
Yves Hilpisch

Financial Theory
 with Python
A Gentle Introduction

Yves Hilpisch

Financial Theory with Python
A Gentle Introduction

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10435-1

[LSI]

Financial Theory with Python
by Yves Hilpisch

Copyright © 2022 Yves Hilpisch. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith
Development Editor: Michele Cronin
Production Editor: Daniel Elfanbaum
Copyeditor: Piper Editorial Conulting, LLC
Proofreader: Kim Cofer

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2021: First Edition

Revision History for the First Edition
2021-09-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098104351 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Financial Theory with Python, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights. This book is not intended as financial advice. Please
consult a qualified professional if you require financial advice.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098104351

Table of Contents

Preface. vii

1. Finance and Python. 1
A Brief History of Finance 2
Major Trends in Finance 3
A Four-Languages World 4
The Approach of This Book 5
Getting Started with Python 8
Conclusions 15
References 16

2. Two-State Economy. 17
Economy 18

Real Assets 18
Agents 18
Time 19
Money 20

Cash Flow 21
Return 23
Interest 23
Present Value 24
Net Present Value 25

Uncertainty 26
Financial Assets 28
Risk 29

Probability Measure 29
Expectation 31
Expected Return 32

iii

Volatility 33
Contingent Claims 35

Replication 37
Arbitrage Pricing 40
Market Completeness 42

Arrow-Debreu Securities 47
Martingale Pricing 49

First Fundamental Theorem of Asset Pricing 50
Pricing by Expectation 51
Second Fundamental Theorem of Asset Pricing 51

Mean-Variance Portfolios 52
Conclusions 57
Further Resources 57

3. Three-State Economy. 59
Uncertainty 60
Financial Assets 60
Attainable Contingent Claims 61
Martingale Pricing 64

Martingale Measures 64
Risk-Neutral Pricing 67

Super-Replication 67
Approximate Replication 71
Capital Market Line 73
Capital Asset Pricing Model 75
Conclusions 80
Further Resources 81

4. Optimality and Equilibrium. 83
Utility Maximization 84

Indifference Curves 86
Appropriate Utility Functions 88
Logarithmic Utility 89
Time-Additive Utility 90

Expected Utility 93
Optimal Investment Portfolio 95
Time-Additive Expected Utility 98

Pricing in Complete Markets 99
Arbitrage Pricing 101
Martingale Pricing 102

Risk-Less Interest Rate 102
A Numerical Example (I) 103

iv | Table of Contents

Pricing in Incomplete Markets 106
Martingale Measures 108
Equilibrium Pricing 109

A Numerical Example (II) 111
Conclusions 115
Further Resources 116

5. Static Economy. 117
Uncertainty 118

Random Variables 119
Numerical Examples 120

Financial Assets 122
Contingent Claims 124
Market Completeness 125
Fundamental Theorems of Asset Pricing 129
Black-Scholes-Merton Option Pricing 133
Completeness of Black-Scholes-Merton 137
Merton Jump-Diffusion Option Pricing 138
Representative Agent Pricing 143
Conclusions 144
Further Resources 145

6. Dynamic Economy. 147
Binomial Option Pricing 148

Simulation and Valuation Based on Python Loops 151
Simulation and Valuation Based on Vectorized Code 154
Speed Comparison 157

Black-Scholes-Merton Option Pricing 159
Monte Carlo Simulation of Stock Price Paths 159
Monte Carlo Valuation of the European Put Option 163
Monte Carlo Valuation of the American Put Option 164

Conclusions 166
Further Resources 166

7. Where to Go from Here?. 169
Mathematics 169
Financial Theory 170
Python Programming 173
Python for Finance 173

Financial Data Science 174
Algorithmic Trading 174
Computational Finance 175

Table of Contents | v

Artificial Intelligence 176
Other Resources 176

Final Words 177

Index. 179

vi | Table of Contents

1 Kindman, Andrew and Tom Taylor, “Why We Rewrote Our USD30 Billion Asset Management Platform in
Python.” (March 29, 2021), https://oreil.ly/GghS6.

Preface

Python was quickly becoming the de-facto language for data science, machine learning
and natural language processing; it would unlock new sources of innovation. Python
would allow us to engage with its sizeable open source community, bringing state-of-
the-art technology in-house quickly, while allowing for customization.1

—Kindman and Taylor (2021)

Why This Book?
Technological trends like online trading platforms, open source software, and open
financial data have significantly lowered or even completely removed the barriers of
entry to the global financial markets. Individuals with only limited amounts of cash at
their free disposal can get started, for example, with algorithmic trading within hours.
Students and academics in financial disciplines with a little bit of background knowl‐
edge in programming can easily apply cutting-edge innovations in machine and deep
learning to financial data—on the notebooks they bring to their finance classes. On
the hardware side, cloud providers offer professional compute and data processing
capabilities starting at 5 USD per month, billed by the hour and with almost unlimi‐
ted scalability. So far, academic and professional finance education has only partly
reacted to these trends.

This book teaches both finance and the Python programming language from the
ground up. Nowadays, finance and programming in general are closely intertwined
disciplines, with Python being one of the most widely used programming languages
in the financial industry. The book presents relevant foundations—from mathemat‐
ics, finance, and programming—in an integrated but not-too-technical fashion. Tra‐
ditionally, theoretical finance and computational finance have been more or less
separate disciplines. The fact that programming classes (for example, in Python but

vii

https://oreil.ly/GghS6
http://python.org

2 Find the full reference for this title in Chapter 7.

also in C++) have become an integral part of Master of Financial Engineering and
similar university programs shows how important programming skills have become
in the field.

However, mathematical foundations, theoretical finance, and basic programming tech‐
niques are still quite often taught independently from one another and only later in
combination with computational finance. This book takes a different approach in that
the mathematical concepts—for example, from linear algebra and probability theory
—provide the common background against which financial ideas and programming
techniques alike are introduced. Abstract mathematical concepts are thereby motiva‐
ted from two different angles: finance and programming. In addition, this approach
allows for a new learning experience since both mathematical and financial concepts
can directly be translated into executable code that can then be explored interactively.

Several readers of one of my other books, Python for Finance (2nd ed., 2018,
O’Reilly), pointed out that it teaches neither finance nor Python from the ground up.
Indeed, the reader of that book is expected to have at least some experience in both
finance and (Python) programming. Financial Theory with Python closes this gap in
that it focuses on more fundamental concepts from both finance and Python pro‐
gramming. In that sense, readers who finish this book can naturally progress to
Python for Finance to further build and improve their Python skills as applied to
finance. More guidance is provided in the final chapter.

Target Audience
I have written a number of books about Python applied to finance. My company, The
Python Quants, offers a number of live and online training classes in Python for
finance. For all of my previous books and the training classes, the book readers and
training participants are expected to already have some background knowledge in
both finance and Python programming or a similar language.

This book starts completely from scratch, with just the expectation that the reader has
some basic knowledge in mathematics, in particular from calculus, linear algebra, and
probability theory. Although the book material is almost self-contained with regard
to the mathematical concepts introduced, an introductory mathematics book like the
one by Pemberton and Rau (2016)2 is recommended for further details if needed.

Given this approach, this book targets students, academics, and professionals alike
who want to learn about financial theory, financial data modeling, and the use of
Python for computational finance. It is a systematic introduction to the field on
which to build through more advanced books or training programs. Readers with a

viii | Preface

formal financial background will find the mathematical and financial elements of the
book rather simple and straightforward. On the other hand, readers with a stronger
programming background will find the Python elements rather simple and easy to
understand.

Even if the reader does not intend to move on to more advanced topics in computa‐
tional finance, algorithmic trading, or asset management, the Python and finance
skills acquired through this book can be applied beneficially to standard problems in
finance, such as the composition of investment portfolios according to modern port‐
folio theory (MPT). This book also teaches, for example, how to value options and
other derivatives by standard methods such as replication portfolios or risk-neutral
pricing.

This book is also suitable for executives in the financial industry who want to learn
about the Python programming language as applied to finance. On the other hand, it
can also be read by those already proficient in Python or another programming lan‐
guage who want to learn more about the application of Python in finance.

Overview of the Book
The book consists of the following chapters:

Chapter 1
The first chapter sets the stage for the rest of the book. It provides a concise his‐
tory of finance, explains the book’s approach to using Python for finance, and
shows how to set up a basic Python infrastructure suited to work with the code
provided and the Jupyter Notebooks that accompany the book.

Chapter 2
This chapter covers the most simple model economy, in which the analysis of
finance under uncertainty is possible: there are only two relevant dates and two
uncertain future states possible. One sometimes speaks of a static two-state econ‐
omy. Despite its simplicity, the framework allows the introduction of such basic
notions of finance as net present value, expected return, volatility, contingent
claims, option replication, arbitrage pricing, martingale measures, market com‐
pleteness, risk-neutral pricing, and mean-variance portfolios.

Chapter 3
This chapter introduces a third uncertain future state to the model, analyzing a
static three-state economy. This allows us to analyze such notions as market
incompleteness, indeterminacy of martingale measures, super-replication of
contingent claims, and approximate replication of contingent claims. It also
introduces the Capital Asset Pricing Model as an equilibrium pricing approach
for financial assets.

Preface | ix

Chapter 4
In this chapter, agents with their individual decision problems are introduced.
The analysis in this chapter mainly rests on the dominating paradigm in finance
for decision making under uncertainty: expected utility maximization. Based on a
so-called representative agent, equilibrium notions are introduced, and the con‐
nection between optimality and equilibrium on the one hand and martingale
measures and risk-neutral pricing on the other hand are illustrated. The repre‐
sentative agent is also one way of overcoming the difficulties that arise in econo‐
mies with incomplete markets.

Chapter 5
This chapter generalizes the previous notions and results in a setting with a finite,
but possibly large, number of uncertain future states. It requires a bit more math‐
ematical formalism to analyze this general static economy.

Chapter 6
Building on the analysis of the general static economy, this chapter introduces
dynamics to the financial modeling arsenal—to analyze two special cases of a
dynamic economy in discrete time. The basic insight is that uncertainty about
future states of an economy in general resolves gradually over time. This can be
modeled by the use of stochastic processes, an example of which is the binomial
process that can be represented visually by a binomial tree.

Chapter 7
The final chapter provides a wealth of additional resources to explore in the fields
of mathematics, financial theory, and Python programming. It also provides
guidance on how to proceed after the reader has finished this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

x | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or with values
determined by context.

This element signifies a general note.

This element indicates a warning or caution.

This element indicates important information.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://finpy.pqp.io.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

Preface | xi

https://finpy.pqp.io
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example, this book would be
attributed as “Financial Theory with Python by Yves Hilpisch (O’Reilly). Copyright
2022 Yves Hilpisch, 978-1-098-10435-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/fin-theory-with-python.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

xii | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/fin-theory-with-python
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This book has benefited from valuable feedback by delegates of our Certificate Pro‐
grams in Python for Finance. They have pointed out numerous improvements over
time.

I am thankful for several helpful comments that I have received from the technical
reviewers.

I am also grateful for the help and support that I have experienced from the whole
O’Reilly team.

I dedicate this book to my wife Sandra. You are the love of my life.

Preface | xiii

CHAPTER 1

Finance and Python

The history of finance theory is an interesting example of the interaction between
abstract theorizing and practical application.

—Frank Milne (1995)

Hedge funds have sucked in tens of billions of dollars in investments in recent years,
assisted increasingly by technology. The same tech is also benefiting those people who
make the financial decisions at these organisations.

—Laurence Fletcher (2020)

This chapter gives a concise overview of topics relevant for the book. It is intended to
provide both the financial and technological framework for the chapters to follow. “A
Brief History of Finance” on page 2 starts by giving a brief overview of the history
and current state of finance. “Major Trends in Finance” on page 3 discusses the major
trends that have been driving the evolution of finance over time: mathematics, tech‐
nology, data, and artificial intelligence. Against this background, “A Four-Languages
World” on page 4 argues that finance today is a discipline of four closely interconnec‐
ted types of languages: English, finance, mathematics, and programming. The overall
approach of the book is explained in “The Approach of This Book” on page 5. “Get‐
ting Started with Python” on page 8 illustrates how an appropriate Python environ‐
ment can be installed on the reader’s computer. However, all the code can be used and
executed via a regular web browser on the Quant Platform so that a local Python
installation can be set up later.

1

http://finpy.pqp.io

A Brief History of Finance
To better understand the current state of finance and the financial industry, it is help‐
ful to have a look at how they have developed over time. The history of finance as a
scientific field can be divided roughly into three periods according to Rubinstein
(2006):

The ancient period (pre-1950)
A period mainly characterized by informal reasoning, rules of thumb, and the
experience of market practitioners.

The classical period (1950–1980)
A period characterized by the introduction of formal reasoning and mathematics
to the field. Specialized models (for example, Black and Scholes’s (1973) option
pricing model) as well as general frameworks (for example, Harrison and Kreps’s
(1979) risk-neutral pricing approach) were developed during this period.

The modern period (1980–2000)
This period generated many advances in specific subfields of finance (for exam‐
ple, computational finance) and tackled, among others, important empirical phe‐
nomena in the financial markets, such as stochastic interest rates (for example,
Cox, Ingersoll, and Ross (1985)) or stochastic volatility (for example, Heston
(1993)).

Fifteen years after the publication of the Rubinstein (2006) book, we can add fourth
and fifth periods today. These two periods are responsible for the rise and the current
omnipresence of Python in finance:

The computational period (2000–2020)
This period saw a shift from a theoretical focus in finance to a computational
one, driven by advances in both hardware and software used in finance. The
paper by Longstaff and Schwartz (2001)—providing an efficient numerical algo‐
rithm to value American options by Monte Carlo simulation—illustrates this
paradigm shift quite well. Their algorithm is computationally demanding in that
hundreds of thousands of simulations and multiple ordinary least-squares regres‐
sions are required in general to value only a single option (see Hilpisch (2018)).

The artificial intelligence period (post-2020)
Advances in artificial intelligence (AI) and related success stories have spurred
interest to make use of the capabilities of AI in the financial domain. While there
are already successful applications of AI in finance (see Hilpisch (2020)), it can
be assumed that from 2020 onward there will be a systematic paradigm shift
toward AI-first finance. AI-first finance describes the shift from simple, in general
linear, models in finance to the use of advanced models and algorithms from AI

2 | Chapter 1: Finance and Python

—such as deep neural networks or reinforcement learning—to capture, describe,
and explain financial phenomena.

Major Trends in Finance
Like many other subjects and industries, finance has become a more formalized sci‐
entific discipline over time, driven by the increasing use of formal mathematics,
advanced technology, increasing data availability, and improved algorithms, such as
those from AI. Taken together, the evolution of finance over time can therefore be
characterized by four major trends:

Mathematics
Starting in the 1950s with the classical period, finance has become a more and
more formalized discipline, making systematic use of different fields in mathe‐
matics, like linear algebra or stochastic calculus. The mean-variance portfolio
(MVP) theory by Markowitz (1952) can be considered a major breakthrough in
quantitative finance if not its starting point itself—leaving the ancient period
characterized mainly by informal reasoning behind.

Technology
The widespread availability and use of personal computers, workstations, and
servers, starting mainly in the late 1980s and early 1990s, brought more and more
technology to the field. While compute power and capacity in the beginning were
rather limited, they have reached levels as of today that allow us to attack even
the most complex problems in finance by sheer brute force, often rendering the
search for rather specialized, efficient models and methods—that characterized
the classical and modern periods—obsolete. The credo has become “Scale your
hardware and use modern software in combination with appropriate numerical
methods.” On the other hand, the modern hardware found in most dorm and
living rooms is already powerful enough that even high-performance approaches,
like parallel processing, can generally be used on such commodity hardware—
lowering the barriers of entry to computational and AI-first finance
tremendously.

Data
While researchers and practitioners alike mainly relied on printed financial
information and data in the ancient and classical periods (think of the Wall Street
Journal or the Financial Times), electronic financial data sets have become more
widely available starting in the modern period. However, the computational
period has seen an explosion in the availability of financial data. High-frequency
intraday data sets have become the norm and have replaced end-of-day closing
prices as the major basis for empirical research. A single stock might generate
intraday data sets with well over 100,000 data points every trading day—this
number is roughly the equivalent of 400 years’ worth of end-of-day closing prices

Major Trends in Finance | 3

for the same stock (250 trading days per year times 400 years). Even more
recently, a proliferation in open or free data sets has been observed, which also
significantly lowers the barriers of entry to computational finance, algorithmic
trading, or financial econometrics.

Artificial intelligence
The availability of ever more financial data (“big financial data”) makes the appli‐
cation of AI algorithms—such as those from machine learning, deep learning, or
reinforcement learning (see Hilpisch (2020))—not only possible but also in many
cases these days necessary. Traditional statistical methods from financial econo‐
metrics are often not suited anymore to cope with today’s complexities in finan‐
cial markets. Faced with nonlinear, multidimensional, ever-changing financial
environments, AI-based algorithms might often be the only option to discover
relevant relationships and patterns, generate valuable insights, and benefit from
improved prediction capabilities.

By reading this book, the reader lays the foundations in the areas of financial mathe‐
matics and modern technology used to implement formal financial models. The
reader also acquires skills to work with typical financial data sets encountered in
finance. Taken together, this prepares the reader to later on also explore more easily
advanced topics in computational finance or AI as applied to finance.

Python and Finance

More and more, finance has become a field driven by computation‐
ally demanding algorithms, ever-increasing data availability, and
AI. Python has proven to be the right programming language and
technology platform to address the requirements and challenges
that arise from the major trends observed in the field.

A Four-Languages World
Against this background, finance has become a world of four languages:

Natural language
Today, the English language is the only relevant language in the field when it
comes to published research, books, articles, or news.

Financial language
Like every other field, finance has technical terms, notions, and expressions that
describe certain phenomena or ideas that are usually not relevant in other
domains.

4 | Chapter 1: Finance and Python

Mathematical language
Mathematics is the tool and language of choice when it comes to formalizing the
notions and concepts of finance.

Programming language
As the quote at the beginning of the preface points out, Python as a programming
language has become the language of choice in many corners of the financial
industry.

The mastery of finance therefore requires both the academic and practitioner to be
fluent in all four languages: English, finance, mathematics, and Python. This is not to
say that, for instance, English and Python are the only relevant natural or program‐
ming languages. It is rather the case that if you have only a limited amount of time to
learn a programming language, you should most probably focus on Python—along‐
side mathematical finance—on your way to mastery of the field.

The Approach of This Book
How does this book approach the four languages needed in finance? The English lan‐
guage is a no-brainer—you are reading it already. Yet, three remain.

For example, this book cannot introduce every single piece of mathematics in detail
that is needed in finance. Nor can it introduce every single concept in (Python) pro‐
gramming in detail that is needed in computational finance. However, it tries to
introduce related concepts from finance, mathematics, and programming alongside
one another whenever possible and sensible.

From Chapter 2 onward, the book introduces a financial notion or concept and then
illustrates it on the basis of both a mathematical representation and the implementa‐
tion in Python. As an example, have a look at the following table from Chapter 3. The
table lists the financial topic, the major mathematical elements, and the major Python
data structure used to implement the financial mathematics:

Finance Mathematics Python
Uncertainty Probability space ndarray

Financial assets Vectors, matrices ndarray

Attainable contingent claims Span of vectors, basis of vector space ndarray

The following is a walkthrough of one specific example, details of which are provided
in later chapters. The example is only for illustration of the general approach of the
book at this point.

As an example, take the central concept of uncertainty in finance from the preceding
table. Uncertainty embodies the notion that future states of a model economy are not

The Approach of This Book | 5

http://python.org

known in advance. Which future state of the economy unfolds might be important,
for example, to determine the payoff of a European call option. In a discrete case, one
deals with a finite number of such states, like two, three, or more. In the most simple
case of two future states only, the payoff of a European call option is represented
mathematically as a random variable, which in turn can be represented formally as a
vector v that is itself an element of the vector space ℝ2. A vector space is a collection of
objects—called vectors—for which addition and scalar multiplication are defined.
Formally, one writes for such a vector v, for example:

v =
vu

vd
∈ ℝ≥0

2

Here, both elements of the vector are assumed to be non-negative real numbers
vu, vd ∈ ℝ≥0. More concretely, if the uncertain, state-dependent price of the stock on
which the European call option is written is given in this context by

S =
20
5
∈ ℝ≥0

2

and the strike price of the option is K = 15, the payoff C of the European call option
is given by

C = max S − K, 0 =
max 20 − 15, 0
max 5 − 15, 0

=
5
0
∈ ℝ≥0

2

This illustrates how the notions of the uncertain price of a stock and the state-
dependent payoff of a European option can be modeled mathematically as a vector.
The discipline dealing with vectors and vector spaces in mathematics is called linear
algebra.

How can all this be translated into Python programming? First, real numbers are rep‐
resented as floating point numbers or float objects in Python:

In [1]: vu = 1.5

In [2]: vd = 3.75

In [3]: type(vu)
Out[3]: float

In [4]: vu + vd
Out[4]: 5.25

6 | Chapter 1: Finance and Python

Defines a variable with the name vu and the value 1.5.

Defines a variable with the name vd and the value 3.75.

Looks up the type of the vu object—it is a float object.

Adds up the values of vu and vd.

Second, one usually calls collections of objects of the same type in programming
arrays. In Python, the package NumPy provides support for such data structures. The
major data structure provided by this package is called ndarray, which is an abbrevia‐
tion for n-dimensional array. Real-valued vectors are straightforward to model with
NumPy:

In [5]: import numpy as np

In [6]: v = np.array((vu, vd))

In [7]: v
Out[7]: array([1.5 , 3.75])

In [8]: v.dtype
Out[8]: dtype('float64')

In [9]: v.shape
Out[9]: (2,)

In [10]: v + v
Out[10]: array([3. , 7.5])

In [11]: 3 * v
Out[11]: array([4.5 , 11.25])

Imports the NumPy package.

Instantiates an ndarray object.

Prints out the data stored in the object.

Looks up the data type for all elements.

Looks up the shape of the object.

Vector addition illustrated.

Scalar multiplication illustrated.

The Approach of This Book | 7

http://numpy.org

This shows how the mathematical concepts surrounding vectors are represented and
applied in Python. It is then only one step further to apply those insights to finance:

In [12]: S = np.array((20, 5))

In [13]: K = 15

In [14]: C = np.maximum(S - K, 0)

In [15]: C
Out[15]: array([5, 0])

Defines the uncertain price of the stock as an ndarray object.

Defines the strike price as a Python variable with an integer value (int object).

Calculates the maximum expression element-wise.

Shows the resulting data now stored in the ndarray object C.

This illustrates the style and approach of this book:

1. Notions and concepts in finance are introduced.
2. A mathematical representation and model is provided.
3. The mathematical model is translated into executable Python code.

In that sense, finance motivates the use of mathematics, which in turn motivates the
use of Python programming techniques.

Getting Started with Python
One of the benefits of Python is that it is an open source language, which holds true
for the absolute majority of important packages as well. This allows for easy installa‐
tion of the language and required packages on all major operating systems, such as
macOS, Windows, and Linux. There are only a few major packages that are required
for the code of this book and finance in general in addition to a basic Python
interpreter:

NumPy

This package allows the efficient handling of large, n-dimensional numerical data
sets.

pandas

This package is primarily for the efficient handling of tabular data sets, such as
financial time series data. Although not required for the purposes of this book,
pandas has become one of the most popular Python packages in finance.

8 | Chapter 1: Finance and Python

http://numpy.org
http://pandas.pydata.org

SciPy

This package is a collection of scientific functions that are required, for example,
to solve typical optimization problems.

SymPy

This package allows for symbolic mathematics with Python, which sometimes
comes in handy when dealing with financial models and algorithms.

matplotlib

This package is the standard package in Python for visualization. It allows you to
generate and customize different types of plots, such as line plots, bar charts, and
histograms.

Similarly, there are only two tools that are required to get started with interactive
Python coding:

IPython
This is the most popular environment in which to do interactive Python coding
on the command line (terminal, shell).

JupyterLab
This is the interactive development environment in which to do interactive
Python coding and development in the browser.

The technical prerequisites to follow along with regard to Python programming are
minimal. There are basically two options for making use of the Python code in this
book:

Quant Platform
On the Quant Platform, for which you can sign up for free, you find a full-
fledged environment for interactive financial analytics with Python. This allows
you to make use of the Python code provided in this book via the browser, mak‐
ing a local installation unnecessary. After signing up for free, you have automatic
access to all code and all Jupyter Notebooks that accompany the book, and you
can execute the code right away in the browser.

Local Python environment
It is also straightforward nowadays to install a local Python environment that
allows you to dive into financial analytics and the book code on your own com‐
puter. This section describes how to do this.

Getting Started with Python | 9

http://scipy.org
http://sympy.org
http://matplotlib.org
http://ipython.org
http://jupyter.org
http://finpy.pqp.io

Local Installation Versus the Quant Platform

From experience, the local installation of an appropriate Python
environment can sometimes prove difficult for someone who is
just starting out in the programming world. Therefore, it is recom‐
mended that you do not spend too much time at the beginning on
installing Python locally if you face any issues. Rather, make use of
the Quant Platform and later on, with some more experience, you
can still return and install Python on your local machine.

An easy and modern way of installing Python is by the use of the conda package and
environment manager (see Figure 1-1).

Figure 1-1. conda web page

The most efficient way to install conda and a basic Python interpreter is via the Mini‐
conda distribution. On the Miniconda download page, installer packages for the most
important operating systems and Python versions are provided (see Figure 1-2).
Additional options, such as for Apple’s M1 chips (“Apple Silicon”), are provided by
the Miniforge project.

10 | Chapter 1: Finance and Python

http://finpy.pqp.io
http://conda.io
https://oreil.ly/NI0Wi
https://oreil.ly/NI0Wi
https://oreil.ly/gaWTP
https://oreil.ly/gKeo3

Figure 1-2. Miniconda download page

After having installed Miniconda or Miniforge according to the guidelines provided
for your operating system, you should open a shell or command prompt and check
whether conda is available. The examples that follow are based on conda as installed
via Miniforge on an Apple Mac computer with the M1 chip. You should get an output
similar to this:

(base) minione:finpy yves$ conda --version
conda 4.10.3
(base) minione:finpy yves$

Also note the (base) part of the prompt that is typical for conda-based Python instal‐
lations. The next step is to create a new Python environment as follows (and to answer
“y” when prompted):

pro:finpy yves$ conda create --name finpy python=3.9
...
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate finpy
#
To deactivate an active environment, use
#
$ conda deactivate

Getting Started with Python | 11

After the successful completion, activate the environment as follows:

(base) minione:finpy yves$ conda activate finpy
(finpy) minione:finpy yves$

Notice how the prompt changes. Next, install the required tools IPython and Jupyter‐
Lab as follows (and answer “y” when prompted):

(finpy) minione:finpy yves$ conda install ipython jupyterlab
...

After that, you should install the major Python packages generally used for financial
data science as follows (the flag -y avoids the confirmation prompt):

(finpy) minione:finpy yves$ conda install -y numpy pandas matplotlib scipy sympy
...

This provides the most important Python packages for data analysis in general and
financial analytics in particular. You might check whether everything has been
installed as follows:

(finpy) minione:finpy yves$ conda list
packages in environment at /Users/yves/Python/envs/finpy:
#
Name Version Build Channel
anyio 3.3.0 py39h2804cbe_0 conda-forge
appnope 0.1.2 py39h2804cbe_1 conda-forge
argon2-cffi 20.1.0 py39h5161555_2 conda-forge
...
jupyterlab 3.1.12 pyhd8ed1ab_0 conda-forge
...
numpy 1.21.2 py39h1f3b974_0 conda-forge
...
python 3.9.7 h54d631c_1_cpython conda-forge
...
zipp 3.5.0 pyhd8ed1ab_0 conda-forge
zlib 1.2.11 h31e879b_1009 conda-forge
zstd 1.5.0 h861e0a7_0 conda-forge
(finpy) minione:finpy yves$

An interactive Python session is then started by simply typing python:

(finpy) minione:finpy yves$ python
Python 3.9.7 | packaged by conda-forge | (default, Sep 14 2021, 01:14:24)
[Clang 11.1.0] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello Finance World.')
Hello Finance World.
>>> exit()
(finpy) minione:finpy yves$

12 | Chapter 1: Finance and Python

A better interactive shell is provided by IPython, which is started via ipython on the
shell:

(finpy) minione:finpy yves$ ipython
Python 3.9.7 | packaged by conda-forge | (default, Sep 14 2021, 01:14:24)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.27.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from numpy.random import default_rng

In [2]: rng = default_rng(100)

In [3]: rng.random(10)
Out[3]:
array([0.83498163, 0.59655403, 0.28886324, 0.04295157, 0.9736544 ,
 0.5964717 , 0.79026316, 0.91033938, 0.68815445, 0.18999147])

In [4]: exit
(finpy) minione:finpy yves$

However, it is recommended—especially for the Python beginner—to work with
JupyterLab in the browser. To this end, type jupyter lab on the shell, which should
give an output with messages similar to the following:

(finpy) minione:finpy yves$ jupyter lab
...
[I 2021-09-16 14:18:21.774 ServerApp] Jupyter Server 1.11.0 is running at:
[I 2021-09-16 14:18:21.774 ServerApp] http://localhost:8888/lab
[I 2021-09-16 14:18:21.774 ServerApp] or http://127.0.0.1:8888/lab
[I 2021-09-16 14:18:21.774 ServerApp] Use Control-C to stop this server
 and shut down all kernels (twice to skip confirmation).

In general, a new browser tab is opened automatically, which then shows you the
starting page of JupyterLab similar to Figure 1-3.

You can then open a new Jupyter Notebook and start with interactive Python coding,
as shown in Figure 1-4. To write code in a cell, click on the cell. To execute the code,
use Shift-Return, Ctrl-Return, or Alt-Return (you will notice the difference).

Getting Started with Python | 13

Figure 1-3. JupyterLab start page

Figure 1-4. New Jupyter Notebook

14 | Chapter 1: Finance and Python

You can also open one of the Jupyter Notebook files provided with this book (see
Figure 1-5).

Figure 1-5. Jupyter Notebook accompanying the book

This section just provides the very basics to get started with Python and related tools,
such as IPython and JupyterLab. For more details—for example, about how to work
with IPython—refer to the book by VanderPlas (2016) listed in Chapter 7.

Conclusions
Finance can look back on a long history. The period from 1950 to 1980 is character‐
ized by the introduction of rigorous mathematical analysis to the field. From the
1980s onward, and in particular since 2000, the role of computers and computational
finance has gained tremendously in importance. This trend will be further reinforced
by the increasing role AI plays in the field, with its computationally demanding algo‐
rithms from machine learning (ML) and deep learning (DL).

The finance field makes use of four different types of language: natural language
(English in general), financial language (notions and expressions special to the field),
mathematical language (like linear algebra or probability theory), and programming
language (like Python for the purposes of this book).

The approach of this book is to introduce related concepts from finance, mathemat‐
ics, and Python programming alongside one another. The necessary prerequisites on
the Python side are minimal, with the conda package and environment manager
often as the tool of choice nowadays to manage Python environments.

Conclusions | 15

You are now ready to move on to Chapter 2, which discusses the most simple finan‐
cial model presented in the book and introduces many of the central finance notions.
The intuition that you gain in the most simple financial model should easily carry
over to the more advanced models and approaches discussed from Chapter 3 onward.

References
Articles and books cited in this chapter:

Cox, John, Jonathan Ingersoll and Stephen Ross. 1985. “A Theory of the Term Struc‐
ture of Interest Rates.” Econometrica 53 (2): 385–407.

Fletcher, Laurence. 2020. “Hedge Funds Exploit Technology to Reduce Cost and
Waste.” Financial Times, December 15, 2020. https://oreil.ly/HE4Cc.

Heston, Steven. 1993. “A Closed-Form Solution for Options with Stochastic Volatility
with Applications to Bond and Currency Options.” The Review of Financial Stud‐
ies 6 (2): 327–343.

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

Hilpisch, Yves. 2020. Artificial Intelligence in Finance: A Python-Based Guide.
Sebastopol: O’Reilly.

Longstaff, Francis and Eduardo Schwartz. 2001. “Valuing American Options by Sim‐
ulation: A Simple Least Squares Approach.” Review of Financial Studies 14 (1):
113–147.

Markowitz, Harry. 1952. “Portfolio Selection.” Journal of Finance 7 (1): 77-91.
Milne, Frank. 1995. Finance Theory and Asset Pricing. New York: Oxford University

Press.
Rubinstein, Mark. 2006. A History of the Theory of Investments. Hoboken: Wiley

Finance.

16 | Chapter 1: Finance and Python

https://oreil.ly/HE4Cc

1 For details on the Fundamental Theorems of Asset Pricing, refer to the seminal papers by Harrison and Kreps
(1979) and Harrison and Pliska (1981).

CHAPTER 2

Two-State Economy

As an empirical domain, finance is aimed at specific answers, such as an appropriate
value for a given security, or an optimal number of its shares to hold.

—Darrell Duffie (1988)

The notion of arbitrage is crucial to the modern theory of Finance.
—Delbaen and Schachermayer (2006)

The analysis in this chapter is based on the most simple model economy that is still
rich enough to introduce many important notions and concepts of finance: an econ‐
omy with two relevant points in time and two uncertain future states only. It also
allows us to present some important results in the field, like the Fundamental Theo‐
rems of Asset Pricing, that are discussed in this chapter.1

The simple model chosen is a means to simplify the formal introduction of the some‐
times rather abstract mathematical concepts and financial ideas by avoiding as many
technicalities as possible. Once these ideas are fleshed out and well understood, the
transfer to more realistic financial models usually proves seamless.

This chapter covers mainly the following central topics from finance, mathematics,
and Python programming:

Finance Mathematics Python
Time Natural numbers ℕ int, type

Money (currency) Real numbers ℝ float

Cash flow Tuple tuple, list

17

2 A more formal treatment of the concept of an economy is found in Chapter 5.

Finance Mathematics Python
Return, interest Real numbers ℝ abs

(Net) present value Function def, return

Uncertainty Vector space ℝ2 NumPy, ndarray, np.array

Financial asset Process ndarray, tuple

Risk Probability, state space, power set,
mapping

ndarray

Expectation, expected return Dot product np.dot

Volatility Variance, standard deviation np.sqrt

Contingent claims Random variable np.arange, np.maximum, plt.plot

Replication, arbitrage Linear equations, matrix form ndarray(2d), np.linalg.solve,
np.dot

Completeness, Arrow-Debreu
securities

Linear independence, span np.linalg.solve

Martingale pricing Martingale, martingale measure np.dot

Mean-variance Expectation, variance, standard
deviation

np.linspace, .std(),
[x for y in z]

Economy
The first element of the financial model is the idea of an economy. An economy is an
abstract notion that subsumes other elements of the financial model, like assets (real,
financial), agents (people, institutions), or money. Like in the real world, an economy
cannot be seen or touched. Nor can it be formally modeled directly—it rather simpli‐
fies communication to have such a summary term available. The single model ele‐
ments together form the economy.2

Real Assets
Multiple real assets are available in the economy that can be used for different pur‐
poses. A real asset might be a chicken egg or a complex machine to produce other
real assets. At this point, it is not relevant who, for example, produces the real assets
or who owns them.

Agents
Agents can be thought of as individual human beings being active in the economy.
They might be involved in producing real assets or consuming them or trading them.
They accept money during transactions and spend it during others. An agent might

18 | Chapter 2: Two-State Economy

3 For details on the standard data types in Python, refer to the Built-in Types documentation.

also be an institution like a bank that allows other agents to deposit money on which
it then pays interest.

Time
Economic activity, like trading real assets, takes place at discrete points in time only.
Formally, it holds for a point in time t ∈ 0, 1, 2, 3, . . . or t ∈ ℕ0. In the following,
only the two points in time t = 0 and t = 1 are relevant. They should be best inter‐
preted as today and one year from today, although it is not necessarily the only inter‐
pretation of the relevant time interval. In many contexts, one can also think of today
and tomorrow. In any case, financial theory speaks of a static economy if only two
points in time are relevant.

The Python data type to model the natural numbers ℕ is int, which stands for inte‐
gers.3 Typical arithmetic operations are possible on integers like addition, subtraction,
multiplication, and more:

In [1]: 1 + 3
Out[1]: 4

In [2]: 3 * 4
Out[2]: 12

In [3]: t = 0

In [4]: t
Out[4]: 0

In [5]: t = 1

In [6]: type(t)
Out[6]: int

Adds up two integer values.

Multiplies two integer values.

Assigns a value of 0 to the variable name t.

Prints out the value of variable t.

Economy | 19

https://oreil.ly/YTWep

Assigns a new value of 1 to t.

Looks up and prints the Python type of t.

Money
In the economy, money (or currency), is available in unlimited supply. Money is also
infinitely divisible. Money and currency should be thought of in abstract terms only
and not in terms of cash (physical coins or bills).

Money in general serves as the numeraire in the economy in that the value of one unit
of money (think USD, EUR, GBP, etc.) is normalized to exactly 1. The prices for all
other goods are then expressed in such units and are fractions or multiples of such
units. Formally, units of the currency are represented as (non-negative) real numbers
c ∈ ℝ≥0.

In Python, float is the standard data type used to represent real numbers ℝ. It stands
for floating point numbers. Like the int type, it allows, among others, for typical
arithmetic operations, like addition and subtraction:

In [7]: 1 + 0.5
Out[7]: 1.5

In [8]: 10.5 - 2
Out[8]: 8.5

In [9]: c = 2 + 0.75

In [10]: c
Out[10]: 2.75

In [11]: type(c)
Out[11]: float

Adding two numbers.

Subtracting two numbers.

Assigning the result of the addition to the variable c.

Printing the value of the variable c.

Looking up and printing out the Python type of the variable c.

Beyond serving as a numeraire, money also allows agents to buy and sell real assets or
to store value over time. These two functions rest on the trust that money indeed has
intrinsic value today and also in one year. In general, this translates into trust in

20 | Chapter 2: Two-State Economy

people and institutions being willing to accept money both today and later for any
kind of transaction. The numeraire function is independent of this trust since it is a
numerical operation only.

Cash Flow
Combining time with currency leads to the notion of cash flow. Consider an invest‐
ment project that requires an investment of, say, 9.5 currency units today and pays
back 11.75 currency units after one year. An investment is generally considered to be
a cash outflow, and one often represents this as a negative real number, c ∈ ℝ<0, or,
more specifically, c = –9.5. The payback is a cash inflow and therewith a positive real
number, c ∈ ℝ≥0, or c = +11.75 in the example.

To indicate the points in time when cash flows happen, a time index is used: in the
example, ct = 0 = –9.5 and ct = 1 = 11.75, or for short, c0 = –9.5 and c1 = 11.75.

A pair of cash flows now and one year from now is modeled mathematically as an
ordered pair or two-tuple, which combines the two relevant cash flows into one object:
c ∈ ℝ2 with c = c0, c1 and c0, c1 ∈ ℝ.

In Python, there are multiple data structures available to model such a mathematical
object. The two most basic ones are tuple and list. Objects of type tuple are
immutable, that is, they cannot be changed after instantiation, while those of type
list are mutable and can be changed after instantiation. First, an illustration of
tuple objects (characterized by parentheses):

In [12]: c0 = -9.5

In [13]: c1 = 11.75

In [14]: c = (c0, c1)

In [15]: c
Out[15]: (-9.5, 11.75)

In [16]: type(c)
Out[16]: tuple

In [17]: c[0]
Out[17]: -9.5

In [18]: c[1]
Out[18]: 11.75

Defines the cash outflow today.

Defines the cash inflow one year later.

Cash Flow | 21

Defines the tuple object c (note the use of parentheses).

Prints out the cash flow pair (note the parentheses).

Looks up and shows the type of object c.

Accesses the first element of object c.

Accesses the second element of object c.

Second, an illustration of the list object (characterized by square brackets):

In [19]: c = [c0, c1]

In [20]: c
Out[20]: [-9.5, 11.75]

In [21]: type(c)
Out[21]: list

In [22]: c[0]
Out[22]: -9.5

In [23]: c[1]
Out[23]: 11.75

In [24]: c[0] = 10

In [25]: c
Out[25]: [10, 11.75]

Defines the list object c (note the use of square brackets).

Prints out the cash flow pair (note the square brackets).

Looks up and shows the type of object c.

Accesses the first element of object c.

Accesses the second element of object c.

Overwrites the value at the first index position in the object c.

Shows the resulting changes.

22 | Chapter 2: Two-State Economy

Return
Consider an investment project with cash flows c = c0, c1 = (–10, 12). The return
R ∈ ℝ of the project is the sum of the cash flows R = c0 + c1 = –10 + 12 = 2. The rate
of return, r ∈ ℝ, is the return, R, divided by c0 , that is by the absolute value of the
investment outlay today:

r = R
c0

= −10 + 12
10 = 2

10 = 0.2

In Python, this boils down to simple arithmetic operations:

In [26]: c = (-10, 12)

In [27]: R = sum(c)

In [28]: R
Out[28]: 2

In [29]: r = R / abs(c[0])

In [30]: r
Out[30]: 0.2

Defines the cash flow pair as tuple object.

Calculates the return R by taking the sum of all elements of c and…

…prints out the result.

Calculates the rate of return r with abs(x), giving the absolute value of x and…

…prints out the result.

Interest
There is a difference between a cash flow today and a cash flow in one year. The dif‐
ference results from interest that is being earned on currency units or that has to be
paid to borrow currency units. Interest in this context is the price being paid for hav‐
ing control over money that belongs to another agent.

An agent that has currency units that they do not need today can deposit these with a
bank or lend them to another agent to earn interest. If the agent needs more currency
units than they currently have available, they can borrow them from a bank or other
agents, but they will need to pay interest.

Cash Flow | 23

Suppose an agent deposits c0 = –10 currency units today with a bank. According to
the deposit contract, they receive c1 = 11 currency units after one year from the bank.
The interest, I ∈ ℝ, being paid on the deposit is I = c0 + c1 = -10 + 11 = 1. The inter‐
est rate, i ∈ ℝ, accordingly is i = I

c0
= 0.1.

In the following, it is assumed that the relevant interest rate for both lending and bor‐
rowing is the same and that it is fixed for the entire economy.

Present Value
Having lending or depositing options available leads to opportunity costs for deploy‐
ing money in an investment project. A cash flow of, say, c1 = 12.1 in one year cannot
be compared directly in terms of value with a cash flow of c0 = 12.1 today since inter‐
est can be earned on currency units not deployed in a project.

To appropriately compare cash flows in one year with those of today, the present value
needs to be calculated. This is accomplished by discounting using the fixed
interest rate in the economy. Discounting can be modeled as a function D:
ℝ ℝ, c1 D c1 , which maps a real number (cash flow in one year) to another real
number (cash flow today). It holds

c0 = D c1

=
c1

1 + i

= 12 . 1
1 + 0 . 1

= 11

for an interest rate of i = 0.1. This relationship results from the alternative “invest‐
ment” in deposits with a bank:

c1 = 1 + i · c0 c0 =
c1

1 + i

Python functions are well suited to represent mathematical functions like the one for
discounting:

In [31]: i = 0.1

In [32]: def D(c1):
 return c1 / (1 + i)

24 | Chapter 2: Two-State Economy

In [33]: D(12.1)
Out[33]: 10.999999999999998

In [34]: D(11)
Out[34]: 10.0

Fixes the interest rate i.

Function definition with def statement; D is the function name; c1 is the parame‐
ter name.

Returns the present value with the return statement.

Calculates the present value of 12.1; note the rounding error due to internal float‐
ing point number representation issues.

Calculates the present value of 11 (“exactly” in this case).

Net Present Value
How shall an agent decide whether to conduct an investment project or not? One cri‐
terion is the net present value. The net present value, NPV ∈ ℝ, is the sum of the cash
outflow today and the present value of the cash inflow in one year:

NPV c = c0 + D c1

Here, the net present value calculation is a function NPV :ℝ2 ℝ mapping a cash
flow tuple to a real number. If the net present value is positive, the project should be
conducted; if it is negative, then not—since the alternative of just depositing the
money with a bank is more attractive.

Consider an investment project with cash flows cA = (–10.5, 12.1). The net present
value is NPV cA = –10.5 + D(12.1) = –10.5 + 11 = 0.5. The project should be con‐
ducted. Consider an alternative investment project with cB = (–10.5, 11). This one has
a negative net present value and should not be conducted: NPV cB = –10.5 + D(11)
= –10.5 + 10 = –0.5.

Building on previous definitions, a respective Python function is easily defined:

In [35]: def NPV(c):
 return c[0] + D(c[1])

In [36]: cA = (-10.5, 12.1)

In [37]: cB = (-10.5, 11)

Cash Flow | 25

In [38]: NPV(cA)
Out[38]: 0.4999999999999982

In [39]: NPV(cB)
Out[39]: -0.5

Positive net present value project.

Negative net present value project.

Uncertainty
Cash inflows from an investment project one year from now are in general uncertain.
They might be influenced by a number of factors in reality (competitive forces, new
technologies, growth of the economy, weather, problems during project implementa‐
tion, etc.). In the model economy, the concept of states of the economy in one year
subsumes the influence of all relevant factors.

Assume that in one year the economy might be in one of two different states u and d,
which might be interpreted as up (“good”) and down (“bad”). The cash flow of a
project in one year c1 then becomes a vector

c1 ∈ ℝ
2

with two different values

c1
u, c1

d ∈ ℝ

representing the relevant cash flows per state of the economy. Formally, this is repre‐
sented as a so-called column vector:

c1 =
c1

u

c1
d

Mathematically, there are certain operations defined on such vectors, like scalar mul‐
tiplication and addition, for instance:

α · c1 + β = α ·
c1

u

c1
d

+ β =
α · c1

u + β

α · c1
d + β

26 | Chapter 2: Two-State Economy

Another important operation on vectors is the creation of linear combinations of vec‐
tors. Consider two different vectors: c1, d1 ∈ ℝ

2. A linear combination is then given
by:

α · c1 + β · d1 =
α · c1

u + β · d1
u

α · c1
d + β · d1

d

Here and before, it is assumed that α, β ∈ ℝ.

The most common way of modeling vectors (and matrices) in Python is via the NumPy
package, which is an external package and needs to be installed separately. For the
following code, consider an investment project with c0 = –10 and c1 = 20, 5 T, where
the superscript T stands for the transpose of the vector (transforming a row or hori‐
zontal vector into a column or vertical vector). The major class used to model vectors is
the ndarray class, which stands for n-dimensional array:

In [40]: import numpy as np

In [41]: c0 = -10

In [42]: c1 = np.array((20, 5))

In [43]: type(c1)
Out[43]: numpy.ndarray

In [44]: c1
Out[44]: array([20, 5])

In [45]: c = (c0, c1)

In [46]: c
Out[46]: (-10, array([20, 5]))

In [47]: 1.5 * c1 + 2
Out[47]: array([32. , 9.5])

In [48]: c1 + 1.5 * np.array((10, 4))
Out[48]: array([35., 11.])

Imports the numpy package as np.

The cash outflow today.

The uncertain cash inflow in one year; one-dimensional ndarray objects do not
distinguish between row (horizontal) and column (vertical).

Uncertainty | 27

http://numpy.org

Looks up and prints the type of c1.

Prints the cash flow vector.

Combines the cash flows to a tuple object.

A tuple, like a list object, can contain other complex data structures.

A linear transformation of the vector by scalar multiplication and addition; tech‐
nically one also speaks of a vectorized numerical operation and of broadcasting.

A linear combination of two ndarray objects (vectors).

Financial Assets
Financial assets are financial instruments (“contracts”) that have a fixed price today
and an uncertain price in one year. Think of a share in the equity of a firm that con‐
ducts an investment project. Such a share might be available at a price today of
S0 ∈ ℝ>0. The price of the share in one year depends on the success of the investment
project, i.e., whether a high cash inflow is observed in the u state or a low one in the d
state. Formally, S1

u, S1
d ∈ ℝ≥0 with S1

u > S1
d.

One speaks also of the price process of the financial asset S:ℕ0 × u, d ℝ≥0 map‐
ping time and state of the economy to the price of the financial asset. Note that the
price today is independent of the state S0

u = S0
d ≡ S0, while the price after one year is

not in general. One also writes St t ∈ 0, 1
= S0, S1 , or for short, S = S0, S1 . The

NumPy package is again the tool of choice for the modeling:

In [49]: S0 = 10

In [50]: S1 = np.array((12.5, 7.5))

In [51]: S = (S0, S1)

In [52]: S
Out[52]: (10, array([12.5, 7.5]))

In [53]: S[0]
Out[53]: 10

In [54]: S[1][0]
Out[54]: 12.5

In [55]: S[1][1]
Out[55]: 7.5

28 | Chapter 2: Two-State Economy

The price of the financial asset today.

The uncertain price in one year as a vector (ndarray object).

The price process as a tuple object.

Prints the price process information.

Accesses the price today.

Accesses the price in one year in the u (first) state.

Accesses the price in one year in the d (second) state.

Risk
Often it is implicitly assumed that the two states of the economy are equally likely.
What this means in general is that when an experiment in the economy is repeated
(infinitely) many times, it is observed that half of the time the u state materializes and
that in the other half the d state materializes.

This is a frequentist point of view, according to which probabilities for a state to
materialize are calculated based on the frequency the state is observed divided by the
total number of experiments leading to observations. If state u is observed 30 times
out of 50 experiments, the probability p ∈ ℝ≥0 with 0 ≤ p ≤ 1 is accordingly p = 30

50 =
0.6, or 60%.

In a modeling context, the probabilities for all possible states to occur are assumed to
be given a priori. One speaks sometimes of objective or physical probabilities.

Probability Measure
The probabilities for events that are physically possible together form a probability
measure. Such a probability measure is a function P:℘ u, d ℝ ≥ 0 mapping all
elements of the power set of u, d —with ℘ u, d = ∅, u , d , u, d —to the unit
interval. The power set in this case embodies all events that are physically possible.

In this context, the set u, d is also called the state space and is symbolized by Ω. The
triple Ω,℘ Ω , P together is called a probability space.

Risk | 29

A function P representing a probability measure needs to satisfy three conditions:

1. P ∅ = 0
2. 0 ≤ P ω , ω ∈ Ω ≤ 1
3. P Ω = P u + P d = 1

The first condition implies that at least one of the states must materialize. The second
implies that the probability for a state to materialize is between 0 and 1. The third one
says that all the probabilities add up to 1.

In the simple model economy with two states only, it is convenient to define p ≡ P u
and to accordingly have P d = 1 − p, given the preceding third condition. Fixing p
then defines the probability measure P.

Having a fully specified probability measure available, the model economy is typically
called an economy under risk. A model economy without a fully specified probability
measure is often called an economy under ambiguity.

In applications, a probability measure is usually modeled also as a vector and ndarray
object, respectively. This is at least possible for a discrete state space with a finite
number of elements:

In [56]: p = 0.4

In [57]: 1 - p
Out[57]: 0.6

In [58]: P = np.array((p, 1-p))

In [59]: P
Out[59]: array([0.4, 0.6])

Notions of Uncertainty

Uncertainty in a financial context can take on different forms. Risk
in general refers to a situation in which a full probability distribu‐
tion over future states of the economy is (assumed to be) known.
Ambiguity refers to situations in which such a distribution is not
known. Traditionally, finance has relied almost exclusively on
model economies under risk, although there is a stream of research
that deals with finance problems under ambiguity (see Guidolin
and Rinaldi (2012) for a survey of the research literature).

30 | Chapter 2: Two-State Economy

Expectation
Based on the probability measure, the expectation of an uncertain quantity, like the
price in one year of a financial asset, can be calculated. The expectation can be inter‐
preted as the weighted average, where the weights are given by the probabilities. It is
an average since the probabilities add up to one.

Consider the financial asset with price process S = S0, S1 . The expectation of the
uncertain price S1 in one year under the probability measure P is

�
P S1 ≡ ∑

ω ∈ Ω
P ω · S1

ω = p · S1
u + 1 − p · S1

d

with p ≡ P u . If S1 = 20, 5 T and p = 0.4 hold, the expectation value is:

�
P S1 = 0.4 · 20 + 1 − 0.4 · 5 = 11

Mathematically, the expectation can be expressed as the dot product (or inner product)
of two vectors. If x, y ∈ ℝ2, the dot product is defined as

x, y = ∑
i = 1

2
xi · yi = x1 · y1 + x2 · y2

Therefore, with P = p, 1 − p T and S1 = S1
u, S1

d T, the expectation is

�
P S1 = P, S1 =

p
1 − p

,
S1

u

S1
d

= p · S1
u + 1 − p · S1

d

Working with ndarray objects in Python, the dot product is defined as a function
provided by the NumPy package:

In [60]: P
Out[60]: array([0.4, 0.6])

In [61]: S0 = 10

In [62]: S1 = np.array((20, 5))

In [63]: np.dot(P, S1)
Out[63]: 11.0

Risk | 31

The previously defined probability measure.

The price of the financial asset today.

The vector of the uncertain price in one year.

The dot product of the two vectors calculating the expectation value.

Expected Return
Under uncertainty, the notions of return and rate of return need to be adjusted. In
such a case, the expected return of a financial asset is given as the expectation of the
price in one year minus the price today. This can be seen by taking the expectation of
the uncertain return R = Ru, Rd T and rearranging as follows:

�
P R =

p
1 − p

,
Ru

Rd

=
p

1 − p
,

S1
u − S0

S1
d − S0

= p · S1
u − S0 + 1 − p · S1

d − S0

= p · S1
u + 1 − p · S1

d − S0

= �
P S1 − S0

With the assumptions from before, one gets:

�
P R = 0.4 · 20 − 10 + 1 − 0.4 · 5 − 10 = 11 − 10 = 1

The expected rate of return then simply is the expected return divided by the price
today

�
P r = �

P R
S0

which can also be derived step by step with similar transformations as for the
expected return. In what follows, the expected rate of return is symbolized by
μ ≡ �P r for brevity.

32 | Chapter 2: Two-State Economy

The calculation of expected return and rate of return can be modeled in Python by
two simple functions:

In [64]: def ER(x0, x1):
 return np.dot(P, x1) - x0

In [65]: ER(S0, S1)
Out[65]: 1.0

In [66]: def mu(x0, x1):
 return (np.dot(P, x1) - x0) / x0

In [67]: mu(S0, S1)
Out[67]: 0.1

Definition of expected return.

The expected return for the previously defined financial asset.

Definition of the expected rate of return.

The expected rate of return calculated for that asset.

Volatility
In finance, risk and expected return is the dominating pair of concepts. Risk can be
measured in many ways, while the volatility as measured by the standard deviation of
the rates of return is probably the most common measure. In the present context, the
variance of the return rates of a financial asset is defined by

σ2 r = �
P r − μ 2

=
p

1 − p
,

ru − μ 2

rd − μ 2

with rω ≡ S1
ω − S0 /S0, ω ∈ Ω. The volatility is defined as the standard deviation of

the return rates, which is the square root of the variance

σ r = σ2 r

Python functions modeling these two risk measures are given in the following, as is a
helper function to calculate the return rates vector:

Risk | 33

In [68]: def r(x0, x1):
 return (x1 - x0) / x0

In [69]: r(S0, S1)
Out[69]: array([1. , -0.5])

In [70]: mu = np.dot(P, r(S0, S1))

In [71]: mu
Out[71]: 0.10000000000000003

In [72]: def sigma2(P, r, mu):
 return np.dot(P, (r - mu) ** 2)

In [73]: sigma2(P, r(S0, S1), mu)
Out[73]: 0.54

In [74]: def sigma(P, r, mu):
 return np.sqrt(np.dot(P, (r - mu) ** 2))

In [75]: sigma(P, r(S0, S1), mu)
Out[75]: 0.7348469228349535

Vectorized calculation of the rates of return vector.

Applies the function to the financial asset from before.

The expected rate of return via the dot product…

…printed out.

The definition of the variance of the rates of return.

The function applied to the rates of return vector.

The definition of the volatility.

And applied to the rates of return vector.

Vectors, Matrices, and NumPy

Finance as an applied mathematical discipline relies heavily on lin‐
ear algebra and probability theory. In the discrete model economy,
both mathematical disciplines can be efficiently handled in Python
by using the NumPy package with its powerful ndarray object. This
is not only true from a modeling point of view but also from han‐
dling, calculation, optimization, visualization, and other points of
view. Basically all examples in this book will support these claims.

34 | Chapter 2: Two-State Economy

4 For a formal definition of a random variable, see Chapter 5.

Contingent Claims
Suppose now that a contingent claim is traded in the economy. This is a financial asset
—formalized by some contract—that offers a state-contingent payoff one year from
now. Such a contingent claim can have an arbitrary state-contingent payoff or one
that is derived from the payoff of other financial assets. In the latter case, one gener‐
ally speaks of derivative assets or derivative instruments. Formally, a contingent claim
is a function C1:Ω ℝ ≥ 0, ω C1 ω mapping events to (non-negative) real
numbers.

Assume that two financial assets are traded in the economy: a risk-less bond with
price process B = B0, B1 and a risky stock with price process

S = S0, S1
u, S1

d T

A call option on the stock has a payoff in one year of C1 S1 ω = max S1 ω − K, 0
and ω ∈ Ω. K ∈ ℝ≥0 is called the strike price of the option.

In probability theory, a contingent claim is usually called a random variable whose
defining characteristic is that it maps elements of the state space to real numbers—
potentially via other random variables, as is the case for derivative assets. In that
sense, the price of the stock in one year S1:Ω ℝ≥0, ω S1 ω is also a random
variable.4

For the sake of illustration, the following Python code visualizes the payoff of a call
option on a segment of the real line. In the economy, there are, of course, only two
states—and therewith two values—of relevance. Figure 2-1 shows the payoff function
graphically:

In [76]: S1 = np.arange(20)

In [77]: S1[:7]
Out[77]: array([0, 1, 2, 3, 4, 5, 6])

In [78]: K = 10

In [79]: C1 = np.maximum(S1 - K, 0)

In [80]: C1
Out[80]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [81]: from pylab import mpl, plt

Contingent Claims | 35

 # plotting configuration
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

In [82]: plt.figure(figsize=(10, 6))
 plt.plot(S1, C1, lw = 3.0, label='$C_1 = \max(S_1 - K, 0)$')
 plt.legend(loc=0)
 plt.xlabel('S_1')
 plt.ylabel('C_1');

Generates an ndarray object with numbers from 0 to 19.

Shows the first few numbers.

Fixes the strike price for the call option.

Calculates in vectorized fashion the call option payoff values.

Shows these values—many values are 0.

Imports the main plotting subpackage from matplotlib.

Plots the call option payoff against the stock values, sets the line width to 3 pixels,
and defines a label as a string object with Latex code.

Puts the legend in the optimal location (least overlap with plot elements).

Places a label on the x axis…

…and on the y axis.

36 | Chapter 2: Two-State Economy

http://matplotlib.org

Figure 2-1. Payoff of the call option

Replication
When introducing a contingent claim into the economy, an important question that
arises is whether the payoff of the contingent claim is redundant or not. Mathemati‐
cally, one speaks of the payoff vector of the contingent claim being linearly dependent
or linearly independent.

The payoff of the call option is said to be linearly dependent—or redundant—when a
solution to the following problem exists

b ·
B1

B1
+ s ·

S1
u

S1
d

=
C1

u

C1
d

with b, s ∈ ℝ.

This problem can be represented as a system of linear equations:

b · B1 + s · S1
u = C1

u

b · B1 + s · S1
d = C1

d

With S1
u ≠ S1

d, solutions are given by

Contingent Claims | 37

s* =
C1

u − C1
d

S1
u − S1

d

and

b* = 1
B1

C1
d · S1

u − C1
u · S1

d

S1
u − S1

d

Assume as before that two financial assets are traded, a risk-less bond B = 10, 11
and a risky stock S = 10, 20, 5 T . Assume further K = 15 such that C1 = 5, 0 T. The
optimal numerical solutions are then

s* = 5 − 0
20 − 5 = 1

3

and

b* = 1
11 · 0 · 20 − 5 · 5

20 − 5 = − 5
33

In words, buying one-third of the stock and selling 5
33 of the bond short perfectly rep‐

licates the payoff of the call option. Therefore, the payoff of the call option is linearly
dependent given the payoff vectors of the bond and the stock.

Technically, short selling implies borrowing the respective number of units of the
financial asset today from another agent and immediately selling the units in the mar‐
ket. In one year, the borrowing agent buys the exact number of units of the financial
asset back in the market at the then-current price and transfers them back to the
other agent.

The analysis here assumes that all financial assets—like money—are infinitely divisi‐
ble, which might not be the case in practice. It also assumes that short selling of all
traded financial assets is possible, which might not be too unrealistic given market
practice.

As a preparation for the implementation in Python, consider yet another way of for‐
mulating the replication problem. To this end, the mathematical concept of a matrix
is needed. While a vector is a one-dimensional object, a matrix is a two-dimensional
object. For the purposes of this section, consider a square matrix ℳ with four ele‐
ments—implying ℳ ∈ ℝ2 × 2—with

38 | Chapter 2: Two-State Economy

ℳ =
B1 S1

u

B1 S1
d

The future payoff vectors of the bond and the stock represent the values in the first
and second column of the matrix, respectively. The first row contains the payoff of
both financial assets in the state u, while the second row contains the payoffs from the
d state. With these conventions, the replication problem can be represented in matrix
form as

ℳ · ϕ = C1

where ϕ ∈ ℝ2 is the vector containing the bond and stock portfolio positions for rep‐
lication ϕ ≡ b, s T. ϕ is usually simply called a portfolio or trading strategy. Therefore:

B1 S1
u

B1 S1
d

·
b
s

=
C1

u

C1
d

In this context, matrix multiplication is defined by

B1 S1
u

B1 S1
d

·
b
s
≡

B1 · b + S1
u · s

B1 · b + S1
d · s

which shows the equivalence between this way of representing the replication prob‐
lem and the one from before.

The ndarray class allows for a modeling of matrices in Python. The NumPy package
provides in the subpackage np.linalg a wealth of functions for linear algebra opera‐
tions, among which there is also a function to solve systems of linear equations in
matrix form—exactly what is needed here:

In [83]: B = (10, np.array((11, 11)))

In [84]: S = (10, np.array((20, 5)))

In [85]: M = np.array((B[1], S[1])).T

In [86]: M
Out[86]: array([[11, 20],
 [11, 5]])

In [87]: K = 15

Contingent Claims | 39

In [88]: C1 = np.maximum(S[1] - K, 0)

In [89]: C1
Out[89]: array([5, 0])

In [90]: phi = np.linalg.solve(M, C1)

In [91]: phi
Out[91]: array([-0.15151515, 0.33333333])

Defines the price process for the risk-less bond.

Defines the price process for the risky stock.

Defines a matrix—i.e., a two-dimensional ndarray object—with the future payoff
vectors.

Shows the matrix with the numerical values.

Fixes the strike price for the call option and…

…calculates the values for the payoff vector in one year.

Shows the numerical values of the payoff vector.

Solves the replication problem in matrix form to obtain the optimal portfolio
positions.

Arbitrage Pricing
How much does it cost to replicate the payoff of the call option? Once the portfolio to
accomplish the replication is derived, this question is easy to answer. Define the value
of the replication portfolio today by V0 ϕ . It is given by the dot product

V0 ϕ ≡
b
s

,
B0

S0
= b · B0 + s · S0

or in numbers

V0 ϕ = b · B0 + s · S0 = 10
3 − 50

33 = 1 . 818181

40 | Chapter 2: Two-State Economy

The uncertain value of the replication portfolio in one year V1 ϕ can be represented
via matrix multiplication as

V1 ϕ =
B1 S1

u

B1 S1
d

·
b
s

=
5
0

Together, one has the value process of the portfolio as V ϕ = V0 ϕ , V1 ϕ , or
V = V0, V1 for short, if there is no ambiguity regarding the portfolio.

Having a portfolio available that perfectly replicates the future payoff of a contingent
claim raises the next question: what if the price of the contingent claim today differs
from the costs of setting up the replication portfolio? The answer is simple but seri‐
ous: then there exists an arbitrage or arbitrage opportunity in the economy. An arbi‐
trage is a trading strategy ϕ that creates a risk-less profit out of an investment of zero.
Formally, ϕ is an arbitrage if

V0 ϕ = 0 and �P V1 ϕ > 0

or

V0 ϕ > 0 and V1 ϕ = 0

Suppose that the price of the call option is C0 = 2, which is higher than the cost to set
up the replication portfolio. A trading strategy that sells the call option in the market
for 2 and buys the replication portfolio for 1.81818 yields an immediate profit of the
difference. In one year, the payoff of the replication portfolio and of the call option
cancel each other out

−
C1

u

C1
d

+ b*
B1

B1
+ s*

S1
u

S1
d

=
0
0

by the definition of the replication portfolio. In the other case, when the price of the
call option today is lower than the price of the replication portfolio, say C0 =1.5, a
trading strategy buying the call option and selling the replication portfolio yields a
risk-less profit amounting to the difference between the market price of the call
option and the cost to set up the replication portfolio. Of course, the risk-less profits
in both cases can be increased by simply multiplying the positions by a positive factor
greater than one.

Contingent Claims | 41

A model for an economy that allows for arbitrage opportunities can be considered
not viable. Therefore, the only price that is consistent with the absence of arbitrage is
C0 = 1.818181. One calls this price the arbitrage price of the call option. Whenever
there is a portfolio ϕ replicating the payoff of a contingent claim V1 ϕ = C1, then the
arbitrage price of the contingent claim is C0 = V0 ϕ .

Formally, the arbitrage price is the dot product of the replication portfolio and the
price vector of the replicating financial assets

C0 ≡ V0 ϕ = ϕ*,
B0

S0
= b* · B0 + s* · S0

giving rise to an arbitrage-free price process for the contingent claim of C = C0, C1 .

In Python, this is a single calculation given the previous definitions and calculations:

In [92]: C0 = np.dot(phi, (B[0], S[0]))

In [93]: C0
Out[93]: 1.8181818181818183

In [94]: 10/3 - 50/33
Out[94]: 1.8181818181818183

Market Completeness
Does arbitrage pricing work for every contingent claim? Yes, at least for those that are
replicable by portfolios of financial assets that are traded in the economy. The set of
attainable contingent claims � comprises all those contingent claims that are replica‐
ble by trading in the financial assets. It is given by the span, which is the set of all
linear combinations of the future price vectors of the traded financial assets

� = ℳ · ϕ, ϕ ∈ ℝ≥0
2

if short-selling is prohibited and

� = ℳ · ϕ, ϕ ∈ ℝ2

if it is allowed in unlimited fashion.

Consider the risk-less bond and the risky stock from before with price processes
B = B0, B1 and S = S0, S1

u, S1
d T , respectively, where B1, S1 ∈ ℝ≥0

2 and S1
u ≠ S1

d. It is
then easy to show that the replication problem

42 | Chapter 2: Two-State Economy

ℳ · ϕ = C1

has a unique solution for any C1 ∈ ℝ≥0
2 . The solution is given by

ϕ* =
b*
s*

and consequently as

ϕ* =

1
B1

C1
d · S1

u − C1
u · S1

d

S1
u − S1

d

C1
u − C1

d

S1
u − S1

d

which was derived in the context of the replication of the special call option payoff.
The solution carries over to the general case since no special assumptions have been
made regarding the payoff other than C1 ∈ ℝ≥0

2 .

Since every contingent claim can be replicated by a portfolio consisting of a position
in the risk-less bond and the risky stock, one speaks of a complete market model.
Therefore, every contingent claim can be priced by replication and arbitrage. For‐
mally, the only requirement is that the price vectors of the two financial assets in one
year be linearly independent. This implies that

B1 S1
u

B1 S1
d

·
b
s

=
0
0

has only the unique solution ϕ* = 0, 0 T and no other solution. In fact, all replication
problems for arbitrary contingent claims have unique solutions under market com‐
pleteness. The payoff vectors of the two traded financial assets span the ℝ2 since they
form a basis of the vector space ℝ2.

The spanning property can be visualized by the use of Python and the matplotlib
package. To this end, 1,000 random portfolio compositions are simulated. The first
restriction is that the portfolio positions should be positive and add up to 1.
Figure 2-2 shows the result:

Contingent Claims | 43

https://matplotlib.org

In [95]: from numpy.random import default_rng
 rng = default_rng(100)

In [96]: n = 1000

In [97]: b = rng.random(n)

In [98]: b[:5]
Out[98]: array([0.83498163, 0.59655403, 0.28886324, 0.04295157, 0.9736544])

In [99]: s = (1 - b)

In [100]: s[:5]
Out[100]: array([0.16501837, 0.40344597, 0.71113676, 0.95704843, 0.0263456])

In [101]: def portfolio(b, s):
 A = [b[i] * B[1] + s[i] * S[1] for i in range(n)]
 return np.array(A)

In [102]: A = portfolio(b, s)

In [103]: A[:3]
Out[103]: array([[12.48516533, 10.00988978],
 [14.63101376, 8.57932416],
 [17.40023082, 6.73317945]])

In [104]: plt.figure(figsize=(10, 6))
 plt.plot(A[:, 0], A[:, 1], 'r.');

Fixes the seed for the random number generator.

Number of values to be simulated.

Simulates the bond position for values between 0 and 1 by the means of a uni‐
form distribution.

Derives the stock position as the difference between 1 and the bond position.

Calculates the portfolio payoff vectors for all random portfolio compositions and
collects them in a list object; this Python idiom is called a list comprehension.

The function returns an ndarray version of the results.

The calculation is initiated.

The results are plotted.

44 | Chapter 2: Two-State Economy

Figure 2-2. The random portfolios spanning a one-dimensional line only

Figure 2-3 shows the graphical results in the case where the portfolio positions do not
need to add up to 1:

In [105]: s = rng.random(n)

In [106]: b[:5] + s[:5]
Out[106]: array([1.36885777, 1.5863474 , 0.71245805, 0.32077672, 1.5401562])

In [107]: A = portfolio(b, s)

In [108]: plt.figure(figsize=(10, 6))
 plt.plot(A[:, 0], A[:, 1], 'r.');

The stock position is freely simulated for values between 0 and 1.

The portfolio payoff vectors are calculated.

Contingent Claims | 45

Figure 2-3. The random portfolios spanning a two-dimensional area (rhomb)

Finally, Figure 2-4 allows for positive as well as negative portfolio positions for both
the bond and the stock. The resulting portfolio payoff vectors cover an (elliptic) area
around the origin:

In [109]: b = rng.standard_normal(n)

In [110]: s = rng.standard_normal(n)

In [111]: b[:5] + s[:5]
Out[111]: array([-0.23046605, -3.45760465, 1.10260637, -2.44445777,
 1.05866637])

In [112]: A = portfolio(b, s)

In [113]: plt.figure(figsize=(10, 6))
 plt.plot(A[:, 0], A[:, 1], 'r.');

Positive and negative portfolio positions are simulated by the means of the stan‐
dard normal distribution.

46 | Chapter 2: Two-State Economy

Figure 2-4. The random portfolios spanning a two-dimensional area (around the origin)

If b and s are allowed to take on arbitrary values on the real line, b, s ∈ ℝ, the result‐
ing portfolios cover the vector space ℝ2 completely. As pointed out previously, the
payoff vectors of the traded financial assets span ℝ2 in that case.

Arrow-Debreu Securities
An Arrow-Debreu security is defined by the fact that it pays exactly one unit of cur‐
rency in a specified future state. In a model economy with two different future states
only, there can only be two different such securities. An Arrow-Debreu security is
simply a special case of a contingent claim such that the replication argument from
before applies. In other words, since the market is complete, Arrow-Debreu securities
can be replicated by portfolios in the bond and stock. Therefore, both replication
problems have (unique) solutions, and both securities have unique arbitrage prices.
The two replication problems are

ℳ · ϕ =
1
0

and

ℳ · ϕ =
0
1

Arrow-Debreu Securities | 47

Why are these securities important? Mathematically, the two payoff vectors form a
standard basis or natural basis for the ℝ2 vector space. This in turn implies that any
vector of this space can be uniquely expressed (replicated) as a linear combination of
the vectors that form the standard basis. Financially, replacing the original future
price vectors of the bond and the stock with Arrow-Debreu securities as a basis for
the model economy significantly simplifies the replication problem for all other con‐
tingent claims.

The process is to first derive the replication portfolios for the two Arrow-Debreu
securities and the resulting arbitrage prices for both. Other contingent claims are
then replicated and priced based on the standard basis and the arbitrage prices of the
two securities.

Consider the two Arrow-Debreu securities with price processes γu = γ0
u, 1, 0 T and

γd = γ0
d, 0, 1 T and define:

Mγ =
1 0
0 1

Consider a general contingent claim with future payoff vector:

C1 =
C1

u

C1
d

The replication portfolio ϕγ for the contingent claim then is trivially given by
ϕγ = C1

u, C1
d T since:

V1 ϕγ = ℳ
γ · ϕγ

=
1 0
0 1

·
C1

u

C1
d

=
C1

u

C1
d

Consequently, the arbitrage price for the contingent claim is:

C0 = V0 ϕγ = C1
u · γ0

u + C1
d · γ0

d

48 | Chapter 2: Two-State Economy

This illustrates how the introduction of Arrow-Debreu securities simplifies contin‐
gent claim replication and arbitrage pricing.

Martingale Pricing
A martingale measure Q:℘ Ω ℝ≥0 is a special kind of probability measure. It
makes the discounted price process of a financial asset a martingale. For the stock to
be a martingale under Q, the following relationship must hold:

S0 = 1
1 + i · �Q S1

If i =
B1 − B0

B0
, the relationship is trivially satisfied for the risk-less bond:

B0 = 1
1 + i · �Q B1 = 1

1 + i · B1

One also speaks of the fact that the price processes drift (on average) with the risk-
less interest rate under the martingale measure:

B0 · 1 + i = B1

S0 · 1 + i = �Q S1

Denote q ≡ Q u . One gets

q · S1
u + 1 − q · S1

d = S0 · 1 + i

or after some simple manipulations:

q =
S0 · 1 + i − S1

d

S1
u − S1

d

Given previous assumptions, for q to define a valid probability measure,
S1

u > S0 · 1 + i > S1
d must hold. If so, one gets a new probability space Ω,℘ Ω , Q ,

where Q replaces P.

Martingale Pricing | 49

What if these relationships for S1 do not hold? Then a simple arbitrage is either to buy
the risky asset in the case S0 · 1 + i ≤ S1

d or simply sell it in the other case,
S0 · 1 + i ≥ S1

u.

If equality holds in these relationships, one also speaks of a weak arbitrage since the
risk-less profit can only be expected on average and not with certainty.

Assuming the numerical price processes from before, the calculation of q in Python
means just an arithmetic operation on floating point numbers:

In [114]: i = (B[1][0] - B[0]) / B[0]

In [115]: i
Out[115]: 0.1

In [116]: q = (S[0] * (1 + i) - S[1][1]) / (S[1][0] - S[1][1])

In [117]: q
Out[117]: 0.4

First Fundamental Theorem of Asset Pricing
The considerations at the end of the previous section hint to a relationship between
martingale measures on the one hand and arbitrage on the other. A central result in
mathematical finance that relates these seemingly unrelated concepts formally is the
First Fundamental Theorem of Asset Pricing. Pioneering work in this regard has been
published by Cox and Ross (1976), Harrison and Kreps (1979), and Harrison and
Pliska (1981).

First Fundamental Theorem of Asset Pricing (1FTAP)
The following statements are equivalent:

1. A martingale measure exists.
2. The economy is arbitrage-free.

Given the calculations and the discussion from before, the theorem is easy to prove
for the model economy with the risk-less bond and the risky stock.

First, statement 1 implies statement 2: if the martingale measure exists, the price pro‐
cesses do not allow for simple (weak) arbitrages. Since the two future price vectors
are linearly independent, every contingent claim can be replicated by trading in the
two financial assets, implying unique arbitrage prices. Therefore, no arbitrages exist.

Second, statement 2 implies statement 1: if the model economy is arbitrage-free, a
martingale measure exists, as shown previously.

50 | Chapter 2: Two-State Economy

Pricing by Expectation
A corollary of the 1FTAP is that any attainable contingent claim C1 ∈ � can be priced
by taking the expectation under the martingale measure of its future payoff and dis‐
counting with the risk-less interest rate. The arbitrage price of the call option is
known through replication. Assuming the same numerical price processes for the tra‐
ded financial assets and the same numerical future payoff vector for the call option,
the martingale price of the call option is:

C0 = 1
1 + i · �Q C1

= 1
1 + i · q · C1

u + 1 − q · C1
d

= 1
1 + 0 . 1 · 0.4 · 5 + 1 − 0.4 · 0

= 1 . 818181

In other words, the discounted price process of the call option—and any other con‐
tingent claim—is a martingale under the martingale measure such that:

B0 · 1 + i = B1

S0 · 1 + i = �Q S1

C0 · 1 + i = �Q C1

In Python, martingale pricing boils down to the evaluation of a dot product:

In [118]: Q = (q, 1 - q)

In [119]: np.dot(Q, C1) / (1 + i)
Out[119]: 1.8181818181818181

Defines the martingale measure as the tuple Q.

Implements the martingale pricing formula.

Second Fundamental Theorem of Asset Pricing
There is another important result, often called the Second Fundamental Theorem of
Asset Pricing, which relates the uniqueness of the martingale measure with market
completeness.

Martingale Pricing | 51

Second Fundamental Theorem of Asset Pricing (2FTAP)
The following statements are equivalent:

1. The martingale measure is unique.
2. The market model is complete.

The result also follows for the simple model economy from previous discussions. A
more detailed analysis of market completeness takes place in Chapter 3.

Mean-Variance Portfolios
A major breakthrough in finance has been the formalization and quantification of
portfolio investing through the mean-variance portfolio theory (MVP) as pioneered by
Markowitz (1952). To some extent this approach can be considered to be the begin‐
ning of quantitative finance, initiating a trend that brought more and more mathe‐
matics to the financial field.

MVP reduces a financial asset to the first and second moment of its returns, namely
the mean as the expected rate of return and the variance of the rates of return or the
volatility, defined as the standard deviation of the rates of return. Although the
approach is generally called “mean-variance,” it is often the combination “mean-
volatility” that is used.

Consider the risk-less bond and risky stock from before with price processes
B = B0, B1 and S = S0, S1

u, S1
d T and the future price matrix ℳ , for which the two

columns are given by the future price vectors of the two financial assets. What is the
expected rate of return and the volatility of a portfolio ϕ that consists of b percent
invested in the bond and s percent invested the stock? Note that now a situation is
assumed for which b + s = 1, with b, s ∈ ℝ≥0, holds. This can, of course, be relaxed
but simplifies the exposition in this section.

The expected portfolio payoff is:

�
P
ℳ · ϕ = p · b · B1 + s · S1

u + 1 − p · b · B1 + s · S1
d

= p · b · B1 + 1 − p · b · B1 + p · s · S1
u + 1 − p s · S1

d

= b · �P B1 + s · �P S1

= b · B1 + s · �P S1

In words, the expected portfolio payoff is simply b times the risk-less bond payoff
plus s times the expected stock payoff.

52 | Chapter 2: Two-State Economy

Defining ℛ ∈ ℝ2 × 2 to be the rates of return matrix with

ℛ =
i r1

u

i r1
d

one gets for the expected portfolio rate of return

�
P
ℛ · ϕ = b · �P i + s · �P r1

= b · i + s · μ

In words, the expected portfolio rate of return is b times the risk-less interest rate plus
s times the expected rate of return of the stock.

The next step is to calculate the portfolio variance:

σ2 ℛ · ϕ = �
P r − �P

ℛ · ϕ
2

=
p

1 − p
,

b · i + s · r1
u − b · i − s · μ 2

b · i + s · r1
d − b · i − s · μ 2

=
p

1 − p
,

s · r1
u − s · μ 2

s · r1
d − s · μ 2

= s2 · σ2 r1

In words, the portfolio variance is s2 times the stock variance, which makes intuitive
sense since the bond is risk-less and should not contribute to the portfolio variance. It
immediately follows the nice proportionality result for the portfolio volatility:

σ ℛ · ϕ = σ2 ℛ · ϕ

= s2 · σ2 r1

= s · σ r1

The whole analysis is straightforward to implement in Python. First, some
preliminaries:

Mean-Variance Portfolios | 53

In [120]: B = (10, np.array((11, 11)))

In [121]: S = (10, np.array((20, 5)))

In [122]: M = np.array((B[1], S[1])).T

In [123]: M
Out[123]: array([[11, 20],
 [11, 5]])

In [124]: M0 = np.array((B[0], S[0]))

In [125]: R = M / M0 - 1

In [126]: R
Out[126]: array([[0.1, 1.],
 [0.1, -0.5]])

In [127]: P = np.array((0.5, 0.5))

The matrix with the future prices of the financial assets.

The vector with the prices of the financial assets today.

Calculates in vectorized fashion the return matrix.

Shows the results of the calculation.

Defines the probability measure.

With these definitions, expected portfolio return and volatility are calculated as dot
products:

In [128]: np.dot(P, R)
Out[128]: array([0.1 , 0.25])

In [129]: s = 0.55

In [130]: phi = (1-s, s)

In [131]: mu = np.dot(phi, np.dot(P, R))

In [132]: mu
Out[132]: 0.18250000000000005

In [133]: sigma = s * R[:, 1].std()

In [134]: sigma
Out[134]: 0.41250000000000003

54 | Chapter 2: Two-State Economy

The expected returns of the bond and the stock.

An example allocation for the stock in percent (decimals).

The resulting portfolio with a normalized weight of 1.

The expected portfolio return given the allocations.

The value lies between the risk-less return and the stock return.

The volatility of the portfolio; the Python code here only applies due to p = 0.5.

Again, the value lies between the volatility of the bond (= 0) and the volatility of
the stock (= 0.75).

Varying the weight of the stock in the portfolio leads to different risk-return combi‐
nations. Figure 2-5 shows the expected portfolio return and volatility for different
values of s between 0 and 1. As the plot illustrates, both the expected portfolio return
(from 0.1 to 0.25) and the volatility (from 0.0 to 0.75) increase linearly with increas‐
ing allocation s of the stock:

In [135]: values = np.linspace(0, 1, 25)

In [136]: mu = [np.dot(((1-s), s), np.dot(P, R))
 for s in values]

In [137]: sigma = [s * R[:, 1].std() for s in values]

In [138]: plt.figure(figsize=(10, 6))
 plt.plot(values, mu, lw = 3.0, label='μ_p')
 plt.plot(values, sigma, '--', lw = 3.0, label='σ_p')
 plt.legend(loc=0)
 plt.xlabel('s');

Generates an ndarray object with 24 evenly spaced intervals between 0 and 1.

Calculates for every element in values the expected portfolio return and stores
them in a list object.

Calculates for every element in values the portfolio volatility and stores them in
another list object.

Mean-Variance Portfolios | 55

5 Refer to the Data Structures documentation for more on data structures and comprehension idioms in
Python.

Figure 2-5. Expected portfolio return and volatility for different allocations

Note that the list comprehension sigma = [s * R[:, 1].std() for s in values]
in the previous code is short for the following code5:

sigma = list()
for s in values:
 sigma.append(s * R[:, 1].std())

The typical graphic seen in the context of MVP is one that plots expected portfolio
return against portfolio volatility. Figure 2-6 shows that an investor can expect a
higher return the more risk (volatility) they are willing to bear. The relationship is lin‐
ear in the special case of this section:

In [139]: plt.figure(figsize=(10, 6))
 plt.plot(sigma, mu, lw = 3.0, label='risk-return')
 plt.legend(loc=0)
 plt.xlabel('σ_p')
 plt.ylabel('μ_p');

56 | Chapter 2: Two-State Economy

https://oreil.ly/0dbCi

Figure 2-6. Feasible combinations of expected portfolio return and volatility

Conclusions
This chapter introduces finance, starting with the very basics and illustrating the cen‐
tral mathematical objects and financial notions with simple Python code examples.
The beauty is that fundamental ideas of finance—like arbitrage pricing or the risk-
return relationship—can be introduced and understood even in a static two-state
economy. Equipped with this basic understanding and some financial and mathemat‐
ical intuition, the transition to increasingly more realistic financial models is signifi‐
cantly simplified. The subsequent chapter, for example, adds a third future state to the
state space to discuss issues arising in the context of market incompleteness.

Further Resources
Books and papers cited in this chapter:

Cox, John and Stephen Ross. 1976. “The Valuation of Options for Alternative Sto‐
chastic Processes.” Journal of Financial Economics (3): 145–166.

Delbaen, Freddy and Walter Schachermayer. 2006. The Mathematics of Arbitrage. Ber‐
lin: Springer Verlag.

Guidolin, Massimo and Francesca Rinaldi. 2013. “Ambiguity in Asset Pricing and
Portfolio Choice: A Review of the Literature.” Theory and Decision (74): 183–217.
https://ssrn.com/abstract=1673494.

Harrison, Michael and David Kreps. 1979. “Martingales and Arbitrage in Multiperiod
Securities Markets.” Journal of Economic Theory (20): 381–408.

Conclusions | 57

https://ssrn.com/abstract=1673494

Harrison, Michael and Stanley Pliska. 1981. “Martingales and Stochastic Integrals in
the Theory of Continuous Trading.” Stochastic Processes and their Applications
(11): 215–260.

Markowitz, Harry. 1952. “Portfolio Selection.” Journal of Finance 7 (1): 77–91.

58 | Chapter 2: Two-State Economy

CHAPTER 3

Three-State Economy

The model is said to be complete if every contingent claim can be generated by some
trading strategy. Otherwise, the model is said to be incomplete.

—Stanley Pliska (1997)

Assume that an individual views the outcome of any investment in probabilistic terms;
that is, he thinks of the possible results in terms of some probability distribution. In
assessing the desirability of a particular investment, however, he is willing to act on the
basis of only two parameters of this distribution—its expected value and standard
deviation.

—William Sharpe (1964)

The previous chapter is based on the most simple model economy, in which the
notion of uncertainty in finance can be analyzed. This chapter enriches the two-state
economy by just a single additional state while keeping the number of traded finan‐
cial assets constant at two. In this slightly enriched static three-state economy, the
notions of market incompleteness and indeterminacy of the martingale measure are
discussed. Super-replication and approximate replication approaches are presented to
cope with incompleteness and its consequences for the pricing of contingent claims.
The chapter also presents the Capital Asset Pricing Model (CAPM), which builds on
the mean-variance portfolio analysis and adds equilibrium arguments to derive prices
for financial assets in mean-volatility space even if they are not replicable.

This chapter mainly covers the following topics from finance, mathematics, and
Python programming:

59

Finance Mathematics Python
Uncertainty Probability space ndarray

Financial assets Vectors, matrices ndarray

Attainable contingent claims Span of vectors, basis of vector space ndarray

Martingale pricing, arbitrage Sets of probability measures, expectation ndarray, np.dot

Super-replication Minimization, constraints scipy.optimize.minimize, dict,
lambda

Approximate replication Mean squared error, OLS regression np.linalg.lstsq

Capital market line Expectation, standard deviation NumPy

Capital Asset Pricing Model Correlation, covariance NumPy

If not explicitly stated otherwise, the assumptions and notions of the two-state econ‐
omy from the previous chapter carry over to the three-state economy discussed in
this chapter.

Uncertainty
Two points in time are relevant, today, t = 0, and one year from today in the future,
t = 1. Let the state space be given by Ω = u, m, d . u, m, d represent the three differ‐
ent states of the economy possible in one year. The power set over the state space is
given as:

℘ Ω = ∅, u , m , d , u, m , u, d , m, d , Ω

The probability measure P is defined on the power set, and it is assumed that
P ω = 1

3 , ω ∈ Ω. The resulting probability space Ω,℘ Ω , P represents uncertainty
in the model economy.

Financial Assets
There are two financial assets traded in the model economy. The first is a risk-less
bond B = B0, B1 with B0 = 10 and B1 = 11, 11, 11 T. The risk-less interest rate
accordingly is i = 0.1.

The second is a risky stock, S = S0, S1
u, S1

m, S1
d T , with S0 = 10 and:

S1 =
20
10
5

60 | Chapter 3: Three-State Economy

Define the market payoff matrix ℳ ∈ ℝ3 × 2 by:

ℳ ≡

B1 S1
u

B1 S1
m

B1 S1
d

=
11 20
11 10
11 5

Attainable Contingent Claims
The span of the traded financial assets is also called the set of attainable contingent
claims �. A contingent claim C1:Ω ℝ ≥ 0 is said to be attainable if its payoff can be
expressed as a linear combination of the payoff vectors of the traded assets. In other
words, there exists a portfolio ϕ such that V1 ϕ = ℳ · ϕ = C1. Therefore

� = ℳ · ϕ, ϕ ∈ ℝ2

if there are no constraints on the portfolio positions, or

� = ℳ · ϕ, ϕ ∈ ℝ≥0
2

if short selling is prohibited.

It is easy to verify that the payoff vectors of the two financial assets are linearly inde‐
pendent. However, there are only two such vectors and three different states. It is
known by standard results from linear algebra that a basis for the vector space ℝ3

needs to consist of three linearly independent vectors. In other words, not every con‐
tingent claim is replicable by a portfolio of the traded financial assets. An example is,
for instance, the first Arrow-Debreu security. The system of linear equations for the
replication is:

b · 11 + s · 20 = 1
b · 11 + s · 10 = 0
b · 11 + s · 5 = 0

Subtracting the second equation from the first gives s = 1
10 . Subtracting the third

equation from the first gives s = 1
15 , which is obviously a contradiction to the first

result. Therefore, there is no solution to this replication problem.

Attainable Contingent Claims | 61

Using Python, the set of attainable contingent claims can be visualized in three
dimensions. The approach is based on Monte Carlo simulation for the portfolio com‐
position. For simplicity, the simulation allows only for positive portfolio positions
between 0 and 1. Figure 3-1 shows the results graphically and illustrates that the two
vectors can only span a two-dimensional area of the three-dimensional space. If the
market would be complete, the simulated payoff vectors would populate a cube (the
financial assets would span ℝ3) and not only a rectangular area (span ℝ2). The mod‐
eling of uncertainty is along the lines of the Python code introduced in Chapter 2
with the necessary adjustments for three possible future states of the economy:

In [1]: import numpy as np
 from numpy.random import default_rng
 np.set_printoptions(precision=5, suppress=True)

In [2]: rng = default_rng(100)

In [3]: B = (10, np.array((11, 11, 11)))

In [4]: S = (10, np.array((20, 10, 5)))

In [5]: n = 1000

In [6]: b = rng.random(n)

In [7]: b[:5]
Out[7]: array([0.83498, 0.59655, 0.28886, 0.04295, 0.97365])

In [8]: s = rng.random(n)

In [9]: A = [b[i] * B[1] + s[i] * S[1] for i in range(n)]

In [10]: A = np.array(A)

In [11]: A[:3]
Out[11]: array([[19.86232, 14.52356, 11.85418],
 [26.35796, 16.46003, 11.51106],
 [11.64939, 7.41344, 5.29547]])

In [12]: from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'
 from mpl_toolkits.mplot3d import Axes3D

In [13]: fig = plt.figure(figsize=(10, 6))
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(A[:, 0], A[:, 1], A[:, 2], c='r', marker='.');

62 | Chapter 3: Three-State Economy

Number of portfolios to be simulated.

The random position in the bond with some examples—all position values are
between 0 and 1.

The random position in the stock.

A list comprehension that calculates the resulting payoff vectors from the ran‐
dom portfolio compositions.

The basic plotting subpackage of matplotlib.

Three-dimensional plotting capabilities.

An empty canvas is created.

A subplot for a three-dimensional object is added.

The payoff vectors are visualized as a red dot each.

Market Incompleteness

While in a complete model economy every contingent claim is
attainable, only a small subset of contingent claims is generally
attainable in an incomplete market. In that sense, changing from a
complete to an incomplete model economy has tremendous conse‐
quences. Pricing by replication, as introduced in Chapter 2, relies
on the attainability of a contingent claim. What about pricing,
then, when replication fails? These and other questions in this con‐
text are answered in the remainder of the chapter.

Attainable Contingent Claims | 63

Figure 3-1. Random portfolio payoff vectors visualized in three dimensions

Martingale Pricing
The importance of martingale measures is clear from the First Fundamental Theorem
of Asset Pricing (1FTAP) and the Second Fundamental Theorem of Asset Pricing
(2FTAP).

Martingale Measures
Any probability measure makes the discounted bond price process a martingale.
What about the stock price process? The defining equation for a martingale measure
Q:℘ Ω ℝ≥0 is:

S0 · 1 + i = �Q S1

64 | Chapter 3: Three-State Economy

or

S0 · 1 + i = qu · S1
u + qm · S1

m + qd · S1
d

with qω ≡ Q ω , ω ∈ Ω. In numbers and with qd = 1 − qu − qm:

11 = qu · 20 + qm · 10 + 1 − qu − qm · 5

qm = 6 − 15 · qu

5

Recalling the properties of a probability measure, it must hold (binding condition)

6 − 15 · qu ≥ 0

qu ≤ 2
5

and (nonbinding condition)

6 − 15 · qu

5 ≤ 1

qu ≥ 1
15

as well as (binding condition)

qd = 1 − qu − qm ≥ 0

qu ≥ 1
10

and (nonbinding condition)

qd = 1 − qu − qm ≤ 1

qu ≤ 3
5

Therefore, there are infinitely many probability measures that make the discounted
stock price process a martingale. Setting q ≡ qu, the set of all martingale measures ℚ
consistent with the market model is:

Martingale Pricing | 65

ℚ =

q
6 − 15 · q

5

1 − q − 6 − 15 · q
5

, 1
10 ≤ q ≤ 2

5

As an example, take q = 3
10 . It follows

Q q = 3
10 =

3
10

6 − 15 · 3
10

5

1 − 3
10 − 3

10

=

3
10
3

10
4

10

and

3
10 · 20 + 3

10 · 10 + 4
10 · 5 = 11

as desired for the stock price process.

With the specifications from before, the calculation in Python is as follows:

In [14]: Q = np.array((0.3, 0.3, 0.4))

In [15]: np.dot(Q, S[1])
Out[15]: 11.0

According to the 2FTAP, the market model is incomplete since there is more than one
martingale measure consistent with the market model.

Martingale Measures in Incomplete Markets

Complete market models are characterized by a unique martingale
measure. By contrast, incomplete market models usually allow for
an infinite number of martingale measures consistent with the
model economy. It should be clear that this has significant conse‐
quences for the pricing of contingent claims since different martin‐
gale measures will lead to different values of contingent claims that
are all consistent with the absence of arbitrage.

66 | Chapter 3: Three-State Economy

Risk-Neutral Pricing
What implications does an infinite number of market consistent martingale measures
have when it comes to the arbitrage pricing of contingent claims? First, for those con‐
tingent claims that are attainable, �, arbitrage pricing holds as in a complete market
setting: the value of the replicating portfolio equals the price of the contingent claim
to be replicated—otherwise arbitrage opportunities exist. Formally, C0 = V0 ϕ if
V1 ϕ = C1.

For those contingent claims that are not attainable, C1 ∈ � = ℝ3 ∖ �, the answer is
not that simple. Suppose the first Arrow-Debreu security γu. It is not replicable as
shown previously and therefore belongs to the set �. Its martingale price is:

γ0
u q = 1

1 + i · �Q 1, 0, 0 T = 1
1 + i · q

The quantity γ0
ω is often called the state price for one unit of currency in state ω ∈ Ω.

It is simply the discounted martingale probability for this state.

In the model economy, 1
10 ≤ q ≤ 2

5 must hold, therefore the martingale price—the
price avoiding arbitrage opportunities—lies in the interval:

10
11 · 1

10 = 1
11 ≤ γ0

u ≤ 10
11 · 2

5 = 4
11

In words, every price between 1
11 and 4

11 for the first Arrow-Debreu security is con‐
sistent with the absence of arbitrage, given the assumptions for the model economy.
Calculations for other contingent claims that are not attainable lead to similar results.

Super-Replication
Replication is important not only in a pricing context. It is also an approach to hedge
risk resulting from an uncertain contingent claim payoff. Consider an arbitrary
attainable contingent claim. Selling short the replication portfolio in addition to hold‐
ing the contingent claim eliminates any kind of risk resulting from uncertainty
regarding future payoff. This is because the payoffs of the contingent claim and the
replicating portfolio cancel each other out perfectly. Formally, if the portfolio ϕ* rep‐
licates contingent claim C1, then:

C1 − V1 ϕ* = C1 − ℳ · ϕ* = 0

Super-Replication | 67

For a contingent claim that is not attainable, such a perfect hedge is not available.
However, one can always compose a portfolio that super-replicates the payoff of such a
contingent claim. A portfolio ϕ super-replicates a contingent claim C1 if its payoff in
every future state of the economy is greater than or equal to the contingent claims
payoff V1 ϕ ≥ C1.

Consider again the first Arrow-Debreu security γu, which is not attainable. The pay‐
off can be super-replicated, for example, by a portfolio containing the risk-less bond
only:

ϕ = 1
B1

, 0
T

The resulting payoff is

V1 ϕ = 1
B1

·

B1

B1

B1

=
1
1
1

≥
1
0
0

= C1

where the ≥ sign is to be understood element-wise. Although this satisfies the defini‐
tion of super-replication, it might not be the best choice in terms of the costs to set up
the super-replication portfolio. Therefore, a cost minimization argument is introduced
in general.

The super-replication problem for a contingent claim C1 at minimal costs is:

min
ϕ

V0 ϕ

s.t. V1 ϕ ≥ C1

or

min
b, s

b · B0 + s · S0

s.t.

b · B1 + s · S1
u ≥ C1

u

b · B1 + s · S1
m ≥ C1

m

b · B1 + s · S1
d ≥ C1

d

68 | Chapter 3: Three-State Economy

Such minimization problems can be modeled and solved straightforwardly in Python
when using the SciPy package. The following code starts by calculating the costs for
the inefficient super-replication portfolio using the bond only. It proceeds by defining
a value function for a portfolio. It also illustrates that alternative portfolio composi‐
tions can indeed be more cost efficient:

In [16]: C1 = np.array((1, 0, 0))

In [17]: 1 / B[1][0] * B[1] >= C1
Out[17]: array([True, True, True])

In [18]: 1 / B[1][0] * B[0]
Out[18]: 0.9090909090909092

In [19]: def V(phi, t):
 return phi[0] * B[t] + phi[1] * S[t]

In [20]: phi = np.array((0.04, 0.03))

In [21]: V(phi, 0)
Out[21]: 0.7

In [22]: V(phi, 1)
Out[22]: array([1.04, 0.74, 0.59])

The payoff of the contingent claim (first Arrow-Debreu security).

The portfolio with the bond only checked for the super-replication characteristic.

The costs to set up this portfolio.

A function to calculate the value of a portfolio phi today, t=0, or in one year, t=1.

Another guess for a super-replicating portfolio.

The cost to set it up, which is lower than with the bond only.

And the resulting value (payoff) in one year, which super-replicates the first
Arrow-Debreu security.

The second part of the code implements the minimization program based on the pre‐
vious inequality constraints in vectorized fashion. The cost optimal super-replication
portfolio is much cheaper than the one using the bond only or the already more effi‐
cient portfolio including the bond and the stock:

In [23]: from scipy.optimize import minimize

In [24]: cons = ({'type': 'ineq', 'fun': lambda phi: V(phi, 1) - C1})

Super-Replication | 69

http://scipy.org

In [25]: res = minimize(lambda phi: V(phi, 0),
 (0.01, 0.01),
 method='SLSQP',
 constraints=cons)

In [26]: res
Out[26]: fun: 0.3636363636310989
 jac: array([10., 10.])
 message: 'Optimization terminated successfully'
 nfev: 6
 nit: 2
 njev: 2
 status: 0
 success: True
 x: array([-0.0303 , 0.06667])

In [27]: V(res['x'], 0)
Out[27]: 0.3636363636310989

In [28]: V(res['x'], 1)
Out[28]: array([1. , 0.33333, -0.])

Imports the minimize function from scipy.optimize.

Defines the inequality constraints in vectorized fashion based on a lambda (or
anonymous) function; the function λ modeled here is λ ϕ = V1 ϕ − C1, for
which the inequality constraint λ ϕ ≥ 0 must hold.

The function to be minimized also as a lambda function.

An initial guess for the optimal solution (not too important here).

The method to be used for the minimization, here Sequential Least Squares
Programming (SLSQP).

The constraints for the minimization problem as defined before.

The complete results dictionary from the minimization, with the optimal param‐
eters under x and the minimal function value under fun.

The value of the optimal super-replicating portfolio today.

The future uncertain value of the optimal super-replicating portfolio; the optimal
portfolio that sells short the bond and goes long the stock exactly replicates the
relevant payoff in two states and only super-replicates in the middle state.

70 | Chapter 3: Three-State Economy

Approximate Replication
Super-replication assumes a somewhat extreme situation: the payoff of the contingent
claim to be super-replicated must be reached or exceeded in any given state under
any circumstances. Such a situation is seen in practice, for instance, when a life insur‐
ance company invests in a way that it can meet under all circumstances—which often
translates in the real world into something like “With a probability of 99.9%.”—its
future liabilities and obligations (contingent claims). However, this might not be an
economically sensible or even viable option in many cases.

This is where approximation comes into play. The idea is to replicate the payoff of a
contingent claim as well as possible given an objective function. The problem then
becomes minimizing the replication error given the traded financial assets.

A possible candidate for the objective or error function is the mean squared error
(MSE). Let V1 ϕ be the value vector given a replication portfolio ϕ. The MSE for a
contingent claim C1 given the portfolio ϕ is:

MSE V1 ϕ − C1 = 1
Ω ∑

ω ∈ Ω
V1

ω ϕ − C1
ω 2

This is the quantity to be minimized. For an attainable contingent claim, the MSE is
zero. The problem itself in matrix form is:

min
ϕ

MSE ℳ · ϕ − C1

In linear algebra, this is a problem that falls in the category of ordinary least-squares
regression (OLS regression) problems. The previous problem is the special case of a
linear OLS regression problem.

NumPy provides the function np.linalg.lstsq that solves problems of this kind in a
standardized and efficient manner:

In [29]: M = np.array((B[1], S[1])).T

In [30]: M
Out[30]: array([[11, 20],
 [11, 10],
 [11, 5]])

In [31]: reg = np.linalg.lstsq(M, C1, rcond=-1)

In [32]: reg
 # (array,
 # array,
 # int,

Approximate Replication | 71

 # array)
Out[32]: (array([-0.04545, 0.07143]), array([0.07143]), 2, array([28.93836,
 7.11136]))

In [33]: V(reg[0], 0)
Out[33]: 0.2597402597402598

In [34]: V(reg[0], 1)
Out[34]: array([0.92857, 0.21429, -0.14286])

In [35]: V(reg[0], 1) - C1
Out[35]: array([-0.07143, 0.21429, -0.14286])

In [36]: np.mean((V(reg[0], 1) - C1) ** 2)
Out[36]: 0.02380952380952381

The future price matrix of the two traded financial assets.

This solves the linear OLS regression problem by minimizing the MSE.

The optimal portfolio positions, that is, the solution to the problem.

The MSE obtained from the optimization procedure (minimal mean squared
replication error).

Rank of matrix M…

…and its singular values.

The value of the approximate portfolio (lower than the value of the cost-
minimizing portfolio).

The payoff of the approximation portfolio.

The vector with the replication errors.

The MSE from the approximate replication.

Approximate replication might not be applicable in all circumstances. But an investor
or financial manager with discretion in their decisions can decide that an approxima‐
tion is simply good enough. Such a decision could be made, for example, in cases in
which super-replication might be considered to be too costly.

72 | Chapter 3: Three-State Economy

1 Note that this calculation for the volatility is only valid since an equal probability is assumed for the three
states.

Capital Market Line
Assume a mean-variance or, rather, mean-volatility context. In what follows, the risky
stock is interpreted as the market portfolio. One can think of the market portfolio in
terms of a broad stock index—in the spirit of the S&P 500 stock index.

As before, agents can compose portfolios that consist of the bond and the market
portfolio. The rate of return for the bond—the risk-less interest rate—is i = 0.1, and
the volatility is 0. The expected rate of return for the market portfolio is:

μS =
�

P S1
S0

− 1 = 7
6 − 1 = 1

6

Its volatility is:

σS = �
P S1 − S0

S0
− μS

2

Quick calculations in Python give the corresponding numerical values:

In [37]: mu_S = 7 / 6 - 1

In [38]: mu_S
Out[38]: 0.16666666666666674

In [39]: sigma_S = (S[1] / S[0]).std()

In [40]: sigma_S
Out[40]: 0.6236095644623235

The expected return of the market portfolio.

The volatility of the returns of the market portfolio.1

Feasible mean values for a normalized portfolio with total weight of 1 or 100% con‐
sisting of the bond and the market portfolio without short selling range from 0 to
about 0.166. Regarding the volatility, values between 0 and about 0.623 are possible.

Capital Market Line | 73

Allowing for short selling, Figure 3-2 shows the capital market line (CML) resulting
from different portfolio compositions. Because short selling of the bond is allowed,
risk-return combinations on the upper line (with positive slope) are possible, which is
what is referred to in general as the CML. The lower line (with negative slope) is in
principle irrelevant since such portfolios, resulting from short positions in the market
portfolio, have lower expected rates of return at the same risk as those that have a cor‐
responding long position in the market portfolio:

In [41]: s = np.linspace(-2, 2, 25)

In [42]: b = (1 - s)

In [43]: i = 0.1

In [44]: mu = b * i + s * mu_S

In [45]: sigma = np.abs(s * sigma_S)

In [46]: plt.figure(figsize=(10, 6))
 plt.plot(sigma, mu)
 plt.xlabel('σ')
 plt.ylabel('μ');

The market portfolio position takes on values between –200% and 200%.

The bond portfolio position fills up to 100% total portfolio weight.

The risk-less interest rate.

The resulting expected rates of return for the portfolio.

The resulting volatility values for the portfolio.

Plots the CML for short as well as long positions in the market portfolio.

74 | Chapter 3: Three-State Economy

Figure 3-2. Capital market line (upper, increasing part)

The equation describing the (upper, increasing part of the) CML is:

μ = i +
μS − i

σS
· σ

Capital Asset Pricing Model
The Capital Asset Pricing Model (CAPM) as pioneered by Sharpe (1964) is an equili‐
brium pricing model that mainly relates the expected rate of return of an arbitrary
financial asset or portfolio and its volatility with the market portfolio’s expected rate
of return and volatility.

To this end, the correlation between the rates of return of a financial asset and the
market portfolio is of importance. In addition to the market portfolio, consider
another risky financial asset with price process T = T0, T1 . The correlation ρ is
defined by:

ρST =
�

P r1
S − μS · r1

T − μT
σS · σT

Capital Asset Pricing Model | 75

with −1 ≤ ρST ≤ 1. If the correlation is positive, the two financial assets have a ten‐
dency to move in the same direction. If it is negative, the financial assets have a ten‐
dency to move in opposite directions. In the special case of perfect positive
correlation, ρST = 1, the two financial assets always move in the same direction. This
is true, for instance, for portfolios that lie on the CML for which the rates of return
are just the rates of return of the market portfolio scaled by the weight of the market
portfolio. Uncertainty in this case arises from the market portfolio part only such that
any variation in risk is due to the market portfolio weight variation.

Consider the case of a financial asset T, which is part of the market portfolio and for
which the correlation with the market portfolio shall not be perfect. For such a finan‐
cial asset, the expected rate of return is given by:

μT = i +
μS − i · ρST

σS
· σT

= i +
ρST · σS · σT

σS
2 · μS − i

It is easy to verify that the correlation between the market portfolio and the bond is
zero such that the previous relationship gives the risk-less interest as the expected
return if the financial asset T is the risk-less bond.

The covariance between S1 and T1 is defined as σST = ρST · σS · σT such that

μT = i +
σST

σS
2 · μS − i

= i + βT · μS − i

with

βT ≡
σST

σS
2

This gives the famous CAPM linear relationship between the expected rate of return
of the market portfolio and the expected return of the financial asset T—or any other
financial asset to this end. In that sense, the CAPM states that the rate of return for
any financial asset is only determined by the expected excess return of the market
portfolio over the risk-less interest rate and the beta factor, which is the covariance

76 | Chapter 3: Three-State Economy

between the two, scaled by the square of the market portfolio volatility (variance of
returns).

For the CAPM, the CML is replaced by the security market line (SML), which is plot‐
ted in beta-return space as follows. A visualization is given in Figure 3-3:

In [47]: beta = np.linspace(0, 2, 25)

In [48]: mu = i + beta * (mu_S - i)

In [49]: plt.figure(figsize=(10, 6))
 plt.plot(beta, mu, label='security market line')
 plt.xlabel('$\\beta$')
 plt.ylabel('μ')
 plt.ylim(0, 0.25)
 plt.plot(1, mu_S, 'ro', label='market portfolio')
 plt.legend(loc=0);

Generates an ndarray object with the beta values.

Calculates the expected returns mu according to the CAPM.

Plots the beta-mu combinations.

Adjusts the limits for the y axis.

Plots the beta and expected return of the market portfolio.

Figure 3-3. Security market line

Capital Asset Pricing Model | 77

But why do the preceding relationships—and in particular the CAPM formula—hold
true in the first place? To answer this question, consider a portfolio with normalized
weight of 1 or 100% of which a proportion a is invested in financial asset T and the
remainder 1 − a is invested in the market portfolio. The expected rate of return of this
portfolio is:

μ a = a · μT + 1 − a · μS

The volatility of the portfolio is (see Sharpe (1964)):

σ a = a2 · σT
2 + 1 − a 2 · σS

2 + 2 · a · 1 − a · σST

1
2

The marginal change in the expected portfolio rate of return, given a marginal change
in the allocation of the financial asset T, is determined by the following partial
derivative:

∂μ
∂a = μT − μS

The marginal change in the portfolio volatility, given a marginal change in the alloca‐
tion of the financial asset T, is determined by the following partial derivative:

∂σ
∂a =

a · σT
2 − σS

2 + a · σS
2 + σST − 2 · a · σST

a2 · σT
2 + 1 − a 2 · σS

2 + 2 · a · 1 − a · σST

The basic insight of the CAPM as an equilibrium model is that the financial asset T is
already part of the market portfolio. Therefore, a can only be interpreted as the excess
demand for the financial asset, and in equilibrium when excess demand for all finan‐
cial assets is zero, a also must equal zero. Therefore, in equilibrium, the partial deriva‐
tive for the expected portfolio rate of return remains unchanged, while the one for
the portfolio volatility simplifies significantly when evaluated at the equilibrium point
a = 0:

∂σ
∂a a = 0

= 1
2σS · − 2 · σS

2 + 2 · σST

= σS · σST − σS · σS
2

=
σST − σS

2

σS

78 | Chapter 3: Three-State Economy

The risk-return trade-off in market equilibrium therefore is:

∂μ
∂a
∂σ
∂a a = 0

=
μT − μS

σST − σS
2

σS

The final insight needed to derive the preceding CAPM formula is that in equili‐
brium, the previous term needs to be equal to the slope of the CML:

μT − μS

σST − σS
2

σS

=
μS − i

σS

μT = i +
σST

σS
2 · μS − i

= i + βT · μS − i

How does the CAPM help in pricing a financial asset that is not replicable? Given the
vector of uncertain prices in one year of a financial asset T1, the uncertain rates of
return are

rT =
T1 − T0

T0

where T0 is the equilibrium price today to be determined. The following relationship
holds as well:

μT =
�

P T1 − T0
T0

Define now the unit price of risk as the excess return of the market portfolio per unit
of variance by

λ =
μS − i

σS
2

Capital Asset Pricing Model | 79

such that according to the CAPM, one gets

μT = i + λ · σST

This shows that in equilibrium the expected rate of return of a financial asset is deter‐
mined only by its covariance with the market portfolio. Equating this with the pre‐
ceding term for the expected return of the financial asset T yields

�
P T1 − T0

T0
= i + λ · σST

T0 =
�

P T1
1 + i + λ · σST

The denominator can be thought of as a risk-adjusted discount factor.

MVP, CAPM, and Market Completeness

Both MVP and the CAPM rely on high-level statistics only, such as
expectation, volatility, and covariance. When replicating contingent
claims, for example, every single payoff in every possible future
state plays an important role—with the demonstrated conse‐
quences resulting from market incompleteness. In MVP and
CAPM contexts, it is (implicitly) assumed that investors only care
about aggregate statistics and not really about every single state.
Consider the example of two financial assets with the same initial
prices under an equal probability measure, one paying 20 currency
units in one state and nothing in the others, and the other one pay‐
ing 20 currency units in a different state as the other financial asset
and nothing else. Both financial assets have the same risk-return
characteristics. However, an agent might strongly prefer one over
the other—independent of the fact that their aggregate statistics are
the same. Focusing on risk and return is often a convenient simpli‐
fication but not always an appropriate one.

Conclusions
The major topic of this chapter is incomplete financial markets. Moving from a two-
state model economy to one with three states and keeping the number of traded
financial assets constant at two, immediately results in market incompleteness. This
in turn implies that contingent claims are in general not perfectly replicable by port‐
folios composed of the risk-less bond and the risky stock.

80 | Chapter 3: Three-State Economy

However, payoffs of contingent claims can be super-replicated if they must be met or
surpassed under all circumstances. While there are in general infinitely many such
super-replication portfolios, it is generally required that the cost-minimizing portfo‐
lio be chosen. If there is a bit more flexibility, the payoffs of contingent claims that are
not attainable can also be approximated. In this context, the replication problem is
replaced by an optimization problem, according to which the mean squared error of
the replication portfolio is minimized. Mathematically, this boils down to a linear
OLS regression problem.

The CAPM is based on equilibrium pricing arguments to derive expected rates of
return and also prices for traded financial assets given their risk-return characteristics
in the mean-volatility space. A central role is played by the correlation and the cova‐
riance of a financial asset with the market portfolio, which is assumed to contain the
financial asset itself.

Further Resources
Articles and books cited in this chapter:

Pliska, Stanley. 1997. Introduction to Mathematical Finance. Malden and Oxford:
Blackwell Publishers.

Sharpe, William. 1964. “Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk.” The Journal of Finance 19 (3): 425–442.

Further Resources | 81

CHAPTER 4

Optimality and Equilibrium

Much of economic theory is based on the premise: given two alternatives, an agent can,
and will if able, choose a preferred one.

—Darrell Duffie (1988)

A portfolio analysis starts with information concerning individual securities. It ends
with conclusions concerning portfolios as a whole. The purpose of the analysis is to
find portfolios which best meet the objectives of the investor.

—Harry Markowitz (1959)

This chapter is about the modeling of agents and their optimization problems. It
presents some of the fundamental building blocks of microeconomic theory (see Var‐
ian (1992)) and financial economics (see Eichberger and Harper (1997)). At the core
of this chapter is the expected utility maximization paradigm, which is the dominant
way of modeling an agent’s preferences in financial economics. Based on this para‐
digm, two central topics are discussed.

First, we discuss how an agent chooses an optimal investment portfolio given their
preferences and the initial wealth. This type of problem is typically called optimal
portfolio choice. The approach presented here does not rely on any form of simplifica‐
tion as seen with the mean-variance portfolio (MVP) approach and the Capital Asset
Pricing Model (CAPM) that, for example, reduce the problem of choosing investment
portfolios to the first and second moments of the return distributions of financial
assets as well as their covariance.

Second, while prices for financial assets in the previous two chapters have been given
a priori, this chapter derives them from fundamental principles in that it analyzes
the pricing of financial assets based on the optimization problem of a so-called repre‐
sentative agent in addition to equilibrium arguments. Loosely speaking, a representa‐
tive agent can be thought of as the aggregation of (infinitely) many agents acting

83

independently in (financial) markets. Conditions for the existence of such a represen‐
tative agent are well-known (see chapter 6 in Milne (1995))—however, they are not
discussed in this chapter because financial theory in general simply postulates the
existence.

The current chapter mainly covers the following topics from finance, mathematics,
and Python programming. On the Python side, not that many new elements are
introduced. The basic mathematical and Python tool sets for doing finance in discrete
models are already introduced and developed in the previous two chapters:

Finance Mathematics Python
Preferences and utility Utility function NumPy

Utility maximization Objective function, budget constraint,
Theorem of Lagrange

scipy.optimize.minimize

Indifference curves, budget line Function NumPy, matplotlib

Logarithmic utility Natural logarithm NumPy, matplotlib

Time-additive utility Utility function NumPy, scipy.optimize.minimize

(time-additive) expected utility Probability measure, Theorem of
Lagrange

NumPy, scipy.optimize.minimize

Optimal investment portfolio Theorem of Lagrange, first-order
conditions

NumPy, scipy.optimize.minimize

Equilibrium pricing, representative
agent

Theorem of Lagrange, first-order
conditions

NumPy, scipy.optimize.minimize,
SymPy

Martingale measures in
incomplete markets

Set of probability measures SymPy, sy.Symbol, sy.solve

Market completion by contingent
claims

Theorem of Lagrange, first-order
conditions

NumPy, scipy.optimize.minimize

Utility Maximization
Formally, an agent is modeled by a utility function, which orders a set of choices the
agent is faced with and which is a representation of the agent’s preferences (see chapter
7 in Varian (1992)). Consider the static economy without uncertainty from Chapter 2.
In addition, assume that an agent is endowed with some initial wealth, w ∈ ℝ>0. The
agent can decide how much of this wealth to spend today, t = 0, and how much to
save—via bank deposits—for future consumption. One can think of an agent faced
with the question of how much to save for retirement.

The agent receives utility from money today, c0, and in one year, c1, according to the
utility function:

U :ℝ≥0
2

ℝ≥0, c0, c1 u c0, c1

84 | Chapter 4: Optimality and Equilibrium

As an example, assume u c0, c1 = c0 · c1—expressing the idea that money today and
in one year are substitutes, although not perfect ones (if either one is zero, utility is
zero as well). What is the optimal consumption-saving plan for the agent? Their con‐
strained optimization problem formally is:

max
c0, c1

c0 · c1

s.t. c0 + c1 = w

According to the Theorem of Lagrange (see chapter 5 in Sundaram (1996)), the con‐
strained optimization problem can be transformed into an unconstrained one of the
form:

max
c0, c1, λ

f c0, c1, λ = c0 · c1 − λ · c0 + c1 − w

The first-order necessary conditions for optimality are:

∂ f
∂c0

= c1 − λ = 0

∂ f
∂c1

= c0 − λ = 0

∂ f
∂λ = c0 + c1 − w = 0

From these, one easily derives c0 = c1 = w
2 as the optimal consumption-saving plan.

This optimization problem can be modeled and solved in Python numerically, for
which w = 10 shall hold:

In [1]: def u(c):
 return -c[0] * c[1]

In [2]: w = 10

In [3]: from scipy.optimize import minimize

In [4]: cons = ({'type': 'eq', 'fun': lambda c: c[0] + c[1] - w})

In [5]: opt = minimize(u, (1, 1), constraints=cons)

In [6]: opt
Out[6]: fun: -24.999999999999996
 jac: array([-5., -5.])
 message: 'Optimization terminated successfully'

Utility Maximization | 85

 nfev: 6
 nit: 2
 njev: 2
 status: 0
 success: True
 x: array([5., 5.])

In [7]: opt['x']
Out[7]: array([5., 5.])

In [8]: -opt['fun']
Out[8]: 24.999999999999996

The utility function with a negative sign to accomplish a maximization through
minimization.

The initial wealth of the agent to be distributed between today and the future.

The budget constraint as an equality constraint for the minimize function.

The optimization with initial guess and budget constraint.

The optimal consumption-saving plan.

The maximum utility gained through the optimal plan.

Indifference Curves
The optimal solution from the previous section can be visualized by the means of
indifference curves. An indifference curve is formed by all such combinations
c = c0, c1 that give the same utility u. The equation describing such a curve in c0, c1
space is:

u = c0 · c1

c1 = u
c0

The equation describing the line representing the budget constraint is:

w = c0 + c1

c1 = w − c0

86 | Chapter 4: Optimality and Equilibrium

The optimization problem is visualized in Figure 4-1, where the optimal plan is given
by the dot—this is where the indifference curve for u = 25 is tangent to the line repre‐
senting the budget constraint.

In Python, this translates into the following code:

In [9]: def iu(u, c0):
 return u / c0

In [10]: def c1(c0):
 return w - c0

In [11]: import numpy as np
 np.set_printoptions(precision=5)

In [12]: from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

In [13]: c0 = np.linspace(1, w)

In [14]: plt.figure(figsize=(10, 6))
 plt.plot(c0, c1(c0), label='budget constraint', lw=3.0)
 plt.plot(c0, iu(15, c0), '--', label='$u=15$')
 plt.plot(c0, iu(25, c0), label='$u=25$')
 plt.plot(c0, iu(35, c0), '-.', label='$u=35$')
 plt.plot(opt['x'][0], opt['x'][1], 'ro', label='$c=(5, 5)$')
 plt.legend(loc=0);

Function for indifference curve.

Function for budget line.

The domain over which to plot both.

Utility Maximization | 87

Figure 4-1. The utility maximization problem

Appropriate Utility Functions
In finance, the utility that an agent gains from money they have available at a certain
point in time—as a substitute for any other real asset that might be bought with the
money, for instance—is typically expressed as a function u:ℝ≥0 ℝ, which is
assumed to satisfy three conditions:

1. u x is twice differentiable

2. du
dx > 0

3. d2u

dx2 ≤ 0

The first condition is a technical prerequisite for the other two. The second condition
formalizes the idea that more money—everything else being equal—is better than less
money. Agents are assumed to be insatiable. The third condition states that the
marginal utility from an additional unit of money is smaller (or the same at the maxi‐
mum) than the marginal utility of the previous marginal unit of money. The function
is therewith assumed to be increasing and (quasi-)concave.

88 | Chapter 4: Optimality and Equilibrium

Logarithmic Utility
This section introduces a type of function that is well suited for financial analyses
based on a utility maximizing agent. Such a function—that satisfies the three condi‐
tions of the previous section and that is regularly used in finance to model the utility
an agent receives from money (or consumption)—is the natural logarithm
u x = ln x. For it, one gets:

1. du
dx = 1

x > 0 for x ∈ ℝ > 0

2. d2u

dx2 = − 1

x2 < 0 for x ∈ ℝ>0

Python allows us to visualize the three relevant functions. NumPy is used in combina‐
tion with vectorized calculations. Figure 4-2 shows the plot as generated by the fol‐
lowing code:

In [15]: x = np.linspace(0.5, 10, 50)

In [16]: x[:5]
Out[16]: array([0.5 , 0.69388, 0.88776, 1.08163, 1.27551])

In [17]: u = np.log(x)

In [18]: u1 = 1 / x

In [19]: u2 = -1 / x ** 2

In [20]: plt.figure(figsize=(10, 6))
 plt.plot(x, u, label='u')
 plt.plot(x, u1, '--', label='du/dx')
 plt.plot(x, u2, '-.', label='d^2u/dx^2')
 plt.legend(loc=0);

Creates an ndarray object with floating point numbers between 0.5 and 10 and a
homogeneous spacing to get 50 values.

Shows a selection of the resulting numbers.

Calculates the values for the utility function.

And for its first derivative as well as…

…for its second derivative.

Creates a new canvas for plotting and provides sizing parameters.

Utility Maximization | 89

Plots the utility function.

Plots the first derivative.

Plots the second derivative.

Puts a legend in the optimal location (loc=0).

Figure 4-2. The natural logarithm function and its first and second derivatives

Time-Additive Utility
Using the natural logarithm as a function to model utility of an agent from money,
the preferences of an agent over consumption-saving plans c = c0, c1 can be
described as a time-additive function of the following form:

U :ℝ≥0
2

ℝ, c0, c1 ln c0 + κ · ln c1

κ ∈ ℝ≥0 is assumed to take on values 0 < κ ≤ 1 and represents the time preference of
the agent. It embodies the idea that money and consumption today are valued higher
than in one year. At least weakly, 100 USD now is preferred to 100 USD in one year—
no matter what exact function describes utility (assuming consistency of preferences
over time). It can be thought of as a nonmonetary discount factor. It is easily verified
that this function satisfies the three conditions described previously—it is twice

90 | Chapter 4: Optimality and Equilibrium

differentiable, increasing, and concave—based on the partial derivatives with regard
to both c0 and c1.

If the agent has initial wealth of w, their constrained optimization problem is:

max
c0, c1

ln c0 + κ · ln c1

s.t. c0 + c1 = w

or

max
c0, c1, λ

f c0, c1, λ = ln c0 + κ · ln c1 − λ · c0 + c1 − w

The first-order necessary conditions for optimality are:

∂ f
∂c0

= 1
c0

− λ = 0

∂ f
∂c1

= κ · 1
c1

− λ = 0

∂ f
∂λ = c0 + c1 − w = 0

From these, one obtains:

1
c0

= κ · 1
c1

c1 = κ · c0

The optimal consumption-saving plan now reflects the time preference in that con‐
sumption in one year c1 is set to κ · c0. It also holds

c0 + κ · c0 = w

c0 = w
1 + κ

Utility Maximization | 91

and

w
1 + κ + c1 = w

c1 = κ · w
1 + κ

The budget constraint is binding:

w
1 + κ + κ · w

1 + κ = w + κ · w
1 + κ = w

The following code solves the optimization problem numerically for w = 10. The
optimal plan reflects the time preference:

In [21]: import math

In [22]: from scipy.optimize import minimize

In [23]: kappa = 10 / 11

In [24]: def U(c):
 return -(math.log(c[0]) + kappa * math.log(c[1]))

In [25]: w = 10

In [26]: cons = ({'type': 'eq', 'fun': lambda c: c[0] + c[1] - w})

In [27]: opt = minimize(U, (1, 1), constraints=cons)

In [28]: opt
Out[28]: fun: -3.0747286083026886
 jac: array([-0.19091, -0.19091])
 message: 'Optimization terminated successfully'
 nfev: 18
 nit: 6
 njev: 6
 status: 0
 success: True
 x: array([5.23811, 4.76189])

In [29]: opt['x']
Out[29]: array([5.23811, 4.76189])

In [30]: -opt['fun']
Out[30]: 3.0747286083026886

92 | Chapter 4: Optimality and Equilibrium

1 Utility is only to be understood in ordinal terms, that is, in terms of bringing different plans into a certain
order. A comparison of this numerical value with the optimal one from before does not make any sense
because the utility functions are different.

The utility function with a negative sign to accomplish a maximization through
minimization.

The budget constraint as an equality constraint for the minimize function.

The optimal consumption-saving plan, reflecting the time preference in that c0 is
higher than c1—by exactly 10%.

The maximum utility gained through the optimal plan.1

Expected Utility
Now consider the static two-state economy with uncertainty. Assume that an agent,
endowed with some initial wealth, w ∈ ℝ>0, gains utility only through money avail‐
able in one year—but now distinguished in the two states that are possible then. This
shall represent a pure investment problem where all available initial wealth shall be
optimally invested in the traded financial assets.

Assume that two financial assets are traded, a risk-less bond with price process

B = B0, B1, B1
T

and a risky stock with price process

S = S0, S1
u, S1

d T

Financial assets are a means to transfer the initial wealth from today to a later point in
time. The major decision problem of the agent is to decide what to consume in either
one of the future states.

A model for the investment problem the agent is faced with under uncertainty is
given by the expected utility of the agent that is to be maximized given w. The
expected utility function is given by:

U :ℝ≥0
2

ℝ, c1 �
P u c1

Expected Utility | 93

With the price vector ℳ 0 = B0, S0
T, the agent can distribute their initial wealth

according to

ℳ 0 · ϕ = w B0 · b + S0 · s = w

where ϕ = b, s T ∈ ℝ≥0
2 represents the portfolio consisting of the risk-less bond and

the risky stock as composed by the agent. This budget constraint will always be bind‐
ing due to the agent being insatiable. Short selling shall not be allowed.

The market payoff matrix is as follows:

ℳ =
B1 S1

u

B1 S1
d

How much money does the agent have available in either state one year from today?
This is determined by the portfolio the agent chooses to compose:

c1 = ℳ · ϕ =
B1

B1
· b +

S1
u

S1
d

· s

This leads to

c1 =
b · B1 + s · S1

u

b · B1 + s · S1
d

or

c1
u = b · B1 + s · S1

u

c1
d = b · B1 + s · S1

d

The complete decision-making problem—with regard to optimal portfolio choice—of
the agent can then be represented as the following constrained optimization problem:

94 | Chapter 4: Optimality and Equilibrium

max
c1

�
P u c1

(i) w = ℳ 0 · ϕ

(ii) c1 = ℳ · ϕ

or after substituting for c1

max
ϕ
�

P u ℳ · ϕ

w = ℳ 0 · ϕ

According to the Theorem of Lagrange, one can transform this problem into an
unconstrained optimization problem of the form

max
b, s, λ

f b, s, λ = �P u b · B1 + s · S1 − λ · b · B0 + s · S0 − w

where the agent chooses b and s to maximize expected utility given the budget
constraint.

Expected Utility Theory

Decades after its formulation and introduction, expected utility
theory (EUT) is still the dominant decision-making paradigm in
finance. One of its major assumptions—that agents have full
knowledge of possible future states and their probabilities—is
hardly ever fulfilled in reality. However, EUT is, to many, intellectu‐
ally appealing and leads to “nice” results that are often easy to
understand and interpret. For more on the problems with this cen‐
tral paradigm in finance, see Hilpisch (2020, chapters 3 and 4).

Optimal Investment Portfolio
What does an optimal solution for the expected utility maximizing agent look like? In
general terms, the answer can be given based on the first-order conditions that are
necessary and sufficient here for an optimal solution:

Expected Utility | 95

∂ f
∂b = 0

∂ f
∂s = 0

∂ f
∂λ = 0

or

∂ f
∂b = p · B1 · u′ b · B1 + s · S1

u

+ 1 − p · B1 · u′ b · B1 + s · S1
d − λ · B0 = 0

and

∂ f
∂s = p · S1

u · u′ b · B1 + s · S1
u

+ 1 − p · S1
d · u′ b · B1 + s · S1

d − λ · S0 = 0

with the usual notation u′ x ≡
du
dx as well as

b · B0 + s · S0 = w

Assume logarithmic utility and for the price processes of the two traded financial
assets B = 10, 11 and S = 10, 20, 5 T , respectively. With w = 10, it holds b + s = 1
such that the portfolio positions represent percent values.

In Python, the minimize function from the scipy.optimize subpackage is also
appropriate to solve the investment problem of the agent:

In [31]: B = (10, (11, 11))

In [32]: S = (10, (20, 5))

In [33]: M0 = np.array((B[0], S[0]))

In [34]: M = np.array((B[1], S[1])).T

In [35]: p = 0.5

In [36]: P = np.array((p, 1-p))

In [37]: def U(phi):

96 | Chapter 4: Optimality and Equilibrium

 c1 = np.dot(M, phi)
 return -np.dot(P, np.log(c1))

In [38]: -U((1, 0))
Out[38]: 2.3978952727983707

In [39]: -U((0, 1))
Out[39]: 2.3025850929940455

In [40]: -U((0.5, 0.5))
Out[40]: 2.410140782802518

In [41]: w = 10

In [42]: cons = ({'type': 'eq',
 'fun': lambda phi: np.dot(M0, phi) - w})

In [43]: opt = minimize(U, (1, 1), constraints=cons)

In [44]: opt
Out[44]: fun: -2.4183062699261972
 jac: array([-1. , -0.99999])
 message: 'Optimization terminated successfully'
 nfev: 15
 nit: 5
 njev: 5
 status: 0
 success: True
 x: array([0.69442, 0.30558])

In [45]: opt['x']
Out[45]: array([0.69442, 0.30558])

In [46]: -opt['fun']
Out[46]: 2.4183062699261972

In [47]: -U(opt['x'])
Out[47]: 2.4183062699261972

In [48]: np.dot(M, opt['x'])
Out[48]: array([13.75022, 9.16652])

The bond price process and…

…the stock price process.

The price vector of the two traded financial assets.

The market payoff matrix of the two traded financial assets.

The physical probability measure for the economy.

Expected Utility | 97

The expected utility function with logarithmic utility.

Some example values for total portfolio weights of 1—diversification pays off.

The budget constraint based on the dot product of the price and portfolio
vectors.

The expected utility maximization problem as a minimization.

The optimal allocation between the bond and the stock.

The optimal expected utility value.

The state-contingent payoff from the optimal portfolio.

Time-Additive Expected Utility
It is possible to formulate the decision-making problem of the agent to include utility
from money today as well:

U :R ≥ 0 ×ℝ ≥ 0 ℝ, c0, c1 u c0 + κ · �P u c1

U :R≥0 ×ℝ≥0 ℝ, c0, c1 u c0 + κ · �P u c1
With initial wealth w, the optimization problem in unconstrained form becomes:

max
c0, b, s, λ

f c0, b, s, λ = u c0 + κ · �P u b · B1 + s · S1

− λ · c0 + b · B0 + s · S0 − w

With the assumptions from before, the optimal solution is derived with Python
according to the following code:

In [49]: M0 = np.array((1, B[0], S[0]))

In [50]: kappa = 10 / 11

In [51]: def U(phi):
 c0 = phi[0]
 c1 = np.dot(M, phi[1:])
 return -(np.log(c0) + kappa * np.dot(P, np.log(c1)))

In [52]: opt = minimize(U, (1, 1, 1), constraints=cons)

In [53]: opt

98 | Chapter 4: Optimality and Equilibrium

Out[53]: fun: -3.1799295980286093
 jac: array([-0.19088, -1.90932, -1.90974])
 message: 'Optimization terminated successfully'
 nfev: 32
 nit: 8
 njev: 8
 status: 0
 success: True
 x: array([5.23899, 0.33087, 0.14523])

In [54]: -opt['fun']
Out[54]: 3.1799295980286093

In [55]: opt['x'][0]
Out[55]: 5.23898714830318

In [56]: np.dot(M, opt['x'][1:])
Out[56]: array([6.54422, 4.36571])

The price vector including the price of 1 for consumption today.

The time preference factor.

The expected utility function taking into account consumption today and the
time preference.

This is what the agent consumes today from w.

This is the state-contingent payoff from the bond and the stock position.

Pricing in Complete Markets
In this section, the analysis is changed to a pricing setting based on optimization
principles. Assume that the two Arrow-Debreu securities are traded in the economy
with two future states and that the net supply for both is one. The two payoff vectors
form a standard basis for ℝ2, and the market payoff matrix is:

ℳ =
1 0
0 1

Assume now that there is a representative agent in the economy that is the only one
trading the two securities. In an equilibrium, the representative agent needs to hold
the net supply of both securities because there is nobody else. The mechanism that
ensures equilibrium is the prices of the two securities today, that is, the price vector:

Pricing in Complete Markets | 99

ℳ 0 = γu, γd T
∈ ℝ≥0

2

The idea of equilibrium pricing is that this price vector needs to be adjusted in a way
that the representative agent holds the net supply of all available financial assets. This
is because otherwise there would be no equilibrium.

With the investment portfolio ϕ = ϕu, ϕd T, the problem of the expected utility maxi‐
mizing, representative agent is

max
ϕ
�

P u ℳ · ϕ

s.t. ℳ 0 · ϕ = w

or

max
ϕ, λ

�
P u ℳ · ϕ − λ · ℳ 0 · ϕ − w

Due to the special market payoff matrix, this translates into

max
ϕu, ϕd

p · u ϕu + 1 − p · u ϕd

s.t. γu · ϕu + γd · ϕd = w

and

max
ϕu, ϕd, λ

f ϕu, ϕd, λ = p · u ϕu + 1 − p · u ϕd − λ · γu · ϕu + γd · ϕd − w

The three first-order conditions for the unconstrained problem are:

∂ f
∂ϕu = p · u′ ϕu − λ · γu = 0

∂ f
∂ϕd = 1 − p · u′ ϕd − λ · γd = 0

∂ f
∂λ = γu · ϕu + γd · ϕd − w = 0

What consequences for the prices ℳ 0 follow from these optimality conditions? The
first is with regard to the relative price of the two Arrow-Debreu securities:

100 | Chapter 4: Optimality and Equilibrium

γu

γd = p · u′ ϕu

1 − p · u′ ϕd

The relative price is fully determined by the probabilities for the two states to occur
and the marginal utilities gained from consumption in the two states. Factoring in
that in equilibrium ϕu = ϕd = 1 must hold, the relative price is determined by the
probability measure only:

γu

γd = p
1 − p

With this additional condition, one also obtains:

γu + γd = w

While the relative price is determined by the probability measure in this case, the
absolute prices are determined by the initial wealth available. This is intuitively
appealing in that the prices should be higher the more initial wealth there is, given
that the net supply for two securities is fixed.

Normalizing initial wealth to w = 1, for instance, fixes the prices via

γu = 1 − γd

to finally arrive at the equilibrium prices of

γu = p

γd = 1 − p

or the equilibrium price vector ℳ 0* = p, 1 − p T.

Arbitrage Pricing
What about arbitrage prices of contingent claims given the equilibrium price vector
ℳ 0*? In complete markets, in which every contingent claim is attainable, the price of
any such attainable contingent claim C1 ∈ � = ℝ≥0

2 is then given by:

C0 = ℳ 0* · C1 = γu · C1
u + γd · C1

d

Pricing in Complete Markets | 101

This is because the replication portfolio is simply the state-contingent payoff itself
ϕ = C1 in the special case of two Arrow-Debreu securities. The prices of Arrow-
Debreu securities are therefore also called state prices because they represent the price
for one unit of currency (consumption) in a certain state.

Martingale Pricing
How does the unique martingale measure look for the current economy? The condi‐
tion for the martingale measure Q is that it makes all discounted price processes of
traded financial assets a martingale. In matrix form, the conditions are:

ℳ 0* = 1
1 + i · �Q

ℳ

More explicitly, one gets:

p · 1 + i = q
1 − p · 1 + i = 1 − q

From these, i = 0 follows and also q = p. The physical probability measure makes all
probabilities already a martingale. The other way around, the prices for the two
Arrow-Debreu securities are set in equilibrium in a way such that the discounted
price processes are martingales.

Every attainable contingent claim C1 ∈ � can be priced by simply taking the expecta‐
tion under the physical probability measure in this special kind of representative
agent economy. Formally, this translates into:

C0 = �P C1

Risk-Less Interest Rate
Why is the equilibrium risk-less interest rate zero? The answer is quite simple:
because there is no risk-less financial asset traded that fixes another interest rate.
Consider a risk-less financial asset paying 1 in every state B1 = 1, 1 T. The arbitrage
price for this financial asset is

B0 = ℳ 0* · B1 = p + 1 − p = 1

implying a risk-less interest rate of i = 0. Any other price 0 < B0 < 1, implying a posi‐
tive risk-less interest rate, would also imply arbitrage opportunities.

102 | Chapter 4: Optimality and Equilibrium

A Numerical Example (I)
The equilibrium pricing analysis so far rests on a number of simplifying assumptions
allowing for elegant solutions and simple relations. Consider now a case with the
somehow more realistic numerical assumptions as used multiple times before.

Specifically, assume expected utility maximization based on logarithmic utility for the
representative agent. Assume further price processes for the risk-less bond of

B = B0, 11, 11 T

and for the risky stock of

S = S0, 20, 5 T

The market payoff matrix accordingly is:

ℳ =
11 20
11 5

The physical probability measure is given by P = p, 1 − p T with p = 1
3 . The net

supply of the risk-less bond is b = 1, and it is s = 1 for the risky stock. The initial
wealth the agent has available shall be w = 15.

The problem of the representative agent is

max
ϕ, λ

f ϕ, λ = �P u ℳ · ϕ − λ · ℳ 0 · ϕ − w

or

max
b, s, λ

f b, s, λ = �P u b · B1 + s · S1 − λ · b · B0 + s · S0 − w

The three first-order conditions are:

∂ f
∂b = �P B1 · u′ b · B1 + s · S1 − λ · B0 = 0

∂ f
∂s = �P S1 · u′ b · B1 + s · S1 − λ · S0 = 0

∂ f
∂λ = b · B0 + s · S0 − w = 0

A Numerical Example (I) | 103

The relative price for the two financial assets according to the optimality conditions—
and taking into account the net supply of one for both financial assets as well as the
logarithmic utility—is:

S0
B0

=
�

P S1 · u′ b · B1 + s · S1

�
P B1 · u′ b · B1 + s · S1

=
�

P S1
B1 + S1

�
P B1

B1 + S1

≡ ζ

Adding the budget constraint to the mix fixes not only the relative price ζ but also the
absolute price levels:

B0 + ζ · B0 = w B0 = w
1 + ζ

In Python, these considerations translate into simple vectorized operations using
NumPy:

In [57]: p = 1 / 3

In [58]: P = np.array((p, (1-p)))

In [59]: B1 = np.array((11, 11))

In [60]: S1 = np.array((20, 5))

In [61]: zeta = np.dot(S1 / (B1 + S1), P) / np.dot(B1 / (B1 + S1), P)

In [62]: zeta
Out[62]: 0.7342657342657343

In [63]: w = 15

In [64]: B0 = w / (1 + zeta)

In [65]: B0
Out[65]: 8.649193548387098

In [66]: S0 = zeta * B0

In [67]: S0
Out[67]: 6.350806451612904

In [68]: B0 + S0

104 | Chapter 4: Optimality and Equilibrium

Out[68]: 15.000000000000002

In [69]: i = B1.mean() / B0 - 1

In [70]: i
Out[70]: 0.2717948717948717

In [71]: mu = np.dot(S1, P) / S0 - 1

In [72]: mu
Out[72]: 0.5746031746031743

The probability measure.

The price ratio zeta given optimality conditions.

The initial wealth.

The equilibrium price level of the risk-less bond given the price ratio zeta and
initial wealth w.

The resulting equilibrium price level of the risky stock.

The budget constraint is binding.

The equilibrium interest rate given the price level for the risk-less bond.

The equilibrium expected rate of return of the risky stock.

Equilibrium pricing does not lead in this case to the discounted price processes being
martingales under the physical probability measure. The martingale measure is easily
derived, however. The analysis uses the SymPy package for symbolic computations
with Python:

In [73]: import sympy as sy

In [74]: q = sy.Symbol('q')

In [75]: eq = (q * 20 + (1 - q) * 5) / (1 + i) - S0

In [76]: eq
Out[76]: 11.7943548387097*q - 2.41935483870968

In [77]: q = sy.solve(eq)[0]

In [78]: q
Out[78]: 0.205128205128205

In [79]: Q = np.array((q, 1 - q))

A Numerical Example (I) | 105

http://sympy.org

In [80]: np.dot(B1, Q) / (1 + i)
Out[80]: 8.64919354838710

In [81]: np.dot(S1, Q) / (1 + i)
Out[81]: 6.35080645161290

Imports the symbolic computation package SymPy.

Defining the symbol q.

Formulating the equation for q given the martingale condition.

The equation simplified.

This solves the equation numerically.

The resulting martingale measure.

Both discounted price processes are martingales under Q.

Pricing in Incomplete Markets
How does representative agent pricing work in incomplete markets? The answer fortu‐
nately is: exactly the same way as in complete markets.

Assume the two date, three-state economy in which a risk-less bond with price process

B = B0, 11, 11, 11 T

and a risky stock with price process

S = S0, 20, 10, 5 T

are traded. The physical probability measure is P = p, p, p T, with p = 1
3 . Everything

else shall be as in the previous section.

Formally, the optimization problem of the representative agent does not change:

max
b, s, λ

f b, s, λ = �P u b · B1 + s · S1 − λ · b · B0 + s · S0 − w

Nor does the formula for the relative price change:

106 | Chapter 4: Optimality and Equilibrium

S0
B0

=
�

P S1
B1 + S1

�
P B1

B1 + S1

≡ ζ

In Python, only the future price vectors of the financial assets and the vector repre‐
senting the probability measure need to be adjusted:

In [82]: p = 1 / 3

In [83]: P = np.array((p, p, p))

In [84]: B1 = np.array((11, 11, 11))

In [85]: S1 = np.array((20, 10, 5))

In [86]: zeta = np.dot(S1 / (B1 + S1), P) / np.dot(B1 / (B1 + S1), P)

In [87]: zeta
Out[87]: 0.9155274934101636

In [88]: w = 15

In [89]: B0 = w / (1 + zeta)

In [90]: B0
Out[90]: 7.8307411674347165

In [91]: S0 = zeta * B0

In [92]: S0
Out[92]: 7.169258832565284

In [93]: B0 + S0
Out[93]: 15.0

In [94]: i = B1.mean() / B0 - 1

In [95]: i
Out[95]: 0.40472016183411985

In [96]: mu = np.dot(S1, P) / S0 - 1

In [97]: mu
Out[97]: 0.6273183796451287

The probability measure.

The relative price zeta given optimality conditions.

Pricing in Incomplete Markets | 107

The initial wealth.

The equilibrium price level of the risk-less bond given the price ratio zeta and
initial wealth w.

The resulting equilibrium price level of the risky stock.

The budget constraint is binding.

The equilibrium interest rate given the price level for the risk-less bond.

The equilibrium expected rate of return of the risky stock.

Representative Agent Pricing

The pricing of securities based on the optimization calculus of a
representative agent is one approach that applies to both complete
and incomplete markets. Instead of adjusting markets—for exam‐
ple, via market completion based on additional securities—addi‐
tional assumptions are made with regard to the representative
agent. For example, the initial wealth of the agent is required to
arrive at specific, absolute prices for the securities instead of only
relative prices.

Martingale Measures
Although representative agent pricing works in incomplete markets the same way as
in complete ones, it unfortunately does not directly solve the problem of pricing con‐
tingent claims that are not attainable. There are still infinitely many martingale meas‐
ures that are consistent with the market.

The Python code that follows shows that there are infinitely many martingale meas‐
ures that are consistent with the equilibrium price processes as derived in the previ‐
ous section:

In [98]: qu = sy.Symbol('qu')
 qm = sy.Symbol('qm')

In [99]: eq = (qu * 20 + qm * 10 + (1 - qu - qm) * 5) / (1 + i) - S0

In [100]: eq
Out[100]: 3.55942780337942*qm + 10.6782834101383*qu - 3.60983102918587

In [101]: Q = sy.solve(eq, set=True)

In [102]: Q
Out[102]: ([qm], {(1.01416048550236 - 3.00000000000001*qu,)})

108 | Chapter 4: Optimality and Equilibrium

Defining the symbols qu and qm.

Formulating the equation for qu and qm given the martingale condition.

The equation simplified.

This solves the equation numerically, providing a set of solutions as the result;
this does not take into account the conditions 0 ≤ qu, qd ≤ 1.

The relationship between qu and qm as the solution—indicating infinitely many
solutions.

Martingale Measure in Incomplete Markets

Martingale pricing is a convenient and elegant approach in com‐
plete markets to value contingent claims. In incomplete markets,
there are in general infinitely many martingale measures that are
consistent with the market. In practice, one often solves this issue
by relying on publicly observed market prices for liquidly trading
contingent claims, such as plain vanilla European put or call
options. These prices are used to calibrate model parameters or the
martingale measure directly to be consistent with the market. For
more background information and details about model calibration,
see Hilpisch (2015).

Equilibrium Pricing
What about pricing contingent claims? If they are attainable through replication
portfolios composed of traded financial assets, their price can be fixed by the usual
arbitrage argument. What if a contingent claim is not attainable? In the simple incom‐
plete market setting currently under investigation, this can only mean that the payoff
vector is linearly independent of the two future price vectors of the traded financial
assets. This in turn implies that the introduction of a contingent claim with such a
payoff vector is market completing—because three linearly independent vectors form
in any case a basis of ℝ3.

Consider the market payoff matrix from the first two Arrow-Debreu securities, each
available at a net supply of one:

ℳ =
1 0
0 1
0 0

Pricing in Incomplete Markets | 109

This market is obviously incomplete because the two securities do not span ℝ3. Intro‐
ducing a contingent claim with net supply of one that pays one unit of currency in the
d state—that is, a contingent claim that pays exactly what the third Arrow-Debreu
security would pay—completes the market as seen by the resulting payoff matrix:

ℳ =
1 0 0
0 1 0
0 0 1

The three payoff vectors now form a standard basis of the ℝ3.

Formally, the optimization problem of the representative agent is the same as before:

max
ϕ
�

P u ℳ · ϕ

s.t. ℳ 0 · ϕ = w

Here, ℳ 0 = γu, γm, γd T as the state price vector and ϕ = 1, 1, 1 T as the market
portfolio.

In explicit form, the unconstrained optimization problem according to the Theorem
of Lagrange is:

max
ϕu, ϕm, ϕd, λ

f ϕu, ϕm, ϕd, λ = pu · u ϕu + pm · u ϕm + pd · u ϕd

− λ · γu · ϕu + γm · ϕm + γd · ϕd − w

The four first-order conditions for the unconstrained problem are:

∂ f
∂ϕu = pu · u′ ϕu − λ · γu = 0

∂ f
∂ϕm = pm · u′ ϕm − λ · γm = 0

∂ f
∂ϕd = pd · u′ ϕd − λ · γd = 0

∂ f
∂λ = γu · ϕu + γm · ϕm + γd · ϕd − w = 0

110 | Chapter 4: Optimality and Equilibrium

For the relative prices, one gets:

γu

γm = pu · u′ ϕu

pm · u′ ϕm

γu

γd = pu · u′ ϕu

pd · u′ ϕd

Through these, the third relative price is fixed as well. With logarithmic utility and an
initial wealth fixed at w = 1, one finally arrives in this special case at:

γu = pu

γm = pm

γd = pd

The equilibrium price vector is ℳ 0* = pu, pm, pd T, which equals the vector repre‐
senting the probability measure. This in turn implies that all discounted price pro‐
cesses are martingales under the physical probability measure.

A Numerical Example (II)
Getting back to the numerical example from before: assume expected utility maximi‐
zation based on logarithmic utility for the representative agent. Assume further price
processes for the risk-less bond of

B = B0, 11, 11, 11 T

and for the risky stock of

S = S0, 20, 10, 5 T

The market payoff matrix is:

ℳ =
11 20
11 10
11 5

A Numerical Example (II) | 111

The physical probability measure is given by P = p, p, p T, with p = 1
3 . The net sup‐

ply of the risk-less bond is b = 1, and it is s = 1 for the risky stock. The initial wealth
the agent has available shall be w = 15.

A contingent claim is introduced with payoff C1 = 5, 0, 0 T and a net supply of c = 1.

Consequently, the problem of the representative agent is:

max
ϕ, λ

f ϕ, λ = �P u ℳ · ϕ − λ · ℳ 0 · ϕ − w

or

max
b, s, c, λ

f b, s, λ = �P u b · B1 + s · S1 + c · C1 − λ · b · B0 + s · S0 + c · C0 − w

The four first-order conditions are:

∂ f
∂b = �P B1 · u′ b · B1 + s · S1 + c · C1 − λ · B0 = 0

∂ f
∂s = �P S1 · u′ b · B1 + s · S1 + c · C1 − λ · S0 = 0

∂ f
∂c = �P C1 · u′ b · B1 + s · S1 + c · C1 − λ · C0 = 0

∂ f
∂λ = b · B0 + s · S0 + c · C0 − w = 0

The relative prices for the three financial assets are fixed through:

S0
B0

=
�

P S1
B1 + S1 + C1

�
P B1

B1 + S1 + C1

≡ ζ1

C0
B0

=
�

P C1
B1 + S1 + C1

�
P B1

B1 + S1 + C1

≡ ζ2

Adding the budget constraint to the mix fixes not only the relative prices ζ1 and ζ2 but
also the absolute price levels:

112 | Chapter 4: Optimality and Equilibrium

B0 + ζ1 · B0 + ζ2 · B0 = w B0 = w
1 + ζ1 + ζ2

The adjustments to the Python code are only minor compared to the complete mar‐
kets case:

In [103]: p = 1 / 3

In [104]: P = np.array((p, p, p))

In [105]: B1 = np.array((11, 11, 11))

In [106]: S1 = np.array((20, 10, 5))

In [107]: C1 = np.array((5, 0, 0))

In [108]: zeta_1 = (np.dot(S1 / (B1 + S1 + C1), P) /
 np.dot(B1 / (B1 + S1 + C1), P))

In [109]: zeta_1
Out[109]: 0.8862001308044474

In [110]: zeta_2 = (np.dot(C1 / (B1 + S1 + C1), P) /
 np.dot(B1 / (B1 + S1 + C1), P))

In [111]: zeta_2
Out[111]: 0.09156311314584695

In [112]: w = 15

In [113]: B0 = w / (1 + zeta_1 + zeta_2)

In [114]: B0
Out[114]: 7.584325396825396

In [115]: S0 = zeta_1 * B0

In [116]: S0
Out[116]: 6.721230158730158

In [117]: C0 = zeta_2 * B0

In [118]: C0
Out[118]: 0.6944444444444443

In [119]: B0 + S0 + C0
Out[119]: 14.999999999999998

In [120]: i = B1.mean() / B0 - 1

In [121]: i

A Numerical Example (II) | 113

Out[121]: 0.45035971223021587

In [122]: muS = np.dot(S1, P) / S0 - 1

In [123]: muS
Out[123]: 0.7357933579335794

In [124]: muC = np.dot(C1, P) / C0 - 1

In [125]: muC
Out[125]: 1.4000000000000004

The probability measure.

The payoff vectors.

The first relative price.

The second relative price.

The initial wealth…

…and the resulting price for the risk-less bond.

The equilibrium price for the risky stock.

The equilibrium price for the contingent claim.

The budget constraint is binding.

The risk-less interest rate.

The equilibrium expected rate of return for the risky stock.

The equilibrium expected rate of return for the contingent claim.

That the introduction of the contingent claim—as a third traded financial asset—is
market completing can be seen by the fact that there is now a unique martingale
measure:

In [126]: M = np.array((B1, S1, C1)).T

In [127]: M
Out[127]: array([[11, 20, 5],
 [11, 10, 0],
 [11, 5, 0]])

In [128]: M0 = np.array((B0, S0, C0))

114 | Chapter 4: Optimality and Equilibrium

In [129]: Q = np.linalg.solve(M.T / (1 + i), M0)

In [130]: Q
Out[130]: array([0.20144, 0.34532, 0.45324])

In [131]: sum(Q)
Out[131]: 1.0

In [132]: np.allclose(np.dot(M.T, Q), M0 * (1 + i))
Out[132]: True

The new market payoff matrix including the contingent claim.

The vector with the prices of the three financial assets/contingent claims.

This solves for the vector Q representing the martingale measure Q (note the use
of the transpose operator .T).

The solution vector whose components add up to 1.

A final check whether all discounted price processes are indeed martingales.

Conclusions
This chapter is concerned with the modeling of agents and their optimization prob‐
lems, mainly on the basis of the expected utility maximization approach. Two central
topics are discussed: optimal portfolio choice and equilibrium pricing of financial assets
and contingent claims in complete and incomplete markets. While in the first case the
prices are given and the quantities in the investment portfolio are chosen, in the latter
case the quantities to be held in the investment portfolio are fixed, and the prices are
adjusted for this to be optimal for the representative agent. Python proves once again
a powerful ecosystem with helpful packages to model and solve the related optimiza‐
tion problems.

Although the model economies in this and the previous two chapters are admittedly
simplistic, the techniques and methods introduced carry over to general static model
economies, that is, those having many more—even countably infinite—different
future states (instead of two or three only). With some additional formalism, they
even carry over to dynamic economies with many—potentially countably infinite—
relevant points in time (instead of just two).

Conclusions | 115

Further Resources
Books cited in this chapter:

Duffie, Darrell. 1988. Security Markets—Stochastic Models. San Diego: Academic
Press.

Eichberger, Jürgen and Ian Harper. 1997. Financial Economics. New York: Oxford
University Press.

Hilpisch, Yves. 2020. Artificial Intelligence in Finance. Sebastopol: O’Reilly.
Hilpisch, Yves. 2015. Derivatives Analytics with Python. Wiley Finance.
Markowitz, Harry. 1959. Portfolio Selection—Efficient Diversification of Investments.

New York: John Wiley & Sons.
Milne, Frank. 1995. Finance Theory and Asset Pricing. New York: Oxford University

Press.
Sundaram, Rangarajan. 1996. A First Course in Optimization Theory. Cambridge Uni‐

versity Press, Cambridge.
Varian, Hal. 1992. Microeconomic Analysis. 3rd ed. New York and London: W.W. Nor‐

ton & Company.

116 | Chapter 4: Optimality and Equilibrium

CHAPTER 5

Static Economy

A securities market model is viable if and only if there exists at least one equivalent
martingale measure for it.

—Harrison and Kreps (1979)

The central piece of the theory relating the no-arbitrage arguments with martingale
theory is the so-called Fundamental Theorem of Asset Pricing.

—Delbaen and Schachermayer (2006)

This chapter introduces more formalism to model a general static economy. Such an
economy is characterized by an arbitrarily large, but still finite, state space. As before,
the general static economy is analyzed at two relevant points in time only, for exam‐
ple, today and one year from now. Therefore, this chapter introduces one major gen‐
eralization—namely with regard to the state space. The next chapter then generalizes
the model economy further with regard to the number of relevant points in time.
This enables one to also model dynamics.

The chapter makes use, as before, of linear algebra and probability theoretical con‐
cepts. Books that cover these topics well for the purposes of this chapter are Ale‐
skerov et al. (2011) for linear algebra and Jacod and Protter (2004) for probability
theory. A gentle introduction to general static economies and their analysis is found
in Milne (1995). Pliska (1997) is a good introductory textbook on the topic that is
both accessible and rigorous. Duffie (1988) is an advanced text that covers general
static economies in greater detail, providing all the necessary tools from linear alge‐
bra and probability in a self-contained fashion.

Topics covered in this chapter are general discrete probability spaces, financial assets
and contingent claims, market completeness, the two Fundamental Theorems of
Asset Pricing, replication and arbitrage pricing, Black-Scholes-Merton (1973) and
Merton (1976) option pricing, and representative agent pricing with Arrow-Debreu

117

securities. The following table gives an overview of the topics in finance, mathemat‐
ics, and Python found in this chapter:

Finance Mathematics Python
Uncertainty State space, algebra, probability

measure, probability space
NumPy, ndarray, rng.normal

Financial asset, contingent
claim

Random variable, expectation rng, mean(), np.dot

Market payoff matrix Matrix ndarray, mean(), std()

Replication, arbitrage pricing Solving systems of linear equations,
dot product

np.maximum, np.linalg.solve, np.dot

Market completeness Rank, span, vector space ndarray, np.dot,
np.linalg.matrix_rank

Martingale measure Probability measure ndarray, scipy.optimize.minimize

Black-Scholes-Merton model
(1973)

Geometric Brownian motion, normal
distribution, Monte Carlo simulation,
replication

rng.standard_normal,
np.linalg.lstsq

Merton (1976) model, log-
normal jumps

Jump diffusion, Poisson distribution rng.poisson, np.linalg.lstsq

The major goal of this chapter is generalization. Almost all of the concepts and
notions presented in this chapter have been introduced in the previous chapters. The
enlargement of the state space makes the introduction of a bit more formalism neces‐
sary. However, on the Python side, the code is still as concise as experienced before.
The benefits of this generalization should be clear. It is simply not realistic to model
the possible future share price of, say, the Apple stock with two or three states only. It
is much more realistic to assume that the share price can take on a value out of a pos‐
sible 100, 500, or even more values. This is an important step toward a more realistic
financial model.

Uncertainty
Consider an economy with a general, discrete state space Ω with a finite number of
elements Ω < ∞. An algebra ℱ in Ω is a family of sets for which the following state‐
ments hold true:

1. Ω ∈ ℱ

2. � ∈ ℱ �c ∈ ℱ

3. �1,�2, . . . ,�I ∈ ℱ ∪i = 1
I �i ∈ ℱ

�c denotes the complement of a set �. The power set ℘ Ω is the largest algebra,
while the set ℱ = ∅, Ω is the smallest algebra in Ω. An algebra is a model for

118 | Chapter 5: Static Economy

observable events in an economy. In this context, a single state of the economy ω ∈ Ω
can be interpreted as an atomic event.

A probability assigns a real number 0 ≤ pω ≡ P ω ≤ 1 to a state ω ∈ Ω or a real
number 0 ≤ P � ≤ 1 to an event � ∈ ℱ . If the probabilities for all states are known,
one has P � = ∑ω ∈ � pω.

A probability measure P:ℱ 0, 1 is characterized by the following characteristics:

1. ∀� ∈ ℱ :P � ≥ 0

2. P ∪i = 1
I �i = ∑i = 1

I �i for disjoint sets �i ∈ ℱ

3. P Ω = 1

Together the three elements Ω,ℱ , P form a probability space. A probability space is
the formal representation of uncertainty in the model economy.

Random Variables
Given a probability space Ω,ℱ , P , a random variable is a ℱ −measurable function:

S:Ω ℝ≥0, ω S ω

ℱ −measurability implies that for each � ∈ a, b :a, b ∈ ℝ, a < b , one has:

S−1 � ≡ ω ∈ Ω:S ω ∈ � ∈ ℱ

If ℱ ≡ ℘ Ω , the expectation of a random variable is defined by:

�
P S = ∑

ω ∈ Ω
P ω · S ω

Otherwise, it holds:

�
P S = ∑

� ∈ ℱ
P � · S �

Uncertainty | 119

Numerical Examples
To make a concrete example, assume a state space of Ω = ω1, ω2, ω3, ω4 . Further‐
more, assume that an algebra with ℱ = ∅, ω1, ω2 , ω3, ω4 , Ω is given. It is easily
verified that this set satisfies the three characteristics of an algebra in Ω. The probabil‐
ity measure shall be defined by P ω1, ω2 = P ω3, ω4 = 1

2 . Again, it is easy to see
that P is indeed a probability measure on ℱ under these assumptions.

Consider now a function T with T ω1 = 1, T ω2 = 2, T ω3 = 3, and T ω4 = 4. This
function is not a random variable defined on the probability space since the algebra
ℱ does not distinguish, for example, between ω1 and ω2—they are subsumed by the
set ω1, ω2 . One could say that the algebra is “not granular” enough.

Consider another function S with S ω1 = 20, S ω2 = 20, S ω3 = 5, and S ω4 = 5.
This is now a random variable defined on the probability space with an expectation
of:

�
P S = ∑

� ∈ ℱ
P � · S � = 1

2 · 20 + 1
2 · 5 = 12 . 5

In general, however, it will be assumed that ℱ ≡ ℘ Ω , with P accordingly defined
such that the function (random variable) T, for example, also is ℱ −measurable with
the expectation properly defined.

With Python, it is efficient to illustrate cases in which Ω is much larger. The following
Python code assumes equal probability for all possible states:

In [1]: import numpy as np
 from numpy.random import default_rng
 np.set_printoptions(precision=5, suppress=True)

In [2]: rng = default_rng(100)

In [3]: I = 1000

In [4]: S = rng.normal(loc=100, scale=20, size=I)

In [5]: S[:14]
Out[5]: array([76.84901, 105.79512, 115.61708, 110.87947, 80.77235, 121.42017,
 114.02911, 114.09947, 114.90125, 122.08694, 144.85945, 87.77014,
 100.94422, 135.08469])

In [6]: S.mean()
Out[6]: 100.88376804485935

120 | Chapter 5: Static Economy

Fixes the seed value for the NumPy random number generator for reproducibility
of the results.

Fixes the number of states in the state space (for the simulations to follow).

Draws I normally distributed (pseudo-)random numbers with mean loc and
standard deviation scale.

Calculates the expectation (mean value) assuming an equal probability for every
simulated value (state).

Any other probability measure can, of course, also be chosen:

In [7]: P = rng.random(I)

In [8]: P[:10]
Out[8]: array([0.34914, 0.33408, 0.41319, 0.06102, 0.6339 , 0.51285, 0.51177,
 0.92149, 0.72853, 0.58985])

In [9]: P /= P.sum()

In [10]: P.sum()
Out[10]: 1.0

In [11]: P[:10]
Out[11]: array([0.00072, 0.00069, 0.00085, 0.00013, 0.00131, 0.00106, 0.00106,
 0.0019 , 0.0015 , 0.00122])

In [12]: np.dot(P, S)
Out[12]: 100.71981640185018

Draws uniformly distributed random numbers between 0 and 1.

Normalizes the values in the ndarray object to sum up to 1.

The resulting weights according to the random probability measure.

The expectation as the dot product of the probability vector and the vector repre‐
senting the random variable.

Uncertainty | 121

Mathematical Techniques

In addition to linear algebra, traditional probability theory plays a
central role in discrete finance. It allows us to capture and analyze
uncertainty and, more specifically, risk in a systematic, well-
established way. When moving from discrete finance models to
continuous ones, more advanced approaches, such as stochastic
calculus, are required. For discrete finance models, standard linear
algebra and probability theory prove powerful enough in most
cases. For more details on discrete finance, refer to Pliska (1997).

Financial Assets
Consider an economy at two different dates t ∈ 0, 1 , today and one year from now
(or any other time period in the future to this end). Assume that a probability space
Ω,ℱ ≡ ℘ Ω , P is given that represents uncertainty about the future in the model

economy, with Ω ≡ I possible future states. In this case, Ω = ω1, ω2, . . . , ωI .

A traded financial asset is represented by a price process S = S0, S1 , where the price
today is fixed S0 ∈ ℝ>0, and the price in one year, S1:Ω ℝ≥0, is a random variable
that is ℱ −measurable. Formally, the future price vector of a traded financial asset is a
vector with I elements:

S1 =

S1 ω1

S1 ω2

. . .
S1 ωI

If there are multiple financial assets traded, say K > 1, they are represented by multi‐
ple price processes, Sk = S0

k, S1
k , k = 1, 2, . . . , K. The market payoff matrix is then

composed of the future price vectors of the traded financial assets:

ℳ =

S1
1 ω1 S1

2 ω1 . . . S1
K ω1

S1
1 ω2 S1

2 ω2 . . . S1
K ω2

.

S1
1 ω3 S1

2 ω3 . . . S1
K ω3

Denote the set of traded financial assets by � ≡ S1, S2, . . . , SK . The static model
economy can then be summarized by

122 | Chapter 5: Static Economy

ℰ = Ω,ℱ , P ,�

where it is usually assumed that ℱ ≡ ℘ Ω .

Fixing the number of possible future states to five Ω = ω1, . . . , ω5 with equal prob‐
ability ∀ω ∈ Ω:P ω = 1

5 and the number of traded financial assets to five as well, a
numerical example in Python illustrates such a static model economy:

In [13]: M = np.array((
 (11, 25, 0, 0, 25),
 (11, 20, 30, 15, 25),
 (11, 10, 0, 20, 10),
 (11, 5, 30, 15, 0),
 (11, 0, 0, 0, 0)
))

In [14]: M0 = np.array(5 * [10.])

In [15]: M0
Out[15]: array([10., 10., 10., 10., 10.])

In [16]: M.mean(axis=0)
Out[16]: array([11., 12., 12., 10., 12.])

In [17]: mu = M.mean(axis=0) / M0 - 1

In [18]: mu
Out[18]: array([0.1, 0.2, 0.2, 0. , 0.2])

In [19]: (M / M0 - 1)
Out[19]: array([[0.1, 1.5, -1. , -1. , 1.5],
 [0.1, 1. , 2. , 0.5, 1.5],
 [0.1, 0. , -1. , 1. , 0.],
 [0.1, -0.5, 2. , 0.5, -1.],
 [0.1, -1. , -1. , -1. , -1.]])

In [20]: sigma = (M / M0 - 1).std(axis=0)

In [21]: sigma
Out[21]: array([0. , 0.92736, 1.46969, 0.83666, 1.1225])

The assumed market payoff matrix where the columns represent the future,
uncertain price vectors of the traded financial assets.

The current price vector for the five assets, for each of which the price is fixed to
10.

This calculates the expected (or average) future price for every traded financial
asset.

Financial Assets | 123

This in turn calculates the expected (or average) rates of return.

The rates of return matrix calculated and printed out.

The standard deviation of the rates of return or volatility calculated for every tra‐
ded financial asset—the first one is risk-less; it can be considered to be a bond.

Contingent Claims
Given a model economy ℰ , a contingent claim is characterized by a price process
C = C0, C1 , where C1 is an ℱ −measurable random variable.

One can think of European call and put options as canonical examples of contingent
claims. The payoff of a European call option might, for instance, be defined relative to
the second traded financial asset according to C1 = max S1

2 − K, 0 , where K ∈ ℝ≥0
is the strike price of the option. Since the payoff of the option is “derived” from
another asset, one therefore often speaks of derivative instruments, or derivatives for
short.

If a contingent claim can be replicated by a portfolio ϕ ∈ ℝK of the traded financial
assets �

ℳ · ϕ = C1

then the arbitrage price of the contingent claim is

ℳ 0 · ϕ = C0

where ℳ 0 = S0
1, S0

2, . . . , S0
K T

∈ ℝ>0
I is the current price vector of the traded financial

assets.

Continuing the Python example from before, replication of contingent claims based
on linear algebra methods is illustrated in the following:

In [22]: K = 15

In [23]: M[:, 1]
Out[23]: array([25, 20, 10, 5, 0])

In [24]: C1 = np.maximum(M[:, 1] - K, 0)

In [25]: C1
Out[25]: array([10, 5, 0, 0, 0])

124 | Chapter 5: Static Economy

In [26]: phi = np.linalg.solve(M, C1)

In [27]: phi
Out[27]: array([0., 0.5, 0.01667, -0.2, -0.1])

In [28]: np.allclose(C1, np.dot(M, phi))
Out[28]: True

In [29]: C0 = np.dot(M0, phi)

In [30]: C0
Out[30]: 2.1666666666666665

The strike price of the European call option, and the payoff vector of the relevant
financial asset.

The call option is written on the second traded financial asset with future payoff
of S1

2 = 25, 20, 10, 5, 0 .

This solves the replication problem given the market payoff matrix.

Checks whether the replication portfolio indeed replicates the future payoff of
the European call option.

From the replication portfolio, the arbitrage price follows in combination with
the current price vector of the traded financial assets.

Market Completeness
Market completeness of the static model economy can be analyzed based on the rank
of the market payoff matrix ℳ as defined by the traded financial assets � . The rank
of a matrix equals the number of linearly independent (column) vectors (see Ale‐
skerov et al. (2011), section 2.7). Consider the column vectors that represent the
future price vectors of the traded financial assets. They are linearly independent if

ℳ · ϕ = 0

has only one solution, namely the null vector ϕ = 0, 0, . . . , 0 T ∈ ℝK.

On the other hand, the span of the market payoff matrix ℳ is given by all linear
combinations of the column vectors:

span ℳ = ϕ ∈ ℝK :ℳ · ϕ

Market Completeness | 125

The model economy ℰ is complete if the set of attainable contingent claims satisfies
� = ℝI. However, the set of attainable contingent claims equals by definition the span
of the traded financial assets � ≡ span ℳ . The model economy ℰ therefore is
complete if:

span ℳ = ℝI

Under which circumstances is this the case? It is the case if the rank of the matrix is at
least as large as the number of future states possible:

rank ℳ ≥ I

In other words, the column vectors of ℳ form a basis of the vector space ℝI (with
potentially more basis vectors than required). A vector space � is a set of elements
(called vectors) that is characterized by:

1. An addition function mapping two vectors v1, v2 ∈ � to another element of the
vector space v1 + v2 ∈ �.

2. A scalar multiplication function mapping a scalar α ∈ ℝ and a vector v ∈ � to
another element of the vector space α · v ∈ �.

3. A special element—usually called “zero” or “neutral element”—0 ∈ � such that
v + 0 = v.

It is easy to verify that, for example, the sets ℝ,ℝ5, or ℝI, I ∈ ℕ>0 are vector spaces.

Consequently, the model economy is incomplete if:

rank ℳ < I

To make things a bit more concrete, consider a state space with three possible future
states only, Ω = ω1, ω2, ω3 . All random variables, then, are vectors in the vector
space ℝ3. The following market payoff matrix—resulting from three traded financial
assets—has a rank of 2 only because two-column vectors are linearly dependent. This
leads to an incomplete market:

ℳ =
11 20 10
11 10 5
11 5 2 . 5

rank ℳ = 2

126 | Chapter 5: Static Economy

It is easily verified that the financial assets 2 and 3 are indeed linearly dependent:

S1
2 =

20
10
5

= 2 ·
10
5

2 . 5
= 2 · S1

3

By contrast, the market payoff matrix that follows—resulting from a different set of
three traded financial assets—has a rank of 3, leading to a complete market. In such a
case, one also speaks of the matrix having full rank:

ℳ =
11 20 10
11 10 25
11 5 10

rank ℳ = 3

Assume next that a probability space is fixed for which the state space has five ele‐
ments, Ω = ω1, . . . , ω5 . The future (uncertain) price and payoff vectors of the five
traded financial assets � and all contingent claims, respectively, are now elements of
the vector space ℝ5. The Python code that follows analyzes contingent claim replica‐
tion based on such a model economy ℰ . It starts by assuming that all five Arrow-
Debreu securities are traded and then proceeds to a randomized market payoff
matrix:

In [31]: M = np.eye(5)

In [32]: M
Out[32]: array([[1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.]])

In [33]: np.linalg.linalg.matrix_rank(M)
Out[33]: 5

In [34]: C1 = np.arange(10, 0, -2)

In [35]: C1
Out[35]: array([10, 8, 6, 4, 2])

In [36]: np.linalg.solve(M, C1)
Out[36]: array([10., 8., 6., 4., 2.])

Market Completeness | 127

Creates a two-dimensional ndarray object, here an identity matrix. It can be
interpreted as the market payoff matrix resulting from five traded Arrow-Debreu
securities. It forms a so-called canonical basis of the vector space ℝ5.

Calculates the rank of the matrix, which is also trivial to see for the identity
matrix.

A contingent claim payoff that is to be replicated by the traded financial assets.

This solves the replication (representation) problem, which is again trivial in the
case of the identity matrix.

Next, a randomized market payoff matrix is generated, which happens to be of full
rank as well (no guarantees here in general):

In [37]: rng = default_rng(100)

In [38]: M = rng.integers(1, 10, (5, 5))

In [39]: M
Out[39]: array([[7, 8, 2, 6, 1],
 [3, 4, 1, 6, 9],
 [9, 6, 4, 8, 9],
 [9, 1, 7, 7, 2],
 [5, 9, 7, 3, 3]])

In [40]: np.linalg.matrix_rank(M)
Out[40]: 5

In [41]: np.linalg.matrix_rank(M.T)
Out[41]: 5

In [42]: phi = np.linalg.solve(M, C1)

In [43]: phi
Out[43]: array([-1.16988, 0.52471, -0.3861 , 2.56409, -0.62085])

In [44]: np.dot(M, phi)
Out[44]: array([10., 8., 6., 4., 2.])

Fixes the seed for the NumPy random number generator, which allows for repro‐
ducibility of the results.

Creates a randomized market payoff matrix (ndarray object with shape (5, 5)
populated by random integers between 1 and 10).

128 | Chapter 5: Static Economy

1 The notation is changed here from i to r to emphasize that the short rate is meant from now on.

The matrix has full rank—both the column and row vectors are linearly
independent.

The nontrivial solution to the replication problem with the randomized basis for
the vector space ℝ5.

Checks the solution for achieving perfect replication.

Fundamental Theorems of Asset Pricing
Consider the general static model economy ℰ = Ω,ℱ , P ,� , with I possible states
and K traded financial assets. Assume that the risk-less short rate for lending and
borrowing in the economy is r ∈ ℝ≥0.1

An arbitrage opportunity is a portfolio ϕ ∈ ℝK of the traded financial assets � such
that the price of the portfolio is zero

S0 · ϕ = ∑
k = 1

K
S0

k · ϕk = 0

and the expected payoff is greater than zero:

�
P
ℳ · ϕ > 0

Denote the set of all arbitrage opportunities by:

� ≡ ϕ ∈ ℝK :S0 · ϕ = 0,�P
ℳ · ϕ > 0

A martingale measure Q for the model economy makes the discounted price pro‐
cesses martingales and therefore satisfies the following condition:

1
1 + r · �Q

ℳ = S0

With these definitions, the First Fundamental Theorem of Asset Pricing (see also Chap‐
ter 2), which relates the existence of a martingale measure to the absence of arbitrage
opportunities, can be formulated. For a discussion and proof, refer to Pliska (1997,
section 1.3).

Fundamental Theorems of Asset Pricing | 129

First Fundamental Theorem of Asset Pricing (1FTAP)
The following statements are equivalent:

1. A martingale measure Q exists.
2. The economy is arbitrage-free, it holds � = ∅.

The derivation of a martingale measure is formally the same as the solution of a repli‐
cation problem for a contingent claim C = C0, C1 , which reads

ℳ · ϕ = C1

and where the replication portfolio ϕ needs to be determined. Mathematically, this is
equivalent to solving a system of linear equations, as illustrated in Chapter 2. Finding
a martingale measure can be written as

1
1 + r · �Q

ℳ = 1
1 + rℳ

T · Q = ℳ · Q = S0

where ℳ ≡
1

1 + rℳ
T and where

Q =

Q ω1

Q ω2

. . .
Q ωI

, ∀ω ∈ Ω: 0 ≤ Q ω ≤ 1, ∑
ω ∈ Ω

Q ω = 1

This problem can be considered the dual problem to the replication problem—albeit
under some restrictive constraints. The constraints, resulting from the requirement
that the solution be a probability measure, make a different technical approach in
Python necessary. The problem of finding a martingale measure can be modeled as a
constrained minimization problem—instead of just solving a system of linear equa‐
tion. The example assumes a state space with five elements and the market payoff
structure from before:

In [45]: import scipy.optimize as sco

In [46]: M = np.array((
 (11, 25, 0, 0, 25),
 (11, 20, 30, 15, 25),
 (11, 10, 0, 20, 10),
 (11, 5, 30, 15, 0),
 (11, 0, 0, 0, 0)
))

130 | Chapter 5: Static Economy

In [47]: np.linalg.matrix_rank(M)
Out[47]: 5

In [48]: M0 = np.ones(5) * 10

In [49]: M0
Out[49]: array([10., 10., 10., 10., 10.])

In [50]: r = 0.1

In [51]: def E(Q):
 return np.sum((np.dot(M.T, Q) - M0 * (1 + r)) ** 2)

In [52]: E(np.array(5 * [0.2]))
Out[52]: 4.0

In [53]: cons = ({'type': 'eq', 'fun': lambda Q: Q.sum() - 1})

In [54]: bnds = (5 * [(0, 1)])

In [55]: bnds
Out[55]: [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]

In [56]: res = sco.minimize(E, 5 * [1],
 method='SLSQP',
 constraints=cons,
 bounds=bnds)

In [57]: Q = res['x']

In [58]: Q
Out[58]: array([0.14667, 0.18333, 0.275 , 0.18333, 0.21167])

In [59]: np.dot(M.T, Q) / (1 + r)
Out[59]: array([10. , 9.99998, 9.99999, 10.00001, 9.99998])

In [60]: np.allclose(M0, np.dot(M.T, Q) / (1 + r))
Out[60]: True

Imports the optimize subpackage from scipy as sco.

Defines the market payoff matrix.

Verifies that the matrix is of full rank.

Defines the price vector for the traded financial assets…

…and shows the values, which are all set to 10.

Fixes the constant short rate.

Fundamental Theorems of Asset Pricing | 131

Defines the objective function that is to be minimized. This approach is neces‐
sary because the linear system is to be solved under a constraint and with bounds
for all parameters.

The constraint that the single probabilities need to add up to one.

Defines the bounds for every single probability.

The optimization procedure minimizing the function E…

…defining the method used,…

…providing the constraints to be observed, and…

…providing the bounds for the parameters.

The results vector is the martingale measure.

Under the martingale measure, the discounted price processes are martingales.

The second Fundamental Theorem of Asset Pricing also holds true in the general
static model economy ℰ . For a discussion and proof, refer to Pliska (1997, section
1.5).

Second Fundamental Theorem of Asset Pricing (2FTAP)
The following statements are equivalent:

1. The martingale measure Q is unique.

2. The economy is complete, it holds � = ℝ+
I .

132 | Chapter 5: Static Economy

Fundamental Theorems

The quest for valid option pricing models led to the seminal option
pricing models of Black and Scholes (1973) and Merton (1973)—
together Black-Scholes-Merton (1973). The models used in these
seminal papers are rather specific in that they assume a geometric
Brownian motion as the model for the price process of the only
risky asset. Research from the late 1970s and early 1980s, namely
from Harrison and Kreps (1979) and Harrison and Pliska (1981),
provides a general framework for the pricing of contingent claims.
In their general framework, martingale measures and processes
that are (semi-)martingales play the central role. The class of
(semi-)martingale processes is pretty large and encompasses both
the early models (for example, geometric Brownian motion) as well
as many more sophisticated financial models proposed and ana‐
lyzed much later (for example, jump diffusions or stochastic vola‐
tility processes). Among others, this is one of the reasons why the
presented theorems are called fundamental—they apply to a large
class of interesting and important financial models.

Black-Scholes-Merton Option Pricing
The Black-Scholes-Merton (1973) model for option pricing is based on a continuous
model economy generally represented by stochastic differential equations (SDEs)
with suitable boundary conditions. The SDE used to describe the evolution of the
single risky asset (think of a stock or stock index) is the one for a geometric Brownian
motion. In addition to the risky asset, another risk-less asset is traded in their model
economy and it pays a continuous, risk-less short rate.

In the static case with two relevant points in time only, say t = 0 and t = T > 0, the
future, uncertain value of the risky asset ST is given by

ST = S0 · e
r − σ2

2 T + σ Tz

where S0 ∈ ℝ>0 is the price of the risky asset today, r ∈ ℝ≥0 is the constant risk-less
short rate, σ ∈ ℝ>0 is a constant volatility factor, and z is a standard normally dis‐
tributed random variable (see Jacod and Protter (2004), chapter 16).

In a discrete, numerical context, one can draw, for example, pseudo-random numbers
zi, i = 1, 2, . . . , I that are standard normally distributed to derive I numerical values
for ST according to the preceding equation:

Black-Scholes-Merton Option Pricing | 133

ST zi = S0 · e
r − σ2

2 T + σ Tzi
, i = 1, 2, . . . , I

Such a procedure is usually called a Monte Carlo simulation. To simplify the notation,
ST shall from now on specify the vector of simulated future values of the stock:

ST ≡

ST z1

ST z2

. . .
ST zI

With these definitions, the model economy is as follows. There is a general probabil‐
ity space Ω,ℱ ≡ ℘ Ω , P with I possible future states of the economy. Every state is
assumed to be equally likely—that is, it holds:

∀ω ∈ Ω:P ω = 1
I

The set of traded financial assets � consists of the risk-less asset called bond with
price process B = B0, B0 · erT and the risky asset called stock (paying no dividends)
with price process S = S0, ST and ST as defined previously. Together this forms the
Black-Scholes-Merton (1973) model economy:

ℰ
BSM = Ω,ℱ , P ,� = B, S

Assume a European call option written on the stock as a contingent claim. The payoff
is

CT ≡ ST − K, 0

with strike price K ∈ ℝ≥0. The price—here, the Monte Carlo estimator—for the call
option is given as the expected (average) discounted payoff:

C0 = e−rT 1
I ∑

i = 1

I
max ST zi − K, 0

The model economy and the Monte Carlo–based pricing approach are straightfor‐
ward to implement in Python. Figure 5-1 shows the frequency distribution of the

134 | Chapter 5: Static Economy

simulated stock price values, including the mean and the standard deviation around
the mean:

In [61]: import math

In [62]: S0 = 100
 r = 0.05
 sigma = 0.2
 T = 1.0
 I = 10000

In [63]: rng = default_rng(100)

In [64]: ST = S0 * np.exp((r - sigma ** 2 / 2) * T +
 sigma * math.sqrt(T) * rng.standard_normal(I))

In [65]: ST[:8].round(1)
Out[65]: array([81.7, 109.2, 120.5, 114.9, 85. , 127.7, 118.6, 118.6])

In [66]: ST.mean()
Out[66]: 105.6675325917807

In [67]: S0 * math.exp(r * T)
Out[67]: 105.12710963760242

In [68]: from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['font.family'] = 'serif'

In [69]: plt.figure(figsize=(10, 6))
 plt.hist(ST, bins=35, label='frequency');
 plt.axvline(ST.mean(), color='r', label='mean')
 plt.axvline(ST.mean() + ST.std(), color='y', label='sd up')
 plt.axvline(ST.mean() - ST.std(), color='y', label='sd down')
 plt.legend(loc=0);

The initial stock price level.

The constant short rate.

The volatility factor.

The time horizon in year fractions.

The number of states and also the number of simulations.

Fixes the seed value for reproducibility.

Black-Scholes-Merton Option Pricing | 135

The core line of code: it implements the Monte Carlo simulation with NumPy in
vectorized fashion, simulating I values in a single step.

The mean value as obtained from the simulated set of stock prices.

The theoretically to-be-expected value of the stock price.

These lines of code plot the simulation results as a histogram and add some
major statistics.

Figure 5-1. Frequency distribution of simulated values for the stock price in Black-
Scholes-Merton (1973)

Having the simulated stock price values available makes European option pricing
only a matter of two more vectorized operations:

In [70]: K = 105

In [71]: CT = np.maximum(ST - K, 0)

In [72]: CT[:8].round(1)
Out[72]: array([0. , 4.2, 15.5, 9.9, 0. , 22.7, 13.6, 13.6])

In [73]: C0 = math.exp(-r * T) * CT.mean()

In [74]: C0
Out[74]: 8.288763195530931

136 | Chapter 5: Static Economy

The strike price of the option.

The payoff vector of the option.

The Monte Carlo estimator of the option price.

Completeness of Black-Scholes-Merton
What about the completeness of the Black-Scholes-Merton model economy ℰBSM?
The previous section derives a Monte Carlo estimator for the (arbitrage) price of a
European call option despite the fact that there are many more states of the economy,
I ≫ 2, than financial assets traded, K = 2. Two observations can be made:

General incompleteness
In a wider sense, the economy is incomplete because not every contingent claim
can be replicated by a portfolio of the traded assets and because there is not a
unique martingale measure (see 2FTAP).

Specific completeness
In a narrow sense, the model is complete, because every contingent claim that
can be represented as a function of the price vector of the stock C1 = f S1

2 is rep‐
licable by positions in the bond and the stock.

When using Monte Carlo simulation to derive an estimator for the arbitrage price in
the previous section, the fact is used that the model economy ℰBSM is complete in the
previous specific, narrow sense. The payoff of the European call option only depends
on the future price vector of the stock. What is missing so far is the replication port‐
folio and the resulting arbitrage price calculation to verify that the Monte Carlo simu‐
lation approach is justified.

The NumPy function used so far to solve replication problems, np.linalg.solve,
requires a square (market payoff) matrix. In the Black-Scholes-Merton economy with
only two traded financial assets and many more possible future states, this prerequi‐
site is not given. However, one can use a least-squares approach via np.linalg.lstsq
to find a numerical solution to the replication problem:

In [75]: B0 = 100

In [76]: M0 = np.array((B0, S0))

In [77]: BT = B0 * np.ones(len(ST)) * math.exp(r * T)

In [78]: BT[:4]
Out[78]: array([105.12711, 105.12711, 105.12711, 105.12711])

Completeness of Black-Scholes-Merton | 137

In [79]: M = np.array((BT, ST)).T

In [80]: M
Out[80]: array([[105.12711, 81.74955],
 [105.12711, 109.19348],
 [105.12711, 120.4628],
 ...,
 [105.12711, 71.10624],
 [105.12711, 105.32038],
 [105.12711, 134.77647]])

In [81]: phi = np.linalg.lstsq(M, CT, rcond=None)[0]

In [82]: phi
Out[82]: array([-0.51089, 0.59075])

In [83]: np.mean((np.dot(M, phi) - CT))
Out[83]: 1.1798206855928583e-14

In [84]: np.dot(M0, phi)
Out[84]: 7.9850808951857335

The arbitrarily fixed price for the bond.

The price vector today for the two traded financial assets.

The future price vector of the bond given the initial price and the short rate.

The resulting market payoff matrix, which is of rank 2 only—compared to 10,000
future states.

This solves the replication problem through least-squares representation. For the
call option replication, the bond is to be shorted (sold), and the stock is to be
bought.

The average replication error, resulting, for example, from floating point inaccur‐
acies and the numerical methods used, is not exactly zero but really close to it.

This calculates the arbitrage price given the (numerically) optimal replication
portfolio. It is close to the Monte Carlo estimator from before.

Merton Jump-Diffusion Option Pricing
This section introduces another important model economy that dates back to Merton
(1976) and adds a jump component to the stock price model of Black-Scholes-
Merton (1973). The random jump component renders the model economy ℳM76

incomplete in general. However, in the discrete setting of this chapter, one can apply

138 | Chapter 5: Static Economy

the same numerical approaches for option pricing as introduced for ℰBSM in the pre‐
vious two sections. The model is called the jump-diffusion model, although a diffu‐
sion is only defined in a dynamic context.

In real financial time series, one observes jumps with some regularities. They might
be caused by a stock market crash or by other rare and/or extreme events. The model
by Merton (1976) allows us to explicitly model such rare events and their impact on
the price of financial instruments. Models without jumps are often not well suited to
explain certain characteristics and phenomena as regularly observed in financial time
series. The model is also capable of modeling both positive and negative jumps.
While a negative jump (large drop) might be observed in practice for stock indices,
positive jumps (spikes) occur in practice, for example, in volatility indices.

The Merton jump-diffusion economy ℰM76 is the same as the Black-Scholes-Merton
economy ℰBSM apart from the future price of the stock at time T, which can be simu‐
lated in this economy according to

ST zi = S0 · e
r − r j − σ2

2 T + σ Tzi
1 +

+ e
μ + δzi

2
− 1 yi , i = 1, 2, . . . , I

with the zi
1, zi

2 being standard normally distributed and the yi being Poisson dis‐
tributed with intensity λ (see Jacod and Protter (2004), chapter 4). The jumps are log-
normally distributed with an expected value of μ and standard deviation of δ (see
Jacod and Protter (2004), chapter 7). The expected jump size is:

r j = λ · eμ + δ2/2 − 1

Implementing and simulating this model in Python requires the definition of addi‐
tional parameters and the simulation of three random variables. Figure 5-2 shows the
frequency distribution of the simulated values, which can become negative given the
parameters assumed and the Python code used:

In [85]: M0 = np.array((100, 100))

In [86]: r = 0.05
 sigma = 0.2
 lmbda = 0.3
 mu = -0.3
 delta = 0.1
 rj = lmbda * (math.exp(mu + delta ** 2 / 2) - 1)
 T = 1.0

Merton Jump-Diffusion Option Pricing | 139

 I = 10000

In [87]: BT = M0[0] * np.ones(I) * math.exp(r * T)

In [88]: z = rng.standard_normal((2, I))
 z -= z.mean()
 z /= z.std()
 y = rng.poisson(lmbda, I)

In [89]: ST = S0 * (
 np.exp((r - rj - sigma ** 2 / 2) * T +
 sigma * math.sqrt(T) * z[0]) +
 (np.exp(mu + delta * z[1]) - 1) * y
)

In [90]: ST.mean() * math.exp(-r * T)
Out[90]: 100.53765025420363

In [91]: plt.figure(figsize=(10, 6))
 plt.hist(ST, bins=35, label='frequency');
 plt.axvline(ST.mean(), color='r', label='mean')
 plt.axvline(ST.mean() + ST.std(), color='y', label='sd up')
 plt.axvline(ST.mean() - ST.std(), color='y', label='sd down')
 plt.legend(loc=0);

Fixes the initial price vector of the two traded financial assets (bond and stock).

The first set of standard normally distributed random numbers.

The second set of standard normally distributed random numbers.

The set with Poisson distributed random numbers with intensity lambda.

The simulation of the stock price values at T given the three sets of random
numbers.

Calculates the discounted mean value of the simulated stock price.

140 | Chapter 5: Static Economy

Figure 5-2. Frequency distribution of the simulated values for the stock price in Merton
(1976)

Adding a maximum function to the stock price, Monte Carlo simulation avoids nega‐
tive values (see Figure 5-3):

In [92]: ST = np.maximum(S0 * (
 np.exp((r - rj - sigma ** 2 / 2) * T +
 sigma * math.sqrt(T) * z[0]) +
 (np.exp(mu + delta * z[1]) - 1) * y
), 0)

In [93]: plt.figure(figsize=(10, 6))
 plt.hist(ST, bins=35, label='frequency')
 plt.axvline(ST.mean(), color='r', label='mean')
 plt.axvline(ST.mean() + ST.std(), color='y', label='sd up')
 plt.axvline(ST.mean() - ST.std(), color='y', label='sd down')
 plt.legend(loc=0);

Maximum function…

…avoids negative values for the stock price.

Merton Jump-Diffusion Option Pricing | 141

Figure 5-3. Simulated values (truncated) for the stock price in Merton (1976)

The final step is the pricing of the European call option through calculation of the
Monte Carlo estimator and the approximate replication approach:

In [94]: K = 105

In [95]: CT = np.maximum(ST - K, 0)

In [96]: C0 = math.exp(-r * T) * np.mean(CT)

In [97]: C0
Out[97]: 10.306374338651601

In [98]: M = np.array((BT, ST)).T

In [99]: phi = np.linalg.lstsq(M, CT, rcond=-1)[0]

In [100]: phi
Out[100]: array([-0.41827, 0.51847])

In [101]: np.mean(np.dot(M, phi) - CT)
Out[101]: 1.1823431123048067e-15

In [102]: np.dot(M0, phi)
Out[102]: 10.020157308565008

The Monte Carlo estimator for the European call option price.

The approximate replication portfolio.

142 | Chapter 5: Static Economy

The replication error of the optimal portfolio.

The arbitrage price according to the optimal portfolio.

Incompleteness Through Jumps

While the Black-Scholes-Merton (1973) model is complete in a
narrow sense, the addition of a jump component in the Merton
(1976) jump diffusion model makes it incomplete in a wide sense.
This means that even the introduction of additional financial assets
cannot make it complete. The fact that the jump component can
take on an infinite number of values would require an infinite
number of additional financial assets to make the model complete.

Representative Agent Pricing
Assume again the general static economy ℰ now populated by a representative,
expected utility maximizing agent. The agent is endowed with initial wealth today of
w ∈ ℝ>0 and has preferences that can be represented by a utility function
u:c ℝ, u c ln c. Formally, the problem of the agent is the same as in Chapter 4:

max
ϕ
�

P u ℳ · ϕ

w = ℳ 0 · ϕ

The difference is that there are now potentially many more future states possible and
many more financial assets traded.

Furthermore, assuming that the complete set of Arrow-Debreu securities—with a net
supply of one for each security—is traded, K = I, the market payoff matrix is:

ℳ =

1 0 . . . 0
0 1 . . . 0

.
0 0 . . . 1

The optimization problem in unconstrained form is according to the Theorem of
Lagrange given by:

max
ϕ, λ

f ϕ, λ = �P u ℳ · ϕ − λ · ℳ 0 · ϕ − w

Representative Agent Pricing | 143

From this, the first-order conditions for all portfolio positions ϕi, i = 1, 2, . . . , I—
where i refers to the Arrow-Debreu security that pays off in state ωi—are:

∂ f
∂ϕi

= P ωi − λ · S0
i = 0, i = 1, 2, . . . , I

S0
i is the price of the Arrow-Debreu security paying off in state ωi. The relative prices

between all Arrow-Debreu securities are accordingly determined by the probabilities
for the respective payoff states to unfold:

S0
i

S0
j =

P ωi

P ω j
, ωi, ω j ∈ Ω

Fixing w = 1, one obtains for the absolute prices:

S0
i = P ωi

In words, the price for the Arrow-Debreu security paying off in state ωi equals the
probability P ωi for this state to unfold.

This little analysis shows that the formalism of solving the representative agent prob‐
lem for pricing purposes is more or less the same in the general static economy as
compared to the simple economies of Chapter 4.

Conclusions
This chapter covers general static economies with a potentially large number of states
—for the Black-Scholes-Merton (1973) model simulation, for example, 10,000 differ‐
ent states are assumed. The additional formalism introduced pays off pretty well
because it allows for much more realistic models that can be applied in practice, for
instance, to value European put or call options on a stock index or a single stock.

Python in combination with NumPy proves powerful for the modeling of such econo‐
mies with much larger market payoff matrices than seen before. Monte Carlo simula‐
tion is also accomplished both efficiently and quickly by the use of vectorization
techniques. Using least-squares regression techniques, approximate replication port‐
folios are efficiently derived in such a setting.

However, static economies are limited per se with regard to what they can model in
the financial space. For instance, early exercise features like those seen in the context
of American options cannot be accounted for. This shortcoming will be overcome

144 | Chapter 5: Static Economy

when enlarging the relevant set of points in time—making thereby the next natural
step to dynamic economies—in the next chapter.

Further Resources
Papers cited in this chapter:

Black, Fischer and Myron Scholes. 1973. “The Pricing of Options and Corporate Lia‐
bilities.” Journal of Political Economy 81 (3): 638–659.

Harrison, Michael and David Kreps. 1979. “Martingales and Arbitrage in Multiperiod
Securities Markets.” Journal of Economic Theory (20): 381–408.

Harrison, Michael and Stanley Pliska. 1981. “Martingales and Stochastic Integrals in
the Theory of Continuous Trading.” Stochastic Processes and their Applications
(11): 215–260.

Merton, Robert. 1973. “Theory of Rational Option Pricing.” Bell Journal of Economics
and Management Science (4): 141–183.

Merton, Robert. 1976. “Option Pricing when the Underlying Stock Returns are Dis‐
continuous.” Journal of Financial Economics 3 (3): 125–144.

Books cited in this chapter:

Aleskerov, Fuad, Hasan Ersel, and Dmitri Piontkovski. 2011. Linear Algebra for Econ‐
omists. Heidelberg: Springer.

Delbaen, Freddy and Walter Schachermayer. 2006. The Mathematics of Arbitrage. Ber‐
lin: Springer Verlag.

Duffie, Darrell. 1988. Security Markets—Stochastic Models. San Diego: Academic
Press.

Jacod, Jean and Philip Protter. 2004. Probability Essentials. Berlin and Heidelberg:
Springer.

Milne, Frank. 1995. Finance Theory and Asset Pricing. New York: Oxford University
Press.

Pliska, Stanley. 1997. Introduction to Mathematical Finance. Malden and Oxford:
Blackwell Publishers.

Further Resources | 145

CHAPTER 6

Dynamic Economy

Multiperiod models of securities markets are much more realistic than single period
models. In fact, they are extensively used for practical purposes in the financial
industry.

—Stanley Pliska (1997)

Although markets are not complete at any one time, they are dynamically complete in
the sense that any consumption process can be financed by trading the given set of
financial securities, adjusting portfolios through time as uncertainty is resolved bit
by bit.

—Darrell Duffie (1986)

In reality, quantitative information—such as changes in stock prices or interest rates
—is revealed gradually over time. While static model economies are an elegant way of
introducing fundamental notions in finance, a realistic financial model requires a
dynamic representation of the financial world.

The formalism needed to properly model dynamic economies is more involved and
cannot be covered in full detail in this chapter. However, the chapter can present two
of the most important dynamic model economies based on discrete time dynamics:
the Cox-Ross-Rubinstein (1979) binomial option pricing model and the Black-
Scholes-Merton (1973) option pricing model in a discrete Monte Carlo simulation
version. In this context, discrete time means that the set of relevant dates is extended
from just two to a larger, but still finite, number—say, to five or 50.

The tools used in this chapter are more or less the same as before: linear algebra,
probability theory, and also, like in the previous chapter, stochastic elements to imple‐
ment Monte Carlo simulation. Duffie (1988) and Pliska (1997) are great resources for
dynamic financial modeling in discrete time. Glasserman (2004) is a comprehensive
reference book for Monte Carlo simulation methods in finance.

147

Topics covered in this chapter are stochastic processes, option pricing in dynamically
complete markets, binomial option pricing, Black-Scholes-Merton (1973) dynamic
simulation, early exercise and American option pricing, as well as Least-Squares
Monte Carlo (LSM) option pricing.

The following table gives an overview of the topics in finance, mathematics, and
Python found in this chapter:

Finance Mathematics Python
Uncertainty, tree-based Stochastic process, binomial tree NumPy, ndarray

Uncertainty, simulation-
based

Stochastic process, Monte Carlo simulation NumPy, ndarray,
rng.standard_normal

European option pricing Inner values, backward induction, risk-neutral
expectation

NumPy, ndarray, np.maximum

American option pricing Inner values, continuation values, OLS
regression, backward induction, risk-neutral
expectation

NumPy, ndarray, np.polyval,
np.polyfit, np.where

As in Chapter 5, the major goal of this chapter is generalization. While Chapter 5 gen‐
eralizes the state space, this chapter sets out to generalize the discrete set of relevant
points in time at which new information is revealed and economic action takes place.
While some additional formalism is needed to do so, the chapter is, on the other
hand, less formal since it focuses on two specific models only and does not try to pro‐
vide a general framework for dynamic economies in discrete time. Such a general
framework, including many examples implemented in Python, is found in Hilpisch
(2015).

Binomial Option Pricing
The binomial option pricing model became popular immediately after publication in
1979—both as a numerically efficient method to price European options and Ameri‐
can options as well as a teaching tool. While the Black-Scholes-Merton (1973) model
relies on continuous time finance and stochastic calculus, the binomial option pricing
model is, in a sense, a discrete time version of the BSM model that can be fully under‐
stood with elementary mathematics only.

In the Cox-Ross-Rubinstein (1979) model, there are two traded financial assets:
a risky one, called stock, and a risk-less one, called bond. The model economy is con‐
sidered over a finite set of dates � ≡ t0 = 0, t1, t2, . . . , tM = T , with M + 1, M > 1
elements.

Given a stock price of Sti
, the stock price at the next date Sti + 1

 can only take on two

different values:

148 | Chapter 6: Dynamic Economy

Sti + 1
=

Sti
· u

Sti
· d

u stands for an upward movement and d for a downward movement.

To simplify the handling of dates, assume an evenly spaced time grid with M time
intervals of length Δt = T

M each. The finite set of dates can then be written as
� ≡ t0 = 0, t1 = Δt, t2 = 2Δt, . . . , T . In addition, define:

u ≡ eσ Δt

d ≡ e−σ Δt = u−1

It turns out that one consequence of this definition is the property u · d = 1, which
will prove convenient in that it creates a so-called recombining binomial tree. σ ∈ ℝ>0
represents the constant volatility factor.

Assume that the risk-less, constant short rate is given by r ∈ ℝ≥0. Given a bond price
of Bti

, the price of the bond one period later is given by

Bti + 1
= Bti

· e
r · ti + 1 − ti

or

Bt + Δt = Bt · er · Δt

for some t ∈ � ∖ T.

A central numerical parameter value to be derived, based on the preceding assump‐
tions, is the martingale probability for an upward movement at any given node.
Given that there are only two branches for every node, the downward probability is
then known as well. Denote the martingale probability for an upward movement by
q ∈ ℝ>0, 0 < q < 1. One gets from the martingale property for the stock price:

Binomial Option Pricing | 149

1 The parameters assumed in this chapter are from Longstaff and Schwartz (2001, table 1).

St = e−rΔt�Q St + Δt

= e−rΔt qStu + 1 − q Std

1 = e−rΔt qu + 1 − q d

q = erΔt − d
u − d

This shows that the martingale measure is fixed at every node and consequently for
the whole tree.

The basics of the binomial option pricing model are easily translated into Python
code:1

In [1]: import math
 import numpy as np

In [2]: S0 = 36.
 K = 40.
 r = 0.06
 T = 1.0
 sigma = 0.2

In [3]: m = 4
 dt = T / m
 df = math.exp(-r * dt)
 up = math.exp(sigma * math.sqrt(dt))
 down = 1 / up

In [4]: q = (1 / df - down) / (up - down)

The initial stock price value.

The strike price for the option to be valued.

The constant risk-less short rate.

The time horizon and option maturity.

The constant volatility factor.

The number of time intervals.

The resulting length of each time interval.

150 | Chapter 6: Dynamic Economy

The discount factor for the fixed time interval.

The upward and downward factors.

The martingale probability for an upward movement.

The simulation of the stock price process and the valuation of options in this model
are a bit more involved. The following presents two different implementations: one
based on Python loops, which might be easier to understand at the beginning, and one
based on vectorized NumPy code, which is more concise and efficient, but may be a bit
harder to grasp at first.

Simulation and Valuation Based on Python Loops
Even though the implementation in this subsection uses Python loops, the basic data
structure is a NumPy ndarray object:

In [5]: S = np.zeros((m + 1, m + 1))
 S
Out[5]: array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])

In [6]: S[0, 0] = S0
 S
Out[6]: array([[36., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])

In [7]: z = 1
 for t in range(1, m + 1):
 for i in range(0, z):
 S[i, t] = S[i, t - 1] * up
 S[i + 1 ,t] = S[i, t - 1] * down
 z += 1

In [8]: np.set_printoptions(formatter=
 {'float_kind': lambda x: '%7.3f' % x})

In [9]: S
Out[9]: array([[36.000, 39.786, 43.970, 48.595, 53.706],
 [0.000, 32.574, 36.000, 39.786, 43.970],
 [0.000, 0.000, 29.474, 32.574, 36.000],
 [0.000, 0.000, 0.000, 26.669, 29.474],
 [0.000, 0.000, 0.000, 0.000, 24.132]])

Binomial Option Pricing | 151

Initializes the ndarray object.

Sets the initial stock price value in the upper-lefthand corner.

Sets a counter z to 1.

Iterates from 1 to m+1, that is, over all time steps after 0.

Iterates over the relevant nodes for the given time step.

Calculates the up and down values and sets them in the ndarray object.

Increases the counter by 1 to include more relevant nodes in the next step.

The resulting recombining binomial tree.

European option pricing
The valuation of a European option based on the available stock price process hap‐
pens by calculating the inner values of the option at maturity and applying backward
induction. This basically means starting at the end, moving backward step by step to
the present, and at every node repeatedly applying the risk-neutral pricing paradigm
as introduced in the simple static two-state economy of Chapter 2.

The following Python code assumes a European put option payoff:

In [10]: h = np.zeros_like(S)

In [11]: z = 1
 for t in range(0, m + 1):
 for i in range(0, z):
 h[i, t] = max(K - S[i, t], 0)
 z += 1

In [12]: h
Out[12]: array([[4.000, 0.214, 0.000, 0.000, 0.000],
 [0.000, 7.426, 4.000, 0.214, 0.000],
 [0.000, 0.000, 10.526, 7.426, 4.000],
 [0.000, 0.000, 0.000, 13.331, 10.526],
 [0.000, 0.000, 0.000, 0.000, 15.868]])

In [13]: V = np.zeros_like(S)
 V[:, -1] = h[:, -1]
 V
Out[13]: array([[0.000, 0.000, 0.000, 0.000, 0.000],
 [0.000, 0.000, 0.000, 0.000, 0.000],
 [0.000, 0.000, 0.000, 0.000, 4.000],
 [0.000, 0.000, 0.000, 0.000, 10.526],
 [0.000, 0.000, 0.000, 0.000, 15.868]])

152 | Chapter 6: Dynamic Economy

In [14]: m
Out[14]: 4

In [15]: # European option pricing
 z = 0
 for t in range(m - 1, -1, -1):
 for i in range(0, m - z):
 V[i, t] = df * (q * V[i, t + 1] +
 (1-q) * V[i + 1, t + 1])
 z += 1

In [16]: V
Out[16]: array([[3.977, 2.190, 0.784, 0.000, 0.000],
 [0.000, 6.299, 3.985, 1.771, 0.000],
 [0.000, 0.000, 9.344, 6.830, 4.000],
 [0.000, 0.000, 0.000, 12.735, 10.526],
 [0.000, 0.000, 0.000, 0.000, 15.868]])

In [17]: V[0, 0]
Out[17]: 3.9771456941187893

The ndarray object for the inner values.

This calculates the inner values for the relevant nodes.

This does the node-wise valuation by applying risk-neutral pricing.

The resulting present value binomial tree.

The present value today of the European put option.

American option pricing
One of the major features of the binomial option pricing model is that American
options are as easily valued as their European counterparts. An American option can
be exercised at any time on and before the maturity date. The adjustment to be made
to the backward valuation algorithm is simple: one just needs to check whether the
inner value of the American option is at any given node higher than the continuation
value, that is, the present value of not exercising the option. If that is the case, the
option is exercised, and the value of the American option is set to the inner value.
Formally, one gets

Vt = max ht, e−rΔt�Q Vt + Δt

where ht is the inner value at time t, and e−rΔt�Q Vt + Δt is the continuation value.

Binomial Option Pricing | 153

In Python, a single line of code needs to be added:

In [18]: # American option pricing
 z = 0
 for t in range(m - 1, -1, -1):
 for i in range(0, m-z):
 V[i, t] = df * (q * V[i, t + 1] +
 (1 - q) * V[i + 1, t + 1])
 V[i, t] = max(h[i, t], V[i, t])
 z += 1

In [19]: V
Out[19]: array([[4.540, 2.307, 0.784, 0.000, 0.000],
 [0.000, 7.426, 4.249, 1.771, 0.000],
 [0.000, 0.000, 10.526, 7.426, 4.000],
 [0.000, 0.000, 0.000, 13.331, 10.526],
 [0.000, 0.000, 0.000, 0.000, 15.868]])

In [20]: V[0, 0]
Out[20]: 4.539560595224299

This line checks for the early exercise decision and puts the inner value as the
American option value when it is higher than the continuation value.

The resulting binomial tree for the present values of the American put option.

The present value today of the American put option, which is considerably
higher than without early exercise.

Simulation and Valuation Based on Vectorized Code
The algorithm implementation that follows makes systematic use of NumPy vectoriza‐
tion capabilities. The implementation is presented step by step, also with some illus‐
trating lines of code not needed for the algorithm implementation itself:

In [21]: u = np.arange(m + 1)
 u
Out[21]: array([0, 1, 2, 3, 4])

In [22]: u ** 2
Out[22]: array([0, 1, 4, 9, 16])

In [23]: 2 ** u
Out[23]: array([1, 2, 4, 8, 16])

In [24]: u = np.resize(u, (m + 1, m + 1))
 u
Out[24]: array([[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],

154 | Chapter 6: Dynamic Economy

2 Note that only the numbers on and above the diagonal are relevant. Numbers below the diagonal can be
ignored. They result from the specific vectorized operations implemented on the ndarray object.

 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]])

In [25]: d = u.T
 d
Out[25]: array([[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]])

In [26]: (u - 2 * d)
Out[26]: array([[0, 1, 2, 3, 4],
 [-2, -1, 0, 1, 2],
 [-4, -3, -2, -1, 0],
 [-6, -5, -4, -3, -2],
 [-8, -7, -6, -5, -4]])

Creates an ndarray object for the number of upward movements from 0 to m.

Calculating the squares by a vectorized operation.

Calculating the powers of 2 by using the u object as a vector exponent.

Resizes the u object from one dimension to two dimensions. The number of
upward movements is now stored in each row.

Transposes the u object to get a two-dimensional ndarray object d with the num‐
ber of downward movements in each column.

Combines the u and d objects to arrive at the net number of upward and down‐
ward movements. For instance, +2 means “two more upward movements than
downward movements” or -1 means “one more downward movement than
upward movements.”2

Equipped with a matrix containing the net number of movements in the binomial
tree, simulation of the stock price process boils down to a single line of code:

In [27]: S = S0 * np.exp(sigma * math.sqrt(dt) * (u - 2 * d))
 S
Out[27]: array([[36.000, 39.786, 43.970, 48.595, 53.706],
 [29.474, 32.574, 36.000, 39.786, 43.970],
 [24.132, 26.669, 29.474, 32.574, 36.000],

Binomial Option Pricing | 155

 [19.757, 21.835, 24.132, 26.669, 29.474],
 [16.176, 17.877, 19.757, 21.835, 24.132]])

The vectorized simulation of the stock price process (binomial tree).

Only the numbers on and above the diagonal are relevant.

The valuation of both the European and American put options is also vectorized to
some extent. A single loop over the time steps remains:

In [28]: h = np.maximum(K - S, 0)
 h
Out[28]: array([[4.000, 0.214, 0.000, 0.000, 0.000],
 [10.526, 7.426, 4.000, 0.214, 0.000],
 [15.868, 13.331, 10.526, 7.426, 4.000],
 [20.243, 18.165, 15.868, 13.331, 10.526],
 [23.824, 22.123, 20.243, 18.165, 15.868]])

In [29]: V = h.copy()

In [30]: # European option pricing
 for t in range(m - 1, -1, -1):
 V[0:-1, t] = df * (q * V[:-1, t + 1] +
 (1-q) * V[1:, t + 1])

In [31]: V[0, 0]
Out[31]: 3.977145694118792

In [32]: # American option pricing
 for t in range(m - 1, -1, -1):
 V[0:-1, t] = df * (q * V[:-1, t + 1] +
 (1-q) * V[1:, t + 1])
 V[:, t] = np.maximum(h[:, t], V[:, t])

In [33]: V
Out[33]: array([[4.540, 2.307, 0.784, 0.000, 0.000],
 [10.526, 7.426, 4.249, 1.771, 0.000],
 [15.868, 13.331, 10.526, 7.426, 4.000],
 [20.243, 18.165, 15.868, 13.331, 10.526],
 [23.824, 22.123, 20.243, 18.165, 15.868]])

In [34]: V[0, 0]
Out[34]: 4.5395605952243

The calculation of the inner value of the put option, fully vectorized this time.

As before, only the numbers on and above the diagonal are relevant.

Creates a copy of the h object.

The partly vectorized valuation algorithm for the European put option.

156 | Chapter 6: Dynamic Economy

The present value of the European put option.

The partly vectorized valuation algorithm for the American put option.

The present value of the American put option.

European and American Options

The beauty of the (recombining) binomial option pricing model of
Cox, Ross, and Rubinstein (1979) not only lies in its simplicity but
also in the fact that it can be used to value both European options
and American options with high accuracy in an efficient manner.
In the limit, making time steps infinitely small, the model con‐
verges to the Black-Scholes-Merton (1973) model, which is another
advantage.

Speed Comparison
Vectorizing code not only makes Python code more concise, but it generally allows
for significant speed improvements. The following code snippets implement the pre‐
vious algorithms for a speed comparison based on a larger, more realistic number of
time steps. First, the basic numerical parameters need to be adjusted:

In [35]: m = 500
 dt = T / m
 df = math.exp(-r * dt)
 up = math.exp(sigma * math.sqrt(dt))
 down = 1 / up
 q = (1 / df - down) / (up - down)
 q
Out[35]: 0.5044724639230862

Increases the number of time intervals to a realistic level, yielding rather accurate
numerical option values.

The function binomial_looping() integrates all elements of the loop-based imple‐
mentation of the simulation and valuation algorithm for the American put option:

In [36]: def binomial_looping():
 # stock price simulation in binomial tree
 S = np.zeros((m + 1, m + 1))
 S[0, 0] = S0
 z = 1
 for t in range(1, m + 1):
 for i in range(0, z):
 S[i, t] = S[i, t - 1] * up
 S[i + 1 ,t] = S[i, t - 1] * down
 z += 1
 # inner value calculation

Binomial Option Pricing | 157

 h = np.zeros_like(S)
 z = 1
 for t in range(0, m + 1):
 for i in range(0, z):
 h[i, t] = max(K - S[i, t], 0)
 z += 1
 # American option pricing
 V = np.zeros_like(S)
 V[:, -1] = h[:, -1]
 z = 0
 for t in range(m - 1, -1, -1):
 for i in range(0, m - z):
 V[i, t] = df * (q * V[i, t + 1] +
 (1 - q) * V[i + 1, t + 1])
 V[i, t] = max(h[i, t], V[i, t])
 z += 1
 return V[0, 0]

The execution takes less than 200 milliseconds on the author’s computer:

In [37]: %time binomial_looping()
 CPU times: user 190 ms, sys: 4.69 ms, total: 194 ms
 Wall time: 190 ms

Out[37]: 4.486374777505983

In [38]: %timeit binomial_looping()
 173 ms ± 2.48 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The function binomial_vectorization() integrates all elements of the vectorized
implementation of the simulation and valuation algorithm for the American put
option:

In [39]: def binomial_vectorization():
 u = np.arange(m + 1)
 u = np.resize(u, (m + 1, m + 1))
 d = u.T
 # stock price simulation
 S = S0 * np.exp(sigma * math.sqrt(dt) * (u - 2 * d))
 # inner value calculation
 h = np.maximum(K - S, 0)
 # American option pricing
 V = h.copy()
 for t in range(m-1, -1, -1):
 V[0:-1, t] = df * (q * V[:-1, t + 1] +
 (1-q) * V[1:, t + 1])
 V[:, t] = np.maximum(h[:, t], V[:, t])
 return V[0, 0]

This implementation is about 40 times faster than the loop-based one, which impres‐
sively illustrates the power of vectorized implementation approaches in terms of per‐
formance improvements:

158 | Chapter 6: Dynamic Economy

In [40]: %time binomial_vectorization()
 CPU times: user 4.67 ms, sys: 2.39 ms, total: 7.07 ms
 Wall time: 8.73 ms

Out[40]: 4.486374777506075

In [41]: %timeit binomial_vectorization()
 4.7 ms ± 252 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Infrastructure and Performance

All absolute times reported here are dependent both on the hard‐
ware and software configuration used. For instance, you can use
NumPy in combination with the Math Kernel Library (MKL) from
Intel. This combination can significantly speed up numerical oper‐
ations on Intel processor-based systems. Relative times and speed-
up factors should be roughly similar on different infrastructures.

Black-Scholes-Merton Option Pricing
A static simulation version of the Black-Scholes-Merton (1973) model for option
pricing is discussed in Chapter 5. This section introduces a dynamic simulation ver‐
sion for their seminal option pricing model. For additional background information
on the model, refer to Chapter 5.

The stochastic differential equation for the Black-Scholes-Merton (1973) economy is
given by

dSt = rStdt + σStdZt

where St ∈ ℝ>0 is the stock price at time t, r ∈ ℝ≥0 is the constant short rate, σ ∈ ℝ>0
is the constant volatility factor, and Zt is an arithmetic Brownian motion (see Glasser‐
man (2004, chapter 3) and Hilpisch (2018, chapter 12)).

Monte Carlo Simulation of Stock Price Paths
Assume a finite set of relevant points in time � ≡ t0 = 0, t1, t2, . . . , tM = T , with
M + 1, M > 1, and a fixed interval length of Δt. The stock price St, 0 < t ≤ T, given
the previous stock price St − Δt, can then be simulated according to the difference
equation

St = St − Δt · exp r − σ2

2 Δt + σ Δtz

Black-Scholes-Merton Option Pricing | 159

https://oreil.ly/dWyk9
https://oreil.ly/dWyk9

where z is a standard normally distributed random variable. This scheme is called
Euler discretization. It is known to be accurate in that it ensures convergence of the
discrete time process to the continuous time process for Δt converging to 0.

The dynamic Monte Carlo simulation is—with the background knowledge from the
static simulation in Chapter 5—straightforward to implement in Python. Figure 6-1
shows 10 simulated stock price paths:

In [43]: S0 = 36.
 K = 40.
 r = 0.06
 T = 1.0
 sigma = 0.2

In [44]: M = 100
 I = 50000

In [45]: dt = T / M
 dt
Out[45]: 0.01

In [46]: df = math.exp(-r * dt)
 df
Out[46]: 0.9994001799640054

In [47]: from numpy.random import default_rng
 rng = default_rng(100)

In [48]: rn = rng.standard_normal((M + 1, I))
 rn
Out[48]: array([[-1.160, 0.290, 0.780, ..., 1.890, 0.050, -0.760],
 [0.460, -1.400, 0.140, ..., -1.350, 0.150, -0.530],
 [0.200, -0.040, -0.730, ..., 2.140, 0.170, -0.340],
 ...,
 [-0.220, -1.310, 0.730, ..., -0.820, -0.600, -0.400],
 [-2.130, -1.240, 0.580, ..., 0.960, 0.890, 0.780],
 [2.130, -0.410, 0.710, ..., 1.190, 0.100, -0.520]])

In [49]: S = np.zeros_like(rn)
 S[0] = S0
 S
Out[49]: array([[36.000, 36.000, 36.000, ..., 36.000, 36.000, 36.000],
 [0.000, 0.000, 0.000, ..., 0.000, 0.000, 0.000],
 [0.000, 0.000, 0.000, ..., 0.000, 0.000, 0.000],
 ...,
 [0.000, 0.000, 0.000, ..., 0.000, 0.000, 0.000],
 [0.000, 0.000, 0.000, ..., 0.000, 0.000, 0.000],
 [0.000, 0.000, 0.000, ..., 0.000, 0.000, 0.000]])

In [50]: for t in range(1, M + 1):
 S[t] = S[t - 1] * np.exp((r - sigma ** 2 / 2) * dt +

160 | Chapter 6: Dynamic Economy

 sigma * math.sqrt(dt) * rn[t])

In [51]: S
Out[51]: array([[36.000, 36.000, 36.000, ..., 36.000, 36.000, 36.000],
 [36.349, 35.023, 36.114, ..., 35.056, 36.119, 35.633],
 [36.508, 35.009, 35.602, ..., 36.601, 36.259, 35.402],
 ...,
 [42.689, 39.760, 40.681, ..., 37.516, 47.893, 42.846],
 [40.921, 38.804, 41.175, ..., 38.260, 48.769, 43.534],
 [42.716, 38.499, 41.782, ..., 39.200, 48.884, 43.103]])

In [52]: from pylab import mpl, plt
 plt.style.use('seaborn')
 mpl.rcParams['font.family'] = 'serif'
 mpl.rcParams['savefig.dpi'] = 300

In [53]: plt.figure(figsize=(10, 6))
 plt.plot(S[:, :10]);

The financial parameters are as before.

These are the Monte Carlo simulation parameters (paths, time steps, length of
time interval, discount factor for single time interval).

A two-dimensional ndarray object with standard normally distributed random
numbers of appropriate size is generated.

Another two-dimensional ndarray object of the same shape is instantiated, and
the initial values for the single stock price paths are set.

The single stock price paths are simulated based on the initial stock prices, the
random number matrix, and the difference equation for the geometric Brownian
motion.

Plots the first 10 simulated paths.

Black-Scholes-Merton Option Pricing | 161

Figure 6-1. Simulated stock price paths for Black-Scholes-Merton (1973)

As in the static case, the end-of-period values of the stock price can be visualized in
the form of a histogram (see Figure 6-2):

In [54]: ST = S[-1]
 plt.figure(figsize=(10, 6))
 plt.hist(ST, bins=35, color='b', label='frequency');
 plt.axvline(ST.mean(), color='r', label='mean')
 plt.axvline(ST.mean() + ST.std(), ls='--', color='y', label='sd up')
 plt.axvline(ST.mean() - ST.std(), ls='-.', color='y', label='sd down')
 plt.legend(loc=0);
In [55]: S0 * math.exp(r * T)
Out[55]: 38.22611567563295

In [56]: ST.mean()
Out[56]: 38.25248936738523

Mathematically expected value for ST.

The average over all simulated values ST.

162 | Chapter 6: Dynamic Economy

Figure 6-2. Frequency distribution of simulated end-of-period stock prices for Black-
Scholes-Merton (1973)

Monte Carlo Valuation of the European Put Option
The Monte Carlo estimator for the price of the European put option is

P0 = e−rT 1
I ∑

i = 1

I
max K − ST i , 0

where I is the number of simulated price paths. Against this background, European
put option pricing boils down to a few lines of Python code only given the simulated
stock price paths. Figure 6-3 shows a histogram of the simulated inner values at
maturity:

In [57]: h = np.maximum(K - ST, 0)
 h
Out[57]: array([0.000, 1.501, 0.000, ..., 0.800, 0.000, 0.000])

In [58]: plt.figure(figsize=(10, 6))
 plt.hist(h, color='b', bins=35);
In [59]: math.exp(-r * T) * h.mean()
Out[59]: 3.818117261795047

Black-Scholes-Merton Option Pricing | 163

3 Here, as also often seen in practice, there is a large number of cases for which the option expires worthless,
that is, with a payoff of 0.

Calculates the inner values in vectorized fashion.

Plots the frequency distribution of the inner values at maturity, illustrating the
highly asymmetric payoff that is typical for an option.3

Calculates the average over all inner values and discounts the average to the
present.

Figure 6-3. Frequency distribution of simulated inner values at maturity for the Euro‐
pean put option

Monte Carlo Valuation of the American Put Option
The valuation of American (put) options based on Monte Carlo simulation is a bit
more involved. The most popular algorithm in this regard is the Least-Squares Monte
Carlo (LSM) algorithm from Longstaff and Schwartz (2001) because it is relatively
simple and efficient to apply from a numerical and computational perspective. The
scope of this chapter does not allow us to go into details. However, it allows us to
present a concise, highly vectorized Python implementation. For an in-depth treat‐
ment of the LSM algorithm applied to the Black-Scholes-Merton (1973) model econ‐
omy, including Python code, refer to Hilpisch (2015, chapter 7).

The following Python code implements the LSM algorithm for American option
valuation:

164 | Chapter 6: Dynamic Economy

In [60]: h = np.maximum(K - S, 0)

In [61]: # Least-Squares Monte Carlo Valuation (LSM algorithm)
 V = h[-1]
 for t in range(M - 1, 0, -1):
 reg = np.polyfit(S[t], df * V, deg=5)
 C = np.polyval(reg, S[t])
 V = np.where(h[t] > C, h[t], df * V)

In [62]: df * V.mean()
Out[62]: 4.454837750511421

Calculates the inner values over the complete stock price path ndarray object.

Sets the initial simulated American option price values to the inner values at
maturity.

The algorithm also works based on backward induction, starting at T − Δt and
stopping at Δt.

This is the central step of the algorithm during which the continuation values are
estimated (approximated) based on the OLS regression of the present simulated
option values against the stock price levels.

If the inner value is higher than the estimated (approximated) continuation
value, exercise takes place and otherwise not.

The present value is calculated as the average over the American option price
vector at t = Δt as derived based on the LSM algorithm and discounted for the
last remaining time interval to the present t = 0.

Early Exercise and Monte Carlo Simulation

The efficient, Monte Carlo simulation–based valuation of options
and derivatives with early exercise features had been a mainly
unsolved problem until the end of the 1990s. At the beginning of
the 2000s only, researchers were able to propose computationally
efficient algorithms to deal with early exercise in a simulation con‐
text. As often in science and finance, once such an algorithm is
known—such as the LSM algorithm—the implementation and
application almost seem quite natural. After all, only a few lines of
Python code are needed to accurately value the American put
option in this section based on simulation. Nevertheless, the LSM
algorithm must be considered a major breakthrough that helped to
kick off the computational period in finance (see Chapter 1).

Black-Scholes-Merton Option Pricing | 165

Conclusions
This chapter presents in a rather informal manner two popular, dynamically com‐
plete financial models. The first is the so-called recombining binomial tree model by
Cox-Ross-Rubinstein (1979). The beauty of it lies in its simplicity and that it allows
one to implement European and American option pricing in a numerically efficient
way and based on high school mathematics only. It is also a good “teaching and
understanding” tool as compared to continuous time financial models that require
advanced stochastic calculus.

The second model is a dynamic Monte Carlo simulation version of the Black-Scholes-
Merton (1973) continuous time option pricing model. Using NumPy simulation tech‐
niques, dynamic Monte Carlo simulation can also be implemented in a numerically
efficient manner. Even the computationally demanding Least-Squares Monte Carlo
algorithm by Longstaff and Schwartz (2001), involving a time-consuming OLS
regression step, is quite fast when implemented based on vectorization techniques.

In summary, NumPy, with its powerful vectorization capabilities, has proven once
again that it allows not only for concise algorithmic code but also for fast execution
times—even in the context of more realistic and complex dynamic model economies.

Further Resources
Papers cited in this chapter:

Black, Fischer and Myron Scholes. 1973. “The Pricing of Options and Corporate Lia‐
bilities.” Journal of Political Economy 81 (3): 638–659.

Cox, John, Stephen Ross and Mark Rubinstein. 1979. “Option Pricing: A Simplified
Approach.” Journal of Financial Economics 7 (3): 229–263.

Duffie, Darrell. 1986. “Stochastic Equilibria: Existence, Spanning Number, and the No
Expected Gains from Financial Trade Hypothesis.” Econometrica 54 (5): 1161–
1183.

Longstaff, Francis and Eduardo Schwartz. 2001. “Valuing American Options by Sim‐
ulation: A Simple Least Squares Approach.” Review of Financial Studies 14 (1):
113–147.

Merton, Robert. 1973. “Theory of Rational Option Pricing.” Bell Journal of Economics
and Management Science (4): 141–183.

Books cited in this chapter:

Duffie, Darrell. 1988. Security Markets—Stochastic Models. San Diego: Academic
Press.

166 | Chapter 6: Dynamic Economy

Glasserman, Paul. 2004. Monte Carlo Methods in Financial Engineering. New York:
Springer Verlag.

Hilpisch, Yves. 2018. Python for Finance. 2nd ed. Sebastopol: O’Reilly.
Hilpisch, Yves. 2015. Derivatives Analytics with Python. Wiley Finance.
Pliska, Stanley. 1997. Introduction to Mathematical Finance. Malden and Oxford:

Blackwell Publishers.

Further Resources | 167

CHAPTER 7

Where to Go from Here?

An investment in knowledge pays the best interest.
—Benjamin Franklin

Politics is for the present, but an equation is for eternity.
—Albert Einstein

Congratulations. You have reached the final chapter of the book. If you have followed
the chapters diligently, you have already encountered many important ideas and con‐
cepts in both financial theory and Python programming. That is great. The topics
covered in this book, both with regard to breadth and depth, represent good starting
points for exploring the exciting and fast-changing world of computational finance.
However, there is much more to explore and learn. This final chapter provides sug‐
gestions for moving on and going deeper in one or several directions in Python for
finance.

Mathematics
This book makes use of different mathematical tools and techniques, such as from
linear algebra, probability theory, and optimization theory. The tools and techniques
applied to financial problems are fairly standard and do not require advanced mathe‐
matical skills to be put to beneficial use with Python. However, modern finance can
be considered an applied mathematics discipline, with some areas relying heavily on
advanced mathematics—such as option pricing or financial risk management.

The following list provides references for several standard textbooks that can be used
to improve your mathematical skills for finance:

169

Aleskerov, Fuad, Hasan Ersel and Dmitri Piontkovski. 2011. Linear Algebra for Econo‐
mists. Heidelberg: Springer Verlag.

Bhattacharya, Rabi and Edward Waymire. 2007. A Basic Course in Probability Theory.
New York: Springer Verlag.

Jacod, Jean and Philip Protter. 2004. Probability Essentials. Berlin and Heidelberg:
Springer Verlag.

Pemberton, Malcolm and Nicholas Rau. 2016. Mathematics for Economists—An Intro‐
ductory Textbook. 4th ed. Manchester and New York: Manchester University
Press.

Protter, Philip. 2005. Stochastic Integration and Differential Equations. 2nd ed. Berlin
and Heidelberg: Springer Verlag.

Rudin,Walter. 1987. Real and Complex Analysis. 3rd ed. London: McGraw-Hill.
Sundaram, Rangarajan. 1996. A First Course in Optimization Theory. Cambridge:

Cambridge University Press.
Williams, David. 1991. Probability with Martingales. Reprint 2001. Cambridge: Cam‐

bridge University Press.

Financial Theory
Finance is a vast domain with many different specializations. This book covers some
of the most important and popular financial models, such as the mean-variance port‐
folio theory, the Capital Asset Pricing Model, and the Black-Scholes-Merton option
pricing model. More generally speaking, it covers simple and more realistic static
model economies (with two points in time only) as well as dynamic model economies
to allow for uncertainty to resolve gradually over time. There are whole areas in
mathematical finance that are not covered, however, such as continuous time models
for option pricing that require additional, more advanced mathematical tools. The
book also does not discuss, for example, such important financial topics as the Effi‐
cient Market Hypothesis (EMH).

The following list provides several basic finance books that can be used to get a
broader overview of topics in financial theory and their underpinnings in economics:

Copeland, Thomas, Fred Weston and Kuldepp Shastri. 2005. Financial Theory and
Corporate Policy. 4th ed. Boston: Addison Wesley.

Eichberger, Jürgen and Ian Harper. 1997. Financial Economics. New York: Oxford
University Press.

Markowitz, Harry. 1959. Portfolio Selection—Efficient Diversification of Investments.
New York: John Wiley & Sons.

170 | Chapter 7: Where to Go from Here?

Milne, Frank. 1995. Finance Theory and Asset Pricing. New York: Oxford University
Press.

Pliska, Stanley. 1997. Introduction to Mathematical Finance. Malden and Oxford:
Blackwell Publishers.

Rubinstein, Mark. 2006. A History of the Theory of Investments. Hoboken: Wiley
Finance.

Varian, Hal. 1992. Microeconomic Analysis. 3rd ed. New York and London: W.W. Nor‐
ton & Company.

For those who want to dig deeper into advanced mathematical modeling in finance,
the following is a list of advanced textbooks about mathematical finance:

Baxter, Martin and Andrew Rennie. 1996. Financial Calculus—An Introduction to
Derivative Pricing. Cambridge: Cambridge University Press.

Björk, Tomas. 2004. Arbitrage Theory in Continuous Time. 2nd ed. Oxford: Oxford
University Press.

Delbaen, Freddy and Walter Schachermayer. 2006. The Mathematics of Arbitrage. Ber‐
lin: Springer Verlag.

Duffie, Darrell. 1988. Security Markets—Stochastic Models. San Diego: Academic
Press.

Duffie, Darrell. 2001. Dynamic Asset Pricing Theory. 3rd ed. Princeton: Princeton
University Press.

Elliot, Robert and Ekkehard Kopp. 2005. Mathematics of Financial Markets. 2nd ed.
New York: Springer Verlag.

Glasserman, Paul. 2004. Monte Carlo Methods in Financial Engineering. New York:
Springer Verlag.

Without doubt, it is also often rewarding and illuminating to read the seminal finance
articles from which the financial models and theories originated. You will also find
that many of these articles are surprisingly accessible. The following list references
such articles, the selection of which is inspired by the topics and methods covered in
this book:

Black, Fischer and Myron Scholes. 1973. “The Pricing of Options and Corporate Lia‐
bilities.” Journal of Political Economy 81 (3): 638–659.

Boyle, Phelim. 1977. “Options: A Monte Carlo Approach.” Journal of Financial Eco‐
nomics 4 (4): 322–338.

Cox, John and Stephen Ross. 1976. “The Valuation of Options for Alternative Sto‐
chastic Processes.” Journal of Financial Economics (3): 145–166.

Financial Theory | 171

Cox, John, Jonathan Ingersoll and Stephen Ross. 1985. “A Theory of the Term Struc‐
ture of Interest Rates.” Econometrica 53 (2): 385–407.

Cox, John, Stephen Ross and Mark Rubinstein. 1979. “Option Pricing: A Simplified
Approach.” Journal of Financial Economics 7 (3): 229–263.

Duffie, Darrell. 1986. “Stochastic Equilibria: Existence, Spanning Number, and the No
Expected Gains from Financial Trade Hypothesis.” Econometrica 54 (5): 1161–
1183.

Harrison, Michael and David Kreps. 1979. “Martingales and Arbitrage in Multiperiod
Securities Markets.” Journal of Economic Theory (20): 381–408.

Harrison, Michael and Stanley Pliska. 1981. “Martingales and Stochastic Integrals in
the Theory of Continuous Trading.” Stochastic Processes and their Applications
(11): 215–260.

Heston, Steven. 1993. “A Closed-Form Solution for Options with Stochastic Volatility
with Applications to Bond and Currency Options.” The Review of Financial Stud‐
ies 6 (2): 327–343.

Longstaff, Francis and Eduardo Schwartz. 2001. “Valuing American Options by Sim‐
ulation: A Simple Least Squares Approach.” Review of Financial Studies 14 (1):
113–147.

Markowitz, Harry. 1952. “Portfolio Selection.” Journal of Finance 7 (1): 77–91.
Merton, Robert. 1976. “Option Pricing when the Underlying Stock Returns are Dis‐

continuous.” Journal of Financial Economics, 3 (3): 125–144.
Perold, André. 2004. “The Capital Asset Pricing Model.” Journal of Economic Perspec‐

tives 18 (3): 3–24
Protter, Philip. 2001. “A Partial Introduction to Financial Asset Pricing Theory.” Sto‐

chastic Processes and their Applications (91): 169–203.
Sharpe, William. 1964. “Capital Asset Prices: A Theory of Market Equilibrium under

Conditions of Risk.” The Journal of Finance 19 (3): 425–442.

For those looking for a single, comprehensive reference, the Market Risk Analysis
book collection might be worth having a closer look:

Alexander, Carol. 2008. Market Risk Analysis I—Quantitative Methods in Finance.
Chicester: John Wiley & Sons.

Alexander, Carol. 2008. Market Risk Analysis II—Practical Financial Econometrics.
Chicester: John Wiley & Sons.

172 | Chapter 7: Where to Go from Here?

1 I like to think of this book as being what The Hobbit by J. R. R. Tolkien is to his Lord of the Rings trilogy. Of
course, there is no literary comparison implied here.

Alexander, Carol. 2008. Market Risk Analysis III—Pricing, Hedging and Trading
Financial Instruments. Chicester: John Wiley & Sons.

Alexander, Carol. 2008. Market Risk Analysis IV—Value-at-Risk Models. Chicester:
John Wiley & Sons.

Python Programming
Nowadays, there is a large number of resources available to learn Python program‐
ming. The following books have proven to be useful for me. When it comes to getting
a better Python programmer in general and you want to pick only one from the list,
you should go with the book by Ramalho (2021), which dives deep into the Python
programming language itself:

Harrison, Matt. 2017. Illustrated Guide to Python 3: A Complete Walkthrough of Begin‐
ning Python with Unique Illustrations Showing how Python Really Works. http://
hairysun.com.

McKinney, Wes. 2017. Python for Data Analysis. 2nd ed. Sebastopol: O’Reilly.
Ramalho, Luciano. 2021. Fluent Python. 2nd ed. Sebastopol: O’Reilly.
Ravenscroft, Anna, Steve Holden, and Alex Martelli. 2017. Python in a Nutshell. 3rd

ed. Sebastopol: O’Reilly.
VanderPlas, Jake. 2016. Python Data Science Handbook. Sebastopol: O’Reilly.

Python for Finance
This book is my sixth book about Python applied to finance. You might wonder:
“Why does the most basic, introductory textbook come only after the five other, more
advanced textbooks?” There is probably not a short, simple answer. However, the
writing of this book, Financial Theory with Python, was motivated by requests from
my readers of the other books and from our online training program participants.
Many were looking for a gentle introduction to both finance and Python program‐
ming—complementing the other books.1 Therefore, Financial Theory with Python
introduces both topics from scratch and thereby closes the initial gap, say, to get
started with the book Python for Finance, for which the reader is expected to have
some background in both finance and programming.

Python Programming | 173

http://hairysun.com
http://hairysun.com

My other five books are:

Hilpisch, Yves. 2020. Artificial Intelligence in Finance: A Python-Based Guide.
Sebastopol: O’Reilly.

Hilpisch, Yves. 2020. Python for Algorithmic Trading: From Idea to Cloud Deployment.
Sebastopol: O’Reilly.

Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed.
Sebastopol: O’Reilly.

Hilpisch, Yves. 2017. Listed Volatility and Variance Derivatives: A Python-Based
Guide. Wiley Finance.

Hilpisch, Yves. 2015. Derivatives Analytics with Python: Data Analysis, Models, Simu‐
lation, Calibration and Hedging. Wiley Finance.

Financial Data Science
Data science has become an important discipline and function in basically every
industry. In the same way, Financial Data Science has developed to become a core dis‐
cipline and function in finance. Ever-increasing data volumes make the application of
more advanced and sophisticated data logistics and management approaches neces‐
sary. Excel spreadsheets are for sure not enough anymore. My book Python for
Finance is primarily about Python for financial data science. Relevant topics that are
covered in parts II and III of that book include: data types and structures, numerical
computing with NumPy, data analysis with pandas, object-oriented programming, data
visualization, financial time series, input/output operations, performance Python,
mathematical tools, stochastics, and statistics (including basic machine learning).
After you have finished Financial Theory with Python, the book Python for Finance
represents a natural next step in leveling up your Python for finance skills.

Algorithmic Trading
Systematic or algorithmic trading has become the standard not only for hedge funds
but even for many retail traders. The availability of powerful APIs, even to retail trad‐
ers with smaller budgets, has given rise to a proliferation of algorithmic trading
strategies practically across all asset classes. While larger financial institutions in gen‐
eral have dedicated teams for every step of the trading process—from data analysis,
research, and backtesting to deployment, monitoring, and risk management—retail
traders generally need to take care of all of this on their own.

What a few years back might have seemed an almost impossible endeavor for a single
person can nowadays be relatively easily accomplished due to the powerful ecosystem
of Python. Retail traders with Python programming skills can in principle set up
an algorithmic trading operation within weeks or even days. My book Python for

174 | Chapter 7: Where to Go from Here?

Algorithmic Trading covers the main Python skills required in this context and leads
the reader from data management and idea generation to the backtesting of strategies
and their automated deployment in the cloud.

Part IV of Python for Finance also covers key skills in Python for algorithmic trading.
While it’s not as detailed as Python for Algorithmic Trading, readers should neverthe‐
less be able, based on the self-contained resources in Python for Finance, to efficiently
generate and deploy a trading strategy that places trades automatically.

For both the Python for Algorithmic Trading book and part IV of Python for Finance,
it is helpful but not necessarily required for the reader to have studied Financial
Theory with Python and Python for Finance (Parts I, II, and III) beforehand.

Computational Finance
Quantitative and computational finance have long been dominated by compiled pro‐
gramming languages, such as C or C++. This is because the speed of the execution of
oftentimes complex numerical computations and simulations is of the essence—in
particular when scalability is required by larger financial institutions. While pure
Python might indeed be too slow to implement, say, computationally demanding
simulation algorithms, packages such as NumPy and pandas allow much faster execu‐
tion times when used appropriately. Such packages provide high-level programming
APIs to functionality that is implemented in performant C code in general. This often
allows for speed-ups compared to pure Python code of 10–30 times, making Python
plus specialized packages a valid alternative for computational finance these days.

My book Derivatives Analytics with Python introduces the major mathematical and
financial concepts required to price and hedge derivatives in a market-based way—
that is, based on market-calibrated pricing models. The book provides a self-
contained Python code base that implements all algorithms and techniques from
scratch, making heavy use of the capabilities of NumPy. Those having read Financial
Theory with Python and Python for Finance (parts I, II, and III) are well equipped to
deepen their knowledge in mathematical and computational finance with Derivatives
Analytics with Python.

Part V of Python for Finance develops a simple version of my derivatives pricing
library DX Analytics. It shows how the concepts, approaches, and numerical methods
from Derivatives Analytics with Python can be used to create a flexible and powerful
pricing library based on Monte Carlo simulation. Those who need additional models
and even more capabilities—such as for risk measurement and management—can, of
course, use the DX Analytics open source package itself.

Volatility as an asset class has become quite important over recent years. Be it to man‐
age risk or to generate additional alpha, listed volatility and variance derivatives are
used around the globe in systematic fashion. The book Listed Volatility and Variance

Python for Finance | 175

https://dx-analytics.com

Derivatives introduces the main concepts of trading and pricing such financial instru‐
ments and provides a self-contained Python code base illustrating all concepts—such
as the model-free replication of variance or the calculation volatility indices—in an
easy-to-reproduce way.

Artificial Intelligence
It is safe to assume that artificial intelligence (AI) will play a dominant role in finance
in the future, as it does already in so many other industries. Basically every financial
institution has initiated projects to explore the potential of AI to improve operations,
to save costs, to generate alpha, and so forth. Algorithms from machine learning,
deep learning, and reinforcement learning are basically tested and in use in every
field of finance. Researchers and academics are also publishing papers at the intersec‐
tion of AI and finance with ever-increasing speeds.

My book Artificial Intelligence in Finance provides in part I background and historical
information about AI and its success stories. It proceeds in part II to discuss tradi‐
tional financial theory and recent advances in the field, such as data-driven finance
and AI-first finance. Part II also discusses machine learning as a process. Part III of
the book introduces and discusses major models and algorithms from deep learning,
such as dense neural networks (DNNs), recurrent neural networks (RNNs), and rein‐
forcement learning (Q-learning). Part IV of the book illustrates how statistical ineffi‐
ciencies in financial markets can be economically exploited through algorithmic
trading, that is, by a trading bot who interactively learns how to trade based on a Q-
learning algorithm. Part V of the book discusses consequences of AI-first finance for
the competitive landscape in the financial industry. It also discusses the possibility of
a financial singularity—that is, a point in time from which an artificial financial intel‐
ligence (AFI) exists that, for example, can generate (almost) perfect predictions about
future prices in the markets.

The book Artificial Intelligence in Finance can be considered complementary to the
book Python for Algorithmic Trading in that it discusses in detail the formulation,
backtesting, and risk management of AI-powered algorithmic trading strategies.
Readers do not have to have read the algorithmic trading book before diving into the
fascinating world of AI in finance. However, a solid understanding of Python for
finance, based on this book and parts I to III of Python for Finance, is helpful.

Other Resources
You might have noticed that this section discusses only my own books about Python
for finance. The very purpose of this section is to guide the reader who has finished
this book through my other works. For sure, there are many other resources in book
form available today that cover, for example, Python topics related to finance or
machine learning algorithms as applied to finance. While other authors also offer

176 | Chapter 7: Where to Go from Here?

valuable content and guidance, readers who like this book will probably also like my
other books since they are similar in style and approach.

While some readers learn most efficiently using books and the accompanying code
only, others like a more interactive, guided learning experience. My company The
Python Quants GmbH has for years offered comprehensive online training programs
that teach the skills from my books and much more in a systematic, structured way.
There are three different online training programs available at the time of this
writing:

• Python for Algorithmic Trading
• Python for Computational Finance
• Python for Asset Management

These three programs can also be combined into a single program for those who ben‐
efit from all core topics.

Final Words
Congratulations again. With Financial Theory with Python you have laid the founda‐
tions for your next exciting steps with Python for finance. This chapter provides a
wealth of resources for you to explore. If you see Python for finance as a skill that you
train for regularly, diligently, and systematically, you will probably reach black-belt
level sometime soon. Such an achievement is not only personally rewarding, it also
guarantees you a successful future because Python for finance has undoubtedly
become a key skill in the financial industry. May the Python force be with you.

Final Words | 177

https://oreil.ly/r4l7y
https://oreil.ly/0h4Ej
https://oreil.ly/ubbLm
https://oreil.ly/xc4qe

Index

A
absolute price, 101, 104
agents, 18

expected utility, 93-95
optimal investment portfolio, 95-98
time-additive, 98-99

representative, 83
complete market equilibrium pricing,

99-106
incomplete market equilibrium pricing,

106-115
static economy pricing, 143-144

utility maximization
conditions for functions, 88
indifference curves, 86-87
logarithmic utility function, 89-90
time-additive, 90-93
utility functions, 84-86

AI (artificial intelligence)
period in finance, 2
resources for information, 176
trends in finance, 4

AI-first finance, 2
algebra, defined, 118-119

(see also linear algebra)
algorithmic trading, resources for information,

174
ambiguity, 30
American option pricing

in binomial model, 153-154
Monte Carlo simulation, 164-165
vectorization, 156-157

ancient period of finance, 2
approximate replication, 71-72

arbitrage opportunities, 129
arbitrage pricing, 40-42

equilibrium pricing and, 101
risk-less interest rates, 102
simple, 50
weak, 50

arbitrage, defined, 41
arrays in Python, 7
Arrow-Debreu securities, 47-49, 61, 99, 100,

127, 143
artificial intelligence (see AI)
assets

derivative, 35, 124, 175
financial, 28-29, 60

Black-Scholes-Merton option pricing,
133-138

CAPM (capital asset pricing model),
75-80

complete market equilibrium pricing,
99-106

Fundamental Theorems of Asset Pricing,
50-52, 129-133

incomplete market equilibrium pricing,
106-115

risk-less interest rates, 102
in static economy, 122-124

real, 18
atomic events, 119
attainable contingent claims, 61-63, 109

B
backward induction, 152-153
basis of vector space, 43, 126
binomial option pricing, 148-159

179

Python loops, 151-154
speed comparison, 157-159
vectorization, 154-157

binomial_looping() function, 157
Black-Scholes-Merton option pricing

in dynamic model, 159-165
in static model, 133-138

budget constraints, 86, 94, 112

C
call options

arbitrage pricing, 40-42
defined, 35
payoff, 35-36
pricing by expectation, 51
replication of payoff, 37-40

capital market line (CML), 73-75
CAPM (capital asset pricing model), 75-80
cash flow, 21-26

interest, 23
net present value, 25
present value, 24-25
return and rate of return, 23

classical period of finance, 2
CML (capital market line), 73-75
column vectors, 26
complete market model

in Black-Scholes-Merton option pricing,
137-138

contingent claims, 42-47
equilibrium pricing, 99-106
martingale pricing in, 66
MVP and CAPM and, 80
in static economy, 125-129

computational finance, resources for informa‐
tion, 175

computational period of finance, 2
conda, 10-12
constrained optimization problem, 94
contingent claims, 35-47

arbitrage pricing, 40-42
attainable, 61-63
complete market model, 42-47
equilibrium pricing and, 109
replication, 37-40
in static economy, 124-125

Cox-Ross-Rubinstein model, 148-159
Python loops, 151-154
speed comparison, 157-159

vectorization, 154-157

D
data science, resources for information, 174
data trends in finance, 3-4
Delbaen and Schachermayer quote, 17, 117
derivatives

contingent claims and, 35, 124
resources for information, 175

discounting, 24-25
discrete finance models, 122
discrete time, 147
dot product, 31-32
dual problem, 130
Duffie, Darrell, 17, 83, 147
dynamic economy

binomial option pricing, 148-159
Black-Scholes-Merton option pricing,

159-165

E
earning interest, 23
economy, 18

(see also model economies)
defined, 18
states of, 26

economy under ambiguity, 30
economy under risk, 30
English language in finance, 4
equilibrium model, CAPM as, 78
equilibrium pricing

in complete market model, 99-106
in incomplete market model, 106-115
risk-less interest rates, 102

Euler discretization, 160
European option pricing

in binomial model, 152-153
Monte Carlo simulation, 163-164
uncertainty in payoff, 6
vectorization, 156-157

EUT (expected utility theory), 95
excess demand, 78
executing code, 13
expectation, 31-32

pricing by, 51
expected rate of return, 32
expected return, 32-33
expected utility function, 93-95

optimal investment portfolio, 95-98

180 | Index

time-additive, 98-99
expected utility maximization paradigm, 83

F
financial assets, 28-29, 60

Black-Scholes-Merton option pricing,
133-138

CAPM (capital asset pricing model), 75-80
complete market equilibrium pricing,

99-106
Fundamental Theorems of Asset Pricing,

50-52, 129-133
incomplete market equilibrium pricing,

106-115
risk-less interest rates, 102
in static economy, 122-124

financial language, 4
financial theory

history of, 2-3
languages of, 4-5
Python and, 4, 5
Python resources, 173-177
resources for information, 170-173
trends in, 3-4
uncertainty, 5-8

First Fundamental Theorem of Asset Pricing,
50, 129-132

Fletcher, Laurence, 1
floating point numbers, 6, 20
Franklin, Benjamin, 169
full rank, 127
Fundamental Theorems of Asset Pricing

in static economy, 129-133
in two-state model economy, 50-52

G
general static economy (see static economy)
generalization, benefits of, 118

H
Harrison and Kreps quote, 117
hedging risk, 67
history of finance, 2-3

I
incomplete market model, 63

equilibrium pricing, 106-115
martingale pricing in, 66

in Merton jump-diffusion option pricing,
143

indifference curves, 86-87
inflows (cash), 21
inner product, 31-32
installing Python, 10-15
integers in Python, 19
interest, 23
interest rate, 24
IPython, 9

installing, 12
starting, 13

J
jump-diffusion option pricing, 138-143
Jupyter Notebooks, opening, 13-15
JupyterLab, 9

installing, 12
starting, 13

L
languages of finance, 4-5
least-squares approach, 137-138
Least-Squares Monte Carlo (LSM), 164-165
linear algebra

defined, 6
in discrete finance models, 122
NumPy and ndarray for, 34
OLS (ordinary least-squares) regression,

71-72
system of linear equations, 37

linear combinations of vectors, 27
linearly dependent/independent, 37, 125
lists in Python, 21-22
local installation of Python, 10-15
logarithmic utility functions, 89-90
Longstaff and Schwartz algorithm, 2
loops (Python), 151-154, 157-159
LSM (Least-Squares Monte Carlo), 164-165

M
market completeness

in Black-Scholes-Merton option pricing,
137-138

contingent claims, 42-47
equilibrium pricing, 99-106
martingale pricing in, 66
MVP and CAPM and, 80

Index | 181

in static economy, 125-129
market incompleteness, 63

equilibrium pricing, 106-115
martingale pricing in, 66
in Merton jump-diffusion option pricing,

143
market payoff matrix, 94, 122

market completeness and, 125-129
in representative agent pricing, 143-144

market portfolio, 73
Markowitz, Harry, 83
martingale measures

defined, 49
in equilibrium pricing, 102, 105, 108
in incomplete market model, 109

martingale pricing
in fundamental theorems, 133
in static economy, 129
in three-state economy, 64-67
in two-state economy, 49-52

martingale probability, 149
mathematics

as language of finance, 5
resources for information, 169-170
trends in finance, 3

matplotlib, 9
installing, 12
span, 43-47

matrices, 38-40
matrix form for replication problem, 39
matrix multiplication, defined, 39
mean, 52
mean squared error (MSE), 71-72
mean-variance portfolio (MVP) theory, 3,

52-56, 80
Merton jump-diffusion option pricing, 138-143
Milne, Frank, 1
Miniconda, 10
Miniforge, 11
minimization problems, 69-70
minimize function (SciPy), 96
model economies

dynamic
binomial option pricing, 148-159
Black-Scholes-Merton option pricing,

159-165
static, 117

Black-Scholes-Merton option pricing,
133-138

contingent claims, 124-125
financial assets, 122-124
Fundamental Theorems of Asset Pricing,

129-133
market completeness, 125-129
Merton jump-diffusion option pricing,

138-143
representative agent pricing, 143-144
uncertainty, 118-121

three-state, 59
approximate replication, 71-72
attainable contingent claims, 61-63
CAPM (capital asset pricing model),

75-80
CML (capital market line), 73-75
financial assets, 60
martingale pricing, 64-67
risk-neutral pricing, 67
super-replication, 67-70
uncertainty, 60

two-state, 17
agents, 18
Arrow-Debreu securities, 47-49
cash flow, 21-26
contingent claims, 35-47
financial assets, 28-29
martingale pricing, 49-52
money, 20
MVP (mean-variance portfolio) theory,

52-56
real assets, 18
risk, 29-34
time, 19
uncertainty, 26-28

modern period of finance, 2
money, 20
Monte Carlo simulation, 134, 159-165

for American put options, 164-165
for European put options, 163-164
Longstaff and Schwartz algorithm, 2

MSE (mean squared error), 71-72
MVP (mean-variance portfolio) theory, 3,

52-56, 80

N
natural basis for vector space, 48
natural language of finance, 4
natural logarithm, 89
natural numbers, 19

182 | Index

ndarray, 7, 27
dot product, 31
for linear algebra and probability theory, 34
loops, 151-154
matrices, 39
probability measure, 30

net present value, 25
np.linalg.lstsq function, 71-72, 137-138
np.linalg.solve function, 137
numeraire, 20
NumPy, 8

dot product, 31
financial asset modeling, 28
installing, 12
least-squares approach, 137-138
for linear algebra and probability theory, 34
loops, 151-154
matrices, 39
OLS (ordinary least-squares) regression,

71-72
vector modeling, 7, 27-28, 154-157

O
OLS (ordinary least-squares) regression, 71-72
opening Jupyter Notebooks, 13-15
opportunity costs, 24
optimal portfolio choice, 83

constrained optimization problem, 94
expected utility and, 95-98
unconstrained optimization problem, 95

ordered pairs, 21
ordinary least-squares (OLS) regression, 71-72
outflows (cash), 21

P
pandas, 8, 12
paying interest, 23
payoff of call options, 35-36

European, 6
replication, 37-40

Pliska, Stanley, 59, 147
portfolio strategy, 39
power set, 60
present value, 24-25
price process of financial assets, 28
pricing by expectation, 51
probability measure, 29, 119
probability space, 29, 60, 119
probability theory

contingent claims in, 35
in discrete finance models, 122
NumPy and ndarray for, 34

probability, defined, 119
programming language of finance, 5
pure investment problem, 93
Python

finance and, 4, 5
installing, 10-15
Quant Platform, 9
requirements for, 8-9
resources for information, 173-177

Python environment, creating, 11
Python loops, 151-154, 157-159

Q
Quant Platform, 9

R
random variables

contingent claims as, 35
payoffs represented by, 6
in static economy, 119

rate of return
defined, 23
expected, 32

real assets, 18
real numbers, 6, 20
recombining binomial tree, 149
relative price, 100, 104, 112
replication, 37-40

approximate, 71-72
of contingent claims, 124-125
dual problem, 130
super-replication, 67-70

representative agents
complete market equilibrium pricing,

99-106
defined, 83
incomplete market equilibrium pricing,

106-115
static economy pricing, 143-144

requirements for Python, 8-9
resources for information

AI (artificial intelligence), 176
algorithmic trading, 174
computational finance, 175
data science, 174
financial theory, 170-173

Index | 183

mathematics, 169-170
Python, 173-177

return
defined, 23
expected, 32-33

risk, 29-34
ambiguity versus, 30
expectation, 31-32
expected return, 32-33
hedging, 67
probability measure, 29
volatility, 33-34

risk-adjusted discount factors, 80
risk-less interest rates, 102
risk-neutral pricing, 67
risk-return trade-off in market equilibrium, 79

S
scalar addition/multiplication, 26
SciPy, 9

installing, 12
minimization problems, 69-70
minimize function, 96

Second Fundamental Theorem of Asset Pricing,
52, 132

security market line (SML), 77
set of attainable contingent claims, 42, 61
Sharpe, William, 59
short selling, 38
simple arbitrage, 50
SML (security market line), 77
span

defined, 42, 61
of market payoff matrix, 125
matplotlib and, 43-47

standard basis for vector space, 48
state prices, 102
state space, 29, 60
states of economy, 26
static economy, 19, 117

Black-Scholes-Merton option pricing,
133-138

contingent claims, 124-125
financial assets, 122-124
Fundamental Theorems of Asset Pricing,

129-133
market completeness, 125-129
Merton jump-diffusion option pricing,

138-143

representative agent pricing, 143-144
uncertainty, 118-121

static three-state economy (see three-state
model economy)

strike price, 35
super-replication, 67-70
SymPy, 9

installing, 12
martingale measures, 105

system of linear equations, 37

T
technology trends in finance, 3
three-state model economy, 59

approximate replication, 71-72
attainable contingent claims, 61-63
CAPM (capital asset pricing model), 75-80
CML (capital market line), 73-75
financial assets, 60
martingale pricing, 64-67
risk-neutral pricing, 67
super-replication, 67-70
uncertainty, 60

time, 19
time-additive expected utility function, 98-99
time-additive utility functions, 90-93
trading strategy, 39
tuples in Python, 21-22
two-state model economy, 17

agents, 18
Arrow-Debreu securities, 47-49
cash flow, 21-26
contingent claims, 35-47
financial assets, 28-29
martingale pricing, 49-52
money, 20
MVP (mean-variance portfolio) theory,

52-56
real assets, 18
risk, 29-34
time, 19
uncertainty, 26-28

two-tuples, 21

U
uncertainty, 5-8

expected utility, 93-95
optimal investment portfolio, 95-98
time-additive, 98-99

184 | Index

risk versus ambiguity, 30
in static economy, 118-121
in three-state economy, 60
in two-state economy, 26-28

unconstrained optimization problem, 95
unit price of risk, 79
utility functions, 84-86

conditions for, 88
expected utility, 93-95

optimal investment portfolio, 95-98
time-additive, 98-99

logarithmic, 89-90
time-additive, 90-93

utility maximization
conditions for functions, 88
indifference curves, 86-87
logarithmic utility function, 89-90
time-additive utility function, 90-93
utility functions, 84-86

V
value process of portfolio, 41
variance, 33, 52

vector space
basis, 43, 126
defined, 6, 126
standard basis, 48

vectorization
in binomial model, 154-157
speed comparison with Python loops,

157-159
vectors

cash flow, 26-28
defined, 6, 126
modeling with NumPy, 27-28
probability measure, 30

volatility
defined, 33-34
in MVP (mean-variance portfolio) theory,

52
resources for information, 175

W
weak arbitrage, 50
weighted average, 31

Index | 185

About the Author
Dr. Yves J. Hilpisch is founder and CEO of The Python Quants, a group focusing on
the use of open source technologies for financial data science, artificial intelligence,
algorithmic trading, computational finance, and asset management. He is also
founder and CEO of The AI Machine, a company focused on AI-powered algorith‐
mic trading via a proprietary strategy-execution platform.

In addition to this book, he is the author of the following books:

• Artificial Intelligence in Finance (O’Reilly, 2020)
• Python for Algorithmic Trading (O’Reilly, 2020)
• Python for Finance (2nd ed., O’Reilly, 2018)
• Listed Volatility and Variance Derivatives (Wiley, 2017)
• Derivatives Analytics with Python (Wiley, 2015)

Yves is an adjunct professor of Computational Finance and lectures on Algorithmic
Trading at the CQF Program. He is also the director of the first online training pro‐
grams leading to University Certificates in Python for Algorithmic Trading, Python
for Computational Finance, and Python for Asset Management, respectively.

Yves wrote the financial analytics library DX Analytics and organizes meetups, con‐
ferences, and bootcamps about Python for quantitative finance and algorithmic trad‐
ing in London, Frankfurt, Berlin, Paris, and New York. He has given keynote speeches
at technology conferences in the United States, Europe, and Asia.

http://tpq.io
http://aimachine.io
http://books.tpq.io
http://aiif.tpq.io
http://py4at.tpq.io
http://py4fi.tpq.io
http://lvvd.tpq.io
http://dawp.tpq.io
http://cqf.com
https://oreil.ly/Yyy1Y
https://oreil.ly/TirLm
https://oreil.ly/TirLm
https://oreil.ly/ubbLm
http://dx-analytics.com

Colophon
The animal on the cover of Financial Theory with Python is a crowned moon snake
(Furina ornata). More commonly known as the orange-naped snake, this small vene‐
mous snake is native to northern and northwestern Australia. It is commonly identi‐
fied by the red blotch on its nape that is not completely enclosed by the black bands
above and below it.

The crowned moon snake’s conservation status is “Least Concern.” Many of the ani‐
mals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	Why This Book?
	Target Audience
	Overview of the Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Finance and Python
	A Brief History of Finance
	Major Trends in Finance
	A Four-Languages World
	The Approach of This Book
	Getting Started with Python
	Conclusions
	References

	Chapter 2. Two-State Economy
	Economy
	Real Assets
	Agents
	Time
	Money

	Cash Flow
	Return
	Interest
	Present Value
	Net Present Value

	Uncertainty
	Financial Assets
	Risk
	Probability Measure
	Expectation
	Expected Return
	Volatility

	Contingent Claims
	Replication
	Arbitrage Pricing
	Market Completeness

	Arrow-Debreu Securities
	Martingale Pricing
	First Fundamental Theorem of Asset Pricing
	Pricing by Expectation
	Second Fundamental Theorem of Asset Pricing

	Mean-Variance Portfolios
	Conclusions
	Further Resources

	Chapter 3. Three-State Economy
	Uncertainty
	Financial Assets
	Attainable Contingent Claims
	Martingale Pricing
	Martingale Measures
	Risk-Neutral Pricing

	Super-Replication
	Approximate Replication
	Capital Market Line
	Capital Asset Pricing Model
	Conclusions
	Further Resources

	Chapter 4. Optimality and Equilibrium
	Utility Maximization
	Indifference Curves
	Appropriate Utility Functions
	Logarithmic Utility
	Time-Additive Utility

	Expected Utility
	Optimal Investment Portfolio
	Time-Additive Expected Utility

	Pricing in Complete Markets
	Arbitrage Pricing
	Martingale Pricing

	Risk-Less Interest Rate
	A Numerical Example (I)
	Pricing in Incomplete Markets
	Martingale Measures
	Equilibrium Pricing

	A Numerical Example (II)
	Conclusions
	Further Resources

	Chapter 5. Static Economy
	Uncertainty
	Random Variables
	Numerical Examples

	Financial Assets
	Contingent Claims
	Market Completeness
	Fundamental Theorems of Asset Pricing
	Black-Scholes-Merton Option Pricing
	Completeness of Black-Scholes-Merton
	Merton Jump-Diffusion Option Pricing
	Representative Agent Pricing
	Conclusions
	Further Resources

	Chapter 6. Dynamic Economy
	Binomial Option Pricing
	Simulation and Valuation Based on Python Loops
	Simulation and Valuation Based on Vectorized Code
	Speed Comparison

	Black-Scholes-Merton Option Pricing
	Monte Carlo Simulation of Stock Price Paths
	Monte Carlo Valuation of the European Put Option
	Monte Carlo Valuation of the American Put Option

	Conclusions
	Further Resources

	Chapter 7. Where to Go from Here?
	Mathematics
	Financial Theory
	Python Programming
	Python for Finance
	Financial Data Science
	Algorithmic Trading
	Computational Finance
	Artificial Intelligence
	Other Resources

	Final Words

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

