affect the dealer’s
future utility. In this model, these state variables are the dealer’s cash,

9. Readers unfamiliar with continuous-time dynamic programming may find it useful to
read Chapters 4 and 5 in Merton [1990]. Those unfamiliar with discrete-time dynamic
programming {(which is employed later in this chapter) should see Hinderer [1970].



30 MARKET MICROSTRUCTURE THEORY

inventory, and base wealth positions. Since this is a finite horizon model,
the time period itself also affects the dealer’s choice.

As in Stoll [1978], the model assumes that the true value of the stock is
fixed at some value p, and so the dealer’s prices can be written as p,=p +a
and p, = p — b. It will often be more convenient to denote the dealer’s
choice variables by @ and b rather than by the specific prices. In this model,
transactions are assumed to evolve as a stationary continuous-time jump
process, which, as in Garman, is assumed to be a Poisson process. The
arrival rate of buy orders, A;, and that of sell orders, Ay, will depend on the
dealer’s ask and bid prices, respectively.!® Since orders are stochastic,
however, the dealer’s price influences the probability of the next trade
being either a buy or a sell, but does not guarantee that such a transaction
will occur. Consequently, the dealer faces uncertainty over the order flow
and thus over the time he will have to carry any inventory position.

The dealer is also assumed to face uncertainty over the future value of his
existing portfolio, X, implying that his future wealth is random. The return
on the portfolio is assumed to follow a nonstandard Wiener process, so that
the dealer earns some random return over time.!! In the absence of any
transactions, the portfolio growth, dX, is given by

dX=rXdt+X dZ,, (2.17)

where rx is the mean return per unit time, and Zx is a Wiener process with
mean zero and instantaneous variance rate ox2 .

The dealer’s portfolio consists of cash, stock, and any base wealth. The
dealer’s cash level changes as he buys and sells securities, with any balance
in the account earning the risk-free rate r. The value of the cash account, F,
is thus given by

dF = rF dt—(p — b) dq;, + (p + a) dqa, (2.18)
where g, and g, are dealer buys and sales of securities, respectively.

Similarly, the value of the dealer’s stock or inventory position, I, is assumed
to follow

dl=rldt+pdq,—pdq.+1dZ; (2.19)

10. A Poisson process in which the intensity X is stochastic is called doubly stochastic or a
Cox process.
11. It is nonstandard in that the variance is not equal to one and there is a drift.
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This specification includes several interesting features. First, inventory is
always valued at the known intrinsic value of the stock, p, and not at the
prices at which it actually trades. Hence, bid and ask prices play no role in
the valuation of the inventory. Second, the value of the inventory does
change due to both changes in its size (reflected in the g}, and g, transaction
terms) and changes in its value resulting from the diffusion term I dZ and
the drift term r; I dt.

These latter fluctuations in the value of the stock pose a difficult
technical problem, given that the price of the stock (and hence of the
inventory} is assumed to remain constant at price p. This somewhat
awkward construction dictates that any inventory return must take the form
of a continuous stock, 1.c., in-kind, dividend rather than the more standard
cash dividend. While Ho and Stoll argue that this essentially captures the
return uncertainty of the stock, this also removes any interaction between
the dealer’s pricing decision and the inventory value. We return to this
issue later in the chapter.

Finally, the dealer’s portfolio also includes base wealth, Y, whose change
in value is described by

dY = ryY dt + Y dZy.  (2.20)

When the dealer begins trading, he is assumed to have no initial cash or
inventory and hence holds only the initial portfolic. This construction is
consistent with the interpretation of the dealer as a trader willing to provide
dealer services in return for sufficient compensation. To avoid the failure
complications noted by Garman, Ho and Stoll assume the dealer cannot go
bankrupt over the T-period time horizon considered.

The dealer’s pricing problem, therefore, is to choose bid and ask prices to
maximize the expected utility of terminal wealth, where wealth is

Wr=Fr+Ir+Yr (2.21)

The maximized value of this problem is given by the value function J(s)
(the function that solves the Bellman equation) such that

J(¢, F, 1Y) = m%’x[E[U(WT)] |, F, 1, Y], (2.22)

where U is the utility function, 2 and b are the ask and bid adjustments, and
t, F, I, and Y are the state variables time, cash, inventory , and base wealth,
respectively. The value function gives the level of utility given that the
dealer’s decisions are made optimally. Since there is no intermediate
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consumption before time T, the recursion relation implied by the principle
of optimality is

dj(t, ;1Y) =0 and J(,F,1,Y) = UW)). (2.23)

To find a solution to the dealer’s problem, we need to find the ask and bid
adjustments that solve (2.23) for each state.

The solution to this continuous time problem requires applying stochas-
tic calculus, a technique painfully familiar to students of option pricing.
While the complete derivation is beyond our purpose here, it is perhaps
useful to demonstrate the basic solution technique. This involves an
application of Ito’s Lemma. Suppose we consider a smooth function

Y = flx, ), .24
where ¢ is time and x is some well-defined Ito process

dx = p dt + o dz. {2.25)

If we now wish to maximize Y by choosing x, we need to take the
derivative of Y, and this is given by Ito’s Lemma.'? In particular, it will be
the case that

df af 1 8%f ,, »
dY dr+ d+28x2(d)

a2
=g{d:+ f[p,dt+ dz]+ fcr de. (2.26)

Collecting the dt terms and rewriting yields

of L of 18 , of
dY = 3¢ 6xﬂ+2 52 dt + Y o dz. (2.27)

This is Ito’s Lemma. It gives the formula for calculating the derivative of a
function that depends on time and a stochastic process.'

12. To apply Ito’s Lemma, f should be twice continuously differentiable in X and once
continuously differentiable in ¢ Generalizations of Ito’s Lemma relax these sufficient
conditions.

13. For more discussion, see Merton [1990], Chapter 3, particularly 78-80.
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In Ho and Stoll’s model, the dealer’s problem in equation (2.23) involves
maximizing the value of the J(¢) function, which depends on time and the
three state variables cash, stock, and base wealth. Writing out the partial
differential equation implied by (2.23) and applying Ito’s Lemma yields

J
egiruy+ max {A[J(t, F + pQ+4Q,I - pQ, ¥) - J(t.F, L Y)]}
+ Aplf(6, F = pQ+6Q, 14 pQ, Y) - J(1, F. 1Y) = 0, (2.28)

where J; is the time derivative and L is the operator defined as

: 1
L =JerF+ Jiril + JyryY + }]yycr%}’z
: (2.29)
+ yHU%Iz + JryopylY.

Equations (2.28) and (2.29) can perhaps be better understood by
comparing these equations with the simple example in equation (2.27). The
first term in (2.28) is the time derivative corresponding to the 8f/3¢ term in
the example. The first three terms of L] are the mean terms of the state
variables F, I, and Y. The next two terms in L] contain the variance terms of -
the I (inventory) and Y (wealth) state variables {the third state variable,
cash, earns the constant r and hence has no variance). The final term of L] is
the covariance term. The example in (2.27) also contains a dZ term, but the
dZ term does not appear in {2.29). The reason is that in the problem
considered here, the dealer is maximizing expected utility, and so the
expectation of the dZ term is zero at the optimum.

The final term in equation (2.28) (i.e., the max term) gives the effect on
the dealer’s utility of transactions taking place at the bid and ask prices. It is
here that the dealer’s pricing decisions directly affect his utility. The first
part (the A, term), for example, is the effect of a dealer sale, and hence it is
the incremental utility effect of cash in and inventory out. The second part
is the corresponding effect for a dealer buy.

While equations (2.28) and (2.29) determine the solution, finding the
actual solution requires solving explicitly for the J(s} function. This is not
straightforward, and Ho and Stoll do not solve the general problem.
Instead, they introduce some transformations and simplifications into the
problem in order to solve it. First, they consider the problem only at the
endpoint, or when the time remaining, defined as T, is equal to zero.
Second, since it would be useful if the cash and inventory effects on utility
could be handled explicitly, Ho and Stoll take a first-order approximation
of the Taylor’s series expansion of the max term in (2.22) such that
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](‘?F'I' Q+0Q1I—Q,Y)=](I,F+Q,I—Q,Y)
+Jr(6F+QI-QY)aQ,
and similarly for the bid term.!* Also, Ho and Stoll now assume symmetric

linear demand and supply to the dealer, so that A, =A(a) = a -Ba, and A, =
A(b) = a + Bb. Finally, they define the sell operator, S, by

(2.30)

S=SJt,F,LY)=J(t,F+Q,I-Q,Y) (2.31)

and the buy operator, B, by

BJ =Bl (LELY)]=](,F-QI+QY). 232)

These functions give the effect of transactions on the dealer’s utility
excluding the bid and ask increments. The buy and sell operators are
intended to capture the incremental effects on the dealer’s utility of
changing his holdings by Q units. So utility will decrease if the transaction
takes the dealer farther from his desired portfolio, and it will increase if the
transaction takes him closer to the desired position.

With these simplifications and substitutions (and suppressing the time
arguments), the dealer’s problem can be restated as

Jr = 1L + max {\@)aQS]r ~A@U ¢) - ST]
+AB)BQBIF - () [ () - B }-

(2.33)

The first-order conditions to this problem can be solved for the dealer’s
optimal prices, which in the case of the bid is simply

a  J) —BJ (+) (2.34)

b= e

28 2BQJr

where a and P are parameters of the linear supply and demand functions.

While equation (2.34) gives the dealer’s bid optimal price, it depends
explicitly on the J(s} function, which has not yet been determined. To
characterize the dealer’s pricing strategy, the optimal prices must be
substituted back into equation (2.33) and the problem solved explicitly for
the optimal J(e) function. Unfortunately, as is often the case in such

14. Note that the crror of this approximation is on the order of a2.
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dynamic programs, there is no known closed-form solution to this problem.
It is possible, however, to approximate the solution through a Taylor series
expansion with some additional assumptions on the model’s parameters.
The most important of these 1s that Ho and Stoll now assume the dealer has
a quadratic utility function. Rather than concentrate on the mechanics of
the approximation, it is perhaps more useful now to analyze the resulting
optimal policy.

Ho and Stoll demonstrate three important properties of the dealer’s
optimal pricing behavior. First, the spread depends on the time horizon of
the dealer. As the dealer nears the end of trading, the risks in acting as a
dealer decrease since there is less time in which the dealer must bear any
inventory or portfolio risk. For the limiting case where the time remaining
is essentially zero, the dealer sets the risk neutral, monopolistic spread. This
spread simply depends on the slopes (or elasticities) of the supply and
demand curves, with greater elasticity reducing the dealer’s spread. As the
time horizon lengthens, the spread increases to compensate the risk averse
dealer for bearing inventory and portfolio risks.!® This demonstration that
the spread can be decomposed into a risk neutral spread plus an adjustment
for uncertainty is an important feature of the analysis.

This risk adjustment depends on the dealer’s coefficient of relative risk
aversion, the size of the transaction, and the risk of the stock as measured by
its instantaneous variance. These factors are the same as those determined
by Stoll in his one-period model. One interesting finding in this model is
that transactions uncertainty per se does not affect the spread. Although
such uncertainty enters indirectly through the time horizon effects noted
above, one might have expected a direct risk adjustment based on the
variability of the order arrival processes. Ho and Stoll argue that this does
not occur because transactions variability has no direct effect on the dealer
but rather works indirectly through its effect on his overall portfolio
position. Such a direct effect would arise, for example, if the dealer faced a
fixed operating cost, so that having fewer transactions would pose cash flow
problems for the dealer. As there is no such assumed cost, transaction
uncertainty does not enter the spread.

The third property of this optimal pricing policy is that the spread is
independent of the inventory level. This property, which was also a feature

15. This increase in the spread as the time horizon lengthens is somewhat paradoxical as
the market maker has more opportunities with a longer horizon to alter his position. But
since the market maker can liquidate his portfolio at a certain price at the end of the horizon,
a short time period reduces the interim period in which the dealer is subject to risk, while
giving the dealer the same end-of-period certainty. In the absence of a certain liquidation
value, it is not obvious that this result would remain.
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of Stoll’s one-period model, means that the spread is not affected by the
dealer’s inventory position or even his expected change in inventory (since
transaction uncertainty also does not matter). Although individual prices
depend on inventory, the dealer affects the order arrival processes by
moving the placement of the spread relative to the true price rather than
increasing or decreasing the spread itself. Thus, if the true price is 50, the
dealer may set first-period prices of 48 and 52. If the next order is at the bid,
then the dealer increases his inventory, and he shifts both prices down, say
to 47 and 51. How much the dealer shifts the prices is a function of his
relative risk aversion, the riskiness of the stock, and his wealth.

These results are derived in a complex framework capable of including
both multiperiod issues and dealer risk aversion. There are, however, a
number of underlying restrictions in the model that are important to
consider. Because the model employs a finite horizon, there is an explicit
assumption that the inventory is liquidated at some known point in the
future, in this case at time T. This ending certainty reduces the underlying
risk of the inventory and introduces the time element into the dealer’s
spread equation. One implication of this behavior, however, is that the
dealer’s prices will exhibit deterministic patterns. For example, if the
dealer’s horizon were one trading day, spreads would be largest in the
morning and would narrow steadily throughout the day. Indeed, traders
would always be worse off dealing with a specialist who had a long time
horizon as opposed to a tnarket maker with a shorter horizon. Such
dependence on the dealer’s horizon seems unlikely to be a realistic feature
of actual markets.

A second important assumption of the model is that there is a fixed
“true” price for the stock. This assumption is fundamental to the analysis. If
the underlying stock value could vary across time, then it would be
formidable even to approximate the model’s solution. Assuming a fixed
intrinsic value of the stock, however, seems realistic only if the time
horizon is fairly short. Ho and Stoll argue that the stochastic return on the
inventory position allows for future differences in the stock value to affect
the market maker, but as discussed earlier, it is not clear that this captures
completely the interaction effects of security value uncertainty. Since the
focus of the model is on the intertemporal behavior of security prices, it
scems more realistic that this underlying value could itself be a random
variable. If the price is variable, then it is unclear whether the authors’
pricing results will all still hold. In particular, the movement of a fixed
spread around the true price may no longer be optimal if the price itself is
moving.

The model also assumes a specific underlying stochastic process for the
order flow. Why orders would necessarily exhibit that specific process is
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not clear, but as an approximation to the order flow such a specification
need not be unrealistic. It is the case, however, that the assumptions needed
to justify the Poisson distribution effectively preclude the possibility that
some traders know more about the future movement of prices (i.e., are
informed traders) than do other traders. For the inventory focus in this
paper, this is not important. But for subsequent work, the absence or
presence of informed traders is a crucial element in affecting order flow
behavior, and hence the applicability of this approach to that setting is not
clear.

It should be noted that this order flow assumption implicitly restricts the
analysis to consider only market orders. Market orders are orders to buy and
sell for immediate execution, as opposed to limit orders, which are orders to
buy or sell at some prespecified price. As the limit price is “‘better” than the
current price, such orders are generally held in the specialist’s book until the
price moves to the designated level. Since limit orders are price-contingent,
however, their representation by a simple stochastic process is problematic.
Moreover, the collection of unexecuted orders in the specialist’s book may
provide valuable order flow information to the market maker.

These concerns are addressed in research by O’Hara and Oldfield [1986].
They consider the dynamic pricing policy of a risk averse market maker
who receives both limit and market orders, and who faces order flow and
inventory value uncertainty. Their analysis involves a discrete-time multi-
period framework and hence differs from the continuous-time multiperiod
models of Amihud-Mendelson and Ho-Stoll.'* O’Hara and Oldfield model
the trading day as containing # trading intervals, and they assume the dealer
maximizes his utility over an infinite number of trading days. This
essentially views the dealer’s dynamic program as an infinite series of n
finite period intervals. The dealer’s payoff (in utility terms) occurs
everyday, and not only at the terminal date as was the case in the models
considered thus far in this chapter. Because the dealer operates with an
infinite horizon, there is also no presumed date at which the dealer’s
inventory is liquidated, and the analysis does not assume a fixed value for
the stock. Consequently, the “price” or value of the stock may vary,
dictating that the value of the dealer’s inventory is also not fixed.

Because of the model’s discrete-time focus, the dealer’s trading behavior
differs from that discussed in previous models. The dealer’s order flow is
composed of both known limit orders and unknown market orders. The
dealer is assumed to set bid and ask prices at the beginning of every period,

16. Discrete-time models of dealer behavior are also developed by Zabei [1981] and
Bradfield [1979).
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and in each period some quantity of market orders arrive. The dealer then
clears all such orders as well as any qualifying limit orders at his posted
prices, and he sets prices for the next trading interval. The last trading
interval in the day is followed by an overnight market in which trades settle
and the dealer can borrow or lend stock. Trading then begins anew the next
trading day.

This framework allows incorporation of several “realistic” features of
actual security markets. For example, traders can “hit the quote” by
submitting market orders to trade at the specialist’s current quote. The
incorporation of an overnight market also allows trade settlement to be
modeled independently of order processing. And the ability to include limit
orders provides a dimension not yet incorporated in inventory models.

One drawback with this approach, however, is that the trading process is
modeled as a series of call markets, and hence it only approximates the
continuous trading process found on most organized exchanges.!” As with
all approximations, this can be made arbitrarily close by shortening the time
period included in each of the » trading periods. A second limitation is that
the limit orders are implicitly assumed to last one period, with new limit
orders arriving for the book before each trading interval. This restriction
reflects the difficulty of characterizing the piecewise optimization problem
resulting from executed orders leaving the book. A similar assumption can
be found in virtually every model incorporating limit orders, and we discuss
such models in more detail in Chapter 7.

The dealer’s problem is to set bid and ask prices, b, and 4, to solve

max E Z&U(Z 7?}-,) , (2.35)

j=0 =1

where ¢ is a discount rate, f is the index for trading days, U is a strictly
concave utility function, t is the index of trading periods in each day, and #;,
is the trading profit in period ¢ of day j (this trading profit will be defined in
more detail shortly). Note that while the dealer is assumed to maximize
expected utility, his portfolio outside of his trading account is not
considered. Hence, this madel does not include the portfolio considerations
so fundamental to the Ho and Stoll analysis. The approach developed here

17. The timing of the model is also different in that the market maker sets prices before
he sees his total order flow. As will become apparent, however, the market maker does know
the structure of supply and demand because he uses the information in the book. This timing
convention is also used by subsequent researchers to address information issues; see Admati
and Pfleiderer [1989] and Easley and O’Hara [1992b].
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instead views the dealer as an individual who specifically acts as a specialist,
rather than as a trader who is willing to accommodate orders.

The market maker’s order flow in any period is potentially composed of
limit orders to buy or sell and market orders to buy or sell. The limit orders
are assumed to be linear functions of the price, and they are represented by
cumulative order functions defined as integrals of the incremental orders.
The limit orders to buy from the dealer in period ¢, denoted AL, are given

by

L L L g
Ay =~ ~ apry =/ qa (a;) day, (2.36)

and the limit orders to sell to the dealer, BL, are defined by

by
B{“ = 61" + br(bL = /I, qp (br) db;. (2.37)

In these equations, the L superscripted variables refer to the limit order
book, a, v, B, and ¢ are parameters of the limit order flow, the ¢ functions
are the incremental orders at each price, and the limits of integration 4 and b
are the highest ask and lowest bid price, respectively, at which traders will
submit orders. Intuitively, these functions can be understood as adding up
the outstanding limit orders to buy at or below an ask price 4, or to sell at or
above a bid price b. The market maker is assumed to clear all qualified limit
orders at the current quote, dictating that some orders actually transact at
better prices than they were placed. This contrasts with their treatment in
actual markets, where limit orders typically trade only at their specified
prices. The issue of order form and price behavior is considered in more
detail in Chapter 6.

A period’s market order flow is composed of both price-dependent and
liquidity-based orders. The market maker uses the information from his
limit orders to form his expectation about the market order flow. Thus, the
market order flow is represented as functions

.

AP =a™ —ary™ + &y, (2.38)

B}'ﬂ = ﬁm + b[¢m + &4, (239)

where the &, and & terms are random variables incorporating both
deviations from the market maker’s expected price-dependent orders and
any liquidity-based orders. The total order flow in any period is just the
sum of these limit and market orders.
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Because the dealer must clear all relevant orders at his stated prices, it is
likely that he will acquire either a positive or negative inventory position in
the stock. In this model, all transactions settle at the end of the day. Gains
and losses accumulate during the day, but neither shares nor cash change
hands until close. At that time, the dealer delivers all securities sold and
takes cash, and he accepts all securities bought and pays cash. If the dealer is
short inventory, he can borrow in the overnight market; if he is long
inventory, he can lend. This overnight market is a repurchase market that
establishes a price § and an interest rate r for transactions, which are
reversed the next day. If the dealer is short, he pays rpl, , and conversely he
receives this amount if he is long.

This daily settlement means that inventory affects both the current cash
flow and the dealer’s future operations. Inventory thus represents the state
variable of the system. The market maker’s dynamic program for any
trading day can then be expressed by

max E {Ui o+ V(i,,)] , (2.40)

t=1

where V' is the dealer’s derived value function. This value function
incorporates the effect of current actions on future expected utility given
that future actions are chosen optimally. Since the value function depends
on the dealer’s inventory position, it follows that the dealer’s expectation of
this future value of the inventory affects his optimal strategy.

The dealer’s optimal pricing policy can be found by working backward.
The dealer’s last decision is a trading day is to set a, and b, to maximize

1 n—1 )
U(Z 'ﬁ':+0n(a—an’)'+fz’n)"“bn(ﬂ+bn¢+€n)
t=1
E ¢ . _ R >, (2.41
+fP(In_1+ﬁ+bn¢+sﬂ_a+aﬂ7*wﬂ)) ( )
k +V(j’"_1+ﬁ+bn¢'+5n—a+an’)’“‘3n)
subject to
al —ayt >0, (2.42)
AL+ bagl > 0. (2.43)

Note that the dealer’s profit in period n, =, is captured by
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anlo = any +@0p) — bu (B + bnd + &n) +

Fp(Lyey + B+ bud +En — a + any — @n), (2.44)

where the first two terms are the direct cash flow effects, and the last term
gives the cash flow cost of financing or lending the resulting inventory.
The problem is a constrained maximization because the limit orders must
be positive.

The first-order conditions can be solved for the optimal bid and ask prices
for period n. Assuming interior solutions, these are given by

a  E(Uds)  rEQUP)  E()

=2y TE@Y2y T 2E(U) T 2E@UY’ (2.45)
__ B _E(U%,) rE(Up)  E(V)
== 2% T E(U24 T 2B T 2E(U) (2.46)

These expressions are not explicit solutions for a, and b,, because they
contain U’ and V”, both of which depend on a, and b,. The expressions do
~ provide some interesting insights into the determinants of the bid and ask
prices. The first terms in each expression derive from the known limit
orders and expected market orders. As might be expected, these terms
reflect the slope of the order flow, and a monopolistic dealer sets prices
based on these demand and supply elasticities. The remaining terms reflect
risk adjustments due to the randomness confronting the dealer. The second
term, for example, incorporates the effect of the market order flow. Market
orders affect the dealer directly by determining the scale of trading. For a
risk averse dealer, however, the variability of the market order flow is also
important. This is captured by the covariance between U’ and ® and &, and
all else being equal, this variability effect shifts prices downward.

The effects of inventory are impounded in the third and fourth terms.
Inventory affects the dealer directly through cash flow, and indirectly
through the value of the position he takes into the future. Both effects can
be seen in the price equations, as the third term captures the overnight
effects of borrowing or lending at rp, while the fourth term impounds the
value of carrying his inventory position into the future. An interesting
feature of these inventory adjustments is that they affect the bid and ask
prices equally. Hence, as we have seen in previous analyses, increases or
decreases in inventory tend to shift prices in the same direction.

These trading prices can be solved for the spread, given by
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o = 2By PE@n) +1E ()

2¢ry 20y
+ ¢ cov (U, &) + v cov(U',€p) (2.47)
2¢vE(U") :

The structure of this spread is similar to that of Ho and Stoll in that it can
be viewed as a risk neutral spread plus adjustments for risk. The first two
terms reflect the market maker’s expected order flow, while the last term
incorporates the effects of market order uncertainty. If the market maker is
risk neutral, this last term is zero. For a risk averse market maker, this term
can be either positive or negative depending on the relative magnitudes of
the covariances. This has the intriguing implication that a risk averse dealer
can set a smaller spread than a risk neutral specialist.

Significantly, the spread equation has no explicit inventory terms, nor
does any value function term appear. At first glance, this might appear to
reinforce the finding of Ho and Stoll that the spread is independent of
inventory. The spread does include a marginal utility U’ term, however,
and this implicitly contains the inventory variables. To delineate exactly
how inventory affects utility, we need to impose more structure on the
dealer’s preferences. One commonly used approach for doing so is to
assume that the dealer’s preferences exhibit constant absolute risk aversion.
Such preferences can be represented by a negative exponential utility
function.

In this problem, a difficulty in interpretation immediately arises, because
while the utility function may be negative exponential, it is not immediate-
ly obvious that the value function will be as well. Hakansson {1970] has
shown that, under some fairly general conditions, exponential preferences
lead to an indirect utility function that is exponential in wealth. Conse-
quently, O’Hara and Oldfield assume that the dealer’s problem can be
represented by

max E [-—- exp (——cz'}i‘,) — exp (——df; .7")] ,I (2.48)

t=1

where the parameters ¢ and 4 are the market maker’s coefficients of absolute
risk aversion associated with trading profits and overnight inventory,
respectively. Since the value of taking inventory into the next trading day
depends on both its size and market value, some price must be attached to
the overnight inventory position. For simplicity, it is assumed that the
market maker values his overnight inventory at the random repurchase
market price. Since this price is not known to the dealer until after the close
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of trade, it is a random variable at the time the dealer is making his buying
and selling decisions.

If trading profits and inventory value are jointly normally distributed, the
dealer’s expected utility is linear in means and variances. Consequently, the
explicit effect of inventory on dealer marginal utility can be calculated as a
function of these two moments. These inventory effects are quite complex,
as inventory imposes two types of risk on the dealer. First, the variability in
market orders means that the dealer is never entirely sure what the size of
his inventory position will be. This quantity exposure means that the dealer
can finish the trading day with a large negative or positive inventory
position. Second, the price of the stock is also a random variable, dictating
that the value of the inventory position is also unknown. These two effects
on the dealer can be isolated by solving separately for the optimal spread.

First, suppose that there were no market order variability, so that the
market maker faced only price variability. Then solving the dealer’s
problem reveals that the optimal spread is simply the risk neutral spread
derived earlier, but the individual bid and ask prices do not equal their
corresponding risk neutral values. Hence, the market maker incorporates
uncertainty about future inventory value by moving the bid and ask prices
symmetrically. With his supply and demand fixed, the dealer can control
his inventory position, and so he incorporates variation in the stock’s price
by moving the placement of his trading prices.

Alternatively, suppose that the market maker faced market order
variability but not price variability. This would occur if the inventory could
be valued at a constant p, corresponding to the framework analyzed by Ho
and Stoll. There are two interesting results that emerge in this case. First,
the spread now contains a risk adjustment term that can be either positive or
negative. Second, the level of inventory does not affect the spread. This
suggests that faced with either order uncertainty or price uncertainty alone,
the market maker moves his prices symmetrically, and his spread remains
invariant with respect to his inventory.

In general, however, the market maker faces simultaneous order and
price uncertainty, and his pricing policy changes to reflect this dual
uncertainty. Of particular importance is that now solving the dealer’s
problem reveals that both the placement and the magnitude of the spread
depend on his inventory position. The reason is that with multiple
uncertainty the market maker cannot adequately control his risk by simply
moving his trading prices. By allowing the size of the spread to change as
well, the market maker gains more flexibility to offset what can be complex
changes in both the size and value of his inventory. This result, that the
spread is not independent of the market maker’s inventory, suggests a
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complexity to the dealer’s pricing problem not envisioned in previous
work.

These results relate to the dealer’s period # problem. Given these optimal
prices, the dealer’s n — 1 period problem can then be solved. While the
solution is shown in the paper, the complexity of the problem defies easy
characterization. Moreover, solving for eatlier periods rapidly becomes
intractable, illustrating the practical difficulties with applying a discrete-
time multiperiod model to analyze the dealer’s problem. Interestingly, this
same difficulty arose in the continuous-time framework of Ho and Stoll
[1981], and as noted eatlier, their solution involved analyzing only the last
time instant before the end of the horizon.

The dealer-based models considered in this section thus illustrate the
complexities of the pricing problem faced by the dealer. In each model,
inventory introduces risks for the dealer, and his pricing strategy reflects at
least partially his efforts to minimize those risks. The spread plays a role
related to the inventory, but the extent of this role differs in the various
frameworks considered. What is true in every model, however, is that
inventory imposes some cost on the dealer, and it is this cost that is reflected
in market bid and ask prices.

One feature common to the models considered here is that the dealer acts
as the sole provider of liquidity in the market.!® In markets in which there is
only a single specialist and all trades arise from market orders, such models
may accurately describe market behavior. But many, indeed perhaps most,
markets do not fit this simple description. Some markets have multiple
market makers, allowing for alternatives to any particular dealer’s prices.
Even if there is only one specialist in a market, however, competition may
arise through the guise of order form. In the next section we consider these
issues by first analyzing how traders’ order strategies affect price behavior.
We then consider the interaction between inventory and prices in markets
with competitive dealers.

2.4 PRICES AND INVENTORIES IN COMPETITIVE
MARKETS

In the models considered thus far in this chapter, the main activity of the
specialist is the provision of immediacy to traders. If there exist other
traders who are willing to provide such immediacy, however, then a
specific “‘specialist” need not be necessary in the market. For example, if

18. Recall, however, that Stoll {1978] used the notion of potential competition to find the
market maker’s prices. Thus, that model included the effects of potential competition on
prices.
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traders can submit limit orders, then any market orders requiring immediate
execution can be crossed with such orders, leaving no role for the specialist.
This suggests that the interaction of market and limit orders may provide
sufficient liquidity to result in a viable security market in much the way
suggested by Demsetz. Equally important, analyzing the properties of these
two order types may indicate how liquidity arises in markets in ways other
than directly from the market maker.

These issues are addressed in an interesting papcr by Cohen, Maicr,
Schwartz, and Whitcomb (CMSW) [1981]. Their model examines the
order strategies of traders who can choose between submitting a market
order for immediate execution or a limit order that specifies a specific price
for execution. In this model, there is no active specialist, and so market
prices evolve as a result of orders crossing between traders.’” What is an
important feature of this market, however, is the existence of exogenous
transaction costs. These transactions costs influence the order decisions of
traders and hence determine the trading prices of the underlying asset.

The underlying investor problem is highly structured. The investor is
assumed to maximize the expected utility of terminal wealth by allocating
funds between a risky asset and a risk-free asset. There are assumed to be
transactions costs that impede the trader’s ability to continuously alter his
portfolio. These costs dictate that the trader will make trading decisions
only periodically, and in particular, he will trade only at a discrete set of
decision points. These decision points are assumed exogenously given and
are presumably identical for all traders. At each decision point, the trader
may trade via a market order, he may submit a limit order, or he might not
trade at all.

What the trader opts to do depends partially on the properties of the
alternative order forms. CMSW assume that the market ask (or bid) price
depends only on the last previous market ask and hence 1s a Markov process.
With some additional assumptions, the market ask price generation process
can be modeled as a Poisson process.?? Now, let a trader consider submitting
a limit order between the current market bid and ask. What is the
probability that the limit order will in fact execute over the next trading

19. Such crossing networks are now a common feature in many markets. For example,
both POSIT and Instinet function this way, while many European markets (such as the
Helsinki Stock Market) also operate as crossing necworks. Much current research is being
directed to the behavior of such markets, but it is interesting to note that this issue was first
addressed in the early microstructure literature.

20. Again, this assumption of a Poisson process makes sense here because orders cannot be
information related. If there could be such orders, then the robustness of this approach is not
clear.
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period? If it is one, then it will clearly be optimal for the trader to submit a
limit order and hence reduce the price at which he trades.

The authors show that such is not the case; no matter how close the
trader places his limit order to the current market price, the probability of
the limit executing is always less than one. Since a market order always
executes, this implies that there is a jump in the probability as the price
approaches the ask. This jump, however, is crucially dependent on the
existence of transaction costs. CMSW show that without such costs, the
underlying price process becomes a Wiener process and the “jump
property disappears. One way to view this result is simply that the existence
of trading costs limits trading activity and hence discretizes the price
process. The greater the trading intensity, however, the less this happens
and the more the process becomes like a Wiener process. This has the
important implication that in inactive (or thin) markets the probability
jump is larger, dictating that the probability of a limit order executing is
also correspondingly lower.

Given these properties of the price process, the optimal order strategy for
an investor can be determined. To address this issue, CMSW assume that all
orders are for the same quantity and that any limit orders last only one
trading period and are then canceled if not executed. This latter assumption
is a serious simplification; most limit orders are active for much longer
periods, and the cost of submitting an order is an important factor in the
model. Incorporating such intertempotal properties, however, would
preclude finding a closed-form solution for the model. Allowing one-
period limit orders does allow the trader’s decision between trading for
certain or pursuing a contingent order strategy to be invcstigated, and hence
it captures the execution uncertainty implicit in the limit order.

CMSW assume a particular cost structure such that the trader pays a cost
for submitting a limit order and an additional cost if the order executes.
Alternatively, if the trader submits a market order then he faces a single
transaction cost (as well as the implicit bid-ask spread). Perhaps not
surprisingly, the trader’s optimal order strategy is shown to depend on
factors such as transaction costs, the parameters of his utility function, and
the existing market spread. What matters for this analysis is that under
some parameterizations the trader will submit a limit order. Consequently,
the interaction between these orders and market prices is nontrivial, and
indeed it influences what will be the actual market spread.

In this model, the limit orders held in book determine the market
“spread” because the spread is essentially the “hole in the book.” If the
spread is wide, then a trader has much to gain from submitting a limit
order; if it executes, the trader will have transacted at a much better price.
This will induce traders to shift from using market orders to using limit
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orders, and this will tend to decrease the spread. As the spread narrows,
however, the probability jump property discussed earlier means that at some
point the trader will prefer to take the certain execution with a market
order to the uncertain exécution of a limit order. The resulting influx of
market orders will cross with existing limit orders from the book, which in
turn widens the spread.

There are two important properties of this process to note. First, the
“gravitational pull” of the market orders dictates that a nonzero spread is an
equilibrium property of the market. This spread exists because it is not
optimal (given the underlying transaction costs) to continuously trade, and
hence the certain execution of the market order induces some traders to
enter market orders rather than limit orders. This occurs in a neighborhood
of the market prices, and hence the spread does not collapse to zero.

Second, the size of the spread depends on the movement of traders
between limits and markets, and this in turn partially depends on the
execution probability of the limit order. In the absence of transaction costs,
all orders would be limits because the continuity of the price process would
guarantee execution, but with transaction costs this probability falls with
trading intensity. In thin markets, limit execution is low, and hence even
with a large spread traders may prefer to enter market orders rather than
limit orders. This trading strategy dictates that larger spreads will be an
equilibrium property of thinner markets.

This analysis suggests a number of interesting insights into the behavior
of market prices and spreads. In this model, spreads arise as a natural
consequence of transaction costs. If there were no such costs, there would
be no bid-ask spread. What limits the size of the spread are the gains
available to providing immediacy. As the spread widens, more traders find it
optimal to enter limit orders and thereby increase the liquidity available to
the market. As spreads narrow, the gains to such trading decrease, and
traders switch to demanding liquidity via market orders. This suggests that
the behavior of traders provides a natural bound on the size of the market
bid-ask spread.

In this model, unlike in the other models considered in this chapter,
inventory does not play an explicit role. This reflects the highly stylized
structure of the model, as well as the model’s focus on competitive traders
essentially endeavoring to minimize transaction costs in meeting their own
trading needs. If traders were willing to act as dealers, however, then the
inventory position of each dealer might be expected to affect at least his
willingness to buy or sell the asset. This issue is investigated by Ho and
Stoll [1983], who examine price setting in a model with competitive
dealers.
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The Ho and Stoll [1983] model does not include limit orders per se, but
instead allows market makers the ability to trade either directly with the
public or between themselves in an interdealer market. While this might
appear to be very different from the issues we have been considering in this
section, the fundamentals of these processes are the same. The interdealer
market allows the dealer to lock in a certain price by trading with another
dealer, while trading in the public market provides the dealer with better
prices (his bid or ask) but uncertain execution. This trade-off dictates that
the dealer’s price may reflect more than the simple order-balancing issues
analyzed previously. And the existence of competitive dealers means that
the dealer does not have an exclusive franchise on clearing the order flow;
so inventory positions can expose the dealer to substantial risk.

Introducing competing dealers into the models analyzed thus far is not a
trivial exercise. Since traders will presumably transact with the dealer with
the best price, each dealer’s pricing problem should in principle depend on
the actions of every other dealer. This dictates solving for the dealer’s
optimal strategy given his expectations over the actions of the other dealers.
Over multiple periods with uncertain order flows, this would constitute an
extremely complicated decision problem. Moreover, if dealers differ in their
risk preferences, expectations of the stock’s future value, or knowledge of
the order flow, then a dealer’s price-setting problem could be so complex as
to be intractable.

Ho and Stoll do not analyze this general problem. Instead, they consider
a simpler model in which two competing market makers, each trading two
stocks denoted N and M, choose bid and ask prices to maximize their
expected utility of wealth. This model shares features with both the Stoll
[1978] and Ho and Stoll [1981] models, in that the dealer cares about his
overall portfolio and not simply his trading activity. For each stock, each
dealer chooses a buying fee, b;, i = N, M, and a selling fee, 4;, i = N, M.
These buying and selling fees are selected so that the dealer’s utility from
trading at those prices is no lower than if he did not trade at all. It is also
implicitly assumed that there is perfect information regarding each dealer’s
inventory and wealth positions. While Ho and Stoll set up the general
multiperiod model, they explicitly solve a simpler one-period model in
which the intertemporal dimensions of the dealer’s inventory are not
included. The strategic element one might expect to find in such a problem
is also not a feature of this model.

These assumptions result in each dealer’s pricing functions having a very
simple form. Assuming transactions in stocks M and N are independent,
then a dealer with inventories of M dollar value in stock M and N dollar
value in stock N has a reservation buying fee for stock M of
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1
by = -2—crf4R (Q + 2Iyy) (2.49)

and a selling fee for stock M of

1
ay = Ea;%,R (Q — 2Ip), (2.50)

where Q is a fixed transaction value (rather than a size), and R is the
discounted coefficient of dealer absolute risk aversion. In these equations,
Iy = M + (onm/0pm? )N is the overall value of the dealer’s inventory
position, which depends on the return variance of stock M (ops2 ) and the
covariance of return between stocks M and N. Given these buying and
selling fees, the dealer’s spread for stock M is simply s = o342 RQ. Thus, the
value of the dealer’s inventory affects the placement of the spread, but not
its size. This also implies that the dealer’s spread is independent of the
number of stocks he trades, and so the diversification of the dealer’s trading
activities does not affect the spread. Notice that these pricing and spread
functions do not include expectations of the other dealer’s actions, or even
the size of the other dealer’s inventories. In a more complete model or even
in this model with a two-period horizon, such interactions would arise.?

Where the market spread lies does depend on the spreads quoted by each
of the dealers. Ho and Stoll argue that the market buying and selling fees
will reflect the second best prices rather than each dealer’s reservation
prices. In particular, suppose that one dealer’s reservation price to sell is 50,
while the other dealer’s reservation price is 51. The first dealer can clearly
outbid the second for order flow, but could do so at any price up to 51.
Thus, the first dealer will quote 51 (or an epsilon below), and the market
spread will reflect the second best price.? This means that the spread need
also not reflect its reservation price level. Ho and Stoll argue that with two
dealers the spread can exceed op2 RQ, with three dealers it will equal 42
RQ, and with more than three it can be below that level.

21. Subsequent research (for example, Pagano [1989a]; Biais [1993]) addresses these effects
in more detail. We consider this issue further in Chapters 8 and 9.

22. This second best pricing is characteristic of a Dutch auction, and this is essentially
what Ho and Stoll argue occurs in the competitive market. Biais [1993] provides an
interesting analysis along similar lines by looking at how fragmenting orders between
exchanges affects prices in fragmented and centralized markets. He shows that prices in the
two settings correspond to those arising in English and Dutch auction, and that in general the
type of mechanism does not affect prices. He argues that this irrelevance result is reminiscent
of Vickrey’s finding of the irrelevance of auction mechanisms.
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An interesting feature of this model is that interdealer trading is
permitted. Such trading is extensive in markets for foreign exchange (see
Lyons [1993]) and is also important in many other markets. If interdealer
trading is permitted, then a dealer can lay off an unwanted position by
trading at another dealer’s quote. In this model, if there are only two
dealers, then such trading does not arise, because each dealer essentially acts
as a monopolist on his side of the market. The dealer in a better position to
buy thus quotes the highest price he can, which results in his price being
essentially the same as that of the other dealer. Since selling at this price
cannot improve the utility position of the first trader, no interdealer trade
occurs, and each dealer instead waits to cross his position against a market
order. The market spread is then essentially the monopoly spread, with its
width determined by the inventory positions of the dealer on each side of
the market.

If there are more than two dealers, however, then bids and asks need not
be at the “worst” prices, and a smaller spread arises. Ho and Stoll argue that
this spread will not go to zero because of the interdealer trades. In
particular, since a sale to a dealer raises that dealer’s inventory position, this
should also lower his bid price and thereby widen the spread. As the market
spread narrows, therefore, a gravitational pull of orders from other dealers
will arise. This causes the best bids and asks to worsen, resulting in a
widening (and nonzero) spread. This gravitational pull is similar to that in
Cohen, Maier, Schwartz, and Whitcomb, and it suggests that the sprcad
reflects factors relating to the supply of liquidity.

One caveat that should be stressed, however, is that Ho and Stoll do not
actually show that such an equilibrium occurs. In a one-period model, such
dynamic effects are not really possible. Perhaps more important, to find
such an equilibrium really requires a formal game-theoretic structure, and
that is not a feature of this analysis. Subsequent microstructure research
would employ such a game-theoretic approach, and we analyze several such
models in the next three chapters. That inventory would affect the
placement of the spread differentially among dealers, however, is an
interesting and important insight of this paper.

In the next chapter, we consider an alternative theory of market prices
and spreads in which explicit inventory costs play no role at all. Before
proceeding to that, however, it may be useful to summarize some
remaining issues and concerns in the inventory literature.
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2.5 INVENTORY MODELS AND MARKET MAKER
BEHAVIOR

The models examined in this chapter present a varied view of the behavior
of market prices and spreads. In each of the approaches we have discussed, a
spread arises between the market maker’s buying and selling prices. The
explanations for this phenomenon differ widely, however, ranging from
“market failure” and “market power” explanations of the spread to more
transaction cost-related “dcaler risk aversion” and “gravitational pull”
theories. These divergences reflect the many dimensions of the price-
setting problem, and they suggest that, at least to some degree, all these
factors may be present in market spreads,

Despite the apparent differences in the various approaches, there is an
underlying similarity to the inventory-based approach to market making. In
an inventory model, the specialist faces a complex balancing problem in
that he must moderate random deviations in inflows and outflows. These
deviations are by assumption unrelated to the future value of the stock, but
in the short run they determine the behavior of the market. For the long
run, however, assuming the dealer can adjust his position and prices, these
stochastic inflows and outflows are irrelevant. Consequently, the dealer’s
effect on prices is also always temporary, with prices ultimately reverting to
“true” levels that prevail when order flows are balanced.

For empirical researchers, this behavior dictates a need to focus only on
the short run in characterizing market behavior. Joel Hasbrouck (see, for
example, [1988, 1991a, 1991b]) has used this property to separate price
movements into short-run inventory-related effects and longer-run effects
related to other factors such as information. There remain, however, several
puzzling issues in characterizing exactly how the dealer formulates his
strategy for dealing with his inventory, and hence there are still a number
of unresolved issues in understanding even the short-run behavior of market
prices.

One of the most important of these unresolved issues concerns the
dealer’s preferred inventory position. As Amihud and Mendelson demon-
strated, it may be that the dealer simply operates so as to keep his inventory
position at some specific level. If this is the case, then inventory will be
mean-reverting, and the dealer’s inventory control measures will induce
serial dependence in the security price process. What this desired level is,
however, is not obvious, nor is it clear what, if anything, would change the
level. Moreover, if the dealer could speculate on the stock (even assuming
the absence of private information in the market), it seems likely that this
preferred level need not be stationary even over longer time periods.
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One reason this matters is that the recent availability of databases
containing dealer inventory positions suggests at least the possibility of
testing for the effect of dealer inventory positions on bid and ask prices. To
formulate any test, however, requires specifying how the dealer’s optimal
strategy translates into his prices, and as we have seen, the complexity of
such problems defies easy (or in some cases, any) characterization.
Moreover, the results we do have often rely on specific restrictions (such as
Poisson) on the order arrival process, and hence their generality is not
apparent. Research articles by Madhavan and Smide [1991, 1993] and
Hasbrouck and Sofianos [1993] provide interesting empirical evidence to
bear on this issue. These authors find evidence of preferred inventory
positions, but also that the dealer is willing to depart from these preferred
positions over long (i.e., several weeks) cycles. Such behavior is not yet
predicted by extant inventory models.

One simple prediction of the inventory models is that since a dealer will
prefer to sell if he is long inventory and buy if he is short, there should be
mean reversion in security prices due to inventory effects. These predictions
have been the focus of extensive research by Madhavan and Smidt [1991],
Manaster and Mann [1992], Lyons [1993], Laux [1993], and many others.
Interestingly, while Lyons finds evidence of inventory effects in foreign
exchange markets, Madhavan and Smidt find little evidence of inventory
effects in equity markets, and Manaster and Mann find similarly little
evidence of inventory effects in futures markets.

These conflicting results may be due to differences in market structures
and data sources, but they may also reflect the difficulty of specifying
empirical tests given the simplicity of current inventory models. Further, if
inventory can be correlated with factors related to future stock price
movements (a property not allowed in the inventory models considered in
this chapter), then testing for inventory effects can be extremely complex.
We consider this issue more fully in later chapters, but it remains the case
that many aspects of the market maker’s behavior have not been fully
resolved in the inventory literature.



3
Information-Based Models

The inventory approach discussed in the previous chapter provides a
number of important insights into the behavior of market prices. One
implication of these models, however, is that transaction costs (albeit
augmented to include a wide variety of inventory costs) still determine the
bid-ask spread. Beginning with an insightful paper by Bagehot [1971], a
new theory emerged to explain market prices that did not rely on
transaction costs, but rather posited an important role for information.
These information-based models used insights from the theory of adverse
selection to demonstrate how, even in competitive markets without explicit
transaction costs, spreads would exist.

In the next three chapters, we analyze the major information-based
models with a view to understanding how these models explain price
behavior. One important aspect of the information-based models is that
they allow for examination of market dynamics and hence provide insights
into the adjustment process of prices. These adjustment issues will be
examined in more detail in Chapter 6. Another aspect of information-based
theories is that they allow for potential strategic behavior for informed and
uninformed traders. These issues are considered in Chapters 4 and 5.

3.1 INFORMED TRADERS AND UNINFORMED TRADERS

The origin of the information models is usually credited to a simple paper
by Bagehot [1971]. His starting point was noting that there is a distinction
in the market between market gains and trading gains. The former concept
is the familiar notion that when market prices go up in general, most
investors gain; when they fall, most investors lose. Since over time prices
tend to both rise and fall, one might expect that investors play a fair game
and hence receive a neutral market rate of return. The latter concept of
trading gains, however, suggests otherwise: information costs will make

53
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this average investor actually lose money relative to the market return over
time.

This information loss arises because of the presence in the market of
traders who have superior information. In particular, the market maker,
who is in the middle of all trades, knows that some traders may have better
information than he does. These informed traders buy when they know the
stock’s current price is too low; they sell when they know it is too high.
Moreover, these informed traders have the option not to trade, unlike the
market maker, who must always quote prices to buy and sell. Consequently,
the market maker knows that when he is trading with an informed trader,
he always loses. To remain solvent, he must be able to offset these losses by
making gains from uninformed traders. These gains arise from the bid-ask
spread.

That the spread reflects a balancing of losses to the informed with gains
from the uninformed represented a fundamental insight into the nature of
market making. While, undoubtedly, inventory and transaction costs are
important factors, the notion that information costs also affect prices
provided a new and important direction for market structure research.
Perhaps most significant, it provided a way to explain market bid-ask spread
behavior without relying on exogenous technological specifications of
transaction costs.

The first attempt to formalize this concept of information costs was by
Copeland and Galai [1983). Their analysis develops a one-period model of
the market maker’s pricing problem given that some fraction of traders
have superior information. The Copeland and Galai paper includes two
almost distinct approaches to viewing the bid-ask spread. The first approach
assumes a risk neutral dealer who sets bid and ask prices to maximize
expected profit. The second views the bid and ask prices as call and put
options provided by the dealer to the traders. Although the second approach
captures a potentially important characteristic of the dealer’s position, it
would not prove as tractable as explicitly solving the dealer’s maximization
problem.! Hence, we consider how the dealer’s decision problem can be
formulated in a world of asymmetric information.

Copeland and Galai consider a very simple model. There is a single risk
neutral dealer, who trades with a population of traders. The stock price,
denoted P, is drawn from some known density, f(P), which is exogenous to
the market. Some traders are assumed to know the actual value of the stock
and hence are informed. Other traders know only the general price process

1. In particular, using the latter approach, Copeland and Galai demonstrate that the
volatility of the underlying value is an important determinant of the spread. They also
demonstrate that higher priced stocks have lower percentage spreads.
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and not the actual value, and hence they are uninformed, or liquidity,
traders. How information arises in this model and who gets to know it are
left unspecified. Similarly, why liquidity traders trade is also left unspeci-
fied. This general approach of viewing liquidity traders’ motivations as
exogenous to the model is similar to the approach taken in the inventory
models considered in the last chapter. As in those models, traders’ utilities,
risk preferences, etc., are all left unspecified. The recognition, however,
that the informed traders have a clear and quantifiable reason for trading
allowed this model to capture an aspect of order flow not considered in the
inventory models.

As in the inventory models, traders are assumed to arrive at the market
according to some exogenous probabilistic framework that is independent
of the stock price process. Since some traders know more about P, this
assumption now is not innocuous, as it might seem likely that informed
trader behavior depends on what they know about the stock relative to
what the market thinks. This aspect of the problem is not addressed in this
simple one-period framework. Copeland and Galai do introduce the notion,
however, that the dealer’s order flow may include information-based trades.
In particular, while individual traders are anonymous to the dealer, the
market maker knows that any given trade comes from an informed trader
with probability nty and from an uninformed trader with probability 1 — ny.
This probabilistic structure is an important contribution of the model.

Once a trader arrives at the market, Copeland and Galai assume that
there is some probability an uninformed trader will buy (rpr), some
probability he will sell (nsp), and some probability he will not trade at all
(rNL)- The informed trader is assumed to make the trade (either buy or sell)
that maximizes his profit. All trades are for the same fixed size. Traders are
allowed to have price-elastic demand functions, and so the uninformed are
not forced to trade.? This latter feature is important; it means that whether a
trade actually occurs depends on the bid-ask spread, and so the price-setting
problem for the market maker must take account of this elasticity.

In an instantaneous quote framework, the market maker sets his quotes,
and trades occur with no intervening time passing. Given this structure, the
market maker can calculate his expected gain or loss from trading with any
trader over the next instant. If the trader is informed (which occurs with
probability wrj}, the market maker can expect to lose

o Py
/pA (P—Pp)f(P)dP + fo (P — P)f(P)dP, (3.1)

2. Note that the uninformed do not consider any strategic issues in their decision to trade,
such as whether it makes sense to trade if other traders in the market are informed. This issue
is addressed by Milgrom and Stokey [1982].



56 MARKET MICROSTRUCTURE THEORY

where Ppand P are the dealer’s bid and ask prices and P is the “true” stock
price.

Conversely, if the trader is uninformed, then the market maker’s
expected gain is given by

7L(PA — P) + 751 (P — Pp) + 7NL(0). (3.2)

Implicit in the trading probabilities of both equations are the respective
demand elasticities of the informed and uninformed traders. Since the
dealer does not know the type of trader he is facing, he weights his
expected gains and losses by the probability of informed and uninformed
trading. Hence, —m times (3.1) plus (1 — m) times (3.2) gives the dealer’s
objective function. The optimal bid and ask prices then emerge as the
solutions to the dealer’s maximization problem, provided these prices are
positive (otherwise, the market closes).

This model captures the information notion suggested by Bagehot in that
it allows the explicit calculation of the market maker’s expected gains and
losses to traders to influence the size and placement of the spread. The
model also makes clear that calculating these gains and losses requires
knowing the trading probabilities of the informed and uninformed, the
stochastic behavior of the stock, and the elasticities of traders’ demands.
Indeed, this focus on elasticities is reminiscent of the earlier Demsetz
analysis. The decision problem described here is for 2 monopolistic dealer.
The framework, however, can include competition by incorporating a zero-
profit constraint into the dealer’s problem.

The most important result that emerges from this model is that even
with risk neutral, competitive dealers, a spread arises. The size of this spread
differs with various market parameters, in particular the elasticities of
traders’ demand functions and the population parameters of the uninformed
and informed traders. As long as there is a positive probability that some
traders are informed, however, the spread is never zero. Consequently, a
market spread will exist without either risk aversion, market power on the
part of the market maker, or the inventory effects so extensively analyzed
by previous researchers. The Copeland and Galai framework thus quantifies
the intuitive concept introduced by Bagehot that information alone is
sufficient to induce market spreads.

While the model provides an interesting characterization of the bid-ask
spread, it does so in a static one-trade framework.> Because the dealer’s

3. The authors also consider an interesting extension by casting the dealer’s problem in an
option pricing framework. Here, the dealer can be thought of as writing a call option at his
bid price and writing a put option at his ask price. If both prices are the same, then an
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decision problem in this framework is simply to balance gains and losses, his
problem is isomorphic to the inventory control problems discussed earlier.
This similarity disappears, however, once dynamic considerations are
introduced. With asymmetric information, the nature of the order flow is
not exogenous to the dealer’s problem, and consequently the trade itself
conveys information. Moreover, the continued trading of the informed
provides at least the potential for other uninformed market participants to
infer the underlying information. This concept of trades as “signals” of
information is developed in papers by Glosten and Milgrom [1985] and
Easley and O’Hara [1987a].

3.2 THE INFORMATION CONTENT OF TRADES

If some traders have superior information, then the market maker loses on
average to those traders. In the one-trade world considered by Copeland
and Galai, it is easy to quantify the size of this expected loss. If the new
information, however, is not instantly revealed after the trade, the issue of
losses to the informed is not so easily resolved. Instead, the size of the loss
will depend not only on the current bid and ask price, but also on how
quickly those prices reflect the new true value.

The effect of information on market prices, therefore, takes on added
dimension as the possibility of multiple rounds of trade is considered. What
makes this problem particularly interesting is that it cannot be viewed as a
simple repeated version of the problem solved by Copeland and Galai. If it
were, then the losses to the informed would simply be the cumulative total
of the (constant) loss per trade times the number of trades. The reason for
this is that the market maker has no reason to change bid and ask prices,
because the parameters affecting his decision (the probability of trade by the
informed, the stochastic process of the stock, and the elasticities of demand)
remain unchanged. What is missing in this framework is the realization
that the trades, in themselves, could reveal the underlying information and
so affect the behavior of prices.

It is this insight that Glosten and Milgrom develop in their model of the
market maker’s pricing decision. They focus on the fact that in a

informed trader essentially exercises an in-the-money option. An uninformed trader,
conversely, exercises an out-of-the-money option. Balancing these gains and losses requires
the dealer to write options at different prices (a “reverse strangle™}, and hence the spread can
be solved for as optimal put and call prices. This approach certainly captures an important
aspect of the dealer’s problem. One difficulty in extending it further is that the option pricing
framework requires exogeneity of the underlying order processes, and as will be apparent, it is
this exogeneity that future researchers would relax to characterize the dynamics of the market
making process.
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competitive market, informed agents’ trades will reflect their information,
either selling if they know bad news or buying if they know good news. If
someone wants to sell to the market maker, therefore, it could signal that
the trader knows bad news. It could also mean, however, that the trader is
uninformed and simply needs liquidity. Since the market maker cannot tell
which is the case, he protects himself by adjusting his beliefs about the
value of the stock, conditional on the type of trade that occurs. As the
market maker receives trades, therefore, his expectation of the asset’s value
changes, and this, in turn, causes his prices to change. Glosten and Milgrom
demonstrate that over time the preponderance of informed trades on one
side of the market results in the market maker eventually learning the
informed traders’ information, and his prices converge to the expected
value of the asset given this information.

This focus on the learning problem confronting the market maker was a
new, and important, direction in microstructure research. In previous
research, the exogeneity of order flow and asset value uncertainty dictated

that the market maker’s decision problem_essentially concerned setting

prices to balance risks over time. The rcsurlruﬂg markee?nec% reflected these

price path was not iudcpcndmt of private Jnformaaon on n the asset’s true
value. This linkage of price setting to underlying asset values meant that the
process by which information was impounded into prices could be
addressed. This issue, long the focus of both the efficient markets and the
rational expectations literatures, could now be addressed in the context of
the actual mechanisms used to set prices in security markets.

The focus of market microstructure research thus moved to analyzing
how the market maker learns from the order flow and how this, in turn,
affects the movement of prices over time. While the specific market setting
of this learning problem could differ, all asymmetric-information micro-
structure models.essentially solve a Bayesian learning model. Such models
provide a cogent, and tractable, mechanism for solving dynamic learning
problems. The Appendix to this chapter examines the mechanics of
Bayesian learning models and demonstrates several fundamental properties
of Bayesian dynamics. The reader unfamiliar with such models may find it
useful to read the Appendix before continuing with the rest of this chapter.

3.3 THE GLOSTEN-MILGROM MODEL

The sequential trade framework used by Glosten and Milgrom begins with
similar assumptions to that of Copeland and Galai. The market maker and
all market participants are assumed to be risk neutral and act competitively.



Information-Based Models 59

The asset being traded has an eventual value given by the random variable
V. Trades involve one unit of the asset, and all trades take place at either the
market maker’s bid or ask prices. There are no inherent transactions costs to
trade (i.e., no commissions, taxes, etc.), nor are there any explicit costs to
holding inventory or maintaining short positions.

Indeed, an important characteristic of both models is that inventory does
not matter by construction; the assumptions of market maker rmisk
neutrality, unlimited capital, no bankruptcy, and a short time horizon
negate any meaningful inventory-carrying cffects. This specification
provides a convenient way to specify how information per se affects prices
without the compounding distraction of inventory. But if, as seems likely,
both information and inventory matter in actual markets, then this
dichotomization is also a weakness; to incorporate both effects as well as the
interaction between them requires a richer model than either that of
Copeland and Galai or Glosten and Milgrom.

In the Glosten-Milgrom model, some traders have information about V,
while others do not. The uninformed traders face an interesting problem
because, if the informed are profiting on their information, it must be at the
uninformeds’ expense. An important paper by Milgrom and Stokey [1982]
demonstrates that if the uninformed trade for speculative reasons, then it is
always optimal for them to forgo trading rather than face a certain loss
transacting with an informed trader. This “no trade equilibrium™ result
necessitates that the uninformed must trade for reasons other than
speculation. A useful construct to achieve this is that of the liquidity trader
who trades for reasons exogenous to the model.

In this model, trade takes place sequentially, with one trader allowed to
transact at any point in time. How traders actually arrive at the market is an
important issue. Informed traders profit from trading if prices are not at
full-information levels, and so any informed trader will prefer to trade as
much (and as often) as possible. Since such behavior would quickly indicate
the information of the informed, the market maker would quickly (perhaps
instantly) adjust prices to reflect this information. Such a revealing outcome
is a2 problem in the rational expectations models, which are discussed in the
Appendix to Chapter 4. One way to avoid this instantaneous revelation
outcome is to assume that traders are chosen to trade probabilistically, and
that once selected, a trader may trade at most one unit of the asset. If a
trader desires to trade further, he must return to the pool of traders and wait
to be selected again to trade.

This probabilistic selection process dictates that the population of traders
the market maker actually faces is always the same as the population of
potential traders. This distinction is important because it means that, despite
the informed traders’ informational advantage, the market maker can



60 MARKET MICROSTRUCTURE THEORY

always calculate the probability that he is trading with an informed trader.

Note that this does implicitly rule out some plausible trading scenarios. For

example, if information is likely to become more dispersed over time, then

the fraction of informed trades would also increase with time, giving the

market maker yet another parameter to learn. This is not considered in the

simple framework developed here, but the general sequential trade.
approach can be developed to include this and other trade specifications.

We consider some of these trading frameworks later in this chapter and in

Chapters 6-8.

The specialist in the Glosten-Milgrom model sets prices such that the
expected profit on any trade is zero. The general rationale for this zero-
profit condition is that competition combined with risk neutrality dictates
that any rents earned on trades would be bid away by a competing specialist.
Indeed, since dealers compete through supply-and-demand schedules, two
competing agents are sufficient to create the competitive outcome (see Mas-
Colell [1980]). In effect, each market maker selects an expected profit-
maximizing supply-and-demand schedule (his strategy) given his competi-
tors supply-and-demand schedules. Market makers thus play a game, in
these strategies, against each other. Since each market maker starts with the
same prior belief and trade information is common knowledge, every
market maker can calculate every other market maker’s optimal prices.*
This results in all market makers quoting the same bid and ask prices.

An important 1mpllcat10n of this compctltlvc pricing is that _Eg:s_an_c,sﬂ

— ........,,.__.._._..__-—— —————

in the sense that glvcn the trade that actually occurs the markct maker
believes the price is fair. Hence the bid price is simply the market maker’s
expected value of the asset given that a trader wants to sell the asset to the
marks:Lmakcr the ask < price is the expected value given that a trader wants
to buy the asset from the market maker. Such’ “regret-free” prices retain the
property typically found in rational expectations models of i incorporating
the information the trade itself reveals. Since the type of trade has signal
value, following the trade the market maker revises his bcllefé and sets new

tradin ading prices. These new prices reflect his beliefs given what he has

4. Notice that this would not be true if inventory mattered (as would be the case with risk
aversion or capital constraints) or if the order flow were not observable to all specialists. In
this case, the market maker’s prices might reflect idiosyncratic information known only to
himself. With risk neutrality, such inventory-based pricing effects will not arise, but the
order flow constraint could be violated if there were limit orders known to one specialist and

not to all. Such market structure and order form issues are considered in more detail in
Chapter 7.
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Viewing bid and ask prices as conditional expectations allows the
adjustment of prices over time to be seen as isomorphic to the change in the
market maker’s beliefs. Consequently, to understand the behavior of bid
and ask prices, we need to analyze the market maker’s learning problem.
The Appendix to this chapter examines this learning problem in more
detail, but it is useful here to illustrate the basic problem. While Glosten
and Milgrom derive their results in a more general framework, their results
are more easily illustrated by examining a simple version of their model.?

Suppose that informed agents know the true value of the stock will be
either low or high, denoted V or V. Let §; denote the event that a trader
wants to sell the stock to the market maker and By the event that someone
wants to buy from the market maker. The market maker sets bid and ask
prices such that

ay = E[V| B1] = ¥ Pr{V = V|By} + V Pr{V = V|By }. (3.3)

by =E[V] $1] =V Pc{V = V|$1} + V Pr{V = V$1 }. (3.4)

Hence, the ask price at time 1 is the conditional expectation of V given that
a trader wishes to buy from the market maker, with the bid price defined
similarly given that a trader wishes to sell.

To determine the bid price, for example, the market maker calculates
Pr{V = V|S1} and the corresponding Pr{} = V|8,}. The approach taken
here is standard Bayesian learning, and so these probabilities are found by
applying Bayes Rule. This first probability is given by

PI’{V= K'Sl} =

Pr{V =V} Pr{§|V =V} (3.5)
Pr{V = V}Pr{S1| V =V} +P{V =V} Pr{§|V =TV}

The corresponding probabilities Pr{V = V|By}, Pr{V = V|S;},and Pr{V =
V|B1} can be calculated similarly. The initial bid and ask prices then follow
from simple calculations.

One important characteristic of these prices is that they explicitly depend
on the probability of a sale (and a buy). In previous theoretical models and
in many empirical analyses, the assumption made (either implicitly or

5. The Glosten-Milgrom model makes extensive use of the law of iterated expectations to
demonstrate when one information set results in a finer partition than another. This allows
them to demonstrate how trader and market maker behavior evolves given their respective
information sets. In that setting as in here, the basic approach is Bayesian learning.
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explicitly) is that buys and sells are equally likely. As should be apparent, in
this framework this cannot be true. If there is good news, there will be
more buy orders; if there is bad news, there will be more sell orders. And it
will not be the case that the market maker’s prices will adjust to offset this
imbalance. As long as prices are not at full-information equilibrium levels,
the expected order flow will differ depending on the market maker’s beliefs
regarding the asset’s true value.®

Calculating these probabilities of receiving a buy or a sale can be greatly
simplified by constructing a simple tree diagram. In this tree, nature makes
the first move and chooses whether the information will be good or bad.
This is represented in Figure 3.1 as the first node on the tree. The second
node corresponds to what fraction of traders learn the information, and as is
apparent this is assumed to be symmetric with respect to good and bad
information. The third node corresponds to the trading decision each trader
will make if given the opportunity to trade. Here the difference between
informed and uninformed enters directly, as informed traders will not buy
if they know bad news (or sell if they know good news), while uninformed
traders are assumed equally likely to buy or sell whatever the information.

In the tree diagram, the end of each branch gives the probability of being
at that point of the tree, and hence it corresponds to the likelihood of
observing a particular outcome. As our interest is in the probability of a
particular trade occurring (a buy or a sale), this can be calculated by simply
adding up the various ways a sell (buy) order can occur. For example, in the
tree in Figure 3.1, the probability of observing a sale is (1 — w)yS + (1 —
0)u, while that of observing a buy is (1 — p)yB + 6. In both expressions,
the first terms are the probabilities the trade is from an uninformed trader,
while the latter terms give the probabilities the trade is from an informed
trader. As is apparent, more complex trading games can be represented by
adding nodes to the tree corresponding to any additional decision points.”

Given the initial price quotes, some trade occurs at time 1. Suppose that
this actual time 1 trade is a sale. The market maker must then use the
information conveyed by the trade to construct his posterior probability
that ¥V = V. This is just the value Pr{ V"= ¥| 81 }calculated above. To set his

6. In the limit, however, when everyone is informed, buys and sells will be equally likely.
Recall that in the Garman model the market maker ultimately failed because she either ran
out of stock or money. In this sctting such failure cannot occur because the market maker is
assumed to have access to unlimited amounts of either commodity. If the order flow is
informative, it will also be the case that the market maker may learn the true value rather
quickly, suggesting that very large imbalances in stock or cash may not develop even over
short periods.

7. For examples of more complex decision trees in microstructure applications, see
Diamond and Verrecchia [1987] or Easley and O’Hara [1992a].
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In the diagram @ is the probability the signal is good news, 1 — 0 the probability it
is bad news; p 1s the probability a trader is informed, 1 — p the probability he is
uninformed; yB is the probability an uninformed trader buys and ¥s the probability

he sells.

Figure 3.1 The Probability Structure of Trade
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trading prices for time 2, the market maker updates his beliefs by using this
posterior in place of his prior in the formulae above. A specific example of
this is given in the Appendix.

The determination of beliefs and prices for subsequent periods proceeds
in the same way. An important characteristic of this learning process is that
revision of beliefs can be expressed as a simple updating of the market
maker’s prior belief by Bayes Theorem. The eventual convergence of
beliefs and thus of prices to full-information levels follows from standard
Bayesian learning results.

There are several important results that Glosten and Milgrom demon-
strate in this framework. The first is that, as in Copeland and Galai, a spread
arises that is independent of any exogenous transaction or inventory costs.
There is, however, an important difference in interpretation between the
two models. For Copeland and Galai, the spread merely balances expected
gains and losses. The spread in the Glosten and Milgrom model arises
because the fact that someone wishes to buy causes the market maker to
revise his expectation of the asset’s value upward and his quotes move
accordingly; the willingness of someone to sell causes the opposite revision.
The assumption of competitive behavior dictates that the specific prices set
will balance the market maker’s expected gains and losses in much the way
it does in the Copeland and Galai framework, but here these prices are the
expected values given publicly available information. Glosten and Milgrom
characterize the specific factors influencing the spread, and in particular
they demonstrate how it depends on the nature of the underlying
information, the number of informed traders, and traders’ elasticities.

A second important result of the model is that transaction prices form a
Martingale. The stochastic process of prices follows a Martingale with
respect to the market maker’s information if E[p, + 1 | I = ps, for I, the
market maker’s information set at time ¢. Intuitively, this means that a
market observer following prices cannot do better in predicting the future
pricc than by simply using the current price. This property is important
because it suggests a linkage between the price behavior in the model and
the concept of market efficiency. As it is usually defined, prices are strong-
form efficient if they reflect all private information, semi-strong-form
efficient if they reflect all publicly available information, and weak-form
efficient if they reflect the information in their own past values.®? As the
Appendix demonstrates, in Bayesian learning models it will be the case that
prices ultimately converge to the true value, and hence they become strong-

8. These concepts of efficiency are suggested by Roberts [1967) and are formally tested by
the rescarch of Fama [1976), Leroy [1972), and others. '
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form efficient. Given that some traders have superior information,
however, it is clear that prices along the way do not exhibit strong-form
efficiency. The Martingale property dictates that prices will be semi-strong
form efficient in that they reflect all the information available to the market
maker.

An interesting point to consider, however, is that it is not entirely clear
what market efficiency tells us in a dynamic setting. Depending upon the
information the market maker sees, there can be very different price
adjustment paths, with some price paths closer to the true value than others.
Each path, however, has the property that prices are a Martingale, and so
the notion of efficiency is somewhat limited. This issue was raised in a
provocative article by Black {1989] and is considered in a microstructure
setting by Easley and O’Hara [1992b].

An interesting implication of the Martingale property is that the first
differences of the transaction price process will be serially uncorrelated. As
Glosten and Milgrom discuss, this contrasts wich the negative serial
correlation that arises from transaction costs such as inventory carrying
costs, or from risk aversion or market power by the market maker. Roll
[1984] used this negative serial correlation property to estimate the effect of
transaction costs on the bid-ask spread. With asymmetric information,
however, future prices are not independent of the current transaction, and so
Roll’s technique is no longer applicable. Glosten and Milgrom derive an
alternative estimator that incorporates the presence of asymmetric informa-
tion. This divergence in serial correlation properties also provides 2 means
to estimate empirically the impact of asymmetric information on security
prices. Such empirical testing would be the focus of subsequent research by
Hasbrouck [1988], Harris [1990], and Glosten and Harris {1988].

Another result that arises from the Glosten and Milgrom model is that
under some conditions the adverse selection induced by asymmetric
information can cause the market to collapse or shut down. The intuition
for this result is similar to the classic reasoning of Akerloff [1970]. If there
are too many informed traders, then the market maker may have to set the
spread so large as to preclude any trading at all. Since information is
reflected in prices through trades, however, this lack of trade results in a
breakdown of the market system. One application of this is in considering
whether there exist alternative market structures that avoid this unpleasant
feature. A second application is in considering whether institutional features
such as trading halts or circuit breakers are useful in dealing with
information-based problems. These issues in market structure are addressed
in Chapter 7, but it is important to note that their genesis is to be found in
this early paper.
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In both the Copeland-Galai and Glosten-Milgrom models, the central
result can be stated as showing that asymmetric information induces a bid-
ask spread. With this as a starting point, two obvious questions arise. First,
how robust is this result to the trading environment? Is it the case that the
presence of informed traders always induces a bid-ask spread? A second, and
perhaps more intriguing, question is, can other market phenomena be -
explained by the presence of asymmetric information?

One area where both issues converged was in the role of trade size. In the
models considered thus far, traders are assumed to buy or sell one unit of the
asset. If traders could chose to transact different quantities, is it the case that
spreads would still arise? Moreover, since empirical research (for example,
Dann, Mayers, and Raab [1977], Holthausen et al. [1987, 1990]) has found
interesting price patterns connected with large trade quantities (or block
trades), could an information-based approach provide insight into this
security price behavior? These questions are addressed in research by Easley
and O’Hara [1987a].

3.4 TRADE QUANTITIES AND PRICE BEHAVIOR

The approach taken by Easley and O’Hara involves a sequential trade model
similar in spirit to that of Glosten and Milgrom. Traders are assumed to
trade an asset with competitive, risk neutral market makers. The market
makers quote bid and ask prices and adjust quotes across time based on the
trades that occur. Inventory effects do not matter, and trades take place
sequentially according to a probabilistic structure.

The Easley-O’Hara model differs from previous asymmetric information
models along two dimensions. First, traders are allowed to transact different
trade sizes. This ability to transact orders for large or small quantities
provides the potential to address the effects of trade size on security prices.
The ability of traders to choose order sizes also introduces a simple strategic
element into the trading game, and this, in turn, requires the development
of a more sophisticated equilibrium concept. A second difference in the
models lies in the nature of the information uncertainty. Unlike in previous
analyses, the existence of new information is not assumed. Instead, in this
game, nature essentially has two moves in deciding first whether there will
be new information and then, if there is, what it will be. This dual
uncertainty means that the market maker’s learning problem involves
determining both the existence and direction of new information.

In the Easley and O’Hara model, an information event is defined as the
occurrence of a signal, s, about the value of the asset. The probability that a
signal occurs is ¢, and if a signal occurs, it is assumed to do so before the
trading day begins. The signal can take on two possible values, low and
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high. If a signal occurs, some fraction p of the traders receive the signal. Of
course, if no signal occurs, all traders will be uninformed. Since the market
maker does not know if there is new information, he cannot know for
certain when such an uninformed outcome occurs. Such information-event
uncertainty seems a natural representation of how privatc information may
exist in markets. In cases where information is known to exist but its
particular level is not known to the public, it is common practice to halt
trading in the stock until the information is revealed.

Trade occurs sequentially, with the individual trader chosen to trade
based on the probabilities of trader types in the population. The model
allows for different-sized orders, and so a trader whose turn it is to transact
may cither buy a small or a large quantity (denoted B and B5), sell a smali
or a large quantity (S1 or S3), or simply not trade. Because of the “no trade”
equilibrium results of Milgrom and Stokey {1982], some informed traders
will trade the large quantity only if uninformed traders want to trade the
large quantity. If they did not, then a large trade could only be from an
informed trader, and the market maker’s “regret-free” prices for large
trades would then be the full-information values (for good and bad news).
After each transaction, the market maker sets new trading prices.

Informed traders are assumed to be risk neutral and trade to maximize
their expected profits. Because there are multiple trade sizes, the behavior
of the informed takes on a dimension not found in the previous papers. In
particular, since the informed profit at the market makers’ (or the
uninformed traders’) expense, the larger the trade size, the larger is their
gain all other things remaining equal. Consequently, trade size induces an
adverse selection problem, because at the same price the informed trader
always prefers to trade larger quantities. Since uninformed traders do not
share this size bias, a rational market maker will interpret large orders as a
signal of information-based trading and adjust prices accordingly.

The idea that the informed could choose to transact in certain ways
introduces a simple strategic element into the market making problem.
Much subsequent research would involve analyzing more complex strategic
decisions, but even in this simple structure the effect of allowing the
informed to select among trade sizes means that the equilibrium need not
be that of the Copeland-Galai or Glosten-Milgrom models. In particular,
how the market maker sets prices now depends on where he believes the
informed will be trading. But, of course, where the informed trade depends
un the prices the market maker sets. This requires finding a fixed point at
which, in addition to the competitive constraints noted earlier, the market
maker’s conjectures regarding the location of the informed are correct.

One aspect of the Easley-O’Hara model that should be stressed is that the
informed are assumed to act competitively. This competitive behavior
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greatly simplifies the informeds’ decision problems and facilitates the
construction of a well-behaved equilibrium. In the absence of competitive
behavior, with multiple informed traders the equilibrium can be intractable,
if it exists at all. In the next two chapters we consider models in which
informed traders act strategically, and these equilibrium issues are discussed
in more detail.

Easley and O’Hara demonstrate that in this framework, two types of
equilibria are possible. The informed traders could all choose to trade only
the large quantity and hence be “separated” from the small uninformed
traders. Alternatively, informed traders could choose to submit both large
and small orders and thus be “pooled” with the uninformed traders. Of
course, even in the separating equilibrium some uninformed traders must be
active in the large trade market, suggesting that a “semiseparating”
equilibrium is actually a better description of the separating outcome. Such
pooling and separating equilibria are common constructs in many areas of
economics and finance (such as in search models or in more general
signaling analyses), but heretofore had not been applied to market
microstructure issues.

Determining which outcome occurs is done by first solving the market
maker’s pricing problem assuming that the informed traders all trade large
quantities. The market maker’s decision problem is then solved again
assuming instead that the informed are trading both quantities. The two
outcomes then provide a means to determine when it is rational (ie.,
optimal) for informed traders to choose one strategy over the other, thus
dictating the conditions under which each outcome prevails. Solving each
pricing problem involves the same general approach used in all Bayesian
learning problems, with the specific trade probabilities adjusted to reflect
the market maker’s conjecture as to where the informed are trading.

If the informed are trading the large quantities, then the market maker’s
pricing policy in the separating equilibrium has the following properties.
First, there is no spread for trades of the small quantity. Since informed
traders do not trade small quantities, there is no reason for the market
maker to protect himself from information-based trading by setting a
spread. Second, prices for large trades do exhibit a spread. These prices are
given by
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where V" is the expected value of ¥V with V g [V, V], X denotes the fraction
of uninformed traders who trade the large quantity (subscripted to indicate
buy or sale), § is the probability that V is equal to ¥, 6 2 p is the variance of
V, and ap represents the probability of informed trading (which depends on
the probability of an information event and the fraction of traders who are
informed if there is an event).

Given these trading prices, it follows that the informed choose to trade
large sizes only if doing so results in larger profits than trading the small
amount. Since there is no spread at the small quanrity, the informed trader
must be able to offset the better price by the ability to trade more shares,
albeit at a worse price. If this does not occur, then the optimal strategy for
the informed does not involve only trading the large quantity, and the
separating equilibrium cannot prevail. For the prices in (3.6) and (3.7) to
constitute an equilibrium, therefore, the following condidons must hold:

S2/8! > 1+ aub/X3(1 —an) . (3.8)
B%/B! > 1+oau(1-8)/Xz(1-ap). (3.9)

where S2 (B2) denotes the larger sell (buy) size and S! (B1) is the smaller sell
(buy) size.

These conditions guarantee that the informed traders’ profit is higher
trading the larger quantity at the “worse” price than it is trading the smaller
quantity at a better price. If the large quantity is large enough or there is
little threat of information-based trading, then the market will be in a
separating equilibrium. In both conditions, the left side gives the relative
size of the large and small trades, and it reflects the simple fact that trading
enough shares, even at poor prices, may still be preferred if the amount is
large enough. In many active markets, huge blocks often transact,
suggesting that in such markets a separating equilibrium might be expected
to prevail. The right sides of (3.8) and (3.9) reflect the effects of informed
trading on the price. If the market maker knows that most large trades are
uninformed, then he can “break even” on these trades with only a small
spread. In this case, the informed trader pays little penalty for trading the
large amount and so profits more by trading large.

If these conditions do not hold, then the market cannot be in a separating
equilibrium. It may, however, be in a pooling equilibrium. If the informed
are assumed to pool with the uninformed, then the market maker’s pricing
strategy can again be determined. With the informed trading both large and
small quantities, the market maker now sets a spread at both large and smalil
trade sizes. The small trade spread is smaller than the large trade spread,
however, resulting in a similar better price-bigger trade trade-off as occurs
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in the separating equilibrium. For this to be an equilibrium, it must again be
the case that the informed make a larger profit by pooling than by
separating. Solving for the conditions under which this is true results in
conditions exactly the opposite of those in equations (3.8) and (3.9). This
dictates that the market is always either in a separating or a pooling
equilibrium, depending on the market parameters.

That spreads could vary across trade sizes, and indeed could even be zero
in some cases, provides several important insights into the behavior of
market prices. Indeed, one difficulty it reveals is that there is no one market
price: the price will depend on the size of the trade. A second, and related,
implication is that using market spreads as measures of market “goodness”
can be very misleading. Since spread size will depend partly on the nature of
the equilibrium, examining only the small-trade spread cannot provide a
good indication of the extent of asymmetric information or of the costs of
trading.

The model also provides an information-based explanation for the
observed empirical regularity that large trades transact at worse prices. One
traditional explanation for this phenomenon was that the large inventory
exposure such trades imposed on the market maker required additional
compensation, and this was accomplished by the trade clearing at 2 worse
price. One difficulty with this story, however, is that the specialist rarely
takes the other side of such trades, and indeed he or she may not participate
in the trade at all. Instead, many large trades (known as blocks) bypass the
specialist system completely and are handled via syndication. The mechan-
ics of this alternative trading process are examined in Chapter 8. Since the
information-based explanation given by the Easley and O’Hara is equally
applicable whether the trade takes place at the risk neutral specialist’s quote
or clears in the ‘“‘upstairs market,” this model provides an explanation that is
robust to trading venues.

One additional implication of the analysis is that the extent to which the
market maker revises his beliefs, and hence his prices, following a trade also
varies with trade size. As in the Glosten-Milgrom framework, the revision
process in this model involves a Bayesian updating approach. Because of the
dual uncertainty in the model over the existence and direction of new
information, however, the revision process results in a different price
process than that which arose in the Glosten-Milgrom framework. Easley
and O’Hara demonstrate that this revision process can explain not only the
immediate price drop associated with block trades, but also their puzzling
subsequent price behavior as well.

In particular, suppose that the market is in a separating equilibrium and
that the initial trade of the day is a large sale. In setting quotes for the next
trading interval, the market maker again sets bid and ask prices equal to the
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(revised) conditional expectation of the asset given the type of trade. It is
straightforward to see that the occurrence of two large sales leads the
market maker to increase his belief that there is adverse information, and so
he sets the next large sale price below the current large sale price.

Where he sets the small-trade price is more intriguing. In a separating
equilibrium, the market maker knows that only uninformed traders trade
small amounts. With no possibility of trading with an informed trader,
therefore, there is no need for a spread, and the market maker sets the new
small-trade bid and ask prices equal. But that the trader wants to trade a
small quantity rather than a large amount may, in itself, provide
information to the market maker regardless of whether the trade is a buy or
a sell. If there is uncertainty over the existence of information, then even an
uninformed trade can have information value, because it may signal that no
new information exists. In particular, if there has been no information
event, then the probability of a small trade rises because there are no
informed traders in the market. A small trade following a block trade thus
causes the market maker to revise downward his belief that there is new
information, and this causes the price path to differ from what it is if there
is no information-event uncertainty.

Figure 3.2 depicts these price path effects for the trade sequence small
trade, block sale, small trade. Figure 3.2(a) gives the market maker’s prices
when new information is known to exist. As expected, the price for the
block sale falls, and the price for the next small trade is set at the market
- maker’s new expected value of the stock, which is, of course, the block
price. In this path, the stock price is permanently lower following the block
trade because the market maker believes it more likely that the new
information is bad news. And, since small trades do not cause the market
maker to revise his beliefs, the price stays at this level until a new block
trade causes a revision in his beliefs.

Figure 3.2(b) gives the price path when there is uncertainty as to whether
there is new information. Again, the block sale trades at a lower price, but
now the price partially recovers if the next transaction is a small trade. This
recovery reflects the market maker’s revision of his beliefs regarding the
existence of information, and whether the next trade is a small buy or a
small sale, the price recovers. What is particularly intriguing about this
effect is that such a recovery is consistent with the observed empirical
behavior reported by numerous researchers (see, for example, Kraus and
Stoll [1972], Dann, Mayers, and Raab [1977]).

This “existence” uncertainty introduces a new complexity into the
analysis of asymmetric information. Now, the price effect of a trade
depends not only on the trade and the current, but also on the sequence of
past trades. In statistical parlance, this means that while prices are
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Martingales, they are not Markov. A Markov process is one in which the
future movement of the process does not depend on the history of the
process, but only on its current state. Thus, the price process is Markov if
Epi+11p)=E@:+1]po pt—15 .. p1). For empirical researchers, the
result that prices are not Markov has the unpleasant implication that price
observations cannot be viewed as independent of the prior sequence of
prices. Because prices will move differently depending upon the sequence
of trades preceding the current observation, this makes empirical investiga-
tions of specific economic events of interest extremely difficule. This issue
of the role of price sequences is considered in more detail in Chapter 6.
What this sequence result suggests for our focus here, however, is that the
effects of information on security prices may be more complex than the
simple “balancing” idea suggested by Bagehot.
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Figure 3.2a is the price path for a market in a separating equilibrium when there is
no information-event uncertainty.
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Figure 3.2b is the price path for a market in a separating equilibrium when there
is information-event uncertainty.
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3.5 SEQUENTIAL TRADE MODELS AND PRICE
BEHAVIOR

The sequential trade models of Glosten and Milgrom and Easley and
O’Hara provide a framework for addressing issues related to the adjustment
of prices to information. The strength of these models is cthat they allow the
learning problem of the market maker and the uninformed trader to be
analyzed explicitly. This allows price behavior to be characterized on a
trade-by-trade basis without ignoring the dynamic linkages between trades
and information. Moreover, this approach allows the process of market
maker quotes to be separated from the process of transaction prices, thereby
allowing greater insight into the movement of beliefs across time. In
concluding our discussion of these models, it is useful to consider the
strengths and limitations of these models in more detail.

Perhaps the greatest advantage of these models is their ability to
characterize the bid-ask spread. By demonstrating how market parameters
such as the size of the market or the ratio of large to small trades affect
quotes and spreads, these models explicitly detail how asymmetric informa-
tion affects market behavior. And this, in turn, should provide at least some
guidance to empirical researchers examining security market behavior
These models also demonstrate that there may be an important distinction
between quotes and prices. This issue, which will be addressed in more
detail in Chapter 6, takes on particular importance for empirical researchers
employing transaction data. Since trades across securities do not take place
synchronously, the cxistence of a continuous quote process provides a
mechanism to deal with this problem.

Another important aspect of the sequential trade approach is that it is
possible to demonstrate that prices do indeed converge to full-information
values. In the absence of this, concepts such as market efficiency would be
problematic. This actual convergence, however, takes place only in the
limit. Hence, one limitation of these two models is that they provide little
insight into how long this adjustment process takes. Although more general
results provided in the Appendix give more structure to this convergence
issue, it remains the case that “how long” it takes is not easily determined.
One reason this is important is that knowing how quickly information is
assimilated into security prices might yield new insights into the nature of
market efficiency. A more applied benefit is that it might suggest how
institutional market design features contribute to or impede this attainment
of efficiency. Subsequent research, discussed in Chapter 7, addresses some

9. This approach also distinguishes an important role for trades. This has been
investigated in the work of Hasbrouck [1988, 1991a, 1991b].
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of these issues, but it remains the case that the actual adjustment paths
remain difficult to characterize precisely.

A third aspect of these models that deserves consideration is the actual
mechanics of the sequential trading process. In both the Easley-O’Hara and
Glosten-Milgrom models, traders essentially form a queue and trading takes
place sequentially. How traders arrive at the queue is problematic. One
simple scenario is that a trader is selected from a pool of traders according to
the population probabilities. Hence, if there are x percent informed traders
in the trader population, then there is an x percent chance that an informed
trader will be transacting. That trader is allowed to transact once and then
must rejoin the end of the queue if he wishes to trade further.

There are two obvious difficulties with this approach. Presumably, any
informed trader would prefer to continue to trade until the price has
adjusted. If this were the case, however, then once a single informed trader
began to transact, the uninterrupted sequence of trades all on one side of the
market would quickly convey to the market maker the underlying
information, and prices would adjust almost immediately. Moreover, if the
fiction of a queue is abandoned, an informed trader acting competitively
would simply submit so many orders that again prices would adjust so
quickly that returns to informed traders would be minuscule. The solution
to this problem is to assume that, however trades occur, the intensity of the
informed trades is such that x percent of trades arise from informed traders.
This allows prices to reflect the uncertainty of underlying information, but
avoids specifying (and thus understanding) the actual mechanism by which
traders transact.

A related problem is that informed and uninformed traders are both
assumed willing to continue to transact. For an informed trader, such repeat
trading is certainly optimal, but it is less believable that a randomly selected
uninformed trader’s behavior remains the same after trading as it was
before. But if the uninformed trader “drops out” of the market, the
probabilistic framework used in these models is not correct. One way to
characterize this difference is that informed traders should be sampled with
replacement while uninformed traders should be sampled without replace-
ment. The sequential trade models, however, assume that the percentage of
trades that are information-based is constant, which can only be true if the
number of uninformed traders is constant. While likely to be approximately
true in some markets, it is not clear that this holds in general.

A final issue relates to the ability to incorporate strategic behavior in
these models. In these models, traders and market makers are assumed to
behave competitively. For uninformed traders, the lack of any coherent
trading motivation is clearly an area of major weakness in the model. In the
case of informed traders, the competitive assumption rules out broad
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categories of behavior that could be rational under a wide range of
conditions. For example, if only one or even a few traders know the new
information, a strategy of trading to disguise the true information mighet
lead to higher trading profits.

In the sequential trade models, this issue is difficult to address for two
reasons. First, since traders never know for certain that their turn to trade
will arrive, delaying or disguising trades is only optimal if the information
is extremely long-lived. A more serious problem is that it is not generally
possible to compute the return to information in these modcls. Becausc the
adjustment path depends on the specific trade sequence and prices are
known to converge only in the limit, the trading gains to the informed
depend on the specific outcomes of numerous random variables. Indeed, it
is not even generally possible to determine how many times the informed
will transact, let alone how much they make on each trade.

This inability to compute the exact return to information means that the
sequential approach is not useful for some problems. In the next chapter, we
consider another class of models designed to address these issues. In these
models, the trading environment departs from the sequential trade-by-trade
approach and considers a batch framework. In batch models, the payoff to
strategic behavior can be calculated since trades clear at a single price. This
structure, however, necessarily means that the information contained in
single trades or in the bid-ask spread is removed. We return to these issues
in later chapters.



Appendix:
Bayesian Learning Models

In microstructure models with asymmetric information, the key to
understanding the dynamics of price adjustment is Bayesian learning. The
market maker (and potentially other uninformed agents) knows that the
order flow is correlated with the value of the asset but does not know what
this *“true” value is. What he or she must do is use the indirect evidence
from the order flow to infer what this underlying value must be. This order
flow may be a single trade (as in the sequential trade models) or it may be
the outcome of a call market in which orders are batched together and only
the net demand is observable (as in a Kyle model). In either case, the
learning problem is solved via an application of Bayes Rule.

The mechanics of this learning problem are straightforward. Each trader
has a prior belief about the value of the asset. One can think of this prior
belief as being the probability that the value of the asset, denoted by the
random variable V, has a realized value x. The trader then observes some
data (say a trade) and based on this data will calculate the conditional
probability that the event (V' = x) has occurred given the data he has seen.
This conditional probability is his posterior probability of the event, and
hence it incorporates the new information he has learned from observing
the trade. The posterior then becomes his new prior, he observes more data,
and the updating process continues.

There are three important aspects of this learning process that this
appendix will address. First, the updating process is done according to Bayes
Rule, and we will review how this actually transpires. Second, because the
movement of beliefs (and prices) over time is determined by Bayes Rule, it
is important to understand what we know about the dynamics of this
updating process and, in particular, its convergence properties. This will
allow us to determine what aspects of price behavior follow simply from
the nature of Bayesian learning, and which reflect other factors such as
dealer-specific preferences or market structure constraints. Third, because
many problems involve random variables with continuous distributions, it is
useful to understand how Bayes Rule applies in those settings. To conclude
the appendix, we will examine the more general learning problem, with a
particular emphasis on Bayesian learning with normally distributed random
variables.

77
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3.A.1 BAYES RULE

To determine the probability of an event occurring given the data we
observe, we need two pieces of information. First, we need to know the
likelihood of seeing the data, given that the event has occurred (ie.,
Pr{datajevent}). And we need to know the likelihood of seeing the data,
given that the event did not occur (i.e., Pr{datajnot event}). Using these, we
can calculate the marginal likelihood function of the data having occurred:

Pr{data} =

3.10
Pr{datajevent} Pr{event} + Pr{data|not event} Pr{not eventj. (3.10)

We know that the probability of both seeing the data and the event having
occurred has the symmetric property that

Pr{data, event} =

Pr{event|data}Pr{data} = Pr{datalevent}Pr{event}. (311)
This means
Pr{event|data} = Pr{data(;:{ecrll:t}a?{event} (3.12)
But Pr{data} is simply given by (3.10), and so
Pr{event|data} =
Pr{datajevent}Pr{event} (3.13)

Pr{datajevent}Pr{event} + Pr{data|not event} Pr{not event}

This is Bayes Rule. It gives the updating formula to use to form the
posterior probability that an event has occurred given the observation of
some data. Another way to state this is

. _ Prior belief x Pr{data)event}
Posterior belief = Pr{cvent]data} - Marginal likelihood of the data ’

(3.14)

where the marginal likelihood of the data is simply the denominator in
equation (3.13).
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An Example

Suppose that the market maker believes that an asset’s value is either high
or low (for simplicity, let this be 0 or 1) and that his prior probability that
the value equals 0 is 8. Now cither a buy or a sale occurs. What do we need
to know to set our posterior, Pr{¥ = O|Q1 }, when we observe a trade of
Q1?

First, suppose that the trade at time 1 is a sale (i.e., Q;= S). Then, Bayes
Rule dictates that

Pr{V = 0|S} =
Pr{V = 0} Pt{S| V =0} (3.15)
pr{v =0} Pr{S]VzO}—f—Pr{V: t} Pr{S| v = 1)

To solve this explicitly, we need to specify some parameter values. Suppose
that initially Pr{V' = 0} = 1/2and Pr{V = 1} = 1/2, so that § = 1/2. Since
we learn from the order flow, the trading propensities of informed and
uninformed traders are also important. For simplicity, suppose that half of
the traders are informed and half are uninformed. Further, assume that any
uninformed trader is equally likely to buy or sell.

Given these probabilities, we can calculate Pr{S|V = 0}. First, note that
if V' =0, then the informed all know bad news and, hence, will sell with
probability one. The probability that an uninformed trader sells is 1/2. So,
since informed and uninformed are equally likely to trade, the probability
of seeing a sale if V = 0 is

Pr{in. trader} Pr{in. trader sells} + Pr{un. trader} Pr{un. trader sells}
= (1/2)(1) +(1/2)(1/2) = 1/2+ 1/4 = 3/4

= Pr{S| V = 0}. 616

In similar fashion, we can calculate Pr{S|V = 1}. Now the informed know
good news and so sell with probability 0, while the uninformed continue to
sell with probability 1/2. Hence, the probability of seeing a sale if the true
value is 1 is

Pr{in. trader} Pr{in. trader sells} + Pr{un. trader} Pr{un. trader sells}

= (1/2)(0) + (1/2)(1/2) = 1/4

= Pr{S| V = 1}. (3.17)
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We now have sufficient information to solve our updating equation (3.15).
Substituting for the probabilities yields

Colsy - (1/20/9)
Pe{V = OIS} = 72)0374) + (1) 2(1/4) (3.18)
= 3/8 _ 3 — Posterior |
4/8 4 '

This is the posterior belief on ¥V = 0 given that a sale occurs. A similar
updating process gives us the posterior if the first trade is a buy. In this case,
Bayes Rule dictates

Pr{V = 0|B} =
Pr{V = 0}Pr{B|V = 0} (3.19)
Pr{V = O}Pr{B|V = 0} + Pr{V = 1}Pr{B|V = 1}

Solving for the probability of observing a buy proceeds as before. If V' = 0,
then the probability that the

Uniformed buy = 1/2

Informed buy = 0 } Pr{B | =0} =1/4. (3.20)

If V = 1, then the probability that the

Uniformed buy = 1/2

= = 3.21
Informed buy = 1 } Pr{B | V=1}=3/4 (3.21)

Substituting into equation (3.19) gives

Lo a1
PriV =018} = 78y + (12378 ~ # .22

Given these conditional expectations, where does the market maker set his
prices? We know that if the market maker sees a buy, he believes the
probability that the asset value is 0 is now 1/4, while if he sees a sale he
believes this probability is 3/4. Thus, setting prices equal to conditional
expected values yields

E[VIB| = (1)(3/4) + (0)(1/4) = 3/4, (3.23)



Information-Based Models 81

E(V1s] = (1)(1/4) + (0)3/4) = 1/4, (3.24)

These are the market makers ask and bid prices, respectively. They are
“regret-free” prices in the sense that if a buy does occur, then its trading
price (the ask) is at the market maker’s expected value given the trade, and
similarly for a sale at the bid.

Now, suppose there actually is a buy. We know this trade takes place at
E[V | B). Where does the market maker set the next price? Again, starting
from his new prior (which is now 3/4) the market maker calculates the
conditional expected values:

Pr{V = 0|B, B} =
Pr{V = 0 | B}Pr{B|V = 0}
Pr{V = O|B}Pt{B[V = 0} + Pr{V = 1|B} Pr{B|V = 1} (3.25)
_ (1/4)(1/4) _ 116 g
(1/4)(1/4) + (3/4)(3/4)  10/16 ’
Pr{V' =0|B, S} =
Pr{V = 0 | B}Pr{S|V = 0}
Pr{V = O|B}Pr{S|V = 0} + Pr{V = 1|B} Pr{S|V =1} (3.26)
WA 36

T (/D04 + 3/4(1/4) " 6/16

Notice that if the latter event occurs (the buy is followed by a sale), this
moves the new posterior back to its original value (the beginning prior). It
is also useful to note that these posteriors can be calculated directly from the
prior, without going through the intermediate step of updatmg after the
first observation. That is, for example,

Pr{V = 0|B,B} =
Pr{V = 0}(Pr{B|V = 0})?
Pr{V = 0}(Pr{B|V = 0})2 + Pr{V = 1} (Pr{B|V = 1})?. (3.27)
(1/2)(1/4)? _ 1/10

~ {1/2)(1/42 + (1/2)3/4)

Given these posterior beliefs, what are the ask and bid prices?

E[V|B,B| = pr{V=0}©0)+Pe{V=1}01)
= (1)(0)+ (9)1) =.9, (3.28)
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E[V|B,S|=Pi{V = 0h(0) + Pr{¥ = 1}(1) = 5. (3.29)

The evolution of quotes for this trade history can thus be depicted as
follows:

3/4

1/2 .5

1/4

[
e

0 1 2 3 Time

Figure 3.A.1 The Evolution of Quotes in the Market.

3.A.2 THE DYNAMICS OF BAYESIAN LEARNING

As updating occurs, it follows that beliefs (and thus prices) change over
time. Since this price movement corresponds to the market maker’s
learning about the underlying information, several important questions
arise. First, where are the prices going? Does the price process eventually go
to a single point, or can prices continue to cycle? A second, and related,
issue concerns the speed of price adjustment. If prices do converge to some
value, how long does this take? |

To address these issues, we must analyze how the updating process
behaves over time. In particular, we will demonstrate two important
properties of the dynamics of Bayesian learning:

1. the posteriors converge almost surely to the true value; and

2. the posteriors of a Bayesian observing an independent and identical-
ly distributed process over time converge exponentially.

This first property has the important implication that prices will
eventually be at the full-information value, and so they will be strong-form
efficient (for a discussion of efficiency definitions, see Section 3.3). From a
finance perspective, this is clearly a desirable property, as it suggests that
markets are efficiently impounding information into prices. The second
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property, suggests that, while this adjustment is not instantaneous, it is
possible to quantify how long it will take. Consequently, it may be possible
to analyze (and compare) the speed of price adjustment in alternative
market settings. To demonstrate these properties, we need first to consider
the Strong Law of Large Numbers.

The Strong Law of Large Numbers

Let X, be an i.i.d. sample from some distribution with mean p. Then

lim 1 i X —
Tooc T & T 7H (3.30)

Intuitively, this says that if you take the average, as the sample gets large
the average observation goes to the true mean. By almost surely (denoted
a.s.) it is meant that

lim 1 T
P’{T~ x T ; X“”} =1 (3.31)

or that, on a set of sample paths, with probability one the limit of the
sample average is the true mean pu.

Now, let’s return to our market maker problem. We want to look at
what happens to prices as we look at a sequence of trades. To do so, we need
to specify a few definitions.

Definition: Let b = # buys, s = # sales.

Because the trades are i.i.d., we need not worry about the sequence of
trades and so can keep track of simply the aggregate numbers of buys and
sales. These are sufficient statistics for the sample. Let us retain the structure
introduced earlier of letting V take on values either high or low, but now
let these values be denoted V' and V.

Definition: Let

7 = Pe{BIV} ,1-g =Pe{S|L},
p = Pr{B[V} ,1-p =Pc{S|V},

where B denotes the event that a specific trade is a buy, and S that it is a
sale.

Now, we can write the general updating formula as
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(Prior) Pr{data]V = V}
Marginal likelihood of the data

Pr{V |b,s} =

prior Pr {data|v=V}
p—m A,
Pr(V) ¢°(1—g)f

~ Pr{V} (1 — 9 + Pe{V}p°(1 - p)*
Marginal likeTirhood for data

(3.32)

This formula gives us our posterior belief on the event V' =¥ given the
information we have learned from b buys and s sales. Notice that it has the
same form as equation (3.27) but is now based on more than simply two
trades. The formula for Pr{l” | b, s} is calculated similarly.

We now establish our first proposition that the posterior belief in
equation (3.32) converges to the true value. Suppose that the event V' =¥
has occurred. To prove our convergence result, we first look at the posterior

odds (the ratio of the probability that V= V to the probability that V=YV ):

Pr{V | b, s} _ Pro{P}p’(1 - p)’
Pr{V | b, s} Pro{V}q®(1—qF

(3.33)
Second, take log of both sides:
Pr{V}b,s}\ _ Pr{V} b S
los(Pr{—,,_,l,;,s}) - '°g(Pr{z} +log Pt =p)
— log 4°(1 - q)
V 3.34
_ log(Pr{V}) (3.34)

Pr{V}
+ blog p+ s log(1 — p) — b log ¢4
— s log(1—q).

The third step is to look at this average after many transactions. So divide
both sides by the total trades b + 5 and take the limit as b + s goes to ®
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1 Pr{V|b, s} 1 Pro{‘?}) b ( p)
1 = | 4+ —— [logt
b+ s Og(Pr{ﬂb,s}) b+s Og(Pro{Z} b+s qu

This goes to 0 as b + s — oo, If V=V, then this goes to g
and so the term — 0. by definition of ¢, a.s.
s 1-p
+ lo : 3.35
b+s ( 81— ) (3.33)
i

This goes to 1 — g, by definition (i.e., proportion of
trades that are sales when V' =V is 1 ~ g, as.).

This implies that

1 Pr{V|b,s} \ as. p 1-p
b log(Pr{Klb, s}) R log (E + (1~ ¢q) log 1=4)" (3.36)
Now suppose the right hand side of equation (3.36) is negative. How can
this happen? Only if log [ g—}%‘-‘—l?’j}] is going to minus infinity. This

will happen when [E—{:{%}-}ﬁ-}] goes to 0, or Pr{V = V|b,s} goes to
0, which is what we wished to show. This suggests that to establish our

result, we need only determine the sign of the right-hand side. As will
be apparent, the right hand side of the equation is related to the standard
statistical concept of entropy.

3.A.3 ENTROPY

Entropy is a measure of distance between probabilities. Entropy is defined as

1 —
I(p) = qlog (g—) +(1—gq) lOg(I__g) (3.37)

There are three useful properties of entropy measures to note:

(1) L) = 0 Vg p, (3.38)
(2) ILig=0 (3.39)
(3) L #0 ifp # q. (3.40)
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The first property states that entropy is always positive, while the second
states that its minimum is at zero. The third property dictates that the
measure will not be zero unless p = ¢. To see the intuition for these claims,
note that I(p) is strictly convex in p and attains its minimum at p = q.

Let us now return to our market maker problem. What is the right-hand
side of equation (3.36)? The negative of the entropy. So

1 Pr{V = V|b,s} ) as. |
b+s © [Pr{V:Z]b,s}] _, L), (3.41)

which is <0 if g4 # p. Note that if ¢ = p, then trade data is not informative,
and beliefs will remain at our original prior. If trades are informative, then
beliefs do go to the true value, and this establishes our convergence result.

The second property we wish to establish is the speed of convergence.
This, too, can be derived from our entropy measure. Since trades take place
sequentially and there is one trade per period, letting ¢ index time we can
substitute ¢ for b + 5. Then equation (3.41) can be written

1 Pr{V =T |b, s}
7 1o [Pr{V: Ve ) — Tl s (3.42)

t

So
almost surely. This establishes our second result.

[g:g;:; l:: ;{] converges exponentially at rate —I,(p) to zero

3.A.4 BAYESIAN UPDATING WITH CONTINUOQUSLY
DISTRIBUTED RANDOM VARIABLES

Qur analysis thus far has demonstrated the updating method and conver-
gence properties of Bayesian learning models in which the underlying
random variables have discrete distributions. Many decision problems,
however, involve continuously distributed random variables, and hence it is
useful to consider how Bayesian updating occurs in those settings. To
conclude this appendix, we review the general updating procedure and then
derive the posterior distribution for the case of normally distributed random
variables. Since many microstructure and rational expectations models
involve such a normal structure, examining Bayesian learning in this
context is particularly useful for understanding the evolution of prices and
beliefs in those models.

To specify the learning problem, suppose we have a prior belief on a
parameter p, given by the density g(u). We observe independently and
identically distributed draws of a random variable x. Let the conditional
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density of x given p be given by f{x|pn). To find the posterior distribution
on | given an observation x, recall that

Prior beliet x Conditional probability of the data

Posterior belief =
osterior belief Marginal likelihood of the data

which for continuous distributions is

o) = — Zelfxlu)
)= T felee) 343

This is Bayes Rule for updating beliefs with continuously distributed
random variables.

Example: Normally Distributed Random Variables

Suppose that the prior density g(n) is N(m, 6,,2) and that f{x | n) is N(u,
0,2 ). Then

bos 1 X —_ L — 2
fixli) = e 2
x|p@) = N CXp| — “2“{;2*(96—#) . (3.45)

Applying equation (3.43), the posterior density is given by

2
02+02 1/2 02+02 f‘a""fz
X i X i’ IT! X
I Xl = 1532V 1P~ 3 1 (3.46)
ToOL0; gy EF + =

and so the posterior distribution is

m X —
N Sy SRR
L+ L e of '
af of t (3.47)

There are several important properties to note about this example. First, the
posterior is a normal. Hence if we begin with a normal prior and observe a
normally distributed random variable, our posterior remains normal. This is
a particularly useful property for tractability, and as we will see in the
Appendix to Chapter 4, this feature is extensively exploited in rational
expectations models.
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Second, the mean of the posterior distribution reveals that the updating
essentially involves weighting the prior and the signal by their respective
precisions, where the precision is defined as the inverse of the variance.
Hence, the posterior mean can be written as

1 1 |
/ [;E + g] (3.48)

where the denominator is simply the sum of the precisions. Rather than
calculate the integral in equation (3.43), therefore, a simpler method for
finding the mean of the posterior belief is to multiply the prior and the
signal outcome by their precisions and divide by the sum of the precisions.
Just as in the discrete case, the Bayesian’s posterior beliefs converge to the
truth when he sees repeated draws of x. After T independent draws x4, . . .,
xt from N(u, 6,2), the posterior is '

m1 +x1
oF a2

v x

m =1* —

N I ! )" 3.49
T, 7 |2t 22 (3.49)
of T a2 " x

Using the Strong Law of Large Numbers, we again see that the mean of the
posterior converges a.s. to u and the variance of the posterior converges to
zero.
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Strategic Trader Models I:
Informed Traders

The sequential trade models analyzed in the previous chapter characterize
the behavior of security prices when all agents act competitively. The
existence of private information, however, means that an informed trader
may have an incentive to act strategically to maximize his profits. In this
chapter, we consider the main models that analyze these information-based
trading strategies. Because strategic models allow agents to time their trades
or to choose their trade size, the equilibrium in these models can differ
dramatically from that of the competitive outcome characterized in the
sequential trade models.

One aspect of the strategic trader models that differs from the earlier
microstructure models is their explicit link to the rational expectations

literature. In rational expectations models (for example, see Grossman and
Stiglitz [1980]), an important aspect of an agent’s decision problem is the |
inference he makes from market statistics about others’ information. In the ..
market microstructure context analyzed here, it is the informed agent’s

conjecture about the market maker’s pricing policy as well as the market
maker’s inference about the informed agent’s information that plays a
crucial role in determining the nature {and even the existence) of the

equilibrium. For the reader unfamiliar with the rational expectations :

approach, the Appendix to this chapter provides a review of the basic
framework and a discussion of its properties.
In the next two chapters we consider how this approach has been

developed to address strategic issues in market microstructure. As a starting:
point, we consider the basic question of how a single informed trader can’
best exploit his informational advantage to maximize his profit. This.

strategic behavior was analyzed by Kyle {1985] in an important model of

batch trading in securities markets. We then examine more complex

89
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strategic issues involving multiple informed traders and the nature of the
trading mechanism. In the next chapter, we extend the analysis to
incorporate strategic behavior by uninformed traders, and we analyze the
effect of uninformed strategic behavior on security prices.

4.1 THE STRATEGIC BEHAVIOR OF AN INFORMED
TRADER

In the models considered thus far, a trader who has superior information
simply submits an order at each trading opportunity until prices eventually
adjust to the new full-information value. If there are numerous traders
acting in a competitive market, this strategy may accord well with actual
market behavior. If there is one or even a few informed traders, however,
this depiction is unlikely to be accurate. The problem is that a single

- informed trader possesses a valuable commodity, and as an “information

monopolist” he should act to exploit that advantage. In particular, the
trader will want to select his order size and trading intensity to explicitly
take account of the effect that his trades will have on the movement of
prices. This requires the informed trader to incorporate expectations of the

- market maker’s pricing strategy, as well as any possible strategic actions by

uninformed traders, into his optimal order strategy.

The first models to address theses strategic aspects of information in a
market microstructure context were Kyle [1984, 1985). Kyle’s initial paper
[1984] was directed at analyzing the behavior of informed speculators in a
futures market and so includes multiple speculators and multiple market
makers. Because of this slightly different focus, we consider this work more
fully later in this chapter. Kyle’s [1985] analysis involves a -simpler
framework in which a single risk neutral informed trader and a number of
uninformed liquidity traders submit orders to a risk neutral market maker.

' The market maker aggregates the orders and clears all trades at a single
- price. Hence, unlike the sequential trade models, Kyle’s batch-trading
' model docs not allow for a bid-ask spread nor does it analyze the transaction

price for individual trades. What his model does allow, however, is the
explicit characterization of how an informed trader would choose to
transact to maximize the value of private information. This, in turn,

- provides a way to characterize how information is incorporated into

. security prices across time given the strategic use of information by an

informed trader,
In Kyle’s model, a single risk neutral informed trader receives private

information about the ex post liquidation value, v, of an asser. This

liquidation value is assumed normally distributed with mean pg and variance

- Xp. Initially, Kyle considers a single trading period in which the informed
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trader submits his optimal order along with the orders submitted by !

uninformed traders. Kyle then temporally extends the model to consider

sequential-auction and continuous-auction frameworks. As the intuition is
the same, we focus on the simpler version of the model.

4.1.1 The Single-Auction Setting

In this batch-clearing model, the market maker does not see individual

orders but rather sets a market-clearing price given the aggregate net order .
flow. As this order flow includes both informed and uninformed trades, it

can provide a signal to the market maker of the underlying information in
much the same way as it does in the sequential trade models. The actual

learning process differs, however, in that it is the aggregate trade quantity

that affects price behavior and not the size of any individual trade.

As was also true in the sequential trade models, there must be some
uninformed traders who transact for nonspeculative reasons. If not, then the
only equilibrium is a fully revealing one in which the price is set at the
new, full-information, value. In the Kyle model, this requirement is met by
assuming the existence of *“noise” traders. Kyle assumes that these noise
traders do not act strategically but rather submit a trade quantity that is a
normally distributed random variable  with mean 0 and variance 6;,2. This
random variable is assumed independent of the distribution of the asset
value v, ,

The informed trader knows the distribution of u and hence can attempt
to use the uninformed volume to hide his trades. An important aspect of the
Kyle framework, however, is that the informed trader does not know the
actual realization of the uninformeds’ demands. Consequently, the in-
formed trader cannot condition on the uninformed trade quantity when he

submits his order.! This represents a significant departure from the typical

approach taken in rational expectations models. As the Appendix demon-
strates, in those models it is commonplace for an informed trader to

condition on the equilibrium price in deciding on his optimal order. Since

in actual markets this is not observed, Kvle’s framework captures the
y P _

uncertainty that more naturally surrounds security trading.

The trade protocol in this model involves a two-step process. In the first

step, v (the asset’s true value) and p {the uninformed traders’ order flow) are
realized, and the informed trader chooses his trade quantity, x. In the

1. Rochet and Vila {1994] analyze a model related to that of Kyle in which the informed
trader does know the uninformed demand before submitting this order. They view this
model as essentially allowing the informed trader to submit a limit order. Their focus lies in
determining the uniqueness of equilibrium, and they show that in their model the
equilibrium is unique. See also the discussion in Section 4.3
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second stage, the market maker observes the aggregate net order flow

~ quantity x + p and sets a single price p to clear the market. In equilibrium,

- the informed trader’s profits are then simply given by n = (v — p)x.

The equilibrium in this model is more complex than in the sequential
trading models because it involves analyzing the strategies of both the
informed trader and the market maker. In equilibrium, the market maker is
assumed to set prices so that, given the order flow (x + n), prices are
efficient. This means that the price is set equal to the conditional expected
value of the asset given the aggregate order quantity. This condition is
similar to that found in the sequential trade models, but here the market
maker only observes and conditions on aggregate net trades. This changes
the specific learning problem from that analyzed in the previous chapter,
where each trade was observable. Because, however, the market maker sets
a “regret-free” price and earns zero expected profit, the learning problem is
solved using the same Bayesian framework, and the general results of
Bayesian learning models apply

Let the market maker’s pricing strategy be represented by a function p =
P(x + p). Then the equilibrium price must satisfy

P(x+ p) = E[v|x + p]. (4.1)

. The informed trader’s order strategy, X(s), depends on this pricing rule as
+ well as on the parameters of the uninformed traders’ order distribution.

Although the informed trader does not know the actual uninformed trader
order flow, he does know the parameters of its distribution and he has an
expectation of how the market maker will set prices given any order flow
realization. Given this pricing rule, the order strategy of the informed
trader must satisfy

E[W(X(-), P)|v= v] > E[ﬂ'(X’(-), P)|v= v], for each v, (4.2)

or simply that the expected profit of the informed trader from following
the strategy X(s) is greater than that from following any other order
strategy X'(e).

This strategic behavior by the informed trader means that he explicitly -
takes into account the effect his trade will have on the equilibrium price set
by the market maker. In this sense, the informed trader acts as an
“information monopolist” by attempting to extract the most rent from his
unique private information. If, instead, the informed trader acted competi-
tively, then the absence of constraints on trade size combined with the
trader’s risk neutrality would result in prices in the batch market

~immediately adjusting to new, full-information values. With strategic
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behavior, however, this immediate adjustment need not occur, and the |

informed trader obtains a positive trading profit. "
Kyle demonstrates that there is an equilibrium in this model in which the

strategies of the informed trader and the market maker are given by

X(v) = 68(v - po) (4.3)
and
P(x + pu) = po + Alx + p) {(4.4)
where
0_2 1/2 2\ —1/2
g = (f:%) and A = 1/2 (;—‘;) (4.5)

Before analyzing the derivation of this solution, it is useful to note two
important properties of this equilibrium. First, the informed trader’s
optimal order quantity depends on the variance of the uninformed trader -
order flow. Since the informed trader does not know the actual uninformed
order quantity, he uses the variance to “hide” his trade from the market
maker. This, in turn, means that the informed trader’s expected profit also
depends on the uninformed order variance. As is apparent from the
equations, the larger this uninformed variance, the better the informed
trader is able to “hide” his trades and, hence, the larger his profit is.

That the optimal trading quantity also depends on the signal variance
arises because of the strategic link between the order size and price
adjustment. In particular, in this equilibrium the pricing rule is linear in the
aggregate order quantity. Since this order flow is composed of both
informed and uninformed trades, the A variable reflects how much the
market maker adjusts the price to reflect the information content of trades.
Because the order flow variables x and p are independent continuous
random variables, this price adjustment is based on the convolution of their
densities. Consequently, the adjustment of prices depends on the ratio of
the amount of noise trading to the amount of private information the
informed trader is expected to have. And since the informed trader
conditions his trade on this pricing rule, his optimal trading strategy also
depends on these variables.

A derivation of this equilibrium follows from a straightforward applica-
tion of the laws of conditional distributions of normally distributed random
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variables. In particular, if 3 = <8 (1), § (2)> is distributed N(u, Z), and I is
nonsingular, then

E (50 |9@) = 4 4 £1p55) (9 - u®). (4.6)

In the context considered here, this can be applied by defining

(v _{ E™m Y _{ po
ol I P B A0

where 7 is the aggregate (net) order flow and

Y = (211 Z12) _ (%o 8%
X2 32 8% o2 + 825, (4.8)

Then applying (4.6} dictates that

E(w|y) = pV + 21225, (}’ #(2))
BLo
=po+ 27+ p7%, (y — = Bpo) (4.9)

The value of A derived here is simply that of the equilibrium solution noted
in equation (4.5) (after appropriate substitutions). The other equilibrium
values can be determined similarly.

While this mechanistic approach to the model leads to the equilibrium
solution, it does not lend much intuition into how the underlying decision
- problem results in the equilibrium outcome. This can, perhaps, be better
| understood by examining the learning problem the market maker faces in
_setting the market-clearing price given the order flow realization x + p.
. Just as in the sequential trade models, the market maker makes an inference
- about the underlying information from the trades he observes. While the
trading mechanisms in the two approaches result in different trade
.information, the learning problem in both approaches involves an applica-
ition of Bayes Rule. In particular, before trade begms, the market maker has

a prior belief about the value of the asset, which is given by the normal
- distribution N{pg, Zp). The market maker will observe some net order flow
' x + pu, which is composed of both uninformed and informed orders. The

uninformed orders are normally distributed as N(0, 6,,2), but the informed
orders depend on what the informed trader has seen.
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Suppose that the market maker believes the informed trader will follow
the linear order strategy, x = B{v — pg). The market maker does not observe
x but rather sees x + u, which we shall call 8. Then 8 = x + p = B(r — po)
+ W. Rearranging terms yields

0/B+po=v+u/8 (4.10)
Let the left-hand side of the equation be denoted Z; so
Z=0/8+po=v+u/d. (4.11)

Note that Z is distributed as N(v, 6,2/B2) and its distribution depends on v
and known variables. (It shall be clear shortly why the market maker knows
B.) Hence Z is a transformation of the observed order flow that has the
same mean as the underlying asset.

Given Z, the market maker revises his beliefs about the asset’s value v and
sets the market-clearing price. This new price will be his posterior belief,
and so the market maker updates his prior belief using Bayes Rule.? Thus
the new posterior mean is

_po/¥otZ (32/05)
and the variance is
-1
T = (1/2:0 +ﬁ2/a§) . (4.13)

Rearranging terms and substituting for f§ in the price equation yields

. poaﬁ + crﬁZ

1
= >{po + 2)
O‘E +cr§ 2

1
= 5(po +8/3 + po)-

(4.14)

Recall that 8 = x + p; thus this can be written as

2. Recall from the Appendix to Chapter 3 that this is given by the prior mean times its
precision plus the new observation Y times its precision, divided by the sum of the precisions.
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-1/2
- xtue 1 "u

(4.15)

L (52712
_ A = — __p’ .
o+ A(x + p), where A > [ T ]

Hence the market maker’s price will, in fact, be linear in the order flow.
This linearity is what allows the B variable to be known to the market
maker. In particular, because the informed trader conjectures that prices
will be linear in quantities, his objective function is quadratic in trade size.
The optimal order strategy X that results from solving the maximization
problem is then linear in the value of the asset, or X(v) = a + PBv. The
market maker can thus solve for what this value of B must be if he follows a
linear pricing schedule.

What makes this equilibrium so easy to characterize is its linear structure.
This linearity in order strategy is important because it means that the
informed trader will not pursue a more complex mixed strategy or submit
orders that are linked to the underlying signal value in a nonlinear manner.
Consequently, given this strategic behavior by the informed trader, the
- market maker knows that the relationship between the aggregate order
;ﬂow and the underlying signal value must also be linear. Since in
Ecquilibrium the market efficiency condition requires the market maker to
isc‘:t prices equal to the conditional expected value, this, in turn, means that

market prices will also be linear in volume.

One way to interpret this pricing relation is that large volume results in a
“worse” price, but not an increasingly worse price. Hence, a large volume
outcome need not cause the marker maker to instantly adjust the price to
the full-information value as would occur if prices could be nonlinear in
volume. Of course, an unfortunate implication of the linearity of prices and
volume is that for a large enough negative trade imbalance the market

'maker would wish to set a negative price. This suggests that, as a
'dcscnptmn of actual price behavior, a linear pricing rule is, at best, an
approximation.

A second feature of this linear price-volume relationship is that given the
expected uninformed volume, the informed trader always chooses his order
size so that his relative share is the same. Thus, if ex ante, the uninformed
volume were to double, the informed trader would also double his order
size.? This can be seen by noting that the informed trader’s order strategy is

! 3. Note that the definition of uninformed volume in this market is somewhat confusing

- becausc the order flow is assumed to be a random variable with mean zero. The expected

| volume, however, will involve the absolute value of the orders and, and hence the volume



Strategic Trader Models I 97

2y 1/2
xz("ﬂ) (v - p), (4.16)

o

and his ex ante profit is given by

1 2 1/2
n=z(Zo0h) (4.17)
Thus, doubling 6, simply doubles the order submitted by the informed
trader, and this doubles the informed trader’s expected profit.

With the uninformed and the informed both trading twice as much, an
interesting question is, what happens to prices? Intriguingly, in this model,

]

!
|

there is no ex ante change in the price. To see this, note that market maker’s

price can be written as

) »2\ V2
P=P0+—-—'2—'72' (E%) (v—po)+u|- (4.18)
2(%)

Because changes in oy 2affect both the optimal x and the optimal A, these

effects offset in the pricing equation. This implies that price behavior in

markets is independent of factors such as market volume. As will be
discussed later, this result is crucially dependent on the assumption of a
fixed number (in this case, one) of informed traders.

Rational expectations requires that the pricing rule the informed trader
conjectures is in fact the pricing rule the market maker uses. In the
equilibrium noted above, this requirement is met in that the informed
trader conjectures a linear pricing rule and the market maker in fact uses
that linear pricing rule. But is this is the only equilibrium that can prevail?
In particular, if the informed trader conjectured a different pricing rule,
could that also result in an equilibrium?

In general, this question of uniqueness of equilibria is impossible to
answer. In the Kyle framework, there are no other linear equilibria, but
there could be nonlinear equilibria. In a nonlinear equilibrium, the market
maker would not attach a linear relation between prices and volume (and by
extension, to the underlying asset value), and so the informed trader’s order
strategy need not be linear or, indeed, even be a pure strategy. A more
practical difficulty is that the linearity that provides much of the model’s

will depend on the variance of the order flow. It is this uninformed order variance that is used
throughout the model.
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tractability would be lost, so that even characterizing these other equilibria
would be formidable.

Since the objective of the Kyle model is to describe how an informed
trader could trade on information, this potential for multiple equilibria does
not raise a serious difficulty. In other applications of rational expectations
models to microstructure issues, however, such problems are of more
importance. In particular, ascribing policy implications is highly problemat-
ic if more than one equilibrium outcome is possible. A related difficuley is
the reliance in this and in many other rational expectations-based models on
the assumption of joint normality of random varables. While this
assumption is needed for tractability, it directly affects predictions regarding
factors such as the optimal trade size and the effects of volume. We return
to these issues in more detail in later chapters.

In the single-auction framework described above, the informed trader’s
optimal order strategy results in the market maker’s new beliefs reflecting
some, but not all, of the informed trader’s information. This information
revelation, however, does not mean that the new market price py is
necessarily closer to the true value v. What price comes to be depends on
the actual net order flow. An unexpectedly large uninformed buy imbalance
could overwhelm the informed trader’s sell order, causing the market
maker to set a high price even though the full-information value is low.
Where the information affects price behavior is through the variance.
Recall that the variance of the posterior distribution is

-1
1 B
_ (X Py 4.19)
Substituting for  and rearranging, this becomes
TooZ 1
¥ =ty = 2% (4.20)
1 Uﬁ + crﬁ 20

Hence, regardless of the actual trade outcome, the new variance is exactly
one-half of the prior variance. This is what is meant by Kyle’s claim that
the trader’s optimal order strategy will result in half of his information
being revealed by the market price. Note that this variance effect is
deterministic, so that the market maker’s new beliefs about » have half their
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previous dispersion, though their new realized mean need not be more
accurate.*

N (PO-Z{))

Po 4
Value of the Asset

The time 0 prior beliefs of the market maker are depicted above. This is also the
expected posterior (before trade occurs), At time 1, the actual posterior depends
on the trade outcome.

Pi. Po Py
Valiue of the Asset

Depending on the net order flow (depicted here as high or low) the market
maker’s beliefs shift to either p;; or py,;. The new variance is ; = Zg,.

Figure 4.1. The Evolution of the Market Maker’s Beliefs

4. This variance property is a direct result of the normality assumptions in the model. If
the normality assumption were relaxed, then the variance would not have the deterministic
pattern found in this paper. Foster and Viswanathan [1993] investigate such variance effects
by enlarging the set of allowable distributions to include all elliptically contoured
distributions {(which includes the normal distribution as well as others). Their results provide
intriguing evidence that the price behavior depicted in the Kyle model is greatly dependent
on the assumption of normal distributions. Their work also suggests that price adjustment
with nondeterministic variances may be a great deal more complex.
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Figure 4.1 illustrates this variance effect by considering how the market
maker’s beliefs (and prices) change. At time 0, the market maker’s beliefs
are given by N(po, X¢). Following the trade outcome, the market maker’s
beliefs change so that their new distribution is centered on p; and has
exactly half the variance of the prior distribution: N(py, Z9/2). Note that
since prices in this model will be a Martingale, before the trade outcome at
time 1, the expected posterior mean is pg. On average, of course, the
posterior mean is moving toward v. To see this, note that from (4.18) the
expectation of py, conditional on v, s E[py } v] = (p1 + v)/2.

It is easy to see that the variance will converge to zero given enough
rounds of trading. It will also be the case that the posterior mean will
converge (almost surely) to the true value v. This follows because the sample
mean of the aggregate order flow, Y,, is given by

1 — 11
TZYt=v+ETZMt. (4.21)
t=1 t=1

By the Strong Law of Large Numbers,

T
1
= Y ue—0, almost surely, (4.22)
=1
and so
1 T
= Z Y; — 0, almost surely , (4.23)
t=1

Hence, given multiple rounds of trading, prices converge to their full-
information value.

If therc were multiple rounds of trading, however, it is not clear that the
equilibrium analyzed thus far actually prevails. The difficulty is that in a
one-shot trading model the informed trader need only consider the impact
of his trades on that period’s price, whereas with repeated trading
opportunities the multiperiod impacts must also be considered. This creates
a much more complicated decision problem, and consequently it necessi-
tates a richer model. Incorporating multiple periods into the model can be
done cither as a sequence of auctions or as a continuous auction. We first
consider the sequential auction framework in Kyle, and then we examine
the continuous trading model developed by Back [1992].
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4.1.2 The Multiple Trading Period Equilibrium

Kyle addresses this issue of multiple periods by looking at a sequential
auction in which N rounds of trade occur in a trading day. This is a discrete
time setting, but as the number of periods becomes large, it approximates a
continuous auction. In a multiperiod setting, the informed trader faces the
problem that his trading decisions in each period are linked because of their
effect on the informativeness of prices. If the trader opts to trade large
amounts in early periods, then this is penalized in later periods by “worse”
prices. The trader’s optimal order strategy, therefore, must take account of
future as well as current trading opportunities and profits. Since these
opportunities depend, in part, on the behavior of the uninformed, their
behavior must be specified in more detail.

Kyle assumes that as the number of periods becomes large, the
uninformed trades #(f) follow a Brownian motion, so that A, is normaily
distributed with mean zero and variance 6,2At,. One implication of this
assumption is that the uninformed quantity traded at one auction is
independent of the uninformed quantity traded at the other auctions. Since
this will not be true of the quantity traded by the informed trader, it is this
linkage of information and quantity that will ultimately cause prices to
reflect all underlying information.

The informed trader’s profit in this setting now depends on his trading
behavior and the prices over the N sequential auctions. The informed

trader’s profits for auctions n, . . ., N is given by
N
u= Y (7 — Pp)A%y. (4.24)
k=n

The equilibrium solution to this recursive model involves the same
general linear form as in the single-auction model. In this equilibrium,
prices are linearly related to the order flow and the informed order strategy
is linearly related to the true asset value. As trades occur, the market maker
updates his beliefs using Bayes Rule and sets the market-clearing price equal
to the mean of his posterior belief. The market maker’s and the informed
traders’ strategies are then given by

AXy(v) = Ba(v - Pn—l)Arn (4.25)
and

pn = An(Axy + Apn), {4.26)
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and the informed trader’s expected profit is

E{Wn | Pl s Pn—1s "’} = an—i(V - Pn—1)2 +6p-1- (4.27)

The constants in equations (4.24)-(4.27) are now the unique solutions to
the difference equation system

/\ - ﬁﬁzﬂ
n - 1 4.28
‘7;% (4.28)
1—-2a,)
At - nin
Bnlty Bl —amh) (4.29)
N _ 1
ﬂ—l - 4/\"(1 _a"An)! (4.30)
6n_1=06n +anr362uAt,. (4.31)

The sequential-auction equilibrium is thus more complex than the
single-auction equilibrium found earlier. The constant terms capture the
multiperiod linkage between the order strategy and price movements, and
hence they form a difference equation system. While the same linear
equilibrium prevails as before, the coefficients B, in the order strategy and
Ay in the price strategy change every period.’

Of particular interest is how the informed trader chooses to strategically
exploit his information across time. A key property of this equilibrium is
that information is gradually incorporated into prices across time. Whereas
in the single-period framework the informed trader chose his order so that
prices in the next period reflected half of his information, now this is no
longer optimal. Indeed, the variance now takes the form

n =1 =BnrnAty)L, 1. (4.32)

As the time periods in the model are shortened to approach a continuous
auction (i.e., Af, — 0), this smoothing behavior by the informed trader

5. While our focus here is on the sequential-auction outcome, the continuous-time
version of Kyle’s model has been extensively characterized by Back [1992]. That research
characterizes the market maker’s pricing rule and the informed trader’s order strategy in more
detail, but at some cost in technical complexity.
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results in prices that have constant volatility.¢ As expected, the price path
also has the property that prices follow a Martingale, and so prices are
“efficient” in the sense that an uninformed observer’s expectation of the
future price is today’s price. Kyle demonstrates that prices eventually reflect
the informed trader’s new information, with prices in the continuous
auction framework incorporating all information.

One consequence of this equilibrium is that the informed trader profits
more by continuously trading rather than by attempting to manipulate
prices through some mixed strategy. Unlike in the sequential trade models,
however, it is not the case that the informed trader trades the same amount
every period. Because the coefficients in both his and the market maker’s
strategies change every period, his optimal trade size also moves. Indeed, it
s this ability to vary the trade size that allows the trader to ““hide” from the
market maker. Because the informed trader is eventually “found” by the
market maker, profits are bounded, and the return to information can be
calculated.

In the sequential-auction model, the informed trader trades in a series of
discrete call markets. As the interval between these markets goes to zero,
trading behavior approaches that of a continuous market. A more formal
analysis of trading in a continuous market is given by Back [1992]. He
characterizes the equilibrium that arises with continuous trading, and in
particular he determines the equilibrium pricing rule in a model allowing
for more general distributions for asset value. Because Back’s model is
essentially the limit of the discrete-time Kyle model, properties derived in
this continuous setting may provide insights into more general properties of
the Kyle equilibrium.

Rather than work through the formidable mechanics of the model’s
continuous-time structure, it may be more useful to consider the general
approach and its equilibrium results. In this model, trade occurs in the
interval [0, 1]. At time 1 there is assumed to be public arrival of information
and the asset value is known to be worth v. Informed traders in the market
know v at time 0. Uninformed traders do not know the realization of #, nor
do the competitive risk neutral market makers.

The structure of the trading process is extremely important in this model.
Uninformed trade, denoted Z, is assumed to follow a Brownian motion.
There is a single informed trader, whose trades, denoted X, are assumed to

6. This constant volatility property is also a characteristic of a random walk. Hence, a
prediction of the Kyle model is that security prices will, in fact, follow a random walk. While
this behavior is theoretically consistent with “efficient” markets, its existence in actual
markets is contentious. Lo and MacKinley [1988] reject the random walk specification, while
Richardson and Smith [1991] reach a different conclusion.
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be a semi-Martingale adapted to v and Z. This semi-Martingale property
allows the trade process to exhibit jumps, although Back shows that in
equilibrium such jumps do not occur. The risk neutral competitive market
makers compete for the order flow Y, = X, + Z,

In this model, the informed trader can infer the uninformed trades by
continuously monitoring the order flow, and hence he can know what Z is
before submitting his order. This ability to condition on the uninformed
trades turns out, however, to be of no advantage to the informed trader.
While in a discrete-time model it would be useful to simply offset the
trades of the uninformed (set X = —Z), in a continuous-time model large
orders introduce jumps into the order process. Since the uninformed orders
do not have such jumps, this order behavior is suboptimal for the informed
trader, as it reveals his trade and thus his information.

Equilibrium in this model involves finding a pricing rule P and an order
strategy X such that given P, X yields the trader the highest utility over all
trading, and given X, P (or more precisely, P(Y}, f)) is rational for the
market maker. Finding X requires solving the Bellman equation of the
trader’s optimization problem.” Back shows that if a solution to the
Bellman equation for X exists, then optimality requires that the strategy X
has two properties. First, X has continuous finite variation paths. Second,
P(Y, 1) = v, a.s.: all information is incorporated into prices at the end of
trading, almost surely. ‘

These properties of X allow Back to characterize the optimal pricing rule
by focusing on the underlying order flow. Back shows that, for the pricing
rule P to be rational when X has continuous finite variation paths, the order
flow (Y, £) must be a Martingale. If the order flow (Y, ¢) is a Martingale
and X has continuous finite variation paths, then this dictates that the order
flow (Y}, t) must also be a Brownian motion. This is the key to the model,
as if the uninformed orders Z follow Brownian motion and the total orders
Y follow Brownian motion, then the informed trades X must have the same
distribution as the uninformed trades Z.

This order process behavior explains why it is that setting the informed
orders to simply offset the uninformed cannot be optimal. With the
uninformed orders following a Brownian motion, there are no discrete
jumps in the order process. The informed order flow must have the same
distribution as the uninformed, and so it, too, cannot have discrete jumps.
Back shows that consistent with this condition there may be many optimal
trading strategies for the single informed trader.

7. This optimization is similar to that found in Ho and Stoll, where they also solve for the
Bellman equation (see Chapter 2).
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Given this order flow behavior, Back solves for the optimal pricing rule.
The advantage of this approach is that Back finds closed-form solutions for
the general problem, and not merely for the specific example considered by
Kyle. Back shows that the optimal pricing rule will have the property that
price changes are proportional to order sizes. If the asset value is normally
distributed (as in Kyle}, then Back shows that the pricing rule is the same
linear one found in Kyle. For log-normally distributed asset values, prices
follow a geometric Brownian motion, and the pricing rule has a different
form but is still a function of the order quantity.

This continuous-time approach allows the equilibrium to be investigated
in a number of interesting ways. For example, the Back model can consider
the effects on the equilibrium of alternative liquidity trader order processes.
If liquidity trades vary throughout the day (for example, less trading at
midday), then the optimal strategy for the informed trader changes as well.
Back shows that there is more informed trade, greater volatility, and more
information transmitted when there is more liquidity trade than at times
when liquidity trade is less. These results suggest a complexity to the
informed trader’s optimal order strategy not predicted by the discrete-time
Kyle model.® This model also provides an interesting complement to the
research on uninformed behavior that we investigate in the next chapter.

The Kyle model and its extensions thus provide an elegant way to
characterize how a single informed trader optimally exploits his informa-
tional advantage and what this, in turn, implies for the price process. While
the model does not capture the evolution of prices (or quotes) in response to
individual trades that the sequential trade models do, it does allow the
return to information to be explicitly calculated. In subsequent work, this
will allow authors to incorporate equilibrium in the information market
into their analysis of equilibrium in the securities market.

There are, of course, many aspects of strategic behavior not included in
the Kyle [1985] model. One such aspect is order strategy, as in this model
the single informed trader is not permitted to submit price-contingent
orders. Given the batch nature of trading, a more natural characterization
might be to trade via limit orders that allow the trader greater flexibility in
the size of his trade. The Kyle {1985] model can be reformulated to include
price-contingent orders, and in the one-shot game insider profits and
information revelation remain unchanged. The general issue of the
relationship of order strategy and the trading mechanism, however, remains
an open question. We consider this in more detail later in this chapter.

8. Back [1993] also shows that, with continuous trading and asymmetric information,
options can no longer be priced via simple arbitrage. This has important implications for
option-pricing models.
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A second important strategic issue is the effect on the equilibrium of
multiple informed traders. Because the informed trader acts strategically, in
equilibrium he makes positive profits. These positive profits, however, may
induce other traders to become informed, so that in equilibrium the number
of informed traders is endogenous. In Kyle’s [1985] model with only one
informed trader, this issue of endogenous information-based trading is not
considered. If, however, there can be multiple informed traders, then
whether the solution derived above remains an equilibrium is unclear. A
related issue is the availability of information through nonprivate sources. If
the amount of publicly available information can vary, then the value of
private information will surely be affected. These issues suggest examining
how information atfects trading behavior when the informed trader is not a
monopolist.

4.2 PRICE BEHAVIOR AND MULTIPLE INFORMED
TRADERS

Allowing multiple informed traders introduces an important complexity
into the analysis. If an informed trader is no longer a monopolist, then the
actions of other informed traders will affect the price, and hence the return
to private information. In rational expectations models with multiple
competitive informed traders, this interdependence typically results in
prices reflecting so much information that they become revealing. With no
return to being informed, there is no incentive for traders to ever gather
information in the first place, and the process by which information is
incorporated into prices becomes questionable.

One might expect this difficulty could be overcome by simply allowing
the informed traders in rational expectations models to act strategically.
This, however, is not easily accomplished. The reason is that in the
standard rational expectations equilibrium the actual trading mechanism, or
design of the market, is never considered. Since traders are competitive,
how orders affect the “terms of trade” is irrelevant since it does not affect
their trading behavior. If traders act strategically, however, the actual
trading mechanism does matter because it determines how trades affect
prices, which, in turn, affects traders’ order strategies.

Given a specific trading mechanism, it may be possible to calculate the
effect on prices of traders’ orders and hence initiate investigation of the
effect of multiple informed traders on market behavior. This is the
approach taken in Kyle [1984] and more recently in work by Foster and
Viswanathan [1993] and Holden and Subrahmanyam {1992]). While the
Kyle model is highly structured, it does explicitly incorporate multiple

-
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informed traders in a model in which prices are not revealing, and hence it
provides a useful starting point for our discussion.

The Kyle model employs a simple three-date framework involving N
speculators {or informed traders) and M market makers. The limiting case
of M = ® cotresponds to the competitive case, while smaller values of M
allow the market makers to exert some market power. The model shates
the same batch-trading approach of Kyle [1985], and it also requires that
speculators must submit market orders prior to knowing the price at which
they will trade. This timing convention is what will allow prices to not be
revealing, as they would be in more conventional rational expectations
models. One important difference between this model and the Kyle [1985]
model is that trading takes place only at two dates. At the end of time 2, all
contracts are assumed to liquidate, and hence the adjustment of prices to
information over time cannot be addressed in this framework.

In this model, there are two sources of information, one private and the
other public. The public signal is observed by all market participants,
whereas the private signal is known only to the informed traders. The
linear equilibrium framework also applies in this model, so that the
informed traders’ strategy is essentially the same. With multiple specula-
tors, this strategy will depend on the specific number of informed traders,
and this dependence, in turn, allows the effects of increasing (or decreasing)
the number of informed traders to be analyzed. Because the model involves
several highly stylized assumptions, it is perhaps more useful to consider the
general implications of the approach rather than analyze its specific
derivation.

If entry of informed traders is possible, then in equilibrium the profit to
any trader of becoming informed must be equal to the cost of doing so.
Consequently, the number of informed traders can be specified endoge-
nously, and the effect this has on prices determined. One can think of
informed trader endogeneity as having two effects on the profits of the
informed. First, if more informed traders enter, then there are more
potential traders to share in the surplus generated by the private informa-
tion. Hence, the number of traders has a direct effect on per capita profit,
with entry reducing any individual trader’s return. A second, and potential-
ly more important, effect is the influence of the number of traders on
trading behavior. Since each informed trader will choose the profic-
maximizing trade given the expected behavior of all other traders, the
aggregate number of traders will affect the size of each individual trade.
This raises the potential that the total amount of information-based trading
will also change as the number of informed traders changes.

One way to investigate these issues is to consider the effect of this
informed-trader endogeneity on the informativeness of prices. Suppose that
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we consider changing the amount of uninformed noise trading in a market.
With n exogenously fixed, increasing the amount of noise {5,2) has no
effect on prices because the informed traders (or trader, as in Kyle [1985])
simply increase their own trading to keep their relative effect the same.
This results in increasing the overall profit of the # informed traders but has
no effect on the level of prices. This is not true, however, if n is
endogenous. Increasing noise trading increases the potential profits of
informed traders, and this, in turn, induces greater entry. While existing
informed traders alter their trade quantity to incorporate the effect of these
additional informed traders, Kyle demonstrates that the overall result is an
increase in the amount of informed trading. This causes prices to become
more informative as the larger numbers of informed traders reveal more of
their information by trading. In effect, the informed traders compete
among themselves for the available profits and, in so doing, reduce the total
available rents to be shared.

A related, albeit opposite, entry effect occurs if the amount of publicly
available information increases. In this case, if n is fixed, then prices
unambiguously reflect more information and are thus more “efficient.”
This reduces the profits to privately informed traders because part of their
informational advantage is dissipated by the public disclosure of informa-
tion. In n is endogenous, the increased informativeness of prices also
induces some informed traders to leave, with the result that less of their
private information becomes impounded into the price. Kyle provides a
nice result that the increased informativeness of the public signal is enough
to offset the decreased activity of the informed traders, leading to prices
being more informative overall.

One aspect of these results that should be stressed is that they are derived
in an environment of risk neutrality. In this model, as in Kyle {1985], ali
traders and the market maker are assumed to be risk neutral. This
assumption greatly simplifies traders’ behavior because only mean effects
need be considered. If traders or the market maker care about variance,
however, then their behavior may differ dramatically. In particular, if
informed traders are risk averse, then the total scale of trading may affcct
each agent’s decision, leading to very different effects when the number of
informed traders is allowed to vary.

These risk aversion effects are the focus of research by Subrahmanyam
[1991b]. Using the Kyle [1984] model, Subrahmanyam demonstrates that
increasing the number of informed traders can actually decrease market
liquidity if traders are risk averse. This result, the opposite of that predicted
with risk neutral traders, arises because risk aversion changes trader
behavior in two ways. First, risk aversion induces traders to trade less

-
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aggressively than if they were risk neutral. Second, the total number of
traders now affects the overall aggregate risk tolerance of traders.

Subrahmanyam shows that these two effects result in the sensitivity of
price to the order flow (the A) being unimodal in the number of informed
traders.® As the number of informed traders increases, A initially increases,
reflecting that risk averse traders trade less aggressively than do risk neutral
ones. With more traders, however, the second aggregate risk tolerance
effect prevails, and A decreases. These dual effects dictate that while traders
still “compete” with each other, for small numbers of informed traders
prices can actually “worsen” from the point of view of reflecting
underlying information. Thus competition between informed traders does
not necessarily improve the market from the perspective of information
revelation. We return to these price effects further in the next chapter
when we investigate how changes in uninformed behavior affect market
behavior.

In both the Kyle [1984] and [1985] models, therefore, risk neutral
informed traders can strategically exploit private information to maximize
their profit. What is significant about both models is that informed traders
take account of their trades’ effect on the “terms of trade” or, more simply,
the market price. When the informed trader is an information “monopo-
list” as in Kyle [1985], the trader can control the flow of information so
that the price path that emerges has constant volatility. When there are
multiple informed traders, this control is not as great, and, not surprisingly,
informed trading causes prices to reflect information sooner.

This latter property raises the important question of exactly how quickly
this price adjustment occurs. If price adjustment is quite sensitive to the
number of informed, then market prices may reach “full-information”
efficient levels quite quickly. A concomitant effect will be that the rerurn wo
information becomes small, leaving little incentive for traders to expend
resources to gather new information. In this case, the intriguing results of
the Kyle [1985] model on the role of volume, depth, and price behavior
may no longer hold.

This issue of price adjustment with multiple informed traders is addressed
by Holden and Subrahmanyam [1992] and by Foster and Viswanathan
[1993]. Both papers employ variants of the Kyle [1985]) model in which the
number of informed traders is allowed to vary. The Foster and Viswanathan
paper extends the Kyle model in a potentially important way by allowing
the random variables to be elliptically distributed. In this framework, they

9. In general, 1/A is the market depth, so that increases in market depth allowed greater
order flow to be accommodated without affecting prices.
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address several interesting questions, including the impact of multiple
informed traders on price behavior. The Holden and Subrahmanyam paper
retains the original Kyle structure, but solves the difference equation system
when there are multiple informed traders. As this is related to our earlier
discussion, we will focus on this latter paper.

Holden and Subrahmanyam (henceforth, HS) begin with the Kyle
sequential auction framework but allow for M informed traders. Because
there are multiple informed (and they each know how many there are), the
conjectures each trader makes about the other informed traders’ behavior
affect the equilibrium outcome. In this model, each informed trader knows
the same information and is identical in every way, and so it follows that
each also conjectures the same thing. This greatly simplifies the solution
because it allows any individual informed trader’s decision problem to be
formulated in a simple game.

HS demonstrate that there is a unique linear equilibrium in which, for
constants Oy, By, Ay, and X, the following holds for all auctionsn= 1, .. .,
N, and for all informed traders m = 1, . . ., M:

Axp = mB(v — pp—1)Aty,
Apn = /\(Axn + A“n)s
¥y = var(v | Axq+ sy, ... Axy + tn),

E(®n | p1op2s- s Puet1s V) = Qe (v = pp_1)® + 641

(4.33)

This equilibrium is essentially the same as in Kyle buc differs in one
fundamental way. With multiple traders, the explicit solution to the
constants (0n, PBnp, As and IZ,) requires solving a series of difference
equations, but now their equilibrium values depend explicitly on the
number and expected trading behavior of the M informed traders.
Consequently, each trader determines his optimal trading strategy based on
his expectations of the others, and that, in turn, affects the behavior of
prices in equilibrium. The exact solution to these constants is straightfor-
ward but messy, and rather than focus on their derivation, we consider their
economic implications,

Perhaps the most interesting of these constants to consider are A, the
market depth parameter (or how much order flow affects price adjustment),
and Z,, the measure of price efficiency (in the sense that it reflects the
remaining variance of the distribution). Recall that in the Kyle mode! the
single informed trader acted so as to keep A, essentially constant, while the
X variable declined in a deterministic manner. HS demonstrate that this is
not the case when informed traders act as imperfect competitors. With
multiple informed traders, A, is larger in earlier periods than in the
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information monopolist case, and it falls rapidly in later periods. This
reflects that informed traders are trading more aggressively in the early
periods, causing more information to be revealed earlier. This, in turn,
causes the X, variable to decline sharply toward zero, as increasingly large
amounts of information are impounded in the price. HS demonstrate that
the greater the number of informed traders, the more rapidly A, and Z, fall.

More insight into this price adjustment process can be obtained by
considering the limit behavior of the market as the number of trading
intervals is increased. In particular, suppose that the time interval is Adt =
1/N and the number of informed traders is fixed. Then, in the limit as the
number of trading intervals goes to infinity, HS demonstrate two
interesting results. First, letting T denote an arbitrary calendar cutoff time,
they show that for the last auction (n’) before any T,

lim3,, =0 and limA,, =0, as N — oo. (4.34)

This result can be interpreted as showing that as the number of auctions
goes to infinity, the information is revealed in an arbitrarily small period.
Hence, no matter when you chose the cutoff point 7, the information has
already been revealed and the market depth (defined as 1/A) has gone to
infinity. This means that, unlike in the Kyle framework, information is
impounded into market prices almost immediately.

This intuition is confirmed by looking at the limit behavior of the first
auction when the number of trading intervals goes to infinity. In particular,
HS demonstrate that

limB1 = o0, limEg[Axq1|{v] =0, and limA; = 00, as N - oc.  (4.35)

Now, the presence of private information in the first period causes market
depth to be very small, reflecting that trade entails substantial risk of being
information-based. In later periods, when the information has been largely
incorporated into the market price, the depth parameter goes to infinity as
the risk of informed trading is largely dissipated. This market depth
behavior is similarly reflected in the strategy of the informed trader, as in
the first auction the expected quantity of informed trades is now zero. This
occurs because with A low any trade by the informed in the first period has
such a large effect on prices that it obliterates any return to the informed
traders’ information.

These results suggest that market prices reflect information quite
differently when there are multiple informed traders. This multiple trader
impact can be investigated directly by considering price behavior in the
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limit when the number of informed traders goes to infinity. Given a fixed
number of trading intervals, HS show that, for the first auction,

lim¥y = 0,lim Eg[Axy | v] = 00,lim Ay =0,
(4.36)
and limp; = v, as M — oo.

Thus, as the number of informed traders goes to infinity, all information is
revealed in the first trading interval, market depth and the expected
quantity of informed trade go to infinity, and the price equals the true
value.

That prices become fully revealing in the first period is an important
result. Earlier we noted that in competitive rational expectations models,
traders’ behavior resulted in prices instantly reflecting true values. Holden
and Subrahmanyam demonstrate that this same competitive rational
expectations equilibrium also arises in a Kyle framework with multiple
informed traders acting as imperfect competitors.!® What generates this
result is simply that as the number of informed agents increases, their
optimal strategy becomes increasingly competitive. The noise trading that
preserved the return to information with a single informed trader is now
not enough to prevent the trades of the informed from dominating the
order flow. And, as in the standard rational expectations models, price
instantly reflects underlying information.

With prices reflecting full information, we confront the standard
conundrum of how information gets into prices given that if prices are
efficient, traders can receive no return on their information. One question
that naturally arises, however, is whether the results demonstrated in this
setting are merely artifacts of the specific trading arrangements analyzed. In
particular, given a richer trading mechanism, could a nonrevealing
equilibrium with strategic trading arise? Indeed, an important issue in all
microstructure research is determining how the trading mechanism affects
the behavior of security prices. This topic is the focus of Chapter 7, where
we examine how alternative market structures and trading instruments
affect market behavior. In the remainder of this chapter, we consider the
more theoretical issue of how the trading mechanism affects the nature of
equilibrium when informed traders act strategically.

10. This result is also demonstrated by Foster and Viswanathan [1993].
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4.3 STRATEGIC BEHAVIOR AND THE TRADING
MECHANISM

In standard rational expectations models, the actual trading mechanism is
generally unmodeled, in large part because the focus of research is on
determining properties of the equilibrium. By contrast, the market
microstructure literature has focused on modeling the specifics of the
trading process with an eye to understanding how market structures and
organization affect the resulting equilibrium. While these approaches may
seem divergent, this need not be the case if an invanant equilibrium will, in
fact, arise from any {or at least a wide range of) trading mechanisms. What
needs to be determined, therefore, is how the equilibrium generally
analyzed in rational expectations models is actually ever attained.

One way to address this issue is to ask a simple question: Can [ write a
trading game (or mechanism) with N informed traders and get a rational
expectations equilibrium for large enough N?If the answer is no, then the
reasonableness of the entire rational expectations equilibrium is subject to
question. If the answer is yes, then the issue of the trading mechanism may
be of interest to students of market design, but need not be of interest to
researchers investigating general issues of price behavior.

This is essentially the question posed by Blume and Easley [1990)]. Using
a game-theoretic approach, they demonstrate that, regardless of the number
of traders, if any trader has information that he alone possesses, then there is
no trading game or mechanism that will result in a rational expectations
equilibrium for all standard economies.!! The difficulty is that if a trader
can be an “information monopolist,” then the prices predicted by the
rational expectations models are unattainable. Consequently, the equilibri-
um so extensively analyzed in the rational expectations literature cannot in
general be expected to prevail. It is the case, however, that in specific
examples it may be possible to obtain a rational expectations equilibrium.
While these examples will be of limited generality, they may be important
if the trading mechanism they employ is of interest in itself.

As discussed in the previous section, these trading mechanism issues
become particularly important if the issue of strategic trader behavior is
considered. These strategic issues in a rational expectations framework are
the focus of yet another paper by Kyle [1989] and work by Rochet and Vila
[1993] and by Jackson [1991].12 Although the Kyle [1984, 1985) models

11. Note that this does not contradict the Holden and Subrahmanyam result, as they
assume that all informed traders have the same information.

12. Bhattacharya and Spiegel [1991] consider these trading mechanism issucs as well as
more general issues relating to the optimality of lincar order strategies.
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allow strategic behavior, the specific trading mechanism employed does not
allow traders to condition on the equilibrium price because the trader’s
order must be turned in before the market-clearing price is known. Kyle
[1989] attempts to incorporate more complicated order strategies by
allowing multiple informed traders to submit entire demand schedules.
These schedules arise from traders’ optimal strategies and can be viewed as
isomorphic to price-contingent orders. The Rochet and Vila model is
similar to that of Kyle [1989] but differs in that they consider a unique
informed trader and a continuum of market makers.

The Kyle [1989] model returns to the more standard rational expecta-
tions framework by considering a one-period model in which traders
submit demands to a central market. In this model, market clearing is
handled by a Walrasian auctioneer who sets a single price. The market
maker, or specialist, who sets bid and ask prices is not a feature of this
model, as the auctioneer plays no role other than aggregating the submitted
demand schedules to find a single, market-clearing price.

The model includes three types of participants: noise traders, uninformed
traders, and informed speculators. The noise traders play a similar role as in
previous modeis by trading an exogenous random quantity z, where z is
assumed normally distributed with variance 02zand mean 0. The unin-
formed traders and the speculators have more complex demands in that
they are permitted to submit demand functions (as opposed to demands).
Since such strategies are available in actual markets, this trading mechanism
incorporates a realistic, and important, property of actual trading markets,

Each of the N speculators is assumed to receive a signal, i,, of the
underlying value of the asset v, where i,= v + ¢,, with var(v) = t,~1 and
var(e,) = 1¢~1. All random variables are independently and normally
distributed. Bach speculator chooses a strategy or demand schedule, denoted
Xu(p, in), where p denotes the market price of the asset. These demands
result from solving a maximization problem given the information each
speculator has on the underlying asset. Similarly, each of the M uninformed
traders chooses a trading strategy or demand schedule, denoted Yy (p). Since
the uninformed do not receive private information, their behavior can only
depend on price. The equilibrium in this model is a2 Nash equilibrium in
trading strategies.

Unlike in previous microstructure models (but similar to rational
expectations models), speculators are assumed to be risk averse and
maximize a negative exponential utility function of the form

Un(mn) = —exp(—pIrr,), (4.37)
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where py denotes the risk aversion coefficient. Similarly, the uninformed
maximize a utility function of the form

Vi(tum) = —exp(=pUny,) (4.38)

with py defining the risk aversion coefficient.

Equilibrium requires that markets clear and that traders can follow no
other strategy that results in greater utility. If traders act competitively,
then a competitive rational expectations equilibrium is defined as a price
function P(z, i1, i, . . ., i) and a set of strategies such that, for each (z, iy, is,

e s dn)y
N M
Y Xalp, in)+ Y. Ym(p)+2=0 (4.39)
ind
E{Ua[(v = P)Xn(p, in)lp: in]} 2 E{UAl(v = P)Xn(p: in)lp, in]} (4.40)
E(Vul(v — DY m@pl} 2 EWVal(v — Y u(2)lpl}, (4.41)

where X’(s) and Y’(s) denote alternative strategies, and p is the value of the
price function at (2, iy, f2, . . ., in).

If informed traders act strategically by taking account of the effect of
their trades on the price, then an imperfectly competitive rational
expectations equilibrium requires a price function P(X, Y, z) and a set of
strategies such that for each (z, iy, is, . . ., i,) markets clear and

E{Un[(v - p(X. Y, 2)Xn(p, in)lp: in]} ,
> E{Ua[(v — p(X. Y, 2) Xoa{p, in)|p. in]} (4.42a)

and

E(Vaul(v — p(X, Y. 2) Ym(p)lp)) |
> E(Vallv ~ p(X, Y. DY)} (4.420)

Notice that this equilibrium differs from the competitive outcome in that
the informed traders specifically take account of their actions on the market
price. While this may seem a subtle change, it has a number of important
implications for the amount of information traders need to know. In
particular, in a competitive rational expectations equilibrium, to determine
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their optimal strategies, traders are assumed to know their own preferences,
the structure of the market, and the function translating information into
prices. In the imperfect competitive equilibrium, traders must again know
all this information, but in addition they must also know the function
translating demands into prices as well as everybody’s demand schedule.
Moreover, the trader needs to know the exact number of traders N and M;
changes in the number of cither type will affect the equilibrium. Such
extensive information requirements are difficult to reconcile with actual
market characteristics.

As in any rational expectations model, the strategies traders expect to
prevail must be the strategies that do prevail. Kyle demonstrates that under
certain conditions there exists a symmetric linear equilibrium in which
traders’ strategies are given by

Xn(p,in) = pr+ Bis +v1p,  Ym(p) = v +yvp, (4.43)

where Uy, MU, Y1, YU, and P are coefficients determined in the equilibrium.

For this equilibrium to occur, there must be a sufficient number of
speculators to ensure a reasonably “competitive” outcome. If not, then the
assumption that noise traders’ demands are price inelastic means that even a
single informed trader makes infinite expected profits (as would a single
uninformed speculator if he were the only nonpassive agent). With
“enough” speculators, however, the informed essentially compete among
themselves, so that this monopolistic outcome cannot occur. In this sense,
this result is similar to that demonstrated in Kyle {1984).

An important property of this imperfectly competitive equilibrium is that
prices are less informative than they are in a competitive rational
expectations equilibrium. Because traders recognize the impact of their
trades on the market price, they choose their trading strategy to incorporate
this effect. This also has the important implication that informed traders do
not “trade away’ their informational advantage, because prices will now
not reveal the underlying information to the uninformed. In this example
with strategic behavior, therefore, the rational expectations equilibrium
both exists and has the reasonable property that informed traders earn a
return to information.!3

13. An interesting question is how the equilibrium results of this mode] relate to those of
the Kyle [1985]. Rochet and Vila [1994] show that if the Kyle [1989] model is specified with
a unique insider and a large number of uninformed traders, then the equilibrium in Kyle
[1989] is the same as in Kyle [1985] when the informed trader is permitted to condition on
the noise trade when submitting his order. They interpret this as showing that the
equilibrium in the “limit order” game is the same as that in the *“market order” game.
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From a microstructure perspective, this result is useful because it arises in
a model in which the trading mechanism captures at least some features of
actual markets. We will return to these issues of market structure and
design in Chapter 7, with the equilibrium issues in rational expectations
models discussed again in Chapter 6. One aspect of stravegic behavior that
we have not discussed, however, is the optimal strategy of uninformed
traders. It is to this issue that we now turn our attention.



Appendix:
Rational Expectations Models

What happens when people with differential information decide to trade?
This question, fundamental to many issues studied in the market micro-
structure literature, is the underlying issue addressed in the rational
expectations literature. Beginning with a paper by Muth {1961], researchers
have investigated how market prices are affected by traders’ information,
and how this, in turn, affects the information traders can infer from market
prices. A fundamental insight of these rational expectational models is that
along with clearing markets, prices also aggregate information. This dual
role dictates that the behavior of security prices (and markets) may exhibit a

complexity far beyond that predicted by simple models of asset behavior.

This appendix provides a brief review of the basic rational expectations
framework. Because the rational expectations literature is voluminous and
the issues involved complex, my focus here is limited to establishing only
the most important properties of this approach. In particular, I first
motivate the underlying issues by examining a simple graphical depiction of
the trading process with differentially informed traders. I then define and
analyze a simple rational expectations equilibrium, and I discuss some of the
many important issues involved in the existence of such equilibria. The
appendix concludes by outlining the basic rational expectations example
typically used to address issues in security market behavior.

4.A.1 THE BASIC PROBLEM

Suppose we consider two traders who trade a single asset and money. One
trader receives a signal, S, of the asset’s true value; the signal can be either
high or low, S € [H, L]. The other trader is uninformed of any signal. To
represent the trading desires of each trader, consider a simple Edgeworth
box with the informed trader’s origin at the upper right corner, the
uninformed trader’s origin at the lower left corner, and the endowment in
the lower right corner. Equilibria can be found at the intersection of the
trader’s price-consumption curves. (A price-consumption curve represents
the collection of bundles of goods that the trader would demand at various
prices.)

Figure 4.A.1 presents such an Edgeworth box. Since the informed trader
sees a signal of the asset’s value, his price-consumption curves differ
depending on the signal’s value. Thus, his pc curve is pcy if the signal is
high, and it is per if the signal is low. The uninformed trader sees no such

119
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Informed

(PCR)

(PCL)

Uninformed (pcu) w

Figure 4.A.1 Price - Consumption Curves - The Naive
Uniformed Trudar Case.

signal, and so he has a single pc curve. This is represented by the single
vertical line, pcy.t*

The Walrasian equilibrium price is determined by the intersection of the
traders’ pc curves, Note that this is simply py if the signal was low and pyy if
the signal was high. What is immediately apparent from the picture is that
the uninformed trader is naive; once he sees that the price is, say, pp, he
should know that the signal must have been low. Had he known the signal
was low, however, his demand would not be that depicted by pcy. In this
simple Walrasian market, however, this inference issue is ignored,
suggesting that this is not the appropriate depiction of equilibrium when

prices can convey information.
Incotporating this complexity into the trading problem requires recasting

the problem in a different framework. Again, Let there be two traders, i = 1,
2, | goods, and let their endowments be denoted w' € R'+. Let the signal
each trader receives be defined as s* € S, where § = S.1 x §2 is the space of
joint signals. Let utility for each trader be denoted by u'(x’, s), where w' &
R + is the trader’s portfolio. Hence, an agent’s utility depends both on his al-
location and on the joint signal.!?

14. These curves are approximately price-consumption curves. They are accurate in the
interior of the box, where equilibria will be found.

15. For example, suppose the assets will have eventual value # where the distribution of v
given s is f(¥15). Let utility of the portfolio x ; at eventual value v be 4 /7 (x ¥, v). Then expected
utility conditional on sis | & (x i, #}f(Fs) dF =i i(x § 5). The utility function in the text is
this expected urility. ;



Strategic Trader Models I 121

Prices in this model play a dual role of market clearing and conveying
information. Suppose the equilibrium price relation is given by P(s). That
is, P(s) is the market-clearing price when joint signal s occurs. Given price
p, traders can infer that s € P —1(p) So at price p, each agent’s decision
problem can be written

Max' E'[u'(x;, s)Is',s € P71(p)]s.t. p(x' — w') = 0. (4.44)

Solution of this problem results in a demand function for the asset,
denoted D i(p, s i, P(s)).

To find a rational expectations equibnum, we must calculate the
aggregate excess demand function and then find a price function that
equates excess demand to zero for all signals. This excess demand function
is

2

Z(p. 5, P() = Y (D/(p. 5", P() - w') (4.45)

=1
Given this setup, we now define a rational expectations equilibrium:

A rational expectations equilibrium (REE) is a price function P(s} such that
Z(p(s), s , P(s)) = O for each s€ S.

There are two important properties to note about this equilibrium . First,
the equilibrium price satisfies its traditional market-clearing role by setting
excess demands to zero. Second, the price function must accomplish such
market-clearing for every signal. Moreover, it must be the case that the
price function traders use in forming their demands is the actual price
function that occurs in the market. In this sense, expectations are ‘‘correct”
and traders’ beliefs are rational,

A crucial question is, how do we ever find such a rational expectations
equilibrium? In principle, such a task is daunting. since the mechanics of
doing so far exceed the simple market-clearing approach traditionally
taken. And, indeed, it may be the case that such an equilibrium cannot be
found. These difficulties can be illustrated by returning to our Edgeworth
box example.

If price can convey information, then the uninformed trader in a rational
expectations equilibrium must recognize this property. Suppose that the
informed trader has price-consumption curves as before, but now suppose
that the uninformed trader also knows s. Then his price-consumption
curves would differ depending on s. As Figure 4.A.2 shows, if the traders
know that s = L, the market price will be pr, while if they see s = H, the
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Figure 4.A.2 Price - Consumption Curves - The Revealing

Case.
informed
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Uninformed H L W

Figure 4.A.3 Price - Consumption Curve - The Nonrevealing
Case.

market price will be py. This is, of course, an artificial full-information
economy. It tells us, however, how to construct an REE.
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Consider the price function P(L) = p; and P(H) = py. This is an REE. To
see why, note that at price, say, pL, the uninformed trader would infer that s
= L, and so by the argument above, pywould clear the market.

It can be the case, however, that such an outcome does not arise. Suppose
instead that the price-consumption curves for the full-information economy
are given as in Figure 4.A.3, where the artificial full-information pc’s both
intersect along the same budget line. If these are the full-information price-
consumption curves, then it is not possible to infer the underlying state
from the price. Consequently, a revealing rational expectations equilibrium
cannot exist. Figure 4.A.1 shows that for this economy there is no
nonrevealing REE. So no REE exists. This difficulty illustrates the
fundamental problem in rational expectations models. For some economies
there is no REE.

4.A.2 THE EXISTENCE OF RATIONAL EXPECTATIONS
EQUILIBRIA

Given this difficulty, when can we expect a rational expectations equilibri-
um to exist? This issue has been a subject of extensive research, much of it
focusing on the dimensionality of the signal space. There are four results in
this literature that provide boundaries on the existence of equilibria in
rational expectations models. As these conditions apply to most of the
models used to address security market issues, it is useful to review these
results.

First, if the signal set S is finite, then for a generic set of economies a
rational expectations equilibrium exists and is revealing.'® This result,
demonstrated by Radner [1979], requires that any signal must take on
specific values (such as high, low) and so does not apply to signals drawn
from a normal distribution.

Second, let I denote the number of assets. Allen [1982] demonstrated that
if | — 1 is greater than the dimension of S, then for a generic set of
economies an REE exists and is revealing. What this result basically states is
that if the number of relative prices (which is I — 1) exceeds the
dimensionality of the signal space, then an REE does exist. An intuitive
interpretation of this result is that if you have more prices than signals, then
you have sufficient flexibility to both clear markets and aggregate
information.

Third, Jordan and Radner [1982] proved that if | — 1 equals the
dimension S, then there is an open set of economies with no rational

16. 1 will use the term generic loosely. Roughly it means for almost all. For precise
definitions, see the papers referred to in this section.
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expectations equilibrium. Here, the exact fit between prices and signals
means that while it may be possible to find an equilibrium, it is not
guaranteed. This result is important because it suggests a major difficulty
that arises in many standard REE applications. In models with two assets (a
risky asset and a risk-free asset) and 2 one-dimensional signal, the number of
relative prices (/ — 1) equals the signal dimension. This result dictates that
an equilibrium may not exist at all and hence suggests a fragility to the
results found in such models. This also explains why the examples usually
employed to demonstrate rational expectations equilibria are not easily
generalizable. |

Finally, Jordan [1982] provides the somewhat perverse result that if / — 1
< S, then there is a generic set of economies with REE and these equilibria
can be chosen to be as close to revealing as desired. This nonintuitive result
is perhaps best viewed as casting doubt on the entire concept of an REE, as
the resulting price function in this case may possess such perverse properties
that it is difficult to believe it would exist in any actual economy, or ever be
learned by market participants if it did.

This latter problem highlights two additional issues in the rational
expectations approach. In these models, individuals must know the pricing
rule that provides equilibrium prices. How such knowledge actually comes
about, however, is not specified. One possibility is that individuals learn
this rule over time, and hence the REE can be viewed as the long-run steady
state result. Research on learning (see Blume, Bray, and Easley [1982] for a
survey), however, suggests that learning to form rational expectations is
problematic.

A second difficulty in standard rational expectations models is the
assumption of Walrasian equilibrium. Assuming that prices are set by a
Walrasian auctioneer avoids the difficulty of specifying any actual trading
mechanism. This simplicity, however, hides several important problems,
among them being the assumption of competitive behavior. Blume and
Easley [1990} show that unless restrictive informational conditions are met,
there is no trading mechanism that can implement REEs for all classical
economies. In the market microstructure literature, the market-clearing
mechanism has been shown to have important effects on the behavior of
both prices and traders, a complication virtually ignored in the REE
literature.

These results on the existence of REEs illustrate why such models are
both difficult to construct and difficult to interpret. The approach often
taken to avoid these problems is to use a specific example of a trading
environment that satisfies the conditions given above and permits the
calculation of an REE. While this approach is both useful and tractable, it is
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also very special in the sense that any deviations in the environment will
likely change the equilibrium, if it exists at all.

4.A.3 THE STANDARD RATIONAL EXPECTATIONS
EXAMPLE

To conclude this appendix, we review the most widely used rational
expectations framework for analyzing trading between differentially
employed agents. This model, developed by Grossman and Stiglitz [1980],
uses a simple two-asset economy in which all random variables are
independent and are normally distributed. Agents hold a risk-free asset, M,
and a risky asset, X. The price of the risky asset is denoted p, and the price
of the risk-free asset is normalized to one.

The future value of the asset, v, is unknown and is normally distributed
with mean ¢ and variance 1/p,. There are two traders in the economy, and
one of the traders receives a signal of the asset value (the other does not).
The signal, s, is normally distributed with mean v and variance 1/p;. Each
agent begins with some endowment (M, X i), where the level of X iis a
random variable that is normally distributed with mean 0 and variance
1/py. The random aggregate endowment is X = X1+ X2, Agents maximize
the utility of terminal wealth, where utility is defined by the negative
exponential function U(W) = —exp(—W i).

In this model, the signal dictates that the informed trader knows more
than the uninformed trader. The uninformed, however, knows that the
informed’s trade will affect the price. Hence, if he knows the pricing rule,
the uninformed trader can extract information about the informed’s signal
from the market price. To construct an equilibrium, suppose that the
uninformed conjectures that this pricing rule has a particular linear form
given by

p=ay + s — X (4.46)

where the coefficient values are determined in the equilibrium. Thus the
price function depends on the asset’s prior expected value, the signal value,
and the random aggregate endowment of the risky asset.

Given his signal, it follows that informed trader’s posterior distribution
on v is

Pv + Ps ’ Pv -+ Ps (4.47)
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To construct the uninformed trader’s posterior distribution on v,we need to
describe how he uses the price observation to update his prior on v. An easy
way to do this is to construct the observable (to the uninformed trader)
random variable 0:

0={p—ap)/B=s—-(/BX (4.48)

Using the right-hand side of the equation, we see that 9 is distributed as
N(v, 1/p;+ (v/B)2(2/py)). Defining the variance as 1/pg, the uninformed’s
posterior can be written

Pu + pgl 1 :
N &P TPe7 . (4.49)
Pv+pg  pv+pg

What is important to note is that both the informed’s posterior and the
uninformed’s posterior are still normal. Solving the maximization problem
for each of their demands is then tractable and results in a demand function
for the informed trader of

1 _ E[V[s] —
P =S (40
and for the uninformed trader of
ElVin, P()]| —

var[V|p, P(})] °

These demands can easily be found by using the posterior distributions
solved for earlier. Hence, the informed trader’s demand is

prptpss )
DI — ﬂv+ps'1 = pup + Pss — P(pv -+ P-\')? (452)
Pty

and the uninformed trader's demand is

DY = pyp + pgd — plov + po). (4.53)

The equilibrium price can be found equating demand to supply, r.e., DI+
DU= X. This yields
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4.54
2pv + ps + Py ( )
Notice that an alternative way to write this is
p=ap+fs—7X (4.55)
where
a = 2y :
2py + ps + pg
2py + ps + pg " (4-56)
1+ (v/B)ey

C 2pu+ps+pg

and pg = p; + (v/B)22/py.

In this equilibrium, therefore, the actual price will be linear in ¢, s, and
X, and the conjectured price will be the actual price. Traders’ expectations
are thus correct, and prices clear markets. Because of the noise induced by
the random aggregate supply, the price now does not reveal the informed’s
signal to the uninformed trader.



5

Strategic Trader Models II:
Uninformed Traders

The previous chapter demonstrated the important price effects that can arise
when informed traders act strategically. An important restriction of these
analyses, however, is that the uninformed traders are not permitted to act
strategically. Instead, noise traders are assumed to transact every period for
reasons exogenous to the model, an assumption also made in the sequential
trade models. Yet, if it is profitable for an informed trader to time his
trades, it must be profitable for an uninformed trader to do so as well.
Moreover, if uninformed traders behave differently, then the optimal
informed strategy may also change. The issue of uninformed strategic
behavior, therefore, introduces a number of interesting dimensions into the
analysis of market behavior.

Allowing uninformed traders to consider the impact and cost of their
trades introduces a new level of complexity to the game analyzed by
previous market microstructure researchers. In the strategic models dis-
cussed thus far, the game analyzed is between the market maker and the
informed traders. In that game, the market maker attempts to learn the
private information from the trade flow; the informed trader attempts to
hide his trades and thus prolong his informational advantage and maximize
his profits. The role of the uninformed traders is strictly passive. If the
uninformed instead act strategically, then the game must be broadened to
analyze their order strategy and the effect that it has on the informed
traders’ and market makers’ strategies.

One reason for considering this aspect of the trading process is that it
may allow the uninformed to reduce the losses they incur in trading. The
uninformed, and their losses, are necessary in information-based micro-
structure models, as they generate the gains made by the informed.
Nevertheless, it is troubling that the only role played by the uninformed is

129
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that of being “taken” by the informed traders. Furthermore, in the models
considered thus far, the extent to which the uninformed lose to informed
traders is exogenous to the model; why such losses should be any particular
level is left unspecified.

Allowing the uninformed to time their trades also introduces the
possibility that uninformed trades could themselves have interesting price
effects. In particular, if the uninformed attempt to “hide” from the
informed traders, then patterns of trade may arise. Such trade patterns are
characteristic of actual security trading, with several researchers (see Jain
and Joh [1988]; French and Roll [1986]) empirically documenting both
within and across day patterns. Given a passive role for the uninformed, it
does not appear that strategic decisions by informed traders result in such
variations in the timing and volume of trade. Moreover, in the microstruc-
ture models considered thus far, market makers play only a passive role by
accommodating, rather than initiating, trades, and so their role in
introducing price patterns is unclear. This suggests that, to understand trade
patterns, the role of the uninformed must be specified in greater detail.

Numerous authors have addressed this issue of uninformed strategic
behavior in a variety of contexts. Admati and Pfleiderer [1988, 1989] focus
on the titing decisions of uninformed traders transacting within a single
day. Foster and Viswanathan [1990] examine the interday strategic effects
induced by varying levels of public and private information across trading
days. Seppi [1990] analyzes the factors influencing a large uninformed
trader’s decision to trade blocks versus round lots. In these applications, the
focus is on the ability of the uninformed to choose strategically either the
composition or the timing of their orders. Spiegel and Subrahmanyam
[1992] consider uninformed trading from a different point of view by
specifying the trading decisions of risk averse uninformed hedgers. This
one-period model does not investigate the intertemporal question of when
to trade, but rather focuses on the more basic issue of why trade occurs.

One factor common to these papers is a reliance on a game-theoretic
approach. While the strategic informed trader models in the previous
section also draw on game theory, the issues that arise when multiple
uninformed traders act strategically are more complex. As will be apparent,
the equilibria in these models crucially depend on the strategy sets from
which traders are allowed to select. In some cases, the tractable linear
equilibrium so ubiquitous in strategic analyses no longer need exist. And, if
it does exist, whether an cquilibrium involves mixed strategies or can be
restricted to more tractable pure strategies affects our ability to characterize
the properties of security prices arising with strategic behavior.

Because the optimal behavior for the uninformed traders will dépend on
the decisions of other market participants, analyses of uninformed strategic
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behavior have generally adopted the basic modeling approach developed by
Kyle. One issue that immediately anses in doing so, however, is the
duration of the informeds’ information. Since the optimal behavior of the
uninformed depends at least partially on the behavior of the informed,
whether the informed can delay trading is crucial to characterizing this
behavior. The simplest specification is to assume that this information is
short-lived, and hence intertemporal issues need not be considered. This is
the approach taken by Admati and Pfleiderer [1988)]. As their paper involves
a variant of the Kyle [1984] model, it provides a convenient starting point
for our discussion.

5.1 STRATEGIC BEHAVIOR AND UNINFORMED
TRADERS

In Admati-Pfleiderer’s [1988] model, uninformed liquidity traders are
assumed to be of two types. There are nondiscretionary liquidity traders,
who must transact a given amount at a specific time for reasons exogenous
to the model. These traders are identical to the noise traders found in
previous work, and they perform the same role of guaranteeing that a
nontrivial equilibrium exists. There is a second group of uninformed
traders, who also must trade an exogenously given amount, but they have
some discretion with respect to the timing of their trades. These
discretionary traders must satisfy their liquidity demands before the end of
the trading day, but may choose when during the day to submit their order.
The trading day is divided into T intervals of time, and in each interval
traders may submit orders to a competitive market maker. As in Kyle’s
model, orders are batched and the market maker sets a price after seeing the
net order flow. The market maker is assumed to be risk neutral and
competitive, and so prices reflect the expected value of the asset given the
order flow. The underlying value of the asset at time T is given by

T
V=T+> é. (5.1)
t=1

where the §, are mean zero i.i.d. random variables that become public
information at the beginning of each period. In each period ¢, there are
assumed to be n, traders who observe a private signal §, + 1 + &, where the
variance of g, is given by ¢,. Hence, informed traders receive a noisy signal
in period t of the public information that will be revealed at the start of
period ¢ + 1.
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An important assumption is that this information is short-lived. The
public information arriving at the beginning of the next period dictates that
private information is valuable for only one trading interval. Consequently,
informed traders have no choice but to trade on their information in the
period they receive it. Given that they will be trading, the informed traders’
only decision involves determining the order size to submit. The informed
traders’ decision problem is also simplified in that they need not consider
the effects of their trade on next period’s price. In effect, the informed face
a one-period problem because the intertemporal impact of their actions is
vitiated by the arrival of public information. This myopia, combined with
the independence of the g, (the information increments each period), also
dictates that the informed quantity traded in any one period is independent
of the informed quantity traded in other periods. Hence, the intertemporal
linkage between trades and information that was the focus of much prior
research is not a property of this model. This informed order flow for
period ¢ is represented by

n
X =) (5.2)
i=1

The uninformed traders face a different strategic decision. The discretion-
ary traders are assumed to face exogenous liquidity needs, and so the
amount that trader j wishes to trade is exogenously given as ¥j. Admati and
Pfleiderer initially assume that uninformed traders cannot split trades
between periods, so that when trader j trades, the trade size is Y j. The
discretionary traders can choose when to trade, however, and so their
strategic decision involves the timing of their order flow. Discretionary
demand in period ¢ can thus be described by

]
; Y (5.3)

where y j = Y j if the jth discretionary trader trades in period ¢, and is 0
otherwise.

The nondiscretionary order flow is assumed exogenous in cach period and
is given by 2. Total liquidity trading in any period ¢ is then simply the sum
of the discretionary and nondiscretionary orders. As this is a Kyle model, in
equilibrium the variance of uninformed trading influences the equilibrium
strategies of the strategic players. This variance of total liquidity trading in
period ¢ is then given by
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m
e = var ( Zy’: + z;) : (5.4
j=1
This variance is determined endogenously since it depends on the strategic

decisions of the discretionary traders as to when they will transact.

The total order flow in period ¢, denoted @&, is given by
n ] m .
Gr=Y X+ Y §l 4z (5.5)
i=1 =1

The market maker observes this aggregated order flow and sets a single
market-clearing price. Because the market maker is risk neutral and
competitive, his period t price is equal to the expected value of the asset
conditional on his prior information and the order flow received in period ¢.
The assumption that d; is public information at the beginning of period ¢
means that previous order flow has no information content. So the prior
expected value of the asset in period ¢ is ¥V + Z; = ¢ &8s

Following Kyle, Admati and Pfleiderer assume that the market maker
uses the linear pricing rule

t
P[:v+ Zér‘i"Awt;

=1

(5.6)

where @, is the total order flow in period ¢ and X is the effect of order flow
on the market price. Since this order flow can include the trades of agents
who know §; + 1, the market maker’s order strategy reflects the impact of
both public and private information.

Given that the market maker follows this pricing rule, optimal strategies
for the informed traders and the uninformed discretionary traders can be
determined. These strategies will depend on w,, the variance of trades,
which is determined jointly with the strategies in the equilibrium. For a
given level of y,, the optimal order strategy of informed trader i is given by

X = Bi(bi1 +£0), 57)

where

P v,
b = J nt[var(gtﬂ) +¢:] ' %)
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The optimal informed order quantity X,, therefore, depends on the number
of informed traders, the variance of the uninformed order quantity, and the
variance of the private information (the signal variance).

With informed traders pursuing this order strategy and for a given level
of y,, the equilibrtum value of A is given by

var(5,+1) ' "
ny+ 1 lIlr[var(51+1) + Qﬁt] '

Ap = (5.9)

There are two comparative statics properties of this solution that are
particularly important. First, as was demonstrated in Kyle [1984], A is
decreasing in n, the number of informed traders. Hence, as n increases,
order flow has less of an effect on prices. This effect occurs here because the
informed essentially compete among themselves in submitting orders,
thereby dissipating their advantage of being informational monopolists.
Second, A is also decreasing in y,, the variance of total uninformed trades.
This reflects the ability of deeper markets to accommodate informed
trading with less effect on price. Since y is endogenous, discretionary
liquidity traders can thus affect the behavior of prices through their
strategic choices. This reflects a significant departure for the uninformed
traders from the passive role of “sheep” found in ecarlier models.

Recall, however, that these comparative static results depend crucially on
the assumption of risk neutrality for market participants. As we discussed in
Section 4.2, Subrahmanyam [1991] shows that with informed trader risk
aversion, A need not be decreasing in n. Indeed, if A were increasing in n,
then this would imply that the terms of trade for the uninformed are worse
when there are more informed traders than when there are less. This
relation between A and n will be important in characterizing the
uninformed traders’ timing decision. We will discuss this issue further later
in this section.

The optimal behavior for an uninformed discretionary trader is deter-
mined by solving for the minimum cost trading period in which to transact.
Since the uninformed lose to the informed, this cost depends on the price
the market maker sets, which, in turn, depends on the amount of informed
and uninformed trade. Here a crucial issue arises as to whether discretionary
traders are permitted to act strategically or are constrained to be competi-
tive. In particular, since there are a finite number of uninformed traders,
where discretionary traders choose to trade will affect the terms of trade,
which in this model is captured by the A variable.
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If discretionary traders act strategically, they should explicitly recognize
that their trading affects A. This means that discretionary traders should
choose their optimal order strategy recognizing both that the A’s differ
across trading periods and that their behavior affects the A’s. This is not
permitted in the Admati and Pfleiderer analysis, nor is it a feature in the
other strategic models typically employed to analyze trading behavior.
Instead, discretionary traders are assumed to take the pricing rule (the A’s) as
given, and hence they act competitively in making trade decisions. By
taking the terms of trade as given, the discretionary traders’ decision
problem simply reduces to choosing to trade in the lowest cost period
offered by the market maker.

This problem underscores the difficulty of applying game-theoretic
techniques to market microstructure problems. If traders are truly to act
strategically, then the resulting equilibnium must incorporate all strategic
interactions such behavior engenders. Allowing strategic behavior, how-
ever, may resuit in mixed strategy equilibria that are consistent with a wide
range of market conditions or involve complex nonlinear functional
relationships that are difficult, if not impossible, to characterize. Restricting
the strategic choices of the discretionary and the informed traders is one
way to avoid these difficulties, but it raises the difficulty that the resulting
equilibrium need not be robust to more complete behavioral specifications.
Perhaps a more basic problem is that it is not really possible to apply game-
theoretic equilibrium concepts in these settings because the underlying
model is not really a game. Specifying a true game requires more
endogeneity than is ever allowed in these market microstructure applica-
tions. With much of the structure exogenously imposed, the equilibrium in
these models need not be the same as in more standard game theory
approaches.

Given a linear pricing rule, the parameter values derived above, and the
assumption that discretionary traders act competitively by taking the
pricing rule as given, the lowest-cost period in which to trade is the one in
which the variance of uninformed trade, v, is highest. It follows that to
maximize Y discretionary traders all select the same period in which to
transact, inducing patterns in the distribution of trades.

One way to characterize this behavior is to note that discretionary traders
do better by trading in a separating equilibrium than they do by trading in a
pooling equilibrium. Hence, it is optimal for the discretionary traders to
“clump” together in an attempt to separate their trades from the ill effects
of the informed traders. Of course, discretionary traders cannot completely
separate themselves from the informed traders because, by assumption,
informed traders cannot time their trades and so are always present in the
market. Moreover, in every period there must be some nondiscretionary
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uninformed traders active in the market, or else the trades (and hence
information) of informed traders would instantly reveal their information
to the market. Nonetheless, by banding together, discretionary traders
increase the liquidity of the market and thereby reduce the losses they suffer
to informed traders. :

The strategic decisions of discretionary traders, in turn, affect the
strategic choices of informed traders. Since the informed trader’s optimal
order quantity depends on the variance of total uninformed trade (i.e., y), it
follows that informed trade quantity will also follow the pattern set by
discretionary traders. In periods with greater discretionary trading, total
informed trading will increase, and conversely, it will decrease in periods
where discretionary trading is less.! The strategic decisions of informed
traders thus serve to exaggerate the patterns introduced by the discretionary
traders.

One interesting aspect of this informed trading behavior is its effect on
price revelation. As was also true in Kyle’s model, the amount of private
information revealed by trading is the same across periods and is
independent of the total variance of liquidity trading. Thus, though the
variance of liquidity trading affects the trading of both discretionary and
informed traders, the variance of price changes is constant across periods.
This reflects the result that in equilibrium informed traders always adjust
their order size to keep their relative share of the order flow constant. This
result, of course, follows from assuming a fixed number of informed
traders.

What is of more interest is what happens to trading patterns when
informed trader entry is endogenous. Interestingly, the endogeneity of
informed traders acts to intensify the presence of patterns. The reason is
that as the number of informed traders increases they essentially compete
with each other, causing prices to be less affected by the threat of
information-based trading. In the earlier Kyle model, this is what led prices
to reflect different variances as the effect of informed trading varied across
periods. In this setting, periods with higher numbers of informed traders
have smaller A’s, which in turn make them more attractive trading periods
for discretionary traders.

The equilibrium derived here thus has the property that uninformed
traders clump, informed traders follow, and trade patterns emerge. This
provides an explanation for the observed trade patterns based on rational
loss-minimizing behavior by the uninformed traders. What may be useful

1. Recall that the expected uninformed volume is zero, even in periods where
discretionary traders trade. What matters here, as it did in Kyle, is the variance of trading, and
hence greater discretionary participation induces larger trade variance.
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to consider, however, is the robustness of this result. For example, an
important assumption underlying the equilibrium derived here is the
independence of trade between periods. Unlike in the sequential trade
models or in Kyle [1985], trade in one period is not informative about trade
in any subsequent period. This reflects the dual assumptions that informed
traders’ information lasts one period and that discretionary traders cannot
split their trades between periods. In this setting, there is no endogenous
learning problem for either the uninformed or market makers because there
is nothing to be learned from market statistics; subsequent prices do not
reflect the effects of previous order flows beyond public information.

This restriction greatly affects the nature of the equilibrium, and hence
the qualitative predictions, that emerge from the model. For example,
Admati and Pfleiderer consider a simple extension in which discretionary
traders are permitted to split their trades across two periods. Two problems
immediately arise in characterizing the solution. First, it is not clear that a
pure-strategy equilibrium always exists, and even if it does, it is not
generally possible to find a closed-form solution. Second, there is no way to
guarantee that if we find an equilibrium, it is in fact the only equilibrium.
Once discretionary traders are permitted to act strategically across periods,
the potential for multiple equilibria becomes a major concern. We return to
these equilibrium considerations in more detail in Section 5.3

The assumptions regarding the nature of information are also important.
In the models considered thus far, informed traders receive homogeneous
information. Admati and Pfleiderer provide a nice result that with
heterogeneous information the effect of n,the number of informed traders,
on A may differ dramatically. In particular, the *“positive™ effect on price
from competition between informed traders that arises when n increases
need not hold. The reason is that with more informed traders the trading
process now reveals more information, and this increased information effect
overwhelms the increased competition effect. This can result in A
increasing in the number of informed traders, rather than decreasing.
Consequently, the ‘concentration” of trading results no longer need hold.

The optimality of clumping behavior thus appears to hinge largely on the
behavior of A, the price sensitivity to the order flow. Provided A decreases
with greater informed or uninformed trading, then discretionary traders
benefit from trading together. If, however, A can increase in the number of
informed traders, then it is not apparent clumping occurs at all. Instead,
changes in discretionary trading could induce changes in informed trading,
which could worsen the terms of trade for the uninformed. But then it is not
clear that such discretionary behavior would (or even could) actually exist
in equilibrium. This suggests the need to specify the origins of discretionary
behavior in more detail.
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This is the issue addressed by Spiegel and Subrahmanyam [1992]. They
depart from the exogenous uninformed trading assumptions of previous
models by considering uninformed trading as arising to meet hedging
demands. This focus on hedging motivations is reminiscent of more
standard rational expectations analyses, but their analysis employs a variant
of the one-period Kyle [1985] model.? In their model, the sensitivity of
hedging demands to price variability can eliminate linear equilibria.

In the model, k risk neutral informed traders and #» risk averse
uninformed traders submit orders to a risk neutral, competitive market
maker. Trading occurs at time 0 and liquidation of the asset occurs at time
1. At time 1, the asset will be worth V' = ¥ + &, where ¥ is known to all
agents and & represents an information innovation that is normally
distributed as N(0, ¥). Informed trader i receives a signal 8 + €;, where the
g; are i.i.d random variables with distribution N (0, ¢).

The uninformed traders in this model are risk averse and have negative
exponential utility functions with a common absolute risk aversion
coefficient of A. Each of the n uninformed traders has an endowment w, f
=1, ..., n, where the ®; are assumed independently normally distributed
with mean 0 and variance G2 . As in Kyle, the market maker sees the net
order flow and sets a single price. Let this price be denoted P, and let the
order flow be denoted Q. Then, as in previous papers, we need to find a
pricing strategy for the market maker and an order strategy for the
informed traders such that prices are efficient and no other order strategy
results in higher utility for the traders.

Suppose the market maker uses the (now familiar) linear pricing strategy

P=V+AQ (5.10)
Then informed traders use the linear order strategy

xi=p(6+ei), (5.11)
and uninformed traders use orders that are linear functions of their
endowments, y®;. Spiegel and Subrahmanyam show that there is a linear

equilibrium in which the constants B, A, and y have unique solutions
provided that

A2no? (tI: + 2¢)2 > 4k(\11 + ¢). (5.12)

2. This hedging motivation was also developed in Glosten [1989], a paper-we consider
further in Chapter 6.
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If this condition does not hold, then there cannot exist a linear equilibrium.

The condition implies that there exists a linear equilibrium only if the
uninformed traders are not overwhelmed by the trading of informed
traders. Hence, if there are many hedgers or their risk aversion (the A) or ex
ante endowment variability (642 ) is high, then such an equilibriom mighe
be expected to hold provided there are not too many informed traders. If
this not the case, then the orders of informed traders dominate trading to
such an extent that the market maker cannot set a zero expected profit
price. In this case, the linear equilibrium breaks down. While a nonlinear
equilibrium could exist, finding it is highly problematic.

If a linear equilibrium does exist, then its behavior need not be that of a
standard Kyle model. Of particular importance is that A need not have the
monotonicity properties it has when uvninformed trade is exogenous.
Spiegel and Subrahmanyam show that A is monotonically decreasing in A
and 6,2, but can be nonmonotonic in » (the number of uninformed), k (the
number of informed), and @ (the signal variance). Thus, for some market
parameterizations, adding liquidity traders to a market can cause the terms
of trade to worsen, rather than improve as is the case in Kyle’s analysis. This
occurs because increasing n increases price variability, and this induces
hedgers to scale back their trades. Counterbalancing this tendency is the
beneficial effect on prices of more non-information-based trades. For some
specifications, the first effect dominates, and A can initially increase in .
Spiegel and Subrahmanyam also show that changing the number of
uniformed traders can have virtually any effect on A given particular market
parameter settings.

These results underscore the fragility of equilibria in which trade
concentration occurs. In Admati and Pfleiderer’s model, increases in n and k
unambiguously improve the terms of trade and so result in traders clumping
together. While this may certainly occur, it is not guaranteed, and
reasonable factors such as trader risk aversion or hedging demands can be
enough to result in the opposite trade behavior occurring. Since trade
patterns do arise in actual markets, perhaps at least some of these
phenomena can be explained by discretionary trader behavior.

If clumping of trades does occur, an interesting and related question is,
when will these trades take place? In actual markets, volume is heaviest
carly in the day and again before the close of trading. Given the
independence assumptions in Admati and Pfleiderer’s model, there is no
reason why any specific period should be preferred to any other. Admati
and Pfleiderer argue that if discretionary trade flows become informative
over time, then discretionary traders are more likely to trade early in the
day rather than later. Their intuition is that traders may benefit from
trading before the extent of their participation is known to the market.
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A similar earlier versus later story is considered in an analysis of interday
trading patterns by Foster and Viswanathan [1990]. Their analysis involves
a variant of the Kyle [1985] model in which trade occurs only once a day
and information is ‘lumpy.” In this paper, the single informed trader’s
information can persist across more than one trading interval, allowing
both informed and uninformed traders the potential to gain from timing
their trades. If this occurs, then trading patterns may arise in the presence of
long-lived information.

5.2 STRATEGIC BEHAVIOR AND LONG-LIVED
INFORMATION

The basic issue considered in Foster and Viswanathan is the trade pattern
arising when the informational advantage of the informed trader deterio-
rates across time. Their model uses the basic structure of the continuous-
auction Kyle [1985] model, where trade takes place in a finite number of
discrete periods. These periods are assumed to be a day, and so there is
essentially only one trading period a day. There is a single, risk neutral
informed trader who receives a private information signal every day. There
is also a noisy public signal available to all traders at the close of trading
each day. Because trading does not take place on weekends, the informed
trader, who continues to receive signals over the weekend, enters trading on
Monday with a large informational advantage over uninformed traders.

If uninformed traders are not permitted to time their trades, then the
behavior of the single informed trader is essentially that predicted by Kyle.
Foster and Viswanathan focus on a linear equilibrium, and so the informed
trader’s optimal strategy can be calculated in the same manner as in Kyle. If
the public signal provides no information, then the informed trader chooses
her order quantity to release the same amount of information each day and
thus equate the variance of price changes across days. If the public signal is
informative, however, the value of the informed trader’s information
declines across time, causing her to accelerate her trades. This results in the
sensitivity of prices to the trade flow, the A variable, declining monotonical-
ly across the week, which, in turn, causes the variance of price changes to
similarly decline across the week.

What drives this result is the imbalance of information at the start of the
trading week. Because informed traders have more information on
Mondays, they begin the week with a greater informational advantage. If
the single informed trader trades simply on a day-by-day basis, then there
would be large price effects on Monday because the market maker knows
that more of the order flow is information-related. This makes it optimal
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for the informed trader to delay her trades, but the availability of public
information limits the extent to which this can be done.

Obviously, if the pattern of private information did not have this
“lumplike” characteristic, then such trading patterns need not arisc. For
example, if no information of any kind were available on weekends, then
no informational imbalance would occur, and trade patterns would be the
same across days. An equally important assumption is that uninformed
liquidity demand does not accumulate over the weekend; so there can be no
liquidity imbalance on Monday to offset this informational imbalance.

Given that there is more private information on Mondays, it follows that
uninformed traders might prefer to delay their trades and transact when the
terms of trade are more favorable. As in Admat and Pfleiderer [1988],
Foster and Viswanathan assume that there are both discretionary and
nondiscretionary uninformed traders, and that their behavior is limited in
several dimensions. Discretionary traders are allowed to delay their trades
for at most one calendar day. Hence, in this model a discretionary trader
may postpone trading from Monday to Tuesday, but not from Friday to
Monday or from Monday to later in the week. Discretionary traders are also
not permitted to split trades across trading days, nor can they skip trading
altogether if market prices seem unreasonable. All discretionary traders
follow the same rule, either all delaying or all staying.

These assumptions are needed to restrict the equilibrium to the linear
pure-strategy case, but they highlight the difficulty in analyzing these
strategic problems. With long-lived information, allowing the discretion-
ary traders to split their orders essentially allows them to learn more from
the order flow (and thus, by extension, about the asset’s true value) than the
market maker. In particular, the uninformed trader is more informed in the
second period since he knows what his orders were in the first period. This
creates the difficulty of dual types of informed traders, and the problem
becomes intractable.?

As is also true in Admati and Pfleiderer, the uninformed discretionary
traders act competitively in choosing when to trade. One difference
between the two models is that since Foster and Viswanathan have only a
single informed trader, the dissipative effect on information arising with
multiple informed traders is not a feature of this model Hence, even if
discretionary traders are able to delay trading, if there is no public signal
then the single informed trader simply adjusts her trading volume to offset
the discretionary effects. In this case, the behavior of the uninformed only

3. I am particularly grateful to S. Viswanathan for his comments on this point.
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affects the profit of the informed trader and, with entry precluded, there is
no pattern in security prices and variances.

When there is a public signal however, the informed trader cannot offset
the uninformeds’ order flow behavior, and patterns emerge. Indeed, Foster
and Viswanathan show that multiple equilibria are possible, with single or
dual periods of trade concentration being feasible outcomes. This demon-
stration that multiple equilibria prevail is an interesting and important
contribution of the model. In strategic analyses, it is often the case that
there is not a single equilibria. This difficulty makes it problematic to
ascribe policy implications, and it may reflect the difficulty that in some
strategic models virtually everything can be an equilibrium. This issue of
the robustness of strategic models is discussed further later in the chapter.

If there are multiple equilibria, then the question arises whether the
equilibrium solutions share any common properties. Foster and Viswana-
than show that in each equilibrium, Monday volume is always lowest
because the uninformed delay trading to avoid the informed trader’s large
informational edge. Similarly, the variance of returns on Mondays differs
from other days because of this differential trading behavior. Foster and
Viswanathan argue that this trading behavior may explain the daily
variance differences empirically found by French and Roll [1986].

In both the Admati-Pfleiderer and Foster-Viswanathan models, there-
fore, the ability of uninformed traders to delay trades introduces patterns in
trade behavior. What appears to be needed in both models is some
impediment that restricts the informed trader from offsetting the effects of
the uninformed. As we have discussed, while it is possible to show that such
results hold, their generality is constrained by the specific structure required
to retain the tractable, linear structure needed to characterize equilibrium.

While these models provide predictions about variance and volume
effects, another interesting empirical finding is that patterns exist in
security returns. For example, Harris [1986] shows that there are intraday
patterns in security returns, and that these patterns differ across days of the
week. Further, numerous researchers have found puzzling interday patterns
such as the “weckend” effect. In the theoretical models considered here,
however, there need be no systematic difference in returns, because the
informed are just as likely to know good news as they are to know bad
news. Hence, while price variances differ, expected returns do not.
Similarly, since the uninformeds’ trades are not connected with informa-
tion, they, too, can have no effect on returns. To develop patterns in
returns, there must be some difference between the buy and sell sides of the
market that is not symmetric with respect to information. One possibility is
that it is connected with the price-setting behavior of the market maker.
We now consider this issue in more detail.
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5.3 STRATEGIC BEHAVIOR AND SECURITY RETURNS

The problem of analyzing patterns in trade returns is straightforward: If
security prices follow a Martingale, then the expected return is always
zero.* Predictable patterns in returns are precluded because that would
require predictable differences in expected returns, and that is inconsistent
with the Martingale property. In both the sequential trade models and
strategic trader models, security prices are Martingales, and so it is not
immediately obvious how to address return issues in either framework.

That the Martingale property should prove to be an impediment points
out an interesting difficulty in the modeling of microstructure phenomena.
In particular, a property generally ascribed to security markets is that they
are efficient. While the actual meaning of this is increasingly subject to
debate, one somewhat less contentious version of efficiency is that traders
cannot systematically make returns simply by watching the market. Such
behavior is ruled out if the price process is a Martingale, and hence from the
point of view of market efficiency, this property is desirable.

From other perspectives, however, this property poses difficulties. For
example, in the sequential trade model of Glosten and Milgrom, the
Bayesian adjustment process that results in prices being Martingales
precludes anything other than individual trades from affecting prices. Thus,
if one wanted to look for patterns based on aggregation of trades, for
example, a simple sequential trade model would not be applicable. And, as
the papers in the previous section demonstrated, in the Kyle model, where
trades are always aggregated, return patterns do not arise.

One possible modeling approach to alleviate this is to consider price
behavior in a call market where the market maker sets prices before the
beginning of trading. This approach was taken by O’Hara and Oldfield
[1986] (see Chapter 2 for discussion) in modeling how the market maker
sets prices given both market orders and limit orders. A multiperiod analysis
using such a construction is found in the work of Easley and O’Hara
[1987b], who analyze the effects of trade volume on the market maker’s
pricing problem.> The advantage of this approach is that it allows actual
order imbalances to have real effects in the model. The disadvantage is that

4. The interest rate is implicitly assumed to be zero in these models. They could be
modified to incorporate a nonzero return on the risk-free asset, and then prices adjusted for
this return would follow a Martingale.

5. In Easley and O’Hara [1987b), traders may submit at most one order per trading period
and the overall volume of buys and sells provides a signal to the market maker of where the
informed traders are transacting. Although the actual orders submitted could (and, indeed,
usually would) result in a gain or loss to the market maker, his expected profit was zero. They
use the model to address issues relating to the speed of price adjustment and market efficiency.
A later version of this paper is Easley and O’Hara [1992b).
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this structure is not actually found in any market setting, although one
might argue that foreign exchange markets, where quotes are honored up
to very large trade sizes, approximate this market structure.

In addressing the issue of varying security market returns, Admati and
Pfleiderer [1989] employ a call market construction to analyze how the
relative and absolute numbers of buys and sells could affect return patterns.
Their analysis considers both the cases of competitive market makers and a
monopolistic market maker, and as the intuition is similar, we focus on the
competitive scenario. Admati and Pfleiderer consider a T period model in
which a risky asset pays a liquidating dividend at time T of

T
F=F+) b, (5.13)

where fort =1, 2, ..., T, the §, are assumed to be i.i.d. random variables
with zero mean. The §; are assumed to be public information before the
start of period ¢, and so the expected value of the asset at time ¢ given public
information is

‘ |
Vi =F+) 6. (5.14)
=1

Trading takes place through M risk neutral market makers, who quote
bid and ask prices. Each market maker is assumed willing to transact all
orders received in any period ¢ at the bid and ask prices he sets for time ¢.
Rather than consider these prices per se, Admati and Pfleiderer focus on the
bid and ask commissions, which they define as the deviations of price from
the expected value. For any market maker j, the ask commission a7 and the
bid commission b/ are defined as

d=a-V, (5.15)

b =V, - B, (5.16)

where Aj and B/ are respectively the bid and ask prices in period t. These
commissions can be thought of as the spread the market maker sets on each
side of the market at any time ¢

In this model it is assumed that at time 1 each trader knows every
commission that will be charged in all future trading periods. One way to
guarantee this is to assume that at time ¢ each market maker posts the bid
and ask commissions at which he will trade in each period ¢ in all future
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periods. Note, however, that this is not the same as posting the bid and ask
prices. Bid and ask prices depend upon the expected value of the asset at any
time ¢, and that, in turn, depends on the realizations of the 8, up to time ¢. It
is not possible to know at time 1 what this expectation will be in the future,
and so it is not possible to know what the bid and ask prices will be. Thus,
although future trading prices cannot be known, Admati and Pfleiderer
assume that future commissions can be known.

There are three types of traders in the market: informed traders,
nondiscretionary liquidity traders, and discretionary liquidity traders. As in
the earlier Admati and Pfleiderer analysis, an informed trader is assumed to
observe in period ¢ the information innovation 8, 4 . Private information
again only lasts one trading period, and so the issue of informed traders
delaying trades is not relevant. The assumption of short-lived information
also means that interperiod issues need not be considered. In this model, the
number of informed traders is allowed to vary on a period-by-period basis,
with the number of potentially informed traders in any period being a
random variable with mean I > 0. It is assumed that any potential informed
trader has a probability ¢ of becoming informed, so that the expected
number of informed traders in any period ¢ is @I

The trading decision of an informed trader depends upon the market
makers’ prices and the informed traders’ information. In particular, an
informed trader will buy in period tif and only if E(F | V, 8;+ 1) = Vi + 1>
A;. From (5.15), this is equivalent to the informed trader buying whenever
8+ 1> a}. Similar reasoning shows the informed trader wishes to sell if —§,
+1> b,. If these conditions do not hold, then the trader simply does not
trade. Notice that at these prices a risk neutral informed trader would want
to submit an infinite number of orders, since this would result in infinite
profit. To prevent this, much as in the sequential trade models, a trader is
permitted in any trading period to buy one unit of stock, to sell one unit, or
to not trade.

The uninformed traders include both discretionary and nondiscretionary
traders. The nondiscretionary uninformed traders are assumed to trade in a
specific period ¢. The discretionary traders are allowed to choose the period
in which they trade, which can be in the interval [T7, T”]. All liquidity
traders are assumed to have a reservation “price,” which is identically and
independently distributed across traders. The reservation price, denoted 2v,
is defined in terms of the bid and ask commissions, so that the
nondiscretionary liquidity buyer submits an order at time ¢ if and only if 4, <
vand a seller submits an order if and only if Z v> b,. Discretionary liquidity
traders submit a buy order in period ¢ if and only if (1) g, < Zvand (2) g, is
the smallest trading commission over the trading interval [T, T"], with the
equivalent also holding for a discretionary liquidity seller.
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Defining the uninformed traders’ decisions in terms of trading commis-
sions rather than prices reveals an interesting feature of this model. Traders
are assumed to care not about the actual price of the asset they are buying or
selling but only about the commissions they are paying. Hence, it might be
that if the asset price were actually 46 and the commission 1 a trader would
not buy, but he would do so if the price were 49 and the commission 1/2.
The reason for this construction is that if the discretionary trader who cares
about prices is to choose a period in which to transact, he must have
expectations about the trading prices in each trade period. This would resuit
in a much more complex analysis. Since commissions can be set indepen-
dently of the asset’s value, this problem can be avoided, but it does require
the uninformed to pursue an unusual objective.® We return to these issues
later in discussing the equilibrium of the model.

The numbers of nondiscretionary liquidity buyers and sellers in period ¢
are ii.d. random variables with mean N > 0, while the numbers of
discretionary liquidity buyers and sellers are i.i.d. random variables with
mean D > 0. Let a’be the lowest ask commission over the period [T7, T”]
and b"the lowest bid commission. Market makers post trading commission
schedules at time 1, and so the expected number of uninformed buycrs in
any period ¢t € [T, T”] is

| (5.17)
N otherwise,

LA :{N+D/TA if a; = a”,
where 1 4 is the number of periods in {T”, T”] in which 4,= a*.7 A similar
expression can be derived for the expected number of uninformed sellers.

In a competitive market, the commissions each market maker quotes
must provide zero expected profit. As in previous models, this involves
offsctting expected losses to the informed with expected gains from the
uninformed. The expected gains from each uninformed buyer are given by

G(at) = a;Pr{é” > d;}., (518)

6. Since the price is the expected value, this is equivalent to the uninformed preferring to
minimize transaction costs given that they will buy the asser at a fair price.

7. Note that this is not correct if the market makers post prices on a period-by-period
basis. If they did, then the actual number of discretionary traders who had traded before
would be relevant for determining the expected number of such traders in period ¢, and hence
the trading periods would be linked together. This is similar to the difficulties discussed in
Admati and Pfleiderer [1988] when uninformed traders could split their trades.
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where the Pr(s) term is the probability that a potential liquidity buyer
trades given the ask quote and his reservation price. A related equation
captures the expected loss to each informed trader. Admati and Pfleiderer
define the function y by

U(a;) = Pr{S; > a;} [E(6;|5; > a;) — a;], (5.19)

which gives the informed trader’s expected profit (and hence the market
maker’s expected loss) from trading at the ask price. Admati and Pfleiderer
then demonstrate that for any commission x,the function ¥(x) is decreasing
in x. Consequently, the market maker’s expected loss to an informed trader
is decreasing in the commission he charges.

Given the expected numbers of traders in each trading period and the
expected gains and losses, the market makers’ equilibrium commission
structure can be examined. Admati and Pfleiderer demonstrate that if
—@I¥(x) + (N + D)G(x) > 0, then discretionary liquidity buyers strictly
prefer to concentrate their trading in one period and discretionary sellers
strictly prefer to concentrate their buying. The reason for this is straightfor-
ward: with more uninformed trading, the commission can be lower because
there are more gains to offset the losses to the informed. Hence, if all the
uninformed clump together, they can improve their terms of trade and thus
pay the lowest commission. Note that in this chosen period there is more
expected informed trade because the lower commission raises the probabili-
ty that 8, > a,. Since, however, each informed trader can only trade one unit
and, at this point, the total number of informed is exogenous, this increased
informed trading cannot negate the advantages of clumping for the
uninformed.

While this suggests that buys and sells will be concentrated, this
concentration may take place at any time in the trading day. Moreover, it is
possible that buyers and sellers may choose the same period in which to
trade, leading to an increase in volume in that period but no trading
imbalance. Since the focus of this paper is on return effects, it is also
important to consider how these trading decisions affect security prices.
Admati and Pfleiderer define an average transaction price as

P=V + (5.20)

where @2 and ®b are the number of buys and sells, respectively, and their
sum is the total order flow. Note that no trade ever actually occurs at this
price; all buys take place at 4; and all sells at b,. Hence this “average” price
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essentially captures imbalances that arise from different volumes of buys and
sells.

Given that discretionary uninformed traders trade together, it follows
that the transaction pattern may induce biases in this transaction-weighted
average price. Since this price is a function of the bid and ask commissions,
Admati and Pfleiderer show that if the discretionary buyers and sellers
choose the same period in which to transact, then E(P, | V) = V,and E(P,—
B, — 1) = 0. This follows because the buying and selling of the uninformed
is symmetric, so that the average “bias” in prices is zero. With price equal
to the expected value, it follows that the expected change between this
period’s price and the next period’s price is also zero.

If there are to be patterns in mean returns, therefore, it cannot simply be
due to uninformed buyers and sellers trading together. If uninformed
buyers and sellers choose to trade in different periods, however, then the
average transaction price will, by definition, not equal the expected value.
In the period in which buyers predominate, the average price exceeds ¥,
and since the discretionary buyers will have then all transacted, it follows
that in the next period the average price must be lower. Conversely, in the
period where sellers predominate, the average price is biased downward, so
that the next period’s expected average price will be higher. If returns are
measured with weighted average transaction prices, therefore, patterns arise
if buyers and sellers choose different times to transact.

The analysis suggests that such an equilibrium is possible. To attribute
mean return effects to trader behavior, however, what is needed 1s a
demonstration that such time-separable trading will be an equilibrium or,
better still, the only equilibrium. Admati and Pfleiderer argue that this will
occur if the number of informed traders is endogenous.

For the number of informed traders to be endogenous, there must be
some cost to becoming informed, or otherwise all traders would choose to
do so. Let c(@;) be the cost to any trader of having a probability ¢, of
becoming informed in period t. In equilibrium it must be the case the
number of informed traders is such that the gains from being informed are
just equal to the cost of becoming informed. Note that this endogencity
must be done on a period-by-period basis. If the trader were informed for all
periods, then in some later periods the market maker’s zero expected profit
condition might require prices to be set so that no trading at all could occur.

Since an informed trader is equally likely to learn good or bad news, it
follows that the expected gains to being informed depend on both the bid
and the ask commission. Finding an equilibrium when the number of
informed is endogenous is thus quite complex; the commissions the market
maker sets depend on the number of informed traders, but this. number, in
turn, depends on the market maker’s commissions. Admati and Pfleiderer
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do not establish that such an equilibrium exists. Instead, they argue that in
such an equilibrium it must be the case that the market maker sets
commissions such that the discretionary buyers trade in one period and the
discretionary sellers in another.

To understand why this is so, consider the problem facing the
competitive market makers. Suppose there are three trading periods and
that market maker 4 sets the following commissions:

period 1 period 2 period 3
a=1 a=.6 a=1
b=1 b=s6 b=1 G.21)

With both bid and ask commissions lowest in period 2, all discretionary

traders will trade at that time. This added uninformed trading is what

allows the market maker to set the lower commuissions at time 2. The lower

commissions also make it more profitable to be informed in period 2,

however, so that more informed traders will also transact then. For these

commissions to be an equilibrium it must be the case that the losses to these
informed traders must equal the gains from the uninformed traders.

Suppose there is another market maker B, who now considers setting
commissions as follows:

period 1 period 2 period 3

a=1 a=1 5 (5:22)
1

a =
b=1 b=1 b=

Since his ask price is lower in period 3, it follows that discretionary
uninformed buyers will move to period 3. His higher bid in period 3,
however, means that uninformed sellers will remain in period 2. The
informed traders’ profit increases from buying at the lower ask in period 3,
but it is not guaranteed that they will receive good news. Hence, while the
number of informed in period 3 will be larger than in period 1, it will be
strictly less than the number of informed in period 2, all of whom will be
trading with market maker A. This cannot be an equilibrium, however,
because A will lose money at his posted prices, while B will make money.

Market maker A could react to this situation by setting the following
commissions:
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period 1 period 2 period 3

a =1 a=1 a=1
b=1 b=.5 b=1 (5-23)

In this case, the market makers will have tacitly divided the market so that
all discretionary buyers trade with B and all sellers with A. This, in turn,
will result in a preponderance of buying in period 3 and a preponderance of
selling in period 2. If such an equilibrium did prevail, then the resulting
trade patterns could explain the observed return variability in the market.
We conclude this chapter with a brief discussion of these equilibrium issues.

5.4 THE ROBUSTNESS OF STRATEGIC MODELS

While the outcome argued by Admati and Pfleiderer seems economically
plausible, it need not be the equilibrium that actually occurs. Indeed, it may
be that numerous other economically plausible equilibria could occur, or
that no equilibrium at all will arise. The problem is that to characterize the
actual equilibrium one would need to know not only the equilibrium
concept being applied, but also the specific game being played. In this
application, however, neither the game nor the equilibrium concept is
specified, leaving the question of equilibrium uncertain.

This problem highlights a major difficulty in applying strategic models
to market microstructure issues. To formally model the underlying game in
a market requires specifying the rules of the game, the players, their
strategy sets, and their payoffs. Moreover, if these are to be games of
incomplete information, then the role of nature (and nature’s moves) must
also be carefully delineated. In most microstructure settings, such a
specification would be a formidable task, if it were possible at all. Formally
analyzing an incomplete information n-period game with M market
makers, I informed traders, N liquidity traders, and D discretionary traders,
for example, would be virtually impossible. Without such a specification,
however, determining the equilibrium outcome of the game becomes
problematie.

A second difficulty arises with respect to the equilibrium concept. Exactly
how the players’ beliefs and strategies are tied together is crucial for
determining the resulting equilibrium. There need not be a single way to
account for this, however, and consequently different equilibrium concepts
can apply. For example, many games employ a Bayes-Nash equilibrium
concept, in which each individual’s strategy is a best response given the
other individuals’ strategies, and each tradet’s expectations about these
strategies are correct. Such an equilibrium concept is employed in the Kyle
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model, for example. There are also various refinements of this equilibrium
concept, however, as well as alternative equilibrium concepts that could be
used (see Fudenberg and Tirole [1991]).

While this need not preclude the use of a game theory approach to
microstructure problems, it does require extreme caution in interpreting the
results. In particular, the common difficulty of multiple equilibria in game-
theoretic analyses suggests that policy implications drawn from such an
application may be particularly fragile, if not altogether misleading.
Moreover, the ability to ever attain the proposed equilibrium in any actual
market setting may also be a serious concern. Nonetheless, as the models in
this chapter have demonstrated, strategic models of trader behavior can
provide substantial insight and intuition into the trading process, and hence
they may be useful in the analysis of specific problems.



6
Information and the Price Process

In the three previous chapters we examined the general market microstruc-
ture modeling approaches used to analyze the effect of information on
security prices. In both the sequential trade framework and the batch
strategic trading models, new information becomes impounded into prices
as a result of the trading behavior of informed and uninformed traders. A
characteristic of both approaches is that this price adjustment is not
instantaneous. Because prices are conditional expected values, the price at
each point reflects all publicly available information, but not necessarily all
private information. Consequently, until prices adjust to the new-informa-
tion value, informed traders earn a return to their information and prices are
only semi-strong-form efficient.

In this chapter we turn our attention to the question of how prices adjust
to new information over time. In both microstructure paradigms, prices
eventually converge to new-information values, but, since this adjustment
takes place in the limit, the actual adjustment time can be infinite. To
understand how prices become *‘efficient,” we need to know more about
the process by which this adjustment occurs. Moreover, since different
market structures can affect this adjustment, understanding how the price
process behaves may provide insight into how markets should be structured
and regulated. We consider these structure issues in more detail in Chapters
7, 8, and 9.

Examining the process of price adjustment requires focusing on how
prices change across time. Since the specialist is responsible for setting
market-clearing prices, this requires understanding how the specialist and
other uninformed participants learn from observing market information. In
the models discussed in the previous three chapters, as well as in actual
security markets, what is actually observable can differ in fundamental
ways. Individual trades, for example, are not publicly observable in batch
systems, but are observable in continuous auctions. Similarly, the sequence

153
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of trades and their timing may be observable in some trading systems but
not in others. This suggests that characterizing the price adjustment process
requires a careful analysis of how information generated by the trading
process is related to information on the underlying asset value.

As a starting point, we consider the simplest version of this problem by
analyzing the information revealed by the price sequence. If prices are not
fully revealing, then the sequence of prices may provide information that
individual prices do not. Consequently, the adjustment of prices to
information may involve drawing inferences from the price process itself to
determine what the new full-information value should be. This inference
process has been largely studied in rational expectations batch-style models,
and we first consider the adjustment issue in this framework. In subsequent
sections, we consider the effects of volume and time on the price
adjustment process.

The limited scope of our discussion in this chapter should be stressed.
Investigations of price adjustment in rational expectations models are
multitudinous, and it is beyond our focus here to consider such work. What
is of interest for us is how in a market setting traders can infer information
from market parameters. In subsequent chapters, we extend this focus to
considering how the market structure itself affects the available informa-
tion,

6.1 INFORMATION AND THE SEQUENCE OF PRICES

In rational expectations models, a fundamental issue is the existence of a
revealing rational expectations equilibrium. As noted by Grossman and
Stiglitz [1980], if traders act competitively, their trades can result in prices
impounding so much information that, in equilibrium, the price “reveals”
all private information to uninformed traders. In this case, the issue of price
adjustment is moot; prices instantly adjust to full-information values and
markets are full-information efficient.

In actual markets, such instantancous adjustment is rarely observed.
While uninformed traders recognize that prices are related to information,
it may be difficult to isolate the pure information effects on security prices
from the more transitory liquidity effects. Moreover, even the effects of
information are rarely pristine. While some traders may acquire informa-
tion, it is not always obvious how that information relates to the ultimate
value of the firm (or to its securities) and hence not immediately. apparent
how unbiased (or even how valuable) the information is. These difficulties
imply that simple models of price adjustment may yield little insight into
the behavior of actual asset markets.
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What underlies the difficulty in characterizing the price adjustment
process is that price movements depend on how market participants learn
from market information, and this, in turn, depends on myriad factors such
as traders’ risk preferences and endowments, the nature and extent of
uncertainty, and even the market structure itself. In the simplest models,
where the only uncertainty is the value of the informed trader’s private
signal, uninformed traders can draw sufficient inference from just one price
observation to learn the “truth.” In more complete models (and presumably
in actual market settings) this learning problem is more complex, making
the link between market information and the asset value less apparent.

If an equilibrium exists and it is not revealing, traders can glean some, but
not all, information from a single price. If they wartch a sequence of prices,
however, then traders have both the information conveyed by more
observations as well as any information conveved by the increments in
prices. In effect, traders can follow or ““chart” the pattern of prices to learn
any underlying information. Such technical analysis of market data is
widespread in markets, with elaborate trading strategies devised to respond
to the appearance of a “head and shoulders” in the data, or to some more
mundane movement in a moving average of prices.! But why such patterns
should be, or even how they could be, valuable is unclear. And even the
fundamental question of what traders could learn from such market data has
not been resolved.

Rather than focus on this general question, which surely goes far beyond
the issues generally addressed in market microstructure, our focus will be on
the more limited question of the information contained in specific pieces of
market data. A natural starting point is the information content of price
sequences. In the models considered in previous chapters, the price
sequence per se plays little role. The specialist in a sequential trade model
sets each price equal to the conditional expected value, and the movement
between prices reflects only the updating of the market maker’s posterior
beliefs. Similarly, in a Kyle framework the market maker learns nothing
from the movement of prices that is not already in his information set. In
these models, the adjustment of prices cannot depend on any information
generated by the price movement, because prices are not a source of
information to the market maker.

An alternative framework that does capture an informative role for the
price sequence is the “noisy” rational expectations approach. Such models

1. The study of patterns in market data underlies the recent development of neural nets to
predict stock market returns. Thus, while technical analysis has a long history, the role of
trade patterns may be increasingly important given the increased ability to analyze real-time
data.
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have been used to address a wide variety of issues, with the informational
role of the price sequence (and, by extension, technical analysis) in price
adjustment the focus of research by Brown and Jennings [1989] and Grundy
and McNichols [1989].2 While both papers address the same issue, their
approaches differ in an interesting, and fundamental, way; so it is useful to
consider both approaches in detail. To economize on notation, we consider
a general framework and then distinguish the features special to each
approach.

In a noisy rational expectations framework, prices are affected both by
private information and by supply uncertainty. Information affects prices
because some (or even all) traders are assumed to receive a private signal of
the asset’s true value. This signal may be the “truth” or it, too, may contain
noise that interferes with agents knowing with certainty the actual value,
Supply uncertainty is incorporated to capture transitory effects on price that
are not related to information. This supply uncertainty can be introduced in
several ways, but its role is always the same: with multiple sources of
uncertainty, traders cannot immediately sort out the information effects on
price from the supply effects on price.

Brown and Jennings [1989] consider a standard rational expectations
framework in which there is an exogenously given random supply of the
asset. While they consider a three-period model, the intuition of their
approach can be captured in a simpler two-period framework. Let i agents
trade a risky asset and a riskless asset in time periods 1 and 2. There are i =
1,2,.., Nagents, with the limiting case of N = = being the case analyzed.
Prior to the start of time 1, traders receive some endowment, ®;, of the
riskless asset. Trading occurs at times 1 and 2, and at the end of time 2 the
risky asset pays a liquidating dividend ¥. Traders’ common prior beliefs
about ¥ are given by N(Wq, 1/pg). As is standard in rational expectation
models, all random variables (i.e., asset supplies, signals, and payoffs) are
assumed to be independently distributed normal random variables.

Each trader maximizes the negative exponential utility function

U(Wi) = w-cxp[ —Wi], (6.1}

where W, is the trader i's wealth and, for simplicity, I have set the risk
aversion coefficient to 1. In a multiperiod model, wealth depends on asset
demands and consumption decisions in both periods 1 and 2, and these
decisions, in turn, affect each other. Unfortunately, the general solution for

2. Noisy rational expectations models are developed by Grossman and Stiglitz [1980],
Hellwig [1980], and Diamond and Verrecchia {1981].
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such a problem is quite complex; a simplification employed by Brown and
Jennings (and most researchers in this area) is to focus on “myopic”
behavior. With myopic behavior, traders focus only on the immediate
period, and so decisions are independent across periods. This effectively
ignores any interperiod linkages but does allows the problem to be analyzed
tractably.

At time 1, each trader is assumed to receive a signal, y;, of the liquidating

dividend
yi = v+ & (6.2)

where &; is distributed as N(0. s;). In the limit economy, T (Y i / N ) -
¥ with probability one, and so the aggregated signal of all traders is an
unbiased estimate of the true value.

While traders’ demands arise from utility maximization problems, the
asset supply is assumed to be an exogenous random vanable X, with per
capita supply given by X/N = x for all N. Equilibrium requires that supply
equals demand, and so denoting each trader’s demand by 4, and considering
per capita values, this dictates that

N

The exact nature of these demands, d;, depends on traders’ informanon sets.
Given information set Hi, each trader conjectures a form for the equilibri-
um price function, and based on this price function, the traders determine
their demands. In a rational expectations equilibrium, the price conjecture is
correct and per capita demand equals per capita supply.

The price function traders are assumed to conjecture at time 1 is the
linear relation

p=a¥y+ ﬁg (y;/N) —x. (6.4)

where a, B, and ¥ are coefficients determined in the equilibrium. Hence, the
price is assumed to be a function of the asset’s liquidating value, the traders’
signals, and the aggregate supply. As discussed in the Appendix to Chapter
3, the assumptions of negative exponential utility functions and normally
distributed random variables dictate that traders’ demands are given by the
function
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E [\I'|H i] —-p
d; = —. (6.5)
var [‘IJIH ’]
As demand involves conditional expectations, the form of traders’ informa-
tion sets affects the equilibrium.

Suppose that traders know only their own signal and the equilibrium
price p, so that Hi = (y; p). Brown and Jennings demonstrate that in
equilibrium neither the time 1 nor time 2 price alone is revealing, and so
uninformed traders simply watching the price are unable to infer the private
signal value. In a two-period model, however, traders can observe the
sequence of prices. Brown and Jennings show that under very general
conditions the combination of py and p; is jointly fully revealing. Hence, the
sequence of prices provides information that individual prices cannot.

This joint revelation provides a rationale for technical analysis. In this
model, prices are not efficient because neither the time 1 nor time 2 price is
a sufficient statistic for market information. Since price does not impound
all available information, traders who track prices know more than traders
who simply know the current market price. This suggests that the sequence
of prices provides information to traders, and hence it affects the adjustment
of prices to full-information values.

A similar conclusion arises in the work of Grundy and McNichols
[1989]. They also employ a noisy rational expectations framework, but they
do not assume exogenous supply uncertainty. Instead, in their model the i
ttaders, i = 1, . . ., N, each receive random endowments, &; of the
underlying asset, and the total asset supply, X, depends on these endow-
ments. The endowments are assumed to be identically and independently
normally distributed random variables, with distribution N(u,, ¢ ,2N).
Grundy and McNichols consider the limiting case where N = o, Because
the variance of the endowments depends on the number of traders N, in
this limiting case traders cannot infer any useful information from their
endowments. Without such an infinite variance, endowments would be
correlated with per capita supply, and characterizing the resulting equilibri-
um becomes extremely difficult, if not altogether intractable,

In this model, each trader also gets a signal

Yi=4¢+0 +¢, (6.6)

where v is the payoff from the risky asset, &, is a common error term (with
variance 0,2}, and € is an idiosyncratic error term (with variance 6¢2). This
error structure means that no trader “knows” the true value, and that even
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all traders together do not have sufficient information to determine the
underlying true asset value.

Equilibrium in the model requires finding price conjectures resulting in
traders’ demands such that supply equals demand, and the price conjectured
is the price that prevails. As in Grundy and McNichols, traders maximize
negative exponential utility functions defined on wealth, and the price
functions are assumed to be linear in signals and supply. This conjectured
price function in the first period is given by

Py =a; + /1Y +mX, (6.7)

where @, B, and v are determined in the equilibrium, and Y is defined by

Y= lim Y Z=9+a. (6.8)

The price conjectured in the second period is defined similarly.

Grundy and McNichols now consider the equilibrium prevailing in each
period of the model. Perhaps the most interesting case is when there is no
additional endowment given to traders at the beginning of period 2. In this
case, traders have the opportunity to exchange claims at time 1 at some
price p1, and since there is no new uncertainty introduced at time 2, it is not
obvious why additional trade occurs at time 2. Grundy and McNichols
demonstrate that there are multiple equilibria in the model, and in some
equilibria, first-period prices are not revealing and no further trader occurs.
Such a “no-trade” equilibrium is consistent with the results of Milgrom and
Stokey [1982]. Grundy and McNichols also consider the case where there is
an interim supply shock and provide conditions under which the “no-
trade” equilibrium results of Milgrom and Stokey do not hold. As these
topics are not specifically related to the price adjustment questions
considered here, we do not consider them further, but their results on this
topic are of great importance for the general question of trade in rational
expectations models.

Of perhaps more interest is that there are other equilibria in which trade
does occur at time 2. In these equilibria, traders learn the underlying
information based on the combination of time 1 and time 2 prices. In effect,
traders use the two price observations to solve for the two unknowns:
supply uncertainty and private information. Thus, as in Brown and
Jennings, the sequence of two prices reveals information that individual
prices cannot. What is also true in this model, however, is that a third
trading price is irrelevant, as all information is revealed by two observations.
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Only if there are multiple sources of uncertainty could analysis of longer
series of prices be useful.

From the perspective of price adjustment, these two analyses demonstrate
that the movement of prices to full-information values need not be
automatic. With asymmetric information, prices play a dual role of market
clearing and information aggregation. This latter role dictates that the
sequence of prices can be informative beyond the information provided by
the individual prices themselves. In this adjustment process, uninformed
traders learn from watching market data, and this learning is what allows
price to ultimately reflect information. These analyses thus provide one
explanation for the pervasive use of technical analysis in markets that are
supposedly efficient.

While the Grundy-McNichols and Brown-Jennings models focus on the
informational role of prices, other market variables may also be informative.
For example, volume may be correlated with useful information on the
underlying value process since it subsumes information from aggregate
trading demands. The role of time and, in particular, the time between
trades may also affect the adjustment process. In the next two sections we
address the relation of these variables to price adjustment.

6.2 THE VOLUME CRITIQUE

One market variable long thought to be a factor in price adjustment is
trading volume. Indeed, an oft-cited adage is, “It takes volume to move
prices,” and, not surprisingly, much research has investigated this link
(Karpoff {1987] provides an excellent survey of work in this area; more
recent work is discussed in Stickel and Verrecchia [1993]). In general,
empirical research has identified a strong link between volume and the
absolute valuc of price changes. Empirical researchers have also established
some asymmetric patterns to volume and the direction of price changes,
although the generality of these results is subject to debate.?

While the empirical link between price movements and volume appears
strong, it is not obvious why this should be so. In general, theoretical
rescarch provides no definitive answer. In the accounting literature,
numerous researchers (for example Verrecchia [1981] and Kim and
Verrecchia [1991]) have modeled the link between public information
announcements and volume. The concern here is to explain why prices do

3. For example, it is alleged that volume is larger when prices move up than when they
move down, Scveral researchers have exploited the idea of short sale constraints to explain
this asymmetric behavior. The price-volume relationship in futures markets is also not the
same as it is in equity markets. Karpoff [1987] discusses these issues in more detail.
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not instantly adjust to publicly available information and why volume
appears to increase around the announcement of public information. In the
Kim and Verrecchia [1991] analysis, this change in volume is proportional
to the precision of the public information signal and is decreasing in the
amount of preannouncement public and private information.

In the microstructure literature in which private information is the
concern, however, the price-volume link is less clear. In the Kyle [1985]
model, for example, trading volume is not a factor in the price adjustment
process. The reason is that the informed trader always adjusts his order
amount to keep his relative fraction of trades the same. Consequently, the
price path is independent of the scale of rading volume, and the empirical
link between price movements and volume is not present. In the sequential
trade models, a similar difficulty arises in evaluating the role of volume.
Since the probability of trading with an informed trader is constant across
time, the total amount of trade causes prices to change, but the volume per
se does not affect the movement at any time. In effect, the market maker
does not use volume as a signal of any underlying information because all
relevant information is contained in the individual trades.

One reason it is difficult to evaluate the link of price and volume is that it
is not obvious what information volume, in itself, provides to the market.
Just as traders can learn by watching prices, it seems likely they could learn
by watching volume. In the extreme case, it is possible that volume alone
could reveal underlying information, with prices playing a redundant
information role. A more likely scenario is that the combination of price
and volume could provide information to the market in much the same way
that the sequence of prices revealed information, as discussed in the
previous section.

Numerous researchers have examined this informational role by analyz-
ing how volume matters in a noisy rational expectations framework (see,
for example, Pfleiderer [1984]; Wang {1994]; Campbell, Grossman, and
Wang [1991); Blume, Easley, and O’Hara [1994]; a somewhat different
framework is used in Harris and Raviv [1993]). There are two general
approaches in this rational expectations-based literature. One approach
analyzes the volume that emerges when traders with different information
signals transact. This provides correlations between volume and variables
such as trader heterogeneity, and it allows explicit characterizations of the
link between price changes and volume. The second approach focuses on
the information inherent in the volume statistic, and what traders can learn
from observing volume.

The first approach is exemplified by Wang [1994], who examines how
factors such as dividend information and private investment opportunities
affect the price-volume relation. In Wang’s model, some traders are better
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informed of a risky asset’s dividend process and the returns on private
investment opportunities. These latter opportunities allow trading for
liquidity-based reasons, while the former capture the familiar information-
based motive. There are also the uninformed (or more precisely, less well-
informed traders) who receive a noisy signal of the dividend process and
who are not allowed access to private investment opportunities. This latter
restriction means that only informed traders face hedging needs, and it is
these hedging-related trades that allow uninformed investors to trade
without facing a certain loss.

In this model, volume is decreasing in the amount of the informational
asymmetry. If the risk of information-based trading is too high, then
uninformed traders opt not to trade given that there is little chance of not
losing to the informed traders. This risk of information-based trading also
dictates that volume and the absolute value of excess returns are positively
correlated, reflecting the price movement necessary to induce uninformed
traders to take the other side of the trade. An interesting feature of this
model is that volume is also positively correlated with the arrival of public
information. Thus, as in Kim and Verrecchia [1991], public information
stimulates trading. In the Wang model, this occurs because public
information affects different investors in different ways. The greater the
asymmetry between traders’ information, the greater the trading volume.
This provides one explanation for the puzzling increase in volume around
predictable events such as earnings announcements.

In this model, as in other standard rational expectations analyses, volume
emerges as the result of traders’ optimal demands, but it does not play any
role other than market clearing. In particular, traders do not extract
information from volume, nor do they use any of the correlations implied
in volume in forming their demands. A second approach to studying
volume focuses on the learning problem that arises when traders can
condition on the information contained in volume. In particular, it is
standard in rational expectations models to allow traders to condition on the
market price in forming demands. If traders know the price, however, it
seems almost axiomatic that they also know other market information such
as volume or at least their own demands. Blume, Easley, and O’Hara [1994] |
analyze this learning problem and demonstrate how the volume statistic
itself affects the adjustment of prices to information. As this relates to the
approaches we have discussed thus far in this chapter, we first consider this
learning approach to studying volume.

As a starting point, it is useful to consider how allowing traders to
condition on greater market information affects the conclusions of the
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Brown-Jennings and Grundy-McNichols price adjustment analyses. Per-
haps the easiest variable for traders to include in their information set is
their own trade. Since demands involve conditional expectations with
respect to information sets, each trader’s information set Hi now includes
their signal value, the price, and their own demand, denoted d;; so H' = (y,,
¢, d;). In the Brown and Jennings framework, 1t is easy to demonstrate that
allowing traders to condition on their own net trade results in muitiple
equilibria. These multiple equilibria arise in an interesting way. In
particular, if traders conjecture that price is not revealing, then, as before, in
equilibrium traders’ conjectures are correct, prices are not revealing, and the
role of technical analysis, or the sequence effect of prices, remains.
Paradoxically, if traders conjecture that prices are revealing, then their
conjecture is also correct, and the equilibnum involves no role for technical
analysis.

The explanation for this divergence lies in the effect of traders’
conjectures on their demands. If traders expect the price to be revealing,
then the solution of the demand equation (6.5) reveals that each trader’s
optimal demand depends not on his private signal, but on the average
signal. But with individual signals playing no role, all demands are the
same, and in equilibrium the price, as conjectured, is revealing. Since a
single price observation reveals all information, the price sequence is
irrelevant for price adjustment, and the role of technical analysis becomes
less apparent.®

If traders can condition on market volume, then whether the price
sequence is informative depends on how supply uncertainty is modeled in
the noisy rational expectations framework. In the random exogenous
supply model (as typified by Brown and Jennings), allowing traders to
condition on volume results in an equilibrium in which price reveals all
information to the uninformed. This occurs because in any equilibrium,
demand must equal supply, and allowing traders to condition on volume
and the direction of their trade (either buying or selling) essentially allows
them to know the exogenous supply. If supply is known, however, the only
uncertainty is the private information, and this single unknown can be
revealed by a single market price.

If the supply uncertainty is modeled in the Grundy and McNichols
random endowment framework, however, this revealing equilibrium does
not arise. The reason is that volume per se provides no information at all. In

4. This discussion is drawn from Blume, Easley, and O’Hara [1994], which contains a
more technical derivation of the conclusions drawn here.

5. This multiple equilibria difficulty arising from traders using the information in their
own trade was demonstrated for the general case by Jordan [1982].
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the limit economy, volume can have no information content because the
expectation of even per capita volume is infinite. In particular, in the
Grundy-McNichols framework (with no second-period endowment
shock), expected per capita volume, v, at time 1 is simply®

V= %End, — x,-|]. (6.9)

The variance of the endowment x; is infinite (recall that the definition of
the variance is 642 N, where N is infinite), and so taking expectations
results in v being infinite as well. Considering the economy at some point
other than in the limit results in volume not being infinite, but then, with
finite endowment variances, traders can draw inferences from their
endowments, leading to the same revealing equilibrium problem noted
earlier.

The difficulty with volume in the noisy rational expectations framework,
therefore, is that it provides either too much information or none at all.
Because volume is correlated with the underlying supply uncertainty, the
information it provides relates only to the exogenously introduced
randomness and not to the asset’s true value. A second difficulty is how
traders use whatever information they glean from volume. Suppose that
conditioning only on prices, traders do not learn the asset’s true value (i.e.,
the equilibrium s not revealing). Now suppose that conditioning on price
and volume together, the equilibrium is revealing, and so presumably
volume is providing useful information to traders. If, however, the
equilibrium is revealing, then traders all know the same thing, and then
their demands must be identical. So volume could tell them nothing! In
essence, if there is information in volume, its use vitiates its value, -
rendering volume useless in affecting the price adjustment process.

This difficulty arises because of the contemporaneous linkages required
in rational expectations analyses. In rational expectations models, traders
use the information contained in theit current tradc to determine that trade.
Thus, traders use the price (and volume) at which the trade executes to
determine the trade they make. If traders use this contemporaneous
information to form demands, however, then the simultaneity of the
process can vitiate any information the trade may have. This difficulty led

6. Expected per capita volume at time 2 is not the same because there is no interim
endowment shock, and hence volume will be finite. It is this second-period volume that
Grundy and McNichols discuss in their paper.
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Hellwig [1982] to suggest allowing traders to use past rather than
contemporaneous data in forming their conditional expectations. Since in
actual markets technical analysis involves past rather than contemporaneous
data, this approach seems particularly well suited to address this issue.
Blume, Easley, and O’Hara [1994] use such a framework to investigate
how traders learn by watching both price and volume data. In their model,
traders maximize negative exponential utility functions of the form
discussed earlier. There is a risky asset and a niskless asset, and the eventual
value of the risky asset, ¥, i1s a random variable, which is assumed normally
distributed with mean Wy and variance 1/pg. Traders receive zero
endowments of the risky asset, and there is no exogenous supply
uncertainty. As in the Brown-Jennings and Grundy-McNichols models,
there are N traders, with the analysis done for the case of N = ,
Each trader in the model receives an informative signal every period. The
traders are divided into two groups, with Ny = uN of the traders in one
group and Ny = (1 — p)N in the other. The traders in each group receive
signals from a common distribution, but there are different distributions for
the two groups. Each trader in group 1 receives a signal at date ¢

Yi=9 +w +el, (6.10)

where ; is a common error distributed as N(0, 1/py), and ef is an
idiosyncratic error distributed as N(0, 1/p,1). The precision p,l is a random
variable, and so the “quality” of group 1’s information varies over time.
Similarly, each trader in group 2 also receives a signal of the form given in
equation (6.10), but the distribution of their idiosyncratic error is N(O,
1/p2), and so the precision of group 2’s signal does not vary with time.

This information structure is complex: both the level and the quality of
signals are unknown to the market. Each trader knows his own signal and
has a common prior on the asset value and the signal distributions. The
traders in group 1 know at time ¢ the precision of their signal, but traders in
group 2 do not know p,l. Since there is also a common error () in the
signals, this creates a complex learning problem for the agents. Conditional
on ®y, each signal y, is distributed as N(8;, 1/p,1} for traders in group 1 and
N(8,, 1/p2) for traders in group 2, where 6= y + ®,. By the Strong Law of
Large Numbers, the mean signal in each group converges almost surely to
0, the true value plus common error.

Each trader chooses his demand to maximize expected utility and, as in
Brown and Jennings, traders are assumed to do so on a period-by-period
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basis (i.e., they are myopic). Summing first-period demands results in an
equilibrium price for the large economy (N = ) of

poto + [Mpsil +(1- u)952]91 611
p1= -- 6.11
po+ [upit + (1 - w)p?]

where p15! is the signal variance, defined by pysl =pg p (1 /{pe + p¢!) and
similarly for ps2 = p, p 2/(pe + p2).

This equilibrium price is not revealing. Because traders in group 2 do not
know the signal precision pi!, they cannot determine the signal value 7
from the equilibrium price. In effect, group 2 traders face the problem that
there is one equation with two unknowns. Traders in group 1 do know
p3l, and so they can infer 04, which is everything that can be known about
the underlying asset.

With price not revealing, group 2 traders have an incentive to look for
additional information, and hence they could look to volume. Volume is
found by summing up the absolute value of demands at price p; and
dividing by 2. As it is more useful to consider per capita volume, this is
given by

N,
=g (Sl =)+ 61-m)
N (6.12)
+ > po(wo—pi) +p“2(y,-1 -—p1)] ]
i=Ni+1

where the first term is simply the demands of group 1 traders, and the
second term, of group 2 traders.

This definition reveals an immediate problem in analyzing the properties
of volume. Because of the absolute values, volume is not normally
distributed, and so the multivariate normal structure typically used to
characterize the behavior of random variables in this type of model cannot
be employed. To characterize how traders learn from volume, however, we
must know how traders interpret the information in volume, and this
entails understanding its statistical properties. Blume, Easley, and O’Hara
(BEO) show that the volume statistic can be represented as’
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where ¢ is the standard normal density, ® is the standard normal
cumulative distribution function, and 8 = pg (yo — p1) + p 5i(01 — p1 ). This
volume statistic is clearly complex and does not lend itself to any simple
intuitive explanation. Nonetheless, with its statistical properties defined,
volume can be used by traders to update their beliefs.

With the price and volume statistic now specified, the question -of
interest is, what do traders know? BEO demonstrate that given the price,
volume conveys information about signal quality, p11, which can then be
used to make inferences about the asset value 04. In particular, for any price
P1, per capita volume is increasing in the precision of group 1’s signal if the
signal precision exceeds the common error precision, and it is decreasing
otherwise. Intuitively, this result reflects the differing effects of informa-
tion quality on trading volume. If signal quality is low, i.e., pj! near 0, then
traders in group 1 receive very dispersed signals and place little confidence
in them. At the extreme value of pj! = 0, the only equilibrium has a
volume of 0. Conversely, when signal quality is high, group 1 traders
signals are all highly correlated, and so they do not trade with each other.
The only trade that occurs is between traders in the two groups. This
suggests that low volume may be as indicative of new information as high
volume is.

In equilibrium, BEQO demonstrate that for a fixed precision, volume is
strictly convex (or V-shaped) in price. Moreover, the steepness and
dispersion of the V-shape depend on the quality and dispersion of the
underlying information. These theoretical results accord well with the
observed empirical relation of price and volume (see Gallant, Rossi, and
Tauchen [1992]), and they suggest the explanation for the price-volume

+
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link may be found in the quality and quantity of traders’ information. The
divergent behavior of volume before event dates may thus be explicable by
the differing information available at that time.

In this model, therefore, volume provides traders with the ability to sort
out the effects of the quality of information from the direction of
information effects impounded in price. A trader observing only a high
price cannot determine whether price is high because of a high average-
quality signal or an average signal with high quality. Volume picks up
signal quality in a way independent from price because volume is not
normally distributed. This dictates that a trader watching only prices cannot
learn as much as a trader watching prices and volume, and so it provides the
justification for technical analysis of market data.

Volume’s role in the price adjustment process, therefore, is to facilitate
learning of the underlying uncertainty. An important feature of this model,
however, is the common error in the information. If price and volume
together revealed the true value ¥ (as would occur without the common
error), then higher volume need not necessarily accompany the absolute
value of price changes: whatever volume arose would be sufficient to move
prices to full-information values. With even informed traders unsure of the
true ¥, however, large volume generally accompanies large price changes.

One way to interpret these results is that market statistics in general
provide information to uninformed market participants. Although price and
volume are perhaps the most obvious of these market statistics, the
parameters of the order flow may also play a role in the adjustment process.
In particular, while traders can obviously learn from the orders they observe
transact, there may also be information in the lack of trade. To address this
issue, we consider how time itself affects the movement of prices.

6.3 THE ROLE OF TIME IN PRICE ADJUSTMENT

In the microstructure models considered thus far, time does not play a role.
In the Kyle framework, for example, trades are batched so that when
individual orders arrive is not relevant (or even known) to the market
maker. Similarly, in the sequential trade models, orders arrive in some
probabilistic fashion that is independent of any time parameters. In these
models, the timing of trades is irrelevant for price behavior because time
itself has no information content.

This specification makes sense if time is exogenous to the price process.
If, however, time can be correlated with any factor related to the asset price,
then the presence or absence of trade provides information to market
participants. This correlation could arise from characteristics particular to
the trading mechanism or it could reflect properties of the underlying
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information process. In either case, if market participants can learn from
watching the timing of trades, then the adjustment of prices to information
will also depend on time.

This notion of time as a signal is developed in research by Diamond and
Verrecchia [1987] and Easley and O’Hara [1992a]. Diamond and Verrecc-
hia consider whether market short sale constraints affect the propensity to
trade and thereby introduce asymmetries into the speed of price adjustment
to good and bad news. Easley and O’Hara pursue the idea that timing of
trades is related to the existence of new information. While the motivations
and results in these papers differ, both analyses focus on what market
participants can learn from the timing and sequence of trade. As Diamond
and Verrecchia analyze a variant of the Glosten-Milgrom model, we begin
our discussion by considering their approach.’

If traders are unable to transact in certain states of the world, then
observing an absence of trade may indicate the underlying state. This is the
intuition behind Diamond and Verrecchia's [1987] analysis of short sale
constraints and price behavior. In actual security markets, short sale
constraints take various forms. In some markets, short sales are strictly
prohibited or are permitted only when prices are nsing (for example, the
“uptick” rule found on the NYSE). Short sales can also be affected by
“‘proceeds” constraints, which limit a short seller’s ability to receive the
proceeds until after a short sale is reversed. Such proceeds constraints clearly
raise the cost of short selling and, to the extent they affect traders’ order
decisions, affect the behavior of prices.

Diamond and Verrecchia capture trading costs by assuming that all
traders fall into one of three categories. Some fraction of the trader

population, ¢1, face no costs associated with short sales, some fraction ¢ are
“proceeds constrained,” and the remaining fraction c3 are prohibited from
short selling altogether. Because traders face different costs, their will-
ingness or ability to trade may also differ, and this in tun imparts
information content to the presence or absence of trade.

In this scqucntiaLl trade model, the trading day is divided into
t=1,2,..., T trading intervals. As in Glosten and Milgrom, a competitive
market maker sets bid and ask prices at each time ¢ equal to conditional

cxpected values given the type of trade and all publicly available

7. If time is a factor in pricc adjustment, then any model of this phenomenon must
incorporate the time between trades in an explicit manner. In particular, it must be the case
that “no-trade” intervals are observable to market participants. The batch-style rational
expectations models obliterate such information and so are not appropriate for this question.
Because the sequential trade models do permit a trade-by-trade analysis, this framework
provides a reasonable venue to address the role of time.
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information. Some traders, a fraction a, receive an equally probable signal,
low or high, of the asset’s true value. The other fraction (1 — a) of traders
do not receive a signal, and these uninformed traders are assumed to trade
for exogenous liquidity reasons.

At each time ¢, a trader is randomly selected from the total population of
traders and given the opportunity to trade. Diamond and Verrecchia assume
that with probability y the trader would potentially like to transact, and
with probability 1 — v the trader does not want to trade. These probabilities
are exogenously given, and so the trade decision is not correlated with
information on the asset’s true value. If a trader is selected to trade, he may
either want to buy one unit, sell one unit, or not trade at all. Note that the
decision to sell may aiso involve a decision to short the stock. If the trader
does not own the stock, then selling the stock by definition involves a short
sale.

The ability to short sell, however, differs with the costs traders face.
Consider first the decision faced by an informed trader. If ke learns good
news, short sale constraints are irrelevant as the trader always wishes to buy.
If, however, he learns bad news, he will wish to sell or short sell depending
on whether the trader already owns the stock. Suppose that he does not
own the stock. For traders who face no costs or are proceeds constrained
(ie., are in fraction ¢q or ¢2 ), shorting is optimal, as any delay in receiving
the profit is assumed to be of lesser consequence than forgoing the trading
opportunity completely. If the trader is prohibited from short selling (i.e., is
in ¢3), then he does not sell the stock.

An uninformed trader faces a similar decision problem. If he experiences
a positive liquidity shock, he sells the stock if he already owns it. If he does
not own it, then he shorts if he is faces no constraints (i.e., is in ¢1). Since
the uninformed trader needs liquidity, he will not short if he is proceeds
constrained nor, of course, will he short if short sales are prohibited. An
uninformed trader in either fraction ¢p or ¢3 of the population, therefore,
will not trade when his turn to transact arrives.

This trading behavior means that an absence of trade can occur for three
reasons. First, the trader selected to trade simply does not want to transact.
This decision is independent of information on the asset’s value, and so
there is no information content to the absence of trade arising for this
reason. Second, an absence of trade can occur if an uninformed trader facing
positive liquidity demands is unable to short sell because of constraints.
Again, this decision is not information-related and so also provides no
information to the market. Finally, a trader informed of bad news may be
unable to trade if short sales are prohibited. In this case, observing a no-
trade outcomne may signal that there is bad news about the value of the asset.
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Traders watching the market can compute the probability that any no-
trade interval is actually a signal of bad news and can adjust their beliefs
accordingly. Such a computation follows directly from Bayes Rule. The
change in beliefs means that the movement of prices across time will also be
affected by the no-trade outcome. How to measure such a dynamic effect,
however, is not immediately obvious. In the limit, prices will have adjusted
to full information whether there are short sale constraints or not. But
presumably how long this takes is of both practical and policy importance.

What is needed is a measure of the speed with which the stochastic
process of prices impounds information. In the Appendix of Chapter 3, we
used an entropy approach to measure differences in the speed of adjustment.
The intuition with that approach is that prices (and beliefs) are converging
(at least) exponentially, with the specific rate calculated from the entropy
measure. Diamond and Verrecchia employ a different approach in which
first passage times give the length of time before the price process is
approximately efficient. Their approach, the first in market microstructure
literature to measure directly the speed of adjustment, provides a tractable
means of comparing the behavior of stochastic processes.®

The first passage time approach essentially involves calculating the
number of expected trading intervals N before the market maker’s price(s)
crosses a prespecified bound. Let Py and Py depote these upper and lower
bounds, and let N be a random variable representing the number of periods
before a bound is passed. Let P; denote the probability that the true state of
nature is v =1, and let 1 — P, denote the probability thar the aue state is v =
0. Then the odds ratio, P, /(1 — P;), captures the relative belief at time ¢ of
the asset value. The evolution of the odds ratio when A is observed is given
by

P, _ P4 'T:=1
1“"P£ I—Pg_]qu:{)

(6.14)

where the g4 terms give the probability of observing action A (a buy, sale, or
no trade) given the true value of v.

To find the first passage time, let ¥ =Py /(1 — Py )and ® =P /(1 —
Py), and so log W and log @ denote the possible values of the posterior log

odds ratio. Define the wvariables

8. Glosten and Milgrom provide a rough measure of the speed of adjustment by showing
that price convergence is related to the square root of the number of transactions.
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Ay = —2N
N=1-Py (6.15)
and
9 L
qv_ (6.16)

What must be determined is when Ay crosses either W or ®; when that
occurs, the market maker’s beliefs (and thus prices) will be said to be within
an acceptable range of being fully informed. This can be found by using
Wald’s Lemma, which states that

E [N] - - [lzg[%N)] ’ (6.17)

and so calculating the first passage time essentially involves looking at how
fast beliefs are changing relative to the information in the trade flow. Using
the upper and lower bounds, it follows that

R I I ELTOPUE S P
and
E[Iog(AN)lu = 1} —é—;)l ﬁlog o (6.19)

The expected value of Z is simply given by

E[Z] = Zq;} log(z" 1) (6.20)

v=0

where g represents the probability of observing action 4 conditional on
state v. The first passage time is then simply found by using equations
(6.18)-(6.20) to solve equation {6.17).
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This first passage time approach is clearly related to the entropy approach
discussed earlier in that both use the log of the posterior likelihood ratio of
beliefs (prices). The quicker these beliefs converge to the true value, the
faster the rate of price adjustment will be in the entropy approach, and the
sooner the exogenous bound is reached in the first passage approach. Since
the first passage time approach measures the time until the price process
first crosses the bound, the approaches can differ if the process exhibits large
variability. In this case, prices could “cross back” over the boundary and
become less than full-information efficient. This has no effect on the first
passage time, but clearly does affect the actual time it takes prices to
converge to the true value. The entropy approach is not affected by this
switching, and so it provides a more robust (but approximately identical)
measure of this speed of price adjustment.

Using this first passage time approach, Diamond and Verrecchia show
that prohibiting short sales slows the adjustment of prices to new
information, with the adjustment to bad news being particulatly affected. If
short sales are only subject to a proceeds constraint, however, the opposite
effect occurs: prices adjust faster to information. The reason is that now an
absence of trade only occurs for noninformation reasons since informed
traders continue to short sell. This increases the information content of sales
while removing any information content of no-trade intervals.

If short sale restrictions do affect informed trader’s behavior, then this
model suggest two results on the relation of time and price behavior. First,
observing an absence of trade is a signal of bad news. This has the empirical
implication that both bid and ask prices should fall following an interval of
no trade to incorporate this bad news potential. Second, because prices
adjust more slowly to information, prices are “less efficient” in markets
with short sale constraints in that it takes them longer to reflect full-
information values.®

What allows these differential effects to occur are the exogenously
imposed short sale constraints and traders’ presumed inability o avoid
them. In this model, as in most sequential trade models, the composition of
trade is determined solely by the parameters of the trader population. If all
traders face identical constraints, then such a framework seems at least
reasonable, if not necessarily realistic. If traders face different constraints,
however, then it may be that both their trading behavior and their

9. Empirical researchers have investigated this hypothesis by examining how markets
with and without options adjust to information (see, for example, Jennings and Starks
[1985]). The notion here is that options replace the inability to short sell and thereby should
increase efficiency. An interesting question, not yet addressed by researchers, is how the
ability to trade index options (or futures) affects this speed of adjustment.
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representation in the trader population are affected. For example, traders
who do not face any short sale constraints clearly profit more from trading
than those who do. If the number of informed traders were endogenous,
then one might expect the number of informed to differ across markets
depending on the extent of the constraints. A more serious concern is that
traders who do not face constraints might be expected to trade more
frequently or to transact larger amounts. In this case, the change in trading
intensity may offset any decrease in trading occasioned by short sale
prohibitions.!® To the extent that these constraints affect trader behavior,
however, the absence of trade affects price behavior.

A different explanation of the role of time is given by Easley and O’Hara
[1992a]. In their model, traders learn from both trade and the lack of trade
because each may be correlated with properties of the underlying
information structure. In particular, while trades provide signals of the
direction of any new information, the lack of trade provides a signal of the
existence of any new information. This latter effect is referred to as “event
uncertainty” and reflects the difficulty that uninformed traders face in even
knowing whether new information exists.

In the standard sequential trade framework used by Glosten and Milgrom
[1985], event uncertainty does not arise, because an information event is
assumed to have occurred. Time plays no role because any interval of no
trade can by definition have no information content. If information events
are not certain, however, then whether trade occurs at all may provide a
signal to the market. This suggests that intervals between trades may have
information content, and so time per se is not exogenous to the price
process.

To develop this concept, Easley and O’Hara consider a variant of their
[1987] model in which information events occur with probability a > 0. If
an information event occurs, some traders receive a signal, 'P, of the asset’s
value, while the other traders and the market maker do not. The signal can
take on two values, L and H, with respective probabilities§ > 0and 1 — 8>
0.

Trade arises from uninformed and/or informed traders. We assume that
the informed are risk neutral and trade to maximize expected profits. Since
the informed may trade with greater intensity than the uninformed, if an

10. A parallel problem is the difficulty introduced by differential tax rates. If some traders
are tax-cxempt, for example, then their comparative advantage is to take trades that have
unfavorable tax effects, such as purchasing stocks before they go ex dividend. In this case, the
price should be set by the marginal trader, who will clearly not be one paying the full tax. In
this setting, short sale constraints can be viewed analogously as a “tax” that is borne by some
traders but not by others.
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information event occurs, then the market maker expects the fraction of
trades made by the informed to be y (trades from the uninformed being 1 —
). Because there is the added uncertainty over whether new information
even exists, it is possible in this model to consider the realistic possibility
that if an information event occurs, then all trades in fact come from
informed traders (i.e., p = 1).

The uninformed traders are of two types. Some uninformed are assumed
to trade for exogenous liquidity reasons (i.e., are “noise” traders). The other
uninformed traders are assumed to have demands that reflect more complex
motivations such as price sensitivity or individual-specific trading rules.
These demands mean that an uninformed trader may prefer not to trade at
the market maker’s posted quotes, and this provides the potential for no-
trading intervals. For the uninformed as a whole, a fraction y are assumed to
be potential sellers and 1 — y to be potential buyers. If at time ¢ an
uninformed buyer (seller) checks the quote, the probability that he will
trade is €B > 0 (e5 > 0).

The trading day is divided into discrete intervals of time,t=1,2,..., T,
with each interval long enough to accommodate at most one trade. Each
trader wishing to trade approaches the market maker and, if there are
multiple traders who wish to transact, a queue forms. At each time ¢, the
market maker quotes bid and ask prices and the first trader in line checks
the quotes. The trader then decides to buy one unit of the asset, to sell one
unit, or not to trade at all. If the trader wishes to trade further, he rejoins
the queue. The market maker then has the opportunity to set new bid and
ask prices for period ¢ + 1, the next trader checks the quote, and trading
begins anew.

Given this market structure, it may be that no trade actually occurs in
some time intervals, Since an informed trader always transacts if the price is
not at the full-information level, such a no-trade outcome only occurs
when an uninformed trader checks the quotes and decides not to trade. If
there has been an information event, this happens with probability (1 —
Wy(1 —&S) + (1 — v)(1 — eB)]. If, however, there has been no information
event, then all traders are uninformed, and so the probability of a no-trade
outcome rises to y(1 — €5} + (1 — y)(1 — €B). It is this divergence in
probabilities that imparts information content to the absence of trading.

An interesting question is, how does a no-trade outcome, or an absence of
trade, affect the market maker’s prices? Easley and O’Hara demonstrate that
if there is no trade at time ¢, then the market maker raises the probability he
attaches to no information event and lowers the probabilities he attaches to
a low signal or a high signal having occurred. Since only actual trades give
useful information on the direction of any signal, the market maker keeps
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the relative probability of high and low signals the same, but lowers their
absolute amount.

Given these changes in beliefs, it follows that following a no-trade
outcome, the market maker changes trading prices for period ¢ + 1. Since
the market maker now believes the overall risk of trading with an informed
trader is lower, he moves the quotes closer to the prior expected value of
the asset, V* . If the bid and ask prices were above V" at time ¢, prices fall; if
they were below V*, prices rise. This price movement dictates that the
spread is affected as well. With prices collapsing toward V*, the spread
narrows following the absence of trade.

These price and spread effects can be contrasted with the predictions of
Diamond and Verrecchia. There, an absence of trade is construed as “bad”
news because of its correlation with constraints on informed trading on the
basis of bad news. The response of the market maker then is to
unambiguously move prices down and to increase his spread. Here, an
absence of trade indicates that information-based trading is less likely. What
happens to prices at time ¢ + 1 depends on where they were at time ¢, but
the effect is to lower the spread due to the decreased risk of loss to informed
traders.

These price effects due to the absence of trade mean that time is no
longer exogenous to the price process. This has a number of important
implications. First, the sequence of trades and no trades affects the behavior
of prices. Second, the level of volume up to time ¢ now affects where prices
go at time ¢t + 1. Third, volume affects the speed of price adjustment to new
information, with prices in markets having large average volume being
“less efficient” in that they adjust slower to full-information values. Fourth,
empirical investigations using transaction data will be biased because
examining only transaction prices ignores the information content con-
tained in the nontrading intervals.

Volume effects arise in this model because the greater the volume, the
less frequent no-trade outcomes are, and thus the more likely it is that new
information exists. Uninformed market participants attempting to learn
from the trade sequence draw different inferences from different levels of
volume, causing prices at time ¢ + 1 to differ depending on the volume to
that point. Note that this is not the case in the standard sequential trade
approach where new information is assumed to exist. There, volume is
irrelevant for prices at ¢+ + 1 because volume provides no information
beyond that conveyed by individual trades. Hence, as in the models
discussed in the previous section, in this model traders learn from volume
because volume is related to the underlying information-structure.

The model suggest two effects of volume on price adjustment. From a
cross-sectional perspective, markets with higher “normal” trading volume
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will adjust to information more slowly, reflecting the reduced trade
information content found in more liquid markets. Second, unexpected
volume will affect the time series of prices. Since unexpected volume
implies the existence of new information, this model suggests the refined
adage that ‘unexpected volume moves prices.” These unexpected volume
effects are investigated (and confirmed) in empirical research by Lee,
Mucklow, and Ready [1993].

The implications of the role of time in affecting price behavior are also
important for empirical researchers. In this model, transaction prices are
Martingales, but they are not Markov. This means that simply knowing the
sequence of prices is not a sufficient statistic for all market information. If a
researcher examines only transaction prices, then how prices move at time ¢
+ 1 is not independent of all preceding transactions. This difficulty arises
because the series of transaction prices can be thought of as being formed by
an optional sampling of the underlying true price process where the draw of
a transaction is not uncorrelated with the underlying stochastic process of
prices. Since informed traders are more likely to trade than uninformed
traders, trades are more likely when there has been an information event.
Thus, sampling of the underlying value process is higher when there is new
information.

This sampling problem will also affect the variance structure of prices,
causing the “true” variance to be inversely correlated with volume and
imparting an upward bias to variances computed from transaction data. Just
as volume affected price movements, expected volume also affects the
variance, causing volatility to behave differently when there is unexpected
volume.!!

While the analyses in this section suggest that time is not exogenous to
the price process, how much time matters and the significance and extent of
the bias it imparts to market behavior are not known. The importance of
time is ultimately an empirical question, and this has recently been
addressed in empirical work by Hasbrouck [1989] and Hausman, Lo, and
MacKinley [1992]. Their results suggest that time may matter, but it is not
yet clear how much.

If time can affect market behavior, then how markets are structured may
also be important. For example, in call markets time can play little role
because individual trades are irrelevant. Similarly, if traders can preplace
orders via limit orders or other trading strategies, then the information

11. The effect of unexpected volume on volatility is investigated empirically by Finucane
and Diz [1993].
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content of a sequence of trades can be dramatically affected. In the next
three chapters, we turn our attention to these market structure issues.



7
Market Viability and Stability

The market microstructure analyses considered in the previous four
chapters analyze a wide variety of issues related to the behavior of security
prices in the presence of asymmetric information. While the specific
models and applications differ, every microstructure analysis requires some
specification of the underlying trading mechanism. In the models consid-
ered thus far, there have been two general mechanisms considered. The
sequential trade models employ a framework in which market makers quote
bid and ask prices, and a single trade transacts at the quoted price.
Alternatively, in the strategic rational expectations-based models of Kyle,
there are no bid and ask prices and orders are batched together to transact at
a single market-clearing price.

While these depictions of the trading process clearly differ in the timing
of trades, they share several characteristics. For example, most microstruc-
ture analyses consider a competitive environment in which market makers
set asset prices equal to the asset’s conditional expected value. It also is
typically the case that traders are allowed to submit only simple buy or sell
orders and cannot enter more complicated contingent orders. With only
market orders, there is also no “book” of unfilled orders and no ditference
in the order flow information available to traders.

Each of these trading mechanism features is realistic in that there are
actual markets exhibiting such characteristics. For example, the New York
Stock Exchange uses a call auction to begin trading and a continuous
auction to clear trades throughout the day.! The Paris Bourse switched in
1986 from clearing trades in a daily call market to a continuous structure.

1. This is the general NYSE trading mechanism. For inactive stocks, however, there may
be no opening call.

179
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The Toronto CATS system results (theoretically, at least) in all traders
knowing the same trade information.

It is also the case, however, that many market structures are far more
complex. The single specialist clearing trades on the NYSE may have
monopoly power, which distorts prices from competitive levels. Traders
may employ alternative order forms that change the timing and potentially
the information content of their trades. Market makers who observe the
order flow may learn more than floor brokers who observe only prices.
Electronic clearing systems such as SOFFEX (the Swiss Options and
Futures Exchange) or Globex may remove the specialist completely from
the price-setting process. If the decisions of market participants are not
independent of the specific trading mechanism used, then how markets are
structured is clearly important for understanding the behavior of security
prices.

In this chapter we investigate these issues by considering how market
structure affects viability and stability. Our focus here is on understanding
how various characteristics of the trading mechanism affect the transmis-
sion of information into prices. There are several reasons this is important.
One reason is to provide insight into how institutional features affect
agents’ abilities to learn private information. Since the efficiency of the
market depends on this learning process, understanding the role of specific
institutional features may provide insight into the process by which prices
become efficient. A second, more applied, reason for studying the trading
mechanism is to develop an uvnderstanding of why some institutional
arrangements dominate in some market settings and not in others. The
diversity of trading mechanisms found in securities markets may reflect
historical factors, or it may result from more effective trading mechanisms
prevailing over time. Without an understanding of the role played by the
trading mechanism, it is impossible to determine which explanation is
correct. A third, and related, issue concerns the link between the trading
mechanism and the stability and performance of the market. These stability
issues have taken on increased importance in light of the market crash of
1987 and the subsequent proposed changes to the market.

Because the research examining market structure and performance is
extensive, our discussion must, of necessity, be incomplete. In this and in
the following two chapters, we focus on some (but certainly not all) of the
critical issues in market structure. In this chapter, our focus is on market
viability, and in particular on the design features that promote market
stability. In the next chapter, we continue our investigation of market
structure effects by considering more broadly defined issues relating to
liquidity and the relationships between markets. Finally, in Chapter 9, we
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consider the effect of specific trading mechanism features on market
performance.

As a starting point for our investigation, we consider the fundamental
issue of how market design can affect the viability of the market in the
presence of asymmetric information. Market design issues have taken on
increasing importance for a number of reasons, not the least of which are
the proliferation of European and Asian security markets and the develop-
ment of new, fully automated trading systems. As new markets develop, the
question of market viability is fundamental to their success and to the
continued success of existing markets, and hence we analyze the micro-
structure research on this issue.

We then examine how the types of orders permitted in a trading
mechanism affect market performance. In virtually all the models consid-
ered thus far, only market orders are permitted. Yet alternative orders are
widely found, and some trading venues (for example, electronic order
mechanisms) allow only limit orders, with market orders excluded. How
such orders affect the price-setting behavior of the market is clearly a
question of importance. A related issue is whether characteristics of the
trading mechanism can affect market stability. We conclude our discussion
of market structure in this chapter by examining the policy implications
relating to stability.

7.1 INFORMATION AND MARKET VIABILITY

In the models considered thus far, the threat of information-based trading
results in prices incorporating a “premium” to protect the market maker
from the risk of trading with an informed trader. Glosten and Milgrom
[1985] noted, however, that if information problems are too severe, there
need be no market-clearing price at which trades can occur. This difficuley,
a variant of the market-for-lemons problem first identified by Akerlof
[1970], arises because a high enough threat of information-based trading
may induce many or even all uninformed traders to leave the market,
resulting in a sure loss to any trader (or market maker) on the other side of
the trade. With no price able to clear the market (or, more precisely, no
spread large enough to permit the market maker to break even), the only
option is a trading halt in which the market ceases to function.
While it is true that trading halts do actually occur, it is not a usual
occurrence in securities markets. What is not immediately obvious,
however, is what prevents such information-induced difficulties from
arising more frequently. One possible answer lies in the design of the
trading mechanism. If there are features of the trading mechanism that
alleviate the pricing problem induced by asymmetric information, then the
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market may be more robust than a simple asymmetric information analysis
would imply.

Glosten [1989] argues that the monopoly position of the specialist
provides such stability. An interesting feature of the NYSE and many other
exchanges is that there is only a single specialist in each stock. This
monopoly position of the specialist may be tempered by competition with
floor brokers, limit order traders, and others, but it remains the case that the
specialist may have some market power in light of his unique position. In
most market settings, such monopoly power benefits the holder but
generally reduces social welfare from what it would be if the market were
competitive. If there is asymmetric information, however, Glosten argues
that under some circumstances social welfare may actually be greater when
there is a monopolistic, rather than a competitive, specialist.

The intuition underlying this result is that a monopolistic price setter
need not be concerned with the profit arising from any individual trade, but
rather may set prices that on average maximize profits. A feature of the
competitive models examined thus far is that the market maker sets trade
prices equal to the conditional expected value of the asset given that
particular trade. Consequently, the expected profit on each and every trade
is zero. Glosten considers the idea that a monopolistic specialist could
instead choose a schedule of prices that results in an expected loss on some
trades but an expected gain on others. This pricing strategy could allow the
market to remain open when it would not be abie to under a competitive
pricing framework.

In Glosten’s model this averaging takes place across trade sizes.? In this
one-period model, risk averse traders receive a noisy signal of the asset’s
true value and choose their trade size to maximize their expected utility of
wealth. The analysis employs a variant of the standard normal distributions-
based example found in rational expectations models (see the Appendix to
Chapter 4 for more details). In this model, risk averse traders transact shares
with a risk neutral market maker. Because traders receive both endowments
of the risky asset and informative signals of the asset’s value, their
motivations for trade are more complex than in standard microstructure
models.

A trader’s autility is given by the negative exponential utility function
U(y) = —exp(—py), where p > 0 is the risk aversion coefficient and y is the
trader’s wealth. The payoff on the security, X, is normally distributed with
mean m and precision &y, or N(m, 1/nx). Each trader also starts with an

2. Other researchers (for example, Gammill [1989] and Leach and Madhavan {1993]) have
pursued similar averaging ideas with respect to intertemporal behavior.
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endowment of cash, given by Wy, and receives an endowment of the risky
asset, W, which is distributed as N(0, 1/myy). The trader sees a noisy signal,
S, of the asset’s payoff, where § = X + ¢, and ¢ is distributed as N(0, 1/7g).
The random variables X, W, and & are assumed to be independent.

In this model, as in standard rational expectations analyses, transactions
arise for two reasons. A trader receiving new information may trade to
exploit his informational advantage and thereby profit on any price
discrepancy. A trader may also transact, however, because of portfolio
reasons related to the endowment shock he receives. This latter reason is
not information-based, and it is this liquidity motive that makes trade
possible.

The market maker is assumed to be risk neutral and can be in one of two
regimes, competitive or monopolistic. If the market maker is competitive,
he sets the price for each trade equal to the expected value of the asset given
a trade of size Q, or P(Q) == E[X/Q]. This conditional expectation pricing
rule corresponds to the standard pricing assumption made in most
microstructure models. Alternatively, if the market maker is a monopolist,
he selects a pricing schedule Py, to satisfy P, (e) €arg max E[P(Q)Q— XQ)],
where Q = Q(S, W) is the trader’s optimal demand given pricing schedule
PQ).

The trader’s decision problem is to choose Q to maximize the expected
utility of wealth, where, in the competitive case, wealth is given by Wy —
P(Q)Q + (W + Q)X. Given the assumptions of normally distributed
random variables and a negative exponential utility function, this is
equivalent to maximizing the certainty equivalent, or

CE(W, S, Q, P(Q)) = E[W] — .5 p var(W)
=Wo-P(QQ+(W+QE[X|S] (71)
— 5p(W + Q)? var(X | ).

Since the trader does not know X but sees only a noisy signal of its value (S
= X + €), he must determine the expected value of X given his signal. This
calculation follows from the now-familiar application of Bayes Rule. As
demonstrated in the Appendix to Chapter 3, for normally distributed
random variables, this updating is simply the prior mean times its precision
plus the signal times its precision over the sum of the precisions, or

E[X|S] = (rxm + n5S)/(zs + 7). (7.2)
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The investor’s decision problem provides a first-order condition, which
can be rearranged to yield

[P(Q)Q+ P(Q) — ml(xs + nx)/7s + pQ/7s = S — (pW/[mg) — m. (1.3)

In the competitive case, the market maker must set the trade price equal
to the asset’s expected value given the trade. This involves a somewhat
complicated inference problem because the trades themselves partially
depend on noisy signals. To characterize this learning problem, notice that
the left-hand side of equation (7.3) contains only observable variables,
while the right-hand side contains the unobserved variables S — (pW/ng)
and the known mean m. Earlier, in our discussion of the Kyle model in
Chapter 4, we solved the market maker’s decision problem by defining a
variable composed of unobservable variables but whose distribution the
market maker could calculate. We can apply the same approach here to
characterize the market maker’s learning problem. Define the random
variable Z = § — (pi#/ng). Then a market maker observing an incoming
order of size Q can calculate the left-hand side of the above equation. This
is equal to Z — m, however, and the market maker knows both m and that

Z=S—-(pW/ng)=X+e— (pW/mg). (7.4)

Hence, observing Q essentially provides the market maker a noisy signal of
X.

To set his optimal price, the market maker simply uses Bayes Rule to find
the expected value of X given Z, or

E[X | Z] = (mxm +nzZ)/(7nz +7l'x). (7.5)

Glosten shows that in the competitive case any differentiable pricing

schedule will satisfy

PQ =m+ (Z¥5) (L) +K[sign(Q) QI &
where
N = p*rx + myms(ms +1x) (7.7)

and
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2
a=p:rx,7e.5,7= lfa. (7.8)

There are two important properties of this solution to note. First, the
pricing rule is upward sloping. This means that large trades transact at
“worse” prices. The slope of the price schedule also means that there is
some welfare loss associated with the risk of information-based trading.
Since some traders transact for portfolio-rebalancing reasons, the greater the
slope, the more costly it is for them to achieve their optimal holdings. If
there were no informational trading, then the price schedule could be flat,
allowing traders to move costlessly to their desired holdings. With prices
increasing in trade size, however, traders cannot achieve the optimal
position, and Glosten demonstrates that ex ante utility is strictly less with
asymmetric information than it is with symmetric information.

A second interesting property of this solution is that for a differential
equilibrium to even exist, it must be the case that @ > .5. Since a is a
function of the traders’ risk aversion and the precision of random variables,
this condition essentially requires that the risk of informed trading is not so
large as to overwhelm the market maker’s ability to set market-clearing
‘break-even” prices. If a does not meet this condition, there can be no
market-clearing price, trading is halted, and the market shuts down.?

This failure of the market reflects the difficulty that, with prices set to
conditional expected values on every trade, there may be no price that
results in zero expected profit for the market maker. Suppose, however, that
the market maker could set prices based on the average expected profit across
trade sizes, rather than on a trade-by-trade basis. Since this would allow
gains on some trades making up for losses on others, this strategy is only
feasible if the specialist has sufficient market power to retain the profitable
trades. Such market power is consistent with the pricing position of a
monopolist specialist.

If the market maker is a monopolist, then his decision problem changes
to choosing a price function P(s) to solve

max E[R(z) — XQ(2)], (7.9)

3. This “no-trade” outcome arises because the threat of informed trading is simply too
large to sustain the market. This problem has long been recognized in the rational
expectations literature, particularly in the work of Milgrom and Stokey [1982] and, as
discussed in Chapter 6, Grundy and McNichols [1989]. An extensive characterization of
when this “no-trade” outcome will occur in a Walrasian framework is given in Bhattacharya
and Spiegel [1991].
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subject to
CE[W, S, Q(z), R(z)] > CE[W, S, Q(z), R(z)], for all 2/, (7.10)

where CE denotes the certainty equivalent defined in equation (7.1), z is Z
normalized to have zero mean and unit variance, R(z) and Q(z) are
functions representing revenue and order quantity, respectively, and z and
z’ are strategies, with z equal to [S — (pW/ng) — m] /G,. The constraint
reflects the incentive compatibility requirement that the quantity the
market maker believes a trader will select to trade at price p is, in fact, the
quantity the trader selected.

Assuming differentiability of the relevant functions, Glosten proves that
there exists a monopolistic pricing schedule such that the market does not
shut down. With this pricing strategy, the specialist quotes prices such that
he loses money for large trades but makes money on small trades. In this
model, normality dictates that extreme trades (i.c. large Q) are unusual, and
so the market maker can use the greater frequency of little trades to more
than offset his losses. Of course, these higher prices for small trades mean
trades are made at worse prices than would occur if a competitive dealer
were willing to make the trade. From the perspective of an uninformed
trader, this is clearly undesirable. But since the competitive market need not
always exist, these higher monopolistic prices at least allow trade to occur.
When the market would otherwise fail, Glosten demonstrates that welfare
will be higher in a monopolistic market than it is in a competitive setting,

An interesting feature of this pricing strategy is that the market maker
continues to make large trades even though they result in an expected loss.
One might expect that a better strategy is simply to set prices for large
trades so high as to make no trades at all. The difficulty with this reasoning
can be seen by considering a simple discrete example.

Suppose that there are two types of uninformed traders, big and little. Big
traders buy (or sell) 5 units, while little traders transact 1 unit.* Let there be
four big uninformed traders and one informed trader (for now, the number
of little uninformed traders is unimportant). Let the value of the asset, I, lie
in the interval [0, 4], with unconditional mean 2. Suppose that the
informed trader knows the true value of the asset is 4. Since the informed
trader knows good news, he wants to buy; so we first consider the market
maker’s ask price decision.

4. For simplicity, we assume that large uninformed traders either trade the large quantity
or do not trade at all. This corresponds to assuming that large institutional investors do not
wish to hold small quantitics of assets, perhaps because of fixed management costs.
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If the market maker is competitive, he sets the big trade price so that the
expected losses to the informed trader, assuming he trades the large
amount, equal the expected gains from the uninformed big traders. Since,
given that a trader wants to trade the large size there is a one in five chance
he in informed, it is easy to demonstrate that the big trade price must be set
at 2.4. At that price, the informed trader makes a profit of 8 and the market
maker breaks even. If the market maker now sets a small trade price of 2,
the informed trader continues to trade the large amount, and so the market
maker makes zero expected profit on each trade size.

Now suppose the large uninformed traders are price sensitive. If one
large uninformed trader will not transact at any price above 2.3, then the
equilibrium above is not feasible. With three uninformed large traders, the
large trade price must be 2.5. If, however, this is above another large
trader’s reservation price, then the price must rise to 2.67, and so on until it
can be the case that all uninformed traders leave and the large trade price
goes to 4, This is not a feasible price, however, because once the large trade
price passes 3.6, the informed trader shifts to trading the small quantity.
Hence, the large trade market ceases to exist.

With the informed trader now trading the small quantity, the small trade
price cannot remain at 2. If the little uninformed traders also have elastic
demands, then as in the large trade market it may be that there is no price at
which trades can clear. In this case, the market fails, and no trades occur.
Hence, setting a high price for large trades cannot solve the underlying
difficulty; since informed traders will choose the profit-maximizing
quantity, any equilibrium will have informed traders in the market.

In the discrete competitive example above, it will always be the case that,
if an equilibrium exists, the losses on the large trade just equal the gains on
the small trades. In Glosten’s continuous monopolistic model, however, it is
possible to choose small and large trade prices so that the profit from the
more elastic small trades overwhelms the loss on the large informed trade.
The optimal pricing strategy for the specialist is then to keep the informed
trader trading the large quantity. Hence, the market maker sets prices so
that he loses money on the large trade but makes money on the small
trades. This average pricing policy works because the specialist uses his
monopoly power to have some trades essendally subsidize others. The
result from a market stability standpoint is an improvement in traders’
utility because the market remains viable.

That a monopolistic specialist can improve the stability of the market
highlights the important role that the trading mechanism plays in
overcoming the underlying difficulty introduced by asymmetric informa-
tion. A question that naturally arises, however, is whether such a monopoly
structure is the only mechanism to solve the problem. Madhavan [1992]
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demonstrates that another solution may be to organize trading as a call
market. Since a call market is used to begin trading each morning on the
NYSE and is the primary trading mechanism on several other exchanges,
the role of such a trading mechanism is clearly important. Moreover,
intriguing empirical research by Amihud and Mendelson [1987] suggests
that the behavior of prices in a call market differs in important ways from
price behavior in a continuous market.?

Madhavan’s analysis involves comparing the behavior of competitive,
quote-driven (or continuous) market mechanisms and competitive, order-
driven market mechanisms in the presence of asymmetric information. The
focus in the paper is on measuring the performance of various market
structures, and as such we discuss this research in more detail in Chapter 9.
For our purposes here, we consider a special case of the analysis where the
order-driven mechanism is restricted to periodic clearing.

The analysis considers how the viability of the quote-driven mechanism
of the market maker contrasts with a periodic order-driven (or call market)
mechanism. The model of the quote-driven market is virtually identical to
that in Glosten, and the optimal pricing policy for the specialist is the same
as that derived above. As in Glosten, if the risk of informed trading is too
great, there are no prices the dealer can quote that meet the zero expected
profit condition, and the market fails.

If trades could be cleared in a call market, then Madhavan shows that this
market failure outcome need not occur. In a call market, orders are batched
together at a point in time and clear at a single price, and so there is no price
schedule or “quote” as there is in a continuous market. Because traders have
no ‘quote” to hit, it follows that they do not know the actual trading price
when they submit their orders. If traders are rational, however, they have
expectations over the price and in equilibrium those expectations will be
correct.® This results in adjusting the amount of liquidity-based trading so
that the market still operates though the underlying asymmetric informa-
tion problem remains. In effect, the order flow averages out the informa-
tion cffects so that a price can be set to clear the market.

5. In particular, Amihud and Mendleson show that the variance differs if measured on an
open-to-open basis than on a close-to-close basis. They attribute this difference to the
different trading mechanism employed at the open. Stoll and Whaley [1990] empirically
investigate this behavior and conclude that NYSE opening practices can explain the observed
price behavior. .

6. An interesting aspect of the Madhavan model is that traders can submit demand
schedules as opposed to the simple market orders typically considered. If traders have rational
expectations, their optimal limit order is essentially a market order because they will, in fact,
know the market-clearing price.
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One might expect that this greater stability of the call market would lead
to its clear dominance as a trading mechanism. As Madhavan demonstrates,
however, this stability may come at a cost. For infrequently traded stocks,
the lack of continuous prices impedes the price discovery process, and this
results in prices potentially being less efficient and information gathering
more expensive. Moreover, if there is a cost to providing a trading
mechanism, then Madhavan’s model suggests that the quote-driven system
can only be sustained with a monopolistic price setter, while the continuous
trading framework allows for multiple market makers.

In both the Glosten and Madhavan analyses, therefore, the trading
mechanism is not irrelevant to the performance of the market. Because
asymmetric information introduces distortions into the behavior of prices, it
may be that the standard competitive mechanism is not robust if
information problems are severe. These difficulties can be overcome by
pricing so as to profit on an average basis rather than on an individual trade
basis. The average basis can be across trade sizes as in the Glosten
monopolistic framework, or across trades as a whole as in the Madhavan
call market framework.

This averaging behavior, however, introduces a new and potentially
critical impediment to market stability. If the market (or market maker) is
pricing trades on average, then some trades are trading at “worse” prices
than they would if priced individually. Suppose that a competing trading
mechanism could be structured that would handle only these “overpriced”
trades. Then even pricing these trades on average would result in a “better”
price for those buyers and sellers, and one might expect such orders to flow
to the competing exchange. Once, however, these orders depart the initial
trading venue, the original average prices are no longer viable, and prices
must rise to reflect the new trade composition. This, in turn, gives even
more impetus for traders to move elsewhere, prices deteriorate further, and
the average pricing equilibrium breaks down.

Such an unraveling of the equilibrium dictates that average pricing is
only feasible under very restrictive conditions. In effect, the initial
“pooling” equilibrium cannot be sustained if a subset of the underlying
market can be separated out and priced accordingly. This problem is the
subject of extensive analysis in the insurance literature (see, for example,
Wilson [1977]). In insurance markets, the ability to segment risks means
that the good risks always have an incentive to shift to contracts restricted
only to them. Whether an equilibrium can exist in this new segmented
structure is problematic. If risk quality is continuously distributed, for
example, there need be no sustainable equilibrium at all.

In the microstructure context considered here, this suggests that the
stability provided by average pricing mechanisms may be illusory. In the



190 MARKET MICROSTRUCTURE THEORY

mechanisms analyzed by Glosten and Madhavan, liquidity traders pay a
higher price than they would if they could trade separately from traders
acting on information, suggesting that attempts to “cream-skim” such
traders to other exchanges could be successful. If that occurs, however, then
the stability of the original trading mechanism need not remain. Such
equilibrium issues are considered in more detail by Glosten [1991b)].

The development of active “third market™ providers suggests that just
such an outcome may be occurring. By restricting orders to small amounts
(600 shares) and by offering to match the best bid or offer, third market
participants such as Madoff Securities can extract the small, presumably
uninformed, order flow away from the NYSE monopoly specialist by
paying retail brokers for their order flow. Similarly, electronic clearing
networks such as Instinet and POSIT can attract large uninformed
institutional traders if the structure of their trading mechanisms provides a
‘better deal” for executing the large orders such traders enter. The trading
network of Steve Weunch and the Arizona Stock Exchange represents yet
another mechanism designed to attract uninformed order flow.’

There is some evidence that such alternative mechanisms are succeeding
in diverting order flow away from the single-clearing exchange mecha-
nism. For example, in the first half of 1993, POSIT cleared an average of 5
to 6 million shares a day, with over 7 million shares a day trading in
November 1993. Instinet volume is not publicly available, but is believed to
be around 400,000 shares per day. The NYSE estimates that in 1993 as
much as 20 percent of total volume and 35 percent of small trade volume
(i.c., less than 2,100 shares) is now diverted to third party providers. With
the order flow segmented, the behavior of security prices need not be that
predicted by models of a single market-clearing agent.

Such a segmented market equilibrium raises intriguing, and important,
questions about the stability and performance of the overall market. One
such question is the effect of market segmentation on market liquidity, an
issue addressed in more detail in the next chapter. But questions such as
how segmented markets affect price discovery, or the welfare implications
of alternative market settings remain unanswered.® Indeed, whether such a

7. Lee [1991] provides an interesting empirical analysis of the effects of the Cincinnati
Exchange on market prices. McInish and Wood [1991] also provide empirical analysis of the
cffccts of third market trades.

8. A particularly intriguing policy question relates to the ownership of the price quotes. If
a competing exchange offers to match the best bid or offer on the NYSE at the time an order
executes, then it is essentially free-riding on the price discovery function of the NYSE. In the
absence of those quotes, it is not clear such a competing exchange could remain competitive.
But, as part of a National Market System (which was mandated by Congress) quote and price
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separating equilibrium is even sustainable is not immediately obvious. It
seems likely that, in the absence of some transaction cost, excluded traders
could mimic the trading behavior of included traders and thereby
reintroduce a pooling equilibrium. These issues will undoubtedly remain
important topics for future research.

While our discussion has focused on the viability of alternative market
organizations, there are also interesting stability issues related to the design
of trading mechanisms. In particular, if traders have the ability to place
contingent orders, then they have the ability to adapt the trading
mechanism to their own demands. This raises the interesting specter that
order form alone can introduce price effects into securities markets. We
consider this issue in the next section.

7.2 ORDER FORM AND PRICE BEHAVIOR

In actual security markets, a wide variety of order types can be found. The
familiar market order to buy or sell one round lot at the prevailing price is
certainly the mainstay of trading, but orders contingent on a variety of
conditions abound. “Market-at-close” orders, for example, allow traders to
specify the time that their order transacts. If the time of day issues addressed
by Admati and Pfleiderer [1988, 1989] are important, then such orders
provide one mechanism for traders to time their trades. Other orders such
as “Fill-or-Kill” or “Immediate or Cancel” orders allow traders to control
the quantity or execution of their trades. By far the most common
alternative order forms, however, are price-contingent orders. It is to these
orders and to their effects on the market that we now turn our attention.

Orders contingent on price can take many forms. The most common
price~contingent orders are limit orders specifying a price and a quantity at
which the trade is to transact. Since a limit order to trade at the current
price is equivalent to a market order, feasible limit orders must specify
prices outside the range of the current quote. With prices above the current
ask and below the current bid, limit orders await the movement of prices to
become active. If a limit order executes, it allows the trader to receive a
better price than he would have submitting a market order. Since execution
is not guaranteed (prices can always move the wrong way), one way to view
limit orders is that they guarantee a price but not a quantity, while market
orders guarantee a quantity but not a price.?

information are to be freely available. These issues are addressed in more detail in Mulherin,
Netter, and Overdahl [1990].

9. This is not entirely accurate, because prices may move through limit orders, causing the
limit to transact at a price other than that specified. Similarly, market orders may not transact
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A similar, albeit opposite, price-contingent order is a stop order. A stop
order also specifies a price and a quantity, but its price is “worse” than the
current quote. Stop orders are typically used to sell stock when prices are
falling, and so submitting a stop order allows a trader to put a “floor” under
the value of his holdings.!® Like all contingent orders, however, stop orders
are not guaranteed to trade precisely at their specified prices; if prices fall
through a stop, the order will execute at the first available price, which may
be considerably below its stated price.!! Because of this price insurance
function, stop orders are closely related to (and may be used in) portfolio
insurance strategies.

One important difference between stop orders and limit orders lies in
their relation to the direction of order flow. Stop loss orders transact when
the market is falling. Since these are sell orders, stops essentially take
liquidity from the market and provide impetus to any downward market
movement. Conversely, limit orders trade on the opposite side of the
market. If the market is rising, the upward price movement triggers limit
orders to sell; if the market is falling, the downward movement triggers
limit orders to buy. Limit orders thus provide liquidity to the market and
therefore are frequently characterized as competing with the market maker.

Because price-contingent orders depend on market movements, they are
held in a “book” until they become active. The effect of a book on market
behavior was addressed by several researchers in models with symmetric
information. As discussed in Chapter 2, Cohen, Maier, Schwartz, and
Whitcomb [1981] examined how limit orders affected the order strategies
of traders in their gravitational pull model. O’Hara and Oldfield [1986]
characterized the dealer’s pricing problem given the known limit orders and
the unknown market orders.

More recently, attention has shifted to the role of the book in a2 world of
asymmetric information. Rock [1991] examines the interaction between the
market maker and limit order traders. Easley and O’Hara {1991] analyze the

imtediately if there are a flood of orders delivered to the market at one time. See also Harris
and Hasbrouck [1993].

10. Stop orders to buy stock do exist but are used infrequently. The vast majority of stop
orders are stop loss orders to sell stock. Our discussion in this section focuses on these sell-side
orders.

11, There are actually two different types of stop orders available to traders. The
commonly used stop loss orders arc similar to market orders in that they are orders to sell
whenever the market price reaches the order's specified level. Since these orders transact at
the next available price, they may transact at prices below their specified level. There are also
stop loss limit orders, which are orders to sell only at the specified price. If prices fall through
these stops, therefore, the order is canccled rather than filled at the best available price.
Because these orders provide a rather strange (and limited) type of insurance, they are rarely
used. Our discussion focuses on the more usual stop loss (market) orders.
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effect that allowing a book of stop orders has on price behavior and the
stability of the market. In these analyses, the book of limit orders affects the
behavior of the market even though the book per se contains no information
on the value of the asset being traded.

Rock’s analysis focuses on the adverse selection problem facing traders
who submit limit orders. As noted eatlier, limit orders can be viewed as
“competing” “with the market maker in that they take the other side of
submitted market orders. Since a limit order is submitted at a price “off the
quote,” it follows that a limit order trader receives a better price if his order
executes than he would receive trading at the market maker’s quoted prices.
One difficulty the limit order trader faces, however, is uncertainty over
when the trade will execute. Because the limit order remains on the book
until the price moves to the order’s specified level, the limit order trader
faces the risk that the value of the asset may have changed since the order
was placed. In this case, the limit order will transact at a price that leaves
the trader with a negative expected profit. This expected loss arises because
the market maker can set his prices conditional on the trade size but the
limit order trader cannot. This results in an adverse selection problem
because, if the market maker is risk neutral, the only trades the limit order
trader will participate in are those that lose money.

This situation is most likely to arise when a large market order transacts.
The problem is that as orders execute, market participants update their
beliefs on the asset’s true value. Following a large sell order, the market
maker lowers his expectation of the asset’s value to reflect the risk that large
orders are more likely the result of information-based trading. This can
cause his quoted price for a large sale to fall below that of orders on the
book, thereby allowing the limit orders rather than the market maker to
clear the trade. Since the limit orders then transact at a price above the
asset’s new expected value, the limit order trader has an expected loss on the
trade. Indeed, given this adverse selection problem, the optimal strategy for
a limit order trader is not to trade at all, and the book would simply not
exist.

Rock suggests that one factor alleviating this problem is the inventory
exposure of the market maker. Rock considers a two-date (one-period)
model in which limit orders are submitted at time 0, a single trade occurs at
time 1, and the asset then liquidates at some random value #. In this model,
the market maker is assumed risk averse, while limit order traders are
assumed risk neutral. This divergence in risk preferences is clearly ad hoc
and is, in fact, the opposite of the risk preference assumptions used by
Glosten and by Madhavan in the previous section. A justification for the
specification is that the single market maker must always stand ready to buy
or sell, while the multiple limit order traders need only transact if it suits
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them. Since this allows limit order traders better control of their inventory,
for inventory positions close to their desired level, even risk averse traders
would be approximately risk neutral. Whether this is an accurate risk
specification is debatable, but it is the case that Rock’s results hinge on risk-
bearing limitations on the part of the market maker.

Traders in this market are assumed able to submit limit orders or market
orders. An important assumption is that limit orders are submitted only by
uninformed traders, while market orders are entered by both informed and
uninformed traders. This dichotomy in order behavior means that the book
can be analyzed independently of any information on the value of the asset.
Rock justifies this assumption by appealing to the delayed execution feature
of limit orders; if informed traders have short-lived information, then the
immediate liquidity of a market order is surely preferable. In a one-trade
model like that considered here, this is certainly reasonable. Whether it
holds in a dynamic setting is not so obvious. This issue of the information
content of the book is discussed further later in this chapter.

With limit order traders uninformed and risk neutral, it follows that they
will submit a limit order provided the order’s expected profit, given that it
transacts, is at least zero. This determination is not simple, however, as the
expected profit on any order depends on both the market maker’s optimal
strategy and on the structure of the book. Because any trade may be jointly
filled by the market maker and by orders from the book, how much the
market maker takes depends on the price he quotes and on the number and
distribution of orders on the book. This means, however, the market maker
must know the orders on the book to set prices, and the limit order traders
must know the market maker’s pricing schedule to submit their orders. The
book and the pricing schedule must therefore be determined simultaneous-
ly, and all market participants must have complete information on the
structure of the book and on the market maker’s inventory position.

These information requirements impose a severe restriction on the
applicability of the model to many exchange settings. While the Toronto
CATS system is generally transparent, a more common arrangement in
markets is that the information on the book is unknown to at least some
market participants. To the extent that markets are not transparent, this
pricing problem becomes exceedingly complex. Moreover, it is not enough
that traders know the orders; they must know how the market marker will
price given the orders they submit. Such a simultaneous structure is typical
of many rational expectations analyses, although a rational expectations
framework is not specifically analyzed here.

As the market maker is risk averse, the price he quotes for any market sell
order of trade size s, denoted P(s), must leave him at least indifferent
between paying that price or not trading at all. Letting yg be the specialist’s
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endowment of cash and zg = endowment of stock, then wy = yg+ 2zg is the
specialist’s initial wealth where the initial price of the stock is normalized to
one. Denote by Q(p) the set of all limit orders to buy on the book at price p
or above. Then the zero gain in expected utility condition requires that the
price the specialist sets to buy stock, p(s), be such that

E[U(yo + 207+ (s - Q@) ) (7 — p(9))) 1 5 =] = E[U(wo) | 5= 5]

(7.11)

The order strategy for the uninformed limit order traders also depends on
the market maker’s pricing strategy P(s) because it affects how much of an
incoming order will be taken by the book. Define Z+ (b) to be the set of
market sell orders that cause a bid at price b to be triggered. Then E[¥ | s €
X1 (b)] is the expected value a limit buyer receives given that his trade
executes. A limit buy order will exist at price b, therefore, if and only if

b=E[i|se z+(b)]. (7.12)

The actual order strategy pursued by a limit order trader is quite complex
because of this triggering set Z4 (b). In particular, consider an existing limit
order at some price b and, for the sake of argument, suppose it is the first
limit order submitted at that price. The limit order could be triggered by a
market order to sell a single share, but it could also be triggered by a market
order to sell 10,000 shares (or any amount in between). If only the first case
could occur, then a risk neutral limit order trader could set his limit price
equal to the expected value of the stock given that someone wanted to sell
one unit, a pricing decision we have already extensively characterized. But
what of the second event? Certainly the price the limit order trader might
want to trade against a block will differ from that of a single trade, but the
limit order trader does not know exactly what this block size will be. His
optimal price must incorporate all possible triggering trade prices, and
hence it reflects an average price given that a trade occurs. Furthermore, his
optimal price must also reflect the market maker’s strategy since this, too,
affects when his limit order transacts.

One way to characterize the equilibrium in this model is that it is a
shared outcome between the market maker and the limit order traders.
Specifically, if the unit of trade is made sufficiently small, then over some
range the book can be thought of as approximately continuous. If s* is a
market order that begins its execution matched against some orders on the
book and is cleaned up by the specialist at a price p(s*), then the price posted
by the market maker is virtually the same as the price posted by the
marginal limit order trader.
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Rock argues that if the specialist’s price schedule is continuous, then any
limit trader who actually participates in s* would also participate in any
trade larger than s* . Consequently, from equation (7.12) it follows that the
triggering set for any limit order is [s | s > s * ], which implies that the
marginal limit order trader determines his bid such that E{y | s > 5*] = v(s*).
Since the market maker takes the last piece of the trade, his price is equal to
that of the marginal limit order trader, or P(s*) = v(s").

The actual pricing function the specialist sets may be quite complex, as it
depends on both his risk preferences and inventory position. Some insights
into its properties may be gained by considering how the market maker
determines the price for a trade s*given that the book takes an arbitrary
quantity, x, and that his inventory position is small. Let (s, x) be the price
the specialist would name in response to the market order s if he knew the
book would absorb x shares of the order. From equations (7.11) and (7.12)
any market sell order in which the book participates is priced by the
specialist at V(s), and so the amount the book takes can be found by
equating ®(s, x) to v(s) and solving for x.

Rock shows that the solution for x, denoted x(s), has intervals in which
the book takes a negative share of the trade. As this is impossible, the
interpretation is that such orders simply do not exist, and the book
essentially has a hole. Rock shows that this interval is for prices close to the
small trade expected value, so that for small trades the specialist alone fills
the order. For larger trades, the price moves out of this interval, limit orders
exist, and the order is jointly filled by the specialist and the book. Since
there are no limit orders entered at prices close to the specialist’s small trade
quotes, this model captures the notion of the spread as being a “hole in the
book.”

An interesting issue in this model is how the equilibrium is affected by
the specialist’s inventory. As the specialist’s holding of stock increases, the
increased inventory risk causes his quotes to fall. Because the specialist
clears all small trades, this effectively worsens the terms of trade for small
sellers. With the specialist less willing to absorb inventory, the book of
limit orders deepens because the reduced role of the specialist lessens the
adverse selection problem faced by limit order traders. Limit order traders
are assumed able to know the market maker’s prices (and inventory
position) when they submit orders, and so the change in the market maker’s
inventory increases the optimal order position of the limit order traders.
While small trade prices suffer, large trade prices do not and may even
improve because a larger share of the order is taken by the risk neutral limit
order traders.

This suggests that the book of limit orders can improve prices available to
some traders by incrcasing the liquidity of the market. That this
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improvement occurs only when the specialist faces inventory problems,
however, reveals some important characteristics of this model. If the market
maker were risk neutral instead of risk averse, such an improvement would
not arise because limit order traders could never provide any benefits over
those already provided by the market maker. Indeed, this specialist risk
aversion suggests that were there no market maker at all, all traders would
do better provided the limit order traders could specify a price schedule
related to quantity rather than simply to price. Because orders can be
“batched” and limit orders cannot be made contingent on quantity, limit
order traders lose out to any price-setting agent who can avoid such
aggregation problems.

While Rock’s one-period model focuses on the batching that occurs
within trades, limit order traders face similar problems due to their inability
to avoid price movements across trades. As trades change prices throughout
the day, limit orders may be triggered because of the market maker’s
unwillingness to take additional inventory or by changes in the expected
value of the stock. This latter effect necessitates that limit order traders
must continuously monitor the market, or submit orders sufficiently “out
of the money” to avoid this problem.

This highlights what has commonly been termed the “free option”
property of limit orders. Because the limit order trader precommits to
buying or selling at a particular price, he or she has in effect written an
option at the specified strike price. As market prices change, this option can
move in or out of the money, exposing the writer to the risk of the option
being exercised at his expense. Stoll [1990] gives an example of this
occurring in the Intermarket Trading System. With ITS, a dealer in
Cincinnati can post quotes in an N'YSE-listed stock that will automatically
execute. If a floor trader in New York sees a large block in the stock or
learns of any other event that might lower the price on the NYSE, he can
send a sell order to Cincinnati and ‘pick off” the dealer before he has a
chance to change his quote.!?

This option property of price quotes was noted by Copeland and Galai
[1983], but it takes on particular importance for understanding the nature of
the book and, by extension, the operation of any automated clearing system.
Because the value of the option is directly related to the size of the contract,
the risk to limit order traders of placing a large order can be onerous.
Consequently, few traders submit large limit orders, preferring instead to
work any intended trade via a series of small market orders. Only if the

12. Stoll [1990] provides an excellent discussion of market structure issues, including a
detailed discussion of the free option problem. More discussion of what exactly these options
are can be found in Copeland and Galai, and in our discussion of that paper is Chapter 2.
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market can be continually monitored is the risk of the free option reduced,
but this in turn imposes monitoring costs on the limit order trader. One
solution is a system of morc complex orders, an issue addressed in a series of
an interesting working paper by Black [1991]. We return to this issue in the
next chapter, but, for our discussion here, the free option problem suggests
that a multiperiod model incorporating both the market maker and limit
order traders will be extremely complex.

A related difficulty in modeling the book is the issue of market
transparency. In Rock’s model, traders know not only the complete
structure of the book, but the market maker’s inventory position as well.
Neither condition is likely to hold in actual markets. To the extent the
market maker has private information {about either order flows or his own
inventory), he can exert market power on pricing. This both greatly
complicates the traders’ order strategy and renders obsolete our convenient
(and tractable) assumptions of competitive behavior. Similarly, the optimal
order strategy for a limit order trader may differ dramatically depending
upon what order information is available to the market. Rock avoids these
order strategy complications by assuming complete information, but this
issue of the information content of the market maker’s inventory position is
clearly an interesting question for future research.

A different perspective on the role of the book is offered by Easley and
O’Hara [1991], who analyze the effect of stop orders on market behavior.
In their model, the market maker is assumed to be risk neutral, and so the
inventory considerations so prominent in Rock’s model are not an issue.
Morcover, since stop orders take liquidity from the market, the free option
problem does not arise in this model. Instead, Easley and O’Hara focus on
how the ability to trade via an alternative order form affects the
informativeness of the order flow and how this, in turn, affects the
adjustment and stability of market prices across time. Because traders may
have differential knowledge over the book’s contents, this analysis considers
how information on the order flow itself affects the performance and
efficiency of the market.

In this multiperiod sequential trade model, traders are permitted to
submit cither market orders or stop orders. There is a single, risk neutral
competitive specialist, who receives all orders and quotes bid and ask prices.
An important difference between this model and Rock’s is that only the
market maker knows the actual composition of the book. Other traders
know that the book exists and they have expectations about its size and
structure. These expectations are assumed to be rational

Some traders receive a private signal of the asset’s true value, while the
remaining traders and the market maker do not. As in all sequential trade
models, a trader is selected to trade according to his probabilistic



Market Viability and Stability 199

representation in the trader population. A fraction p of orders received are
from informed traders, while the fraction 1 — p are from uninformed
traders. The trader so selected may then enter an order to trade one unit of
the asset.

An important question to consider is, what type of order will a trader
submit? Since stop orders can be submitted only at a “worse™ price than the
current quote, for a given trade an informed trader profits more by
transacting at the better price offered by the market order.’® In this model,
as in all sequential trade models, traders are assumed able to submit only one
order at a time, and so it follows that the informed trader submits a market
order rather than a stop order. This myopia on the part of informed traders,
while optimal in a sequential trade framework, need not hold in a model
specifically incorporating strategic behavior. If it doesn’t, then the book
would also have information content, and determining its effects would be
a formidable task. As yet, such dynamic behavior with alternative order
strategies has not been solved.

If a trader is uninformed, then whether he prefers a stop order or a
market order depends on his reasons for trading. If he does submit a stop
order, however, it cannot be because he expects to piggyback or “front run”
on an informed order. This follows because at the time a stop order is
submitted, it has a zero expected return; if it executes, it trades at the
conditional expected value of the asset, and if it doesn’t execute, its return is
zero. This suggests that any stop orders submitted are from uninformed
traders, and their composition is unrelated to private information on the
underlying value of the asset. This results in the book being composed only
of uninformed orders.

Despite this lack of information content, the existence of stop orders can
have large effects on market behavior. One effect may be on the
composition of the order flow as some traders shift from using market
orders to using stop orders. By placing a stop order, uninformed traders gain
priority to sell at a given price, and this removes any need to submit a
market sell order. A second effect may be to induce traders to enter the
market who would not otherwise have traded. For example, if the ability to
enter insurance-type trading arrangements is attractive (as has been alleged
in the case of portfolio insurance), such an inducement effect could occur.
Easley and O’Hara capture these effects by defining 1 to be the fraction of

13. If the trader could submit multiple orders at every trading opportunity, then there
might be some dynamic trading strategy that makes use of stop orders. In actual security
markets, however, most widely used stop order strategies (such as basic portfolio insurance
schemes) are not information-related, and so it may still be the case that the information
content of stop orders is fairly small.
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uninformed who do not participate in the market if there is no book (0 <n
< 1)

In this model, the trading day begins with an initial book. Orders come
into the book throughout the day, and orders are removed from the book as
they execute. To begin trading, the market maker must determine his
initial bid and ask quotes. Because the market maker knows the structure of
the book, it would be tempting (and profitable) to set low prices and
essentially “pick off” stop orders on the book. This, however, takes
advantage of stop order traders, and so exchange trading protocol requires
that stops only be triggered by market trades and not by the market maker
simply moving prices. This requires the first trade to be a market order, and
hence the market maker’s initial pricing problem is to set prices equal to
conditional expected values given that the trade is either a market sell order
or a market buy order.

Although the initial trade is known to be a market order, provided that n
< 1 the market maker will not set the same bid and ask prices as he would if
there were no book. The reason is that while stop orders per se are not
information-related, the diversion of orders from markets to stops means
the remaining market order flow is now more likely to come from
informed traders. With the order flow more informative, the market maker
responds by setting a lower bid price, a higher ask price, and thus a larger
initial spread.

For subsequent trades, the book itself may become involved as the
movement of prices triggers orders. Because the market maker knows
which orders are stops and that they are not information-related, he does
not change his beliefs following an executed stop order, and hence he does
not change his prices. Following an executed market order, however, the
market maker adjusts prices more than he would in the absence of a book
because of the market order’s now greater information content. In this
setting, individual stop orders do not affect security prices, but the
aggregate collection of stop orders does. The effect of a book, therefore, is
to change the stochastic process of prices.

That prices change in response to a book of price-contingent orders even
though those orders are not correlated with the underlying value of the
asset reveals the important role played by the trading mechanism in the
price adjustment process. While prices are now different, however, it is not
immediately obvious whether this is beneficial. Moreover, as prices adjust,
the effects on the market become even more difficult to compare.

14. If n = 1, then introducing a book simply adds traders to the market but does not
change the behavior of existing traders. For n < 1, some traders shift from using markets to
using stops. As this is a more interesting outcome, the analysis focuses on this case.
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Evaluating these alternative market arrangements requires comparing the
resulting stochastic processes of prices.

In the previous chapter, we encountered a similar problem in the context
of price adjustment issues. In that setting, we considered the Diamond and
Verrecchia [1987] approach of computing first passage times for the price
process to reach some prespecified bound around the true value. In this
paper, Easley and O’Hara develop a related approach by using entropy
measures to capture the speed of adjustment.

Suppose that informed traders receive either high (H) or low (L) signals.
Let pL = (pL(B), pL(S)) be the probability of observing a market buy, B, or a
market sell, S, when the signal is low. Define pH similarly. Then the speed
of convergence of market prices will be affected by the entropy of pH
relative to pt, defined by'

IPL( ) = pL (B) log(PH((B)))+p (S)lo g(PH((S))) (7.13)

One way to interpret this entropy measure is as a distance measure. If
signals do not affect trading decisions, then the probabilities are equal, and
the entropy of pH relative to pL is zero. Alternatively, if these probabilities
are very different, then the relative entropy is large. The entropy of pH
relative to pL reflects the information content of trades. When the entropy
is large, trades are very informative; when it is zero, trades do not carry
information about the signal. Since the entropy measure involves the log of
the ratio of the low to high signal probabilities, it is clearly related to the
log ratio approach Diamond and Verrecchia use to determine first passage
times. An advantage of the entropy measure is that it allows explicit
calculation of the speed of adjustment.

Easley and O’Hara demonstrate that prices in the model converge almost
surely to their strong-form efficient value exponentially at a rate equal to
the relative entropy between pH and pl. Moreover, given some general
conditions on the existence of stop orders, allowing a book of stop orders
increases relative entropy and so increases the rate of convergence of prices.
Hence, in markets with stop orders, prices are more efficient in that they
converge faster to full-information values. If efficiency (in this sense) is a
desirable property in securities markets, then allowing stop orders improves
the performance of the market.

One interesting aspect of this price behavior is the divergence between
initial prices and subsequent prices. Introducing a book results in worse
initial prices and larger spreads than occurs without a book, but subsequent

15. This entropy approach is discussed in more detail in the Appendix to Chapter 3.
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prices adjust more rapidly. Thus, there is a trade-off: small spreads with slow
adjustment versus large spreads with faster adjustment. This suggests that how
trading mechanisms should be designed is not altogether obvious: proper-
ties viewed as desirable may be accompanied by characteristics viewed as
undesirable.'® This observation was first raised by Fisher Black is his
provocative [1989] article on the role of noise in security markets. We
return to this issue of market characteristics and market efficiency shortly.

In the analysis above, the market maker is assumed to know the structure
of the book and whether any individual trade is a stop order or a market
order. This is accurate if the only price-contingent orders are stop orders
held on the book. In actual markets, however, traders may pursue more
complex portfolio insurance strategies that do not explicitly involve the
book. Consequently, the market maker may not know the extent of any
price-contingent orders, or even whether any individual order is a market
order or a stop order.

This order type uncertainty can be modeled by assuming that prices are
set by floor brokers rather than by a market maker. Floor brokers are similar
to the market maker in that they are risk neutral and competitive, but differ
in their access to order flow information. In this framework, orders are kept
in a central computer and are brought to the floor for execution. Each floor
broker knows whether an order is a buy or sell, but not whether it is a
market order or a stop order. Since brokers do not know the book, they
must form expectations of its size and structure.

As in the market maker system, each broker must determine his initial
bid and ask quotes. Since the first order will again be a market order, this
first trade problem is the same as that of the market maker, except that it is
the expected size of the book that enters the broker’s decision problem
rather than the actual size. Easley and O'Hara demonstrate that, while
uncertainty over the size and structure of the book can cause broker prices
to differ from those in a market maker system, provided brokers have
rational expectations these initial prices are unbiased.

Where the broker and market maker systems differ more fundamentally
is in the behavior of subsequent prices. As trade progresses through the day,
price-contingent orders may be triggered. Now, however, brokers do not
know which orders are which, and so they will adjust prices following
every trade, and not just after market orders. In comparison with the market
maker system, prices move more after stop orders, but less after market

16. Leach and Madhavan [1993] find a similar spread-specd trade-off in their analysis of
price discovery activities by the market maker. In their model, larger spreads decrease
uninformed traders’ willingness to trade, causing the remaining order flow to be more
informative, and convergence to occur more quickly.
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orders. This change again raises questions as to which is the more desirable
process.

Unfortunately, comparing these stochastic processes is not straightfor-
ward because the price paths differ depending on the specific trade
sequence, and neither a first passage technique nor an entropy approach can
be applied. The processes do, however, differ in a quantifiable way in
variability. Easley and O’Hara demonstrate that if at date ¢ the market
maker and the floor brokers have the same beliefs, then the conditional
variance of the market maker’s quotes is greater than the conditional
variance of the floor broker’s quotes.

That prices are more variable in a market maker system in which price-
contingent orders are known than in a floor broker system in which orders
are not known is an interesting result. While this higher variance might
seem undesirable, it does not necessarily imply that the floor broker system
is “better.” Relative to the floor broker system, the market maker’s prices
are more efficient in that the information they are based on is no coarser at
each date and is finer at some date. The relative stability of the floor broker
system is thus purchased at the cost of less efficiency in prices.

This suggests an interesting trade-off for policy makers to consider. If the
goal of market design is price efficiency, then the market maker system
secems more desirable. Although initial prices are worse, information is
more quickly impounded into prices and so prices become efficient faster.
Alternatively, if minimizing price variance is the goal, then the market
maker system is dominated by a floor broker mechanism in which order
flow information is not known by the price-setting agents.

There may be, however, other important aspects of price behavior to
consider in designing market structure. For example, one aspect of price-
contingent orders is their sequential nature. As prices fall, additional orders
to sell become active as the book comes into play. In a market maker
system, these price-contingent orders execute without affecting prices. In
the broker system, however, floor brokers do not know which are stops and
which are markets. If the price activates stops on the book, their execution
causes prices to fall even lower. This, in turn, can activate more stop orders,
and the market continues to fall even though every stop order is not information-
related.

This sequence effect means that large episodic price volatility may arise
in a floor broker system when it would not arise in a market maker system.
Because floor brokers do not know which orders are stops, they have to
consider the possibility that a sequence of sell orders is indicative of adverse
information. This can cause large price movements unrelated to new
information on the asset’s true value, and that would seem an undesirable
property for a trading mechanism. As we have already discussed, however,
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one-step price variance is actually higher in the market maker system, and
so there are important trade-offs to consider. Under some circumstances,
the uncertainty over order flow can actually improve the stability of the
market. This divergence in price behavior can perhaps best be illustrated by
an example.

An Example of Price Sequences and Price Stability. Suppose that
any stops are orders to sell and that 10 percent of uninformed sellers use
stops. Informed traders receive a signal, which is equally likely to be high
or low, and 10 percent of all traders are informed. Let uninformed traders
be equally likely to buy or sell. Prices are normalized to lie in the range
[0, 1], with the true value given a low (high) signal set to 0 (1). To simplify
the example, we focus on the sell side of the market.

In this simple framework, both the market maker and the floor broker set
an opening bid of .445. The market maker clears the initial market order at
445, as well as any stop orders that have been triggered at .445 and above.
The market maker then sets his new bid at .391. Where the floor broker
sets his prices depends on his expectations of the structure of the book.
Suppose, for example, that the floor broker believes that subsequent trades
are equally likely to be market or stop orders. His price quote for the second
trade is then .428.

Notice that if there were, in fact, no stop orders, then the floor broker’s
prices are “better”” than the market maker’s in that prices move less. If there
are stop otrders on the book, however, this need not be the case. For
example, suppose the opening bid actually triggers eight stops on the book.
The market maker clears them all at .445 and prices do not move. The floor
broker clears the first stop at .428, the next at .41, and so on until the
eighth clears at .31. Hence, his prices have fallen 20 percent from the
opening bid.

Of course, the probability of receiving eight stop orders in a row is fairly
remote given the market structure described above. It happens 0.8 percent
of the time. Over a series of trading days, however, the probability of such a
sequence arising, and hence of prices falling 20 percent, is quite high.

The latter fact suggests that how trading mechanisms are structured may
have important effects not only on price stability but on trader welfare as
well. These stability and welfare issues have been addressed by several
researchers, particularly as they relate to issues stemming from the market
crash. In the next section, we consider these market stability and design
issues in more detail.
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7.3 POLICY ISSUES IN MARKET STRUCTURE

The market crash in October 1987 posed an interesting conundrum for
researchers interested in market performance. While it is an inescapable fact
that security markets rise and fall, the magnitude and speed of the market
decline seemed to many inconsistent with simple changes in underlying
fundamental values of securities. If this were the case, however, what could
cause the market to depart so dramatically from the efficiency-based
paradigm held so dear to market observers (or at least to finance professors)?

One possible explanation was offered decades ago by Keynes [1936], who
noted:

There is the instability due to the characteristic of human nature that a
large proportion of our positive activities depend on spontaneous
optimism rather than on a mathematical expectation, whether moral or
hedonistic or economic. Most probably, . . . the full consequences
[of our decisions] . . . can only be taken as a result of animal spirits -
of a spontaneous urge to action rather than inaction, and not as the
outcome of a weighted average of quantitative benefits multiplied by
quantitative probabilities.!”

Such “animal spirits” explanations, however, leave a disquieting feeling
that actual “nonspirit” explanations may simply hide beneath the cloak of
such irrationality, leaving the true cause of the market’s puzzling behavior
unfound.'®

If market behavior is to be ascribed to some rational cause, then, as
discussed in the previous section, one explanation may lie in the design and
structure of the trading mechanism. If trading mechanisms differ in how
price setting occurs, then particular types of trades or trading strategies
could result in very different market behavior, perhaps even leading to
dramatic shifts in price. These issues are the focus of research by Gennotte
and Leland {1990] and Jacklin, Kleidon, and Pfleiderer [1992] .

The focus in both papers involves the relationship between unexpected
price-contingent hedging and market liquidity. The intuition is that
unexpected hedging can exert “price pressure” on a market, causing

17. See Keynes [1936], p. 161.

18. An interesting line of research related to this reasoning are the “noise trader” papers of
DeLong, Schlcifer, Summers, and Waldman. In a series of papers, these authors investigate
market performance when there can be a subset of traders whose trading introduces noise
unrelated to the asset’s performance into the sccurity’s price. If such price effects can exist,
then other traders need to be compensated for the risk of trading with noise traders. The
authors demonstrate that a2 number of market phenomena can be cxplained by this
framework. See DeLong, Schleifer, Summers, and Waldman [1989, 1990, 1991].
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providers of liquidity to depart. Their absence, in turn, means that prices
can fall, possibly dramatically, because there is a large demand for liquidity,
but little supply. This argument was first suggested by Grossman [1988] in
his analysis of the effect of portfolio insurance on stock price volatility.
Grossman argued that portfolio insurance could reduce the information
available in the market because ‘there is a crucial distinction between the
[information provided by] a synthetic security and a real security.” If traders
employ dynamic hedging strategies that involve synthetic securities rather
than actual securities, then risk averse providers of liquidity can be unable to
forecast accurately future price volatilities.!” This decreases their willingness
to provide liquidity and allows prices to fall more than if hedging demands
were readily observable.

Gennotte and Leland [1990] develop this “price pressure” argument in a
two-period rational expectations model. In their framework, traders can be
one of three types: uninformed, supply-informed, or price-informed traders.
The uninformed traders are able to observe the equilibrium price po, but
have no private information on the underlying asset being traded. Price-
informed traders observe a private signal, p17, of the asset’s future value and
also observe the equilibrium price pg. Supply-informed traders observe a
private common signal S related to the supply of the asset (but not related to
its ultimate value) and also observe the equilibrium price po.

This distinction between price-informed and supply-informed agents is
designed to capture the different types of information that influence
security prices at any point in time. While the traded asset will have an
eventual value of p, its price in period 1 may reflect unobservable supply
factors affecting the market-clearing price. Hence, supply-informed traders
might include market makers, who, because of access to the book, know
more about the extent of liquidity demands than do other traders in the
market.Z’ The notion that information on order flow could be valuable
apart from information on the value of the asset is also a feature of models
examining block trading and dual trading. These are discussed in more
detail in Chapters 8 and 9.

The actual supply of the asset is assumed to arise from threec components:
an exogenously given base amount, a liquidity-induced, exogenously
determined net supply, and a component due to price-contingent hedging
demands. Thus supply is given by

19. The effect of portfolio insurance strategies on market performance was also examined
by Brennan and Schwartz [1989). Using a representative investor model, they show that price
volatility increases when portfolio insurance is employed in a market.

20. This idea of information on supply as opposed to information on underlying values
has been generally investigated in a Kyle-type model by Lindsay [1990).
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i+ L+ S +x(p), (7.14)

where 1 is a fixed amount, L is an unobservable, random amount created by
liquidity traders, S is a similar random liquidity shock that is observable by
supply-informed traders, and m(p) is a deterministic hedging demand,
assumed decreasing in prices and potentially observable. L and § are
assumed independently normally distributed as N(0, Z;) and N(0, Zg),
respectively.

The model employs the familiar rational expectations example in which
each trader in class j is assumed to maximize a negative exponential utility
function of the form

—cxp( — W/aj), (7.15)

where W is wealth, and q; is trader j’s risk aversion coefficient. The
assumptions of normality of} the random variables and exponential utility
result in per capita demand for the asset by type j traders, denoted n;, given

by
nj = 4,Z7(5; — po), (7.16)

where py is the equilibrium price, Z;is the conditional variance of the future

price p, and p; is the mean expected future price for investors in class j.
Recall that since different types of investors receive different information,
these means and variances need not be the same across the three investor
types.

Equilibrium requires that supply equal demand, and so the equilibrium
price must be such that

Z_IPO + W(po) = Z ku}_I?j - m, (717)
i
where
B
= , 7.18
S aw; (7.18)
m=m+L+S, (7.19)

and
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—1_ 71
z "}j:k*’zf ’ (7.20)

where the summation is taken over the three trader types in j. The exact
form for the equilibrium price, however, depends on traders’ expectations.
Since this is a rational expectations framework, agents must form an
expectation of the price, and in equilibrium this expectation must be
correct.

If all traders are aware of the hedging demand n(pg), then Gennotte and
Leland prove there is a rational expectations equilibrium of the form

Py € fip —p— HL — IS), (7.21)

where f{e) is a correspondence, p is the realized end-of-period price, p is the
conditional expectation of the end-of-period price, and H and I are
constants whose values depend on the risk aversion parameters and means
and variances of the model’s random variables.

Price stability clearly depends on the properties of this price correspon-
dence. If f{#) can be discontinuous, then prices can exhibit “jumps,” which
Gennotte and Leland interpret as capturing the price behavior of crashes.
Interestingly, they show that if there is no hedging demand, then such
jumps cannot occur. Hence, prices in the absence of hedging demands are
stable in the sense that they are continuous.?’ But prices can change
dramatically (albeit continuously) because of uncertainty related to supply
shocks. If market makers’ information regarding supply movements is poor
(either because they have none or it is of low precision), then their trading
behavior does little to offset potential large shifts in supply.

If there are hedging demands, then the continuity of prices can break
down. Whether it does depends on the observability of the hedging
demand n(pg). If n(pg) is observable by all agents, then the magnitude of
hedging required to introduce a discontinuity in f{(e) is so large as to be
unrealistic. If, however, n(pg ) is unobservable or observable only to supply-
informed investors, this need not be true. The amount of hedging needed to
induce price jumps falls as the observability of the hedging demand
decreases.

Gennotte and Leland argue that the less observable n(pg) is, the greater is
the volatility of prices as measured by the variance of price changes.?? In this

21. This continuity property is special to this example, as it arises due to the assumptions
of negative exponential utility and normality of random variables. Generally, the correspon-
dence can be very badly behaved. See Jordan and Radner [1982].

22. Note that since this is essentially a one-period model, the only characteristic of price
movements that can be examined is the variance.
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model, the greatest price volatility arises when traders are ignorant of
hedging demands, and this same ignorance can induce jumps in the price
process even at relatively small levels of hedging. Gennotte and Leland
argue that this can cause a “meltdown” of prices consistent with the
market’s behavior on the day of the crash.

One important feature of the model that should be noted, however, is the
critical role played by order observability. In this model, traders do not form
expectations over the size of the hedging component n(pg), but rather they
assume that if they do not explicitly see n(pp), then it simply does not exist.
Consequently, if nt{pp) is unobservable, traders seeing a large net supply
believe it must be due to adverse information on the underlying asset. This
can cause a discontinuity in f{s) as traders adjust their demands based on the
information they extract from the equilibrium price. This information,
however, is incorrect because traders are essentially using the “wrong”
model to explain order flow. Indeed, in this model, it is even possible for
prices to exhibit a “meltup” if demands are unusually positive. Traders thus
no longer behave rationally in that they do not recognize that they are
systematically using the wrong model.

Gennotte and Leland argue that it is this unobservable (and unexpected)
hedging that explains the large price fall in the market crash. While it is
certainly possible that traders do not recognize the existence of hedging
activity in the market, it seems at least as (and perhaps, more) likely that if
traders can form rational expectations with respect to prices, then they can
also do so with respect to order form. Introducing such order expectations,
however, requires a multiperiod rational expectations framework or at least
some mechanism to permit learning on the part of traders. This latter
approach is taken by Jacklin, Kleidon, and Pfleiderer [1992] (JKP).

The JKP model develops the same notion that hedging-based order flow
could account for market behavior, but their analysis explicitly focuses on
the inference problem market participants face in estimating the actual
amount of such hedging. They employ a sequential trade model in which
trades arrive probabilistically and the market maker attempts to infer from
the trades the extent of hedging behavior. This framework is similar to the
approach taken in the Easley and O’Hara paper discussed in the previous
section.

In the JKP model, uncertainty over the hedging amount can result in
market prices being biased upward or downward depending upon the
extent to which the market maker under- or overestimates the actual
hedging in the market. JKP argue that a scenario consistent with the 1987
crash is if the market maker underestimated portfolio insurance, causing
prices before the crash to be too high. The subsequent revelation of the true
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hedging amount then caused market prices to fall to the correct, but
dramatically lower, level.?

One conclusion common to these analyses is that uncertainty over order
flows can have undesirable effects on prices. A similar conclusion led
Grossman [1988] to suggest implementing ‘sunshine” trading procedures in
which uninformed price-contingent orders are revealed to the market prior
to their execution. With sunshine trading, two possible benefits accrue.
First, orders arising from price-contingent trading strategies are identified as
such, thereby removing the possibility that those orders are actually
information-based. This simplifies the inference problem of participants
watching the market, potentially limiting unwanted instability in security
prices. Second, if all market participants are risk averse, then preannouncing
orders may increase the liquidity of the market by inducing more liquidity
providers to enter.

These sunshine trading effects are the focus of research by Admati and
Pfleiderer [1991]. They develop a two-period rational expectations model
involving three types of traders: speculators, announcing liquidity traders,
and nonannouncing liquidity traders. Speculators essentially absorb orders
from liquidity traders and can be thought of as providing a market maker
function. There is a continuum of speculators ¥ € [0, 1] who can choose to
enter the market. Liquidity traders trade an exogenous random amount,
denoted by A for announcers and N for nonannouncers, with variances of a
and n, respectively. ~

In this model, each speculator v receives a private signal, Yy, of the asset’s
value, where ¥, = F + &, is the signal, F is the true value, and &, is an error
term with variance s. Speculators are assumed to be risk averse with
constant absolute risk aversion, and they maximize a negative exponential
utility function. All random variables in the model are assumed to be
independent and normally distributed with mean 0. The variance of F is
normalized to 1, and so the speculators’ prior on F is distributed as N(0, 1).

Because speculators have private information, the equilibrium price may
reflect that information, and traders must have expectations over the form
of the equilibrium price function. Admati and Pfleiderer show that there is
an equilibrium in which prices take the linear form

p =vrF + 744 + N (7.22)

23, An interesting question is whether prices, given that they were too high before the
crash, may have fallen too much. The subsequent partial recovery of the market in the week
after the crash gives some support to this “overreaction” as does the fact that for 1987 as a
whole, the market rose,
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where the coefficients yp, v4, and yy are determined in the equilibrium.

In determining the equilibrium, it is easier to formulate the problem in
the standard rational expectations framework. In particular, the assumptions
of negative exponential utility functions and normality imply that each
speculator v’s demand is given by

E[F|pY,)-P
var[I:" | P, i’v:.

(7.23)

This is the standard demand function derived in the Appendix to Chapter 4.
By now solving the demand under different information sets, the effects of
preannouncement, or sunshine trading, can be determined.

If there is no sunshine trading, there is no preannouncement, and trades
of both announcing and nonannouncing liquidity traders are unknown to
speculators. Using Bayes Rule to calculate the conditional expectation and
variance, each speculator’s demand is then equal to

?v('}) + (%) (%) - 13(1 + % - ’ly), (7.24)
where v = (?Y—%)za + (%)zn. Total speculator demand is then found by

integrating over the set of speculators, which yields

F(i)+P[ ——1] [+1]

Speculators absorb the trades of liquidity traders, and so in equilibrium
supply equals demand, or

(7.25)

- o =7l = |1
A+N_F(;)+P[; [—-—1] [ +1) | (7.26)
Solving for the price yields the coefficient estimates
sta+n)+1
yp= @t n+1) (7.27)

(s> +s)a+n)+1

and



212 MARKET MICROSTRUCTURE THEORY

s(s(a+n)+ 1)
(s2+sHa+n)+1

YA =TIN = (7.28)

Given these equilibrium prices, Admati and Pfleiderer calculate the
expected cost of trading for the liquidity traders. This equals the difference
between the asset’s true value, F, and the price, P, times the number of
shares traded. For nonannouncers, this is simply ynn, and for announcers it
is Y44 (this follows because all random variables in the model have zero
mean, and so the only surviving terms in the trading cost equation are
variances).

If there is preannouncement, then A is known to speculators before
trading and is thus no longer a random variable from their perspective. In
equilibrium, the form of the price equation is unchanged, but the
coefficients differ to reflect the lower variance of liquidity trading (since a is
effectively zero). The equilibrium coefficients thus become

sn+1

£ _ , (7.29)
TE (s> +sm+1

. s(sn + 1)

= 7.30

N (2 +s)n+1" (7.30)

. $%n
Ta = (s2+s)n+1"° (7.31)

where * denotes the equilibrium values with preannouncement.

It is now straightforward for Admati and Pfleiderer to compare equilibria
with and without preannouncement. They demonstrate that trading costs
for announcers fall with sunshine trading, while those for nonannouncers
rise. The overall effect is an improvement in liquidity traders’ utility. For
speculators, the opposite occurs. With preannouncement, prices become
more informative, and this reduces speculators’ ability to benefit from
private information. This decreases speculators’ expected ex ante utility, but
by not as much as the increase in liquidity trader utility. Given a fixed
number of speculators, the overall effect of sunshine trades is an improve-
ment over the outcome when there is no preannouncement.

Because sunshine trades affect speculators’ returns, the assumption of a
fixed number of speculators may be problematic, particularly in ascribing
welfare effects. If the number of speculators were endogenous, then
sunshine trading could change the amount of liquidity by inducing
speculators to enter or leave the market. Indeed, one argument given for
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sunshine trading is that it allows better coordination of the demand and
supply of liquidity, and this seems consistent with changes in the number of
such liquidity providers.

To address this issue, Admati and Pfleiderer endogenize the number of
speculators by assuming that each speculator faces a positive cost b > 0 to
enter the market. This cost is incurred after any preannouncement of
orders. Admati and Pfleiderer, however, now introduce an important
restriction into their analysis by assuming that speculators do not receive
private signals, but function only to provide liquidity to the market. This
changes the problem from one in which information affects trading
decisions (and hence trader welfare) to one in which only liquidity effects
matter. This dictates that the return to being a speculator depends only on
the mean and variance of liquidity trading.

One reason this assumption is important is that it removes any
information aggregation role from prices. Since no one has private
information, prices do not convey information about the underlying asset
value. Consequently, there is no longer any rational expectations equilibri-
um to solve, because the model’s randomness arises solely from exogenously
given liquidity demands. The demand for each speculator becomes simply
—p, and the “supply” curve in this market is the 45-degree line through the
origin.

How much each speculator actually takes, of course, depends on the
number of speculators who enter, which depends in part on whether
sunshine trading is permitted. When all orders are sunshine orders, Admat
and Pfleiderer show that for every b > 0 the expected utility of speculators
is strictly higher with preannouncement. This occurs because sunshine
trading reduces variance, and since speculators are risk averse, this makes
them better off. Note that this is the opposite of the result when speculators
had private information; there, introducing sunshine trades reduced
speculator welfare because it undermined the value of their private
information.

The effect on liquidity traders is more interesting. If entry costs are low,
sunshine trading has no effect on liquidity traders’ expected trading costs
because all speculators are already in the market. If, however, entry costs are
high, the increased speculator welfare arising from sunshine trading induces
more speculators to enter.2 This, in turn, lowers the expected trading costs
of liquidity traders because the greater number of speculators provides more
liquidity. Admati and Pfleiderer argue that entry is positively related to the

24, While the characterization here is imprecisc, Admati and Pfleiderer provide a more
complete determination of the level of these costs in their analysis.



214 MARKET MICROSTRUCTURE THEORY

announcer’s trade size, 4|, and so large sunshine traders benefit more
when trades are revealed to the market than do small sunshine traders (since
their trades induce less entry). -

In this respect, Admati and Pfleiderer’s analysis is related to Rock’s
argument that large traders benefit more from increased liquidity than do
small traders. In both models, the increase in liquidity allows traders to
rebalance portfolios at lower cost. In Rock’s model, this liquidity arose from
risk neutral limit order traders participating in the market, while here
increased entry of risk averse speculators allows for better prices. Both
papers suggest, however, that the liquidity available in the market is
directly affected by the design of the market and the trading mechanism.

In the next chapter, we investigate these liquidity issues in more detail.
Because liquidity provision is an issue both within and across markets, we
consider the interrelationships among markets, and how the linkage of
trading mechanisms affects security prices. In Chapter 9, we return to
market design issues by looking at the effects of market structure on
performance.



8

Liquidity and the Relationships
Between Markets

In the previous chapter, price behavior and even market viability were seen
to depend on the ability of the trading mechanism to match the trading
desires of sellers and buyers. This matching process involves the provision
of liquidity, and as we have seen, this liquidity arises not only from the
market maker, but from other aspects of the trading mechanism as well. In
this chapter, we consider the issue of liquidity in more detail. Because
liquidity may differ both within and across markets, characterizing the
effects of liquidity may give important insights into the behavior of markets
and their interrelationships.

That our discussion should return to liquidity issues reflects the
fundamental role liquidity plays in markets. As discussed in Chapter 2, the
early work in market microstructure viewed providing liquidity as the
primary role of the market maker. More recently, researchers have
examined liquidity-related issues in myriad settings, and hence our
discussion, of necessity, considers only a few of these many applications.
Unlike the earlier work, much of this recent research has highlighted the
linkages that liquidity introduces between markets, and it is this dimension
of liquidity with which we will be most concerned.

Because liquidity, like pornography, is easily recognized but not so easily
defined, we begin our analysis with a discussion of what liquidity means in
an economic sense. We then consider the implications of liquidity for
market structure, and in particular, we consider both how the fragmenta-
tion of trading across markets and the scale of trading affect market viability
and performance. Because trading mechanisms may differ in their provision
of liquidity, we next examine an alternative trading mechanism, the
“upstairs market,” and investigate how it provides liquidity for large block
trades. Our focus here is on understanding why the market for blocks
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differs from standard trading, and how it is that the block trader adds value
for large trades.

We conclude this chapter by considering how the ability to trade in
derivative instruments affects price behavior. The development of basket
securities and stock index futures and options, as well as the extensive
markets in equity options, allows traders to transact virtually identical
instruments in multiple markets. We examine how this influences the
liquidity of the respective markets, as well as the effects of market
interrelations on market structure and performance.

8.1 THE NATURE OF LIQUIDITY

Liquidity has long been recognized as an important determinant of market
behavior. While it is common today to ascribe only beneficial properties to
liquidity, such a view was not always held. Keynes, for example, fulminated
that:

Of the maxims of orthodox finance, none, surely, is more anti-social
than the fetish of liquidity, the doctrine that it is a positive virtue on
the part of investment institutions to concentrate their resources on the
holding of “liquid” securities.!

This view reflects the usually unseen ‘“dark side” of liquidity. While
liquidity, or the ability to trade essentially costlessly, may benefit the
individual, it may impose costs on the market by allowing, or even
encouraging, the flight of investors. As discussed in the previous chapter,
this creates stability problems for established markets and introduces
difficulties for beginning ones. We consider these market issues more fully
later in this chapter.

Nonetheless, it is the case that individual investors benefit from liquidity.
Liquid markets are generally viewed as those which accommodate trading
with the least effect on price. What this means exactly in a formal sense,
however, is less clear. For example, in the Kyle model, A is a measure of
liquidity, where A measures the order flow needed to move prices one unit.
Yet viewing aggregated order flow may provide a very different view of
liquidity than faces any individual trader. From this perspective, perhaps a
better measure of liquidity is the bid-ask spread, with markets having small
spreads being the most liquid. As we discussed in Chapters 3 and 6,
however, there may not be a single spread; if price varies with trade size,

1. See Keynes [1936], p. 155.
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the spread for large trades may be significantly larger than the small trade
spread. In this case, how does one compare the liquidity of markets?

Moreover, some might argue that spread effects are not the relevant
measure of liquidity in any case. In liquid markets, it should be possible to
trade, if not continuously, then at least with some frequency without
unduly affecting prices. If prices move after trades, then these price
revisions may provide a more accurate reflection of the “costs” of trading
(or illiquidity) than do bid and ask prices.? This view of liquidity involves a
time series dimension quite distinct from the cross-sectional properties
normally associated with the spread.

This is the focus of Grossman and Miller’s [1988] analysis of liquidity.
Their focus is on the role of liquidity as the price of immediacy, or
essentially the notion that a trader willing to delay transacting commands a
“better” price than one who demands immediate execution. Hence, just as
limit order traders could, by waiting, trade at more favorable prices, market
order traders accept less favorable prices for the benefit of transacting now
rather than later. This time dimension suggests that the intertemporal
movement of price is the fundamental measure of liquidity.

To develop this concept of liquidity, Grossman and Miller consider a
three-period model in which trade occurs in periods 1 and 2 and the asset
liquidates in period 3. A crucial characteristic of this model is that there is
no private information. What motivates trade is portfolio rebalancing
induced by exogenously given liquidity shocks. Moreover, there is no
formal specialist in their framework, but rather a group of speculators who
are willing, for a price, to hold unbalanced inventory positions. Since it is
this inventory imbalance that determines prices, this model is essentially a
multiperiod inventory model much like those analyzed in Chapter 2.

In the model, there is a risk-free asset (cash) and a risky asset, whose
terminal price in period 3 is given by the random variable P3. There are two
types of traders: outside customers and multiple market makers. Market
makers function as speculators rather than specialists in that they take
positions in the risky asset but do not quote bid and ask prices. Because
there is no private information, the outside traders fill the role of liquidity
(or noise) traders. There is assumed to be a liquidity shock, i, at time 1 and
an equal, offsetting shock of —i at time 2. This liquidity shock captures the
notion that anyone desiring to trade at time 1 faces an imbalance of buys
versus sales, but that waiting (in this case, one period) allows time for orders
on the opposite side of the market to arrive.

2. Recall that in Chapter 6 we investigated whether there might be a trade-off between
small spreads and the speed (and hence the size} of price adjustment. This dichotomy suggests
that defining liquid markets is not so easily accomplished.
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Grossman and Miller analyze the standard example in which all market
participants maximize the same negative exponential utility function and all
random variables are independent and normally distributed. They consider
several variants of the model depending upon whether the setting analyzed
is a futures market or an equity market. Rather than consider these specific
applications, we consider a simplified version that captures the model’s
intuition.

Suppose there are two outside traders, one of whom receives an
endowment or liquidity shock of i at time 1, and the other who receives an
endowment shock of —i at time 2. That such endowment, or liquidity,
shocks should be perfectly negatively serially correlated is not an obvious
(or potentially even a reasonable) assumption. Grossman and Miller,
however, use this construction to capture the notion that at times order
imbalances may arise that, while evening out across time, impose costs on
the market when they occur. Consequently, if traders insist on trading
rather than waiting, price effects may arise. Let x; denote the number of
units of the asset owned by a trader after trade at time ¢, and let B, be that
trader’s holding of cash.

The problem for the outside trader who receives the endowment shock at
time 1 is to maximize his expected terminal wealth, where this is given by

EU(W3), (8.1)
subject to

W3 = By + x,P3, (8.2)

Pyxp + By = Wy = By + Poxg (8.3)

Pix; + By = Wy = Byi + W, (8.4)

In these equations, i represents the initial endowment of the asset and W
represents other wealth. The problem for the outside trader receiving the
liquidity shock at time 2 is similar and is modified in the obvious way.
Because this is a multiperiod problem, the solution to (8.1) requires using
dynamic programming. Thus, the problem is solved by working backward
from the period 2 solution to the period 1 optimal decision. We first
consider the time 2 decision problem of the outside trader. The outside
trader’s period 2 problem is to maximize his expected utility by selecting his
optimal holding of the risky asset, denoted x70. This problem is

max E»p U(W2 + 133x2 — szg), (8.5)
x2
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where E; is the expectations operator at time 2.

As we have seen before, the assumptions of exponential utility and
normality of random variables result in the outside trader’s gross demand
for the risky asset, x20, in period 2 having the standard form

%3 = EoPy —Pa
a var E;P3 (8.6)
where a represents the risk aversion coefficient common to all traders.
Notice that the demand does not depend upon the trader’s wealth; nor does
it depend upon his endowment. Indeed, given the assumptions of negative
exponential utility and normally distributed random variables, gross
demands of the risky asset will always have this nondependence property.
In addition to the outside trader with the liquidity shock at time 1, there
are also speculators, or market makers, who are identical to the outside
customer. In period 2, each speculator maximizes his expected utility by
selecting his demand for the risky asset, denoted xm, and this results in the
same demand function as in (8.6). As there are M speculators, their total
demand is given by

MxP = mE2Ps — P2

4 var E2P3 (8-7)
Finally, there is also the outside customer who receives the offsetting
liquidity shock at time 2. His demand for the asset is identical to that given
in equation (8.6). Market clearing at time 2 must result in the demand from
the outside customer arriving at time 1, the demand from the outside
customer arriving at time 2, and the market makers’ demands equaling the
available supply, or

E,P3— P Py — E,P3— P
A_:%_,,MEZ% 132+ 273" "2 _i4_i=0. (8.8)
a var EpPs a var EoP3  a var EoPs

Since in equilibrium E;P3 = P, substituting this into (8.8) reveals that at
time 2 the market maker’s demand is zero.

Now consider the period 1 problem. The maximization problem for the
outside trader arriving at time 1 is

max E1U(W1 + f’3x1 - Plxl). (8.9)
X1
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Again, outside customer demand is given by

. E [132] —py

1= vary (5,2) ’ (8.10)
which can be reexpressed as
2 = El[f’z] — Py _ 51[52(133)] —Py 51[133] - Py .11

avary(P2)  avary[Ep(By)]  avary [Eo(Bs)]]

The equilibrium at time 1 is simpler than at time 2 as there are only the
time 1 outside customer and the market makers in the model. Market
clearing requires that customer demand plus speculator demand equals the
available supply, which at time 1 is simply i. In equilibrium, therefore,

E(P3 - Py M E P; - P,

@ vary [Ez (ﬁ:&)] a vary [EZ (133)] = 1, (8.12)

or more simply,

E1P; - Py i

a var [Ez(f)3)] T+ M (8.13)

In this model, prices change between periods 1 and 2 solely because of the
supply, or liquidity shocks, in each period. In period 1, customers demand
liquidity, which is provided by speculators willing to buy at price py. In
period 2, this imbalance is reversed, and so the change in price between
periods can be thought of as the return to a speculator for providing
liquidity. Let r = p2/py — 1 denote this return; equation (8.13) can be
rewritten as

E(r) = 4 a ).
O=1rme =0 - (8.14)
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Thus, a speculator’s return depends on the price movement, the total
number of speculators, and the common risk aversion coefficient. This
‘dependence on the risk aversion coefficient reveals an important feature of
this-model. If speculators were risk neutral, any role for liquidity-induced
_price . changes disappears, as prices would be constant across periods.
‘Moreover, notice that the first term ip1/(1 + M) in the return equation is
simply each speculator’s inventory position. Hence, as would be expected in
a mean-variance world, the return to each speculator is just the value of the
‘inventory times the variance.

In this model, therefore, liquidity arises because speculators absorb the
excess demand in exchange for compensation given by the price change
between periods. This captures the notion of liquidity as the “price of
immediacy” in that traders wishing to trade now pay a cost relative to
simply waiting to trade next period. How high this price of liquidity is
depends on the factors noted earlier, as well as on the number of
speculators. Since speculators earn positive returns, the equilibrium number
of speculators is an important consideration. Grossman and Miller allow
this to be determined endogenously by assuming there is a cost, ¢, to being a
speculator. The equilibrium number of speculators then depends on the
cost, the risk aversion coefficient, and the variances of prices and
endowments.

The number of speculators, in turn, determines how much of the
underlying liquidity shock is absorbed by speculators immediately in period
1, and how much is absorbed by traders simply waiting until period 2 to
transact. In particular, it follows that

i
1+M’

3] o
X2 — X

(8.15)

and so the larger M is, the more liquidity is provided in peniod 1, and the
larger the fraction of overall liquidity provided by the speculators is. As
Grossman and Miller note, when M is large, more of desired trading can be
accommodated in period 1, and the market is thercfore liquid.

This view of liquidity is thus very basic. The greater the number of
speculators willing to provide immediacy, the greater the liquidity of the
market. Since the return to speculators increases in the price variance,
markets with greater volatility will have more speculators, but they in turn
require a higher return to compensate them for the greater risk. Liquidity
can be enhanced in a market by improving the return to speculators (and
thereby inducing more to enter) or by increasing their risk-bearing ability.
Liquidity arises in this market simply because some traders are willing for a
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price to hold suboptimal portfolios, a view reminiscent of the approach in
Stoll’s [1980] model of the market maker.

There are, however, some important properties of this equilibrium to
note.? First, in the absence of an assumed cost to being a speculator, there is
no endogenous solution to the number of speculators. As ¢ goes to zero, M
goes to infinity, and the market becomes infinitely liquid. As M increases,
however, the return to being a speculator falls, and so it is not clear that
such an equilibrium could exist. With costs exogenous to the model, it is
not entirely clear what determines the equilibrium provision of liquidity in
a market.

If, as seems sensible, there are costs to being a market maker, then surely
these should include the losses to traders with better information. This
dimension of the problem is not captured here because there is no
asymmetric information, and thus no real risk to providing liquidity today.
If, however, the asset price tomorrow depended on more than just liquidity
shocks, then the decision to provide liquidity becomes simply the
counterpart of the “free option” problem discussed in the previous chapter.
As we have seen, the solution in this case need not be straightforward.

A related difficulty is that since the number of speculators and their risk
averston affect price behavior, there would seem to be a natural advantage
to a specialist incorporating and thereby spreading his risk. On some
markets this may be accurate, but on others, for example the NYSE, such
corporate market making is not observed, leading to doubts that a risk
aversion explanation is a major factor of liquidity provision there. Finally,
there are also the trading mechanism issues introduced in the previous
chapter to consider. Since the form of the trading mechanism can affect
both the composition of trades and the intertemporal behavior of prices,
liquidity might also naturally depend on how the market is structured.

These structure issues have been developed by researchers in two
different directions. Several researchers have investigated how liquidity
arises endogenously in markets. This research, which we address in the next
section, argues that since liquidity depends on the number of traders, and
the number of traders depends on the liquidity, there is a circularity to the
provision of liquidity that has important implications for the performance
of markets. A second direction researchers have pursued is that liquidity
concerns may dictate the emergence of entirely different trading structures.
In many European markets (for example, Italy and Germany), trading takes
place via “parallel” markets where banks and other participants directly
intermediate trades though organized exchanges also exist. Large blocks of

3. A discussion of these issucs is given by Whitcomb [1988].
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stock also commonly trade in the “upstairs market,” a trading mechanism
employing the services of an intermediary known as a block trader. Since
the block trader prearranges trades, this mechanism entails a very different
structure than exchange trading, and how it functions has been investigated
by several researchers. We discuss this research later in this chapter.

8.2 ENDOGENOUS LIQUIDITY AND MARKET
PERFORMANCE

If liquidity is affected by the number of traders in a market, then the scale of
trading may affect market performance. In particular, if prices are “better”
in' more liquid markets, there should be a natural incentive for traders to
converge on one market rather than split their trades across markets. In
actual markets, such convergence or consolidation of trades is often
observed, but it is also true that multiple markets trading the same security
exist (and thrive) as well. This duality suggests that how liquidity affects
investor behavior, and market behavior, need not be straightforward.

In the previous section we considered the role of liquidity in an
intertemporal setting where traders could choose to transact now or to wait
for additional liquidity to arise in the future. An alternative view of
liquidity is more “cross-sectional” in that traders can choose to trade in
markets that have more traders or in ones that have fewer traders. In this
interpretation, liquidity is not a measure of the cost of waiting, but rather is
a function of the scale of trading, and liquidity arises endogenously as a
result of individual traders’ decisions where to trade.

Such a cross-sectional approach to liquidity is developed by Pagano
[1989a]. Pagano considers whether multiple markets can exist given that
liquidity is an increasing function of scale. As in Grossman and Miller,
Pagano’s model includes only liquidity trading and completely abstracts
from asymmetric information considerations. What his model does focus
on is the role of traders’ expectations of other traders’ actions in affecting
market behavior.

Pagano considers a simple two-period model in which risk averse traders
trade a risky asset in one or more markets. The asset is assumed to pay a
random dividend d, where d is distributed as N(u, 62}, and all traders have
the same information regarding the asset’s payoff. There are no market
makers in this model, nor are there speculators who for a price are willing
to provide liquidity. Instead, what motivates trading is that each trader
receives a random endowment shock, kg;, where kg;=k ¢ + ¢; and the ¢; are
independent and normally distributed as N(0, o,2). With some traders
holding too much of the asset and others too little, trade arises to rebalance
portfolios, and the market price is simply that which clears demands.
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Each investor chooses his asset demand to maximize a mean-variance
utility function of the form

E(U;) = E(iy;) - (b / 2)var(ﬁzl,-), (8.16)

where #1; =dK; + R [wo; + p (Ko; — Kj)], b reflects the risk aversion
coefficient, R is the risk-free rate, wg; is i’s initial wealth, and Kg; is the
amount of the risky asset held by i. In this model, each trader recognizes
that this demand affects the market price. In forming his demand, each
trader must conjecture what other traders will demand and then choose his
own trade to maximize his utility. This approach is similar to that of Kyle
[1989] in that traders essentially maximize against the market’s residual
demand curve rather than simply take prices as given.

Pagano demonstrates that expected utility is affected by the number of
traders in the market in two ways. First, as the number of traders N is
increased, the volatility in the average endowment (02/N) falls. This
reduced variance lowers the volatility of the market price, which perhaps
surprisingly, also lowers traders’ expected utility.* What generates this
lower utility is that, because traders take account of the effect of trades on
market prices, they act as speculators rather than as inelastic noise traders.
This speculative value of the market is increasing in variance, and its
reduction lowers traders’ expected utility.

Increasing the number of traders induces a second, positive, effect on
traders’ utilities through its effect on the mean price. As N increases, the
elasticity of the market price with respect to the demand of trader i
decreases, meaning that the trader gets a “better” price for his trade. This
change in price with respect to order flow is similar to Kyle’s A and captures
the liquidity value of being able to trade larger amounts without moving
prices. The larger N is, the greater this liquidity value, and so the higher
the trader’s expected utility from trading in the market.

Suppose now that a trader can choose between alternative markets in
which to transact. Since the number of traders in a market affects the
trader’s expected utility, where other traders are expected to trade becomes
important. In an equilibrium, each trader’s expectations regarding the
location of other traders must be correct. Let N4 and Ny denote the number
of agents expected to trade in markets A and B, respectively, and let the

4. This result also reflects the well-known property that indirect utility functions are
concave in quantities but convex in prices. Thus agents in general seek out price risk, but
avoid quantity risks.



Liquidity and the Relationships Between Markets 225

endowment variances of traders in those markets be denoted ¢ 42and og2.
Pagano defines a two-market conjectural equilibrium (TMCE) to be one in
which the conjectures of agents about the number of agents (N4, Np) and
the variances (0642, opg2) are correct.

Now the question becomes, where will traders choose to transact?
Pagano argues that in the absence of transaction costs, there is trading in
both markets in the knife-edge case that markets are identical. In this case,
if traders conjecture that equal numbers of traders transact in A and B, then
both markets behave identically, and traders are indifferent between trading
in one or the other. If traders conjecture different numbers, then the larger
market dominates, as all traders choose that market. Moreover, if markets
are not identical to begin with, it is always the case that one market
dominates. Thus Pagano argues that a two-market equilibrium is possible,
but unlikely.

But can such an equilibrium actually exist? The answer depends, in part,
on the equilibrium concept applied. If we consider Nash equilibrium and
traders are constrained to follow pure strategies, then even the knife-edge
case cannot be an equilibrium. The reason is that the trader takes account of
how his trades affect the market, and this causes the two-market
equilibrium to collapse. To see why, suppose that a trader expects equal
numbers of traders in each market. In a2 Nash equilibrium the trader takes
the actions of others as given in forming his decision. So, he will choose
one market or the other, resulting in an uneven number in the two markets.
If this is the case, however, then all traders will choose one market, and the
two-market equilibrium cannot exist.

Suppose, instead, that the trader expects N — 1 traders in market A and N
traders in market B. Now if the trader chooses market A, there will be an
equal number of traders in the two markets. If, however, he chooses B, that
market will have two more traders than A, resulting in a more liquid, and
hence, better market in which to trade. Thus, the trader selects market B,
and again the two-market equilibrium cannot exist.

If traders can use mixed strategies, however, then the two-market
outcome is at least feasible. With mixed strategies, a trader has a probability
of choosing one market or the other. For simplicity, let this probability be
one-half, so that a trader is equally likely to trade in either market A or
market B. Now if the expected number of traders is the same in both
markets, then a trader deciding where to trade is also equally likely to go to
either market, leaving the expected number of traders equal in each market.
In this case, the two-market equilibrium could prevail. In general, however,
a two-market equilibrium will not typically exist, and traders concentrate
their trades in one market.
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Suppose, however, that impediments to trade exist in the form of
differential transaction costs. In this case, whether both markets exist
depends on the underlying market endowment variance and transaction
costs. In particular, for two markets to exist, the endowment variances of
traders in each market must differ. If N4 = Ngbut cfﬁ # a%, then the two
markets differ only in their speculative value. If the transaction cost
differential between the markets is sufficient to offset this, then both
markets can exist. Alternatively, if both size and variance differ between
markets, then two markets can exist for a range of transaction costs
provided that the larger endowment variance market is also larger in size.

One way to interpret this latter result is that for some traders the ability
to trade in a deeper but expensive market is dominated by the ability to
trade in a less expensive but relatively illiquid market. For small trades,
liquidity may be relatively unimportant, and so this divergence is most
likely to arise with respect to large trades. In markets with low endowment
variances, the amount of any individual trade may be small, resulting in the
negative effects of transaction costs dominating the positive benefits of
liquidity. Conversely, with large endowment variances, larger trades occur
and the greater depth of a liquid market becomes more important. Such a
dichotomy between markets for large and small trades is consistent with the
structure found in actual markets, where large trades clear via a block-
trading mechanism while small trades clear via a broker or specialist
mechanism. We return to this issue in more detail in the next section.

If two markets do exist, Pagano demonstrates that their continued
existence is not guaranteed. Since differences in liquidity across markets
depend crucially upon the conjectures traders make about the location of
other traders, any equilibrium with two markets similarly depends on such
conjectures. As noted in Chapter 5, the equilibrium in such strategic models
is not robust, in the sense that any variation in conjectures can result in a
wide range of equilibrium outcomes. Not unexpectedly, in this setting any
belief that traders will shift out of a market can cause all other traders to
leave as well. This suggests that while multiple markets can exist at any
point in time, the beneficial relation of scale on liquidity introduces
incentives for markets to consolidate over time.

This welfare-improving liquidity effect raises the interesting specter that
tradets may be “better off” if trading were organized in a single setting
rather than allowed to fragment across different markets. In the previous
chapter we saw that a monopolistic price-setting mechanism could improve
traders’ utilities when asymmetric information problems were severe. Here
there are no information considerations, but because trades are portfolio-
based, the consolidation of trading may lead to more desirable trading
prices. For all traders, the increased liquidity arising from scale is a benefit,



Liquidity and the Relationships Between Markets 227

but the consolidation of trading also increases or decreases the speculative
value of a market, causing some traders to be disadvantaged by a single
trading venue. Pagano demonstrates that, in general, the positive effects of
liquidity are sufficient to offset any negative speculative effects. This
suggest that liquidity considerations add another benefit to our previous
discussion of the role of a monopolistic (or single) market-clearing
structure. The issue of fragmentation versus consolidation is considered in
more detail in Chapter 9.

In Pagano’s analysis, therefore, liquidity differences between markets can
arise and persist as a result of underlying differences in traders’ transaction
(or portfolio) needs and the existence of exogenous transactions costs. We
stress, however, this model’s assumed absence of any information-based
reasons for trading. If traders possess such asymmetric information and can
act strategically, then the differential effects of liquidity become problemat-
ic. Indeed, as Kyle [1985] demonstrated, an informed trader would be
expected to choose his trade quantity based in part on the liquidity of the
market. Consequently, if liquidity increased in a market, the informed
trader would similarly increase his share of the expected trading volume to
offset any beneficial effects on prices. This would result in no liquidity
differences being able to persist across markets.

How liquidity affects market performance in the presence of asymmetric
information is thus not apparent. If there are multiple informed traders, for
example, then, as Kyle [1984] and Admati and Pfleiderer [1988] demon-
strated, competition among informed traders in order quantities may cause
prices (and, potentially, liquidity} to differ. Moreover, Admati and
Pfleiderer’s [1988] trade concentration results suggest that liquidity traders
naturally clump together to escape the effects of informed traders. If this is
the case across markets, then important liquidity differences could arise
because of the number of traders and not merely their trading intensity.

This cross-sectional issue is the focus of research by Chowdhry and
Nanda [1991] They consider a question similar to that originally posed by
Admati and Pfleiderer [1988], namely, how does the ability to choose
where to trade affect the functioning and liquidity of the market when
some traders have superior information? Using a model closely related to
that of Admati and Pfleiderer, Chowdhry and Nanda consider a market
with informed traders, large discretionary liquidity traders, and small
liquidity traders. Trade occurs simultaneously in multiple markets, and all
traders except small liquidity traders are permitted to trade in more than
one market. Because of differences in trader behavior, and trading rules and
mechanisms, prices can differ between markets. This allows Chowdhry and
Nanda to investigate some interesting issues related to the effects of insider

trading on liquidity.
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Their analysis employs a Kyle model in which informed traders learn the
asset’s value, a2 random variable ¢, Informed traders are assumed to trade in
each of the N markets, and so their decision problem is to choose their
order quantity in each market. The size of total liquidity trade is assumed
exogenous in the model, with large traders assumed to trade a quantity d
and small traders to trade #. Small traders trade in an assigned market, but
large traders can split their trades across multiple markets if they desire. All
random variables are mdcpcndcntly distributed with ¢ distributed as N(0,

a2), d distributed as N(0, o 2) and # distributed as N(0,02). Denote by x;
the informed traders’ optlmal order in market 1 and by d; the large
uninformed traders order in market i, where 3.V, d; = d.

In each market there are competitive, risk neutral ma.rkct makers who
earn zero expected profit on trades. The market makers are assumed to
announce a price schedule based on the net order flow in that market. This
order flow in market i is given by x;+d; + u;. Chowdhry and Nanda first
consider the case where there is only one trading period and neither traders
nor market makers observe behavior in any other market. As in Kyle,
traders conjecture that the market maker in each market i uses a linear
pricing rule of the form

pi = po + Alx; + u; + dy), (8.17)

where p ¢ is the unconditional value of the asset before trading begins. This
pricing rule results in market makers setting trading prices equal to
conditional expected values given the order flow in that market. In an
equilibrium, this will be the pricing rule used, and traders’ conjectures will
be correct. Note that, unlike in the Pagano model where the existence of
multiple markets is a knife-edge result, the assumption that small traders
exist in every market dictates that multiple markets always exist. Hence,
since there will be order flow in every market, there will also be a price in
every market, and by assumption, that price cannot depend upon the order
flow in any other market.

Because large traders can choose to split their exogenously given trade
quantity, their decision problem involves allocating their trades across
markets. These traders are assumed to minimize the total cost of trading
(measured by the price effects of trade, ), and so the large uninformed
trader solves the decision problem

{dmm ZE[JA (x + u; +d)] (8.18)
i=1 j—1



Liquidity and the Relationships Between Markets 229

subject to

N
Y di=d (8.19)

i=1

The large uninformed trader’s decision depends on the informed trader’s
optimal order quantity because it affects the net order flow, which in turn
affects the trading price.

Given these assumptions, the solution to the uninformed traders problem

is given by

&t =kid + %(k,- -~ 1)% E[x;f(v)], (8.20)
i
where
k; = —ff,‘-l—c; vi, (8.21)
and
“= 5%\“, (8.22)

The solution to the uninformed traders’ decision includes the expected
trading behavior of the informed traders since this influences the expected
price in each market. Consequently, to characterize the uninformed’s
solution, we need determine how informed traders choose to allocate their
trades.

The informed trader solves a more complicated decision problem in that
he selects both the size and location of his trades. This maximization
problem is given by

{x,}l_ ZE["’{ (x? +u;i + d:’) }] (8.23)

1 =1
where the optimal solution is given by

x; = ¢iv, Vi (8.24)



230 MARKET MICROSTRUCTURE THEORY

Since # is distributed as N(0, 6,2), it follows that Efx;*(v)] = 0Vi, or that the
expected informed trade quantity in any market is zero. This parsimonious
solution to the informed traders’ problem allows the uninformed’s solution
in equation (8.22) to simplify to d;" = k;d, or the uninformed trader simply
divides up his trades on the basis of the relative price effects his order
induces in each market.

Because the informed traders’ strategies are again linear in the value of
the asset, the equilibrium pricing rule followed by the market maker is the
conjectured linear rule, and agents’ expectations are rational. An intriguing
property of this equilibrium is that the informed trader’s orders across
markets are perfectly correlated and so, too, are the orders of the large
uninformed traders. This can be seen by looking at the correlation
coefficient, p, between the total order flow in any two markets:

2
. 1 o
p(x’f + u; + k,‘d, xF + uj + k}d) =—|1+ ;%] . (8.25)

2
Since p depends only on the variance of the large uninformed trades to the
total trading by uninformed traders, the trades of informed traders cannot
differ between markets. This can only be true if the informed trades are
identically correlated across markets. Large uninformed trades are also
perfectly correlated, as the uninformed split their trades across markets to
minimize their effect on order flow. If there are only large uninformed
traders, the ratio of variances equals one and so, too, does the correlation
coefficient; in this case markets become essentially identical, as both
informed and uninformed traders submit the same orders (albeit different
from each other) in every market.

Given this trading behavior, the price in each market reveals some of the
informed trader’s information. If traders can observe all prices, then they
can infer the total order flow and can potentially impute the informed
trader’s information. Recall from Chapter 4 that in the single-period Kyle
model, the informed trader’s optimal trade resulted in the variance of the
posterior distribution of the asset’s value being half its original variance. In
this sense, Kyle argued, half of the informed trader’s information is revealed
by trading. In this setting, a similar effect occurs, although the fall in the
variance need not be one-half. Chowdhry and Nanda demonstrate that if
traders can observe all trading prices, then the informativeness of prices is
given by
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o — var[i} l {P,‘ —Po}il] _ N
o2 (N+1)+ [ag/az](N—n’

(8.26)

where informativeness is measured by the variance of the price change over
the asset value’s variance. If the number of markets N = 1, then, as
expected, we get the Kyle solution, ¥ = 1/2. Notice also that if there are
only large uninformed traders, then, regardless of N, ¥ also equals 1/2.
The more interesting case is when there are both multiple markets and
small nondiscretionary traders. Then W can exceed 1/2, as the informed
essentially trade to reveal more of their information. As the number of
markets increases, informativeness also increases, and in the limit as N goes
to infinity, all information is revealed.

What provides for this difference in information revelation across
markets is the fixed behavior of small uninformed traders. Since they are
unable to move, their trades across markets are not perfectly correlated, and
this allows the informed to trade more aggressively in each market. If small
traders could choose where to trade, however, then the behavior of markets
could be very different than that predicted here. Chowdhry and Nanda do
not allow this flexibility, but they do consider a simpler extension in which
some small traders can select a market in which to trade. These traders are
not allowed to split their trades across markets, and some small traders are
assumed to remain in every market.> Since trading costs are decreasing in A,
the small discretionary traders select the lowest A market in which to
transact. Of course, if all small traders converge on a specific market, then it
will indeed be possible to offer the lowest A as that market now has the
greatest liquidity.

Suppose, however, that all traders (small, large, and informed) could
choose their trading venue. If their scale is large enough, then it is likely in
this model that all trade collapses into 2 single locale, and the issue of where
to trade becomes moot. This highlights the difficulties, noted also in
Chapter 5, of analyzing discretionary behavior when traders choose
strategically where to transact. If there are impediments to traders’ mobility
that favor certain market settings, then such markets would be likely
remain active, and liquidity would be large. Without such impediments,
the beneficial effects of liquidity may implode trading into a single setting.

5. Their argument is that since they trade small amounts, it does not make sense to split
the order across markets. This assumption, however, is not innocuous. If such splitting did
occur, then most of the results of the model similarly disappear.
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An implication of both this and the Pagano papers is that increased
liquidity benefits uninformed traders. Interestingly, this may not be the case
for the informed traders, as their trading behavior may be less when orders
are consolidated than when they are fragmented. This suggests that factors
favoring uninformed trading can increase not only the liquidity of a market
but its viability as well.

Chowdhry and Nanda use such an argument to explain why curbs on
insider trading or more complete order form information revelation by the
market maker may be preferred in securities markets. Since order form in
each market is correlated with the informed traders’ information, knowing
each market’s trade price reveals information. They provide the nice result
that a market maker who reveals his trading prices to the market can set
better prices than a market maker who does not. This occurs because
informed traders prefer not to trade in such a market since it reduces their
informational advantage, and with fewer informed traders, prices can
indeed be better. Of course, if one market maker sets better prices by
revealing, then all market makers must similarly reveal price information to
remain competitive. The effects of trader choice on market liquidity thus
improve uninformed trader utility.

This has the intriguing implication that, because of liquidity concerns,
markets naturally gravitate toward equilibria with “stricter” behavioral
bounds. In particular, markets with stricter information revelation require-
ments or more stringent rules governing trading practices will prevail over
markets with laxer requirements. This issue has been a subject of extensive
policy interest, particularly with respect to listing requirements. Because
the NYSE in particular, and US markets in general, require greater
disclosure from listing companies, there has been concern that trading
would gravitate to markets without such requirements. At least in the
market structure considered by Chowdhry and Nanda, this is not a
legitimate concern, suggesting that the benefits of liquidity endogenously
enforce the efficient working of the market.

Our discussion of liquidity suggests that securities markets may have an
inherent disposition toward being natural monopolies. Because scale
increases liquidity, and liquidity benefits uninformed traders, one might
expect markets to function best when trading is consolidated. The models
of liquidity we have examined, however, all employ the abstraction of a call
market clearing mechanism. In actual markets with continuous trading, the
role of liquidity takes on greater complexity, in part because it entails both

6. This result, however, is heavily dependent on the restrictions of the model. A general
resule of this nature seems likely, but not certain.
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cross-sectional and intertemporal dimensions. One area where this issue
arises is with respect to block trades. While some large trades are cleared
directly by the specialist, it is also common for large trades to involve the
services of a different intermediary, a block trader. In the next section, we
investigate why such an alternative trading mechanism exists, and how it
affects the behavior of security prices and markets.

8.3 BLOCK TRADES AND ALTERNATIVE TRADING
MECHANISMS

A surprising statistic to many market observers is that slightly more than 50
percent (50.7 percent, to be exact) of total volume on the New York Stock
Exchange is accounted for by block trades.” These large transactions
(defined as trades of 10,000 shares or more) have a number of features that
have long intrigued researchers. For example, Kraus and Stoll {1972] noted
that “blocks are sold not bought,” recognizing an asymmetry in how block
orders are actively submitted to the market. Dann, Mayers, and Raab [1977]
and Holthausen, Leftwich, and Mayers [1987] showed that blocks tend to
have predictable price effects in that blocks trade at “worse” prices.
Moreover, prices following such trades only partially recover to their pre-
trade level. This price behavior was examined theoretically by Easley and
O’Hara [1987a] in their investigation of the price-trade size information
linkage (see Chapter 3), and more recently in empirical work by Keim and
Madhavan [1993].

An aspect of block trades germane for our discussion is that they often
involve a different trading mechanism. Many block trades use the services
of a block trader, or “upstairs market maker,” who forms a syndicate of
buyers to take the other side of the trade. In 1992, for example, this was the
trading mechanism used for 27 percent of blocks. This syndication feature
is a significant departure from the specialist mechanism considered thus far.
Block trading also differs from more standard trades in that the identity of
the seller is known to the block trader. Hence, the anonymity of trading
characterizing exchange transactions is not typically found in block trades.

Why blocks trade through this alternative mechanism is an interesting
question. One possible answer is that the large size of such transactions is
beyond the risk-bearing capacity of the specialist. Since exchange rules
prohibit the specialist from soliciting trades, a large block sale may require
the market maker to hold a unbalanced position for the time it takes for
offsetting orders to arrive. In markets in which the daily average volume is

7. Data are for 1992 and arc taken from the New York Stock Exchange Fact Book, 1992, p.
15.
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small, this could entail considerable inventory risk and would impel the
specialist to set a low price. A related difficulty is the size of the specialist’s
capital, since taking a large position could reduce his ability to meet normal
trading demands. Another possible explanation for a separate mechanism is
the information problem inherent in large trades. If market participants
interpret trade size as a signal of information, then a large seller may prefer
some other trading approach than simply submitting a large order to the
market maker. The lack of anonymity in upstairs transactions may be useful
in this regard. |

These issues have been the focus of research by Burdett and O’Hara
[1987], Seppi [1990, 1992}, and Grossman [1990]. Burdett and O’Hara
consider the syndication strategy of the block trader, while Seppi focuses on
the role played by the lack of anonymity in affecting a trader’s dynamic
trading strategy. Grossman considers the informational advantage an
“upstairs market maker” has relative to an exchange specialist. As each of
these papers examines different aspects of the block trading mechanism, it is
useful to consider them in more detail.

Burdett and O’Hara analyze the syndication process in block trading and,
in particular, analyze the problem of forming a syndicate of buyers when
the syndication effort itself may affect the block price. This problem arises
because block trades have predictable price effects in that block sales go
through at ‘worse” prices. Other traders, learning of an impending block,
have an incentive to short the stock and simultaneously enter limit buy
orders. This selling pressure can cause the stock price to fall in anticipation
of the actual trade. Since blocks must be cleared on the floor of the
exchange and any qualifying orders on the book must be included when the
block is cleared, traders pursuing this strategy can cover their short
positions with a profit. For the block trader, therefore, the challenge is to
form a syndicate without inducing such “free-riding” price effects.

This strategic behavior on the part of other market participants
introduces a new dimension into the trading behavior previously analyzed.
Here, the uninformed act as quasi-arbitrageurs in that they take advantage
of the predictable short-run divergence of price surrounding block trades.?
What makes this particularly interesting is that their strategy, in turn,
exacerbates the price drop surrounding the trade. For the block trader, this

8. In a true arbitrage, the position taken is risk-free. Here there is some risk because the
trade may be withdrawn before execution or the block trader may buy the entire order for his
own account. The expected profit on this strategy, however, is clearly positive and since this
profit is not related to any information on the underlying value of the stock, it is best viewed
as the return to arbitraging the two trading mechanisms.



Liquidity and the Relationships Between Markets 235

dictates that knowledge of impending block trades is valuable information
in itself, and hence her syndication effort must recognize this property.

Burdett and O’Hara employ a search model to analyze this syndication
problem. While search models are extensively used in many areas of
economics, their use in finance has been limited. One reason may be that
the problems typically analyzed in finance are specific to a single setting
(i-e., a firm or an exchange) rather than to the multiple venues implicit in a
search. For a block trader needing to form a syndicate, however, the notion
of search is fundamental. How she searches for participants and the rules
she uses to determine the scope of the search are crucial to understanding
how the block syndication process works.

One aspect of this syndication problem that is not standard in search
problems is the endogenous effect of the search on the asset price. For
example, in the standard labor economics application of a worker looking
for a job, search is used to find the best of an existing set of wages. The
worker faces exogenous costs of searching, but his search per se does not
affect the wage he is offered. This, however, is essentially the difficulty
faced by the block trader. The decision to continue the syndicate runs the
risk of lowering the asset’s market price, and so the search process itself
affects the trading price. Burdett and O’Hara develop a search model with
endogenous search costs to address this problem.

As is typical in search models, the block trader’s optimal strategy involves
a series of optimal stopping rules. These rules dictate when the trader ceases
contacting new potential syndicate members and simply buys the remaining
shares for her own account. Since these stopping rules reflect the payoffs
the block trader gets from syndication, the form of the trader’s compensa-
tion function as well as the risks in the process must be specified.

Although there are numerous variations on the contract between the
seller and block trader, a typical agreement specifies a commission rate and a
(usually implicit) commitment price. The commission is simply the fee the
trader makes per share in placing the transaction, while the commitment
price sets a lower bound on the proceeds to the seller. This latter parameter
reflects the block trader’s role as market maker, as she could always choose
“to forgo syndicating the stock and simply purchase the shares for her own
account. This price also serves an insurance role, however, since the trader’s
actions may adversely affect the price of the stock.

The level of the commitment price must reflect the possibility that large
trades can be information-related. In this model, the block trader is assumed
to be risk neutral, so that the commitment price, denoted z, is equal to the
conditional expected value of the stock given a trade of size N, or z = Z(N)
with Z’(N) < 0. This presumably is the same price that would be offered by
a risk neutral exchange specialist, and so there would seem little advantage
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to trading with a block trader. The block trader, however, can also
syndicate the stock. In a syndicate, the seller receives either the syndicate
price or, if it is greater, the commitment price. The block trader’s
commitment price is a minimum return to the seller, therefore, while the
specialist’s price is a maximum return.

For this divergence to provide value to the block trading mechanism,
individuals must be willing to enter a syndicate at a price greater than the
conditional expected value. There are several reasons why this could occur.
Bagehot [1971], for example, argues that there are “pseudo-informed”
investors who either exaggerate the value of their own beliefs or assume
that all other traders transact only for liquidity purpose. Their willingness
to transact results in their always losing to informed traders, a strategy
inconsistent with rational behavior in the long run. Another explanation is
inventory. If the specialist is risk averse, his price for purchasing a large
block will include a premium for bearing the inventory risk. By syndicating
the stock before purchase, the block trader can divide this exposure among
the participants, resulting in a smaller risk premium. A third explanation,
and the one employed in this model, is that liquidity reasons may induce a
trader to enter a syndicate. For many institutional investors, portfolio
management costs preclude holding small positions. Entering a syndicate
avoids either paying a premium in a block buy or the time lag (and larger
per share commission) involved in purchasing the shares in round lots from
the specialist.

Burdett and O’Hara model this by assuming that syndicate participants
purchase the stock at some discount, denoted r, from the market price, pp,
at the time the trade is completed. This structure captures the stylized facts
that syndicate participants in a block trade all pay the same price and that
this is the price when the trade clears. The exact determination of r is
exogenous, clearly the weak point of this model. This framework does
permit the success of the syndication effort to depend on the state of the
market, and hence it indirectly captures the effect of the block trader’s
syndication cfforts on the final block trade price.

The block trader is assumed to contact potential syndicate members and
offer them the opportunity to purchase one of N subblocks. Because of the
aforementioned problem of traders short selling against the trade, there may
be downward pressure on the price when traders learn of the trade. While
this pressure could arise from the entire syndication effort, Burdett and
(’Hara assume that uninterested buyers are more likely to short (since they
are not now involved in any commitment to participate with the block
trader). Let the amount the current stock price falls following an
unsuccessful phone call be the random variable 1, with cumulative
distribution function F(e), where F is assumed differentiable and F(0) = 1.
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The probability that any person called will want to purchase a subblock
depends on that person and on the state of the market. Let I1(k, 8) denote
the probability of success on the kth contact (or phone call) given that the
market state is 6. As the block trader will contact the most likely purchasers
first, assume

Mi(k, ©) = a,I(k — 1, 0), (8.27)

where 0 < gy, < 1. Because the block trader does not know the exact state of
nature, she uses the information she learns from trading to update her
beliefs. Suppose that the trader has N — # successes in k — 1 contacts. Let
AN — n, k) denote the block trader’s subjective probability that the kth

contact will be successful, where
AN —n, k) = Ee,{l'l(k, ©) | N —n successes in k — 1 calls}. (8.28)

Based on the outcome of the call, the block trader update her beliefs using a
Bayesian adjustment process. Let

As(N — n, k) > AN — u, k) if the kth call was successful, and  (8.29)

Aa(N — n, k) < XN — n, k) if the kth call was unsuccessful.  (8.30)

So the block trader raises her probability of success if she has been
successful, and lowers it if she has been unsuccessful.

This learning feature of the syndication process allows the block trader to
adapt her strategy to the market condition. The syndication effort,
however, provides information not only to the block trader but also to the
traders who learn of the block. This increases the risk of traders gaming the
syndication, and hence the block trader’s strategy must weigh the relative
costs and benefits of continuing the syndication effort.

Suppose the trader has made # — 1 contacts and has placed N— n
subblocks. The trader can make the kth call and hope to place the (N —n +
1)-th sub block, or she could elect to purchase the remaining subblocks. If
she purchases the shares, then the trader now faces the problem of disposing
of the shares for her own account. Burdett and O’Hara assume the trader
can liquidate the shares at some discount from market price, where the
discount, &(n), is a convex function of the number of shares to be sold. This
assumption captures the notion that trading a small number of shares may
require no loss, but for larger trades the need for greater liquidity reduces
the share price. Let ®@(p, N — n) denote the expected return to the block
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trader from purchasing the remaining n subblocks when the current market
price (less discount r) is p. Then, given a commission P, this is equal to

<I>(p,N-—n) =pﬁN-pn+n[p-e(n)] =pﬁN—s(n)n. (8.31)

The ® function captures the value to the block trader of ending the
syndicate and buying the remaining shares.

Alternatively, the block trader could syndicate the block further. Suppose
the trader has made k& — 1 calls and placed N — n subblocks. If she
continues, there are three possible outcomes following the next contact.
First, the call is successful, and so the trader will have placed N — n + 1
subblocks and made k calls. Second, the call is unsuccessful and, while the
discounted market price may move, it remains above the commitment price
z. Third, the call is unsuccessful and the price falls below the commitment
price. In this case, the syndicate collapses, and the trader buys the entire
block at the price z.

These outcomes are captured by the block trader’s value function. Let
V(p, N — n, k) denote the block trader’s expected return from making the
next contact in the situation described above. Then

V(p,N—n, k)
= MN=nk)¥(p,N—(n—1),k+1)
0
+[1-(A(N-n, k))]7=z/_p U(p,N=(n—1)k+ 1)dF(‘r)(8-32)
z—p
+ [1 — (/\(N— n, k))] / \I'(p+'r ——E(N) - z)dF(*r).

Given the value function, Burdett and O’Hara demonstrate that the trader’s
optimal strategy involves a series of stopping prices, denoted x.(k). They
show that these stopping prices exist and are nondecreasing in the
syndicate’s success (i.e., n, the number of subblocks syndicated) and in
customer contacts (the k’s). Hence, as the syndicate progresses, optimal
stopping prices rise. Once the market price falls below the relevant stopping
price, syndication ceases and the block trader buys the remaining shares for
her own account.

These optimal stopping rules dictate that the block trader does not
typically call buyers until all N subblocks are placed. Indeed, the trader
purchases some shares for her own account, even in the case when every
contact has been successful. This reflects the endogenous search cost
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problem noted earlier, since even the most successful syndicates always run
the risk that trading in anticipation of the trade will undermine the market
price. Burdett and O’Hara also characterize how the stopping rules relate to
the other parameters of the model such as the commission rate and the
commitment price.

Of particular interest is how the stopping prices relate to the block
trader’s knowledge of the market (the A’s). In this model, a trader who has
better information on market conditions can offer customers a better deal
(i.e., lower commission or higher commitment) for syndicating stock than
can a competitor without such information. Since greater trading activity
makes, and keeps, a block trader informed, there is a natural tendency for
consolidation of orders to a single trader. This suggests the potential for
monopoly power amongst block traders. Previously, we noted several other
explanations for the emergence of a single provider or market, but this
explanation differs in that it arises from the block trader’s ability to glean
(and use) information from the trading process itself.

This informational role of the block trader is also the focus of research by
Grossman [1990]. His analysis focuses on the ability of the upstairs market
maker to have greater knowledge of the total order flow than does the
downstairs market maker, the exchange specialist. What motivates the
analysis is the problem that traders may be unable to continuously monitor
markets, and hence they are unable to implement trading strategies
optimally. One possible solution is to submit limit orders, but as we
discussed in the last chapter, simple limit orders introduce a “free option”
problem and hence can be too risky for some traders. If traders could submit
detailed contingent orders, then this problem might be alleviated, but
Grossman argues that this may be infeasible, largely due to the difficulty of
determining, specifying, and expositing the effects of multiple states on the
desired trading strategy.

If traders do not explicitly announce their trading intentions, then the
unexpressed demand will be as, or perhaps even more, important as the
expressed demand. In Grossman’s analysis, it is this unexpressed demand
that is known by the upstairs market maker, while the downstairs market
maker may have superior knowledge of the expressed demand. In addition,
Grossman assumes that the upstairs market maker has superior information
about the state of the market. These upstairs advantages are offset by the
disadvantage that upstairs trade involves search costs, and hence the traders’
choice of trading venue depends on the relative advantages and costs of
trading locales.

The analysis employs a variant of the Grossman-Miller [1988] model,
and hence it does not allow for private information on the asset’s true value.
Instead, what motivates trade (and price movements) is an exogenous
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liquidity shock, and market prices depend only on these liquidity factors.
Rather than discuss the specifics of the model (which is done in Section
8.1), it is perhaps more useful to consider the analysis’s conclusions. In this
model, if the expressed order flow is informative (meaning that unexpressed
demand is either not large or provides little additional information about
the underlying liquidity shock), then the downstairs market can dominate
the upstairs market. This occurs because the batching of orders in the
downstairs market allows prices to reflect the true state, and the absence of
search costs lowers the cost of trading. Conversely, when the order flow is
not sufficiently informative, the upstairs market can provide a better venue
because the upstairs market maker can better match the trading desires of
individual traders.

Because the order flow provides information to the market makers,
where traders decide to submit orders becomes the crucial issue. If many
traders decide to send orders to the upstairs market, then it is the upstairs
market maker, rather than the downstairs market maker, who knows more
about the expressed demand. This can result in the upstairs market
prevailing, and in equilibrium the downstairs market disappears. Since the
upstairs market involves search costs, Grossman shows that such an
equilibrium may be suboptimal in the sense that traders would be better off
if only the downstairs market prevailed. This conclusion may explain why
some markets, such as futures, prohibit prearranged trades, while others,
such as the NYSE, require such trades to be executed on the floor of the
exchange.

An interesting issue raised in this analysis is the ability to arbitrage
between market settings. Since the same security can transact in both
venues, it seems natural to believe that some customers will trade to exploit
price differences in the two markets. Grossman argues that it is the
informational discrepancies between markets that provides for such poten-
tial price divergences, but that such discrepancies also inhibit the ability to
arbitrage. The market maker in each market knows only his order flow and
hence cannot instantaneously determine whether prices and trades are
different in the two locales. Since this is essentially a one-period model
(prices are assumed to reach true levels at time 2), long-run divergences in
price cannot occur. This issue of arbitraging markets in addressed in more
detail in the next section.

If traders do face different prices between markets, what determines the
order strategy they pursue? This issue is addressed by Seppi [1990], who
considers why large traders do not simply split orders into smaller amounts
to avoid the adverse price-trade size relationship. Seppi develops a
multiperiod framework in which a block trader or dealer can trade a block
of shares at time 0 or the specialist can trade shares in round lots at times 1,
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2, ..., T. In the model, there is a single, risk neutral institution (or large
trader), N small uninformed traders, several competitive specialists, and
several competitive block traders, referred to as dealers. The small investors
trade for exogenously given liquidity reasons, and at each time ¢ each small
trader submits an order for some random number of shares ;.. These orders
are cleared by the risk neutral market makers.

The trade behavior of the large institution is more complex. In some
states of the world, the institution must trade for liquidity reasons. In other
states, the institution may be trading on the basis of private information.
Seppi captures this duality by assuming that the institution faces five
possible states of nature. In particular, the large trader may (1) sell for
liquidity reasons, (2) buy for liquidity reasons, (3) learn bad news and want
to sell, (4) learn no news and hence do nothing, and (5) learn good news
and wish to buy. Combinations of the states can be incorporated by simply
viewing the optimal state demand as the net value.

The institution learns the state of nature before the start of trading. The
institution can trade a block of size b at time 0 with the dealer and/or round
lots of size x, at each time ¢t = 1, 2, . . ., T with the specialists. If the
institution needs to trade for portfolio-rebalancing reasons, it may do so
anytime up to and including period T. Similarly, if the institution is trading
on private information, it is assumed that the information becomes public
after time T. Orders submitted to the specialist are aggregated, and, as in
Kyle, the market maker sets the risk neutral price based on the net order
flow. Similarly, blocks submitted to the dealer are also assumed to clear at
the risk neutral price.

This framework allows for the explicit characterization of dynamic
trading strategies. As we have discussed in this and in previous chapters,
analyses of large trades typically start from the existence of such orders and
examine their impact. Why traders choose to trade large quantitics in the
first place, however, is not obvious since a viable alternative is simply to
split the trade into multiple small orders. This question is important because
the ability to trade dynamically allows traders to avoid the adverse price
effects usually connected with block trades. If blocks are to exist, it must be
because they are the optimal trading strategy for some investor.

Seppi considers this issue by analyzing how the “contract” between
investor and block trader differs from that between investor and specialist.
He argues that an important difference is the lack of anonymity in block
trading. This allows the investor and the dealer to make side agreements
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that cannot be made in an anonymous market setting.® Of particular
importance is what Seppi identifies as a “no bagging the street” constraint.
This constraint imposes a penalty on any subsequent trades by the investor,
and thus it compensates the block trader for investor actions that might
adversely affect the dealer. The block-trading contract Seppi analyzes
involves trading a large number of shares at time 0 and a simultancous
agreement not to trade any additional shares with the specialist.

Seppi demonstrates that there is an equilibrium in which the large trader
uses blocks when rebalancing his portfolio and uses the specialist when he is
trading on information. Since the “no-bagging” constraint is costless for a
liquidity trader but is not for an informed trader, this equilibrium captures
the benefits of using a block trader for liquidity trades. For this equilibrium
to prevail, however, the profit to the informed trader of trading multiple
times with the specialist must exceed the profit from trading a block. This
will be the case if the block size is small relative to the amount the trader
could trade in the specialist market. Recall that a similar relative size
condition was used by Easley and O’Hara [1987a] in their determination of
separating versus pooling equilibrium with multiple trade sizes. Here the
game analyzed is much more complex, but the underlying intuition remains
the same. If the market is in this separating equilibrium, block trades have
no price effects because blocks are always used only by uninformed traders.

If the block size is not sufficient to result in a separating equilibrium,
then the trader’s strategy may involve a more complex mixed, or
randomized, strategy. The equilibrium in this multiperiod model is quite
sophisticated in that the pricing policy followed by the specialists and
dealers must incorporate all possible trading stracegies. Seppi demonstrates
that there is a2 market parameterization in which the investor continues to
trade blocks to rebalance, but now randomizes between blocks and round
lots when he trades on information. This causes the price for blocks to be
“worse,” but since not all information-based trades involve blocks, this new
block price still dominates trading sequences of orders for a rebalancing
institution. The price for the block will be increasing (decreasing) in trade
size, as the larger the trade the more dealer can lose on an information-
based block.

The result that the institution does not randomize between blocks and
round lots for rebalancing suggests that there is a natural role played by the
block-trading mechanism in meeting traders’ liquidity needs. Just as in the

9. This distinction is reminiscent of the traditional distinction between loans and
securities. Specifically, a loan was defined as a contract negotiated between two specific
parties, while a security involved an impersonal transaction between multiple parties. The
advent of loan syndication and securitization has eroded that traditional contract form.
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previous section liquidity enhancements favored uninformed traders, here
the block-trading mechanism arises for the similar reason that it improves
the ability of uninformed traders to trade large amounts. Whether this
mechanism is the optimal way to provide such liquidity remains an
unanswered question. In Seppi’s analyses, block trading is clearly preferred
by uninformed traders in some circumstances. There can be multiple
equilibria in this model, however. These multiple equilibria limit character-
izing the general role played by specific market intermediaries and similarly
impede determining which is the ‘best” mechanism for providing liquidity.
The analysis does demonstrate, however, that assuming uninformed traders
transact in large trade sizes need not be unrealistic; at least in this model,
such an outcome is an equilibrium.

In Seppi’s analysis, block trading does not occur simultaneously with
specialist trading. The trader must choose to trade blocks before the
specialist trading begins. Moreover, while the model demonstrates the role
played by the two distinct trading mechanisms, a trader cannot opt to trade
in both mechanisms. This may be accurate in block trading and, indeed, in
many other markets, but it may also be that multiple trading venues exist
simultaneously. In this case, a trader can both increase his scale of trading
and arbitrage any differences in price behavior between the two settings.
We consider this issue in the next section.

8.4 INFORMATION AND MULTIMARKET ACTIVITY

Our discussion has focused on the liquidity effects of trading the same
security in multiple settings and via different trading mechanisms. The
development of stock index futures introduces another possibility, that of
trading both individual securities and a basket composed of those securities.
This ability to trade a “derivative” security introduces a new, and
potentially important, dimension to the notion of security market liquidity.
With the scale of trading in index products often exceeding that of the
underlying securities, index products are important components of many
trading strategies. Of related importance is that information flows may
differ in markets, leading to divergences in market prices and introducing
the possibility of arbitrage between markets. This latter issue is particularly
germane given the alleged role of index arbitrage in the 1987 market crash.
It derivative markets affect security market liquidity, then it is important to
determine how such effects arise and what they imply for price behavior.

The issue of market liquidity and index futures is addressed by
Subrahmanyam [1991a]. His analysis employs a variant of the Kyle [1984]
and Admati and Pfleiderer [1988] models to determine where traders
choose to transact given the ability to trade both individual securities and a
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basket of securities. Because the model is one-period, the analysis is very
similar to the multimarket liquidity analysis of Chowdhry and Nanda. One
difference in the analyses is that private information need not be individual
security-specific, raising the interesting issue of how different types of
information affect market behavior.

In this one-period model, there are assumed to be N securities that trade
at time O and liquidate at time 1. The value of any security i at time 1 is

Si=§f+6i7+sis i:11--'sN-,- (833)

where 7 is some systematic risk common to all securities, B; is security i’s
sensitivity to the systematic risk, and &;is an idiosyncratic risk to security i.
The &, i =1, . .., N, and the y are assumed to be independent, normally
distributed random variables with mean zero. There is also a basket of
securities that trades at time 0 and liquidates at time 1; its value at time 1 is

N N N
Sm = Z w;S; + Z w3y + E Wi, (8.34)
i=1 i=1 i=1

where w; is the weight of security i in the basket, and N w; =1 .

As in Admati and Pfleiderer, there are three types of traders: informed
traders, nondiscretionary liquidity traders, and discretionary liquidity
traders. There are assumed to be k; risk neutral informed traders, who
observe the idiosyncratic element g; Liquidity trade is exogenously
determined, and liquidity traders are assumed to submit a random quantity
z;, where z; is normally distributed with mean zero and is independent of y
and e.

The equilibrium in the model is the same as in Kyle. Traders submit
orders to the market maker, who observes the net order flow, denoted ¢; .
The market maker sets the market-clearing price equal to the conditional
expected value of the asset given ¢ ;. The market maker is conjectured to use
the linear pricing rule

P; =S, + A, (8.35)

where A; has the standard definition of the sensitivity of prices to order
flow.

Subrahmanyam shows that, for a trader j with private information about
security i, the optimal order for security i is given by
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]

Xji = 7 (8.36)
! (k, + 1)/\,’
and the equilibrium A; is then
A= e
i = (k; + 1) (8.37)

As was true in Admati and Pfleiderer, the optimal A; is decreasing in the
number of informed traders, reflecting the effects of competition amongst
informed traders in their orders as their numbers increase. Given this
trading strategy for the informed traders and this pricing strategy for the
market maker, uninformed traders in market § can expect to lose A; var(z;).

Suppose now that there are p discretionary liquidity traders, who wish to
trade all securities. They could do so by trading in each marketi =1, .. .,
N, or they could simply trade the basket security, denoted M. Let the
demand for security i by these traders be w;l, where w; is the optimal
portfolio weight. The demand for the basket security is then simply I (since,
by assumption, the demands perfectly replicate the composition of the
basket). Suppose there are also nondiscretionary traders, who are assigned a
particular stock (or the market basket) in which to trade. Let their demand
in market 4, i = 1, .. ., N, be given by y; = rw;, where the r; are mutually
iid. random variables with mean 0 and var(r) = var(r). The total
nondiscretionary trade in the basket security is denoted m, with total liquidity
trade (both discretionary and nondiscretionary orders) in the basket denoted
Zm

These assumptions on the types and allocations of traders are clearly
restrictive, but as discussed in Chapter 5, the nature of equilibrium in these
models is sufficiently fragile to require a great deal of structure. Without at
least some liquidity traders constrained to transact in every market, the
familiar problem of trade collapsing to one market arises, and then
discussion of the effects of trading in alternative markets becomes moot.
Nonetheless, as is typical in these models, the presumed lack of flexibility
of at least some market participants is crucial for the analysis to have any
nontrivial solution.

The question of interest is, how does trading in the basket affect the
liquidity of the individual securities? To address this, Subrahmanyam
examines the informed traders’ demands for the basket security, assuming a
given level of liquidity trades in each security and that the market maker
does not observe the order flow in the other markets. This restriction is
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needed to simplify the pricing problem of the market makers, since
otherwise each market maker’s pricing decision could not be made
independently of order flows in other markets.!©

Subrahmanyam shows that each informed trader submits an order to
trade in the basket, x;,, given by

o o WiEi
" (k,-+1),\,,,’ (8.38)

where the equilibrium pricing rule A,, is given by

= > w? var(e,-)/K,— 8.39)

var(zm
and K; = (k, + 1)2/k,'.

Given this order and pricing strategy, where do the discretionary traders
choose to transact? Since informed trading increases in the variance of the
order flow, uninformed trading costs are minimized by trading in the
lowest variance market. Moreover, adding discretionary order flow lowers
the variance in a market so, ceteris paribus, all discretionary traders will select
the same venue, either all trading in the basket or all transacting in the
stocks. There are many factors affecting overall variance, however, and
consequently the choice of trading venue need not be straightforward. A
factor favoring trading in the basket is that the diversification of the
portfolio of securities reduces the effects of private information. This
lowers the basket security’s variance, thereby improving its desirability to
discretionary traders. One equilibrium, therefore, is that all discretionary
traders transact in the basket. If, however, there is large nondiscretionary
liquidity trade in the individual securities, then this greater liquidity may
dominate the diversification effect, with the result that in equilibrium all
discretionary traders transact in securities. Moreover, an equilibrium in
which some discretionary traders transact in the basket while others trade
individual securities also cannot be ruled out. Consequently, in this model,
virtually any equilibrium can prevail.

Subrahmanyam argues that the more reasonable equilibria involve
concentration, with either all discretionary traders transacting in the basket

10. This assumption also limits the market makers’ ability to draw inferences on the
underlying information, an ability particularly valuable to the market maker trading the
basket security.
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or in the individual securities. The reason is simply that, as was the case in
Pagano’s model, 2 mixed-market equilibrium is essentially a knife-edge
result, and any small change in parameter values would lead to the
dominance of trading either only in the basket or only in securities. If the
diversification effect of the basket is large, then an equilibrium in which
discretionary traders trade in the in the basket would be a likely outcome.

Of perhaps more interest is the equilibrium that prevails when informed
traders know information relevant to all securities, and not just to
individual securities. In particular, suppose there are now some traders who
are informed of the systematic factor of security returns. These traders are
assumed to see the same signal ¥ + ¥, where var(#) = x. These factor-
informed traders trade on the basis of this information in all securities, but
the impact of this information on the basket depends upon how much the
factor sensitivities differ among securities. Provided there are differences in
factor sensitivities, the basket benefits from diversification of both the
systematic and nonsystematic components, and thus it would be expected to
be the trading venue chosen by discretionary traders.

For our focus in this chapter, what is of interest is how the introduction
of the basket affects market liquidity. As we have seen in other applications,
the movement of discretionary traders to the basket results in directly
reducing the liquidity of the individual securities. If the number of
informed traders is endogenous, then a secondary effect is to affect the
numbers of factor-informed and security-specific informed traders. Subrah-
manyam demonstrates that in general this change results in increasing the
sensitivity of individual securities to systematic information and also
increasing the informativeness of the basket securities price. From a
liquidity perspective, the adverse selection component of the basket is lower
than it is for the individual securities, and hence individual securities may
have less liquidity (and greater risk of informed trading) than they would in
the absence of the basket.

What is interesting in this analysis are the differences introduced by
different types of information. In much of finance, the focus is on
systematic factors, yet this is the first model (to my knowledge) to
specifically address the differential effects of systematic and nonsystematic
information in a microstructure setting. While this model specifically
addresses the issue of trading in baskets of securities, the trading of
derivatives such as options is clearly related. In options, the greater leverage
available, as well as the ability to trade multiple contracts, introduces
important dimensions to the analyses of both market efficiency and market
liquidity.

One interesting parallel with the model developed here is that traders
could potentially be informed of information affecting option values (such



248 MARKET MICROSTRUCTURE THEORY

as volatility) that does not affect the stock value per se. If, however,
volatility-based trading increases option liquidity, then traders informed of
asset-specific information could also shift to options from stocks, affecting
both price and market behavior. How derivative markets affect market
liquidity is thus clearly an important issue for future research.!!

If there are multiple trading venues, then the issue of arbitrage must also
be considered. In Subrahmanyam’s model, the information flows and the
clienteles for the basket differ from the individual securities, and so it would
seem that interesting divergences could arise in their trading prices. If those
divergences lead to arbitrage, this should affect the informativeness and
behavior of prices. In a Kyle-type model, it is not really possible to arbitrage
the two markets as traders do not know the trading prices when they
submit orders. The existence of price gaps between markets and their
implications for market behavior has been considered in related work by
Kumar and Seppi [1990].

Kumar and Seppi analyze a model of a security market and a futures
market trading index futures on the securities. Information flows differ
between markets, and there is a lag in observing the prices in the other
market. This lag could arise from timing differences or frictions in
transmitting information, but its assumed existence is important for the
model. Information differences are introduced by assuming that floor
traders in futures markets have information about the level of the index,
while specialists have information about the value of the individual stocks
in the index.

For simplicity, there are only two stocks in the securities market; the
index is simply based on their total value. The specialist for each stock i
observes a signal 9;,= x; + e;;, while the futures traders observe 3= x1 + x;
+ e3,. As is standard, all random variables in the model are assumed to be
independent and identically normally distributed with zero mean. In this
model, the specialists quote a price at which they will fill all orders at time
1. Similarly, futures brokers quote a similar price at which they are willing
to go long and short at time ¢. Initially, the order flow is assumed to be non-
information-based.

11. Indeed, another and perhaps even more important dimension of this area is the effects
of asymmetric information on option pricing. Option-pricing models such as Black-Scholes
[1973] assume that the option is a pure derivative of the stock, allowing them to examine
how changes in the stock price determine the option price. What is not permitted is changes
in the option price affecting the stock price. Yet, if information is asymmetric, and informed
traders transact at least partially in option markets, then the unidirectional linkages in option-
pricing models cannot be correct. These issues have been considered by Back [1993]. Models
of option market microstructure have been developed by John, Koticha, and Subrahmanyam
[1991]}, Biais and Hillion [1991)], and Easley, O’Hara, and Srinivas [1993].
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Specialists and futures traders are assumed to set risk neutral competitive
prices. As has been the case in other multiperiod models, these price-setting
agents are assumed to use Bayesian updating in calculating the conditional
expected value for their respective securities. Their information sets include
their own signal, the history of prices in their own market, and the history
of prices in the other markets with a k-period lag. This lag dictates that
market makers in the two markets do not have identical information, and
this provides the basis for prices in the markets to differ.

The explicit calculation of trading prices is complex, but it will be the
case that a gap can arise between the prices in the security market and that
in the futures market. Kumar and Seppi show that the gap has some
intriguing statistical properties. First, the gap is normally distributed. This
follows from the normality assumptions made throughout the model, but it
does allow tractable characterization of the price differences in the two
markets. Of perhaps more interest is that the gap converges to zero as the
number of time periods increases. This implies that long-run divergences
from “efficiency” are not possible. More intriguing is that this convergence
is not monotonic. Consequently, short-term price discrepancies can arise,
leading to arbitrage possibilities in the two markets.

Kumar and Seppi show that the composition of the gap is influenced by
the properties of the underlying markets. In particular, if stocks are
“noisier” than futures and there is a positive covariance between stocks,
then the variance of the gap in the first k periods is increasing in the stocks’
covariance. Essentially, what occurs is that the correlation in the securities
market means that information in the futures market on the aggregate value
is more informative. With their sighal more valuable, traders in futures
markets act more aggressively, and futures markets respond more strongly
to information than do the underlying stock markets. Interestingly, the gap
may also exhibit mean reversion, a property that results from the
convergence of information sets.

In this model, if an uninformed trader could acquire technology such that
he learns prices in the two markets faster than do the other market
participants, then he could clearly profit by arbitraging the markets. In this
case, the market makers in both markets would always lose to traders who
possess such technology and hence would need to be compensated for the
risk of trading with arbitrageurs. Hence, while arbitrage would ultimately
draw both markets together, its immediate impact is to increase the bid-ask
spread in both markets, thus reducing the liquidity in each market.

These two analyses of market interaction suggest several important
directions for future research. While it is interesting that arbitrage induces a
spread, it would also be interesting to characterize more fully all the
liquidity effects that arise. For example, Subrahmanyam suggests that price
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variability is not affected by the introduction of the second market, but it is
not obvious that this variance result would hold in a more general model.
Moreover, if arbitrage is allowed, would this affect the variance structure?
One reason this is interesting is that it is often alleged that liquidity traders
prefer less volatile markets, a proposition that has not been addressed in the
microstructure literature,

What is also interesting to consider is the differential learning that
divergent prices permit markert participants. An emerging, and potcntlally
very important, literature has considered the role of “price discovery” in
securities markets. In this research (see, for example, Leach and Madhavan
[1992, 1993]), agents may find prices in some market more informative
about the true value of the asset than are prices in other markets. In the
context addressed here, this relates to the question of whether futures prices
can predict security prices, or conversely.!? Subrahmanyam’s paper suggests
that if agents have symmetric access to both systematic and idiosyncratic
information, then neither market can act as a dominant price discovery
venue. Whether this holds in a more general framework is of obvious
importance.

From a liquidity perspective, these analyses suggest that multimarket
linkages introduce complex, and often conflicting, effects on market
liquidity. While adding markets would seem to add liquidity, the resulting
diversion or even fragmentation of orders can have the opposite effect. As
we have seen in this chapter, in the simplest market setting, liquidity can be
enhanced simply by adding more market participants willing to trade. As
alternative trading venues and alternative contracts arise, however, the
provision of liquidity becomes similarly more complex.

12. There is some evidence that price discovery occurs in option ‘markets, and not just in
cquity markets. In particular, Easley, O’Hara, and Srinivas [1993] show that option volume
leads cquity prices, a result they interpret as evidence of informed trading in option markets.
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Issues in Market Performance

What makes a market perform better? As our discussions in the previous
chapters indicate, this is not an easy question to answer. Markets provide a
wide range of services and functions, and factors that facilitate the
performance of some functions may impede the delivery of others. Equally
difficult to ascertain is what is meant by better. As we have seen throughout
this book, there is often a tension between the gains and losses of various
market participants. While informed traders gain at the expense of
uninformed traders, those gains also provide the impetus for the incorpora-
tion of information into security prices. The efficiency of the market,
which presumably benefits overall welfare, is thus purchased at the expense
of at least some groups of traders. Determining the best, or even the better,
market-clearing mechanism is thus problematic.

Despite this complexity, few issues are more topical, or of greater
importance, than the issues of market performance and design. The
proliferation of new exchanges and markets, as well as the development of
sophisticated electronic-clearing mechanisms, provides the opportunity to
create more desirable markets and trading venues. Yet, without guidance on
the costs and benefits of various market features, the winners among these
markets may be those possessing superior robustness, and not necessarily
those markets which most improve social welfare.

In this final chapter, we turn our attention to some of the many issues in
market performance. That our discussion will be incomplete is a certainty;
there is little hope of discussing, or even listing, all of the many issues
connected with market performance. Instead, our goal in this chapter is to
show how the analytical approaches and techniques developed in previous
chapters can be applied to evaluate a wide range of policy issues related to
market design. These policy applications represent a growing dimension of
microstructure research, and they reflect, in a sense, the payoff from our
increased ability to model and analyze market behavior. As will be evident,
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however, the complexity of many performance issues defies easy character-
ization, and the simplifications needed to ensure tractable analyses limit the
generality of the resulting policy recommendations.

We begin by analyzing how differences in information about the market
itself affect the performance of the market. How much information price-
setting agents, or even other traders, have on order flow, for example, can
influence both the behavior of prices and the allocation of trading gains and
losses. This general issue is known as market transparency, and its analysis
involves comparing how alternative market designs (for example, batch
systems or continuous auctions) affect the resulting equilibrium. A related,
but distinct, issue is the anonymity of trading. Here, the focus is on
information regarding the identity of traders submitting orders. This
anonymity issue is particularly relevant for such important regulatory issues
as front running and dual trading. From a market design perspective,
transparency and anonymity are also fundamental to understanding the
desirability of alternative market features. We conclude this chapter with a
brief discussion of the issues involved in the optimal design of trading
mechanisms.

9.1 MARKET TRANSPARENCY

Market transparency refers to the ability of market participants to observe
the information in the trading process. Despite the simplicity of this
definition, the issue of transparency is remarkably complex. One difficulty
relates to exactly what information is observable. For many purposes, a
market is said to be transparent if the order flow can be observed. Yet, order
flow information itself is complicated, including potentially the size and
direction of orders, their timing, and their form (for example, a limit or a
market order). Moreover, who submitted the order may also be useful
information in many settings. A second difficulty in defining transparency
is who can observe the information. Is the information observable only to
price-setting agents, to those on the floor of the exchange, to traders who
submit orders, or to potential traders at large?

These issues are important because the information available in the
trading process can affect the strategies of market participants. For example,
if only net order flow information is available to the market maker (as is
assumed in the Kyle [1985] model), then an informed trader will trade
more aggressively than if each individual order were observable. Similarly,
if the book of limit orders is known only to the market maker, then the
market maker, as well as the informed and uninformed traders, will behave
differently than if the book were common knowledge. With participants’
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strategies dependent on the transparency of the market, it follows that the
market equilibrium also depends on the degree of transparency.

How much transparency is optimal in a market is a question addressed by
several researchers. Madhavan [1992] analyzes how transparency of orders
affects market behavior and viability when order flow information is
observable to both price setters and traders. Pagano and Roell [1993]
consider how transparency of orders to price-setting agents affects the
trading costs of informed and uninformed traders. Biais [1993] analyzes
how the transparency of quotes affects spreads when there is no private
information. Forster and George [1992] examine how information on
traders’ identities influences price behavior, and Roell {1990}, Fishman and
Longstaff [1992], and Pagano and Roell [1992] address the related issues of
how dual trading and front running affect the gains and losses of traders in
the market. While all of these papers deal with aspects of market
transparency, these latter papers on trader identity are best viewed as
analyzing the effects of anonymity on market behavior, and they are
considered in more detail in the next section.

Perhaps the simplest transparency issue to consider is how the degree to
which the size and direction of order flow is visible to market participants
affects the viability of the market. This issue is addressed in Madhavan
[1992].! Madhavan’s analysis, which is also discussed in Chapter 7, views
the crucial function of a trading mechanism as price discovery, or the
process of finding market-clearing prices. This process depends at least
partially on the transparency of the market, and so the question arises as to
which market structure better aids the price discovery function.

To address this issue, Madhavan divides market-clearing mechanisms
into quote-driven and order-driven. In the quote-driven market, dealers
post prices before orders are submitted. Such a system is typified by
NASDAQ, and it is, in effect, a continuous dealer market. In an order-
driven market, orders are submitted and then trading prices determined. An
order-driven system can be a continuous auction in which traders submit
orders for immediate execution on the floor by a dealer (or against an
existing limit order), or it can be structured as a call market or batch trading
system in which orders accumulate and are cleared at periodic (prespecified)
intervals. A difference between the various trading mechanisms is their
degree of transparency, as traders in the quote-driven system (and in the
continuous-auction order-driven system) essentially know more trade
information than do traders in batch systems.

1. Madhavan [1991] also considers the issue of transparency by looking at the effects of
knowing the volume of trade, an issue we do not consider here.
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Madhavan examines how price setting occurs in the different market
settings. The quote-driven market is essentially that analyzed by Glosten
[1989], a model we discussed in Chapter 7. Madhavan analyzes the order-
driven system in a rational expectations model similar to Kyle [1989] where
traders form expectations of price and take account of other traders’
strategies in forming their own trading strategies. Rather than analyze the
mechanics of the model, we focus on the properties of the resulting
equilibria in each market setting.

Madhavan shows that if the informational asymmetry in the market is
not too great, then equilibrium will exist in the quote-driven system. In the
equilibrium, security prices follow a Martingale and are semi-strong-form
efficient, and market makers offer a schedule of prices for different trade
sizes rather than quote a single trading price. If the information asymmetry
is too large, however, it may not be possible to find such a price schedule,
and as was also true in Glosten [1989], equilibrium may not exist.

Equilibrium in the order-driven system depends on the type of market.
Madhavan shows that in general, the equilibrium in order-driven markets is
more robust; if equilibrium exists in the quote-driven system, it will also
exist in the order-driven system.? Of perhaps more importance, however, is
that when equilibrium does not exist in the quote-driven or continuous-
auction order-driven markets, it may still exist in a batch-trading system.
This reflects the aggregation ability of batch markets, in that traders’
information essentially becomes averaged over all trades, allowing market-
clearing prices to work on average rather than for each individual trade.

This aggregation reduces the transparency of the market, and hence the
viability of the batch market is purchased at the expense of market
transparency. If the goal of a market-clearing mechanism is price discovery,
then aggregation facilitates this when market conditions are adverse, but
can limit this otherwise by limiting the information traders can draw from
market prices. How this affects trader welfare is not apparent, as the batch
market will exist when other markets will not, making overall comparisons
misleading. Moreover, how the efficiency of the market is affected is also
not apparent, as information gathering is now more expensive since the
trading process reveals less information. What this analysis does show is
that the design of the market affects the equilibrium outcome. Consequent-
ly, features of market design have real effects on both traders and the
market.

2. With free entry of market makers, Madhavan shows the equilibrium in the continuous
auction converges to that of the quote-driven system, so that in the limit both systems are the
same. In this case there is no difference in robustness.
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This allocative effect of market design is considered by Pagano and Roell
[1993], who analyze how transparency affects the distribution of gains
among traders. Their model examines how the ability of price-setting
agents to observe order flow affects the expected transactions cost (or
trading costs) of uninformed traders. Since the losses of uninformed traders
provide the gains to informed traders, this analysis focuses on the
distributional effects of market transparency. If, as is sometimes alleged, the
goal of a trading system is to protect the uninformed (the Aunt Agathas of
the market), then this allocative question must surely be considered.

While Madhavan focused on quote-driven and order-driven markets,
Pagano and Roell divide markets into four general types: batch markets,
dealer markets, continuous markets, and transparent markets. The batch
market involves periodic clearing of aggregated orders, and the price setter
in this market observes only the net order imbalance, not any individual
trades. In the dealer market, the dealer sees only his own order flow, and
prices thus depend only on the specific trade. The continuous market also
allows observation of individual orders, but at any point in time the price-
setting agents in the market know only the past orders in the market and
not necessarily all current orders outstanding. Finally, in a transparent
market orders are accumulated as in a batch setting, but market participants
see every order when they clear at the common market price.

Such a transparent market is clearly an abstraction, as such an instanta-
neous clearing system in which both individual orders and their aggrega-
tion are visible does not actually exist in current markets. It does provide a
basis for comparison, however, in that continuous markets are intermediate
in degree of transparency (every order visible) and batch markets are the
least transparent (only the net orders visible). Dealer markets have less
transparency than continuous markets, but may have more or less
transparency than batch markets depending upon the particular market
structure.

Given these market settings, Pagano and Roell examine how transparen-
cy affects the losses of the uninformed traders. This issue is complex, as the
order strategies of market participants may vary with the different market
structures. They first consider the simplest case, in which an informed
trader’s strategy is assumed to be the same in both the dealer market and the
transparent market, and the informed trader is permitted to submit only a
single order, x. This essentially restricts the analysis to a single-period
setting and hence ignores any dynamic effects of transparency on price
adjustment and thus efficiency.

Pagano and Roell analyze a Kyle-based framework with one informed
trader and many uninformed traders. The informed trader is assumed to
know the final value of the security v, which is drawn from a distribution
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G(v), and G is assumed symmetric about the mean value #. The m
uninformed traders submit orders uy, #9, . . ., 4,, which are drawn
independently from a distribution F(u), and F is assumed symmetric around
0. '

Given these assumptions, Pagano and Roell show that the expected
trading costs of uninformed traders in the transparent market are always less
than or equal to their expected trading cost in the dealer market. This
occurs because the ability of the single informed trader to “hide” differs in
the two market settings, and in general the greater trade information
available in the transparent market reduces the informed trader’s profit. In
the case where the distributions of informed and uninformed trades are the
same, this increased revelation of the informed trade does not occur,
because the trades of informed and uninformed are indistinguishable. This
results in the expected uninformed trading costs in the two markets being
the same. More generally, however, the trade information available in the
transparent market allows greater exposure of informed traders, and this
results in the uninformed traders facing smaller expected losses.

Pagano and Roell argue that the expected trading costs in the continuous
market will lie between those of the dealer and transparent markets. This
implies that, in general, uninformed traders do at least as well trading in a
continuous market as in a dealer market, and they can do even better
trading in a transparent market. Interestingly, this improvement in
uninformed trading costs need not arise if the transparent system is
compared with a batch market. While it remains true that some unin-
formed traders will do better in the transparent setting, it is also the case
that some will do worse, with the deciding factor being the trade size. Since
the batch system aggregates trades, the resulting price can improve the
expected trading costs of some traders and worsen those of others.

These results suggest that typically uninformed traders are better off in
more transparent markets. These comparisons, however, are premised on
the restrictive assumptions that the informed trader’s (one-trade) strategy is
the same in every market and that uninformed traders act purely as noise
traders and so also trade the same in every setting. Since these conditions are
unlikely to reflect optimal behavior, the robustness of this transparency
conclusion is problematic.

To address this issue, Pagano and Roell extend the analysis to allow the
informed trader’s strategy to incorporate the type of market in which he is
trading. Not surprisingly, this greatly complicates the link between
transparency and expected trading costs. What becomes crucial now are the
assumptions made on the distribution of uninformed trades. For the simple
case where all noise traders submit the same size order, the result that
expected trading costs are lower in the transparent setting than in the dealer
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market continues to hold. If, however, noise traders can submit different-
sized orders, then this need not be the case. If, as in the Kyle model, the
uninformed trades (and the informed trader’s signal) are normally distribut-
ed, then transparency will have no effect on expected trading costs. This
occurs because with normality the informed trader is completely able to
hide in the distribution, making the informed trades indistinguishable from
uninformed traders in ecither the dealer or transparent market setting. In a
Kyle framework, therefore, transparency is irrelevant for traders’ expected
losses.

If the uninformed trades are not normally distributed, however, then
transparency can raise the expected trading cost for some trade sizes and
lower it for others. This occurs because of the equilibrium -effects
introduced by differing trade sizes. In particular, as we discussed in Chapter
3, if the informed trader is equally likely to trade large or small quantities
(the pooling equilibrium), then the price for every trade must reflect at least
some risk of informed trading. Conversely, if the informed trader only
transacted large amounts (the separating equilibrium), then only large trade
prices need reflect this risk, and small trade prices can be set at expected
values.

Pagano and Roell show that in some market settings the optimal
informeds’ trade strategy may result in a separating equilibrium while in
others it may result in a pooling equilibrium. Consequently, small
uninformed traders can face lower trading costs in less transparent markets
if those markets are in a separating equilibrium. Of course, given this
separating equilibrium, large uninformed traders would be worse off, and so
it is not immediately apparent how transparency affects aggregate trading
costs. Pagano and Roell argue, however, that expected trading costs averaged
over all trade quantities will be lower in more transparent markets.

The Pagano and Roell analysis shows that under a wide range of
conditions, uninformed traders do better in more transparent markets. If a
social planner wished to reduce expected trading costs, therefore, this
would dictate designing markets with the maximum amount of transparen-
cy. This simple prescription, however, may not be advisable. One reason
lies in the objective of the social planner. While reducing expected
uninformed trading losses is certainly a potentially desirable objective, it can
be most easily accomplished by having no trading occur at all. Moreover,
the efficiency effects of market design may also be important, dictating a
complexity beyond that considered here. We consider this design issue
further in Section 3.

A second, and more immediate consideration, is that dynamic issues may
subvert the beneficial effects of transparency. To understand why, recall our
catlier discussions of liquidity and the free option problem. In Chapter 8 we
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saw that in general greater liquidity improved the terms of trade for the
uninformed in much the same way that greater transparency does here.
This liquidity, however, was assumed to arise at a point in time, so that
uninformed traders benefitted by trading together. In transparent systems,
however, each trade may be observable, and as we saw in Chapter 7, the
free option that arises from exposing one’s trading intentions may reduce an
uninformed trader’s welfare.

This raises the issue of whether uninformed traders would actually
choose to trade in a transparent market.> For large orders (block trades), at
least, this does not appear to be the case, as evidenced by the development
of the upstairs trading mechanism in which trades can be hidden from the
market until assembled. And in computerized trading systems, forcing
traders to display their actual desired trade quantity rather than merely give
an indication of their interest seems to greatly reduce the success of the
mechanism. Indeed, the remarkable lack of success of the NYSE’s crossing
network for individual securities may reflect, in part, this concern. We
consider this trader anonymity issue further in the next section. These
concerns, however, suggest that the optimality of order flow transparency
in markets may depend on the strategic decisions of uninformed traders, an
issue not yet resolved in the microstructure literature.

Our discussion thus far has focused on the availability of pre-trade
information. A further issue in the transparency debate is post-trade
information. Post-trade information refers to the observability of a trade’s
price and quantity. In many markets, this information is available to all
traders for small trades.* The post-trade treatment of large trades or blocks,
however, can differ. For example, the New York Stock Exchange
instantaneously reports a large trade’s price and quantity, but on the London
Stock Exchange such information may not be available for as long as seven
days. This issue of last-trade reporting is a subject of extensive policy debate
in Britain.

The rationale given for delaying last-trade reporting for large trades is to
allow market makers to unwind their inventory positions at minimal cost.

3. Biais [1993] considers the price effects of transparency in a model with only
uninformed traders. His analysis does not explicitly consider welfare effects, but instead
considers how the ability to observe price setters’ quotes in centralized markets results in
different prices than in fragmented markets where such quotes are not observable. This
analysis provides the intriguing result that spreads are equal in the two market settings due to
an irrelevance resule akin to that found in auction theory. Whether this result holds in a
model with asymmetric information is clearly an important research question.

4. The Tokyo Stock Exchange treats post-trade information as proprietary, and as such
makes it available only to members of the Exchange. In the US, the congressionally mandated
Intermarket Trading System requires post-trade information for all exchanges, and hence it
cannot be retained only for member use.
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Historically, small trader participation on the London Stock Exchange has
been low, and institutional trades, which are typically large, dominate
trading. As discussed in the previous chapter, one mechanism for clearing
large orders is to prearrange trades via the use of a block trader. While this
is common in the New York markets, it is less so in London, and market
makers instead tend to take the other side of blocks on their own account.
Delaying trade publication facilitates the unwinding of these positions, but
does so by restricting the market’s access to trade information.

Proponents of delayed reporting argue that it lowers the cost of trading
by reducing the risks a market maker faces, and thereby it improves the
price the market maker is willing to offer to the trader. Offsetting this
benefit, however, are several negative effects. For instance, until the trade is
revealed, the market maker is essentially an information monopolist,
enjoying exclusive access to trade information. As we have seen, if
information is asymmetric, large trades tend to be more informative owing
to their preferred use by informed traders. In this case, knowing the trade
allows the market maker to update his beliefs before others can, and this
provides an advantage in pricing future trades in the stock. This advantage
may be at the expense of competing market makers, or it may come at the
expense of other traders, who, with more complete information, might
make different trading decisions.’

Delaying the reporting of trade information also necessarily results in
stale prices, and this erodes the process of price discovery in a market. From
a broader perspective, stale prices impose additional costs through their
effect on the behavior of related markets such as derivatives. Without
current stock prices, option prices are severely flawed, as are the prices of
stock index futures. The dramatically lower volume of equity option
trading in London as compared to US markets may reflect this difference in
price informativeness.

The case for post-trade transparency thus involves determining who
should benefit from trade information. Delays in reporting favor the market
maker and potentially the large traders; transparency favors the other
market participants and the operation of markets as a whole. If price
discovery and efficiency are policy goals, then post-trade transparency
would seem advisable, even though it comes at a cost to some market
participants.

The debate over post-trade reporting highlights the benefits of knowing
information related to the trading process. Another area where such

5. Gemmill {1993] provides interesting empirical evidence that the delay in publishing
trade information has redistributed profits toward market makers and those involved in the
trades.
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information arises is with respect to the origin of orders. In the next section,
we analyze how trader anonymity affects the behavior of prices and
markets.

9.2 TRADER ANONYMITY

In most microstructure analyses, orders arrive from unspecified (and
unidentifiable) traders, and prices are set by market makers who observe
only the order flow. Such a framework certainly describes (or at least
approximates) many trading venues, but it is also true that greater
information on traders’ identities or trading intentions is often known.
Market makers may know something about future order flow based on
information in the book. Futures traders may know the direction of trade
particular traders need to enter in the near term. Brokers may know not
only who submitted an order, but their future trading intentions as well.
Each of these settings corresponds to at least a partial breakdown of the
assumption of trader anonymity.

How the anonymity of trading affects market behavior is an important
issue. From a regulatory perspective, issues such as dual trading and front
running directly arise from the lack of anonymity. And as we saw in
Chapter 7, allowing trading practices such as sunshine trading can result in
very different equilibrium outcomes than occur if orders are anonymous.
The proliferation of electronic trading systems also raises questions as to
whether trading mechanisms work “better” with traders’ identities revealed
or concealed.

Issues relating to trader anonymity have been addressed by several
authors. Forster and George [1992] and Lindsay [1990] analyze how
information on the direction and magnitude of future trades affects trading
costs and price informativeness. Roell [1990] and Fishman and Longstaff
[1992] examine the effects of dual trading, while Pagano and Roell [1992]
consider the impact of front running on market behavior. Each of these
analyses demonstrates how knowledge of traders’ identities or motivations
can affect the market equilibrium.

Perhaps the most direct analysis of anonymity is pursued by Forster and
George. They argue that the fiction of anonymous execution employed in
much of the microstructure literature is unlikely to hold. Instead, due to the
central position played by the specialist, it is likely that the market maker
has information on the future direction or magnitude of trade. In addition,
a subset of other traders, for example, brokers, may also have access to
information on future trades. This information is assumed related to the
uninformed, or liquidity trade, as information on future informed trading
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would surely affect the asset’s conditional expected value and so would
already be incorporated into prices.

In the framework of the Kyle [1985] model, Forster and George analyze
the equilibrium outcome when a subset of traders (and possibly the market
maker) has greater information on uninformed trade. Recall that in the
standard Kyle framework, the amount of liquidity trade in any period is
assumed drawn from a normal distribution given by N(0, o3). If the
distribution of liquidity trade did not have this form, however, then
knowledge of particular parameters of the distribution could be useful
information. Forster and George use this intuition to analyze how
information on the direction and magnitude of liquidity trade each affect
the market equilibrium.

Forster and George incorporate information on the direction of trade by
assuming that the unconditional distribution of the net liquidity order, %, is
given by

N(,uH,a + p%l) with probability 1/2, and
9.1)
N ([.LL, o+ u%) with probability 1/2.

If trading is not anonymous, then a subset of agents is assumed to know the
outcome pf or puf before trading begins. This allows greater ability to
discern the direction of the uninformed orders and hence might be expected
to affect equilibrium prices.

Similarly, information on the magnitude of liquidity trade is captured by
assuming the unconditional distribution of the net liquidity order is given

by

N (0, O‘H) with probability 1/2, and
9.2
N (0, O‘L) with probability 1/2.

Again, if trading is not anonymous, then a subset of traders is assumed to
know the outcome o1, opy. Note that (9.1) and (9.2) correspond to two
different specifications. Hence, in the context of a Kyle model, the analysis
is solved under various specifications of the uninformed order distribution
and under various assumptions regarding who has access to that informa-
tion.

In general, the analysis shows that revealing the direction of liquidity trade
in advance decreases the expected trading costs of liquidity traders, does not
affect the informativeness of prices, and reduces the incentives for
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information gathering for informed agents. This first conclusion is similar
to that of Admati and Pfleiderer [1991] and Pagano and Roell [1993], and it
suggests that in general greater transparency of orders benefits uninformed
traders. Revealing the magnitude of trade decreases expected uninformed
trading costs only if there is sufficient competition amongst informed
traders, increases the sensitivity of prices to order flow, and does not affect
the informativeness of prices. These results suggest that information on
magnitude of trade is qualitatively different than information on direction,
affecting the depth of the market as well as the gains and losses amongst
traders. Since the depth of the market relates to its liquidity, the anonymity
of trading can also influence the extent to which markets provide liquidity.

These results suggest that access to trade information can introduce real
effects into the behavior of markets. From a regulatory perspective, this
issue of access to trade information underlies the debate over dual capacity
trading. Dual-capacity trading (or simply dual trading) refers to the practice
of allowing brokers both to submit customer orders and to trade as dealers
for their own account. Such a framework characterizes a number of trading
venues including that of London equity markets and the Chicago futures
markets. Because brokers potentially gain relevant information from their
customers’ orders, the ability to exploit such information for gain has
prompted regulatory proposals to restrict such dual trading. At issue is how
the ability to dual trade affects the behavior of prices and the welfare of
customers.

These issues are addressed in theoretical research by Roell [1990] and
Fishman and Longstaff [1992], as well as in empirical studies by Smith and
Whaley [1991] and Chang and Locke [1992]. The Roell analysis employs a
variant of the Kyle [1989]) model to investigate the trading behavior of a
dual-capacity broker who has better information about uninformed trading
than does the market maker. This superior information allows the trader to,
in effect, step in front of the market maker and provide liquidity directly to
uninformed traders. The analysis demonstrates that this results in dual
trading improving (i.e., reducing) the transaction costs normally faced hy
uninformed traders but increasing the costs faced by informed traders.

The model involves a one-period Kyle [1989] batch model with a single
risk neutral informed trader, a risk neutral and competitive market maker,
many uninformed traders, and N broker/dealers. These brokers are assumed
able to identify particular uninformed liquidity trades, but have no
information on others. This ability arises because brokers know the trading
motivations of their specific customers and, hence, can discern information
about the uninformed order flow. In particular, the aggregate uninformed
demand, denoted u, is assumed to be distributed as N(0, crﬁ). Each of the N

brokers can identify part of the uninformed demand, u;, with variance orl-z,
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fori=1,. .., N. Letting 6} denote the portion of uninformed demand
unknown to any broker, it follows that 62 = 02 + 0% + -+ -+ + 0%;.

The brokers are assumed to submit net demand schedules of the form
Z{u, p), fori=1, ..., N, where p denotes the price of the asset. This is a
net demand because the brokers may choose to fill some orders themselves,
thereby reducing the amount submitted to the market maker. There is one
risk neutral informed trader, who knows the true asset value v. The other
market participants (the uninformed traders, the brokers, and the market
maker) share 2 common prior on v, which is distributed as N{vp, V). As in
the Kyle model, the informed trader submits an order quantity, denoted
X(v, p). The market maker sees the aggregate net order flow, denoted y,
where

N N
y = Z Z; (ui, p) + X(V, p) + Z u;. (9.3)
i=1 i=0

Equilibrium in this model consists of strategies Z{u;, p) and X(v, p) such
that each agent maximizes profit, realizing his effect on p, and a price
function satistying the conditional expectation constraint resulting from
competitive market makers. As this is a variant of the Kyle model, it should
not be surprising that this equilibrium has the simple linear structure found
in earlier applications. In particular, Roell demonstrates that the unique
linear equilibrium is

P(y) = vo +2Y, (9.4)
X(v,p) = ﬁ(v —p), (9.5)
Z; (“fap) = —bu; — ’Y(P - VO) (9.6)

where 3 is the unique real root of the equation
(1 —6)3(2N— 1)02 _ (1 —6)2(N— 1)o? +2(1 —6)a§ —02=0, (9.7)

and

5 JO’%'*‘N(:/—(?)ZUZ | (9.8)
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B, (9.9)

1
_1 1-4
B 1—5—N(1—-25)'

(9.10)

The actual mechanics of finding the equilibrium solution are the same as in
Kyle. What is important to note about the solution to this model is the sign
and magnitude of the & term, the brokers’ response to the known order
flow component. Roell shows that the solution of the real root requires that
3 lie in the interval [1/2, N/(2N — 1)]. Hence, as N goes to infinity,  goes
to 1/2. Moreover, since in the broker’s strategy 8 enters negatively, this
means that the broker essentially fills 1/2 of the uninformeds’ order from
the brokers’ inventory. This behavior corresponds to the classic behavior of
a monopolist: the broker trades only to the point of taking half of the
“rents” and not to the point of driving the price to equal marginal cost.
This equilibrium also reflects the notion that in markets the specialist need
not be the only provider of liquidity. Here, as in actual markets, brokers
may compete with the market maker in taking the order flow.

This equilibrium with dual trading can be contrasted with the equilibri-
um that arises with dual trading prohibited. Roell shows that such an
equilibrium is essentially just that found in Kyle [1989)]. In this case, § =y
= 0, and the equilibrium parameters of interest are

[o2 2
o + No
Bt = O—'I'/—— (9.11)

and

L1 %
YTF VAN 612

A comparison of the two equilibria reveals the interesting property that the
insider trades more vigorously in the absence of dual trading. In particular,
the B variable is greater without dual trading, reflecting that with no dual
traders preempting order flow, all uninformed orders now go to the market.
This provides more noise to hide the trade of the informed trader, and
hence, he trades more aggressively. |
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In this model, therefore, dual-capacity trading removes uninformed order
flow from the market and thereby changes the informativeness of the
remaining order flow. This line of reasoning suggests that an important
feature of a trading structure may be its ability to segment order flows into
different streams. As these analyses demonstrate, this can affect not only the
market maker’s price-setting problem, but the stochastic process of prices as
well.

Roell investigates these price effects by comparing the prices faced by
various types of traders. She shows that with dual trading the unidentified
uninformed traders are worse off, as their trading prices reflect the increased
informativeness of the market order flow. For the same reason, the
informed traders are also made worse off with dual trading. Conversely, the
identified uniformed traders are better off because they receive the benefits
of trading with the dual trader.

Perhaps more intriguing, Roell shows that dual traders make positive
expected profits and that these profits are smaller than the decrease in
informed traders’ profits. Hence, on balance, transactions costs {as measured
by the losses of the uninformed) fall with the inclusion of dual-capacity
brokers in the market. In this one-period model, therefore, dual trading
serves to reduce the asymmetric information costs borne by uninformed
traders.

One implication of these results is that uninformed traders benefit from
being known as uninformed. Indeed, to the extent that more than one
broker knows the status of an individual trader, these benefits accrue even
more. This provides an incentive for uninformed traders to preannounce
their trades, or engage in “sunshine trading” similar to that analyzed in
Admati and Pfleiderer [1991]. Roell also shows that in this model trading
costs are minimized when all brokers know the same information, thereby
rendering the unidentified order flow even more informative. From a
policy perspective, this suggests that requiring brokers to announce their
order flow would improve the performance of the market (in the sense of
minimizing transaction costs).5 Since this also reduces brokers’ profits,
however, it is not likely to be voluntarily adopted. Moreover, if the number
of brokers is endogenously determined (depending in patrt on the profits
available in the market), then this improvement might be vitiated by a fall
in overall liquidity provision.

An alternative view of dual trading is espoused by Fishman and Longstaff
[1992). In their model, dual-capacity brokers do not provide liquidity but

6. This also assumes that informed traders are not able to mimic the trades of the
uninformed, thereby leaving the overall order flow noninformative.
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instead attempt to mimic the trades they believe come from informed
traders. Thus, the advantage dual traders have in this market is superior
information about the trades of informed traders, rather than the informa-
tion on uninformed trades analyzed by Roell. Fishman and Longstaff
consider a sequential trade model in which brokers receive orders from
traders, who can be either informed (with probability ¢) or uninformed
(with probability 1 — ¢).

Traders submit their order to a broker, and the model assumes that the
broker has only two customers, denoted A and B. An unusual (and
restrictive) feature of this model is that the broker is also restricted from
submitting more than two orders to the market. This dictates that if both
the broker’s customers submit orders, then the broker cannot trade. If only
one customer wishes to trade, however, then the broker can submit the
second order. In this one-period model, a customer can buy one unit of the
asset, sell one unit, or not trade at all. If a trader is uninformed, she is
assumed to buy with probability ;/2, sell with probability h;/2, and not
trade with probability 1 — h;, where i denotes either trader A or B.

The market maker does not know the origin of orders (i.e., whether they
are from customers or the broker), and it is this anonymity that allows
brokers to profit on their information. In particular, the market maker
knows the average probability that an uninformed trader will transact,
denoted k, but the broker knows the specific values h 4 and hg. This means
that the market maker attaches probability ¢/[q + A(1 + g)] to any trade
being informed, while the broker attaches ¢/[¢ + hi(1 + 4)].

The broker’s optimal trading strategy is then to not trade if neither A nor
B trades, and, if either A or B trades, to submit the same trade if k; is low
enough. This condition corresponds to trading if the probability that the
trade is information-based is high enough. Since the market maker knows
only the average A, this strategy allows the broker to trade when it is most
likely to be profitable, and not to trade otherwise. Recall that if both A and
B trade, the broker is precluded from trading.

In this model, it follows that banning dual trading improves prices
because it reduces the probability that the second trade is related to
information.” This allows the market maker to set “better” prices for the
second trade and hence would reduce the expected trading costs the

7. This does not mean, however, that traders are necessarily better off, because this affects
the commissions traders pay. In particular, Fishman and Longstaff assume that brokers face
exogenous fixed costs and variable costs and that competition forces these to be passed on to
customers. They show that the increased profits arising from dual trading allow these
commission to be reduced, with the result that traders are actually better off with dual
trading. This result depends heavily on the model’s restrictive structure, and it is not clear
that it would hold in a more gencral setting.



Issues in Market Performance 267

uninformed trader pays to the market maker. This result relies heavily,
however, on the assumption of fixed trading behavior by the informed
trader, as well as by the uninformed. If the optimal strategy of informed or
uninformed differed depending upon whether dual trading is allowed, then
the effects of dual trading could be very different.

Fishman and Longstaff also consider what comes to pass if the broker is
permitted to trade before, rather than after, a customer order. Such a
practice is generally known as front running. In this case, the critical value
ot h; inducing the broker to trade rises, meaning that the broker is more
likely to submit an order. This occurs because the broker faces better prices
trading first and hence, can afford to trade more aggressively. Front
running is generally prohibited, as the broker essentially free-rides on the
trader’s order information.

Pagano and Roell [1992] also consider the effects of front running in a
model in which dual traders do not know customers’ trading motivations
but do know the size of their submitted orders prior to execution. In this
model, dual-trading brokers can benefit from knowing customer order flow
because they can exploit the information implicit in trading imbalances.
Since informed traders will all be on one side of the market, a trade
imbalance may signal future movements in stock prices, and front running
allows dual traders to profit on this information. This notion of information
in the order imbalance captures an important, and believable, aspect of the
value of order information: Unlike trader motivations, trade imbalances are
clearly observable to brokers.

An interesting finding in this research is that broker front running does
not always negatively affect customer orders. Pagano and Roell use a variant
of the Kyle model to show that while front running hurts noise traders in
general, provided it is known to occur in the market, it does not necessarily
affect the welfare of the brokers’ customers. Of perhaps more importance is
their result that traders in general would be better off if there were no front
running. One might expect that a broker who promises not to trade on his
own account could “out compete” the dual trader and thus achieve a
competitive outcome without dual trading. Since, however, the profits of
dual traders come from both their clients and the market as a2 whole, the
brokers’ gains exceed their clients’ losses. Consequently, Pagano and Roell
argue that a “no dual trading” outcome is unlikely to arise.

One way to characterize the research on dual capacity trading and front
running is that allowing such trading behavior changes the underlying
informativeness of the order flow. Indeed, this change in informativeness is
fundamental to the larger issues of transparency and anonymity. As we have
seen, changes in market structures and trading rules affect prices and trading
profits because they affect the speed and ability of the market maker to
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discover private information. Given this, the question of what is the best
trading mechanism naturally arises. We consider this issue in the next
section.

9.3 HOW TO DESIGN A MARKET?

Perhaps the most striking development in asset markets over the past decade
has been the proliferation of new markets. From the electronic networks of
Globex and the Arizona Stock Exchange to the new exchanges now found
in virtually every major European and Asian city, the growth of trading
venues has been extensive. With this growth has come an array of market-
clearing arrangements and a plethora of choices for the trading of assets.
The long-envisioned global market for assets has virtually come to pass.

The economics of competition dictates, however, that not all these
markets will survive. And the question of which market designs will, or
even should, prevail is rarely asked, let alone resolved. Such a failing is
perhaps not surprising given the complexity of the overall issue. Its
omission may be costly, however, both in the losses suffered by traders in
markets that ultimately fail, and in the costs borne by the economy at large
from markets that operate suboptimally.

In this final section, we consider aspects of this market design issue. Our
focus is on two simple issues: what should be the goal of market design, and
how do the properties of markets contribute to these goals? Needless to say,
there is little consensus on the answers to these question, but presumably
the research in market microstructure provides some guidance for address-
ing these issues.

The goals of a market depend, of course, on whose perspective is
considered. For an exchange or automated clearing system, the underlying
goal may be as straightforward as the maximization of trading commissions.
From a trader’s perspective, the ideal market may be one in which orders
are accommodated with the least effect on price, or one that has the lowest
overall trading cost. For a regulator, the best market may be the one with
the greatest stability. For society as a whole, however, it is clear that while
each of these goals may be important, none captures all the ways in which
markets affect welfare in the economy.

The notion of the “public interest” underlies much of the current
regulation of existing markets. Domowitz [1990], in an interesting paper
on the welfare effects of electronic clearing systems, notes that the
Commodity Exchange Act of 1974 defines a market as meeting the public
interest if it satisfies three requirements: reliable price discovery, broad- _

Mp&dkmﬁ%nd | effective hedging against price risks. While
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clearly limited, this definition does provide a starting point for evaluating
market designs.

What market features contribute to reliable price discovery? As our
discussions have highlighted, this depends upon what is meant by the price.
The simplest argument is that at any given time the price is simply that
which clears the market. The best market, therefore, is the one in which a
market-clearing price can always be found. From a reliability standpoint,
this argues for a monopolistic system. Yet, as we have discussed, this
reliability is purchased at the cost of all consumer surplus going to the
market maker. Moreover, the trading price the market maker sets need have
little relation to the underlying true asset value. Such distortions of the
price suggest that the simple view of price discovery is not sufficient to
capture the complexity of the price discovery process.

Abstracting from the rents a monopolist extracts, one feature that surely
contributes to an ability to find a market price is simply scale. The
aggregation of orders in a centralized market provides at least the potential
for a market-clearing price to arise. And this argues against allowing the
segmentation of trade into multiple venues. Here again, however, the issue
of what price is desired is problematic. As we have seen, in the presence of
asymmetric information, the market-clearing price must reflect the pooled
risk of private information. Yet all trades need not carry the same risk, and
thus aggregation imposes costs on some traders at the expense of others.
The solution to this, of course, is to segment trading. And so we are back to
the conundrum of which is better: a single setting providing a single
market-clearing price, or multiple settings provide different market prices
for different quantities?

From a welfare perspective, it may be that the latter prevails. Enforcing a
single trading venue in a global market is a task worthy of King Canute,
and its pursuit undoubtedly detracts from the ability of the market to meet
all traders’ needs. This suggests, for example, that the rules barring
prearranged block trades in futures markets may impose needlessly high
costs on traders. But it is also true that extensive fragmentation of markets
cannot be optimal. The consequent lack of liquidity cannot foster price
discovery, nor can it provide traders with the effective hedging of price
risks.

The goal of broad-based price dissemination is more problematic. This
second component of the public interest presumably is intended to make
markets more transparent. And certainly, on some level, this is an important
accomplishment. Yet there are several problems consequent to this. One
difficulty is evidenced by the growth of third market traders who “free
ride” off of the price discovery process elsewhere. To the extent that the
dissemination of information allows others to capture rents, this under-
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mines the goal of price discovery. Moreover, if price information is
extended to include order information, then the greater availability of
market information is not obviously better. As we have discussed,
difficulties such as the free option problem and the strategic decisions of
informed traders can inhibit the viability of transparent markets. It will,
however, generally be true that the transparency of prices allows traders
better ability to extract information from the market price, a process that
surely abets the goal of equilibrium price discovery.

The third property of the public interest, the effective hedging of price
risks, reflects the general role of markets in providing insurance to liquidity
traders. This aim is implicit in the goal of minimizing expected trading
costs for uninformed traders. There are several market features that foster
this, including greater liquidity, the prohibition of dual trading and front
running, and the reduction of anonymity in the market. Fundamental to
attaining this goal, however, is the liquidity of the market. The greater this
liquidity, the smaller will be the price effects that accompany orders, and
thus the greater the ability of uninformed traders to hedge their consump-
tion risk.

Underlying each of these three properties, however, is another, perhaps
greater, function of the market that is not recognized in the working
definition given above. This is the role of market efficiency. How well and
how quickly a market aggregates and impounds information into the price
must surely be a fundamental goal of market design. Yet its exclusion from
the definition of public interest may not be an oversight. As we have
discussed throughout this book, market efficiency is not an easy concept.
While in principle the attainment of full-information prices is not
contentious, its actual achievement is likely to be. And, indeed, the very
process of doing so may abrogate some of the very goals espoused above for
market design.

One difficulty is that the notion of dynamic efficiency, or the speed with
which prices reflect fll i }mnﬂ’ Is a market better
or more efficient if prices reach the Fallinformation level faster? The
current usage of efficiency generally concentrates on prices in a trading
mechanism reflecting full-information values eventually. At any point prior
to that, however, prices are generally deemed at least semi-strong efficient
if they reflect all publicly available information. Yet this latter requirement

1s not a stringent constraint. Two trading systems may both satisfy this

m———————— . — g~

condition, yet show veiy great dlffcrcnccs int _’Hc speed w1tﬁ which prlces

move toward full-information Icvglsw | e
If the speed of information incorporation is deemed important, then

factors that facilitate this may lead to market behaviors that are not so

obviously desirable. For example, markets that adjust rapidly to information
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will surely exhibit large price volatility. Certainly, much discussion has
focused on market volatility, with most regulatory proposals attempting to
decrease volatility. But is this truly optimal? One rationale given is that
volatility inhibits the hedging ability (or at least the participation) of
uninformed traders. Yet it is precisely because new information changes the
value of assets in the economy that traders need to hedge.

Moreover, a second difficulty is that the speed of adjustment of prices
depends on the extent of informed trading, with greater informed trading
leading to the faster incorporation of information. The scale of information
gathering and informed trading, however, surely depends on the returns to
such activities, and these, in turn, translate into losses for uninformed
traders. Thus, the goals of minimizing uninformed trading costs and
increased price efficiency conflict.

One way to reconcile this conundrum is to consider how the efficiency
of the market affects society in the long run. For a specific level of market
efficiency, one can view the three goals discussed above as optimally
allocating a given amount of surplus amongst various market players. Thus,
society might prefer to give uninformed traders more rents and informed
traders less, ceteris paribus. Or society might prefer less to more volatile
markets, ceteris paribus. Once, however, the level of market efficiency is not
fixed (and, since it depends on the returns to the informed traders, it really
cannot be), then the total amount of surplus is also part of the equation. In
effect, the question becomes, does greater efficiency increase the overall
gain to be shared?

This link between the efficiency of the market and the overall gain to
society is a crucial direction for future microstructure research. It would
seem that market efficiency benefits society directly by reducing the cost of
capital for firms. If market prices reflect true asset values more quickly and
accurately, then presumably the allocation of capital can also better reflect
its best uses. The calculus for achieving an optimal amount of market
efficiency, however, is not clear, depending as we have seen on the critical
balance between the losses to the uninformed and their participation in
markets. And the general equilibrium linkage of markets to overall
economic behavior is not yet well established in the microstructure
literature. The issue of the optimal design of markets thus remains an open
question for microstructure researchers.
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