

Hands-On Financial
Trading with Python

A practical guide to using Zipline and other Python
libraries for backtesting trading strategies

Jiri Pik

Sourav Ghosh

BIRMINGHAM—MUMBAI

Hands-On Financial Trading with Python
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Aditi Gour
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Athikho Sapuni Rishana
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Nilesh Mohite

First published: April 2021
Production reference: 1290421

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-288-1
www.packt.com

http://www.packt.com

Contributors

About the authors
Jiri Pik is an artificial intelligence architect and strategist who works with major
investment banks, hedge funds, and other players. He has architected and delivered
breakthrough trading, portfolio, and risk management systems, as well as decision support
systems, across numerous industries. His consulting firm, Jiri Pik—RocketEdge, provides
its clients with certified expertise, judgment, and execution at lightspeed.

Sourav Ghosh has worked in several proprietary high-frequency algorithmic trading
firms over the last decade. He has built and deployed extremely low-latency, high-
throughput automated trading systems for trading exchanges around the world, across
multiple asset classes. He specializes in statistical arbitrage market-making and pairs
trading strategies for the most liquid global futures contracts. He works as a senior
quantitative developer at a trading firm in Chicago. He holds a master's in computer
science from the University of Southern California. His areas of interest include computer
architecture, FinTech, probability theory and stochastic processes, statistical learning and
inference methods, and natural language processing.

About the reviewer
Ratanlal Mahanta is currently working as a quantitative analyst at bittQsrv, a global
quantitative research company offering quant models for its investors. He has several years
of experience in the modeling and simulation of quantitative trading. He holds a master's
degree in science in computational finance, and his research areas include quant trading,
optimal execution, and high-frequency trading. He has over 9 years' experience in the
finance industry and is gifted at solving difficult problems that lie at the intersection of
markets, technology, research, and design.

Table of Contents
Preface

Section 1: Introduction to Algorithmic
Trading

1
Introduction to Algorithmic Trading

Walking through the evolution
of algorithmic trading� 4
Understanding financial
asset classes� 6
Going through the modern
electronic trading exchange� 7
Order types� 7
Limit order books� 8

The exchange matching engine� 9

Understanding the components
of an algorithmic trading system� 9
The core infrastructure of an
algorithmic trading system� 10
The quantitative infrastructure of an
algorithmic trading system� 11

Summary� 16

Section 2: In-Depth Look at Python Libraries
for the Analysis of Financial Datasets

2
Exploratory Data Analysis in Python

Technical requirements� 19
Introduction to EDA� 20
Steps in EDA� 20

Revelation of the identity of A, B, and C
and EDA's conclusions� 41

Special Python libraries for EDA� 42
Summary� 44

ii Table of Contents

3
High-Speed Scientific Computing Using NumPy

Technical requirements� 46
Introduction to NumPy� 46
Creating NumPy ndarrays� 46
Creating 1D ndarrays� 46
Creating 2D ndarrays� 47
Creating any-dimension ndarrays� 47
Creating an ndarray with np.zeros(...)� 48
Creating an ndarray with np.ones(...)� 48
Creating an ndarray with np.identity(...)� 49
Creating an ndarray with np.arange(...)� 49
Creating an ndarray with np.random.
randn(…)� 49

Data types used with NumPy
ndarrays� 50
Creating a numpy.float64 array� 50
Creating a numpy.bool array� 50
ndarrays' dtype attribute� 51
Converting underlying data types of
ndarray with numpy.ndarrays.astype(...) �51

Indexing of ndarrays� 51
Direct access to an ndarray's element� 52
ndarray slicing� 53
Boolean indexing� 56
Indexing with arrays� 58

Basic ndarray operations� 59
Scalar multiplication with an ndarray� 59
Linear combinations of ndarrays� 59
Exponentiation of ndarrays� 59
Addition of an ndarray with a scalar� 60
Transposing a matrix� 60
Changing the layout of an ndarray� 60
Finding the minimum value in an
ndarray� 61
Calculating the absolute value� 61
Calculating the mean of an ndarray� 62
Finding the index of the maximum
value in an ndarray� 62
Calculating the cumulative sum of
elements of an ndarray� 63
Finding NaNs in an ndarray� 63
Finding the truth values of x1>x2 of
two ndarrays� 64
any and all Boolean operations on
ndarrays� 65
Sorting ndarrays� 66
Searching within ndarrays� 68

File operations on ndarrays� 69
File operations with text files� 69
File operations with binary files� 70

Summary� 71

4
Data Manipulation and Analysis with pandas

Introducing pandas Series,
pandas DataFrames, and
pandas Indexes� 74
pandas.Series� 74

pandas.DataFrame� 76
pandas.Index� 79

Learning essential pandas.
DataFrame operations� 80

Table of Contents iii

Indexing, selection, and filtering
of DataFrames� 80
Dropping rows and columns from
a DataFrame� 82
Sorting values and ranking the values'
order within a DataFrame� 84
Arithmetic operations on DataFrames� 86
Merging and combining multiple
DataFrames into a single DataFrame� 88
Hierarchical indexing� 91
Grouping operations in DataFrames� 94
Transforming values in DataFrames'
axis indices� 97

Handling missing data in DataFrames� 98
The transformation of DataFrames
with functions and mappings� 101
Discretization/bucketing of
DataFrame values� 102
Permuting and sampling DataFrame
values to generate new DataFrames� 104

Exploring file operations with
pandas.DataFrames� 106
CSV files� 106
JSON files� 108

Summary� 109

5
Data Visualization Using Matplotlib

Technical requirements� 112
Creating figures and subplots� 112
Defining figures' subplots� 112
Plotting in subplots� 113

Enriching plots with colors,
markers, and line styles� 116
Enriching axes with ticks,
labels, and legends� 118
Enriching data points
with annotations� 120
Saving plots to files� 123

Charting a pandas DataFrame
with Matplotlib� 124
Creating line plots of a
DataFrame column� 125
Creating bar plots of a
DataFrame column� 126
Creating histogram and density
plots of a DataFrame column� 128
Creating scatter plots of two
DataFrame columns� 130
Plotting time series data� 133

Summary� 144

6
Statistical Estimation, Inference, and Prediction

Technical requirements� 146
Introduction to statsmodels� 146
Normal distribution test with Q-Q plots� 146
Time series modeling with statsmodels� 148
ETS analysis of a time series� 149

Augmented Dickey-Fuller test for
stationarity of a time series� 157
Autocorrelation and partial
autocorrelation of a time series� 159
ARIMA time series model� 161

iv Table of Contents

Using a SARIMAX time series
model with pmdarima� 166
Time series forecasting with
Facebook's Prophet library� 171
Introduction to scikit-learn
regression and classification� 174

Generating the dataset� 174
Running RidgeCV regression on
the dataset� 178
Running a classification method
on the dataset� 182

Summary� 186

Section 3: Algorithmic Trading in Python

7
Financial Market Data Access in Python

Exploring the yahoofinancials
Python library� 190
Single-ticker retrieval� 191
Multiple-tickers retrieval� 198

Exploring the pandas_
datareader Python library� 201
Access to Yahoo Finance� 202
Access to EconDB� 203

Access to the Federal Reserve Bank
of St Louis' FRED� 204
Caching queries� 205

Exploring the Quandl
data source� 206
Exploring the IEX Cloud
data source� 207
Exploring the MarketStack
data source� 209
Summary� 211

8
Introduction to Zipline and PyFolio

Introduction to Zipline
and PyFolio� 214
Installing Zipline and PyFolio� 214
Installing Zipline� 214
Installing PyFolio� 215

Importing market data
into a Zipline/PyFolio
backtesting system� 215
Importing data from the historical
Quandl bundle� 215

Importing data from the CSV
files bundle� 218
Importing data from custom bundles� 219

Structuring Zipline/PyFolio
backtesting modules� 229
Trading happens every day� 230
Trading happens on a custom schedule� 231

Reviewing the key Zipline
API reference� 233

Table of Contents v

Types of orders� 233
Commission models� 234
Slippage models� 234

Running Zipline backtesting
from the command line� 235

Introduction to risk
management with PyFolio� 236
Market volatility, PnL variance,
and PnL standard deviation� 239
Trade-level Sharpe ratio� 240
Maximum drawdown� 242

Summary� 244

9
Fundamental Algorithmic Trading Strategies

What is an algorithmic
trading strategy?� 246
Learning momentum-based/
trend-following strategies� 248
Rolling window mean strategy� 248
Simple moving averages strategy� 254
Exponentially weighted moving
averages strategy� 259
RSI strategy� 265
MACD crossover strategy� 270
RSI and MACD strategies� 276
Triple exponential average strategy� 282
Williams R% strategy� 287

Learning mean-reversion
strategies� 292

Bollinger band strategy� 292
Pairs trading strategy� 298

Learning mathematical
model-based strategies� 305
Minimization of the portfolio volatility
strategy with monthly trading� 305
Maximum Sharpe ratio strategy with
monthly trading� 312

Learning time series
prediction-based strategies� 317
SARIMAX strategy� 318
Prophet strategy� 323

Summary� 328

Appendix A
How to Setup a Python Environment

Technical requirements� 329
Initial setup� 329

Downloading the
complimentary Quandl
data bundle� 332

Other Books You May Enjoy
Index

Preface
Algorithmic trading helps you stay ahead of the market by devising strategies in
quantitative analysis to gain profits and cut losses. This book will help you to understand
financial theories and execute a range of algorithmic trading strategies confidently.

The book starts by introducing you to algorithmic trading, the pyfinance ecosystem, and
Quantopian. You'll then cover algorithmic trading and quantitative analysis using Python,
and learn how to build algorithmic trading strategies on Quantopian. As you advance,
you'll gain an in-depth understanding of Python libraries such as NumPy and pandas for
analyzing financial datasets, and also explore the matplotlib, statsmodels, and scikit-learn
libraries for advanced analytics. Moving on, you'll explore useful financial concepts and
theories such as financial statistics, leveraging and hedging, and short selling, which will
help you understand how financial markets operate. Finally, you will discover mathematical
models and approaches for analyzing and understanding financial time series data.

By the end of this trading book, you will be able to build predictive trading signals, adopt
basic and advanced algorithmic trading strategies, and perform portfolio optimization on
the Quantopian platform.

Who this book is for
This book is for data analysts and financial traders who want to explore algorithmic
trading using Python core libraries. If you are looking for a practical guide to execute
various algorithmic trading strategies, then this book is for you. Basic working knowledge
of Python programming and statistics will be helpful.

What this book covers
Chapter 1, Introduction to Algorithmic Trading and Python, introduces the key financial
trading concepts and explains why Python is best suited for algorithmic trading.

Chapter 2, Exploratory Data Analysis in Python, provides an overview of the first step in
processing any dataset, exploratory data analysis.

viii Preface

Chapter 3, High-Speed Scientific Computing Using NumPy, takes a detailed look at NumPy,
a library for fast and scalable structured arrays and vectorized computations.

Chapter 4, Data Manipulation and Analysis with pandas, introduces the pandas library,
built on top of NumPy, which provides data manipulation and analysis methods to
structured DataFrames.

Chapter 5, Data Visualization Using Matplotlib, focuses on one of the primary
visualization libraries in Python, Matplotlib.

Chapter 6, Statistical Estimation, Inference, and Prediction, discusses the statsmodels and
scikit-learn libraries for advanced statistical analysis techniques, time series analysis
techniques, as well as training and validating machine learning models.

Chapter 7, Financial Market Data Access in Python, describes alternative ways to retrieve
market data in Python.

Chapter 8, Introduction to Zipline and PyFolio, covers Zipline and PyFolio, which
are Python libraries that abstract away the complexities of actual backtesting and
performance/risk analysis of algorithmic trading strategies. They allow you to entirely
focus on the trading logic.

Chapter 9, Fundamental Algorithmic Trading Strategies, introduces the concept of an
algorithmic strategy, and eight different trading algorithms representing the most
used algorithms.

To get the most out of this book
Follow the instructions in the Appendix section on how to recreate the conda virtual
environment using the environment.yml file stored in the book's GitHub's repository.
One command restores the entire environment.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Preface ix

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Hands-On-Financial-Trading-
with-Python. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838982881_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Let's create a zipline_env virtual environment with Python 3.6."

A block of code is set as follows:

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol

from datetime import datetime

import pytz

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

from . import quandl # noqa

from . import csvdir # noqa

from . import quandl_eod # noqa

https://github.com/PacktPublishing/Hands-On-Financial-Trading-with-Python
https://github.com/PacktPublishing/Hands-On-Financial-Trading-with-Python
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838982881_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982881_ColorImages.pdf

x Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Then, specify the variable in the Environment Variables... dialog."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

This section will introduce you to important concepts in algorithmic trading and Python.

This section comprises the following chapter:

•	 Chapter 1, Introduction to Algorithmic Trading and Python

Section 1:
Introduction to

Algorithmic Trading

1
Introduction to

Algorithmic Trading
In this chapter, we will take you through a brief history of trading and explain in which
situations manual and algorithmic trading each make sense. Additionally, we will discuss
financial asset classes, which are a categorization of the different types of financial assets.
You will learn about the components of the modern electronic trading exchange, and,
finally, we will outline the key components of an algorithmic trading system.

In this chapter, we will cover the following topics:

•	 Walking through the evolution of algorithmic trading

•	 Understanding financial asset classes

•	 Going through the modern electronic trading exchange

•	 Understanding the components of an algorithmic trading system

4 Introduction to Algorithmic Trading

Walking through the evolution of algorithmic
trading
The concept of trading one possession for another has been around since the beginning of
time. In its earliest form, trading was useful for exchanging a less desirable possession for
a more desirable possession. Eventually, with the passage of time, trading has evolved into
participants trying to find a way to buy and hold trading instruments (that is, products)
at prices perceived as lower than fair value in the hopes of being able to sell them in the
future at a price higher than the purchase price. This buy-low-and-sell-high principle
serves as the basis for all profitable trading to date; of course, how to achieve this is where
the complexity and competition lies.

Markets are driven by the fundamental economic forces of supply and demand. As
demand increases without a commensurate increase in supply, or supply decreases
without a decrease in demand, a commodity becomes scarce and increases in value
(that is, its market price). Conversely, if demand drops without a decrease in supply,
or supply increases without an increase in demand, a commodity becomes more easily
available and less valuable (a lower market price). Therefore, the market price of a
commodity should reflect the equilibrium price based on available supply (sellers) and
available demand (buyers).

There are many drawbacks to the manual trading approach, as follows:

•	 Human traders are inherently slow at processing new market information, making
them likely to miss information or to make errors in interpreting updated market
data. This leads to bad trading decisions.

•	 Humans, in general, are also prone to distractions and biases that reduce profits
and/or generate losses. For example, the fear of losing money and the joy of making
money also causes us to deviate from the optimal systematic trading approach,
which we understand in theory but fail to execute in practice. In addition, people
are also naturally and non-uniformly biased against profitable trades versus losing
trades; for instance, human traders are quick to increase the amount of risk after
profitable trades and slow down to decrease the amount of risk after losing trades.

•	 Human traders learn by experiencing market conditions, for example, by being
present and trading live markets. So, they cannot learn from and backtest over
historical market data conditions – an important advantage of automated strategies,
as we will see later.

Walking through the evolution of algorithmic trading 5

With the advent of technology, trading has evolved from pit trading carried out by
yelling and signaling buy and sell orders all the way to using sophisticated, efficient,
and fast computer hardware and software to execute trades, often without much human
intervention. Sophisticated algorithmic trading software systems have replaced human
traders and engineers, and mathematicians who build, operate, and improve these
systems, known as quants, have risen to power.

In particular, the key advantages of an automated, computer-driven systematic/
algorithmic trading approach are as follows:

•	 Computers are extremely good at performing clearly defined and repetitive
rule-based tasks. They can perform these tasks extremely quickly and can handle
massive throughputs.

•	 Additionally, computers do not get distracted, tired, or make mistakes (unless there
is a software bug, which, technically, counts as a software developer error).

•	 Algorithmic trading strategies also have no emotions as far as trading through losses
or profits; therefore, they can stick to a systematic trading plan no matter what.

All of these advantages make systematic algorithmic trading the perfect candidate to set
up low-latency, high-throughput, scalable, and robust trading businesses.

However, algorithmic trading is not always better than manual trading:

•	 Manual trading is better at dealing with significantly complex ideas and the
complexities of real-world trading operations that are, sometimes, difficult to
express as an automated software solution.

•	 Automated trading systems require significant investments in time and R&D costs,
while manual trading strategies are often significantly faster to get to market.

•	 Algorithmic trading strategies are also prone to software development/operation
bugs, which can have a significant impact on a trading business. Entire automated
trading operations being wiped out in a matter of a few minutes is not unheard of.

•	 Often, automated quantitative trading systems are not good at dealing with
extremely unlikely events termed as black swan events, such as the LTCM crash, the
2010 flash crash, the Knight Capital crash, and more.

In this section, we learned about the history of trading and when automated/algorithmic
is better than manual trading. Now, let's proceed toward the next section, where we will
learn about the actual subject of trading categorized into financial asset classes.

6 Introduction to Algorithmic Trading

Understanding financial asset classes
Algorithmic trading deals with the trading of financial assets. A financial asset is
a non-physical asset whose value arises from contractual agreements.

The major financial asset classes are as follows:

•	 Equities (stocks): These allow market participants to invest directly in the company
and become owners of the company.

•	 Fixed income (bonds): These represent a loan made by the investor to a borrower
(for instance, a government or a firm). Each bond has its end date when the
principal of the loan is due to be paid back and, usually, either fixed or variable
interest payments made by the borrower over the lifetime of the bond.

•	 Real Estate Investment Trusts (REITs): These are publicly traded companies that
own or operate or finance income-producing real estate. These can be used as
a proxy to directly invest in the housing market, say, by purchasing a property.

•	 Commodities: Examples include metals (silver, gold, copper, and more) and
agricultural produce (wheat, corn, milk, and more). They are financial assets
tracking the price of the underlying commodities.

•	 Exchange-Traded Funds (ETFs): An EFT is an exchange-listed security that tracks
a collection of other securities. ETFs, such as SPY, DIA, and QQQ, hold equity
stocks to track the larger well-known S&P 500, Dow Jones Industrial Average, and
Nasdaq stock indices. ETFs such as United States Oil Fund (USO) track oil prices
by investing in short-term WTI crude oil futures. ETFs are a convenient investment
vehicle for investors to invest in a wide range of asset classes at relatively lower costs.

•	 Foreign Exchange (FX) between different currency pairs, the major ones being
the US Dollar (USD), Euro (EUR), Pound Sterling (GBP), Japanese Yen (JPY),
Australian Dollar (AUD), New Zealand Dollar (NZD), Canadian Dollar (CAD),
Swiss Franc (CHF), Norwegian Krone (NOK), and Swedish Krona (SEK). These
are often referred to as the G10 currencies.

•	 The key Financial derivatives are options and futures – these are complex leveraged
derivative products that can magnify the risk as well as the reward:

a) �Futures are financial contracts to buy or sell an asset at a predetermined future
date and price.

b) �Options are financial contracts giving their owner the right, but not the
obligation, to buy or sell an underlying asset at a stated price (strike price) prior
to or on a specified date.

Going through the modern electronic trading exchange 7

In this section, we learned about the financial asset classes and their unique properties.
Now, let's discuss the order types and exchange matching algorithms of modern electronic
trading exchanges.

Going through the modern electronic trading
exchange
The first trading exchange was the Amsterdam Stock Exchange, which began in 1602.
Here, the trading happened in person. The applications of technology to trading included
using pigeons, telegraph systems, Morse code, telephones, computer terminals, and
nowadays, high-speed computer networks and state-of-the-art computers. With the
passage of time, the trading microstructure has evolved into the order types and matching
algorithms that we are used to today.

Knowledge of the modern electronic trading exchange microstructure is important for the
design of algorithmic strategies.

Order types
Financial trading strategies employ a variety of different order types, and some of the most
common ones include Market orders, Market with Price Protection orders, Immediate-
Or-Cancel (IOC) orders, Fill and Kill (FAK) orders, Good-'Till-Day (GTD) orders,
Good-'Till-Canceled (GTC) orders, Stop orders, and Iceberg orders.

For the strategies that we will be exploring in this book, we will focus on Market orders,
IOC, and GTC.

Market orders
Market orders are buy-or-sell orders that need to be executed instantly at the current
market price and are used when the immediacy of execution is preferred to the
execution price.

These orders will execute against all available orders on the opposite side at the order's
price until all the quantity asked for is executed. If it runs out of available liquidity to
match against, it can be configured to sit in the order book or expire. Sitting in the book
means the order becomes a resting order that is added to the book for other participants
to trade against. To expire means that the remaining order quantity is canceled instead of
being added to the book so that new orders cannot match against the remaining quantity.

So, for instance, a buy market order will match against all sell orders sitting in the book
from the best price to the worst price until the entire market order is executed.

8 Introduction to Algorithmic Trading

These orders may suffer from extreme slippage, which is defined as the difference in the
executed order's price and the market price at the time the order was sent.

IOC orders
IOC orders cannot execute at prices worse than what they were sent for, which means buy
orders cannot execute higher than the order's price, and sell orders cannot execute lower
than the order's price. This concept is known as limit price since that price is limited to
the worst price the order can execute at.

An IOC order will continue matching against orders on the order side until one of the
following happens:

•	 The entire quantity on the IOC order is executed.

•	 The price of the passive order on the other side is worse than the IOC order's price.

•	 The IOC order is partially executed, and the remaining quantity expires.

An IOC order that is sent at a price better than the best available order on the other side
(that is, the buy order is lower than the best offer price, or the sell order is higher than the
best bid price) does not execute at all and just expires.

GTC orders
GTC orders can persist indefinitely and require a specific cancellation order.

Limit order books
The exchange accepts order requests from all market participants and maintains them in
a limit order book. Limit order books are a view into all the market participant's visible
orders available at the exchange at any point in time.

Buy orders (or bids) are arranged from the highest price (that is, the best price) to the
lowest price (that is, the worst price), and Ask orders (that is, asks or offers) are arranged
from the lowest price (that is, the best price) to the highest price (that is, the lowest price).

The highest bid prices are considered the best bid prices because buy orders with the
highest buy prices are the first to be matched, and the reverse is true for ask prices, that is,
sell orders with the lowest sell prices match first.

Understanding the components of an algorithmic trading system 9

Orders on the same side and at the same price level are arranged in the First-In-First-Out
(FIFO) order, which is also known as priority order – orders with better priority are ahead
of orders with lower priority because the better priority orders have reached the exchange
before the others. All else being equal (that is, the same order side, price, and quantity),
orders with better priority will execute before orders with worse priority.

The exchange matching engine
The matching engine at the electronic trading exchange performs the matching of orders
using exchange matching algorithms. The process of matching entails checking all active
orders entered by market participants and matching the orders that cross each other in
price until there are no unmatched orders that could be matched – so, buy orders with
prices at or above other sell orders match against them, and the converse is true as well,
that is, sell orders with prices at or below other buy orders match against them. The
remaining orders remain in the exchange matching book until a new order flow comes in,
leading to new matches if possible.

In the FIFO matching algorithm, orders are matched first – from the best price to the
worst price. So, an incoming buy order tries to match against resting sell orders (that is,
asks/offers) from the lowest price to the highest price, and an incoming sell order tries
to match against resting buy orders (that is, bids) from the highest price to the lowest
price. New incoming orders are matched with a specific sequence of rules. For incoming
aggressive orders (orders with prices better than the best price level on the other side),
they are matched on a first-come-first-serve basis, that is, orders that show up first, take
out liquidity and, therefore, match first. For passive resting orders that sit in the book,
since they do not execute immediately, they are assigned based on priority on a first-
come-first-serve basis. That means orders on the same side and at the same price are
arranged based on the time it takes them to reach the matching engine; orders with earlier
times are assigned better priority and, therefore, are eligible to be matched first.

In this section, we learned about the order types and exchange matching engine of the
modern electronic trading exchange. Now, let's proceed toward the next section, where we
will learn about the components of an algorithmic trading system.

Understanding the components of an
algorithmic trading system
A client-side algorithmic trading infrastructure can be broken down broadly into two
categories: core infrastructure and quantitative infrastructure.

10 Introduction to Algorithmic Trading

The core infrastructure of an algorithmic trading
system
A core infrastructure handles communication with the exchange using market data and
order entry protocols. It is responsible for relaying information between the exchange and
the algorithmic trading strategy.

Its components are also responsible for capturing, timestamping, and recording historical
market data, which is one of the top priorities for algorithmic trading strategy research
and development.

The core infrastructure also includes a layer of risk management components to
guard the trading system against erroneous or runaway trading strategies to prevent
catastrophic outcomes.

Finally, some of the less glamorous tasks involved in the algorithmic trading business,
such as back-office reconciliation tasks, compliance, and more, are also addressed by the
core infrastructure.

Trading servers
The trading server involves one or more computers receiving and processing market and
other relevant data, and trading exchange information (for example, an order book), and
issuing trading orders.

From the limit order book, updates to the exchange matching book are disseminated to all
market participants over market data protocols.

Market participants have trading servers that receive these market data updates. While,
technically, these trading servers can be anywhere in the world, modern algorithmic
trading participants have their trading servers placed in a data center very close to the
exchange matching engine. This is called a colocated or Direct Market Access (DMA)
setup, which guarantees that participants receive market data updates as fast as possible by
being as close to the matching engine as possible.

Once the market data update, which is communicated via exchange-provided market
data protocols, is received by each market participant, they use software applications
known as market data feed handlers to decode the market data updates and feed it to the
algorithmic trading strategy on the client side.

Once the algorithmic trading strategy has digested the market data update, based on the
intelligence developed in the strategy, it generates outgoing order flow. This can be the
addition, modification, or cancellation of orders at specific prices and quantities.

Understanding the components of an algorithmic trading system 11

The order requests are picked up by an, often, separate client component known as
the order entry gateway. The order entry gateway component communicates with the
exchange using order entry protocols to translate this request from the strategy to the
exchange. Notifications in response to these order requests are sent by the electronic
exchange back to the order entry gateway. Again, in response to this order flow by a
specific market participant, the matching engine generates market data updates, therefore
going back to the beginning of this information flow loop.

The quantitative infrastructure of an algorithmic
trading system
A quantitative infrastructure builds on top of the platform provided by the core
infrastructure and, essentially, tries to build components on top to research, develop,
and effectively leverage the platform to generate revenue.

The research framework includes components such as backtesting, Post-Trade Analytics
(PTA), and signal research components.

Other components that are used in research as well as deployed to live markets would be
limit order books, predictive signals, and signal aggregators, which combine individual
signals into a composite signal.

Execution logic components use trading signals and do the heavy lifting of managing
live orders, positions, and Profit And Loss (PnL) across different strategies and
trading instruments.

Finally, trading strategies themselves have a risk management component to manage and
mitigate risk across different strategies and instruments.

Trading strategies
Profitable trading ideas have always been driven by human intuition developed from
observing the patterns of market conditions and the outcomes of various strategies under
different market conditions.

For example, historically, it has been observed that large market rallies generate investor
confidence, causing more market participants to jump in and buy more; therefore,
recursively causing larger rallies. Conversely, large drops in market prices scare off
participants invested in the trading instrument, causing them to sell their holdings and
exacerbate the drop in prices. These intuitive ideas backed by observations in markets led
to the idea of trend-following strategies.

12 Introduction to Algorithmic Trading

It has also been observed that short-term volatile moves in either direction often tend to
revert to their previous market price, leading to mean reversion-based speculators and
trading strategies. Similarly, historical observations that similar product prices move
together, which also makes intuitive sense have led to the generation of correlation and
collinearity-based trading strategies such as statistical arbitrage and pairs trading strategies.

Since every market participant uses different trading strategies, the final market prices
reflect the majority of market participants. Trading strategies whose views align with
the majority of market participants are profitable under those conditions. A single
trading strategy generally cannot be profitable 100 percent of the time, so sophisticated
participants have a portfolio of trading strategies.

Trading signals
Trading signals are also referred to as features, calculators, indicators, predictors, or alpha.

Trading signals are what drive algorithmic trading strategy decisions. Signals are
well-defined pieces of intelligence derived from market data, alternative data (such as
news, social media feeds, and more), and even our own order flow, which is designed to
predict certain market conditions in the future.

Signals almost always originate from some intuitive idea and observation of certain
market conditions and/or strategy performance. Often, most quantitative developers
spend most of their time researching and developing new trading signals to improve
profitability under different market conditions and to improve the algorithmic trading
strategy overall.

The trading signal research framework
A lot of man-hours are invested in researching and discovering new signals to improve
trading performance. To do that in a systematic, efficient, scalable, and scientific manner,
often, the first step is to build a good signal research framework.

This framework has subcomponents for the following:

•	 Data generation is based on the signal we are trying to build and the market
conditions/objectives we are trying to capture/predict. In most real-world
algorithmic trading, we use tick data, which is data that represents every single
event in the market. As you might imagine, there are a lot of events every day and
this leads to massive amounts of data, so you also need to think about subsampling
the data received. Subsampling has several advantages, such as reducing the scale
of data, eliminating the noise/spurious patches of data, and highlighting interesting/
important data.

Understanding the components of an algorithmic trading system 13

•	 The evaluation of the predictive power or usefulness of features concerning the
market objective that they are trying to capture/predict.

•	 The maintenance of historical results of signals under different market conditions
along with tuning existing signals to changing market conditions.

Signal aggregators
Signal aggregators are optional components that take inputs from individual signals and
aggregate them in different ways to generate a new composite signal.

A very simple aggregation method would be to take the average of all the input signals
and output the average as the composite signal value.

Readers familiar with statistical learning concepts of ensemble learning – bagging
and boosting – might be able to spot a similarity between those learning models and
signal aggregators. Oftentimes signal aggregators are just statistical models (regression/
classification) where the input signals are just features used to predict the same final
market objective.

The execution of strategies
The execution of strategies deals with efficiently managing and executing orders based on
the outputs of the trading signals to minimize trading fees and slippage.

Slippage is the difference between market prices and execution prices and is caused due to
the latency experienced by an order to get to the market before prices change as well as the
size of an order causing a change in price once it hits the market.

The quality of execution strategies employed in an algorithmic trading strategy can
significantly improve/degrade the performance of profitable trading signals.

Limit order books
Limit order books are built both in the exchange match engine and during the algorithmic
trading strategies, although not necessarily all algorithmic trading signals/strategies
require the entire limit order book.

14 Introduction to Algorithmic Trading

Sophisticated algorithmic trading strategies can build a lot more intelligence into their limit
order books. We can detect and track our own orders in the limit book and understand,
given our priority, what our probability of getting our orders executed is. We can also use
this information to execute our own orders even before the order entry gateway gets the
execution notification from the exchange and leverage that ability to our advantage. Other
more complex microstructure features such as detecting icebergs, detecting stop orders,
detecting large in-flow or out-flow of buy/sell orders, and more are all possible with limit
order books and market data updates at a lot of electronic trading exchanges.

Position and PnL management
Let's explore how positions and PnLs evolve as a trading strategy opens and closes long
and short positions by executing trades.

When a strategy does not have a position in the market, that is, price changes do not affect
the trading account's value, it is referred to as having a flat position.

From a flat position, if a buy order executes, then it is referred to as having a long position.
If a strategy has a long position and prices increase, the position profits from the price
increase. PnL also increases in this scenario, that is, profit increases (or loss decreases).
Conversely, if a strategy has a long position and prices decrease, the position loses from
the price decrease. PnL decreases in this scenario, for example, the profit decreases (or the
loss increases).

From a flat position, if a sell order is executed then it is referred to as having a short
position. If a strategy has a short position and prices decrease, the position profits from
the price decrease. PnL increases in this scenario. Conversely, if a strategy has a short
position and prices increase, then PnL decreases. PnL for a position that is still open
is referred to as unrealized PnL since PnL changes with price changes as long as the
position remains open.

A long position is closed by selling an amount of the instrument equivalent to the position
size. This is referred to as closing or flattening a position, and, at this point, PnL is referred
to as realized PnL since it no longer changes as price changes since the position is closed.

Similarly, short positions are closed by buying the same amount as the position size.

At any point, the total PnL is the sum of realized PnLs on all closed positions and
unrealized PnLs on all open positions.

Understanding the components of an algorithmic trading system 15

When a long or short position is composed of buys or sells at multiple prices with
different sizes, then the average price of the position is computed by computing the
Volume Weighted Average Price (VWAP), which is the price of each execution weighted
by the quantity executed at each price. Marking to market refers to taking the VWAP of
a position and comparing that to the current market price to get a sense of how profitable
or lossy a certain long/short position is.

Backtesting
A backtester uses historically recorded market data and simulation components to
simulate the behavior and performance of an algorithmic trading strategy as if it were
deployed to live markets in the past. Algorithmic trading strategies are developed and
optimized using a backtester until the strategy performance is in line with expectations.

Backtesters are complex components that need to model market data flow, client-side and
exchange-side latencies in software and network components, accurate FIFO priorities,
slippage, fees, and market impact from strategy order flow (that is, how would other
market participants react to a strategy's order flow being added to the market data flow) to
generate accurate strategy and portfolio performance statistics.

PTA
PTA is performed on trades generated by an algorithmic trading strategy run in
simulation or live markets.

PTA systems are used to generate performance statistics from historically backtested
strategies with the objective to understand historical strategy performance expectations.

When applied to trades generated from live trading strategies, PTA can be used to
understand strategy performance in live markets as well as compare and assert that live
trading performance is in line with simulated strategy performance expectations.

Risk management
Good risk management principles ensure that strategies are run for optimal PnL
performance and safeguards are put in place against runaway/errant strategies.

Bad risk management cannot only turn a profitable trading strategy into a non-profitable
one but can also put the investor's entire capital at risk due to uncontrolled strategy losses,
malfunctioning strategies, and possible regulatory repercussions.

16 Introduction to Algorithmic Trading

Summary
In this chapter, we have learned when algorithmic trading has an advantage over manual
trading, what the financial asset classes are, the most used order types, what the limit
order book is, and how the orders are matched by the financial exchange.

We have also discussed the key components of an algorithmic trading system – the core
infrastructure and the quantitative infrastructure which consists of trading strategies, their
execution, limit order book, position, PnL management, backtesting, post-trade analytics,
and risk management.

In the next chapter, we will discuss the value of Python when it comes to algorithmic
trading.

This section will deep dive into the core Python libraries NumPy and pandas, which
are used for the analysis and manipulation of large DataFrames. We will also cover the
visualization library Matplotlib, which is closely linked to pandas. Finally, we will look
at the statsmodels and scikit-learn libraries, which allow more advanced analysis of
financial datasets.

This section comprises the following chapters:

•	 Chapter 2, Exploratory Data Analysis in Python

•	 Chapter 3, High-Speed Scientific Computing Using NumPy

•	 Chapter 4, Data Manipulation and Analysis with Pandas

•	 Chapter 5, Data Visualization Using Matplotlib

•	 Chapter 6, Statistical Estimation, Inference, and Prediction

Section 2:
In-Depth Look at
Python Libraries

for the Analysis of
Financial Datasets

2
Exploratory Data

Analysis in Python
This chapter focuses on exploratory data analysis (EDA), which is the first step in
processing any dataset. The objective of EDA is to load data into data structures most
suitable for further analysis to identify and rectify any wrong/bad data and get basic
insight into the data—the types of fields there are; whether they are categorical or not;
how many missing values there are; how the fields are related; and so on.

These are the main topics discussed in this chapter:

•	 Introduction to EDA

•	 Special Python libraries for EDA

Technical requirements
The Python code used in this chapter is available in the Chapter02/eda.ipynb
notebook in the book's code repository.

20 Exploratory Data Analysis in Python

Introduction to EDA
EDA is the process of procuring, understanding, and deriving meaningful statistical
insights from structured/unstructured data of interest. It is the first step before a more
complex analysis, such as predicting future expectations from the data. In the case of
financial data, EDA helps obtain insights used later for building profitable trading signals
and strategies.

EDA guides later decisions of which features/signals to use or avoid and which predictive
models to use or avoid, and invalidates incorrect hypotheses while validating and
introducing correct hypotheses about the nature of variables and the relationships
between them.

EDA is also important in understanding how sample (a smaller dataset representative of
a complete dataset) statistics differ from population (a complete dataset or an ultimate
truth) statistics and keeping that in mind when drawing conclusions about the population,
based on observations of samples. Thus, EDA helps cut down possible search spaces
down the road; otherwise, we would waste a lot more time later on building incorrect/
insignificant models or strategies.

EDA must be approached with a scientific mindset. Sometimes, we might reach
inadequately validated conclusions based on anecdotal evidence rather than
statistical evidence.

Hypotheses based on anecdotal evidence suffer from issues stemming from the following:

•	 Not being statistically significant—too low number of observations.

•	 Selection bias—the hypothesis is only created because it was first observed.

•	 Confirmation bias—our inherent belief in the hypothesis biases our results.

•	 Inaccuracies in observations.

Let's explore the different steps and techniques involved in EDA, using real datasets.

Steps in EDA
Here is a list of steps involved in EDA (we'll be going through each of them in the
subsections that follow):

1.	 Loading the necessary libraries and setting them up

2.	 Data collection

3.	 Data wrangling/munging

Introduction to EDA 21

4.	 Data cleaning

5.	 Obtaining descriptive statistics

6.	 Visual inspection of the data

7.	 Data cleaning

8.	 Advanced visualization techniques

Loading the necessary libraries and setting them up
We will be using numpy, pandas, and matplotlib, and these libraries can be loaded
with the help of the following code:

%matplotlib inline

import numpy as np

import pandas as pd

from scipy import stats

import seaborn as sn

import matplotlib.pyplot as plt

import mpld3

mpld3.enable_notebook()

import warnings

warnings.filterwarnings('ignore')

pd.set_option('display.max_rows', 2)

We use the mpld3 library for enabling zooming within Jupyter's matplotlib charts.
The last line of the preceding code block specifies that only a maximum of two rows of
pandas DataFrames should be displayed.

Data collection
Data collection is usually the first step for EDA. Data may come from many different
sources (comma-separated values (CSV) files, Excel files, web scrapes, binary files, and
so on) and will often need to be standardized and first formatted together correctly.

22 Exploratory Data Analysis in Python

For this exercise, we will use data for three different trading instruments for a period
of 5 years, stored in .csv format. The identity of these instruments is deliberately
not revealed since that might give away their expected behavior/relationships, but we
will reveal their identity at the end of this exercise to evaluate intuitively how well we
performed EDA on them.

Let's start by loading up our available datasets into three DataFrames (A, B, and C),
as follows:

A = pd.read_csv('A.csv', parse_dates=True, index_col=0);

A

DataFrame A has the following structure:

Figure 2.1 – DataFrame constructed from the A.csv file

Similarly, let's load DataFrame B, as follows:

B = pd.read_csv('B.csv', parse_dates=True, index_col=0);

B

DataFrame B has the following structure:

Figure 2.2 – DataFrame constructed from the B.csv file

Introduction to EDA 23

Finally, let's load the C data into a DataFrame, as follows:

C = pd.read_csv('C.csv', parse_dates=True, index_col=0);

C

And we see C has the following fields:

Figure 2.3 – DataFrame constructed from the C.csv file

As we can observe, all three data sources have the same format with Open, High, Low,
Close, and Adj Close prices and Volume information between approximately 2015-05-
15 and 2020-05-14.

Data wrangling/munging
Data rarely comes in a ready-to-use format. Data wrangling/munging refers to the
process of manipulating and transforming data from its initial raw source into structured,
formatted, and easily usable datasets.

Let's use pandas.DataFrame.join(...) to merge the DataFrames and align them
to have the same DateTimeIndex format. Using the lsuffix= and rsuffix=
parameters, we assign the _A, _B, and _C suffixes to the columns coming from the three
DataFrames, as follows:

merged_df = A.join(B, how='outer', lsuffix='_A', sort=True).
join(C, how='outer', lsuffix='_B', rsuffix='_C', sort=True)

merged_df

24 Exploratory Data Analysis in Python

We will inspect the merged_df DataFrame we just created and make sure it has all the
fields we expected from all three DataFrames (displaying only the first seven columns).
The DataFrame can be seen here:

Figure 2.4 – DataFrame constructed by joining the DataFrames A, B, and C

Notice that the original three DataFrames (A, B, and C) had 1,211, 1,209 and 1,206 rows
respectively, but the combined DataFrame has 1,259 rows. This is because we used an
outer join, which uses the union of dates across all three DataFrames. When it cannot
find values for a specific DataFrame for a specific date, it places a NaN value there for that
DataFrame's fields.

Data cleaning
Data cleaning refers to the process of addressing data errors coming from missing data,
incorrect data values, and outliers.

In our example, merged_df has missing values for many fields coming from the original
datasets and coming from merging DataFrames with different sets of dates.

Let's first check if there are any rows where all values are missing (NaN), as follows:

merged_df[merged_df.isnull().all(axis=1)]

The result shows that we do not have any row with all fields missing, as we can see here:

Figure 2.5 – DataFrame showing that there are no rows with all fields missing

Introduction to EDA 25

Now, let's find out how many rows exist that have at least one field that is missing/NaN,
as follows:

merged_df[['Close_A', 'Close_B', 'Close_C']].isnull().
any(axis=1).sum()

So, it turns out 148 rows out of our 1,259 rows have one or more fields with missing
values, as shown here:

148

For our further analysis, we need to have valid Close prices. Thus, we can drop all
rows where the Close price for any of the three instruments is missing, by running the
following code:

valid_close_df = merged_df.dropna(subset=['Close_A', 'Close_B',
'Close_C'], how='any')

After dropping the missing Close prices, we should have no more missing Close price
fields, as illustrated in the following code snippet:

valid_close_df[['Close_A', 'Close_B', 'Close_C']].isnull().
any(axis=1).sum()

The result confirms there are no rows left where any of the Close_A, Close_B, or
Close_C fields are NaN values, as we can see here:

0

Let's inspect the new DataFrame, as follows:

valid_close_df

Here is the result (displaying only the first seven columns):

Figure 2.6 – Resulting DataFrame with no missing/NaN values for any close prices

26 Exploratory Data Analysis in Python

As expected, we dropped the 148 rows that had missing/NaN values for any of the
close prices.

Next, let's deal with rows that have NaN values for any of the other fields, starting with
getting a sense of how many such rows exist. We can do this by running the following code:

valid_close_df.isnull().any(axis=1).sum()

Here is the output of that query:

165

So, there exist 165 rows that have at least some fields with a missing value.

Let's quickly inspect a few of the rows with at least some fields with a missing value,
as follows:

valid_close_df[valid_close_df.isnull().any(axis=1)]

Some of the rows with some missing values are displayed (displaying only the first seven
columns), as shown here:

Figure 2.7 – DataFrame showing there are still some rows with some missing values

So, we can see that the Low_C field on 2015-05-18 (not visible in the preceding
screenshot) and the Open_B field on 2020-05-01 have NaN values (among 163
others, of course).

Let's use the pandas.DataFrame.fillna(...) method with a method called
backfill—this uses the next valid value after the missing value to fill in the missing
value. The code is illustrated in the following snippet:

valid_close_complete = valid_close_df.fillna(method='backfill')

Let's see the impact of the backfilling, as follows:

valid_close_complete.isnull().any(axis=1).sum()

Introduction to EDA 27

Now, this is the output for the query:

0

As we can see, after the backfill operation, there are no more missing/NaN values left
for any field in any row.

Obtaining descriptive statistics
The next step is to generate the key basic statistics on data to build familiarity with each
field, with the DataFrame.describe(...) method. The code is illustrated in the
following snippet:

pd.set_option('display.max_rows', None)

valid_close_complete.describe()

Notice that we have increased the number of rows of a pandas DataFrame to display.

Here is the output of running pandas.DataFrame.describe(…), displaying only the
first seven columns:

Figure 2.8 – Descriptive statistics of the valid_close_complete DataFrame

The preceding output provides quick summary statistics for every field in our DataFrame.

Key observations from Figure 2.8 are outlined here:

•	 Volume_C has all statistics values to be 0, implying every row has the Volume_C
value set to 0. Therefore, we need to remove this column.

28 Exploratory Data Analysis in Python

•	 Open_C has a minimum value of -400, which is unlikely to be true for the
following reasons:

a) The other price fields—High_C, Low_C, Close_C, and Adj Close_C—all
have minimum values around 9, so it doesn't make sense for Open_C to have a
minimum value of -400.

b) Given that the 25th percentile for Open_C is 12.4, it is unlikely that the
minimum value would be so much lower than that.

c) The price of an asset should be non-negative.
•	 Low_C has a maximum value of 330, which is again unlikely because of the

following reasons:

a) For the same reasons given previously to those outlined previously, as Open_C is
not correct.

b) In addition, considering that Low_C should always be lower than High_C, by
definition, the lowest price in a day has to be lower than the highest price on a day.

Let's put back the output of all the pandas DataFrames to be just two rows, as follows:

pd.set_option('display.max_rows', 2)

Now, let's remove the Volume fields for all three instruments, with the following code:

prices_only = valid_close_complete.drop(['Volume_A',
'Volume_B', 'Volume_C'], axis=1)

prices_only

And the prices_only DataFrame has the following data (displaying only the first
seven columns):

Figure 2.9 – The prices_only DataFrame

Introduction to EDA 29

As expected, after we removed the three volume columns, we reduced the DataFrame
dimensions to 1111 × 15—these were previously 1111 × 18.

Visual inspection of the data
There do not seem to be any obvious errors or discrepancies with the other fields, so let's
plot a quick visualization of the prices to see if that sits in line with what we learned from
the descriptive statistics.

First, we will start with the prices of A, since we expect those to be correct based on the
descriptive statistics summary. The code is illustrated in the following snippet:

valid_close_complete['Open_A'].plot(figsize=(12,6),
linestyle='--', color='black', legend='Open_A')

valid_close_complete['Close_A'].plot(figsize=(12,6),
linestyle='-', color='grey', legend='Close_A')

valid_close_complete['Low_A'].plot(figsize=(12,6),
linestyle=':', color='black', legend='Low_A')

valid_close_complete['High_A'].plot(figsize=(12,6),
linestyle='-.', color='grey', legend='High_A')

The output is consistent with our expectations, and we can conclude that the prices of A
are valid based on the statistics and the plot shown in the following screenshot:

Figure 2.10 – Plot showing Open, Close, High, and Low prices for trading instrument A over 5 years

30 Exploratory Data Analysis in Python

Now, let's plot the prices of C to see if the plot provides further evidence regarding our
suspicions about some prices being incorrect. The code can be seen in the following snippet:

valid_close_complete['Open_C'].plot(figsize=(12,6),
linestyle='--', color='black', legend='Open_C')

valid_close_complete['Close_C'].plot(figsize=(12,6),
linestyle='-', color='grey', legend='Close_C')

valid_close_complete['Low_C'].plot(figsize=(12,6),
linestyle=':', color='black', legend='Low_C')

valid_close_complete['High_C'].plot(figsize=(12,6),
linestyle='-.', color='grey', legend='High_C')

The output confirms that Open_C and Low_C have some erroneous values extremely far
away from other values—these are the outliers. The following screenshot shows a plot
illustrating this:

Figure 2.11 – Plot showing large outliers in the prices of C in both positive and negative directions

We will need to perform some further data cleaning to eliminate these outlier values so
that we do not derive incorrect statistical insights from our data.

The two most commonly used methods to detect and remove outliers are the
interquartile range (IQR) and the Z-score.

Introduction to EDA 31

IQR
The IQR method uses a percentile/quantile range of values over the entire dataset to
identify and remove outliers.

When applying the IQR method, we usually use extreme percentile values, such as 5% to
95%, to minimize the risk of removing correct data points.

In our example of Open_C, let's use the 25th percentile and 75th percentile and remove
all data points with values outside that range. The 25th-to-75th percentile range is
(12.4, 17.68), so we would remove the outlier value of -400.

Z-score
The Z-score (or standard score) is obtained by subtracting the mean of the dataset from each
data point and normalizing the result by dividing by the standard deviation of the dataset.

In other words, the Z-score of a data point represents the distance in the number of
standard deviations that the data point is away from the mean of all the data points.

For a normal distribution (applicable for large enough datasets) there is a distribution rule
of 68-95-99, summarized as follows:

•	 68% of all data will lie in a range of one standard deviation from the mean.

•	 95% of all data will lie in a range of two standard deviations from the mean.

•	 99% of all data will lie within a range of three standard deviations from the mean.

So, after computing Z-scores of all data points in our dataset (which is large enough),
there is an approximately 1% chance of a data point having a Z-score larger than or
equal to 3.

Therefore, we can use this information to filter out all observations with Z-scores of 3 or
higher to detect and remove outliers.

In our example, we will remove all rows with values whose Z-score is less than -6 or
greater than 6—that is, six standard deviations away from the mean.

First, we use scipy.stats.zscore(...) to compute Z-scores of each column in the
prices_only DataFrame, and then we use numpy.abs(...) to get the magnitude of
the Z-scores. Finally, we select rows where all fields have Z-scores lower than 6, and save that
in a no_outlier_prices DataFrame. The code is illustrated in the following snippet:

no_outlier_prices = prices_only[(np.abs(stats.zscore(prices_
only)) < 6).all(axis=1)]

32 Exploratory Data Analysis in Python

Let's see what impact this Z-score outlier removal code had on the price fields for
instrument C by plotting its prices again and comparing to the earlier plot, as follows:

no_outlier_prices['Open_C'].plot(figsize=(12,6),
linestyle='--', color='black', legend='Open_C')

no_outlier_prices['Close_C'].plot(figsize=(12,6),
linestyle='-', color='grey', legend='Close_C')

no_outlier_prices['Low_C'].plot(figsize=(12,6), linestyle=':',
color='black', legend='Low_C')

no_outlier_prices['High_C'].plot(figsize=(12,6),
linestyle='-.', color='grey', legend='High_C')

Here's the output:

Figure 2.12 – Plot showing the prices of C after removing outliers by applying data cleaning

The plot clearly shows that the earlier observation of extreme values for Open_C and
Low_C has been discarded; there is no longer the dip of -400.

Note that while we removed the extreme outliers, we were still able to preserve the sharp
spikes in prices during 2015, 2018, and 2020, thus not leading to a lot of data losses.

Introduction to EDA 33

Let's also check the impact of our outlier removal work by re-inspecting the descriptive
statistics, as follows:

pd.set_option('display.max_rows', None)

no_outlier_prices[['Open_C', 'Close_C', 'Low_C', 'High_C']].
describe()

These statistics look significantly better—as we can see in the following screenshot, the
min and max values for all prices now look in line with expectations and do not have
extreme values, so we succeeded in our data cleaning task:

Figure 2.13 – Descriptive statistics for the no_outlier_prices selected columns

Let's reset back the number of rows to display for a pandas DataFrame, as follows:

pd.set_option('display.max_rows', 5)

Advanced visualization techniques
In this section, we will explore univariate and multivariate statistics visualization techniques.

34 Exploratory Data Analysis in Python

First, let's collect the close prices for the three instruments, as follows:

close_prices = no_outlier_prices[['Close_A', 'Close_B',
'Close_C']]

Next, let's compute the daily close price changes to evaluate if there is a relationship
between daily price changes between the three instruments.

Daily close price changes
We will use the pandas.DataFrame.shift(...) method to shift the original
DataFrame one period forward so that we can compute the price changes. The pandas.
DataFrame.fillna(...) method here fixes the one missing value generated in
the first row as a result of the shift operation. Finally, we will rename the columns to
Delta_Close_A, Delta_Close_B, and Delta_Close_C to reflect the fact that
these values are price differences and not actual prices. The code is illustrated in the
following snippet:

delta_close_prices = (close_prices.shift(-1) - close_prices).
fillna(0)

delta_close_prices.columns = ['Delta_Close_A', 'Delta_Close_B',
'Delta_Close_C']

delta_close_prices

The content of the newly generated delta_close_prices DataFrame is shown in the
following screenshot:

Figure 2.14 – The delta_close_prices DataFrame

Introduction to EDA 35

These values look correct, judging from the first few actual prices and the calculated
price differences.

Now, let's quickly inspect the summary statistics for this new DataFrame to get a sense of
how the delta price values are distributed, as follows:

pd.set_option('display.max_rows', None)

delta_close_prices.describe()

The descriptive statistics on this DataFrame are shown in the following screenshot:

Figure 2.15 – Descriptive statistics for the delta_close_prices DataFrame

We can observe from these statistics that all three delta values' means are close to 0, with
instrument A experiencing large price swings and instrument C experiencing significantly
smaller price moves (from the std field).

36 Exploratory Data Analysis in Python

Histogram plot
Let's observe the distribution of Delta_Close_A to get more familiar with it, using a
histogram plot. The code for this is shown in the following snippet:

delta_close_prices['Delta_Close_A'].plot(kind='hist', bins=100,
figsize=(12,6), color='black', grid=True)

In the following screenshot, we can see that the distribution is approximately normally
distributed:

Figure 2.16 – Histogram of Delta_Close_A values roughly normally distributed around the 0 value

Box plot
Let's draw a box plot, which also helps in assessing the values' distribution. The code for
this is shown in the following snippet:

delta_close_prices['Delta_Close_B'].plot(kind='box',
figsize=(12,6), color='black', grid=True)

Introduction to EDA 37

The output can be seen in the following screenshot:

Figure 2.17 – Box plot showing mean, median, IQR (25th to 75th percentile), and outliers

Correlation charts
The first step in multivariate data statistics is to assess the correlations between
Delta_Close_A, Delta_Close_B, and Delta_Close_C.

The most convenient way to do that is to plot a correlation scatter matrix that shows
the pairwise relationship between the three variables, as well as the distribution of each
individual variable.

In our example, we demonstrate the option of using kernel density estimation (KDE),
which is closely related to histograms but provides a smoother distribution surface across
the plots on the diagonals. The code for this is shown in the following snippet:

pd.plotting.scatter_matrix(delta_close_prices, figsize=(10,10),
color='black', alpha=0.75, diagonal='kde', grid=True)

This plot indicates that there is a strong positive correlation between Delta_Close_A
and Delta_Close_B and a strong negative correlation between Delta_Close_C and
the other two variables. The diagonals also display the distribution of each individual
variable, using KDE.

38 Exploratory Data Analysis in Python

A scatter plot of the fields can be seen in the following screenshot:

Figure 2.18 – Scatter plot of Delta_Close fields with KDE histogram on the diagonals

Introduction to EDA 39

Next, let's look at some statistics that provide the relationship between the variables.
DataFrame.corr(...) does that for us and also displays linear correlations. This can
be seen in the following code snippet:

delta_close_prices.corr()

The correlation matrix confirms that Delta_Close_A and Delta_Close_B have a
strong positive correlation (very close to 1.0, which is the maximum), as we expected
based on the scatter plot. Also, Delta_Close_C is negatively correlated (closer to
-1.0 than 0.0) to the other two variables.

You can see the correlation matrix in the following screenshot:

Figure 2.19 – Correlation matrix for Delta_Close_A, Delta_Close_B, and Delta_Close_C

Pairwise correlation heatmap
An alternative visualization technique known as a heatmap is available in seaborn.
heatmap(...), as illustrated in the following code snippet:

plt.figure(figsize=(6,6))

sn.heatmap(delta_close_prices.corr(), annot=True, square=True,
linewidths=2)

40 Exploratory Data Analysis in Python

In the plot shown in the following screenshot, the rightmost scale shows a legend where
the darkest values represent the strongest negative correlation and the lightest values
represent the strongest positive correlations:

Figure 2.20 – Seaborn heatmap visualizing pairwise correlations between Delta_Close fields

The heatmap shows graphically the same message as the table in the previous
section— there is a very high correlation between Delta_Close_A and
Delta_Close_B and a very high negative correlation between Delta_Close_A
and Delta_Close_C. There is also a very high negative correlation between
Delta_Close_B and Delta_Close_C.

Introduction to EDA 41

Revelation of the identity of A, B, and C and EDA's
conclusions
The A instrument is the Dow Jones Industrial Average (DJIA), a large cap equity index
exchange traded fund (ETF). The B instrument is the S&P 500 (SPY), another large cap
equity index ETF. The C instrument is the Chicago Board Options Exchange (CBOE)
Volatility Index (VIX), which basically tracks how volatile markets are at any given time
(basically, a function of equity index price swings).

From our EDA on the mystery instruments, we drew the following conclusions:

•	 C (VIX) cannot have negative prices or prices above 90, which has historically
been true.

•	 A (DJIA) and B (SPY) had huge drops in 2008 and 2020, corresponding to the stock
market crash and the COVID-19 pandemic, respectively. Also, the price of C (VIX)
spiked at the same time, indicating heightened market turmoil.

•	 A (DJIA) has largest daily price swings, followed by B (SPY), and finally C (VIX),
with very low daily price swings. These are also correct observations considering the
underlying instruments that they were hiding.

A (DJIA) and B (SPY) have very strong positive correlations, which makes sense since
both are large cap equity indices. C (VIX) has strong negative correlations with both
A (DJIA) and B (SPY), which also makes sense since during periods of prosperity,
volatility remains low and markets rise, and during periods of crisis, volatility spikes
and markets drop.

In the next section, we introduce one special Python library that generates the most
common EDA charts and tables automatically.

42 Exploratory Data Analysis in Python

Special Python libraries for EDA
There are multiple Python libraries that provide EDA in a single line of code. One of the
most advanced of them is dtale, shown in the following code snippet:

import dtale

dtale.show(valid_close_df)

The preceding command produces a table with all the data (displaying only the first
seven columns), as follows:

Figure 2.21 – The dtale component showing spreadsheet-like control over the valid_close_df DataFrame

Special Python libraries for EDA 43

Clicking on the arrow at the top displays a menu with all the functionality, as illustrated in
the following screenshot:

Figure 2.22 – The dtale global menu showing its functionality

44 Exploratory Data Analysis in Python

Clicking on the column header displays each feature's individual commands, as illustrated
in the following screenshot:

Figure 2.23 – The dtale column menu showing column functionality

Interactive EDA, rather than command-driven EDA, has its advantages—it is intuitive, it
promotes visual creativity, and it can be faster.

Summary
The objective of EDA is to get a feel for the dataset we work with, and to correct basic
data errors such as unlikely outliers. We have described both an EDA built by running
individual Python commands and an automated EDA using a special Python EDA library.

The next chapter introduces us to one of the most important Python libraries: numpy.

3
High-Speed Scientific

Computing Using
NumPy

This chapter introduces us to NumPy, a high-speed Python library for matrix calculations.
Most data science/algorithmic trading libraries are built upon NumPy's functionality
and conventions.

In this chapter, we are going to cover the following key topics:

•	 Introduction to NumPy

•	 Creating NumPy n-dimensional arrays (ndarrays)

•	 Data types used with NumPy arrays

•	 Indexing of ndarrays

•	 Basic ndarray operations

•	 File operations on ndarrays

46 High-Speed Scientific Computing Using NumPy

Technical requirements
The Python code used in this chapter is available in the Chapter03/numpy.ipynb
notebook in the book's code repository.

Introduction to NumPy
Multidimensional heterogeneous arrays can be represented in Python using lists. A list is a
1D array, a list of lists is a 2D array, a list of lists of lists is a 3D array, and so on. However,
this solution is complex, difficult to use, and extremely slow.

One of the primary design goals of the NumPy Python library was to introduce
high-performant and scalable structured arrays and vectorized computations.

Most data structures and operations in NumPy are implemented in C/C++, which
guarantees their superior speed.

Creating NumPy ndarrays
An ndarray is an extremely high-performant and space-efficient data structure for
multidimensional arrays.

First, we need to import the NumPy library, as follows:

import numpy as np

Next, we will start creating a 1D ndarray.

Creating 1D ndarrays
The following line of code creates a 1D ndarray:

arr1D = np.array([1.1, 2.2, 3.3, 4.4, 5.5]);

arr1D

This will give the following output:

array([1.1, 2.2, 3.3, 4.4, 5.5])

Let's inspect the type of the array with the following code:

type(arr1D)

Creating NumPy ndarrays 47

This shows that the array is a NumPy ndarray, as can be seen here:

numpy.ndarray

We can easily create ndarrays of two dimensions or more.

Creating 2D ndarrays
To create a 2D ndarray, use the following code:

arr2D = np.array([[1, 2], [3, 4]]);

arr2D

The result has two rows and each row has two values, so it is a 2 x 2 ndarray, as illustrated
in the following code snippet:

array([[1, 2],

 [3, 4]])

Creating any-dimension ndarrays
An ndarray can construct arrays with arbitrary dimensions. The following code creates an
ndarray of 2 x 2 x 2 x 2 dimensions:

arr4D = np.array(range(16)).reshape((2, 2, 2, 2));

arr4D

The representation of the array is shown here:

array([[[[0, 1],

 [2, 3]],

 [[4, 5],

 [6, 7]]],

 [[[8, 9],

 [10, 11]],

 [[12, 13],

 [14, 15]]]])

NumPy ndarrays have a shape attribute that describes the ndarray's dimensions, as
shown in the following code snippet:

arr1D.shape

48 High-Speed Scientific Computing Using NumPy

The following snippet shows that arr1D is a one-dimensional array with five elements:

(5,)

We can inspect the shape attribute on arr2D with the following code:

arr2D.shape

As expected, the output describes it as being a 2 x 2 ndarray, as we can see here:

(2, 2)

In practice, there are certain matrices that are more frequently used, such as a matrix
of 0s, a matrix of 1s, an identity matrix, a matrix containing a range of numbers, or a
random matrix. NumPy provides support for generating these frequently used ndarrays
with one command.

Creating an ndarray with np.zeros(...)
The np.zeros(...) method creates an ndarray populated with all 0s, as illustrated in
the following code snippet:

np.zeros(shape=(2,5))

The output is all 0s, with dimensions being 2 x 5, as illustrated in the following
code snippet:

array([[0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 0.]])

Creating an ndarray with np.ones(...)
np.ones(...) is similar, but each value is assigned a value of 1 instead of 0. The
method is shown in the following code snippet:

np.ones(shape=(2,2))

The result is a 2 x 2 ndarray with every value set to 1, as illustrated in the following
code snippet:

array([[1., 1.],

 [1., 1.]])

Creating NumPy ndarrays 49

Creating an ndarray with np.identity(...)
Often in matrix operations we need to create an identity matrix, which is available in the
np.identity(...) method, as illustrated in the following code snippet:

np.identity(3)

This creates a 3 x 3 identity matrix with 1s on the diagonals and 0s everywhere else, as
illustrated in the following code snippet:

array([[1., 0., 0.],

 [0., 1., 0.],

 [0., 0., 1.]])

Creating an ndarray with np.arange(...)
np.arange(...) is the NumPy equivalent of the Python range(...) method. This
generates values with a start value, end value, and increment, except this returns NumPy
ndarrays instead, as shown here:

np.arange(5)

The ndarray returned is shown here:

array([0, 1, 2, 3, 4])

By default, values start at 0 and increment by 1.

Creating an ndarray with np.random.randn(…)
np.random.randn(…) generates an ndarray of specified dimensions, with each
element populated with random values drawn from a standard normal distribution
(mean=0, std=1), as illustrated here:

np.random.randn(2,2)

The output is a 2 x 2 ndarray with random values, as illustrated in the following
code snippet:

array([[0.57370365, -1.22229931],

 [-1.25539335, 1.11372387]])

50 High-Speed Scientific Computing Using NumPy

Data types used with NumPy ndarrays
NumPy ndarrays are homogenous—that is, each element in an ndarray has the same
data type. This is different from Python lists, which can have elements with different data
types (heterogenous).

The np.array(...) method accepts an explicit dtype= parameter that lets us specify
the data type that the ndarray should use. Common data types used are np.int32,
np.float64, np.float128, and np.bool. Note that np.float128 is not
supported on Windows.

The primary reason why you should be conscious about the various numeric types for
ndarrays is the memory usage—the more precision the data type provides, the larger
memory requirements it has. For certain operations, a smaller data type may be just enough.

Creating a numpy.float64 array
To create a 128-bit floating-values array, use the following code:

np.array([-1, 0, 1], dtype=np.float64)

The output is shown here:

array([-1., 0., 1.], dtype=float64)

Creating a numpy.bool array
We can create an ndarray by converting specified values to the target type. In the following
code example, we see that even though integer data values were provided, the resulting
ndarray has dtype as bool, since the data type was specified to be np.bool:

np.array([-1, 0, 1], dtype=np.bool)

The values are shown here:

array([True, False, True])

We observe that the integer values (-1, 0, 1) were converted to bool values (True,
False, True). 0 gets converted to False, and all other values get converted to True.

Indexing of ndarrays 51

ndarrays' dtype attribute
ndarrays have a dtype attribute to inspect the data type, as shown here:

arr1D.dtype

The output is a NumPy dtype object with a float64 value, as illustrated here:

dtype('float64')

Converting underlying data types of ndarray with
numpy.ndarrays.astype(...)
We can easily convert the underlying data type of an ndarray to any other compatible
data type with the numpy.ndarrays.astype(...) method. For example, to convert
arr1D from np.float64 to np.int64, we use the following code:

arr1D.astype(np.int64).dtype

This reflects the new data type, as follows:

dtype('int64')

When numpy.ndarray.astype(...) converts to a narrower data type, it will
truncate the values, as follows:

arr1D.astype(np.int64)

This converts arr1D to the following integer-valued ndarray:

array([1, 2, 3, 4, 5])

The original floating values (1.1, 2.2, …) are converted to their truncated integer values
(1, 2, …).

Indexing of ndarrays
Array indexing refers to the way of accessing a particular array element or elements. In
NumPy, all ndarray indices are zero-based—that is, the first item of an array has index 0.
Negative indices are understood as counting from the end of the array.

52 High-Speed Scientific Computing Using NumPy

Direct access to an ndarray's element
Direct access to a single ndarray's element is one of the most used forms of access.

The following code builds a 3 x 3 random-valued ndarray for our use:

arr = np.random.randn(3,3);

arr

The arr ndarray has the following elements:

array([[-0.04113926, -0.273338 , -1.05294723],

 [1.65004669, -0.09589629, 0.15586867],

 [0.39533427, 1.47193681, 0.32148741]])

We can index the first element with integer index 0, as follows:

arr[0]

This gives us the first row of the arr ndarray, as follows:

array([-0.04113926, -0.273338 , -1.05294723])

We can access the element at the second column of the first row by using the
following code:

arr[0][1]

The result is shown here:

-0.2733379996693689

ndarrays also support an alternative notation to perform the same operation, as
illustrated here:

arr[0, 1]

It accesses the same element as before, as can be seen here:

-0.2733379996693689

The numpy.ndarray[index_0, index_1, … index_n] notation is especially
more concise and useful when accessing ndarrays with very large dimensions.

Indexing of ndarrays 53

Negative indices start from the end of the ndarray, as illustrated here:

arr[-1]

This returns the last row of the ndarray, as follows:

array([0.39533427, 1.47193681, 0.32148741])

ndarray slicing
While single ndarray access is useful, for bulk processing we require access to multiple
elements of the array at once (for example, if the ndarray contains all daily prices of an
asset, we might want to process only all Mondays' prices).

Slicing allows access to multiple ndarray records in one command. Slicing ndarrays also
works similarly to slicing of Python lists.

The basic slice syntax is i:j:k, where i is the index of the first record we want to include, j is
the stopping index, and k is the step.

Accessing all ndarray elements after the first one
To access all elements after the first one, we can use the following code:

arr[1:]

This returns all the rows after the first one, as illustrated in the following code snippet:

array([[1.65004669, -0.09589629, 0.15586867],

 [0.39533427, 1.47193681, 0.32148741]])

Fetching all rows, starting from row 2 and columns 1 and 2
Similarly, to fetch all rows starting from the second one, and columns up to but not
including the third one, run the following code:

arr[1:, :2]

This is a 2 x 2 ndarray as expected, as can be seen here:

array([[1.65004669, -0.09589629],

 [0.39533427, 1.47193681]])

54 High-Speed Scientific Computing Using NumPy

Slicing with negative indices
More complex slicing notation that mixes positive and negative index ranges is also
possible, as follows:

arr[1:2, -2:-1]

This is a less intuitive way of finding the slice of an element at the second row and at the
second column, as illustrated here:

array([[-0.09589629]])

Slicing with no indices
Slicing with no indices yields the entire row/column. The following code generates a slice
containing all elements on the third row:

arr[:][2]

The output is shown here:

array([0.39533427, 1.47193681, 0.32148741])

The following code generates a slice of the original arr ndarray:

arr[:][:]

The output is shown here:

array([[-0.04113926, -0.273338 , -1.05294723],

 [1.65004669, -0.09589629, 0.15586867],

 [0.39533427, 1.47193681, 0.32148741]])

Setting values of a slice to 0
Frequently, we will need to set certain values of an ndarray to a given value.

Let's generate a slice containing the second row of arr and assign it to a new variable,
arr1, as follows:

arr1 = arr[1:2];

arr1

Indexing of ndarrays 55

arr1 now contains the last row, as shown in the following code snippet:

array([[1.65004669, -0.09589629, 0.15586867]])

Now, let's set every element of arr1 to the value 0, as follows:

arr1[:] = 0;

arr1

As expected, arr1 now contains all 0s, as illustrated here:

array([[0., 0., 0.]])

Now, let's re-inspect our original arr ndarray, as follows:

arr

The output is shown here:

array([[-0.04113926, -0.273338 , -1.05294723],

 [0. , 0. , 0.],

 [0.39533427, 1.47193681, 0.32148741]])

We see that our operation on the arr1 slice also changed the original arr ndarray. This
brings us to the most important point: ndarray slices are views into the original ndarrays,
not copies.

It is important to remember this when working with ndarrays so that we do not
inadvertently change something we did not mean to. This design is purely for efficiency
reasons, since copying large ndarrays incurs large overheads.

To create a copy of an ndarray, we explicitly call the numpy.ndarray.copy(...)
method, as follows:

arr_copy = arr.copy()

Now, let's change some values in the arr_copy ndarray, as follows:

arr_copy[1:2] = 1;

arr_copy

56 High-Speed Scientific Computing Using NumPy

We can see the change in arr_copy in the following code snippet:

array([[-0.04113926, -0.273338 , -1.05294723],

 [1. , 1. , 1.],

 [0.39533427, 1.47193681, 0.32148741]])

Let's inspect the original arr ndarray as well, as follows:

arr

The output is shown here:

array([[-0.04113926, -0.273338 , -1.05294723],

 [0. , 0. , 0.],

 [0.39533427, 1.47193681, 0.32148741]])

We see that the original ndarray is unchanged since arr_copy is a copy of arr and not a
reference/view to it.

Boolean indexing
NumPy provides multiple ways of indexing ndarrays. NumPy arrays can be indexed by
using conditions that evaluate to True or False. Let's start by regenerating an arr
ndarray, as follows:

arr = np.random.randn(3,3);

arr

This is a 3 x 3 ndarray with random values, as can be seen in the following code snippet:

array([[-0.50566069, -0.52115534, 0.0757591],

 [1.67500165, -0.99280199, 0.80878346],

 [0.56937775, 0.36614928, -0.02532004]])

Let's revisit the output of running the following code, which is really just calling the
np.less(...) universal function (ufunc)—that is, the result of the following code is
identical to calling the np.less(arr, 0)) method:

arr < 0

Indexing of ndarrays 57

This generates another ndarray of True and False values, where True means the
corresponding element in arr was negative and False means the corresponding element
in arr was not negative, as illustrated in the following code snippet:

array([[True, True, False],

 [False, True, False],

 [False, False, True]])

We can use that array as an index to arr to find the actual negative elements, as follows:

arr[(arr < 0)]

As expected, this fetches the following negative values:

array([-0.50566069, -0.52115534, -0.99280199, -0.02532004])

We can combine multiple conditions with & (and) and | (or) operators. Python's & and |
Boolean operators do not work on ndarrays since they are for scalars. An example of a &
operator is shown here:

(arr > -1) & (arr < 1)

This generates an ndarray with the value True, where the elements are between -1 and 1
and False otherwise, as illustrated in the following code snippet:

array([[True, True, True],

 [False, True, True],

 [True, True, True]])

As we saw before, we can use that Boolean array to index arr and find the actual
elements, as follows:

arr[((arr > -1) & (arr < 1))]

The following output is an array of elements that satisfied the condition:

array([-0.50566069, -0.52115534, 0.0757591 , -0.99280199,
0.80878346,

 0.56937775, 0.36614928, -0.02532004])

58 High-Speed Scientific Computing Using NumPy

Indexing with arrays
ndarray indexing also allows us to directly pass lists of indices of interest. Let's first
generate an ndarray of random values to use, as follows:

arr

The output is shown here:

array([[-0.50566069, -0.52115534, 0.0757591],

 [1.67500165, -0.99280199, 0.80878346],

 [0.56937775, 0.36614928, -0.02532004]])

We can select the first and third rows, using the following code:

arr[[0, 2]]

The output is a 2 x 3 ndarray containing the two rows, as illustrated here:

array([[-0.50566069, -0.52115534, 0.0757591],

 [0.56937775, 0.36614928, -0.02532004]])

We can combine row and column indexing using arrays, as follows:

arr[[0, 2], [1]]

The preceding code gives us the second column of the first and third rows, as follows:

array([-0.52115534, 0.36614928])

We can also change the order of the indices passed, and this is reflected in the output. The
following code picks out the third row followed by the first row, in that order:

arr[[2, 0]]

The output reflects the two rows in the order we expected (third row first; first row
second), as illustrated in the following code snippet:

array([[0.56937775, 0.36614928, -0.02532004],

 [-0.50566069, -0.52115534, 0.0757591]])

Now that we have learned how to create ndarrays and about the various ways to retrieve
the values of their elements, let's discuss the most common ndarray operations.

Basic ndarray operations 59

Basic ndarray operations
In the following examples, we will use an arr2D ndarray, as illustrated here:

arr2D

This is a 2 x 2 ndarray with values from 1 to 4, as shown here:

array([[1, 2],

 [3, 4]])

Scalar multiplication with an ndarray
Scalar multiplication with an ndarray has the effect of multiplying each element of the
ndarray, as illustrated here:

arr2D * 4

The output is shown here:

array([[4, 8],

 [12, 16]])

Linear combinations of ndarrays
The following operation is a combination of scalar and ndarray operations, as well as
operations between ndarrays:

2*arr2D + 3*arr2D

The output is what we would expect, as can be seen here:

array([[5, 10],

 [15, 20]])

Exponentiation of ndarrays
We can raise each element of the ndarray to a certain power, as illustrated here:

arr2D ** 2

60 High-Speed Scientific Computing Using NumPy

The output is shown here:

array([[1, 4],

 [9, 16]])

Addition of an ndarray with a scalar
Addition of an ndarray with a scalar works similarly, as illustrated here:

arr2D + 10

The output is shown here:

array([[11, 12],

 [13, 14]])

Transposing a matrix
Finding the transpose of a matrix, which is a common operation, is possible in NumPy
with the numpy.ndarray.transpose(...) method, as illustrated in the following
code snippet:

arr2D.transpose()

This transposes the ndarray and outputs it, as follows:

array([[1, 3],

 [2, 4]])

Changing the layout of an ndarray
The np.ndarray.reshape(...) method allows us to change the layout (shape) of
the ndarray without changing its data to a compatible shape.

For instance, to reshape arr2D from 2 x 2 to 4 x 1, we use the following code:

arr2D.reshape((4, 1))

Basic ndarray operations 61

The new reshaped 4 x 1 ndarray is displayed here:

array([[1],

 [2],

 [3],

 [4]])

The following code example combines np.random.randn(...) and np.ndarray.
reshape(...) to create a 3 x 3 ndarray of random values:

arr = np.random.randn(9).reshape((3,3));

arr

The generated 3 x 3 ndarray is shown here:

array([[0.24344963, -0.53183761, 1.08906941],

 [-1.71144547, -0.03195253, 0.82675183],

 [-2.24987291, 2.60439882, -0.09449784]])

Finding the minimum value in an ndarray
To find the minimum value in an ndarray, we use the following command:

np.min(arr)

The result is shown here:

-2.249872908111852

Calculating the absolute value
The np.abs(...) method, shown here, calculates the absolute value of an ndarray:

np.abs(arr)

The output ndarray is shown here:

array([[0.24344963, 0.53183761, 1.08906941],

 [1.71144547, 0.03195253, 0.82675183],

 [2.24987291, 2.60439882, 0.09449784]])

62 High-Speed Scientific Computing Using NumPy

Calculating the mean of an ndarray
The np.mean(...) method, shown here, calculates the mean of all elements in
the ndarray:

np.mean(arr)

The mean of the elements of arr is shown here:

0.01600703714906236

We can find the mean along the columns by specifying the axis= parameter, as follows:

np.mean(arr, axis=0)

This returns the following array, containing the mean for each column:

array([-1.23928958, 0.68020289, 0.6071078])

Similarly, we can find the mean along the rows by running the following code:

np.mean(arr, axis=1)

That returns the following array, containing the mean for each row:

array([0.26689381, -0.30554872, 0.08667602])

Finding the index of the maximum value in an ndarray
Often, we're interested in finding where in an array its largest value is. The
np.argmax(...) method finds the location of the maximum value in the ndarray,
as follows:

np.argmax(arr)

This returns the following value, to represent the location of the maximum value
(2.60439882):

7

The np.argmax(...) method also accepts the axis= parameter to perform the
operation row-wise or column-wise, as illustrated here:

np.argmax(arr, axis=1)

Basic ndarray operations 63

This finds the location of the maximum value on each row, as follows:

array([2, 2, 1], dtype=int64)

Calculating the cumulative sum of elements of an
ndarray
To calculate the running total, NumPy provides the np.cumsum(...) method. The
np.cumsum(...) method, illustrated here, finds the cumulative sum of elements in
the ndarray:

np.cumsum(arr)

The output provides the cumulative sum after each additional element, as follows:

array([0.24344963, -0.28838798, 0.80068144, -0.91076403,
-0.94271656,

 -0.11596474, -2.36583764, 0.23856117, 0.14406333])

Notice the difference between a cumulative sum and a sum. A cumulative sum is an array
of a running total, whereas a sum is a single number.

Applying the axis= parameter to the cumsum method works similarly, as illustrated in
the following code snippet:

np.cumsum(arr, axis=1)

This goes row-wise and generates the following array output:

array([[0.24344963, -0.28838798, 0.80068144],

 [-1.71144547, -1.743398 , -0.91664617],

 [-2.24987291, 0.35452591, 0.26002807]])

Finding NaNs in an ndarray
Missing or unknown values are often represented in NumPy using a Not a Number
(NaN) value. For many numerical methods, these must be removed or replaced with
an interpolation.

First, let's set the second row to np.nan, as follows:

arr[1, :] = np.nan;

arr

64 High-Speed Scientific Computing Using NumPy

The new ndarray has the NaN values, as illustrated in the following code snippet:

array([[0.64296696, -1.35386668, -0.63063743],

 [nan, nan, nan],

 [-0.19093967, -0.93260398, -1.58520989]])

The np.isnan(...) ufunc finds if values in an ndarray are NaNs, as follows:

np.isnan(arr)

The output is an ndarray with a True value where NaNs exist and a False value where
NaNs do not exist, as illustrated in the following code snippet:

array([[False, False, False],

 [True, True, True],

 [False, False, False]])

Finding the truth values of x1>x2 of two ndarrays
Boolean ndarrays are an efficient way of obtaining indices for values of interest. Using
Boolean ndarrays is far more performant than looping over the matrix elements one by one.

Let's build another arr1 ndarray with random values, as follows:

arr1 = np.random.randn(9).reshape((3,3));

arr1

The result is a 3 x 3 ndarray, as illustrated in the following code snippet:

array([[0.32102068, -0.51877544, -1.28267292],

 [-1.34842617, 0.61170993, -0.5561239],

 [1.41138027, -2.4951374 , 1.30766648]])

Similarly, let's build another arr2 ndarray, as follows:

arr2 = np.random.randn(9).reshape((3,3));

arr2

The output is shown here:

array([[0.33189432, 0.82416396, -0.17453351],

 [-1.59689203, -0.42352094, 0.22643589],

 [-1.80766151, 0.26201455, -0.08469759]])

Basic ndarray operations 65

The np.greater(...) function is a binary ufunc that generates a True value when
the left-hand-side value in the ndarray is greater than the right-hand-side value in the
ndarray. This function can be seen here:

np.greater(arr1, arr2)

The output is an ndarray of True and False values as described previously, as we can
see here:

array([[False, False, False],

 [True, True, False],

 [True, False, True]])

The > infix operator, shown in the following snippet, is a shorthand of
numpy.greater(...):

arr1 > arr2

The output is the same, as we can see here:

array([[False, False, False],

 [True, True, False],

 [True, False, True]])

any and all Boolean operations on ndarrays
In addition to relational operators, NumPy supports additional methods for testing
conditions on matrices' values.

The following code generates an ndarray containing True for elements that satisfy the
condition, and False otherwise:

arr_bool = (arr > -0.5) & (arr < 0.5);

arr_bool

The output is shown here:

array([[False, False, True],

 [False, False, False],

 [False, True, True]])

66 High-Speed Scientific Computing Using NumPy

The following numpy.ndarray.any(...) method returns True if any element is
True and otherwise returns False:

arr_bool.any()

Here, we have at least one element that is True, so the output is True, as shown here:

True

Again, it accepts the common axis= parameter and behaves as expected, as we can
see here:

arr_bool.any(axis=1)

And the operation performed row-wise yields, as follows:

array([True, False, True])

The following numpy.ndarray.all(...) method returns True when all elements
are True, and False otherwise:

arr_bool.all()

This returns the following, since not all elements are True:

False

It also accepts the axis= parameter, as follows:

arr_bool.all(axis=1)

Again, each row has at least one False value, so the output is False, as shown here:

array([False, False, False])

Sorting ndarrays
Finding an element in a sorted ndarray is faster than processing all elements of the ndarray.

Let's generate a 1D random array, as follows:

arr1D = np.random.randn(10);

arr1D

Basic ndarray operations 67

The ndarray contains the following data:

array([1.14322028, 1.61792721, -1.01446969, 1.26988026,
-0.20110113,

 -0.28283051, 0.73009565, -0.68766388, 0.27276319,
-0.7135162])

The np.sort(...) method is pretty straightforward, as can be seen here:

np.sort(arr1D)

The output is shown here:

array([-1.01446969, -0.7135162 , -0.68766388, -0.28283051,
-0.20110113,

 0.27276319, 0.73009565, 1.14322028, 1.26988026,
1.61792721])

Let's inspect the original ndarray to see if it was modified by the numpy.sort(...)
operation, as follows:

arr1D

The following output shows that the original array is unchanged:

array([1.14322028, 1.61792721, -1.01446969, 1.26988026,
-0.20110113,

 -0.28283051, 0.73009565, -0.68766388, 0.27276319,
-0.7135162])

The following np.argsort(...) method creates an array of indices that represent the
location of each element in a sorted array:

np.argsort(arr1D)

The output of this operation generates the following array:

array([2, 9, 7, 5, 4, 8, 6, 0, 3, 1])

NumPy ndarrays have the numpy.ndarray.sort(...) method as well, which sorts
arrays in place. This method is illustrated in the following code snippet:

arr1D.sort()

np.argsort(arr1D)

68 High-Speed Scientific Computing Using NumPy

After the call to sort(), we call numpy.argsort(...) to make sure the array was
sorted, and this yields the following array that confirms that behavior:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Searching within ndarrays
Finding indices of elements where a certain condition is met is a fundamental operation
on an ndarray.

First, we start with an ndarray with consecutive values, as illustrated here:

arr1 = np.array(range(1, 11));

arr1

This creates the following ndarray:

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

We create a second ndarray based on the first one, except this time the values in the
second one are multiplied by 1000, as illustrated in the following code snippet:

arr2 = arr1 * 1000;

arr2

Then, we know arr2 contains the following data:

array([1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
9000,

 10000])

We define another ndarray that contains 10 True and False values randomly, as follows:

cond = np.random.randn(10) > 0;

cond

The values in the cond ndarray are shown here:

array([False, False, True, False, False, True, True, True,
False, True])

File operations on ndarrays 69

The np.where(...) method allows us to select values from one ndarray or another,
depending on the condition being True or False. The following code will generate an
ndarray with a value picked from arr1 when the corresponding element in the cond
array is True; otherwise, the value is picked from arr2:

np.where(cond, arr1, arr2)

The returned array is shown here:

array([1000, 2000, 3, 4000, 5000, 6, 7, 8, 9000,
10])

File operations on ndarrays
Most NumPy arrays are read in from files and, after processing, written out back to files.

File operations with text files
The key advantages of text files are that they are human-readable and compatible with any
custom software.

Let's start with the following random array:

arr

This array contains the following data:

array([[-0.50566069, -0.52115534, 0.0757591],

 [1.67500165, -0.99280199, 0.80878346],

 [0.56937775, 0.36614928, -0.02532004]])

The numpy.savetxt(...) method saves the ndarray to disk in text format.

The following example uses a fmt='%0.2lf' format string and specifies a
comma delimiter:

np.savetxt('arr.csv', arr, fmt='%0.2lf', delimiter=',')

Let's inspect the arr.csv file written out to disk in the current directory, as follows:

!cat arr.csv

70 High-Speed Scientific Computing Using NumPy

The comma-separated values (CSV) file contains the following data:

-0.51,-0.52,0.08

1.68,-0.99,0.81

0.57,0.37,-0.03

The numpy.loadtxt(...) method loads an ndarray from text file to memory. Here,
we explicitly specify the delimiter=',' parameter, as follows:

arr_new = np.loadtxt('arr.csv', delimiter=',');

arr_new

And the ndarray read in from the text file contains the following data:

array([[-0.51, -0.52, 0.08],

 [1.68, -0.99, 0.81],

 [0.57, 0.37, -0.03]])

File operations with binary files
Binary files are far more efficient for computer processing—they save and load more quickly
and are smaller than text files. However, their format may not be supported by other software.

The numpy.save(...) method stores ndarrays in a binary format, as illustrated in the
following code snippet:

np.save('arr', arr)

!cat arr.npy

The output of the arr.npy file is shown here:

The numpy.save(...) method automatically assigns the .npy extension to binary
files it creates.

The numpy.load(...) method, shown in the following code snippet, is used for
reading binary files:

arr_new = np.load('arr.npy');

arr_new

Summary 71

The newly read-in ndarray is shown here:

array([[-0.50566069, -0.52115534, 0.0757591],

 [1.67500165, -0.99280199, 0.80878346],

 [0.56937775, 0.36614928, -0.02532004]])

Another advantage of having binary file formats is that data can be stored with extreme
precision, especially when dealing with floating values, which is not always possible with
text files since there is some loss of precision in certain cases.

Let's check if the old arr ndarray and the newly read-in arr_new array match exactly, by
running the following code:

arr == arr_new

This will generate the following array, containing True if the elements are equal and
False otherwise:

array([[True, True, True],

 [True, True, True],

 [True, True, True]])

So, we see that each element matches exactly.

Summary
In this chapter, we have learned how to create matrices of any dimension in Python,
how to access the matrices' elements, how to calculate basic linear algebra operations on
matrices, and how to save and load matrices.

Working with NumPy matrices is a principal operation for any data analysis since vector
operations are machine-optimized and thus are much faster than operations on Python
lists—usually between 5 and 100 times faster. Backtesting any algorithmic strategy
typically consists of processing enormous matrices, and then the speed difference can
translate to hours or days of saved time.

In the next chapter, we introduce the second most important library for data analysis:
Pandas, built upon NumPy. NumPy provides support for data manipulations based
upon DataFrames (a DataFrame is the Python version of an Excel worksheet—that is, a
two-dimensional data structure where each column has its own type).

4
Data Manipulation

and Analysis
with pandas

In this chapter, you will learn about the Python pandas library built upon NumPy,
which provides data manipulation and analysis methods for structured data frames. The
name pandas is derived from panel data, an econometrics term for multidimensional
structured datasets, according to the Wikipedia page on pandas.

The pandas library contains two fundamental data structures to represent and
manipulate structured rectangular datasets with a variety of indexing options: Series and
DataFrames. Both use the index data structure.

Most operations in the processing of financial data in Python are based upon DataFrames.
A DataFrame is like an Excel worksheet – a two-dimensional table that may contain
multiple time series stored in columns. Therefore, we recommend you execute all the
examples in this chapter yourself in your environment to get practice with the syntax and
to better know what is possible.

74 Data Manipulation and Analysis with pandas

In this chapter, we are going to cover the following topics:

•	 Introducing pandas Series, pandas DataFrames, and pandas Indexes

•	 Learning essential operations on pandas DataFrames

•	 Exploring file operations with pandas DataFrames

Technical requirements
The Python code used in this chapter is available in the Chapter04/pandas.ipynb
notebook in the book's code repository.

Introducing pandas Series, pandas
DataFrames, and pandas Indexes
pandas Series, pandas DataFrames, and pandas Indexes are the fundamental pandas
data structures.

pandas.Series
The pandas.Series data structure represents a one-dimensional series of homogenous
values (integer values, string values, double values, and so on). Series are a type of list
and can contain only a single list with an index. A Data Frame, on the other hand, is a
collection of one or more series.

Let's create a pandas.Series data structure:

import pandas as pd

ser1 = pd.Series(range(1, 6));

ser1

That series contains the index in the first column, and in the second column, the index's
corresponding values:

0 1

1 2

2 3

3 4

4 5

dtype: int64

Introducing pandas Series, pandas DataFrames, and pandas Indexes 75

We can specify custom index names by specifying the index parameter:

ser2 = pd.Series(range(1, 6),

 index=['a', 'b', 'c', 'd', 'e']);

ser2

The output will look like the following:

a 1

b 2

c 3

d 4

e 5

dtype: int64

We can also create a series by specifying the index -> value mapping via a
dictionary:

ser3 = pd.Series({ 'a': 1.0, 'b': 2.0, 'c': 3.0,

 'd': 4.0, 'e': 5.0 });

ser3

The output is as follows:

a 1.0

b 2.0

c 3.0

d 4.0

e 5.0

dtype: float64

The pandas.Series.index attribute lets us access the index:

ser3.index

The index is of type pandas.Index:

Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

The values of the series can be accessed using the pandas.Series.values attribute:

ser3.values

76 Data Manipulation and Analysis with pandas

The values are as follows:

array([1., 2., 3., 4., 5.])

We can assign the series a name by modifying the pandas.Series.name attribute:

ser3.name = 'Alphanumeric'; ser3

The output is as follows:

a 1.0

b 2.0

c 3.0

d 4.0

e 5.0

Name: Alphanumeric, dtype: float64

The preceding examples demonstrated numerous ways how to construct a pandas Series.
Let's learn about DataFrames, a data structure that may contain multiple Series.

pandas.DataFrame
The pandas.DataFrame data structure is a collection of multiple pandas.Series
objects of possibly different types indexed by the same common Index object.

The majority of all statistical time series operations are performed on DataFrames and
pandas.DataFrame is optimized for parallel super-fast processing of DataFrames,
much faster than if the processing was done on separate series.

We can create a DataFrame from a dictionary, where the key is the column name and the
value of that key contains the data for the corresponding series/column:

df1 = pd.DataFrame({'A': range(1,5,1),

 'B': range(10,50,10),

 'C': range(100, 500, 100)});

df1

The output is as follows:

 A B C

0 1 10 100

1 2 20 200

Introducing pandas Series, pandas DataFrames, and pandas Indexes 77

2 3 30 300

3 4 40 400

We can also pass the index= parameter here to label the indices:

df2 = pd.DataFrame({'A': range(1,5,1),

 'B': range(10,50,10),

 'C': range(100, 500, 100)},

 index=['a', 'b', 'c', 'd']);

df2

This constructs the following DataFrame:

 A B C

a 1 10 100

b 2 20 200

c 3 30 300

d 4 40 400

The pandas.DataFrame.columns attribute returns the names of the different columns:

df2.columns

The result is an Index object:

Index(['A', 'B', 'C'], dtype='object')

The indices can be accessed from the pandas.DataFrame.index attribute:

df2.index

That gives us this:

Index(['a', 'b', 'c', 'd'], dtype='object')

The DataFrame also contains the pandas.DataFrame.values attribute, which
returns the values contained in the columns:

df2.values

78 Data Manipulation and Analysis with pandas

The result is the following 2D array:

array([[1, 10, 100],

 [2, 20, 200],

 [3, 30, 300],

 [4, 40, 400]])

We can add a new column to the DataFrame with specified values and the same index
with the following:

df2['D'] = range(1000,5000,1000);

df2

The updated DataFrame is as follows:

 A B C D

a 1 10 100 1000

b 2 20 200 2000

c 3 30 300 3000

d 4 40 400 4000

We can assign names to the DataFrame's index and columns.

We can name the index by modifying the pandas.DataFrame.index.name attribute:

df2.index.name = 'lowercase'; df2

And that yields the following updated DataFrame:

 A B C D

lowercase

a 1 10 100 1000

b 2 20 200 2000

c 3 30 300 3000

d 4 40 400 4000

The columns can be renamed using the pandas.DataFrame.columns.name
attribute:

df2.columns.name = 'uppercase'; df2

Introducing pandas Series, pandas DataFrames, and pandas Indexes 79

The new DataFrame is as follows:

uppercase A B C D

lowercase

a 1 10 100 1000

b 2 20 200 2000

c 3 30 300 3000

d 4 40 400 4000

The preceding examples demonstrated how a DataFrame can be constructed.

pandas.Index
Both the pandas.Series and pandas.DataFrame data structures utilize the
pandas.Index data structure.

There are many special types of Index objects:

•	 Int64Index: Int64Index contains integer index values.

•	 MultiIndex: MultiIndex contains indices that are tuples used in hierarchical
indexing, which we will explore in this chapter.

•	 DatetimeIndex: DatetimeIndex, which we have seen before, contains
datetime index values for time series datasets.

We can create a pandas.Index object by doing the following:

ind2 = pd.Index(list(range(5))); ind2

The result is this:

Int64Index([0, 1, 2, 3, 4], dtype='int64')

Note
Index objects are immutable and thus cannot be modified in place.

Let's see what happens if we try to modify an element in an Index object:

ind2[0] = -1

80 Data Manipulation and Analysis with pandas

We get the following output:

TypeError Traceback (most
recent call last)

<ipython-input-34-20c233f961b2> in <module>()

----> 1 ind2[0] = -1

...

TypeError: Index does not support mutable operations

Python warns us that we cannot manually modify the index object.

We have now learned how to construct series and DataFrames. Let's explore the essential
operations done on DataFrames.

Learning essential pandas.DataFrame
operations
This section describes the essential operations done on DataFrames. Knowing they exist
and how to use them will save you an enormous amount of time.

Indexing, selection, and filtering of DataFrames
pandas data structures are indexed by special Index objects (while numpy.ndarrays
and Python list objects are only indexable by integers). The steps for this lesson are as
follows:

1.	 Let's inspect the contents of the df2 DataFrame created earlier in the chapter:

df2

The output is as follows:
uppercase A B C D

lowercase

a 1 10 100 1000

b 2 20 200 2000

c 3 30 300 3000

d 4 40 400 4000

Learning essential pandas.DataFrame operations 81

2.	 We can select the Series of values in column B by performing the following
operation:

df2['B']

This yields the following Series:
lowercase

a 10

b 20

c 30

d 40

Name: B, dtype: int64

3.	 We can select multiple columns by passing a list of column names (somewhat
similar to what we saw with numpy.ndarrays):

df2[['A', 'C']]

This yields the following DataFrame with two columns:
uppercase A C

lowercase

a 1 100

b 2 200

c 3 300

d 4 400

4.	 We can use Boolean selection with DataFrames by doing the following:

df2[(df2['D'] > 1000) & (df2['D'] <= 3000)]

This selects the following rows, which satisfy the provided condition:
uppercase A B C D

lowercase

b 2 20 200 2000

c 3 30 300 3000

5.	 The pandas.DataFrame.loc[...] attribute lets us index rows instead of
columns. The following selects the two rows c and d:

df2.loc[['c', 'd']]

82 Data Manipulation and Analysis with pandas

This yields the following subset DataFrame:
uppercase A B C D

lowercase

c 3 30 300 3000

d 4 40 400 4000

6.	 pandas DataFrames still support standard integer indexing through the pandas.
DataFrame.iloc[...] attribute. We can select the first row by doing this:

df2.iloc[[0]]

This selects the following single-row DataFrame:
uppercase A B C D

lowercase

a 1 10 100 1000

We can modify the DataFrame with an operation like this:
df2[df2['D'] == 2000] = 0; df2

This updates the DataFrame to this new DataFrame:
uppercase A B C D

lowercase

a 1 10 100 1000

b 0 0 0 0

c 3 30 300 3000

d 4 40 400 4000

In this section, we have learned how to index, select, and filter DataFrames. In the next
section, we will learn how to drop rows and columns.

Dropping rows and columns from a DataFrame
Dropping rows and columns from a DataFrame is a critical operation – it not only helps
save the computer's memory but also ensures that the DataFrame contains only logically
needed information. The steps are as follows:

1.	 Let's display the current DataFrame:

df2

Learning essential pandas.DataFrame operations 83

This DataFrame contains the following:
uppercase A B C D

lowercase

a 1 10 100 1000

b 0 0 0 0

c 3 30 300 3000

d 4 40 400 4000

2.	 To drop the row at index b, we use the pandas.DataFrame.drop(...) method:

df2.drop('b')

This yields a new DataFrame without the row at index b:
uppercase A B C D

lowercase

a 1 10 100 1000

c 3 30 300 3000

d 4 40 400 4000

Let's check whether the original DataFrame was changed:
df2

The output shows that it was not, that is, pandas.DataFrame.drop(...) is
not in place by default:

uppercase A B C D

lowercase

a 1 10 100 1000

b 0 0 0 0

c 3 30 300 3000

d 4 40 400 4000

3.	 To modify the original DataFrame, we use the inplace= parameter:

df2.drop('b', inplace=True);

df2

The new in-place modified DataFrame is as follows:
uppercase A B C D

lowercase

84 Data Manipulation and Analysis with pandas

a 1 10 100 1000

c 3 30 300 3000

d 4 40 400 4000

4.	 We can drop multiple rows as well:

df2.drop(['a', 'd'])

This returns the following new DataFrame:
uppercase A B C D

lowercase

c 3 30 300 3000

5.	 To drop columns instead of rows, we specify the additional axis= parameter:

df2.drop(['A', 'B'], axis=1)

This gives us this new DataFrame with two dropped columns:
uppercase C D

lowercase

a 100 1000

c 300 3000

d 400 4000

We have learned how to drop rows and columns in this section. In the next section, we
will learn how to sort values and rand them.

Sorting values and ranking the values' order within a
DataFrame
First, let's create a DataFrame with integer row indices, integer column names, and
random values:

import numpy as np

df = pd.DataFrame(np.random.randn(5,5),

 index=np.random.randint(0, 100, size=5),

 columns=np.random.randint(0,100,size=5));

df

Learning essential pandas.DataFrame operations 85

The DataFrame contains the following data:

87 79 74 3 61

7 0.355482 -0.246812 -1.147618 -0.293973 -0.560168

52 1.748274 0.304760 -1.346894 -0.548461 0.457927

80 -0.043787 -0.680384 1.918261 1.080733 1.346146

29 0.237049 0.020492 1.212589 -0.462218 1.284134

0 -0.153209 0.995779 0.100585 -0.350576 0.776116

pandas.DataFrame.sort_index(...) sorts the DataFrame by index values:

df.sort_index()

The result is as follows:

87 79 74 3 61

0 -0.153209 0.995779 0.100585 -0.350576 0.776116

7 0.355482 -0.246812 -1.147618 -0.293973 -0.560168

29 0.237049 0.020492 1.212589 -0.462218 1.284134

52 1.748274 0.304760 -1.346894 -0.548461 0.457927

80 -0.043787 -0.680384 1.918261 1.080733 1.346146

We can also sort by column name values by specifying the axis parameter:

df.sort_index(axis=1)

This yields the following DataFrame with the columns arranged in order:

 3 61 74 79 87

7 -0.293973 -0.560168 -1.147618 -0.246812 0.355482

52 -0.548461 0.457927 -1.346894 0.304760 1.748274

80 1.080733 1.346146 1.918261 -0.680384 -0.043787

29 -0.462218 1.284134 1.212589 0.020492 0.237049

0 -0.350576 0.776116 0.100585 0.995779 -0.153209

To sort the values in the DataFrame, we use the pandas.DataFrame.sort_
values(...) method, which takes a by= parameter specifying which column(s)
to sort by:

df.sort_values(by=df.columns[0])

86 Data Manipulation and Analysis with pandas

This yields the following DataFrame sorted by the values in the first column:

 87 79 74 3 61

0 -0.153209 0.995779 0.100585 -0.350576 0.776116

80 -0.043787 -0.680384 1.918261 1.080733 1.346146

29 0.237049 0.020492 1.212589 -0.462218 1.284134

7 0.355482 -0.246812 -1.147618 -0.293973 -0.560168

52 1.748274 0.304760 -1.346894 -0.548461 0.457927

The pandas.DataFrame.rank(...) method yields a DataFrame containing the
rank/order of values in each column:

df.rank()

The output contains the rank (in ascending order) of values:

 87 79 74 3 61

7 4.0 2.0 2.0 4.0 1.0

52 5.0 4.0 1.0 1.0 2.0

80 2.0 1.0 5.0 5.0 5.0

29 3.0 3.0 4.0 2.0 4.0

0 1.0 5.0 3.0 3.0 3.0

With this lesson completed, in the next section we will perform arithmetic operations on
DataFrames.

Arithmetic operations on DataFrames
First, let's create two DataFrames for our examples:

df1 = pd.DataFrame(np.random.randn(3,2),

 index=['A', 'C', 'E'],

 columns=['colA', 'colB']);

df1

The df1 DataFrame contains the following:

 colA colB

A 0.519105 -0.127284

C -0.840984 -0.495306

E -0.137020 0.987424

Learning essential pandas.DataFrame operations 87

Now we create the df2 DataFrame:

df2 = pd.DataFrame(np.random.randn(4,3),

 index=['A', 'B', 'C', 'D'],

 columns=['colA', 'colB', 'colC']);

df2

This contains the following:

 colA colB colC

A -0.718550 1.938035 0.220391

B -0.475095 0.238654 0.405642

C 0.299659 0.691165 -1.905837

D 0.282044 -2.287640 -0.551474

We can add the two DataFrames together. Note that they have different index values as
well as different columns:

df1 + df2

The output is a summation of elements if the index and column exists in both
DataFrames, otherwise it is NaN:

 colA colB colC

A -0.199445 1.810751 NaN

B NaN NaN NaN

C -0.541325 0.195859 NaN

D NaN NaN NaN

E NaN NaN NaN

We can use the pandas.DataFrame.add(...) method with fill_value= to a
value to be used instead of NaN (in this case 0):

df1.add(df2, fill_value=0)

The output is as follows:

 colA colB colC

A -0.199445 1.810751 0.220391

B -0.475095 0.238654 0.405642

88 Data Manipulation and Analysis with pandas

C -0.541325 0.195859 -1.905837

D 0.282044 -2.287640 -0.551474

E -0.137020 0.987424 NaN

We can perform arithmetic operations between DataFrames and Series as well:

df1 - df2[['colB']]

The output of this operation is the following (since the right-hand-side only had colB):

 colA colB

A NaN -2.065319

B NaN NaN

C NaN -1.186471

D NaN NaN

E NaN NaN

Let's now learn how to merge and combine multiple DataFrames into a single Dataframe.

Merging and combining multiple DataFrames into a
single DataFrame
Let's start by creating two DataFrames, df1 and df2:

df1.index.name = 'Index'; df1.columns.name = 'Columns'; df1

The df1 DataFrame has the following data:

Columns colA colB

Index

A 0.519105 -0.127284

C -0.840984 -0.495306

E -0.137020 0.987424

Now we create df2:

df2.index.name = 'Index'; df2.columns.name = 'Columns'; df2

The df2 DataFrame has the following data:

Columns colA colB colC

Index

Learning essential pandas.DataFrame operations 89

A -0.718550 1.938035 0.220391

B -0.475095 0.238654 0.405642

C 0.299659 0.691165 -1.905837

D 0.282044 -2.287640 -0.551474

The pandas.merge(...) method joins/merges two DataFrames. The left_index=
and right_index= parameters indicate that the merge should be performed on Index
values in both DataFrames:

pd.merge(df1, df2, left_index=True, right_index=True)

That yields the following merged DataFrame. The _x and _y suffixes are added to
differentiate between left and right DataFrame columns with the same name:

Columns colA_x colB_x colA_y colB_y colC

Index

A 0.519105 -0.127284 -0.718550 1.938035 0.220391

C -0.840984 -0.495306 0.299659 0.691165 -1.905837

We can specify custom suffixes with the suffixes= parameter:

pd.merge(df1, df2, left_index=True, right_index=True,

 suffixes=('_1', '_2'))

The result is the following DataFrame with the suffixes we provided:

Columns colA_1 colB_1 colA_2 colB_2 colC

Index

A 0.519105 -0.127284 -0.718550 1.938035 0.220391

C -0.840984 -0.495306 0.299659 0.691165 -1.905837

We can specify the behavior of the join (outer, inner, left, or right join) using the
how= parameter:

pd.merge(df1, df2, left_index=True, right_index=True,

 suffixes=('_1', '_2'), how='outer')

This yields the following DataFrame with NaNs for missing values:

Columns colA_1 colB_1 colA_2 colB_2 colC

Index

A 0.519105 -0.127284 -0.718550 1.938035 0.220391

90 Data Manipulation and Analysis with pandas

B NaN NaN -0.475095 0.238654 0.405642

C -0.840984 -0.495306 0.299659 0.691165 -1.905837

D NaN NaN 0.282044 -2.287640 -0.551474

E -0.137020 0.987424 NaN NaN NaN

pandas DataFrames themselves have a pandas.DataFrame.merge(...) method
that behaves the same way:

df1.merge(df2, left_index=True, right_index=True,

 suffixes=('_1', '_2'), how='outer')

This yields the following:

Columns colA_1 colB_1 colA_2 colB_2 colC

Index

A 0.519105 -0.127284 -0.718550 1.938035 0.220391

B NaN NaN -0.475095 0.238654 0.405642

C -0.840984 -0.495306 0.299659 0.691165 -1.905837

D NaN NaN 0.282044 -2.287640 -0.551474

E -0.137020 0.987424 NaN NaN NaN

Another alternative is the pandas.DataFrame.join(...) method:

df1.join(df2, lsuffix='_1', rsuffix='_2')

And the output of the join (left join by default) is as follows:

Columns colA_1 colB_1 colA_2 colB_2 colC

Index

A 0.519105 -0.127284 -0.718550 1.938035 0.220391

C -0.840984 -0.495306 0.299659 0.691165 -1.905837

E -0.137020 0.987424 NaN NaN NaN

The pandas.concat(...) method combines DataFrames by concatenating
rows together:

pd.concat([df1, df2])

This yields the following concatenated DataFrame with NaNs for missing values:

 colA colB colC

Index

Learning essential pandas.DataFrame operations 91

A 0.519105 -0.127284 NaN

C -0.840984 -0.495306 NaN

E -0.137020 0.987424 NaN

A -0.718550 1.938035 0.220391

B -0.475095 0.238654 0.405642

C 0.299659 0.691165 -1.905837

D 0.282044 -2.287640 -0.551474

We can concatenate across columns by specifying the axis= parameter:

pd.concat([df1, df2], axis=1)

This yields the following DataFrame with additional columns from df2:

Columns colA colB colA colB colC

A 0.519105 -0.127284 -0.718550 1.938035 0.220391

B NaN NaN -0.475095 0.238654 0.405642

C -0.840984 -0.495306 0.299659 0.691165 -1.905837

D NaN NaN 0.282044 -2.287640 -0.551474

E -0.137020 0.987424 NaN NaN NaN

We will now look at hierarchical indexing.

Hierarchical indexing
So far, we have been dealing with Index objects that were a simple single value.
Hierarchical indexing uses MultiIndex objects, which are tuples of multiple values per
Index. This lets us create sub-DataFrames inside a single DataFrame.

Let's create a MultiIndex DataFrame:

df = pd.DataFrame(np.random.randn(10, 2),

 index=[list('aaabbbccdd'),

 [1, 2, 3, 1, 2, 3, 1, 2, 1, 2]],

 columns=['A', 'B']);

df

This is the layout of the MultiIndex DataFrame that uses hierarchical indexing:

 A B

a 1 0.289379 -0.157919

92 Data Manipulation and Analysis with pandas

 2 -0.409463 -1.103412

 3 0.812444 -1.950786

b 1 -1.549981 0.947575

 2 0.344725 -0.709320

 3 1.384979 -0.716733

c 1 -0.319983 0.887631

 2 -1.763973 1.601361

d 1 0.171177 -1.285323

 2 -0.143279 0.020981

We can assign names to the MultiIndex object with the pandas.MultiIndex.
names attribute – it requires a list of names with the same dimension as the dimensions
of the MultiIndex DataFrame (in this case, two elements):

df.index.names = ['alpha', 'numeric']; df

This yields the following:

 A B

alpha numeric

a 1 0.289379 -0.157919

 2 -0.409463 -1.103412

 3 0.812444 -1.950786

...

The pandas.DataFrame.reset_index(...) method removes all indexing levels
from a MultiIndex DataFrame by default, but can be used to remove one or more levels:

df.reset_index()

This leads to the following integer indexed DataFrame and the MultiIndex values are
added as columns in this DataFrame:

 alpha numeric A B

0 a 1 0.289379 -0.157919

1 a 2 -0.409463 -1.103412

2 a 3 0.812444 -1.950786

...

Learning essential pandas.DataFrame operations 93

The pandas.DataFrame.unstack(...) method has similar behavior and pivots the
inner level of indexing and converts them to columns:

df.unstack()

Let's inspect the new DataFrame where the innermost indexing level [1, 2, 3]
becomes columns:

 A B

numeric 1 2 3
 1 2 3

alpha

a 0.289379 -0.409463 0.812444
 -0.157919 -1.103412 -1.950786

b -1.549981 0.344725 1.384979
 0.947575 -0.709320 -0.716733

c -0.319983 -1.763973 NaN
 0.887631 1.601361 NaN

d 0.171177 -0.143279 NaN
 -1.285323 0.020981 NaN

The pandas.DataFrame.stack(...) method does the opposite of unstack(...):

df.stack()

The output DataFrame is the original DataFrame with hierarchical indexing:

alpha numeric

a 1 A 0.289379

 B -0.157919

 2 A -0.409463

 B -1.103412

 3 A 0.812444

 B -1.950786

...

dtype: float64

94 Data Manipulation and Analysis with pandas

Let's examine the structure of the MultiIndex DataFrame. Note that we first call
pandas.DataFrame.stack(...) to convert the columns [A, B] into a third level
of indexing in the MultiIndex DataFrame:

df.stack().index

This gives us a MultiIndex object with three levels of indexing:

MultiIndex(levels=[['a', 'b', 'c', 'd'],

 [1, 2, 3], ['A', 'B']],

 labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 3], [0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0,
1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1]],

 names=['alpha', 'numeric', None])

Now we will learn how to group operations in DataFrames.

Grouping operations in DataFrames
Grouping operations in pandas generally follow the split-apply-combine process of
operations:

1.	 First, the data is split into groups based on one or more keys.

2.	 Then we apply necessary functions to these groups to compute the desired results.

3.	 Finally, we combine them to build the transformed dataset.

Thus, grouping a single indexed DataFrame builds a hierarchical DataFrame. The steps are
as follows:

1.	 Let's use the pandas.DataFrame.reset_index(…) method to remove all
hierarchical indexing from our previous df DataFrame:

df = df.reset_index(); df

This returns the following DataFrame with integer indexing:
 alpha numeric A B

0 a 1 -0.807285 0.170242

1 a 2 0.704596 1.568901

2 a 3 -1.417366 0.573896

3 b 1 1.110121 0.366712

...

Learning essential pandas.DataFrame operations 95

2.	 Let's use the pandas.DataFrame.groupby(...) method to group the A and B
columns by the alpha column:

grouped = df[['A','B']].groupby(df['alpha']); grouped

This yields the following DataFrameGroupBy object, which we can subsequently
operate on:

<pandas.core.groupby.DataFrameGroupBy object at
0x7fd21f24cc18>

3.	 We can use the DataFrameGroupBy.describe(...) method to collect
summary descriptive statistics:

grouped.describe()

This yields the following output where statistics for A and B are generated but
grouped by the alpha column:

 A B

alpha

a count 3.000000 3.000000

mean -0.506685 0.771013

std 1.092452 0.719863

min -1.417366 0.170242

25% -1.112325 0.372069

50% -0.807285 0.573896

75% -0.051344 1.071398

max 0.704596 1.568901

...

4.	 We can apply the pandas.DataFrame.unstack(...) method using the
DataFrameGroupBy.apply(...) method, which accepts different functions
and applies them to each group of the grouped object:

grouped.apply(pd.DataFrame.unstack)

This generates the following hierarchical DataFrame:
alpha

a A 0 -0.807285

 1 0.704596

 2 -1.417366

96 Data Manipulation and Analysis with pandas

 B 0 0.170242

 1 1.568901

 2 0.573896

...

dtype: float64

5.	 There also exists the DataFrameGroupBy.agg(...) method, which accepts
functions and aggregates each column for each group using that method. The next
example aggregates using the mean method:

grouped[['A', 'B']].agg('mean')

The output contains the mean for columns A and B grouped by values in alpha:
 A B

alpha

 a -0.506685 0.771013

 b 0.670435 0.868550

 c 0.455688 -0.497468

 d -0.786246 0.107246

6.	 A similar method is the DataFrameGroupBy.transform(...) method, with
the only difference being that transform works on one column at a time and returns
a sequence of values of the same length as the series, while apply can return any
type of result:

from scipy import stats

grouped[['A', 'B']].transform(stats.zscore)

This generates the Z score for columns A and B, which we explained in Chapter 2,
Exploratory Data Analysis:

 A B

0 -0.337002 -1.022126

1 1.357964 1.357493

2 -1.020962 -0.335367

3 0.610613 -0.567813

4 -1.410007 1.405598

5 0.799394 -0.837785

6 -1.000000 1.000000

7 1.000000 -1.000000

Learning essential pandas.DataFrame operations 97

8 -1.000000 -1.000000

9 1.000000 1.000000

We will now learn how to transform values in DataFrames' axis indices.

Transforming values in DataFrames' axis indices
Let's first reinspect the df2 DataFrame that we will be using in these examples:

df2

This contains the following data:

Columns colA colB colC

Index

A -2.071652 0.742857 0.632307

B 0.113046 -0.384360 0.414585

C 0.690674 1.511816 2.220732

D 0.184174 -1.069291 -0.994885

We can rename the Index labels using the pandas.DataFrame.index attribute as we
saw before:

df2.index = ['Alpha', 'Beta', 'Gamma', 'Delta'];

df2

This generates the following transformed DataFrame:

Columns colA colB colC

Alpha -2.071652 0.742857 0.632307

Beta 0.113046 -0.384360 0.414585

Gamma 0.690674 1.511816 2.220732

Delta 0.184174 -1.069291 -0.994885

The pandas.Index.map(...) method applies functions to transform the Index.

In the following example, the map function takes the first three characters of the name
and sets that as the new name:

df2.index = df2.index.map(lambda x : x[:3]); df2

98 Data Manipulation and Analysis with pandas

The output is as follows:

Columns colA colB colC

Alp -2.071652 0.742857 0.632307

Bet 0.113046 -0.384360 0.414585

Gam 0.690674 1.511816 2.220732

Del 0.184174 -1.069291 -0.994885

The pandas.DataFrame.rename(...) method lets us transform both Index names
and column names and accepts a dictionary mapping from the old name to the new name:

df2.rename(index={'Alp': 0, 'Bet': 1, 'Gam': 2, 'Del': 3},

 columns={'colA': 'A', 'colB': 'B', 'colC': 'C'})

The resulting DataFrame has new labels on both axes:

Columns A B C

0 -2.071652 0.742857 0.632307

1 0.113046 -0.384360 0.414585

2 0.690674 1.511816 2.220732

3 0.184174 -1.069291 -0.994885

With this lesson learned, we will learn how to handle missing data in DataFrames.

Handling missing data in DataFrames
Missing data is a common phenomenon in data science and can happen for multiple
reasons – for example, technical error, human error, market holiday.

Filtering out missing data
When dealing with missing data, the first option is to remove all observations with any
missing data.

This code block modifies the df2 DataFrame using the pandas.DataFrame.at[...]
attribute and sets some values to NaN:

for row, col in [('Bet', 'colA'), ('Bet', 'colB'),

 ('Bet', 'colC'), ('Del', 'colB'), ('Gam', 'colC')]:

 df2.at[row, col] = np.NaN

df2

Learning essential pandas.DataFrame operations 99

The modified DataFrame is as follows:

Columns colA colB colC

Alp -1.721523 -0.425150 1.425227

Bet NaN NaN NaN

Gam -0.408566 -1.121813 NaN

Del 0.361053 NaN 0.580435

The pandas.DataFrame.isnull(...) method finds missing values in a DataFrame:

df2.isnull()

The result is a DataFrame with True where values are missing and False otherwise:

Columns colA colB colC

Alp False False False

Bet True True True

Gam False False True

Del False True False

The pandas.DataFrame.notnull(...) method does the opposite (detects
non-missing values):

df2.notnull()

The output is the following DataFrame:

Columns colA colB colC

Alp True True True

Bet False False False

Gam True True False

Del True False True

The pandas.DataFrame.dropna(...) method allows us to drop rows with missing
values. The additional how= parameter controls which rows get dropped. To drop rows
that have NaN for all fields, we do the following:

df2.dropna(how='all')

100 Data Manipulation and Analysis with pandas

The result is the following modified DataFrame with the Bet row removed since that was
the only one with all NaN:

Columns colA colB colC

Alp -1.721523 -0.425150 1.425227

Gam -0.408566 -1.121813 NaN

Del 0.361053 NaN 0.580435

Setting how= to any removes rows with any NaN values:

df2.dropna(how='any')

This gives us the following DataFrame with all non-NaN values:

Columns colA colB colC

Alp -1.721523 -0.42515 1.425227

We will now look at how to fill in missing data.

Filling in missing data
The second option when dealing with missing data is to fill in the missing values either
with a value of our choice or using other valid values in the same column to duplicate/
extrapolate the missing values.

Let's start by re-inspecting the df2 DataFrame:

df2

This yields the following DataFrame with some missing values:

Columns colA colB colC

Alp -1.721523 -0.425150 1.425227

Bet NaN NaN NaN

Gam -0.408566 -1.121813 NaN

Del 0.361053 NaN 0.580435

Now, let's use the pandas.DataFrame.fillna(...) method with the
method='backfill' and inplace=True arguments to use the backfill method to
backward fill the missing values from the other values and change the DataFrame in place:

df2.fillna(method='backfill', inplace=True);

df2

Learning essential pandas.DataFrame operations 101

The new DataFrame contains the following:

Columns colA colB colC

Alp -1.721523 -0.425150 1.425227

Bet -0.408566 -1.121813 0.580435

Gam -0.408566 -1.121813 0.580435

Del 0.361053 NaN 0.580435

The NaN value at (Del,colB) is because there were no observations after that row, so
backfill could not be performed. That can be fixed instead with forward fill.

The transformation of DataFrames with functions and
mappings
pandas DataFrame values can also be modified by passing functions and dictionary
mappings that operate on one or more data values and generate new transformed values.

Let's modify the df2 DataFrame by adding a new column, Category, containing
discrete text data:

df2['Category'] = ['HIGH', 'LOW', 'LOW', 'HIGH']; df2

The new DataFrame contains the following:

Columns colA colB colC Category

Alp 1.017961 1.450681 -0.328989 HIGH

Bet -0.079838 -0.519025 1.460911 LOW

Gam -0.079838 -0.519025 1.460911 LOW

Del 0.359516 NaN 1.460911 HIGH

The pandas.Series.map(...) method accepts a dictionary containing a mapping
from the old value to the new value and transforms the values. The following snippet
changes the text values in Category to single characters:

df2['Category'] = df2['Category'].map({'HIGH': 'H',

 'LOW': 'L'});

df2

The updated DataFrame is as follows:

Columns colA colB colC Category

Alp 1.017961 1.450681 -0.328989 H

102 Data Manipulation and Analysis with pandas

Bet -0.079838 -0.519025 1.460911 L

Gam -0.079838 -0.519025 1.460911 L

Del 0.359516 NaN 1.460911 H

The pandas.DataFrame.applymap(...) method allows us to apply functions to
data values in a DataFrame.

The following code applies the numpy.exp(...) method, which calculates the exponential:

df2.drop('Category', axis=1).applymap(np.exp)

The result is a DataFrame containing exponential values of the original DataFrame's
values (except the NaN value):

Columns colA colB colC

Alp 2.767545 4.266020 0.719651

Bet 0.923266 0.595101 4.309883

Gam 0.923266 0.595101 4.309883

Del 1.432636 NaN 4.309883

Now that we've learned how to transform DataFrames, we will see how to discretize and
bucket values in DataFrames.

Discretization/bucketing of DataFrame values
The simplest way to achieve discretization is to create ranges of values and assign a single
discrete label to all values that fall within a certain bucket.

First, let's generate a random valued ndarray for our use:

arr = np.random.randn(10);

arr

This contains the following:

array([1.88087339e-01, 7.94570445e-01, -5.97384701e-01,

 -3.01897668e+00, -5.42185315e-01, 1.10094663e+00,

 1.16002554e+00, 1.51491444e-03, -2.21981570e+00,

 1.11903929e+00])

Learning essential pandas.DataFrame operations 103

The pandas.cut(...) method can be used to discretize these values. The following
code uses the bins= and labels=[...] arguments to bin the values into five discrete
values with the labels provided:

cat = pd.cut(arr, bins=5, labels=['Very Low', 'Low', 'Med',

 'High', 'Very High']);

cat

We get the discrete values after the transformation:

 [High, Very High, Med, Very Low, Med, Very High, Very High,
High, Very Low, Very High]

Categories (5, object): [Very Low < Low < Med < High < Very
High]

The pandas.qcut(...) method is similar but uses quartiles to bin the continuous
values to discrete values so that each category has the same amount of observations.

The following builds five discrete bins using the q= parameter:

qcat = pd.qcut(arr, q=5, labels=['Very Low', 'Low', 'Med',

 'High', 'Very High']);

qcat

And the quartile discretization yields the following categories:

[Med, High, Low, Very Low, Low, High, Very High, Med, Very Low,
Very High]

Categories (5, object): [Very Low < Low < Med < High < Very
High]

The following code block builds a pandas DataFrame consisting of the original continuous
values as well as the categories generated from cut and qcut:

pd.DataFrame({'Value': arr, 'Category': cat,

 'Quartile Category': qcat})

This DataFrame allows side-by-side comparison:

Category Quartile Category Value

0 High Med 0.188087

1 Very High High 0.794570

2 Med Low -0.597385

104 Data Manipulation and Analysis with pandas

3 Very Low Very Low -3.018977

4 Med Low -0.542185

5 Very High High 1.100947

6 Very High Very High 1.160026

7 High Med 0.001515

8 Very Low Very Low -2.219816

9 Very High Very High 1.119039

The pandas.Categorical.categories attribute provides us with the
bucket ranges:

pd.cut(arr, bins=5).categories

In this case, the buckets/range of values are as follows:

Index(['(-3.0232, -2.183]', '(-2.183, -1.347]',

 '(-1.347, -0.512]', '(-0.512, 0.324]',

 '(0.324, 1.16]'],

 dtype='object')

We can inspect the buckets for qcut as well:

pd.qcut(arr, q=5).categories

They are slightly different from the previous buckets and they are shown as follows:

Index(['[-3.019, -0.922]', '(-0.922, -0.216]',

 '(-0.216, 0.431]', '(0.431, 1.105]',

 '(1.105, 1.16]'],

 dtype='object')

We will now look at permuting and sampling DataFrame values to generate new DataFrames.

Permuting and sampling DataFrame values to
generate new DataFrames
Permuting available datasets to generate new datasets and sampling datasets to either
sub-sample (reduce the number of observations) or super-sample (increase the number of
observations) are common operations in statistical analysis.

Learning essential pandas.DataFrame operations 105

First, let's generate a DataFrame of random values to work with:

df = pd.DataFrame(np.random.randn(10,5),

 index=np.sort(np.random.randint(0, 100,

 size=10)),

 columns=list('ABCDE'));

df

The result is the following:

 A B C D E

 0 -0.564568 -0.188190 -1.678637 -0.128102 -1.880633

 0 -0.465880 0.266342 0.950357 -0.867568 1.504719

29 0.589315 -0.968324 -0.432725 0.856653 -0.683398

...

The numpy.random.permutation(...) method, when applied to a DataFrame,
randomly shuffles along the Index axis and can be used to permute the rows in the dataset:

df.loc[np.random.permutation(df.index)]

This yields the following DataFrame with the rows randomly shuffled:

 A B C D E

42 0.214554 1.108811 1.352568 0.238083 -1.090455

 0 -0.564568 -0.188190 -1.678637 -0.128102 -1.880633

 0 -0.465880 0.266342 0.950357 -0.867568 1.504719

62 -0.266102 0.831051 -0.164629 0.349047 1.874955

...

We can use the numpy.random.randint(...) method to generate random integers
within a certain range and then use the pandas.DataFrame.iloc[...] attribute to
randomly sample with replacement (the same observation can be picked more than once)
from our DataFrame.

The following code block picks out five rows randomly sampled with replacement:

df.iloc[np.random.randint(0, len(df), size=5)]

106 Data Manipulation and Analysis with pandas

This yields the following randomly sub-sampled DataFrame:

 A B C D E

54 0.692757 -0.584690 -0.176656 0.728395 -0.434987

98 -0.517141 0.109758 -0.132029 0.614610 -0.235801

29 0.589315 -0.968324 -0.432725 0.856653 -0.683398

35 0.520140 0.143652 0.973510 0.440253 1.307126

62 -0.266102 0.831051 -0.164629 0.349047 1.874955

In the following section, we will look at exploring file operations with pandas.
DataFrames.

Exploring file operations with pandas.
DataFrames
pandas supports the persistence of DataFrames in both plain-text and binary formats. The
common text formats are CSV and JSON files, the most used binary formats are Excel
XLSX, HDF5, and pickle.

In this book, we focus on plain-text persistence.

CSV files
CSV files (comma-separated values files) are data-exchange standard files.

Writing CSV files
Writing a pandas DataFrame to a CSV file is easily achievable using the pandas.
DataFrame.to_csv(...) method. The header= parameter controls whether a
header is written to the top of the file or not and the index= parameter controls whether
the Index axis values are written to the file or not:

df.to_csv('df.csv', sep=',', header=True, index=True)

We can inspect the file written to disk using the following Linux command typed into the
notebook. The ! character instructs the notebook to run a shell command:

!head -n 4 df.csv

Exploring file operations with pandas.DataFrames 107

The file contains the following lines:

,A,B,C,D,E

4,-0.6329164608486778,0.3733235944037599,0.8225354680198685,-
0.5171618315489593,0.5492241692404063

17,0.7664860447792711,0.8427366352142621,0.9621402130525599,-
0.41134468872009666,-0.9704305306626816

24,-0.22976016405853183,0.38081314413811984,-
1.526376189972014,0.07229102135441286,-0.3297356221604555

Reading CSV files
Reading a CSV file and building a pandas DataFrame from the data in it can be achieved
using the pandas.read_csv(...) method. Here we will specify the character
(although that is the default for read_csv), the index_col= parameter to specify
which column to treat as the Index of the DataFrame, and the nrows= parameter to
specify how many rows to read in:

pd.read_csv('df.csv', sep=',', index_col=0, nrows=5)

This builds the following DataFrame, which is the same DataFrame that was written to disk:

 A B C D E

 4 -0.632916 0.373324 0.822535 -0.517162 0.549224

17 0.766486 0.842737 0.962140 -0.411345 -0.970431

24 -0.229760 0.380813 -1.526376 0.072291 -0.329736

33 0.662259 -1.457732 -2.268573 0.332456 0.496143

33 0.335710 0.452842 -0.977736 0.677470 1.164602

We can also specify the chunksize= parameter, which reads in the specified number
of lines at a time, which can help when exploring very large datasets contained in very
large files:

pd.read_csv('df.csv', sep=',', index_col=0, chunksize=2)

That returns a pandas TextFileReader generator, which we can iterate through as
needed instead of loading the entire file at once:

<pandas.io.parsers.TextFileReader at 0x7fb4e9933a90>

108 Data Manipulation and Analysis with pandas

We can force the generator to finish evaluation by wrapping it in a list and observe the
entire DataFrame loaded in chunks of two lines:

list(pd.read_csv('df.csv', sep=',', index_col=0,

 chunksize=2))

That gives us the following list of two-line blocks:

[A B C D E

 4 -0.632916 0.373324 0.822535 -0.517162 0.549224

 17 0.766486 0.842737 0.962140 -0.411345 -0.970431,

 A B C D E

 24 -0.229760 0.380813 -1.526376 0.072291 -0.329736

 33 0.662259 -1.457732 -2.268573 0.332456 0.496143,

...

We will now look at how to explore file operations in JSON files.

JSON files
JSON files are based upon data structures identical to Python dictionaries. This makes
JSON files very convenient for many purposes including representing DataFrames as well
as representing configuration files.

The pandas.DataFrame.to_json(...) method conveniently writes a DataFrame
to a JSON file on disk. Here we write only the first four rows:

df.iloc[:4].to_json('df.json')

Let's check out the JSON file written to disk:

!cat df.json

This gives us the following dictionary-style JSON file written to disk:

{"A":{"4":-0.6329164608,"17":0.7664860448,"24":-
0.2297601641,"33":0.6622594878},"B":{"4":0.3733235944,
"17":0.8427366352,"24":0.3808131441,"33":-1.4577321521},
"C":{"4":0.822535468,"17":0.9621402131,"24":-1.52637619,"33":-
2.2685732447},"D":{"4":-0.5171618315,"17":-0.4113446887
,"24":0.0722910214,"33":0.3324557226},"E":{"4":0.5492241692
,"17":-0.9704305307,"24":-0.3297356222,"33":0.4961425281}}

Summary 109

Reading JSON files back into Pandas DataFrames is just as easy with the pandas.read_
json(...) method:

pd.read_json('df.json')

This gives us back the original four-row DataFrame that was written to disk:

 A B C D E

 4 -0.632916 0.373324 0.822535 -0.517162 0.549224

17 0.766486 0.842737 0.962140 -0.411345 -0.970431

24 -0.229760 0.380813 -1.526376 0.072291 -0.329736

33 0.662259 -1.457732 -2.268573 0.332456 0.496143

Congrats on successfully completing this lesson!

Summary
This chapter introduced us to the pandas library, upon which the majority, if not all, time-
series operations in Python are done. We have learned how to create a DataFrame, how to
alter it, and how to persist it.

Pandas DataFrames are principally for high-performance bulk data manipulation,
selecting and reshaping data. They are the Python version of Excel worksheets.

In the next chapter, we will investigate visualization in Python using Matplotlib.

5
Data Visualization

Using Matplotlib
Data visualization allows comprehending numerical data significantly more easily than
reading pure tables of numbers. Getting instant insight into data and the identification of
patterns, trends, and outliers are the primary uses of charting libraries.

When deciding which stock may be suitable for which algorithmic trading strategy,
creating a chart of the stock price is the first step – some strategies are suitable only for
trending stocks, some for mean-reversion stocks, and so on. While numerical statistics are
critical, there is no substitute for a well-designed chart.

This chapter introduces us to Matplotlib, a static, animated, and interactive Python
visualization library extending the capabilities of NumPy. The pandas library allows
direct charting of DataFrames using Matplotlib.

112 Data Visualization Using Matplotlib

This chapter covers the following main topics:

•	 Creating figures and subplots

•	 Enriching plots with colors, markers, and line styles

•	 Enriching axes with ticks, labels, and legends

•	 Enriching data points with annotations

•	 Saving plots to files

•	 Charting a pandas DataFrame with Matplotlib

Technical requirements
The Python code used in this chapter is available in the Chapter05/matplotlib.ipynb
notebook in the book's code repository.

Creating figures and subplots
Matplotlib supports plotting multiple charts (subplots) on a single figure, which is
Matplotlib's term for the drawing canvas.

Defining figures' subplots
To create a matplotlib.pyplot.figure object, use the following method:

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(12, 6), dpi=200)

This yields an empty figure object (0 Axes):

<Figure size 2400x1200 with 0 Axes>

Before we plot anything on this figure, we need to add subplots to create space for them.
The matplotlib.pyplot.figure.add_subplot(...) method lets us do that by
specifying the size of the subplot and the location.

Creating figures and subplots 113

The following code block adds a subplot of size 1x2 grids on the left, then a subplot of 2x2
on the top right, and finally, a subplot of 2x2 on the bottom right:

ax1 = fig.add_subplot(1, 2, 1)

ax2 = fig.add_subplot(2, 2, 2)

ax3 = fig.add_subplot(2, 2, 4)

fig

The result is the following figure object containing the subplots we just added:

Figure 5.1 – Figure containing three empty subplots

Now, once we have created the space for the charts ("plots"/"subplots"), we can
populate them with visualizations. In all reports, physical space on the page is very
expensive, so creating charts like the preceding is the best practice.

Plotting in subplots
Let's use numpy.linspace(...) to generate evenly spaced values on the x axis, and
then the numpy.square(...), numpy.sin(...), and numpy.cos(...) methods
to generate corresponding values on the y axis.

114 Data Visualization Using Matplotlib

We will use the ax1, ax2, and ax3 axes variables we got from adding subplots to plot
these functions:

import numpy as np

x = np.linspace(0, 1, num=20)

y1 = np.square(x)

ax1.plot(x, y1, color='black', linestyle='--')

y2 = np.sin(x)

ax2.plot(x, y2, color='black', linestyle=':')

y3 = np.cos(x)

ax3.plot(x, y3, color='black', linestyle='-.')

fig

Now, the following figure contains the values we just plotted:

Figure 5.2 – Figure containing three subplots plotting the square, sine, and cosine functions

Creating figures and subplots 115

The sharex= parameter can be passed when creating subplots to specify that all the
subplots should share the same x axis.

Let's demonstrate this functionality and plot the square, and then use the numpy.
power(...) method to raise x to the power of 10 and plot them with the same x axis:

fig, (ax1, ax2) = plt.subplots(2, figsize=(12, 6),

 sharex=True)

ax1.plot(x, y1, color='black', linestyle='--')

y2 = np.power(x, 10)

ax2.plot(x, y2, color='black', linestyle='-.')

The result is the following figure with a shared x axis and different functions plotted
on each graph:

Figure 5.3 – Figure with subplots sharing an x axis, containing the square and raised to 10 functions

The charts we generated are not self-explanatory yet – it is unclear what the units on the
x axis and the y axis are, and what each chart represents. To improve the charts, we need
to enrich them with colors, markers, and line styles, to enrich the axes with ticks, legends,
and labels and provide selected data points' annotations.

116 Data Visualization Using Matplotlib

Enriching plots with colors, markers, and line
styles
Colors, markers, and lines styles make charts easier to understand.

The code block that follows plots four different functions and uses the following
parameters to modify the appearance:

•	 The color= parameter is used to assign colors.

•	 The linewidth= parameter is used to change the width/thickness of the lines.

•	 The marker= parameter assigns different shapes to mark the data points.

•	 The markersize= parameter changes the size of those markers.

•	 The alpha= parameter is used to modify the transparency.

•	 The drawstyle= parameter changes the default line connectivity to step
connectivity between data points for one plot.

The code is as follows:

fig, (ax1, ax2, ax3, ax4) = plt.subplots(4,

 figsize=(12, 12),

 sharex=True)

x = np.linspace(0, 10, num=20)

y1 = np.exp(x)

y2 = x ** 3

y3 = np.sin(y2)

y4 = np.random.randn(20)

ax1.plot(x, y1, color='black', linestyle='--', linewidth=5,

 marker='x', markersize=15)

ax2.plot(x, y2, color='green', linestyle='-.', linewidth=2,

 marker='^', markersize=10, alpha=0.9)

ax3.plot(x, y3, color='red', linestyle=':', marker='*',

 markersize=15, drawstyle='steps')

ax4.plot(x, y4, color='green', linestyle='-', marker='s',

 markersize=15)

Enriching plots with colors, markers, and line styles 117

The output displays four functions with different attributes assigned to them:

Figure 5.4 – Plot demonstrating different color, line style, marker style, transparency, and size options

Using different colors, line styles, marker styles, transparency, and size options enables
us to generate rich charts with easily identifiable multiple time series. Choose the colors
wisely as they may not render well on some laptop screens or on paper if printed.

Enriching axes is the next step in making outstanding charts.

118 Data Visualization Using Matplotlib

Enriching axes with ticks, labels, and legends
The charts can be further improved by customizing the axes via ticks, limits, and labels.

The matplotlib.pyplot.xlim(...) method sets the range of values on the x axis.

The matplotlib.pyplot.xticks(...) method specifies where the ticks show up
on the x axis:

plt.xlim([8, 10.5])

plt.xticks([8, 8.42, 8.94, 9.47, 10, 10.5])

plt.plot(x, y1, color='black', linestyle='--', marker='o')

This modifies the x axis to be within the specified limits and the ticks at the explicitly
specified values:

Figure 5.5 – Plot with explicit limits and ticks on the x axis

We can also change the scale of one of the axes to non-linear using the matplotlib.
Axes.set_yscale(...) method.

The matplotlib.Axes.set_xticklabels(...) method changes the labels on
the x axis:

fig, ax = plt.subplots(1, figsize=(12, 6))

ax.set_yscale('log')

ax.set_xticks(x)

ax.set_xticklabels(list('ABCDEFGHIJKLMNOPQRSTUV'))

ax.plot(x, y1, color='black', linestyle='--', marker='o',

 label='y=exp(x)')

Enriching axes with ticks, labels, and legends 119

The output of that code block shows the difference in the scale of the y axis, which is now
logarithmic, and the x axis ticks have the specific tick labels:

Figure 5.6 – Plot with a logarithmic y-axis scale and custom x-axis tick labels

The logarithmic scales in charts are useful if the dataset covers a large range of values and/
or if we want to communicate percentage change or multiplicative factors.

The matplotlib.Axes.set_title(...) method adds a title to the plot and
the matplotlib.Axes.set_xlabel(...) and matplotlib.Axes.set_
ylabel(...) methods set labels for the x and y axes.

The matplotlib.Axes.legend(...) method adds a legend, which makes the plots
easier to interpret. The loc= parameter specifies the location of the legend on the plot
with loc='best', meaning Matplotlib picks the best location automatically:

ax.set_title('xtickslabel example')

ax.set_xlabel('x labels')

ax.set_ylabel('log scale y values')

ax.legend(loc='best')

fig

120 Data Visualization Using Matplotlib

The following plot shows the title, the x- and y-axis labels, and the legend:

Figure 5.7 – Plot demonstrating a title, x- and y-axis labels, and a legend

Charts with a different rendering of each time series and with explained units and labels
of the axes are sufficient for understanding charts. However, there are always some special
data points that would benefit from being pointed out.

Enriching data points with annotations
The matplotlib.Axes.text(...) method adds a text box to our plots:

ax.text(1, 10000, 'Generated using numpy and matplotlib')

fig

Enriching data points with annotations 121

The output is as follows:

Figure 5.8 – Plot displaying Matplotlib text annotations

The matplotlib.Axes.annotate(...) method provides more control over
the annotations.

The code block that follows uses the following parameters to control the annotation:

•	 The xy= parameter specifies the location of the data point.

•	 The xytext= parameter specifies the location of the text box.

•	 The arrowprops= parameter accepts a dictionary specifying parameters to
control the arrow from the text box to the data point.

•	 The facecolor= parameter specifies the color and the shrink= parameter
specifies the size of the arrow.

•	 The horizontalalignment= and verticalalignment= parameters specify
the orientation of the text box relative to the data point.

122 Data Visualization Using Matplotlib

The code is as follows:

for i in [5, 10, 15]:

 s = '(x=' + str(x[i]) + ',y=' + str(y1[i]) + ')'

 ax.annotate(s, xy=(x[i], y1[i]), xytext=(x[i]+1,

 y1[i]-5),

 arrowprops=dict(facecolor='black',

 shrink=0.05), horizontalalignment='left',

 verticalalignment='top')

fig

The result is as follows:

Figure 5.9 – Plot with text and arrow annotations of data points

Drawing attention to the key data points helps the reader focus on the message of the chart.

The matplotlib.Axes.add_patch(...) method can be used to add different
shape annotations.

The code block that follows adds a matplotlib.pyplot.Circle object, which
accepts the following:

•	 The xy= parameter to specify the location

•	 The radius= parameter to specify the circle radius

•	 The color= parameter to specify the color of the circle

Saving plots to files 123

The code is as follows:

fig, ax = plt.subplots(1, figsize=(12, 6))

ax.plot(x, x, linestyle='--', color='black', marker='*',

 markersize=15)

for val in x:

 ax.add_patch(plt.Circle(xy=(val, val), radius=0.3,

 color='darkgray'))

This generates the following plot with circles around the data points:

Figure 5.10 – Plot containing circle annotations around data points generated from adding a patch

Now that we have generated beautiful, professional charts, we need to learn how to share
the images.

Saving plots to files
The matplotlib.pyplot.figure object enables us to save plots to disk in different
file formats with many size and resolution specifiers, such as the dpi= parameter:

fig.savefig('fig.png', dpi=200)

124 Data Visualization Using Matplotlib

This writes the following plot to the fig.png file:

Figure 5.11 – Matplotlib plot written to a file on disk and opened with an external viewer

Exported images of trading strategies' performance are frequently used for HTML or
email reports. For printing, choose the DPI of your printer as the DPI of the charts.

Charting a pandas DataFrame with Matplotlib
The pandas library provides plotting capabilities for Series and DataFrame objects
using Matplotlib.

Let's create a pandas DataFrame with the Cont value containing continuous values that
mimic prices and the Delta1 and Delta2 values to mimic price changes. The Cat value
contains categorical data from five possibilities:

import pandas as pd

df = pd.DataFrame(index=range(1000),

 columns=['Cont value', 'Delta1 value',

 'Delta2 value', 'Cat value'])

df['Cont value'] = np.random.randn(1000).cumsum()

df['Delta1 value'] = np.random.randn(1000)

df['Delta2 value'] = np.random.randn(1000)

Charting a pandas DataFrame with Matplotlib 125

df['Cat value'] = np.random.permutation(['Very high',

 'High', 'Medium',

 'Low',

 'Very Low']*200)

df['Delta1 discrete'] = pd.cut(df['Delta1 value'],

 labels=[-2, -1, 0, 1, 2],

 bins=5).astype(np.int64)

df['Delta2 discrete'] = pd.cut(df['Delta2 value'],

 labels=[-2, -1, 0, 1, 2],

 bins=5).astype(np.int64)

df

This generates the following DataFrame:

 Cont value Delta1 val Delta2 val Cat value Delta1
discrete Delta2 discrete

0 -1.429618 0.595897 -0.552871 Very high 1 0

1 -0.710593 1.626343 1.123142 Medium 1 1

...

998 -4.928133 -0.426593 -0.141742 Very high 0 0

999 -5.947680 -0.183414 -0.358367 Medium 0 0

1000 rows × 6 columns

Let's explore different ways of how this DataFrame can be visualized.

Creating line plots of a DataFrame column
We can plot 'Cont value' in a line plot using the pandas.DataFrame.
plot(...) method with the kind= parameter:

df.plot(y='Cont value', kind='line', color='black',

 linestyle='-', figsize=(12, 6))

126 Data Visualization Using Matplotlib

This command produces the following chart:

Figure 5.12 – Line plot generated using the pandas.DataFrame.plot(…) method

Line charts are typically used for displaying time series.

Creating bar plots of a DataFrame column
The pandas.DataFrame.plot(...) method can be used with the kind='bar'
parameter to build a bar chart.

Let's first group the DataFrame by the 'Cat value' value, and then plot the Delta1
discrete value counts in a bar chart:

df.groupby('Cat value')['Delta1 discrete']\

.value_counts().plot(kind='bar', color='darkgray',

 title='Occurrence by (Cat,Delta1)',

 figsize=(12, 6))

Charting a pandas DataFrame with Matplotlib 127

This generates the following plot showing the frequency of (Cat value, Delta1
discrete) value pairs:

Figure 5.13 – Vertical bar plot displaying the frequency of (Cat value, Delta1 discrete) value pairs

The kind='barh' parameter builds a horizontal bar plot instead of a vertical one:

df.groupby('Delta2 discrete')['Cat value'].value_counts()\

.plot(kind='barh', color='darkgray',

 title='Occurrence by (Delta2,Cat)',

 figsize=(12, 12))

128 Data Visualization Using Matplotlib

The output is as follows:

Figure 5.14 – Horizontal bar plot displaying the frequency of (Delta2 discrete, Cat value) pairs

Bar plots are most suitable for comparing the magnitude of categorical values.

Creating histogram and density plots of a DataFrame
column
The kind='hist' parameter in the pandas.DataFrame.plot(…) method builds
a histogram.

Charting a pandas DataFrame with Matplotlib 129

Let's create a histogram of the Delta1 discrete values:

df['Delta1 discrete'].plot(kind='hist', color='darkgray',

 figsize=(12, 6), label='Delta1')

plt.legend()

The histogram generated is shown:

Figure 5.15 – Histogram of Delta1 discrete frequency

We can build a Probability Density Function (PDF) by specifying the kind='kde'
parameter, which generates a PDF using the Kernel Density Estimation (KDE) of the
Delta2 discrete value:

df['Delta2 discrete'].plot(kind='kde', color='black',

 figsize=(12, 6),

 label='Delta2 kde')

plt.legend()

130 Data Visualization Using Matplotlib

The output is as follows:

Figure 5.16 – KDE plot displaying the PDF of Delta2 discrete values

Histograms and PDFs/KDEs are used to assess the probability distribution of some
random variables.

Creating scatter plots of two DataFrame columns
Scatter plots from the pandas.DataFrame.plot(...) method are generated using
the kind='scatter' parameter.

The following code block plots a scatter plot between the Delta1 and Delta2 values:

df.plot(kind='scatter', x='Delta1 value', y='Delta2 value',

 alpha=0.5, color='black', figsize=(8, 8))

Charting a pandas DataFrame with Matplotlib 131

The output is as follows:

Figure 5.17 – Scatter plot of the Delta1 value and Delta2 value fields

The pandas.plotting.scatter_matrix(...) method builds a matrix of scatter
plots on non-diagonal entries and histogram/KDE plots on the diagonal entries of the
matrix between the Delta1 and Delta2 values:

pd.plotting.scatter_matrix(df[['Delta1 value',

 'Delta2 value']],

 diagonal='kde', color='black',

 figsize=(8, 8))

132 Data Visualization Using Matplotlib

The output is as follows:

Figure 5.18 – Scatter matrix plot of the Delta1 value and Delta2 value fields

Scatter plots/scatter matrices are used to observe relationships between two variables.

Charting a pandas DataFrame with Matplotlib 133

Plotting time series data
The following code block creates a pandas DataFrame containing prices for
two hypothetical trading instruments, A and B. The DataFrame is indexed by the
DateTimeIndex objects representing daily dates from 1992 to 2012:

dates = pd.date_range('1992-01-01', '2012-10-22')

time_series = pd.DataFrame(index=dates, columns=['A', 'B'])

time_series['A'] = \

np.random.randint(low=-100, high=101,

 size=len(dates)).cumsum() + 5000

time_series['B'] = \

np.random.randint(low=-75, high=76,

 size=len(dates)).cumsum() + 5000

time_series

The resulting DataFrame is as follows:

 A B

1992-01-01 5079 5042

1992-01-02 5088 5047

2012-10-21 6585 7209

2012-10-22 6634 7247

7601 rows × 2 columns

Let's use this time series for representative types of plots.

Plotting prices in a line plot
First, let's plot the daily prices for A and B over 20 years with line plots:

time_series['A'].plot(kind='line', linestyle='—',

 color='black', figsize=(12, 6),

 label='A')

time_series['B'].plot(kind='line', linestyle='-.',

 color='darkgray', figsize=(12, 6),

 label='B')

plt.legend()

134 Data Visualization Using Matplotlib

The output is as follows:

Figure 5.19 – Plot displaying prices for hypothetical instruments A and B over a period of 20 years

While most time series charts are line plots, the additional chart types provide
additional insight.

Plotting price change histograms
The usual next stop in financial time series analysis is to inspect changes in price over
some duration.

The following code block generates six new fields representing changes in prices over 1
day, 5 days, and 20 days, using the pandas.DataFrame.shift(...) and pandas.
DataFrame.fillna(...) methods. We also drop rows with missing data due to the
shift and the final DataFrame is saved in the time_series_delta DataFrame:

time_series['A_1_delta'] = \

time_series['A'].shift(-1) – time_series['A'].fillna(0)

time_series['B_1_delta'] = \

time_series['B'].shift(-1) – time_series['B'].fillna(0)

time_series['A_5_delta'] = \

time_series['A'].shift(-5) – time_series['A'].fillna(0)

time_series['B_5_delta'] = \

Charting a pandas DataFrame with Matplotlib 135

time_series['B'].shift(-5) – time_series['B'].fillna(0)

time_series['A_20_delta'] = \

time_series['A'].shift(-20) – time_series['A'].fillna(0)

time_series['B_20_delta'] = \

time_series['B'].shift(-20) – time_series['B'].fillna(0)

time_series_deltas = time_series[['A_1_delta', 'B_1_delta',

 'A_5_delta', 'B_5_delta',

 'A_20_delta',

 'B_20_delta']].dropna()

time_series_deltas

The DataFrame contains the following:

 A_1_delta B_1_delta A_5_delta B_5_
delta A_20_delta B_20_delta

1992-01-01 9.0 5.0 -49.0 118.0 -249.0 -56.0

1992-01-02 -91.0 69.0 -84.0 123.0 -296.0 -92.0

...

2012-10-01 88.0 41.0 -40.0 -126.0 -148.0 -84.0

2012-10-02 -10.0 -44.0 -71.0 -172.0 -187.0 -87.0

7581 rows × 6 columns

We can plot the price change histogram for A based on what we have learned in this
chapter with the following block of code:

time_series_delt's['A_20_de'ta'].plot(ki'd='h'st',

 col'r='bl'ck',

 alpha=0.5,

 lab'l='A_20_de'ta',

 figsize=(8,8))

time_series_delt's['A_5_de'ta'].plot(ki'd='h'st',

 col'r='darkg'ay',

 alpha=0.5,

 lab'l='A_5_de'ta',

 figsize=(8,8))

136 Data Visualization Using Matplotlib

time_series_delt's['A_1_de'ta'].plot(ki'd='h'st',

 col'r='lightg'ay',

 alpha=0.5,

 lab'l='A_1_de'ta',

 figsize=(8,8))

plt.legend()

The output is as follows:

Figure 5.20 – Histogram of A_1, A_5, and A_20 deltas

Charting a pandas DataFrame with Matplotlib 137

Histograms are used for assessing the probability distribution of the underlying data. This
particular histogram suggests that the A_20 delta has the greatest variability, which makes
sense since the underlying data exhibits a strong trend.

Creating price change density plots
We can also plot the density of price changes using the KDE PDF.

The following code block plots the density function for price changes in B:

time_series_deltas['B_20_delta'].plot(kind='kde',

 linestyle='-',

 linewidth=2,

 color='black',

 label='B_20_delta',

 figsize=(8,8))

time_series_deltas['B_5_delta'].plot(kind='kde',

 linestyle=':',

 linewidth=2,

 color='black',

 label='B_5_delta',

 figsize=(8,8))

time_series_deltas['B_1_delta'].plot(kind='kde',

 linestyle='--',

 linewidth=2,

 color='black',

 label='B_1_delta',

 figsize=(8,8))

plt.legend()

138 Data Visualization Using Matplotlib

The output is as follows:

Figure 5.21 – KDE density plot for price changes in B over 1, 5, and 20 days

KDE density plots are very similar to histograms. In contrast to histograms consisting of
discrete boxes, KDEs are continuous lines.

Creating box plots by interval
We can group daily prices by different intervals, such as yearly, quarterly, monthly, or
weekly, and display the distribution of those prices using box plots.

The following piece of code first uses the pandas.Grouper object with freq='A'
to specify annual periodicity, and then applies to the result the pandas.DataFrame.
groupby(…) method to build a pandas.DataFrameGroupBy object. Finally, we call
the pandas.DataFrameGroupBy.boxplot(...) method to generate the box plot.
We specify the rot=90 parameter to rotate the x-axis tick labels to make it more readable:

group_A = time_series[['A']].groupby(pd.Grouper(freq='A'))

group_A.boxplot(color='black', subplots=False, rot=90,

 figsize=(12,12))

Charting a pandas DataFrame with Matplotlib 139

The output is as follows:

Figure 5.22 – Figure containing the box plot distribution of A's prices grouped by year

140 Data Visualization Using Matplotlib

Box plots with whiskers are used for visualizing groups of numerical data through their
corresponding quartiles:

•	 The box's lower bound corresponds to the lower quartile, while the box's upper
bound represents the group's upper quartile.

•	 The line within the box displays the value of the median of the interval.

•	 The line below the box ends with the value of the lowest observation.

•	 The line above the box ends with the value of the highest observation.

Creating lag scatter plots
We can visualize the relationships between the different price change variables using the
pandas.plotting.scatter_matrix(…) method:

pd.plotting.scatter_matrix(time_series[['A_1_delta',

 'A_5_delta',

 'A_20_delta',

 'B_1_delta',

 'B_5_delta',

 'B_20_delta']],

 diagonal='kde', color='black',

 alpha=0.25, figsize=(12, 12))

The result shows some linear relationships between the (A_5_Delta and A_1_
Delta), (A_5_Delta and A_20_Delta), (B_1_Delta and B_5_Delta), and
(B_5_Delta and B_20_Delta) variable pairs:

Charting a pandas DataFrame with Matplotlib 141

Figure 5.23 – Scatter matrix plot for A and B price delta variables

We can also use the pandas.plotting.lag_plot(...) method with different
lag= values to specify different levels of lag to generate the scatter plots between prices
and lagged prices for A:

fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(12, 12))

pd.plotting.lag_plot(time_series['A'], ax=ax1, lag=1,

 c='black', alpha=0.2)

pd.plotting.lag_plot(time_series['A'], ax=ax2, lag=7,

142 Data Visualization Using Matplotlib

 c='black', alpha=0.2)

pd.plotting.lag_plot(time_series['A'], ax=ax3, lag=20,

 c='black', alpha=0.2)

This generates the following three plots for lags of 1, 7, and 20 days:

Figure 5.24 – Lag plots for A's prices with lag values of 1, 7, and 20 days, showing martingale properties

Log plots check whether a time series is random without any trend. For a random time
series, its lag plots show no structure. The preceding plots show a clear linear trend; that is,
we may succeed in modeling it with an auto-regressive model.

Charting a pandas DataFrame with Matplotlib 143

Creating autocorrelation plots
Autocorrelation plots visualize the relationships with prices at a certain point in time and
the prices lagged by a certain number of periods.

We can use the pandas.plotting.autocorrelation_plot(...) method to plot
lag values on the x axis and the correlation between price and price lagged by the specified
value on the y axis:

fig, ax = plt.subplots(1, figsize=(12, 6))

pd.plotting.autocorrelation_plot(time_series['A'], ax=ax)

We can see that as lag values increase, the autocorrelation slowly deteriorates:

Figure 5.25 – Plot displaying the relationship between lag values versus autocorrelation between prices
and prices lagged by a specified value

Autocorrelation plots summarize the randomness of a time series. For a random time
series, all autocorrelations would be close to 0 for all lags. For a non-random time series,
at least one of the autocorrelations would be significantly non-zero.

144 Data Visualization Using Matplotlib

Summary
In this chapter, we have learned how to create visually appealing charts of pandas
DataFrames with Matplotlib. While we can calculate many numerical statistics, charts
usually offer greater insight more rapidly. You should always plot as many different charts
as possible since each provides a different view of the data.

In the next chapter, we will learn how to perform statistical tests and estimate statistical
models in Python.

6
Statistical

Estimation,
Inference, and

Prediction
In this chapter, we introduce four key statistical libraries in Python—statsmodels,
pmdarima, fbprophet, and scikitlearn—by outlining key examples. These
libraries are used to model time series and provide their forecast values, along with
confidence intervals. In addition, we demonstrate how to use a classification model to
predict percentage changes of a time series.

For this, we are going to cover the following use cases:

•	 Introduction to statsmodels

•	 Using a Seasonal Auto-Regressive Integrated Moving Average with eXogenous
factors (SARIMAX) time-series model with pmdarima

•	 Time series forecasting with Facebook's Prophet library

•	 Introduction to scikit-learn regression and classification

146 Statistical Estimation, Inference, and Prediction

Technical requirements
The Python code used in this chapter is available in the Chapter06 folder in the
book's code repository.

Introduction to statsmodels
statsmodels is a Python library that allows us to explore data, perform statistical tests, and
estimate statistical models.

This chapter focuses on statsmodels' modeling, analysis, and forecasting of time series.

Normal distribution test with Q-Q plots
An underlying assumption of many statistical learning techniques is that the observations/
fields are normally distributed.

While there are many robust statistical tests for normal distributions, an intuitive visual
method is known as a quantile-quantile plot (Q-Q plot). If a sample is normally
distributed, its Q-Q plot is a straight line.

In the following code block, the statsmodels.graphics.api.qqplot(...)
method is used to check if a numpy.random.uniform(...) distribution is
normally distributed:

from statsmodels.graphics.api import qqplot

import numpy as np

fig = qqplot(np.random.uniform(size=10000), line='s')

fig.set_size_inches(12, 6)

The resulting plot depicted in the following screenshot shows a non-linear relationship
between the two distributions, which was expected since we used a uniform distribution:

Introduction to statsmodels 147

Figure 6.1 – Q-Q plot for a dataset generated from a uniform distribution

In the following code block, we repeat the test, but this time with a numpy.random.
exponential(...) distribution as our sample distribution:

fig = qqplot(np.random.exponential(size=10000), line='s')

fig.set_size_inches(12, 6)

The resulting Q-Q plot again confirms a non-normal relationship between the two
distributions, as illustrated in the following screenshot:

Figure 6.2 – Q-Q plot for a dataset generated from an exponential distribution

148 Statistical Estimation, Inference, and Prediction

Finally, we will pick out 10,000 samples from a normal distribution using the numpy.
random.normal(...) method and use qqplot(...) to observe them, as illustrated
in the following code snippet:

fig = qqplot(np.random.normal(size=10000), line='s')

fig.set_size_inches(12, 6)

The result is a plot with a linear relationship as expected, as illustrated in the
following screenshot:

Figure 6.3 – Q-Q plot for 10,000 samples sampled from a standard normal distribution

Q-Q plots are used for comparison between two probability distributions—with one of them
most often being a normal distribution—by plotting their quantiles against one another. The
preceding examples demonstrate how easy it is to test visually for normal distribution.

Time series modeling with statsmodels
A time series is a sequence of numerical data points in time order.

A crucial part of working with time series data involves working with dates and times.

The statsmodels.api.tsa.datetools model provides some basic methods for
generating and parsing dates and date ranges, such as dates_from_range(...).

Introduction to statsmodels 149

In the following code snippet, we generate 12 datetime.datetime objects using a
length=12 parameter and starting from 2010 with a yearly frequency:

import statsmodels.api as sm

sm.tsa.datetools.dates_from_range('2010', length=12)

That yields the following list of datetime objects:

 [datetime.datetime(2010, 12, 31, 0, 0),

 datetime.datetime(2011, 12, 31, 0, 0),

 ...

 datetime.datetime(2020, 12, 31, 0, 0),

 datetime.datetime(2021, 12, 31, 0, 0)]

The frequency of dates in the dates_from_range(...) method can be specified by
the start date and a special format, where the m1 suffix means first month and monthly
frequency, and q1 means first quarter and quarterly frequency, as illustrated in the
following code snippet:

sm.tsa.datetools.dates_from_range('2010m1', length=120)

That yields the following list of datetime objects with monthly frequency:

 [datetime.datetime(2010, 1, 31, 0, 0),

 datetime.datetime(2010, 2, 28, 0, 0),

 ...

 datetime.datetime(2019, 11, 30, 0, 0),

 datetime.datetime(2019, 12, 31, 0, 0)]

Let's now perform an Error, Trend, Seasonality (ETS) analysis of a time series.

ETS analysis of a time series
The ETS analysis of a time series breaks down the data into three different components,
as follows:

•	 The trend component captures the overall trend of the time series.

•	 The seasonality component captures cyclical/seasonal changes.

•	 The error component captures noise in the data that could not be captured with the
other two components.

150 Statistical Estimation, Inference, and Prediction

Let's generate 20 years of monthly dates as an index to the Pandas DataFrame dataset
using the datetools.dates_from_range(...) method, as follows:

import pandas as pd

n_obs = 12 * 20

linear_trend = np.linspace(100, 200, num=n_obs)

cycle = np.sin(linear_trend) * 10

error_noise = np.random.randn(n_obs)

dataset = \

pd.DataFrame(

 linear_trend + cycle + error_noise,

 index=sm.tsa.datetools.dates_from_range('2000m1',

 length=n_obs),

 columns=['Price'])

dataset

The result is the following DataFrame with a Price field that is composed of
ETS components:

 Price

2000-01-31 96.392059

2000-02-29 99.659426

2019-11-30 190.067039

2019-12-31 190.676568

240 rows × 1 columns

Let's visualize the time series dataset that we generated, as follows:

import matplotlib.pyplot as plt

dataset.plot(figsize=(12, 6), color='black')

The resulting time series dataset has an apparent linearly increasing trend with seasonal
components mixed in, as illustrated in the following screenshot:

Introduction to statsmodels 151

Figure 6.4 – Plot displaying synthetic prices with ETS components

In the preceding screenshot, we do see the seasonality component very clearly—the
oscillation up and down from the median value. We also see the error noise since
the oscillations are not perfect. Finally, we see that the values are increasing—the
trend component.

The Hodrick-Prescott filter
The Hodrick-Prescott (HP) filter is used to separate the trend and cyclical components
from time series data by removing short-term fluctuations from the longer-term trend.
In statsmodels, this is implemented as statsmodels.api.tsa.filters.
hpfilter(...).

Let's use it with a lamb=129600 smoothing parameter to perform the decomposition
(the value 129600 is the recommended value for monthly data). We use a pair of series
values returned to generate a DataFrame with Price, hp_cycle, and hp_trend fields
to represent the price, the seasonal component, and the trend components, as illustrated
in the following code snippet:

hp_cycle, hp_trend = \

sm.tsa.filters.hpfilter(dataset['Price'], lamb=129600)

decomp = dataset[['Price']]

decomp['HP_Cycle'] = hp_cycle

decomp['HP_Trend'] = hp_trend

decomp

152 Statistical Estimation, Inference, and Prediction

The decomp DataFrame contains the following data:

 Price HP_Cycle HP_Trend

2000-01-31 96.392059 -4.731153 101.123212

2000-02-29 99.659426 -1.839262 101.498688

2019-11-30 190.067039 -8.350371 198.417410

2019-12-31 190.676568 -8.107701 198.784269

240 rows × 3 columns

In the next section, we will look at the UnobservedComponents model.

UnobservedComponents model
Another way of breaking down a time series into ETS components is to use a
statsmodels.api.tsa.UnobservedComponents object.

The UnobservedComponentsResults.summary(...) method generates statistics
for the model, as follows:

uc = sm.tsa.UnobservedComponents(dataset['Price'],

 level='lltrend',

 cycle=True,

 stochastic_cycle=True)

res_uc = uc.fit(method='powell', disp=True)

res_uc.summary()

The output contains details about the model, as illustrated in the following code block:

Optimization terminated successfully.

 Current function value: 2.014160

 Iterations: 6

 Function evaluations: 491

Unobserved Components Results

Dep. Variable: Price No. Observations: 240

 Model: local linear trend Log Likelihood -483.399

 + stochastic cycle AIC 976.797

 Date: Fri, 12 Jun 2020 BIC 994.116

 Time: 08:09:46 HQIC 983.779

 Sample: 01-31-2000

Introduction to statsmodels 153

 - 12-31-2019

Covariance Type: opg

 coef std err z P>|z| [0.025 0.975]

sigma2.irregular 0.4962 0.214 2.315 0.021 0.076 0.916

sigma2.level 6.954e-17 0.123 5.63e-16 1.000 -0.242 0.242

sigma2.trend 2.009e-22 4.03e-05 4.98e-18 1.000 -7.91e-
05 7.91e-05

sigma2.cycle 1.5485 0.503 3.077 0.002 0.562 2.535

frequency.cycle 0.3491 0.013 27.768 0.000 0.324 0.374

Ljung-Box (Q): 347.56 Jarque-Bera (JB): 0.42

Prob(Q): 0.00 Prob(JB): 0.81

Heteroskedasticity (H): 0.93 Skew: -0.09

Prob(H) (two-sided): 0.73 Kurtosis: 2.91

We can access the ETS/cyclical components using the resid, cycle.smoothed, and
level.smoothed attributes and add them to the decomp DataFrame, as follows:

decomp['UC_Cycle'] = res_uc.cycle.smoothed

decomp['UC_Trend'] = res_uc.level.smoothed

decomp['UC_Error'] = res_uc.resid

decomp

The decomp DataFrame has the following new columns containing the Cycle, Trend,
and Error terms from the UnobservedComponents model:

 ... UC_Cycle UC_Trend UC_Error

2000-01-31 ... -3.358954 99.743814 96.392059

2000-02-29 ... -0.389834 100.163434 6.173967

2019-11-30 ... -9.725420 199.613395 1.461497

2019-12-31 ... -9.403885 200.033015 0.306881

240 rows × 6 columns

Next, we will look at the statsmodel.tsa.seasonal.seasonal_decompose(…)
method.

statsmodels.tsa.seasonal.seasonal_decompose(...) method
Another way to perform ETS decomposition is by using the statsmodels.tsa.
seasonal.seasonal_decompose(...) method.

154 Statistical Estimation, Inference, and Prediction

The following code block uses an additive model by specifying a model='additive'
parameter and adds SDC_Cycle, SDC_Trend, and SDC_Error columns to the
decomp DataFrame by accessing the season, trend, and resid attributes in the
DecomposeResult object:

from statsmodels.tsa.seasonal import seasonal_decompose

s_dc = seasonal_decompose(dataset['Price'],

 model='additive')

decomp['SDC_Cycle'] = s_dc.seasonal

decomp['SDC_Trend'] = s_dc.trend

decomp['SDC_Error'] = s_dc.resid

decomp[118:122]

The decomp DataFrame now has three additional fields with values, as shown in the
following code block:

 ... SDC_Cycle SDC_Trend SDC_Error

2009-11-30 ... 0.438633 146.387392 -8.620342

2009-12-31 ... 0.315642 147.240112 -6.298764

2010-01-31 ... 0.228229 148.384061 -3.538544

2010-02-28 ... 0.005062 149.912202 -0.902362

Next, we will plot the various results we got from the preceding sections.

Plotting of the results of HP filter, the UnobservedComponents
model, and the seasonal_decompose method
Let's plot the trend components extracted from the HP filter, the UnobservedComponents
model, and the seasonal_decompose method, as follows:

plt.title('Trend components')

decomp['Price'].plot(figsize=(12, 6), color='black',

 linestyle='-', legend='Price')

decomp['HP_Trend'].plot(figsize=(12, 6), color='darkgray',

 linestyle='--', lw=2,

 legend='HP_Trend')

decomp['UC_Trend'].plot(figsize=(12, 6), color='black',

 linestyle=':', lw=2,

 legend='UC_Trend')

Introduction to statsmodels 155

decomp['SDC_Trend'].plot(figsize=(12, 6), color='black',

 linestyle='-.', lw=2,

 legend='SDC_Trend')

That gives us the following plot, with the trend components plotted next to the original
price. All three models did a good job in identifying the overall increasing trend, with
the seasonal_decompose(...) method capturing some non-linear/cyclical trend
components, in addition to the overall linearly increasing trend:

Figure 6.5 – Plot showing trend components extracted from different ETS decomposition methods

The following code block plots the cycle/seasonal components obtained from the
three models:

plt.title('Cycle/Seasonal components')

decomp['HP_Cycle'].plot(figsize=(12, 6), color='darkgray',

 linestyle='--', lw=2,

 legend='HP_Cycle')

decomp['UC_Cycle'].plot(figsize=(12, 6), color='black',

 linestyle=':', lw=2,

 legend='UC_Cycle')

decomp['SDC_Cycle'].plot(figsize=(12, 6), color='black',

 linestyle='-.', lw=2,

 legend='SDC_Cycle')

156 Statistical Estimation, Inference, and Prediction

The following result shows that the seasonal_decompose(...) method generates
seasonal components with very small fluctuations, and that is because some part of the
seasonal components was built into the trend plot we saw before:

Figure 6.6 – Plot showing cyclical/seasonal components extracted
by different ETS decomposition methods

Finally, we will visualize the error terms in the UnobservedComponents and
seasonal_decompose methods, as follows:

plt.title('Error components')

plt.ylim((-20, 20))

decomp['UC_Error'].plot(figsize=(12, 6), color='black',

 linestyle=':', lw=2,

 legend='UC_Error')

decomp['SDC_Error'].plot(figsize=(12, 6), color='black',

 linestyle='-.', lw=2,

 legend='SDC_Error')

Introduction to statsmodels 157

The output is shown in the following screenshot:

Figure 6.7 – Plot displaying error terms from different ETS decomposition models

The plot shown in the preceding screenshot demonstrates that the error terms oscillate
around 0 and that they have no clear trend.

Augmented Dickey-Fuller test for stationarity of a
time series
Stationary time series are time series whose statistical properties such as mean, variance,
and autocorrelation are constant over time. Many statistical forecasting models
assume that time series datasets can be transformed into stationary datasets by some
mathematical operations, such as differencing.

An Augmented Dickey-Fuller (ADF) test is used to check if a dataset is stationary or
not—it computes the likelihood that a dataset is not stationary, and when that probability
(p-value) is very low, we can conclude that the dataset is stationary. We will look at the
detailed steps in the following sections.

158 Statistical Estimation, Inference, and Prediction

Step 1 – ADF test on the prices
Let's check for stationarity, as well as converting our dataset into a stationary dataset by
using a differencing method. We start with the statsmodels.tsa.stattools.
adfuller(...) method, as illustrated in the following code snippet:

from statsmodels.tsa.stattools import adfuller

result = adfuller(dataset['Price'])

print('Test Stat: {}\np value: {}\nLags: {}\nNum \

 observations: {}'.format(result[0], result[1],

 result[2], result[3]))

That outputs the following values when applied to the Price field. The Test statistic is
a positive value and the p-value is 98%, meaning there is strong evidence that the Price
field is not stationary. We knew this was expected, since the Price field has strong trend
and seasonality components in it:

Test Stat: 0.47882793726850786

p value: 0.9842151821849324

Lags: 14

Num observations: 225

Step 2 – First differencing on prices
Next, we apply a first differencing transformation; this finds the first difference from one
observation to the next one. If we difference the differenced dataset again, that yields a
second difference, and so on.

We store the first-differenced pandas.Series dataset in the price_diff variable, as
shown in the following code block:

price_diff = \

(dataset['Price'].shift(-1) - dataset['Price']).fillna(0)

price_diff

Introduction to statsmodels 159

That dataset contains the following values:

2000-01-31 4.951062

2000-02-29 5.686832

 ...

2019-11-30 3.350694

2019-12-31 0.000000

Name: Price, Length: 240, dtype: float64

Step 3 – ADF test on the differenced prices
Now, we rerun the ADF test on this transformed dataset to check for stationarity,
as follows:

result = adfuller(price_diff)

print('Test Stat: {}\np value: {}\nLags: {}\nNum \

 observations: {}'.format(result[0], result[1],

 result[2], result[3]))

The test statistic now has a large negative value (values under -4 have a very high
likelihood of being stationary). The probability of not being stationary now reduces to an
extremely low value, indicating that the transformed dataset is stationary, as illustrated in
the following code snippet:

Test Stat: -7.295184662866956

p value: 1.3839111942229784e-10

Lags: 15

Num observations: 224

Autocorrelation and partial autocorrelation of a
time series
Autocorrelation or serial correlation is the correlation of an observation—a delayed
copy of itself—as a function of delay. It measures if the currently observed value has any
relationship to the value in the future/past.

160 Statistical Estimation, Inference, and Prediction

In our dataset with a clear linear trend and some seasonal components, the
autocorrelation slowly decreases as the number of lags increases, but for smaller lag
values the dataset has high autocorrelation values due to the large overall linear trend.
The statsmodels.graphics.tsaplots.plot_acf(...) method plots the
autocorrelation of the Price field with lag values ranging from 0 to 100, as illustrated
in the following code snippet:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

fig = plot_acf(dataset['Price'], lags=100)

fig.set_size_inches(12, 6)

The result indicates that autocorrelation remains relatively strong up to lag values of
around 36, where it dips below 0.5. This is illustrated in the following screenshot:

Figure 6.8 – Autocorrelation plot showing autocorrelation against different lag values

The statsmodels.graphics.tsaplots.plot_pacf(…) method lets us plot
the partial autocorrelation values against different lag values. The difference between
autocorrelation and partial autocorrelation is that with partial autocorrelation, only the
correlation between that observation and the previous observation that lag periods is
used, and correlation effects from lower lag-value terms are removed. This method is
shown in the following code snippet:

fig = plot_pacf(dataset['Price'], lags=100)

fig.set_size_inches(12, 6)

Introduction to statsmodels 161

The output can be seen in the following screenshot:

Figure 6.9 – Partial autocorrelation plot showing partial autocorrelations against lag values

The plot shown in the preceding screenshot drops in autocorrelation sharply after the
first two lag terms and then seasonally varies from positive to negative values every 10
lag terms.

ARIMA time series model
The Auto-Regressive Integrated Moving Average (ARIMA) model is one of the most
well-known time series modeling and forecasting models available. It is used to predict
time series data for time series with correlated data points.

The ARIMA model is composed of three components, outlined as follows:

•	 Auto-regression (AR): This model uses the autocorrelation relationship we
explored in the previous section. It accepts a p parameter, specifying the number
of lags to use. For our case based on the autocorrelation plots, we will specify p=36
when modeling the Price series with ARIMA.

•	 Integrated (I): This is the differencing transformation for the model to use to
convert the time series into a stationary dataset. It accepts a d parameter, specifying
the order of differencing to perform, which in our case will be d=1. As we saw in
the Augmented Dickey-Fuller test for stationarity of a time series section, the first-
order differencing led to a stationary dataset.

162 Statistical Estimation, Inference, and Prediction

•	 Moving Average (MA): This is the component that applies a MA model to lagged
observations. This accepts a single parameter, q, which is the size of the MA
window. In our case, we will set this parameter based on the partial autocorrelation
plots and use a value of q=2 because of the sharp drop-off in partial autocorrelation
past the lag value of 1.

In statsmodels, the statsmodels.tsa.arima.model.ARIMA model builds a time
series as an ARIMA model. Using an order=(36, 1, 2) parameter, we specify p=36,
d=1, and q=2. Then, we call the ARIMA.fit(...) method to fit the model to our
Price series, and call the ARIMA.summary(...) method to output information about
the fitted ARIMA model.

Some other packages—for example, pmdarima—offer auto_arima methods that find
the ARIMA models by themselves, as illustrated in the following code snippet:

from statsmodels.tsa.arima.model import ARIMA

arima = ARIMA(dataset['Price'], order=(36,1,2))

res_ar = arima.fit()

res_ar.summary()

The following output describes fitting parameters:

SARIMAX Results

Dep. Variable: Price No. Observations: 240

 Model: ARIMA(36, 1, 2) Log Likelihood -360.195

 Date: Sat, 13 Jun 2020 AIC 798.391

 Time: 09:18:46 BIC 933.973

 Sample: 01-31-2000 HQIC 853.027

 - 12-31-2019

Covariance Type: opg

 coef std err z P>|z| [0.025 0.975]

ar.L1 -0.8184 0.821 -0.997 0.319 -2.428 0.791

ar.L2 -0.6716 0.495 -1.358 0.175 -1.641 0.298

...

ar.L35 0.3125 0.206 1.514 0.130 -0.092 0.717

ar.L36 0.1370 0.161 0.851 0.395 -0.178 0.452

ma.L1 -0.0244 0.819 -0.030 0.976 -1.630 1.581

ma.L2 0.1694 0.454 0.373 0.709 -0.721 1.060

sigma2 1.0911 0.144 7.586 0.000 0.809 1.373

Introduction to statsmodels 163

 Ljung-Box (Q): 13.99 Jarque-Bera (JB): 1.31

 Prob(Q): 1.00 Prob(JB): 0.52

 Heteroskedasticity (H): 1.15 Skew: 0.09

 Prob(H) (two-sided): 0.54 Kurtosis: 2.69

Using the statsmodels.tsa.arima.ARIMAResults.predict(...) method, we
can use the fitted model to predict values over the specified start and end datetime indices
(in this case, the entire dataset). We will save the predicted prices in the PredPrice field
for comparison later. The code can be seen in the following snippet:

dataset['PredPrice'] = res_ar.predict(dataset.index[0],

 dataset.index[-1])

dataset

The result adds the new column with the predicted prices, as follows:

 Price PredPrice

2000-01-31 95.317833 0.000000

2000-02-29 100.268895 95.317901

2019-11-30 188.524009 188.944216

2019-12-31 191.874704 190.614641

240 rows × 2 columns

Now, we will plot the original Price and the PredPrice fields in the following code
block to visually compare the two:

plt.ylim(70, 250)

dataset['Price'].plot(figsize=(12, 6), color='darkgray',

 linestyle='-', lw=4, legend='Price')

dataset['PredPrice'].plot(figsize=(12, 6), color='black',

 linestyle='-.',

 legend='PredPrice')

164 Statistical Estimation, Inference, and Prediction

The predicted prices are quite accurate, and that is because the specified parameters
(p, d, q) were precise. The result can be seen in the following screenshot:

Figure 6.10 – Plot comparing the original price and the price predicted by an ARIMA (36, 1, 2) model

Let's use this fitted model to forecast values for dates out in the future. First, we build an
extended_dataset DataFrame with another 4 years' worth of datetime indices and
no data (which will be filled in with NaN values) using the datetools.dates_from_
range(...) method and the pandas.DataFrame.append(...) method, as follows:

extended_dataset = pd.DataFrame(index=sm.tsa.datetools.dates_
from_range('2020m1', length=48))

extended_dataset = dataset.append(extended_dataset)

extended_dataset

 Price PredPrice

2000-01-31 95.317833 0.000000

2000-02-29 100.268895 95.317901

2023-11-30 NaN NaN

2023-12-31 NaN NaN

288 rows × 2 columns

Introduction to statsmodels 165

Then, we can call the ARIMAResults.predict(...) method again to generate
predicted prices for the entire time series and thus forecast onto the new dates we added,
as follows:

extended_dataset['PredPrice'] = \

res_ar.predict(extended_dataset.index[0],

 extended_dataset.index[-1])

extended_dataset

 Price PredPrice

2000-01-31 95.317833 0.000000

2000-02-29 100.268895 95.317901

2023-11-30 NaN 215.441777

2023-12-31 NaN 220.337355

288 rows × 2 columns

The following code block plots the last 100 observations from the extended_dataset
DataFrame:

extended_dataset['Price'].iloc[-100:].plot(figsize=(12, 6),

 color='darkgray',

 linestyle='-',

 lw=4,

 legend='Price')

extended_dataset['PredPrice'].iloc[-100:].plot(figsize=(12, 6),

 color='black',

 linestyle='-.',

 legend='PredPrice')

166 Statistical Estimation, Inference, and Prediction

And that yields a plot with the forecasted PredPrice values, as illustrated in the
following screenshot:

Figure 6.11 – Historical and predicted prices forecasted by the ARIMA model

In the plot shown in the preceding screenshot, the predicted prices visibly follow the trend
of past prices.

Using a SARIMAX time series model with
pmdarima
SARIMA is an extension of the ARIMA model for univariate time series with a
seasonal component.

SARIMAX is, then, the name of the model, which also supports exogenous variables.

These are the three ARIMA parameters:

•	 p = trend auto-regressive order

•	 d = trend difference order

•	 q = trend MA order

Using a SARIMAX time series model with pmdarima 167

In addition to the preceding parameters, SARIMA introduces four more, as follows:

•	 P = seasonal auto-regressive order

•	 D = seasonal difference order

•	 Q = seasonal MA order

•	 m = the length of a single seasonal period in the number of time steps

To find these parameters manually can be time-consuming, and it may be advantageous to
use an auto-ARIMA model.

In Python, auto-ARIMA modeling is provided by the pmdarima library. Its
documentation is available at http://alkaline-ml.com/pmdarima/index.html.

The installation is straightforward, as can be seen here:

pip install pmdarima

The auto-ARIMA model attempts to automatically discover the SARIMAX parameters by
conducting various statistical tests, as illustrated here:

Figure 6.12 – Table of the various statistical tests

Once we find the optimal d value, the auto-ARIMA model searches for the best fitting
model within the ranges defined by start_p, max_p, start_q, and max_q. If the
seasonal parameter is enabled, once we determine the optimal D value we use a similar
procedure to find P and Q.

The best model is determined by minimizing the value of the information criterion
(Akaike information criterion (AIC), Corrected AIC, Bayesian information criterion
(BIC), Hannan-Quinn information criterion (HQC), or out-of-bag (OOB)—for
validation scoring—respectively).

http://alkaline-ml.com/pmdarima/index.html

168 Statistical Estimation, Inference, and Prediction

If no suitable model is found, auto-ARIMA returns a ValueError output.

Let's use auto-ARIMA with the previous dataset. The time series has a clear seasonality
component with a periodicity of 12.

Notice in the following code block that we generate 95% confidence intervals for the
predicted values, which is very useful for trading rules—for example, sell if the price is
above the upper confidence interval value:

import pmdarima as pm

model = pm.auto_arima(dataset['Price'], seasonal=True,

 stepwise=True, m=12)

print(model.summary())

extended_dataset = \

pd.DataFrame(

 index=sm.tsa.datetools.dates_from_range('2020m1',

 length=48))

extended_dataset['PredPrice'], conf_int = \

model.predict(48, return_conf_int=True, alpha=0.05)

plt.plot(dataset['Price'], c='blue')

plt.plot(extended_dataset['PredPrice'], c='green')

plt.show()

print(extended_dataset)

print(conf_int)

Using a SARIMAX time series model with pmdarima 169

The output is shown here:

Figure 6.13 – SARIMAX result statistics from auto-ARIMA

170 Statistical Estimation, Inference, and Prediction

The plot is shown in the following screenshot:

Figure 6.14 – Historical and predicted price forecasted by the auto-ARIMA model

The output also includes the predicted prices, as follows:

 PredPrice

2020-01-31 194.939195

2023-12-31 222.660698

[48 rows x 1 columns]

In addition, the output provides the confidence intervals for each predicted price,
as follows:

[[192.39868933 197.4797007]

 [196.80033117 202.32443987]

 [201.6275806 207.60042584]

...

 [212.45091331 225.44676173]

 [216.11548707 229.20590827]]

We will now see time series forecasting with Facebook's Prophet library.

Time series forecasting with Facebook's Prophet library 171

Time series forecasting with Facebook's
Prophet library
Facebook Prophet is a Python library used for forecasting univariate time series with
strong support for seasonality and holiday effects. It is especially suitable for time series
with frequent changes of trends and is robust enough to handle outliers.

More specifically, the Prophet model is an additive regression model with the
following attributes:

•	 Piecewise linear or logistic growth trend

•	 Yearly seasonal component modeled with a Fourier series

•	 Weekly seasonal component modeled with dummy variables

•	 A user-provided list of holidays

Installation of Prophet is more complicated, since it requires a compiler. The easiest way
to install it is by using Anaconda, as follows:

conda install -c conda-forge fbprophet

The accompanying Git repository contains the conda environment set up with Prophet.

The Prophet library requires the input DataFrame to include two columns—ds for date,
and y for the value.

Let's fit the Prophet model onto the previous dataset. Notice in the following code snippet
that we explicitly tell Prophet we wish to receive monthly predictions (freq='M'):

from fbprophet import Prophet

prophet_dataset = \

dataset.rename(columns={'Price' : 'y'}).rename_axis('ds')\

.drop('PredPrice', 1).reset_index()

print(prophet_dataset)

model = Prophet()

model.fit(prophet_dataset)

df_forecast = model.make_future_dataframe(periods=48,

 freq='M')

df_forecast = model.predict(df_forecast)

172 Statistical Estimation, Inference, and Prediction

print(df_forecast[['ds', 'yhat', 'yhat_lower',

 'yhat_upper']].tail())

model.plot(df_forecast, xlabel='Date', ylabel='Value')

model.plot_components(df_forecast)

The predicted values are very similar to the SARIMAX model, as can be seen here:

Figure 6.15 – The Prophet library's output includes prediction values,
along with the model components' values

The predicted values are stored in the yhat column with the yhat_lower and
yhat_upper confidence intervals.

Prophet does produce charts of Prophet components, which is useful for understanding
the model's prediction powers. A trend component chart can be seen here:

Figure 6.16 – The trend component chart of the Prophet model

Time series forecasting with Facebook's Prophet library 173

The following screenshot shows the yearly seasonality output:

Figure 6.17 – The yearly seasonality component chart of the Prophet model

Here is the output of the forecast chart:

Figure 6.18 – The forecast chart of the Prophet model along with the confidence intervals

174 Statistical Estimation, Inference, and Prediction

Each time series model is slightly different and is best suited for different classes of
time series. In general, however, the Prophet model is very robust and easiest to use in
most scenarios.

Introduction to scikit-learn regression and
classification
scikit-learn is a Python supervised and unsupervised machine learning library built on top
of the numpy and scipy libraries.

Let's demonstrate how to forecast price changes on a dataset with RidgeCV regression
and classification using scikit-learn.

Generating the dataset
Let's start by generating the dataset for the following examples—a Pandas DataFrame
containing daily data for 20 years with BookPressure, TradePressure,
RelativeValue, and Microstructure fields to represent some synthetic trading
signals built on this dataset (also known as features or predictors). The PriceChange field
represents the daily change in prices that we are trying to predict (also known as response
or target variable). For simplicity, we make the PriceChange field a linear function of
our predictors with random weights and some random noise. The Price field represents
the actual price of the instrument generated using the pandas.Series.cumsum(...)
method. The code can be seen in the following snippet:

import numpy as np

import pandas as pd

df = pd.DataFrame(index=pd.date_range('2000', '2020'))

df['BookPressure'] = np.random.randn(len(df)) * 2

df['TradePressure'] = np.random.randn(len(df)) * 100

df['RelativeValue'] = np.random.randn(len(df)) * 50

df['Microstructure'] = np.random.randn(len(df)) * 10

true_coefficients = np.random.randint(low=-100, high=101,

 size=4) / 10

Introduction to scikit-learn regression and classification 175

df['PriceChange'] = ((df['BookPressure'] * true_
coefficients[0])

+ (df['TradePressure'] * true_coefficients[1])

+ (df['RelativeValue'] * true_coefficients[2])

+ (df['Microstructure'] * true_coefficients[3])

+ (np.random.randn(len(df)) * 200))

df['Price'] = df['PriceChange'].cumsum(0) + 100000

Let's quickly inspect the true weights assigned to our four features, as follows:

true_coefficients

array([10. , 6.2, -0.9, 5.])

Let's also inspect the DataFrame containing all the data, as follows:

Df

 BookPressure TradePressure RelativeValue
Microstructure PriceChange Price

2000-01-01 4.545869 -2.335894 5.953205 -15.025576
-263.749500 99736.250500

2000-01-02 -0.302344 -186.764283 9.150213 13.795346
-758.298833 98977.951667

...

2019-12-31 -1.890265 -113.704752 60.258456 12.229772
-295.295108 182827.332185

2020-01-01 1.657811 -77.354049 -39.090108 -3.294086
-204.576735 182622.755450

7306 rows × 6 columns

176 Statistical Estimation, Inference, and Prediction

Let's visually inspect the Price field, as follows:

df['Price'].plot(figsize=(12, 6), color='black',

 legend='Price')

The plot shows the following realistic-looking price evolution over 20 years:

Figure 6.19 – Price plot for the synthetically generated dataset

Let's display a scatter matrix of all columns but the Price column, as follows:

pd.plotting.scatter_matrix(df.drop('Price', axis=1),

 color='black', alpha=0.2,

 grid=True, diagonal='kde',

 figsize=(10, 10))

Introduction to scikit-learn regression and classification 177

The output is shown here:

Figure 6.20 – Scatter matrix for the synthetically generated dataset

The scatter matrix shows that there is a strong relationship between PriceChange and
TradePressure.

178 Statistical Estimation, Inference, and Prediction

Running RidgeCV regression on the dataset
Let's use a scikit-learn regression method to fit a linear regression model to our dataset.
We will use the four features to try to fit to and predict the PriceChange field.

First, we collect the features and target into a DataFrame and a Series, as follows:

features = df[['BookPressure', 'TradePressure',

 'RelativeValue', 'Microstructure']]

target = df['PriceChange']

We will use sklearn.linear_model.RidgeCV, a linear regression model with L2
regularization (an L2 norm penalty factor to avoid overfitting) that uses cross-validation
to learn the optimal coefficients. We will use the sklearn.linear_model.RidgeCV.
fit(...) method to fit the target values using the features. The code is shown in the
following snippet:

from sklearn.linear_model import RidgeCV

ridge = RidgeCV()

ridge.fit(features, target)

The result is a RidgeCV object, as can be seen here:

RidgeCV(alphas=array([0.1, 1. , 10.]), cv=None,

 fit_intercept=True, gcv_mode=None,

 normalize=False, scoring=None,

 store_cv_values=False)

We can access the weights/coefficients learned by the Ridge model using the RidgeCV.
coef_ attribute and compare it with the actual coefficients, as follows:

true_coefficients, ridge.coef_

It seems the coefficients learned by the model are very close to the true weights, with some
errors on each one of them, as can be seen in the following code snippet:

(array([10. , 6.2, -0.9, 5.]),

 array([11.21856334, 6.20641632, -0.93444009, 4.94581522]))

Introduction to scikit-learn regression and classification 179

The RidgeCV.score(...) method returns the R2 score, representing the accuracy of
a fitted model, as follows:

ridge.score(features, target)

That returns the following R2 score with a maximum value of 1, so this model fits the data
quite well:

0.9076861352499385

The RidgeCV.predict(...) method outputs the predicted price change values,
which we combine with the pandas.Series.cumsum(...) method to generate the
predicted price series, and then save it in the PredPrice field, as follows:

df['PredPrice'] = \

ridge.predict(features).cumsum(0) + 100000; df

That adds a new column to our DataFrame, as shown here:

 ... Price PredPrice

2000-01-01 ... 99736.250500 99961.011495

2000-01-02 ... 98977.951667 98862.549185

2019-12-31 ... 182827.332185 183059.625653

2020-01-01 ... 182622.755450 182622.755450

7306 rows × 7 columns

In the following code block, the true Price field is plotted alongside the predicted
PredPrice field:

df['Price'].plot(figsize=(12, 6), color='gray',

 linestyle='--', legend='Price')

df['PredPrice'].plot(figsize=(12, 6), color='black',

 linestyle='-.', legend='PredPrice')

180 Statistical Estimation, Inference, and Prediction

The plot generated, as shown in the following screenshot, reveals that PredPrice mostly
tracks Price, with some prediction errors during some time periods:

Figure 6.21 – Plot comparing the original price and the predicted price from a Ridge regression model

We can zoom in to the first quarter of 2010 to inspect the prediction errors, as follows:

df['Price'].loc['2010-01-01':'2010-03-31']\

.plot(figsize=(12, 6), color='darkgray', linestyle='-',

 legend='Price')

df['PredPrice'].loc['2010-01-01':'2010-03-31']\

.plot(figsize=(12, 6), color='black', linestyle='-.',

 legend='PredPrice')

Introduction to scikit-learn regression and classification 181

This yields the following plot, displaying the differences between Price and PredPrice
for that period:

Figure 6.22 – Plot comparing the original and predicted price from
a Ridge regression model for 2010 Q1

We can compute the prediction errors and plot them using a density plot, as shown in the
following code snippet:

df['Errors'] = df['Price'] - df['PredPrice']

df['Errors'].plot(figsize=(12, 6), kind='kde',

 color='black', legend='Errors')

182 Statistical Estimation, Inference, and Prediction

This generates the plot shown in the following screenshot, displaying the distribution
of errors:

Figure 6.23 – Plot displaying the distribution of prediction errors for the Ridge regression model

The error plot displayed in the preceding screenshot shows that there is no strong bias in
the errors.

Running a classification method on the dataset
Let's demonstrate scikit-learn's classification methods.

First, we need to create discrete categorical target labels for the classification model to predict.
We assign -2, -1, 0, 1, and 2 numeric labels to these conditions respectively and save the
discrete target labels in the target_discrete pandas.Series object, as follows:

target_discrete = pd.cut(target, bins=5,

 labels = \

 [-2, -1, 0, 1, 2]).astype(int);

target_discrete

The result is shown here:

2000-01-01 0

2000-01-02 -1

 ...

2019-12-28 -1

Introduction to scikit-learn regression and classification 183

2019-12-29 0

2019-12-30 0

2019-12-31 0

2020-01-01 0

Freq: D, Name: PriceChange, Length: 7306, dtype: int64

We can visualize the distribution of the five labels by using the following code:

target_discrete.plot(figsize=(12, 6), kind='hist',

 color='black')

The result is a plot of frequency of occurrence of the five labels, as shown in the
following screenshot:

Figure 6.24 – Frequency distribution of our discrete target-price change-label values [-2, -1, 0, 1, 2]

For the classification, we use an ensemble of decision tree classifiers provided by sklearn.
ensemble.RandomForestClassifier. Random forest is a classifier that uses the
bagging ensemble method and builds a forest of decision trees by training each tree on
datasets generated by random sampling with replacements from the original dataset. Using
a max_depth=5 parameter, we limit the height of each tree to reduce overfitting and then
call the RandomForestClassifier.fit(...) method to fit the model, as follows:

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(max_depth=5)

rf.fit(features, target_discrete)

184 Statistical Estimation, Inference, and Prediction

This builds the following RandomForestClassifier fitted model:

RandomForestClassifier(

 bootstrap=True, ccp_alpha=0.0, class_weight=None,

 criterion='gini', max_depth=5, max_features='auto',

 max_leaf_nodes=None, max_samples=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=100,

 n_jobs=None, oob_score=False, random_state=None,

 verbose=0, warm_start=False)

The RandomForestClassifier.score(...) method returns the mean accuracy of
the predictions compared to the True labels, as follows:

rf.score(features, target_discrete)

As we can see here, the accuracy score is 83.5%, which is excellent:

0.835340815767862

We add the DiscretePriceChange and PredDiscretePriceChange
fields to the DataFrame to hold the true labels and the predicted labels using the
RandomForestClassifier.predict(...) method, as follows:

df['DiscretePriceChange'] = target_discrete

df['PredDiscretePriceChange'] = rf.predict(features)

df

The result is the following DataFrame with the two additional fields:

 ... DiscretePriceChange PredDiscretePriceChange

2000-01-01 ... 0 0

2000-01-02 ... -1 -1

2019-12-31 ... 0 -1

2020-01-01 ... 0 -1

7306 rows × 10 columns

Introduction to scikit-learn regression and classification 185

In the following code block, we plot two fields for the first quarter of 2010:

df['DiscretePriceChange'].loc['2010-01-01':'2010-03-31'].
plot(figsize=(12, 6), color='darkgray', linestyle='-',
legend='DiscretePriceChange')

df['PredDiscretePriceChange'].loc['2010-01-01':'2010-03-
31'].plot(figsize=(12, 6), color='black', linestyle='-.',
legend='PredDiscretePriceChange')

That yields a plot, as shown in the following screenshot, with some dislocations between
the True and predicted labels:

Figure 6.25 – Comparison of original and predicted discrete price-change labels from the
RandomForest classification model for 2010 Q1

We can compute and plot the distribution of the ClassificationErrors DataFrame
with the following code:

df['ClassificationErrors'] = \

df['DiscretePriceChange'] - df['PredDiscretePriceChange']

df['ClassificationErrors'].plot(figsize=(12, 6),

 kind='kde', color='black',

 legend='ClassificationErrors')

186 Statistical Estimation, Inference, and Prediction

This yields the following error distribution:

Figure 6.26 – Plot of distribution of classification errors from the RandomForest classifier model

The classification errors are again without bias and are negligible.

Summary
All advanced trading algorithms use statistical models, whether for a direct trading rule
or just for deciding when to enter/leave trading. In this chapter, we have covered the
four key statistical libraries for Python—statsmodels, pmdarima, fbprophet,
and scikitlearn.

In the next chapter, we discuss how to import key financial and economic data into Python.

This section teaches you how to retrieve market data in Python, how to run
basic algorithmic trading backtesting, and describes in detail the key algorithmic
trading algorithms.

This section comprises the following chapters:

•	 Chapter 7, Financial Market Data Access in Python

•	 Chapter 8, Introduction to Zipline and PyFolio

•	 Chapter 9, Fundamental Algorithmic Trading Strategies

Section 3:
Algorithmic

Trading in Python

7
Financial Market

Data Access
in Python

This chapter outlines several key market data sources, ranging from free to paid
data sources. A more complete list of available resources can be obtained from
https://github.com/wilsonfreitas/awesome-quant#data-sources.

The quality of algorithmic trading models' signals fundamentally depends on the quality
of market data being analyzed. Has the market data been cleaned of erroneous records and
is there a quality assurance process in place to rectify any errors as they occur? If there is a
problem with the market data feed, how quickly can the data be corrected?

The following free data sources described are suitable for learning purposes, but not fit
for purpose as regards professional trading – there may be a very low limit on the number
of API calls per day, the APIs may be slow, and there is no support and no rectification of
the data should it not be correct. In addition, when using any of these data providers, be
aware of their terms of use.

In this chapter, we are going to cover the following key topics:

•	 Exploring the yahoofinancials Python library
•	 Exploring the pandas_datareader Python library

https://github.com/wilsonfreitas/awesome-quant#data-sources

190 Financial Market Data Access in Python

•	 Exploring the Quandl data source
•	 Exploring the IEX Cloud data source
•	 Exploring the MarketStack data source

Technical requirements
The Python code used in this chapter is available in the Chapter07/marketdata.
ipynb notebook in the book's code repository.

Exploring the yahoofinancials Python library
The yahoofinancials Python library provides free access to the market data available from
Yahoo Finance, whose provider is ICE Data Services. The library repository is available at
https://github.com/JECSand/yahoofinancials.

It provides access to historical and, for most assets, also real-time pricing data for the following:

•	 Currencies
•	 Indexes
•	 Stocks
•	 Commodities
•	 ETFs
•	 Mutual funds
•	 US Treasuries
•	 Cryptocurrencies

To find the right ticker, use the lookup at https://finance.yahoo.com/.

There is a very strict limit on the number of calls per hour per IP address (about 1,000-2,000
requests per hour per IP address) and once you reach it, your IP address gets blocked for an
extensive period of time. In addition, the functionality provided constantly changes.

Installation of the library is standard:

pip install yahoofinancials

Access to the data is very straightforward, as follows:

from yahoofinancials import YahooFinancials

The library supports both single-ticker retrieval and multiple-tickers retrieval.

https://github.com/JECSand/yahoofinancials
https://finance.yahoo.com/

Exploring the yahoofinancials Python library 191

Single-ticker retrieval
The steps regarding single-ticker retrieval are as follows:

1.	 First, we define the AAPL ticker object:

aapl = yf.Ticker("AAPL")

2.	 Then, there is the issue of historical data retrieval. Let's print all historical daily price
data for the year of 2020:

hist = aapl.get_historical_price_data('2020-01-01',

 '2020-12-31',

 'daily')

print(hist)

The output starts with the following:
{'AAPL': {'eventsData': {'dividends': {'2020-02-07':
{'amount': 0.1925, 'date': 1581085800, 'formatted_
date': '2020-02-07'}, '2020-05-08': {'amount': 0.205,
'date': 1588944600, 'formatted_date': '2020-05-08'},
'2020-08-07': {'amount': 0.205, 'date': 1596807000,
'formatted_date': '2020-08-07'}, '2020-11-06':
{'amount': 0.205, 'date': 1604673000, 'formatted_
date': '2020-11-06'}}, 'splits': {'2020-08-31':
{'date': 1598880600, 'numerator': 4, 'denominator': 1,
'splitRatio': '4:1', 'formatted_date': '2020-08-31'}}},
'firstTradeDate': {'formatted_date': '1980-12-12',
'date': 345479400}, 'currency': 'USD', 'instrumentType':
'EQUITY', 'timeZone': {'gmtOffset': -18000}, 'prices':
[{'date': 1577975400, 'high': 75.1500015258789, 'low':
73.79750061035156, 'open': 74.05999755859375, 'close':
75.0875015258789, 'volume': 135480400, 'adjclose':
74.4446029663086, 'formatted_date': '2020-01-02'},
{'date': 1578061800, 'high': 75.1449966430664,
'low': 74.125, 'open': 74.2874984741211, 'close':
74.35749816894531, 'volume': 146322800, 'adjclose':
73.72084045410156, 'formatted_date': '2020-01-03'},
{'date': 1578321000, 'high': 74.98999786376953,
'low': 73.1875, 'open': 73.44750213623047, 'close':
74.94999694824219, 'volume': 118387200, 'adjclose':
74.30826568603516, 'formatted_date': '2020-01-06'},
{'date': 1578407400, 'high': 75.2249984741211, 'low':
74.37000274658203, 'open': 74.95999908447266, 'close':
74.59750366210938, 'volume': 108872000, 'adjclose':

192 Financial Market Data Access in Python

73.95879364013672, 'formatted_date': '2020-01-07'},
{'date': 1578493800, 'high': 76.11000061035156, 'low':
74.29000091552734, 'open': 74.29000091552734, 'close':
75.79750061035156, 'volume': 132079200, 'adjclose':
75.14852142333984, 'formatted_date': '2020-01-08'},
{'date': 1578580200, 'high': 77.60749816894531,
'low': 76.55000305175781, 'open': 76.80999755859375,
'close': 77.40750122070312, 'volume': 170108400,
'adjclose': 76.7447280883789, 'formatted_date': '2020-
01-09'}, {'date': 1578666600, 'high': 78.1675033569336,
'low': 77.0625, 'open': 77.6500015258789, 'close':
77.5824966430664, 'volume': 140644800, 'adjclose':
76.91822052001953, 'formatted_date': '2020-01-10'},
{'date': 1578925800, 'high': 79.26750183105469, 'low':
77.7874984741211, 'open': 77.91000366210938, 'close':
79.23999786376953, 'volume': 121532000, 'adjclose':
78.56153106689453, 'formatted_date': '2020-01-13'},
{'date': 1579012200, 'high': 79.39250183105469,
'low': 78.0425033569336, 'open': 79.17500305175781,
'close': 78.16999816894531, 'volume': 161954400,
'adjclose': 77.50070190429688, 'formatted_date': '2020-
01-14'}, {'date': 1579098600, 'high': 78.875, 'low':
77.38749694824219, 'open': 77.9625015258789, 'close':
77.83499908447266, 'volume': 121923600, 'adjclose':
77.16856384277344, 'formatted_date': '2020-01-15'},
{'date': 1579185000, 'high': 78.92500305175781, 'low':
78.02249908447266, 'open': 78.39749908447266, 'close':
78.80999755859375, 'volume': 108829200, 'adjclose':
78.13522338867188, 'formatted_date': '2020-01-16'},
{'date': 1579271400, 'high': 79.68499755859375,
'low': 78.75, 'open': 79.06749725341797, 'close':
79.68250274658203, 'volume': 137816400, 'adjclose':
79.000244140625, 'formatted_date': '2020-01-17'},
{'date': 1579617000, 'high': 79.75499725341797,
'low': 79.0, 'open': 79.29750061035156, 'close':
79.14250183105469, 'volume': 110843200, 'adjclose':
78.46488189697266, 'formatted_date': '2020-01-21'},
{'date': 1579703400, 'high': 79.99749755859375, 'low':
79.32749938964844, 'open': 79.6449966430664, 'close':
79.42500305175781, 'volume': 101832400, 'adjclose':
78.74495697021484, 'formatted_date': '2020-01-22'}, ...

Note
You can change the frequency from 'daily' to 'weekly' or 'monthly'.

Exploring the yahoofinancials Python library 193

3.	 Now, let's inspect the weekly data results:

hist = aapl.get_historical_price_data('2020-01-01',

 '2020-12-31',

 'weekly')

print(hist)

The output is as follows:
{'AAPL': {'eventsData': {'dividends': {'2020-02-05':
{'amount': 0.1925, 'date': 1581085800, 'formatted_
date': '2020-02-07'}, '2020-05-06': {'amount': 0.205,
'date': 1588944600, 'formatted_date': '2020-05-08'},
'2020-08-05': {'amount': 0.205, 'date': 1596807000,
'formatted_date': '2020-08-07'}, '2020-11-04': {'amount':
0.205, 'date': 1604673000, 'formatted_date': '2020-11-
06'}}, 'splits': {'2020-08-26': {'date': 1598880600,
'numerator': 4, 'denominator': 1, 'splitRatio': '4:1',
'formatted_date': '2020-08-31'}}}, 'firstTradeDate':
{'formatted_date': '1980-12-12', 'date': 345479400},
'currency': 'USD', 'instrumentType': 'EQUITY',
'timeZone': {'gmtOffset': -18000}, 'prices': [{'date':
1577854800, 'high': 75.2249984741211, 'low': 73.1875,
'open': 74.05999755859375, 'close': 74.59750366210938,
'volume': 509062400, 'adjclose': 73.95879364013672,
'formatted_date': '2020-01-01'}, {'date': 1578459600,
'high': 79.39250183105469, 'low': 74.29000091552734,
'open': 74.29000091552734, 'close': 78.16999816894531,
'volume': 726318800, 'adjclose': 77.50070190429688,
'formatted_date': '2020-01-08'}, {'date': 1579064400,
'high': 79.75499725341797, 'low': 77.38749694824219,
'open': 77.9625015258789, 'close': 79.14250183105469,
'volume': 479412400, 'adjclose': 78.46488189697266,
'formatted_date': '2020-01-15'}, {'date': 1579669200,
'high': 80.8324966430664, 'low': 76.22000122070312,
'open': 79.6449966430664, 'close': 79.42250061035156,
'volume': 677016000, 'adjclose': 78.74247741699219,
'formatted_date': '2020-01-22'}, {'date': 1580274000,
'high': 81.9625015258789, 'low': 75.55500030517578,
'open': 81.11250305175781, 'close': 79.7125015258789,
'volume': 853162800, 'adjclose': 79.02999877929688,
'formatted_date': '2020-01-29'}, {'date': 1580878800,
'high': 81.30500030517578, 'low': 78.4625015258789,
'open': 80.87999725341797, 'close': 79.90249633789062,
'volume': 545608400, 'adjclose': 79.21836853027344,

194 Financial Market Data Access in Python

'formatted_date': '2020-02-05'}, {'date': 1581483600,
'high': 81.80500030517578, 'low': 78.65249633789062,
'open': 80.36750030517578, 'close': 79.75, 'volume':
441122800, 'adjclose': 79.25482177734375, 'formatted_
date': '2020-02-12'}, {'date': 1582088400, 'high':
81.1624984741211, 'low': 71.53250122070312, 'open':
80.0, 'close': 72.0199966430664, 'volume': 776972800,
'adjclose': 71.57282257080078, 'formatted_date': '2020-
02-19'}, {'date': 1582693200, 'high': 76.0, 'low':
64.09249877929688, 'open': 71.63249969482422, 'close':
72.33000183105469, 'volume': 1606418000, 'adjclose':
71.88089752197266, 'formatted_date': '2020-02-
26'}, {'date': 1583298000, 'high': 75.8499984741211,
'low': 65.75, 'open': 74.11000061035156, 'close':
71.33499908447266, 'volume': 1204962800, 'adjclose':
70.89207458496094, 'formatted_date': '2020-03-04'},
{'date': 1583899200, 'high': 70.3050003051757 ...

4.	 Then, we check the monthly data results:

hist = aapl.get_historical_price_data('2020-01-01',

 '2020-12-31',

 'monthly')

print(hist)

The output is as follows:
{'AAPL': {'eventsData': {'dividends': {'2020-05-01':
{'amount': 0.205, 'date': 1588944600, 'formatted_
date': '2020-05-08'}, '2020-08-01': {'amount': 0.205,
'date': 1596807000, 'formatted_date': '2020-08-07'},
'2020-02-01': {'amount': 0.1925, 'date': 1581085800,
'formatted_date': '2020-02-07'}, '2020-11-01': {'amount':
0.205, 'date': 1604673000, 'formatted_date': '2020-11-
06'}}, 'splits': {'2020-08-01': {'date': 1598880600,
'numerator': 4, 'denominator': 1, 'splitRatio': '4:1',
'formatted_date': '2020-08-31'}}}, 'firstTradeDate':
{'formatted_date': '1980-12-12', 'date': 345479400},
'currency': 'USD', 'instrumentType': 'EQUITY',
'timeZone': {'gmtOffset': -18000}, 'prices': [{'date':
1577854800, 'high': 81.9625015258789, 'low': 73.1875,
'open': 74.05999755859375, 'close': 77.37750244140625,
'volume': 2934370400, 'adjclose': 76.7149887084961,
'formatted_date': '2020-01-01'}, {'date': 1580533200,
'high': 81.80500030517578, 'low': 64.09249877929688,

Exploring the yahoofinancials Python library 195

'open': 76.07499694824219, 'close': 68.33999633789062,
'volume': 3019851200, 'adjclose': 67.75486755371094,
'formatted_date': '2020-02-01'}, {'date': 1583038800,
'high': 76.0, 'low': 53.15250015258789, 'open':
70.56999969482422, 'close': 63 ...

5.	 The nested JSON can easily be converted to a pandas' DataFrame:

import pandas as pd

​

hist_df = \

pd.DataFrame(hist['AAPL']['prices']).drop('date',
axis=1).set_index('formatted_date')

print(hist_df)

The output is as follows:

Figure 7.1 – Nested JSON converted to a pandas' DataFrame

196 Financial Market Data Access in Python

Notice the two columns – adjclose and close. The adjusted close is the close price
adjusted for dividends, stock splits, and other corporate events.

Real-time data retrieval
To get real-time stock price data, use the get_stock_price_data() function:

print(aapl.get_stock_price_data())

The output is as follows:

{'AAPL': {'quoteSourceName': 'Nasdaq Real Time Price',
'regularMarketOpen': 137.35, 'averageDailyVolume3Month':
107768827, 'exchange': 'NMS', 'regularMarketTime':
'2021-02-06 03:00:02 UTC+0000', 'volume24Hr': None,
'regularMarketDayHigh': 137.41, 'shortName': 'Apple Inc.',
'averageDailyVolume10Day': 115373562, 'longName': 'Apple
Inc.', 'regularMarketChange': -0.42500305, 'currencySymbol':
'$', 'regularMarketPreviousClose': 137.185, 'postMarketTime':
'2021-02-06 06:59:58 UTC+0000', 'preMarketPrice':
None, 'exchangeDataDelayedBy': 0, 'toCurrency': None,
'postMarketChange': -0.0800018, 'postMarketPrice': 136.68,
'exchangeName': 'NasdaqGS', 'preMarketChange': None,
'circulatingSupply': None, 'regularMarketDayLow': 135.86,
'priceHint': 2, 'currency': 'USD', 'regularMarketPrice':
136.76, 'regularMarketVolume': 72317009, 'lastMarket': None,
'regularMarketSource': 'FREE_REALTIME', 'openInterest': None,
'marketState': 'CLOSED', 'underlyingSymbol': None, 'marketCap':
2295940513792, 'quoteType': 'EQUITY', 'volumeAllCurrencies':
None, 'postMarketSource': 'FREE_REALTIME', 'strikePrice':
None, 'symbol': 'AAPL', 'postMarketChangePercent':
-0.00058498, 'preMarketSource': 'FREE_REALTIME', 'maxAge':
1, 'fromCurrency': None, 'regularMarketChangePercent':
-0.0030980287}}

Real-time data for free data sources is usually delayed by 10 to 30 minutes.

Exploring the yahoofinancials Python library 197

As regards the retrieval of financial statements, let's get financial statements for Apple's
stock – the income statement, cash flow, and balance sheet:

statements = aapl.get_financial_stmts('quarterly',

 ['income', 'cash',

 'balance'])

print(statements)

The output is as follows:

{'incomeStatementHistoryQuarterly': {'AAPL': [{'2020-
12-26': {'researchDevelopment': 5163000000,
'effectOfAccountingCharges': None, 'incomeBeforeTax':
33579000000, 'minorityInterest': None, 'netIncome':
28755000000, 'sellingGeneralAdministrative': 5631000000,
'grossProfit': 44328000000, 'ebit': 33534000000,
'operatingIncome': 33534000000, 'otherOperatingExpenses':
None, 'interestExpense': -638000000, 'extraordinaryItems':
None, 'nonRecurring': None, 'otherItems': None,
'incomeTaxExpense': 4824000000, 'totalRevenue': 111439000000,
'totalOperatingExpenses': 77905000000, 'costOfRevenue':
67111000000, 'totalOtherIncomeExpenseNet': 45000000,
'discontinuedOperations': None, 'netIncomeFromContinuingOps':
28755000000, 'netIncomeApplicableToCommonShares':
28755000000}}, {'2020-09-26': {'researchDevelopment':
4978000000, 'effectOfAccountingCharges': None,
'incomeBeforeTax': 14901000000, 'minorityInterest': None,
'netIncome': 12673000000, 'sellingGeneralAdministrative':
4936000000, 'grossProfit': ...

There are multiple uses of financial statement data in relation to algorithmic trading.
First, it can be used to determine the totality of stocks to trade in. Second, the creation of
algorithmic trading signals from non-price data adds additional value.

Summary data retrieval
Summary data is accessible via the get_summary_data method:

print(aapl.get_summary_data())

198 Financial Market Data Access in Python

The output is as follows:

{'AAPL': {'previousClose': 137.185, 'regularMarketOpen':
137.35, 'twoHundredDayAverage': 119.50164,
'trailingAnnualDividendYield': 0.0058825673, 'payoutRatio':
0.2177, 'volume24Hr': None, 'regularMarketDayHigh': 137.41,
'navPrice': None, 'averageDailyVolume10Day': 115373562,
'totalAssets': None, 'regularMarketPreviousClose': 137.185,
'fiftyDayAverage': 132.86455, 'trailingAnnualDividendRate':
0.807, 'open': 137.35, 'toCurrency': None,
'averageVolume10days': 115373562, 'expireDate': '-',
'yield': None, 'algorithm': None, 'dividendRate':
0.82, 'exDividendDate': '2021-02-05', 'beta':
1.267876, 'circulatingSupply': None, 'startDate': '-',
'regularMarketDayLow': 135.86, 'priceHint': 2, 'currency':
'USD', 'trailingPE': 37.092484, 'regularMarketVolume':
72317009, 'lastMarket': None, 'maxSupply': None,
'openInterest': None, 'marketCap': 2295940513792,
'volumeAllCurrencies': None, 'strikePrice': None,
'averageVolume': 107768827, 'priceToSalesTrailing12Months':
7.805737, 'dayLow': 135.86, 'ask': 136.7, 'ytdReturn': None,
'askSize': 1100, 'volume': 72317009, 'fiftyTwoWeekHigh':
145.09, 'forwardPE': 29.410751, 'maxAge': 1, 'fromCurrency':
None, 'fiveYearAvgDividendYield': 1.44, 'fiftyTwoWeekLow':
53.1525, 'bid': 136.42, 'tradeable': False, 'dividendYield':
0.0061000003, 'bidSize': 2900, 'dayHigh': 137.41}}

Summary data retrieved using this function is a summary of the financial statements
function and the real-time data function.

Multiple-tickers retrieval
Multiple-tickers retrieval, also known as a bulk retrieval, is far more efficient and faster
than single-ticker retrieval since most of the time associated with each download request
is spent on establishing and closing the network connection.

Exploring the yahoofinancials Python library 199

Historical data retrieval
Let's retrieve the historical prices for these FX pairs: EURCHF, USDEUR, and GBPUSD:

currencies = YahooFinancials(['EURCHF=X', 'USDEUR=X',

 'GBPUSD=x'])

print(currencies.get_historical_price_data('2020-01-01',

 '2020-12-31',

 'weekly'))

The output is as follows:

{'EURCHF=X': {'eventsData': {}, 'firstTradeDate': {'formatted_
date': '2003-01-23', 'date': 1043280000}, 'currency': 'CHF',
'instrumentType': 'CURRENCY', 'timeZone': {'gmtOffset': 0},
'prices': [{'date': 1577836800, 'high': 1.0877000093460083,
'low': 1.0818699598312378, 'open': 1.0872000455856323, 'close':
1.084280014038086, 'volume': 0, 'adjclose': 1.084280014038086,
'formatted_date': '2020-01-01'}, {'date': 1578441600,
'high': 1.083299994468689, 'low': 1.0758999586105347, 'open':
1.080530047416687, 'close': 1.0809999704360962, 'volume':
0, 'adjclose': 1.0809999704360962, 'formatted_date': '2020-
01-08'}, {'date': 1579046400, 'high': 1.0774999856948853,
'low': 1.0729299783706665, 'open': 1.076300024986267,
'close': 1.0744800567626953, 'volume': 0, 'adjclose':
1.0744800567626953, 'formatted_date': '2020-01-15'},
{'date': 1579651200, 'high': 1.0786099433898926, 'low':
1.0664700269699097, 'open': 1.0739500522613525, 'close':
1.068600058555603, 'volume': 0, 'adjclose': 1.068600058555603,
'formatted_date': '2020-01-22'}, {'date': 1580256000, 'high':
1.0736199617385864, 'low': 1.0663000345230103, 'open':
1.0723999738693237, 'close': 1.0683200359344482, 'volume': 0,
'adjclose': 1.068320035 ...

We see that the historical data does not contain any data from the financial statements.

The full list of methods supported by the library at the time of writing this book is as follows:

•	 get_200day_moving_avg()

•	 get_50day_moving_avg()

•	 get_annual_avg_div_rate()

•	 get_annual_avg_div_yield()

•	 get_beta()

200 Financial Market Data Access in Python

•	 get_book_value()

•	 get_cost_of_revenue()

•	 get_currency()

•	 get_current_change()

•	 get_current_percent_change()

•	 get_current_price()

•	 get_current_volume()

•	 get_daily_dividend_data(start_date, end_date)

•	 get_daily_high()

•	 get_daily_low()

•	 get_dividend_rate()

•	 get_dividend_yield()

•	 get_earnings_per_share()

•	 get_ebit()

•	 get_exdividend_date()

•	 get_financial_stmts(frequency, statement_type,
reformat=True)

•	 get_five_yr_avg_div_yield()

•	 get_gross_profit()

•	 get_historical_price_data(start_date, end_date, time_
interval)

•	 get_income_before_tax()

•	 get_income_tax_expense()

•	 get_interest_expense()

•	 get_key_statistics_data()

•	 get_market_cap()

•	 get_net_income()

•	 get_net_income_from_continuing_ops()

•	 get_num_shares_outstanding(price_type='current')

•	 get_open_price()

•	 get_operating_income()

Exploring the pandas_datareader Python library 201

•	 get_payout_ratio()

•	 get_pe_ratio()

•	 get_prev_close_price()

•	 get_price_to_sales()

•	 get_research_and_development()

•	 get_stock_earnings_data(reformat=True)

•	 get_stock_exchange()

•	 get_stock_price_data(reformat=True)

•	 get_stock_quote_type_data()

•	 get_summary_data(reformat=True)

•	 get_ten_day_avg_daily_volume()

•	 get_three_month_avg_daily_volume()

•	 get_total_operating_expense()

•	 get_total_revenue()

•	 get_yearly_high()

•	 get_yearly_low()

We will explore the pandas_datareader library in the next section.

Exploring the pandas_datareader Python
library
pandas_datareader is one of the most advanced libraries for financial data and offers
access to multiple data sources.

Some of the data sources supported are as follows:

•	 Yahoo Finance

•	 The Federal Reserve Bank of St Louis' FRED

•	 IEX

•	 Quandl

•	 Kenneth French's data library

•	 World Bank

202 Financial Market Data Access in Python

•	 OECD

•	 Eurostat

•	 Econdb

•	 Nasdaq Trader symbol definitions

Refer to https://pandas-datareader.readthedocs.io/en/latest/
remote_data.html for a full list.

Installation is simple:

pip install pandas-datareader

Let's now set up the basic data retrieval parameters:

from pandas_datareader import data

start_date = '2010-01-01'

end_date = '2020-12-31'

The general access method for downloading the data is data.DataReader(ticker,
data_source, start_date, end_date).

Access to Yahoo Finance
Let's download the last 10 years' worth of Apple stock prices:

aapl = data.DataReader('AAPL', 'yahoo', start_date,

 end_date)

aapl

 High Low Open Close Volume Adj Close

Date

2010-01-
04 7.660714 7.585000 7.622500 7.643214 493729600.0 6.593426

2010-01-
05 7.699643 7.616071 7.664286 7.656428 601904800.0 6.604825

2010-01-
06 7.686786 7.526786 7.656428 7.534643 552160000.0 6.499768

2010-01-
07 7.571429 7.466072 7.562500 7.520714 477131200.0 6.487752

2010-01-
08 7.571429 7.466429 7.510714 7.570714 447610800.0 6.530883

https://pandas-datareader.readthedocs.io/en/latest/remote_data.html
https://pandas-datareader.readthedocs.io/en/latest/remote_data.html

Exploring the pandas_datareader Python library 203

...

2020-12
-21 128.309998 123.449997 125.019997 128.229996 121251600.0
128.229996

2020-12-22 134.410004 129.649994 131.610001 131.880005
168904800.0 131.880005

2020-12-23 132.429993 130.779999 132.160004 130.960007
88223700.0 130.960007

2020-12-24 133.460007 131.100006 131.320007 131.970001
54930100.0 131.970001

2020-12-28 137.339996 133.509995 133.990005 136.690002
124182900.0 136.690002

The output is virtually identical to the output from the yahoofinancials library in the
preceding section.

Access to EconDB
The list of available tickers is available at https://www.econdb.com/main-
indicators.

Let's download the time series of monthly oil production in the US for the last 10 years:

oilprodus = data.DataReader('ticker=OILPRODUS', 'econdb',

 start_date, end_date)

oilprodus

 Reference Area United States of America

 Energy product Crude oil

 Flow breakdown Production

Unit of measure Thousand Barrels per day (kb/d)

TIME_PERIOD

2010-01-01 5390

2010-02-01 5548

2010-03-01 5506

2010-04-01 5383

2010-05-01 5391

2020-04-01 11990

2020-05-01 10001

https://www.econdb.com/main-indicators
https://www.econdb.com/main-indicators

204 Financial Market Data Access in Python

2020-06-01 10436

2020-07-01 10984

2020-08-01 10406

Each data source has different output columns.

Access to the Federal Reserve Bank of St Louis' FRED
The list of available data, along with tickers, can be inspected at https://fred.
stlouisfed.org/.

Let's download the last 10 years of real gross domestic product of the USA:

import pandas as pd

pd.set_option('display.max_rows', 2)

gdp = data.DataReader('GDP', 'fred', start_date, end_date)

gdp

We restricted the output to just two rows:

 GDP

 DATE

2010-01-01 14721.350

2020-07-01 21170.252

43 rows × 1 columns

Now, let's study 5 years of the 20-year constant maturity yields on U.S. government bonds:

gs10 = data.get_data_fred('GS20')

gs10

 GS20

 DATE

2016-01-01 2.49

2020-11-01 1.40

59 rows × 1 columns

The Federal Reserve Bank of St Louis' FRED data is one of the cleanest data sources
available, offering complimentary support.

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/

Exploring the pandas_datareader Python library 205

Caching queries
One of the key advantages of the library is its implementation of caching the results of
queries, thereby saving bandwidth, speeding up code execution, and preventing the
banning of IPs due to the overuse of APIs.

By way of an example, let's download the entire history of Apple stock:

import datetime

import requests_cache

session = \

requests_cache.CachedSession(cache_name='cache',

 backend='sqlite',

 expire_after = \

 datetime.timedelta(days=7))

aapl_full_history = \

data.DataReader("AAPL",'yahoo',datetime.datetime(1980,1,1),

 datetime.datetime(2020, 12, 31),

 session=session)

aapl_full_history

 High Low Open Close Volume Adj Close

Date

1980-12-
12 0.128906 0.128348 0.128348 0.128348 469033600.0 0.101087

...

2020-12-28 137.339996 133.509995 133.990005 136.690002
124182900.0 136.690002

Let's now access just one data point:

aapl_full_history.loc['2013-01-07']

High 18.903572

 ...

Adj Close 16.284145

Name: 2013-01-07 00:00:00, Length: 6, dtype: float64

Caching can be enabled for all previous examples, too.

206 Financial Market Data Access in Python

Exploring the Quandl data source
Quandl is one of the largest repositories of economic/financial data on the internet. Its
data sources can be accessed free of charge. It also offers premium data sources, for which
there is a charge.

Installation is straightforward:

pip install quandl

To access the data, you have to provide an access key (apply for one at
https://quandl.com):

import quandl

quandl.ApiConfig.api_key = 'XXXXXXX'

To find a ticker and data source, use https://www.quandl.com/search.

Let's now download the Monthly average consumer prices in
metropolitan France - Apples (1 Kg); EUR data:

papple = quandl.get('ODA/PAPPLE_USD')

papple

 Value

Date

1998-01-31 1.735999

2020-11-30 3.350000

275 rows × 1 columns

Let's now download Apple's fundamental data:

aapl_fundamental_data = quandl.get_table('ZACKS/FC',

 ticker='AAPL')

 m_ticker ticker comp_name comp_name_2 exchange currency_
code per_end_date per_type per_code per_fisc_
year ... stock_based_compsn_qd cash_flow_oper_activity_
qd net_change_prop_plant_equip_qd comm_stock_div_paid_
qd pref_stock_div_paid_qd tot_comm_pref_stock_div_qd wavg_
shares_out wavg_shares_out_diluted eps_basic_net eps_
diluted_net

None

https://quandl.com
https://www.quandl.com/search

Exploring the IEX Cloud data source 207

0 AAPL AAPL APPLE INC Apple Inc. NSDQ USD
2018-09-30 A None 2018 ... NaN NaN NaN NaN
None NaN 19821.51 20000.44 3.000 2.980

...

...

4 AAPL AAPL APPLE INC Apple Inc. NSDQ USD 2018-12-31
Q None 2019 ... 1559.0 26690.0 -3355.0 -3568.0 None
-3568.0 18943.28 19093.01 1.055 1.045

5 rows × 249 columns

The difference between Yahoo and Quandl data is that the Quandl data is more reliable
and more complete.

Exploring the IEX Cloud data source
IEX Cloud is one of the commercial offerings. It offers a plan for individuals at USD 9 per
month. It also offers a free plan, with a limit of 50,000 API calls per month.

The installation of the Python library is standard:

pip install iexfinance

The full library's documentation is available at https://addisonlynch.github.
io/iexfinance/stable/index.html.

The following code is designed to retrieve all symbols:

from iexfinance.refdata import get_symbols

get_symbols(output_format='pandas', token="XXXXXX")

symbol exchange exchangeSuffix exchangeName name date
type iexId region currency isEnabled figi cik lei

0 A NYS UN NEW YORK STOCK EXCHANGE, INC. Agilent
Technologies Inc. 2020-12-29 cs IEX_46574843354B2D52 US
USD True BBG000C2V3D6 0001090872 QUIX8Y7A2WP0XRMW7G29

...

...

9360 ZYXI NAS NASDAQ CAPITAL MARKET Zynex Inc 2020-12-29
cs IEX_4E464C4C4A462D52 US USD True BBG000BJBXZ2
0000846475 None

9361 rows × 14 columns

https://addisonlynch.github.io/iexfinance/stable/index.html
https://addisonlynch.github.io/iexfinance/stable/index.html

208 Financial Market Data Access in Python

The following code is designed to obtain Apple's balance sheet (not available for
free accounts):

from iexfinance.stocks import Stock

aapl = Stock("aapl", token="XXXXXX")

aapl.get_balance_sheet()

The following code is designed to get the current price (not available for free accounts):

aapl.get_price()

The following code is designed to get the sector performance report (not available for
free accounts):

from iexfinance.stocks import get_sector_performance

get_sector_performance(output_format='pandas',

 token =token)

The following code is designed to get historical market data for Apple:

from iexfinance.stocks import get_historical_data

get_historical_data("AAPL", start="20190101",

 end="20200101",

 output_format='pandas', token=token)

close high low open symbol volume id key subkey
updated ... uLow uVolume fOpen fClose fHigh fLow
fVolume label change changePercent

2019-01-02 39.48 39.7125 38.5575 38.7225 AAPL
148158948 HISTORICAL_PRICES AAPL 1606830572000
... 154.23 37039737 37.8227 38.5626 38.7897 37.6615
148158948 Jan 2, 19 0.045 0.0011

...

...

2019-12-31 73.4125 73.42 72.38 72.4825 AAPL 100990500
HISTORICAL_PRICES AAPL 1606830572000 ... 289.52
25247625 71.8619 72.7839 72.7914 71.7603 100990500
Dec 31, 19 0.5325 0.0073

252 rows × 25 columns

We can see that each data source offers a slightly different set of output columns.

Exploring the MarketStack data source 209

Exploring the MarketStack data source
MarketStack offers an extensive database of real-time, intra-day, and historical market
data across major global stock exchanges. It offers free access for up to 1,000 monthly
API requests.

While there is no official MarketStack Python library, the REST JSON API provides
comfortable access to all its data in Python.

Let's download the adjusted close data for Apple:

import requests

params = {

 'access_key': 'XXXXX'

}

api_result = \

requests.get('http://api.marketstack.com/v1/tickers/aapl/eod',
params)

api_response = api_result.json()

print(f"Symbol = {api_response['data']['symbol']}")

for eod in api_response['data']['eod']:

 print(f"{eod['date']}: {eod['adj_close']}")

Symbol = AAPL

2020-12-28T00:00:00+0000: 136.69

2020-12-24T00:00:00+0000: 131.97

2020-12-23T00:00:00+0000: 130.96

2020-12-22T00:00:00+0000: 131.88

2020-12-21T00:00:00+0000: 128.23

2020-12-18T00:00:00+0000: 126.655

2020-12-17T00:00:00+0000: 128.7

2020-12-16T00:00:00+0000: 127.81

2020-12-15T00:00:00+0000: 127.88

2020-12-14T00:00:00+0000: 121.78

2020-12-11T00:00:00+0000: 122.41

2020-12-10T00:00:00+0000: 123.24

2020-12-09T00:00:00+0000: 121.78

210 Financial Market Data Access in Python

2020-12-08T00:00:00+0000: 124.38

2020-12-07T00:00:00+0000: 123.75

2020-12-04T00:00:00+0000: 122.25

Let's now download all tickers on the Nasdaq stock exchange:

api_result = \

requests.get('http://api.marketstack.com/v1/exchanges/XNAS/
tickers', params)

api_response = api_result.json()

print(f"Exchange Name = {api_response['data']['name']}")

for ticker in api_response['data']['tickers']:

 print(f"{ticker['name']}: {ticker['symbol']}")

Exchange Name = NASDAQ Stock Exchange

Microsoft Corp: MSFT

Apple Inc: AAPL

Amazoncom Inc: AMZN

Alphabet Inc Class C: GOOG

Alphabet Inc Class A: GOOGL

Facebook Inc: FB

Vodafone Group Public Limited Company: VOD

Intel Corp: INTC

Comcast Corp: CMCSA

PepsiCo Inc: PEP

Adobe Systems Inc: ADBE

Cisco Systems Inc: CSCO

NVIDIA Corp: NVDA

Netflix Inc: NFLX

The ticket universe retrieval function is one of the most valuable functions of
MarketStack. One of the first steps for all backtesting is determining the universe (that is,
the complete list) of the stocks to trade. Then, you restrict yourself to a subset of that list,
for example, by trading only stocks with certain trends, or certain volumes.

Summary 211

Summary
In this chapter, we have outlined different ways to obtain financial and economic data in
Python. In practice, you usually use multiple data sources at the same time. We explored
the yahoofinancials Python library and saw single- and multiple-tickers retrievals.
We then explored the pandas_datareader Python library to access Yahoo Finance,
EconDB, and Fed’s Fred data and cache queries. We then explored the Quandl, IEX Cloud
and MarketStack data sources.

In the next chapter, we introduce the backtesting library, Zipline, as well as the trading
portfolio performance and risk analysis library, PyFolio.

8
Introduction to

Zipline and PyFolio
In this chapter, you will learn about the Python libraries known as Zipline and PyFolio, which
abstract away the complexities of the backtesting and performance/risk analysis aspects of
algorithmic trading strategies. They allow you to completely focus on the trading logic.

For this, we are going to cover the following main topics:

•	 Introduction to Zipline and PyFolio

•	 Installing Zipline and PyFolio

•	 Importing market data into a Zipline/PyFolio backtesting system

•	 Structuring Zipline/PyFolio backtesting modules

•	 Reviewing the key Zipline API reference

•	 Running Zipline backtesting from the command line

•	 Introduction to the key risk management figures provided by PyFolio

Technical requirements
The Python code used in this chapter is available in the Chapter08/risk_management.
ipynb notebook in the book's code repository.

214 Introduction to Zipline and PyFolio

Introduction to Zipline and PyFolio
Backtesting is a computational method of assessing how well a trading strategy would
have done if it had been applied to historical data. Ideally, this historical data should
come from a period of time where there were similar market conditions, such as it having
similar volatility to the present and the future.

Backtesting should include all relevant factors, such as slippage and trading costs.

Zipline is one of the most advanced open source Python libraries for algorithmic
trading backtesting engines. Its source code can be found at https://github.com/
quantopian/zipline. Zipline is a backtesting library ideal for daily trading (you can
also backtest weekly, monthly, and so on). It is less suitable for backtesting high-frequency
trading strategies.

PyFolio is an open source Python performance and risk analysis library consisting of
financial portfolios that's closely integrated with Zipline. You can find its documentation
at https://github.com/quantopian/pyfolio.

Using these two libraries to backtest your trading strategy saves you an enormous amount
of time.

The objective of this chapter is to describe the key functionality of these libraries and to
build your intuition. You are encouraged to debug the code in PyCharm or any other
Python IDE and study the contents of each result's variables to make full use of the provided
information. Once you become familiar with the contents of each resultant object, briefly
study the source code of the libraries to see their full functionality.

Installing Zipline and PyFolio
We recommend setting up the development environment as described in Appendix A.
Nevertheless, the detailed instructions are given in the following sections.

Installing Zipline
For performance reasons, Zipline is closely dependent on a particular version of Python
and its related libraries. Therefore, the best way to install it is to create a conda virtual
environment and install Zipline there. We recommend using Anaconda Python for this.

Let's create a virtual environment called zipline_env with Python 3.6 and install the
zipline package:

conda create -n zipline_env python=3.6

conda activate zipline_env

conda install -c conda-forge zipline

https://github.com/quantopian/zipline
https://github.com/quantopian/zipline
https://github.com/quantopian/pyfolio

Importing market data into a Zipline/PyFolio backtesting system 215

We will now install PyFolio.

Installing PyFolio
You can install the pyfolio package via pip:

pip install pyfolio

As we can see, installing PyFolio is also an easy task.

Importing market data into a Zipline/PyFolio
backtesting system
Backtesting depends on us having an extensive market data database.

Zipline introduces two market data-specific terms – bundle and ingest:

•	 A bundle is an interface for incrementally importing market data into Zipline's
proprietary database from a custom source.

•	 An ingest is the actual process of incrementally importing the custom source
market data into Zipline's proprietary database; the data ingest is not automatically
updated. Each time you need fresh data, you must re-ingest the bundle.

By default, Zipline supports these bundles:

•	 Historical Quandl bundle (complimentary daily data for US equities up to 2018)

•	 .csv files bundle

We will now learn how to import these two bundles in more detail.

Importing data from the historical Quandl bundle
First, in the activated zipline_env environment, set the QUANDL_API_KEY
environment variable to your free (or paid) Quandl API key. Then, ingest the quandl data.

For Windows, use the following code:

SET QUANDL_API_KEY=XXXXXXXX

zipline ingest -b quandl

216 Introduction to Zipline and PyFolio

For Mac/Linux, use the following code:

export QUANDL_API_KEY=XXXXXXXX

zipline ingest -b quandl

Note
Quandl stopped updating the complimentary bundle in 2018 but is still more
than useful for the first few algorithmic trading steps.

It's best to set QUANDL_API_KEY in Windows' System Properties (press the Windows
icon and type Environment Variables):

Figure 8.1 – Locating the Edit the system environment variables dialog on Windows

Importing market data into a Zipline/PyFolio backtesting system 217

Then, choose Edit the system environment variables.

Figure 8.2 – The location of the Environment Variables… dialog in System Properties on Windows

Then, specify the variable in the Environment Variables... dialog.

On Mac/Linux, add the following command to ~/.bash_profile for user-based
operations or ~/.bashrc for non-login interactive shells:

export QUANDL_API_KEY=xxxx

Now, let's learn how to import data from the CSV files bundle.

218 Introduction to Zipline and PyFolio

Importing data from the CSV files bundle
The default CSV bundle requires the CSV file to be in open, high, low, close, volume
(OHLCV) format with dates, dividends, and splits:

date,open,high,low,close,volume,dividend,split

This book's GitHub repository contains one sample input CSV file. Its top few lines are
as follows:

date,open,high,low,close,volume,dividend,split

2015-05-
15,18251.9707,18272.7207,18215.07031,18272.56055,108220000,0,0

2015-05-
18,18267.25,18325.53906,18244.25977,18298.88086,79080000,0,0

2015-05-
19,18300.48047,18351.35938,18261.34961,18312.39063,87200000,0,0

2015-05-
20,18315.06055,18350.13086,18272.56055,18285.40039,80190000,0,0

2015-05-
21,18285.86914,18314.89063,18249.90039,18285.74023,84270000,0,0

2015-05-
22,18286.86914,18286.86914,18217.14063,18232.01953,78890000,0,0

2015-05-
26,18229.75,18229.75,17990.01953,18041.53906,109440000,0,0

To use the custom CSV files bundle, follow these steps:

1.	 Create a directory for CSV files, for example, C:\MarketData, with a
subdirectory called Daily.

2.	 Copy the CSV files to the created directory (for example, C:\MarketData\Daily).

3.	 Edit the .py file extension in the C:\Users\<username>\.zipline\
extension.py directory on Windows or ~/.zipline/extension.py on
Mac/Linux, as shown:

import pandas as pd

from zipline.data.bundles import register

from zipline.data.bundles.csvdir import csvdir_equities

register(

 'packt-csvdir-bundle',

Importing market data into a Zipline/PyFolio backtesting system 219

 csvdir_equities(

 ['daily'],

 'c:/MarketData/',

),

 calendar_name='NYSE',

 start_session=pd.Timestamp('2015-5-15', tz='utc'),

 end_session=pd.Timestamp('2020-05-14', tz='utc')

)

Notice that we associate the market data with a trading calendar. In this case, we're
using NYSE, which corresponds to the US equities.

4.	 Ingest the bundle, as follows:

zipline ingest -b packt-csvdir-bundle

The output is as follows:

Figure 8.3 – Output of the zipline ingest for packt-csvdir-bundle
This has created one asset with the A ticker.

Importing data from custom bundles
The historical Quandl bundle is most suitable for learning how to design and backtest
an algorithmic strategy. The CSV files bundle is most suitable for importing prices of
assets with no public prices. However, for other purposes, you should purchase a market
data subscription.

Importing data from Quandl's EOD US Stock Prices data
Quandl offers a subscription service for the End of Day US Stock Prices database
(https://www.quandl.com/data/EOD-End-of-Day-US-Stock-Prices) at
49 USD per month, with discounts for quarterly or annual payments.

The advantages of this service, compared to others, are as follows:

•	 Quandl is deeply integrated into Zipline and you can download the history of all the
stocks using one command.

•	 There is no hard limit in terms of the number of API calls you can make per month,
unlike other providers.

https://www.quandl.com/data/EOD-End-of-Day-US-Stock-Prices

220 Introduction to Zipline and PyFolio

Installing the custom bundle is straightforward:

1.	 Find the location of the bundles directory using the following command:

python -c "import zipline.data.bundles as bdl;
print(bdl.__path__)"

This results in the following output on my computer:
['d:\\Anaconda3\\envs\\zipline_env\\lib\\site-packages\\
zipline\\data\\bundles']

2.	 Copy the quandl_eod.py file from this book's GitHub repository into that
directory. The file is a slight modification of the code from Zipline's GitHub.

3.	 In the same directory, modify the __init__.py file (add this line there):

from . import quandl_eod # noqa

An example of the full __init__.py file is as follows:

These imports are necessary to force module-scope register
calls to happen.

from . import quandl # noqa

from . import csvdir # noqa

from . import quandl_eod # noqa

from .core import (

 UnknownBundle,

 bundles,

 clean,

 from_bundle_ingest_dirname,

 ingest,

 ingestions_for_bundle,

 load,

 register,

 to_bundle_ingest_dirname,

 unregister,

)

__all__ = [

Importing market data into a Zipline/PyFolio backtesting system 221

 'UnknownBundle',

 'bundles',

 'clean',

 'from_bundle_ingest_dirname',

 'ingest',

 'ingestions_for_bundle',

 'load',

 'register',

 'to_bundle_ingest_dirname',

 'unregister',

]

Once you have set this up, ensure you have set the QUANDL_API_KEY environment
variable to your API key and run the ingest command:

zipline ingest -b quandl_eod

The output is as follows:

Figure 8.4 – Output of ingesting the quandl_eod bundle

222 Introduction to Zipline and PyFolio

The actual source code of quandl_eod.py is self-explanatory. The quandl_eod_
bundle function, which is annotated with @bundles.register("quandl_eod"),
defines the download process:

@bundles.register("quandl_eod")

def quandl_eod_bundle(environ,

 asset_db_writer,

 minute_bar_writer,

 daily_bar_writer,

 adjustment_writer,

 calendar,

 start_session,

 end_session,

 cache,

 show_progress,

 output_dir):

 """

 quandl_bundle builds a daily dataset using Quandl's WIKI
Prices dataset.

 For more information on Quandl's API and how to obtain an
API key,

 please visit https://docs.quandl.com/docs#section-
authentication

 """

 api_key = environ.get("QUANDL_API_KEY")

 if api_key is None:

 raise ValueError(

 "Please set your QUANDL_API_KEY environment
variable and retry."

)

 raw_data = fetch_data_table(

 api_key, show_progress,

 environ.get("QUANDL_DOWNLOAD_ATTEMPTS", 5)

)

 asset_metadata = \

 gen_asset_metadata(raw_data[["symbol", "date"]],

Importing market data into a Zipline/PyFolio backtesting system 223

 show_progress)

 asset_db_writer.write(asset_metadata)

 symbol_map = asset_metadata.symbol

 sessions = calendar.sessions_in_range(start_session,

 end_session)

 raw_data.set_index(["date", "symbol"], inplace=True)

 daily_bar_writer.write(

 parse_pricing_and_vol(raw_data, sessions,

 symbol_map),

 show_progress=show_progress,

)

 raw_data.reset_index(inplace=True)

 raw_data["symbol"] = \

 raw_data["symbol"].astype("category")

 raw_data["sid"] = raw_data.symbol.cat.codes

 adjustment_writer.write(

 splits=parse_splits(

 raw_data[["sid", "date", "split_ratio"]].loc[raw_
data.split_ratio != 1],

 show_progress=show_progress,

),

 dividends=parse_dividends(

 raw_data[["sid", "date", "ex_dividend"]].loc[raw_
data.ex_dividend != 0],

 show_progress=show_progress,

),

)

The steps that are involved in this process are as follows:

1.	 Download all the EOD data.

2.	 Generate the metadata.

3.	 Apply the trading calendar.

4.	 Apply the corporate events.

224 Introduction to Zipline and PyFolio

While Quandl's commercial data source is deeply integrated with Zipline, there are
alternative data sources.

Importing data from Yahoo Finance and IEX paid data
The project at https://github.com/hhatefi/zipline_bundles provides a
Zipline bundle for Yahoo Finance and IEX. The package supports Zipline imports from a
Yahoo Finance .csv file, Yahoo Finance directly, and from IEX. This book will only focus
on directly importing from Yahoo Finance and IEX.

While the package does allow automatic installation, I do not recommend it since it
requires an empty extension.py file in the C:\Users\<username>\.zipline\
extension.py directory on Windows or ~/.zipline/extension.py on Mac/Linux.

The installation steps are as follows:

1.	 Download the repository from https://github.com/hhatefi/zipline_
bundles.

2.	 Merge the repository's \zipline_bundles-master\lib\extension.py
file with C:\Users\<username>\.zipline\extension.py on Windows or
~/.zipline/extension.py on Mac/Linux. If the latter file does not exist, just
copy and paste the file.

3.	 Edit the start and end dates in the following code:

register('yahoo_direct', # bundle's name

 direct_ingester('YAHOO',

 every_min_bar=False,

 symbol_list_env='YAHOO_SYM_LST',

the environment variable holding the comma separated
list of assert names

 downloader=yahoo.get_
downloader(start_date='2010-01-01',

end_date='2020-01-01'

),

),

 calendar_name='NYSE',

)

https://github.com/hhatefi/zipline_bundles
https://github.com/hhatefi/zipline_bundles
https://github.com/hhatefi/zipline_bundles

Importing market data into a Zipline/PyFolio backtesting system 225

Do the same in the following code:
register('iex', # bundle's name

 direct_ingester('IEX Cloud',

 every_min_bar=False,

 symbol_list_env='IEX_SYM_LST',

the environemnt variable holding the comma separated
list of assert names

 downloader=iex.get_
downloader(start_date='2020-01-01',

end_date='2020-01-05'

),

 filter_cb=lambda df: df[[cal.
is_session(dt) for dt in df.index]]

),

 calendar_name='NYSE',

)

The full file should look as follows:
#!/usr/bin/env python

-*- coding: utf-8 -*-

from pathlib import Path

from zipline.data.bundles import register

from zipline.data.bundles.ingester import csv_ingester

ingester.py need to be placed in zipline.data.bundles

_DEFAULT_PATH = str(Path.home()/'.zipline/csv/yahoo')

register(

 'yahoo_csv',

 csv_ingester('YAHOO',

 every_min_bar=False,

 # the price is daily

 csvdir_env='YAHOO_CSVDIR',

 csvdir=_DEFAULT_PATH,

 index_column='Date',

226 Introduction to Zipline and PyFolio

 column_mapper={'Open': 'open',

 'High': 'high',

 'Low': 'low',

 'Close': 'close',

 'Volume': 'volume',

 'Adj Close': 'price',

 },

),

 calendar_name='NYSE',

)

from zipline.data.bundles.ingester import direct_ingester

from zipline.data.bundles import yahoo

register('yahoo_direct', # bundle's name

 direct_ingester('YAHOO',

 every_min_bar=False,

 symbol_list_env='YAHOO_SYM_LST',
the environemnt variable holding the comma separated
list of assert names

 downloader=yahoo.get_
downloader(start_date='2010-01-01',

end_date='2020-01-01'

),

),

 calendar_name='NYSE',

)

from zipline.data.bundles import iex

import trading_calendars as tc

cal=tc.get_calendar('NYSE')

register('iex', # bundle's name

 direct_ingester('IEX Cloud',

 every_min_bar=False,

Importing market data into a Zipline/PyFolio backtesting system 227

 symbol_list_env='IEX_SYM_LST', #
the environemnt variable holding the comma separated list
of assert names

 downloader=iex.get_
downloader(start_date='2020-01-01',

end_date='2020-01-05'

),

 filter_cb=lambda df: df[[cal.
is_session(dt) for dt in df.index]]

),

 calendar_name='NYSE',

)

4.	 Find the location of the bundles directory using the following command:

python -c "import zipline.data.bundles as bdl;
print(bdl.__path__)"

This results in the following output on my computer:
['d:\\Anaconda3\\envs\\zipline_env\\lib\\site-packages\\
zipline\\data\\bundles']

5.	 Copy the Copy \zipline_bundles-master\lib\iex.py, \zipline_
bundles-master\lib\ingester.py, and \zipline_bundles-master\
lib\yahoo.py repository files into your Zipline bundles directory; for example,
d:\\Anaconda3\\envs\\zipline_env\\lib\\site-packages\\
zipline\\data\\bundles\.

6.	 Set the tickers of interest as environmental variables. For example, for Windows, use
the following code:

 set YAHOO_SYM_LST=GOOG,AAPL,GE,MSFT

 set IEX_SYM_LST=GOOG,AAPL,GE,MSFT

For Mac/Linux, use the following code:
 export YAHOO_SYM_LST=GOOG,AAPL,GE,MSFT

 export IEX_SYM_LST=GOOG,AAPL,GE,MSFT

228 Introduction to Zipline and PyFolio

7.	 Set an IEX token (it starts with sk_), if available, like so on Windows:

set IEX_TOKEN=xxx

For Mac/Linux, do the following:
export IEX_TOKEN=xxx

8.	 Ingest the data:

zipline ingest -b yahoo_direct

zipline ingest -b iex

This results in the following output in terms of the yahoo_direct bundle:

Figure 8.5 – Output of ingesting the yahoo_direct bundle

Structuring Zipline/PyFolio backtesting modules 229

This also results in the following output, which is for the iex bundle:

Figure 8.6 – Output of ingesting the iex bundle

Integrating with other data sources, such as a local MySQL database, is similar to the code
in https://github.com/hhatefi/zipline_bundles. Some such bundles are
available on github.com.

Structuring Zipline/PyFolio backtesting
modules
Typical Zipline backtesting code defines three functions:

•	 initialize: This method is called before any simulated trading happens; it's
used to enrich the context object with the definition of tickers and other key trading
information. It also enables commission and slippage considerations.

•	 handle_data: This method downloads the market data, calculates the trading
signals, and places the trades. This is where you put the actual trading logic on
entry/exit positions.

•	 analyze: This method is called to perform trading analytics. In our code, we will
use pyfolio's standard analytics. Notice that the pf.utils.extract_rets_
pos_txn_from_zipline(perf) function returns any returns, positions, and
transactions for custom analytics.

Finally, the code defines the start date and the end date and performs backtesting by
calling the run_algorithm method. This method returns a comprehensive summary
of all the trades to be persisted to a file, which can be analyzed later.

There are a few typical patterns when it comes to Zipline's code, depending on the
use case.

https://github.com/hhatefi/zipline_bundles
http://github.com

230 Introduction to Zipline and PyFolio

Trading happens every day
Let's refer to the handle_data method directly from the run_algorithm method:

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol

from datetime import datetime

import pytz

import matplotlib.pyplot as plt

import pandas as pd

import pyfolio as pf

from random import random

def initialize(context):

 pass

def handle_data(context, data):

 pass

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('1996-1-1', utc=True)

end_date = pd.to_datetime('2020-12-31', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

The handle_data method will be called for every single day between start_date
and end_date.

Structuring Zipline/PyFolio backtesting modules 231

Trading happens on a custom schedule
We omit the references to the handle_data method in the run_algorithm method.
Instead, we set the scheduler in the initialize method:

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission, schedule_function, date_rules, time_rules from
datetime import datetime

import pytz

import matplotlib.pyplot as plt

import pandas as pd

import pyfolio as pf

from random import random

def initialize(context):

 # definition of the stocks and the trading parameters, e.g.
commission

 schedule_function(handle_data, date_rules.month_end(),

 time_rules.market_open(hours=1))

def handle_data(context, data):

 pass

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('1996-1-1', utc=True)

end_date = pd.to_datetime('2020-12-31', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

232 Introduction to Zipline and PyFolio

The handle_data method will be called for every single month_end with the prices 1
hour after the market opens.

We can specify various date rules, as shown here:

Figure 8.7 – Table containing various date rules

Similarly, we can specify time rules, as shown here:

Figure 8.8 – Table containing various time rules

We will now learn how to review the key Zipline API reference.

Reviewing the key Zipline API reference 233

Reviewing the key Zipline API reference
In this section, we will outline the key features from https://www.zipline.io/
appendix.html.

For backtesting, the most important features are order types, commission models, and
slippage models. Let's look at them in more detail.

Types of orders
Zipline supports these types of orders:

Figure 8.9 – Supported order types

The order-placing logic is typically placed in the handle_data method.

The following is an example:

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

 order_target_percent(context.stock, 1.0 if price_hist[-1] >
price_hist.mean() else 0.0)

https://www.zipline.io/appendix.html
https://www.zipline.io/appendix.html

234 Introduction to Zipline and PyFolio

This example places an order so that we own 100% of the stock if the last daily price is
above the average of the close prices.

Commission models
Commission is the fee that's charged by a brokerage for selling or buying stocks.

Zipline supports various types of commissions, as shown here:

Figure 8.10 – Supported commission types

This logic is typically placed into the initialize method.

The following is an example:

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

In this example, we have defined a commission of 5 USD per trade.

Slippage models
Slippage is defined as the difference between the expected price and the executed price.

Running Zipline backtesting from the command line 235

Zipline offers these slippage models:

Figure 8.11 – Supported slippage models

The slippage model should be placed in the initialize method.

The following is an example:

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

 set_slippage(VolumeShareSlippage(volume_limit=0.025,

 price_impact=0.05))

In this example, we have chosen VolumeShareSlippage with a limit of 0.025 and a
price impact of 0.05.

Running Zipline backtesting from the
command line
For large backtesting jobs, it's preferred to run backtesting from the command line.

The following command runs the backtesting strategy defined in the job.py Python
script and saves the resulting DataFrame in the job_results.pickle pickle file:

zipline run -f job.py --start 2016-1-1 --end 2021-1-1 -o job_
results.pickle --no-benchmark

236 Introduction to Zipline and PyFolio

For example, you can set up a batch consisting of tens of Zipline command-line jobs to
run overnight, with each storing the results in a pickle file for later analysis.

It's a good practice to keep a journal and library of past backtesting pickle files for
easy reference.

Introduction to risk management with PyFolio
Having a risk management system is a fundamental part of having a successful
algorithmic trading system.

Various risks are involved in algorithmic trading:

•	 Market risk: While all strategies lose money at some point in their life cycle,
quantifying risk measures and ensuring there are risk management systems in
place can mitigate strategy losses. In some cases, bad risk management can increase
trading losses to an extreme and even shut down successful trading firms completely.

•	 Regulatory risk: This is the risk that stems from either accidentally or intentionally
violating regulations. It is designed to enforce smooth and fair market functionality.
Some well-known examples include spoofing, quote stuffing, and banging the close.

•	 Software implementation risk: Software development is a complex process and
sophisticated algorithmic trading strategy systems are especially complex. Even
seemingly minor software bugs can lead to malfunctioning algorithmic trading
strategies and yield catastrophic outcomes.

•	 Operational risk: This risk comes from deploying and operating these algorithmic
trading systems. Operations/trading personnel mistakes can also lead to disastrous
outcomes. Perhaps the most well-known error in this category is the fat-finger error,
which refers to accidentally sending huge orders and/or at unintentional prices.

The PyFolio library provides extensive market performance and risk reporting
functionality.

Introduction to risk management with PyFolio 237

A typical PyFolio report looks as follows:

Figure 8.12 – PyFolio's standard output showing the backtesting summary and key risk statistics

The following text aims to explain the key statistics in this report; that is, Annual
volatility, Sharpe ratio, and drawdown.

For the purpose of this chapter, let's generate trades and returns from a hypothetical
trading strategy.

238 Introduction to Zipline and PyFolio

The following code block generates hypothetical PnLs for a trading strategy with a slight
positive bias and hypothetical positions with no bias:

dates = pd.date_range('1992-01-01', '2012-10-22')

np.random.seed(1)

pnls = np.random.randint(-990, 1000, size=len(dates))

slight positive bias

pnls = pnls.cumsum()

positions = np.random.randint(-1, 2, size=len(dates))

positions = positions.cumsum()

strategy_performance = \

pd.DataFrame(index=dates,

 data={'PnL': pnls, 'Position': positions})

strategy_performance

 PnL Position

1992-01-01 71 0

1992-01-02 -684 0

1992-01-03 258 1

2012-10-21 32100 -27

2012-10-22 32388 -26

7601 rows × 2 columns

Let's review how the PnL varies over the course of 20 years:

strategy_performance['PnL'].plot(figsize=(12,6), color='black',
legend='PnL')

Introduction to risk management with PyFolio 239

Here's the output:

Figure 8.13 – Plot showing the synthetically generated PnLs with a slight positive bias

This plot confirms that the slight positive bias causes the strategy to be profitable in the
long run.

Now, let's explore some risk metrics of this hypothetical strategy's performance.

Market volatility, PnL variance, and PnL standard
deviation
Market volatility is defined as the standard deviation of prices. Generally, during more
volatile market conditions, trading strategy PnLs also undergo increased swings in
magnitude. This is because the same positions are susceptible to larger price moves, which
means that the PnL moves.

PnL variance is used to measure the magnitude of volatility in the strategy's
performance/returns.

The code to compute the PnL's standard deviation is identical to the code that's used to
compute the standard deviation of prices (market volatility).

240 Introduction to Zipline and PyFolio

Let's compute the PnL standard deviation over a rolling 20-day period:

strategy_performance['PnLStdev'] = strategy_performance['PnL'].
rolling(20).std().fillna(method='backfill')

strategy_performance['PnLStdev'].plot(figsize=(12,6),

 color='black',

 legend='PnLStdev')

The output is as follows:

Figure 8.14 – Plot showing PnL standard deviations across a 20-day rolling period

This plot proves that, in this case, there is not a significant pattern – it is a relatively
random strategy.

Trade-level Sharpe ratio
The trade-level Sharpe ratio compares average PnLs (strategy returns) relative to PnL
standard deviations (strategy volatility). Compared to the standard Sharpe ratio, the Trade
Level Sharpe Ratio assumes that the risk-free rate is 0 since we don't roll over positions, so
there is no interest charge. This assumption is realistic for intraday or daily trading.

The advantage of this measure is that it's a single number that takes all the relevant risk
management factors into account, so we can easily compare the performance of different
strategies. Nevertheless, it's important to realize that the Sharpe ratio does not tell the
whole story and that it's critical to use it in combination with other risk measures.

Introduction to risk management with PyFolio 241

The Trade Level Sharpe Ratio is defined as follows:

Let's generate the Sharpe ratio for our strategy's returns. First, we'll generate the
daily PnLs:

daily_pnl_series = strategy_performance['PnL'].shift(-1) -
strategy_performance['PnL']

daily_pnl_series.fillna(0, inplace=True)

avg_daily_pnl = daily_pnl_series.mean()

std_daily_pnl = daily_pnl_series.std()

sharpe_ratio = avg_daily_pnl/std_daily_pnl

sharpe_ratio

0.007417596376703097

Intuitively, this Sharpe ratio makes sense since the hypothetical strategy's expected daily
average performance was set to (1000-990)/2 = $5 and the daily standard deviation of
PnLs was set to be roughly $1,000 based on this line:

pnls = np.random.randint(-990, 1000, size=len(dates))

slight positive bias

In practice, Sharpe ratios are often annualized so that we can make comparisons between
strategies with different horizons fairer. To annualize the Sharpe ratio computed over
daily returns, we must multiply it by the square root of 252 (the number of trading dates
in a year):

The code for this is as follows:

annualized_sharpe_ratio = sharpe_ratio * np.sqrt(252)

annualized_sharpe_ratio

0.11775069203166105

242 Introduction to Zipline and PyFolio

Now, let's interpret the Sharpe ratio:

•	 A ratio of 3.0 or higher is excellent.

•	 A ratio > 1.5 is very good.

•	 A ratio > 1.0 is acceptable.

•	 A ratio < 1.0 is considered sub-optimal.

We will now look at maximum drawdown.

Maximum drawdown
Maximum drawdown is the peak-to-trough decline in a trading strategy's cumulative PnL
over a period of time. In other words, it's the longest streak of losing money compared to
the last known maximum cumulative PnL.

This metric quantifies the worst-case decline in a trading account's value based on
historical results.

Let's visually find the maximum drawdown in the hypothetical strategy's performance:

strategy_performance['PnL'].plot(figsize=(12,6),

 color='black',

 legend='PnL')

plt.axhline(y=28000, color='darkgrey', linestyle='--',

 label='PeakPnLBeforeDrawdown')

plt.axhline(y=-15000, color='darkgrey', linestyle=':',

 label='TroughPnLAfterDrawdown')

plt.vlines(x='2000', ymin=-15000, ymax=28000,

 label='MaxDrawdown', color='black', linestyle='-.')

plt.legend()

Introduction to risk management with PyFolio 243

Here's the output:

Figure 8.15 – Plot showing the peak and trough PnLs and max drawdown

From this plot, we can assess that the biggest drawdown was $43K for this strategy, from
the peak PnL of roughly $28K in 1996 to the trough PnL of roughly -$15K in 2001. If
we had started this strategy in 1996, we would have experienced a loss of $43K in our
account, which we need to be aware of and prepared for moving forward.

Strategy stop rule – stop loss/maximum loss
Before opening trades, it's important to set a stop loss barrier, which is defined as the
maximum number of losses that a strategy or portfolio (which is just a collection of
strategies) can take before it is stopped.

The stop loss barrier can be set using historical maximum drawdown values. For our
hypothetical strategy, we saw that over the course of 20 years, the maximum drawdown
that was achieved was $43K. While historical results are not 100% representative of future
results, you might wish to use a $43K stop loss value for this strategy and shut it down if it
loses that much money in the future. In practice, setting stop losses is much more complex
than described here, but this should help you build some intuition about stop losses.

Once a strategy is stopped, we can decide to shut down the strategy forever or just shut it
down for a certain period of time, or even shut it down until certain market conditions
change. This decision depends on the strategy's behavior and its risk tolerance.

244 Introduction to Zipline and PyFolio

Summary
In this chapter, we learned how to install and set up a complete backtesting and
risk/performance analysis system based on Zipline and PyFolio. We then imported market
data into a Zipline/PyFolio backtesting protfolio and structured it and reviewed it. Then,
we looked into how to manage risk with PyFolio and make a successful algorithmic
trading system.

In the next chapter, we make full use of this setup and introduce several key
trading strategies.

9
Fundamental

Algorithmic Trading
Strategies

This chapter outlines several algorithms profitable on the given stock, given a time
window and certain parameters, with the aim of helping you to formulate an idea of how
to develop your own trading strategies.

In this chapter, we will discuss the following topics:

•	 What is an algorithmic trading strategy?

•	 Learning momentum-based/trend-following strategies

•	 Learning mean-reversion strategies

•	 Learning mathematical model-based strategies

•	 Learning time series prediction-based strategies

Technical requirements
The Python code used in this chapter is available in the Chapter09/signals_and_
strategies.ipynb notebook in the book's code repository.

246 Fundamental Algorithmic Trading Strategies

What is an algorithmic trading strategy?
Any algorithmic trading strategy should entail the following:

•	 It should be a model based on an underlying market theory since only then can you
find its predictive power. Fitting a model to data with great backtesting results is
simple, but usually does not provide sound predictions.

•	 It should be as simple as possible – the more complex the strategy, the less likely it is
to perform well in the long term (overfitting).

•	 It should restrict the strategy for a well-defined set of financial assets (trading
universe) based on the following:

a) Their returns profile.

b) Their returns not being correlated.

c) Their trading patterns – you do not want to trade an illiquid asset; you restrict
yourself just to significantly traded assets.

•	 It should define the relevant financial data:

a) Frequency: Daily, monthly, intraday, and suchlike

b) Data source
•	 It should define the model's parameters.

•	 It should define their timing, entry, exit rules, and position sizing strategy – for
example, we cannot trade more than 10% of the average daily volume; usually, the
decision to enter/exit is made by a composition of several indicators.

•	 It should define the risk levels – how much of a risk a single asset can bear.

•	 It should define the benchmark used to compare performance against.

•	 It should define its rebalancing policy – as the markets evolve, the position sizes
and risk levels will deviate from their target levels and then it is necessary to adjust
the portfolios.

Usually, you have a large library of algorithmic trading strategies, and backtesting will
suggest which of these strategies, on which assets, and at what point in time they may
generate a profit. You should keep a backtesting journal to keep track of what strategies
did or didn't work, on what stock, and during what period.

What is an algorithmic trading strategy? 247

How do you go about finding a portfolio of stocks to consider for trading? The options are
as follows:

•	 Use ETF/index components – for example, the members of the Dow Jones
Industrial Average.

•	 Use all listed stocks and then restrict the list to the following:

a) Those stocks that are traded the most

b) Just non-correlated stocks

c) Those stocks that are underperforming or overperforming using a returns model,
such as the Fama-French three-factor model

•	 You should classify each stock into as many categories as possible:

a) Value/growth stocks

b) By industry
Each trading strategy depends on a number of parameters. How do you go about finding
the best values for each of them? The possible approaches are as follow:

•	 A parameter sweep by trying each possible value within the range of possible
values for each parameter, but this would require an enormous amount of
computing resources.

•	 Very often, a parameter sweep that involves testing many random samples, instead
of all values, from the range of possible values provides a reasonable approximation.

To build a large library of algorithmic trading strategies, you should do the following:

•	 Subscribe to financial trading blogs.

•	 Read financial trading books.

The key algorithmic trading strategies can be classified as follows:

•	 Momentum-based/trend-following strategies

•	 Mean-reversion strategies

•	 Mathematical model-based strategies

•	 Arbitrage strategies

•	 Market-making strategies

•	 Index fund rebalancing strategies

•	 Trading timing optimization strategies (VWAP, TWAP, POV, and so on)

248 Fundamental Algorithmic Trading Strategies

In addition, you yourself should classify all trading strategies depending on the
environment where they work best – some strategies work well in volatile markets with
strong trends, while others do not.

The following algorithms use the freely accessible Quandl data bundle; thus, the last
trading date is January 1, 2018.

You should accumulate many different trading algorithms, list the number of possible
parameters, and backtest the stocks on a number of parameters on the universe of stocks
(for example, those with an average trading volume of at least X) to see which may be
profitable. Backtesting should happen in a time window such as the present and near
future – for example, the volatility regime.

The best way of reading the following strategies is as follows:

•	 Identify the signal formula of the strategy and consider it for an entry/exit rule for
your own strategy or for a combination with other strategies – some of the most
profitable strategies are combinations of existing strategies.

•	 Consider the frequency of trading – daily trading may not be suitable for all
strategies due to the transaction costs.

•	 Each strategy works for different types of stocks and their market – some work only
for trending stocks, some work only for high-volatility stocks, and so on.

Learning momentum-based/trend-following
strategies
Momentum-based/trend-following strategies are types of technical analysis strategies.
They assume that the near-time future prices will follow an upward or downward trend.

Rolling window mean strategy
This strategy is to own a financial asset if its latest stock price is above the average price
over the last X days.

In the following example, it works well for Apple stock and a period of 90 days:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

Learning momentum-based/trend-following strategies 249

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

 order_target_percent(context.stock, 1.0 if price_hist[-1] >
price_hist.mean() else 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2000-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

250 Fundamental Algorithmic Trading Strategies

The outputs are as follows:

Figure 9.1 – Rolling window mean strategy; summary return and risk statistics

When assessing a trading strategy, the preceding statistics are the first step. Each provides
a different view on the strategy performance:

•	 Sharpe ratio: This is a measure of excess return versus standard deviation of the
excess return. The higher the ratio, the better the algorithm performed on a risk-
adjusted basis.

•	 Calmar ratio: This is a measure of the average compounded annual rate of return
versus its maximum drawdown. The higher the ratio, the better the algorithm
performed on a risk-adjusted basis.

Learning momentum-based/trend-following strategies 251

•	 Stability: This is defined as the R-squared value of a linear fit to the cumulative log
returns. The higher the number, the higher the trend in the cumulative returns.

•	 Omega ratio: This is defined as the probability weighted ratio of gains versus losses.
It is a generalization of the Sharpe ratio, taking into consideration all moments of
the distribution. The higher the ratio, the better the algorithm performed on a risk-
adjusted basis.

•	 Sortino ratio: This is a variation of the Sharpe ratio – it uses only the standard
deviation of the negative portfolio returns (downside risk). The higher the ratio, the
better the algorithm performed on a risk-adjusted basis.

•	 Tail ratio: This is defined as the ratio between the right 95% and the left tail 5%. For
example, a ratio of 1/3 means that the losses are three times worse than the profits.
The higher the number, the better.

In this example, we see that the strategy has a very high stability (.92) over the trading
window, which somewhat offsets the high maximum drawdown (-59.4%). The tail ratio is
most favorable:

Figure 9.2 – Rolling window mean strategy; worst five drawdown periods

252 Fundamental Algorithmic Trading Strategies

While the worst maximum drawdown of 59.37% is certainly not good, if we adjusted
the entry/exit strategy rules, we would most likely avoid it. Notice the duration of the
drawdown periods – more than 3 years in the maximum drawdown period.

Figure 9.3 – Rolling window mean strategy; cumulative returns over the investment horizon

As the stability measure confirms, we see a positive trend in the cumulative returns over
the trading horizon.

Figure 9.4 – Rolling window mean strategy; returns over the investment horizon

Learning momentum-based/trend-following strategies 253

The chart confirms that the returns oscillate widely around zero.

Figure 9.5 – Rolling window mean strategy; 6-month rolling volatility over the investment horizon

This chart illustrates that the strategy's return volatility is decreasing over the time horizon.

Figure 9.6 – Rolling window mean strategy; 6-month rolling Sharpe ratio over the investment horizon

We see that the maximum Sharpe ratio of the strategy is above 4, with its minimum
value below -2. If we reviewed the entry/exit rules, we should be able to improve the
strategy's performance.

Figure 9.7 – Rolling window mean strategy; top five drawdown periods over the investment horizon

254 Fundamental Algorithmic Trading Strategies

A graphical representation of the maximum drawdown indicates that the periods of
maximum drawdown are overly long.

Figure 9.8 – Rolling window mean strategy; monthly returns, annual returns, and the distribution of
monthly returns over the investment horizon

The Monthly returns chart shows that we have traded during most months. The
Annual returns bar chart shows that the returns are overwhelmingly positive, while the
Distribution of monthly returns chart shows that the skew is positive to the right.

The rolling window mean strategy is one of the simplest strategies and is still very
profitable for certain combinations of stocks and time frames. Notice that the maximum
drawdown for this strategy is significant and may be improved if we added more advanced
entry/exit rules.

Simple moving averages strategy
This strategy follows a simple rule: buy the stock if the short-term moving averages rise
above the long-term moving averages:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

import warnings

warnings.filterwarnings('ignore')

Learning momentum-based/trend-following strategies 255

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

 rolling_mean_short_term = \

 price_hist.rolling(window=45, center=False).mean()

 rolling_mean_long_term = \

 price_hist.rolling(window=90, center=False).mean()

 if rolling_mean_short_term[-1] > rolling_mean_long_term[-
1]:

 order_target_percent(context.stock, 1.0)

 elif rolling_mean_short_term[-1] < rolling_mean_long_term[-
1]:

 order_target_percent(context.stock, 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2000-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

256 Fundamental Algorithmic Trading Strategies

The outputs are as follows:

Figure 9.9 – Simple moving averages strategy; summary return and risk statistics

The statistics show that the strategy is overwhelmingly profitable in the long term
(high stability and tail ratios), while the maximum drawdown can be substantial.

Figure 9.10 – Simple moving averages strategy; worst five drawdown periods

Learning momentum-based/trend-following strategies 257

The worst drawdown periods are rather long – more than 335 days, with some even taking
more than 3 years in the worst case.

Figure 9.11 – Simple moving averages strategy; cumulative returns over the investment horizon

This chart does, however, confirm that this long-term strategy is profitable – we see the
cumulative returns grow consistently after the first drawdown.

Figure 9.12 – Simple moving averages strategy; returns over the investment horizon

258 Fundamental Algorithmic Trading Strategies

The chart illustrates that there was a major negative return event at the very start of the
trading window and then the returns oscillate around zero.

Figure 9.13 – Simple moving averages strategy; 6-month rolling volatility over the investment horizon

The rolling volatility chart shows that the rolling volatility is decreasing with time.

Figure 9.14 – Simple moving averages strategy; 6-month rolling Sharpe ratio over the investment
horizon

While the maximum Sharpe ratio was over 4, with the minimum equivalent being
below -4, the average Sharpe ratio was 0.68.

Figure 9.15 – Simple moving averages strategy; top five drawdown periods over the investment horizon

Learning momentum-based/trend-following strategies 259

This chart confirms that the maximum drawdown periods were very long.

Figure 9.16 – Simple moving averages strategy; monthly returns, annual returns, and the distribution of
monthly returns over the investment horizon

The monthly returns table shows that there was no trade across many months. The annual
returns were mostly positive. The Distribution of monthly returns chart confirms that
the skew is negative.

The simple moving averages strategy is less profitable and has a greater maximum
drawdown than the rolling window mean strategy. One reason may be that the rolling
window for the moving averages is too large.

Exponentially weighted moving averages strategy
This strategy is similar to the previous one, with the exception of using different rolling
windows and exponentially weighted moving averages. The results are slightly better than
those achieved under the previous strategy.

Some other moving average algorithms use both simple moving averages and
exponentially weighted moving averages in the decision rule; for example, if the simple
moving average is greater than the exponentially weighted moving average, make a move:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

260 Fundamental Algorithmic Trading Strategies

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

 rolling_mean_short_term = \

 price_hist.ewm(span=5, adjust=True,

 ignore_na=True).mean()

 rolling_mean_long_term = \

 price_hist.ewm(span=30, adjust=True,

 ignore_na=True).mean()

 if rolling_mean_short_term[-1] > rolling_mean_long_term[-
1]:

 order_target_percent(context.stock, 1.0)

 elif rolling_mean_short_term[-1] < rolling_mean_long_term[-
1]:

 order_target_percent(context.stock, 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2000-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

Learning momentum-based/trend-following strategies 261

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

The outputs are as follows:

Figure 9.17 – Exponentially weighted moving averages strategy; summary return and risk statistics

262 Fundamental Algorithmic Trading Strategies

The results show that the level of maximum drawdown has dropped from the previous
strategies, while still keeping very strong stability and tail ratios.

Figure 9.18 – Exponentially weighted moving averages strategy; worst five drawdown periods

The magnitude of the worst drawdown, as well as its maximum duration in days, is far
better than for the previous two strategies.

Figure 9.19 – Exponentially weighted moving averages strategy; cumulative returns
over the investment horizon

Learning momentum-based/trend-following strategies 263

As the stability indicator shows, we see consistent positive cumulative returns.

Figure 9.20 – Exponentially weighted moving averages strategy; returns over the investment horizon

The returns oscillate around zero, being more positive than negative.

Figure 9.21 – Exponentially weighted moving averages strategy; 6-month rolling
volatility over the investment horizon

The rolling volatility is dropping over time.

Figure 9.22 – Exponentially weighted moving averages strategy; 6-month rolling
Sharpe ratio over the investment horizon

264 Fundamental Algorithmic Trading Strategies

We see that the maximum Sharpe ratio reached almost 5, while the minimum was slightly
below -2, which again is better than for the two previous algorithms.

Figure 9.23 – Exponentially weighted moving averages strategy; top five drawdown
periods over the investment horizon

Notice that the periods of the worst drawdown are not identical for the last three algorithms.

Figure 9.24 – Exponentially weighted moving averages strategy; monthly returns, annual returns,
and the distribution of monthly returns over the investment horizon

The Monthly returns table shows that we have traded in most months. The Annual
returns chart confirms that most returns have been positive. The Distribution of
monthly returns chart is positively skewed, which is a good sign.

The exponentially weighted moving averages strategy performs better for Apple's stock
over the given time frame. However, in general, the most suitable averages strategy
depends on the stock and the time frame.

Learning momentum-based/trend-following strategies 265

RSI strategy
This strategy depends on the stockstats package. It is very instructive to read the
source code at https://github.com/intrad/stockstats/blob/master/
stockstats.py.

To install it, use the following command:

pip install stockstats

The RSI indicator measures the velocity and magnitude of price movements and provides
an indicator when a financial asset is oversold or overbought. It is a leading indicator.

It is measured from 0 to 100, with values over 70 indicating overbought, and values below
30 oversold:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from stockstats import StockDataFrame as sdf

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 20

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock,

 ["open", "high",

 "low","close"],

 context.rolling_window, "1d")

https://github.com/intrad/stockstats/blob/master/stockstats.py
https://github.com/intrad/stockstats/blob/master/stockstats.py

266 Fundamental Algorithmic Trading Strategies

 stock=sdf.retype(price_hist)

 rsi = stock.get('rsi_12')

 if rsi[-1] > 90:

 order_target_percent(context.stock, 0.0)

 elif rsi[-1] < 10:

 order_target_percent(context.stock, 1.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2015-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

Learning momentum-based/trend-following strategies 267

The outputs are as follows:

Figure 9.25 – RSI strategy; summary return and risk statistics

The first look at the strategy shows an excellent Sharpe ratio, with a very low maximum
drawdown and a favorable tail ratio.

Figure 9.26 – RSI strategy; worst five drawdown periods

268 Fundamental Algorithmic Trading Strategies

The worst drawdown periods were very short – less than 2 months – and not substantial –
a maximum drawdown of only -10.55%.

Figure 9.27 – RSI strategy; cumulative returns over the investment horizon

The Cumulative returns chart shows that we have not traded across most of the trading
horizon and when we did trade, there was a positive trend in the cumulative returns.

Figure 9.28 – RSI strategy; returns over the investment horizon

Learning momentum-based/trend-following strategies 269

We can see that when we traded, the returns were more likely to be positive than negative.

Figure 9.29 – RSI strategy; 6-month rolling volatility over the investment horizon

Notice that the maximum rolling volatility of 0.2 is far lower than for the previous strategies.

Figure 9.30 – RSI strategy; 6-month rolling Sharpe ratio over the investment horizon

We can see that Sharpe's ratio has consistently been over 1, with its maximum value over 3
and its minimum value below -1.

Figure 9.31 – RSI strategy; top five drawdown periods over the investment horizon

270 Fundamental Algorithmic Trading Strategies

The chart illustrates short and insignificant drawdown periods.

Figure 9.32 – RSI strategy; monthly returns, annual returns, and the distribution of monthly returns
over the investment horizon

The Monthly returns table states that we have not traded in most months. However,
according to the Annual returns chart, when we traded, we were hugely profitable. The
Distribution of monthly returns chart confirms that the skew is hugely positive, with a
large kurtosis.

The RSI strategy is highly performant in the case of Apple's stock over the given time
frame, with a Sharpe ratio of 1.11. Notice, however, that the success of the strategy
depends largely on the very strict entry/exit rules, meaning we are not trading in certain
months at all.

MACD crossover strategy
Moving Average Convergence Divergence (MACD) is a lagging, trend-following
momentum indicator reflecting the relationship between two moving averages of
stock prices.

Learning momentum-based/trend-following strategies 271

The strategy depends on two statistics, the MACD and the MACD signal line:

•	 The MACD is defined as the difference between the 12-day exponential moving
average and the 26-day exponential moving average.

•	 The MACD signal line is then defined as the 9-day exponential moving average of
the MACD.

The MACD crossover strategy is defined as follows:

•	 A bullish crossover happens when the MACD line turns upward and crosses beyond
the MACD signal line.

•	 A bearish crossover happens when the MACD line turns downward and crosses
under the MACD signal line.

Consequently, this strategy is best suited for volatile, highly traded markets:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from stockstats import StockDataFrame as sdf

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 20

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock,

 ["open","high",

 "low","close"],

272 Fundamental Algorithmic Trading Strategies

 context.rolling_window, "1d")

 stock=sdf.retype(price_hist)

 signal = stock['macds']

 macd = stock['macd']

 if macd[-1] > signal[-1] and macd[-2] <= signal[-2]:

 order_target_percent(context.stock, 1.0)

 elif macd[-1] < signal[-1] and macd[-2] >= signal[-2]:

 order_target_percent(context.stock, 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2015-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

Learning momentum-based/trend-following strategies 273

The outputs are as follows:

Figure 9.33 – MACD crossover strategy; summary return and risk statistics

The tail ratio illustrates that the top gains and losses are roughly of the same magnitude.
The very low stability indicates that there is no strong trend in cumulative returns.

Figure 9.34 – MACD crossover strategy; worst five drawdown periods

274 Fundamental Algorithmic Trading Strategies

Apart from the worst drawdown period, the other periods were shorter than 6 months,
with a net drawdown lower than 10%.

Figure 9.35 – MACD crossover strategy; cumulative returns over the investment horizon

The Cumulative returns chart confirms the low stability indicator value.

The following is the Returns chart:

Figure 9.36 – MACD crossover strategy; returns over the investment horizon

The Returns chart shows that returns oscillated widely around zero, with a few outliers.

Learning momentum-based/trend-following strategies 275

The following is the Rolling volatility chart:

Figure 9.37 – MACD crossover strategy; 6-month rolling volatility over the investment horizon

The rolling volatility has been oscillating around 0.15.

The following is the rolling Sharpe ratio chart:

Figure 9.38 – MACD crossover strategy; 6-month rolling Sharpe ratio over the investment horizon

The maximum rolling Sharpe ratio of about 4, with a minimum ratio of -2, is
largely favorable.

The following is the top five drawdown periods chart:

Figure 9.39 – MACD crossover strategy; top five drawdown periods over the investment horizon

276 Fundamental Algorithmic Trading Strategies

We see that the worst two drawdown periods have been rather long.

Figure 9.40 – MACD crossover strategy; monthly returns, annual returns, and the distribution of
monthly returns over the investment horizon

The Monthly returns table confirms that we have traded across most months. The
Annual returns chart indicates that the most profitable year was 2017. The Distribution
of monthly returns chart shows a slight negative skew and large kurtosis.

The MACD crossover strategy is an effective strategy in trending markets and can be
significantly improved by raising the entry/exit rules.

RSI and MACD strategies
In this strategy, we combine the RSI and MACD strategies and own the stock if both RSI
and MACD criteria provide a signal to buy.

Using multiple criteria provides a more complete view of the market (note that we
generalize the RSI threshold values to 50):

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from stockstats import StockDataFrame as sdf

import warnings

Learning momentum-based/trend-following strategies 277

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('MSFT')

 context.rolling_window = 20

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock,

 ["open", "high",

 "low","close"],

 context.rolling_window, "1d")

 stock=sdf.retype(price_hist)

 rsi = stock.get('rsi_12')

 signal = stock['macds']

 macd = stock['macd']

 if rsi[-1] < 50 and macd[-1] > signal[-1] and macd[-2] <=
signal[-2]:

 order_target_percent(context.stock, 1.0)

 elif rsi[-1] > 50 and macd[-1] < signal[-1] and macd[-2] >=
signal[-2]:

 order_target_percent(context.stock, 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2015-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

278 Fundamental Algorithmic Trading Strategies

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

The outputs are as follows:

Figure 9.41 – RSI and MACD strategies; summary return and risk statistics

The high stability value, with a high tail ratio and excellent Sharpe ratio, as well as a low
maximum drawdown, indicates that the strategy is excellent.

Learning momentum-based/trend-following strategies 279

The following is the worst five drawdown periods chart:

Figure 9.42 – RSI and MACD strategies; worst five drawdown periods

We see that the worst drawdown periods were short – less than 4 months – with the worst
net drawdown of -10.36%.

The following is the Cumulative returns chart:

Figure 9.43 – RSI and MACD strategies; cumulative returns over the investment horizon

The high stability value is favorable. Notice the horizontal lines in the chart; these indicate
that we have not traded.

280 Fundamental Algorithmic Trading Strategies

The following is the Returns chart:

Figure 9.44 – RSI and MACD strategies; returns over the investment horizon

The Returns chart shows that when we traded, the positive returns outweighed the
negative ones.

The following is the Rolling volatility chart:

Figure 9.45 – RSI and MACD strategies; 6-month rolling volatility over the investment horizon

The rolling volatility has been decreasing over time and has been relatively low.

The following is the Rolling Sharpe ratio chart:

Figure 9.46 – RSI and MACD strategies; 6-month rolling Sharpe ratio over the investment horizon

Learning momentum-based/trend-following strategies 281

The maximum rolling Sharpe ratio was over 3, with a minimum of below -2 and an
average above 1.0 indicative of a very good result.

The following is the Top 5 drawdown periods chart:

Figure 9.47 – RSI and MACD strategies; top five drawdown periods over the investment horizon

We see that the drawdown periods were short and not significant.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.48 – RSI and MACD strategies; monthly returns, annual returns, and the distribution of
monthly returns over the investment horizon

The Monthly returns table confirms we have not traded in most months. However,
according to the Annual returns chart, when we did trade, it was hugely profitable. The
Distribution of monthly returns chart is positive, with high kurtosis.

The RSI and MACD strategy, as a combination of two strategies, demonstrates excellent
performance, with a Sharpe ratio of 1.27 and a maximum drawdown of -10.4%. Notice
that it does not trigger any trading in some months.

282 Fundamental Algorithmic Trading Strategies

Triple exponential average strategy
The Triple Exponential Average (TRIX) indicator is an oscillator oscillating around the
zero line. A positive value indicates an overbought market, whereas a negative value is
indicative of an oversold market:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from stockstats import StockDataFrame as sdf

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('MSFT')

 context.rolling_window = 20

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock,

 ["open","high",

 "low","close"],

 context.rolling_window, "1d")

 stock=sdf.retype(price_hist)

 trix = stock.get('trix')

 if trix[-1] > 0 and trix[-2] < 0:

 order_target_percent(context.stock, 0.0)

 elif trix[-1] < 0 and trix[-2] > 0:

 order_target_percent(context.stock, 1.0)

Learning momentum-based/trend-following strategies 283

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2015-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

The outputs are as follows:

Figure 9.49 – TRIX strategy; summary return and risk statistics

284 Fundamental Algorithmic Trading Strategies

The high tail ratio with an above average stability suggests, in general, a profitable strategy.

The following is the worst five drawdown periods chart:

Figure 9.50 – TRIX strategy; worst five drawdown periods

The second worst drawdown period was over a year. The worst net drawdown was
-15.57%.

The following is the Cumulative returns chart:

Figure 9.51 – TRIX strategy; cumulative returns over the investment horizon

Learning momentum-based/trend-following strategies 285

The Cumulative returns chart indicates that we have not traded in many months (the
horizontal line) and that there is a long-term positive trend, as confirmed by the high
stability value.

The following is the Returns chart:

Figure 9.52 – TRIX strategy; returns over the investment horizon

This chart suggests that when we traded, we were more likely to reach a positive return.

The following is the Rolling volatility chart:

Figure 9.53 – TRIX strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart shows that the rolling volatility has been decreasing with
time, although the maximum volatility has been rather high.

The following is the Rolling Sharpe ratio chart:

Figure 9.54 – TRIX strategy; 6-month rolling Sharpe ratio over the investment horizon

286 Fundamental Algorithmic Trading Strategies

The rolling Sharpe ratio has been more likely to be positive than negative, with its
maximum value in the region of 3 and a minimum value slightly below -1.

The following is the top five drawdown periods chart:

Figure 9.55 – TRIX strategy; top five drawdown periods over the investment horizon

The top five drawdown periods confirm that the worst drawdown periods have been long.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.56 – TRIX strategy; monthly returns, annual returns, and the distribution of monthly returns
over the investment horizon

The Monthly returns table confirms that we have not traded in many months. The
Annual returns chart shows that the maximum return was in the year 2015. The
Distribution of monthly returns chart shows a very slightly positive skew with
a somewhat large kurtosis.

Learning momentum-based/trend-following strategies 287

The TRIX strategy's performance for some stocks, such as Apple, is very bad over the
given time frame. For other stocks such as Microsoft, included in the preceding report,
performance is excellent for certain years.

Williams R% strategy
This strategy was developed by Larry Williams, and the William R% oscillates from 0
to -100. The stockstats library has implemented the values from 0 to +100.

The values above -20 indicate that the security has been overbought, while values
below -80 indicate that the security has been oversold.

This strategy is hugely successful for Microsoft's stock, while not so much for Apple's stock:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from stockstats import StockDataFrame as sdf

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('MSFT')

 context.rolling_window = 20

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock,

 ["open", "high",

 "low","close"],

 context.rolling_window, "1d")

288 Fundamental Algorithmic Trading Strategies

 stock=sdf.retype(price_hist)

 wr = stock.get('wr_6')

 if wr[-1] < 10:

 order_target_percent(context.stock, 0.0)

 elif wr[-1] > 90:

 order_target_percent(context.stock, 1.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2015-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

Learning momentum-based/trend-following strategies 289

The outputs are as follows:

Figure 9.57 – Williams R% strategy; summary return and risk statistics

The summary statistics show an excellent strategy – high stability confirms consistency in
the returns, with a large tail ratio, a very low maximum drawdown, and a solid Sharpe ratio.

The following is the worst five drawdown periods chart:

Figure 9.58 – Williams R% strategy; worst five drawdown periods

290 Fundamental Algorithmic Trading Strategies

Apart from the worst drawdown period lasting about 3 months with a net drawdown
of -10%, the other periods were insignificant in both duration and magnitude.

The following is the Cumulative returns chart:

Figure 9.59 – Williams R% strategy; cumulative returns over the investment horizon

This chart confirms the high stability value of the strategy – the cumulative returns are
growing at a steady rate.

The following is the Returns chart:

Figure 9.60 – Williams R% strategy; returns over the investment horizon

The Returns chart indicates that whenever we traded, it was more profitable than not.

Learning momentum-based/trend-following strategies 291

The following is the Rolling volatility chart:

Figure 9.61 – Williams R% strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart shows a decreasing value of rolling volatility over time.

The following is the Rolling Sharpe ratio chart:

Figure 9.62 – Williams R% strategy; 6-month rolling Sharpe ratio over the investment horizon

The Rolling Sharpe ratio chart confirms that the Sharpe ratio has been positive over the
trading horizon, with a maximum value of 3.0.

The following is the top five drawdown periods chart:

Figure 9.63 – Williams R% strategy; top five drawdown periods over the investment horizon

292 Fundamental Algorithmic Trading Strategies

The Top 5 drawdown periods chart shows that apart from one period, the other worst
drawdown periods were not significant.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.64 – Williams R% strategy; monthly returns, annual returns, and the distribution of monthly
returns over the investment horizon

The Monthly returns table suggests that while we have not traded in every month,
whenever we did trade, it was largely profitable. The Annual returns chart confirms this.
The Distribution of monthly returns chart confirms a positive skew with a large kurtosis.

The Williams R% strategy is a highly performant strategy for the Microsoft stock with a
Sharpe ratio of 1.53 and a maximum drawdown of only -10% over the given time frame.

Learning mean-reversion strategies
Mean-reversion strategies are based on the assumption that some statistics will revert to
their long-term mean values.

Bollinger band strategy
The Bollinger band strategy is based on identifying periods of short-term volatility.

Learning mean-reversion strategies 293

It depends on three lines:

•	 The middle band line is the simple moving average, usually 20-50 days.

•	 The upper band is the 2 standard deviations above the middle base line.

•	 The lower band is the 2 standard deviations below the middle base line.

One way of creating trading signals from Bollinger bands is to define the overbought and
oversold market state:

•	 The market is overbought when the price of the financial asset rises above the upper
band and so is due for a pullback.

•	 The market is oversold when the price of the financial asset drops below the lower
band and so is due to bounce back.

This is a mean-reversion strategy, meaning that long term, the price should remain within
the lower and upper bands. It works best for low-volatility stocks:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('DG')

 context.rolling_window = 20

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

294 Fundamental Algorithmic Trading Strategies

 middle_base_line = price_hist.mean()

 std_line = price_hist.std()

 lower_band = middle_base_line - 2 * std_line

 upper_band = middle_base_line + 2 * std_line

 if price_hist[-1] < lower_band:

 order_target_percent(context.stock, 1.0)

 elif price_hist[-1] > upper_band:

 order_target_percent(context.stock, 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2000-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

Learning mean-reversion strategies 295

The outputs are as follows:

Figure 9.65 – Bollinger band strategy; summary return and risk statistics

The summary statistics do show that the stability is solid, with the tail ratio favorable.
However, the max drawdown is a substantial -27.3%.

The following is the worst five drawdown periods chart:

Figure 9.66 – Bollinger band strategy; worst five drawdown periods

296 Fundamental Algorithmic Trading Strategies

The duration of the worst drawdown periods is substantial. Maybe we should tweak the
entry/exit rules to avoid entering the trades in these periods.

The following is the Cumulative returns chart:

Figure 9.67 – Bollinger band strategy; cumulative returns over the investment horizon

The Cumulative returns chart show we have not traded for 10 years and then we have
experienced a consistent positive trend in cumulative returns.

The following is the Returns chart:

Figure 9.68 – Bollinger band strategy; returns over the investment horizon

The Returns chart shows that the positive returns have outweighed the negative ones.

Learning mean-reversion strategies 297

The following is the Rolling volatility chart:

Figure 9.69 – Bollinger band strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart suggests that the strategy has substantial volatility.

The following is the Rolling Sharpe ratio chart:

Figure 9.70 – Bollinger band strategy; 6-month rolling Sharpe ratio over the investment horizon

The Rolling Sharpe ratio chart shows that the rolling Sharpe ratio fluctuates widely with a
max value of close to 4 and a minimum below -2, but on average it is positive.

The following is the Top 5 drawdown periods chart:

Figure 9.71 – Bollinger band strategy; top five drawdown periods over the investment horizon

298 Fundamental Algorithmic Trading Strategies

The Top 5 drawdown periods chart confirms the drawdown periods duration has
been substantial.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.72 – Bollinger band strategy; monthly returns, annual returns, and the distribution of monthly
returns over the investment horizon

The Monthly returns table shows that there has been no trade from 2000 to 2010 due to
our entry/exit rules. The Annual returns chart, however, shows that whenever a trade
did happen, it was profitable. The Distribution of monthly returns chart shows slight
negative skew with enormous kurtosis.

The Bollinger band strategy is a suitable strategy for oscillating stocks. Here, we applied it
to the stock of Dollar General (DG) Corp.

Pairs trading strategy
This strategy became very popular some time ago and ever since, has been overused, so is
barely profitable nowadays.

This strategy involves finding pairs of stocks that are moving closely together, or are highly
co-integrated. Then, at the same time, we place a BUY order for one stock and a SELL
order for the other stock, assuming their relationship will revert back. There are a wide
range of varieties of tweaks in terms of how this algorithm is implemented – are the prices
log prices? Do we trade only if the relationships are very strong?

Learning mean-reversion strategies 299

For simplicity, we have chosen the Pepsi Cola (PEP) and Coca-Cola (KO) stocks.
Another choice could be Citibank (C) and Goldman Sachs (GS). We have two
conditions: first, the p-value of cointegration has to be very strong, and then the z-score
has to be very strong:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

import numpy as np

import statsmodels.api as sm

from statsmodels.tsa.stattools import coint

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock_x = symbol('PEP')

 context.stock_y = symbol('KO')

 context.rolling_window = 500

 set_commission(PerTrade(cost=5))

 context.i = 0

def handle_data(context, data):

 context.i += 1

 if context.i < context.rolling_window:

 return

 try:

 x_price = data.history(context.stock_x, "close",

 context.rolling_window,"1d")

 x = np.log(x_price)

300 Fundamental Algorithmic Trading Strategies

 y_price = data.history(context.stock_y, "close",

 context.rolling_window,"1d")

 y = np.log(y_price)

 _, p_value, _ = coint(x, y)

 if p_value < .9:

 return

 slope, intercept = sm.OLS(y, sm.add_constant(x,
prepend=True)).fit().params

 spread = y - (slope * x + intercept)

 zscore = (\

 spread[-1] - spread.mean()) / spread.std()

 if -1 < zscore < 1:

 return

 side = np.copysign(0.5, zscore)

 order_target_percent(context.stock_y,

 -side * 100 / y_price[-1])

 order_target_percent(context.stock_x,

 side * slope*100/x_price[-1])

 except:

 pass

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2015-1-1', utc=True)

end_date = pd.to_datetime('2018-01-01', utc=True)

Learning mean-reversion strategies 301

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

The outputs are as follows:

Figure 9.73 – Pairs trading strategy; summary return and risk statistics

While the Sharpe ratio is very low, the max drawdown is also very low. The stability
is average.

302 Fundamental Algorithmic Trading Strategies

The following is the worst five drawdown periods chart:

Figure 9.74 – Pairs trading strategy; worst five drawdown periods

The worst five drawdown periods table shows that the max drawdown was negligible and
very short.

The following is the Cumulative returns chart:

Figure 9.75 – Pairs trading strategy; cumulative returns over the investment horizon

The Cumulative returns chart indicates that we have not traded for 2 years and then were
hugely profitable until the last period.

Learning mean-reversion strategies 303

The following is the Returns chart:

Figure 9.76 – Pairs trading strategy; returns over the investment horizon

The Returns chart shows that the returns have been more positive than negative for the
trading period except for the last period.

The following is the Rolling volatility chart:

Figure 9.77 – Pairs trading strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart shows an ever-increasing volatility though the volatility
magnitude is not significant.

The following is the Rolling Sharpe ratio chart:

Figure 9.78 – Pairs trading strategy; 6-month rolling Sharpe ratio over the investment horizon

304 Fundamental Algorithmic Trading Strategies

The Rolling Sharpe ratio chart shows that if we improved our exit rule and exited earlier,
our Sharpe ratio would higher than 1.

The following is the Top 5 drawdown periods chart:

Figure 9.79 – Pairs trading strategy; top five drawdown periods over the investment horizon

The Top 5 drawdown periods chart tells us the same story – the last period was the cause
of why this backtesting result is not as successful as it could have been.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.80 – Pairs trading strategy; monthly returns, annual returns, and the distribution of monthly
returns over the investment horizon

The Monthly returns table confirms we have not traded until the year of 2017. The
Annual returns chart shows that the trading in 2017 was successful and the Distribution
of monthly returns chart shows a slightly negatively skewed chart with small kurtosis.

The pairs trading strategy has been overused over the last decade, and so is less profitable.
One simple way of identifying the pair is to look for competitors – in this example,
PepsiCo and the Coca-Cola Corporation.

Learning mathematical model-based strategies 305

Learning mathematical model-based
strategies
We will now look at the various mathematical model-based strategies in the
following sections.

Minimization of the portfolio volatility strategy with
monthly trading
The objective of this strategy is to minimize portfolio volatility. It has been inspired by
https://github.com/letianzj/QuantResearch/tree/master/backtest.

In the following example, the portfolio consists of all stocks in the Dow Jones Industrial
Average index.

The key success factors of the strategy are the following:

•	 The stock universe – perhaps a portfolio of global index ETFs would fare better.

•	 The rolling window – we go back 200 days.

•	 The frequency of trades – the following algorithm uses monthly trading – notice
the construct.

The code is as follows:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission, schedule_function, date_rules, time_rules

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from scipy.optimize import minimize

import numpy as np

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

https://github.com/letianzj/QuantResearch/tree/master/backtest

306 Fundamental Algorithmic Trading Strategies

 context.stocks = [symbol('DIS'), symbol('WMT'),

 symbol('DOW'), symbol('CRM'),

 symbol('NKE'), symbol('HD'),

 symbol('V'), symbol('MSFT'),

 symbol('MMM'), symbol('CSCO'),

 symbol('KO'), symbol('AAPL'),

 symbol('HON'), symbol('JNJ'),

 symbol('TRV'), symbol('PG'),

 symbol('CVX'), symbol('VZ'),

 symbol('CAT'), symbol('BA'),

 symbol('AMGN'), symbol('IBM'),

 symbol('AXP'), symbol('JPM'),

 symbol('WBA'), symbol('MCD'),

 symbol('MRK'), symbol('GS'),

 symbol('UNH'), symbol('INTC')]

 context.rolling_window = 200

 set_commission(PerTrade(cost=5))

 schedule_function(handle_data,

 date_rules.month_end(),

 time_rules.market_open(hours=1))

def minimum_vol_obj(wo, cov):

 w = wo.reshape(-1, 1)

 sig_p = np.sqrt(np.matmul(w.T,

 np.matmul(cov, w)))[0, 0]

 return sig_p

def handle_data(context, data):

 n_stocks = len(context.stocks)

 prices = None

 for i in range(n_stocks):

 price_history = \

 data.history(context.stocks[i], "close",

 context.rolling_window, "1d")

Learning mathematical model-based strategies 307

 price = np.array(price_history)

 if prices is None:

 prices = price

 else:

 prices = np.c_[prices, price]

 rets = prices[1:,:]/prices[0:-1, :]-1.0

 mu = np.mean(rets, axis=0)

 cov = np.cov(rets.T)

 w0 = np.ones(n_stocks) / n_stocks

 cons = ({'type': 'eq',

 'fun': lambda w: np.sum(w) - 1.0},

 {'type': 'ineq', 'fun': lambda w: w})

 TOL = 1e-12

 res = minimize(minimum_vol_obj, w0, args=cov,

 method='SLSQP', constraints=cons,

 tol=TOL, options={'disp': False})

 if not res.success:

 return;

 w = res.x

 for i in range(n_stocks):

 order_target_percent(context.stocks[i], w[i])

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2010-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

308 Fundamental Algorithmic Trading Strategies

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 capital_base = 10000,

 data_frequency = 'daily'

 bundle ='quandl')

The outputs are as follows:

Figure 9.81 – Minimization of the portfolio volatility strategy; summary return and risk statistics

The results are positive – see the strong stability of 0.91 while the tail ratio is just over 1.

Notice the results are including the transaction costs and they would be much worse if we
traded daily. Always experiment with the optimal trading frequency.

Learning mathematical model-based strategies 309

The following is the worst five drawdown periods chart:

Figure 9.82 – Minimization of the portfolio volatility strategy; worst five drawdown periods

The worst drawdown period was over a year with the net drawdown of -18.22%. The
magnitude of the net drawdown for the other worst periods is below -10%.

The following is the Cumulative returns chart:

Figure 9.83 – Minimization of the portfolio volatility strategy; cumulative returns over the investment
horizon

We see that the cumulative returns are consistently growing, which is expected given the
stability of 0.91.

310 Fundamental Algorithmic Trading Strategies

The following is the Returns chart:

Figure 9.84 – Minimization of the portfolio volatility strategy; returns over the investment horizon

The Returns chart shows the returns' oscillation around zero within the interval -0.3
to 0.04.

The following is the Rolling volatility chart:

Figure 9.85 – Minimization of the portfolio volatility strategy; 6-month rolling volatility over the
investment horizon

The Rolling volatility chart illustrates that the max rolling volatility was 0.18 and that
the rolling volatility was cycling around 0.1.

The following is the Rolling Sharpe ratio chart:

Figure 9.86 – Minimization of the portfolio volatility strategy; 6-month rolling Sharpe ratio over the
investment horizon

Learning mathematical model-based strategies 311

The Rolling Sharpe ratio chart shows the maximum rolling Sharpe ratio of 5.0 with the
minimum slightly above -3.0.

The following is the Top 5 drawdown periods chart:

Figure 9.87 – Minimization of the portfolio volatility strategy; top five drawdown periods over the
investment horizon

The Top 5 drawdown periods chart confirms that if we avoided the worst drawdown
period by smarter choice of entry/exit rules, we would have dramatically improved the
strategy's performance.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.88 – Minimization of the portfolio volatility strategy; monthly returns, annual returns, and the
distribution of monthly returns over the investment horizon

The Monthly returns table illustrates that we have not traded for the first few months of
2010. The Annual returns chart shows that the strategy has been profitable every year,
but 2015. The Distribution of monthly returns chart draws a slightly negatively skewed
strategy with small kurtosis.

312 Fundamental Algorithmic Trading Strategies

Minimization of the portfolio volatility strategy is usually only profitable for non-daily
trading. In this example, we used monthly trading and achieved a Sharpe ratio of 0.93,
with a maximum drawdown of -18.2%.

Maximum Sharpe ratio strategy with monthly trading
This strategy is based on ideas contained in Harry Markowitz's 1952 paper Portfolio
Selection. In brief, the best portfolios lie on the efficient frontier – a set of portfolios with
the highest expected portfolio return for each level of risk.

In this strategy, for the given stocks, we choose their weights so that they maximize the
portfolio's expected Sharpe ratio – such a portfolio lies on the efficient frontier.

We use the PyPortfolioOpt Python library. To install it, either use the book's conda
environment or the following command:

pip install PyPortfolioOpt

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbols, set_
commission, schedule_function, date_rules, time_rules

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

import numpy as np

from pypfopt.efficient_frontier import EfficientFrontier

from pypfopt import risk_models

from pypfopt import expected_returns

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stocks = \

 symbols('DIS','WMT','DOW','CRM','NKE','HD','V','MSFT',

 'MMM','CSCO','KO','AAPL','HON','JNJ','TRV',

Learning mathematical model-based strategies 313

 'PG','CVX','VZ','CAT','BA','AMGN','IBM','AXP',

 'JPM','WBA','MCD','MRK','GS','UNH','INTC')

 context.rolling_window = 252

 set_commission(PerTrade(cost=5))

 schedule_function(handle_data, date_rules.month_end(),

 time_rules.market_open(hours=1))

def handle_data(context, data):

 prices_history = data.history(context.stocks, "close",

 context.rolling_window,

 "1d")

 avg_returns = \

 expected_returns.mean_historical_return(prices_history)

 cov_mat = risk_models.sample_cov(prices_history)

 efficient_frontier = EfficientFrontier(avg_returns,

 cov_mat)

 weights = efficient_frontier.max_sharpe()

 cleaned_weights = efficient_frontier.clean_weights()

 for stock in context.stocks:

 order_target_percent(stock, cleaned_weights[stock])

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2010-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 capital_base = 10000,

314 Fundamental Algorithmic Trading Strategies

 data_frequency = 'daily',

 bundle ='quandl')

The outputs are as follows:

Figure 9.89 – Maximum Sharpe ratio strategy; summary return and risk statistics

The strategy shows solid stability of 0.76 with the tail ratio close to 1 (1.01). However,
the annual volatility of this strategy is very high (17.0%).

The following is the worst five drawdown periods chart:

Figure 9.90 – Maximum Sharpe ratio strategy; worst five drawdown periods

Learning mathematical model-based strategies 315

The worst drawdown period lasted over 2 years and had a magnitude of net drawdown
of -21.14%. If we tweaked the entry/exit rules to avoid this drawdown period, the results
would have been dramatically better.

The following is the Cumulative returns chart:

Figure 9.91 – Maximum Sharpe ratio strategy; cumulative returns over the investment horizon

The Cumulative returns chart shows positive stability.

The following is the Returns chart:

Figure 9.92 – Maximum Sharpe ratio strategy; returns over the investment horizon

316 Fundamental Algorithmic Trading Strategies

The Returns chart show that the strategy was highly successful at the very beginning of
the investment horizon.

The following is the Rolling volatility chart:

Figure 9.93 – Maximum Sharpe ratio strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart shows that the rolling volatility has subsidized with time.

The following is the Rolling Sharpe ratio chart:

Figure 9.94 – Maximum Sharpe ratio strategy; 6-month rolling Sharpe ratio over the investment horizon

The Rolling Sharpe ratio chart illustrates that the rolling Sharpe ratio increased with time
to the max value of 5.0 while its minimum value was above -3.0.

The following is the Top 5 drawdown periods chart:

Figure 9.95 – Maximum Sharpe ratio strategy; top five drawdown periods over the investment horizon

Learning time series prediction-based strategies 317

The Top 5 drawdown periods chart shows that the maximum drawdown periods have
been long.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.96 – Maximum Sharpe ratio strategy; monthly returns, annual returns, and the distribution of
monthly returns over the investment horizon

The Monthly returns table proves that we have traded virtually in every month. The
Annual returns chart shows that the annual returns have been positive for every year but
2016. The Distribution of monthly returns chart is positively skewed with minor kurtosis.

The maximum Sharpe ratio strategy is again usually only profitable for non-daily trading.

Learning time series prediction-based
strategies
Time series prediction-based strategies depend on having a precise estimate of stock
prices at some time in the future, along with their corresponding confidence intervals. A
calculation of the estimates is usually very time-consuming.

The simple trading rule then incorporates the relationship between the last known price
and the future price, or its lower/upper confidence interval value.

More complex trading rules incorporate decisions based on the trend component and
seasonality components.

318 Fundamental Algorithmic Trading Strategies

SARIMAX strategy
This strategy is based on the most elementary rule: own the stock if the current price is
lower than the predicted price in 7 days:

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

import pmdarima as pm

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

 try:

 model = pm.auto_arima(price_hist, seasonal=True)

 forecasts = model.predict(7)

 order_target_percent(context.stock, 1.0 if price_hist[-
1] < forecasts[-1] else 0.0)

 except:

 pass

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

Learning time series prediction-based strategies 319

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2017-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

The outputs are as follows:

Figure 9.97 – SARIMAX strategy; summary return and risk statistics

320 Fundamental Algorithmic Trading Strategies

Over the trading horizon, the strategy exhibited a high tail ratio of 1.95 with a very low
stability of 0.25. The max drawdown of -7.7% is excellent.

The following is the worst five drawdown periods chart:

Figure 9.98 – SARIMAX strategy; worst five drawdown periods

The worst drawdown periods have displayed the magnitude of net drawdown below -10%.

The following is the Cumulative returns chart:

Figure 9.99 – SARIMAX strategy; cumulative returns over the investment horizon

The Cumulative returns chart proves that we have traded only in the first half of the
trading horizon.

Learning time series prediction-based strategies 321

The following is the Returns chart:

Figure 9.100 – SARIMAX strategy; returns over the investment horizon

The Returns chart shows that the magnitude of returns swing has been larger than with
other strategies.

The following is the Rolling volatility chart:

Figure 9.101 – SARIMAX strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart shows that the rolling volatility has decreased with time.

The following is the Rolling Sharpe ratio chart:

Figure 9.102 – SARIMAX strategy; 6-month rolling Sharpe ratio over the investment horizon

322 Fundamental Algorithmic Trading Strategies

The Rolling Sharpe ratio chart shows that the Sharpe ratio in the first half of the trading
horizon was excellent and then started to decrease.

The following is the Top 5 drawdown periods chart:

Figure 9.103 – SARIMAX strategy; top five drawdown periods over the investment horizon

The Top 5 drawdown periods chart demonstrates that the worst drawdown period was
the entire second half of the trading window.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.104 – Monthly returns, annual returns, and the distribution of monthly returns over the
investment horizon

The Monthly returns table confirms we have not traded in the second half of 2017. The
Annual returns chart shows a positive return for 2017 and the Distribution of monthly
returns chart is negatively skewed with large kurtosis.

The SARIMAX strategy entry rule has not been triggered over the tested time horizon on
a frequent basis. Still, it produced a Sharpe ratio of 1.01, with a maximum drawdown
of -7.7%.

Learning time series prediction-based strategies 323

Prophet strategy
This strategy is based on the prediction confidence intervals, and so is more robust than
the previous one. In addition, Prophet predictions are more robust to frequent changes
than SARIMAX. The backtesting results are all identical, but the prediction algorithms are
significantly better.

We only buy the stock if the last price is below the lower value of the confidence interval
(we anticipate that the stock price will go up) and sell the stock if the last price is above
the upper value of the predicted confidence interval (we anticipate that the stock price
will go down):

%matplotlib inline

from zipline import run_algorithm

from zipline.api import order_target_percent, symbol, set_
commission

from zipline.finance.commission import PerTrade

import pandas as pd

import pyfolio as pf

from fbprophet import Prophet

import logging

logging.getLogger('fbprophet').setLevel(logging.WARNING)

import warnings

warnings.filterwarnings('ignore')

def initialize(context):

 context.stock = symbol('AAPL')

 context.rolling_window = 90

 set_commission(PerTrade(cost=5))

def handle_data(context, data):

 price_hist = data.history(context.stock, "close",

 context.rolling_window, "1d")

 price_df = pd.DataFrame({'y' : price_hist}).rename_

324 Fundamental Algorithmic Trading Strategies

axis('ds').reset_index()

 price_df['ds'] = price_df['ds'].dt.tz_convert(None)

 model = Prophet()

 model.fit(price_df)

 df_forecast = model.make_future_dataframe(periods=7,

 freq='D')

 df_forecast = model.predict(df_forecast)

 last_price=price_hist[-1]

 forecast_lower=df_forecast['yhat_lower'].iloc[-1]

 forecast_upper=df_forecast['yhat_upper'].iloc[-1]

 if last_price < forecast_lower:

 order_target_percent(context.stock, 1.0)

 elif last_price > forecast_upper:

 order_target_percent(context.stock, 0.0)

def analyze(context, perf):

 returns, positions, transactions = \

 pf.utils.extract_rets_pos_txn_from_zipline(perf)

 pf.create_returns_tear_sheet(returns,

 benchmark_rets = None)

start_date = pd.to_datetime('2017-1-1', utc=True)

end_date = pd.to_datetime('2018-1-1', utc=True)

results = run_algorithm(start = start_date, end = end_date,

 initialize = initialize,

 analyze = analyze,

 handle_data = handle_data,

 capital_base = 10000,

 data_frequency = 'daily',

 bundle ='quandl')

Learning time series prediction-based strategies 325

The outputs are as follows:

Figure 9.105 – Prophet strategy; summary return and risk statistics

In comparison with the SARIMAX strategy, the Prophet strategy shows far better results –
tail ratio of 1.37, Sharpe ratio of 1.22, and max drawdown of -8.7%.

The following is the worst five drawdown periods chart:

Figure 9.106 – Prophet strategy; worst five drawdown periods

326 Fundamental Algorithmic Trading Strategies

The worst five drawdown periods confirms that the magnitude of the worst net drawdown
was below 10%.

The following is the Cumulative returns chart:

Figure 9.107 – Prophet strategy; cumulative returns over the investment horizon

The Cumulative returns chart shows that while we have not traded in certain periods
of time, the entry/exit rules have been more robust than in the SARIMAX strategy –
compare both the Cumulative returns charts.

The following is the Returns chart:

Figure 9.108 – Prophet strategy; returns over the investment horizon

The Returns chart suggests that the positive returns outweighed the negative returns.

Learning time series prediction-based strategies 327

The following is the Rolling volatility chart:

Figure 9.109 – Prophet strategy; 6-month rolling volatility over the investment horizon

The Rolling volatility chart shows virtually constant rolling volatility – this is the
hallmark of the Prophet strategy.

The following is the Rolling Sharpe ratio chart:

Figure 9.110 – Prophet strategy; 6-month rolling Sharpe ratio over the investment horizon

The Rolling Sharpe ratio chart shows that the max rolling Sharpe ratio was between
-.50 and 1.5.

The following is the Top 5 drawdown periods chart:

Figure 9.111 – Prophet strategy; top five drawdown periods over the investment horizon

328 Fundamental Algorithmic Trading Strategies

The Top 5 drawdown periods chart shows that even though the drawdown periods were
substantial, the algorithm was able to deal with them well.

The following are the Monthly returns, Annual returns, and Distribution of monthly
returns charts:

Figure 9.112 – Prophet strategy; monthly returns, annual returns, and the distribution of monthly
returns over the investment horizon

The Monthly returns table confirms we have traded in every single month, with an
excellent annual return as confirmed by the Annual returns chart. The Distribution of
monthly returns chart is positively skewed with minor kurtosis.

The Prophet strategy is one of the most robust strategies, quickly adapting to market
changes. Over the given time period, it produced a Sharpe ratio of 1.22, with a maximum
drawdown of -8.7.

Summary
In this chapter, we have learned that an algorithmic trading strategy is defined by a model,
entry/leave rules, position limits, and further key properties. We have demonstrated how
easy it is in Zipline and PyFolio to set up a complete backtesting and risk analysis/position
analysis system, so that you can focus on the development of your strategies, rather than
wasting your time on the infrastructure.

Even though the preceding strategies are well published, you can construct highly
profitable strategies by means of combining them wisely, along with a smart selection of
the entry and exit rules.

Bon voyage!

Appendix A
How to Setup a

Python Environment
This book's GitHub repository (http://github.com/PacktPublishing/Hands-
On-Financial-Trading-with-Python/) contains Jupyter notebooks that will help
you replicate the output shown here.

The environment was created by manually choosing compatible versions of all the
included packages.

Technical requirements
The code in this book can run on Windows, Mac, or Linux operating systems.

Initial setup
To set up the Python environment, follow these steps:

1.	 Download and install Anaconda Python from https://www.anaconda.com/
products/individual if you do not have it installed yet.

2.	 git clone the repository:

git clone XXXXX

http://github.com/PacktPublishing/Hands-On-Financial-Trading-with-Python/
http://github.com/PacktPublishing/Hands-On-Financial-Trading-with-Python/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

330 How to Setup a Python Environment

3.	 Change the current directory to the cloned GitHub repository.

4.	 Run the following code:

conda env create -f handson-algorithmic-trading-with-
python\environment.yml -n handson-algorithmic-trading-
with-python

5.	 Change the active environment:

conda activate handson-algorithmic-trading-with-python

6.	 Set the global environmental variables for market access:

Figure 1 – Table of various variable names and where to obtain free token

7.	 Using Window's Control Panel, set the system environment:

Figure 2 – How to find the Environment dialog in MS Windows

Initial setup 331

Then, choose Edit the system environment variables:

Figure 3 – The steps for setting up a MS Windows environmental variable

Then, specify the variable in the Environment Variables ... dialog.

On Mac/Linux, add the following command to ~/.bash_profile for user-based
operations or ~/.bashrc for non-login interactive shells:

Export QUANDL_API_KEY=xxxx

Close the Command Prompt so that the global environmental variables can
be activated.

8.	 Proceed with the Download the Complimentary Quandl Data Bundle and Once
Installed Setup stages.

Note:
The environment.yml file was generated using the conda env
export > environmenmt.yml command after one of the packages'
meta files was fixed due to a typo.

332 How to Setup a Python Environment

Downloading the complimentary Quandl
data bundle
The steps are as follows:

1.	 Change the active environment:

conda activate handson-algorithmic-trading-with-python

2.	 Set the QUANDL_API_KEY value if you have not set it up yet via Window's Control
Panel or by using .bash_profile or .bashrc.

For Windows, use the following command:
SET QUANDL_API_KEY=XXXXXXXX

For Mac/Linux, use the following command:
export QUANDL_API_KEY=XXXXXXXX

3.	 Ingest the data:

zipline ingest -b quandl

Note
You don't need to download this bundle repeatedly. The data is no longer being
updated.

Once you have set up the environment, follow these steps:

1.	 Change the current directory to the cloned GitHub repository.

2.	 Change the active environment:

conda activate handson-algorithmic-trading-with-python

3.	 Launch Jupyter Lab, like so:

jupyter lab

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

334 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Algorithmic Trading Cookbook
Pushpak Dagade
ISBN: 978-1-83898-935-4

•	 Use Python to set up connectivity with brokers

•	 Handle and manipulate time series data using Python

•	 Fetch a list of exchanges, segments, financial instruments, and historical data to
interact with the real market

•	 Understand, fetch, and calculate various types of candles and use them to compute
and plot diverse types of technical indicators

•	 Develop and improve the performance of algorithmic trading strategies

•	 Perform backtesting and paper trading on algorithmic trading strategies

•	 Implement real trading in the live hours of stock markets

https://www.packtpub.com/product/python-algorithmic-trading-cookbook/9781838989354

Other Books You May Enjoy 335

Python for Finance Cookbook

Eryk Lewinson

ISBN: 978-1-78961-851-8

•	 Download and preprocess financial data from different sources

•	 Backtest the performance of automatic trading strategies in a real-world setting

•	 Estimate financial econometrics models in Python and interpret their results

•	 Use Monte Carlo simulations for a variety of tasks such as derivatives valuation
and risk assessment

•	 Improve the performance of financial models with the latest Python libraries

•	 Apply machine learning and deep learning techniques to solve different
financial problems

•	 Understand the different approaches used to model financial time series data

https://www.packtpub.com/product/python-for-finance-cookbook/9781789618518

336

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

Symbols
1D ndarrays

creating 46
2D ndarrays

creating 47

A
Akaike information criterion (AIC) 167
algorithmic trading

evolution 4, 5
algorithmic trading strategy 246-248
algorithmic trading system

components 9
core infrastructure 10
quantitative infrastructure 11

annotations
data points, enriching with 120-123

any-dimension ndarrays
creating 47

ARIMA time series model 161-166
ARIMA time series model, components

auto-regression (AR) model 161
integrated (I) model 161
Moving Average (MA) model 162

arithmetic operations
performing, on pandas.

DataFrames 86, 88
arrays

ndarrays indexing with 58
Ask orders (asks or offers) 8
Augmented Dickey-Fuller test 157
Augmented Dickey-Fuller test, for

stationarity of time series
about 157
ADF test, on differenced prices 159
ADF test, on prices 158
prices, differencing on 158, 159

autocorrelation
of time series 159-161

autocorrelation plots
creating 143

automated, computer-driven systematic/
algorithmic trading approach

key advantages 5
auto-regression (AR) model 161
Auto-Regressive Integrated Moving

Average (ARIMA) 161
axes

enriching, with labels 118-120

338 Index

enriching, with legends 118-120
enriching, with ticks 118-120

B
backtesting 15, 214
Bayesian information criterion (BIC) 167
black swan events 5
bollinger band strategy 292-298
box plots

about 36
creating, by interval 138, 140

bulk retrieval 198
bundle 215
buy-low-and-sell-high principle 4
Buy orders (bids) 8

C
Chicago Board Options

Exchange (CBOE) 41
colocated 10
colors

plots, enriching with 116
command line

Zipline backtesting, running from 235
comma-separated values

(CSV) 21, 70, 106
core infrastructure

about 10
trading server 10

Corrected AIC 167
correlation charts 37, 39
CSV file

reading, to build pandas.
DataFrames 107, 108

writing, to pandas.DataFrames 106, 107

CSV files bundle
data, importing from 218, 219

custom bundles
data, importing from 219

D
data

importing, from CSV files
bundle 218, 219

importing, from custom bundles 219
importing, from historical

Quandl bundle 215-217
importing, from Quandl's EOD

US Stock Paid Data 219-223
importing, from Yahoo Finance

and IEX Paid Data 224-229
DataFrame column

bar plots, creating 126-128
density plots, creating 128, 130
histogram, creating 128, 130

DataFrames' axis indices
values, transforming 97, 98

data points
enriching, with annotations 120-123

dataset
generating 174-177
RidgeCV regression, running

on 178-182
scikit-learn's classification methods,

running on 182-186
data types

used, with NumPy ndarrays 50
Direct Market Access (DMA) 10
distribution rule of 68-95-99 31
distribution test

with Q-Q plots 146, 147, 148
Dow Jones Industrial Average (DJIA) 41

Index 339

E
EconDB

accessing 203, 204
Error, Trend, Seasonality (ETS) 149
ETS analysis of time series

about 149-151
Hodrick-Prescott (HP) filter 151, 152
statsmodels.tsa.seasonal.seasonal_

decompose(...) method 154
UnobservedComponents

model 152, 153
ETS analysis of time series, components

error component 149
seasonality component 149
trend component 149

exchange matching algorithms 9
exchange matching engine 9
exchange traded fund (ETF) 41
execution of strategies 13
exploratory data analysis (EDA)

about 20
Python libraries 42, 44

exploratory data analysis (EDA),
advanced visualization techniques

about 33
box plot 36
correlation charts 37, 39
daily close price changes 34, 35
histogram plot 36
pairwise correlation heatmap 39, 40

exploratory data analysis
(EDA), conclusions

revelation 41
exploratory data analysis (EDA), steps

about 20
data cleaning 24-26

data collection 21-23
data munging 23
data wrangling 23
descriptive statistics, obtaining 27, 28
interquartile range (IQR) 31
libraries, loading 21
libraries, setting up 21
visual inspection, of data 29, 30

exponentially weighted moving
averages strategy 259, 262-264

F
Facebook's Prophet library

used, for time series forecasting 171-174
Fama-French Three Factor Model 247
features 174
Fed's Fred

accessing 204
figures

subplots, defining 112, 113
file operations, exploring with

pandas.DataFrames 106
in CSV files 106, 107
in JSON files 108, 109

file operations, on ndarrays
about 69
with binary files 70, 71
with text files 69, 70

files
plots, saving to 123, 124

Fill and Kill (FAK) orders 7
financial asset classes

about 6
commodities 6
equities (stocks) 6
Exchange-Traded Funds (ETFs) 6
fixed income (bonds) 6

340 Index

Foreign Exchange (FX) 6
Real Estate Investment Trusts (REITs) 6

financial derivatives
about 6
futures 6
options 6

First-In-First-Out (FIFO) order 9

G
Good-Till-Canceled (GTC) orders 7
Good-Till-Day (GTD) orders 7
grouping operations

in pandas.DataFrames 94-96

H
Hannan-Quinn information

criterion (HQC) 167
heatmap 39
hierarchical indexing

in pandas.DataFrames 91-93
histogram plot 36
historical data retrieval 199, 201
historical Quandl bundle

data, importing from 215-217
Hodrick-Prescott (HP) filter

about 151, 152
results, plotting 154-156

I
IEX Cloud data source

exploring 207, 208
iexfinance's documentation

reference link 207
Immediate-Or-Cancel (IOC) orders 7
ingest 215

integrated (I) model 161
interquartile range (IQR)

about 31
Z-score 31-33

J
JSON files 108, 109

K
kernel density estimation (KDE) 37, 129

L
lag scatter plots

creating 140-142
limit order books 8, 13
limit price 8
line plot

prices, plotting 133
line styles

plots, enriching with 116

M
MACD crossover strategy 270-276
manual trading approach

about 4
drawbacks 4

markers
plots, enriching with 116

market data feed handlers 10
market data protocols 10
market risk 236
MarketStack data source

exploring 209, 210
market volatility 239

Index 341

mathematical model-based strategies
about 305
maximum Sharpe ratio strategy,

with monthly trading 312-317
portfolio volatility strategy

minimization, with monthly
trading 305, 308-311

Matplotlib
pandas DataFrame, charting

with 124, 125
maximum drawdown 242, 243
maximum loss 243
mean reversion-based speculators 12
mean-reversion strategies

about 292
bollinger band strategy 292-298
pairs-Trading strategy 298-304

missing data, handling in
pandas.DataFrames

about 98
missing data, filling in 100, 101
missing data, filtering out 98-100

modern electronic trading exchange
about 7
exchange matching engine 9
order types 7

momentum-based/trend-
following strategies

about 248
exponentially weighted moving

averages strategy 259, 262-264
MACD crossover strategy 270-276
rolling window mean strategy 248-254
RSI and MACD strategies,

combining 276-281
RSI strategy 265-270
simple moving averages

strategy 254-259

Triple Exponential Average
(TRIX) 282-287

Williams R% strategy 287-292
monthly trading

using, for maximum Sharpe
ratio strategy 312-317

using, for portfolio volatility strategy
minimization 305-311

Moving Average Convergence
Divergence (MACD) 270

Moving Average (MA) model 162
multiple pandas.DataFrames

combining, into single pandas.
DataFrame 88-91

merging, into single pandas.
DataFrame 88-91

multiple-tickers retrieval
about 198
historical data retrieval 199, 201

N
ndarray

slicing 53-56
ndarrays' dtype attribute 51
ndarrays indexing

about 51
Boolean indexing 56, 57
direct access, to ndarray's element 52
ndarray, slicing 53
with arrays 58

Not a Number (NaN) 63
NumPy 46
numpy.bool array

creating 50
numpy.float64 array

creating 50

342 Index

NumPy ndarrays
creating 46
creating, with np.arange(...) 49
creating, with np.identity(...) 49
creating, with np.ones(...) 48
creating, with np.random.randn(...) 49
creating, with np.zeros(...) 48
data types, used with 50

numpy.ndarrays.astype(...)
underlying data types of ndarray,

converting with 51
NumPy ndarrays, operations

about 59
absolute value, calculating 61
addition of ndarrays, with scalar 60
Boolean operations, on ndarrays 65, 66
cumulative sum of elements of

ndarray, calculating 63
exponentiation, of ndarray 59
index of maximum value in

ndarray, finding 62
layout of ndarray, changing 60
linear combinations, of ndarray 59
matrix, transposing 60
mean of ndarray, calculating 62
minimum value, finding in ndarray 61
NaNs in ndarray, finding 63
ndarrays, searching within 68
ndarrays, sorting 66, 67
scalar multiplication, with ndarray 59
truth values of x1>x2 of two

ndarrays, finding 64, 65

O
open, high, low, close, volume

(OHLCV) format 218
operational risk 236

order entry gateway 11
order entry protocols 11
order types, modern electronic

trading exchange
GTC orders 8
IOC orders 8
market orders 7

out-of-bag (OOB) 167

P
pairs-Trading strategy 12, 298-304
pandas DataFrame

charting, with Matplotlib 124, 125
pandas.DataFrames

about 76-79
arithmetic operations,

performing on 86, 88
building, by reading CSV files 107, 108
file operations, exploring 106
filtering 80-82
grouping operations 94-96
hierarchical indexing 91-93
indexing 80-82
operations 80
rows and columns, dropping from 82-84
selecting 80-82
transforming, with functions 101, 102
transforming, with mappings 101, 102
values' order, ranking 84-86
values, sorting 84-86
writing, to CSV file 106, 107

pandas.DataFrame values
bucketing 102-104
discretization 102-104
permuting, to generate new pandas.

DataFrame 104-106

Index 343

sampling, to generate new pandas.
DataFrame 104-106

pandas_datareader Python library
EconDB, accessing 203, 204
exploring 201, 202
Fed's Fred, accessing 204
queries, caching 205
Yahoo Finance, accessing 202, 203

pandas.Index 79, 80
pandas Series 74-76
partial autocorrelation

of time series 159-161
plots

enriching, with colors 116, 117
enriching, with line styles 116, 117
enriching, with markers 116, 117
saving, to files 123, 124

pmdarima
SARIMAX time series model,

using with 166-170
pmdarima library documentation

reference link 167
PnL standard deviation 240
PnL variance 239
position and PnL management 14
Post-Trade Analytics (PTA) 11, 15
predictors 174
price change density plots

plotting 137, 138
price change histograms

plotting 134-137
priority order 9
Probability Density Function (PDF) 129
Profit And Loss (PnL) 11
prophet strategy 323-328
PyFolio

about 214
installing 215

risk management 236-239
URL 214

PyFolio backtesting modules
structuring 229-232

PyFolio backtesting system
market data, importing into 215

Python libraries
for EDA 42, 44

Q
Quandl data source

exploring 206, 207
URL 206

Quandl's EOD US Stock Paid Data
data, importing from 219-223

quantile-quantile plot (Q-Q plot)
about 146
using, for distribution test 146-148

quantitative infrastructure
about 11
backtesting 15
execution of strategies 13
limit order books 13
position and PnL management 14
Post-Trade Analytics (PTA) 15
risk management 15
trading strategies 11

quants 5

R
realized PnL 14
real-time data retrieval 196, 197
regulatory risk 236
response 174
RidgeCV regression

running, on dataset 178-182

344 Index

risk management
about 15
with PyFolio 236-239

rolling window mean strategy 248-254
rolling window mean strategy, statistics

Calmar Ratio 250
Omega Ratio 251
Sharpe Ration 250
Sortino Ratio 251
Stability 251
Tail Ratio 251

rows and columns
dropping, from pandas.

DataFrames 82-84
RSI strategy 265-270

S
SARIMAX strategy 318-322
SARIMAX time series model

about 166
using, with pmdarima 166-170

Scatter matrix
for dataset 177

scatter plots, of two DataFrame columns
creating 130-132

scikit-learn regression
about 174
used, for classification 174

scikit-learn's classification methods
running, on dataset 182-186

signal aggregators 13
signal research framework 12
simple moving averages strategy 254-259
single-ticker retrieval

about 191-196
real-time data retrieval 196, 197
summary data retrieval 197, 198

slippage 13
software implementation risk 236
S&P 500 (SPY) 41
statistical arbitrage strategies 12
Statsmodels

about 146
used, for time series modeling 148, 149

statsmodels.tsa.seasonal.seasonal_
decompose(...) method

about 154
results, plotting 154-156

stop loss 243
strategy stop rule 243
subplots

plotting 113-115
subsampling 12
summary data retrieval 197, 198

T
target variable 174
ticks

axes, enriching with 118-120
time series

autocorrelation 159-161
partial autocorrelation 159-161

time series data
plotting 133

time series forecasting
with Facebook's Prophet library 171-174

time series modeling
with Statsmodels 148, 149

time series prediction-based strategies
about 317
prophet strategy 323-328
SARIMAX strategy 318-322

total PnL 14
Trade Level Sharpe Ratio 240, 241

Index 345

trading server 10
trading signal research framework 12
trading signals 12
trading strategies 11
trading strategies, of quantitative

infrastructure
signal aggregators 13
trading signal research framework 12
trading signals 12

trend-following strategies 11
Triple Exponential Average

(TRIX) 282-287

U
underlying data types, of ndarray

converting, with numpy.
ndarrays.astype(...) 51

United States Oil Fund (USO) 6
universal function (ufunc) 56
UnobservedComponents model

about 152, 153
results, plotting 154-156

unrealized PnL 14

V
Volatility Index (VIX) 41
Volume Weighted Average

Price (VWAP) 15

W
Williams R% strategy 287-292

Y
Yahoo Finance

accessing 202, 203
Yahoo Finance and IEX Paid Data

data, importing from 224-229
yahoofinancials Python library

exploring 190
multiple-tickers retrieval 198
single-ticker retrieval 191-196

Z
Zipline

about 214
commissions 234
installing 214
order types 233
slippage models 235
URL 214

Zipline API reference
reviewing 233

Zipline backtesting
running, from command line 235

Zipline backtesting code
functions 229

Zipline backtesting modules
structuring 229-232

Zipline backtesting system
market data, importing into 215

Z-score 31-33

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Algorithmic Trading
	Chapter 1: Introduction to Algorithmic Trading
	Walking through the evolution of algorithmic trading
	Understanding financial asset classes
	Going through the modern electronic trading exchange
	Order types
	Limit order books
	The exchange matching engine

	Understanding the components of an algorithmic trading system
	The core infrastructure of an algorithmic trading system
	The quantitative infrastructure of an algorithmic trading system

	Summary

	Section 2:
In-Depth Look at Python Libraries for the Analysis of Financial Datasets
	Chapter 2: Exploratory Data Analysis in Python
	Technical requirements
	Introduction to EDA
	Steps in EDA
	Revelation of the identity of A, B, and C and EDA's conclusions

	Special Python libraries for EDA
	Summary

	Chapter 3: High-Speed Scientific Computing Using NumPy
	Technical requirements
	Introduction to NumPy
	Creating NumPy ndarrays
	Creating 1D ndarrays
	Creating 2D ndarrays
	Creating any-dimension ndarrays
	Creating an ndarray with np.zeros(...)
	Creating an ndarray with np.ones(...)
	Creating an ndarray with np.identity(...)
	Creating an ndarray with np.arange(...)
	Creating an ndarray with np.random.randn(…)

	Data types used with NumPy ndarrays
	Creating a numpy.float64 array
	Creating a numpy.bool array
	ndarrays' dtype attribute
	Converting underlying data types of ndarray with numpy.ndarrays.astype(...)

	Indexing of ndarrays
	Direct access to an ndarray's element
	ndarray slicing
	Boolean indexing
	Indexing with arrays

	Basic ndarray operations
	Scalar multiplication with an ndarray
	Linear combinations of ndarrays
	Exponentiation of ndarrays
	Addition of an ndarray with a scalar
	Transposing a matrix
	Changing the layout of an ndarray
	Finding the minimum value in an ndarray
	Calculating the absolute value
	Calculating the mean of an ndarray
	Finding the index of the maximum value in an ndarray
	Calculating the cumulative sum of elements of an ndarray
	Finding NaNs in an ndarray
	Finding the truth values of x1>x2 of two ndarrays
	any and all Boolean operations on ndarrays
	Sorting ndarrays
	Searching within ndarrays

	File operations on ndarrays
	File operations with text files
	File operations with binary files

	Summary

	Chapter 4: Data Manipulation and Analysis
with pandas
	Introducing pandas Series, pandas DataFrames, and pandas Indexes
	pandas.Series
	pandas.DataFrame
	pandas.Index

	Learning essential pandas.DataFrame operations
	Indexing, selection, and filtering of DataFrames
	Dropping rows and columns from a DataFrame
	Sorting values and ranking the values' order within a DataFrame
	Arithmetic operations on DataFrames
	Merging and combining multiple DataFrames into a single DataFrame
	Hierarchical indexing
	Grouping operations in DataFrames
	Transforming values in DataFrames' axis indices
	Handling missing data in DataFrames
	The transformation of DataFrames with functions and mappings
	Discretization/bucketing of DataFrame values
	Permuting and sampling DataFrame values to generate new DataFrames

	Exploring file operations with pandas.DataFrames
	CSV files
	JSON files

	Summary

	Chapter 5: Data Visualization Using Matplotlib
	Technical requirements
	Creating figures and subplots
	Defining figures' subplots
	Plotting in subplots

	Enriching plots with colors, markers, and line styles
	Enriching axes with ticks, labels, and legends
	Enriching data points with annotations
	Saving plots to files
	Charting a pandas DataFrame with Matplotlib
	Creating line plots of a DataFrame column
	Creating bar plots of a DataFrame column
	Creating histogram and density plots of a DataFrame column
	Creating scatter plots of two DataFrame columns
	Plotting time series data

	Summary

	Chapter 6: Statistical Estimation, Inference, and Prediction
	Technical requirements
	Introduction to statsmodels
	Normal distribution test with Q-Q plots
	Time series modeling with statsmodels
	ETS analysis of a time series
	Augmented Dickey-Fuller test for stationarity of a
time series
	Autocorrelation and partial autocorrelation of a
time series
	ARIMA time series model

	Using a SARIMAX time series model with pmdarima
	Time series forecasting with Facebook's Prophet library
	Introduction to scikit-learn regression and classification
	Generating the dataset
	Running RidgeCV regression on the dataset
	Running a classification method on the dataset

	Summary

	Section 3:
Algorithmic
Trading in Python
	Chapter 7: Financial Market Data Access
in Python
	Exploring the yahoofinancials Python library
	Single-ticker retrieval
	Multiple-tickers retrieval

	Exploring the pandas_datareader Python library
	Access to Yahoo Finance
	Access to EconDB
	Access to the Federal Reserve Bank of St Louis' FRED
	Caching queries

	Exploring the Quandl data source
	Exploring the IEX Cloud data source
	Exploring the MarketStack data source
	Summary

	Chapter 8: Introduction to Zipline and PyFolio
	Introduction to Zipline and PyFolio
	Installing Zipline and PyFolio
	Installing Zipline
	Installing PyFolio

	Importing market data into a Zipline/PyFolio backtesting system
	Importing data from the historical Quandl bundle
	Importing data from the CSV files bundle
	Importing data from custom bundles

	Structuring Zipline/PyFolio backtesting modules
	Trading happens every day
	Trading happens on a custom schedule

	Reviewing the key Zipline API reference
	Types of orders
	Commission models
	Slippage models

	Running Zipline backtesting from the command line
	Introduction to risk management with PyFolio
	Market volatility, PnL variance, and PnL standard deviation
	Trade-level Sharpe ratio
	Maximum drawdown

	Summary

	Chapter 9: Fundamental Algorithmic Trading Strategies
	What is an algorithmic trading strategy?
	Learning momentum-based/trend-following strategies
	Rolling window mean strategy
	Simple moving averages strategy
	Exponentially weighted moving averages strategy
	RSI strategy
	MACD crossover strategy
	RSI and MACD strategies
	Triple exponential average strategy
	Williams R% strategy

	Learning mean-reversion strategies
	Bollinger band strategy
	Pairs trading strategy

	Learning mathematical model-based strategies
	Minimization of the portfolio volatility strategy with monthly trading
	Maximum Sharpe ratio strategy with monthly trading

	Learning time series prediction-based strategies
	SARIMAX strategy
	Prophet strategy

	Summary

	Appendix A: How to Setup a Python Environment
	Technical requirements
	Initial setup
	Downloading the complimentary Quandl
data bundle

	Other Books You May Enjoy
	Index

