O'REILLY"

Machine Learning
for Financial

Risk Management
with Python

Algorithms for Modeling Risk

Abdullah Karasan

O'REILLY"

Machine Learning for Financial Risk

Management with Python

Financial risk management is quickly evolving with the help
of artificial intelligence. With this practical book, developers,
programmers, engineers, financial analysts, risk analysts,

and quantitative and algorithmic analysts will examine
Python-based machine learning and deep learning models for
assessing financial risk. Building hands-on Al-based financial
modeling skills, you'll learn how to replace traditional financial
risk models with ML models.

Author Abdullah Karasan helps you explore the theory behind
financial risk modeling before diving into practical ways of
employing ML models in modeling financial risk using Python.
With this book, you will:

e Review classical time series applications and compare them
with deep learning models

¢ Explore volatility modeling to measure degrees of risk, using
support vector regression, neural networks, and deep learning

¢ Improve market risk models (VaR and ES) using ML
techniques and including liquidity dimension

¢ Develop a credit risk analysis using clustering and Bayesian
approaches

¢ Capture different aspects of liquidity risk with a Gaussian
mixture model and Copula model

¢ Use machine learning models for fraud detection

e Predict stock price crash and identify its determinants using
machine learning models

“Abdullah Karasan does
a great job in showing
the capabilities of
machine learning
with Python in the
context of financial
risk management—a
function vital to any
financial institution.”

—Dr. Yves J. Hilpisch
Founder and CEO of The Python
Quants and The Al Machine

“If you need a go-to
guide about the
application of statistical
and machine learning
methods to analysis of
financial risk, thisis a
great place to start.”

—GrahamL. Giller
Author of Adventures in
Financial Data Science

Abdullah Karasan works as a principal
data scientist at Magnimind and lecturer
at the University of Maryland, Baltimore.

MACHINE LEARNING / DATA

UsS $7999 CAN $10599
ISBN: 978-1-492-08525-6

JOOIPTUWIOIONNCY
LR AN

781492 5256

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Praise for Machine Learning for Financial Risk
Management with Python

Nowadays, Python is undoubtedly the number one programming language in the
financial industry. At the same time, machine learning has become a key technology for
the industry. The book by Abdullah Karasan does a great job in showing the capabilities

of machine learning with Python in the context of financial risk management—a function
vital to any financial institution.

—Dr. Yves]. Hilpisch, Founder and CEO of The Python Quants
and The AI Machine

This book is a comprehensive and practical presentation of a wide variety of methods—
drawn from both the statistical and machine learning traditions—for the analysis of
financial risk. If you need a go-to guide to the application of these methods to data, this is
a great place to start.

—Graham L. Giller, author of Adventures in
Financial Data Science

Abdullah Karasan has made the topic of risk management for finance exciting by
applying modern and advanced applications of machine learning. This book is a
must for any financial econometrician, hedge fund manager, or quantitative risk

management department.

—McKlayne Marshall, Analytics Engagement Leader

Machine Learning for Financial
Risk Management with Python

Algorithms for Modeling Risk

Abdullah Karasan

Beijing + Boston - Fanham - Sebastopol - Tokyo KSYRI=[ANG

Machine Learning for Financial Risk Management with Python
by Abdullah Karasan

Copyright © 2022 Abdullah Karasan. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith Indexer: Potomac Indexing, LLC
Development Editor: Michele Cronin Interior Designer: David Futato
Production Editor: Daniel Elfanbaum Cover Designer: Karen Montgomery
Copyeditor: Shannon Turlington lllustrator: Kate Dullea

Proofreader: Stephanie English
December 2021: First Edition

Revision History for the First Edition
2021-12-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492085256 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Machine Learning for Financial Risk
Management with Python, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights. This book is not intended as financial advice. Please
consult a qualified professional if you require financial advice.

978-1-492-08525-6
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492085256

Table of Contents

Preface. ...ooi iX
Partl. Risk Management Foundations
1. Fundamentals of Risk Management..............ccooiiiiiiiiiiiiiiiinennnnnns. 3
Risk 4
Return 4
Risk Management 7
Main Financial Risks 8
Big Financial Collapse 9
Information Asymmetry in Financial Risk Management 11
Adverse Selection 11
Moral Hazard 14
Conclusion 15
References 15
2. Introduction to Time SeriesModeling.covviiiiiiiiiiiiiiiiienennnes 17
Time Series Components 20
Trend 21
Seasonality 25
Cyclicality 27
Residual 28
Time Series Models 34
White Noise 35
Moving Average Model 37
Autoregressive Model 42
Autoregressive Integrated Moving Average Model 48

Conclusion 54

References 55
3. Deep Learning for Time Series Modeling............ccoovvviiiiiiinnnnnennnns. 57
Recurrent Neural Networks 58
Long-Short Term Memory 65
Conclusion 71
References 72

Partll. Machine Learning for Market, Credit, Liquidity, and
Operational Risks

4. Machine Learning-Based Volatility Prediction...................ccoovviiiinins 75
ARCH Model 78
GARCH Model 84
GJR-GARCH 90
EGARCH 92
Support Vector Regression: GARCH 95
Neural Networks 101
The Bayesian Approach 106

Markov Chain Monte Carlo 108
Metropolis—Hastings 110
Conclusion 115
References 116

5. Modeling Market Risk.ccovueririiiiieiiieiiieiiiieeieennerenanens 119

Value at Risk (VaR) 121
Variance-Covariance Method 122
The Historical Simulation Method 128
The Monte Carlo Simulation VaR 129

Denoising 133

Expected Shortfall 141

Liquidity-Augmented Expected Shortfall 143

Effective Cost 145

Conclusion 153

References 154

6. Credit Risk Estimation.................cooooiiiiiiiiiiiiiiinnnnnnnnn 155
Estimating the Credit Risk 156
Risk Bucketing 158
Probability of Default Estimation with Logistic Regression 170

vi | Tableof Contents

Probability of Default Estimation with the Bayesian Model 179

Probability of Default Estimation with Support Vector Machines 185
Probability of Default Estimation with Random Forest 187
Probability of Default Estimation with Neural Network 188
Probability of Default Estimation with Deep Learning 189
Conclusion 192
References 192
7. LiquidityModeling..........ooviiiniiiiiiiiiiiii i 193
Liquidity Measures 195
Volume-Based Liquidity Measures 195
Transaction Cost-Based Liquidity Measures 199
Price Impact-Based Liquidity Measures 203
Market Impact-Based Liquidity Measures 206
Gaussian Mixture Model 210
Gaussian Mixture Copula Model 216
Conclusion 219
References 219
8. Modeling Operational Risk...........c.ooviiiiiiiiiiiiiiiiiiiiiiiiinnnns, 221
Getting Familiar with Fraud Data 224
Supervised Learning Modeling for Fraud Examination 229
Cost-Based Fraud Examination 234
Saving Score 236
Cost-Sensitive Modeling 238
Bayesian Minimum Risk 240
Unsupervised Learning Modeling for Fraud Examination 243
Self-Organizing Map 244
Autoencoders 247
Conclusion 251
References 252

Partlll. Modeling Other Financial Risk Sources

9. ACorporate Governance Risk Measure: Stock Price Crash. 255
Stock Price Crash Measures 257
Minimum Covariance Determinant 258
Application of Minimum Covariance Determinant 260
Logistic Panel Application 270
Conclusion 278
References 279

Table of Contents | vii

10. Synthetic Data Generation and The Hidden Markov Model in Finance............

Synthetic Data Generation

Evaluation of the Synthetic Data

Generating Synthetic Data

A Brief Introduction to the Hidden Markov Model
Fama-French Three-Factor Model Versus HMM
Conclusion

References

Y0 0T o R

281
283
284
292
293
304
304

viii

Table of Contents

Preface

AT and ML reflect the natural evolution of technology as increased computing power
enables computers to sort through large data sets and crunch numbers to identify pat-
terns and outliers.

—BlackRock (2019)

Financial modeling has a long history with many successfully accomplished tasks, but
at the same time it has been fiercely criticized due mainly to lack of flexibility and
non-inclusiveness of the models. The 2007-2008 financial crisis fueled this debate as
well as paved the way for innovations and different approaches in the field of finan-
cial modeling.

Of course, the financial crisis was not the only thing precipitating the growth of Al
applications in finance. Two other drivers, data availability and increased computing
power, have spurred the adoption of Al in finance and have intensified research in
this area starting in the 1990s.

The Financial Stability Board (2017) stresses the validity of this fact:

Many applications, or use “cases,” of AI and machine learning already exist. The adop-
tion of these use cases has been driven by both supply factors, such as technological
advances and the availability of financial sector data and infrastructure, and by
demand factors, such as profitability needs, competition with other firms, and the
demands of financial regulation.

As a subbranch of financial modeling, financial risk management has been evolving
with the adoption of AI in parallel with its ever-growing role in the financial
decision-making process. In his celebrated book, Bostrom (2014) denotes that there
are two important revolutions in the history of mankind: the Agricultural Revolution
and the Industrial Revolution. These two revolutions have had such a profound
impact that any third revolution of similar magnitude would double the size of the
world economy in two weeks. Even more strikingly, if the third revolution were
accomplished by Al, the impact would be way more profound.

So expectations are sky-high for AI applications shaping financial risk management at
an unprecedented scale by making use of big data and understanding the complex
structure of risk processes.

With this study, I aim to fill the void about machine learning-based applications in
finance so that predictive and measurement performance of financial models can be
improved. Parametric models suffer from issues of low variance and high bias;
machine learning models, with their flexibility, can address this problem. Moreover, a
common problem in finance is that changing distribution of the data always poses a
threat to the reliability of the model result, but machine learning models can adapt
themselves to changing patterns in a way that models fit better. So there is a huge
need and demand for applicable machine learning models in finance, and what
mainly distinguish this book is the inclusion of brand-new machine learning-based
modeling approaches in financial risk management.

In a nutshell, this book aims to shift the current landscape of financial risk manage-
ment, which is heavily based on the parametric models. The main motivation for this
shift is recent developments in highly accurate financial models based on machine
learning models. Thus, this book is intended for those who have some initial knowl-
edge of about finance and machine learning in the sense that I just provide brief
explanations on these topics.

Consequently, the targeted audience of the book includes, but is not limited to, finan-
cial risk analysts, financial engineers, risk associates, risk modelers, model validators,
quant risk analysts, portfolio analysis, and those who are interested in finance and
data science.

In light of the background of the targeted audience, having an introductory level of
finance and data science knowledge will enable you to benefit most from the book. It
does not, however, mean that people from different backgrounds cannot follow the
book topics. Rather, readers from different backgrounds can grasp the concepts as
long as they spend enough time and refer to some other finance and data science
books along with this one.

The book consists of 10 chapters:

Chapter 1, “Fundamentals of Risk Management”
This chapter introduces the main concepts of risk management. After defining
what risk is, types of risks (such as market, credit, operational, and liquidity) are
discussed. Risk management is explained, including why it is important and how
it can be used to mitigate losses. Asymmetric information, which can address the
market failures, is also discussed, focusing on information asymmetry and
adverse selection.

x | Preface

Chapter 2, “Introduction to Time Series Modeling”
This chapter shows the time-series applications using traditional models, namely
the moving average model, the autoregressive model, and the autoregressive inte-
grated moving average model. We learn how to use an API to access financial
data and how to employ it. This chapter mainly aims to provide a benchmark for
comparing the traditional time-series approach with recent developments in
time-series modeling, which is the main focus of the next chapter.

Chapter 3, “Deep Learning for Time Series Modeling”
This chapter introduces the deep learning tools for time-series modeling. Recur-
rent neural network and long short-term memory are two approaches by which
we are able to model the data with time dimension. This chapter also gives an
impression of the applicability of deep learning models to time-series modeling.

Chapter 4, “Machine Learning-Based Volatility Prediction”

Increased integration of financial markets has led to a prolonged uncertainty in
financial markets, which in turn stresses the importance of volatility. Volatility is
used to measure the degree of risk, which is one of the main engagements of the
area of finance. This chapter deals with the novel volatility modeling based on
support vector regression, neural network, deep learning, and the Bayesian
approach. For the sake of comparison of the performances, traditional ARCH-
and GARCH-type models are also employed.

Chapter 5, “Modeling Market Risk”

Here, machine learning-based models are employed to boost estimation perfor-
mance of the traditional market risk models, namely value at risk (VaR) and
expected shortfall (ES). VaR is a quantitative approach for the potential loss of
fair value due to market movements that will not be exceeded in a defined period
of time and with a defined confidence level. ES, on the other hand, focuses on the
tail of the distribution, referring to big and unexpected losses. A VaR model is
developed using a denoised covariance matrix, and ES is developed by incorpo-
rating a liquidity dimension of the data.

Chapter 6, “Credit Risk Estimation”

This chapter introduces a comprehensive machine learning-based approach to
estimating credit risk. Machine learning models are applied based on past credit
information along with other data. The approach starts with risk bucketing,
which is suggested by the Basel Accord, and continues with different models:
Bayesian estimation, the Markov chain model, support vector classification, ran-
dom forests, neural networks, and deep learning. In the last part of the chapter,
the performance of these models will be compared.

Preface | xi

Chapter 7, “Liquidity Modeling”
In this chapter, Gaussian mixture model is used to model the liquidity, which is
thought to be a neglected dimension in risk management. This model allows us
to incorporate different aspects of the liquidity proxies so that we can capture the
effect of liquidity on financial risk in a more robust way.

Chapter 8, “Modeling Operational Risk”
This chapter covers the operational risk that may result in a failure, mostly due to
a company’s internal weakness. There are several sources of operational risks, but
fraud risk is one of the most time-consuming and detrimental to the company’s
operations. Here, fraud will be our main focus, and new approaches will be devel-
oped to have better-performing fraud applications based on machine learning
models.

Chapter 9, “A Corporate Governance Risk Measure: Stock Price Crash”
This chapter introduces a brand-new approach to modeling corporate gover-
nance risk: stock price crash. Many studies find an empirical link between stock
price crash and corporate governance. Using the minimum covariance determi-
nant model, this chapter attempts to unveil the relationship between the compo-
nents of corporate governance risk and stock price crash.

Chapter 10, “Synthetic Data Generation and The Hidden Markov Model in Finance”
Here we use synthetic data to estimate different financial risks. The aim of this
chapter is to highlight the emergence of synthetic data, which helps us to mini-
mize the impact of limited historical data. Synthetic data allows us to have data
that is large enough and of high quality, which then improves the quality of the
model.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xii | Preface

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a general note.

This element signifies a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/abdullahkarasan/mlfrm.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "Machine Learning for Financial Risk
Management with Python by Abdullah Karasan (O’Reilly). Copyright 2022 Abdullah
Karasan, 978-1-492-08525-6

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xiii

https://github.com/abdullahkarasan/mlfrm
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/mi-for-fin-risk-mgmt.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly.
Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

xiv | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/ml-for-fin-risk-mgmt
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgements

The decision to write this book did not come out of the blue. I felt that there was a
lack of source material covering the main financial risk management model with
machine learning models. This book is an effort to apply the machine learning mod-
els to financial risk management issues. I came to the conclusion that this book
should be different from various angles, such as providing both theoretical and
empirical approaches to the models as well as all the code that makes it possible to
replicate them. When I shared this idea with Michelle Smith from O’Reilly, I got a
green light and constant encouragement. Michelle put faith in this project and sup-
ported me all the way, for which I am very grateful.

As soon as new chapters of the book came in, the informative and fun weekly meet-
ings with Michele Cronin, my editor, kept me on track and helped me to gain an edi-
torial perspective. As I progressed, each chapter presented new challenges that
required relentless days and nights to deal with. Well, the more time I spent, the
harder it became to detect the inaccuracies, typos, and other types of mistakes. This is
exactly the point where the invaluable feedback of the technical reviewers came in. I
am grateful to Mehmet Benturk, Hariom Tatsat, Isaac Rhea, Dimitri Bianco,
McKlayne Marshall, and Michael Shearer for their efforts in making the book what it
is today.

Additionally, I would like to thank Danny Elfanbaum and Randy Balaban for their
quick and helpful comments on the consistency of text. After a long, roller-coaster
year, I came to the end of this tedious yet enlightening milestone of my life full of
hope that this book will shed light on the path of those who want to learn machine
learning in finance.

I want to convey my deepest gratitude to those who contributed to the book.

Preface | xv

PARTI

Risk Management Foundations

CHAPTER1
Fundamentals of Risk Management

In 2007, no one would have thought that risk functions could have changed as much as
they have in the last eight years. It is a natural temptation to expect that the next decade
has to contain less change. However, we believe that the opposite will likely be true.

—Harle, Havas, and Samandari (2016)

Risk management is a constantly evolving process. Constant evolution is inevitable
because long-standing risk management practice cannot keep pace with recent devel-
opments or be a precursor to unfolding crises. Therefore, it is important to monitor
and adopt the changes brought by structural breaks in a risk management process.
Adopting these changes implies redefining the components and tools of risk manage-
ment, and that is what this book is all about.

Traditionally, empirical research in finance has had a strong focus on statistical infer-
ence. Econometrics has been built on the rationale of statistical inference. These types
of models concentrate on the structure of underlying data, generating process and
relationships among variables. Machine learning (ML) models, however, are not
assumed to define the underlying data-generating processes but are considered as a
means to an end for the purpose of prediction (Lommers, El Harzli, and Kim 2021).
Thus, ML models tend to be more data centric and prediction accuracy oriented.

Moreover, data scarcity and unavailability have always been an issue in finance, and it
is not hard to guess that the econometric models cannot perform well in those cases.
Given the solution that ML models provide to data unavailability via synthetic data
generation, these models have been on the top of the agenda in finance, and financial
risk management is, of course, no exception.

Before going into a detailed discussion of these tools, it is worth introducing the main
concepts of risk management, which I will refer to throughout the book. These
concepts include risk, types of risks, risk management, returns, and some concepts
related to risk management.

Risk

Risk is always out there, but understanding and assessing it is a bit tougher than
knowing this due to its abstract nature. Risk is perceived as something hazardous,
and it might be either expected or unexpected. Expected risk is something that is
priced, but unexpected risk can be barely accounted for, so it might be devastating.

As you can imagine, there is no general consensus on the definition of risk. However,
from the financial standpoint, risk refers to a likely potential loss or the level of
uncertainty to which a company can be exposed. McNeil, Alexander, and Paul (2015)
define risk differently, as:

Any event or action that may adversely affect an organization’s ability to achieve its
objectives and execute its strategies or, alternatively, the quantifiable likelihood of loss
or less-than-expected returns.

These definitions focus on the downside of the risk, implying that cost goes hand in
hand with risk, but it should also be noted that there is not necessarily a one-to-one
relationship between them. For instance, if a risk is expected, a cost incurred is rela-
tively lower (or even ignorable) than that of unexpected risk.

Return

All financial investments are undertaken to gain profit, which is also called return.
More formally, return is the gain made on an investment in a given period of time.
Thus, return refers to the upside of the risk. Throughout the book, risk and return
will refer to downside and upside risk, respectively.

As you can imagine, there is a trade-off between risk and return: the higher the
assumed risk, the greater the realized return. As it is a formidable task to come up
with an optimum solution, this trade-off is one of the most controversial issues in
finance. However, Markowitz (1952) proposes an intuitive and appealing solution to
this long-standing issue. The way he defines risk, which was until then ambiguous, is
nice and clean and led to a shift in landscape in financial research. Markowitz used
standard deviation o, to quantify risk. This intuitive definition allows researchers to
1

use mathematics and statistics in finance. The standard deviation can be mathemati-
cally defined as (Hull 2012):

4 | Chapter 1: Fundamentals of Risk Management

o =[E(R?) - [E(R)]?

where R and E refer to annual return and expectation, respectively. This book uses
the symbol E numerous times as expected return represents the return of interest.
This is because it is probability we are talking about in defining risk. When it comes
to portfolio variance, covariance comes into the picture, and the formula turns out
to be:

o= wﬁai

2 2
> + w0y, + 2w, w,Cov(r,,1;)

where w denotes weight, o*is variance, and Cov is covariance matrix.

Taking the square root of the variance obtained previously gives us the portfolio stan-
dard deviation:

_ 2
Ip =%

In other words, portfolio expected return is a weighted average of the individual
returns and can be shown as:

_yh _
E(R) = Zi WiRi = WlRl + WZRZ... +w R

nn

Let us explore the risk-return relationship by visualization. To do that, a hypothetical
portfolio is constructed to calculate necessary statistics with Python:

In [1]: import as
import as
import as
import as
import
import
warnings.filterwarnings('ignore')

In [2]: n_assets = 5 (1]
n_simulation = 500 (2]

In [3]: returns = np.random.randn(n_assets, n_simulation) (3]

In [4]: rand = np.random.rand(n_assets) (4)
weights = rand/sum(rand) ()

def port_return(returns):
rets = np.mean(returns, axis=1)

Return | 5

cov = np.cov(rets.T, aweights=weights, ddof=1)

portfolio_returns = np.dot(weights, rets.T)

portfolio_std_dev = np.sqrt(np.dot(weights, np.dot(cov, weights)))
return portfolio_returns, portfolio_std_dev

In [5]: portfolio_returns, portfolio_std_dev = port_return(returns) (7]

In [6]: print(portfolio_returns)
print(portfolio_std_dev) (&)

0.012968706503879782
0.023769932556585847

In [7]: portfolio = np.array([port_return(np.random.randn(n_assets, 1))
for 1 in range(1, 101)]) (9]

In [8]: best_fit = sm.OLS(portfolio[:, 1], sm.add_constant(portfolio[:, 0]))\
fit().fittedvalues ®

In [9]: fig = go.Figure()
fig.add_trace(go.Scatter(name='Risk-Return Relationship',
x=portfolio[:, 0],
y=portfolio[:, 1], mode='markers'))
fig.add_trace(go.Scatter(name='Best Fit Line',
x=portfolio[:, 0],
y=best_fit, mode='lines'))
fig.update_layout(xaxis_title = 'Return’,
yaxis_title = 'Standard Deviation',
width=900, height=470)
fig.show() (11)

Number of assets considered

Number of simulations conducted

Generating random samples from normal distribution used as returns
Generating random number to calculate weights

Calculating weights

© 06 6 oo oo o

Function used to calculate expected portfolio return and portfolio standard
deviation

Calling the result of the function

©

Printing the result of the expected portfolio return and portfolio standard
deviation

6 | Chapter 1: Fundamentals of Risk Management

© Rerunning the function 100 times
® To draw the best fit line, run linear regression

® Drawing interactive plot for visualization purposes

Figure 1-1, generated via the previous Python code, confirms that the risk and return
go in tandem, but the magnitude of this correlation varies depending on the individ-
ual stock and the financial market conditions.

. ® Risk-Return Relationship

0.6 Best Fit Line

0.5

0.4

Mean

0.3

0.2

-0.5 0 0.5 1

Standard Deviation

Figure 1-1. Risk-return relationship

Risk Management

Financial risk management is a process to deal with the uncertainties resulting from
financial markets. It involves assessing the financial risks facing an organization and
developing management strategies consistent with internal priorities and policies
(Horcher 2011).

According to this definition, as every organization faces different types of risks, the
way that a company deals with risk is completely unique. Every company should
properly assess and take necessary action against risk. This does not necessarily
mean, however, that once a risk is identified, it needs to be mitigated as much as a
company can.

Risk management is, therefore, not about mitigating risk at all costs. Mitigating risk
may require sacrificing return, and it can be tolerable up to certain level as companies
search for higher return as much as lower risk. Thus, to maximize profit while lower-
ing the risk should be a delicate and well-defined task.

Managing risk comes with a cost, and even though dealing with it requires specific
company policies, there exists a general framework for possible risk strategies:

Risk Management | 7

Ignore
In this strategy, companies accept all risks and their consequences and prefer to
do nothing.

Transfer
This strategy involves transferring the risks to a third party by hedging or some
other way.

Mitigate
Companies develop a strategy to mitigate risk partly because its harmful effect
might be considered too much to bear and/or surpass the benefit attached to it.

Accept
If companies embrace the strategy of accepting the risk, they properly identify
risks and acknowledge the benefit of them. In other words, when assuming cer-
tain risks arising from some activities bring value to shareholders, this strategy
can be chosen.

Main Financial Risks

Financial companies face various risks over their business life. These risks can be
divided into different categories in a way to more easily identify and assess them.
These main financial risk types are market risk, credit risk, liquidity risk, and opera-
tional risk, but again, this is not an exhaustive list. However, we confine our attention
to the main financial risk types throughout the book. Let’s take a look at these risk
categories.

Market risk

This risk arises due to a change in factors in the financial market. For instance, an
increase in interest rate might badly affect a company that has a short position.

A second example can be given about another source of market risk: exchange rate. A
company involved in international trade, whose commodities are priced in US dol-
lars, is highly exposed to a change in US dollars.

As you can imagine, any change in commodity price might pose a threat to a compa-
ny’s financial sustainability. There are many fundamentals that have a direct effect on
commodity price, including market players, transportation cost, and so on.

Credit risk

Credit risk is one of the most pervasive risks. It emerges when a counterparty fails to
honor debt. For instance, if a borrower is unable to make a payment, then credit risk
is realized. Deterioration of credit quality is also a source of risk through the reduced
market value of securities that an organization might own (Horcher 2011).

8 | Chapter 1: Fundamentals of Risk Management

Liquidity risk

Liquidity risk had been overlooked until the 2007-2008 financial crisis, which hit the
financial market hard. From that point on, research on liquidity risk has intensified.
Liquidity refers to the speed and ease with which an investor executes a transaction.
This is also known as trading liquidity risk. The other dimension of liquidity risk is
funding liquidity risk, which can be defined as the ability to raise cash or availability of
credit to finance a company’s operations.

If a company cannot turn its assets into cash within a short period of time, this falls
under the liquidity risk category, and it is quite detrimental to the company’s financial
management and reputation.

Operational risk

Managing operational risk is not a clear and foreseeable task, and it takes up a great
deal of a company’s resources due to the intricate and internal nature of the risk.
Questions include:

+ How do financial companies do a good job of managing risk?
« Do they allocate necessary resources for this task?

o Is the importance of risk to a company’s sustainability gauged properly?

As the name suggests, operational risk arises when external events or inherent opera-
tion(s) in a company or industry pose a threat to the day-to-day operations, profita-
bility, or sustainability of that company. Operational risk includes fraudulent
activities, failure to adhere to regulations or internal procedures, losses due to lack of
training, and so forth.

Well, what happens if a company is exposed to one or more than one of these risks
and is unprepared? Although it doesn’t happen frequently, historical events tell us the
answer: the company might default and run into a big financial collapse.

Big Financial Collapse

How important is risk management? This question can be addressed by a book with
hundreds of pages, but in fact, the rise of risk management in financial institutions
speaks for itself. For example, the global financial crisis of 2007-2008 has been char-
acterized as a “colossal failure of risk management” (Buchholtz and Wiggins 2019),
though this was really just the tip of the iceberg. Numerous failures in risk manage-
ment paved the way for this breakdown in the financial system. To understand this
breakdown, we need to dig into past financial risk management failures. A hedge
fund called Long-Term Capital Management (LTCM) presents a vivid example of a
financial collapse.

Risk Management | 9

LTCM formed a team with top-notch academics and practitioners. This led to a fund
inflow to the firm, and it began trading with $1 billion. By 1998, LTCM controlled
over $100 billion and was heavily invested in some emerging markets, including
Russia. The Russian debt default deeply affected LTCM’s portfolio due to flight to
quality," and it took a severe blow, which led it to bust (Bloomfield 2003).

Metallgesellschaft (MG) is another company that no longer exists due to bad financial
risk management. MG largely operated in gas and oil markets. Because of its high
exposure, MG needed funds in the aftermath of the large drop in gas and oil prices.
Closing the short position resulted in losses around $1.5 billion.

Amaranth Advisors (AA) is another hedge fund that went into bankruptcy due to
heavily investing in a single market and misjudging the risks arising from these
investments. By 2006, AA had attracted roughly $9 billion of assets under manage-
ment but lost nearly half of it because of the downward move in natural gas futures
and options. The default of AA is attributed to low natural gas prices and misleading
risk models (Chincarini 2008).

Stulz’s paper, “Risk Management Failures: What Are They and When Do They Hap-
pen?” (2008) summarizes the main risk management failures that can result in
default:

o Mismeasurement of known risks

o Failure to take risks into account

o Failure in communicating risks to top management
« Failure in monitoring risks

o Failure in managing risks

o Failure to use appropriate risk metrics

Thus, the global financial crisis was not the sole event that led regulators and institu-
tions to redesign their financial risk management. Rather, it is the drop that filled the
glass, and in the aftermath of the crisis, both regulators and institutions have adopted
lessons learned and improved their processes. Eventually, this series of events led to a
rise in financial risk management.

1 Flight to quality refers to a herd behavior in which investors stay away from risky assets such as stocks and
take long positions in safer assets such as government-issued bonds.

10 | Chapter 1: Fundamentals of Risk Management

Information Asymmetry in Financial Risk Management

Although it is theoretically intuitive, the assumption of a completely rational decision
maker, the main building block of modern finance theory, is too perfect to be real.
Behavioral economists have therefore attacked this idea, asserting that psychology
plays a key role in the decision-making process:

Making decisions is like speaking prose—people do it all the time, knowingly or
unknowingly. It is hardly surprising, then, that the topic of decision making is shared
by many disciplines, from mathematics and statistics, through economics and political
science, to sociology and psychology.

—Kahneman and Tversky (1984)

Information asymmetry and financial risk management go hand in hand as the cost
of financing and firm valuation are deeply affected by information asymmetry. That
is, uncertainty in valuation of a firm’s assets might raise the borrowing cost, posing a
threat to a firm’s sustainability (see DeMarzo and Duffie 1995 and Froot, Scharfstein,
and Stein 1993).

Thus, the roots of the failures described previously lie deeper in such a way that a per-
fect hypothetical world in which a rational decision maker lives is unable to explain
them. At this point, human instincts and an imperfect world come into play, and a
mixture of disciplines provides more plausible justifications. Adverse selection and
moral hazard are two prominent categories accounting for market failures.

Adverse Selection

Adbverse selection is a type of asymmetric information in which one party tries to
exploit its informational advantage. This arises when sellers are better informed than
buyers. This phenomenon was perfectly coined by Akerlof (1978) as “the Markets for
Lemons.” Within this framework, “lemons” refer to low-quality commodities.

Consider a market with lemons and high-quality cars, and buyers know that they’re
likely to buy a lemon, which lowers the equilibrium price. However, the seller is bet-
ter informed whether the car is a lemon or of high quality. So, in this situation, bene-
fit from exchange might disappear, and no transaction takes place.

Because of its complexity and opaqueness, the mortgage market in the pre-crisis era
is a good example of adverse selection. Borrowers knew more about their willingness
and ability to pay than lenders. Financial risk was created through the securitizations
of the loans (i.e., mortgage-backed securities). From that point on, the originators of
the mortgage loans knew more about the risks than those who were selling them to
investors in the form of mortgage-backed securities.

Information Asymmetry in Financial Risk Management | 11

Let’s try to model adverse selection using Python. It is readily observable in the insur-
ance industry, and therefore I would like to focus on that industry to model adverse
selection.

Suppose that the consumer utility function is:
U(x) = e
where x is income and y is a parameter, which takes on values between 0 and 1.

The utility function is a tool used to represent consumer preferen-
ces for goods and services, and it is concave for risk-averse
individuals.

The ultimate aim of this example is to decide whether or not to buy an insurance
based on consumer utility.

For the sake of practice, I assume that the income is US$2 and the cost of the accident
is US$1.5.

Now it is time to calculate the probability of loss, 7, which is exogenously given and
uniformly distributed.

As a last step, to find equilibrium, I have to define supply and demand for insurance
coverage. The following code block indicates how we can model the adverse selection:
In [10]: import as

import as
plt.style.use('seaborn')

In [11]: def utility(x):
return(np.exp(x ** gamma)) (1)

In [12]: pi = np.random.uniform(0,1,20)
pi = np.sort(pi) (2]

In [13]: print('The highest three probability of losses are {}'
.format(pi[-3:1)) ©
The highest three probability of losses are [0.834261 0.93542452
0.97721866]

In [14]: 2
1.5
5

0.

OO N <
1]

01
gamma = 0.4

12 | Chapter 1: Fundamentals of Risk Management

® 06 06 o0 o

Figure 1-2 shows the insurance supply-and-demand curve. Surprisingly, both curves
are downward sloping, implying that as more people demand contracts and more

In [15]: def

In [16]: def

In [17]: plt.
plt.

plt.

plt.
plt.
plt.
plt.

supply(Q):
return(np.mean(pi[-Q:]) * ¢) @

demand(D):

return(np.sum(utility(y - D) > pi * utility(y - c) + (1 -

* utility(y))) ©

figure()

plot([demand(i) for 1 in np.arange(0, 1.9, 0.02)],
np.arange(0, 1.9, 0.02),
'r', label="insurance demand')

plot(range(1,21), [supply(j) for j in range(1,21)],
'g', label='insurance supply')

ylabel("Average Cost")

xlabel("Number of People")

legend()

show()

Writing a function for risk-averse utility function

Generating random samples from uniform distribution

Picking the last three items

Writing a function for supply of insurance contracts

Writing a function for demand of insurance contracts

pi)

people are added on the contracts, the risk lowers, affecting the price of the contract.

The straight line presents the insurance supply and average cost of the contracts and

the other line, showing a step-wise downward slope, denotes the demand for insur-

ance contracts. As we start analysis with the risky customers, as you add more and

more people to the contract, the level of riskiness diminishes in parallel with the aver-
age cost.

Information Asymmetry in Financial Risk Management

13

—— insurance demand
175 — insurance supply

1.25

1.00

Average Cost

o
B
ol

0.50

0.25

0.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of People

Figure 1-2. Adverse selection

Moral Hazard

Market failures also result from asymmetric information. In a moral hazard situation,
one party of the contract assumes more risk than the other party. Formally, moral
hazard may be defined as a situation in which the more informed party takes advan-
tages of the private information at their disposal to the detriment of others.

For a better understanding of moral hazard, a simple example can be given from the
credit market: suppose that entity A demands credit for use in financing the project
that is considered feasible to finance. Moral hazard arises if entity A uses the loan for
the payment of credit debt to bank C, without prior notice to the lender bank. While
allocating credit, the moral hazard situation that banks may encounter arises as a
result of asymmetric information, decreases banks’ lending appetites, and appears as
one of the reasons why banks put so much labor into the credit allocation process.

Some argue that rescue operations undertaken by the Federal Reserve Board (Fed) for

LTCM can be considered a moral hazard in the way that the Fed enters into contracts
in bad faith.

14 | Chapter 1: Fundamentals of Risk Management

Conclusion

This chapter presented the main concepts of financial risk management with a view
to making sure that we are all on the same page. These terms and concepts will be
used frequently throughout this book.

In addition, a behavioral approach, attacking the rationale of a finance agent, was dis-
cussed so that we have more encompassing tools to account for the sources of finan-
cial risk.

In the next chapter, we will discuss the time-series approach, which is one of the main
pillars of financial analysis in the sense that most financial data has a time dimension,
which requires special attention and techniques to deal with.

References

Articles and chapters cited in this chapter:

Akerlof, George A. 1978. “The Market for Lemons: Quality Uncertainty and the Mar-
ket Mechanism?” Uncertainty in Economics, 235-251. Academic Press.

Buchholtz, Alec, and Rosalind Z. Wiggins. 2019. “Lessons Learned: Thomas C.
Baxter, Jr., Esq.” Journal of Financial Crises 1, no. (1): 202-204.

Chincarini, Ludwig. 2008. “A Case Study on Risk Management: Lessons from the Col-
lapse of Amaranth Advisors Llc” Journal of Applied Finance 18 (1): 152-74.

DeMarzo, Peter M., and Darrell Duffie. 1995. “Corporate Incentives for Hedging and
Hedge Accounting” The Review of Financial Studies 8 (3): 743-771.

Froot, Kenneth A., David S. Scharfstein, and Jeremy C. Stein. 1993. “Risk Manage-
ment: Coordinating Corporate Investment and Financing Policies.” The Journal of
Finance 48 (5): 1629-1658.

Harle, P, A. Havas, and H. Samandari. 2016. The Future of Bank Risk Management.
McKinsey Global Institute.

Kahneman, D., and A. Tversky. 1984. “Choices, Values, and Frames. American Psy-
chological Association.” American Psychologist, 39 (4): 341-350.

Lommers, Kristof, Ouns El Harzli, and Jack Kim. 2021. “Confronting Machine Learn-
ing With Financial Research.” Available at SSRN 3788349.

Markowitz H. 1952. “Portfolio Selection”. The Journal of Finance. 7 (1): 177—91.

Stulz, René M. 2008. “Risk Management Failures: What Are They and When Do They
Happen?” Journal of Applied Corporate Finance 20 (4): 39-48.

Conclusion | 15

Books cited in this chapter:

Bloomfield, S. 2013. Theory and Practice of Corporate Governance: An Integrated
Approach. Cambridge: Cambridge University Press.

Horcher, Karen A. 2011. Essentials of Financial Risk Management. Vol. 32. Hoboken,
NJ: John Wiley and Sons.

Hull, John. 2012. Risk Management and Financial Institutions. Vol. 733. Hoboken, NJ:
John Wiley and Sons.

McNeil, Alexander J., Riidiger Frey, and Paul Embrechts. 2015. Quantitative Risk
Management: Concepts, Techniques and Tools, Revised edition. Princeton, NJ:
Princeton University Press.

16 | Chapter 1: Fundamentals of Risk Management

CHAPTER 2
Introduction to Time Series Modeling

Market behavior is examined using large amounts of past data, such as high-frequency
bid-ask quotes of currencies or stock prices. It is the abundance of data that makes pos-
sible the empirical study of the market. Although it is not possible to run controlled
experiments, it is possible to extensively test on historical data.

— Sergio Focardi (1997)

Some models account better for some phenomena; certain approaches capture the
characteristics of an event in a solid way. Time series modeling is a good example of
this because the vast majority of financial data has a time dimension, which makes
time series applications a necessary tool for finance. In simple terms, the ordering of
the data and its correlation is important.

This chapter of the book will discuss classical time series models and compare the
performance of these models. Deep learning-based time series analysis will be intro-
duced in Chapter 3; this is an entirely different approach in terms of data preparation
and model structure. The classical models include the moving average (MA), autore-
gressive (AR), and autoregressive integrated moving average (ARIMA) models. What
is common across these models is the information carried by the historical observa-
tions. If these historical observations are obtained from error terms, we refer to this
as a moving average; if these observations come out of time series itself, it is called
autoregressive. The other model, ARIMA, is an extension of these models.

Here is a formal definition of time series from Brockwell and Davis (2016):

A time series is a set of observations X P each one being recorded at a specific time ¢. A
discrete-time time series... is one in which the set To of times at which observations

are made is a discrete set, as is the case, for example, when observations are made at
fixed time intervals. Continuous time series are obtained when observations are recor-
ded continuously over some time interval.

17

Let’s observe what data with time dimension looks like. Figure 2-1 exhibits the oil pri-
ces for the period of 1980-2020, and the following Python code shows us a way of
producing this plot:

In [1]: import quandl
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
plt.style.use('seaborn')

In [2]: oil = quandl.get("NSE/OIL", authtoken="insert you api token",
start_date="1980-01-01",
end_date="2020-01-01") @

In [3]: plt.figure(figsize=(10, 6))
plt.plot(oil.Close)
plt.ylabel('s")
plt.xlabel('Date")
plt.show()

© Extracting data from Quandl database

1600

1400

1200

1000

800

600

400

200

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Date

Figure 2-1. Oil prices between 1980 and 2020

18 | Chapter2: Introduction to Time Series Modeling

An API is a tool designed for retrieving data using code. We will
make use of different APIs throughout the book. In the preceding
practice, Quandl API is used.

Quandl API allows us to access financial, economic, and alternative
data from the Quandl website. To get your Quandl API, please visit
the Quandl website first and follow the necessary steps to get your
own API key.

As can be understood from the definition provided previously, time series models can
be applicable to diverse areas such as:

« Health care

» Finance

o Economics

o Network analysis
o Astronomy

o Weather

The superiority of the time series approach comes from the idea that correlations of
observations in time better explain the current value. Having data with a correlated
structure in time implies a violation of the famous identically and independently dis-
tributed (IID) assumption, which is at the heart of many models.

The Definition of IID

IID assumption enables us to model joint probability of data as the product of
probability of observations. The process X, is said to be an IID with mean 0 and

variance 0%

X, ~ IID(0, 0%)

So, due to the correlation in time, the dynamics of a contemporaneous stock price can
be better understood by its own historical values. How can we comprehend the
dynamics of the data? This is a question that we can address by elaborating the com-
ponents of time series.

Introduction to Time Series Modeling | 19

https://oreil.ly/1IFDc

Time Series Components

Time series has four components: trend, seasonality, cyclicality, and residual. In
Python, we can easily visualize the components of a time series with the sea
sonal_decompose function:
In [4]: import as

import as

import as

import

import as

from import adfuller

from import seasonal_decompose

In [5]: ticker = '~GspC' @
start = datetime.datetime(2015, 1, 1) (2]
end = datetime.datetime(2021, 1, 1) (2]
SP_prices = yf.download(ticker, start=start, end=end, interval='1mo')\

.Close ©
[[Feeseddededededesssn ko ko] QO kel k k%] 1 of 1 completed

In [6]: seasonal_decompose(SP_prices, period=12).plot()
plt.show()

© Denoting ticker of S&P 500
© Identifying the start and end dates

© Accessing the closing price of S&P 500

In the top panel of Figure 2-2, we see the plot of raw data, and in the second panel,
trend can be observed showing upward movement. In the third panel, seasonality is
exhibited, and finally residual is presented showing erratic fluctuations. You might
wonder where the cyclicality component is; noise and the cyclical component are put
together under the residual component.

Becoming familiar with time series components is important for further analysis so
that we are able to understand characteristics of the data and propose a suitable
model. Let’s start with the trend component.

20 | Chapter2: Introduction to Time Series Modeling

Close
3000
2000
2015 2016 2017 2018 2019 2020
3000
kel
5
£ 2500
2000
2015 2016 2017 2018 2019 2020
g
S o0
2]
©
[
2}
-100
2015 2016 2017 2018 2019 2020
250 e ..
° o® J °® ®
T 0 ——e_%0 _0%ec0, 4, 90¢__j00 % g0 % ¢°
2 % o° o0 (T ° % =~ 0% e o
°
@ 250 °
[}
2015 2016 2017 2018 2019 2020

Figure 2-2. Time series decomposition of S&P 500

Trend

Trend indicates a general tendency of an increase or decrease during a given time
period. Generally speaking, trend is present when the starting and ending points are
different or have upward/downward slope in a time series. The following code shows
what a trend looks like:

In [7]: plt
plt
plt
plt
plt
plt

.figure(figsize=(10, 6))
.plot(SP_prices)
.title('S&P-500 Prices')
.ylabel('s")
.xlabel('Date"')

.show()

Aside from the period in which the S&P 500 index price plunges, we see a clear
upward trend in Figure 2-3 between 2010 and 2020.

Time Series Components | 21

S&P-500 Prices

3750

3500

3250

3000

2750

2500

2250

2000

2015 2016 2017 2018 2019 2020 2021
Date

Figure 2-3. S¢&P 500 price

A line plot is not the only option for understanding trend. Rather, we have some
other strong tools for this task. So, at this point, it is worthwhile to talk about two
important statistical concepts:

« Autocorrelation function

« Partial autocorrelation function

The autocorrelation function (ACF) is a statistical tool to analyze the relationship
between the current value of a time series and its lagged values. Graphing ACF ena-
bles us to readily observe the serial dependence in a time series:

A Cov(X, X, _)
plh) = Var(X,)

Figure 2-4 denotes the ACF plot. The vertical lines represent the correlation coeffi-
cients; the first line denotes the correlation of the series with its 0 lag—that is, it is the
correlation with itself. The second line indicates the correlation between series value
at time ¢ - 1 and ¢ In light of these, we can conclude that the S&P 500 shows a serial
dependence. There appears to be a strong dependence between the current value and
lagged values of S&P 500 data because the correlation coefficients, represented by
lines in the ACF plot, decay in a slow fashion.

22 | Chapter2: Introduction to Time Series Modeling

Here is how we can plot the ACF in Python:
In [8]: sm.graphics.tsa.plot_acf(SP_prices, lags=30) (1)

plt.xlabel('Number of Lags')
plt.show()

O Plotting ACF

Autocorrelation

1.00

0.75

0.50

MR

0.00 IIIITTTQ._‘

-0.25

-0.50

-0.75

0 5 10 15 20 25 30

Number of Lags

Figure 2-4. ACF plot of the S&+P 500

Now the question is, what are the likely sources of autocorrelations? Here are some
causes:

o The primary source of autocorrelation is “carryover,;” meaning that the preceding
observation has an impact on the current one.

« Model misspecification.

o Measurement error, which is basically the difference between observed and
actual values.

+ Dropping a variable, which has an explanatory power.

Time Series Components | 23

Partial autocorrelation function (PACF) is another method of examining the relation-
ship between X, and X, _ pP €7Z. ACF is commonly considered as a useful tool in
the MA(q) model simply because PACF does not decay fast but approaches toward 0.
However, the pattern of ACF is more applicable to MA. PACE, on the other hand,
works well with the AR(p) process.

PACF provides information on the correlation between the current value of a time
series and its lagged values, controlling for the other correlations.

It is not easy to figure out what is going on at first glance. Let me give you an exam-
ple. Suppose that we want to compute the partial correlation X, and X, _,.

Put mathematically:

COV(Xt’Xt - h|Xt XX 1)

X)Vl XXX

p(h) =
\/Var(Xt|Xt— X
where h is the lag. Take a look at the Python code for a PACF plot of the S&P 500 in
the following snippet:
In [9]: sm.graphics.tsa.plot_pacf(SP_prices, lags=30) (1)
plt.xlabel('Number of Lags')
plt.show()

O Plotting PACF

Figure 2-5 exhibits the PACF of raw S&P 500 data. In interpreting the PACE we focus
on the spikes outside the dark region representing confidence interval. Figure 2-5
exhibits some spikes at different lags, but lag 10 is outside the confidence interval. So
it may be wise to select a model with 10 lags to include all the lags up to lag 10.

As discussed, PACF measures the correlation between current values of series and
lagged values in a way to isolate in-between effects.

24 | Chapter2: Introduction to Time Series Modeling

Partial Autocorrelation

0.8
0.6
04

0.2

0o 1 ”” I . 111 71“ N
T

0 5 10 15 20 25 30
Number of Lags

Figure 2-5. PACF plot of the S&P 500

Seasonality

Seasonality exists if there are regular fluctuations over a given period of time. For
instance, energy usages can show a seasonality characteristic. To be more specific,
energy usage goes up and down during certain periods over a year.

To show how we can detect the seasonality component, let’s use the Federal Reserve
Economic Database (FRED), which includes more than 500,000 economic data series
from over 80 sources covering many areas, such as banking, employment, exchange
rates, gross domestic product, interest rates, trade and international transactions, and
SO on:

In [10]: from import Fred
import as

In [11]: fred = Fred(api_key='insert you api key')

In [12]: energy = fred.get_series("CAPUTLG2211A2S",
observation_start="2010-01-01",
observation_end="2020-12-31") (1)
energy.head(12)
Out[12]: 2010-01-01 83.7028
2010-02-01 84.9324

Time Series Components | 25

2010-03-01
2010-04-01
2010-05-01
2010-06-01
2010-07-01
2010-08-01
2010-09-01
2010-10-01
2010-11-01
2010-12-01
dtype: float64

In [13]: plt.plot(energ

82.
79.
82.
84.
83.
83.
83.
80.
81.
85.

y)

0379
5073
8055
4108
6338
7961
7459
8892
7758
9894

plt.title('Energy Capacity Utilization')

plt.ylabel('s’

)

plt.xlabel('Date")

plt.show()

In [14]: sm.graphics.tsa.plot_acf(energy, lags=30)
plt.xlabel('Number of Lags')

plt.show()

© Accessing the energy capacity utilization from the FRED for the period of 2010-

2020

Figure 2-6 indicates periodic ups and downs over a nearly 10-year period with high-
capacity utilization during the first months of every year and then going down
toward the end of year, confirming that there is seasonality in energy-capacity

utilization.

86

82

80

78

76

74

72

2010 2012

Energy Capacity Utilization

2014 2016
Date

2018

2020

Figure 2-6. Seasonality in energy capacity utilization

26 | Chapter2: Introduction to Time Series Modeling

An ACF plot can also provide information about the seasonality as the periodic ups
and downs can be observable using ACE, too. Figure 2-7 shows the correlation struc-
ture in the presence of seasonality.

Autocorrelation

0.8
0.6

0.4

i]

""‘”IHHI“

0 5 10 15 20 25 30
Number of Lags

Figure 2-7. ACF of energy capacity utilization

Cyclicality

What if data does not show fixed period movements? At this point, cyclicality comes
into the picture. It exists when higher periodic variation than the trend emerges.
Some confuse cyclicality and seasonality in a sense that they both exhibit expansion
and contraction. We can, however, think of cyclicality as business cycles, which take a
long time to complete their cycles and the ups and downs are over a long horizon. So
cyclicality is different from seasonality in the sense that there is no fluctuation in a
fixed period. An example of cyclicality may be house purchases (or sales) depending
on mortgage rate. That is, when a mortgage rate is cut (or raised), it leads to a boost
for house purchases (or sales).

Time Series Components | 27

Residual

Residual is known as an irregular component of time series. Technically speaking,
residual is equal to the difference between observations and related fitted values. We
can think of it as a leftover from the model.

As we have discussed before, time series models lack some core assumptions, but this
does not necessarily mean that time series models are free from assumptions. I would
like to stress the most prominent one, which is called stationarity.

Stationarity means that statistical properties such as mean, variance, and covariance
of the time series do not change over time.

There are two forms of stationarity:

Weak stationarity
Time series X, is said to be stationarity if:

+ X, has finite variance,]E(Xf) <oo,VtEZ
» The mean value of X, is constant and does solely depend on time,
E(X)=utVeL

« Covariance structure, y(t,t + h), depends on the time difference only:
y(h) =y, + ¥t + ht)

In other words, time series should have finite variance with constant mean and a
covariance structure that is a function of the time difference.

Strong stationarity
If the joint distribution of X, X,,, . . . X,; is the same with the shifted version of

set th +h

stationarity implies that distribution of random variables of a random process is
the same with a shifting time index.

Xy o - - Xy, pp it is referred to as strong stationarity. Thus, strong

The question is now why do we need stationarity? The reason is twofold.

First, in the estimation process, it is essential to have some distribution as time goes
on. In other words, if distribution of a time series changes over time, it becomes
unpredictable and cannot be modeled.

The ultimate aim of time series models is forecasting. To do that, we should estimate
the coefficients first, which corresponds to learning in ML. Once we learn and con-
duct forecasting analysis, we assume that the distribution of the data in the estimation
stays the same in a way that we have the same estimated coefficients. If this is not the

28 | Chapter2: Introduction to Time Series Modeling

case, we should reestimate the coefficients because we are unable to forecast with the
previous estimated coefficients.

Having structural breaks, such as a financial crisis, generates a shift in distribution.
We need to take care of this period cautiously and separately.

The other reason for having stationarity is, by assumption, some statistical models
require stationary data, but that does not mean that some models requires stationary
only. Instead, all models require stationarity but even if you feed the model with non-
stationary data, some models, by design, turn it into stationary data and process it.

Figure 2-4 showed the slow-decaying lags amounting to nonstationary because per-
sistence of the high correlation between lags of the time series continues.

There are, by and large, two ways to detect nonstationarity: visualization and statisti-
cal methods. The latter, of course, is a better and more robust way of detecting the
nonstationarity. However, to improve our understanding, let’s start with the ACE
Slow-decaying ACF implies that the data is nonstationary because it presents a strong
correlation in time. That is what I observe in S&P 500 data.

We first need to check and see if the data is stationary or not. Visualization is a good
but ultimately inadequate tool for this task. Instead, a more powerful statistical
method is needed, and the augmented Dickey-Fuller (ADF) test provides this.
Assuming that the confidence interval is set to 95%, the following result indicates that
the data is not stationary:

In [15]: stat_test = adfuller(SP_prices)[0:2] (1)
print("The test statistic and p-value of ADF test are {}"
.format(stat_test)) (2]
The test statistic and p-value of ADF test are (0.030295120072926063,
0.9609669053518538)

© ADF test for stationarity

© Test statistic and p-value of ADF test

Taking the difference is an efficient technique for removing the stationarity. This just
means subtracting the current value of the series from its first lagged value, i.e.,

x,— x,_ > and the following Python code presents how to apply this technique (and

creates Figures 2-8 and 2-9):
In [16]: diff_SP_price = SP_prices.diff() (1]

In [17]: plt.figure(figsize=(10, 6))
plt.plot(diff_SP_price)
plt.title('Differenced S&P-500 Price')
plt.ylabel('s")
plt.xlabel('Date')
plt.show()
In [18]: sm.graphics.tsa.plot_acf(diff_SP_price.dropna(),lags=30)

Time Series Components | 29

plt.xlabel('Number of Lags')
plt.show()
In [19]: stat_test2 = adfuller(diff_SP_price.dropna())[0:2] (2]
print("The test statistic and p-value of ADF test after differencing are {}"\
.format(stat_test2))
The test statistic and p-value of ADF test after differencing are
(-7.0951058730170855, 4.3095548146405375e-10)

© Taking the difference of S&P 500 prices

® ADF test result based on differenced S&P 500 data

Differenced S&P-500 Price

300
200

100

-100 lJ

-200

-300

-400
2015 2016 2017 2018 2019 2020 2021
Date

Figure 2-8. Detrended S&+P 500 price

After taking the first difference, we rerun the ADF test to see if it worked, and yes, it
does. The very low p-value of ADF tells me that S&P 500 data is stationary now.

This can be observed from the line plot provided in Figure 2-8. Unlike the raw S&P
500 plot, this plot exhibits fluctuations around the mean with similar volatility, mean-
ing that we have a stationary series.

Figure 2-9 shows that there is only one statistical significant correlation structure at
lag 7.

Needless to say, trend is not the only indicator of nonstationarity. Seasonality is
another source of it, and now we are about to learn a method to deal with it.

30 | Chapter2:Introduction to Time Series Modeling

Autocorrelation

0.8

0.6

0.4

0.2

! .. N 1

[1l
&1115 ol Ila lll 11 ol

0.

o

0 5 10 15 20 25 30
Number of Lags

Figure 2-9. Detrended Se&P 500 price

First, take a look at the ACF of energy capacity utilization in Figure 2-7, which shows
periodic ups and downs, a sign of nonstationarity.

To get rid of seasonality, we first apply the resample method to calculate annual mean,
which is used as the denominator in the following formula:

Value of a Seasonal Time Series

Seasonal Index = Seasonal Average

Thus, the result of the application, seasonal index, gives us the deseasonalized time
series. The following code shows us how we code this formula in Python:

In [20]: seasonal_index = energy.resample('Q').mean() (1)

In [21]: dates = energy.index.year.unique() (2]
deseasonalized = []
for 1 in dates:
for j in range(1, 13):
deseasonalized.append((energy[str(i)][energy[str(i)]\
.index.month==3])) (3]
concat_deseasonalized = np.concatenate(deseasonalized)

Time Series Components | 31

In [22]: deseason_energy = []
for 1,s in zip(range(®, len(energy), 3), range(len(seasonal_index))):
deseason_energy.append(concat_deseasonalized[i1:1+3] /

seasonal_index.iloc[s]) ©

concat_deseason_energy = np.concatenate(deseason_energy)

deseason_energy = pd.DataFrame(concat_deseason_energy,

index=energy.index)
deseason_energy.columns = ['Deaseasonalized Energy']
deseason_energy.head()

Out[22]: Deaseasonalized Energy
2010-01-01 1.001737
2010-02-01 1.016452
2010-03-01 0.981811
2010-04-01 0.966758
2010-05-01 1.006862

In [23]: sm.graphics.tsa.plot_acf(deseason_energy, lags=10)
plt.xlabel('Number of Lags')
plt.show()

In [24]: sm.graphics.tsa.plot_pacf(deseason_energy, lags=10)
plt.xlabel('Number of Lags')
plt.show()

Calculating quarterly mean of energy utilization
Defining the years in which seasonality analysis is run

Computing the numerator of Seasonal Index formula

© o o ©

Concatenating the deseasonalized energy utilization

Computing Seasonal Index using the predefined formula

Figure 2-10 suggests that there is a statistically significant correlation at lag 1 and 2,
but ACF does not show any periodic characteristics, which is another way of saying
deseasonalization.

Similarly, in Figure 2-11, although there is a spike at some lags, PACF does not show
any periodic ups and downs. So we can say that the data is deseasonalized using the
Seasonal Index Formula.

What we have now are the less periodic ups and down in energy-capacity utilization,
meaning that the data turns out to be deseasonalized.

Finally, we are ready to move forward and discuss the time series models.

32 | Chapter2:Introduction to Time Series Modeling

Autocorrelation

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10
Number of Lags

Figure 2-10. Deseasonalized ACF of energy utilization

Partial Autocorrelation

1.0
0.8
0.6
0.4

0.2

EEERRRRRERE

-0.4
6 8 10
Number of Lags

Figure 2-11. Deseasonalized PACF of energy utilization

Time Series Components | 33

Time Series Models

Traditional time series models are univariate models, and they follow these phases:

Identification
In this process, we explore the data using ACF and PACE, identifying patterns
and conducting statistical tests.

Estimation
We estimate coefficients via the proper optimization technique.

Diagnostics
After estimation, we need to check if information criteria or ACF/PACF suggest
that the model is valid. If so, we move on to the forecasting stage.

Forecast
This part is more about the performance of the model. In forecasting, we predict
future values based on our estimation.

Figure 2-12 shows the modeling process. Accordingly, subsequent to identifying the
variables and the estimation process, the model is run. Only after running proper
diagnostics are we able to perform the forecast analysis.

R
Revisit model

\+J
1Bad

[Identification]———»[Estimation }———> Diagnostics

Good

Forecast
) —

Figure 2-12. Modeling process

In modeling data with a time dimension, we should consider correlation in adjacent
points in time. This consideration takes us to time series modeling. My aim in model-
ing time series is to fit a model and comprehend statistical character of a time series,
which fluctuates randomly in time.

Recall the discussion about the IID process, which is the most basic time series model
and is sometimes referred to as white noise. Let’s touch on the concept of white noise.

34 | Chapter2:Introduction to Time Series Modeling

White Noise

The time series €, is said to be white noise if it satisfies the following:
€~ WN(0,0?)
Corr(e,€) =0,Vt = s

In other words, €, has mean of 0 and a constant variance. Moreover, there is no corre-
lation between successive terms of €,. Well, it is easy to say that the white noise pro-
cess is stationary and that the plot of white noise exhibits fluctuations around mean
in a random fashion in time. However, as the white noise is formed by an uncorrela-
ted sequence, it is not an appealing model from a forecasting standpoint. Uncorrela-
ted sequences prevent us from forecasting future values.

As we can observe from the following code snippet and Figure 2-13, white noise
oscillates around mean and is completely erratic:

In [25]: mu =0
std = 1
WN = np.random.normal(mu, std, 1000)

plt.plot(WN)
plt.xlabel('Number of Simulations')
plt.show()

0 200 400 600 800 1000
Number of Simulations

Figure 2-13. White noise process

White Noise | 35

From this point on, we need to identify the optimum number of lags before running
the time series model. As you can imagine, deciding the optimal number of lags is a
challenging task. The most widely used methods are ACFE, PACF, and information cri-
teria. ACF and PACF have already been discussed; see the following sidebar for more
about information criteria, and specifically the Aikake information criterion (AIC).

Information Criteria

Determining the optimal number of lags is a cumbersome task. We need to have a
criterion to decide which model fits best to the data as there may be numerous poten-
tially good models. Cavanaugh and Neath (2019) describe the AIC as follows:

AIC is introduced as an extension to the Maximum Likelihood Principle. Maximum
likelihood is conventionally applied to estimate the parameters of a model once
structure and dimension of the model have been formulated.

AIC can be mathematically defined as:
AIC = - 2In(MaximumLikelihood) + 2d

where d is the total number of parameters. The last term, 2d, aims at reducing the risk
of overfitting. It is also called a penalty term, by which the unnecessary redundancy in
the model can be filtered out.

The Bayesian information criterion (BIC) is the other information criterion used to
select the best model. The penalty term in BIC is larger than that of AIC:

BIC = - 2In(MaximumLikelihood) + In(n)d

where n is the number of observations.

Please note that you need to treat the AIC with caution if the proposed model is finite
dimensional. This fact is well put by Hurvich and Tsai (1989):

If the true model is infinite dimensional, a case which seems most realistic in practice,
AIC provides an asymptotically efficient selection of a finite dimensional approximat-
ing model. If the true model is finite dimensional, however, the asymptotically efficient
methods, e.g., Akaike’s FPE (Akaike 1970), AIC, and Parzen’s CAT (Parzen 1977), do
not provide consistent model order selections.

Let’s get started visiting classical time series models with the moving average model.

36 | Chapter2: Introduction to Time Series Modeling

Moving Average Model

MA and residuals are closely related models. MA can be considered a smoothing
model, as it tends to take into account the lag values of residual. For the sake of sim-
plicity, let us start with MA(1):

X, =€ +ae_

Aslong as a # 0, it has nontrivial correlation structure. Intuitively, MA(1) tells us that
the time series has been affected by €, and €, _ ; only.

In general form, MA(q) becomes:

X, = €t €1t A6 g T A€

From this point on, to be consistent, we will model the data of two major tech compa-
nies, namely Apple and Microsoft. Yahoo Finance provides a convenient tool to

access closing prices of the related stocks for the period between 01-01-2019 and
01-01-2021.

As a first step, we dropped the missing values and checked if the data is stationary,
and it turns out neither Apple’s nor Microsoft’s stock prices have a stationary struc-
ture as expected. Thus, taking the first difference to make these data stationary and
splitting the data as train and test are the steps to take at this point. The following
code (which produces Figure 2-14) shows how we can do this in Python:

In [26]: ticker = ['AAPL', 'MSFT']
start = datetime.datetime(2019, 1, 1)
end = datetime.datetime(2021, 1, 1)
stock_prices = yf.download(ticker, start, end, interval='1d')\

.Close @
[*********************100%***********************] 2 of 2 completed

In [27]: stock_prices = stock_prices.dropna()

In [28]: for 1 in ticker:
stat_test = adfuller(stock_prices[i])[0:2]
print("The ADF test statistic and p-value of {} are {}"\
.format(i,stat_test))
The ADF test statistic and p-value of AAPL are (0.29788764759932335,
0.9772473651259085)
The ADF test statistic and p-value of MSFT are (-0.8345360070598484,
0.8087663305296826)

In [29]: diff_stock_prices = stock_prices.diff().dropna()

In [30]: split = int(len(diff_stock_prices['AAPL'].values) * 0.95) (2]

White Noise | 37

© © 6 6 o o ©

In [31]:

In [32]:

diff_train_aapl = diff_stock_prices['AAPL'].1iloc[:split] (3]
diff_test_aapl = diff_stock_prices['AAPL'].1loc[split:] (4]
diff_train_msft = diff_stock_prices['MSFT'].iloc[:split] (5]
diff_test_msft = diff_stock_prices['MSFT'].1iloc[split:] (6]

diff_train_aapl.to_csv('diff_train_aapl.csv') (7]
diff_test_aapl.to_csv('diff_test_aapl.csv')
diff_train_msft.to_csv('diff_train_msft.csv')
diff_test_msft.to_csv('diff_test_msft.csv')

fig, ax = plt.subplots(2, 1, figsize=(10, 6))
plt.tight_layout()
sm.graphics.tsa.plot_acf(diff_train_aapl,lags=30,

ax=ax[0], title='ACF - Apple')
sm.graphics.tsa.plot_acf(diff_train_msft,lags=30,

ax=ax[1], title='ACF - Microsoft')
plt.show()

Retrieving monthly closing stock prices

Splitting data as 95% and 5%

Assigning 95% of the Apple stock price data to the train set

Assigning 5% of the Apple stock price data to the test set

Assigning 95% of the Microsoft stock price data to the train set

Assigning 5% of the Microsoft stock price data to the test set

Saving the data for future use

38

Chapter 2: Introduction to Time Series Modeling

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

ACF - Apple

SR S B ot . | t o+ ¢+ 1.,
l T T 1 I T T T T 1 1 l
0 5 10 15 20 25 30
ACF - Microsoft
R Sy s s ——— .

0 5 10

Figure 2-14. ACF after first difference

Looking at the top panel of Figure 2-14, we can see that there are significant spikes at
some lags and, therefore, we'll choose lag 9 for the short MA model and 22 for the
long MA for Apple. These imply that an order of 9 will be our short-term order and
22 will be our long-term order in modeling MA:

In [33]: short_moving_average_appl = diff_train_aapl.rolling(window=9).mean() (1)
long_moving_average_appl = diff_train_aapl.rolling(window=22).mean() (2]

In [34]: fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(diff_train_aapl.loc[start:end].index,
diff_train_aapl.loc[start:end],

label="'Stock Price'

, linestyle='--") (3]

ax.plot(short_moving_average_appl.loc[start:end].index,
short_moving_average_appl.loc[start:end],

label = 'Short MA',

linestyle="'solid") (4]

ax.plot(long_moving_average_appl.loc[start:end].index,
long_moving_average_appl.loc[start:end],

label = 'Long MA',
ax.legend(loc="best")
ax.set_ylabel('Price in $')

linestyle="solid") (5]

ax.set_title('Stock Prediction-Apple')

plt.show()

Moving average with short window for Apple stock

Moving average with long window for Apple stock

White Noise

39

© Line plot of first differenced Apple stock prices
O Visualization of short-window MA result for Apple

© Visualization of long-window MA result for Apple

Figure 2-15 exhibits the short-term MA model result with a solid line and the long-
term MA model result with a dash-dot marker. As expected, it turns out that the
short-term MA tends to be more responsive to daily changes in Apple’s stock price
compared to the long-term MA. This makes sense because taking into account a long
MA generates smoother predictions.

Stock Prediction-Apple
10 \ ——- Stock Price
| —— ShortMA
: —— Long MA
' \
! \
I -
]
5 i] .
i M 1o b ol
J i ik h n
® . | \ e Ey gy 1
g i v A AMOALGL, BELh iR L
e *‘ h i k”' HI 'i 1 An | “I || ' ' d ’*“ :: ill
g 0 5 U LR ; N iy Ak Ut) {hy
2 el A el R b ST LR L) T AR ‘ iy
& A ! 1 7] ‘\‘ (W \ || ¥ N ‘lq
L 1 "l"‘ \ \ 'lllll!|
5 C A (U (11K F N
(T 1 FTLLE LU
1o 1]
_ '8 A
5 : =
i |
i
|
|
=
-10 i
2019-01 2019-04 2019-07 2019-10 2020-01 2020-04 2020-07 2020-10

Figure 2-15. MA model prediction result for Apple

In the next step, we try to predict Microsoft’s stock price using an MA model with
different window. But before proceeding, let me say that choosing the proper window
for short and long MA analysis is key to good modeling. In the bottom panel of
Figure 2-14, there seem to be significant spikes at 2 and 22, so we'll use these lags in
our short and long MA analysis, respectively. After identifying the window length,
we'll fit data to the MA model with the following application:

In [35]: short_moving_average_msft = diff_train_msft.rolling(window=2).mean()
long_moving_average_msft = diff_train_msft.rolling(window=22).mean()

In [36]: fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(diff_train_msft.loc[start:end].index,
diff_train_msft.loc[start:end],
label="'Stock Price', linestyle='--")

40 | Chapter2: Introduction to Time Series Modeling

ax

ax

ax.
ax.
ax.
ax.

.plot(short_moving_average_msft.loc[start:end].index,

short_moving_average_msft.loc[start:end],
label = 'Short MA', linestyle='solid")

.plot(long_moving_average_msft.loc[start:end].index,

long_moving_average_msft.loc[start:end],
label = 'Long MA', linestyle='-.")
legend(loc="best")
set_ylabel('S"')
set_xlabel('Date')
set_title('Stock Prediction-Microsoft')

plt.show()

Similarly, predictions based on short MA analysis tend to be more responsive than
those of the long MA model, as shown in Figure 2-16. But in Microsoft’s case, the
short-term MA prediction appears to be very close to the real data. This is something
we expect in time series models in that a window with a short-term horizon is able to
better capture the dynamics of the data, and this, in turn, helps us obtain better pre-
dictive performance.

20

Differenced Price

2019-01

Stock Prediction-Microsoft

2019-04 2019-07 2019-10 2020-01 2020-04 2020-07
Date

——- Stock Price
——— Short MA

=—-: Long MA

2020-10

Figure 2-16. MA model prediction result for Microsoft

White Noise

4

Autoregressive Model

The dependence structure of successive terms is the most distinctive feature of the
AR model, in the sense that current value is regressed over its own lag values in this
model. So we basically forecast the current value of the time series X, by using a lin-
ear combination of its past values. Mathematically, the general form of AR(p) can be
written as:
X,=ct+a X, |+a,X

R

1 t-2 p
where ¢, denotes the residuals and c is the intercept term. The AR(p) model implies
that past values up to order p have somewhat explanatory power on X,. If the rela-
tionship has shorter memory, then it is likely to model X, with a fewer number of

lags.

We have discussed one of the main properties of time series, stationarity; the other
important property is invertibility. After introducing the AR model, it is time to show
the invertibility of the MA process. It is said to be invertible if it can be converted to
an infinite AR model.

Under some circumstances, MA can be written as an infinite AR process. These cir-
cumstances are having stationary covariance structure, deterministic part, and inver-
tible MA process. In doing so, we have another model called infinite AR thanks to the
assumption of |a| < 1.

X

t:€t+a€t71

=€ +a(X,_-ag)

2
€t+ocXt_1—oc €_o

et+ocXt_1—oc2(Xt_2+ocet_3)

2 3
gtraX, | —a'X, ,+a et_3)

2 3 4 n
aX, [—a'X, ,tae_z-a€_y4+..—(-a)€_,

42 | Chapter2: Introduction to Time Series Modeling

After doing the necessary math, the equation gets the following form:

n-1
n . i
a’e,_,=¢€ iZ‘O‘XXf—i

In this case, if || < 1, then n — oo:

n-1 2
E(et— 5 alxt_i) B[, o)
i=0

Finally, the MA(1) process turns out to be:

Due to the duality between the AR and MA processes, it is possible to represent
AR(1) as infinite MA, MA(eo). In other words, the AR(1) process can be expressed as
a function of past values of innovations:

Xt=€t+9Xt71

=0(0X,_,+ € 1) +e
= GZXt_2+9€t71+ €
= 0%(0X, 5+ 0¢,_,)0¢,_, +€,

_ 2 ¢
X =¢+6_1+0€6_,+.+0X

t t

Asn—> o0, 8" = 0,50 I can represent AR(1) as an infinite MA process.

In the following analysis, we run the AR model to predict Apple and Microsoft stock
prices. Unlike MA, partial ACF is a useful tool to find out the optimum order in the
AR model. This is because, in AR, we aim to find out the relationship of a time series
between two different times, say X, and X, _,, and to do that we need to filter out the

effect of other lags in between, resulting in Figures 2-17 and 2-18:

White Noise | 43

In [37]: sm.graphics.tsa.plot_pacf(diff_train_aapl, lags=30)

plt.title('PACF of Apple')
plt.xlabel('Number of Lags')
plt.show()

In [38]: sm.graphics.tsa.plot_pacf(diff_train_msft, lags=30)

plt.title('PACF of Microsoft')
plt.xlabel('Number of Lags')
plt.show()

0.8

0.6

0.4

0.2

0.0

PACF of Apple

0 5 10 15 20
Number of Lags

1 11 . e 1 . 1.1
S R *1]I

25

30

Figure 2-17. PACF for Apple

44

Chapter 2: Introduction to Time Series Modeling

PACF of Microsoft

0.8

0.6

0.4

0.2

0.0 'Tl'lll T 1.97..T11111-19.

0 5 10 15 20 25 30
Number of Lags

Figure 2-18. PACF for Microsoft

In Figure 2-17, obtained from the first differenced Apple stock price, we observe a
significant spike at lag 29, and in Figure 2-18, we have a similar spike at lag 26 for
Microsoft. Thus, 29 and 26 are the lags that we are going to use in modeling AR for
Apple and Microsoft, respectively:

In [39]: from statsmodels.tsa.ar_model import AutoReg
import warnings
warnings.filterwarnings('ignore')

In [40]: ar_aapl = AutoReg(diff_train_aapl.values, lags=29)
ar_fitted_aapl = ar_aapl.fit() (1)

In [41]: ar_predictions_aapl = ar_fitted_aapl.predict(start=1len(diff_train_aapl),
end=len(diff_train_aapl)\
+ len(diff_test_aapl) - 1,
dynamic=False)

In [42]: for 1 in range(len(ar_predictions_aapl)):
print('==" * 25)
print('predicted values:{:.4f} & actual values:{:.4f}'\
.format(ar_predictions_aapl[i], diff_test_aapl[i])) (3]

predicted values:1.6511 & actual values:1.3200

White Noise | 45

predicted values:-0.8398 & actual values:0.8600

predicted values:-0.9998 & actual values:0.5600

predicted values:1.1379 & actual values:2.4600

predicted values:-0.1123 & actual values:3.6700

predicted values:1.7843 & actual values:0.3600

predicted values:-0.9178 & actual values:-0.1400

predicted values:1.7343 & actual values:-0.6900

predicted values:-1.5103 & actual values:1.5000

predicted values:1.8224 & actual values:0.6300

predicted values:-1.2442 & actual values:-2.6000

predicted values:-0.5438 & actual values:1.4600

predicted values:-0.1075 & actual values:-0.8300

predicted values:-0.6167 & actual values:-0.6300

predicted values:1.3206 & actual values:6.1000

predicted values:0.2464 & actual values:-0.0700

predicted values:0.4489 & actual values:0.8900

predicted values:-1.3101 & actual values:-2.0400

predicted values:0.5863 & actual values:1.5700

predicted values:0.2480 & actual values:3.6500

predicted values:0.0181 & actual values:-0.9200

predicted values:0.9913 & actual values:1.0100

predicted values:0.2672 & actual values:4.7200

predicted values:0.8258 & actual values:-1.8200

predicted values:0.1502 & actual values:-1.1500

predicted values:0.5560 & actual values:-1.0300

In [43]: ar_predictions_aapl = pd.DataFrame(ar_predictions_aapl) (4]

46 | Chapter2: Introduction to Time Series Modeling

ar_predictions_aapl.index = diff_test_aapl.index (5]

In [44]: ar_msft = AutoReg(diff_train_msft.values, lags=26)
ar_fitted_msft = ar_msft.fit() (6]

In [45]: ar_predictions_msft = ar_fitted_msft.predict(start=1len(diff_train_msft),

end=len(diff_train_msft)\
+len(diff_test_msft) - 1,
dynamic=False) 7]

In [46]: ar_predictions_msft = pd.DataFrame(ar_predictions_msft) (8]
ar_predictions_msft.index = diff_test_msft.index (o]

® 06 ©¢ 6 6 6 o o o

Fitting Apple stock data with AR model
Predicting the stock prices for Apple

Comparing the predicted and real observations
Turning array into dataframe to assign index
Assigning test data indices to predicted values
Fitting Microsoft stock data with AR model
Predicting the stock prices for Microsoft

Turning the array into a dataframe to assign index

Assigning test data indices to predicted values

The following code, resulting in Figure 2-19, shows the predictions based on the AR
model. The solid lines represent the Apple and Microsoft stock price predictions, and
the dashed lines denote the real data. The result reveals that the MA model outper-
forms the AR model in capturing the stock price:

In [47]: fig, ax = plt.subplots(2,1, figsize=(18, 15))

ax[0]
ax[0]
ax[0]
ax[0]
ax[1]
ax[1]
ax[1]
ax[1]

.plot(diff_test_aapl, label='Actual Stock Price', linestyle='--")
.plot(ar_predictions_aapl, linestyle='solid', label="Prediction")
.set_title('Predicted Stock Price-Apple')

.legend(loc="best")

.plot(diff_test_msft, label='Actual Stock Price', linestyle='--")
.plot(ar_predictions_msft, linestyle='solid', label="Prediction")
.set_title('Predicted Stock Price-Microsoft')

.legend(loc="best")

for ax in ax.flat:
ax.set(xlabel='Date', ylabel='S$")
plt.show()

White Noise | 47

Predicted Stock Price-Apple

. ~ =+ Actual Stock Price
N [—— Prediction

Differenced Price

2020-11-25 2020-11-292020-12:01 2020-12:05 2020-12-09 2020-12-13 2020-12-17 2020-12-21 2020-12:25 2020-12-29 2021-01-01
Date

Predicted Stock Price-Microsoft

==+ Actual Stock Price
—— Prediction

Differenced Price

2020-11-25 2020-11-282020-12-01 2020-12-05 2020-12-09 2020-12-13 2020-12-17 2020-12-21 2020-12-25 20201229 2021-01-01
Date

Figure 2-19. AR model prediction results

Autoregressive Integrated Moving Average Model

The ARIMA is a function of past values of a time series and white noise. ARIMA has
been proposed as a generalization of AR and MA, but they do not have an integration
parameter, which helps us to feed the model with the raw data. In this respect, even if
we include nonstationary data, ARIMA makes it stationary by properly defining the
integration parameter.

ARIMA has three parameters, namely p, d, and g. As should be familiar from previ-
ous time series models, p and q refer to the order of AR and MA, respectively. The d
parameter controls for level difference. If d = 1, it amounts to first difference, and if it
has a value of 0, that means that the model is ARIMA.

It is possible to have a d greater than 1, but it's not as common as having a d of 1. The
ARIMA (p, 1, q) equation has the following structure:

48 | Chapter 2: Introduction to Time Series Modeling

X, = ocldXt_ Lt “2dXt—2--- + ocdet_p+ €t+ﬁ1€t— 1 +ﬁ2€t_2... +[§qet_q

where d refers to difference.

As it is a widely embraced and applicable model, let’s discuss the pros and cons of the
ARIMA model to get more familiar with it.

Pros
« ARIMA allows us to work with raw data without considering if it is stationary.

o It performs well with high-frequency data.

o Itisless sensitive to the fluctuation in the data compared to other models.

Cons
o ARIMA might fail in capturing seasonality.

o It works better with long series and short-term (daily, hourly) data.

« As no automatic updating occurs in ARIMA, no structural break during the anal-
ysis period should be observed.

 Having no adjustment in the ARIMA process leads to instability.

Now, let’s see how ARIMA works using the same stocks, namely Apple and Microsoft.
But this time, a different short-term lag structure is used to compare the result with
the AR and MA models:

In [48]: from import ARIMA

In [49]: split = int(len(stock_prices['AAPL'].values) * 0.95)
train_aapl = stock_prices['AAPL'].1loc[:split]
test_aapl = stock_prices['AAPL'].1iloc[split:]
train_msft = stock_prices['MSFT'].1loc[:split]
test_msft = stock_prices['MSFT'].iloc[split:]

In [50]: arima_aapl = ARIMA(train_aapl,order=(9, 1, 9)) (1)
arima_fit_aapl = arima_aapl.fit() (2]

In [51]: arima_msft = ARIMA(train_msft, order=(6, 1, 6)) (3]
arima_fit_msft = arima_msft.fit() (4]

In [52]: arima_predict_aapl = arima_fit_aapl.predict(start=len(train_aapl),
end=len(train_aapl)\
+ len(test_aapl) - 1,

dynamic=False) (5)

arima_predict_msft = arima_fit_msft.predict(start=1len(train_msft),
end=len(train_msft)\
+ len(test_msft) - 1,

dynamic=False) (6]

White Noise | 49

In [53]: arima_predict_aapl = pd.DataFrame(arima_predict_aapl)
arima_predict_aapl.index = diff_test_aapl.index
arima_predict_msft = pd.DataFrame(arima_predict_msft)
arima_predict_msft.index = diff_test_msft.index (7]

Configuring the ARIMA model for Apple stock
Fitting the ARIMA model to Apple’s stock price
Configuring the ARIMA model for Microsoft stock
Fitting the ARIMA model to Microsoft’s stock price

Predicting the Apple stock prices based on ARIMA

© 06 6 o o ©

Predicting the Microsoft stock prices based on ARIMA

Forming index for predictions

The next snippet, resulting in Figure 2-20, shows the result of the prediction based on
Apple’s and Microsoft’s stock price, and as we employ the short-term orders from the
AR and MA model, the result is not completely different:

In [54]: fig, ax = plt.subplots(2, 1, figsize=(18, 15))

ax[0].plot(diff_test_aapl, label='Actual Stock Price', linestyle='--"')
ax[0].plot(arima_predict_aapl, linestyle='solid', label="Prediction")
ax[0].set_title('Predicted Stock Price-Apple')
ax[0].legend(loc="best")
ax[1].plot(diff_test_msft, label='Actual Stock Price', linestyle='--"')
ax[1].plot(arima_predict_msft, linestyle='solid', label="Prediction")
ax[1].set_title('Predicted Stock Price-Microsoft')
ax[1].legend(loc="best")
for ax in ax.flat:

ax.set(xlabel='Date', ylabel='S$")
plt.show()

50 | Chapter2: Introduction to Time Series Modeling

Predicted Stock Price-Apple

Differenced Price

2020-11-25 2020-11-292020-12:01 2020-12:05 2020-12-09 2020-12-13 2020-12-17
Date

2020-12-21 2020-12:25

Predicted Stock Price-Microsoft

Differenced Price

2020-11-25 2020-11-282020-12-01 2020-12-05 2020-12-09 2020-12-13
Date

2020-12-17 2020-12-21 2020-12-25

==+ Actual Stock Price
—— Prediction

2020-12-29 2021-01-01

==+ Actual Stock Price
—— Prediction

20201229 2021-01-01

Figure 2-20. ARIMA prediction results

At this point, it is worthwhile to discuss an alternative method for optimum lag selec-
tion for time series models. AIC is the method that I apply here to select the proper
number of lags. Please note that, even though the result of AIC suggests (4, 0, 4), the

model does not converge with these orders. So, (4, 1, 4) is applied instead:

In [55]: import itertools

In [56]: p = q = range(0, 9) (1)
d = range(0, 3) (2]
pdq = list(itertools.product(p, d, q)) (3]
arima_results_aapl = []
for param_set in pdq:
try:
arima_aapl = ARIMA(train_aapl, order=param_set) (5]
arima_fitted_aapl = arima_aapl.fit() (6]
arima_results_aapl.append(arima_fitted_aapl.aic) (7]
except:
continue
print('**'*25)
print('The Lowest AIC score is' + \

White Noise | 51

'{:.4f} and the corresponding parameters are {}'.format(\
pd.DataFrame(arima_results_aapl).where(\
pd.DataFrame(arima_results_aapl).T.notnull().all()).min()[0],
pdg[arima_results_aapl.index(min(arima_results_aapl))]))

hhkhrIhhrdhhh I hhkd b ddhhdddhdddhdhddhhdddhdddhdrddhdsx
The Lowest AIC score is 1951.9810 and the corresponding parameters are
(4, 0, 4)

In [57]: arima_aapl = ARIMA(train_aapl, order=(4, 1, 4)) (9]
arima_fit_aapl = arima_aapl.fit() (o]
In [58]: p = q = range(0, 6)
d = range(0, 3)
pdg = list(itertools.product(p, d, q))
arima_results_msft = []
for param_set in pdq:
try:
arima_msft = ARIMA(stock_prices['MSFT'], order=param_set)
arima_fitted_msft = arima_msft.fit()
arima_results_msft.append(arima_fitted_msft.aic)
except:
continue
print('**' * 25)
print('The lowest AIC score is {:.4f} and parameters are {}'
.format(pd.DataFrame(arima_results_msft)
.where(pd.DataFrame(arima_results_msft).T.notnull()\
.allQ)).min()[0],
pdq[arima_results_msft.index(min(arima_results_msft))])) @

khhkkkhkhkhkhhhhhkhhhhhhkhhhhhhkhhhhhkhhhhhkhkhhhhkhkhkhhkhkhkhkk*

The Lowest AIC score is 2640.6367 and the corresponding parameters are
(4, 2, 4)

In [59]: arima_msft = ARIMA(stock_prices['MSFT'], order=(4, 2 ,4)) (11)
arima_fit_msft= arima_msft.fit() ®

In [60]: arima_predict_aapl = arima_fit_aapl.predict(start=len(train_aapl),
end=len(train_aapl)\
+len(test_aapl) - 1,
dynamic=False)

arima_predict_msft = arima_fit_msft.predict(start=1len(train_msft),

end=len(train_msft)\
+ len(test_msft) - 1,
dynamic=False) ®

In [61]: arima_predict_aapl = pd.DataFrame(arima_predict_aapl)
arima_predict_aapl.index = diff_test_aapl.index

arima_predict_msft = pd.DataFrame(arima_predict_msft)
arima_predict_msft.index = diff_test_msft.index

© Defining a range for AR and MA orders

® Defining a range difference term

52 | Chapter2: Introduction to Time Series Modeling

® 6 6 6 ©¢ © 6 6 o

Applying iteration over p, d, and q

Creating an empty list to store AIC values

Configuring the ARIMA model to fit Apple data

Running the ARIMA model with all possible lags

Storing AIC values into a list

Printing the lowest AIC value for Apple data

Configuring and fitting the ARIMA model with optimum orders
Running the ARIMA model with all possible lags for Microsoft data

Fitting the ARIMA model to Microsoft data with optimum orders

Predicting Apple and Microsoft stock prices

Orders identified for Apple and Microsoft are (4, 1, 4) and (4, 2, 4), respectively.
ARIMA does a good job in predicting the stock prices as shown below. However,
please note that improper identification of the orders results in a poor fit, and this, in
turn, produces predictions that are far from being satisfactory. The following code,
resulting in Figure 2-21, shows these results:

In [62]: fig, ax = plt.subplots(2, 1, figsize=(18, 15))

ax[0]
ax[0]
ax[0]
ax[0]
ax[1]
ax[1]
ax[1]
ax[1]

.plot(diff_test_aapl, label='Actual Stock Price', linestyle='--")
.plot(arima_predict_aapl, linestyle='solid', label="Prediction")
.set_title('Predicted Stock Price-Apple'")

.legend(loc="best")

.plot(diff_test_msft, label='Actual Stock Price', linestyle='--")
.plot(arima_predict_msft, linestyle='solid', label="Prediction")
.set_title('Predicted Stock Price-Microsoft"')

.legend(loc="best")

for ax in ax.flat:
ax.set(xlabel="Date', ylabel='S$")
plt.show()

White Noise | 53

Predicted Stock Price-Apple

' ==+ Actual Stock Price
[—— Prediction

/
/

Differenced Price
=

\
\
1
|
\
\
1
/ 1
\
\
\
1
\
\
\
1

\
1
1
\
\
1
\
\
1 /
1 A /
\
|
\
\
1
1
\
|
1
\
\
\
\
1

v
\
Y
2020-11-25 2020-11-292020-12:01 2020-12:05 2020-12-09 2020-12-13 2020-12-17 2020-12-21 2020-12:25 2020-12-29 2021-01-01
Date
Predicted Stock Price-Microsoft
6

==+ Actual Stock Price
—— Prediction

Differenced Price
°

2020-11-25 2020-11-282020-12-01 2020-12-05 2020-12-09

2020-12-13 2020-12-17 2020-12-21 2020-12-25 20201229 2021-01-01
Date

Figure 2-21. ARIMA prediction results

Conclusion

Time series analysis has a central role in financial analysis. This is simply because
most financial data has a time dimension, and this type of data should be modeled
cautiously. This chapter worked out a first attempt at modeling data with a time
dimension, and to do so, we employed classical time series models, namely MA, AR,
and finally, ARIMA. But do you think that’s the whole story? Absolutely not! In

the next chapter, we will see how a time series can be modeled using deep learning
models.

54 | Chapter2: Introduction to Time Series Modeling

References

Articles cited in this chapter:

Cavanaugh, J. E., and A. A. Neath. 2019. “The Akaike Information Criterion: Back-
ground, Derivation, Properties, Application, Interpretation, and Refinements.
Wiley Interdisciplinary Reviews: Computational Statistics 11 (3): e1460.

Hurvich, Clifford M., and Chih-Ling Tsai. 1989. “Regression and Time Series Model
Selection in Small Samples” Biometrika 76 (2): 297-30.

Books cited in this chapter:

Brockwell, Peter J., and Richard A. Davis. 2016. Introduction to Time Series and Fore-
casting. Springer.

Focardi, Sergio M. 1997. Modeling the Market: New Theories and Techniques. The
Frank J. Fabozzi Series, Vol. 14. New York: John Wiley and Sons.

References | 55

CHAPTER 3
Deep Learning for Time Series Modeling

...Yes, it is true that a Turing machine can compute any computable function given
enough memory and enough time, but nature had to solve problems in real time. To
do this, it made use of the brain’s neural networks that, like the most powerful comput-
ers on the planet, have massively parallel processors. Algorithms that run efficiently on
them will eventually win out.

— Terrence J. Sejnowski (2018)

Deep learning has recently become a buzzword for some good reasons, although
recent attempts to improve deep learning practices are not the first of their kind.
However, it is quite understandable why deep learning has been appreciated for
nearly two decades. Deep learning is an abstract concept, which makes it hard to
define in few of words. Unlike a neural network (NN), deep learning has a more com-
plex structure, and hidden layers define the complexity. Therefore, some researchers
use the number of hidden layers as a comparison benchmark to distinguish a neural
network from deep learning, a useful but not particularly rigorous way to make this
distinction. A better definition can clarify the difference.

At a high level, deep learning can be defined:

Deep learning methods are representation-learning' methods with multiple levels of
representation, obtained by composing simple but nonlinear modules that each trans-
form the representation at one level (starting with the raw input) into a representation
at a higher, slightly more abstract level.

—Le Cunn et al. (2015)

1 Representation learning helps us define a concept in a unique way. For instance, if the task is to detect
whether something is a circle, then edges play a key role, as a circle has no edge. So using color, shape, and
size, we can create a representation for an object. In essence, this is how the human brain works, and we know
that deep learning structures are inspired by the brain’s functioning.

57

Applications of deep learning date back to the 1940s, when Cybernetics by Norbert
Wiener was published. Connectivist thinking then dominated between the 1980s and
1990s. Recent developments in deep learning, such as backpropagation and neural
networks, have created the field as we know it. Basically, there have been three waves
of deep learning, so we might wonder why deep learning is in its heyday now? Good-
fellow et al. (2016) list some plausible reasons, including:

o Increasing data sizes
o Increasing model sizes

o Increasing accuracy, complexity, and real-world impact

It seems like modern technology and data availability have paved the way for an era
of deep learning in which new data-driven methods are proposed so that we are able
to model time series using unconventional models. This development has given rise
to a new wave of deep learning. Two methods stand out in their ability to include
longer time periods: the recurrent neural network (RNN) and long short-term memory
(LSTM). In this section, we will concentrate on the practicality of these models in
Python after briefly discussing the theoretical background.

Recurrent Neural Networks

An RNN has a neural network structure with at least one feedback connection so that
the network can learn sequences. A feedback connection results in a loop, enabling us
to unveil the nonlinear characteristics. This type of connection brings us a new and
quite useful property: memory. Thus, an RNN can make use not only of the input
data but also the previous outputs, which sounds compelling when it comes to time
series modeling.

RNNSs come in many forms, such as:

One-to-one
A one-to-one RNN consists of a single input and a single output, which makes it
the most basic type of RNN.

One-to-many
In this form, an RNN produces multiple outputs for a single input.

Many-to-one
As opposed to the one-to-many structure, many-to-one has multiple inputs for a
single output.

Many-to-many
This structure has multiple inputs and outputs and is known as the most compli-
cated structure for an RNN.

58 | Chapter3: Deep Learning for Time Series Modeling

A hidden unit in an RNN feeds itself back into the neural network so that the RNN
has recurrent layers (unlike a feed-forward neural network) making it a suitable
method for modeling time series data. Therefore, in RNNs, activation of a neuron
comes from a previous time-step indication that the RNN represents as an accumu-
lating state of the network instance (Buduma and Locascio 2017).

As summarized by Nielsen (2019):

o RNNs have time steps one at a time in an orderly fashion.
o The state of the network stays as it is from one time step to another.
o An RNN updates its state based on the time step.
These dimensions are illustrated in Figure 3-1. As can be seen, the RNN structure on

the right-hand side has a time step, which is the main difference between it and the
feed-forward network.

Recurrent network data

Feed forward network data

Examples
Time steps
(examples)

#Inputs #Values per

time step # Time steps

(sequence length)

Figure 3-1. RNN structure’

RNNs have a three-dimensional input, comprised of:

o Batch size
o Time steps

o Number of features

2 Patterson et. al, 2017. “Deep learning: A practitioner’s approach.”

Recurrent Neural Networks | 59

Batch size denotes the number of observations or number of rows of data. Time steps
are the number of times to feed the model. Finally, number of features is the number
of columns of each sample.

We'll start with the following code:

In [1]: import numpy as np

import pandas as pd

import math

import datetime

import yfinance as yf

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.layers import (Dense, Dropout,
Activation, Flatten,
MaxPooling2D, SimpleRNN)

from sklearn.model_selection import train_test_split

In [2]: n_steps = 13 (1)
n_features = 1

In [3]: model = Sequential() (3]

model.add(SimpleRNN(512, activation='relu',
input_shape=(n_steps, n_features),
return_sequences=True)) (4]

model.add(Dropout(0.2)) (5)

model.add(Dense(256, activation = 'relu')) (6]

model.add(Flatten()) @

model.add(Dense(1, activation='linear')) (8]

In [4]: model.compile(optimizer="rmsprop',
loss="mean_squared_error',
metrics=['mse']) (o]

In [5]: def split_sequence(sequence, n_steps):
X,y =1[1, []
for 1 in range(len(sequence)):
end_ix = 1 + n_steps
if end_ix > len(sequence) - 1:
break
seq_x, seq_y = sequence[i:end_1ix], sequence[end_1ix]
X.append(seq_x)
y.append(seq_y)
return np.array(X), np.array(y) ®

© Defining the number of steps for prediction

® Defining the number of features as 1

60 | Chapter3: Deep Learning for Time Series Modeling

© 06 6 ©o

® 6 0 ©

Calling a sequential model to run the RNN
Identifying the number of hidden neurons, activation function, and input shape
Adding a dropout layer to prevent overfitting

Adding one more hidden layer with 256 neurons with the relu activation
function

Flattening the model to transform the three-dimensional matrix into a vector
Adding an output layer with 1inear activation function
Compiling the RNN model

Creating a dependent variable y

Activation Functions

Activation functions are mathematical equations that are used to determine the out-
put in a neural network structure. These tools introduce nonlinearity in the hidden
layers so that we are able to model the nonlinear issues.

The following are the most famous activation functions:

Sigmoid
This activation function allows us to incorporate a small amount of output as we
introduce small changes in the model. It takes values between 0 and 1. The math-
ematical representation of sigmoid is:

. 3 = 1
sigmoid(x) = 1+exp(—Xwx;—b)

where w is weight, x denotes data, b represents bias, and subscript i shows
features.

Tanh
If you are handling negative numbers, tanh is your activation function. As
opposed to the sigmoid function, it ranges between -1 and 1. The tanh formula
is:

tanh(x) = —Zzzgg

Recurrent Neural Networks |

Linear
Using the linear activation function enables us to build linear relationships
between independent and dependent variables. The linear activation function
takes the inputs and multiplies by the weights to form the outputs proportional
to the inputs. It is a convenient activation function for time-series models. Linear
activation functions take the form of:

f(x) =wx

Rectified linear
The rectified linear activation function, known as ReLu, can take 0 if the input
is zero or below zero. If the input is greater than 0, it goes up in line with x.
Mathematically:

ReLu(x) = max(0, x)

Softmax
Like sigmoid, this activation function is widely applicable to classification prob-
lems because softmax converts input into probabilistic distribution proportional
to the exponential of the input numbers:

softmax(x;) = exp(;)

- exp(x))

After configuring the model and generating a dependent variable, let’s extract the data
and run the prediction for the stock prices for both Apple and Microsoft:

In [6]: ticker = ['AAPL', 'MSFT']
start = datetime.datetime(2019, 1, 1)
end = datetime.datetime(2020, 1 ,1)
stock_prices = yf.download(ticker,start=start, end = end, interval='1d')\

.Close
[k dddedddkddkkook Rk | QIR R R R R IR Rk ARk dkxkxxx] 2 of 2 completed

In [7]: diff_stock_prices = stock_prices.diff().dropna()

In [8]: split = int(len(diff_stock_prices['AAPL'].values) * 0.95)
diff_train_aapl = diff_stock_prices['AAPL'].1iloc[:split]
diff_test_aapl = diff_stock_prices['AAPL'].1loc[split:]
diff_train_msft = diff_stock_prices['MSFT'].iloc[:split]
diff_test_msft = diff_stock_prices['MSFT'].1loc[split:]

In [9]: X_aapl, y_aapl = split_sequence(diff_train_aapl, n_steps) (1)
X_aapl = X_aapl.reshape((X_aapl.shape[0], X_aapl.shape[1],
n_features))

62 | Chapter3: Deep Learning for Time Series Modeling

®© ©6 6 6 o o o

In [10]: history = model.fit(X_aapl, y_aapl,
epochs=400, batch_size=150, verbose=0,
validation_split = 0.10) (3]

In [11]: start =
x_input
x_input

X_aapl[X_aapl.shape[0] - n_steps] (4]
= start
= x_input.reshape((1, n_steps, n_features))

In [12]: tempList_aapl = [] (6]
for 1 in range(len(diff_test_aapl)):
x_input = x_input.reshape((1, n_steps, n_features)) Q
yhat = model.predict(x_input, verbose=0) &)
x_input = np.append(x_input, yhat)
x_input = x_input[1:]
tempList_aapl.append(yhat) (o]

In [13]: X_msft, y_msft = split_sequence(diff_train_msft, n_steps)
X_msft = X_msft.reshape((X_msft.shape[0], X_msft.shape[1],
n_features))

In [14]: history = model.fit(X_msft, y_msft,
epochs=400, batch_size=150, verbose=0,
validation_split = 0.10)
In [15]: start = X_msft[X_msft.shape[0] - n_steps]
x_input = start
x_input = x_input.reshape((1, n_steps, n_features))
In [16]: tempList_msft = []
for 1 in range(len(diff_test_msft)):
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_1input, verbose=0)
x_input = np.append(x_input, yhat)
x_input = x_input[1:]
tempList_msft.append(yhat)

Calling the split_sequence function to define the lookback period
Reshaping training data into a three-dimensional case

Fitting the RNN model to Apple’s stock price

Defining the starting point of the prediction for Apple

Renaming the variable

Creating an empty list to store predictions

Reshaping the x_input, which is used for prediction

Recurrent Neural Networks

O Running prediction for Apple stock

© Storing yhat into tempList_aapl
For the sake of visualization, the following code block is used, resulting in Figure 3-2:

In [17]: fig, ax = plt.subplots(2,1, figsize=(18,15))
ax[0].plot(diff_test_aapl, label='Actual Stock Price', linestyle='--"')
ax[0].plot(diff_test_aapl.index, np.array(templList_aapl).flatten(),

linestyle="'solid', label="Prediction")
ax[0].set_title('Predicted Stock Price-Apple')
ax[0].legend(loc="best")
ax[1].plot(diff_test_msft, label='Actual Stock Price', linestyle='
ax[1].plot(diff_test_msft.index,np.array(tempList_msft).flatten(),

linestyle="'solid', label="Prediction")
ax[1].set_title('Predicted Stock Price-Microsoft')
ax[1].legend(loc="best")

-

for ax in ax.flat:
ax.set(xlabel='Date', ylabel='S")
plt.show()
Figure 3-2 shows the stock price prediction results for Apple and Microsoft. Simply
eyeballing this, we can readily observe that there is room for improvement in terms of
predictive performance of the model in both cases.

Even if we can have satisfactory predictive performance, the drawbacks of the RNN
model should not be overlooked. The main drawbacks of the model are:

o The vanishing or exploding gradient problem (please see the following note for a
detailed explanation).

« Training an RNN is a very difficult task as it requires a considerable amount of
data.

o An RNN is unable to process very long sequences when the tanh activation func-
tion is used.

A vanishing gradient is a commonplace problem in deep learning
scenarios that are not properly designed. The vanishing gradient
problem arises if the gradient tends to get smaller as we conduct
the backpropagation. It implies that neurons are learning so slowly
that optimization grinds to a halt.

Unlike the vanishing gradient problem, the exploding gradient
problem occurs when small changes in the backpropagation results
in huge updates to the weights during the optimization process.

64 | Chapter3: Deep Learning for Time Series Modeling

Predicted Stock Price-Apple

--- Actual Stock Price
—— Prediction

Differenced Price
°
°

2019-12-13 2019-12-15 2019-1217 2019-12-19 2019-12-21 2019-12-23 2019-12-25 2019-12-27 2019-12-29 2019-12-31
Date

Predicted Stock Price-Microsoft

--- Actual Stock Price

AN —— Prediction

Differenced Price

-05

2019-12-13 2019-12-15 2019-1217 2019-12-19 2019-12-21 2019-12-23 2019-12-25 2019-12-27 2019-12-29 2019-12-31
Date

Figure 3-2. RNN prediction results

The drawbacks of RNNs are well stated by Haviv et al. (2019):

This is due to the dependency of the network on its past states, and through them on
the entire input history. This ability comes with a cost—RNNs are known to be hard to
train (Pascanu et al. 2013a). This difficulty is commonly associated with the vanishing
gradient that appears when trying to propagate errors over long times (Hochreiter
1998). When training is successful, the network’s hidden state represents these memo-
ries. Understanding how such representation forms throughout training can open new
avenues for improving learning of memory-related tasks.

Long-Short Term Memory

The LSTM deep learning approach was developed by Hochreiter and Schmidhuber
(1997) and is mainly based on the gated recurrent unit (GRU).

GRU was proposed to deal with the vanishing gradient problem, which is common in
neural network structures and occurs when the weight update becomes too small to
create a significant change in the network. GRU consists of two gates: update and

Long-Short Term Memory | 65

reset. When an early observation is detected as highly important, then we do not
update the hidden state. Similarly, when early observations are not significant, that
leads to resetting the state.

As previously discussed, one of the most appealing features of an RNN is its ability to
connect past and present information. However, this ability turns out to be a failure
when long-term dependencies comes into the picture. Long-term dependencies mean
that the model learns from early observations.

For instance, let’s examine the following sentence:
Countries have their own currencies as in the USA, where people transact with dollars...

In the case of short-term dependencies, it is known that the next predicted word is
about a currency, but what if it is asked which currency it’s about? Things get compli-
cated because we might have mentioned various currencies earlier on in the text,
implying long-term dependencies. It is necessary to go way back to find something
relevant about the countries using dollars.

LSTM tries to attack the weakness of RNN regarding long-term dependencies. LSTM
has a quite useful tool to get rid of the unnecessary information so that it works
more efficiently. LSTM works with gates, enabling it to forget irrelevant data. These
gates are:

» Forget gates

« Input gates

o Output gates
Forget gates are created to sort out the necessary and unnecessary information so that
LSTM performs more efficiently than RNN. In doing so, the value of the activation

function, sigmoid, becomes zero if the information is irrelevant. Forget gates can be
formulated as:

Fy=o(X,W;+h,_,W,+b]

where o is the activation function, h, _, is the previous hidden state, W, and W are
weights, and finally, b s the bias parameter in the forget cell.

Input gates are fed by the current timestep, X,, and the hidden state of the previous

timestep, ¢ — 1. The goal of input gates is to determine the extent that information
should be added to the long-term state. The input gate can be formulated like this:

I,=o(X,W+h_W,+b)

66 | Chapter3: Deep Learning for Time Series Modeling

Output gates basically determine the extent of the output that should be read, and
work as follows:

O,=o(X,W,+h,_,W_ +b)

These gates are not the sole components of LSTM. The other components are:

« Candidate memory cell
« Memory cell

o Hidden state

Candidate memory cell determines the extent to which information passes to the cell
state. Differently, the activation function in the candidate cell is tanh and takes the
following form:

Ct = ¢(Xth + ht— IWC + bc)
Memory cell allows LSTM to remember or to forget the information:
C,=FOC+t-1+1,0C,

where ® is Hadamard product.

In this recurrent network, hidden state is a tool to circulate information. Memory cell
relates output gate to hidden state:

hy=¢(c,) ©O,

Figure 3-3 exhibits the LSTM structure.

Long-Short Term Memory | 67

| Output \

L J L J

L

Cy X t C,
ftT tanh| |Softmax
I
o t—»X OtI—X
Ct o

h, tanh | " - N N N
! Inputo Input; Input;
) U U
Hiddeno (| Hidden, | Hidden,
) \ * 7 " * J . f 7
Input Hidden Output Expansion f 1 (1 ()
Outputo Output, Output,

J

Figure 3-3. LSTM structure

Now, let’s predict the stock prices using LSTM:

In [18]

In [19]:

In [20]:

In [21]:

In [22]:

In [23]:

: from

import LSTM

n_steps = 13 (1)

n_features

=10

model = Sequential()
model.add(LSTM(512, activation='relu',

input_shape=(n_steps, n_features),
return_sequences=True)) (3]

model.add(Dropout(0.2)) (4)
model.add(LSTM(256,activation="relu')) (5]
model.add(Flatten())®

model.add(Dense(1, activation='linear')) (7]

model.compile(optimizer="'rmsprop', loss='mean_squared_error',

history

start =
x_input
x_input

X_

metrics=['mse']) (&)

model.fit(X_aapl, y_aapl,
epochs=400, batch_size=150, verbose=0,
validation_split = 0.10) (o)

aapl[X_aapl.shape[0] - 13]
start
x_input.reshape((1, n_steps, n_features))

68 | Chapter3: Deep Learning for Time Series Modeling

Defining the number of steps for prediction
Defining the number of feature as 1

Identifying the number of hidden neurons, the activation function, which is
relu, and input shape

Adding a dropout layer to prevent overfitting
Adding one more hidden layer with 256 neurons, with a relu activation function
Flattening the model to vectorize the three-dimensional matrix

Adding an output layer with a 1inear activation function

© ©¢ 6 o ©

Compiling LSTM with Root Mean Square Propagation, rmsprop, and mean
squared error (MSE), mean_squared_error

© Fitting the LSTM model to Apple’s stock price

Root Mean Square Propagation (RMSProp) is an optimization
method in which we calculate the moving average of the squared
gradients for each weight. We then find the difference of weight,
which is to be used to compute the new weight:

v, = +1-pg?
t=Pv, | PE;

v

Aw, = — ——
t \/q+€gt
wt+1:wt+Awt

Pursuing the same procedure and given the Microsoft stock price, a prediction analy-
sis is carried out:

In [24]: tempList_aapl = []
for 1 in range(len(diff_test_aapl)):
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_input, verbose=0)
x_input = np.append(x_input, yhat)
x_input = x_input[1:]
tempList_aapl.append(yhat)

Long-Short Term Memory | 69

In [25]:

In [26]:

In [27]:

history = model.fit(X_msft, y_msft,
epochs=400, batch_size=150, verbose=0,
validation_split = 0.10)

start = X_msft[X_msft.shape[0] - 13]
x_input = start
x_input = x_1input.reshape((1, n_steps, n_features))

tempList_msft = []
for 1 in range(len(diff_test_msft)):
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_input, verbose=0)
x_input = np.append(x_input, yhat)
x_input = x_input[1:]
tempList_msft.append(yhat)

The following code creates the plot (Figure 3-4) that shows the prediction results:

LSTM seems to outperform the RNN, particularly in the way it captures the extreme
values better.

In [28]:

fig, ax = plt.subplots(2, 1, figsize=(18, 15))

ax[0].plot(diff_test_aapl, label='Actual Stock Price', linestyle='--"')

ax[0].plot(diff_test_aapl.index, np.array(tempList_aapl).flatten(),

linestyle='solid', label="Prediction")
ax[0].set_title('Predicted Stock Price-Apple')
ax[0].legend(loc="best")

ax[1].plot(diff_test_msft, label='Actual Stock Price', linestyle='--"')

ax[1].plot(diff_test_msft.index, np.array(tempList_msft).flatten(),

linestyle='solid', label="Prediction")
ax[1].set_title('Predicted Stock Price-Microsoft')
ax[1].legend(loc="best")

for ax in ax.flat:
ax.set(xlabel="Date', ylabel='S$")
plt.show()

70

| Chapter 3: Deep Learning for Time Series Modeling

Predicted Stock Price-Apple

--- Actual Stock Price
—— Prediction

2019-12-13 2019-12-15 2019-12-17

2019-12-19 2019-12-21 2019-12-23

2019-12-25 2019-12-27
Date

2019-12-29 2019-12-31

Predicted Stock Price-Microsoft
2.0

=== Actual Stock Price
—— Prediction

2019-12-13 2019-12-15 2019-1217

2019-12-19 2019-12-21 2019-12-23
Date

2019-12-25 2019-12-27 2019-12-29 2019-12-31

Figure 3-4. LSTM prediction results

Conclusion

This chapter was about predicting stock prices based on deep learning. The models
used are RNN and LSTM, which have the ability to process longer time periods.
These models do not suggest remarkable improvement but still can be employed to
model time series data. LSTM considers, in our case, a 13-step lookback period for
prediction. For an extension, it would be a wise approach to include multiple features

in the models based on deep learning, which is not allowed in parametric time series
models.

In the next chapter, we will discuss volatility predictions based on parametric and ML
models so that we can compare their performance.

Conclusion | 71

References

Articles cited in this chapter:

Ding, Daizong, et al. 2019. “Modeling Extreme Events in Time Series Prediction.” Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. 1114-1122.

Haviv, Doron, Alexander Rivkind, and Omri Barak. 2019. “Understanding and Con-
trolling Memory in Recurrent Neural Networks” arXiv preprint. arXiv:
1902.07275.

Hochreiter, Sepp, and Jirgen Schmidhuber. 1997. “Long Short-term Memory.” Neural
Computation 9 (8): 1735-1780.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning” Nature
521, (7553): 436-444.

Books cited in this chapter:

Buduma, N., and N. Locascio. 2017. Fundamentals of Deep Learning: Designing Next-
generation Machine Intelligence Algorithms. Sebastopol: O'Reilly.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA:
MIT Press.

Nielsen, A. 2019. Practical Time Series Analysis: Prediction with Statistics and Machine
Learning. Sebastopol: O'Reilly.

Patterson, Josh, and Adam Gibson. 2017. Deep Learning: A Practitioner’S Approach.
Sebastopol: O’Reilly.

Sejnowski, Terrence]. 2018. The Deep Learning Revolution. Cambridge, MA: MIT
Press.

72 | Chapter3: Deep Learning for Time Series Modeling

PART II

Machine Learning for Market, Credit,
Liquidity, and Operational Risks

CHAPTER 4

Machine Learning-Based
Volatility Prediction

The most critical feature of the conditional return distribution is arguably its second
moment structure, which is empirically the dominant time-varying characteristic of
the distribution. This fact has spurred an enormous literature on the modeling and
forecasting of return volatility.

—Andersen et al. (2003)

“Some concepts are easy to understand but hard to define. This also holds true for
volatility” This could be a quote from someone living before Markowitz because the
way he models volatility is very clear and intuitive. Markowitz proposed his celebra-
ted portfolio theory in which he defined volatility as standard deviation so that from
then onward, finance became more intertwined with mathematics.

Volatility is the backbone of finance in the sense that it not only provides an informa-
tion signal to investors, but it also is an input to various financial models. What
makes volatility so important? The answer stresses the importance of uncertainty,
which is the main characteristic of the financial model.

Increased integration of financial markets has led to prolonged uncertainty in those
markets, which in turn stresses the importance of volatility, the degree at which val-
ues of financial assets changes. Volatility used as a proxy of risk is among the most
important variables in many fields, including asset pricing and risk management. Its
strong presence and latency make it even compulsory to model. Volatility as a risk
measure has taken on a key role in risk management following the Basel Accord that
came into effect in 1996 (Karasan and Gaygisiz 2020).

75

A large and growing body of literature regarding the estimation of volatility has
emerged after the ground-breaking studies of Black (1976), including Andersen and
Bollerslev (1997), Raju and Ghosh (2004), Dokuchaev (2014), and De Stefani et al.
(2017). We are talking about a long tradition of volatility prediction using ARCH-
and GARCH-type models in which there are certain drawbacks that might cause fail-
ures, such as volatility clustering, information asymmetry, and so on. Even though
these issues are addressed by different models, recent fluctuations in financial
markets coupled with developments in ML have made researchers rethink volatility
estimation.

In this chapter, our aim is to show how we can enhance the predictive performance
using an ML-based model. We will visit various ML algorithms, namely support vec-
tor regression, neural network, and deep learning, so that we are able to compare the
predictive performance.

Modeling volatility amounts to modeling uncertainty so that we better understand
and approach uncertainty, enabling us to have good enough approximations of the
real world. To gauge the extent to which proposed models account for the real-world
situation, we need to calculate the return volatility, which is also known as realized
volatility. Realized volatility is the square root of realized variance, which is the sum
of squared return. Realized volatility is used to calculate the performance of the vola-
tility prediction method. Here is the formula for return volatility:

~ 1 N
O

where r and y are return and mean of return, and » is number of observations.
Let’s see how return volatility is computed in Python:

In [1]: import as
from import norm
import as
import as
import as
import
import
from import arch_model
import as
from import jit
from import mean_squared_error as mse
import
warnings.filterwarnings('ignore")

In [2]: stocks = '~GSPC'
start = datetime.datetime(2010, 1, 1)
end = datetime.datetime(2021, 8, 1)
s_p500 = yf.download(stocks, start=start, end = end, interval='1d")

76 | Chapter4: Machine Learning-Based Volatility Prediction

[F*xxxxFTFFFIKKIIRERXX]QOY**F kA xxxx*****xk%%] | of 1 completed

In [3]: ret = 100 * (s_p500.pct_change()[1:]['Adj Close']) (1)
realized_vol = ret.rolling(5).std()

In [4]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol.index,realized_vol)
plt.title('Realized Volatility- S&P-500'")
plt.ylabel('Volatility')
plt.xlabel('Date")
plt.show()

© Calculating the returns of the S&P 500 based on adjusted closing prices.

Figure 4-1 shows the realized volatility of S&P 500 over the period of 2010-2021. The
most striking observation is the spikes around the COVID-19 pandemic.

Realized Volatility- S&P-500

Volatility

2010 2012 2014 2016 2018 2020 2022
Date

Figure 4-1. Realized volatility—SeP 500

The way volatility is estimated has an undeniable impact on the reliability and accu-
racy of the related analysis. So this chapter deals with both classical and ML-based
volatility prediction techniques with a view to showing the superior prediction per-
formance of the ML-based models. To compare the brand-new ML-based models, we
start with modeling the classical volatility models. Some very well known classical
volatility models include, but are not limited to, the following:

Machine Learning-Based Volatility Prediction | 77

« ARCH

« GARCH

* GJR-GARCH
« EGARCH

Its time to dig into the classical volatility models. Lets start off with the ARCH
model.

ARCH Model

One of the early attempts to model volatility was proposed by Eagle (1982) and is
known as the ARCH model. The ARCH model is a univariate model and based on
historical asset returns. The ARCH(p) model has the following form:

P
ot=ws k;“k(rt—k)z

where the mean model is:

r,= 0,6
where ¢, is assumed to be normally distributed. In this parametric model, we need to

satisfy some assumptions to have strictly positive variance. In this respect, the follow-
ing conditions should hold:

e w>0

. (kaO

All of these equations tell us that ARCH is a univariate and nonlinear model in which
volatility is estimated with the square of past returns. One of the most distinctive fea-
tures of ARCH is that it has the property of time-varying conditional variance' so
that ARCH is able to model the phenomenon known as volatility clustering—that is,
large changes tend to be followed by large changes of either sign, and small changes
tend to be followed by small changes, as described by Mandelbrot (1963). Hence,
once an important announcement is made to the market, it might result in huge
volatility.

The following code block shows how to plot clustering and what it looks like:

1 Conditional variance means that volatility estimation is a function of the past values of asset returns.

78 | Chapter4: Machine Learning-Based Volatility Prediction

In [5]: retv = ret.values (1)

In [6]: plt.figure(figsize=(10, 6))
plt.plot(s_p500.index[1:], ret)
plt.title('Volatility clustering of S&P-500')
plt.ylabel('Daily returns')
plt.xlabel('Date")
plt.show()

© Return dataframe into a numpy representation

Similar to spikes in realized volatility, Figure 4-2 suggests some large movements,
and, unsurprisingly, these ups and downs happen around important events such as
the COVID-19 pandemic in mid-2020.

Volatility clustering of S&P-500

10 4

Daily returns

—-10 4

2010 2012 2014 2016 2018 2020 2022
Date

Figure 4-2. Volatility clustering—SeP 500

Despite its appealing features, such as simplicity, nonlinearity, easiness, and adjust-
ment for forecast, the ARCH model has certain drawbacks:

 Equal response to positive and negative shocks

o Strong assumptions such as restrictions on parameters

« Possible misprediction due to slow adjustments to large movements

These drawbacks motivated researchers to work on extensions of the ARCH model,
notably the GARCH model proposed by Bollerslev (1986) and Taylor (1986), which
we will discuss shortly.

ARCH Model | 79

Now let’s employ the ARCH model to predict volatility. First, let’s generate our own
Python code, and then compare it with a built-in function from the arch library to
see the differences:

In [7]: n = 252
split_date = ret.iloc[-n:].index (1]

In [8]: sgm2 = ret.var() (2]
K = ret.kurtosis() (3]
alpha = (-3.0 * sgm2 + np.sqrt(9.0 * sgm2 ** 2 - 12.0 *
(3.0 * sgm2 - K) *K)) / (6 *K) @
omega = (1 - alpha) * sgm2 (5)
initial_parameters = [alpha, omega]
omega, alpha
Out[8]: (0.6345749196895419, 0.46656704131150534)

In [9]: (nopython=True, parallel=True) (6]
def arch_likelihood(initial_parameters, retv):
omega = abs(initial_parameters[0]) @
alpha = abs(initial_parameters[1])
T = len(retv)
logliks = 0
sigma2 = np.zeros(T)
sigma2[0] = np.var(retv) (s
for t in range(1l, T):
sigma2[t] = omega + alpha * (retv[t - 1]) ** 2 (o]
logliks = np.sum(0.5 * (np.log(sigma2)+retv ** 2 / sigma2)) ®
return logliks

In [10]: logliks = arch_likelihood(initial_parameters, retv)
logliks
Out[10]: 1453.127184488521

In [11]: def opt_params(x0, retv):

opt_result = opt.minimize(arch_likelihood, x0=x0, args = (retv),
method="Nelder-Mead',
options={'maxiter': 5000}) @

params = opt_result.x ®

print('\nResults of Nelder-Mead minimization\n{}\n{}'

.format(''.join(['-"'] * 28), opt_result))
print('\nResulting params = {}'.format(params))
return params

In [12]: params = opt_params(initial_parameters, retv)

Results of Nelder-Mead minimization

final_simplex: (array([[0.70168795, 0.39039044],
[0.70163494, 0.3904423],

[0.70163928, 0.39033154]]), array([1385.79241695,
1385.792417, 1385.79241907]))

80 | Chapter4: Machine Learning-Based Volatility Prediction

® 6 &8 6 06 ©¢ 6 6 6 oo o o

fun: 1385.7924169507244
message: 'Optimization terminated successfully.'
nfev: 62
nit: 33
status: 0
success: True
x: array([0.70168795, 0.3903904471)
Resulting params = [0.70168795 0.39039044]
In [13]: def arch_apply(ret):
omega = params[0]
alpha = params[1]
T = len(ret)
sigma2_arch = np.zeros(T + 1)
sigma2_arch[0] = np.var(ret)
for t in range(1, T):
sigma2_arch[t] = omega + alpha * ret[t - 1] ** 2
return sigma2_arch
In [14]: sigma2_arch = arch_apply(ret)
Defining the split location and assigning the split data to split variable
Calculating variance of the S&P 500
Calculating kurtosis of the S&P 500
Identifying the initial value for slope coefficient o
Identifying the initial value for constant term w
Using parallel processing to decrease the processing time
Taking absolute values and assigning the initial values into related variables
Identifying the initial values of volatility
Iterating the variance of S&P 500
Calculating the log-likelihood

Minimizing the log-likelihood function

Creating a variable params for optimized parameters

Well, we modeled volatility via ARCH using our own optimization method and
ARCH equation. But how about comparing it with the built-in Python code? This

ARCH Model | 81

built-in code can be imported from arch library and is extremely easy to apply. The
result of the built-in function follows; it turns out that these two results are very simi-
lar to each other:

In [15]: arch = arch_model(ret, mean='zero', vol='ARCH', p=1).fit(disp='off")
print(arch.summary())

Zero Mean - ARCH Model Results \
Dep. Variable: Adj Close R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -4063.63
Distribution: Normal AIC: 8131.25
Method: Maximum Likelihood BIC: 8143.21
No. Observations: 2914
Date: Mon, Sep 13 2021 Df Residuals: 2914
Time: 21:56:56 Df Model: 0

Volatility Model

coef std err t P>|t| 95.0% Conf. Int.
omega 0.7018 5.006e-02 14.018 1.214e-44 [0.604, 0.800]
alpha[1] 0.3910 7.016e-02 5.573 2.506e-08 [0.253, 0.529]

Covariance estimator: robust

Although developing our own code is always helpful and improves our understand-
ing, it does not necessarily mean that there’s no need to use built-in functions or
libraries. Rather, these functions makes our lives easier in terms of efficiency and ease
of use.

All we need is to create a for loop and define a proper information criteria. Here, we'll
choose Bayesian Information Criteria (BIC) as the model selection method and to
select lag. The reason BIC is used is that as long as we have large enough samples, BIC
is a reliable tool for model selection as per Burnham and Anderson (2002 and 2004).
Now, we iterate ARCH model from 1 to 5 lags:

In [16]: bic_arch = []

for p in range(1, 5): (1]
arch = arch_model(ret, mean='zero', vol="ARCH', p=p)\
.fit(disp='off') @
bic_arch.append(arch.bic)
if arch.bic == np.min(bic_arch): (3]
best_param = p
arch = arch_model(ret, mean='zero', vol='ARCH', p=best_param)\
fit(disp='off') @
print(arch.summary())

82 | (Chapter4: Machine Learning-Based Volatility Prediction

forecast = arch.forecast(start=split_date[0]) (5]

forecast_arch = forecast

Zero Mean - ARCH Model Results

Dep. Variable: Adj Close R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -3712.38
Distribution: Normal AIC: 7434.75
Method: Maximum Likelihood BIC: 7464.64
No. Observations: 2914
Date: Mon, Sep 13 2021 Df Residuals: 2914
Time: 21:56:58 Df Model:
Volatility Model
coef std err t P>|t| 95.0% Conf. Int.
omega 0.2798 2.584e-02 10.826 2.580e-27 [0.229, 0.330]
alpha[1] 0.1519 3.460e-02 4.390 1.136e-05 [8.406e-02, 0.220]
alpha[2] 0.2329 3.620e-02 6.433 1.249e-10 [0.162, 0.304]
alpha[3] 0.1917 3.707e-02 5.170 2.337e-07 [0.119, 0.264]
alpha[4] 0.1922 4.158e-02 4.623 3.780e-06 [0.111, 0.274]
Covariance estimator: robust
In [17]: rmse_arch = np.sqgrt(mse(realized_vol[-n:] / 100,
np.sqrt(forecast_arch\
.variance.iloc[-len(split_date):]
/ 1600))) ©
print('The RMSE value of ARCH model is {:.4f}'.format(rmse_arch))
The RMSE value of ARCH model is 0.0896
In [18]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol / 100, label='Realized Volatility')

plt.

label="'Volatility Prediction-ARCH")

plt.
plt.
plt.

legend()
show()

title('Volatility Prediction with ARCH', fontsize=12)

© Iterating ARCH parameter p over specified interval

® Running ARCH model with different p values

© Finding the minimum BIC score to select the best model

plot(forecast_arch.variance.iloc[-len(split_date):] / 100,

ARCH Model

83

O Running ARCH model with the best p value
© Forecasting the volatility based on the optimized ARCH model

O Calculating the root mean square error (RMSE) score

The result of volatility prediction based on our first model is shown in Figure 4-3.

Volatility Prediction with ARCH
—— Realized Volatility
—— Volatility Prediction-ARCH
0.08 A
0.06 A
0.04 4
|
0.02 4 ‘ ‘
‘” | |
1 VAT
Iy ’J\ i
bl
0.00 +
2010 2012 2014 2016 2018 2020 2022

Figure 4-3. Volatility prediction with ARCH

GARCH Model

The GARCH model is an extension of the ARCH model incorporating lagged condi-
tional variance. So ARCH is improved by adding p number of delated conditional
variance, which makes the GARCH model multivariate in the sense that it is an
autoregressive moving average model for conditional variance with p number of lag-
ged squared returns and g number of lagged conditional variance. GARCH(p, gq) can
be formulated as:

2 _ Zq: 2 f: 2
0, —w+k:1(xkrt_k+k:1ﬁk0t_k

where w, 3, and « are parameters to be estimated and p and g are maximum lag in the
model. To have consistent GARCH, the following conditions should hold:

84 | (Chapter4: Machine Learning-Based Volatility Prediction

e w>0
« B0
e >0

o ﬂ +a<l

The ARCH model is unable to capture the influence of historical innovations. How-
ever, as a more parsimonious model, the GARCH model can account for the change
in historical innovations because GARCH models can be expressed as an infinite-
order ARCH. Let’s see how GARCH can be shown as an infinite order of ARCH:

2 _ 2 2
0y =w+ar;_, +po;_,

2 2 2.
Then replace o} _, by w + ar;_, + foy_:

02

i =wtar

2 2 2
t_1+ﬁ(w+ocrt_20t_2)

2 2)
=w(l+B)+ar;_,+Par;_,+p Utfz)

Now, let’s substitute 0?7 , with @ + ocri 5+ ﬁcri 5 and do the necessary math so that
we end up with:

af:w(l+ﬂ+/32+...)+ock§,1ﬂk_1rt_k

Similar to the ARCH model, there is more than one way to model volatility using
GARCH in Python. Let us try to develop our own Python-based code using the opti-
mization technique first. In what follows, the arch library will be used to predict
volatility:

In [19]: a0 = 0.0001
sgm2 = ret.var()
K = ret.kurtosis()
h =1 - alpha / sgm2
alpha = np.sqrt(K * (1 - h ** 2) / (2.0 * (K + 3)))
beta = np.abs(h - omega)
omega = (1 - omega) * sgm2
initial_parameters = np.array([omega, alpha, beta])
print('Initial parameters for omega, alpha, and beta are \n{}\n{}\n{}'
.format(omega, alpha, beta))
Initial parameters for omega, alpha, and beta are
0.43471178001576827

GARCHModel | 85

0.512827280537482
0.02677799855546381

In [20]: retv = ret.values

In [21]: (nopython=True, parallel=True)
def garch_likelihood(initial_parameters, retv):
omega = initial_parameters[0]
alpha = initial_parameters[1]
beta = initial_parameters[2]
T = len(retv)
logliks = 0
sigma2 = np.zeros(T)
sigma2[0] = np.var(retv)
for t in range(1, T):
sigma2[t] = omega + alpha * (retv[t - 1]) ** 2 +
beta * sigma2[t-1]
logliks = np.sum(0.5 * (np.log(sigma2) + retv ** 2 / sigma2))
return logliks

In [22]: logliks = garch_likelihood(initial_parameters, retv)
print('The Log likelihood 1is {:.4f}'.format(logliks))
The Log likelihood 1is 1387.7215

In [23]: def garch_constraint(initial_parameters):
alpha = initial_parameters[0]
gamma = initial_parameters[1]
beta = initial_parameters[2]
return np.array([1 - alpha - beta])

In [24]: bounds = [(0.0, 1.0), (0.0, 1.0), (0.0, 1.0)]

In [25]: def opt_paramsG(initial_parameters, retv):

opt_result = opt.minimize(garch_likelihood,
x0=1nitial_parameters,
constraints=np.array([1 - alpha - beta]l),
bounds=bounds, args = (retv),
method='Nelder-Mead',
options={'maxiter': 5000})

params = opt_result.x

print('\nResults of Nelder-Mead minimization\n{}\n{}'\

.format('-' * 35, opt_result))

print('-' * 35)

print('\nResulting parameters = {}'.format(params))

return params

In [26]: params = opt_paramsG(initial_parameters, retv)

Results of Nelder-Mead minimization

final_simplex: (array([[0.03918956, 0.17370549, 0.78991502],
[0.03920507, 0.17374466, 0.78987403],

86 | Chapter4: Machine Learning-Based Volatility Prediction

[0.03916671, 0.17377319, 0.78993078],

[0.03917324, 0.17364595, 0.78998753]]), array([979.87109624, 979.8710967 ,

979.87109865, 979.8711147 1))
fun: 979.8710962352685
message: 'Optimization terminated successfully.'
nfev: 178
nit: 102
status: 0
success: True

x: array([0.03918956, 0.17370549, 0.78991502])

Resulting parameters = [0.03918956 0.17370549 0.78991502]

In [27]: def garch_apply(ret):
omega = params[0]
alpha = params[1]
beta = params[2]
T = len(ret)
sigma2 = np.zeros(T + 1)
sigma2[0] = np.var(ret)
for t in range(1, T):

sigma2[t] = omega + alpha * ret[t - 1] ** 2 +

beta * sigma2[t-1]
return sigma2

The parameters we get from our own GARCH code are approximately:

e w=0.0392
e a=0.1737
.« f=0.7899

Now, let’s try it with the built-in Python function:

In [28]: garch = arch_model(ret, mean='zero', vol='GARCH', p=1, 0=0, g=1)\

.fit(disp="off")
print(garch.summary())

Zero Mean - GARCH Model Results

Dep. Variable: Adj Close R-squared:

Mean Model: Zero Mean Adj. R-squared:
Vol Model: GARCH Log-Likelihood:
Distribution: Normal AIC:

Method: Maximum Likelihood BIC:

No. Observations: 2914

Date: Mon, Sep 13 2021 Df Residuals:
Time: 21:57:08 Df Model:

Volatility Model

0.000
0.000
-3657.62
7321.23
7339.16

2914

GARCHModel | 87

coef std err t P>|t| 95.0% Conf. Int.

omega 0.0392 8.422e-03 4.652 3.280e-06 [2.268e-02,5.569¢e-02]
alpha[1] 0.1738 2.275e-02 7.637 2.225e-14 [0.129, 0.218]
beta[1] 0.7899 2.275e-02 34.715 4.607e-264 [0.745, 0.835]

Covariance estimator: robust

The built-in function confirms that we did a great job, as the parameters obtained via
the built-in code are almost the same as ours, so we have learned how to code
GARCH and ARCH models to predict volatility.

It’s apparent that it is easy to work with GARCH(1, 1), but how do we know that the
parameters are the optimum ones? Let’s decide the optimum parameter set given the
lowest BIC value (and in doing so, generate Figure 4-4):

In [29]: bic_garch = []

for p in range(1, 5):
for g in range(1, 5):
garch = arch_model(ret, mean='zero',vol='GARCH', p=p, 0=0, g=q)\
.fit(disp="off")
bic_garch.append(garch.bic)
if garch.bic == np.min(bic_garch):
best_param = p, q
garch = arch_model(ret, mean='zero', vol='GARCH',
p=best_param[0], 0=0, g=best_param[1])\
.fit(disp="'off")
print(garch.summary())
forecast = garch.forecast(start=split_date[0])
forecast_garch = forecast

Zero Mean - GARCH Model Results

Dep. Variable: Adj Close R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.000
Vol Model: GARCH Log-Likelihood: -3657.62
Distribution: Normal AIC: 7321.23
Method: Maximum Likelihood BIC: 7339.16
No. Observations: 2914

Date: Mon, Sep 13 2021 Df Residuals: 2914
Time: 21:57:10 Df Model: 0

Volatility Model

coef std err t P> t| 95.0% Conf. Int.

omega 0.0392 8.422e-03 4.652 3.280e-06 [2.268e-02, 5.569e-02]

88 | Chapter4: Machine Learning-Based Volatility Prediction

alpha[1]
beta[1]

0.1738 2.275e-02 7.637 2.225e-14 [0.129, 0.218]
0.7899 2.275e-02 34.715 4.607e-264 [0.745, 0.835]

Covariance estimator: robust

In [30]: rmse_garch = np.sqrt(mse(realized_vol[-n:] / 100,

np.sqrt(forecast_garch\
.variance.iloc[-len(split_date):]

/ 160)))

print('The RMSE value of GARCH model is {:.4f}'.format(rmse_garch))

The

In [31]: plt.
plt.
plt.

RMSE value of GARCH model is 0.0878

figure(figsize=(10,6))

plot(realized_vol / 100, label='Realized Volatility')

plot(forecast_garch.variance.iloc[-len(split_date):] / 100,
label='Volatility Prediction-GARCH')

title('Volatility Prediction with GARCH', fontsize=12)

legend()

show()

Volatility Prediction with GARCH

plt.
plt.
plt.

0.08 A

0.06 A

0.04 -

0.02 4

0.00 A

—— Realized Volatility
—— Volatility Prediction-GARCH

2010

2012 2014 2016 2018 2020 2022

Figure 4-4. Volatility prediction with GARCH

GARCH Model |

89

The volatility of returns is well-fitted by the GARCH model partly because of its vola-
tility clustering and partly because GARCH does not assume that the returns are
independent, which allows it to account for the leptokurtic property of returns. How-
ever, despite these useful properties and its intuitiveness, GARCH is not able to
model the asymmetric response of the shocks (Karasan and Gaygisiz 2020). To rem-
edy this issue, GJR-GARCH was proposed by Glosten, Jagannathan, and Runkle
(1993).

GJR-GARCH

The GJR-GARCH model performs well in modeling the asymmetric effects of
announcements in the way that bad news has a larger impact than good news. In
other words, in the presence of asymmetry, the distribution of losses has a fatter tail
than the distribution of gains. The equation of the model includes one more parame-
ter, y, and it takes the following form:

q p
2 2 2 2
oy =wt kgl(akrt—k+yrt—kl(€t—l < 0)>+ kglﬁkgt—k

where y controls for the asymmetry of the announcements and if:

y=0
The response to the past shock is the same.

y >0
The response to the past negative shock is stronger than a positive one.

y<0
The response to the past positive shock is stronger than a negative one.

Let’s now run the GJR-GARCH model by finding the optimum parameter values
using BIC, and producing Figure 4-5 as a result:

In [32]: bic_gjr_garch = []

for p in range(1, 5):
for q in range(1, 5):
gjrgarch = arch_model(ret, mean='zero', p=p, 0=1, q=q)\
.fit(disp="off")
bic_gjr_garch.append(gjrgarch.bic)
if gjrgarch.bic == np.min(bic_gjr_garch):
best_param = p, q
gjrgarch = arch_model(ret,mean='zero', p=best_param[0], o=1,
q=best_param[1]).fit(disp="off")
print(gjrgarch.summary())
forecast = gjrgarch.forecast(start=split_date[0])
forecast_gjrgarch = forecast

90 | Chapter4: Machine Learning-Based Volatility Prediction

Zero Mean - GJR-GARCH Model Results

Dep. Variable: Adj Close R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.000
Vol Model: GJR-GARCH Log-Likelihood: -3593.36
Distribution: Normal AIC: 7194.73
Method: Maximum Likelihood BIC: 7218.64
No. Observations: 2914
Date: Mon, Sep 13 2021 Df Residuals: 2914
Time: 21:57:14 Df Model: 0
Volatility Model

coef std err t P>|t]| 95.0% Conf. Int.
omega 0.0431 7.770e-03 5.542 2.983e-08 [2.784e-02,5.829e-02]
alpha[1] 0.0386 3.060e-02 1.261 0.207 [-2.139e-02,9.855e-02]
gammal[1] 0.2806 4.818e-02 5.824 5.740e-09 [0.186, 0.375]
beta[1] 0.7907 2.702e-02 29.263 3.029e-188 [0.738, 0.844]

Cova

riance estimator: robust

In [33]: rmse_gjr_garch = np.sqrt(mse(realized_vol[-n:] / 100,
np.sqrt(forecast_gjrgarch)\
.variance.iloc[-len(split_date):]
/ 100)))

print('The RMSE value of GJR-GARCH models is {:.4f}'

The

In [34]: plt.
plt.
plt.

plt.
plt.
plt.

.format(rmse_gjr_garch

))

RMSE value of GJR-GARCH models is 0.0882

figure(figsize=(10, 6))

plot(realized_vol / 100, label='Realized Volatility')

plot(forecast_gjrgarch.variance.iloc[-len(split_date):] / 100,
label="'Volatility Prediction-GIR-GARCH")

title('Volatility Prediction with GIR-GARCH', fontsize=12)

legend()
show()

GIR-GARCH |

91

Volatility Prediction with GJR-GARCH

—— Realized Volatility

—— Volatility Prediction-GJR-GARCH
0.08 4
0.06 -
0.04 4
0.02 4
0.00 4

2010 2012 2014 2016 2018 2020 2022

Figure 4-5. Volatility prediction with GJR-GARCH

EGARCH

Together with the GJR-GARCH model, the EGARCH model, proposed by Nelson
(1991), is another tool for controlling for the effect of asymmetric announcements.
Additionally, it is specified in logarithmic form, so there is no need to add restrictions
to avoid negative volatility:

£ & |l & iy
log(af)=w+ Y. Bloga? + X =t X Vs
k=1 k=1 Ut—k k=1 at—k

The main difference in the EGARCH equation is that logarithm is taken of the var-
iance on the left-hand side of the equation. This indicates the leverage effect, meaning
that there exists a negative correlation between past asset returns and volatility. If
y < 0, it implies leverage effect, and if y # 0, that shows asymmetry in volatility.

Following the same procedure we used previously, let’s model the volatility using the
EGARCH model (resulting in Figure 4-6):

In [35]: bic_egarch = []

for p in range(1, 5):
for g in range(1, 5):
egarch = arch_model(ret, mean='zero', vol="EGARCH', p=p, g=q)\
.fit(disp="off")

92 | (Chapter4: Machine Learning-Based Volatility Prediction

bic_egarch.append(egarch.bic)
if egarch.bic == np.min(bic_egarch):
best_param = p, q
egarch = arch_model(ret, mean='zero', vol='EGARCH',
p=best_param[0], gq=best_param[1])\
.fit(disp="off")
print(egarch.summary())
forecast = egarch.forecast(start=split_date[0])
forecast_egarch = forecast

Zero Mean - EGARCH Model Results

Dep. Variable: Adj Close R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.000
Vol Model: EGARCH Log-Likelihood: -3676.18
Distribution: Normal AIC: 7358.37
Method: Maximum Likelihood BIC: 7376.30
No. Observations: 2914

Date: Mon, Sep 13 2021 Df Residuals: 2914
Time: 21:57:19 Df Model: 0

Volatility Model

coef std err t P>|t| 95.0% Conf. Int.
omega 2.3596e-03 6.747e-03 0.350 0.727 [-1.086e-02,1.558e-02]
alpha[1] 0.3266 3.427e-02 9.530 1.567e-21 [0.259, 0.394]
beta[1] 0.9456 1.153e-02 82.023 0.000 [0.923, 0.968]
Covariance estimator: robust
In [36]: rmse_egarch = np.sqrt(mse(realized_vol[-n:] / 100,
np.sqgrt(forecast_egarch.variance\
.iloc[-len(split_date):] / 100)))
print('The RMSE value of EGARCH models is {:.4f}'.format(rmse_egarch))
The RMSE value of EGARCH models is 0.0904
In [37]: plt.figure(figsize=(10, 6))

plt.plot(realized_vol / 100, label='Realized Volatility')

plt.plot(forecast_egarch.variance.iloc[-len(split_date):] / 100,
label="'Volatility Prediction-EGARCH')

plt.title('Volatility Prediction with EGARCH', fontsize=12)

plt.legend()

plt.show()

EGARCH |

93

Volatility Prediction with EGARCH
—— Realized Volatility
—— Volatility Prediction-EGARCH
0.08 4
0.06 -
0.04 4
|
|
0.02 ‘ W
(|
I b‘ U‘ 1
‘I |
T \L‘J‘lulfﬂ\
L w
0.00 4
2010 2012 2014 2016 2018 2020 2022

Figure 4-6. Volatility prediction with EGARCH

Given the RMSE results shown in Table 4-1, the best and worst performing models
are GARCH and EGARCH, respectively. But there are no big differences in the per-
formance of the models we have used here. In particular, during bad news/good news
announcements, the performances of EGARCH and GJR-GARCH might be different
due to the asymmetry in the market.

Table 4-1. RMSE results for all four models

Model RMSE

ARCH 0.0896
GARCH 0.0878
GJR-GARCH 0.0882
EGARCH 0.0904

Up to now, we have discussed the classical volatility models, but from this point on,
we will see how ML and the Bayesian approach can be used to model volatility. In the
context of ML, support vector machines and neural networks will be the first models
to explore. Let’s get started.

94 | (Chapter4: Machine Learning-Based Volatility Prediction

Support Vector Regression: GARCH

Support vector machine (SVM) is a supervised learning algorithm that can be appli-
cable to both classification and regression. The aim of SVM is to find a line that sepa-
rates two classes. It sounds easy but here is the challenging part: there are almost an
infinite number of lines that can be used to distinguish the classes. But we are looking
for the optimal line by which the classes can be perfectly discriminated.

In linear algebra, the optimal line is called hyperplane, which maximizes the distance
between the points that are closest to the hyperplane but belong to different classes.
The distance between the two points (support vectors) is known as margin. So, in
SVM, what we are trying to do is to maximize the margin between support vectors.

SVM for classification is known as support vector classification (SVC). Keeping all
characteristics of SVM, it can be applicable to regression. Again, in regression, the
aim is to find the hyperplane that minimizes the error and maximizes the margin.
This method is called support vector regression (SVR) and, in this part, we will apply
this method to the GARCH model. Combining these two models gets us SVR-
GARCH.

Kernel Functions

What happens if the data we are working on cannot be linearly separable? That would
be a huge headache for us, but don’t worry: we have kernel functions to remedy this
problem. This is a nice and easy method for modeling nonlinear and high-
dimensional data. The steps we take in kernel SVM are:

1. Move the data into high dimension
2. Find a suitable hyperplane
3. Go back to the initial data
To do this, we use kernel functions. Using the idea of feature map, we indicate that

our original variables are mapped to new set of quantities, and then passed to the
learning algorithm.

Finally, instead of input data, we use the following main kernel functions in optimiza-
tion procedures:

Polynomial kernel
K(x,2) = (xTz + b)
Radial basis (Gaussian) kernel

2
K(x,2) = exp(- %)
20

Support Vector Regression: GARCH | 95

Exponential kernel
K(x,2) = exp(- M)

o

where x is input, b is bias or constant, and z is linear combination of x.2

The following code shows us the preparations before running the SVR-GARCH in
Python. The most crucial step here is to obtain independent variables, which are real-
ized volatility and square of historical returns:

In [38]: from import SVR
from import uniform as sp_rand
from import RandomizedSearchCV

In [39]: realized_vol = ret.rolling(5).std() @
realized_vol = pd.DataFrame(realized_vol)
realized_vol.reset_index(drop=True, inplace=True)

In [40]: returns_svm = ret ** 2
returns_svm = returns_svm.reset_index()

del returns_svm['Date']

In [41]:

pd.concat([realized_vol, returns_svm], axis=1, ignore_index=True)
X[4:].copy()

= X.reset_index()

.drop('index"', axis=1, inplace=True)

X X X X

In [42]: realized_vol = realized_vol.dropna().reset_index()
realized_vol.drop('index', axis=1, inplace=True)

In [43]: svr_poly = SVR(kernel='poly', degree=2) (2]

svr_lin = SVR(kernel='linear"')
svr_rbf = SVR(kernel='rbf") (2]

©® Computing realized volatility and assigning a new variable to it named real
ized_vol

® Creating new variables for each SVR kernel

2 For more information on these functions, see Andrew Ng’s lecture notes.

96 | Chapter4: Machine Learning-Based Volatility Prediction

https://oreil.ly/sTWGj

Let’s run and see our first SVR-GARCH application with linear kernel (and produce
Figure 4-7); we'll use the RMSE metric to compare the applications:

© o © o

In [44]: para_grid = {'gamma': sp_rand(),

[45]7:

[46]:

[47]:

[48]:

'C': sp_rand(),
'epsilon': sp_rand()} (1]
clf = RandomizedSearchCV(svr_lin, para_grid) (2]
clf.fit(X.1iloc[:-n].values,
realized_vol.iloc[1:-(n-1)].values.reshape(-1,)) (3]
predict_svr_lin = clf.predict(X.iloc[-n:]) (4]

predict_svr_lin = pd.DataFrame(predict_svr_lin)
predict_svr_lin.index = ret.iloc[-n:].1index

rmse_svr = np.sqrt(mse(realized_vol.iloc[-n:] / 100,
predict_svr_lin / 100))
print('The RMSE value of SVR with Linear Kernel is {:.6f}'
.format(rmse_svr))
The RMSE value of SVR with Linear Kernel is 0.000462

realized_vol.index = ret.iloc[4:].index

plt.figure(figsize=(10, 6))

plt.plot(realized_vol / 100, label='Realized Volatility')
plt.plot(predict_svr_lin / 100, label='Volatility Prediction-SVR-GARCH')
plt.title('Volatility Prediction with SVR-GARCH (Linear)', fontsize=12)
plt.legend()

plt.show()

Identifying the hyperparameter space for tuning

Applying hyperparameter tuning with RandomizedSearchcCv

Fitting SVR-GARCH with linear kernel to data

Predicting the volatilities based on the last 252 observations and storing them in
the predict_svr_lin

Support Vector Regression: GARCH | 97

Volatility Prediction with SVR-GARCH (Linear)
—— Realized Volatility
—— Volatility Prediction-SVR-GARCH
0.08 4
0.06 4
0.04 4
0.02 ‘ H.,' I
‘ '\L HJ‘ |
\'l‘ﬂ‘ijm‘m\ﬂ
5 Tl
AR Lw
0.00 +
2010 2012 2014 2016 2018 2020 2022

Figure 4-7. Volatility prediction with SVR-GARCH linear kernel

Figure 4-7 exhibits the predicted values and actual observation. By eyeballing it, we
can tell that SVR-GARCH performs well. As you can guess, the linear kernel works
fine if the dataset is linearly separable; it is also suggested by Occam’s razor.> But what
if the dataset isn’t linearly separable? Lets continue with the radial basis function
(RBF) and polynomial kernels. The former uses elliptical curves around the observa-
tions, and the latter, unlike the first two, focuses on the combinations of samples. Let’s
now see how they work.

Let’s start with an SVR-GARCH application using the RBF kernel, a function that
projects data into a new vector space. From a practical standpoint, SVR-GARCH
application with different kernels is not a labor-intensive process; all we need to do is
switch the kernel name, as shown in the following (and resulting in Figure 4-8):

In [49]: para_grid ={'gamma': sp_rand(),
'C': sp_rand(),
'epsilon': sp_rand()}
clf = RandomizedSearchCV(svr_rbf, para_grid)
clf.fit(X.1loc[:-n].values,
realized_vol.iloc[1:-(n-1)].values.reshape(-1,))
predict_svr_rbf = clf.predict(X.iloc[-n:])

3 Occam’s razor, also known as law of parsimony, states that given a set of explanations, simpler explanation is
the most plausible and likely one.

98 | Chapter4: Machine Learning-Based Volatility Prediction

In [50]: predict_svr_rbf = pd.DataFrame(predict_svr_rbf)
predict_svr_rbf.index = ret.iloc[-n:].1index

In [51]: rmse_svr_rbf = np.sqrt(mse(realized_vol.iloc[-n:] / 100,
predict_svr_rbf / 100))
print('The RMSE value of SVR with RBF Kernel is {:.6f}'
.format(rmse_svr_rbf))
The RMSE value of SVR with RBF Kernel is 0.000970

In [52]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol / 100, label='Realized Volatility')
plt.plot(predict_svr_rbf / 100, label='Volatility Prediction-SVR_GARCH')
plt.title('Volatility Prediction with SVR-GARCH (RBF)', fontsize=12)
plt.legend()

plt.show()
Volatility Prediction with SVR-GARCH (RBF)

—— Realized Volatility

—— Volatility Prediction-SVR_GARCH
0.08 A
0.06
0.04 4
0.02 4
0.00 4

2010 2012 2014 2016 2018 2020 2022

Figure 4-8. Volatility prediction with the SVR-GARCH RBF kernel

Both the RMSE score and the visualization suggest that SVR-GARCH with linear ker-
nel outperforms SVR-GARCH with RBF kernel. The RMSEs of SVR-GARCH with
linear and RBF kernels are 0.000462 and 0.000970, respectively. So SVR with linear
kernel performs well.

Lastly, let’s try SVR-GARCH with the polynomial kernel. It will turn out that it has
the highest RMSE (0.002386), implying that it is the worst-performing kernel among
these three different applications. The predictive performance of SVR-GARCH with
polynomial kernel can be found in Figure 4-9:

Support Vector Regression: GARCH | 99

In [53]: para_grid = {'gamma': sp_rand(),
'C': sp_rand(),
'epsilon': sp_rand()}
clf = RandomizedSearchCV(svr_poly, para_grid)
clf.fit(X.1loc[:-n].values,
realized_vol.iloc[1:-(n-1)].values.reshape(-1,))
predict_svr_poly = clf.predict(X.iloc[-n:])

In [54]: predict_svr_poly = pd.DataFrame(predict_svr_poly)
predict_svr_poly.index = ret.iloc[-n:].index

In [55]: rmse_svr_poly = np.sqrt(mse(realized_vol.iloc[-n:] / 100,
predict_svr_poly / 100))
print('The RMSE value of SVR with Polynomial Kernel is {:.6f}'\
.format(rmse_svr_poly))
The RMSE value of SVR with Polynomial Kernel is 0.002386

In [56]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol/100, label='Realized Volatility')
plt.plot(predict_svr_poly/100, label='Volatility Prediction-SVR-GARCH")
plt.title('Volatility Prediction with SVR-GARCH (Polynomial)',
fontsize=12)
plt.legend()

plt.show()
Volatility Prediction with SVR-GARCH (Polynomial)
—— Realized Volatility
—— Volatility Prediction-SVR-GARCH
0.08 4
0.06 4
0.04 4
0.02 A
0.00 +

2010 2012 2014 2016 2018 2020 2022

Figure 4-9. Volatility prediction with SVR-GARCH polynomial kernel

100 | Chapter4: Machine Learning-Based Volatility Prediction

Neural Networks

Neural networks are the building block for deep learning. In an NN, data is processed
in multiple stages to make a decision. Each neuron takes a result of a dot product as
input and uses it in an activation function to make a decision:

Z=wx; + WX, +b

where b is bias, w is weight, and x is input data.

During this process, input data is mathematically manipulated in various ways in hid-
den and output layers. Generally speaking, an NN has three types of layers:

« Input layers

« Hidden layers
o Output layers

Figure 4-10 can help to illustrate the relationships among layers.

The input layer includes raw data. In going from the input layer to the hidden layer,
we learn coefficients. There may be one or more than one hidden layers depending
on the network structure. The more hidden layers the network has, the more compli-
cated it is. Hidden layers, located between input and output layers, perform nonlinear
transformations via activation functions.

Input Hidden Output
layer layer layer

Figure 4-10. NN structure

Finally, the output layer is the layer in which output is produced and decisions are
made.

In ML, gradient descent is applied to find the optimum parameters that minimize the
cost function, but employing only gradient descent in NN is not feasible due to the
chain-like structure within the NN. Thus, a new concept known as backpropagation
is proposed to minimize the cost function. The idea of backpropagation rests on

Neural Networks | 101

calculating the error between observed and actual output, and then passing this error
to the hidden layer. So we move backward, and the main equation takes the form of:

where z is linear transformation and & represents error. There is much more to say
here, but to keep us on track we'll stop here. For those who want to dig more into the
math behind NN, please refer to Wilmott (2013) and Alpaydin (2020).

Gradient Descent

Suppose that we are at the top of a hill and are trying to reach the plateau at which we
minimize the cost function. Formally, gradient descent is an optimization algorithm
used to search for best parameter space (w, b) that minimizes the cost function via
following update rule:

o]
9t+1 = et_la_gt

where 8(w, b) is the function of weight, w, and bias, b.] is cost function, and A is the
learning rate, which is a constant number deciding how fast we want to minimize the
cost function. At each iteration, we update the parameters to minimize the error.

The gradient descent algorithm works in the following way:

1. Select initial values for w and b.

2. Take an A step in the direction opposite to where the gradient points.
3. Update w and b at each iteration.
4

. Repeat from step 2 until convergence.

Now, we apply NN-based volatility prediction using the MLPRegressor module from
scikit-learn, even though we have various options to run NNs in Python.* Given the
NN structure we've introduced, the result follows:

4 Of these alternatives, TensorFlow, PyTorch, and NeuroLab are the most prominent libraries.

102 | Chapter4: Machine Learning-Based Volatility Prediction

In [57]: from sklearn.neural_network import MLPRegressor (1)
NN_vol = MLPRegressor(learning_rate_init=0.001, random_state=1)
para_grid_NN = {'hidden_layer_sizes': [(100, 50), (50, 50), (10, 100)],
'max_iter': [500, 1000],
"alpha': [0.00005, 0.0005 1} @
clf = RandomizedSearchCV(NN_vol, para_grid_NN)
clf.fit(X.1iloc[:-n].values,
realized_vol.iloc[1:-(n-1)].values.reshape(-1,)) (3]
NN_predictions = clf.predict(X.iloc[-n:]) (4]

In [58]: NN_predictions = pd.DataFrame(NN_predictions)
NN_predictions.index = ret.iloc[-n:].index

In [59]: rmse_NN = np.sqrt(mse(realized_vol.iloc[-n:] / 100,
NN_predictions / 100))
print('The RMSE value of NN is {:.6f}'.format(rmse_NN))
The RMSE value of NN is 0.000583

In [60]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol / 100, label='Realized Volatility')
plt.plot(NN_predictions / 100, label='Volatility Prediction-NN")
plt.title('Volatility Prediction with Neural Network', fontsize=12)
plt.legend()
plt.show()

Importing the MLPRegressor module

Configuring the NN model with three hidden layers and varying neuron
numbers

© Fitting the NN model to the training data®

O Predicting the volatilities based on the last 252 observations and storing them in
the NN_predictions variable

Figure 4-11 shows the volatility prediction result based on the NN model. Despite its
reasonable performance, we can play with the number of hidden neurons to generate
a deep learning model. To do that, we can apply the Keras library, Python’s interface
for artificial neural networks.

5 For more detailed information, please see the MLPClassifier documentation.

Neural Networks | 103

https://oreil.ly/HnrTk

Volatility Prediction with Neural Network

—— Realized Volatility
—— Volatility Prediction-NN
0.08 -
0.06
0.04
0.02 4
0.00

2010 2012 2014 2016 2018 2020 2022

Figure 4-11. Volatility prediction with an NN

Now it’s time to predict volatility using deep learning. Based on Keras, it is easy to
configure the network structure. All we need is to determine the number of neurons
of the specific layer. Here, the number of neurons for the first and second hidden lay-
ers are 256 and 128, respectively. As volatility has a continuous type, we have only one
output neuron:

In [61]: import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

In [62]: model = keras.Sequential(
[layers.Dense(256, activation="relu"),
layers.Dense(128, activation="relu"),
layers.Dense(1, activation="1linear"),]) (1)

In [63]: model.compile(loss='mse', optimizer='rmsprop') (2]

In [64]: epochs_trial = np.arange(100, 400, 4) (3]
batch_trial = np.arange(100, 400, 4) (3]
DL_pred = []
DL_RMSE = []
for 1, j, k in zip(range(4), epochs_trial, batch_trial):
model.fit(X.iloc[:-n].values,
realized_vol.iloc[1:-(n-1)].values.reshape(-1,),
batch_size=k, epochs=j, verbose=False)
DL_predict = model.predict(np.asarray(X.iloc[-n:])) (5]
DL_RMSE.append(np.sqrt(mse(realized_vol.iloc[-n:] / 100,

104 | Chapter4: Machine Learning-Based Volatility Prediction

® 06 o o ©

(6]

DL_predict.flatten() / 100))) @
DL_pred.append(DL_predict)
print('DL_RMSE_{}:{:.6f}'.format(i+1, DL_RMSE[1]))
DL_RMSE_1:0.000551
DL_RMSE_2:0.000714
DL_RMSE_3:0.000627
DL_RMSE_4:0.000739

In [65]: DL_predict = pd.DataFrame(DL_pred[DL_RMSE.index(min(DL_RMSE))])
DL_predict.index = ret.iloc[-n:].index

In [66]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol / 100,label="Realized Volatility')
plt.plot(DL_predict / 100,label="Volatility Prediction-DL")
plt.title('Volatility Prediction with Deep Learning', fontsize=12)
plt.legend()
plt.show()

Configuring the network structure by deciding number of layers and neurons
Compiling the model with loss and optimizer

Deciding the epoch and batch size using np.arange

Fitting the deep learning model

Predicting the volatility based on the weights obtained from the training phase

Calculating the RMSE score by flattening the predictions

It turns out that we get a minimum RMSE score when we have epoch number and
batch size of 100. This shows that increasing the complexity of the model does not
necessarily imply high predictive performance. The key is to find a sweet spot
between complexity and predictive performance. Otherwise, the model can easily
tend to overfit.

Figure 4-12 shows the volatility prediction result derived from the preceding code,
and it implies that deep learning provides a strong tool for modeling volatility, too.

Neural Networks | 105

Volatility Prediction with Deep Learning
—— Realized Volatility
—— Volatility Prediction-DL
0.08
0.06
0.04 4
]
0.02 A ‘ I
’ ‘ | "‘w
1 (]
| ‘L ‘\ \"-‘
[T
4 '\J*\J“‘.’f”f-
0.00 4 r
2010 2012 2014 2016 2018 2020 2022

Figure 4-12. Volatility prediction with deep learning

The Bayesian Approach

The way we approach probability is of central importance in the sense that it distin-
guishes the classical (or Frequentist) and Bayesian approaches. According to the for-
mer, the relative frequency will converge to the true probability. However, a Bayesian
application is based on the subjective interpretation. Unlike the Frequentists, Baye-
sian statisticians consider the probability distribution as uncertain, and it is revised as
new information comes in.

Due to the different interpretation in the probability of these two approaches, likeli-
hood—defined as the probability of an observed event given a set of parameters—is
computed differently.

Starting from the joint density function, we can give the mathematical representation
of the likelihood function:

5[3(9|x1,x2, .. .,xp) = Pr (xl,xz, .. .,xp‘e)

Among possible 8 values, what we are trying to do is decide which one is more likely.
Under the statistical model proposed by the likelihood function, the observed data

Xp oo os Xy s the most probable.

106 | Chapter4: Machine Learning-Based Volatility Prediction

In fact, you are familiar with the method based on this approach, which is maximum
likelihood estimation. Having defined the main difference between Bayesian and Fre-
quentist approaches, it is time to delve more into Bayes’ theorem.

The Bayesian approach is based on conditional distribution, which states that proba-
bility gauges the extent to which one has about a uncertain event. So the Bayesian
application suggests a rule that can be used to update the beliefs that one holds in
light of new information:

Bayesian estimation is used when we have some prior information regarding a parame-
ter. For example, before looking at a sample to estimate the mean of a distribution, we
may have some prior belief that it is close to 2, between 1 and 3. Such prior beliefs are
especially important when we have a small sample. In such a case, we are interested in
combining what the data tells us, namely, the value calculated from the sample, and
our prior information.

— Rachev et al., 2008

Similar to the Frequentist application, Bayesian estimation is based on probability
density Pr (x| 8). However, as we have discussed previously, Bayesian and Frequentist
methods treat parameter set 0 differently. A Frequentist assumes 0 to be fixed,
whereas in a Bayesian setting, 0 is taken as a random variable whose probability is
known as prior density Pr (6). Well, we have another unknown term, but no worries
—it is easy to understand.

In light of this information, we can estimate %(x|6) using prior density Pr (6) and
come up with the following formula. Prior is employed when we need to estimate the
conditional distribution of the parameters given observations:

Pxpxp - - x| 6) Pr(0)

Pr (xl,xz, .. .,xp)

Pr (9|x1,x2, .. .,xp) =

or

Pr (0| data) = %

where

« Pr (0|data) is the posterior density, which gives us information about the param-
eters given observed data.

o Y(data|0) is the likelihood function, which estimates the probability of the data
given parameters.

The Bayesian Approach | 107

o Pr () is prior probability. It is the probability of the parameters. Prior is basically
the initial beliefs about estimates.

o Finally, Pr is the evidence, which is used to update the prior.

Consequently, Bayes’ theorem suggests that the posterior density is directly propor-
tional to the prior and likelihood terms but inverserly related to the evidence term. As
the evidence is there for scaling, we can describe this process as:

Posterior o Likelihood x prior

where ox means “is proportional to.

Within this context, Bayes’ theorem sounds attractive, doesn’t it? Well, it does, but it
comes with a cost, which is analytical intractability. Even if Bayes” theorem is theoreti-
cally intuitive, it is, by and large, hard to solve analytically. This is the major drawback
in wide applicability of Bayes’ theorem. However, the good news is that numerical
methods provide solid methods to solve this probabilistic model.

Some methods proposed to deal with the computational issues in Bayes’ theorem pro-
vide solutions with approximation, including:

o Quadrature approximation

» Maximum a posteriori estimation (MAP) (discussed in Chapter 6)

o Grid approach

« Sampling-based approach

o Metropolis—Hastings

« Gibbs sampler

+ No U-Turn sampler

Of these approaches, let us restrict our attention to the Metropolis—Hastings algo-
rithm (M-H), which will be our method for modeling Bayes’ theorem. The M-H
method rests on the Markov chain Monte Carlo (MCMC) method. So before moving
forward, let’s talk about the MCMC method.

Markov Chain Monte Carlo

The Markov chain is a model used to describe the transition probabilities among
states. A chain is called Markovian if the probability of the current state s, depends

only on the most recent state s, _ :

Pr (st|st71,st72, .. .,st,p) = Pr (St|5t—1)

108 | Chapter4: Machine Learning-Based Volatility Prediction

Thus, MCMC relies on the Markov chain to find the parameter space 8 with the high-
est posterior probability. As the sample size grows, parameter values approximate to
the posterior density:

lim 9]3 Pr (8] x)

jo> too

where D refers to distributional approximation. Realized values of parameter space
can be used to make inferences about the posterior. In a nutshell, the MCMC method
helps us gather IID samples from posterior density so that we can calculate the poste-
rior probability.

To illustrate this, we can refer to Figure 4-13. This figure shows the probability of
moving from one state to another. For the sake of simplicity, we'll set the probability
to be 0.2, indicating that the transition from “studying” to “sleeping” has a probability
0f0.2:

In [67]: import quantecon as ge
from quantecon import MarkovChain
import networkx as nx
from pprint import pprint

In [68]: P = [[0.5,

mc = qge.MarkovChain(P, ('studying', 'travelling', 'sleeping'))
mc.is_irreducible
Out[68]: True

In [69]: states = ['studying', 'travelling', 'sleeping']

initial_probs = [0.5, 0.3, 0.6]

state_space = pd.Series(initial_probs, index=states, name='states')
In [70]: q_df = pd.DataFrame(columns=states, index=states)
q_df = pd.DataFrame(columns=states, index=states)
q_df.loc[states[0]] = [0.5, 0.2, 0.3]
q_df.loc[states[1]] = [0.2, 0.3, 0.5]
q_df.

loc[states[2]] [0.2, 0.2, 0.6]

In [71]: def _get_markov_edges(Q):
edges = {}
for col in Q.columns:
for idx in Q.index:
edges[(idx,col)] = Q.loc[1idx,col]
return edges
edges_wts = _get_markov_edges(q_df)
pprint(edges_wts)
{('sleeping', 'sleeping'): 0.6,
('sleeping', 'studying'): 0.2,

The Bayesian Approach | 109

('sleeping', 'travelling'): 0.2,
('studying', 'sleeping'): 0.3,
('studying', 'studying'): 0.5,
('studying', 'travelling'): 0.2,

('travelling', 'sleeping'): 0.5,
('travelling', 'studying'): 0.2,
('travelling', 'travelling'): 0.3}

In [72]: G = nx.MultiDiGraph()
G.add_nodes_from(states)
for k, v in edges_wts.items():
tmp_origin, tmp_destination = k[0], k[1]
G.add_edge(tmp_origin, tmp_destination, weight=v, label=v)

pos = nx.drawing.nx_pydot.graphviz_layout(G, prog='dot")
nx.draw_networkx(G, pos)

edge_labels = {(n1, n2):d['label'] for n1, n2, d in G.edges(data=True)}
nx.draw_networkx_edge_labels(G , pos, edge_labels=edge_labels)
nx.drawing.nx_pydot.write_dot(G, 'mc_states.dot')

Studying

Sleeping

Figure 4-13. Interactions of different states

There are two common MCMC methods: M-H and Gibbs sampler. Here, we delve
into the former.
Metropolis—Hastings

M-H allows us to have an efficient sampling procedure with two steps. First, we draw
a sample from proposal density, then we decide either to accept or reject it.

Let q(@‘ o'~ 1) be a proposal density and 0 be a parameter space. The entire algorithm
of M-H can be summarized as:

110 | Chapter4: Machine Learning-Based Volatility Prediction

1. Select initial value for 8" from parameter space 6.

2. Select a new parameter value 6* from proposal density, which can be, for the sake
of easiness, Gaussian or uniform distribution.

3. Compute the following acceptance probability:

Pr, (9*, o'~ 1) = min| 1,

p(0)/(6°]6')
p(e")/a(6)

4. If Pr . (9*, o'~ 1) is greater than a sample value drawn from uniform distribution

U(0,1), repeat this process from step 2.

Well, it appears intimidating, but don’t worry; we have built-in code in Python that
makes the applicability of the M-H algorithm much easier. We use the PyFlux library
to make use of Bayes” theorem. Let’s apply the M-H algorithm to predict volatility:

In [73]:

In [74]:

import pyflux as pf
from scipy.stats import kurtosis

model = pf.GARCH(ret.values, p=1, g=1) (1]
print(model.latent_variables)
model.adjust_prior(1, pf.Normal()) (3]
model.adjust_prior(2, pf.Normal()) (3]

x = model.fit(method='M-H', iterations='1000") (4]
print(x.summary())

Index Latent Variable Prior Prior Hyperparameters
V.I. Dist Transform

0 Vol Constant Normal mul: 0, sigmad: 3
Normal exp

1 q(1) Normal mul: 0, sigmad: 0.5
Normal logit

2 p(1) Normal mul: 0, sigmad: 0.5
Normal logit

3 Returns Constant Normal mud: 0, sigmald: 3
Normal None

Acceptance rate of Metropolis-Hastings is 0.0023
Acceptance rate of Metropolis-Hastings is 0.23925

Tuning complete! Now sampling.
Acceptance rate of Metropolis-Hastings is 0.239175
GARCH(1,1)

Dependent Variable: Series Method: Metropolis

The Bayesian Approach | 111

Hastings

Start Date: 1

Posterior: -3635.1348

End Date: 2913
7278.269645045323

Number of observations: 2913
7302.177400073161

Unnormalized Log

AIC:

BIC:

Latent Variable Median
95% Credibility Interval

Vol Constant 0.04
(0.0315 | 0.0501)

q(1) 0.1936
(0.1638 | 0.2251)

p(1) 0.7736
(0.7438 | 0.8026)

Returns Constant 0.0866

(0.0646 | 0.1038)

Mean

0.0398

0.194

0.7737

0.0855

None

In [75]: model.plot_z([1, 2]) ()
model.plot_fit(figsize=(15, 5)) (6]

model.plot_ppc(T=kurtosis, nsims=1000) (7]

Fitting the model using M-H process
Plotting the latent variables

Plotting the fitted model

© © 6 6 o o ©

Plotting the histogram for posterior check

Adjusting the priors for the model latent variables

Configuring GARCH model using the PyFlux library

Printing the estimation of latent variables (parameters)

112 | Chapter4: Machine Learning-Based Volatility Prediction

It is worthwhile to visualize the results of what we have done so far for volatility pre-
diction with a Bayesian-based GARCH Model.

Figure 4-14 exhibits the distribution of latent variables. Latent variable g gathers
around 0.2, and the other latent variable, p, mostly takes values between 0.7 and 0.8.

Latent Variable Plot
— M-H estimate of q(1)
200 —— M-H estimate of p(1)
175
15.0
Z125
c
g
3
g 100
I
75
5.0
25
00 - . - . Y T v
01 02 03 04 05 06 07 08
Value

Figure 4-14. Latent variables

Figure 4-15 indicates the demeaned volatility series and the GARCH prediction result
based on the Bayesian approach.

Series Volatility Plot
10

—— Series Absolute Demeaned Values
—— GARCH(1,1) Conditional Volatility

o

s

~

0 500 1000 1500 2000 2500

Figure 4-15. Model fit

Figure 4-16 visualizes the posterior predictions of the Bayesian model with the data
so that we are able to detect systematic discrepancies, if any. The vertical line repre-
sents the test statistic, and it turns out the observed value is larger than that of our
model.

The Bayesian Approach | 113

Posterior predictive

200

150 1

Frequency

Figure 4-16. Posterior prediction

After we are done with the training part, we are all set to move on to the next phase,
which is prediction. Prediction analysis is done for the 252 steps ahead, and the
RMSE is calculated given the realized volatility:
In [76]: bayesian_prediction = model.predict_is(n, fit_method='M-H") (1)
Acceptance rate of Metropolis-Hastings is 0.11515

Acceptance rate of Metropolis-Hastings is 0.1787
Acceptance rate of Metropolis-Hastings is 0.2675

Tuning complete! Now sampling.
Acceptance rate of Metropolis-Hastings is 0.2579

In [77]: bayesian_RMSE = np.sqgrt(mse(realized_vol.iloc[-n:] / 100,
bayesian_prediction.values / 100)) (2]
print('The RMSE of Bayesian model is {:.6f}'.format(bayesian_RMSE))
The RMSE of Bayesian model is 0.004047
In [78]: bayesian_prediction.index = ret.iloc[-n:].1index

In-sample volatility prediction

Calculating the RMSE score

114 | Chapter4: Machine Learning-Based Volatility Prediction

Eventually, we are ready to observe the prediction result of the Bayesian approach,
and the following code does it for us, generating Figure 4-17:

In [79]: plt.figure(figsize=(10, 6))
plt.plot(realized_vol / 100,
label="'Realized Volatility')
plt.plot(bayesian_prediction['Series'] / 100,
label='Volatility Prediction-Bayesian')
plt.title('Volatility Prediction with M-H Approach', fontsize=12)
plt.legend()

plt.show()
Volatility Prediction with M-H Approach

—— Realized Volatility

—— Volatility Prediction-Bayesian
0.08 4
0.06 A
0.04 4
0.02 4
0.00 4

2010 2012 2014 2016 2018 2020 2022

Figure 4-17. Bayesian volatility prediction

Figure 4-17 visualizes the volatility prediction based on an M-H-based Bayesian
approach, and it seems to overshoot toward the end of 2020. The overall performance
of this method shows that it is not among the best methods.

Conclusion

Volatility prediction is a key to understanding the dynamics of the financial market in
the sense that it helps us to gauge uncertainty. With that being said, it is used as input
in many financial models, including risk models. These facts emphasize the impor-
tance of having accurate volatility prediction. Traditionally, parametric methods such
as ARCH, GARCH, and their extensions have been extensively used, but these
models suffer from being inflexible. To remedy this issue, data-driven models are
promising, and this chapter attempted to make use of these models, namely, SVMs,

Conclusion | 115

NNs, and deep learning-based models. It turns out that the data-driven models out-
perform the parametric models.

In the next chapter, market risk, a core financial risk topic, will be discussed both
from theoretical and empirical standpoints, and the ML models will be incorporated
to further improve the estimation of this risk.

References

Articles cited in this chapter:

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2003.
“Modeling and Forecasting Realized Volatility” Econometrica 71 (2): 579-625.

Andersen, Torben G., and Tim Bollerslev. 1997. “Intraday Periodicity And Volatility
Persistence in Financial Markets” Journal of Empirical Finance 4 (2-3): 115-158.

Black, Fischer. 1976. “Studies of Stock Market Volatility Changes.” 1976 Proceedings of
the American Statistical Association Business and Economic Statistics Section.

Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.
Journal of Econometrics 31 (3): 307-327. 3): 542-547.

Burnham, Kenneth P,, and David R. Anderson. 2004. “Multimodel Inference: Under-
standing AIC and BIC in Model Selection.” Sociological Methods and Research 33
(2): 261-304.

Eagle, Robert F. 1982. “Autoregressive Conditional Heteroskedasticity with Estimates
of the Variance of UK Inflation.” Econometrica 50 (4): 987-1008.

De Stefani, Jacopo, Olivier Caelen, Dalila Hattab, and Gianluca Bontempi. 2017.
“Machine Learning for Multi-step Ahead Forecasting of Volatility Proxies”
MIDAS@ PKDD/ECML, 17-28.

Dokuchaev, Nikolai. 2014. “Volatility Estimation from Short Time Series of Stock Pri-
ces”” Journal of Nonparametric Statistics 26 (2): 373-384.

Glosten, L. R, R. Jagannathan, and D. E. Runkle 1993. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks” The
Journal of Finance 48 (5): 1779-1801.

Karasan, Abdullah, and Esma Gaygisiz. 2020. “Volatility Prediction and Risk Manage-
ment: An SVR-GARCH Approach” The Journal of Financial Data Science 2 (4):
85-104.

Mandelbrot, Benoit. 1963. “New Methods in Statistical Economics.” Journal of Politi-
cal Economy 71 (5): 421-440.

116 | Chapter4: Machine Learning-Based Volatility Prediction

Nelson, Daniel B. 1991. Conditional Heteroskedasticity in Asset Returns: A New
Approach. Econometrica 59 (2): 347-370.

Raju, M. T., and Anirban Ghosh. 2004. “Stock Market Volatility: An International
Comparison.” Securities and Exchange Board of India.

Books cited in this chapter:

Alpaydin, E. 2020. Introduction to Machine Learning. Cambridge: MIT press.

Burnham, Kenneth P, and David R. Anderson. 2002. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. New York: Springer-
Verlag.

Focardi, Sergio M. 1997. Modeling the Market: New Theories and Techniques. The
Frank J. Fabozzi Series, Vol. 14. New York: John Wiley and Sons.

Racheyv, Svetlozar T., John SJ Hsu, Biliana S. Bagasheva, and Frank J. Fabozzi. 2012.
Bayesian Methods in Finance. New York: John Wiley and Sons.

Taylor, S. 1986. Modeling Financial Time Series. Chichester: Wiley.

Wilmott, Paul. 2019. Machine Learning: An Applied Mathematics Introduction. Panda
Ohana Publishing.

References | 117

CHAPTER 5
Modeling Market Risk

A measure of risk driven by historical data assumes the future will follow the pattern of
the past. You need to understand the limitations of that assumption. More importantly,
you need to model scenarios in which that pattern breaks down.

— Miles Kennedy

Risk is ubiquitous in finance, but it is hard to quantify. First and foremost, it's impor-
tant to know how to differentiate the sources of financial risks on the grounds that it
might not be a wise move to use the same tools against risks arising from different
sources.

Thus, treating the various sources of financial risk differently is crucial because the
impacts of those different risks, as well as the tools used to mitigate them, are com-
pletely different. Assuming that firms are subject to large market fluctuations, then all
assets in their portfolios are susceptible to risk originating from these fluctuations.
However, a different tool should be developed to cope with a risk emanating from
customer profiles. In addition, keep in mind that different risk factors contribute sig-
nificantly to asset prices. All of these examples imply that treating risk factors needs
careful consideration in finance.

As was briefly discussed previously, these risks are mainly market, credit, liquidity,
and operational risks. It is evident that some other types can be added to this list, but
they can be thought of as subbranches of these main four risk types, which will be our
focus throughout this chapter.

Market risk is the risk arising from changes in financial indicators, such as the
exchange rate, interest rate, inflation, and so on. Market risk can be referred to as risk
of losses in on- and off-balance-sheet positions arising from movements in market
prices (BIS 2020). Let's now see how these factors affect market risk. Suppose that
a rise in inflation rates poses a threat to the current profitability of the financial

119

institutions, since inflation creates pressures on interest rates. This, in turn, affects the
cost of funds for borrowers. These instances can be amplified, but we should also
note the interactions of these financial risk sources. That is, when a single source of
financial risk changes, other risk sources cannot stay constant. Thus to some extent,
financial indicators are interrelated, meaning that the interactions of these risk sour-
ces should be taken into account.

As you can imagine, there are different tools to manage market risk. Of them, the
most prominent and widely accepted tools are value at risk (VaR) and expected short-
fall (ES). The ultimate aim of this chapter is to augment these approaches using
recent developments in ML. At this juncture, it would be tempting to ask the follow-
ing questions:

o Do traditional models fail in finance?
o What makes the ML-based model different?

I will start by tackling the first question. The first and foremost challenge that tradi-
tional models are unable to address is the complexity of the financial system. Due
either to some strong assumptions, or simply their inability to capture the complexity
introduced by the data, long-standing traditional models are starting to be replaced
by ML-based models.

This fact is well put by Prado (2020):

Considering the complexity of modern financial systems, it is unlikely that a researcher
will be able to uncover the ingredients of a theory by visual inspection of the data or by
running a few regressions.

To address the second question, it would be wise to think about the working logic of
ML models. ML models, as opposed to old statistical methods, try to unveil the asso-
ciations between variables, identify key variables, and enable us to find out the impact
of the variables on the dependent variable without the need for a well-established
theory. This is, in fact, the beauty of ML models in the sense that they allow us to
discover theories rather than require them:

Many methods from statistics and machine learning (ML) may, in principle, be used
for both prediction and inference. However, statistical methods have a long-standing
focus on inference, which is achieved through the creation and fitting of a project-
specific probability model...

By contrast, ML concentrates on prediction by using general-purpose learning algo-
rithms to find patterns in often rich and unwieldy data.

—Bzdok (2018, p. 232)

120 | Chapter5: Modeling Market Risk

In the following section, we'll start our discussion on the market risk models. First,
we'll talk about the application of the VaR and ES models. After discussing the tradi-
tional application of these models, we will learn how we can improve them by using
an ML-based approach. Let’s jump in.

Value at Risk (VaR)

The VaR model emerged from a request made by a J.P. Morgan executive who wanted
to have a summary report showing possible losses as well as risks that J.P. Morgan was
exposed to on a given day. This report would inform executives about the risks
assumed by the institution in an aggregated manner. The method by which market
risk is computed is known as VaR. This report was the starting point of VaR, and now
it has become so widespread that not only institutions prefer using VaR, but its adop-
tion has become required by regulators.

The adoption of VaR dates back to the 1990s, and despite numerous extensions to it
and new proposed models, it is still in use. What makes it so appealing? The answer
comes from Kevin Dowd (2002, p. 10):

The VaR figure has two important characteristics. The first is that it provides a com-
mon consistent measure of risk across different positions and risk factors. It enables us
to measure the risk associated with a fixed-income position, say, in a way that is com-
parable to and consistent with a measure of the risk associated with equity positions.
VaR provides us with a common risk yardstick, and this yardstick makes it possible for
institutions to manage their risks in new ways that were not possible before. The other
characteristic of VaR is that it takes account of the correlations between different risk
factors. If two risks offset each other, the VaR allows for this offset and tells us that the
overall risk is fairly low.

In fact, VaR addresses one of the most common questions an investor has: what is the
maximum expected loss of my investment?

VaR provides a very intuitive and practical answer to this question. In this regard, it is
used to measure the worst expected loss for a company over a given period and a pre-
defined confidence interval. Suppose that a daily VaR of an investment is $1 million
with 95% confidence interval. This would read as there being a 5% chance that an
investor might incur a loss greater than $1 million in a day.

Based on this definition, we can determine that the components of VaR are a confi-
dence interval, a time period, the value of an asset or portfolio, and the standard devi-
ation, as we are talking about risk.

In summary, there are some important points in VaR analysis that need to be
highlighted:

ValueatRisk (VaR) | 121

+ VaR needs an estimation of the probability of loss.

 VaR concentrates on the potential losses. We are not talking about actual or real-
ized losses; rather, VaR is a kind of loss projection.

o VaR has three key ingredients:
— Standard deviation that defines the level of loss.
— Fixed time horizon over which risk is assessed.

— Confidence interval.
VaR can be measured via three different approaches:

e Variance-covariance VaR
« Historical simulation VaR
o Monte Carlo VaR

Variance-Covariance Method

The variance-covariance method is also known as the parametric method, because
observations are assumed to be normally distributed. The variance-covariance
method is commonplace in that returns are deemed to follow normal distribution.
The parametric form assumption makes the application of variance-covariance
method easy.

As in all VaR approaches, we can either work with a single asset or a portfolio. How-
ever, working with a portfolio requires careful treatment in the sense that correlation
structure and portfolio variance need to be estimated. At this point, correlation
comes into the picture, and historical data is used to calculate correlation, mean, and
standard deviation. When augmenting this with an ML-based approach, correlation
structure will be our main focus.

Suppose that we have a portfolio consisting of a single asset, as shown in Figure 5-1. It
is shown that the return of this asset is zero and standard deviation is 1, and if the
holding period is 1, the corresponding VaR value can be computed from the value of
the asset by the corresponding Z-value and standard deviation. Hence, the normality
assumption makes things easier, but it is a strong assumption, as there is no guarantee
that asset returns are normally distributed; rather, most asset returns do not follow a
normal distribution. Moreover, due to the normality assumption, potential risk in tail
might not be captured. Therefore the normality assumption comes with a cost. See
the following:

122 | Chapter5: Modeling Market Risk

In [1]:

In [2]:

In [3]:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import datetime

import yfinance as yf

from scipy.stats import norm
import requests

from 1o import StringIO

import seaborn as sns; sns.set()
import warnings
warnings.filterwarnings('ignore')
plt.rcParams['figure.figsize'] = (10,6)

mean = 0

std_dev = 1

X = np.arange(-5, 5, 0.01)

y = norm.pdf(x, mean, std_dev)

pdf = plt.plot(x, y)

min_ylim, max_ylim = plt.ylim()

plt.text(np.percentile(x, 5), max_ylim * 0.9, '95%:${:.4f}'
.format(np.percentile(x, 5)))

plt.axvline(np.percentile(x, 5), color='r', linestyle='dashed',

linewidth=4)

plt.title('Value at Risk Illustration')

plt.show()

mean = 0

std_dev = 1

X = np.arange(-5, 5, 0.01)

y = norm.pdf(x, mean, std_dev) (1)

pdf = plt.plot(x, y)

min_ylim, max_ylim = plt.ylim() (2]

plt.text(np.percentile(x, 5), max_ylim * 0.9, '95%:${:.4f}"'
.format(np.percentile(x, 5)))

plt.axvline(np.percentile(x, 5), color='r', linestyle='dashed',

linewidth=4)
plt.title('Value at Risk Illustration')
plt.show()

Generating probability density function based on given x, mean, and standard
deviation

Limiting the x-axis and y-axis

Specifying the location of x at 5% percentile of the x data

Value at Risk (VaR)

123

Value at Risk lllustration

0.40
5%:$-4.5005
0.30
0.25
0.20

0.15

0.05

b
|
|
|
|
|
|
|
I
|
|
|
|
|

0.00

-4 -2 0 2 4

Figure 5-1. VaR illustration

Following Fama (1965), it was realized that stock price returns do
not follow normal distribution due to fat tail and asymmetry. This
empirical observation implies that stock returns have higher kurto-
sis than that of a normal distribution.

Having high kurtosis amounts to fat tail, and this is able to capture
the extreme negative returns. As the variance-covariance method is
unable to capture fat tail, it cannot, therefore, estimate extreme
negative returns that are likely to occur, especially in periods of cri-
sis.

Let’s see how we apply the variance-covariance VaR in Python. To illustrate, let’s con-
sider a two-asset portfolio. The formula of the variance-covariance VaR is as follows:

VaR = Vo pﬁZ R

\/W 0, + W20'2 + pW W,0,0,

\/w LWyt O+ 2w w,Y

124 | Chapter5: Modeling Market Risk

To apply this in code, we start with the following:

In [4]: def getDailyData(symbol):
parameters = {'function': 'TIME_SERIES_DAILY_ADJUSTED',
'symbol': symbol,
'outputsize':'full',
'datatype': 'csv',
'apikey': 'insert your api key here'} (1)

response = requests.get('https://www.alphavantage.co/query’,
params=parameters)

csvText = StringIO(response.text) (3]
data = pd.read_csv(csvText, index_col='timestamp')
return data

In [5]: symbols = ["IBM", "MSFT", "INTC"]
stock3 = []
for symbol in symbols:
stock3.append(getDailyData(symbol)[::-1]['close']
['2020-01-01': '2020-12-31']) @
stocks = pd.DataFrame(stock3).T
stocks.columns = symbols

In [6]: stocks.head()

out[6]: IBM MSFT INTC
timestamp
2020-01-02 135.42 160.62 60.84
2020-01-03 134.34 158.62 60.10
2020-01-06 134.10 159.03 59.93
2020-01-07 134.19 157.58 58.93
2020-01-08 135.31 160.09 58.97

Identifying the parameters to be used in extracting data from Alpha Vantage
Making a request to the Alpha Vantage website

Opening the response file, which is in a text format

© o © ©

Reversing the data that covers the period of 2019-01 to 2019-12 and appending
the daily stock prices of IBM, MSFT, and INTC

Alpha Vantage is a data-providing company that partners with
major exchanges and institutions. Using Alpha Vantage’s AP, it is
possible to access stock prices with various time intervals (intraday,
daily, weekly, and so on), stock fundamentals, and foreign
exchange information. For more information, please see Alpha
Vantage's website.

ValueatRisk (VaR) | 125

https://oreil.ly/ByZYD
https://oreil.ly/ByZYD

We then perform our calculations:

In [7]:

Out[7]:

In [8]:

In [9]:

In [10]

In [11]

Out[11]

stocks_returns = (np.log(stocks) - np.log(stocks.shift(1))).dropna() (1)
stocks_returns

IBM MSFT INTC
timestamp
2020-01-03 -0.008007 -0.012530 -0.012238
2020-01-06 -0.001788 0.002581 -0.002833
2020-01-07 0.000671 -0.009160 -0.016827
2020-01-08 0.008312 0.015803 0.000679
2020-01-09 0.010513 0.012416 0.005580
.010679
.000000
.048112
.013043
.021711

2020-12-24 0.006356 0.007797
2020-12-28 0.001042 0.009873
2020-12-29 -0.008205 -0.003607
2020-12-30 0.004352 -0.011081 -
2020-12-31 0.012309 0.003333

[clcoNoNoNo]

[252 rows x 3 columns]

stocks_returns_mean = stocks_returns.mean()

weights = np.random.random(len(stocks_returns.columns)) (2]
weights /= np.sum(weights) (3]

cov_var = stocks_returns.cov() (4]

port_std = np.sgrt(weights.T.dot(cov_var).dot(weights)) (5)

initial_investment = le6
conf_level = 0.95

: def VaR_parametric(initial_investment, conf_level):

alpha = norm.ppf(1 - conf_level, stocks_returns_mean, port_std) (6]
for 1, j in zip(stocks.columns, range(len(stocks.columns))):

VaR_param = (initial_investment - initial_investment *

(1 + alpha))[j] @
print("Parametric VaR result for {} is {} "
.format(i, VaR_param))

VaR_param = (initial_investment - initial_investment * (1 + alpha))
print('--"' * 25)
return VaR_param

: VaR_param = VaR_parametric(initial_investment, conf_level)

VaR_param

Parametric VaR result for IBM is 42606.16125893139

Parametric VaR result for MSFT is 41024.50194348814
Parametric VaR result for INTC is 43109.25240851776

1 array([42606.16125893, 41024.50194349, 43109.25240852])

Calculating logarithmic return

Drawing random numbers for weights

126

| Chapter5: Modeling Market Risk

© 06 6 ©o

Generating weights
Calculating covariance matrix

Finding the portfolio standard deviation

Estimating the variance-covariance VaR model

Computing the Z-score for a specific value using the percent point function (ppf)

VaR changes depending on the time horizon in the sense that holding assets for a
longer period makes an investor more susceptible to risk. As shown in Figure 5-2,
VaR increases in relation to holding time by the amount of 1/¢. Additionally, the hold-
ing period is the longest period for portfolio liquidation. Taking into account the
reporting purpose, a 30-day period may be a more suitable one for an investor.
Therefore, we'll illustrate that period in the following code, in which we generate

Figure 5-2.

In [12]: var_

horizon = []

time_horizon = 30

for

plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.

j in range(len(stocks_returns.columns)):
for 1 in range(l, time_horizon + 1):
var_horizon.append(VaR_param[j] * np.sqrt(i))
plot(var_horizon[:time_horizon], "o",
c='blue', marker='#*', label='IBM")
plot(var_horizon[time_horizon:time_horizon + 30], "o",
c="green', marker='o", label="MSFT')

plot(var_horizon[time_horizon + 30:time_horizon + 60], "o",

c='red', marker='v', label="INTC")
xlabel("Days")
ylabel("USD")
title("VaR over 30-day period")
legend()
show()

The pros and cons of the variance-covariance method are as follows:

Pros

« Easy to calculate

« Does not require a large number of samples

Cons

+ Observations are normally distributed

o Does not work well with nonlinear structures

 Requires the computation of the covariance matrix

Value at Risk (VaR)

127

VaR over 30-day period

250000

* IBM ¥
295000 ® MSFT Y ¥ e ®

v INTC y¥oo

4 °
Y ¥ o0
200000 y¥e®
¥)
¥ o
175000 Yo
¥ o
¥ o
re®
A 150000 rlte
2 xe
¥ o
125000 ¥y ®
I °
100000 ‘ x
3

75000 3
50000

|

0 5 10 15 20 25 30

Days

Figure 5-2. VaR over different horizons

So, even though assuming normality sounds appealing, it may not be the best way to
estimate VaR, especially in the case where the asset returns do not have a normal dis-
tribution. Luckily, there is another method that does not have a normality assump-
tion, namely the historical simulation VaR model.

The Historical Simulation Method

Having strong assumptions, such as a normal distribution, might be the cause of
inaccurate estimations. A solution to this issue is the historical simulation VaR. This
is an empirical method: instead of using a parametric approach, we find the percen-
tile, which is the Z-table equivalent of variance-covariance method. Suppose that the
confidence interval is 95%; 5% will be used in lieu of the Z-table values, and all we
need to do is to multiply this percentile by the initial investment.

The following are the steps taken in the historical simulation VaR:

1. Obtain the asset returns of the portfolio (or individual asset)
2. Find the corresponding return percentile based on confidence interval

3. Multiply this percentile by initial investment

To do this in code, we can define the following function:

In [13]: def VaR_historical(initial_investment, conf_level): o
Hist_percentiled95 = []

128 | Chapter5: Modeling Market Risk

for 1, j in zip(stocks_returns.columns,
range(len(stocks_returns.columns))):
Hist_percentile95.append(np.percentile(stocks_returns.loc[:, i],

5))

print("Based on historical values 95% of {}'s return is {:.4f}"

.format(i, Hist_percentiled95[j]))
VaR_historical = (initial_investment - initial_investment *

(1 + Hist_percentile95[j]))

print("Historical VaR result for {} is {:.2f} "

.format(i, VaR_historical))
print('--' * 35)

In [14]: VaR_historical(initial_investment,conf_level) (2]
Based on historical values 95% of IBM's return is -0.0371
Historical VaR result for IBM is 37081.53

Based on historical values 95% of MSFT's return is -0.0426
Historical VaR result for MSFT is 42583.68

Based on historical values 95% of INTC's return is -0.0425
Historical VaR result for INTC is 42485.39

© Calculating the 95% percentile of stock returns

® Estimating the historical simulation VaR

The historical simulation VaR method implicitly assumes that historical price
changes have a similar pattern, i.e., that there is no structural break. The pros and
cons of this method are as follows:

Pros
« No distributional assumption
» Works well with nonlinear structures
« Easy to calculate
Cons
 Requires a large sample

« Needs high computing power

The Monte Carlo Simulation VaR

Before delving into the Monte Carlo simulation VaR estimation, it would be good to
briefly introduce the Monte Carlo simulation. Monte Carlo is a computerized mathe-
matical method used to make an estimation in cases where there is no closed-form
solution, so it is a highly efficient tool for numerical approximation. Monte Carlo
relies on repeated random samples from a given distribution.

ValueatRisk (VaR) | 129

The logic behind Monte Carlo is well defined by Glasserman (2003, p. 11):

Monte Carlo methods are based on the analogy between probability and volume. The
mathematics of measure formalizes the intuitive notion of probability, associating an
event with a set of outcomes and defining the probability of the event to be its volume
or measure relative to that of a universe of possible outcomes. Monte Carlo uses this
identity in reverse, calculating the volume of a set by interpreting the volume as a
probability.
From the application standpoint, Monte Carlo is very similar to the historical simula-
tion VaR, but it does not use historical observations. Rather, it generates random
samples from a given distribution. Monte Carlo helps decision makers by providing
links between possible outcomes and probabilities, which makes it an efficient and
applicable tool in finance.

Mathematical Monte Carlo can be defined in the following way:

Let X, X,, -+, X, be independent and identically distributed random variables, and
f(x) be a real-valued function. The law of large numbers states that:

1N

E(F(0) = x 2 A(X)

1

So in a nutshell, a Monte Carlo simulation is doing nothing but generating random
samples and calculating their mean. Computationally, it follows these steps:

1. Define the domain

2. Generate random numbers

3. Iterate and aggregate the result

The determination of mathematical 7 is a simple but illustrative example of Monte
Carlo application.

Suppose we have a circle with radius r = 1 and an area of 4. The area of a circle is 7,
and area of a square in which we try to fit the circle is 4. The ratio turns out to be:

N

To leave m alone, the proportion between a circle and area can be defined as:

Circumference

circle _ m

Area n
square

130 | Chapter5: Modeling Market Risk

Once we equalize these equations, it turns out that:
m=4x2
n

If we go step by step, the first is to define domain, which is [-1, 1]. So the numbers
inside the circle satisfy x* + y* < 1.

The second step is to generate random numbers to meet this given condition. That is
to say, we need to have uniformly distributed random samples, which is a rather easy
task in Python. For the sake of practice, I will generate 100 uniformly distributed ran-
dom numbers using the NumPy library:

np.random.uniform(-1, 1, 100) (1)
np.random.uniform(-1, 1, 100)

In [15]: x
y

In [16]: sample = 100
def pi_calc(x, y):
point_inside_circle = 0
for 1 in range(sample):
if np.sqrt(x[i] ** 2 + y[i] ** 2) <= 1: @
point_inside_circle += 1
print('pil value is {}'.format(4 * point_inside_circle/sample))

In [17]: pi_cale(x,y)
pi value is 3.2

In [18]: x = np.random.uniform(-1, 1, 1000000)
y = np.random.uniform(-1, 1, 1000000)

In [19]: sample = 1000000

def pi_calc(x, y):
point_inside_circle = 0
for 1 in range(sample):
if np.sqrt(x[i] ** 2 + y[1] ** 2) < 1:
point_inside_circle += 1
print('pil value is {:.2f}'.format(4 * point_inside_circle/sample))

In [20]: pi_calc(x,y)
pi value is 3.14

In [21]: sim_data = pd.DataFrame([])

num_reps = 1000

n = 100

for 1 in range(len(stocks.columns)):
mean = np.random.randn(n).mean()
std = np.random.randn(n).std()
temp = pd.DataFrame(np.random.normal(mean, std, num_reps))
sim_data = pd.concat([sim_data, temp], axis=1)

sim_data.columns = ['Simulation 1', 'Simulation 2', 'Simulation 3']

ValueatRisk (VaR) | 131

In [22]: sim_data

Out[22]: Simulation 1 Simulation 2 Simulation 3
0 1.587297 -0.256668 1.137718
1 0.053628 -0.177641 -1.642747
2 -1.636260 -0.626633 0.393466
3 1.088207 0.847237 0.453473
4 -0.479977 -0.114377 -2.108050
995 1.615190 0.940931 0.172129
996 -0.015111 -1.149821 -0.279746
997 -0.806576 -0.141932 -1.246538
998 1.609327 0.582967 -1.879237
999 -0.943749 -0.286847 0.777052

[1000 rows x 3 columns]

In [23]: def MC_VaR(initial_investment, conf_level):
MC_percentile95 = []
for 1, j in zip(sim_data.columns, range(len(sim_data.columns))):
MC_percentile95.append(np.percentile(sim_data.loc[:, 1], 5)) (3]
print("Based on simulation 95% of {}'s return is {:.4f}"
.format(i, MC_percentile95[j]))
VaR_MC = (initial_investment - initial_investment *
(1 + MC_percentile95[j])) (4)
print("Simulation VaR result for {} is {:.2f} "
.format(i, VaR_MC))
print('--' * 35)

In [24]: MC_VaR(initial_investment, conf_level)
Based on simulation 95% of Simulation 1's return is -1.7880
Simulation VaR result for Simulation 1 is 1787990.69

Based on simulation 95% of Simulation 2's return is -1.6290
Simulation VaR result for Simulation 2 is 1628976.68

Based on simulation 95% of Simulation 3's return is -1.5156
Simulation VaR result for Simulation 3 is 1515623.93

Generating random numbers from uniform distribution
Checking if points are inside the circle, which has a radius of 1

Calculating 95% of every stock return and appending the result in the list named
MC_percentile95

O Estimating Monte Carlo VaR

132 | Chapter5: Modeling Market Risk

Denoising

Volatility is everywhere, but it is a formidable task to find out what kind of volatility
is most valuable. In general, there are two types of information in the market: noise
and signal. The former generates nothing but random information, but the latter
equips us with valuable information by which an investor can make money. To illus-
trate, consider that there are two main players in the market: one using noisy infor-
mation called a noise trader, and an informed trader who exploits signal or insider
information. The noise trader’s trading motivation is driven by random behavior. So
information flow in the market is considered a buying signal for some noise traders
and a selling signal for others.

However, informed traders are considered to be rational ones in the sense that they
are able to assess a signal because they know that it is private information.

Consequently, continuous flow of information should be treated with caution. In
short, information coming from noise traders can be considered as noise, and infor-
mation coming from insiders can be taken as signal, and this is the sort of informa-
tion that matters. Investors who cannot distinguish between noise and signal can fail
to gain profit and/or assess risk properly.

Now the problem turns out to be differentiating the flow of information in the finan-
cial markets. How can we differentiate noise from signal? And how can we use this
information?

It is now worthwhile to discuss the Marchenko-Pastur theorem, which helps have
homogenous covariance matrices. The Marchenko-Pastur theorem allows us to
extract signal from noise using eigenvalues of covariance matrices.

Let A € R™" be a square matrix. Then, A € R is an eigenvalue of A

and x € R" is the corresponding eigenvector of A if

Ax = Ax
where x € R" # 0.

FEigenvalue and eigenvector have special meanings in a financial context. Eigenvectors
represent the variance in covariance matrix, while an eigenvalue shows the magni-
tude of an eigenvector. Specifically, the largest eigenvector corresponds to largest var-
iance, and the magnitude of this is equal to the corresponding eigenvalue. Due to
noise in the data, some eigenvalues can be thought of as random, and it makes sense
to detect and filter out these eigenvalues to retain only signals.

Denoising | 133

To differentiate noise and signal, we fit the Marchenko-Pastur theorem probability
density function (PDF) to the noisy covariance. The PDF the of Marchenko-Pastur
theorem takes the following form (Prado 2020):

fN = % (A =A)A-1) if Ae[A-1]
> if A [A-A_]

where A, and A_ are the maximum and minimum eigenvalues, respectively.

In the following code block, which is a slight modification of the code provided by
Prado (2020), we will generate the probability density function of a Marchenko-
Pastur distribution and kernel density, which will allow us to model a random vari-
able in a nonparametric approach. Then, the Marchenko-Pastur distribution will be
fitted to the data:

In [25]: def mp_pdf(sigma2, q, obs):

lambda_plus = sigma2 * (1 + q ** 0.5) ** 2 (1)
lambda_minus = sigma2 * (1 - q ** 0.5) ** 2 (2]
1 = np.linspace(lambda_minus, lambda_plus, obs)
pdf_mp =1 / (2 * np.pl * sigma2z * q * 1) \

* np.sqrt((lambda_plus - 1)

* (1 - lambda_minus)) (3]
pdf_mp = pd.Series(pdf_mp, index=1)
return pdf_mp

In [26]: from import KernelDensity

def kde_fit(bandwidth,obs,x=None):
kde = KernelDensity(bandwidth, kernel='gaussian') (4]
if len(obs.shape) == 1:
kde_fit=kde.fit(np.array(obs).reshape(-1, 1)) (5)
if x is None:
x=np.unique(obs).reshape(-1, 1)
if len(x.shape) == 1:
X = x.reshape(-1, 1)
logprob = kde_fit.score_samples(x) (6]
pdf_kde = pd.Series(np.exp(logprob), index=x.flatten())
return pdf_kde

In [27]: corr_mat = np.random.normal(size=(10000, 1000)) Q
corr_coef = np.corrcoef(corr_mat, rowvar=0) (&)
sigma2 = 1
obs = corr_mat.shape[0]
q = corr_mat.shape[0] / corr_mat.shape[1]

def plotting(corr_coef, q):
ev, _ = np.linalg.eigh(corr_coef) (o]
idx = ev.argsort()[::-1]

134 | Chapter5: Modeling Market Risk

eigen_val = np.diagflat(ev[idx]) @

pdf_mp = mp_pdf(1., g=corr_mat.shape[1] / corr_mat.shape[0],
obs=1000) ®

kde_pdf = kde_fit(0.01, np.diag(eigen_val)) ®

ax = pdf_mp.plot(title="Marchenko-Pastur Theorem",
label="M-P", style='r--")

kde_pdf.plot(label="Empirical Density", style='o-', alpha=0.3)

ax.set(xlabel="Eigenvalue", ylabel="Frequency")

ax.legend(loc="upper right")

plt.show()

return plt

In [28]: plotting(corr_coef, q);

Calculating maximum expected eigenvalue

Calculating minimum expected eigenvalue

Generating probability density function of Marchenko-Pastur distribution
Initiating kernel density estimation

Fitting kernel density to the observations

Assessing the log density model on observations

Generating random samples from normal distribution

Converting covariance matrix into correlation matrix

Calculating eigenvalues of the correlation matrix

Turning the NumPy array into diagonal matrix

® 6 06 06 ©¢ © 6 6 o6 o o

Calling mp_pdf to estimate the probability density function of the Marchenko-
Pastur distribution

® Calling kde_fit to fit kernel distribution to the data

The resulting Figure 5-3 shows that the Marchenko-Pastur distribution fits the data
well. Thanks to the Marchenko—Pastur theorem, we are able to differentiate the noise
and signal; we can now refer to data for which the noise has filtered as denoised.

Denoising | 135

Marchenko-Pastur Theorem
-=-= M-P
Empirical Density
1.0
0.8
. 4
2 4
3 06 B
> [
o [
o [
[®
)
0.4 ,' “Q
1
¢ 3
i 5}
0.2 i | %
I x
] \
1 \\
; '.
0.0 !
0.6 0.8 1.0 1.2 14 1.6
Eigenvalue

Figure 5-3. Fitting Marchenko-Pastur distribution

So far, we have discussed the main steps to take to denoising the covariance matrix so
that we can plug it into the VaR model, which is called the denoised VaR estimation.
Denoising the covariance matrix is nothing but taking unnecessary information
(noise) out of the data. So we can then make use of the signal from the market, focus-

ing our attention on the important events only.

Denoising the covariance matrix includes the following stages:!

1. Calculate the eigenvalues and eigenvectors based on correlation matrix.
2. Use kernel density estimation, find the eigenvector for a specific eigenvalue.
3. Fit the Marchenko-Pastur distribution to the kernel density estimation.

4. Find the maximum theoretical eigenvalue using the Marchenko-Pastur

distribution.
5. Calculate the average of eigenvalues greater than the theoretical value.
6. Use these new eigenvalues and eigenvectors to calculate the denoised correlation

matrix.
7. Calculate the denoised covariance matrix by the new correlation matrix.

1 The details of the procedure can be found at Hudson and Thames.

136 | Chapter5: Modeling Market Risk

https://oreil.ly/gkQjX

Let’s take a look at how easy it is to apply finding the denoised covariance matrix with
a few lines of code using the portfoliolab library in Python:

In [29]:
In [30]:
In [31]:
In [32]:

out[32]:

In [33]:

Out[33]:

In [34]:

In [35]:

Out[35]:

In [36]:

import portfoliolab as pl
risk_estimators = pl.estimators.RiskEstimators()
stock_prices = stocks.copy()

cov_matrix = stocks_returns.cov()
cov_matrix

IBM MSFT INTC
IBM 0.000672 0.000465 0.000569
MSFT 0.000465 0.000770 0.000679
INTC 0.000569 0.000679 0.001158

tn_relation = stock_prices.shape[0] / stock_prices.shape[1] (1)
kde_bwidth = 0.25 @
cov_matrix_denoised = risk_estimators.denoise_covariance(cov_matrix,
tn_relation,
kde_bwidth) ©
cov_matrix_denoised = pd.DataFrame(cov_matrix_denoised,
index=cov_matrix.index,
columns=cov_matrix.columns)
cov_matrix_denoised
IBM MSFT INTC
IBM 0.000672 0.000480 0.000589
MSFT 0.000480 0.000770 0.000638
INTC 0.000589 0.000638 0.001158

def VaR_parametric_denoised(initial_investment, conf_level):
port_std = np.sqrt(weights.T.dot(cov_matrix_denoised)
.dot(weights)) (4)
alpha = norm.ppf(1 - conf_level, stocks_returns_mean, port_std)
for 1, j in zip(stocks.columns,range(len(stocks.columns))):
print("Parametric VaR result for {} is {} ".format(i,VaR_param))
VaR_params = (initial_investment - initial_investment * (1 + alpha))
print('--' * 25)
return VaR_params

VaR_parametric_denoised(initial_investment, conf_level)
Parametric VaR result for IBM is [42606.16125893 41024.50194349
43109.25240852]

Parametric VaR result for MSFT is [42606.16125893 41024.50194349
43109.25240852]

Parametric VaR result for INTC is [42606.16125893 41024.50194349
43109.25240852]

array([42519.03744155, 40937.37812611, 43022.12859114])

symbols = ["IBM", "MSFT", "INTC"]

Denoising | 137

stock3 = []
for symbol in symbols:
stock3.append(getDailyData(symbol)[::-1]['close']
['2007-04-01': '2009-02-01'])
stocks_crisis = pd.DataFrame(stock3).T
stocks_crisis.columns = symbols

In [37]: stocks_cristis

Out[37]: IBM MSFT INTC
timestamp
2007-04-02 95.21 27.74 19.13
2007-04-03 96.10 27.87 19.31
2007-04-04 96.21 28.50 19.38
2007-04-05 96.52 28.55 19.58
2007-04-09 96.62 28.57 20.10
2009-01-26 91.60 17.63 13.38
2009-01-27 91.66 17.66 13.81
2009-01-28 94.82 18.04 14.01
2009-01-29 92.51 17.59 13.37
2009-01-30 91.65 17.10 12.90

[463 rows x 3 columns]
In [38]: stock_prices = stocks_crisis.copy()
In [39]: stocks_returns = (np.log(stocks) - np.log(stocks.shift(1))).dropna()
In [40]: cov_matrix = stocks_returns.cov()

In [41]: VaR_parametric(initial_investment, conf_level)
Parametric VaR result for IBM is 42606.16125893139
Parametric VaR result for MSFT is 41024.50194348814
Parametric VaR result for INTC is 43109.25240851776

Out[41]: array([42606.16125893, 41024.50194349, 43109.25240852])

In [42]: VaR_parametric_denoised(initial_investment, conf_level)
Parametric VaR result for IBM is [42606.16125893 41024.50194349
43109.25240852]
Parametric VaR result for MSFT is [42606.16125893 41024.50194349
43109.25240852]
Parametric VaR result for INTC is [42606.16125893 41024.50194349
43109.25240852]

out[42]: array([42519.03744155, 40937.37812611, 43022.12859114])
@ Relating the number of observations T to the number of variables N

® Identifying the bandwidth for kernel density estimation

138 | Chapter5: Modeling Market Risk

© Generating the denoised covariance matrix

O Incorporating the denoised covariance matrix into the VaR formula

The difference between the traditionally applied VaR and the denoised VaR is even
more pronounced in a crisis period. During a crisis period, correlation among assets
becomes higher, which is sometimes referred to as correlation breakdown. We will
evaluate the effect of a crisis to check this phenomenon, and to do that, we will use
the 2017-2018 crisis. However, the exact beginning and ending date of the crisis is
necessary to run this analysis; we’ll get this information from the National Bureau of
Economic Research (NBER), which announces business cycles.?

The result confirms that the correlation, and thereby VaRs, become higher during
crisis periods.

Now, we managed to obtain a ML-based VaR using a denoised covariance matrix in
lieu of an empirical matrix that we calculate directly from the data. Despite its appeal
and ease of use, VaR is not a coherent risk measure, which requires satisfying certain
conditions or axioms. You can think of these axioms as technical requirements for a
risk measure.

Let & € (0,1) be a fixed confidence level and (w, &, P) be a probability space in which
w represents a sample space, & denotes a subset of sample space, and P is probability
measure.

To illustrate, say w is the set of all possible outcomes in the event of
tossing a coin, w = {H, T}. & can be treated as tossing a coin twice,
F=2Y=2% Finally, probability measure, P, is the odds of getting
tails (0.5).

Here are the four axioms of a coherent risk measure:

Translation invariance
For all outcomes Y and a constant a € R, we have

VaR(Y +a) = VaR(Y) +a

which means that if a riskless amount a is added to the portfolio, it results in low-
ering VaR by a.

2 See NBER’s website for further information.

Denoising | 139

https://oreil.ly/07s71

Subadditivity
Forall Y, and Y,, we have

VaR(Y, + Y,) < VaR(Y,) + VaR(Y,)

This axiom stresses the importance of diversification in risk management. Take
Y, and Y, as two assets: if they are both included in the portfolio, then that

results in lower VaR than having them separately. Let’s check whether VaR satis-
fies the subadditivity assumption:

In [43]:

In [44]:

assetl = [-0.5, 0, 0.1, 0.4] @

VaR1 = np.percentile(assetl, 90)

print('VaR for the Asset 1 is {:.4f}'.format(VaR1))
asset2 = [0, -0.5, 0.01, 0.4] @

VaR2 = np.percentile(asset2, 90)

print('VaR for the Asset 2 is {:.4f}'.format(VaR2))
VaR_all = np.percentile(assetl + asset2, 90)
print('VaR for the portfolio is {:.4f}'.format(VaR_all))
VaR for the Asset 1 is 0.3100

VaR for the Asset 2 is 0.2830

VaR for the portfolio is 0.4000

assetl = [-0.5, 0, 0.05, 0.03] @

VaR1 = np.percentile(assetl, 90)

print('VaR for the Asset 1 is {:.4f}'.format(VaR1))
asset2 = [0, -0.5, 0.02, 0.8] @

VaR2 = np.percentile(asset2,90)

print('VaR for the Asset 2 is {:.4f}'.format(VaR2))
VaR_all = np.percentile(assetl + asset2 , 90)
print('VaR for the portfolio is {:.4f}'.format(VaR_all))
VaR for the Asset 1 is 0.0440

VaR for the Asset 2 is 0.5660

VaR for the portfolio is 0.2750

@ Asset return for the first asset

® Asset return for the second asset

It turns out that portfolio VaR is less that the sum of the individual VaRs, which
makes no sense due to the risk mitigation through diversification. More elabo-
rately, portfolio VaR should be lower than the sum of individual VaRs via diversi-
fication, as diversification mitigates risk, which in turn reduces the portfolio VaR.

140

Chapter 5: Modeling Market Risk

Positive homogeneity
For all outcomes Y and a > 0, we have

VaR(aY) = aVaR(Y)
which implies that the risk and value of the portfolio go in tandem—that is, if the

value of a portfolio increases by an amount g, the risk goes up by a.

Monotonicity
For any two outcomes, Y, and Y, if Y, < Y,, then:

VaR(Y,) < VaR(Y,)

At first, this may seem puzzling, but it is intuitive in the sense that monotonicity
implies a lower VaR in the case of higher asset returns.

We now know that VaR is not a coherent risk measure. However, VaR is not the only
tool by which we estimate market risk. Expected shortfall is another, and coherent,
market risk measure.

Expected Shortfall

Unlike VaR, ES focuses on the tail of the distribution. More specifically, ES enables us
to take into account unexpected risks in the market. However, this doesn’t mean that
ES and VaR are two entirely different concepts. Rather, they are related—that is, it is
possible to express ES using VaR.

Let’s assume that loss distribution is continuous; then ES can be mathematically
defined as:

1 1
ES, = 1= afaqudu

where g denotes the quantile of the loss distribution. The ES formula suggests that it
is nothing but a probability weighted average of (1 —) % of losses.

Let’s substitute g, and VaR, which gives us the following equation:

ES =L

4 1-«a

féVaRudu

Expected Shortfall | 141

Alternatively, it is the mean of losses exceeding VaR:
ES,=E(L|L > VaR))

Loss distribution can be continuous or discrete and, as you can imagine, if it takes the
discrete form, the ES is different such that

ES, = —3! _ max(L,) Pr(L,)

o l1-a“n=

where max(L,) shows the highest n'™ loss, and Pr (L,) indicates probability of n'h
highest loss. In code, we can formulate this as:

In [45]: def ES_parametric(initial_investment , conf_level):
alpha = - norm.ppf(1 - conf_level,stocks_returns_mean,port_std)
for 1, j in zip(stocks.columns, range(len(stocks.columns))):
VaR_param = (initial_investment * alpha)[j] (1]
ES_param = (1 / (1 - conf_level)) \
* {nitial_investment \
* norm.expect(lambda x: x,
1b = norm.ppf(conf_level,
stocks_returns_mean[j],
port_std),
loc = stocks_returns_mean[j],
scale = port_std) (2]
print(f"Parametric ES result for {i} is {ES_param}")

In [46]: ES_parametric(initial_investment, conf_level)
Parametric ES result for IBM is 52776.42396231898
Parametric ES result for MSFT is 54358.083277762125
Parametric ES result for INTC is 52273.33281273264

© Estimating the variance-covariance VaR

@ Given the confidence interval, estimating the ES based on VaR

ES can also be computed based on the historical observations. Like the historical sim-
ulation VaR method, parametric assumption can be relaxed. To do that, the first
return (or loss) corresponding to the 95% is found, and then the mean of the obser-
vations greater than the 95% gives us the result.

Here is what we do in code:

In [47]: def ES_historical(initial_investment, conf_level):
for 1, j in zip(stocks_returns.columns,
range(len(stocks_returns.columns))):
ES_hist_percentile95 = np.percentile(sto:;s_returns.loc[:, i],
5)

ES_historical = stocks_returns[str(i)][stocks_returns[str(i)] <=

142 | Chapter5: Modeling Market Risk

ES_hist_percentile95]\
.mean()
print("Historical ES result for {} is {:.4f} "
.format(i, initial_investment * ES_historical))

In [48]: ES_historical(initial_investment, conf_level)
Historical ES result for IBM is -64802.3898
Historical ES result for MSFT is -65765.0848
Historical ES result for INTC is -88462.7404

O Calculating the 95% of the returns

©® Estimating the ES based on the historical observations

Thus far, we have seen how to model the expected shortfall in a traditional way. Now,
it is time to introduce an ML-based approach to further enhance the estimation per-
formance and reliability of the ES model.

Liquidity-Augmented Expected Shortfall

As discussed, ES provides us with a coherent risk measure to gauge market risk.
However, though we differentiate financial risks as market, credit, liquidity, and
operational risks, that does not necessarily mean that these risks are entirely unrela-
ted to one another. Rather, they are, to some extent, correlated. That is, once a finan-
cial crisis hit the market, market risk surges along with the drawdown on lines of
credit, which in turn increases liquidity risk.

This fact is supported by Antoniades (2014, p. 6) stating that:

Common pool of liquid assets is the resource constraint through which liquidity risk
can affect the supply of mortgage credit.

During the financial crisis of 2007-2008 the primary source of stresses to bank funding
conditions arose from the funding illiquidity experienced in the markets for wholesale
funding.
Ignoring the liqudity dimension of risk may result in underestimating the market
risk. Therefore, augmenting ES with liquidity risk may make a more accurate
and reliable estimation. Well, it sounds appealing, but how can we find a proxy for
liquidity?
In the literature, bid-ask spread measures are commonly used for modeling liquidity.
Shortly, bid-ask spread is the difference between the highest available price (bid price)
that a buyer is willing to pay and the lowest price (ask price) that a seller is willing to
get. So bid-ask spread gives a tool to measure the transaction cost.

Liquidity-Augmented Expected Shortfall | 143

Liquidity can be defined as the ease of making a transaction in
which assets are sold in a very short time period without a signifi-
cant impact on market price. There are two main measures of

liquidity:

Market liquidity

The ease with which an asset is traded.

Funding liquidity

The ease with which an investor can obtain funding.

Liquidity and the risk arising from it will be discussed in greater
detail in Chapter 7.

To the extent that bid-ask spread is a good indicator of transaction cost, it is also a
good proxy of liquidity in the sense that transaction cost is one of the components of
liquidity. Spreads can be defined various ways depending on their focus. Here are the
bid-ask spreads that we will use to incorporate liquidity risk into the ES model:

Effective spread

Effective spread = 2|(P, - P,)|

where P, is the price of trade at time ¢ and P, ;; is the midpoint of the bid-ask
offer ((P sk~ Poi d)/ 2) prevailing at the time of the ¢.

Proportional quoted spread
Proportional quoted spread = (P, — P,..)/P, .,

where P_ is the ask price and P,,; and P, ,, are bid price and mid price, respec-
tively.

Quoted spread
Quoted spread = P ; — P, .,
Proportional effective spread

Proportional effective spread = 2(|P, = P, .,|)/P,,.1

144 | Chapter5: Modeling Market Risk

Effective Cost

A buyer-initiated trade occurs when a trade is executed at a price above the quoted
mid price. Similarly, a seller-initiated trade occurs when a trade is executed at a price
below the quoted mid price. We can then describe the effective cost as follows:

(P,-P,,
d
Effective cost = b
(Pyuial Py)/ P

)/P,.; for buyer-initiated

nig for seller-initiated
Now we need to find a way to incorporate these bid-ask spreads into the ES model so
that we are able to account for the liquidity risk as well as market risk. We will employ
two different methods to accomplish this task. The first method we'll use is to take
the cross-sectional mean of the bid-ask spread, as suggested by Chordia et al., (2000)
and Pastor and Stambaugh (2003). The second method is to apply principal compo-
nent analysis (PCA) as proposed by Mancini et al. (2013).

The cross-sectional mean is nothing but a row-wise averaging of the bid-ask spread.
Using this method, we are able to generate a measure for market-wide liquidity. The
averaging formula is as follows:

_1gN
Lyge=w2i Liy

where L, . is the market liquidity and L, , is the individual liquidity measure, namely
bid-ask spread in our case. Then we can calculate

ES; = ES + Liquidity cost

1
l1-«a

1 1
ES, = fa VaR, du + EPlast(y + ko)

where

P, is the closing stock price
o uis the mean of spread
o kis the scaling factor to accommodate fat tail

o 0 is the standard deviation of the spread

Effective Cost | 145

To convert these methods to code, we'll do the following:

In [49]: bid_ask = pd.read_csv('bid_ask.csv') @

In [50]: bid_ask['mid_price'] = (bid_ask['ASKHI'] + bid_ask['BIDLO']) / 2 (2]
buyer_seller_1initiated = []
for 1 in range(len(bid_ask)):
if bid_ask['PRC'][1] > bid_ask['mid_price'][1]: (3]
buyer_seller_1initiated.append(1) (4)
else:
buyer_seller_1initiated.append(0) (5)

bid_ask['buyer_seller_1init'] = buyer_seller_1initiated

In [51]: effective_cost = []
for 1 in range(len(bid_ask)):
if bid_ask['buyer_seller_init'][1] == 1:
effective_cost.append((bid_ask['PRC'][1] -
bid_ask['mid_price'][1]) /
bid_ask['mid_price'][i]) @
else:
effective_cost.append((bid_ask['mid_price'][1] -
bid_ask['PRC'][1])/
bid_ask['mid_price'][i]) @
bid_ask['effective_cost'] = effective_cost

In [52]: bid_ask['quoted'] = bid_ask['ASKHI'] - bid_ask['BIDLO'] ©
bid_ask['prop_quoted'] = (bid_ask['ASKHI'] - bid_ask['BIDLO']) /\
bid_ask['mid_price']
bid_ask['effective'] = 2 * abs(bid_ask['PRC'] - bid_ask['mid_price']) 0
bid_ask['prop_effective'] = 2 * abs(bid_ask['PRC'] -
bid_ask['mid_price']) /\
bid_ask['PRC'] ©

In [53]: spread_meas = bid_ask.iloc[:, -5:]
spread_meas.corr()
Out[53]: effective_cost quoted prop_quoted effective |\

effective_cost 1.000000 0.441290 0.727917 0.800894
quoted 0.441290 1.000000 0.628526 0.717246
prop_quoted 0.727917 0.628526 1.000000 0.514979
effective 0.800894 0.717246 0.514979 1.000000
prop_effective 0.999847 0.442053 0.728687 0.800713
prop_effective

effective_cost 0.999847
quoted 0.442053
prop_quoted 0.728687
effective 0.800713
prop_effective 1.000000

In [54]: spread_meas.describe()

Out[54]: effective_cost quoted prop_quoted effective prop_effective

146 | Chapter5: Modeling Market Risk

count 756.000000 756.000000 756.000000 756.000000 756.000000

mean 0.004247 1.592583 0.015869 0.844314 0.008484
std 0.003633 0.921321 0.007791 0.768363 0.007257
min 0.000000 0.320000 0.003780 0.000000 0.000000
25% 0.001517 0.979975 0.010530 0.300007 0.003029
50% 0.003438 1.400000 0.013943 0.610000 0.006874
75% 0.005854 1.962508 0.019133 1.180005 0.011646
max 0.023283 8.110000 0.055451 6.750000 0.047677
In [55]: high_corr = spread_meas.corr().unstack()\

Out[55]:

In [56]:

In [57]:

In [58]:

In [59]:

In [60]:

In [61]:

.sort_values(ascending=False).drop_duplicates() (o]
high_corr[(high_corr > 0.80) & (high_corr != 1)] ®
effective_cost prop_effective 0.999847
effective effective_cost 0.800894
prop_effective effective 0.800713
dtype: float64

sorted_spread_measures = bid_ask.iloc[:, -5:-2]

cross_sec_mean_corr = sorted_spread_measures.mean(axis=1).mean() (11
std_corr = sorted_spread_measures.std().sum() / 3 (12

df = pd.DataFrame(index=stocks.columns)

last_prices = []

for 1 in symbols:
last_prices.append(stocks[i].1iloc[-1]) ®

df['last_prices'] = last_prices

def ES_parametric(initial_investment, conf_level):

ES_params = []

alpha = - norm.ppf(1 - conf_level, stocks_returns_mean, port_std)

for 1,3 in zip(stocks.columns,range(len(stocks.columns))):
VaR_param = (initial_investment * alpha)[j]
ES_param = (1 / (1 - conf_level)) \

* norm.expect(lambda x: VaR_param, 1b = conf_level)

ES_params.append(ES_param)

return ES_params

ES_params = ES_parametric(initial_investment, conf_level)
for 1 in range(len(symbols)):
print(f'The ES result for {symbols[i]} is {ES_params[i]}')
The ES result for IBM is 145760.89803654602
The ES result for MSFT is 140349.84772375744
The ES result for INTC is 147482.03450111256

k =1.96

for 1, j in zip(range(len(symbols)), symbols):
print('The liquidity Adjusted ES of {} is {}'
.format(j, ES_params[i] + (df.loc[j].values[0] / 2) *
(cross_sec_mean_corr + k * std_corr))) 14
The liquidity Adjusted ES of IBM is 145833.08767607837

Effective Cost | 147

® © o o o

©

® 6 6 6 o

The liquidity Adjusted ES of MSFT is 140477.40110495212
The liquidity Adjusted ES of INTC is 147510.60526566216

Importing the bid_ask data
Calculating the mid price
Defining conditions for buyer- and seller-initiated trade

If the above-given condition holds, it returns 1, and it is appended into the
buyer_seller_initiated list

If the above-given condition does not hold, it returns 0, and it is appended into
the buyer_seller_initiated list

If the buyer_seller_initiated variable takes a value of 1, the corresponding
effective cost formula is run

If the buyer_seller_initiated variable takes a value of 0, the corresponding
effective cost formula is run

Calculating the quoted, proportional quoted, effective, and proportional effective
spreads

Obtaining the correlation matrices and listing them column-wise
Sorting out the correlation greater than 80%

Calculating the cross-sectional mean of spread measures
Obtaining the standard deviation of spreads

Filtering the last observed stock prices from the stocks data

Estimating the liquidity-adjusted ES

The PCA is a method used to reduce dimensionality. It is used to extract as much
information as possible using as few components as possible. If we were to take
Figure 5-4 as an example, out of five features, we might pick two components. So we
reduce dimensionality at the expense of losing information because, depending on
our chosen cut-off point, we pick the number of components and lose as much infor-
mation as how many components we left off.

148

| Chapter5: Modeling Market Risk

To be more specific, the point at which Figure 5-4 gets flatter implies that we retain
less information and this is the cut-off point for the PCA. However, it is not an easy
call in that there is a trade-off between the cutoff point and information retained. On
the one hand, the higher the cut-off point (the higher number of components we
have), the more information we retain (the less dimensionality we reduce). On the
other hand, the lower the cut-off point (the fewer number of components we have),
the less information we retain (the higher dimensionality we reduce). Getting a flatter
scree plot is not the only criteria for selecting a suitable number of components, so
what would be the possible criteria for picking the proper number of components?
Here are the possible cut-off criteria for PCA:

o Greater than 80% explained variance
o More than one eigenvalue

o The point at which the scree plot gets flatter

Please note that liquidity adjustment can be applied to VaR, too.
The same procedure applies to VaR. Mathematically,

1
VaR, = op\/fZa + 5P (4 + ko)

This application is left to the reader.

However, dimensionality reduction is not the only thing that we can take advantage
of. In this example, we apply PCA for the benefit of getting the peculiar features of
liquidity, because PCA filters the most important information from the data for us:

In [62]: from import PCA
from import StandardScaler

In [63]: scaler = StandardScaler()
spread_meas_scaled = scaler.fit_transform(np.abs(spread_meas)) (1]
pca = PCA(n_components=5) (2]
prin_comp = pca.fit_transform(spread_meas_scaled) (3]

In [64]: var_expl = np.round(pca.explained_variance_ratio_, decimals=4) (4]

cum_var = np.cumsum(np.round(pca.explained_variance_ratio_,
decimals=4)) (5]

print('Individually Explained Variances are:\n{}'.format(var_expl))
print('=="'%30)
print('Cumulative Explained Variances are: {}'.format(cum_var))
Individually Explained Variances are:
[0.7494 0.1461 0.0983 0.0062 0.]

Cumulative Explained Variances are: [0.7494 0.8955 0.9938 1. 1. 1

Effective Cost | 149

In [65]: plt.plot(pca.explained_variance_ratio_) (6]
plt.xlabel('Number of Components')
plt.ylabel('Variance Explained')
plt.title('Scree Plot')
plt.show()
In [66]: pca = PCA(n_components=2) (7]
pca.fit(np.abs(spread_meas_scaled))
prin_comp = pca.transform(np.abs(spread_meas_scaled))
prin_comp = pd.DataFrame(np.abs(prin_comp), columns = ['Component 1',
'"Component 2'])
print(pca.explained_variance_ratio_*100)
[65.65640435 19.29704671]

In [67]: def myplot(score, coeff, labels=None):
xs = score[:, 0]
ys = score[:, 1]
n = coeff.shape[0]
scalex = 1.0 / (xs.max() - xs.min())
scaley = 1.0 / (ys.max() - ys.min())
plt.scatter(xs * scalex * 4, ys * scaley * 4, s=5)
for 1 in range(n):
plt.arrow(0, 0, coeff[i, 0], coeff[i, 1], color = 'r',
alpha=0.5)
if labels is None:
plt.text(coeff[i, 0], coeff[i, 1], "Var"+str(i),
color="black")
else:
plt.text(coeff[1,0], coeff[i, 1], labels[i],
color="black")

plt.xlabel("PC{}".format(1))
plt.ylabel("PC{}".format(2))
plt.grid()

In [68]: spread_measures_scaled_df = pd.DataFrame(spread_meas_scaled,
columns=spread_meas.columns)

In [69]: myplot(np.array(spread_measures_scaled_df)[:, 0:2],
np.transpose(pca.components_[0:2,:]),
list(spread_measures_scaled_df.columns)) (&)

plt.show()

Standardizing the spread measures
Identifying the number of principal components as 5

Applying the principal component to the spread_measures_scaled

© o © ©

Observing the explained variance of the five principal components

150 | Chapter5: Modeling Market Risk

© Observing the cumulative explained variance of the five principal components
O Drawing the scree plot (Figure 5-4)

© Based on scree plot, determining two to be the number of components to be used
in our PCA analysis

O Drawing the biplot (Figure 5-5) to observe the relationship between components
and features

Scree Plot

Variance Explained
o o I o o o
N w B [$,] [« ~

o
=

0.0

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Number of Components

Figure 5-4. PCA scree plot

Effective Cost | 151

3.5

3.0

25

2.0

PC2

15 2.0 25 3.0

Figure 5-5. PCA biplot

We now have all the necessary information, and by incorporating this information,
we are able to calculate the liquidity-adjusted ES. Unsurprisingly, the following code
reveals that the liquidity-adjusted ES provides larger values compared to the standard
ES application. This implies that including a liquidity dimension in our ES estimation
results in higher risk:

In [70]:

Out[70]:

In [71]:
Out[71]:

In [72]:

prin_compl_rescaled

prin_comp2_rescaled

prin_comp_rescaled.

= prin_comp.iloc[:,0] * prin_comp.iloc[:,0].std()\
+ prin_comp.iloc[:, 0].mean()

= prin_comp.iloc[:,1] * prin_comp.iloc[:,1].std()\
+ prin_comp.iloc[:, 1].mean()

prin_comp_rescaled = pd.concat([prin_compl_rescaled,

head()

Component 1 Component 2

0 1.766661
1 4.835170
2 3.611486
3 0.962666
4 0.831065

1.256192
1.939466
1.551059
0.601529
0.734612

prin_comp2_rescaled],
axis=1)

mean_pca_liq = prin_comp_rescaled.mean(axis=1).mean() (3]

mean_pca_liq
1.0647130086973815

k =1.96

for 1, j in zip(range(len(symbols)), symbols):

152 | Chapter5: Modeling Market Risk

print('The liquidity Adjusted ES of {} is {}'
.format(j, ES_params[i] + (df.loc[j].values[0O] / 2) *
(mean_pca_liq + k * std_corr)))
The liquidity Adjusted ES of IBM is 145866.2662997893
The liquidity Adjusted ES of MSFT is 140536.02510785797
The liquidity Adjusted ES of INTC is 147523.7364940803

O Calculating the liquidity part of the liquidity-adjusted ES formula for the first
principal component

® Calculating the liquidity part of the liquidity-adjusted ES formula for the second
principal component

© Calculating cross-sectional mean of the two principal components

O Estimating the liquidity-adjusted ES

Conclusion

Market risk has been always under scrutiny as it gives us the extent to which a com-
pany is vulnerable to risk emanating from market events. In a financial risk manage-
ment textbook, it is customary to find a VaR and an ES model, which are two
prominent and commonly applied models in theory and practice. In this chapter,
after providing an introduction to these models, models were introduced to revisit
and improve model estimation. To this end, we first tried to differentiate information
flows in the form of noise and signal, which is called denoising. Then, we employed a
denoised covariance matrix to improve the VaR estimation.

Next, we discussed an ES model as a coherent risk measure. The method that we
applied to improve this model was a liquidity-based approach, by which we revisited
the ES model and augmented it using a liquidity component so that it was possible to
consider liquidity risk in estimating ES.

Further improvements in market risk estimation are possible, but our aim here is to
give a general idea and the requisite tooling to provide a decent foundation for ML-
based market risk approaches. However, you can go further and apply different tools.
In the next chapter, we will discuss credit risk modeling as suggested by regulatory
bodies like the Basel Committee on Banking Supervision (BCBS) and then enrich this
model using an ML-based approach.

Conclusion | 153

References

Articles cited in this chapter:

Antoniades, Adonis. 2016. “Liquidity Risk and the Credit Crunch of 2007-2008: Evi-
dence from Micro-Level Data on Mortgage Loan Applications.” Journal of Finan-
cial and Quantitative Analysis 51 (6): 1795-1822.

Bzdok, D., N. Altman, and M. Krzywinski. 2018. “Points of Significance: Statistics
Versus Machine Learning” Nature Methods 15 (4): 233-234.

BIS, Calculation of RWA for Market Risk, 2020.

Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam. 2000. “Commonality
in Liquidity.” Journal of Financial Economics 56 (1): 3-28.

Mancini, Loriano, Angelo Ranaldo, and Jan Wrampelmeyer. 2013. “Liquidity in the
Foreign Exchange Market: Measurement, Commonality, and Risk Premiums.”
The Journal of Finance 68 (5): 1805-1841.

Pastor, Lubos$, and Robert E Stambaugh. 2003. “Liquidity Risk and Expected Stock
Returns.” Journal of Political Economy 111 (3): 642-685.

Books cited in this chapter:

Dowd, Kevin. 2003. An Introduction to Market Risk Measurement. Hoboken, NJ: John
Wiley and Sons.

Glasserman, Paul. Monte Carlo Methods in Financial Engineering. 2013. Stochastic
Modelling and Applied Probability Series, Volume 53. New York: Springer Sci-
ence & Business Media.

M. Lépez De Prado. 2020. Machine Learning for Asset Managers. Cambridge: Cam-
bridge University Press.

154 | Chapter5: Modeling Market Risk

CHAPTER 6
Credit Risk Estimation

Although market risk is much better researched, the larger part of banks’ economic
capital is generally used for credit risk. The sophistication of traditional standard
methods of measurement, analysis, and management of credit risk might, therefore,
not be in line with its significance.

— Uwe Wehrspohn (2002)

The primary role of financial institutions is to create a channel by which funds move
from entities with surplus into ones with deficit. Thereby, financial institutions
ensure the capital allocation in the financial system as well as gain profit in exchange
for these transactions.

However, there is an important risk for financial institutions to handle, which is
credit risk. This is such a big risk that without it capital allocation might be less costly
and more efficient. Credit risk is the risk that arises when a borrower is not able to
honor their debt. In other words, when a borrower defaults, they fail to pay back their
debt, which causes losses for financial institutions.

Credit risk and its goal can be defined in a more formal way (BCBS and BIS 2000):

Credit risk is most simply defined as the potential that a bank borrower or counter-
party will fail to meet its obligations in accordance with agreed terms. The goal of
credit risk management is to maximise a bank’s risk-adjusted rate of return by main-
taining credit risk exposure within acceptable parameters.

Estimating credit risk is so formidable a task that a regulatory body, Basel, closely
monitors recent developments in the financial markets and sets regulations to
strengthen bank capital requirements. The importance of having strong capital
requirements for a bank rests on the idea that banks should have a capital buffer in
turbulent times.

155

There is a consensus among policy makers that financial institutions should have a
minimum capital requirement to ensure the stability of the financial system because a
series of defaults may result in a collapse in financial markets, as financial institutions
provide collateral to one another. Those looking for a workaround for this capital
requirement learned their lessons the hard way during the 2007—2008 mortgage
crisis.

Of course, ensuring at least a minimum capital requirement is a burden for financial
institutions in the sense that capital is an asset they cannot channel to deficit entities
to make a profit. Consequently, managing credit risk amounts to profitable and effi-
cient transactions.

In this respect, this chapter shows how credit risk can be estimated using cutting-
edge ML models. We start our discussion with a theoretical background of credit risk.
Needless to say, there are many topics in credit risk analysis, but we confine our focus
on probability of default and how we can introduce ML approaches for estimating it.
For this purpose, customers are segmented via a clustering method so that models
can be separately fitted to this data. This provides a better fit in the sense that the dis-
tribution of credit risk data changes across different customer segments. Given the
clusters obtained, ML and deep learning models, including the Bayesian approach,
are introduced to model the credit risk.

Estimating the Credit Risk

Aside from the probability of default (which is the likelihood that a borrower fails to
cover their debt), credit risk has three defining characteristics:

Exposure
This refers to a party that may possibly default or suffer an adverse change in its
ability to perform.

Likelihood
The likelihood that this party will default on its obligations.

Recovery rate
How much can be retrieved if a default takes place.

The BCBS put forth the global financial credit management standards, which are
known as the Basel Accord. There are currently three Basel Accords. The most dis-
tinctive rule set by Basel I in 1988 was the requirement to hold capital equating to at
least 8% of risk-weighted assets.

Basel I includes the very first capital measurement system, which was created follow-
ing the onset of the Latin American debt crisis. In Basel I, assets are classified as
follows:

156 | Chapter 6: Credit Risk Estimation

https://oreil.ly/OjDw9
https://oreil.ly/OjDw9
https://oreil.ly/KI5vs

e 0% for risk-free assets
e 20% for loans to other banks
o 50% for residential mortgages

» 100% for corporate debt
In 1999, Basel 11 issued a revision to Basel I based on three main pillars:

o Minimum capital requirements, which sought to develop and expand the stan-
dardized rules set out in the 1988 Accord

o Supervisory review of an institution’s capital adequacy and internal assessment
process

o Effective use of disclosure as a lever to strengthen market discipline and encour-
age sound banking practices

The last accord, Basel III in 2010, was inevitable. as the 2007-2008 mortgage crisis
heightened. It introduced a new set of measures to further strengthened liquidity and
poor governance practices. For instance, equity requirements were introduced to pre-
vent a serial failure in the financial system, known as domino effect, during times of
financial turbulence and crises. Accordingly, Basel III requires the financial ratios for
banks listed in Table 6-1.

Table 6-1. Financial ratios required by Basel ITI

Financial ratio Formula

Tier 1 capital ratio Equity capital _ 0
Risk weighted assets > =4.5%

Leverage ratio Tier 1 apitl _ 5,
Average total assets
Liquidity coverage ratio Stock of high quality liquid assets S = 100%

Total net cash outflows over the next 30 calendar days

Basel II suggests banks implement either a standardized approach or an internal rat-
ings-based (IRB) approach to estimate the credit risk. The standardized approach is
out of the scope of this book, but interested readers can refer to the “Standardized
Approach to Credit Risk” consultative document from the BIS.

Let’s now focus on the IRB approach; the key parameters of this internal assessment
are:

Expected loss = EAD x LGD x PD

where PD is the probability of default, LGD is the expected loss given default taking a
value between 0 and 1, and EAD is the exposure at default.

Estimating the CreditRisk | 157

https://oreil.ly/0Mj7J

The most important and challenging part of estimating credit risk is to model the
probability of default, and the aim of this chapter is mainly to come up with an
ML model to address this issue. Before moving forward, there is one more important
issue in estimating credit risk that is sometimes neglected or overlooked: risk
bucketing.

Risk Bucketing

Risk bucketing is nothing but grouping borrowers with similar creditworthiness. The
behind-the-scenes story of risk bucketing is to obtain homogenous groups or clusters
so that we can better estimate the credit risk. Treating different risky borrowers
equally may result in poor predictions because the model cannot capture entirely dif-
ferent characteristics of the data at once. Thus, by dividing the borrowers into differ-
ent groups based on riskiness, risk bucketing enables us to make accurate predictions.

Risk bucketing can be accomplished via different statistical methods, but we will
apply a clustering technique to end up with homogeneous clusters using K-means.

We live in the age of data, but that does not necessarily mean that we always find the
data we are searching for. Rather, it is rare to find it without applying data-wrangling
and cleaning techniques.

Data with dependent variables is, of course, easy to work with and also helps us get
more accurate results. However, sometimes we need to unveil the hidden characteris-
tics of the data—that is, if the riskiness of the borrowers is not known, we are sup-
posed to come up with a solution for grouping them based on their riskiness.

Clustering is the method proposed to create these groups or clusters. Optimal cluster-
ing has clusters located far away from one another spatially:

Clustering groups data instances into subsets in such a manner that similar instances
are grouped together, while different instances belong to different groups. The instan-
ces are thereby organized into an efficient representation that characterizes the popula-
tion being sampled.

— Rokach and Maimon (2005)

Different clustering methods are available, but the K-means algorithm serves our
purpose, which is to create risk bucketing for credit risk analysis. In K-means, the dis-
tance of observations within the cluster is calculated based on the cluster center, the
centroid. Depending on the distance to the centroid, observations are clustered. This
distance can be measured via different methods. Of them, the following are the most
well-known metrics:

158 | Chapter 6: Credit Risk Estimation

Euclidean

51 (pi-a)
Minkowski
(2 1lpi- qi|P)1/p
Manhattan

\/ZL 1P - ail

The aim in clustering is to minimize the distance between the centroid and observa-
tions so that similar observations will be on the same cluster. This logic rests on the
intuition that the more similar observations are, the smaller the distance between
them. So we are seeking to minimize the distance between observations and the cent-
roid, which is another way of saying that we are minimizing the sum of the squared
error between the centroid and the observations:

e

(Ci- x)z

DD
i leCi

where x is observation and C; is the centroid of i™ cluster. However, considering the
number of observations and the combinations of clusters, the search area might be
too big to handle. It may sound intimidating, but dont worry: we have the
expectation-maximization (E-M) algorithm behind our clustering. As K-means does
not have a closed-form solution, we are searching for an approximate one, and E-M
provides this solution. In the E-M algorithm, E refers to assigning observations to the
nearest centroid, and M denotes completion of the data generation process by updat-
ing the parameters.

In the E-M algorithm, the distances between observations and the centroid is itera-
tively minimized. The algorithm works as follows:

1. Pick k random points to be centroids.

2. Based on the distance metric chosen, calculate the distances between observa-
tions and n centroids. Based on these distances, assign each observation to the
closest cluster.

3. Update cluster centers based on the assignment.
4. Repeat the process from step 2 until the centroid does not change.
Now, we apply risk bucketing using K-means clustering. To decide the optimal num-

ber of clusters, different techniques will be employed. First, we use the elbow method,
which is based on the inertia.

Risk Bucketing | 159

Inertia is computed as the sum of the squared distances of observations to their clos-
est centroid. Second, the Silhouette score is introduced as a tool to decide the optimal
number of clusters. This takes a value between 1 and -1. A value of 1 indicates that an
observation is close to the correct centroid and correctly classified. However, -1
shows that an observation is not correctly clustered. The strength of the Silhouette
score rests on taking into account both the intracluster distance and the intercluster
distance. The formula for Silhouette score is as follows:

Silhouette score = ——2

max(x, y)

where x is the average intercluster distance between clusters, and y is the mean intra-
cluster distance.

The third method is Calinski-Harabasz (CH), which is known as the variance ratio
criterion. The formula for the CH method is as follows:

SSg N-k

where SS; denotes between-cluster variance, SSy,, represents within cluster variance,

N is number of observations, and k is the number of clusters. Given this information,
we are seeking a high CH score, as the larger (lower) the between-cluster variance
(within cluster variance), the better it is for finding the optimal number of clusters.

The final approach is gap analysis. Tibshirani et al. (2001) came up with a unique idea
by which we are able to find the optimal number of clusters based on reference distri-

bution. Following the similar notations of Tibshirani et al., let d , be a Euclidean dis-
1

tance between x;; and x,; and let C, be the i, cluster denoting the number of
1

]
observations in cluster r:

ej

2
e
The sum of pairwise distances for all observations in cluster r is:

D= Y d,

’ e i, i
i, i ECr ’

160 | Chapter 6: Credit Risk Estimation

The within-cluster sum of squares, W, is:

where 7 is the sample size and expectation of W, is:
W, = log(pn/12) — (2/ p)log(k) + constant

where p and k are dimension and centroids, respectively. Let’s create a practice exer-
cise using German credit risk data. The data is gathered from the Kaggle platform,
and the explanations of the variables are shown here:

 Age: Numerical
« Sex: Male, female

o Job: O—unskilled and non-resident, 1—unskilled and resident, 2—skilled,
3—highly skilled

 Housing: Own, rent, free

« Saving accounts: Little, moderate, quite rich, rich

o Checking account: Numerical

o Credit amount: Numerical

 Duration: Numerical

o Purpose: Car, furniture/equipment, radio/TV, domestic appliances, repairs, edu-

cation, business, vacation/others

The estimate of the optimal clusters will be the value that maximizes the gap statistic,
as the gap statistic is the difference between the total within-intracluster variation for
different values of k and their expected values under null reference distribution of the
respective data. The decision is made when we get the highest gap value.

In the following code block, we import the German credit dataset and drop the
unnecessary columns. The dataset includes both categorical and numerical values,
which need to be treated differently, and we will do this soon:

In [1]: import as
In [2]: credit = pd.read_csv('credit_data_risk.csv')

In [3]: credit.head()
Out[3]: Unnamed: © Age Sex Job Housing Saving accounts Checking account \
0 0 67 male 2 own NaN little

Risk Bucketing | 161

https://oreil.ly/4NgIy

1 22
2 49
3 45
4 53

fema

ma

ma

ma

le 2
le 1
le 2
le 2

Credit amount Duration

1169

5951

2096

7882

4870

48

12

own

own

free

free

Purpose

radio/TV

radio/TV

education

42 furniture/equipment

24

In [4]: del credit['Unnamed: 0'] (1)

car

@ Dropping unnecessary column named Unnamed: 0

litt
litt
litt

litt

Risk
good

bad
good
good

bad

le

le

le

le

moderate

NaN

little

little

The summary statistics are given in the following code. Accordingly, the average age
of the customers is roughly 35, average job type is skilled, average credit amount and
duration are nearly 3,271 and 21, respectively. Additionally, the summary statistics
tell us that the credit amount variable shows a relatively high standard deviation as
expected. The duration and age variables have a very similar standard deviation, but
the duration moves within a narrower interval as its minimum and maximum values
are 4 and 72, respectively. As job is a discrete variable, it is natural to expect low dis-
persion and we have it:

In [5]: credit.describe()

Out[5]:

count

mean
std
min
25%
50%
75%
max

1000
35.
11.
19.
27.
33.
42.
75.

Age
.000000
546000
375469
000000
000000
000000
000000
000000

1000

NNDNO O -

3.

Job
.000000
.904000
.653614
.000000
.000000
.000000
.000000
000000

Credit

1000.
3271.
2822.
250.
1365.
2319.
3972.
18424.

amount
000000
258000
736876
000000
500000
500000
250000
000000

Du
1000.
20.
12.
4,
12.
18.
24.
72.

ration
000000
903000
058814
000000
000000
000000
000000
000000

In what follows, the distribution of the numerical variables in the dataset are exam-
ined via histogram and it turns out none of the variables follow a normal distribution.

162 | Chapter 6: Credit Risk Estimation

The age, credit amount, and duration variables are positively skewed as we can see
in Figure 6-1, generated by the following:

In [6]: import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
plt.rcParams["figure.figsize"] = (10,6) (1]

In [7]: numerical_credit = credit.select_dtypes(exclude='0") (2]

In [8]: plt.figure(figsize=(10, 8))

k=0

cols = numerical_credit.columns

for 1, j in zip(range(len(cols)), cols):
k +=1
plt.subplot(2, 2, k)
plt.hist(numerical_credit.iloc[:, i])
plt.title(j)

© Setting a fix figure size

® Dropping the object type variables to obtain all numerical variables

Job

250

200

Age
150
300
100
200
5 I - I
20 30 40 50 60 70

0.0 0.5 1.0 1.5 2.0 25 3.0

o

Credit amount Duration

350

400 300
250

300
200

200 150
100

100

in | |
0 --—__ 0 | | —_—
0 5000 10000 15000 20 40 60

Figure 6-1. Credit risk data histogram

Risk Bucketing | 163

Figure 6-1 shows the distribution of age, job, credit amount, and duration variables.
Aside from the job variable, which is a discrete variable, all other variables have
skewed distributions.

The elbow method, as a first method, is introduced in the following code snippet and
the resulting Figure 6-2. To find the optimal number of clusters, we observe the slope
of the curve and decide the cut-off point at which the curve gets flatter—that is, the
slope of the curve gets lower. As it gets flatter, the inertia, telling us how far away the
points within a cluster are located, decreases, which is nice for the purpose of cluster-
ing. On the other hand, as we allow inertia to decrease, the number of clusters increa-
ses, which makes the analysis more complicated. Given that trade-off, the stopping
criteria is the point where the curve gets flatter. In code:

In [9]: from import StandardScaler
from import KMeans
import as

In [10]: scaler = StandardScaler()
scaled_credit = scaler.fit_transform(numerical_credit) (1)

In [11]: distance = []
for k in range(1, 10):
kmeans = KMeans(n_clusters=k) (2]
kmeans.fit(scaled_credit)
distance.append(kmeans.inertia_) (3]

In [12]: plt.plot(range(l, 10), distance, 'bx-')
plt.xlabel('k")
plt.ylabel('Inertia")
plt.title('The Elbow Method')
plt.show()

O Applying standardization for scaling purpose
©® Running K-means algorithm

©® Calculating inertia and storing into a list named distance

Figure 6-2 shows that the curve gets flatter after four clusters. Thus, the elbow
method suggests that we stop at four clusters.

164 | Chapter 6: Credit Risk Estimation

The Elbow Method

4000

3500

3000

Inertia

2500

2000

1500

1000

Figure 6-2. Elbow method

The following code, resulting in Figure 6-3, presents Silhouette scores on the x-axis
for clusters 2 to 10. Given the average Silhouette score represented by the dashed line,
the optimal number of clusters can be two:

In [13]: from import silhouette_score (1]
from import SilhouetteVisualizer (2]

In [14]: fig, ax = plt.subplots(4, 2, figsize=(25, 20))
for 1 in range(2, 10):
km = KMeans(n_clusters=1i)
q, r = divmod(i, 2) (3]
visualizer = SilhouetteVisualizer(km, colors='yellowbrick',
ax=ax[q - 1][r]) (4]
visualizer.fit(scaled_credit)
ax[q - 1][r].set_title("For Cluster_"+str(i))
ax[q - 1][r].set_xlabel("Silhouette Score")

Importing the silhouette_score module to calculate Silhouette score
Importing the SilhouetteVisualizer module to draw Silhouette plots

Using divmod for configuring labels, as it returns the quotient (q) and remainder

(r)

O Plotting the Silhouette scores

Risk Bucketing | 165

For Cluster_2 For Cluster_3

02
Sihoustte Score.
For Cluster_5

02
Sihouette Score.
For Cluster_4

1000 |

|

ﬁ

!

o w2 w1 e o o oa o s o
Sipount Seors inouatsSeore
o Cuso 5 For s T
—
o0 oo ——
\ \ !
o o b
| i w ‘
o “ —— —
E—
- - i i
- 0 i :
o ! o
st Score st Score
ForGusor s orGuser>
] —_—
o0 i - 4‘—-
m— L
I
o0 | | I o0 ——
] ‘
‘ !
o —— sw
prm—— I—T
N B w-
—_—
- : —_— - L !
o I— ° PRI !
T T R TR TR < o o o

01 02 02
Sihouette Score. Sihoustte Score.

Figure 6-3. Silhouette score

As mentioned, the CH method is a convenient tool for finding optimal clustering,
and the following code shows how we can use this method in Python, resulting in
Figure 6-4. We are looking for the highest CH score, and we'll see that it is obtained at
cluster 2:

In [15]: from yellowbrick.cluster import KElbowVisualizer (1]
model = KMeans()
visualizer = KElbowVisualizer(model, k=(2, 10),
metric='calinski_harabasz',
timings=False) (2]
visualizer.fit(scaled_credit)
visualizer.show()
Out[]: <Figure size 576x396 with 0 Axes>

O Importing KElbowVisualizer to draw the CH score

® Visualizing the CH metric

166 | Chapter 6: Credit Risk Estimation

420

400

380

360

340

320

Y S A S

3

Figure 6-4. The CH method

Figure 6-4 shows that the elbow occurs at the second cluster, indicating that stopping
at two clusters is the optimum decision.

The last step for finding the optimal number of clusters is gap analysis, resulting in

Figure 6-5:

In [16]: from gap_statistic.optimalK import OptimalkK (1)

In [17]: optimalK = OptimalK(n_jobs=8, parallel_backend='joblib") (2]
n_clusters = optimalK(scaled_credit, cluster_array=np.arange(l, 10)) (3]

In [18]: gap_result = optimalK.gap_df (4]

gap_result.head()

Out[18]: n_clusters
1.0

A WNERLO
v b WwN
[cl oo o]

sk*
6626.296782
5328.109873
4447 .423150
4109.432481
3817.134689

A wWwNER O

N)

-0.
-0.
-0.
-0.
.141622

gap_value

0.
.968585
.003974
.044347
.116450

889755

diff
022635
023008
009186
065543

5738.
4599.
3851.
3555.
3305.

6466.
5196.
4404.
4067.
3729.

gap*
286952
736451
032471
819296
617917

diff=*
660374
127130
645656
336067
880829

ref_dispersion_std sk '\
54.033596 0.006408
366.047394 0.056195
65.026259 0.012381
147.396138 0.031187
27.894622 0.006559

Risk Bucketing | 167

In [19]: plt.plot(gap_result.n_clusters, gap_result.gap_value)
min_ylim, max_ylim = plt.ylim()
plt.axhline(np.max(gap_result.gap_value), color='r"',

linestyle="'dashed', linewidth=2)
plt.title('Gap Analysis')
plt.xlabel('Number of Cluster')
plt.ylabel('Gap Value')
plt.show()

Importing the Optimalk module for calculating the gap statistic

o

© Running gap statistic using parallelization

© Identifying the number of clusters based on the gap statistic
(4]

Storing the result of gap analysis

Gap Analysis
1.10
1.05
()
=
©
>
= 1.00
©
(O]
0.95
0.90
1 2 3 4 5 6 7 8 9
Number of Cluster

Figure 6-5. Gap analysis

What we observe in Figure 6-5 is a sharp increase to the point at which the gap value
reaches its peak, and the analysis suggests stopping at the maximum value at which
we find the optimal number for clustering. In this case, we find the value at cluster 5,
so this is the cut-off point.

168 | Chapter 6: Credit Risk Estimation

In light of these discussions, two clusters are chosen to be the optimal number of
clusters, and the K-means clustering analysis is conducted accordingly. To illustrate,
given the clustering analysis, let us visualize 2-D clusters with the following, resulting
in Figure 6-6:

In [20]: kmeans = KMeans(n_clusters=2)
clusters = kmeans.fit_predict(scaled_credit)

In [21]: plt.figure(figsize=(10, 12))

plt.subplot(311)

plt.scatter(scaled_credit[:, 0], scaled_credit[:, 2],
c=kmeans.labels_, cmap='viridis')

plt.scatter(kmeans.cluster_centers_[:, 0],
kmeans.cluster_centers_[:, 2], s = 80,
marker= 'x', color = 'k")

plt.title('Age vs Credit')

plt.subplot(312)

plt.scatter(scaled_credit[:, 0], scaled_credit[:, 2],
c=kmeans.labels_, cmap='viridis')

plt.scatter(kmeans.cluster_centers_[:, 0],
kmeans.cluster_centers_[:, 2], s = 80,
marker= 'x', color = 'k')

plt.title('Credit vs Duration')

plt.subplot(313)

plt.scatter(scaled_credit[:, 2], scaled_credit[:, 3],
c=kmeans.labels_, cmap='viridis')

plt.scatter(kmeans.cluster_centers_[:, 2],
kmeans.cluster_centers_[:, 3], s = 120,
marker= 'x', color = 'k')

plt.title('Age vs Duration')

plt.show()

Figure 6-6 presents the behavior of the observations and cross sign x indicates the
cluster center, i.e., the centroid. Age represents the more dispersed data, and the cent-
roid of the age variable is located above the credit variable. Two continuous vari-
ables, namely credit and duration, are shown in the second subplot of Figure 6-6,
where we observe clearly separated clusters. This figure suggests that the duration
variable is more volatile compared to the credit variable. In the last subplot, the rela-
tionship between age and duration is examined via scatter analysis. It turns out that
there are many overlapping observations across these two variables.

Risk Bucketing | 169

Age vs Credit

°
5
K) [] [} °
4 ® 0o 4 o o *
)
3 PP) o 087, e o
° ! e .' b o’: °o°
2)))
) [)
[] ! [) . ’.
EPHLLCORTT LR S LR P S
1 ° 'n,\.. e s o® °
~ [] . o0 © PY
~ e~ » ° -~ [] []
Ow V\,....H ~ -)
0 AT o X ° ~ [])
°])]
-1
-1 0 1 2 3
Credit vs Duration
°
5
K) [] [} °
4 ®e 4 o °« °
)
3 o0 . .: o © O' ° o 04
L4 . ° ..‘ ° .
2 ' ! 4
'o. '!0 s S oo ° °
1 ..'.,, .V .’. ‘. .: ' . [] e®® : [])
.o o ® $
0 PY g:N A~ A. S)
P "‘ x ~ o v a -
-1
-1 0 1 2 3
Age vs Duration
4 []
3 o000 ® o oo e® © o
°)
00 G000 ENIDINED ®O0 B0 0 0 © °) °
2 ® o] [
° o0 e ‘. o o [° °
1 1 GDOEEEDOOS N 0 oQiocED GNse ¢ ® o (])
o o(® O e © ... [] []
0 « oo® e 0} o e o0 o
o %% o °
X e®_ .o °
_1 .
L)
-1 0 1 2 3 4 5

Figure 6-6. K-means clusters

Probability of Default Estimation with Logistic Regression

Having obtained the clusters, we are able to treat customers with similar characteris-
tics the same way—that is, the model learns in an easier and more stable way if data
with similar distributions is provided. Conversely, using all the customers for the
entire sample might result in poor and unstable predictions.

170 | Chapter 6: Credit Risk Estimation

This section is ultimately about calculating the probability of default with Bayesian
estimation, but let’s first look at logistic regression for the sake of comparison.'

Logistic regression is a classification algorithm, widely applicable in the finance
industry. In other words, it proposes a regression approach to the classification prob-
lem. Logistic regression seeks to predict discrete output, taking into account some
independent variables.

Let X be the set of independent variables and Y be a binary (or multinomial) output.
Then, the conditional probability becomes:

Pr(Y=1|X=x)

This can be read as: given the values of X, what is the probability of having Y as 1? As
the dependent variable of logistic regression is of the probabilistic type, we need to
make sure the dependent variable cannot take on values other than between 0 and 1.

To this aim, a modification is applied known as logistic (logit) transformation, which is
simply the log of the odds ratio (p / 1 - p):

log(lfp)

And the logistic regression model takes the following form:

log(1 f)p) =Py + Byx
Solving p results in:

eﬁ0+ﬁ1x
. 1+ eﬁ0+ﬁlx

Let’s start off our application by preparing the data. First, we distinguish the clusters
as 0 and 1. The credit data has a column named risk, suggesting the risk level of the
customers. Next, the number of observations per risk in cluster 0 and cluster 1 are
examined; it turns out we have 571 and 129 good customers in the cluster 0 and 1,
respectively. In code:

1 It is useful to run logistic regression to initialize results for priors in Bayesian estimation.

Probability of Default Estimation with Logistic Regression | 171

In [22]: clusters, counts = np.unique(kmeans.labels_, return_counts=True) (1)

In [23]: cluster_dict = {}
for 1 in range(len(clusters)):
cluster_dict[i] = scaled_credit[np.where(kmeans.labels_==1)] (2]

In [24]: credit['clusters'] = pd.DataFrame(kmeans.labels_) (3]

In [25]: df_scaled = pd.DataFrame(scaled_credit)
df_scaled['clusters'] = credit['clusters']

In [26]: df_scaled['Risk'] = credit['Risk']
df_scaled.columns = ['Age', 'Job', 'Credit amount',
'Duration', 'Clusters', 'Risk']

In [27]: df_scaled[df_scaled.Clusters == 0]['Risk'].value_counts() (4)
Out[27]: good 571

bad 193

Name: Risk, dtype: int64

In [28]: df_scaled[df_scaled.Clusters == 1]['Risk'].value_counts() (5)
Out[28]: good 129

bad 107

Name: Risk, dtype: int64

© Obtaining cluster numbers

® Based on the cluster numbers, differentiating the clusters and storing them in a
dictionary called cluster_dict

© Creating a clusters column using K-means labels
O Observing the number of observations of categories within a cluster

© Finding number of observations per category

Next, we draw a couple of bar plots to show the difference of the number of observa-
tions per risk level category (Figures 6-7 and 6-8):

In [29]: df_scaled[df_scaled.Clusters == 0]['Risk'].value_counts()\
.plot(kind="bar',
figsize=(10, 6),
title="Frequency of Risk Level");
In [30]: df_scaled[df_scaled.Clusters == 1]['Risk'].value_counts()\
.plot(kind="bar',
figsize=(10, 6),
title="Frequency of Risk Level");

172 | Chapter 6: Credit Risk Estimation

Frequency of Risk Level

500

400

300

200

100

o

good

bad

Figure 6-7. Frequency of risk level of the first cluster

Frequency of Risk Level
120

100
80
60
40

20

o

o
o
o
o

Figure 6-8. Frequency of risk level of the second cluster

Probability of Default Estimation with Logistic Regression

173

Based on the clusters we defined previously, we can analyze the frequency of risk level
by histogram. Figure 6-7 shows that there is an imbalance distribution across risk
level in the first cluster, whereas the frequency of good and bad risk levels are more
balanced, if not perfectly balanced, in Figure 6-8.

At this point, let’s take a step back and focus on an entirely different problem: class
imbalance. In credit risk analysis, it is not uncommon to have a class imbalance prob-
lem. Class imbalance arises when one class dominates over another. To illustrate, in
our case, given the data obtained from the first cluster, we have 571 customers with a
good credit record and 193 customers with a bad one. As can be readily observed,
customers with good credit records dominate over customers with bad records; that
is basically what we refer to as a class imbalance.

There are numerous ways to handle this issue: up-sampling, down-sampling, the syn-
thetic minority oversampling technique (SMOTE), and the edited nearest neighbor
(ENN) rule. To take advantage of a hybrid approach, well incorporate a combination
of SMOTE and ENN so we can clean the unwanted overlapping observations
between classes, which will help us detect the optimal balancing ratio and, in turn,
boost the predictive performance (Tuong et al. 2018). Converting imbalanced data
into balanced data will be our first step in predicting the probability of default, but
please note that we will merely apply this technique to the data obtained from the
first cluster.

Now, we next apply a train-test split. To do that, we need to convert the categorical
variable Risk into a discrete variable. The category good takes a value of 1, and bad
takes a value of 0. In a train-test split, 80% of the data is devoted to training samples
and 20% of is allocated to the test sample:

In [31]: from import train_test_split
In [32]: df_scaled['Risk'] = df_scaled['Risk'].replace({'good': 1, 'bad': 0}) @

In [33]: X = df_scaled.drop('Risk', axis=1)
y = df_scaled.loc[:, ['Risk', 'Clusters']]

In [34]: X_train, X_test, y_train, y_test = train_test_split(X, v,
test_size=0.2,
random_state=42)

In [35]: first_cluster_train = X_train[X_train.Clusters == 0].1loc[:, :-1] (2]
second_cluster_train = X_train[X_train.Clusters == 1].iloc[:, :-1] (3]

174 | Chapter 6: Credit Risk Estimation

Discretization of the variable
Creating data based on the first cluster and dropping last column from X_tratn

Creating data based on the second cluster and dropping last column from
X_train

After these preparations, we are ready to move ahead and run the logistic regression
to predict the probability of default. The library that we’ll make use of is called
statsmodels, and it is allowed to have a summary table. The following result is based
on the first cluster data. According to the result, the age, credit amount, and job
variables are positively related with the creditworthiness of customer, while a negative
association emerges between the dependent and duration variables. This finding
suggests that all the estimated coefficients reveal statistically significant results at a 1%
significance level. A general interpretation would be that a slide in duration and a
surge in credit amount, age, and job imply a high probability of default:

In [36]: import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score, roc_curve
from imblearn.combine import SMOTEENN (1)
import warnings
warnings.filterwarnings('ignore')

In [37]: X_trainl = first_cluster_train
y_trainl = y_train[y_train.Clusters == 0]['Risk'] (2]
smote = SMOTEENN(random_state = 2) (3]
X_trainl, y_trainl = smote.fit_resample(X_trainl, y_trainil.ravel()) (4)
logit = sm.Logit(y_traini, X_trainl) (5)
logit_fitl = logit.fit() O
print(logit_fitl.summary())
Optimization terminated successfully.
Current function value: 0.479511
Iterations 6
Logit Regression Results

Dep. Variable: y No. Observations: 370
Model: Logit Df Residuals: 366
Method: MLE Df Model: 3
Date: Wed, 01 Dec 2021 Pseudo R-squ.: 0.2989
Time: 20:34:31 Log-Likelihood: -177.42
converged: True LL-Null: -253.08
Covariance Type: nonrobust LLR p-value: 1.372e-32
coef std err z P>|z| [0.025 0.975]
Age 1.3677 0.164 8.348 0.000 1.047 1.689
Job 0.4393 0.153 2.873 0.004 0.140 0.739

Probability of Default Estimation with Logistic Regression | 175

Credit amount 1.3290 0.305 4.358 0.000 0.731 1.927
Duration -1.2709 0.246 -5.164 0.000 -1.753 -0.789

Importing SMOTEENN to deal with the class imbalance problem
Creating y_train based on cluster 0 and risk level
Running the SMOTEENN method with a random state of 2

Turning the imbalanced data into balanced data

® 6 o o0 ©

Configuring the logistic regression model

O Running the logistic regression model

In what follows, prediction analysis is conducted by creating different datasets based
on clusters. For the sake of testing, the following analysis is done with test data, and
results in Figure 6-9:

In [38]: first_cluster_test = X_test[X_test.Clusters == 0].iloc[:, :-1] (1]
second_cluster_test = X_test[X_test.Clusters == 1].1iloc[:, :-1] (2]

In [39]: X_testl = first_cluster_test
y_testl = y_test[y_test.Clusters == 0]['Risk']
pred_probl = logit_fitl.predict(X_testl) (3]

In [40]: false_pos, true_pos, _ = roc_curve(y_testl.values, pred_probl) (4]
auc = roc_auc_score(y_testl, pred_prob1) (5)
plt.plot(false_pos,true_pos, label="AUC for cluster 1={:.4f} "

.format(auc))
plt.plot([0, 1], [0, 1], linestyle = '--', label='45 degree line')
plt.legend(loc="best")
plt.title('ROC-AUC Curve 1')
plt.show()

Creating first test data based on cluster 0
Creating second test data based on cluster 1
Running prediction using X_test1

Obtaining false and true positives using roc_curve function

® 6 o o0 o

Compute the roc-auc score

176 | Chapter 6: Credit Risk Estimation

AUC-ROC Curve 1
1.0 =—— AUC for cluster 1=0.5614 =
=1 45 degree line i
0.8
0.6
04
0.2
0.0
0.0 0.2 04 0.6 0.8 1.0

Figure 6-9. ROC-AUC curve of the first cluster

The ROC-AUC curve is a convenient tool in the presence of imbalanced data. The
ROC-AUC curve in Figure 6-9 suggests that the performance of the model is not very
good, because it moves just above the 45-degree line. Generally speaking, given the
test results, a good ROC-AUC curve should be close to 1, implying that there is a
close-to-perfect separation.

Moving on to the second set of training samples obtained from the second cluster, the
signs of the estimated coefficients of job, duration, and age are positive, suggesting
that customers with job type of 1 and having larger duration tend to default, and the
credit amount variable shows a negative relation with dependent variable. However,
all the estimated coefficients are statistically insignificant at 95% confidence interval;
therefore, it makes no sense to further interpret the findings.

Similar to what we did with the first set of test data, we create a second set of test data
to run the prediction to draw the ROC-AUC curve, resulting in Figure 6-10:

In [41]: X_train2 = second_cluster_train
y_train2 = y_train[y_train.Clusters == 1]['Risk']
logit = sm.Logit(y_train2, X_train2)
logit_fit2 = logit.fit()
print(logit_fit2.summary())
Optimization terminated successfully.
Current function value: 0.688152

Probability of Default Estimation with Logistic Regression | 177

Iterations 4
Logit Regression Results

Dep. Variable: Risk No. Observations: 199
Model: Logit Df Residuals: 195
Method: MLE Df Model: 3
Date: Wed, 01 Dec 2021 Pseudo R-squ.: -0.0008478
Time: 20:34:33 Log-Likelihood: -136.94
converged: True LL-Null: -136.83
Covariance Type: nonrobust LLR p-value: 1.000
coef std err z P>|z| [0.025 0.975]
Age 0.0281 0.146 0.192 0.848 -0.259 0.315
Job 0.1536 0.151 1.020 0.308 -0.142 0.449
Credit amount -0.1090 0.115 -0.945 0.345 -0.335 0.117
Duration 0.1046 0.126 0.833 0.405 -0.142 0.351

In [42]: X_test2 = second_cluster_test
y_test2 = y_test[y_test.Clusters == 1]['Risk']
pred_prob2 = logit_fit2.predict(X_test2)

In [43]: false_pos, true_pos, _ = roc_curve(y_test2.values, pred_prob2)
auc = roc_auc_score(y_test2, pred_prob2)
plt.plot(false_pos,true_pos,label="AUC for cluster 2={:.4f} "

.format(auc))
plt.plot([0, 1], [0, 1], linestyle = '--', label='45 degree line')
plt.legend(loc="best")
plt.title('ROC-AUC Curve 2')
plt.show()

Given the test data, the result shown in Figure 6-10 is worse than the previous appli-
cation, as can be confirmed by the AUC score of 0.4064. Considering this data, we are

far from saying that logistic regression is doing a good job of modeling probability of
default using the German credit risk dataset.

We will now use different models to see how good the logistic regression is in model-
ing this type of problem relative to other methods. Thus, in the following part, we will
take a look at Bayesian estimation with maximum a posteriori (MAP) probability and
Markov Chain Monte Carlo (MCMC) approaches. We will then explore those
approaches using a few well-known ML models—SVM, random forest, and neural
networks using MLPRegressor—and we will test the deep learning model with
TensorFlow. This application will show us which model works better in modeling the
probability of default.

178 | Chapter 6: Credit Risk Estimation

AUC-ROC Curve 2
1.0 =—— AUC for cluster 2=0.4064 P
—+- 45 degree line 4

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6-10. ROC-AUC curve of the second cluster

Probability of Default Estimation with the Bayesian Model

In this part, we'll use the PYMC3 package, which is a Python package for Bayesian esti-
mation, to predict the probability of default. However, there are several approaches
for running Bayesian analysis using PYMC3, and for the first application, we'll use the
MAP distribution discussed in Chapter 4. As a quick reminder, given the representa-
tive posterior distribution, MAP becomes an efficient model in this case. Moreover,
we select the Bayesian model with a deterministic variable (p) that is entirely deter-
mined by its parents—that is, age, job, credit amount, and duration.

Let’s compare the results obtained from Bayesian analysis with that of logistic
regression:

In [44]: import as (1)
import as (2]

In [45]: with pm.Model() as logistic_modell: (3]
beta_age = pm.Normal('coeff_age', mu=0, sd=10) (4)
beta_job = pm.Normal('coeff_job', mu=0, sd=10)
beta_credit = pm.Normal('coeff_credit_amount', mu=0, sd=10)
beta_dur = pm.Normal('coeff_duration', mu=0, sd=10)
p = pm.Deterministic('p', pm.math.sigmoid(beta_age *
X_trainl['Age'] + beta_job *

Probability of Default Estimation with Logistic Regression | 179

X_traini['Job'] + beta_credit *
X_traini['Credit amount'] + beta_dur *
X_traini['Duration'])) (5]
with logistic_modell:
observed = pm.Bernoulli("risk", p, observed=y_traini1) (6]
map_estimate = pm.find_MAP() (7]
Out[]: <IPython.core.display.HTML object>

In [46]: param_list = ['coeff_age', 'coeff_job',
'coeff_credit_amount', 'coeff_duration']
params = {}
for 1 in param_list:
params[i] = [np.round(map_estimate[1], 6)] (&)
bayesian_params = pd.DataFrame.from_dict(params)
print('The result of Bayesian estimation:\n {}'.format(bayesian_params))
The result of Bayesian estimation:

coeff_age coeff_job coeff_credit_amount coeff_duration
0 1.367247 0.439128 1.32721 -1.269345

Importing PYMC3

o
® Importing arviz for exploratory analysis of Bayesian models
© Identifying Bayesian model as logistic_modell

o

Identifying the assumed distributions of the variables as normal with defined mu
and sigma parameters

Running a deterministic model using the first sample
Running a Bernoulli distribution to model the dependent variable
Fitting the MAP model to data

Storing all the results of the estimated coefficients into params with six decimals

The most striking observation is that the differences between estimated coefficients
are so small that they can be ignored. The difference occurs in the decimals. Taking
the estimated coefficient of the credit amount variable as an example, we have estima-
ted the coefficient to be 1.3290 in logistic regression and 1.3272 in Bayesian analysis.

The story is more or less the same when it comes to comparing the analysis result
based on the second cluster data:

180 | Chapter 6: Credit Risk Estimation

In [47]: with pm.Model() as logistic_model2:
beta_age = pm.Normal('coeff_age', mu=0, sd=10)
beta_job = pm.Normal('coeff_job', mu=0, sd=10)
beta_credit = pm.Normal('coeff_credit_amount', mu=0, sd=10)
beta_dur = pm.Normal('coeff_duration', mu=0, sd=10)
p = pm.Deterministic('p', pm.math.sigmoid(beta_age *
second_cluster_train['Age'] +
beta_job * second_cluster_train['Job'] +
beta_credit *
second_cluster_train['Credit amount'] +
beta_dur *
second_cluster_train['Duration']))
with logistic_model2:
observed = pm.Bernoulli("risk", p,
observed=y_train[y_train.Clusters == 1]
['Risk'])
map_estimate = pm.find_MAP()
Out[]: <IPython.core.display.HTML object>

In [48]: param_list = ['coeff_age', 'coeff_job',
'coeff_credit_amount', 'coeff_duration']
params = {}
for 1 in param_list:
params[i] = [np.round(map_estimate[1], 6)]

bayesian_params = pd.DataFrame.from_dict(params)
print('The result of Bayesian estimation:\n {}'.format(bayesian_params))
The result of Bayesian estimation:
coeff_age coeff_job coeff_credit_amount coeff_duration
0 0.028069 0.153599 -0.109003 0.104581

The most remarkable difference occurs in the duration variable. The estimated coef-
ficients of this variable are 0.1046 and 0.1045 in logistic regression and Bayesian esti-
mation, respectively.

Instead of finding the local maximum, which is sometimes difficult to get, we look for
an approximate expectation based on the sampling procedure. This is referred to as
MCMC in the Bayesian setting. As we discussed in Chapter 4, one of the most well
known methods is the Metropolis-Hastings (M-H) algorithm.

The Python code that applies Bayesian estimation based on the M-H algorithm is
shown in the following and results in Figure 6-11. Accordingly, we draw 10,000 pos-
terior samples to simulate the posterior distribution for two independent Markov
chains. The summary table for the estimated coefficients is provided in the code as
well:

Probability of Default Estimation with Logistic Regression | 181

In [49]: import logging (1]
logger = logging.getLogger('pymc3') (2]
logger.setlLevel(logging.ERROR) (3]

In [50]: with logistic_modell:
step = pm.Metropolis() (4)
trace = pm.sample(10000, step=step,progressbar = False) (5)
az.plot_trace(trace) (6]
plt.show()
In [51]: with logistic_modell:
display(az.summary(trace, round_to=6)[:4]) (7]

Out[]: mean sd hdi_3% hdi_97% mcse_mean
coeff_age 1.392284 0.164607 1.086472 1.691713 0.003111
coeff_job 0.448694 0.155060 0.138471 0.719332 0.002925
coeff_credit_amount 1.345549 0.308100 0.779578 1.928159 0.008017
coeff_duration -1.290292 0.252505 -1.753565 -0.802707 0.006823

mcse_sd ess_bulk ess_tail r_hat

coeff_age 0.002200 2787.022099 3536.314548 1.000542
coeff_job 0.002090 2818.973167 3038.790307 1.001246
coeff_credit_amount 0.005670 1476.746667 2289.532062 1.001746
coeff_duration 0.004826 1369.393339 2135.308468 1.001022

© Importing the logging package to suppress the warning messages

® Naming the package for logging

© Suppressing errors without raising exceptions

O [Initiating the M-H model

O Running the model with 10,000 samples and ignoring the progress bar

O Creating a simple posterior plot using plot_trace

@ Printing the first four rows of the summary result

182 | Chapter 6: Credit Risk Estimation

coeff_age coeff_age

-1.0 -0.5 0.0 05 1.0 [2000 4000 6000 8000
coeff_job

-0.5 0.0 0.5 1.0 15 20 25 0 2000 4000 6000 8000
coeff_credit_amount

coeff_credit_amount

-1.5 -10 -0.5 0.0 05 0 2000 4000 6000 8000
coeff_duration coeff_duration

-1.0 -0.5 0.0 0.5 1.0 15 0 2000 4000 6000 8000

0.0 0.2 0.4 06 08 1.0 0 2000 4000 6000 8000

Figure 6-11. Bayesian estimation with M—H with first cluster

The result suggests that the predictive performances are supposed be very close to
that of logistic regression, as the estimated coefficients of these two models are quite
similar.

In Figure 6-11, we see the dashed and solid lines. Given the first cluster data, the plot
located on the lefthand side of Figure 6-11 shows the sample values of the related
parameters. Though it is not our present focus, we can observe the deterministic vari-
able, p, located in the last plot.

In a similar vein, the result of Bayesian estimation with M-H based on the second
cluster performs very closely to the logistic regression. However, the results obtained
from MAP application are better, which is expected primarily because M-H works
with random sampling. It is not, however, the only potential reason for this small
deviation that we’ll discuss.

As for the data that we obtained from the second cluster, the result of Bayesian esti-
mation with M-H can be seen in the following code, which also creates the plot
shown in Figure 6-12:

Probability of Default Estimation with Logistic Regression | 183

In [52]: with logistic_model2:
step = pm.Metropolis()
trace = pm.sample(10000, step=step,progressbar = False)
az.plot_trace(trace)
plt.show()
In [53]: with logistic_model2:
display(az.summary(trace, round_to=6)[:4])

Out[]: mean sd hdi_3% hdi_97% mcse_mean \
coeff_age 0.029953 0.151466 -0.262319 0.309050 0.002855
coeff_job 0.158140 0.153030 -0.125043 0.435734 0.003513
coeff_credit_amount -0.108844 0.116542 -0.328353 0.105858 0.003511
coeff_duration 0.103149 0.128264 -0.142609 0.339575 0.003720

mcse_sd ess_bulk ess_tail r_hat
coeff_age 0.002019 2823.255277 3195.005913 1.000905
coeff_job 0.002485 1886.026245 2336.516309 1.000594
coeff_credit_amount 0.002483 1102.228318 1592.047959 1.002032
coeff_duration 0.002631 1188.042552 1900.179695 1.000988

coeff_age coeff_age

00 0.1 02 03 04 05 06 07 08 0 2000 4000 6000 8000
coeff_job coeff_job

-0.4 -0.3 -0.2 -0.1 0.0 0.1 02 03 4 2000 4000 6000 8000
coeff_credit_amount coeff_credit_amount

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0 2000 4000 6000 8000
coeff_duration coeff_duration

1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 2000 4000 6000 8000

0.2 04 0.6 0.8 1.0 0 2000 4000 6000 8000

Figure 6-12. Bayesian estimation with M—H with second cluster

184 | Chapter 6: Credit Risk Estimation

Let’s now discuss the limitations of the M-H model, which may shed some light on
the discrepancies across the model results. One disadvantage of the M-H algorithm is
its sensitivity to step size. Small steps hinder the convergence process. Conversely, big
steps may cause a high rejection rate. Besides, M-H may suffer from rare events—as
the probability of these events are low, requiring a large sample to obtain a reliable
estimation—and that is our focus in this case.

Now, let’s consider what happens if we use SVM to predict probability of default and
compare its performance with logistic regression.

Probability of Default Estimation with Support Vector Machines

SVM is thought to be a parametric model, and it works well with high-dimensional
data. The probability of default case in a multivariate setting may provide fertile
ground for running SVM. Before proceeding, it would be a good idea to briefly
discuss a new approach that we will use to run hyperparameter tuning, namely
HalvingRandomSearchCV.

HalvingRandomSearchCV works with iterative selection so that it uses fewer resources,
thereby boosting performance and getting you some time back. HalvingRandom
SearchCV tries to find the optimal parameters using successive halving to identify
candidate parameters. The logic behind this process is as follows:

1. Evaluate all parameter combinations, exploiting a certain number of training
samples at first iteration.

2. Use some of the selected parameters in the second iteration with a large number
of training samples.

3. Only include the top-scoring candidates in the model until the last iteration.

Using the credit dataset, we predict the probability of default with support vector
classification (SVC). Again, we use two different datasets based on the clustering we
performed at the very first part of this chapter. The results are provided in the
following:

In [54]: from import SVC
from import enable_halving_search_cv (1)
from import HalvingRandomSearchCV (2]
import

In [55]: param_svc = {'gamma': [le-6, le-2],
'C':[0.001,.09,1,5,10],
'kernel':('linear','rbf')}

In [56]: svc = SVC(class_weight="'balanced"')
halve_SVC = HalvingRandomSearchCV(svc, param_svc,
scoring = 'roc_auc', n_jobs=-1) (3]

Probability of Default Estimation with Logistic Regression | 185

halve_SVC.fit(X_trainl, y_trainl)

print('Best hyperparameters for first cluster in SVC {} with {}'.
format(halve_SVC.best_score_, halve_SVC.best_params_))

Best hyperparameters for first cluster in SVC 0.8273860106443562 with

{'kernel': 'rbf', 'gamma': 0.01, 'C': 1}

In [57]: y_pred_SVC1 = halve_SVC.predict(X_testl) (4]
print('The ROC AUC score of SVC for first cluster is {:.4f}'.
format(roc_auc_score(y_testl, y_pred_Sv(C1)))
The ROC AUC score of SVC for first cluster is 0.5179

Importing the library to enable successive halving search

o

® Importing the library to run the halving search

© Running the halving search using parallel processing
o

Running a prediction analysis

An important step to take in SVM is hyperparameter tuning. Using a halving search
approach, we try to find out the best combination of kernel, gamma, and C. It turns
out that the only difference across the two different samples occurs in the gamma and C
hyperparameters. In the first cluster, the optimal C score is 1, whereas it is 0.001 in the
second one. The higher C value indicates that we should choose a smaller margin to
make a better classification. As for the gamma hyperparameter, both clusters take the
same value. Having a lower gamma amounts to a larger influence of the support vector
on the decision. The optimal kernel is Gaussian, and the gamma value is 0.01 for both
clusters.

The AUC performance criteria indicates that the predictive performance of SVC is
slightly below that of logistic regression. More precisely, AUC of the SVC is 0.5179,
and that implies that SVC performs worse than logistic regression for the first cluster.

The second cluster shows that the performance of SVC is even slightly worse than
that of the first cluster, and this indicates the SVC does not perform well on this data,
as it is not clearly separable data, this implies that SVC does not work well with low-
dimensional spaces:

In [58]: halve_SVC.fit(X_train2, y_train2)
print('Best hyperparameters for second cluster in SVC {} with {}'.
format(halve_SVC.best_score_, halve_SVC.best_params_))
Best hyperparameters for second cluster in SVC 0.5350758636788049 with
{'kernel': 'rbf', 'gamma': 0.01, 'C': 0.001}

In [59]: y_pred_SVC2 = halve_SVC.predict(X_test2)
print('The ROC AUC score of SVC for first cluster is {:.4f}'.
format(roc_auc_score(y_test2, y_pred_Sv(C2)))
The ROC AUC score of SVC for first cluster is 0.5000

186 | Chapter 6: Credit Risk Estimation

Well, maybe we've had enough of parametric methods—let’s move on to nonparamet-
ric methods. Now, the word nonparametric may sound confusing, but it is nothing
but a model with an infinite number of parameters, and one that becomes more com-
plex as the number of observations increases. Random forest is one of the most appli-
cable nonparametric models in ML, and we’ll discuss that next.

Probability of Default Estimation with Random Forest

The random forest classifier is another model we can employ to model the probabil-
ity of default. Although random forest fails in high-dimensional cases, our data is not
that complex, and the beauty of random forest lies in its good predictive performance
in the presence of a large number of samples, so it’s plausible to think that the random
forest model might outperform the SVC model.

Using halving search approach, we try to find out the best combination of n_estima
tors, criterion, max_features, max_depth, min_samples_split. The result suggests
that we use n_estimators of 300, min_samples_split of 10, max_depth of 6 with a
gini criterion, and sqrt max_features for the first cluster. As for the second cluster,
we have two different optimal hyperparameters as can be seen in the following. Hav-
ing larger depth in a tree-based model amounts to having a more complex model.
With that said, the model proposed for the second cluster is a bit more complex. The
max_features hyperparameter seems to be different across samples; in the first clus-
ter, the maximum number of features is picked via y/number of features.

Given the first cluster data, the AUC score of 0.5387 indicates that random forest has
a better performance compared to the other models:

In [60]: from import RandomForestClassifier
In [61]: rfc = RandomForestClassifier(random_state=42)

In [62]: param_rfc = {'n_estimators': [100, 300],
'criterion' :['gini', 'entropy'],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth' : [3, 4, 5, 6],
'min_samples_split':[5, 10]}

In [63]: halve_RF = HalvingRandomSearchCV(rfc, param_rfc,
scoring = 'roc_auc', n_jobs=-1)
halve RF.fit(X_trainil, y_trainil)
print('Best hyperparameters for first cluster in RF {} with {}'.
format(halve_RF.best_score_, halve RF.best_params_))
Best hyperparameters for first cluster in RF 0.8890871444218126 with
{'n_estimators': 300, 'min_samples_split': 10, 'max_features': 'sqrt',
'max_depth': 6, 'criterion': 'gini'}

In [64]: y_pred_RF1 = halve_RF.predict(X_test1)

Probability of Default Estimation with Logistic Regression | 187

print('The ROC AUC score of RF for first cluster is {:.4f}'.
format(roc_auc_score(y_testl, y_pred_RF1)))
The ROC AUC score of RF for first cluster is 0.5387

The following code shows a random forest run based on the second cluster:

In [65]: halve_RF.fit(X_train2, y_train2)
print('Best hyperparameters for second cluster in RF {} with {}'.
format(halve_RF.best_score_, halve_RF.best_params_))
Best hyperparameters for second cluster in RF 0.6565 with
{'n_estimators': 100, 'min_samples_split': 5, 'max_features': 'auto',
'max_depth': 5, 'criterion': 'entropy'}

In [66]: y_pred_RF2 = halve_RF.predict(X_test2)
print('The ROC AUC score of RF for first cluster is {:.4f}'.
format(roc_auc_score(y_test2, y_pred_RF2)))
The ROC AUC score of RF for first cluster is 0.5906

Random forest has a much better predictive performance in the second cluster, with
an AUC score of 0.5906. Given the predictive performance of random forest, we can
conclude that random forest does a better job of fitting the data. This is partly
because of the low-dimensional characteristics of the data, as random forest turns
out to be a good choice when data has low dimensionality and a large number of
observations.

Probability of Default Estimation with Neural Network

Given the complexity of the probability of default estimation, unveiling the hidden
structure of the data is a tough task, but the NN structure does a good job handling
this, so it would be an ideal candidate model for such tasks. In setting up the NN
model, GridSearchCV is used to optimize the number of hidden layers, optimization
technique, and learning rate.

In running the model, we first employ the MLP library, which allows us to control for
many parameters, including hidden layer size, optimization technique (solver), and
learning rate. Comparing the optimized hyperparameters of the two clusters indicates
that the only difference is in the number of neurons in the hidden layer. Accordingly,
we have larger number of neurons in the first hidden layer in cluster one. However,
the neuron number is larger in the second hidden layer in the second cluster.

The following code suggests that data based on the first cluster is only a marginal
improvement. In other words, the AUC moves to 0.5263, only slightly worse than
random forest:

188 | Chapter 6: Credit Risk Estimation

In [67]: from sklearn.neural_network import MLPClassifier

In [68]: param_NN = {"hidden_layer_sizes": [(100, 50), (50, 50), (10, 100)],
"solver": ["lbfgs", "sgd", "adam"],
"learning_rate_init": [0.001, 0.05]}

In [69]: MLP = MLPClassifier(random_state=42)

In [70]: param_halve_NN = HalvingRandomSearchCV(MLP, param_NN,
scoring = 'roc_auc')
param_halve_NN.fit(X_trainl, y_trainl)
print('Best hyperparameters for first cluster in NN are {}'.
format(param_halve_NN.best_params_))
Best hyperparameters for first cluster in NN are {'solver': 'lbfgs',
'learning_rate_init': 0.05, 'hidden_layer_sizes': (100, 50)}

In [71]: y_pred_NN1 = param_halve_NN.predict(X_testl)
print('The ROC AUC score of NN for first cluster is {:.4f}'.
format(roc_auc_score(y_testl, y_pred_NN1)))
The ROC AUC score of NN for first cluster is 0.5263

The ROC-AUC score obtained from the second cluster is 0.6155, with two hidden
layers endowed with 10 and 100 neurons, respectively. Moreover, the best optimiza-
tion technique is adam, and optimum initial learning rate is 0.05. This is the highest
AUC score we've obtained, implying that the NN is able to capture the dynamics of
the complex and nonlinear data, as shown here:

In [72]: param_halve_NN.fit(X_train2, y_train2)
print('Best hyperparameters for first cluster in NN are {}'.
format(param_halve_NN.best_params_))
Best hyperparameters for first cluster in NN are {'solver': 'lbfgs',
'learning_rate_init': 0.05, 'hidden_layer_sizes': (10, 100)}

In [73]: y_pred_NN2 = param_halve_NN.predict(X_test2)
print('The ROC AUC score of NN for first cluster is {:.4f}'.
format(roc_auc_score(y_test2, y_pred_NN2)))
The ROC AUC score of NN for first cluster is 0.6155

Probability of Default Estimation with Deep Learning

Let’s now take a look at the performance of a deep learning model using TensorFlow
via KerasClassifier, which enables us to control for the hyperparameters.

The hyperparameters that we tune in this model are batch size, epoch, and dropout
rate. As probability of default is a classification problem, the sigmoid activation func-
tion appears to be the optimal function to use. Deep learning is based on the
structure of NNs, but provides a more complex structure, so it is expected to better
capture the dynamics of data in a way that enables us to have better predictive
performance.

Probability of Default Estimation with Logistic Regression | 189

As we can see in the following code, the predictive performance of the second sample
stumbles, however, with an AUC score of 0.5628:

In [74]: from tensorflow import keras
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier (1]
from tensorflow.keras.layers import Dense, Dropout
from sklearn.model_selection import GridSearchCV
import tensorflow as tf
import logging (2]
tf.get_logger().setLevel(logging.ERROR) (3]

In [75]: def DL_risk(dropout_rate,verbose=0):
model = keras.Sequential()
model.add(Dense(128,kernel_initializer='normal’',

activation = 'relu', input_dim=4))
model.add(Dense(64, kernel_initializer='normal',
activation = 'relu'))
model.add(Dense(8,kernel_initializer="normal',
activation = 'relu'))

model.add(Dropout(dropout_rate))

model.add(Dense(1, activation="sigmoid"))
model.compile(loss="'binary_crossentropy', optimizer='rmsprop"')
return model

@ Importing KerasClassifier to run grid search
® Importing logging to suppress the warning messages

© Naming TensorFlow for logging

Given the optimized hyperparameters of dropout, batch size, and epoch, the deep
learning model produces the best performance among the models we have employed
so far, with an AUC score of 0.5614. The difference between MLPClassifier and deep
learning models used in this chapter is the number of neurons in the hidden layer.
Technically, these two models are deep learning models with different structures.

In [76]: parameters = {'batch_size': [10, 50, 100],
'epochs': [50, 100, 150],
'dropout_rate':[0.2, 0.4]}
model = KerasClassifier(build_fn = DL_risk) (1)
gs = GridSearchCV(estimator = model,
param_grid = parameters,
scoring = 'roc_auc') (2]

In [77]: gs.fit(X_trainl, y_trainl, verbose=0)
print('Best hyperparameters for first cluster in DL are {}'.
format(gs.best_params_))
Best hyperparameters for first cluster in DL are {'batch_size': 10,
'dropout_rate': 0.2, 'epochs': 50}

190 | Chapter 6: Credit Risk Estimation

O Calling a predefined function named DL_risk to run with optimized
hyperparameters

© Applying the grid search

In [78]: model = KerasClassifier(build_fn = DL_risk, (1]

dropout_rate = gs.best_params_['dropout_rate'],
verbose = 0,
batch_size = gs.best_params_['batch_size'], (2]
epochs = gs.best_params_['epochs']) (3]

model.fit(X_trainil, y_traini)

DL_predictl = model.predict(X_test1) (4]

DL_ROC_AUC = roc_auc_score(y_testl, pd.DataFrame(DL_predictl.flatten()))

print('DL_ROC_AUC is {:.4f}'.format(DL_ROC_AUC))

DL_ROC_AUC is 0.5628

© Running deep learning algorithm with optimum hyperparameter of dropout rate
Running deep learning algorithm with optimum hyperparameter of batch size

Running deep learning algorithm with optimum hyperparameter of epoch
number

O Computing the ROC-AUC score after flattening the prediction

In [79]: gs.fit(X_train2.values, y_train2.values, verbose=0)
print('Best parameters for second cluster in DL are {}'.
format(gs.best_params_))
Best parameters for second cluster in DL are {'batch_size': 10,
'dropout_rate': 0.2, 'epochs': 150}

In [80]: model = KerasClassifier(build_fn = DL_risk,
dropout_rate= gs.best_params_['dropout_rate'],
verbose = 0,
batch_size = gs.best_params_['batch_size'],
epochs = gs.best_params_['epochs'])
model.fit(X_train2, y_train2)
DL_predict2 = model.predict(X_test2)
DL_ROC_AUC = roc_auc_score(y_test2, DL_predict2.flatten())
print('DL_ROC_AUC is {:.4f}'.format(DL_ROC_AUC))
DL_ROC_AUC is 0.5614

This finding confirms that DL models have become increasingly popular in financial
modeling. In the industry, however, due to the opaque nature of network structure,
this method is suggested for use in conjunction with traditional models.

Probability of Default Estimation with Logistic Regression | 191

Conclusion

Credit risk analysis has a long tradition but is also still a challenging task to accom-
plish. This chapter attempted to present a brand new ML-based approach to tackling
this problem and to getting better predictive performance. In the first part of the
chapter, the main concepts related to credit risk were provided. Then, we applied a
well-known parametric model, logistic regression, to German credit risk data. The
performance of logistic regression was then compared with Bayesian estimation
based on MAP and M-H. Finally, core machine learning models—namely SVC, ran-
dom forest, and NNs with deep learning—were employed, and the performance of all
models was compared.

In the next chapter, a neglected dimension risk will be introduced: liquidity risk. The
appreciation of liquidity risk has grown considerably since the 2007-2008 financial
crisis and has turned out to be an important part of risk management.

References

Articles cited in this chapter:

Basel Committee on Banking Supervision, and Bank for International Settlements.
2000. “Principles for the Management of Credit Risk” Bank for International
Settlements.

Le, Tuong, Mi Young Lee, Jun Ryeol Park, and Sung Wook Baik. 2018. “Oversampling
Techniques for Bankruptcy Prediction: Novel Features from a Transaction Data-
set” Symmetry 10 (4): 79.

Tibshirani, Robert, Guenther Walther, and Trevor Hastie. 2001. “Estimating the
Number of Clusters in a Data Set via the Gap Statistic” Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology) 63 (2): 411-423.

Books and PhD theses cited in this chapter:

Rokach, Lior, and Oded Maimon. 2005. “Clustering methods” In Data Mining and
Knowledge Discovery Handbook, 321-352. Boston: Springer.

Wehrspohn, Uwe. 2002. “Credit Risk Evaluation: Modeling-Analysis-Management.
PhD dissertation. Harvard.

192 | Chapter 6: Credit Risk Estimation

CHAPTER 7
Liquidity Modeling

When the music stops, in terms of liquidity, things will be complicated. But as long as
the music is playing, you've got to get up and dance. We're still dancing.

—Chuck Prince (2007)

Liquidity is another important source of financial risk. However, it has been long
neglected, and the finance industry has paid a huge price for modeling risk without
considering liquidity.

The causes of liquidity risk are departures from the complete markets and symmetric
information paradigm, which can lead to moral hazard and adverse selection. To the
extent that such conditions persist, liquidity risk is endemic in the financial system
and can cause a vicious link between funding and market liquidity, prompting sys-
temic liquidity risk (Nikolaou 2009).

Tapping into the time lag between a changing value of the variable and its impact on
the real market turns out to be a success criterion in modeling. For instance, interest
rates, to some extent, diverge from real market dynamics from time to time, and it
takes some time to settle. Together with this, uncertainty is the solely source of risk in
traditional asset pricing models; however, it is far from reality. To fill the gap between
financial models and real-market dynamics, the liquidity dimension stands out. A
model with liquidity can better adjust itself to developments in the financial markets
in that liquidity affects both the required returns of assets and also the level of uncer-
tainty. Thus, liquidity is quite an important dimension in estimating probability of
default (Gaygisiz, Karasan, and Hekimoglu 2021).

The importance of liquidity has been highlighted and has gained much attention
since the global mortgage crisis broke out in 2007-2008. During this crisis, most
financial institutions were hit hard by liquidity pressures, resulting in several strict
measures taken by regulatory authorities and central banks. Since then, debates over

193

the need to include liquidity, originating from the lack of tradable securities, have
intensified.

The concept of liquidity is multifaceted. By and large, a liquid asset is defined by the
extent to which a large amount of it is sold without a considerable price impact. This
is also known as transaction cost. This is, however, not the only important facet of lig-
uidity. Rather, during a period of stress, resilience stands out as investors seek prompt
price discovery (Sarr and Lybek 2002). This is pointed out by Kyle (1985): “Liquidity
is a slippery and elusive concept, in part because it encompasses a number of transac-
tional properties of markets”

With that said, liquidity is an ambiguous concept, and to define it we need to focus
on its different dimensions. In the literature, different researchers come up with dif-
ferent dimensions of liquidity, but for the purposes of this book, we will identify four
defining characteristics of liquidity:

Tightness
The ability to trade an asset at the same price at the same time. This refers to the
transaction cost occurring during a trade. If the transaction cost is high, the dif-
ference between buy and sell prices will be high or vice versa. So, a narrow trans-
action cost defines how tight the market is.

Immediacy
The speed at which a large amount of buy or sell orders can be traded. This
dimension of liquidity provides us with valuable information about the financial
market, as low immediacy refers to malfunctioning of parts of the market such as
clearing, settlement, and so forth.

Depth
The presence of large numbers of buyers and sellers who are able to cover abun-
dant orders at various prices.

Resiliency
A market’s ability to bounce back from nonequilibrium. It can be thought of as a
price-recovery process in which order imbalance dies out quickly.

Given the definition and interconnectedness of liquidity, it is not hard to see that
modeling liquidity is a tough task. In the literature, many different types of liquidity
models are proposed, however, considering the multidimensionality of liquidity, it
may be wise to cluster the data depending on which dimension it captures. To this
end, we will come up with different liquidity measures to represent all four dimen-
sions. These liquidity measures are volume-based measures, transaction cost-based
measures, price impact-based measures, and market-impact measures. For all these
dimensions, several different liquidity proxies will be used.

194 | Chapter7: Liquidity Modeling

Using clustering analysis, these liquidity measures will be clustered, which helps us to
understand which part of liquidity an investor should focus on, because it is known
that different dimensions of liquidity prevail in an economy during different time
periods. Thus, once we are done with clustering analysis, we end up with a smaller
number of liquidity measures. For the sake of clustering analysis, we will use the
Gaussian mixture model (GMM) and the Gaussian mixture copula model (GMCM)
to tackle this problem. GMM is a widely recognized clustering model that works well
under elliptical distribution. GMCM is an extension of the GMM in that we include a
copula analysis to take correlation into account. We will discuss these models in
detail, so let us start by identifying the liquidity measures based on different liquidity
dimensions.

Liquidity Measures

The role of liquidity has finally been recognized by finance practitioners and econo-
mists, which makes it even more important to understand and develop liquidity
measurement. Existing literature concentrates on a single measure by which it is hard
to conceptualize an elusive concept like liquidity. Instead, we will cover four dimen-
sions to develop a more comprehensive application:

o Volume
o Transaction cost
 Price impact

o Market impact

Let’s get started with the volume-based liquidity measures.

Volume-Based Liquidity Measures

Large orders are covered when the market has depth, that is, a deep financial market
has the ability to meet abundant orders. This, in turn, provides information about the
market, and if the market lacks depth, order imbalance and discontinuity emerge in
the market. Given the market’s depth, volume-based liquidity measures can be used
to distinguish liquid and illiquid assets. Moreover, volume-based liquidity measures
have a strong association with bid-ask spread: a large bid-ask spread implies low
volume, while a narrow bid-ask spread implies high volume (Huong and Gregoriou
2020).

As you can imagine, a large portion of the variation in liquidity arises from trading
activities. The importance of the volume-based approach is stressed by Blume, Easley,
and O’Hara (1994) saying that volume traded generates information that cannot be
extracted from alternative statistics.

Liquidity Measures | 195

To properly represent the depth dimension of liquidity, the following volume-based
measures will be introduced:

« Liquidity ratio
« Hui-Heubel ratio

« Turnover ratio

Liquidity ratio

This ratio measures the extent to which volume is required to induce a price change
of 1%:

T
PV

LR, = ——
it T
% - 1[PCil
where P, is the total price of stock i on day ¢, V,, represents the volume traded of
stock i on day ¢, and finally, |[PC, | is the absolute value of difference between price at
time tand £ - 1.

The higher the ratio LR;, is, the higher the liquidity of asset i will be. This implies that
higher traded volume, P,V ,, and low price difference, |[PC, |, amount to high liquid-
ity level. Conversely, if a low volume is necessary to initiate a price change, then this
asset is referred to as illiquid. Obviously, this conceptual framework focuses more on
the price aspect than on the issue of time or on the execution costs typically present
in a market (Gabrielsen, Marzo, and Zagaglia 2011).

Let’s first import the data and observe it via the following codes. As it is readily
observable, the main variables in the dataset are ask (ASKHI), bid (BIDLO), open
(OPENPRC), and trading price (PRC) along with the volume (VOL), return (RET),
volume-weighted return (vwretx) of the stock, and number of shares outstanding
(SHROUT):

In [1]: import as
import as
import as
import

warnings.filterwarnings("ignore")
plt.rcParams['figure.figsize'] = (10, 6)
pd.set_option('use_inf_as_na', True)

In [2]: lig_data = pd.read_csv('bid_ask.csv')

In [3]: lig_data.head()

196 | Chapter7: Liquidity Modeling

Out[3]: Unnamed: 0 Date EXCHCD TICKER COMNAM BIDLO ASKHI PRC
\
0 1031570 2019-01-02 3.0 INTC INTEL CORP 45.77 47.470
47.08
1 1031571 2019-01-03 3.0 INTC INTEL CORP 44.39 46.280
44.49
2 1031572 2019-01-04 3.0 INTC INTEL CORP 45.54 47.570
47.22
3 1031573 2019-01-07 3.0 INTC INTEL CORP 46.75 47.995
47.44
4 1031574 2019-01-08 3.0 INTC INTEL CORP 46.78 48.030
47.74
VoL RET SHROUT OPENPRC vwretx
0 18761673.0 0.003196 4564000.0 45.960 0.001783
1 32254097.0 -0.055013 4564000.0 46.150 -0.021219
2 35419836.0 0.061362 4564000.0 45.835 0.033399
3 22724997.0 0.004659 4564000.0 47.100 0.009191
4 22721240.0 0.006324 4564000.0 47.800 0.010240

Calculating some liquidity measures requires a rolling-window estimation, such as
the calculation of the bid price for five days. To accomplish this task, the list named
rolling_five is generated using the following code:

(]

In [4]: rolling_five

for j in lig_data.TICKER.unique():
for 1 in range(len(lig_data[lig_data.TICKER == j])):
rolling_five.append(liq_data[i:1+5].agg({'BIDLO': 'min',

"ASKHI': 'max',
'VOL': 'sum',
"SHROUT': 'mean',

'"PRC': 'mean'})) (1)

In [5]: rolling_five_df = pd.DataFrame(rolling_five)
rolling_five_df.columns = ['bidlo_min', 'askhi_max', 'vol_sum',
'shrout_mean', 'prc_mean']
1igq_vol_all = pd.concat([liq_data,rolling_five_df], axis=1)

In [6]: lig_ratio = []
for j in 1igq_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):
liq_ratio.append((lig_vol_all['PRC'][1+1:1+6] *

lig_vol_all['VvoL"][1+1:1+6]).sum()/

Liquidity Measures | 197

(np.abs(lig_vol_all['PRC'][1+1:1+6].mean() -
lig_vol_all['PRC'][1:1+5].mean())))

© Calculating the required statistical measures for five-day window

Now, we have minimum bid price, max ask price, summation of volume traded, mean
of the number of shares outstanding, and mean of the trading price per five days.

Hui-Heubel ratio

Another measure that captures the depth is the Hui-Heubel liquidity ratio, known as

Ly

P -pP . _
Ly = max ™y /P x shrout

min

where P, and P, show maximum and minimum price over the determined

min
period, respectively. P is average closing price over determined period. What we have
in the numerator is the percentage change in the stock price, and the volume traded is
divided by market capitalization, i.e., P x shrout in the denominator. One of the most
distinguish features of Hui-Heubel liquidity measure is that it is applicable to a single

stock, not only portfolios.

As discussed by Gabrielsen, Marzo, and Zagaglia (2011), P, and P, can be

X min

replaced by bid-ask spread but due to low volatility in bid-ask spread, it tends to bias
downward.

To compute the Hui-Heubel liquidity ratio, we first have the liquidity measures in a
list, then we add all these measures into the dataframe to have all-encompassing data:

In [7]: Lhh = []

for j in 1ig_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):

Lhh.append((lig_vol_all['PRC'][1:1+5].max() -

lig_vol all['PRC'J[1:1+5].min()) /
lig_vol_all['PRC'J[1:1+5].min() /
(lig_vol_all['voL'][1:1+5].sum() /

liq_vol_all['SHROUT'][1:1+5].mean() *
lig_vol_all['PRC'][1:1+5].mean()))

Turnover ratio

Turnover ratio has long been treated as a proxy for liquidity. It is basically the ratio of
volatility to number of shares outstanding:

198 | Chapter7: Liquidity Modeling

t

where D;, denotes the number of trading days, Vol,, is the number of shares traded at
time ¢, and shrout;, shows the number of shares outstanding at time ¢. A large turn-
over rate indicates a high level of liquidity, in that turnover implies trading frequency.
As turnover rate incorporates the number of shares outstanding, it makes it a more
subtle measure of liquidity.

Turnover ratio is calculated based on daily data, and then all the volume-based liquid-
ity measures are converted into a dataframe and are included in 1iq_vol_all:

In [8]: turnover_ratio = []

for j in 1igq_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):
turnover_ratio.append((1/1ig_vol_all['VOL'].count()) *
(np.sum(liq_vol_all['VvOL'][i:1+1]) /
np.sum(lig_vol_all['SHROUT'][1:1+1])))

In [9]: liq_vol_all['liqg_ratio'] = pd.DataFrame(liq_ratio)
1ig_vol_all['Lhh'] = pd.DataFrame(Lhh)
1iq_vol_all['turnover_ratio'] = pd.DataFrame(turnover_ratio)

Transaction Cost—Based Liquidity Measures

In the real world, buyers and sellers do not magically meet in a frictionless environ-
ment. Rather, intermediaries (brokers and dealers), equipment (computers and the
like), patience (trades cannot be realized instantaneously), and a rule book that stipu-
lates how orders are to be handled and turned into trades are required. Also, the
orders of large, institutional investors are big enough to affect market prices. All of
these imply the existence of trading costs, and just how to structure a market (and a
broader marketplace) to contain these costs is a subtle and intricate challenge (Baker
and Kiymaz (2013). This led to the emergence of transaction cost.

Transaction cost is a cost an investor must bear during trade. It is referred to as any
expenses related to the execution of trade. A distinction of transaction cost as explicit
and implicit costs is possible. The former relates to order processing, taxes, and bro-
kerage fees, while the latter includes more latent costs, such as bid-ask spread, timing
of execution, and so on.

Transaction cost is related to the tightness and immediacy dimensions of liquidity.
High transaction costs discourage investors to trade and this, in turn, decreases the
number of buyers and sellers in the market so that the trading place diverges away
from the more centralized market into a fragmented one, which result in a shallow
market (Sarr and Lybek 2002). To the extent that transaction cost is low, investors are

Liquidity Measures | 199

willing to trade and this results in a flourished trading environment in which markets
will be more centralized.

Similarly, an abundance of buyers and sellers in a low transaction cost environment
refers to the fact that a large number of orders are traded in a short period of time. So,
immediacy is the other dimension of liquidity, which is closely related to the transac-
tion cost.

Even though there is an ongoing debate about the goodness of bid-ask spread as well
as the assurance that these models provide, bid-ask spread is a widely recognized
proxy for transaction cost. To the extent that bid-ask spread is a good analysis of
transaction cost, it is also a good indicator of liquidity by which the ease of converting
an asset into cash (or a cash equivalent) might be determined. Without going into
further detail, bid-ask spread can be measured by quoted spread, effective spread, and
realized spread methods. So at first glance, it may seem strange to calculate bid-ask
spread, which can be easily calculated by these methods. But this is not the case in
reality. When the trade cannot be realized inside the quotes, then the spread is no
longer the observed spread on which these methods are based.

Percentage quoted and effective bid-ask spreads

The other two well-known bid-ask spreads are percentage quoted and percentage effec-
tive bid-ask spreads. Quoted spread measures the cost of completing a trade, that is,
the difference in the bid-ask spread. There are different forms of quoted spread but
for the sake of scaling, we'll choose the percentage quoted spread:

Posk ™ Ppia

Percentage quoted spread = —

mid

where P is the ask price of the stock and P, is the bid price of the stock.

The effective spread measures the deviation between trading price and the mid-price,
which is sometimes called the true underlying value of the stock. When trades occur
either within or outside the quotes, a better measure of trading costs is the percentage
effective half spread, which is based on the actual trade price, and is computed on a
percentage basis (Bessembinder and Venkataraman 2010):

2P~ P i

Effective spread = —

mid

where P, is the trading price of the stock and P, ;, is the midpoint of the bid-ask offer
prevailing at the time of the trade.

200 | Chapter7:Liquidity Modeling

It is relatively easy to calculate the percentage quoted and effective bid-ask spreads, as
shown in the following:

In [10]: lig_vol_all['mid_price'] = (lig_vol_all.ASKHI + liq_vol_all.BIDLO) / 2
1iq_vol_all['percent_quoted_ba'] = (lig_vol_all.ASKHI -
lig_vol_all.BIDLO) / \
1iq_vol_all.mid_price
lig_vol_all['percent_effective_ba'] = 2 * abs((lig_vol_all.PRC -
1iq_vol_all.mid_price)) / \
lig_vol_all.mid_price

Roll’s spread estimate

One of the first and foremost spread measures was proposed by Roll (1984). The Roll
spread can be defined as:

Roll = \/—COV(APP Ap,)

where Ap, and Ap, _, are the price differences at time ¢ and at time ¢ - 1, and cov
denotes the covariance between these price differences.

Assuming that the market is efficient' and the probability of distribution of observed
price changes is stationary, Roll’s spread is motivated by the fact that serial correlation
of price changes is a good proxy for liquidity.

One of the most important things to note in calculating Roll’s spread is that positive
covariance is not well-defined, and it consists of almost half of the cases. The litera-
ture puts forth several methods to remedy this shortcoming, and we’ll embrace Har-
ris’s (1990) approach in the following:

In [11]: lig_vol_all['price_diff'] = lig_vol_all.groupby('TICKER')['PRC']\
.apply(lambda x:x.diff())
1ig_vol_all.dropna(inplace=True)
roll = []

for j in ligq_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[ligq_vol_all.TICKER == j])):
roll_cov = np.cov(ligq_vol_all['price_diff']J[i1:1+5],
lig_vol_all['price_diff'][1+1:1+6]) (1]
if roll_cov[0,1] < 0: @
roll.append(2 * np.sqrt(-roll_cov[0, 1]))
else:
roll.append(2 * np.sqrt(np.abs(roll_cov[0, 1]))) (3]

1 Efficient market refers to how well and fast current prices reflect all available information about the value of
the underlying asset(s).

Liquidity Measures | 201

© Calculating the covariance between price differences for the five-day window
@ Checking the case where the covariance is negative
© In the case of positive covariance, Harris’s approach is applied

The Corwin-Schultz spread

The Corwin-Schultz spread is rather intuitive and easy to apply. It rests mainly on the
following assumption: given that the daily high and low prices are typically buyer and
seller initiated, respectively, the observed price change can be split into effective price
volatility and bid-ask spread. So the ratio of high-to-low prices for a day reflects both
the stocK’s variance and its bid-ask spread (Corwin and Schultz 2012; Abdi and
Ranaldo 2017).

This spread proposes an entirely new approach based on the daily high and low pri-
ces only, and the logic behind it is summarized by Corwin and Schultz (2012) as “the
sum of the price ranges over 2 consecutive single days reflect 2 days’ volatility and
twice the spread, while the price range over one 2-day period reflects 2 days’ volatility
and one spread”:

S =
1+e%
wo VBB _ [y
3-2\2 3-2\2
0 2
H
_ 1 t+j
B=E(L;_,|In S
t+j
0 2
H
_ 1 t+1
y=E ijoln 0
t+1

where Hf (Lf) denotes actual high (low) prices on day ¢ and H} or L} the observed
high (low) stock price on day ¢.

The Corwin-Schultz spread requires multiple steps to calculate, as it includes many
variables. The following code presents our way of doing this calculation:

202 | Chapter7:Liquidity Modeling

In [12]: gamma = []

for j in liq_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[liq_vol_all.TICKER == j])):
gamma.append((max(lig_vol_all['ASKHI'].iloc[1+1],
1ig_vol_all['ASKHI'].iloc[1]) -
min(lig_vol_all['BIDLO'].1iloc[1+1],
1ig_vol_all['BIDLO'].1iloc[1])) ** 2)
gamma_array = np.array(gamma)

In [13]: beta = []

for j in liq_vol_all.TICKER.unique():
for 1 in range(len(liq_vol_all[liq_vol_all.TICKER == j])):
beta.append((lig_vol_all['ASKHI'].iloc[1+1] -
1ig_vol_all['BIDLO'].1loc[1+1]) ** 2 +
(lig_vol_all['ASKHI'].1iloc[1] -
1ig_vol_all['BIDLO'].1iloc[1]) ** 2)
beta_array = np.array(beta)

In [14]: alpha = ((np.sqrt(2 * beta_array) - np.sgrt(beta_array)) /
(3 - (2 * np.sqrt(2)))) - np.sqrt(gamma_array /
(3 - (2 * np.sart(2))))
CS_spread = (2 * np.exp(alpha - 1)) / (1 + np.exp(alpha))

In [15]: ligq_vol_all = lig_vol_all.reset_index()
lig_vol_all['roll'] = pd.DataFrame(roll)
1ig_vol_all['CS_spread'] = pd.DataFrame(CS_spread)

Price Impact—Based Liquidity Measures

In this section, we will introduce price impact-based liquidity measures by which we
are able to gauge the extent to which price is sensitive to volume and turnover ratio.
Recall that resiliency refers to the market responsiveness about new orders. If the
market is responsive to the new order—that is, a new order correct the imbalances in
the market—then it is said to be resilient. Thus, given a change in volume and/or
turnover ratio, high price adjustment amounts to resiliency or vice versa.

We have three price impact-based liquidity measures to discuss:
o The Amihud illiquidity measure

o The Florackis, Andros, and Alexandros (2011) price impact ratio
« Coefficient of elasticity of trading (CET)

Liquidity Measures | 203

Amihud illiquidity

This liquidity proxy is a celebrated and widely recognized measure. Amihud illiquid-
ity (2002) basically measures the sensitivity of the return to trading volume. More
concretely, it gives us a sense about a change in absolute return as trading volume
changes by $1. The Amihud illiquidity measure, or ILLIQ for short, is well known
among academics and practitioners:

D, |R‘ |
1 it itd|
ILLIQ = D—itzd: lm

where R, ; is the stock return on day ¢ at month ¢, V,,; represents the dollar volume
on day d at month ¢, and D is the number of observation days in month ¢.

The Amihud measure has two advantages over many other liquidity measures. First,
the Amihud measure has a simple construction that uses the absolute value of the
daily return-to-volume ratio to capture price impact. Second, the measure has a
strong positive relation with expected stock return (Lou and Tao 2017).

The Amihud illiquidity measure is not hard to calculate. However, before directly cal-
culating the Amihud’s measure, the dollar volume of stocks needs to be computed:

In [16]: dvol = []

for j in lig_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):
dvol.append((lig_vol_all['PRC'][1:1+5] *
Tig_vol_all['voL"'][1:1+5]).sum())
1lig_vol_all['dvol'] = pd.DataFrame(dvol)

In [17]: amihud = []

for j in lig_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):
amihud.append((1 / lig_vol_all['RET'].count()) *
(np.sum(np.abs(lig_vol_all['RET'][1:1+1])) /
np.sum(lig_vol_all['dvol']J[i:1+1])))

The price impact ratio
Florackis, Andros, and Alexandros (2011) aimed to improve the Amihud illiquidity
ratio, and came up with a new liquidity measure, Return-to-Turnover (RtoTR). The
disadvantages of Amihud’s illiquidity measure are listed by authors as:

« It is not comparable across stocks with different market capitalizations.

« It neglects the investor’s holding horizon.

204 | Chapter7:Liquidity Modeling

To deal with these drawbacks, Florackis, Andros, and Alexandros presented a new
measure, RtoTR, that replaces the volume ratio of Amihud’s model with turnover
ratio so that the new measure is able to capture the trading frequency:

D, [R
_ 1 it itd

RtoTR = 52 1 7
it itd

where TR, ; is the monetary volume of stock i on day d at month ¢, and the rest of the
components are the same as in Amihud’s illiquidity measure.

The measure is as easy to calculate as Amihud’s measure, and it has no size bias
because it includes the turnover ratio for capturing the trading frequency. This also
helps us to examine the price and size effect.

The calculation of the price impact ratio is provided below:

In [18]: florackis = []

for j in 1lig_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):
florackis.append((1 / liq_vol_all['RET'].count()) *
(np.sum(np.abs(lig_vol_all['RET'][1:1+1]) /
1ig_vol_all['turnover_ratio'][1:1+1])))

Coefficient of elasticity of trading

CET is a liquidity measure proposed to remedy the shortcomings of time-related lig-
uidity measures such as number of trades and orders per unit of time. These meas-
ures are adopted to assess the extent to which market immediacy affects the liquidity
level.

Market immediacy and CET go hand in hand as it measures the price elasticity of
trading volume and if price is responsive (i.e., elastic) to the trading volume, that
amounts to a greater level of market immediacy:

%AV

CET = % AP

where % AV refers to change in trading volume and % AP denotes a change in price.

The Python code of the CET formula is provided below. As a first part of this applica-
tion, percentage difference in volume and price are calculated. Then all price impact-
based liquidity measures are stored in the 1ig_vol_all dataframe:
In [19]: lig_vol_all['vol _diff_pct'] = liq_vol_all.groupby('TICKER"')['VOL"']\
.apply(lambda x: x.diff()).pct_change() (1]
lig_vol_all['price_diff_pct'] = 1lig_vol_all.groupby('TICKER')['PRC']\
.apply(lambda x: x.diff()).pct_change() @

Liquidity Measures | 205

In [20]: cet = []

for j in lig_vol_all.TICKER.unique():
for 1 in range(len(lig_vol_all[lig_vol_all.TICKER == j])):
cet.append(np.sum(lig_vol_all['vol diff_pct']J[l:1+1])/
np.sum(lig_vol_all['price_diff_pct'][1:1+1]))

In [21]: lig_vol_all['amihud'] = pd.DataFrame(amihud)
1iq_vol_all['florackis'] = pd.DataFrame(florackis)
lig_vol_all['cet'] = pd.DataFrame(cet)

O Calculating the percentage volume difference

® Calculating the percentage price difference

Market Impact-Based Liquidity Measures

Identifying the source of information is a big deal in finance because an unknown
source of information might mislead investors and lead to unintended consequences.
A price surge, for instance, arising from the market does not provide the same infor-
mation as one arising from an individual stock. With that being said, a new source of
information should be identified in a way to capture price movement properly.

To accomplish this task, we use the capital asset pricing model (CAPM), by which we
can distinguish systematic and unsystematic risk. The famous slope coefficient in
CAPM indicates systematic risks, and the unsystematic risk is attributable to individ-
ual stocks as long as market risk is removed.

As it is referenced in Sarr and Lybek (2002), Hui-Heubel embraces the following
approach:

R,=a+BR, +u

where R; is the daily return on i™ stock, and u; is the idiosyncratic or unsystematic
risk.

Once we estimate residuals, u,, from the equation, it is regressed over the volatility,
V,, and the estimated coefficient of V; gives the liquidity level of the related stock,
also known as the idiosyncratic risk:

2 _
u;y = y1+y2Vi+ei

206 | Chapter7:Liquidity Modeling

where u} denotes the squared residuals, V, is the daily percentage change in trading
volume, and ¢; is the residual term.

Larger y, implies larger price movements, and this gives us a sense about the liquidity
of the stock. Conversely, the smaller y, leads to smaller price movements, indicating
higher liquidity levels. In code, we have:

In [22]: import as

In [23]: lig_vol_all['VOL_pct_change'] = lig_vol_all.groupby('TICKER"')['VOL']\
.apply(lambda x: x.pct_change())
1ig_vol_all.dropna(subset=['VOL_pct_change'], inplace=True)
1ig_vol_all = lig_vol_all.reset_index()

In [24]: unsys_resid = []

for 1 in lig_vol_all.TICKER.unique():
X1 = liq_vol_all[liq_vol all['TICKER'] == i]['vwretx'] @
y = lig_vol_all[lig_vol_all['TICKER'] == i]['RET'] (2]
ols = sm.OLS(y, X1).fit() ©
unsys_resid.append(ols.resid) (4)

Assigning volume-weighted returns of all tickers as the independent variable
Assigning returns of all tickers as the dependent variable

Running the linear regression model with the defined variables

(1]
(2]
3]
O Storing the residuals coming from the linear regression as an unsystematic factor

And then we calculate the market impact-based liquidity ratio:

In [25]: market_impact = {}

for 1, j in zip(lig_vol_all.TICKER.unique(),
range(len(lig_vol_all['TICKER'].unique()))):

X2 = lig_vol_all[lig_vol_all['TICKER'] == i]['VOL_pct_change'] (1)

ols = sm.0OLS(unsys_resid[j] ** 2, X2).fit()

print('***' * 30)

print(f'OLS Result for {i}')

print(ols.summary())

market_impact[j] = ols.resid (2]
hhhkhkkhkhhkhkhhhhhhhhdhhhddhhddhhhdhhhdhhdhddhhddhhddhdhddhdhddddhddddhdddhdddhdddhdrddrddd
OLS Result for INTC

OLS Regression Results

Dep. Variable: y R-squared (uncentered): 0.157
Model: OLS Adj. R-squared (uncentered) 0.154
Method: Least Squares F-statistic: 46.31
Date: Thu, 02 Dec 2021 Prob (F-statistic): 7.53e-11

Liquidity Measures | 207

Time: 15:33:38 Log-Likelihood: 1444.9
No. Observations: 249 AIC: -2888.
Df Residuals: 248 BIC: -2884.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
VOL_pct_change 0.0008 0.000 6.805 0.000 0.001 0.001
Omnibus: 373.849 Durbin-Watson: 1.908
Prob(Omnibus): 0.000 Jarque-Bera (JB): 53506.774
Skew: 7.228 Prob(JB): 0.00
Kurtosis: 73.344 Cond. No. 1.00
Notes:

[1] R2 is computed without centering (uncentered) since the model does not

contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is

correctly specified.

kkkkkhkkkhhkhkhkkkkhkhkkhhhkhkkhhkhkhkkkhhkhkkkhhhkhkkhhkhkhkkhkhkhkhkkkhkhkhkkhkhkhkhkkkkhkhkhkkkkhkhkkkkk

OLS Result for MSFT

OLS Regression Results

Dep. Variable: y R-squared (uncentered): 0.044
Model: OLS Adj. R-squared (uncentered): 0.040
Method: Least Squares F-statistic: 11.45
Date: Thu, 02 Dec 2021 Prob (F-statistic): 0.000833
Time: 15:33:38 Log-Likelihood: 1851.0
No. Observations: 249 AIC: -3700.
Df Residuals: 248 BIC: -3696.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t] [0.025 0.975]
VOL_pct_change 9.641e-05 2.85e-05 3.383 0.001 4.03e-05 0.000
Omnibus: 285.769 Durbin-Watson: 1.533
Prob(Omnibus): 0.000 Jarque-Bera (JB): 11207.666
Skew: 4.937 Prob(JB): 0.00
Kurtosis: 34.349 Cond. No. 1.00
Notes:

[1] R2 is computed without centering (uncentered) since the model does not

contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is

correctly specified.

kkkkkhkkkhhkhkhkkkkhkhkkhhhkhkkkhhkhkkkhhkhkkkhhkhkhkkhkhkhkkkhkhkhhkkkhkhkhkkhkhkhkhkkhkhkhkhkkkkhkhkxkk*

208

| Chapter7: Liquidity Modeling

OLS Result for IBM
OLS Regression Results

Dep. Variable: y R-squared (uncentered): 0.134
Model: OLS Adj. R-squared (uncentered): 0.130
Method: Least Squares F-statistic: 38.36
Date: Thu, 02 Dec 2021 Prob (F-statistic): 2.43e-09
Time: 15:33:38 Log-Likelihood: 1547.1
No. Observations: 249 AIC: -3092.
Df Residuals: 248 BIC: -3089.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t] [0.025 0.975]
VOL_pct_change 0.0005 7.43e-05 6.193 0.000 0.000 0.001
Omnibus: 446.818 Durbin-Watson: 2.034
Prob(Omnibus): 0.000 Jarque-Bera (JB): 156387.719
Skew: 9.835 Prob(JB): 0.00
Kurtosis: 124.188 Cond. No. 1.00
Notes:

[1] R2 is computed without centering (uncentered) since the model does not
contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

© Assigning percentage change in volume of all tickers as the independent variable

©® Market impact the residual of this linear regression

Then, we include the market impact in our dataframe and observe the summary sta-
tistics of all the liquidity measures that we've introduced so far:

In [26]: appendl = market_impact[0].append(market_impact[1])
1iq_vol_all['market_impact'] = appendl.append(market_impact[2]) (1)

In [27]: cols = ['vol _diff_pct', 'price diff_pct', 'price_diff',
'VOL_pct_change', 'dvol', 'mid_price']
1iq_measures_all = lig_vol_all.drop(lig_vol_all[cols], axis=1)\
Aloc[:, -11:]
1iq_measures_all.dropna(inplace=True)
1iq_measures_all.describe().T

out[27]: count mean std min \
liq_ratio 738.0 7.368514e+10 2.569030e+11 8.065402e+08
Lhh 738.0 3.340167e-05 5.371681e-05 3.966368e-06
turnover_ratio 738.0 6.491127e-03 2.842668e-03 1.916371e-03
percent_quoted_ba 738.0 1.565276e-02 7.562850e-03 3.779877e-03
percent_effective_ba 738.0 8.334177e-03 7.100304e-03 0.000000e+00
roll 738.0 8.190794e-01 6.066821e-01 7.615773e-02

Liquidity Measures | 209

CS_spread 738.0 3.305464e-01 1.267434e-01 1.773438e-40

amihud 738.0 2.777021e-15 2.319450e-15 0.000000e+00

florackis 738.0 2.284291e-03 1.546181e-03 0.000000e+00

cet 738.0 -1.113583e+00 3.333932e+01 -4.575246e+02

market_1impact 738.0 8.614680e-05 5.087547e-04 -1.596135e-03
25% 50% 75% max
liq_ratio 1.378496e+10 2.261858e+10 4.505784e+10 3.095986e+12
Lhh 1.694354e-05 2.368095e-05 3.558960e-05 5.824148e-04
turnover_ratio 4,897990e-03 5.764112e-03 7.423111e-03 2.542853e-02
percent_guoted_ba 1.041887e-02 1.379992e-02 1.878123e-02 5.545110e-02
percent_effective_ba 3.032785e-03 6.851479e-03 1.152485e-02 4.656669e-02
roll 4.574986e-01 6.975982e-01 1.011879e+00 4.178873e+00
CS_spread 2.444225e-01 3.609800e-01 4.188028e-01 5.877726e-01
amihud 1.117729e-15 2.220439%e-15 3.766086e-15 1.320828e-14
florackis 1.059446e-03 2.013517e-03 3.324181e-03 7.869841e-03
cet -1.687807e-01 5.654237e-01 1.660166e+00 1.845917e+02
market_1impact -3.010645e-05 3.383862e-05 1.309451e-04 8.165527e-03

© Appending market impact into the 1ig_vol_all dataframe.

These are the liquidity measures that we take advantage of in the process of modeling
the liquidity via GMM. Now let’s discuss this via a probabilistic unsupervised learning
algorithm.

Gaussian Mixture Model

What happens if we have data with several modes that represent different aspects of
the data? Or let’s put it in the context of liquidity measures, how can you model
liquidity measures with different mean variance? As you can imagine, data consisting
of liquidity measures is multimodal, meaning that there exists several different high-
probability masses and our task is to find out which model fits best to this type
of data.

It is evident that the proposed model is supposed to include a mixture of several com-
ponents, and without knowing the specific liquidity measure, it should be clustered
based on the values obtained from the measures. To recap, we will have one big data-
set that includes all liquidity measures, and assuming for the moment that we forgot
to assign labels to these measures, we need a model that presents different distribu-
tions of these measures without knowing the labels. This model is GMM, which ena-
bles us to model multimodal data without knowing the names of the variables.

Considering the different focus of the liquidity measures introduced before, if we
somehow manage to model this data, that means we can capture different liquidity
level at different times. For instance, liquidity in a high-volatility period cannot be
modeled in the same way as a low-volatility period. In a similar vein, given the depth

210 | Chapter7:Liquidity Modeling

of the market, we need to focus on these different aspects of liquidity. GMM provides
us with a tool to address this problem.

Long story short, if a market is experiencing a boom period, which coincides with
high volatility, volume and transaction cost-based measures would be good choices,
and if a market ends up with price discontinuity, price-based measures would be the
optimal choice. Of course, we are not talking about one-size-fits-all measures—there
may be some instances in which a mixture of measures would work better.

As put by VanderPlas (2016), for K-means to succeed, cluster models must have cir-
cular characteristics. Nevertheless, many financial variables exhibit non-circular
shapes that make it hard to model via K-means. As is readily observable, liquidity
measures overlap and do not have circular shapes, so GMM with its probabilistic
nature would be a good choice for modeling this type of data, as described by Fraley
and Raftery (1998):

One advantage of the mixture-model approach to clustering is that it allows the use of
approximate Bayes factors to compare models. This gives a systematic means of select-
ing not only the parameterization of the model (and hence the clustering method), but
also the number of clusters.

In this part, we would like to import necessary libraries to be used in the GMM. Also,
scaling is applied, which is an essential step in clustering as we have mixed numerical
values in the dataframe. In the last part of the code that follows, a histogram is drawn
to observe the multimodality in the data (Figure 7-1). This is a phenomenon that we
have discussed in the very first part of this section.

In [28]: from import GaussianMixture
from import StandardScaler

In [29]: liq_measures_all2 = liq_measures_all.dropna()
scaled_liq = StandardScaler().fit_transform(liq_measures_all2)

In [30]: kwargs = dict(alpha=0.5, bins=50, stacked=True)

plt.hist(liq_measures_all.loc[:, 'percent_quoted ba'],
**kwargs, label='TC-based")

plt.hist(liq_measures_all.loc[:, 'turnover_ratio'],
**kwargs, label='Volume-based")

plt.hist(liq_measures_all.loc[:, 'market_impact'],
**kwargs, label='Market-based")

plt.title('Multi Modality of the Liquidity Measures')

plt.legend()

plt.show()

Gaussian Mixture Model | 211

Multimodality of the Liquidity Measures
400 4 B TC-based
Volume-based
B Market-based
350 A
300 1
250 A
200 A
150
100
50 - I
0- 7 T T
0.00 0.01 0.02 0.03 0.04 0.05

Figure 7-1. Multimodality of the liquidity measures

And now, given the transaction cost, volume, and market-based liquidity measures,
multimodality (i.e., three peaks) can be easily observed in Figure 7-1. Due to the
scaling issue, the price impact-based liquidity dimension is not included in the
histogram.

Now, let’s run GMM and see how we can cluster the liquidity measures. But first, a
common question arises: how many clusters should we have? To address this ques-
tion, we'll use BIC again, and generate the plot shown in Figure 7-2:

In [31]: n_components = np.arange(1, 10)

clusters = [GaussianMixture(n, covariance_type='spherical',

random_state=0).fit(scaled_liq)
for n in n_components] @

plt.plot(n_components, [m.bic(scaled_liq) for m in clusters]) (2]

plt.title('Optimum Number of Components')

plt.xlabel('n_components"')

plt.ylabel('BIC values')

plt.show()

© Generating different BIC values based on different numbers of clusters

©® Drawing a line plot for BIC values given number of components

212 | Chapter7:Liquidity Modeling

Optimum Number of Components

23000 A

22000 4

21000 -

20000 -

BIC values

19000 A

18000 A

17000 4

16000 1

1 2 3 4 5 6 7 8 9
n_components

Figure 7-2. Optimum number of components

Figure 7-2 shows us that the line seems to flatten out after the third cluster, making
that an ideal point at which to stop.

Using the following code, we are able to detect the state by which data is best repre-
sented. The term state represents nothing but the cluster with the highest posterior
probability. It means that this specific state accounts for the dynamics of the data
most. In this case, State-3 with a probability of 0.55 is the most likely state to explain
the dynamics of the data:

In [32]: def cluster_state(data, nstates):
gmm = GaussianMixture(n_components=nstates,
covariance_type='spherical',
init_params="'kmeans') (1)
gmm_fit = gmm.fit(scaled_liq) (2]
labels = gmm_fit.predict(scaled_liq) (3]
state_probs = gmm.predict_proba(scaled_liq) (4)
state_probs_df = pd.DataFrame(state_probs,
columns=['state-1', 'state-2',
'state-3'])
state_prob_means = [state_probs_df.iloc[:, i].mean()
for 1 in range(len(state_probs_df.columns))] ()
if np.max(state_prob_means) == state_prob_means[0]:
print('State-1 is likely to occur with a probability of {:4f}'
.format(state_prob_means[0]))
elif np.max(state_prob_means) == state_prob_means[1]:
print('State-2 is likely to occur with a probability of {:4f}'
.format(state_prob_means[1]))

Gaussian Mixture Model | 213

else:
print('State-3 is likely to occur with a probability of {:4f}'
.format(state_prob_means[2]))
return state_probs

In [33]: state_probs = cluster_state(scaled_liqg, 3)
print(f'State probabilities are {state_probs.mean(axis=0)}")

State-3 is likely to occur with a probability of 0.550297
State probabilities are [0.06285593 0.38684657 0.5502975]

Configuring the GMM
Fitting GMM with scaled data
Running prediction

Obtaining the state probabilities

® 06 o6 o ©

Computing the average of all three state probabilities

All right, does it not make sense to apply GMM to cluster liquidity measures and
extract the likely state to represent it as one-dimensional data? It literally makes our
lives easier because at the end of the data, we come up with only one cluster with
highest probability. But what would you think if we applied PCA to fully understand
which variables are correlated with the prevailing state? In PCA, we are able to build a
bridge between components and features using loadings so that we can analyze which
liquidity measures have the defining characteristics of a specific period.

As a first step, let’s apply PCA and create a scree plot (Figure 7-3) to determine the
number of components we are working with:

In [34]: from import PCA

In [35]: pca = PCA(n_components=11)
components = pca.fit_transform(scaled_liq)
plt.plot(pca.explained_variance_ratio_)
plt.title('Scree Plot')
plt.xlabel('Number of Components')
plt.ylabel('% of Explained Variance')
plt.show()

214 | Chapter7:Liquidity Modeling

Scree Plot

0.25 4

0.20 A

I

s

%
L

)

=

1)
!

% of Explained Variance

0.05

0.00 A

0 2 4 6 8 10
Number of Components

Figure 7-3. Scree plot

Based on Figure 7-3, we’ll decide to stop at component 3.

As we now have determined the number of components, let’s rerun PCA with three
components and GMM. Similar to our previous GMM application, posterior proba-
bility is calculated and assigned to a variable named state_probs:

In [36]: def gmm_pca(data, nstate):
pca = PCA(n_components=3)
components = pca.fit_transform(data)
mxtd = GaussianMixture(n_components=nstate,
covariance_type="'spherical')
gmm = mxtd.fit(components)
labels = gmm.predict(components)
state_probs = gmm.predict_proba(components)
return state_probs,pca

In [37]: state_probs, pca = gmm_pca(scaled_liq, 3)
print(f'State probabilities are {state_probs.mean(axis=0)}")
State probabilities are [0.7329713 0.25076855 0.01626015]

In what follows, we find out the state with the highest probability, and it turns out to
be State-1 with a probability of 73%:

In [38]: def wpc():
state_probs_df = pd.DataFrame(state_probs,
columns=['state-1', 'state-2',
'state-3'])
state_prob_means = [state_probs_df.iloc[:, i].mean()
for 1 in range(len(state_probs_df.columns))]

Gaussian Mixture Model | 215

if np.max(state_prob_means) == state_prob_means[0]:
print('State-1 is likely to occur with a probability of {:4f}
.format(state_prob_means[0]))
elif np.max(state_prob_means) == state_prob_means[1]:
print('State-2 is likely to occur with a probability of {:4f}
.format(state_prob_means[1]))

else:
print('State-3 is likely to occur with a probability of {:4f}'
.format(state_prob_means[2]))
wpc()
State-1 is likely to occur with a probability of 0.732971

Let’s now turn our attention to finding which liquidity measures matter most using
loading analysis. This analysis suggests that turnover_ratio, percent_quoted_ba,

percent_effective_ba, amihud, and florackis ratios are the liquidity ratios com-
posing the State-1. The following code shows the result:

In [39]: loadings = pca.components_.T * np.sqrt(pca.explained_variance_) (1)
loading_matrix = pd.DataFrame(loadings,
columns=['PC1', 'PC2', 'PC3'],
index=11q_measures_all.columns)
loading_matrix

Out[39]: PC1 PC2 PC3
liq_ratio 0.116701 -0.115791 -0.196355
Lhh -0.211827 0.882007 -0.125890
turnover_ratio 0.601041 -0.006381 0.016222
percent_quoted_ba 0.713239 0.140103 0.551385
percent_effective_ba 0.641527 0.154973 0.526933
roll -0.070192 0.886080 -0.093126
CS_spread 0.013373 -0.299229 -0.092705
amihud 0.849614 -0.020623 -0.488324
florackis 0.710818 0.081948 -0.589693
cet -0.035736 0.101575 0.001595
market_1impact 0.357031 0.095045 0.235266

O Calculating loading from PCA

Gaussian Mixture Copula Model

Given the complexity and sophistication of financial markets, it is not possible to sug-
gest one-size-fits-all risk models. Thus, financial institutions develop their own mod-
els for credit, liquidity, market, and operational risks so that they can manage the
risks they face more efficiently and realistically. However, one of the biggest chal-
lenges that these financial institutions come across is the correlation, also known as
joint distribution, of the risk, as put by Rachev and Stein (2009):

With the emergence of the sub-prime crisis and the following credit crunch, academ-
ics, practitioners, philosophers and journalists started searching for causes and failures
that led to the turmoil and (almost) unprecedented market deteriorations... the argu-
ments against several methods and models used at Wall Street and throughout the

216 | Chapter7:Liquidity Modeling

world are, in many cases, putting those in the wrong light. Beyond the fact that risks
and issues were clouded by the securitization, tranching and packaging of underlyings
in the credit markets as well as by the unfortunate and somehow misleading role of
rating agencies, mathematical models were used in the markets which are now under
fire due to their incapability of capturing risks in extreme market phases.
The task of modeling “extreme market phases” leads us to the concept of joint distri-
bution by which we are allowed to model multiple risks with a single distribution.

A model disregarding the interaction of risks is destined for failure. In this respect, an
intuitive yet simple approach is proposed: copulas.

Copula is a function that maps marginal distribution of individual risks to multivari-
ate distribution, resulting in a joint distribution of many standard uniform random
variables. If we are working with a known distribution, such as normal distribution, it
is easy to model joint distribution of variables, known as bivariate normal. However,
the challenge here is to define the correlation structure between these two variables,
and this is the point at which copulas come in (Hull 2012).

With Sklar’s theorem, let F be a marginal continuous cumulative distribution func-

tion (CDF) of X'. A CDF transformation maps a random variable to a scalar that is
uniformly distributed in [0,1]. However, the joint distribution of all these marginal
CDFs does not follow uniform distribution and a copula function (Kasa and Rajan
2020):

C:[0,1]" > [0,1]

where i shows the number of marginal CDFs. In other words, in the bivariate case, i
takes the value of 2 and the function becomes:

C:[0,1]> > [0,1]
Hence:
F(x),x,) = C(F(x)) - . ., Fi(x;))

where C is copula and unique given the marginal distribution of F;s are continuous
and F is joint cumulative distribution.

Alternatively, the copula function can be described by individual marginal densities:

) = C(Fy(xy), - - BT f)

Gaussian Mixture Copula Model | 217

where f(x) denotes multivariate density, and f jis marginal density of the jth asset.

We cannot complete our discussion without stating the assumptions that we need to
satisfy for copulas. Here are the assumptions from Bouye (2000):

1. C=S§, xS,, where S, and S, are non-empty subsets of [0,1].

2. Cisan increasing function such that 0 < u; <u, <land0<v, <v,<1.

C[uysvy] X [uyv,]) = Cuy v,) = Cluags v,) = Cluty, v,) + Cluy 47) 2 0

3. Forevery uin S, and for every vin S,: C(u, 1) = u and C(1, v) = v.

After a long theoretical discussion about copulas, you may be tempted to think about
the complexity of its coding in Python. No worries, we have a library for that and it is
really easy to apply. The name of the Python library for copulas is called Copulae, and
we will make use of it in the following:

In [40]: from import GaussianMixtureCopula (1]

In [41]: _, dim = scaled_liqg.shape
gmcm = GaussianMixtureCopula(n_clusters=3, ndim=dim) (2]

In [42]: gmem_fit = gmem.fit(scaled_liqg,method="'kmeans',
criteria='GMCM', eps=0.0001) ©
state_prob = gmcm_fit.params.prob
print(f'The state {np.argmax(state_prob) + 1} is likely to occur')
print(f'State probabilities based on GMCM are {state_prob}')
The state 2 is likely to occur
State probabilities based on GMCM are [0.3197832 0.34146341 0.
33875339]

o Importing GaussianMixtureCopula from copulae
® Configuring GMCM with the number of clusters and dimensions

© Fitting the GMCM

The result suggests that when the correlation is taken into account, State-2 prevails,
but the posterior probabilities are very close to each other, implying that when corre-
lation between liquidity measures comes into the picture, commonality in liquidity
stands out.

218 | (Chapter7: Liquidity Modeling

Conclusion

Liquidity risk has been under a microscope for over a decade as it is an important
source of risk by itself and also has high correlation with other financial risks.

This chapter introduces a new method for liquidity modeling based on GMM, which
allows us to model multivariate data and generate clusters. Given the posterior proba-
bility of these clusters, we were able to determine which cluster represented the defin-
ing characteristics of the data. However, without considering the correlation structure
of the liquidity measures, our model may not have been a good representation of real-
ity. Thus, to address this concern, we introduced GMCM, and the defining cluster
was redefined by taking into account the correlation structure among the variables.

After completing the liquidity modeling, we are now ready to discuss another impor-
tant source of financial risk: operational risk. Operational risk may arise for a variety
of reasons, but we will discuss operational risk via fraudulent activities.

References

Articles cited in this chapter:

Abdi, Farshid, and Angelo Ranaldo. 2017. “A Simple Estimation of Bid-Ask Spreads
from Daily Close, High, and Low Prices” The Review of Financial Studies 30 (12):
4437-4480.

Baker, H. Kent, and Halil Kiymaz, eds. 2013. Market Microstructure in Emerging and
Developed Markets: Price Discovery, Information Flows, and Transaction Costs.
Hoboken, New Jersey: John Wiley and Sons.

Bessembinder, Hendrik, and Kumar Venkataraman. 2010. “Bid-Ask Spreads” in
Encyclopedia of Quantitative Finance, edited b. Rama Cont. Hoboken, NJ: John
Wiley and Sons.

Blume, Lawrence, David Easley, and Maureen O'Hara. 1994 “Market Statistics and
Technical Analysis: The Role of Volume.” The Journal of Finance 49 (1): 153-181.

Bouyé, Eric, Valdo Durrleman, Ashkan Nikeghbali, Gaél Riboulet, and Thierry Ron-
calli. 2000. “Copulas for Finance: A Reading Guide and Some Applications”
Available at SSRN 1032533.

Chuck, Prince. 2007. “Citigroup Chief Stays Bullish on Buy-Outs” Financial Times.
https://oreil.ly/nKOZk.

Corwin, Shane A., and Paul Schultz. 2012. “A Simple Way to Estimate Bid-Ask
Spreads from Daily High and Low Prices” The Journal of Finance 67 (2): 719-760.

Conclusion | 219

https://oreil.ly/nKOZk

Florackis, Chris, Andros Gregoriou, and Alexandros Kostakis. 2011. “Trading Fre-
quency and Asset Pricing on the London Stock Exchange: Evidence from a New
Price Impact Ratio.” Journal of Banking and Finance 35 (12): 3335-3350.

Fraley, Chris, and Adrian E. Raftery. 1998. “How Many Clusters? Which Clustering
Method? Answers via Model-Based Cluster Analysis” The Computer Journal 41
(8): 578-588.

Gabrielsen, Alexandros, Massimiliano Marzo, and Paolo Zagaglia. 2011. “Measuring
Market Liquidity: An Introductory Survey.” SRN Electronic Journal.

Harris, Lawrence. 1990. “Statistical Properties of the Roll Serial Covariance Bid/Ask
Spread Estimator” The Journal of Finance 45 (2): 579-590.

Gaygisiz, Esma, Abdullah Karasan, and Alper Hekimoglu. 2021. “Analyses of factors
of Market Microstructure: Price impact, liquidity, and Volatility” Optimization
(Forthcoming).

Kasa, Siva Rajesh, and Vaibhav Rajan. 2020. “Improved Inference of Gaussian Mix-
ture Copula Model for Clustering and Reproducibility Analysis using Automatic
Differentiation” arXiv preprint arXiv:2010.14359.

Kyle, Albert S. 1985. “Continuous Auctions and Insider Trading” Econometrica 53
(6): 1315-1335

Le, Huong, and Andros Gregoriou. 2020. “How Do You Capture Liquidity? A Review
of the Literature on Low-Frequency Stock Liquidity” Journal of Economic Surveys
34 (5): 1170-1186.

Lou, Xiaoxia, and Tao Shu. 2017. “Price Impact or Trading Volume: Why Is the Ami-
hud (2002) measure Priced?” The Review of Financial Studies 30 (12): 4481-4520.

Nikolaou, Kleopatra. 2009. “Liquidity (Risk) concepts: Definitions and Interactions.”
European Central Bank Working Paper Series 1008.

Rachev, S. T., W. Sun, and M. stein. 2009. “Copula Concepts in Financial Markets”
Portfolio Institutionell (4): 12-15.

Roll, Richard. 1984. “A Simple Implicit Measure of the Effective Bid-Ask Spread in an
Efficient Market” The Journal of Finance 29 (4): 1127-1139.

Sarr, Abdourahmane, and Tonny Lybek. 2002. “Measuring liquidity in financial mar-
kets” IMF Working Papers (02/232): 1-64.

Books and online sources cited in this chapter:

Hull, John. 2012. Risk Management and Financial Institutions. Hoboken, New Jersey:
John Wiley and Sons.

VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working
with Data. Sebastopol: O’Reilly.

220 | Chapter7:Liquidity Modeling

CHAPTER 8
Modeling Operational Risk

...It’s not necessarily the biggest missteps that deliver the biggest blows; share prices can
plummet as a result of even the smallest events.

—Dunnett, Levy, and Simoes (2005)

Thus far, we have talked about three main financial risks: market, credit, and liquidity
risks. Now it is time to discuss operational risk, which is more ambiguous than the
other types of financial risks. This ambiguity arises from the huge variety of risk sour-
ces by which financial institutions may face huge losses.

Operational risk is the risk of direct or indirect loss resulting from inadequate or
failed interval processes, people, and systems or from external events (BIS 2019).
Please note that loss can be direct and/or indirect. Some direct losses would be:

o Legal liability arising from judicial process
o Write-downs due to theft or reduction in assets
« Compliance emanating from tax, license, fines, etc.

 Business interruption

Indirect cost is related to the opportunity cost in the way that a decision made by an
institution may trigger a host of events resulting in a loss at an uncertain time in the
future.

Normally, financial institutions allocate a certain amount of money to cover the loss
emanating from operational risk, which is known as unexpected loss. However, allo-
cating an appropriate amount of funds to cover unexpected loss is not as easy as it
sounds. It is necessary to determine the right amount of unexpected loss; otherwise,
either more funds are devoted to it, which makes it idle and creates opportunity cost,
or less than the required funds are allocated, resulting in a liquidity problem.

221

As we briefly touched on earlier, operational risk can take on several forms. Among
them, we’ll restrict our focus to the fraud risk, which is considered to be the most per-
vasive and disruptive type of operational risk.

Fraud may generally be characterized as an intentional act, misstatement, or omission
designed to deceive others, resulting in the victim suffering a loss or the perpetrator
achieving a gain (OCC 2019). A fraud can be an internal one if losses occurred from
inside a financial institution or an external one if it is committed by a third party.

What makes fraud a primary concern of financial institutions? What increases the
likelihood of committing fraudulent activities? To address these questions, we can
refer to three important factors:

« Globalization
o Lack of proper risk management

o Economic pressure

Globalization led financial institutions to expand their operations across the world,
and this came with a complexity that gave rise to a higher probability of corruption,
bribery, and any kind of illegal act as financial institutions started operating in envi-
ronments where they have no prior knowledge.

Lack of proper risk management has been and is the most obvious reasons for fraud.
Misleading reporting and rogue, unauthorized trading plants the seeds of fraudulent
acts. A very well known example is the Barings case, in which Nick Leeson, a young
trader at Barings, ran a speculative trading and subsequent cover-up operation using
accounting tricks that cost Barings Bank a fortune, totaling $1.3 billion. Thus, when
there is a lack of well-defined risk management policies along with a well-established
culture of risk, employees may tend to commit fraud.

Another motivation for fraud would be an employee’s worsening financial situation.
Particularly during an economic downturn, employees might be tempted into fraudu-
lent activities. In addition, financial institutions themselves might embrace illegal
operations (such as accounting tricks) to find a way out of the downturn.

Fraud does not only cause a considerable amount of loss, but it also poses a threat to a
company’s reputation, which may in turn disrupt the long-term sustainability of the
company. Take the case of Enron, a good example of accounting fraud, which broke
out in 2001. Enron was established in 1985 and became one of the biggest companies
in the United States and the world. Let me briefly tell you the story of this big
collapse.

Due to the pressure that Enron faced in the energy market, executives were motivated
to rely on dubious accounting practices, resulting in inflated profits from writing
huge unrealized future gains. Thanks to whistleblower Sherron Watkins, who was the

222 | Chapter 8: Modeling Operational Risk

former vice president of corporate development, one of the biggest fraud cases in the
history of modern finance came to light. This event also stresses the importance of
preventing fraudulent activities, which otherwise might lead to huge damages to an
individual’s or company’s reputation or financial collapse.

In this chapter, we aim to introduce an ML-based model to detect fraud or would-be
fraud operations. This is and should be a constantly growing field to stay ahead of the
perpetrators. Datasets related to fraud may come in two forms: labeled or unlabeled
data. To take both into account, we first apply a supervised learning algorithm and
then use an unsupervised learning algorithm pretending like we do not have labels,
even though the dataset we'll be using does include labels.

The dataset we'll use for our fraud analysis is known as the Credit Card Transaction
Fraud Detection Dataset created by Brandon Harris. Credit card fraud is not a rare
issue, and the goal is to detect the likelihood of fraud and inform the bank so that the
bank can investigate the situation with due diligence. This is the way a bank protects
itself from incurring huge losses. According to the Nilsen Report (2020), payment
card fraud losses hit a record-high level of $32.04 billion, amounting to 6.8¢ for every
$100 of total volume.

This dataset is a good example of a mix of attributes of variable types as we have con-
tinuous, discrete, and nominal data. You can find the data on Kaggle. An explanation
of the data is provided in Table 8-1.

Table 8-1. Attributes and explanations

Attribute Explanation

trans_date_trans_time Date the transaction

cc_num Credit card number of the customer
merchant Merchant by whom the trade occurred
amt Amount of transaction

first First name of customer

last Last name of customer

gender Gender of the customer

street, city, state Address of the customer

zip Zip code of the transaction

lat Latitude of the customer

long Longitude of the customer

city_pop Population of the city

job Type of the customer’s profession

dob Date of birth of the customer

trans_num Unique transaction number for each transaction

Modeling Operational Risk | 223

https://oreil.ly/fxxFg

Attribute

unix_time
merch_lat
merch_long

is_fraud

Explanation

Time of the transaction in Unix

Merchant latitude

Merchant longitude

Whether the transaction is fraudulent or not

Getting Familiar with Fraud Data

As you probably noticed, ML algorithms work better if the number of observations
among different classes are more or less equal to each other—that is, it works best
with balanced data. We do not have balanced data in the fraud case, so this is called a
class imbalance. In Chapter 6, we learned how to handle class imbalance problems,

and we'll use this skill again in this chapter.

Let’s start off. To begin with, it makes sense to go through the data types of the vari-

ables in the Credit Card Transaction Fraud Detection Dataset:

In [1]:

In [2]:

In [3]:

as
as

import
import
import
import
from

import
warnings.filterwa

as

fraud_data =

as
import zscore

rnings('ignore')

del fraud_data['Unnamed: 0']

fraud_data.info()

pd.read_csv('fraudTrain.csv')

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1296675 entries, 0 to 1296674
Data columns (total 22 columns):
Non-Null Count

Column

0 trans_date_trans_time 1296675
1 cc_num 1296675
2 merchant 1296675
3 category 1296675
4 amt 1296675
5 first 1296675
6 last 1296675
7 gender 1296675
8 street 1296675
9 city 1296675
10 state 1296675
11 zip 1296675
12 lat 1296675
13 long 1296675
14 city_pop 1296675

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

object
float64
object
object
object
object
object
object
int64
float64
float64
int64

24 |

Chapter 8: Modeling Operational Risk

15 job

16 dob

17 trans_num
18 unix_time
19 merch_lat
20 merch_long
21 1is_fraud

1296675
1296675
1296675
1296675
1296675
1296675
1296675

non-null
non-null
non-null
non-null
non-null
non-null
non-null

dtypes: float64(5), int64(5), object(12)

memory usage: 217.6+ MB

object
object
object
int64
float64
float64
int64

It turns out we have all types of data: object, integer, and float. However, the majority
of the variables are of the object type, so additional analysis is required to turn these
categorical variables into numerical ones.

The dependent variable is of considerable importance in such an analysis, as it often
has imbalance characteristics that require due attention. This is shown in the follow-
ing snippet (and resultant Figure 8-1), which indicates a highly disproportionate

number of observations:

In [4]: plt.pile(fraud_data['is_fraud'].value_counts(), labels=[0, 1])
plt.title('Pie Chart for Dependent Variable');

print(fraud_data['is_fraud'].value_counts())

plt.show()
0 1289169
1 7506

Name: is_fraud, dtype: int64

Pie chart for dependent variable

Figure 8-1. Pie chart for dependent variable

As we can see, the number of observations for the nonfraud case is 1,289,169, while
there are only 7,506 for the fraud case, so we know that the data is highly imbalanced,

as expected.

Getting Familiar with Fraud Data

225

At this point, we can use a rather different tool to detect the number of missing obser-
vations. This tool is known as missingno, and it also provides us with a visualization
module for missing values (as can be seen in Figure 8-2):

In [5]: import missingno as msno (1)
msno.bar(fraud_data) (2]
©® Importing missingno

® Creating a bar plot for missing values

") ‘) ‘J ") ‘: ‘) ") ‘: ") ”) ‘: "1 ”) ‘: ‘) 6\‘) ") ‘) ‘) ‘7 ")

b b
%9@9
RO A
.‘|
0.0

& o R I L o
IRV R N <
é\a & &

N,@
1296675
1037340
778005
518670
259335
0

@

o
&

’eg
%
%
<>&
’eg

-

°
@

o
o

o
S

o
o

y P
& & & ® Ny
& & ¢ o &

) & y @Q’

& <

&
6@’

Figure 8-2. Missing observations

Figure 8-2 indicates the number of nonmissing observations per variable at the top,
and on the left-hand side we can see the percentage of nonmissing values. This analy-
sis shows that the data has no missing values.

In the next step, first we convert the date variable, trans_date_trans_time, into a
proper format, and then we break time down into days and hours, assuming that
fraudulent activities surge during particular time periods. It makes sense to analyze
the effect of fraud on the different categories of a variable. To do that, we’ll employ a
bar plot. It becomes clearer that the number of fraud cases may change given the cate-
gory of some variables. But it stays the same in gender variables, meaning that gender
has no impact on fraudulent activities. Another striking and evident observation is
that the fraud cases change wildly per day and hour. This can be visually confirmed in
the resulting Figure 8-3:

226 | Chapter8: Modeling Operational Risk

In [6]: fraud_data['time'] = pd.to_datetime(fraud_data['trans_date_trans_time'])
del fraud_data['trans_date_trans_time']

In [7]: fraud_data['days'] = fraud_data['time'].dt.day_name()
fraud_data['hour'] = fraud_data['time'].dt.hour

In [8]: def fraud_cat(cols):
k=1
plt.figure(figsize=(20, 40))
for 1 in cols:
categ = fraud_data.loc[fraud_data['is_fraud'] == 1, i].\
value_counts().sort_values(ascending=False).\
reset_index().head(10) (1)
plt.subplot(len(cols) / 2, len(cols) / 2, k)
bar_plot = plt.bar(categ.iloc[:, 0], categ[i])
plt.title(f'Cases per {i} Categories')
plt.xticks(rotation="'45")
k+= 1
return categ, bar_plot

In [9]: cols = ['job', 'state', 'gender', 'category', 'days', 'hour']
_, bar_plot = fraud_cat(cols)
bar_plot

@ Sorting fraud_data based on fraudulent activities in an ascending order

Based on the analysis and our previous knowledge about the fraud analysis, we can
decide on the number of variables to be used in our modeling. The categorical vari-
ables sort out so that we can create dummy variables using pd.get_dummies:

In [10]: cols=['amt','gender','state','category',
'city_pop','job','is_fraud', 'days', "hour']
fraud_data_df=fraud_data[cols]

In [11]: cat_cols=fraud_data[cols].select_dtypes(include='object').columns

In [12]: def one_hot_encoded_cat(data, cat_cols):
for 1 in cat_cols:
df1 = pd.get_dummies(data[str(i)],
prefix=1, drop_first=True)
data.drop(str(i), axis=1, inplace=True)
data = pd.concat([data, df1], axis=1)
return data

In [13]: fraud_df = one_hot_encoded_cat(fraud_data_df, cat_cols)

Getting Familiar with Fraud Data | 227

Cases per job Categories Cases per state Categories Cases per gender Categories

3500

3000

2500

2000

1500

1000

500
0 0 o
P PP N &
& O S S & R R NN
558 & SO S & &
¥ & S SE @ &
& F S & &
R A $ s
§ P &
ﬁ &
< &
Cases per category Categorieg™” Cases per days Categories Cases per hour Categories
2000
1750
1200
1750
1500
1000
1500
1250
800 1250
1000
1000
600
750
750
400
500
500
200
250
250
0 0 0
s & &
F S FESE S S CENCC T ° ° ® v
& O & S & o7 S o & & &
& & & & < « «
o & & &

Figure 8-3. Bar plots per variable

Subsequent to categorical variable analysis, it's worth discussing the interactions
between the numerical variables, namely, amount, population, and hour. A correla-
tion analysis provides us with a strong tool for figuring out the interaction(s) among

228 | Chapter 8: Modeling Operational Risk

these variables, and the resulting heatmap (Figure 8-4) suggests that the correlations
are very low:

In [14]: num_col = fraud_data_df.select_dtypes(exclude='object').columns
fraud_data_df = fraud_data_df[num_col]
del fraud_data_df['is_fraud']

In [15]: plt.figure(figsize=(10,6))
corrmat = fraud_data_df.corr()
top_corr_features = corrmat.index
heat_map = sns.heatmap(corrmat, annot=True, cmap="viridis")

-1.0
=
© -0.8
0.6
o
[}
%
=2 0.4
1S
0.2
5
o
Ny
0.0
1
amt city_pop hour

Figure 8-4. Heatmap

Supervised Learning Modeling for Fraud Examination

We have determined the peculiar characteristics of the variables using interactions,
missing values, and creating dummy variables. Now we are ready to move on and run
ML models for fraud analysis. The models we are about to run are:

« Logistic regression
o Decision tree

« Random forest

e XGBoost

Supervised Learning Modeling for Fraud Examination | 229

As you can imagine, it’s key to have balanced data before doing our modeling. Even
though there are numerous ways to get balanced data, we'll choose the undersam-
pling method because of its performance. Undersampling is a technique that matches
the majority classes to minority classes, as shown in Figure 8-5.

D Undersampling

Category0 Category1 Category0 Category1

Figure 8-5. Undersampling

Alternatively, the number of observations from the majority class is removed until we
get the same number of observations as the minority class. We'll apply undersampling
in the following code block, where the independent and dependent variables are
named X_under and y_under, respectively. In what follows, train-test split is used to
obtain the train and test splits in a random fashion:

In [16]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import (classification_report,

confusion_matrix, f1_score)

In [17]: non_fraud_class = fraud_df[fraud_df['is_fraud'] == 0]
fraud_class = fraud_df[fraud_df['is_fraud'] == 1]

In [18]: non_fraud_count,fraud_count=fraud_df['is_fraud'].value_counts()
print('The number of observations in non_fraud_class:', non_fraud_count)
print('The number of observations in fraud_class:', fraud_count)

The number of observations in non_fraud_class: 1289169
The number of observations in fraud_class: 7506

In [19]: non_fraud_under = non_fraud_class.sample(fraud_count) (1)
under_sampled = pd.concat([non_fraud_under, fraud_class], axis=0) (2]
X_under = under_sampled.drop('is_fraud',axis=1) (3]
y_under = under_sampled['is_fraud'] (4]

In [20]: X_train_under, X_test_under, y_train_under, y_test_under =\
train_test_split(X_under, y_under, random_state=0)

230 | Chapter8: Modeling Operational Risk

Sampling fraud_count

Concatenating the data including fraudulent cases with data including no fraudu-
lent cases

© Creating independent variables by dropping is_fraud

O Creating dependent variables by is_fraud

After using the undersampling method, let’s now run some of the classification mod-

els we described earlier and observe the performance of these models in detecting the
fraud:

In [21]: param_log = {'C': np.logspace(-4, 4, 4), 'penalty': ['l1', '12']}
log_grid = GridSearchCV(LogisticRegression(),
param_grid=param_log, n_jobs=-1)
log_grid.fit(X_train_under, y_train_under)
prediction_log = log_grid.predict(X_test_under)

In [22]: conf_mat_log = confusion_matrix(y_true=y_test_under,
y_pred=prediction_log)
print('Confusion matrix:\n', conf_mat_log)
print('--' * 25)
print('Classification report:\n',
classification_report(y_test_under, prediction_log))
Confusion matrix:
[[1534 310]
[486 1423]]

Classification report:

precision recall fi1-score support
0.76 0.83 0.79 1844
1 0.82 0.75 0.78 1909
accuracy 0.79 3753
macro avg 0.79 0.79 0.79 3753
weighted avg 0.79 0.79 0.79 3753

First, let’s look at the confusion matrix. The confusion matrix suggests that the num-
ber of observations in false positives and false negatives are 310 and 486, respectively.
We'll be using the confusion matrix in the cost-based method.

The F1 score is the metric that is used to measure the performance of these models. It
presents a weighted average of recall and precision, making it an ideal measure for a
case such as this one.

The second model is decision tree, which works well in modeling fraud. After tuning
hyperparameters, it turns out that F1 score is much higher, indicating that decision

Supervised Learning Modeling for Fraud Examination | 231

tree does a relatively good job. As expected, the number of false positive and false
negative observations are much fewer compared to logistic regression:

In [23]: from sklearn.tree import DecisionTreeClassifier

In [24]: param_dt = {'max_depth': [3, 5, 10],
'min_samples_split': [2, 4, 6],
'criterion': ['gini', 'entropy']}
dt_grid = GridSearchCV(DecisionTreeClassifier(),
param_grid=param_dt, n_jobs=-1)
dt_grid.fit(X_train_under, y_train_under)
prediction_dt = dt_grid.predict(X_test_under)

In [25]: conf_mat_dt = confusion_matrix(y_true=y_test_under,
y_pred=prediction_dt)
print('Confusion matrix:\n', conf_mat_dt)
print('--' * 25)
print('Classification report:\n',
classification_report(y_test_under, prediction_dt))
Confusion matrix:
[[1795 49]
[84 1825]]

Classification report:

precision recall fi1-score support
0.96 0.97 0.96 1844
1 0.97 0.96 0.96 1909
accuracy 0.96 3753
macro avg 0.96 0.96 0.96 3753
weighted avg 0.96 0.96 0.96 3753

According to common belief, the random forest model, as an ensemble model, out-
performs decision tree. However, this is true only if decision tree suffers from predic-
tive instability in such a way that predictions of different samples vary wildly, and this
is not the case here. As you can observe from the following result, random forest does
not perform better than decision tree, even if it has an F1 score of 87:

In [26]: from sklearn.ensemble import RandomForestClassifier

In [27]: param_rf = {'n_estimators':[20,50,100] ,
'max_depth':[3,5,10],
'min_samples_split':[2,4,6],
'max_features':['auto', 'sqgrt', 'log2']}

rf_grid = GridSearchCV(RandomForestClassifier(),
param_grid=param_rf, n_jobs=-1)

rf_grid.fit(X_train_under, y_train_under)

prediction_rf = rf_grid.predict(X_test_under)

In [28]: conf_mat_rf = confusion_matrix(y_true=y_test_under,
y_pred=prediction_rf)

232 | Chapter 8: Modeling Operational Risk

print('Confusion matrix:\n', conf_mat_rf)
print('--' * 25)
print('Classification report:\n',
classification_report(y_test_under, prediction_rf))
Confusion matrix:
[[1763 81]
[416 1493]]

Classification report:

precision recall fi1-score support

0 0.81 0.96 0.88 1844

1 0.95 0.78 0.86 1909

accuracy 0.87 3753
macro avg 0.88 0.87 0.87 3753
weighted avg 0.88 0.87 0.87 3753

The final model we'll look at is XGBoost, which generates similar results to the deci-
sion tree, as it outputs an F1 score of 97:

In [29]:

In [30]:

In [31]:

from xgboost import XGBClassifier

param_boost = {'learning_rate': [0.01, 0.1],
'max_depth': [3, 5, 7],
'subsample': [0.5, 0.7],
'colsample_bytree': [0.5, 0.7],
'n_estimators': [10, 20, 30]}
boost_grid = RandomizedSearchCV(XGBClassifier(),
param_boost, n_jobs=-1)
boost_grid.fit(X_train_under, y_train_under)
prediction_boost = boost_grid.predict(X_test_under)

conf_mat_boost = confusion_matrix(y_true=y_test_under,
y_pred=prediction_boost)
print('Confusion matrix:\n', conf_mat_boost)
print('--"' * 25)
print('Classification report:\n',
classification_report(y_test_under, prediction_boost))

Confusion matrix:

[[1791 53]

[75 1834]]

Classification report:

precision recall fil-score support

0.96 0.97 0.97 1844

1 0.97 0.96 0.97 1909

accuracy 0.97 3753
macro avg 0.97 0.97 0.97 3753
weighted avg 0.97 0.97 0.97 3753

Supervised Learning Modeling for Fraud Examination

233

Given all the applications, here is the summary result:

Table 8-2. The result of modeling fraud with undersampling

Model F1 score

Logistic regression 0.79

Decision tree 0.96
Random forest 0.87
XGBoost 0.97

Cost-Based Fraud Examination

Undersampling gives us a convenient tool for dealing with imbalanced data. It comes
with costs, however, and the biggest cost is its discarding of important observations.
Even though different sampling procedures can be applied to sensitive analyses such
as health care, fraud, and so on, it should be noted that performance metrics fail to
consider the extent to which different misclassifications have varying economic
impact. Hence, if a method proposes different misclassification costs, it is referred to
as a cost-sensitive classifier. Let’s consider the fraud case, which is a classic example of
cost-sensitive analysis. In this type of analysis, it is evident that a false positive is less
costly than a false negative. To be more precise, a false positive means blocking an
already legitimate transaction. The cost of this type of classification tends to be
administrative and opportunity cost-related, such as the time and energy spent on
detection and the lost potential gain a financial institution can make from the trans-
action.

However, failing to detect a fraud (i.e., having a false negative) means a lot for a com-
pany, as it might imply various internal weaknesses as well as poorly designed opera-
tional procedures. Having failed to detect a real fraud, a company can incur large
financial costs—including the transaction amount—not to mention costs stemming
from any damage to its reputation. The former type of cost puts the burden on the
company’s shoulder, but the latter can be neither quantified nor ignored.

As you can see, the need to assign varying costs for different misclassifications leads
us to a more pronounced, realistic solution. For the sake of simplicity, let’s assume the
cost of false negative and true positive to be the transaction amount and 2, respec-
tively. Table 8-3 summarizes the results. Another approach for evaluating cost sensi-
tivity would be to assume a constant false negative, as in other cases. However, this
approach is considered unrealistic.

234 | Chapter 8: Modeling Operational Risk

Table 8-3. Cost-sensitive matrix

Model F1 score

True Positive =2 False Negative = Transaction Amount
False Positive =2 True Negative =0

Consequently, the total cost that an institution might face with varying false negative
costs takes the following form:

N
Cost = Z.;lyi(ciCTPi +(1- Ci)CFN) +(1- yi)CiCFPi

i

where ¢; is the predicted label, y, is the actual label, N is the number of observations,
and CTPZ. and CFPl. correspond to administrative cost, which is 2 in our case. CFNi

represents transaction amount.

Now, with this information in hand, let’s revisit the ML models considering the cost-
sensitive approach and calculate the changing cost of these models. However, before
we start, it is worth noting that cost-sensitive models are not fast-processing ones, so
as we have a large number of observations, it would be wise to sample from them
to model the data in a timely manner. A class-dependent cost measure is given as
follows:

In [32]: fraud_df_sampled = fraud_df.sample(int(len(fraud_df) * 0.2)) (1)

In [33]: cost_fp = 2

cost_fn = fraud_df_sampled['amt']

cost_tp = 2

cost_tn =0

cost_mat = np.array([cost_fp * np.ones(fraud_df_sampled.shape[0]),
cost_fn,
cost_tp * np.ones(fraud_df_sampled.shape[0]),
cost_tn * np.ones(fraud_df_sampled.shape[0])]).T (2]

In [34]: cost_log = conf_mat_log[0][1] * cost_fp + conf_mat_boost[1][0] * \
cost_fn.mean() + conf_mat_log[1][1] * cost_tp (3]

conf_mat_dt[0][1] * cost_fp + conf_mat_boost[1][0] * \

cost_fn.mean() + conf_mat_dt[1][1] * cost_tp (3]

cost_rf = conf_mat_rf[0][1] * cost_fp + conf_mat_boost[1][0] * \

cost_fn.mean() + conf_mat_rf[1][1] * cost_tp
cost_boost = conf_mat_boost[0][1] * cost_fp + conf_mat_boost[1][0] * \
cost_fn.mean() + conf_mat_boost[1][1] * cost_tp

cost_dt

Supervised Learning Modeling for Fraud Examination | 235

© Sampling from fraud_df data
® Computing the cost matrix

© Computing the total cost per models employed

Calculating the total cost enables us to have different approaches in assessing model
performance. The model with a high F1 score is expected to have low total cost, and
this is what we have in Table 8-4. Logistic regression has the highest total cost, and
XGBoost has the lowest.

Table 8-4. Total cost

Model Total cost

Logistic Regression 5995

Decision Tree 5351

Random Forest 5413

XGBoost 5371
Saving Score

There are different metrics that can be used in cost improvement, and saving score is
absolutely one of them. To be able to define saving, let us give the formula of cost.

Bahnsen, Aouada, and Ottersten (2014) clearly explain the saving score formula in
the following manner:

N

Cost(f(s)) = ¥ (y,-(c,-CTPi (1= c,-)CFNi) +(1- y,-)(cicppi (1= Ci)CTNi))

where TP, FN, FP, and TN are true positive, false negative, false positive, and true
negative, respectively. c; is the predicted label for each observation i on training set S.

y; is the class label and takes the value of either 1 or 0—that is, y € 0, 1. Our saving
formula is then:

Cost(f(S))—Cost/(S)
Cost/(S)

Saving(f(S)) =

where Cost; = minCost(f(S)), Cost(f,(S)) where f predicts class 0, cj, and f, pre-
dicts observations in class 1, c,.

236 | Chapter 8: Modeling Operational Risk

In code, we have the following:

In [35]: import joblib
import sys
sys.modules['sklearn.externals.joblib'] = joblib
from costcla.metrics import cost_loss, savings_score
from costcla.models import BayesMinimumRiskClassifier

In [36]: X_train, X_test, y_train, y_test, cost_mat_train, cost_mat_test = \
train_test_split(fraud_df_sampled.drop('is_fraud', axis=1),
fraud_df_sampled.is_fraud, cost_mat,
test_size=0.2, random_state=0)

In [37]: saving_models = []
saving_models.append(('Log. Reg.',
LogisticRegression()))
saving_models.append(('Dec. Tree',
DecisionTreeClassifier()))
saving_models.append(('Random Forest',
RandomForestClassifier()))

In [38]: saving_score_base_all = []

for name, save_model in saving_models:
sv_model = save_model
sv_model.fit(X_train, y_train)
y_pred = sv_model.predict(X_test)
saving_score_base = savings_score(y_test, y_pred, cost_mat_test) (1)
saving_score_base_all.append(saving_score_base)
print('The saving score for {} is {:.4f}'.
format(name, saving_score_base))
print('--' * 20)
The saving score for Log. Reg. is -0.5602

In [39]: f1_score_base_all = []

for name, save_model in saving_models:
sv_model = save_model
sv_model.fit(X_train, y_train)
y_pred = sv_model.predict(X_test)
f1_score_base = f1_score(y_test, y_pred, cost_mat_test) (2]
f1_score_base_all.append(f1_score_base)
print('The F1 score for {} is {:.4f}'.
format(name, f1_score_base))
print('--' * 20)

Supervised Learning Modeling for Fraud Examination | 237

The F1 score for Log. Reg. is 0.0000

© Calculating the saving score

© Calculating the F1 score

Please note that, if you are using sklearn version 0.23 or higher,

you need to downgrade it to 0.22 to use costcla library. This

adjustment is required due to the sklearn.external.six package
\ inside the costcla library.

Table 8-5 shows that decision tree has the highest saving score among the three mod-
els, and interestingly, logistic regression produces a negative saving score, implying
that the number of false negative and false positive predictions is quite large, which
inflates the denominator of the saving score formula.

Table 8-5. Saving scores

Model Saving score F1 score

Logistic regression -0.5602 0.0000
Decision tree 0.6557 0.7383
Random forest 0.4789 0.7068

Cost-Sensitive Modeling

Thus far, we have discussed the concepts of saving score and cost sensitivity, and now
we are ready to run cost-sensitive logistic regression, decision tree, and random for-
est. The question that we are trying to address here is what happens if fraud is mod-
eled by considering varying costs of misclassification? How does it affect the saving
score?

To undertake this investigation, we'll use the costcla library. This library was specifi-
cally created to employ the cost-sensitive classifiers in which varying costs of misclas-
sification are considered. Because, as discussed earlier, traditional fraud models
assume that all correctly classified and misclassified examples carry the same cost,
which is not correct due to the varying costs of misclassification in fraud (Bahnsen
2021).

Having applied the cost-sensitive models, the saving score is used to compare the
models in the following code:

238 | Chapter 8: Modeling Operational Risk

In [40]:

In [41]:

In [42]:

In [43]:

from
from
from

cost
cost

cost

cost

savi

for

The

fi_s

for

The

costcla.models import CostSensitivelLogisticRegression
costcla.models import CostSensitiveDecisionTreeClassifier
costcla.models import CostSensitiveRandomForestClassifier

_sen_models = []

_sen_models.append(('Log. Reg. CS',
CostSensitivelLogisticRegression()))

_sen_models.append(('Dec. Tree CS',
CostSensitiveDecisionTreeClassifier()))

_sen_models.append(('Random Forest CS',
CostSensitiveRandomForestClassifier()))

ng_cost_all = []

name, cost_model in cost_sen_models:

cs_model = cost_model

cs_model.fit(np.array(X_train), np.array(y_train),
cost_mat_train)

y_pred = cs_model.predict(np.array(X_test))

saving_score_cost = savings_score(np.array(y_test),

np.array(y_pred), cost_mat_test)

saving_cost_all.append(saving_score_cost)

print('The saving score for {} is {:.4f}'.
format(name, saving_score_cost))

print('--'%20)

saving score for Log. Reg. CS is -0.5906

core_cost_all = []

name, cost_model in cost_sen_models:
cs_model = cost_model
cs_model.fit(np.array(X_train), np.array(y_train),
cost_mat_train)
y_pred = cs_model.predict(np.array(X_test))
f1_score_cost = f1_score(np.array(y_test),
np.array(y_pred), cost_mat_test)
f1_score_cost_all.append(f1_score_cost)
print('The F1 score for {} is {:.4f}'. format(name,
f1_score_cost))
print('--'%20)
F1 score for Log. Reg. CS is 0.0000

Supervised Learning Modeling for Fraud Examination

239

© Training the cost-sensitive models by iteration

According to Table 8-6, the best and the worst saving scores are obtained in random
forest and logistic regression, respectively. This confirms two important facts: first, it
implies that random forest has a low number of inaccurate observations, and second,
that those inaccurate observations are less costly. To be precise, modeling fraud with
random forest generates a very low number of false negatives, which is the denomi-
nator of the saving score formula.

Table 8-6. Saving scores of cost-sensitive models

Model Saving score F1 score

Logistic regression -0.5906 0.0000
Decision tree 0.8414 0.3281
Random forest 0.8913 0.4012

Bayesian Minimum Risk

Bayesian decision can also be used to model fraud taking into account the cost sensi-
tivity. The Bayesian minimum risk method rests on a decision process using different
costs (or loss) and probabilities. Mathematically, if the transaction is predicted to be
fraud, the overall risk is defined as follows:

Rleg]8) = 2leg |y)ples] 8) + Lie [)pLei]s)

On the other hand, if a transaction is predicted to be legitimate, then the overall risk
turns out to be:

R(¢|S) = L(¢| y)P(c;| S) + L(cl|yf)P<cf| S)

where y pand y are the actual classes for fraudulent and legitimate cases, respectively.
L(c f| y f) represents the cost when fraud is detected and the real class is fraud. Simi-
larly, L(c;| y,) denotes the cost when the transaction is predicted to be legitimate and
the real class is legitimate. Conversely, L(c f| yl) and L(c,| yf) calculate the cost of the
off-diagonal elements in Table 8-3. The former calculates the cost when the transac-
tion is predicted to be a fraud but the actual class is not, and the latter shows the cost
when the transaction is legitimate but the actual class is fraud. P(c;|S) indicates the
predicted probability of having a legitimate transaction given S and P(cf|S) and the
predicted probability of having a fraudulent transaction given S.

240 | Chapter 8: Modeling Operational Risk

Alternatively, the Bayesian minimum risk formula can be interpreted as:
R(cf|S) = Cﬂd?ﬂiﬂp(cf|s) + Cadminp(cl|s)

R(q|$) =0+ CopuP(c]S)

with admin is administrative cost and amt is the transaction amount. With that being
said, the transaction is labeled as fraud if:

R(cf|S) > R(¢)|S)
Alternatively:

C P(cf|S)+C

admin

admin p(cl| S) 2 Cath(Cl| S)

Well, it is time to apply the Bayesian Minimum Risk model in Python. Again, three
models are employed and compared using F1 score: F1 score results can be found in
Table 8-7, and it turns out decision tree has the highest F1 score and logistic regres-
sion has the lowest one. So, the order of saving scores is other way around, indicating
the effectiveness of the cost-sensitive approach:

In [44]: saving_score_bmr_all = []

for name, bmr_model in saving_models:
f = bmr_model.fit(X_train, y_train)
y_prob_test = f.predict_proba(np.array(X_test))
f_bmr = BayesMinimumRiskClassifier() (1)
f_bmr.fit(np.array(y_test), y_prob_test)
y_pred_test = f_bmr.predict(np.array(y_prob_test),
cost_mat_test)
saving_score_bmr = savings_score(y_test, y _pred_test,
cost_mat_test)
saving_score_bmr_all.append(saving_score_bmr)
print('The saving score for {} is {:.4f}'.\
format(name, saving_score_bmr))
print('--"' * 20)
The saving score for Log. Reg. is 0.8064

In [45]: f1_score_bmr_all = []

Supervised Learning Modeling for Fraud Examination | 241

for name, bmr_model in saving_models:
f = bmr_model.fit(X_train, y_train)
y_prob_test = f.predict_proba(np.array(X_test))
f_bmr = BayesMinimumRiskClassifier()
f_bmr.fit(np.array(y_test), y_prob_test)
y_pred_test = f_bmr.predict(np.array(y_prob_test),

cost_mat_test)
f1_score_bmr = f1_score(y_test, y_pred_test)
f1_score_bmr_all.append(f1_score_bmr)
print('The F1 score for {} is {:.4f}'.\
format(name, f1_score_bmr))

print('--'%20)

The F1 score for Log. Reg. is 0.1709

O Calling the Bayesian Minimum Risk Classifier library

Table 8-7. F1 score based on BMR

Model Saving score F1 score

Logistic regression 0.8064 0.1709
Decision tree 0.7343 0.6381
Random forest 0.9624 0.4367

To create a plot of this data, we do the following (resulting in Figure 8-6):

In [46]: savings = [saving_score_base_all, saving_cost_all, saving_score_bmr_all]

f1 = [f1_score_base_all, f1_score_cost_all, f1_score_bmr_all]
saving_scores = pd.concat([pd.Series(x) for x in savings])
f1_scores = pd.concat([pd.Series(x) for x in f1])

scores = pd.concat([saving_scores, f1_scores], axis=1)
scores.columns = ['saving_scores', 'F1_scores']

In [47]: model_names = ['Log. Reg_base', 'Dec. Tree_base', 'Random Forest_base',
'Log. Reg_cs', 'Dec. Tree_cs', 'Random Forest_cs',

'Log. Reg_bayes', 'Dec. Tree_bayes',
'Random Forest_bayes']

In [48]: plt.figure(figsize=(10, 6))
plt.plot(range(scores.shape[0]), scores["F1_scores"],
"--", label='F1Score") (1]
plt.bar(np.arange(scores.shape[0]), scores['saving scores'],
0.6, label='Savings') (2]
= np.arange(len(model_names))
plt.xticks(_, model_names)
plt.legend(loc="best")

242 | (Chapter 8: Modeling Operational Risk

plt.xticks(rotation="'vertical')
plt.show()

© Drawing the F1 score with a line plot

© Drawing the bar plot based on the models used

1.0 --- Fiscore
B Savings
0.8
pm———— \
\
\
061 \\ ~
\ AN
\ /
/ \ K
0.4 / \ - R ’
/ \ N 4
/ \ N
/ \
td
4 7 \ 4
0.2 / \ ’
/ \ "
/ N
/ 12
0.0
-0.2 1
-0.4 1
-0.6
T T T T T T T T T
wn wn (%] w %] %]
2 2 U. g g ¢ g g
Qo Q o o [i © © ©
! 1 | Q [] kel o Eel
o [% -4 = 2 | 1 1
Q o 2 . X (s} o [I
o = s o 9] w 7] []
- - S <] o c < = o
o I fig | a . i S
o o) o o %] w
3 a € ° o o}
<] < a a g
©
c o ©
& 5
o

Figure 8-6. F1 and saving scores

Figure 8-6 shows the F1 and saving scores across the models we have employed so far.
Accordingly, the cost-sensitive and Bayesian minimum risk model outperform the
base models, as expected.

Unsupervised Learning Modeling for Fraud Examination

Unsupervised learning models are also used to detect fraudulent activities in a way
that extracts the hidden characteristics of the data. The most prominent advantage of
this method over the supervised model is that there is no need to apply a sampling
procedure to fix the imbalanced-data problem. Unsupervised models, by their nature,
do not require any prior knowledge about the data. To see how unsupervised learning
models perform on this type of data, we will explore the self-organizing map (SOM)
and autoencoder models.

Unsupervised Learning Modeling for Fraud Examination | 243

Self-Organizing Map

SOM is an unsupervised method to obtain a low-dimensional space from a high-
dimensional space. This is a method that was introduced by Finnish scholar Teuvo
Kohonen in 1980s and it became widespread. SOM is a type of artificial NN, and
therefore it rests on competitive learning in the sense that output neurons compete to
be activated. The activated neuron is referred to as the winning neuron, and each
neuron has neighboring weights, so it is the spatial locations of the nodes in the out-
put space that are indicative of the inherent statistical features in the input space
(Haykin 1999).

The most distinctive features of SOM methods are as follows (Asan and Ercan 2012):

« No assumptions regarding the distribution of variables
+ Dependent structure among variables
o Dealing with nonlinear structure

« Coping with noisy and missing data

Let’s walk through the important steps of the SOM technique. As you might have
guessed, the first step is to identify the winning node, or the activated neuron. The
winning node is identified by distance metrics—that is, Manhattan, Chebyshev, and
Euclidean distances. Of these distance metrics, Euclidean distance is the most com-
monly used because it works well under the gradient descent process. Thus, given the
following Euclidean formula, we can find the distance between sample and weight:

2.
I (xt— wl.(t)) | = \/Zl = ln(xtj—wtji) yi=1,2,...,n
where x is sample, w is weight, and the winning node, k(#), is shown in Equation 8-1.

Equation 8-1. Identifying the winning node
K(t) = arg min] x(£) - w)i(0) |

The other important step is to update the weight. Given the learning rate and neigh-
borhood size, the following update is applied:

wi(t+1) = wyt) + /l[x(t) - wi(t)]

where w(t) is the weight of the winning neuron i at t" iteration, and 1 is the learning
rate.

244 | Chapter 8: Modeling Operational Risk

Richardson, Risien, and Shillington (2003) state that the rate of adaptation of the
weights decays as it moves away from the winning node. This is defined by neighbor-
hood function, h;(t), where i is index of the neighbor. Of the neighborhood func-
tions, the most famous one is the Gaussian function with the following form:

a2,

ki

20°(t)

h(t) = exp| —

where dii denotes the distance between the winning neuron and the related neuron,

and ¢%(t) denotes the radius at iteration .

Considering all this, the updating process becomes what’s shown in Equation 8-2.

Equation 8-2. Updating the weight
wi(t+1) = wy(t) + My (O)[x(t) — wi(t)]

That’s all there is to it, but 'm aware that the process is a bit tedious. So let us summa-
rize the steps:

1. Initialize the weights: assigning random values to weights is the most common
approach.

2. Find the winning neuron using Equation 8-1.
3. Update the weights as given in Equation 8-2.
4. Adjust the parameters based on the results of Equation 8-2 by setting to ¢ + 1.

We already know that there are two classes in the fraud data that we use, so the
dimensions for our self organizing map should have a two-by-one structure. You can
find the application in the following code:

In [49]: from import StandardScaler
standard = StandardScaler()
scaled_fraud = standard.fit_transform(X_under)

In [50]: from import SOM
som = SOM(m=2, n=1, dim=scaled_fraud.shape[1]) @
som. fit(scaled_fraud)
predictions_som = som.predict(np.array(scaled_fraud))

In [51]: predictions_som = np.where(predictions_som == 1, 0, 1)
In [52]: print('Classification report:\n',

classification_report(y_under, predictions_som))
Classification report:

Unsupervised Learning Modeling for Fraud Examination | 245

accuracy
macro avg
weighted avg

© Configuring the SOP

precision

recall f1-score

support

7506
7506

15012
15012
15012

Having checked the classification report, it becomes obvious that the F1 score is
somewhat similar to what we found with the other methods. This confirms that the
SOM is a useful model in detecting fraud when we don’t have labeled data. In the fol-
lowing code, we generate Figure 8-7, which shows the actual and predicted classes:

In [53]: fig, ax =

x = X_under.iloc[:,0]
y = X_under.iloc[:,1]

plt.subplots(nrows=1, ncols=2, figsize=(8, 6))

ax[0].scatter(x, y, alpha=0.1, cmap='Greys', c=y_under)

ax[0].title.set_text('Actual Classes')

ax[1].scatter(x, y, alpha=0.1, cmap='Greys', c=predictions_som)
ax[1].title.set_text('SOM Predictions')

1e6 Actual Classes le6 SOM Predictions
3.0 A 3.0 1
@ @ L _19)
2.5 1 Q X 2.51
2.0 A 2.0 1
e ® S Y a
1.5 A 1.5 A gﬂqu
e e A s
e @ Al @ g
g 1.0 4
¥ e o
3 0.5 8% « o8
[} _. 2 Qu,
et o
23 ,§5.¢ fi‘gr”
0.0{ @ | & st
0 500 1000 1500 2000 0 500 1000 1500 2000

Figure 8-7. SOM prediction

26 |

Chapter 8: Modeling Operational Risk

Autoencoders

An autoencoder is an unsupervised deep learning model trained to transform inputs
into outputs via a hidden layer. However, the network structure of autoencoder is dif-
ferent from other structures in the sense that autoencoder consists of two parts: an
encoder and a decoder.

The encoder serves as a feature extraction function, and the decoder works as a
reconstruction function. To illustrate, let x be an input and h be a hidden layer. Then,
the encoder function is h = f(x), and the decoder function reconstructs by r = g(h). If
an autoencoder learns by simple copying, i.e., g(f(x)) = x, it is not an ideal situation
in that the autoencoder seeks feature extraction. This amounts to copying only the
relevant aspects of the input (Goodfellow et al. 2016).

Consequently, autoencoder has a network structure such that it compresses knowl-
edge in a way to have a lower-dimensional representation of the original input. Given
the encoder and decoder functions, there are different types of autoencoders. Of
them, we'll discuss the three most commonly used autoencoders to keep ourselves on
track:

« Undercomplete autoencoders
o Sparse autoencoders

+ Denoising autoencoders

Undercomplete autoencoders

This is the most basic type of autoencoder, as the hidden layer, h, has a smaller
dimension than training data, x. So the number of neurons is less than that of the
training data. The aim of this autoencoder is to capture the latent attribute of the data
by minimizing the loss function—that is, L(x, g(f(x))), where L is the loss function.

Autoencoders famously face a trade-off in ML known as the bias-variance trade-off,
in which autoencoders aim to reconstruct the input well while having low-
dimensional representations. To remedy this issue, we'll introduce sparse and denois-
ing autoencoders.

Sparse autoencoder

Sparse autoencoders suggest a solution to this trade-off by imposing sparsity on the
reconstruction error. There are two ways to enforce regularization in sparce autoen-
coders. The first way is to apply L, regularization. In this case, the autoencoders opti-

mization becomes (Banks, Koenigstein, and Giryes 2020):

argming L(x,g(f(9)) + A(h)

Unsupervised Learning Modeling for Fraud Examination | 247

where g(f(x)) is the decoder, and & is the encoder outputs. Figure 8-8 illustrates the
sparse autoencoder.

< Encoder R < Decoder >
‘ \ Bottleneck ‘ \
Input Reconstruction

Figure 8-8. Sparse autoencoder model stucture

The second way to regularize the sparse autoencoders is with Kullback-Leibler (KL)
divergence, which tells us the similarity of the two probability distributions simply by
measuring the distance between them. KL divergence can be put mathematically as:

Lix.#) + Z,KL(p] 7)

where p and p are ideal and observed distributions, respectively.

Denoising autoencoders

The idea behind denoising autoencoders is that instead of using a penalty term, A,
add noise to the input data and learn from this changed construction—that is, recon-
struction. Thus, instead of minimizing LL(x, g(f(x))), denoising autoencoders offer to
minimize the following loss function:

L(x g(f(x)))

where X is the corrupted input obtained by adding noise by, for instance, Gaussian
noise. Figure 8-9 illustrates this process.

Ad

noise____|Corrupted ()
noise
y

‘ Input I L%fmnt I

Figure 8-9. Denoising autoencoder model structure

Q.
P (=]

(25]

248 | Chapter 8: Modeling Operational Risk

In the following code, we'll use an autoencoder model with Keras. Before moving for-
ward, it is scaled using Standard Scaler, and then, using a batch size of 200 and an
epoch number of 100, we are able to get a satisfactory prediction result. We'll then
create a reconstruction error table from the autoencoder model to compare with the
true class, and it turns out that the means and standard deviations of these models are

close to each other:

In [54]: from sklearn.preprocessing import StandardScaler
from tensorflow import keras
from tensorflow.keras.layers import Dense, Dropout
from keras import regularizers

In [55]: fraud_df[['amt','city_pop','hour']] = StandardScaler().\
fit_transform(fraud_df[['amt','city_pop', 'hour']])

In [56]: X_train, X_test = train_test_split(fraud_df,
test_size=0.2, random_state=123)

X_train[X_train['is_fraud'] == 0]
X_train = X_train.drop(['is_fraud'], axis=1).values

y_test =
X_test =

In [57]: autoencoder

autoencoder.

#encoder

autoencoder.
autoencoder.

#decoder

autoencoder.
.add(Dense(64,activation="tanh")) (2]
autoencoder.
autoencoder.

autoencoder

autoencoder.

X_
X_

st['is_fraud']

te
test.drop(['is_fraud'], axis=1).values

= keras.Sequential()

add(Dense(X_train_under.shape[1], activation='tanh',
activity_regularizer=reqularizers.l1(10e-5),
input_dim= X_train_under.shape[1]))

add(Dense(64, activation='tanh')) (1]
add(Dense(32, activation='relu')) (2]

add(Dense(32, activation='elu'")) (1)

add(Dense(X_train_under.shape[1], activation='elu'))
compile(loss='mse',

optimizer='adam')
summary();

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 566) 320922
dense_1 (Dense) (None, 64) 36288
dense_2 (Dense) (None, 32) 2080
dense_3 (Dense) (None, 32) 1056
dense_4 (Dense) (None, 64) 2112

Unsupervised Learning Modeling for Fraud Examination

249

dense_5 (Dense) (None, 566) 36790

Total params: 399,248
Trainable params: 399,248
Non-trainable params: 0

O Identifying 64 and 32 hidden layers in the encoder and decoder parts,
respectively

® Identifying 32 and 64 hidden layers in the encoder and decoder parts,
respectively

After configuring the autoencoder model, the next step is to fit and predict. After
doing the prediction, we check the quality of the model using summary statistics, as
they are a reliable way to see whether reconstruction works well:

In [58]: batch_size = 200
epochs = 100

In [59]: history = autoencoder.fit(X_train, X_tratin,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(X_test, X_test),
verbose=0).history

In [60]: autoencoder_pred = autoencoder.predict(X_test)
mse = np.mean(np.power(X_test - autoencoder_pred, 2), axis=1)
error_df = pd.DataFrame({'reconstruction_error': mse,
"true_class': y_test}) (1)
error_df.describe()

Out[60]: reconstruction_error true_class
count 259335.000000 259335.000000
mean 0.002491 0.005668
std 0.007758 0.075075
min 0.000174 0.000000
25% 0.001790 0.000000
50% 0.001993 0.000000
75% 0.003368 0.000000
max 2.582811 1.000000

O Creating a table named error_df to compare the results obtained from the
model with the real data

Finally, we create our plot (Figure 8-10):

In [61]: plt.figure(figsize=(10, 6))
plt.plot(history['loss'], linewidth=2, label='Train')
plt.plot(history['val_loss'], linewidth=2, label='Test"')
plt.legend(loc="upper right")

250 | Chapter8: Modeling Operational Risk

plt.title('Model loss')
plt.ylabel('Loss")
plt.xlabel('Epoch')
plt.show()

Model loss

0.0065 A = Train

—— Test
0.0060

0.0055

0.0050
@ 0.0045 1
S

0.0040

0.0035 A

0.0030

0.0025 A

20 40 60 80 100
Epoch

o4

Figure 8-10. Autoencoder performance

Figure 8-10 shows the results of our autoencoder modeling using a line plot, and we
can see that the test loss result is more volatile than that of train but, on average, the
mean loss is similar.

Conclusion

Fraud is a hot topic in finance for several reasons. Strict regulation, reputation loss,
and costs arising from fraud are the primary reasons to fight it. Until recently, fraud
has been a big problem for financial institutions, as modeling fraud had not produced
satisfactory results and, because of this, financial institutions had to employ more
resources to handle this phenomenon. Thanks to recent advancements in ML, we
now have various tools at our disposal for combatting fraud, and this chapter was
dedicated to introducing these models and comparing their results. These models
ranged from parametric approaches such as logistic regression to deep learning mod-
els such as autoencoders.

In the next chapter, we'll look at a rather different financial risk model known as stock
price crash risk, which will enable us to gain insight about the well-being of corporate
governance. This is an important tool for financial risk management because risk

Conclusion | 251

management is ultimately rooted in corporate management. It would be naive to
expect low risk in a company with bad corporate governance.

References

Articles cited in this chapter:

Asan, Umut, and Secil Ercan. 2012. “An Introduction to Self-Organizing Maps.” In
Computational Intelligence Systems in Industrial Engineering, edited by Cengiz
Kahraman. 295-315. Paris: Atlantis Press

Bahnsen, Alejandro Correa, Djamia Aouada, and Bjérn Ottersten. 2014. “Example-
Dependent Cost-Sensitive Logistic Regression for Credit Scoring” In The 13th
International Conference on Machine Learning and Applications, pp. 263-269.
IEEE.

Bank, Dor, Noam Koenigstein, and Raja Giryes. 2020. “Autoencoders.” arXiv preprint
arXiv:2003.05991.

Dunnett, Robert S., Cindy B. Levy, and Antonio P. Simoes. 2005. “The Hidden Costs
of Operational Risk” McKinsey St Company.

Richardson, Anthony J., C. Risien, and Frank Alan Shillington. 2003. “Using Self-
Organizing Maps to Identify Patterns in Satellite Imagery” Progress in Oceanog-
raphy 59 (2-3): 223-239.

Books and online resources cited in this chapter:

Bahnsen, Alejandro Correa. 2021. “Introduction to Example-Dependent Cost-
Sensitive Classification.” https://oreil.ly/5eCs].

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cam-
bridge: MIT press.

Nilsen. 2020. “Card Fraud Losses Reach $28.65 Billion” Nilsen Report. https://oreil.ly/
kSls7.

Oftice of the Comptroller of the Currency. 2019. “Operational Risk: Fraud Risk Man-
agement Principles” CC Bulletin. https://oreil.ly/GaQez.

Simon, Haykin. 1999. Neural Networks: A Comprehensive Foundation, second edition.
Englewood Cliffs, New Jersey: Prentice-Hall.

252 | Chapter 8: Modeling Operational Risk

https://oreil.ly/5eCsJ
https://oreil.ly/kSls7
https://oreil.ly/kSls7
https://oreil.ly/GaQez

PART I

Modeling Other Financial Risk Sources

CHAPTER 9

A Corporate Governance Risk Measure:
Stock Price Crash

Understanding corporate governance not only enlightens the discussion of perhaps
marginal improvements in rich economies, but can also stimulate major institutional
changes in places where they need to be made.

—Shleifer and Vishny (1997)

Do you think that the quality of corporate governance can be assessed using a risk
measure? According to recent studies, the answer is yes. The link between corporate
governance and risk measure has been established via stock price crash risk, which is
referred to as the risk of a large negative individual stock return. This association trig-
gered a lot of research in this field.

The importance of detecting the determinants of stock price crash lies in identifying
the root causes of low (or high) quality corporate governance. Identifying these root
causes help a company to concentrate on problematic managerial areas, enhancing
the functioning performance of the company as well as improving its reputation.
This, in turn, lowers the risk of stock price crash and increases the company’s total
revenue.

Stock price crash provides a signal for investors and risk managers about the weak-
ness and strength of a company’s corporate governance. Corporate governance is
defined as the way corporations are directed and controlled, as well as the ways they
are or are not “promoting corporate fairness, transparency, and accountability”
(Wolfensohn 1999).

255

Following this definition, corporate governance has three pillars:

Fairness
This principle refers to equal treatment of all shareholders.

Transparency
Informing shareholders about any company events in a timely manner is called
transparency. This implies the opposite of opaqueness, or a company’s unwilling-
ness to disclose information to shareholders.

Accountability
This is related to setting a well-established code of conduct by which a fair, bal-
anced, and understandable assessment of a company’s position is presented to
shareholders.

Accountability is an instrument for controlling agency cost, which is a cost arising
from competing interests of shareholders and management. Agency cost is another
source of asymmetric information because managers and shareholders do not have
the same amount of information. Conflict arises when managers’ and shareholders’
interests diverge. More precisely, managers are, on the one hand, willing to maximize
their own power and wealth. On the other hand, shareholders are looking for a way
to maximize shareholder values. These two goals may conflict, and because of the
informational superiority of managers, some company policies may be intended to
increase the power and wealth of the managers at the expense of shareholder inter-
ests.

Therefore, stock price crash may be a warning sign about the quality of corporate
governance. For instance, in the presence of information asymmetry, agency theory
suggests that outside stakeholders let managers generate more opaque financial
reports to withhold bad news (Hutton, Marcus, and Tehranian 2009). The more
recent explanation of this phenomenon is known as discretionary-disclosure theory
(Bae, Lim, and Wei 2006). According to this theory, firms prefer to announce good
news immediately, but they stockpile negative information. When the accumulated
negative information reaches a tipping point, it will cause a large decline. Since con-
cealing bad news about a firm prevents taking timely corrective actions, once the
accumulated bad news is released to the market, investors will revise their future
expectations, and there will inevitably be a sudden decline in prices, which is called
crash risk (Hutton, Marcus, and Tehranian 2009 and Kim 2011).

Moreover, opaque financial reporting, which is related to the accountability principle,
creates an environment in which managers are unwilling to disclose bad news. This
results in an unfair presentation of the financial position of a company and, in turn,
increases the likelihood of future stock price crash (Bleck and Liu (2007), Myers
(2006), and Kim and Zhang (2013)).

256 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

Thus, the association between corporate governance and stock price crash is evident
in various ways. In this chapter, we first visit stock price measures and then see how
we can apply these measures to detect crashes.

We'll first obtain some data from the Center for Research in Security Prices (CRSP)
and Compustat database and then identify the main determinants of stock price
crash.

CRSP has provided data for academic research and to support
classroom instructions since 1960. CRSP has high-quality data in
finance, economics, and related fields. For more information see
the CRSP website.

Similarly, the Compustat database has provided financial, eco-
nomic, and market information about global companies since
1962. It is a product of S&P Global Market Intelligence. For more
information see Compustat Brochure.

Stock Price Crash Measures

The literature about stock price crash has been growing and different crash measures
are employed by different researchers. Before introducing ML-based crash measures,
it is worth comparing the pros and cons of these differing approaches.

The main crash measures used in the literature are:

« Down-to-up volatility (DUVOL)
 Negative coefficient of skewness (NCSKEW)
« CRASH

DUVOL is a very common crash-measure method based on the standard deviation of
“down” and “up” weekly firm-specific returns. A down week is a week in which the
firm-specific weekly stock return is below the mean weekly return over the fiscal year.
Conversely, an up week is a week in which the firm-specific weekly stock return is
above the mean weekly return over a fiscal year. Described mathematically:

("u - I)ZdownRzzt

(nd - l)zup Rizt

DUVOL = log

where 7 is the number of trading weeks on stock i in year ¢, n, is the number of up
weeks, and n; is the number of down weeks. In a year, weeks with firm-specific

returns below the annual mean are called down weeks, while the weeks with firm-
specific returns above the annual mean are up weeks.

Stock Price Crash Measures | 257

https://oreil.ly/oO3X8
https://oreil.ly/E4Hpj

NCSKEW is calculated by taking the negative of the third moment of daily returns
and dividing it by (the sample analog to) the standard deviation of daily returns
raised to the third power (Chen, Hong, and Stein 2001):

(n(nf 1)3/22th)

((n - 2)(2th)3/2)

NCSKEW = —

The higher the values of the NCSKEW and DUVOL measures, the higher the risk of a
crash.

The CRASH measure, on the other hand, is calculated based on the distance from the
firm-specific weekly returns. That is, CRASH takes the value of 1 if the return is less
than 3.09 (or sometimes 3.2) standard deviations below the mean, and a 0 otherwise.

Minimum Covariance Determinant

It comes as no surprise that ML-based algorithms attract a great deal of attention, as
they attack the weaknesses of the rule-based models and show good predictive per-
formance. We'll therefore try to estimate stock price crash risk using an ML-based
method called minimum covariance determinant (MCD). MCD is a method proposed
to detect anomalies in a distribution with elliptically symmetric and unimodal data-
sets. Anomalies in stock returns are detected using the MCD estimator, and this
becomes the dependent variable in the logistic panel regression by which we explore
the root causes of crash risk.

The MCD estimator provides a robust and consistent method in detecting outliers.
This is important because outliers may have a huge effect on the multivariate analysis.
As summarized by Finch (2012), the presence of outliers in multivariate analysis can
distort the correlation coefficient causing biased estimates.

The algorithm of MCD can be given as follows:

1. Detect initial robust clustering based on the data.

2. Calculate mean vector M and positive definite! covariance matrix ¥* for each
cluster.

3. Compute MCD, for each observation in the cluster.

4. Assign a new observation with smaller MCD to the cluster.

5. Select a half sample, h, based on smallest MCD and compute M* and ¥* from h.

1 A symmetric matrix with all positive eigenvalues is referred to as a positive definite matrix.

258 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

6. Repeat steps 2 through 5 until there is no room for change in h.
7. Detect outlier if Cp= VX;,O g5 is less than d2.

The strength of the MCD comes in the form of its explainability, adjustability, low
computational time requirement, and robustness:

Explainability
Explainability is the extent to which the algorithm behind a model can be
explained. MCD assumes the data to be elliptically distributed and the outliers
are computed by the Mahalanobis distance metric.

Mahalanobis distance is a distance metric used in multivariate set-
tings. Of the distance measures, Mahalanobis stands out with its
ability to detect outliers, even though it is a computationally expen-
sive method, as it considers the inter-correlation structure of the
variables.

Mathematically, Mahalanobis distance is formulated as follows:

—
) = (e -5 ().
where y = E(X), ¥ is the covariance matrix, and X is a vector.

Adjustability
Adjustability stresses the importance of having a data-dependent model that is
allowed to calibrate itself on a consistent basis so that structural change can be
captured.

Low computational time
This refers to fast calculation of covariance matrix and avoids using an entire
sample. Instead, MCD uses a half sample in which no outliers are included so
that outlying observations do not skew MCD location or shape.

Robustness
Using a half sample in MCD also ensures robustness, because it implies that the
model is consistent under contamination (Hubert et al. 2018).

We'll now apply the MCD method to detect outliers in stock returns, and the result is
employed as the dependent variable. Accordingly, if there is a crash in the stock price,
the dependent variable takes the value of 1 and 0 otherwise.

From the empirical standpoint, there is a built-in library to run this algorithm in
Python that is Elliptic Envelope and we will make use of it.

Minimum Covariance Determinant | 259

Application of Minimum Covariance Determinant

Thus far, we have discussed the theoretical background of stock price crash detection.
From this point on, we will focus on the empirical part and see how we can incorpo-
rate theory into practice. While doing this, we won’t limit our attention to stock price
crash detection. After proposing an ML-based stock price crash detection, we will
delve into the root causes of the crashes. To do that, given the large body of literature,
we will employ a number of variables to observe how and to what extent they affect
the occurrence of stock price crash. Thus, the aim of this chapter is two-fold: detect-
ing stock price crash and identifying the root causes of the crash. Please keep in mind
that there are many different and competing ideas about the detection of stock price
crash and the variables that affect this crash.

In this analysis, we'll use the stock and balance sheet information of the following
companies:

Apple AT&T Banco Bradesco Bank of America Corp.
(sco Coca-Cola Comast DuPont de Nemours
Exxon Mobil Corp. Facebook Ford Motor General Electric

Intel Corp. Johnson & Johnson J.P. Morgan Merck & Co., Inc.
Microsoft Motus Gl Holdings Inc. Oracle Corp. Pfizer Inc.

Procter & Gamble Co. ~ Sherritt International Corp. Sirius XM Holdings Inc. ~ Trisura Group Ltd.
UBS Verizon Walmart Wells Fargo & Co.

To move forward, we need to calculate weekly firm-specific returns, but our data is
daily, so let’s jump in and do the necessary coding:

In [1]: import as
import as
import as
import as ; sns.set()
pd.set_option('use_inf_as_na', True)
import

warnings.filterwarnings('ignore')

In [2]: crash_data = pd.read_csv('crash_data.csv')

In [3]: crash_data.head()

Out[3]: Unnamed: © RET date TICKER vwretx BIDLO ASKHI PRC \
0 27882462 0.041833 20100104 BAC 0.017045 15.12 15.750 15.69
1 27882463 0.032505 20100105 BAC 0.003362 15.70 16.210 16.20

2 27882464 0.011728 20100106 BAC 0.001769 16.03 16.540 16.39

3 27882465 0.032947 20100107 BAC 0.002821 16.51 17.185 16.93

260 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

4 27882466 -0.008860 20100108 BAC 0.004161 16.63 17.100 16.78
VoL

0 180845100.0

1 209521200.0

2 205257900.0

3 320868400.0

4 220104600.0

In [4]: crash_data.date = pd.to_datetime(crash_data.date, format='%Y%m%d') (1]
crash_data = crash_data.set_index('date') (2]

© Converting date column into proper date format

® Setting date as index

As a reminder, the data were using has been collected from CRSP and Compustat.
Table 9-1 provides a brief explanation of the data.

Table 9-1. Attributes and explanations

Attribute Explanation
RET The stock return

vwretx The volume weighted return
BIDLO The lowest bid price
ASKHI The highest ask price

PRC The trading price

VoL The trading volume

Given this data, let’s calculate the weekly mean return and generate Figure 9-1 with
the first four stocks. To do this calculation, we'll also calculate the weekly mean of the
other variables, as we'll use them along the way:

In [5]: crash_dataw = crash_data.groupby('TICKER').resample('W"').\
agg({'RET':'mean', 'vwretx':'mean', 'VOL':'mean',
'BIDLO': 'mean', 'ASKHI':'mean', 'PRC':'mean'}) (1)

In [6]: crash_dataw = crash_dataw.reset_index()
crash_dataw.dropna(inplace=True)
stocks = crash_dataw.TICKER.unique()

Application of Minimum Covariance Determinant | 261

In [7]: plt.figure(figsize=(12, 8))
k=1

for 1 in stocks[: 4]: (2]
plt.subplot(2, 2, k)
plt.hist(crash_dataw[crash_dataw.TICKER == i1]['RET'])
plt.title('Histogram of '+1)
k+=1

plt.show()

© Computing weekly returns per stocks along with other variables

© Picking first four stocks

Figure 9-1 shows the histograms of our four first stocks, namely, Apple, Bank
of America, Banco Bradesco, and Comcast. As expected, the distributions seem to
be normal, but we now have returns that, generally speaking, show leptokurtic
distribution.

Histogram of AAPL Histogram of BAC
175 200
150
125 150
100
100
75
50 50
0 __- | [0 _-- ——
-0.03 -0.02 -0.01 0.00 0.01 0.02 -0.03 -0.02 -0.01 0.00 001 0.02 003 0.04
Histogram of BBDO Histogram of CMCSA
140
120
120
100
100
80 80
60 60
40 40
i I B * _ml B
0 - I 0 —- I
-0.02 0.00 0.02 0.04 0.06 -0.020-0.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020

Figure 9-1. Return histogram

In what follows, we calculate return in a way to exclude market impact, which is
known as finding the firm-specific return. To calculate the firm-specific weekly return,
we run linear regression based on the following equation:

262 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

Tit= A+ Byl 2t Bal e 1 Y BTt Bal e 1 H BT r s 2t €t

where 7, , is the return of firm j in week ¢, and r,,, ¢ is the return on the CRSP value-

weighted market return in week t. Scaling the residuals of this regression by 1 + loga-
rithm provides us the firm-specific return.

According to the expanded market model, the firm specific weekly returns can be cal-
culated as Wi’t = ln(l + € t) (Kim, Li, and Zhang 2011):

In [8]: import statsmodels.api as sm
residuals = []

for 1 in stocks:
Y = crash_dataw.loc[crash_dataw['TICKER'] == 1]['RET'].values
X = crash_dataw.loc[crash_dataw['TICKER'] == i]['vwretx'].values
X = sm.add_constant(X)
ols = sm.OLS(Y[2:-2], X[2:-2] + X[1:-3] + X[0:-4] + \
X[3:-1] + X[4:1).fit() ©

residuals.append(ols.resid)

In [9]: residuals = list(map(lambda x: np.log(l + x), residuals)) (2]

In [10]: crash_data_sliced = pd.DataFrame([])
for 1 in stocks:
crash_data_sliced = crash_data_sliced.\
append(crash_dataw.loc[crash_dataw.TICKER == {]

[2:-2]) ©
crash_data_sliced.head()
Out[10]: TICKER date RET vwretx VoL BIDLO

ASKHI \

2 AAPL 2010-01-24 -0.009510 -0.009480 25930885.00 205.277505
212.888450

3 AAPL 2010-01-31 -0.005426 -0.003738 52020594.00 198.250202
207.338002

4 AAPL 2010-02-07 0.003722 -0.001463 26953208.40 192.304004
197.378002

5 AAPL 2010-02-14 0.005031 0.002970 19731018.60 194.513998
198.674002

6 AAPL 2010-02-21 0.001640 0.007700 16618997.25 201.102500
203.772500

PRC

2 208.146752

3 201.650398

4 195.466002

5 196.895200

Application of Minimum Covariance Determinant | 263

6 202.636995

© Running linear regression by the predefined equation

© Computing the 1 + logarithm of the residuals

© Dropping the first and last two observations to align with the previous data

After all these preparations, we are ready to run the Elliptic Envelope to detect the
crash.

Only two parameters are identified: support_fraction and contamination. The for-
mer parameter is used to control for the proportion of points to be included in the
support of the raw MCD estimate, and the latter is used to identify the proportion of
outliers in the dataset:

In [11]:

In [12]:

In [13]:

from import EllipticEnvelope
envelope = EllipticEnvelope(contamination=0.02, support_fraction=1) (1)
ee_predictions = {}

for 1, j in zip(range(len(stocks)), stocks):
envelope.fit(np.array(residuals[i]).reshape(-1, 1))
ee_predictions[j] = envelope.predict(np.array(residuals[i])
.reshape(-1, 1)) (2]

transform = []

for 1 in stocks:
for j in range(len(ee_predictions[i])):
transform.append(np.where(ee_predictions[i][j] == 1, 0, -1)) (3]

crash_data_sliced = crash_data_sliced.reset_index()
crash_data_sliced['residuals'] = np.concatenate(residuals) (4]
crash_data_sliced['neg_outliers'] = np.where((np.array(transform)) \
= -1, 1, 0)
crash_data_sliced.loc[(crash_data_sliced.neg_outliers == 1) &
(crash_data_sliced.residuals > 0),
'neg_outliers'] = 0 (6]

© Running Elliptic Envelope with contamination and support_fraction as 2 and
1, respectively

© Predicting the crashes

© Transforming crashes into desired form

O Obtaining a one-dimensional numpy array to create a new column in the
dataframe

264 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

© Performing the final transformation for crashes, named neg_outliers

O Getting rid of crashes on the positive side (i.e., the right tail) of the distribution

The following code block is provided to visualize if the algorithm properly captures
the crashes. In this analysis, General Motors, Intel, Johnson & Johnson, and J.P. Mor-
gan are used. As suggested by the resultant Figure 9-2, the algorithm works fine and
identifies the crashes on the negative side of the distribution (shown as black bars):

In [14]: plt.figure(figsize=(12, 8))
k=1

for 1 in stocks[8:12]:

plt.subplot(2, 2, k)

crash_data_sliced['residuals'][crash_data_sliced.TICKER == 1]\
.hist(label="normal', bins=30, color='gray')

outliers = crash_data_sliced['residuals']
[(crash_data_sliced.TICKER == {) &
(crash_data_sliced.neg_outliers > 0)]

outliers.hist(color="black', label='anomaly')

plt.title(i)

plt.legend()

k += 1

plt.show()

0

70

60

50

40

30

GE

|

|
50
40
30
20

I i I I
R || b - o m ol .. .

-0.04 -0.03 -0.02 -0.01 0.00 0.1 002 0.03 -0.02 -0.01 0.00 0.01 0.02

|
|
60
40
20 20
NN | . ., ...l | I

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 -0.02 -0.01 0.00 0.01 0.02 0.03

INTC
60 s normal

EEE anomaly

normal
anomaly

JINJ JPM

80 == normal

EEE anomaly

normal
anomaly

Figure 9-2. Anomaly histogram

Application of Minimum Covariance Determinant | 265

From this point on, we will use two different datasets, as balance sheet information is
required in this analysis. So we will convert our weekly data into an annual one so
that this data will be merged with the balance sheet information (which includes
annual information). In addition, the annual mean and standard deviation of returns
are necessary to calculate crash risk, another stock price crash risk:

In [15]: crash_data_sliced = crash_data_sliced.set_index('date')
crash_data_sliced.index = pd.to_datetime(crash_data_sliced.index)

In [16]: std = crash_data.groupby('TICKER')['RET'].resample('W').std()\
.reset_index()
crash_dataw['std'] = pd.DataFrame(std['RET']) (1]

In [17]: yearly_data = crash_data_sliced.groupby('TICKER')['residuals']\
.resample('Y').agg({'residuals':{'mean', 'std'}})\
.reset_index()
yearly_data.columns = ['TICKER', 'date', 'mean', 'std']
yearly_data.head()
Out[17]: TICKER date mean std
AAPL 2010-12-31 0.000686 0.008291
AAPL 2011-12-31 0.000431 0.009088
AAPL 2012-12-31 -0.000079 0.008056
AAPL 2013-12-31 -0.001019 0.009096
AAPL 2014-12-31 0.000468 0.006174

A WNRFRO

In [18]: merge_crash = pd.merge(crash_data_sliced.reset_index(), yearly_data,
how="'outer', on=['TICKER', 'date']) (2]

In [19]: merge_crash[['annual_mean', 'annual_std']] = merge_crash\
.sort_values(by=['TICKER',
"date'])\
Aloc[:, -2:]\
.fillna(method="bfill') ©
merge_crash['residuals'] = merge_crash.sort_values(by=['TICKER',
"date'])\
['residuals']\
.fillna(method='ffill') ©
merge_crash = merge_crash.drop(merge_crash.iloc[: ,-4:-2], axis=1) (4]

© Resampling data to compute mean and standard deviation of returns
©® Merging yearly_data and crash_data_sliced based on Ticker and date
© Backward filling for annual data

O Dropping columns to prevent confusion

In the literature, one of the most widely used stock price crash measures is crash risk
because it has a discrete type, making it a convenient tool for comparison purposes.

266 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

So let’s now generate crash risk in Python. We'll use the merge_crash data we gener-
ated in the previous snippet. Given the formula for crash risk, we check if the weekly
return is less than 3.09 standard deviations below the mean. If so, it is labeled as 1,
indicating a crash, otherwise it’s labeled as 0. It will turn out that we have 44 crashes
out of 13,502 observations.

In the final block (In [22]), the crash risk measure is annualized so that we are able
to include it in our final data:

In [20]: crash_risk_out = []

for j in stocks:
for k in range(len(merge_crash[merge_crash.TICKER == j])):

if merge_crash[merge_crash.TICKER == j]['residuals'].iloc[k] < \

merge_crash[merge_crash.TICKER == j]['annual_mean'].iloc[k] - \

3.09 * \

merge_crash[merge_crash.TICKER == j]['annual_std'].iloc[k]:
crash_risk_out.append(1)

else:
crash_risk_out.append(0)

In [21]: merge_crash['crash_risk'] = crash_risk_out
merge_crash['crash_risk'].value_counts()
Outf[21]: © 13476
1 44
Name: crash_risk, dtype: int64

In [22]: merge_crash = merge_crash.set_index('date')
merge_crash_annual = merge_crash.groupby('TICKER')\
.resample('1Y"')['crash_risk'].sum().reset_index()

If you are using multiple stocks as we are here, it is not an easy task to compute
DUVOL and NCSKEW. The first step is to reckon the down and up weeks. As a
reminder, a down (or up) week is computed as the week in which weekly return is
less than (or greater than) the annual return. In the last part of the following code
block, we compute the necessary ingredients, such as square residuals, for down
weeks that we'll need to calculate the DUVOL and NCSKEW crash measures:

In [23]: down = []

for j in range(len(merge_crash)):
if merge_crash['residuals'].iloc[]j] < \
merge_crash['annual_mean'].iloc[j]:
down.append(1) (1]
else:
down.append(0) (2]

In [24]: merge_crash = merge_crash.reset_index()
merge_crash['down'] = pd.DataFrame(down)
merge_crash['up'] = 1 - merge_crash['down']
down_residuals = merge_crash[merge_crash.down == 1]\

Application of Minimum Covariance Determinant | 267

[['residuals', 'TICKER', 'date']] (3]
up_residuals = merge_crash[merge_crash.up == 1]\
[['residuals', 'TICKER', 'date']] (4]

In [25]: down_residuals['residuals_down_sq'] = down_residuals['residuals'] ** 2
down_residuals['residuals_down_cubic'] = down_residuals['residuals'] **3
up_residuals['residuals_up_sq'] = up_residuals['residuals'] ** 2
up_residuals['residuals_up_cubic'] = up_residuals['residuals'] ** 3
down_residuals['down_residuals'] = down_residuals['residuals']
up_residuals['up_residuals'] = up_residuals['residuals']
del down_residuals['residuals']
del up_residuals['residuals']

In [26]: merge_crash['residuals_sq'] = merge_crash['residuals'] ** 2
merge_crash['residuals_cubic'] = merge_crash['residuals'] ** 3

If the conditional returns true, add 1 to the down list
If the conditional returns true, add 0 to the down list

Creating a new variable named down_residuals including down weeks

© 6 © o

Creating a new variable named up_residuals including up weeks

The next step is to merge down_residuals and up_residuals with merge_crash.
Then, we specify and annualize all the variables we want to check to identify which
variables matter most in explaining stock price crash:

In [27]: merge_crash_all = merge_crash.merge(down_residuals,
on=['TICKER', 'date'],
how="outer")

merge_crash_all = merge_crash_all.merge(up_residuals,
on=['TICKER', 'date'],
how="'outer"')

In [28]: cols = ['BIDLO', 'ASKHI', 'residuals',

'annual_std', 'residuals_sq', 'residuals_cubic',
'down', 'up', 'residuals_up_sq', 'residuals_down_sq',
'neg_outliers']

merge_crash_all = merge_crash_all.set_index('date')

merge_grouped = merge_crash_all.groupby('TICKER"')[cols]\

.resample('1Y').sum().reset_index() (1]
merge_grouped['neg_outliers'] = np.where(merge_groz;ed.neg_outliers >=
1, 1, 0)

© Specifying and annualizing the variables of interest

©® Converting greater than 1 negative outliers observations, if any

268 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

There are two important questions remaining: how many down and up weeks do we
have, and what is their sum? These questions are important because the number of up
and down weeks refers to n, and n, in the DUVOL formula, respectively. So let’s do

that calculation:

In [29]:

Out[29]:

In [30]:

© Calculating annualized summation and count of down and up weeks

merge_grouped = merge_grouped.set_index('date')
merge_all = merge_grouped.groupby('TICKER')\
.resample('1Y').agg({'down':['sum', 'count'],
'up':['sum', 'count']I})\
.reset_index() (1)
merge_all.head()

TICKER date down up
sum count sum count
O AAPL 2010-12-31 27 1 23 1
1 AAPL 2011-12-31 26 1 27 1
2 AAPL 2012-12-31 28 1 26 1
3 AAPL 2013-12-31 24 1 29 1
4 AAPL 2014-12-31 22 1 31 1

merge_grouped['down'] = merge_all['down']['sum'].values
merge_grouped['up'] = merge_all['up']['sum'].values

merge_grouped['count'] = merge_grouped['down'] + merge_grouped['up']

Finally, we are all set to calculate DUVOL and NCSKEW using all the inputs we've
derived so far:

In [31]:

In [32]:

In [33]:
Out[33]:

In [34]:

In [35]:
Out[35]:

merge_grouped = merge_grouped.reset_index()

merge_grouped['duvol'] = np.log(((merge_grouped['up'] - 1) *

merge_grouped|['residuals_down_sq']) /

((merge_grouped['down'] - 1) *

merge_grouped['residuals_up_sq'])) (1)

merge_grouped['duvol'].mean()
-0.023371498758114867

merge_grouped['ncskew'] = - (((merge_grouped['count'] *

(merge_grouped['count'] - 1) **

(372)*

merge_grouped['residuals_cubic']) /

(((merge_grouped['count'] - 1) *
(merge_grouped['count'] - 2)) *

merge_grouped['residuals_sq'] **

(/2 0

merge_grouped['ncskew'].mean()
-0.031025284134663118

Application of Minimum Covariance Determinant

269

In [36]: merge_grouped['crash_risk'] = merge_crash_annual['crash_risk']
merge_grouped['crash_risk'] = np.where(merge_grouped.crash_risk >=
1, 1, 0)

In [37]: merge_crash_all_grouped2 = merge_crash_all.groupby('TICKER')\
[['voL", '"PRC'TI\
.resample('1Y').mean().reset_1index()
merge_grouped[['VOL', 'PRC']] = merge_crash_all_grouped2[['VOL', 'PRC']]

merge_grouped[['ncskew', 'duvol']].corr()

© Calculating DUVOL

© Calculating NCSKEW

DUVOL gives the proportion of the magnitude of the returns below the annual mean
to the magnitude of the returns above the annual mean. Consequently, higher
DUVOL implies left-skewed distribution or higher crash probability. Given the mean
DUVOL value of -0.0233, we can come to the conclusion that stock prices are less
likely to crash over the specified period.

NSCKEW, on the other hand, compares the shapes of the tails—that is, in the case of
longer left tail compared to the right tail, stock prices tend to crash. As expected, the
correlation between NCSKEW and DUVOL is high, confirming that both measures
pick up much the same information through different ways.

Logistic Panel Application

Since we are seeking the variables that can explain the stock price crash risk, this sec-
tion provides a backbone analysis. Because we have both stocks and time series in the
data, panel data analysis is a suitable technique to use.

At least three factors have contributed to the geometric growth of panel data studies
(Hsiao 2014):

1. Data availability

2. Greater capacity for modeling the complexity of human behavior than a single
cross-section or time series data

3. Its challenging methodology

In a nutshell, panel data analysis combines time series and cross-sectional data and,
therefore, has many advantages over time series and cross-sectional analysis. Ullah
(1998) summarizes these advantages this way:

Obvious benefits are a much larger data set with more variability and less collinearity
among the variables than is typical of cross-section or time-series data. With addi-
tional, more informative data, one can get more reliable estimates and test more

270 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

sophisticated behavioral models with less restrictive assumptions. Another advantage
of panel data sets are their ability to control for individual heterogeneity... In particu-
lar, panel data sets are better able to study complex issues of dynamic behavior.

As our data is of discrete type, logistic panel application addresses the need. However,
there is a shortage of libraries for panel data analysis, and the situation is even worse
when it comes to logistic panel applications. The library well use is the Python
Econometrics Models module (pyeconometrics), which has a few advanced-level
models, including:

o Fixed effects logistic regression (Logit)
+ Random effects logistic regression (Logit and Probit)

« Tobit I (linear regression for truncated data)

A potential endogeneity problem arising from time-invariant omit-
ted variables is one of the concerns that needs to be accounted for.
To control for this, we'll use a fixed effect logistic panel model.

To run a logistic panel application, the pyeconometrics module is used, but installa-
tion of this library is a bit different. Please visit its GitHub repo for more information.

Installing pyeconometrics is a bit different than installing some of
the libraries and modules we've used. To make sure you properly
install the library, please visit its GitHub repo.

Let’s now introduce the variables we'll use in this analysis. Having obtained the stock
price crash measures, it's time to discuss which variables matter in estimating stock
price crash risk. Table 9-2 lists the independent variables.

Table 9-2. Independent variables used in the analysis of stock price crash

Variable Explanation

Size (Log_size) Logarithm of total asset owned by company.

Receivables (rect) Accounts receivable/debtors.

Property, plant and equipment Total property, plant, and equipment.

(ppegt)

Average turnover (dturn) The average monthly turnover ratio in year ¢ minus the average monthly turnover ratio in

year t - 1. The turnover ratio is the monthly trading volume divided by the total number of
shares outstanding.

Logistic Panel Application | 271

https://oreil.ly/cxATG
https://oreil.ly/Ap8NO

Variable Explanation

NCSKEW (ncskew) The negative coefficient of skewness of firm-specific weekly returns in a year, which is the
negative of the third moment of firm-specific weekly returns divided by the cubed
standard deviation.

Firm-specific return The average of firm-specific weekly returns in a year.

(residuals)

Return on asset (RoA) The returns on asset in a year, which is the ratio of net income to total assets.
Standard deviation The standard deviation of firm-specific weekly returns in a year.
(annual_std)

Firm-specific sentiment The firm-specific investor sentiment measure obtained by PCA.

(firm_sent)

The return on assets and leverage variables are calculated using balance sheet data:

In [38]: bs = pd.read_csv('bs_v.3.csv")
bs['Date'] = pd.to_datetime(bs.datadate, format='%Y%m%d')
bs['annual_date'] = bs['Date'].dt.year

In [39]: bs['RoA'] = bs['ni'] / bs['at']
bs['leverage'] = bs['lt"'] / bs['at']

In [40]: merge_grouped['annual_date'] = merge_grouped['date'].dt.year
bs['TICKER'] = bs.tic
del bs['tic']

The next step is to obtain the rest of the variables merging balance sheet data (bs) and
stock-related data (merge_crash_all_grouped):

In [41]: merge_ret_bs = pd.merge(bs, merge_grouped,
on=['TICKER', 'annual_date'])

In [42]: merge_ret_bs2 = merge_ret_bs.set_index('Date')
merge_ret_bs2 = merge_ret_bs2.groupby('TICKER').resample('Y"').mean()
merge_ret_bs2.reset_index(inplace=True)

In [43]: merge_ret_bs2['vol_csho_diff'] = (merge_ret_bs2.groupby('TICKER")
['vOoL'].shift(-1) /
merge_ret_bs2.groupby('TICKER")
['csho'].shift(-1))

merge_ret_bs2['dturnl'] = merge_ret_bs2['VOL'] / merge_ret_bs2['csho']
merge_ret_bs2['dturn'] = merge_ret_bs2['vol_csho_diff'] - \
merge_ret_bs2['dturni']

In [44]: merge_ret_bs2['p/e'] = merge_ret_bs2['PRC'] / merge_ret_bs2['ni']
merge_ret_bs2['turnover_rate'] = merge_ret_bs2['VOL'] / \
merge_ret_bs2['csho']
merge_ret_bs2['equity_share'] = merge_ret_bs2['ceq'] / \
(merge_ret_bs2['ceq'] +
merge_ret_bs2['dt'])
merge_ret_bs2['firm_size'] = np.log(merge_ret_bs2['at'])

272 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

merge_ret_bs2['cefd'] = (((merge_ret_bs2['at'] -
merge_ret_bs2['lt']) / merge_ret_bs2['csho']) -
merge_ret_bs2['PRC']) / (merge_ret_bs2['at'] -
merge_ret_bs2['lt']) / merge_ret_bs2['csho']

In [45]: merge_ret_bs2 = merge_ret_bs2.set_index('Date')
merge_ret_bs2['buying_volume'] = merge_ret_bs2['VOL'] * \
(merge_ret_bs2['PRC'] -
merge_ret_bs2['BIDLO']) / \
(merge_ret_bs2['ASKHI'] -
merge_ret_bs2['BIDLO'])
merge_ret_bs2['selling_volume'] = merge_ret_bs2['VOL'] * \
(merge_ret_bs2['ASKHI'] -
merge_ret_bs2['PRC']) / \
(merge_ret_bs2['ASKHI'] -
merge_ret_bs2['BIDLO'])
buying_volume = merge_ret_bs2.groupby('TICKER')['buying_volume'] \
.resample('Y').sum().reset_1index()
selling_volume = merge_ret_bs2.groupby('TICKER')['selling_volume'] \
.resample('Y').sum().reset_1index()
del buying_volume['TICKER']
del buying_volume['Date']

In [46]: buy_sel_vol = pd.concat([buying_volume,selling_volume], axis=1)
buy_sel_vol['bsi'] = (buy_sel_vol.buying_volume -
buy_sel_vol.selling_volume) / \
(buy_sel_vol.buying_volume +
buy_sel_vol.selling_volume)

In [47]: merge_ret_bs2 = merge_ret_bs2.reset_index()
merge_ret_bs2 = pd.merge(buy_sel_vol ,merge_ret_bs2,
on=['TICKER', 'Date'])
Aside from firm-specific sentiment, the rest of the variables are widely used and quite
useful in explaining stock price crash risk.

Deriving an index and using it as a proxy is something very popular among research-
ers when it is hard to find a suitable variable to represent a phenomenon. For
instance, assume that you think that the firm-specific sentiment is a variable that
includes very powerful insight about stock price crash, but how can you come up
with a variable representing firm-specific sentiment? To address this issue, we can
consider all the variables that are somewhat related to firm-specific sentiment, and
then identify the relationships to create an index using principal component analysis.
This is what we are about to do.

Despite some well-known determinants of stock price crash risk, an important aspect
of crash risk that’s thought to be neglected is firm-specific investor sentiment. It is
rather intuitive to say that, depending on the perceptions of investors about a
company, the stock price might go up or down. That is, if an investor tends to feel

Logistic Panel Application | 273

optimistic about an individual stock, it is likely that they will buy the asset, which, in
turn, drives the price up or down (Yin and Tian 2017).

In this respect, price-to-earnings ratio (P/E), turnover rate (TURN), equity share
(EQS), closed-end fund discount (CEFD), leverage (LEV), buying and selling volume
(BSI) are used in identifying the firm-specific sentiment. Explanations of these vari-
ables are provided in Table 9-3.

Table 9-3. Variables used for firm-specific sentiment

Variable Explanation

Price-to-earnings ratio (p/e) Market value per share/earning per share

Turnover rate (turnover_rate) Total number of shares traded/average number of shares outstanding
Equity share (equity_share) ~ Common stock

(losed-end fund discount (cefd) Assets that raise a fixed amount of capital through an initial public offering
Leverage (Leverage) Sum of long-term debt and debt in current liabilities/total assets

Buying and selling volume (bsi) Buying (selling) volume is the number of shares that were associated with buying
(selling) trades

To capture the firm-specific sentiment properly, we need to extract as much informa-
tion as we can, and PCA is a convenient tool to accomplish this task with:

In [48]: from import StandardScaler
from import PCA

In [49]: firm_sentiment = merge_ret_bs2[['p/e', 'turnover_rate',
'equity_share', 'cefd',
'leverage', 'bsi']]
firm_sentiment = firm_sentiment.apply(lambda x: x.fillna(x.mean()),
axis=0)

In [50]: firm_sentiment_std = StandardScaler().fit_transform(firm_sentiment)
pca = PCA(n_components=6)
pca_market_sentiment = pca.fit_transform(firm_sentiment_std)
print('Explained Variance Ratios per Component are:\n {}'\
.format(pca.explained_variance_ratio_))
Explained Variance Ratios per Component are:
[0.35828322 0.2752777 0.15343653 0.12206041 0.06681776 0.02412438]

In [51]: loadings_1 = pd.DataFrame(pca.components_.T *
np.sqrt(pca.explained_variance_),
columns=['PC1', 'PC2', 'PC3',

'PC4', 'PC5', 'PC6'],
index=firm_sentiment.columns) (2]

loadings_1

Out[51]: PC1 PC2 PC3 PC4 PC5 PCé6
p/e -0.250786 0.326182 0.911665 0.056323 0.000583
0.021730

274 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

turnover_rate -0.
-0.008421

equity_share -0.
0.271443

cefd 0.
0.014146

leverage 0.
0.265335

bsi 0.
0.022520

In [52]: df_loadingl = pd.
df_loadingl
Out[52]:
p/e 0.
turnover_rate 0.

equity_share -0.
cefd 0.
leverage 0.
bsi 0.

In [53]: firm_sentiment =

O Filling missing value with

® Calculating the loadings

101554

913620

639570

917298

006731

0.854432

-0.162406

-0.118671

0.098311

0.878526

-0.197381

-0.133783

0.038422

0.068633

-0.173740

0.201749 0.428911

0.224513 -0.031672

0.754467 -0.100176

-0.264369 0.089224

-0.044127 -0.446735

DataFrame(loadings_1.mean(axis=1)) (3]

0
177616
196289
124254
204626
195739
040529

pd.DataFrame(np.dot(pca_market_sentiment,
np.array(df_loadingl)))
merge_ret_bs2['firm_sent'] = firm_sentiment

mean

© Taking cross-sectional average of loadings

Having obtained the loadings of the features, the result of the cross-sectional average
of components produces the following result:

SENTi, t = 0.177P/E, ,+0.196TURN, , - 0.124EQS, , + 0.204CEED, , + 0. 195LEV,

+0.040BS, ,

The result implies that firm-specific sentiment is positively affected by all the vari-
ables except for the equity share. In addition, leverage and turnover rate have the
largest impact on the firm-specific sentiment.

We have one more step to go: interpret the logistic panel data analysis. Before that,
the independent and dependent variables should be defined, and the necessary libra-

ries are used to do so:

In [54]: merge_ret_bs2['log_size'] = np.log(merge_ret_bs2['at'])

In [55]: merge_ret_bs2.set_index(['TICKER', 'Date'], inplace=True)

Logistic Panel Application

275

In [56]: X = (merge_ret_bs2[['log_size', 'rect', 'ppegt', 'dturn',
'ncskew', 'residuals', 'RoA', 'annual_std',
'firm_sent']]).shift(1)
X['neg_outliers'] = merge_ret_bs2['neg outliers']
Logistic panel data analysis shows us which variables have a statistically significant
relationship with the neg_outliers, the stock price crash measure obtained from the
Elliptic Envelope algorithm. The result suggests that, aside from ppegt and residu
als, all other variables are statistically significant at conventional confidence inter-
vals. Specifically, log_size, dturn, firm_sent, and annual_std do trigger a crash.

As is seen from the result, the coefficients of firm-specific investor sentiment index
are positive, financially important, and statistically significant at 1% level. Literature
suggests that, in times of high sentiment, under pressure of optimistic expectations,
managers tend to accelerate good news but withhold bad news to maintain the posi-
tive environment (Bergman and Roychowdhury 2008). Thus, the result suggests a
positive relationship between sentiment and crash risk.

With all these variables showing a strong statistically-significant relation to neg_out
liers, we are able to run a reliable predictive analysis:

In [57]: from pyeconometrics.panel_discrete_models import FixedEffectPanelModel
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

In [58]: FE_ML = FixedEffectPanelModel()
FE_ML.fit(X, 'neg_outliers')
FE_ML.summary()

Dep. Variable: neg_outliers Pseudo R-squ.: 0.09611
Model: Panel Fixed Effects Logit Log-Likelihood: -83.035
Method: MLE LL-Null: -91.864
No. Observations: 193 LLR p-value: 0.061
Df Model: 9
Converged: True

coef std err t P>|t| [95.0% Conf. Int.]
_cons -2.5897 1.085 -2.387 0.008 -4.716
-0.464
log_size 0.1908 0.089 2.155 0.016 0.017
0.364
rect -0.0000 0.000 -4.508 0.000 -0.000
-0.000
ppegt -0.0000 0.000 -0.650 0.258 -0.000
0.000
dturn 0.0003 0.000 8.848 0.000 0.000
0.000

276 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

ncskew -0.2156 0.089 -2.420 0.008 -0.390

-0.041
residuals -0.3843 1.711 -0.225 0.411 -3.737
2.968
RoA 1.4897 1.061 1.404 0.080 -0.590
3.569
annual_std 1.9252 0.547 3.517 0.000 0.852
2.998
firm_sent 0.6847 0.151 4,541 0.000 0.389
0.980

For the sake of comparison, this time the dependent variable is replaced by
crash_risk, which is of discrete type as well. Thanks to this comparison, we are able
to compare the goodness of the model as well as likely predictive power. Given the
goodness measure of our model, R?, the model with a dependent variable of neg_out
liers has higher explanatory power. However, please note that R* is not the only
metric used to compare the goodness of a model. As this discussion is beyond the
scope of the book, I will not go into detail.

Aside from that, what is apparent is signs of some estimated coefficients are different
across these two models. For instance, according to the literature, firm sentiment
(firm_sent) is supposed to have a positive sign, as once investor sentiment surges,
bad news hoarding behavior increases, leading to a rise in the stock price crash risk.
These important observations are captured in the previous model, which contains
our newly introduced dependent variable neg_outliers. The model with neg_outli
ers yields better and more reliable predictions:

In [59]: del X['neg_ outliers']
X['crash_risk'] = merge_ret_bs2['crash_risk']

In [60]: FE_crash = FixedEffectPanelModel()
FE_crash.fit(X, 'crash_risk")
FE_crash.summary()

Dep. Variable: crash_risk Pseudo R-squ.: 0.05324
Model: Panel Fixed Effects Logit Log-Likelihood: -55.640
Method: MLE LL-Null: -58.769
No. Observations: 193 LLR p-value: 0.793
Df Model: 9
Converged: True

coef std err t P>[t| [95.0% Conf. Int.]
_cons -3.1859 1.154 -2.762 0.003 -5.447
-0.925
log_size 0.2012 0.094 2.134 0.016 0.016

Logistic Panel Application | 277

0.386

rect -0.0000 0.000 -1.861 0.031 -0.000
0.000
ppegt -0.0000 0.000 -0.638 0.262 -0.000
0.000
dturn 0.0001 0.000 2.882 0.002 0.000
0.000
ncskew 0.3840 0.114 3.367 0.000 0.160
0.608
residuals 3.3976 2.062 1.648 0.050 -0.644
7.439
RoA 2.5096 1.258 1.994 0.023 0.043
4.976
annual_std 2.4094 0.657 3.668 0.000 1.122
3.697
firm_sent -0.0041 0.164 -0.025 0.490 -0.326
0.318
Conclusion

In this chapter, we learned how to detect stock price crash using ML. Using the MCD
method, negative anomalies in the market-adjusted firm-specific stock price returns
were detected and defined as a stock price crash risk indicator. The results suggest
that there is a positive relationship between sentiment and crash risk, indicating that
during high sentiment times, under pressure of optimistic expectations, managers
tend to withhold bad news, and this accumulated bad news leads to large declines.

In addition, other stock price crash measures, namely NCSKEW, DUVOL, and crash
risk, were also obtained. Of them, we used NCSKEW and crash risk in our analysis as
the independent and dependent variables, respectively.

The logistic panel analysis showed that the model with neg_outliers estimated coef-
ficients with signs in conformity with the literature, making it more useful and also
increasing the reliability of its predictive analysis compared to the one with
crash_risk.

In the next chapter, a brand-new and highly popular topic in finance circles will be
introduced: synthetic data generation and its use in risk management.

278 | Chapter9: A Corporate Governance Risk Measure: Stock Price Crash

References

Articles and books cited in this chapter:

Bae, Kee-Hong, Chanwoo Lim, and KC John Wei. 2006. “Corporate Governance and
Conditional Skewness In The World’s Stock Markets.” The Journal of Business 79
(6): 2999-3028.

Bergman, Nittai K., and Sugata Roychowdhury. 2008. “Investor Sentiment and Cor-
porate Disclosure.” Journal of Accounting Research 46 (5): 1057-1083.

Bleck, Alexander, and Xuewen Liu. 2007. “Market Transparency and The Accounting
Regime?” Journal of Accounting Research 45 (2): 229-256.

Chen, Joseph, Harrison Hong, and Jeremy C. Stein. 2001. “Forecasting Crashes: Trad-
ing Volume, Past Returns, and Conditional Skewness In Stock Prices” Journal of
Financial Economics 61 (3): 345-381.

Hubert, Mia, Michiel Debruyne, and Peter J. Rousseeuw. 2018. “Minimum Cova-
riance Determinant and Extensions” 2018. Wiley Interdisciplinary Reviews: Com-
putational Statistics 10 (3): e1421.

Hutton, Amy P, Alan J. Marcus, and Hassan Tehranian. 2009. “Opaque Financial
Reports, R2, and Crash Risk” Journal of Financial Economics 94 (1): 67-86.
Hsiao, Cheng. 2014. Analysis Of Panel Data. Cambridge University Press.

Kim J. B, Li Y., and Zhang L. 2011. “Corporate Tax Avoidance and Stock Price Crash
Risk: Firm-Level Analysis” Journal of Financial Economics 100 (3): 639-662.

Kim, Jeong-Bon, and Liandong Zhang. 2014. “Financial Reporting Opacity and
Expected Crash Risk: Evidence From Implied Volatility Smirks” Contemporary
Accounting Research 31 (3): 851-875.

Jin, Li, and Stewart C. Myers. 2006. “R2 Around The World: New Theory and New
Tests” Journal of Financial Economics 79 (2): 257-292.

Finch, Holmes. 2012. “Distribution Of Variables By Method Of Outlier Detection”
Frontiers in Psychology (3): 211.

Wolfensohn, James. 1999. “The Critical Study Of Corporate Governance Provisions
In India” Financial Times 25 (4). Retrieved from https://oreil.ly/EnLaQ.

Shleifer, Andrei, and Robert W. Vishny. 1997. “A Survey Of Corporate Governance.
The Journal of Finance 52 (2): 737-783.

Ullah, Aman, ed. 1998. Handbook Of Applied Economic Statistics. Boca Raton: CRC
Press.

Yin, Yugang, and Rongfu Tian. 2017. “Investor Sentiment, Financial Report Quality
and Stock Price Crash Risk: Role Of Short-Sales Constraints” Emerging Markets
Finance and Trade 53 (3): 493-510.

References | 279

https://oreil.ly/EnLaQ

CHAPTER 10

Synthetic Data Generation and
The Hidden Markov Model in Finance

The data does not have to be rooted in the real world to have value: it can be fabricated
and slotted in where some is missing or hard to get hold of.

— Ahuja (2020)

Synthetic data generation has been gaining attention in finance due to rising concerns
about confidentiality and increasing data requirements. So, instead of working with
real data, why not feed your model with synthetic data as long as it mimics the requi-
site statistical properties? It sounds appealing, doesn’t it? Synthetic data generation is
one part of this chapter; the other part is devoted to another underappreciated but
quite important and interesting topic: the hidden Markov model (HMM). You may
be tempted to ask: what is the common ground between synthetic data and HMM?
Well, we can generate synthetic data from HMM—and this is one of the aims of this
chapter. The other aim is to introduce these two important topics, as they are often
used in machine learning.

Synthetic Data Generation

The confidentiality, sensitivity, and cost of financial data greatly restricts its usage.
This, in turn, hinders the progress and dissemination of useful knowledge in finance.
Synthetic data addresses these drawbacks and helps researchers and practitioners
conduct their analyses and disseminate the results.

Synthetic data is data generated from a process by which it mimics the statistical
properties of the real data. Even though there is a belief that data must be modeled in
its original form, generating synthetic data from real data is not the only way we can

281

create it (Patki, Wedge, and Veeramachaneni 2016). Rather, there are three ways we
can generate synthetic data:

« Synthetic data can be generated from the real data. The workflow of this process
starts with getting real data, and continues with modeling to unveil the distribu-
tion of the data, and as a last step synthetic data is sampled from this existing
model.

« Synthetic data can be obtained from a model or knowledge. Generally speaking,
this type of synthetic data generation can be applied either by using an existing
model or knowledge of the researcher.

o A hybrid process includes the previous two steps, because sometimes only a part
of the data becomes available and this part of the real data is used to generate
synthetic data and the other part of the synthetic data can be obtained from a
model.

We will soon see how we can apply these techniques to generate synthetic data. By its
nature, the synthetic data generation process has an uncompromising trade-off
between privacy and utility. To be exact, synthetic data generation from real undis-
closed data results in high utility. However, the utility of the synthetic data generation
depends greatly on the deidentification and aggregation of real public data. The util-
ity of synthetic data generation is dependent upon successful modeling or the exper-
tise of the analyst.

The privacy-utility trade-off in the context of data-generating processes is illustrated
in Figure 10-1.

Synt:
Maximum privacy Ideal situation
A e m e mmm e, —— - '
Acceptable trade-off !
Data '
privacy '
No privacy Maximum utility

Figure 10-1. Privacy-utility trade-off

282 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Evaluation of the Synthetic Data

As you can imagine, various tools can be applied to measure the effectiveness of the
synthetic data; however, we will restrict our attention to four commonly embraced
methods: KL-divergence, distinguishable, ROC curve, and comparing the main sta-
tistics such as mean, median, etc. As KL-divergence and ROC were discussed in
Chapters 8 and 6, respectively, we will skip over those and start with the distinguisha-
ble method.

Distinguishable, as its name implies, tries to distinguish between real and synthetic
records by assigning 1 if they are real and 0 if not using a classification model that
distinguishes between real and synthetic data. If the output is closer to 1, it predicts
that the record is real, otherwise it predicts it is synthetic data using a propensity score
(El Emam 2020).

The other method is easy yet powerful, and is based on comparing the main statistics
of the real and synthetic data. Given the model employed, the mean (or other statis-
tic) of the real data and the synthetic data can be compared to get a sense of the extent
to which the synthetic data mimics the real data.

Let’s discuss the advantages and disadvantages of synthetic data generation:
Advantages

Increased availability of data
Synthetic data generation equips us with a strong tool by which we can over-
come the difficulty of accessing real data, which can be costly and
proprietary.

Improved analytical skill
Synthetic data as a good proxy of the real data can be used in various analyti-
cal processes, and this, in turn, improves our understanding of a specific
topic. Besides, synthetic data can be used for labeling, paving the way for
highly accurate analyses.

Handling common statistical problems
Synthetic data generation can mitigate the problems arising from real data.
Real data may come with issues—such as missing values, outliers, and so on
—that badly affect the performance of the model. Synthetics data provides a
tool to cope with these statistical problems so that we might end up with
improved modeling performance.

Evaluation of the SyntheticData | 283

Disadvantages

Inability to preserve confidentiality
Due to cyberattacks, synthetic data might turn out to be a source of private-
information leakage. For instance, the credentials of customers can be
obtained by reverse engineering.

Quality concerns
There are two important things that need to be taken into account during the
synthetic data generation process: the researcher’s ability and the characteris-
tics of data. These two points determine the quality process of synthetic data
generation. If these points are lacking, it is likely to expect low-quality syn-
thetic data.

Generating Synthetic Data

Lets start off with generating synthetic data first from real data, and then from a
model. We will use real data from fetch_california_housing to generate synthetic
data, and we will also use the CTGAN library (CTGANSynthesizer) in this process.
The CTGAN library enables us to generate synthetic data with high fidelity to the
original data based on generative adversarial networks (GANs). In generating syn-
thetic data, the number of training steps is controlled by epoch parameter, which ena-
bles us to obtain synthetic data in a short period of time:

In [1]: from import fetch_california_housing (1]
import as
import as
import as
import as
import
import
warnings.filterwarnings('ignore')

In [2]: X, y = fetch_california_housing(return_X_y=True) (2]
In [3]: import as
california_housing=np.column_stack([X, y]) (3]
california_housing_df=pd.DataFrame(california_housing)
In [4]: from import CTGANSynthesizer (4]
ctgan = CTGANSynthesizer(epochs=10) (5]

ctgan.fit(california_housing_df)
synt_sample = ctgan.sample(len(california_housing_df)) (6]

284 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Importing the fetch_california_housing data from sklearn

Generating independent and dependent variables from fetch_california_

housing

Stacking two arrays using the stack function

Importing CTGANSynthesizer for synthetic data generation

Initializing the synthetic data generation process from CTGANSynthesizer with
an epoch of 10

O Generating the sample

After generating the synthetic data, the similarity of the synthetic data can be checked
by descriptive statistics. As always, descriptive statistics is handy, but we have another
tool, the evaluate package from the Synthetic Data Vault (SDV). The output of this
function will be a number between 0 and 1, which will indicate how similar the two
tables are, with 0 being the worst and 1 being the best possible score. In addition, the
result of the generation process can be visualized (in the resulting Figures 10-2 and
10-3) and compared with the real data so we can fully understand whether the syn-
thetic data is a good representation of the real data or not:

In [5]: california_housing_df.describe()

Out[5]: 0 1 2 3 4\
count 20640.000000 20640.000000 20640.000000 20640.000000 20640.000000
mean 3.870671 28.639486 5.429000 1.096675 1425.476744
std 1.899822 12.585558 2.474173 0.473911 1132.462122
min 0.499900 1.000000 0.846154 0.333333 3.000000
25% 2.563400 18.000000 4.440716 1.006079 787.000000
50% 3.534800 29.000000 5.229129 1.048780 1166.000000
75% 4.743250 37.000000 6.052381 1.099526 1725.000000
max 15.000100 52.000000 141.909091 34.066667 35682.000000

5 6 7 8
count 20640.000000 20640.000000 20640.000000 20640.000000
mean 3.070655 35.631861 -119.569704 2.068558
std 10.386050 2.135952 2.003532 1.153956
min 0.692308 32.540000 -124.350000 0.149990
25% 2.429741 33.930000 -121.800000 1.196000
50% 2.818116 34.260000 -118.490000 1.797000
75% 3.282261 37.710000 -118.010000 2.647250
max 1243.333333 41.950000 -114.310000 5.000010

In [6]: synt_sample.describe()

Generating SyntheticData | 285

Oout[6]: 0 1 2 3 4\
count 20640.000000 20640.000000 20640.000000 20640.000000 20640.000000

mean 4.819246 28.954316 6.191938 1.172562 2679.408170

std 3.023684 13.650675 2.237810 0.402990 2127.606868

min -0.068225 -2.927976 0.877387 -0.144332 -468.985777

25% 2.627803 19.113346 4.779587 0.957408 1148.179104

50% 4.217247 29.798105 5.779768 1.062072 2021.181784

75% 6.254332 38.144114 7.058157 1.285233 3666.957652

max 19.815551 54.219486 15.639807 3.262196 12548.941245
5 6 7 8

count 20640.000000 20640.000000 20640.000000 20640.000000

mean 3.388233 36.371957 -119.957959 2.584699

std 1.035668 2.411460 2.306550 1.305122

min 0.650323 32.234033 -125.836387 0.212203

25% 2.651633 34.081107 -122.010873 1.579294

50% 3.280092 36.677974 -119.606385 2.334144

75% 3.994524 38.023437 -118.080271 3.456931

max 7.026720 43.131795 -113.530352 5.395162

In [7]: from sdv.evaluation import evaluate (1]

evaluate(synt_sample, california_housing_df) (2]
Out[7]: 0.4773175572768998

In [8]: from table_evaluator import TableEvaluator (3]
table_evaluator = TableEvaluator(california_housing_df, synt_sample) (4)

table_evaluator.visual_evaluation() (5]

@ Importing the evaluate package for assessing the similarity of synthetic and real
data

Running the evaluate package on our real and synthetic data

Importing TableEvaluator for visual inspection of the similarities between syn-
thetic and real data

Running TableEvaluator with real and synthetic data

Conducting visual analysis with visual_evaluation package

286 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Means of real and fake data Stds of real and fake data
8
6

6
§ -
g g4
& T
gt °
8 3
[} 3 2
® g ‘

.
E 2 . &8
@ o . ¢
0
-2
0 2 4 6 8 -2 0 2 4 6
real data mean (log) real data std (log)
Figure 10-2. Evaluation of synthetic data generation-1
Real 100 Fake 100 Difference

i Hmi - 1l |
i i . B .
(NN M.
§ g w g - o1
i L | -
i i i
1 ; 1

Figure 10-3. Evaluation of synthetic data generation-2

Figures 10-2 and 10-3 allow us to visually compare the performance of the real and
synthetic data using the mean, standard deviation, and heatmaps. Even though evalu
ation has many different tools, it is worth restricting our attention to these for now.

As can you see, it is not hard to generate synthetic data from real data. Let’s now walk
through a process by which we can generate synthetic data based on a model. I will
use sklearn, the Swiss knife library for ML applications, both for classification and
regression models. make_regression is helpful for generating synthetic data for run-
ning a regression model. Likewise, make_classification generates synthetic data for
the purpose of running a classification model. The following code also generates
Figure 10-4:

Generating SyntheticData | 287

In [9]: from sklearn.datasets import make_regression (1)
import matplotlib.pyplot as plt
from matplotlib import cm

In [16]: X, y = make_regression(n_samples=1000, n_features=3, noise=0.2,
random_state=123) (2]

plt.scatter(X[:, 0], X[:, 1], alpha= 0.3, cmap='Greys', c=y)

In [11]: plt.figure(figsize=(18, 18))
k=0

for 1 in range(0, 10):
X, y = make_regression(n_samples=100, n_features=3, noise=1,
random_state=123)
k+=1
plt.subplot(5, 2, k)
profit_margin_orange = np.asarray([20, 35, 40])
plt.scatter(X[:, 0], X[:, 1], alpha=0.3, cmap=cm.Greys, c=y)
plt.title('Synthetic Data with Different Noises: ' + str(i))
plt.show()

Importing the make_regression package

Generating synthetic data for regression with 1000 samples, 3 features, and the
standard deviation of the noise

Figure 10-4 shows the effects of varying noise on synthetic data generation. As
expected, as the standard deviation goes up, the noise parameter gets bigger and
bigger.

288 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Synthetic Data with Different Noises: 0 Synthetic Data with Different Noises: 1
2 0 3 A
°
1 2 o % o °
LIy ° e, € o o
0 0n” °5 ° ° 4 o
8 ° @ ¢
1 ° 0
° ° : . <
2 ° -
-2
-3
-3
-2 -1 0 1 2 -2 -1 0 1 2
Synthetic Data with Different Noises: 2 Synthetic Data with Different Noises: 3
3 ° 3 °
° °
2 o ® o ° 2 o ® o °
[y ? e o © [§ e o
1 ° 1 o
° e °
° @
0 ’ 0
-1 -1
-2 -2
-3 -3
-2 -1 0 1 2 -2 -1 0 1 2
Synthetic Data with Different Noises: 4 Synthetic Data with Different Noises: 5
3 ° 3 °
° °
2 o ® o ° 2 o ® o °
2 S0 o ° g, §£o 0
1 ° . 1 o
° @
0 0
-1 -1
-2 -2
-3 -3
-2 -1 0 1 2 -2 -1 0 1 2
Synthetic Data with Different Noises: 6 Synthetic Data with Different Noises: 7
3 ° 3 °
° °
2 o ® o ° 2 o ® o °
2% $o o % §o o
1 ° 1 2’ °
L) ° ‘ @ N
0 0
-1 -1
-2 -2
-3 -3
-2 -1 0 1 2 -2 -1 0 1 2
Synthetic Data with Different Noises: 8 Synthetic Data with Different Noises: 9
3 ° 3 °
° °
2 o % o ° 2 o ® o °
% g o ° ? 59 ° o
1 ° 1 - °
@ © @ o
0 ’ 0
-1 -1
-2 -2
-3 -3
-2 -1 0 1 2 -2 -1 0 1 2

Figure 10-4. Synthetic data generation with different noises

How about generating synthetic data for classification? Well, it does sound easy. We
will follow a very similar process as regression. This time, we'll use the make_classt
fication package. After generating synthetic data, the effect of different numbers of
classes will be observed via scatter plot (Figure 10-5):

In [12]: from sklearn.datasets import make_classification (1]

In [13]: plt.figure(figsize=(18, 18))
k=0

for 1 in range(2, 6):
X, y = make_classification(n_samples=100,
n_features=4,
n_classes=1,

Generating SyntheticData | 289

n_redundant=0,
n_informative=4,
random_state=123) (2]
k+=1
plt.subplot(2, 2, k)
plt.scatter(X[: ,0], X[:, 1], alpha=0.8, cmap='gray', c=y)
plt.title('Synthetic Data with Different Classes: ' + str(i))
plt.show()

O Importing make_classification package

© Generating synthetic data for classification with 100 samples, 4 features, and 4
informative features

Figure 10-5 shows us the effect of having different classes on the synthetic data gener-
ation; in this case, synthetic data was generated with classes 2 to 5.

Synthetic Data with Different Classes: 2 Synthetic Data with Different Classes: 3
5
.
4
4
.« °
D)
L4 L]
L] . .
3 . 2 . o
.
. e o
2 0
2 . ~ ° °
. ° °
L ° oo 3 °
0 °
° . ° oo °
1 « ° . [XY .,
. . . o ° e o
LA N } . . -
. . e
.
0 . o . -2 . - ° . .
L4 2 e o * . °
o .
. L] .
-1 e .
. ° o . .
. -4
.
.
-2 e o °
.
3 -6 .
-4 -2 0 2 4 -4 -3 -2 -1 0 1 2 3
Synthetic Data with Different Classes: 4 Synthetic Data with Different Classes: 5
5
. .
4 4
. .
. (1]
. e o . .
. 3 . . .
2 .
.
LN} 2 . L4
L] ® o . .
o« o o . . s
. ° .
. e o ° ° o o P
0 o ° . ° ° 1 e ®
° 4 o . .
[o .
P o oo .
° . % . 0 . °
.
. 1 8o o °
o o .
- . °
2 . ® oo 4 A e o .
. . s .
. . . o ° .
° -2 ° ° °
.
.
.
” .
© .
-3
. .
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3

Figure 10-5. Synthetic data generation with different classes

290 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

It is also possible to generate synthetic data from unsupervised learning. make_blobs
is a package that can be used for this purpose. So we will generate synthetic data and
eyeball the effect of different numbers of clusters on the synthetic data and produce
Figure 10-6:

In [14]: from import make_blobs (1]

In [15]: X, y = make_blobs(n_samples=100, centers=2,
n_features=2, random_state=0) (2]

In [16]: plt.figure(figsize=(18, 18))
=0
for 1 in range(2, 6):
X, y = make_blobs(n_samples=100, centers=1,
n_features=2, random_state=0)
k += 1
plt.subplot(2, 2, k)
my_scatter_plot = plt.scatter(X[:, 0], X[:, 1],
alpha=0.3, cmap='gray', c=y)
plt.title('Synthetic Data with Different Clusters: ' + str(i))
plt.show()

© Importing the make_blobs package from sklearn

® Generating synthetic data with 100 samples, 2 centers, and 2 features
Figure 10-6 shows how the synthetic data looks with varying clusters.

Up until now, we have learned how to generate synthetic data using real data and
models, using both supervised learning (regression and classification) and unsuper-
vised learning. From this point on, we will explore the HMM and how to use it. From
the financial standpoint, we will accomplish this task by factor investing. Factor
investing is not a new topic but it has become more and more appealing after the
celebrated Fama-French three-factor model (Fama and French 1993). We will see the
impact of HMM on identifying different states in the economy and take it into
account in investment strategies. In the end, we will be able to compare the effective-
ness of factor-investing based on the three-factor Fama-French model with HMM
using the Sharpe ratio.

Generating SyntheticData | 291

Synthetic Data with Different Clusters: 2

Synthetic Data with Different Clusters: 4

-3 -2 -1 0 1 2

3

4

Synthetic Data with Different Clusters: 3

Synthetic Data with Different Clusters: 5

° o

Figure 10-6. Synthetic data generation with different noises

A Brief Introduction to the Hidden Markov Model

HMM gives us a probability distribution over sequential data, which is modeled by a
Markov process with hidden states. HMM enables us to estimate probability transi-

tion from one state to another.

To illustrate, let us consider the stock market, in which stocks go up, go down, or stay
constant. Pick a random state—say, going up. The next state would be either going
up, going down, or staying constant. In this context, the state is thought to be a hid-
den state because we do not know with certainty which state will prevail next in the

market.

292 |

Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

In general, there are two fundamental assumptions that HMM makes: first, that all
observations are solely dependent on the current state and are conditionally inde-
pendent of other variables, and second, that the transition probabilities are homoge-
nous and depend only on the current hidden state (Wang, Lin, and Mikhelson 2020).

Fama-French Three-Factor Model Versus HMM

The model proposed by Fama and French (1993) paved the way for further studies
expanding on CAPM. The model suggests brand-new explanatory variables to
account for the changes in stock returns. The three factors in this model are market
risk (Rm — Rf), small minus big (SMB), and high minus low (HML). Let’s briefly dis-
cuss these factors, as we will use them in the model below.

(Rm — Rf) is basically the return of a market portfolio minus the risk-free rate, which
is a hypothetical rate proxied by government-issued T-bills or similar assets.

SMB is a proxy for size effect. Size effect is an important variable used to explain sev-
eral phenomenon in corporate finance. It is represented by different variables like
logarithm of total assets. Fama-French takes size effect into account by calculating
between returns of small-cap companies and big-cap companies.

The third factor is HML, which represents the spread in returns between companies
with high book-to-market and companies with low book-to-market, comparing a
company’s book value to its market value.

Empirical studies suggest that smaller SMB, higher HML, and smaller (Rm — Rf)
boosts stock returns. Theoretically speaking, identifying states before running the
Fama-French three-factor model would boost the performance of the model. To see if
this is the case with real data, let us run the factor investment model with or without
the HMM.

The data is compiled from the Kenneth R. French data library. As can be seen in the
following, the variables included in the data are: Date, Mkt-RF, SMB, HML, and RF. It
turns out all the variables are numerical aside from the date as expected. To save some
time processing the model, the data has been trimmed to start from 2000-01-03:

In [17]: ff = pd.read_csv('FF3.csv', skiprows=4)
ff = ff.rename(columns={'Unnamed: 0': 'Date'})
ff = ff.iloc[:-1]
ff.head()
Out[17]: Date Mkt-RF SMB HML RF
0 19260701 0.10 -0.24 -0.28 0.009
1 19260702 0.45 -0.32 -0.08 0.009
2 19260706 0.17 0.27 -0.35 0.009
3 19260707 0.09 -0.59 0.03 0.009
4 19260708 0.21 -0.36 0.15 0.009

In [18]: ff.info()

Fama-French Three-Factor Model Versus HMAM | 293

https://oreil.ly/m5ShJ

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24978 entries, 0 to 24977
Data columns (total 5 columns):

Column Non-Null Count Dtype

0 Date 24978 non-null object

1 Mkt-RF 24978 non-null float64
2 SMB 24978 non-null float64
3 HML 24978 non-null float64
4 RF 24978 non-null float64

dtypes: float64(4), object(1)
memory usage: 975.8+ KB

In [19]: ff['Date'] = pd.to_datetime(ff['Date'])
ff.set_index('Date', inplace=True)
ff_trim = ff.loc['2000-01-01":]

In [20]: ff_trim.head()

Out[20]: Mkt-RF SMB HML RF
Date
2000-01-03 -0.71 0.61 -1.40 0.021
2000-01-04 -4.06 0.01 2.06 0.021
2000-01-05 -0.09 0.18 0.19 0.021
2000-01-06 -0.73 -0.42 1.27 0.021
2000-01-07 3.21 -0.49 -1.42 0.021

Well, we have obtained the variables explaining the dynamic behind the stock return,
but which stock return is it? It is supposed to be a return representing general well-
being of the economy. A potential candidate for this kind of variable is the S&P 500
exchange-traded fund (ETF).

ETF is a special type of investment fund and exchange-traded
product that tracks industry, commodities, and so on. SPDR S&P
500 ETF (SPY) is a very well-known example tracking the S&P 500
Index. Some other ETFs are:

o Vanguard Total International Stock ETF (VXUS)
« Energy Select Sector SPDR Fund (XLE)

« iShares Edge MSCI Min Vol USA ETF (USMV)
o iShares Morningstar Large-Cap ETF (JKD)

We'll collect the daily closing SPY price from 2000-01-03 to 2021-04-30 to match the
period were examining. After accessing the data, ff_trim and SP_ETF are merged so
that we end up with the data including return and volatility on which the hidden
states are determined:

294 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

In [21]:

In [22]:

In [23]:

In [24]:

ticker = 'SPY'

start = datetime.datetime(2000, 1, 3)

end = datetime.datetime(2021, 4, 30)

SP_ETF = yf.download(ticker, start, end, interval='1d').Close

[*********************100%***********************] 1 of 1 co[rlp'l_eted
ff_merge = pd.merge(ff_trim, SP_ETF, how='inner', on='Date')

SP = pd.DataFrame()
SP['Close']= ff_merge['Close']

SP['return'] = (SP['Close'] / SP['Close‘].shift(l))—l"

© Calculating return of the SPY

It is assumed that there are three states in the economy: up, down, and constant. With
this in mind, we run the HMM with full covariance, indicating independent compo-
nents and a number of iterations (n_iter) of 100. The following code block shows
how we can apply Gaussian HMM and predict the hidden state:

In [25]:

In [26]:

In [27]:

In [28]:

Out[28]:

from hmmlearn import hmm

hmm_model = hmm.GaussianHMM(n_components=3,
covariance_type="full",
n_iter=100)

hmm_model.fit(np.array(SP['return'].dropna()).reshape(-1, 1))"

hmm_predict = hmm_model.predict(np.array(SP['return'].dropna())
.reshape(-1, 1))@’

df_hmm = pd.DataFrame(hmm_predict)

ret_merged = pd.concat([df_hmm,SP['return'].dropna().reset_index()],
axis=1)

ret_merged.drop('Date',axis=1, inplace=True)

ret_merged.rename(columns={0: 'states'}, inplace=True)

ret_merged.dropna().head()

states return
0 1 -0.039106
1 1 0.001789
2 1 -0.016071
3 1 0.058076
4 2 0.003431

O Fitting the Gaussian HMM with return data

© Given the return data, predicting the hidden states

After predicting the hidden states, return data is concatenated with the hidden state
so that we are able to see which return belongs to which state.

Fama-French Three-Factor Model Versus HMM | 295

Let’s now examine the result we obtained after running our Gaussian HMM analysis.
In the following code block, we compute the mean and standard deviations of differ-
ent states. Also, covariance, initial probability, and transition matrix are estimated:

In [29]: ret_merged['states'].value_counts()
Out[29]: 0 3014

2 2092

1 258

Name: states, dtype: int64

In [30]: state_means = []
state_std = []

for 1 in range(3):

state_means.append(ret_merged[ret_merged.states == i]['return']
.mean())
state_std.append(ret_merged[ret_merged.states == i]['return']
.std())

print('State Means are: {:.4f}'.format(state_means))

print('State Standard Deviations are: {:.4f}'.format(state_std))
State Means are: [0.0009956956923795376, -0.0018371952883552139, -0.
0005000714110860054]

State Standard Deviations are: [0.006006540155737148, 0.
03598912028897813, 0.01372712345328388]

In [31]: print(f'HMM means\n {hmm_model.means_}"')

print(f'HMM covariances\n {hmm_model.covars_}"')
print(f'HMM transition matrix\n {hmm_model.transmat_}')
print(f'HMM initial probability\n {hmm_model.startprob_}")
HMM means

[[0.00100365]

[-0.002317]

[-0.00036613]]
HMM covariances

[[[3.85162047e-05]]

[[1.26647594e-03]]

[[1.82565269e-04]]]
HMM transition matrix
[[9.80443302e-01 1.20922866e-06 1.95554886e-02]
[1.73050704e-08 9.51104459%-01 4.88955238e-02]
[2.67975578e-02 5.91734590e-03 9.67285096e-01]]
HMM initial probability
[0.00000000e+000 1.00000000e+000 2.98271922e-120]

The number of observations per state is given in Table 10-1.

296 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Table 10-1. Observations per state

State Number of observations Return means Covariances

0 3014 0.0010 3.8482e-05
1 2092 -0.0023 1.2643e-05
2 258 -0.0003 1.8256e-05

We assume that the economy has three states, but this assumption rests on theory.
However, if we want to make sure, there is a strong and convenient tool that can be
applied: Elbow Analysis. After running Gaussian HMM, we obtain the likelihood
result, and if there is no room for improvement—that is, the likelihood value
becomes relatively stagnant—this is the point at which we can stop the analysis.
Given the following result (along with the resultant Figure 10-7), it turns out that
three components is a good choice:

In [32]: sp_ret = SP['return'].dropna().values.reshape(-1,1)
n_components = np.arange(1l, 10)
clusters = [hmm.GaussianHMM(n_components=n,
covariance_type="full").fit(sp_ret)
for n in n_components] (1)
plt.plot(n_components, [m.score(np.array(SP['return'].dropna())\
.reshape(-1,1)) for m in clusters]) (2]
plt.title('Optimum Number of States')
plt.xlabel('n_components')
plt.ylabel('Log Likelihood')

In [33]: hmm_model = hmm.GaussianHMM(n_components=3,
covariance_type="full",
random_state=123).fit(sp_ret)

hidden_states = hmm_model.predict(sp_ret)

© Creating ten clusters based on Gaussian HMM via list comprehension

@ Calculating log-likelihood given the number of components

Figure 10-7 shows the likelihood values per state. It is readily observable that after the
third component, the curve becomes flatter.

Fama-French Three-Factor Model Versus HMM | 297

Optimum Number of States
17000
16800
3
8 16600
£
g
T 16400
()]
(@)
-
16200
16000
1 2 3 4 5 6 7 8 9
n_components

Figure 10-7. Gaussian HMM scree plot

Let us now visualize the states that we have obtained via Gaussian HMM and produce
Figure 10-8:

In [34]: from matplotlib.dates import YearlLocator, MonthLocator
from matplotlib import cm

In [35]: df_sp_ret = SP['return'].dropna()

hmm_model = hmm.GaussianHMM(n_components=3,
covariance_type="full",
random_state=123).fit(sp_ret)

hidden_states = hmm_model.predict(sp_ret)

fig, axs = plt.subplots(hmm_model.n_components, sharex=True,
sharey=True, figsize=(12, 9))
colors = cm.gray(np.linspace(0, 0.7, hmm_model.n_components))

for 1, (ax, color) in enumerate(zip(axs, colors)):
mask = hidden_states == 1
ax.plot_date(df_sp_ret.index.values[mask],
df_sp_ret.values[mask],
".-", c=color)
ax.set_title("Hidden state {}".format(i + 1), fontsize=16)
ax.xaxis.set_minor_locator(MonthLocator())

plt.tight_layout()

298 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Hidden state 1

0.15
0.10
0.05
000 | HEEOUAY eV - NN SRIRARDIN i tald

-0.05

-0.10

Hidden state 2

0.15

0.10

0.05

0.00

-0.05

-0.10

Hidden state 3

0.15

0.10

0.05

0.00

-0.05

-0.10

2000 2004 2008 2012 2016 2020

Figure 10-8. Gaussian HMM states

Figure 10-8 shows the behavior of the hidden states, and as expected, the distribu-
tions of these states are entirely different from each other, highlighting the impor-
tance of identifying the states.

Given the states, the SPY returns differ, which is something that we expect. After all
these preparations, we can move forward and run the Fama-Frech three-factor model
with and without Gaussian HMM. The Sharpe ratio, which we’ll calculate after mod-
eling, will tell us which is the better risk-adjusted return. Analysis with Gaussian
HMM reveals a Sharpe ratio of nearly 0.0981:

In [36]: ret_merged.groupby('states')['return'].mean()
Out[36]: states

0 0.000996

1 -0.001837

2 -0.000500

Name: return, dtype: float64

In [37]: ff_merge['return'] = ff_merge['Close'].pct_change()
ff_merge.dropna(inplace=True)

In [38]: split = int(len(ff_merge) * 0.9)
train_ff= ff_merge.iloc[:split].dropna()

Fama-French Three-Factor Model Versus HMM | 299

test_ff = ff_merge.iloc[split:].dropna()

In [39]: hmm_model = hmm.GaussianHMM(n_components=3,
covariance_type="full",
n_iter=100, init_params="")

In [40]: predictions = []

for 1 in range(len(test_ff)):
hmm_model.fit(train_ff)
adjustment = np.dot(hmm_model.transmat_, hmm_model.means_) (1]
predictions.append(test_ff.iloc[1] + adjustment[0])
predictions = pd.DataFrame(predictions)

In [41]: std_dev = predictions['return'].std()
sharpe = predictions['return'].mean() / std_dev
print('Sharpe ratio with HMM is {:.4f}'.format(sharpe))
Out[41]: Sharpe ratio with HMM is 0.0981

© Adjustment based on transition matrix

The traditional way to run Fama-Frech three-factor model is to apply linear regres-
sion and the following code block does that. After running linear regression, we can
make predictions and then calculate the Sharpe ratio. We'll see that linear regression
produces a lower Sharpe ratio (0.0589) compared to one with Gaussian HMM:

In [42]: import statsmodels.api as sm

In [43]: Y = train_ff['return']
X = train_ff[['Mkt-RF', 'SMB', 'HML']]

In [44]: model = sm.OLS(Y, X)
ff_ols = model.fit()
print(ff_ols.summary())

OLS Regression Results

Dep. Variable: return R-squared (uncentered): 0.962
Model: OLS Adj. R-squared (uncentered): 0.962
Method: Least Squares F-statistic: 4.072e+04
Date: Tue, 30 Nov 2021 Prob (F-statistic): 0.00
Time: 00:05:02 Log-Likelihood: 22347.
No. Observations: 4827 AIC: -4.469e+04
Df Residuals: 4824 BIC: -4.467e+04
Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Mkt-RF 0.0098 2.82e-05 348.173 0.000 0.010 0.010
SMB -0.0017 5.71e-05 -29.005 0.000 -0.002 -0.002
HML -6.584e-05 5.21e-05 -1.264 0.206 -0.000 3.63e-05

300 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Omnibus: 1326.960 Durbin-Watson: 2.717
Prob(Omnibus): 0.000 Jarque-Bera (JB): 80241.345
Skew: 0.433 Prob(JB): 0.00
Kurtosis: 22.955 Cond. No. 2.16
Notes:

[1] R2 is computed without centering (uncentered) since the model does not
contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

In [45]:

Out[45]:

In [46]:

Out[46]:

ff_pred = ff_ols.predict(test_ff[["Mkt-RF", "SMB", "HML"]])
ff_pred.head()

Date

2019-03-14 -0.000340

2019-03-15 0.005178

2019-03-18 0.004273

2019-03-19 -0.000194

2019-03-20 -0.003795

dtype: float64

std_dev = ff_pred.std()

sharpe = ff_pred.mean() / std_dev

print('Sharpe ratio with FF 3 factor model is {:.4f}'.format(sharpe))
Sharpe ratio with FF 3 factor model is 0.0589

This result suggests that Gaussian HMM delivers better risk-adjusted returns, making
it useful in portfolio allocation, among other analyses.

The following analysis tries to show what happens if the states of the index return
need to be predicted based on the unseen data that can be used for backtesting for
future analysis:

In [47]:

In [48]:

Out[48]:

split = int(len(SP['return']) * 0.9)
train_ret_SP = SP['return'].iloc[split:].dropna()
test_ret_SP = SP['return'].iloc[:split].dropna()

hmm_model = hmm.GaussianHMM(n_components=3,
covariance_type="full",
n_iter=100)
hmm_model.fit(np.array(train_ret_SP).reshape(-1, 1))
hmm_predict_vol = hmm_model.predict(np.array(test_ret_SP)
.reshape(-1, 1))
pd.DataFrame(hmm_predict_vol).value_counts()

0 4447
1 282
2 98

dtype: int64

Fama-French Three-Factor Model Versus HMM | 301

As we have discussed, HMM provides a helpful and strong way for further expanding
our analysis to get more reliable and accurate results. Before concluding this chapter,
it is worthwhile to show the synthetic data generation process using Gaussian HMM.
To do that, we should first define our initial parameters. These parameters are: initial
probability (startprob), transition matrix (transmat), mean (means), and covariance
(covars). Having defined the parameters, we can run Gaussian HMM and apply a
random sampling procedure to end up with a desired number of observations, which
is 1,000 in our case. The following code results in Figures 10-9 and 10-10:

In [49]: startprob = hmm_model.startprob_
transmat = hmm_model. transmat_
means = hmm_model.means_
covars = hmm_model.covars_

In [50]: syn_hmm = hmm.GaussianHMM(n_components=3, covariance_type="full")

In [51]: syn_hmm.startprob_ = startprob
syn_hmm.transmat_ = transmat
syn_hmm.means_ = means
syn_hmm.covars_ = covars

In [52]: syn_data, _ = syn_hmm.sample(n_samples=1000)

In [53]: plt.hist(syn_data)
plt.show()
In [54]: plt.plot(syn_data, "--")
plt.show()
The distribution and line plot based on the synthetic data can be seen in Figures 10-9
and 10-10. As we have a large enough sample size coming out of our Gaussian HMM,
we observe normally distributed data.

302 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

Histogram of Synthetic Data

500

400

300

200

100

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Figure 10-9. Gaussian HMM synthetic data histogram

Line Plot of Synthetic Data

0.06 l
0.04 , |
Coa |
0.02 [Al b1 'y
Uiy : AL L A N ‘,"-' “,“*; gt
0.00 RS L B At
1 Jitid 1) Mg
!] () - (L RLUL I
-0.02 | ,!' E: E v
| |: 1 : I}
-0.04 { : i H !
! | oy 1
:]
0.06 I I i
-0.08 I
0 200 400 600 800 1000

Figure 10-10. Gaussian HMM synthetic data line plot

Fama-French Three-Factor Model Versus HMM | 303

Conclusion

In this final chapter, we discussed two relatively new yet promising topics. Synthetic
data generation enables us to conduct analysis in the absence of real data or in the
case of breaching confidentiality, so it can be life-saver for a practitioner in these sit-
uations. In the second part of this chapter, we looked at Gaussian HMM and its use-
fulness in financial analysis and then used Gaussian HMM to generate synthetic data.

We saw how Gaussian HMM helps us obtain better results in portfolio allocations,
but it is worth noting that this is not the only area in which we can apply HMM.
Rather, there are many different areas where researchers take advantage of this
method, and it’s a safe bet that more are to come.

References

Articles and books cited in this chapter:

Ahuja, Ankana. 2020. “The promise of synthetic data”. Financial Times. https://oreil.ly/
qphEN.

El Emam, Khaled, Lucy Mosquera, and Richard Hoptroff. 2020. Practical Synthetic
Data Generation: Balancing Privacy and the Broad Availability of Data. Sebasto-
pol: OReilly.

Fama, Eugene E, and Kenneth R. French. 1993. “Common Risk Factors in the
Returns on Stocks and Bonds.” Journal of Financial Economics 33 (3): 56.

Patki, Neha, Roy Wedge, and Kalyan Veeramachaneni. 2016. “The Synthetic Data
Vault” In the 2016 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), 399-410.

Wang, Matthew, Yi-Hong Lin, and Ilya Mikhelson. 2020. “Regime-Switching Factor
Investing with Hidden Markov Models” Journal of Risk and Financial Manage-
ment 13 (12): 311.

304 | Chapter 10: Synthetic Data Generation and The Hidden Markov Model in Finance

https://oreil.ly/qphEN
https://oreil.ly/qphEN

Afterword

This book tries to show how ML and deep learning models can be incorporated to
address financial problems. This, of course, does not mean that the book includes all
models with all necessary steps required to deploy models in the industry, but I have
tried to focus on the topics I felt would be of the greatest interest to the reader.

Recent developments in Al indicate that almost all traditional financial models are
outperformed by AI models in terms of predictive performance, and I believe that
adopting these models and having improved predictive performance in the industry
will help finance practitioners make better decisions.

However, despite these developments and recent hype around AI, the deployment
level of Al models is not even close to where it should be. The opaque nature of these
models stands out as the first and foremost reason. However, there are constant and
tremendous improvements toward getting more explainable AI models, and these
orchestrated efforts have started to pay off, as Prado has argued, whether ML is opa-
que or not depends on the person using it, not on the ML algorithms themselves.

Thus, in my opinion, the long tradition of using parametric models as well as resist-
ance to paradigm shift are the primary reasons for the slow and reluctant adoption of
Al models.

Hopefully, this book paves the way for embracing AI models and provides a smooth
and convenient transition to using them.

305

A
AA (Amaranth Advisors), 10
accept risk strategy, 8
accountability pillar, corporate governance, 256
ACF (autocorrelation function), 22-23, 36
activation functions, NN, 61
adjustability, MCD, 259
adverse selection, 11-13
agency cost, 256
Al in finance, ix-x
AIC (Aikake information criteria), 36, 51
Alpha Vantage API, 125
Amaranth Advisors (see AA)
Amihud illiquidity, 204
AR (autoregressive) model, 17, 42-47
ARCH model, 76, 78-84
ARIMA (autoregressive integrated moving
average) model, 17, 48-53
asset or portfolio value, VaR, 121
asymmetric information, 11-14
adverse selection role, 11-13
and agency cost, 256
GARCH model, 90
moral hazard role, 14
autocorrelation function (see ACF)
autoencoders, 247-251
autoregressive integrated moving average (see
ARIMA)
autoregressive time series model (see AR)

B

backpropagation, 101
balanced data, creating for fraud analysis,
230-233

Index

Basel Accords, 75, 155, 156-157
batch size input, RNN, 60
Bayes' theorem, 107-108
Bayesian approach
minimum risk method for fraud analysis,
240-243
probability of default estimation, 179-185
volatility prediction, 106-115
Bayes' theorem, 107-108
Markov chain Monte Carlo, 108-110
Metropolis-Hasting method, 110-115
bias-variance tradeoff, autoencoders, 247
BIC (Bayesian Information Criteria), 82, 212
bid-ask spread, 143-153
as proxy for transaction cost, 200
and Corwin-Schultz spread, 202
in ES model, 143-153
percentage quoted and effective, 200
in volume-based liquidity measures, 195

C

Callinski Harabasz method (see CH)

candidate memory cell, LSTM, 67

capital requirement for banks, 156-157

CAPM (capital asset pricing model), 206-210,
293

Center for Research in Security Prices (see
CRSP)

centroid, K-means algorithm, 158

CET (coefficient of elasticity of trading) liquid-
ity measure, 205

CH (Calinski-Harabasz) method, K-means
clustering, 160, 166-167

class imbalance

307

credit risk analysis, 174
fraud risk analysis, 224
clustering method
credit risk estimation, 156, 158-169
GMM, 210-216
liquidity measures, 195
ROC-AUC curve, 177-178
volatility prediction, 78-79
coefficient of elasticity of trading (see CET)
coherent risk measure, VaR versus ES, 141-143
commodity price risk, 8
Compustat database, 257
conditional distribution, Bayesian approach,
107
confidence interval, VaR, 121
confusion matrix, fraud analysis, 231
consumer utility function, 12
copula, Gaussian mixture model, 195, 217-218
Copulae library, 218
corporate governance, 255
(see also stock price crash risk)
correlation breakdown, 139
correlation of risk, 122, 216-218
Corwin-Schultz spread, 202
cost-sensitive classifier, 234
cost-sensitive modeling, 234-240
costcla library, 238
covariance matrix, denoising, 133-139
crash risk measures, 257, 266-269
(see also stock price crash risk)
CRASH stock crash measure method, 258
Credit Card Transaction Fraud Detection Data-
set, 223-225
credit risk, 8, 155-192
probability of default estimation, 170-191
Bayesian model, 179-185
deep learning, 189-191
neural network, 188
random forest, 187-188
support vector machines, 185-187
risk bucketing, 158-169
elbow method, 159, 164
gap analysis, 160-161, 167-168
versus GMM, 211
inertia, 160, 164
Silhouette score method, 160, 165
variance ratio criterion, 160
creditworthiness, grouping customers by, 158
crisis periods

global financial crisis of 2007-2008, 9, 193
VaRs and denoising during, 139-140
cross-section mean of bid-ask spread, 145-148
CRSP (Center for Research in Security Prices),
257
CTGAN library, 284
cyclicality, time series modeling, 27

D
decision tree model, fraud analysis, 231,
236-238, 241
decoder, in autoencoder, 247
deep learning, 57
autoencoders, 247-251
probability of default estimation, 189-191
time series modeling, 57-71
long-short term memory, 65-70
recurrent neural networks, 58-65
volatility prediction, 104-105
denoising
autoencoders, 248-251
market risk, modeling, 133-141
depth, liquidity dimension, 194, 195
diagnostics phase of time series modeling, 34
discretionary-disclosure theory, 256
distinguishable method, synthetic data evalua-
tion, 283
domino effect, 157
DUVOL (down-to-up volatility) crash measure
method, 257, 267-270

E

E-M (expectation-maximization) algorithm,
159

econometrics, 3

economic pressure, and fraud risk, 222

edited nearest neighbor rule (see ENN)

effective cost, ES, 145-153

effective price volatility, and Corwin-Schultz
spread, 202

effective spread, 144

efficient market, 201

EGARCH model, 92-94

eigenvalue, 133

eigenvector, 133

Elbow Analysis tool, synthetic data generation,
297

elbow method, K-means clustering, 159, 164

Elliptic Envelope library, 259, 264

308 | Index

encoder, in autoencoder, 247
ENN (edited nearest neighbor rule), 174
Enron accounting fraud case, 222
equity requirements for banks, 157
ES (expected shortfall) model
effective cost, 145-153
liquidity-augmented, 143-144
traditional, 141-143
estimation phase of time series modeling, 34
ETF (exchange-traded fund), 294
Euclidean distance metric
clustering, 158
SOM, 244
evaluate package, SDV, 285-287
exchange rate risk, 8
exchange-traded fund (see ETF)
expectation-maximization algorithm (see E-M)
expected shortfall model (see ES)
expected stock return, Amihud illiquidity, 204
explainability, MCD, 259
exploding gradient problem, 64
exponential kernel function, 96
exposure, credit risk, 156

F

F1Score, fraud analysis, 231, 242-243, 246

fairness pillar, corporate governance, 256

Fama-French three-factor model, 293-302

Federal Reserve Economic Database (see
FRED)

feed-forward versus neural network, 59

financial modeling, ix-x

financial ratios, bank requirements, 157

firm-specific return, 260

flight to quality, 10

forecast phase of time series modeling, 34

forget gates, LSTM, 66

fraud, 222

fraud examination (see operational risk)

FRED (Federal Reserve Economic Database),
25

Frequentist (classical) approach to probability,
106, 107

funding liquidity risk, 9, 144

G

gap analysis, K-means clustering, 160-161,
167-168

GARCH model, 76, 84-90

based on Bayesian approach, 113
EGARCH, 92-94
GJR-GARCH, 90
SVR-GARCH, 95-99
gated recurrent unit (see GRU)
Gaussian HMM, data generation with, 295-302
Gaussian mixture copula model (see GMCM)
Gaussian mixture model (see GMM)
Gibbs sampler, 110
GJR-GARCH model, 90
global financial crisis of 2007-2008, 9, 193
globalization, and fraud risk, 222
GMCM (Gaussian mixture copula model), 195,
216-218
GMM (Gaussian mixture model), 195, 210-216
gradient descent, ML, 101-102
GridSearchCV, 188
GRU (gated recurrent unit), 65

H

HalvingRandomSearchCV, 185-186

hidden layers, NNs, 101

hidden Markov model (see HMM)

hidden state, LSTM, 67

historical simulation method, 128-129, 142

HML (high minus low) in stock return changes,
293

HMM (hidden Markov model), 292

Hui-Heubel ratio, 198, 206

hybrid process, synthetic data generated from,
282

hyperparameter tuning, 185-186

hyperplane, 95

identification phase of time series modeling, 34

ignore risk strategy, 8

IID (identically and independently distributed)
assumption, 19, 34, 109

immediacy, liquidity dimension, 194, 199, 205

indirect versus direct costs, operational risk,
221

inertia, K-means clustering, 160, 164

information asymmetry (see asymmetric infor-
mation)

information criteria, 36

input gates, LSTM, 66

input layers, NNs, 101

interest rate risk, 8

Index | 309

invertibility in time series, 42
IRB (internal-ratings-based) approach to credit
risk estimation, 157

J

joint distribution of risk, 216-218

K
K-means algorithm for clustering customers,
158-169
CH method, 160, 166-167
elbow method, 159, 164
gap analysis, 160-161, 167-168
versus GMM, 211
inertia, 160, 164
Silhouette score method, 160, 165
variance ratio criterion, 160
Kaggle, 223
Kenneth R. French data library, 293
Keras library, 103
KerasClassifier, 189-191
kernel functions, 95
KL (Kullback-Leibler) divergence, 248
knowledge, synthetic data generated from, 282
Kullback-Leibler divergence (see KL)

L
labeled versus unlabeled data, 223
lagged conditional variance, 84
likelihood function, classical versus Bayesian,
106, 107
likelihood, credit risk from default, 156
linear activation function, NN, 62
linear kernel function, 97
liquid asset, 194
liquidity, 9, 144
liquidity modeling, 193-219
GMCM, 216-218
GMM, 210-216
liquidity measures, 195-210
CET, 205
market impact-based, 206-210
price impact-based, 203-205
transaction cost-based, 199-202
volume-based, 195-199
liquidity ratio, 196-198
liquidity risk, 9, 143, 193

liquidity-augmented expected shortfall,
143-144

logistic panel application, 270-277

logistic regression, 230
cost-sensitive fraud analysis, 236
probability of default estimation, 171-178,

185-186

saving score, 238, 240, 241

logit (logistic) transformation, 171

Long-Term Capital Management (see LTCM)

long-term dependencies, RNNS, 66

loss distribution, and expected shortfall,
141-143

loss projection (see VaR)

low computational time, MCD, 259

LSTM (long-short term memory) deep-
learning approach, 65-70

LTCM (Long-Term Capital Management)
financial collapse, 9

M
M-H (Metropolis-Hastings) algorithm for
MCMC, 110-115, 181-185
MA (moving average) time series model, 17,
37-41
machine learning (see ML)
Mahalanobis distance metric, 259
make_blobs package, 291
make_classification package, 289-290
make_regression package, 287-288
Manbhattan metric for clustering, 158
many-to-many RNN, 58
many-to-one RNN, 58
MAP (maximum a posteriori) probability,
179-181
Marchenko-Pastur theorem, 133-135
margin, support vectors, 95
market impact-based liquidity measure,
206-210
market liquidity, 144
market risk, 8, 119-153
denoising, 133-141
effective cost, 145-153
expected shortfall, 141-144
in Fama-French three-factor model, 293
liquidity-augmented expected shortfall,
143-144
Value at Risk, 121-131
historical simulation method, 128-129

310 | Index

Monte Carlo simulation method,
129-131
variance-covariance method, 122-128
Markov chain Monte Carlo method (see
MCMC)
maximum a posteriori probability (see MAP)
maximum likelihood estimation, 107
MCD (minimum covariance determinant),
258-270
MCMC (Markov chain Monte Carlo) method,
108-110, 178, 181-185
memory cell, LSTM, 67
MG (Metallgesellschaft), 10
mid-price versus quoted price, 200
minimum capital requirement, 156-157
minimum covariance determinant (see MCD)
Minkowski metric for clustering, 158
missingno tool, fraud analysis, 226
mitigate risk strategy, 8
ML (machine learning), 3
Bayesian approach, 106-115, 181
deep learning (see deep learning)
and market risk, 120
minimum covariance determinant method,
258-270
neural networks (see NNs)
operational risk analysis (see operational
risk)
random forest (see random forest model)
support vector machines, 95-99, 185-187
synthetic data generation, 287-302
MLP library, 188
MLPRegressor module, 102
monotonicity, VaR coherent risk measure, 141
Monte Carlo simulation method, VaR, 129-131
moral hazard, 14
moving average time series model (see MA)
multimodal data modeling (see GMM)

N
NCSKEW (negative coefficient of skewness)
crash measure method, 258, 267-270
neighborhood functions, SOM, 245
NN (neural networks)
and deep learning, 57, 190
in probability of default estimation, 188
recurrent neural networks, 58-65
SOM as artificial neural network, 244-245
in volatility prediction, 101-105

noise and signal in the market, 133

nonparametric modeling, 187

nonstationarity and stationarity in time series,
28-30, 42

normal distribution of assets assumption, VaR,
122-128

number of features input, RNN, 60

0

Occam’s Razor, 98
one-to-many RNN, 58
one-to-one RNN, 58
operational risk, 9, 221-252
fraud data familiarization, 224-229
supervised learning modeling, 229-243
Bayesian minimum risk, 240-243
cost-based fraud examination, 234-236
cost-sensitive modeling, 238-240
saving score, 236-238
unsupervised learning modeling, 243-251
autoencoders, 247-251
self-organizing map, 243-245
output gates, LSTM, 67
output layers, NN, 101

P

PACF (partial autocorrelation function), 24, 36

panel data analysis, stock price crash, 270-277

parametric modeling, x, 122, 185-187

partial autocorrelation function (see PACF)

PCA (principle component analysis) of bid-ask
spread, 148-149, 214-216

PDF (probability density function), 134

percentage quoted and effective bid-ask
spreads, 200

polynomial kernel function, 95, 99

portfolio or asset value, VaR, 121

positive covariance challenge for Roll’s spread
estimate, 201

positive homogeneity, VaR coherent risk meas-
ure, 141

posterior density, Bayes theorem, 107, 109, 113

price impact ratio, 204

price impact-based liquidity measures, 203-205

principle component analysis (see PCA)

prior density, Bayes’” theorem, 107

privacy-utility tradeoff, data-generation pro-
cesses, 282

probability approaches

Index | 311

for default estimation, 170-191
with Bayesian model, 179-185
with deep learning, 189-191
logistic regression, 170-178, 185-186
ML to model, 156, 158
with neural network, 188
with random forest, 187-188
with support vector machines, 185-187
distribution over sequential data (HMM),
292
liquidity’s role in default probability, 193
volatility prediction, 106-115
probability density function (see PDF)
probability density, Bayes’ theorem, 107
propensity score, real versus synthetic data, 283
proportional effective spread, 144
proportional quoted spread, 144
proposal density, M-H method, 110
PyFlux library, 111
PYMC3 package, 179-183

Q

Quandl API, 19
quoted spread, 144

R
radial basis (Gaussian) kernel function, 95,
98-99
random forest model, 232
cost-sensitive fraud analysis, 236
probability of default estimation, 187-188
saving score, 238, 240, 241
RBF (radial basis function), 95, 98-99
real data, synthetic data generated from, 282,
284
realized (return) volatility, 76-77
recovery rate, loan default, 156
rectified linear activation function, NN, 62
recurrent neural networks (see RNNs)
representation learning, 57
residuals, time series modeling, 28-32, 37
resiliency, liquidity dimension, 194
return, 4-7
expected stock return, Amihud illiquidity,
204
firm-specific return, 260
HML factor in stock return changes, 293
return (realized) volatility, 76-77
Return-to-Turnover measure (see RtoTR)

return-to-volume ratio, Amihud illiquidity, 204
risk, 4
(see also volatility prediction; specific finan-
cial risk types)
risk bucketing, 158-169
elbow method, 159, 164
gap analysis, 160-161, 167-168
versus GMM, 211
inertia, 160, 164
Silhouette score method, 160, 165
variance ratio criterion, 160
risk management, 3-15
fraud as consequence of lack of proper, 222
information asymmetry, 11-14
return, 4-7
strategies, 7
risk-return relationship, 4-7
RMSE (root mean square error), 84, 94
RMSprop (Root Mean Square Propagation), 69
RNNss (recurrent neural networks), 58-65
robustness, MCD, 259
ROC-AUC curve, 177-178
Roll’s spread estimate, 201
root mean square error (see RMSE)
Root Mean Square Propagation (see RMSprop)
RtoTR (Return-to-Turnover) measure, 204

S

saving score, cost-based fraud examination,
236-238

scaling, in GMM clustering method, 211

SDV (Synthetic Data Vault), 285-287

seasonality, time series modeling, 25-27

self-organizing map (see SOM)

Sharpe ratio, synthetic data generation, 299-300

short-term dependencies, RNNs, 66

sigmoid activation function, NN, 61

Silhouette score method, K-means clustering,
160, 165

Sklar’s theorem, 217

sklearn library, 287

sklearn.external.six package, 238

SMB (small minus big), size effect proxy, 293

SMOTE (synthetic minority over-sampling
technique), 174

softmax activation function, NN, 62

SOM (self-organizing map), 243-245

sparse autoencoder, 247

standard deviation, 4, 75, 121

312 | Index

standardized approach to credit risk estimation,
157
state, in cluster method, 213
stationarity and nonstationarity in time series,
28-30, 42
statistical comparison, real versus synthetic
data, 283
statistical inference, 3
stock price crash risk, 255-278
logistic panel application, 270-277
minimum covariance determinant method,
258-270
stock price crash measures, 257
subadditivity, VaR coherent risk measure, 140
supervised learning modeling, 229-243
Bayesian minimum risk, 240-243
cost-based fraud examination, 234-236
cost-sensitive modeling, 238-240
saving score, 236-238
synthetic data generation, 287-290
support vector regression (see SVR)
SVC (support vector classification), 95, 185
SVMs (support vector machines), 95-99,
185-187
SVR (support vector regression), 95
SVR-GARCH model, 95-99
synthetic data generation, 3, 281-304
classical approaches, 284-287
evaluation of synthetic data, 283-284
Fama-French three-factor model, 293-302
hidden Markov model, 292
from supervised learning, 287-290
from unsupervised learning, 291
Synthetic Data Vault (see SDV)
synthetic minority over-sampling technique
(see SMOTE)
systematic versus unsystematic risk, and
CAPM, 206

T
tanh activation function, NN, 61, 64
TensorFlow, 178, 189-191
tightness, liquidity dimension, 194, 199
time period, VaR, 121, 127
time series, 20-32

cyclicality, 27

residual, 28-32

seasonality, 25-27

trend, 21-24

time series modeling, 17-54
AR model, 17, 42-47
ARIMA model, 17, 48-53
deep learning for, 57-71
long-short term memory, 65-70
recurrent neural networks, 58-65
MA model, 17, 37-41
phases, 34
white noise, 35-36
time steps input, RNN, 60
time-varying conditional variance, 78
trading liquidity risk, 9
transaction cost, 194, 199
transaction cost-based liquidity measures,
199-202
Corwin-Schultz spread, 202
percentage quoted and effective bid-ask
spreads, 200
Roll’s spread estimate, 201
transfer risk strategy, 8
translation invariance, VaR coherent risk meas-
ure, 139
transparency pillar, corporate governance, 256
trend, time series modeling, 21-24
turnover ratio, 198, 203

U

uncertainty (see volatility prediction)
undercomplete autoencoder, 247
undersampling technique to balance data,
230-233
unexpected loss, operational risk, 221
unlabeled versus labeled data, 223
unsupervised learning modeling, 243-251
autoencoders, 247-251
self-organizing map, 244-245
synthetic data generation, 291
unsystematic versus systematic risk, and
CAPM, 206

v

vanishing gradient problem, 64

VaR (Value at Risk), 121-131
historical simulation method, 128-129
liquidity adjustment applied to, 149
Monte Carlo simulation method, 129-131
noised versus denoised, 136
variance-covariance method, 122-128

Index | 313

variance ratio criterion, K-means clustering, volume-based liquidity measures, 195-199

160 Hui-Heubel ratio, 198, 206
variance-covariance method, VaR, 122-128 liquidity ratio, 196-198
volatility clustering, 78-79 turnover ratio, 198
volatility prediction, 75-116

ARCH model, 78-84 W

Bayesian approach, 106-115
EGARCH model, 92-94 winning neuron, SOM, 244
GARCH model, 84-90

GJR-GARCH model, 90

neural networks, 101-105 X
SVM and GARCH model, 95-99 XGBoost model, fraud analysis, 233, 236

white noise, 35-36, 48

314 | Index

About the Author

Abdullah Karasan was born in Berlin, Germany. After studying economics and busi-
ness administration, he obtained his master’s degree in applied economics from the
University of Michigan, Ann Arbor, and his PhD in financial mathematics from the
Middle East Technical University, Ankara. He is a former Treasury employee of
Turkey and currently works as a principal data scientist at Magnimind and as a lec-
turer at the University of Maryland, Baltimore. He has also published several papers
in the field of financial data science.

Colophon

The animal on the cover of Machine Learning for Financial Risk Management with
Python is an Senegal coucal (Centropus senegalensis). Sometimes known as the Egyp-
tian coucal, this widespread species of bird can be found throughout much of central
and southern Africa south of the Sahara Desert, as well as in pockets of Egypt.

The crown, nape, bill, legs, and long tail of this coucal are black, while its wings are
chestnut and its underparts have a cream coloration with dark barring on the flanks.
These birds can grow to 15 in (39 cm) and are relatively monomorphic. They prefer
grassy habitats such as bushes and savannah, and consume a wide range of insects,
caterpillars, and small vertebrate.

The Senegal coucal faces no particular threats and is fairly widespread; it is often
identified by its distinctive “ook-ook-00k” call. The current conservation status of the
Senegal coucal is “Least Concern.” Many of the animals on O'Reilly covers are endan-
gered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

There's much more
where this came from.

Experience books, videos, live online
training courses, and more from O'Reilly
and our 200+ partners—all in one place.

Learn more at oreillycom/online-learning

©2019 O'Reilly Media, Inc. O'Reilly

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgements

	Part I. Risk Management Foundations
	Chapter 1. Fundamentals of Risk Management
	Risk
	Return
	Risk Management
	Main Financial Risks
	Big Financial Collapse

	Information Asymmetry in Financial Risk Management
	Adverse Selection
	Moral Hazard

	Conclusion
	References

	Chapter 2. Introduction to Time Series Modeling
	Time Series Components
	Trend
	Seasonality
	Cyclicality
	Residual

	Time Series Models
	White Noise
	Moving Average Model
	Autoregressive Model
	Autoregressive Integrated Moving Average Model

	Conclusion
	References

	Chapter 3. Deep Learning for Time Series Modeling
	Recurrent Neural Networks
	Long-Short Term Memory
	Conclusion
	References

	Part II. Machine Learning for Market, Credit, Liquidity, and
Operational Risks
	Chapter 4. Machine Learning-Based
Volatility Prediction
	ARCH Model
	GARCH Model
	GJR-GARCH
	EGARCH
	Support Vector Regression: GARCH
	Neural Networks
	The Bayesian Approach
	Markov Chain Monte Carlo
	Metropolis–Hastings

	Conclusion
	References

	Chapter 5. Modeling Market Risk
	Value at Risk (VaR)
	Variance-Covariance Method
	The Historical Simulation Method
	The Monte Carlo Simulation VaR

	Denoising
	Expected Shortfall
	Liquidity-Augmented Expected Shortfall
	Effective Cost
	Conclusion
	References

	Chapter 6. Credit Risk Estimation
	Estimating the Credit Risk
	Risk Bucketing
	Probability of Default Estimation with Logistic Regression
	Probability of Default Estimation with the Bayesian Model
	Probability of Default Estimation with Support Vector Machines
	Probability of Default Estimation with Random Forest
	Probability of Default Estimation with Neural Network
	Probability of Default Estimation with Deep Learning

	Conclusion
	References

	Chapter 7. Liquidity Modeling
	Liquidity Measures
	Volume-Based Liquidity Measures
	Transaction Cost–Based Liquidity Measures
	Price Impact–Based Liquidity Measures
	Market Impact-Based Liquidity Measures

	Gaussian Mixture Model
	Gaussian Mixture Copula Model
	Conclusion
	References

	Chapter 8. Modeling Operational Risk
	Getting Familiar with Fraud Data
	Supervised Learning Modeling for Fraud Examination
	Cost-Based Fraud Examination
	Saving Score
	Cost-Sensitive Modeling
	Bayesian Minimum Risk

	Unsupervised Learning Modeling for Fraud Examination
	Self-Organizing Map
	Autoencoders

	Conclusion
	References

	Part III. Modeling Other Financial Risk Sources
	Chapter 9. A Corporate Governance Risk Measure: Stock Price Crash
	Stock Price Crash Measures
	Minimum Covariance Determinant
	Application of Minimum Covariance Determinant
	Logistic Panel Application
	Conclusion
	References

	Chapter 10. Synthetic Data Generation and
The Hidden Markov Model in Finance
	Synthetic Data Generation
	Evaluation of the Synthetic Data
	Generating Synthetic Data
	A Brief Introduction to the Hidden Markov Model
	Fama-French Three-Factor Model Versus HMM
	Conclusion
	References

	Afterword
	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

