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Preface
The world of trading markets is complex, but it can be made easier with technology. Sure, 
you know how to code, but where do you start? What programming language do you use? 
How do you solve the problem of latency? The Developing High-Frequency Trading Systems 
book answers all these questions.

This practical guide will help you navigate the fast-paced world of algorithmic trading 
and show you how to build a high-frequency trading system from complex technological 
components supported by accurate data.

Starting with an introduction to high-frequency trading (HFT), exchanges, and the 
critical components of a trading system, the book quickly moves on to the nitty-gritty 
of optimizing hardware and your operating system (OS) for low-latency trading, such 
as bypassing the kernel, memory management, and the danger of context switching. 
Monitoring your system's performance is vital, so you'll also get up to speed with logging 
and statistics.

As you move beyond the traditional high-frequency trading programming languages, 
such as C++ and Java, you'll learn how to use Python to achieve high-performance levels. 
And what book on trading would be complete without diving into cryptocurrency?

By the end of this book, you'll be ready to take on the markets with high-frequency 
trading systems.

Who this book is for
This book is for software engineers, quantitative developers or researchers, and  
DevOps engineers who want to understand the technical side of high-frequency  
trading systems and the optimizations needed to achieve ultra-low latency systems.  
Prior experience working with C++ and Java will help you grasp the topics covered in  
this book more easily.
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What this book covers
Chapter 1, Fundamentals of a High-Frequency Trading System, gives an overview of the 
history of high-frequency trading. You will learn about the market participants, the 
fundamental HFT requirements (low latency connectivity and infrastructure), the trading 
time horizons in HFT versus non-HFT, and the holding periods/position management 
(HFT versus Ultra HFT). We will also detail HFT-specific strategies to make money.

Chapter 2, The Critical Components of a Trading System, explains in-depth how a trading 
system works. You will learn how the market data gets into the system, and the different 
functionalities needed to handle the data and send an order to the exchange.

Chapter 3, Understanding the Trading Exchange Dynamics, introduces how trading 
exchanges are a part of the microstructure of markets. We will start by giving the general 
infrastructure of an exchange, and we will talk about how the matching engine works and 
how the orders are matched and promoted to all the market participants.

Chapter 4, HFT System Foundations – From Hardware to OS, clarifies how the hardware 
and OS work together. You will have a clear understanding of the functions of the software 
interaction with the OS and the hardware. This chapter will go from the processor to 
the trading system, explaining all the layers between including the OS, networking, OS 
scheduler, and memory.

Chapter 5, Networking in Motion, expresses how networking benefits HFT. You will 
have a clear understanding of the functions of the network stack and its use when 
communicating between a trading system and an exchange.

Chapter 6, HFT Optimization – Architecture and Operating System, expounds on creating 
a HFT system from a regular trading system. This section will cover many modern 
techniques to achieve optimal low latency performance for HFT applications specifically. 
We will talk about the OS features and its scheduler, and we will do a deep dive into the 
kernel function of the OS. 

Chapter 7, HFT Optimization – Logging, Performance, and Networking, covers a vital  
part of trading systems: logging and networking. You will understand how logging  
helps to monitor an HFT system, and we will learn how to make it efficient in a context 
of HFT. Finally, we will cover how to use networking to optimize communication with 
trading exchanges.

Chapter 8, C++ – The Quest for Microsecond Latency, defines the use of C++ in a  
context of an ultra-low latency system by optimizing cache, memory, and code  
execution. You will learn about modern C++ features and techniques to write ultra-low 
latency code efficiently.
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Chapter 9, Java and JVM for Low-Latency Systems, details the use of Java in a context  
of an ultra-low latency system by optimizing garbage collection, communication, and  
data structure.

Chapter 10, Python – Interpreted but Open to High Performance, illustrates how to  
use Python in an HFT system. This chapter explains how to create and use HFT  
libraries in Python.

Chapter 11, High-Frequency FPGA and Crypto, depicts how to use field programmable 
gate array (FPGA) to create an even faster HFT system. It will introduce building an HFT 
system for crypto in the cloud.

To get the most out of this book 
This book assumes that you are familiar with programming, hardware architecture,  
and OS. Because this book will discuss the optimizations required to reduce the tick-to-
trade latency, it is essential to have the minimal knowledge of computer engineering.

Most of the HFT systems run with a Unix-based OS. We will recommend using a Linux 
OS to apply your knowledge of this book.

This book is a reservoir of knowledge from many computer engineering and finance 
domains. We recommend reading other Packt books such as the following:

•	 Linux Kernel Programming (https://www.packtpub.com/product/
networking-and-servers/9781789953435)

•	 Java Programming for Beginners (https://www.packtpub.com/product/
application-development/9781788296298)

•	 C++ High Performance (https://www.packtpub.com/product/
programming/9781839216541)

We also recommend reading books such as Compilers: Principles, Techniques, and Tools, 
and Computer Architecture: A Quantitative Approach. These books will give you more 
in-depth knowledge of the optimization we are using for HFT.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803242811_ColorImages.pdf.

https://www.packtpub.com/product/networking-and-servers/9781789953435
https://www.packtpub.com/product/networking-and-servers/9781789953435
https://www.packtpub.com/product/application-development/9781788296298
https://www.packtpub.com/product/application-development/9781788296298
https://www.packtpub.com/product/programming/9781839216541
https://www.packtpub.com/product/programming/9781839216541
https://static.packt-cdn.com/downloads/9781803242811_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803242811_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "It offers one producer to one consumer (OneToOneRingBuffer) 
or many producers to one consumer (ManyToOneRingBuffer) solutions."

A block of code is set as follows:

/* Put header files here or function declarations like below */

 extern int add_1(int n);

 extern int add(int n, int m);

Any command-line input or output is written as follows:

>>> import math

 >>> math.add_1(5)

 6

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "The Load 
Data component (annotation 1) will help get historical data."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us  
at customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

mailto:customercare@packtpub.com
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Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have  
expertise in and you are interested in either writing or contributing to a book,  
please visit authors.packtpub.com.

Share Your Thoughts
Once you've read Developing High-Frequency Trading Systems, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

mailto:copyright@packt.com
https://packt.link/r/1-803-24281-7




By the end of this introduction, you will have a quick overview of the history of  
high-frequency trading (HFT). You will know about the market participants, the 
fundamental HFT requirements (low latency connectivity and infrastructure), the  
trading time horizons in HFT versus non-HFT, and the holding periods/position 
management (HFT versus ultra HFT). We will also talk about the places for HFT. This 
book is not about the business of trading or HFT; it is about how to implement an HFT 
system concretely by using Java, C++, and Python. You will know how a trading system 
works and which trading strategies you can run.

This part comprises the following chapters:

•	 Chapter 1, Fundamentals of a High-Frequency Trading System

•	 Chapter 2, The Critical Components of a Trading System

•	 Chapter 3, Understanding the Trading Exchange Dynamics

Part 1:  
Trading Strategies, 

Trading Systems,  
and Exchanges





1
Fundamentals of 
a High-Frequency 

Trading System
Welcome to Developing High-Frequency Trading Systems!

High-Frequency Trading (HFT) is a form of automated trading. For the last twenty years, 
HFT has gained recognition in the media and in society. A book called Flash Boys: A Wall 
Street Revolt, written by Michael Lewis in 2014, topped the sales on the New York Times 
Best Seller list for three weeks. It relates to an investigation into the HFT industry and its 
impact on the trading world. Scholars, the financial world, and the non-financial world 
are fascinated by this form of trading. Meanwhile, this new era of trading has created a lot 
of fear while giving more and more control to machines.

The goal of this book is to review what HFT is and how to build such a system from a 
technical perspective. HFT is a multi-disciplinary matter involving thorough knowledge 
of computer architecture, operating systems, networking, and programming. By the end 
of this book, you will understand how to build a trading system from scratch by using the 
most advanced technical choices for optimizing speed and scalability. We chose to divide 
this book into three main parts.
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In the first part, we'll go through how HFT tactics function and what kind of trading we 
may expect from HFT. Then we will go over the functions of an HFT system. We will 
conclude this part with a description of how a trading exchange works.

In the second part of this book, we will explain the theory of operating systems and 
hardware and the required knowledge to optimize a trading system, taking into account 
the hardware and operating system features.

The final part will explain in detail how to use C++, Java, Python, and FPGA to create an 
HFT system. We will also extend this knowledge to crypto trading, and we will review 
how to build a trading system in the cloud.

In this chapter, we will talk about how we got into HFT. We will review what kind of 
trading strategies work for HFT. We will explain in detail what makes HFT so different 
from regular trading.

Our objective in this chapter is to cover the following topics:

•	 History of HFT

•	 What HFT is

•	 Who the participants are

•	 What trading strategies work in HFT

History of HFT
Let's discuss the history of exchanges and financial markets prior to 1930.

When we talk about HFT, it is difficult to give a precise date for when it started. We need 
to come back to the primitive times when trade arose from human contact. Before the 
invention of modern-day cash, ancient people relied heavily on trading to trade products 
and services with one another in a gift economy. Long-distance trade extends back to 
almost 150,000 years ago, according to Peter Watson. Year after year, with more people, 
more goods, and more money, trading became one of the major activities of humankind. 
It is obvious that making money implies more business. One of the parameters was speed. 
If you make more transactions, you will make more money. Many stories describe the 
ambition of traders to get technologies such as better transportation to make deals more 
quickly or to get news more quickly to take advantage of other folks who do not have 
access to these new technical means. 
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We did not have to wait for too long before seeing cases of unfair trade involving those 
who have technical advantages over others. In 1790, a Georgia representative spoke to the 
US House of Representatives to expose high-speed traders. Indeed, Congress was debating 
the Secretary of the Treasury Alexander Hamilton's proposal that the US government 
absorb the previous debts accrued by the states during the Revolution (Funding Act of 
1790). Traders who had learned the decision immediately bought or rented rapid boats. 
Their goal was to front-run messengers and buy the old debts since the passage of the Act 
would increase the market value. During the twentieth century, the idea of speed trading 
or HFT appeared.

The post-1930s era
Trading is the exchange of items for other items. It can be financial products, services, 
cash, digital assets, and more. One of the goals of trading is to make a profit from these 
transactions. The number of transactions will be correlated with the quantity of money 
generated by the exchange of assets. When we manage to increase the ratio between 
the number of transactions and the time, we can increase the profitability over time. 
Therefore, being capable of increasing the number of transactions is critical. Trading 
actors understood very quickly that they needed to shorten the trading time and started 
gathering in some specific places. They used to place their orders in these locations, which 
we call today the trading exchange (or trading floor). Major events participated in the 
expansion of fast-speed automated trading:

•	 1969: Instinet was one of the first automated system infrastructures. It speeded up 
the adhesion of high-speed transactions.

•	 1971: The National Association of Securities Dealers Automated  
Quotations (NASDAQ) was created in 1971 with electronic transactions. 

It was the world's first electronic stock market. Initially, it only used to  
send quotations.

•	 1996: Island ECN was the pioneering electronic communication network for  
US equities trading, while Archipelago facilitated electronic trading on the  
US trading exchange by creating Archipelago Exchange (ArcaEx).

•	 2000s: 10% of transactions are HFT transactions.

The financial sector gathered more and more technologists in the early 2000s. By getting 
this technological intake, the sector started evolving sharply. Automation, throughput, 
performance, and latency became words that were well known by trading firms. The 
HFT transactions reached more than 10% of the market. By 2009, 2% of trading firms 
accounted for 75% of the equity volume. Nowadays, only a few firms remain in HFT, such 
as Virtu, Jump, Citadel, IMC, and Tower.
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The modern era
The post-1930s era focused on transparency and regulation in the equities markets  
(and the pit in commodities markets). The modern era gives prominence to electronic 
trading and improves transparency. In 2000, the US Securities and Exchange 
Commission (SEC) proposed the Central Limit Order Book (CLOB). The CLOB is a 
transparent system matching orders between participants. Many more exchanges (such 
as Island and Arca) came to the trading scene. The number of trading firms, hedge funds, 
and electronic players kept increasing. They created their own technology stack to trade 
more quickly and stay competitive. After 10 years, only a few trading firms managed  to 
remain competitive, becoming the 2% of the trading firms accountable for 75% of all 
equity volume. 

The savoir faire for competing in HFT requires heavy investment: money, people, 
and time. It is a marriage of low-level system expertise and quants, as well as smart 
money (investors are more and more technology savvy). Engineers capable of creating 
performant code for designing ultra-low latency systems are very expensive. Only a 
few engineers had these skills. The performance for such a system required specialized 
hardware. Routers, servers, and network devices are also expensive. Therefore, the 
experience and the barrier of entry will prevent a lot of new incomers and will limit the 
competition. On top of the five firms we talked about previously, there are boutique shops 
that trade HFT strategies using an edge they found either in the market structure or some 
technical fact that other firms are not exploiting. The giant HFT firms are the companies 
responsible for moving most of the equity volume. Nowadays, HFT is estimated to 
account for at least 50% of the US equity (shares) trading volume. The market share of 
HFT has declined, as has profitability, since the peak year (2009).

After 2015, the growth of digital currencies cleared the way for new opportunities for 
high-frequency traders. Today, we can see an extensive growth of HFT strategies working 
with well-known crypto exchanges such as Coinbase, Binance, and hundreds of other 
crypto exchanges.

This modern era has anchored technology and automated trading for good. Trading 
models are data driven and model driven. The market data business definitely became a 
major part of trading. Exchanges and trading firms started making money by generating 
or collecting market data, the raw material of any algorithm trader.
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Why have HFT?
HFT aims at getting many transactions per second. In this way, companies can react more 
quickly to a changing market. They can take advantage of more opportunities than they 
would have without this speed. Additionally, large institutions benefit from HFT by gaining 
a tiny but considerable advantage in exchange for delivering massive volumes of liquidity to 
markets. They place millions of orders that their systems are capable of placing. They help 
the market and, as a result, are able to boost earnings in their profitable trades and receive 
better spreads. Since the return is very low, they must complete many trades to benefit. On 
top of this revenue, they will gain rebates or discounted transaction fees, which are given by 
trading venues to make their markets more attractive to HFT firms.

What makes HFT so different from  
regular trading?
HFT trading should have the shortest feasible data latency (time delays) and the highest 
level of automation possible. HFT relates to algorithmic trading and automated trading. 
As a result, participants choose to trade in markets that have a high level of automation 
and integration in their trading platforms. Firms utilize computers programmed with 
precise algorithms to find trading opportunities and execute orders in algorithmic 
trading. To increase the speed of transactions, high-frequency traders use automated 
trading and fast connections (and cancellations or modifications). This is possible because 
of the technology that trading firms have in place but also because of the exchange 
technologies. The following exchanges have invested hundreds of millions of dollars in 
HFT technologies:

•	 NASDAQ, New York City, is the first electronic stock exchange in the world. 
All of its equities are traded over a computerized network. It revolutionized the 
financial markets in 1971 by removing the requirement for a physical trading floor 
and in-person trading. It is the world's second-biggest stock exchange by market 
capitalization. Half of NASDAQ's composite offering was made up of technology 
firms. With less than 20% of the overall composite, the consumer sector came in 
second, followed by healthcare.

•	 New York Stock Exchange (NYSE), New York City, is the world's largest exchange 
for the equity market. In 2013, Intercontinental Exchange, Inc. (ICE) bought NYSE.
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•	 London Stock Exchange (LSE), London, UK, is the largest stock exchange in 
Europe and the principal stock exchange in the United Kingdom mainly with regard 
to trading in company stocks and bonds. It was created about 300 years ago.

•	 The Tokyo Stock Exchange (TSE), is Japan's largest stock exchange, with its 
headquarters in Tokyo. It was founded in 1878. The exchange has more than 3,500 
listed businesses. The TSE, which is operated by the Japan Exchange Group, is home 
to the world's largest and most well-known Japanese corporations, including Toyota, 
Honda, and Mitsubishi.

•	 The Chicago Mercantile Market (CME), sometimes known as the Chicago Merc, 
is a regulated futures and options exchange in Chicago, Illinois. Agriculture, energy, 
stock indices, foreign exchange, interest rates, metals, real estate, and weather are 
among the industries in which the CME trades futures and, in most cases, options.

•	 Direct Edge, Jersey City. Its market share rapidly rose to tenth in the US stock 
market, and it typically transacted more than two billion shares daily. Better 
Alternative Trading System (BATS) Global Markets was a US-based exchange that 
traded a variety of assets, including stocks, options, and foreign exchange. CBOE 
Holdings purchased it in 2017 after it was created in 2005. BATS Global Market was 
one of the largest US exchanges prior to being bought, and it was well known for its 
services to broker-dealers, retail, and institutional investors.

•	 The CBOE Options Exchange, which was founded in 1973, is the world's largest 
options exchange, with contracts centered on individual stocks, indexes, and 
interest rates.

All the preceding exchanges are controlled on several levels:

•	 Trading limitations

•	 Trading system transparency (information shared among market participants on 
the specificities of the architecture, as well as the way of handling orders)

•	 The type of accepted financial instruments

•	 Constraints by security issuers
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For most regulated exchanges, the order size is an issue. Large trades have an important 
effect on the market (they can create market impact). Traders use Alternate Trading 
Systems (ATS), which have much less regulation in comparison to traditional exchanges 
(they don't have to be transparent). Dark pools are the most common sorts of ATS. The 
USA presently has around 30 dark pools, which represent a quarter of the US consolidated 
trading volume.

Dark pools are beneficial to HFTs because they can handle the speed and the level of 
automation demands while having reduced fees. This is not the case for any other type of 
trading, which makes HFT different from regular trading. In the following section, let's 
learn more about dark pools.

Effect of dark pools
For financial security, buy and sell orders are not displayed in dark pools (price and 
volume). Dark pools, in other words, are both opaque and anonymous since the order 
book is not advertised. Because it is not possible to see the size of the orders in this type of 
trading exchange, investors who place huge orders do not impact markets. Since the other 
participants do not see the size of the orders, the dark pools execute these large orders at a 
fixed price. It reduces the negative slippage given by trading exchanges.

Dark pools are obliged to notify deals once they have occurred, notwithstanding the lack 
of pre-trade transparency.

HFTs and dark pools have a complicated interaction. Dark pools rose in popularity 
partially as a result of investors seeking protection from HFTs' fraudulent activities on 
public exchanges, and HFTs finding it impossible to know the large orders in dark pools 
through pinging. Dark pools introduced a lack of transparency in the markets that 
allowed ill-equipped players (that is, on the sell side) to keep up with business practices 
that didn't match the state of the art at the time. And, of course, Haim Bodek wrote two 
books (The Problem of HFT and The Market Structure Crisis) about finding unordinary 
order types in dark pools.

On the other hand, a few dark pools encourage HFT traders to trade on their exchange. 
HFT strategies increase liquidity and the likelihood of having orders filled. Dark pools 
help HFTs to meet their speed and automation demands while still having reduced 
expenses. HFTs are responsible for the decrease in order sizes in dark pools. The dark 
pools have been hit by pinging trading strategies locating hidden large orders.
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As a result, if these HFT tactics are present, the benefits of dark pools may be harmed. For 
example, in 2014, the Attorney General of New York filed a lawsuit against Barclays for 
its dark pool operations, alleging that it misrepresented the volume of Barclays's activity 
in dark pools. In 2016, Barclays paid a $35 million fine to the SEC and $70 million to the 
State of New York.

Dark pools can apply certain constraints to prevent HFTs from engaging in predatory 
behavior. The goal is to reduce pinging trading strategies. In 2017, Petrescu and Wedow 
imposed a minimum order size to minimize this type of strategy.

We could spend more time discussing the pros and cons of the impact of HFTs on dark 
pools, but we end up saying that the advantages of having more liquidity and faster 
execution are beneficial enough to have some dark pools being in favor of HFTs. It is fair 
for investors as long as they have a thorough understanding of how trading venues work 
so they can make educated judgments.

We have talked about the location of the major trading exchanges. Now we will introduce 
the HFT participants in the next section.

Who trades HFT?
The answer could be summarized in one word: everyone. From the buy side to the sell 
side, ECNs, and even the inter-dealer and inter-broker-dealer markets, they all use HFT. 
HFT is dominated by proprietary trading businesses and covers a wide range of products, 
including stocks, derivatives, index funds, Exchange-Traded Funds (ETFs), currencies, 
and fixed-income instruments. Proprietary trading businesses accounted for half of the 
current HFT players, multi-service broker-dealer proprietary trading desks accounted for 
less than half, and hedge funds accounted for the rest. Proprietary trading businesses such 
as KCG Holdings (created by the merger of Getco and Knight Capital) and the trading 
desks of major banks are among the major players in the field. There are some new types of 
venues (such as Dealerweb's OTR Exchange and IEX) that are looking to provide venues 
where dealers on the sell side feel safe to execute trades and HFTs are providing liquidity.

It is worth saying that HFTs have become major players in the market. They are also 
capturing retail flow. Citadel is controlling a large part of the retail flow.

What do I need to start an HFT?
Participants in HFTs must have the following:

•	 Fast computers: HFT focuses on single-core throughput in most cases, and 
parallelism is not used by the strategies necessarily.
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•	 Exchange proximity: While some countries restrict the use of shared places to have 
trading systems and exchange, in the US, we use co-location. This is a place where 
all the HFTs participants have their production servers. They will pay to have their 
computers co-located with an exchange's computer servers in the same data centers 
in order to decrease latency and shorten the time it takes to complete a deal – even 
by microseconds. The cables linking trading systems from all market participants 
with the server are the same length to guarantee that nobody has an advantage over 
another market participant. The SEC has issued a wide request for feedback on 
co-location fees, as well as other concerns impacting the equity market structure. To 
ensure fairness among market participants, it is important that co-location fees are 
reasonably priced. The SEC invites the co-locations to report their fees.

•	 Low latency: In HFT, latency is the time it takes for data to reach a trader's 
computer, for the trader to make an order in response to the data, and for the order 
to be accepted by an exchange. The order may enter the market alongside many 
other orders issued by other traders at the most profitable time. There is a danger 
of competing against a large number of other people in this circumstance. The 
order may not be as profitable as it may have been in this scenario. High-frequency 
traders are able to make orders at unfathomably quick speeds because of technology 
advertised as low-latency or ultra-low-latency. It is important to use gear designed to 
reduce the latency of shuffling data from one place to another.

•	 Computer algorithms, which are at the heart of AT and HFT, and real-time data 
feeds, which could damage earnings.

In the previous sections, we learned where high-frequency traders make business. We also 
talked about the technological prerequisites to trade faster. Let's now focus on what HFT 
is in depth.

What are HFT strategies?
HFT strategies are a subset of algorithmic trading strategies. They are executed in 
the order of the microseconds (and sometimes nanoseconds). The strategies must be 
aware of this time limitation to be efficient HFT strategies. They deploy cutting-edge 
technology advancements to obtain information faster than the competition. The main 
game of this type of strategy is the tick-to-trade, which is the response time to send an 
order responding to incoming market data. As we will explain in the next chapter, it is 
important to host trading strategies on cutting-edge machines, and they must also run in 
a co-location.

We will be defining the domain of applications and some vocab to have when talking 
about HFT strategies.
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Asset classes
HFT strategies can be applied to any asset classes, such as stocks, futures, bonds, options, 
and FX. We also have cryptocurrencies being traded using HFT strategies, even if the 
definition of speed is different (because of the settlement time).

Liquidity
The desire of players to interact with regard to a certain asset is known as liquidity.

We define depth as the number of price levels for a given asset. We will say that a book is 
deep when there are many levels (layers) for a given asset. We will define a book as big or 
broad if the volume per layer is high. If a book is deep or large, we will define a liquidity 
of a given asset liquid. The consequence of this statement is that it will be easier for a 
trader to buy or sell this asset whenever they want to. As a result, trading exchanges with 
a lot of liquidities are wanted by traders. Crypto trading exchanges have difficulty finding 
liquidities at the moment.

Tick-by-tick data and data distribution
HFT generates orders every microsecond. Since there are a lot of participants, it is likely 
to have huge amounts of data. Storage of this data will be key when we study HFT data to 
create models for trading strategies.

Thousands of ticks (security price changes from one order to another) are generated per 
trading day on liquid marketplaces, which make up high-frequency data. This material is 
randomly spaced in time by its very nature. HFT data exhibits fat tail distributions. That 
means that the trading strategies need to take into account that we can have big losses.

They distribution of the market data can be grouped into two categories:

•	 Volatility clustering: Large changes follow large changes whether in terms of signs or 
numbers, while minor changes follow smaller changes.

•	 Long-range dependency (long memory) refers to the pace at which statistical 
dependence between two sites decays as the time interval or spatial distance 
between them increases.

Liquidity rebates
To support the provision of stock liquidity, most exchanges have used a maker-taker 
model. In this arrangement, investors and traders who place limit orders often earn a 
modest rebate from the exchange when their orders are executed since they are considered 
to have contributed to stock liquidity, or makers.
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Those who place market orders, on the other hand, are considered takers of liquidity and 
are charged a small fee by the exchange. While the rebates are normally fractions of a 
penny per share, over the millions of shares exchanged daily by high-frequency traders, 
they may add up to large amounts. Many HFT businesses use trading techniques that are 
geared to take advantage of as many liquidity rebates as feasible.

Matching engine
The software program that forms the heart of an exchange's trading system and matches 
buy and sell orders on a continuous basis, a service traditionally done by trading floor 
professionals, called the matching engine is critical for guaranteeing the efficient 
operation of an exchange since it matches buyers and sellers for all stocks. The matching 
engine is housed on the exchange's computers, and it is the main reason why HFT 
businesses strive to be as near to the exchange servers as possible. We will learn about it in 
Chapter 3, Understanding the Trading Exchange Dynamics.

Market making
Before going into details on what market making is, we need to explain the difference 
between market takers and market makers.

Market taker/maker
Figure 1.1 represents the limit order book on an exchange. When a trading strategy places 
an order close to the top of the book (the layer representing the best price for bid and 
for ask), we say that this order is an aggressive order. It means that this order is likely to 
be matched with another order. If the order is executed, it means that liquidity has been 
removed from the market; it is a market taker. We will say that a trader crosses the spread 
when they place a buy order at the price of the ask on the top of the book. If the order is 
less aggressive (or passive), this order will not remove liquidities from the market; it is a 
market maker.

Figure 1.1 – Order book – passive/aggressive order
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Let's look at the market-making strategies. 

Market-making strategies
A trading corporation can provide market-making as a service on an exchange. Over time, 
a market maker assists in the matching of buyers and sellers. Rather than purchasing or 
selling securities based on their underlying assets, market makers maintain a continual 
offer to buy and sell securities and profit from the spread, which is the difference between 
the two offers.

To reduce the risk of keeping stocks for extended periods of time, every purchase should 
be matched with a sale and every sell should be matched with a buy. If a stock is trading at 
$100, a market maker can keep a buy offer at $99.50 and a sell offer at $100.50. If they are 
successful in finding both a buyer and a seller, it allows those who want to sell right now 
to do so even if no one else wants to purchase, and vice versa.

Market makers, in other words, supply liquidity—they make trading simpler. For the most 
traded stocks, this technique is not important; however, for smaller firms (less traded than 
the big ones), it can be critical to increase the trading volume to facilitate trading. Market 
making is one approach that many HFT businesses use. They out-compete everyone else 
by changing their quotations quickly and reducing the spread even further: they're willing 
to make less money each time since their market-making business can readily grow to 
massive quantities. However, an HFT firm's technology can be used for other purposes, 
such as arbitrage (making money on minor discrepancies between linked securities) 
or execution (breaking up huge institutions' trades to minimize market effect). I won't 
go into much more detail because the point is that HFT is capable of more than simply 
market-making. The only thing that matters is speed.

Market making can be done by the analysis of the order flow:

•	 A large volume of buy and sell can drive the market price of buying and selling on 
the basis of momentum.

•	 The flow of liquids (how big are the buy and sell orders: small, medium, or big).

•	 Exhaustion of momentum (when the order flow is drying off it may signal  
a price reversal).

Market-making is the most widely used trading strategy for high-frequency traders. We 
will talk about the other HFT strategies in the next sections.
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Scalping
Scalping is a trading method that focuses on benefitting from tiny price movements and 
reselling for a quick profit. Scalping is a phrase used in day trading to describe a technique 
that focuses on generating large volumes from tiny profits. Scalping necessitates a tight 
exit plan since a single major loss might wipe out all of the modest wins the trader has 
worked so hard to achieve. For this technique to work, you'll need the necessary tools, 
such as a live feed, a direct-access broker, and the endurance to conduct a lot of trades.

The concept behind scalping is that most stocks will finish the first stage of a trend. But 
it's unclear where things will go from there. Some stocks stop rising after that early stage, 
while others continue to rise. The goal is to benefit from as many minor transactions as 
possible. The let your gains run mentality, on the other hand, aims to maximize good 
trading results by expanding the size of winning deals. By increasing the number of 
winners while compromising on the magnitude of the gains, this technique accomplishes 
outcomes. It's very uncommon for a trader with a long time period to produce good 
profits while winning just 50% of their transactions, or even less – the difference is that the 
wins are far larger than the losses.

Statistical arbitrage
The Efficient Market Hypothesis (EMH) claims financial markets are informationally 
efficient, which means that the prices of traded assets are accurate, and at any one moment 
represent all known information. Based on this hypothesis, the market should not 
fluctuate if there is not any fundamental news. However, this is not the case, and we can 
explain that with liquidity.

Throughout the day, many huge institutional trades have little to do with information 
and everything to do with liquidity. Investors who believe they are overexposed will 
aggressively hedge or sell their positions, impacting the price. Liquidity seekers are 
frequently ready to pay a premium to exit their positions, resulting in a profit for liquidity 
providers. Although this capacity to benefit from knowledge appears to violate efficient 
market theory, statistical arbitrage is based on it.

Statistical arbitrage seeks to profit from the correlation of price and liquidity by gaining 
from the perceived mispricing of assets based on the assets' anticipated value given by a 
statistical model.
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Short-term price discrepancies in the same security sold on separate venues, or short-
term price differences in related securities, are used in statistical arbitrage, often known 
as stat arb. Statistical arbitrage is based on the assumption that price differences in 
securities markets exist but go away quickly. Because the time period during which a price 
difference occurs might be as short as a fraction of a second, algorithmic trading is well 
suited to statistical arbitrage.

When trading the same security in several venues, for example, an algorithm tracks 
all of the locations where the security is exchanged. When a price difference arises, the 
algorithm buys in the lower market and sells in the higher market, resulting in a profit. 
Because the window of opportunity for such differences is small (less than 1 millisecond), 
algorithmic trading is ideally suited to this form of trade.

Statistical arbitrage becomes more challenging when investing in linked securities. An 
index and a single stock within that index, or a single stock and other stocks in the 
same sector, are examples of related securities. In linked securities, a statistical arbitrage 
approach entails gathering a large amount of historical data and estimating the usual 
connection between the two markets. The algorithm makes a buy or a sell whenever there 
is a variation from the norm.

Latency arbitrage
Modern equities markets are complicated, requiring highly technical systems to manage 
vast volumes of data. Because of its intricacy, data is invariably processed at varying 
speeds. Latency arbitrage takes advantage of market players' differing speeds. Latency 
arbitrage aims to take advantage of high-frequency traders' greater speed by leveraging 
high-speed fiber optics, superior bandwidth, co-located servers, and direct-price feeds 
from exchanges, among other things, to place trades ahead of other market players.

The hypothesis behind latency arbitrage is that in the US, the aggregated feed that 
determines the National Best Bid and Offer (NBBO) of all US stock exchanges is slower 
than the direct data feeds from stock exchanges available to high-frequency traders. 
An HFT program's algorithm can read transaction data more quickly than many other 
market players, seeing prices a fraction of a second ahead of the Securities Information 
Processor (SIP) feed, which is the consolidated US stock exchange price feed, thanks 
to its superior speed. This essentially provides information to the HFT software before 
it reaches the official market (the SIP feed), allowing high-frequency traders to observe 
where prices are heading ahead of other market players.



What do I need to start an HFT?     17

Impact of news
Information is at the heart of all trading, and it is used to make financial decisions. The 
utilization of news data by algorithmic trading systems to generate trading choices is 
referred to as information-driven strategies.

Algorithms have been developed to read and analyze news reports from major news 
organizations, as well as social media. Any news that has the potential to alter market 
prices causes the algorithm to purchase or sell.

High-frequency traders have gotten so accustomed to using information-driven methods 
that certain news agencies now package their press releases in a way that makes it simple 
for computers to analyze them. They employ predetermined keywords to characterize a 
favorable or bad occurrence, for example, so that an algorithm can act on keywords in a 
news release. Prior to their planned publication, news providers also place news reports 
on servers in crucial geographical regions (such as major financial centers). This reduces 
the amount of time it takes for data to move from one location to another. For this sort of 
service, news service providers charge an additional fee.

As seen by the hacking of the Associated Press Twitter feed, the use of social media for 
information-driven initiatives is growing. In 2013, a hacker tweeted that a bomb had gone 
off in the White House, injuring the president, causing an instantaneous plunge in equities 
markets throughout the world as algorithms analyzed the bad news from a trustworthy 
source and began selling in the market. 

Next, let's learn about the momentum ignition trading technique.

Momentum ignition
You have the chance to trade financially if an order you send into the market may cause 
a price change and you know it can. The goal of momentum-ignition trading techniques 
is to achieve this. The objective is to get other algorithms and traders to start trading in 
a stock, causing a price change. In essence, a momentum ignition approach attempts to 
deceive other market players into believing that a large price movement is going to occur, 
causing them to trade. As a result, the price movement becomes a self-fulfilling prophecy: 
traders believe a price movement will occur, and their activities cause one to occur.
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Sending enormous volumes of orders into the order book and then canceling them is a 
momentum-ignition approach. This creates the illusion of a huge shift in volume in the 
stock, which might prompt other traders to place orders, resulting in the start of a short-
term price trend. Before attempting to ignite the market movement, the momentum 
ignition approach includes executing the real targeted trading position. This means 
that a deal is completed initially that does not significantly influence the market. This 
permits a trader using the momentum-ignition approach to enter the market before the 
price movement is initiated. The momentum ignition is set after the deal is completed 
by submitting a flurry of orders and canceling them in the hopes that other traders will 
follow suit and move the price. 

The trader using the momentum-ignition technique then quits their initial position at a 
profit as the price begins to move.

Momentum-ignition methods require the use of specific order types, and traders may only 
utilize algorithms that can send and cancel huge numbers of orders in a short amount of 
time to execute them.

Rebate strategies
Market order traders must pay a fee to the exchange, whereas the limit order is 
reimbursed with rebates when they add liquidities. As a result, traders, particularly those 
engaged in HFT, submit limit orders to build markets, which in turn generates liquidity 
on the exchange. It is undoubtedly appealing to traders who place a large number of limit 
orders due to the pricing scheme's lower risk for the limit order.

There is also a charge structure called trader-maker pricing that is the polar opposite of 
market-taker pricing. In certain markets, it entails giving rebates to market order traders 
and collecting fees from limit order traders.

Pinging
Pinging is a strategy for learning about huge orders in trading exchanges and dark pools 
by placing tiny marketable orders (typically for 100 shares).

To lessen the market effect of large orders, buy-side businesses utilize this trading 
technique to split large orders into many small orders. This algorithm feeds these orders 
slowly into the exchange. In order to detect the presence of such large orders, HFT 
companies arrange bids and offers in 100-share lots for each listed stock.
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These ping trades will alert HFT participants to the existence of a large order placed by 
the buy-side. HFTs will use this information to ensure risk-free profit from the buy-side.

Some significant market participants have compared pinging to baiting because its main 
objective is to entice institutions with huge orders to expose their hand.

Illegal activities
The SEC, the Federal Bureau of Investigation (FBI), and other regulators have launched 
crackdowns on alleged HFT violations in recent years. The following sections are 
examples of possible offenses.

Front-running
Placing an order based on information that has not been publicly released is called 
front-running. This technique has been outlawed by SEC and the Financial Industry 
Regulatory Authority (FINRA). Some have used the term front-running to describe 
a technique in which HFT firms utilize algorithmic trading technology to identify a 
large number of new orders for a given instrument. Before the large number of orders 
comes to the market, we place orders to benefit from this incoming large quantity. HFT 
corporations can earn almost instantly after purchasing assets by selling them to the 
original investors. Even if this way of trading is legal, regulators are concerned and may 
need to control this behavior moving forward.

Spoofing
Spoofing is not a legal trading strategy. It consists of a spoofing strategy sending orders 
that are not intended to be executed, just to have the other market participants react to 
these orders. They will probably send orders to get to this price level. Meanwhile, the 
initial orders are canceled and the spoofer takes advantage of the other orders remaining 
in the market.

The Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 specifically 
targeted the practice, and even before that, FINRA regulations barred orders whose goal 
is to mislead the market. The first criminal spoofing case disclosed by legislators in 2014 
related to a Chicago trader accused of faking futures markets.
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Layering
Layering is the same as spoofing except that the orders are placed at different price levels 
to give the appearance that there is a lot of interest in a certain security. The outcome 
of this strategy is the same as with regular spoofing. Because of the rapid advancement 
of technology, massive market manipulation may take place in fractions of a second. 
Layering, like generic spoofing, is typically illegal and forbidden under FINRA rules.

Even if these strategies are now outlawed, we need to keep in mind that some exchanges 
are less or not regulated. We will see in Chapter 11, High Frequency FPGA and Crypto, 
about cryptocurrencies that these strategies can still work.

Summary
In this chapter, we reviewed the origins of HFT. We went through what makes HFT so 
special in comparison to regular trading. We also layered the different types of strategies 
that any HFT trading system will be able to support. We talked about the history of 
trading systems. Our goal in this chapter was to give you a good understanding of what 
HFT is and what trading strategies we can use.

In the next chapter, we will talk about the main functionalities of a trading system. We will 
describe how to build a trading system.



2
The Critical 

Components of a 
Trading System

In the previous chapter, we learned how to create high-frequency trading (HFT) 
strategies. In this chapter, we are going to study how to convert these strategies into  
real-time software that will connect to an exchange to actually apply the theory that  
you've previously learned. We will describe the functioning of a trading system capable  
of trading assets.

In this chapter we will cover the following topics:

•	 Understanding the trading system

•	 Making a trading system trade with exchanges

•	 Order book management

•	 Strategy making decisions on when to trade

By the end of this chapter, you will be capable of designing a trading system, connecting  
a trading system to an exchange, and building a limit order book.
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Understanding the trading system
Designing a trading system for HFT trading requires much more than knowledge of 
programming and trading. The following chapters of this book will describe these parts 
in depth, which will give you an edge in designing an HFT system. In this section, we are 
going to talk about the fundamentals of trading system design. One of the most critical 
parts of designing a system is having a detailed description of the requirements. The 
goal of a trading system is to support your trading ideas. Any trading strategies start by 
getting data and end up with making a decision based on this data. A trading system will 
oversee collecting market data (that is, price updates) and sending orders to the exchange. 
Additionally, it will collect answers from the exchange containing information on the 
orders. These market updates could be representing any state of the orders: canceled, 
rejected, filled, or partially filled. It will also compute metrics measuring the performance 
of your portfolio (such as profit and loss, risk metrics, or information about the different 
processes of the trading system).

When deciding whether to create this type of software, we need to keep the following 
points in mind:

•	 Asset class: Knowing which asset class will be employed in the trading system will 
change the data structure of this software. Each asset class is unique and has its own 
set of characteristics. Building a trading system for US equities won't be the same as 
building a system for foreign exchange (FX). Stocks in the United States are mostly 
traded on two exchanges, the New York Stock Exchange (NYSE) and NASDAQ. 
These two exchanges have roughly 7,000 firms (symbols) listed. FX contains six 
main currency pairs, six minor currency pairs, and six exotic currency pairs, as 
opposed to stocks. We can add additional currency pairs, but no more than 100 will 
be available. Unlike the US equity market, where we can have two main exchanges, 
in the FX market, there will be hundreds of exchanges. The number of symbols and 
the number of exchanges will change the architecture of a trading system.
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•	 Trading strategy type (high frequency, long-term position): The software 
architecture will be influenced by the trading strategy type. HFT tactics necessitate 
transmitting orders in a very short period of time. In the case of US stocks, a 
standard trading system will decide to send an order in microseconds. A Chicago 
Mercantile Exchange (CME) trading system has a latency in the order of 
nanoseconds. Based on this finding, technology will play a significant role in the 
software design process. If we only consider the programming language, Python  
is not well suited to speed, and we would rather choose C++ or Java. If we wish to 
take a long-term position, such as one that lasts many days, the speed with which  
a trader may obtain liquidity faster than others is irrelevant.

•	 Number of users (or trading techniques): As the number of traders grows, so does 
the variety of trading tactics. This indicates that the number of orders will increase. 
Before submitting an order to an exchange, we must ensure that the orders we 
are about to send are valid; we must ensure that the overall position for a specific 
instrument has not been reached. 

Trading strategies are being moderated by an increasing number of rules in the trading 
sector. We shall test the compliance of the orders that we wish to send in order to ensure 
that our trading strategy complies with the regulations. All of these tests will increase the 
amount of time it takes to calculate. If we have a lot of orders, we'll have to conduct all of 
these verifications in sequence for one instrument. If the program isn't fast enough, the 
orders will take longer to process. The more users you have, the more scalable the trading 
system must be.

These variables change the way you think about the trading system you're going to create. 
Let's discuss the design of a simple trading system in the following section.
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Trading system architecture
The following schema represents the trading system architecture. On the left part of 
this diagram, we can see the venues. Venues are a more generic term for any platform 
matching buy and sell orders for the securities and/or derivatives of multiple parties. 
In other words, a venue can be a trading exchange, an ECN, an aggregator, or a bank. 
Trading systems communicate with venues to collect price updates from all the 
participants and send orders. To do so, a trading system needs a piece of software called 
Gateways, which will ensure the communication between the trading system and the 
venues. The Book Builder will build the limit order book from the data collected from 
Gateways. Finally, the Strategy will send the order to the venues through the Order 
Manager. The Order Manager is responsible for collecting all the orders coming from 
the strategies of the system and keeps track of the life cycle of the orders. All of these 
components are a part of the critical path of sending orders to the market.

Figure 2.1 – Trading system architecture design

Additionally, we observe other less critical services, such as command and control, in 
charge of starting the components of the system. The viewers are critical in algorithmic 
trading because they will give you a status of all the components of the system, the orders 
and trades, and the metrics you consider important to monitor your trading strategies. 
Algorithmic trading automates trading. Therefore, it is important to keep track of the 
health of your trading system and trading strategies. It is particularly important to 
understand here that in HFT trading, a few microseconds can end up in colossal losses. 
Having viewers and user interfaces capable of efficiently reporting alerts is critical.
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In the next section, we will talk more in-depth about the critical components of  
a trading system.

Gateways connecting to trading exchanges
Gateways are the components of a trading system communicating with the exchange and 
the trading system. They are essential because they are the greediest in terms of execution 
time. By design, they must get data from the network and provide this data to the rest 
of the system. This operation is demanding in terms of system resources and operating 
system. Price updates are collected by a trading system, which then transmits orders on 
your behalf. To do so, you must first code all the procedures you would do if you were 
trading without a trading system. If you want to make money by purchasing low and 
selling high, you must first decide what product you will trade. You should get the order 
from the other merchants after you have chosen these products.

The other traders will inform you of their willingness to trade a financial asset by 
identifying the size, price, and quantity. You can pick the trader with whom you will 
negotiate a transaction once you have received enough orders for the product you wish to 
trade. The price of this item will influence your selection. If you plan to resell this item in 
the future, you will need to acquire it for a cheap price. When you reach an agreement on 
a price, tell the other trader that you want to buy at the listed price. You will then own this 
product when the transaction is completed.

Data collection
Gateways collect price updates from the trading venues you have chosen (exchanges, 
ECNs, and dark pools). This component (shown as a Gateway in the following figure) is 
one of the most important in the trading system. This component's job is to get the book 
for the instruments from the exchange into the trading system. This component will be 
connected to the network and will be able to communicate with it via exchanges receiving 
and sending streams.
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The position of the trade system's gates is depicted in the following diagram. They are the 
trading system's inputs and outputs:.

Figure 2.2 – Gateways in charge of collecting price updates and sending orders

The following points are depicted in the preceding diagram: 

•	 Traders, exchanges, ECNs, and dark pools are represented by the venues.

•	 Different protocols might be used to connect the venues (they are represented  
using arrows). 

•	 Wires, wireless networks, the internet, microwaves, and fibers are all options to 
transfer data. In terms of speed, data loss, and bandwidth, each of these network 
media has its own set of characteristics. 

•	 The arrows for price updates and orders are bidirectional because we can have data 
sent to/received from the venues. 

•	 To begin receiving pricing updates, the gateway will establish a network connection 
with the venue, verify itself, and subscribe to a certain instrument (we will explain 
this part in the next section).
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•	 The order-processing gateway also receives and sends communications. When an 
order is placed, it is forwarded to the venue over the network. 

•	 An acknowledgment of this order will be sent if the venue receives it. A message 
will be issued to the trading system after this order meets a matching order. If the 
venue does not receive an order, the acknowledgment will not be sent. It is up to the 
trading system to declare that an order has timed out. In this situation, a trader will 
need to intervene and check the problem that occurred in the system.

Making a trading system trade with exchanges
A trading system contains a number of functional components that are responsible for 
trading and risk management, as well as monitoring the trading process on one or more 
exchanges. A trading strategy becomes a part of the trading system once it is coded. As 
input, you'll need price data, and as output, your orders. This will give out trading signals. 
We'll need gateways to finish this flow because they're the most important components.

The functional components of a trading system, the gateway's interface, and the trading 
system's interaction with the outside world are depicted in the following diagram:

Figure 2.3 – The functional components of a trading system

The gateways gather and send orders based on pricing and market reactions. Their 
primary function is to establish a link and translate data received from the outside world 
into the data structure needed by the trading system.
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The following points are depicted in the preceding diagram: 

•	 This trading plan will be on your machine when you apply your trading strategy. 
The trade will take place on a different computer.

•	 Because these two devices are located at different locations, they must connect over 
a network.

•	 The methods of communication employed by the system might vary depending on 
its location. 

•	 A single wire will be utilized if the trading system is collocated (the machines are in 
the same facility), which will minimize network latency. 

•	 The internet might be another mode of communication if we adopt a cloud solution. 
The communication will be substantially slower than with a direct connection in 
this instance.

Examine the following figure, which displays the communication that occurs between  
the gateways: 

Figure 2.4 – Communication between exchange and trading system 
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We understand the following points from the preceding diagram:

•	 When we examine the communication handled by the gateways more closely, we 
can see that the venues may use various protocols.

•	 To transform protocols into trading system data structures, gateways will need to be 
able to process a variety of protocols.

We learned about how a trading system connects to trading exchanges. We will now talk 
about how communication can happen and which protocol we are using for receiving 
market updates and sending orders.

Examining the API for communication
The rules of communication between machines are defined by network protocols. 
They specify how these devices will be identified on the network and how they will 
communicate with one another. The User Datagram Protocol (UDP) and Transmission 
Control Protocol (TCP) over Internet Protocol (IP) protocols are used in trading 
finance. Furthermore, we employ a software protocol that specifies how to send an order 
and obtain a price update. At the software level, the communication API will establish 
communication rules. The communication API is provided by the entity with which you 
wish to transact. This document contains all of the messages you will need to get price 
updates and place orders.

Examples of trading API documents can be found at https://en.wikipedia.org/
wiki/List_of_electronic_trading_protocols. Before we go into the trading 
API, let's go over some networking fundamentals.

The fundamentals of networking 
The network is responsible for allowing computers to connect with one another. To share 
data, networks require a physical layer. For a network to achieve a certain level of speed, 
dependability, or even security, selecting the appropriate medium (communication layer) 
is crucial. We use the following terms in trade finance: 

•	 Wire: Electrical currents with a narrow bandwidth. 

•	 Fiber: More bandwidth.

•	 Microwave: It's simple to set up and has a lot of bandwidth, but it's susceptible  
to storms. 

https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols


30     The Critical Components of a Trading System

Depending on the sort of trading technique you choose, the media will change. In the 
Open Systems Interconnection (OSI) model (developed in Chapter 5, Networking in 
Motion), selecting the appropriate medium is part of the first layer of the network. The 
physical layer is the name given to this layer. There are six more layers on top of this one 
that describe the sort of communication.

Like most of the communication, finance is also using IP. This is part of the ISO model's 
network layer. This IP establishes the rules for network packet routing. The transport  
layer is the final layer we'll discuss. TCP and UDP are the two most well-known  
protocols in banking. These two procedures are diametrically opposed. TCP is a  
protocol that allows two machines to communicate with each other. All messages sent 
initially will be delivered first. UDP lacks a means for determining whether network 
packets were received by the network. All of the exchanges will use either TCP or UDP  
as their protocol.

In Chapter 5, Networking in Motion, we will go deeper into the study of these protocols. 
Let's learn about order book management in the following section.

Order book management
The primary goal of data handling is to copy the limit order book from the venues into 
your trading system. The book builder will be in charge of gathering the pricing and 
categorizing them for your tactics in order to integrate all of the many books you obtain. 

The pricing changes are transformed by the gateway and then passed to the book builder, 
as shown in the following diagram. The book builder will use the books that the gateways 
have received from the venues, as well as gather and sort any pricing changes:

Figure 2.5 – Book builder getting price updates from Gateway IN
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In the following diagram, we use an example of an order book for a given financial 
product. The order book will contain two parts, one for the bids and one for the offers. For 
each part, we will store the orders represented by the venue, the volume, and the price. 
Every venue will send its own order books. The goal of the book builder is to create a book 
taking into account the three books coming from each venue. The data represented in this 
diagram is artificial:

Figure 2.6 – Trading system building the book out of three different venues

The following is depicted in the diagram: 

•	 You can see that there is an order for each row in these books.

•	 For example, a trader on Venue 1's offer list is ready to purchase 1,000 shares for 
$1.21. On the other hand, there's a list of people who are eager to sell. 

•	 The offer (or ask) price will almost always be greater than the bid price. Indeed, it 
would be far too simple to profit if you could purchase for less than you could sell. 

•	 The book builder's job is to collect the three books from the three places that the 
gates have collected. The book builder organizes and sorts the three books.

We have learned how the trading system gets price updates and how to build a limit order 
book. We will now explain in detail the different functionalities of the order book.
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Order book considerations
A limit order book collects all price updates (orders) and arranges them in a way that 
makes the trading strategy's work easier. Exchanges utilize the order book to keep track of 
bids and offers. When trading, we receive the book from the exchange in order to figure 
out an indication of the asset prices, which prices are the best, or just to get a sense of the 
market. We'll have to utilize the network to convey changes to the exchange book because 
the exchange is on another platform/server. We have two options for doing so:

•	 The first way entails sending the entire book. Sending the full book is consuming 
in terms of time. Indeed, if we have large trading exchanges (such as NYSE or 
NASDAQ), there are millions of orders sent within one second. If each time the 
exchange receives a new order, the full book is sent, the network will be saturated 
and it will take too long to send price updates.

•	 The second way will send a full snapshot of the book as described previously. 
Then, the exchange will send incremental updates. The book is a critical part of 
the trading system since it will provide the trading strategy with the information 
to decide when to send an order or not. An order book contains bids and orders 
that are presently on the exchange. When a price update is sent to our trading 
system, the other market participants receive the same update concurrently. All the 
other market participants can also decide to run after this price update. When the 
exchange receives many orders (explained in detail in Chapter 3, Understanding the 
Trading Exchange Dynamics), the orders received first will be executed first. That's 
why the book plays a large part in the latency and all the operations of the book 
must be optimized.

For the life cycle of the orders, we will need to handle the following operations:

•	 Insertion: An insertion is a book entry that adds a new order to the book. This 
should be a quick operation. Since we must sort the bids and the offers for any 
received price updates, the method and data structure we choose for this operation 
are crucial. To insert a new order, we'll need to use a data structure with an O(1) or 
O(log n) complexity.

•	 An amendment/modification will use the order ID to seek the order in the book. 
This operation should have the same level of difficulty as the insertion. 

•	 Cancelation: Using the order ID, a cancelation allows an order to be withdrawn 
from the book.
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The data structure chosen and the method connected with it have a significant impact 
on performance. If you're creating an HFT system, you'll need to make the appropriate 
decisions. The order book that we are implementing in HFT is called an order-based 
book. Since this is a critical component in the system, it is very important to consider the 
complexity of the execution of this book.

An efficient data structure to model the order book must ensure the following:

•	 Constant look-up, fast quantity update: An order book stores a lot of orders 
for one given instrument. Large exchanges can get millions of orders per second. 
Because we will have a growing number of orders in this book, it is important to 
keep a constant look-up time for order IDs. We will have to look up order IDs 
millions of times per second to update these orders. Additionally, we will need 
to retrieve orders with the best price rapidly. Looking up orders by price cannot 
be linear in terms of complexity. Therefore, we will use fast indexing (having a 
logarithmic time to find an order for a specific price).

•	 Iteration in order of prices: When buying or selling large quantities, we may need 
to find many orders to reach a given volume. In this situation, we will start with the 
best price, then we will go to the second-best price, and we will keep on going like 
this. In this situation, it is also critical for the execution speed to reach the next best 
price with very low complexity.

•	 Retrieving best bid and ask in constant time: Since we will mainly work with the 
best prices, we need to have a data structure capable of returning the best orders for 
bids and offers.

We will need to take into account the following considerations:

•	 Organize order identifiers to order information in a huge associative array (for C++, 
it could be a std::unordered map or std::vector). 

•	 The order metadata includes references to the order book and price-level it belongs 
to, therefore, after checking up the order, the order book and price-level data 
structures are only a single dereference away. When using an Order Execute or 
Order Reduce action, having a reference to the price allows for an O(1) decrease. 
You may preserve pointers to the next and previous orders in the queue if you wish 
to keep track of time priority as well.
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•	 Because the majority of changes occur near the inside of the book, employing a 
vector for each book's price levels will result in the quickest average price lookup. 
Because the desired price is usually just a few levels from the interior and a 
linear search is simpler on the branch predictor, optimizer, and cache, searching 
linearly from the end of the vector is, on average, quicker than a binary search. Of 
course, pathological orders can exist outside of the book, and an attacker might, 
theoretically, transmit a large number of updates at the end of the book to slow 
down your implementation. In reality, however, this usually yields a cache-friendly, 
almost O(1) implementation for insert, lookup, update, and delete (with an O(N) 
memcpy in the worst-case scenario). 

•	 This has O(1) best-case behavior for insertion, lookup, deletion, and update, with 
extremely low constants. Unfortunately, because of the cache, TLB, and compiler-
friendliness, you may achieve O(N) worst-case behavior with a low probability and 
still have extremely excellent constants. It's also very quick, almost ideally so, when 
it comes to Best Bid and Offer (BBO) updates, which is what you're normally after.

By explaining how a book should be implemented in HFT, we can already see why we 
need to develop an in-depth knowledge of computer operating systems and programming. 
In the following section, we will cover in depth the use of these components to achieve the 
best performance.

Strategy making decisions on when to trade
The trading strategy is the system's brain. This is where we will put our algorithm that 
represents our trading concept into action. Let's take a look at the diagram:
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Figure 2.7 – Trading strategy receiving data from the book builder to make a decision on when to trade

The diagram shows that the trading strategy is divided into two main components, signal 
and execution:

•	 The signal component of this strategy only focuses on generating signals. However, 
having the intention (a signal) does not guarantee you will get the liquidity you are 
interested in. For instance, in HFT, it is highly likely your orders will be rejected 
because of the speed of your trading. 

•	 The execution part of the strategy will take care of handling the response from 
the market. This part decides what to do for any responses from the market. For 
instance, what should happen when the order is rejected? You should continue 
trying to get equivalent liquidity and another price. 

In this section, we learned about the trading strategy; we will now learn all about the 
order management system (OMS) being the last critical piece of the trading system.
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The OMS
The OMS gathers orders submitted from the strategy. The order life cycle is tracked by 
the OMS (creation, execution, amendment, cancelation, and rejection). The OMS collects 
trading strategy orders. If an order is invalid or malformed, the OMS may reject it (too 
large a quantity, wrong direction, erroneous prices, excessive outstanding position, or 
order type not handled by the exchange). The order does not leave the trading system 
when an error is identified in the OMS. The rejection occurs sooner. As a result, the 
trading strategy can react more quickly than if the order is rejected by the exchange. Let's 
have a look at the following figure, which depicts the OMS's key features:

Figure 2.8 – Order manager collecting all the orders in a trading system

Let's now discuss the critical components of a trading system.

Critical components
A trading system's key components include gateways, a book builder, strategies, and an 
OMS. They bring together all of the capabilities you'll need to get started in trading. We 
calculate a trading system's performance in terms of speed by aggregating the processing 
times of all important components. When a price update enters the trading system, we 
start a timer, and when the order generated by this price update leaves the system, we 
terminate the timer. This period is known as the tick-to-trade or tick-to-order period.
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The OMS gathers orders submitted from the strategy. The order life cycle is tracked by 
the OMS (creation, execution, amendment, cancelation, and rejection). The OMS collects 
trading strategy orders. If an order is invalid or malformed, the OMS may reject it (too 
large a quantity, wrong direction, erroneous prices, excessive outstanding position, or 
order type not handled by the exchange). The order does not leave the trading system 
when an error is identified in the OMS. The rejection occurs sooner. As a result, the 
trading strategy can react more quickly than if the order is rejected by the exchange.

Non-critical components
Non-critical components are those that aren't directly related to the choice to submit an 
order. They change settings, collect data, and report this data. When designing a strategy, 
for example, you'll have a set of parameters that you'll need to alter in real time. You'll 
need a component that can transmit data to the trading strategy component. We'll use a 
component called command and control for that.

Command and control
The link between traders and the trading system is known as command and control. It 
might be a command-line system or a user interface that receives orders from traders and 
routes them to the necessary components. Take a look at the following diagram:

Figure 2.9 – User interface for a trading system
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We covered the command and control service responsible for interacting with all the 
trading system components. We will now see the remaining functions of a trading system.

Services
Additional components may be added to the trading system. We will talk about the 
following components (it is not an exhaustive list):

•	 Position server: This keeps track of all the trades. It updates the positions for all the 
traded financial assets. For instance, if a trade is made for 100,000 EUR/USD at a 
price of $1.2, the notional position will be $120,000. If a trading system component 
needs the position amount for EUR/USD, it will subscribe to the position server 
for getting position updates. The order manager or the trading strategy may want 
to know this information before allowing an order to go out. If we want to limit the 
position to $200,000 for a given asset, another order to get 100,000 EUR/USD will 
be rejected.

•	 Logging system: This gathers all the logs from the components and will write a 
file or modify a database. A logging system helps with debugging, figuring out the 
causes of issues, and also just reports.

•	 Viewers (read-only user interface view): These display the views for trading (such 
as positions, orders, trades, and task monitoring).

•	 Control viewers (interactive user interface): These provide a way to modify 
parameters and start/stop components of the trading system.

•	 News server: This gathers news from many news companies (such as Bloomberg, 
Reuters, and Ravenpack) and provides this news in real time or on demand to the 
trading system.

This section covers the critical and non-critical components of a trading system. We will 
now conclude this chapter by summarizing what we have learned.



Summary     39

Summary
We learned how to create a trading system in this chapter. The trading system we  
created includes all of the necessary components for you to design a trading system  
and start trading.

It takes years to learn how to construct a trading system. Because of the difference 
between the asset classes, it is likely that you will become an expert in one asset class 
rather than another. We created the bare minimum of features that a trading system 
should have. We must learn how to link this component to a trading system in order for it 
to be completely functioning. 

In the following chapters, we will explain in detail how trading systems should be 
implemented and especially related to the operating system and the hardware. In the next 
chapter, we have more pieces of knowledge to learn about the trading exchange.





3
Understanding the 

Trading Exchange 
Dynamics

In the previous chapter, we learned how to create High-Frequency Trading (HFT) 
systems. We focused intensely on the critical components of a trading system. We also 
reviewed in detail how to create an order book, which is basically a replication of what an 
exchange collects from all the trading participants. In this chapter, we are going to study 
how an exchange works.

We will describe the functional components of an exchange and we will focus in depth on 
the matching engine. Understanding how the matching engine of an exchange works is 
one of the most important tasks you will have to do when creating HFT strategies.

This chapter will cover the following topics: 

•	 Understanding trading exchanges

•	 Understanding matching engines 

•	 Architecting a trading exchange
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In Chapter 2, The Critical Components of a Trading System, we gained a decent idea of how 
to design a trading system. We went over how to design a book, create trading signals, and 
receive a market response in great detail. In this chapter, we will explain in depth how an 
exchange works.

Architecting a trading exchange for handling 
orders at a large scale
Existing owners can deal with potential purchasers on stock exchanges. Exchanges are 
not primary markets: they can be secondary, tertiary markets. Companies that trade on 
stock exchanges don't buy and sell their own assets every day. They may buy back stock or 
issue new stocks when necessary. In a stock exchange, we purchase stocks from another 
shareholder. When we sell stocks, we sell them to another investor.

History of trading exchanges
In the 16th and 17th centuries, the first stock exchanges arose in Europe, mostly in port 
towns or commerce centers such as Antwerp, Amsterdam, and London. However, because 
a small number of corporations did not issue equity, these early stock markets were 
more analogous to bond exchanges. Most early corporations were deemed semi-public 
enterprises since governments had to allow them to conduct business.

The New York Stock Exchange (NYSE), enabling equity trading, first appeared in 
America in the late 18th century. The Philadelphia Stock Exchange (PHLX) is credited as 
America's first stock exchange. With the signing of the New York Stock Exchange Act in 
1792, the NYSE was born.

With the introduction of contemporary stock markets, a new era of regulation and 
professionalization began, ensuring that buyers and sellers of stocks could trust that their 
transactions would be completed at acceptable prices and within a reasonable time frame. 
Today, there are several stock markets in the United States and across the world, many 
of which are electronically linked. As a result, markets have become more efficient and 
liquid. Stocks are, of course, the most well-known traded asset classes; however, foreign 
exchange, fixed income, future, options, crypto, and many other types of asset classes are 
also traded. 

A stock exchange's share prices can be determined by a variety of methods. Conducting 
an auction, in which buyers and sellers make bids and offers to purchase or sell, is the 
most common approach. An offer (or ask) is the price at which someone wishes to 
purchase something, whereas a bid is the price at which they wish to sell something. 
When the bid and ask are equal, a transaction is made.
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Understanding features of an exchange
A stock exchange (exchange) has a lot of diverse features. An exchange is a marketplace 
that brings together various market players to streamline transactions, decrease risks, and 
help in price discovery. There are several components in an exchange. The following are 
the primary systems, in general: 

•	 Listings: These are the corporations that are traded by market participants on the 
exchange. They are essentially private enterprises that go through the initial public 
offering procedure to become public. Valuation, liquidity, and compliance expenses 
are all important factors to consider when choosing an exchange to list on.

•	 Matching engine: This would be similar to the old pit, where brokers stood about 
yelling instructions to each other. It's now fully automated as a matching engine 
algorithm, which takes care of the transactions. In the market, the engine publishes 
the order book (pending trades) and matches them properly. The speed at which 
these deals are matched and completed varies and is measured in nanoseconds.  
The way the trading engine determines the prices varies slightly between  
exchanges. In the General order book and matching engine section, we will  
explain it more in depth.

•	 Post-trade: Payment and settlement, as well as trade reconciliation, are all part 
of this process to guarantee that all orders are correctly matched and completed. 
Essentially, this is the tedious (but necessary) backend job. 

•	 Market data: The exchange handles large amounts of data. It is sold to a  
variety of market participants. Trade prices, trading volumes, firm announcements/
filings, and so on are all examples of this. Co-location (as we defined in  
Chapter 1, Fundamentals of a High-Frequency Trading System) has also become 
widespread because of HFT. As a result, the speed at which this data may be 
accessed is also marketed.

•	 Market participants: Clearing and trading members are the market  
participants. Each has its own set of qualifications, with clearing members  
having stricter restrictions.

Members also place collateral with the exchange to protect themselves in the event 
of a member's collapse. Because deals involve two parties, the exchange will step in 
to perform the trade with the second party if one side defaults. As a result, collateral 
is necessary for the exchange to assert a claim against the defaulting party while also 
maintaining market stability. Brokers and proprietary trading houses are the most 
common trading members. Clearing members are major participants who assist in 
the clearing of deals.
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•	 Regulation: Depending on the asset class, the regulations differ. Different exchanges 
will have different regulations, depending on the jurisdiction. This is done to 
prevent money laundering and market tampering such as insider trading and 
market manipulation.

Exchanges can also monitor company announcements to ensure that all required 
disclosures are made, promoting a transparent marketplace. In addition to 
managing market participants, the exchange must also deal with internal 
compliance and government authorities.

We have learned what features an exchange must have; now we will discuss in detail the 
architecture of an exchange.

Exchange architecture
Trading platforms are responsible for executing orders received from buy-side portfolio 
managers, managing and monitoring orders during the execution process, and offering 
electronic access to a number of venues. On the sell side, support is required for 
processing customer orders and maintaining trading positions.

An exchange architecture provides buy/sell trading capabilities and must meet the 
following business requirements:

•	 Support front, middle, and back office trading capabilities as well as basic and 
complicated rule-based and algorithmic trade techniques.

•	 Support backtesting and live execution of the preceding strategies throughout the 
development lifecycle.

•	 Display trading and blotter UIs (desktop applications, web-based/mobile apps).

•	 Support a trading as a service (TaaS) business model that might be delivered as a 
utility using open APIs. We talked about the integration with the trading system 
and the exchange using API working with the FIX protocol in the previous chapter.

•	 Support global integration with a wide range of external parties. 

•	 Support a wide range of financial products.

•	 Should be highly scalable.
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We are presenting the main functionality of an exchange in the following figure (we 
represented three queues for three companies: Tesla, Microsoft, and Apple):

Figure 3.1 – Trading exchange architecture

In this figure, we can see a Trading System T1 connected to the exchange. As we 
explained in Chapter 2, The Critical Components of a Trading System, the trading system 
initiates two connections with the exchange: price updates and orders. When an order is 
sent to the exchange, it will follow these steps:

1.	 Depending on the asset class and the instrument, it will be routed to queues. Each 
queue is created for one given price and one given symbol.

2.	 The matching engine handles the orders one at a time.
3.	 If there is a change in the order book (handled by the matching engine), the change 

will be communicated to the trader and also given to all the market participants 
(every update will be sent to the clearing/post trades if a trade occurs).

It is easy to observe that the communication between traders and exchanges must be fast-
paced to be able to reach the speed for HFT. Therefore, the choice of protocol to convey a 
message is critical. A string-based protocol such as the FIX protocol is not sufficient. Most 
of the exchanges where it is possible to trade within microseconds use binary protocols. 
Trading systems are designed to provide data very quickly to trading strategies. For an 
exchange, the goal is to provide data to the matching engine. We are going to describe in 
depth what the matching engine algorithm is in the next section.
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General order book and matching engine
Millions of investors and traders make up the total market, all of whom may have 
various opinions on the worth of a particular stock and, as a result, the price at which 
they are willing to purchase or sell it. Over the course of a trading day, the thousands of 
transactions that occur when these investors and traders transform their intentions into 
actions by buying and/or selling a stock generate minute-by-minute gyrations in it.

A stock exchange provides a platform for this type of trading by connecting buyers and 
sellers of equities. A stockbroker is required for the typical person to have access to these 
markets. This stockbroker serves as a go-between for the buyer and the seller.

Initially, matching buyers and sellers of stocks on an exchange was done manually, but 
computerized trading systems are now being used more frequently. The open outcry 
system, in which dealers utilized verbal and hand-signal communication to purchase and 
sell large blocks of stocks in the trading pit or on the exchange floor, was the manual form 
of trading. It has been replaced by electronic trading platforms. These technologies can 
match buyers and sellers significantly more efficiently and quickly than people, leading to 
major advantages, including cheaper trading costs and speedier trade execution.

The intention of creating a transaction between buyers and sellers is kept in what we 
call an order book. This order book is the same as the one we previously described for a 
trading system. It contains bids and offers from all the market participants. The process, 
which is going to match buyers and sellers, is handled by the matching engine. This 
algorithm matches buy and sell orders to execute securities deals. Matching engines have 
different algorithms to describe how orders are matched and filled in what sequence, 
which varies depending on where the trade is routed. 

The matching engine algorithm is depicted in Figure 3.2. The inputs are the Order (1) 
coming from the trader and the Order book (2) (which contains the orders already 
placed on the exchange). This algorithm will return the list of the Trades (3) and the list of 
Resting orders (4). Every order coming to the system will be processed one by one.
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Figure 3.2 – Matching engine algorithm with inputs and outputs

When using HFT strategies, nanoseconds are important to be profitable. In this book, 
we will learn in detail how to optimize a trading system to get to the best performance 
possible. Meanwhile, an understanding of the exchange is required. As we previously 
described, an exchange is a server accepting connections from trading systems and 
running the matching engine algorithm on the order book being the structure collecting 
all the orders. Since all exchanges have their own matching algorithm, it is important to 
know the basic scenarios you will encounter when trading.

In all the following scenarios, we will explain what occurs in the exchange for an Order 
getting into the exchange in relation to the Order book. We will first learn about the most 
basic case, which is matching for the best price.

Best price scenario
By default, a matching engine will always try to find the best price available (2) for a  
given order (1).
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The matching engine algorithm finds the best price available as it is written in Figure 3.3. 
In this figure, we can see order #1 getting into the exchange. This order will match with 
order #3, since the price of the order is better for the buyer. Indeed, the buyer wants to buy 
an asset for $100. The exchange has this asset for $99 and for $100. The matching engine 
will match with the available best price, which is $99:

Figure 3.3 – Best price scenario

The result of the algorithm in this context will be to have a trade at $99 between orders #1 
and #3. Order #2 will remain.

In this example, the quantity was 100. We need to learn what will happen when the 
quantities of two matching orders are different.

Partial fill scenario 
In the previous example, we had two orders matching with the same quantity. In the 
example in Figure 3.4, we have order #1 with a quantity of 4 and order #3 with a quantity 
of 1. In this situation, to fill order #1, we will need to have three more shares. This trading 
exchange doesn't have in its order book the amount to satisfy this transaction. Therefore, 
orders #3 and #2 will be filled and the remaining quantity of 1 coming from order #1 will 
remain on the exchange. That's why the output of the algorithm for this case is two filled 
orders and one order left.
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Figure 3.4 – Partial fill scenario

In the two previous examples, we had matching liquidities. Indeed, for the price that was 
asked, we had a liquidity to match this price. We now need to study what would happen 
when the liquidity cannot be matched with another one.

No match scenario
In the scenario represented in Figure 3.5, we have order #1 getting into the system and the 
order book has two orders, #2 and #3. Since the price to buy is $98, which is way lower 
than the price where the participants are ready to sell, $99, the matching engine will not 
match any orders. Order #1 will stay on the exchange:

Figure 3.5 – No match scenario
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In the previous scenario, we have different price levels in the book. We need to study what 
would happen if the price of the liquidities is the same.

Multiple orders with the same price
In the scenario represented in Figure 3.6, we have two orders with the same price and the 
incoming order with the same price. The way that the orders will be filled depends on the 
configuration of the matching engine:

Figure 3.6 – Multiple orders with the same price in the order book

The matching engine's algorithm is crucial in determining what kind of behavior we want 
to encourage in the exchange. The two most popular implementations of these algorithms 
will be discussed in the sections that follow.

Let's talk about the different types of algorithms.

FIFO
Time/price priority, also known as First In First Out (FIFO), is the most widely used 
algorithm. We know, from the exchange architecture represented in Figure 3.1, that 
orders are stored in a queue for a given price level. Once the orders get into the matching 
engine, they will be stamped with the time that they entered the system. Therefore, no 
orders will have the same timestamp. With this observation, when we apply the FIFO 
algorithm, we will match the incoming order with the one that has the lower timestamp. 
In this situation, order #3 has been on the exchange for a period longer than order 
#2. Consequently, order #3 will be matched first with the incoming order #1. Any 
modifications to the orders will result in their position being lost in the order of execution. 
Depending on the exchanging, changing the quantity of a given order will cause this order 
to lose its priority. But for all the exchanges, if we have a price change, the order will lose 
priority because it will need to change the FIFO queue.
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Figure 3.7 – FIFO algorithm

Even if the FIFO algorithm is the one that is used the most, many other algorithms can be 
used. The last algorithm we will discuss is the pure pro-rata algorithm.

Pure pro-rata
Orders are filled using a pro-rata algorithm that considers pricing, order lot size, and time. 
A market participant's entering order is shared evenly among matching counterorders 
proportionally to their quantity.

Figure 3.8 – Pure pro-rata
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Figure 3.8 shows that a buy order with a price of $100 will be executed with two orders 
with the same price, regardless of their timestamps. The exchange will use this algorithm 
to encourage participants to place orders, even if these participants are slower than the 
fastest participants.

Other forms of pro-rata matching
To encourage trading, the pro-rata algorithm is frequently used with other algorithms. It 
is generally used to incentivize particular behaviors among market participants.

Pro-rata with top-order is a method linked with pro-rata. In this situation, the oldest 
counter order is completed in full first, followed by a pro-rata distribution of the other 
counter orders, as indicated in the following diagram:

Figure 3.9 – Pro-rata algorithm variant

Figure 3.9 explains the pro-rata algorithm variant. In Figure 3.8, all the orders in the book 
were filled with the same quantity. In this variant, we give more weight when filling the 
orders to the older ones in the book. With this method, the exchange will still encourage 
participants to trade even if they are not fast enough, but the faster participants will be 
rewarded more by getting more traded quantities.
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Any exotic configuration can be added to this algorithm. For instance, if we want to 
encourage bigger orders, a weight could be introduced by filling the orders with a  
larger quantity. 

Let's end our coverage of the different scenarios that a matching engine can encounter. We 
will now wrap up this part by summarizing what we discussed.

Summary 
As previously described, one nanosecond can create an edge in HFT. Knowing the 
microstructure of the market by learning how an exchange works (in terms of priority 
queues and the matching engine) will help you understand how to design your trading 
strategy. You now know that amending the price of an order will result in the loss of 
priority of the amended order in the queue. We also learned that depending on the 
exchange, changing the quantity of an order can get the same result. This chapter showed 
you how to design a trading exchange. We developed an in-depth understanding of how a 
matching engine works. In the next chapter, we will explain how hardware and operating 
systems operate in the context of HFT systems and trading exchanges.





This part aims to give you the basics of a high-frequency trading (HFT) system. The 
book provides a step-by-step guide to optimizing the code and the operating system (OS) 
to create ultra-low latency software. It will describe the main optimizations to get the 
trading system, the OS, and the hardware to work together.

This part comprises the following chapters:

•	 Chapter 4, HFT System Foundations – From Hardware to OS

•	 Chapter 5, Networking in Motion

•	 Chapter 6, HFT Optimization – Architecture and Operating System

•	 Chapter 7, HFT Optimization – Logging, Performance, and Networking

Part 2:  
How to Architect 

a High-Frequency 
Trading System





4
HFT System 

Foundations – From 
Hardware to OS

In the previous chapter, we learned how an exchange works. We reviewed the functional 
components of an exchange and the matching engine. This chapter will explain the basic 
hardware and operating system (OS) of an HFT system.  

This chapter will cover the following topics:

•	 Understanding HFT computers

•	 Using the OS for HFT

•	 The role of compilers 
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We will learn in later chapters that high frequency is relative to the types of trading 
strategies and the assets you're trading, as well as the capabilities of the exchanges you're 
trading on. Achieving a tick-to-trade latency of 100 microseconds requires careful 
programming and a good understanding of the underlying hardware. You need to write 
code best to take advantage of the CPU and its memory architecture and minimize the 
overhead of I/O operations. This chapter focuses on getting the baseline (in terms of the 
hardware and OS that we should have) in order to have an automated trading system that 
will achieve good performance. Later chapters will help us refine this, applying different 
optimization techniques to improve latencies in the trading system, getting us down to 
even below 10-microsecond latencies.

Suppose you want to get an in-depth explanation of how a modern computer system 
architecture works. In that case, the classic book Computer Architecture: A Quantitative 
Approach by John Hennessy and David Patterson explains that in detail and develops 
statistical models to help understand performance trade-offs. In this chapter, we will focus 
on the pieces that an HFT system needs to function. The following section will introduce 
the hardware of the machines used by such a system.

Understanding HFT computers
It's easy to imagine you might need some specialized computer hardware for any 
low-latency trading strategy. This is not the case – most hardware is normal off-the-shelf 
hardware. How you configure the hardware is more important for most cases. Figure 4.1 
shows a primary CPU, representing how a developer of an HFT system thinks about the 
CPU's architecture.

Figure 4.1 – Primary CPU
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As we discussed in previous chapters, the purpose of a server in an HFT system is to 
handle baseline trading functions: receiving market data, executing algorithmic models, 
and sending orders to an exchange. This system has a network interface to send and 
receive data to and from a business or communicate with other trading systems inside  
the firm. Chapter 5, Networking in Motion, focuses on this aspect. Once a packet comes  
off the wire, the central processing unit (CPU) does the heaviest lifting. Packets will 
arrive in host memory from the network interface; then, the CPU will pull pieces of the 
packets into caches so that the CPU execution cores can decode and act on the contents  
of the packets. 

To achieve low latency, you need to consider how your software executes in the CPU and 
how data flows from the various hardware components to be processed by your trading 
system and algorithms. In the following sections, we will look at how a CPU works and 
some CPU microarchitecture details that impact the performance of your software.

CPUs, from multi-processor to multi-core
A CPU is a collection of one or more processor cores that fetch and execute program 
instructions. These instructions can act on data stored in memory or interface with a 
connected device. These devices, often called input/output (I/O) devices, connect to the 
CPU over some expansion bus, such as PCI Express (PCIe). In the past, you needed to 
have multiple physical chips in a single computer to achieve multi-processing. Over the 
past decade, to deal with the scaling limits imposed by Moore's law, most CPUs shipped 
have multiple cores on a single silicon die. As silicon features (such as transistors) have 
become smaller, yield (the number of fully functional chips) during manufacturing has 
become a concern, and so there is a move back toward multiple chips (sometimes called 
chiplets) in a single package. 

The CPU core is very good at performing many small logical operations. For example, the 
CPU can perform basic arithmetic operations (add, subtract, multiply, and divide) and 
logical operations (AND, OR, NOT, XOR, and bit shifting). More specialized operations, 
such as CRC32, steps of the Advanced Encryption Standard (AES) algorithm, and a 
carry-less multiplication (for example, PCLMUQDQ), are also implemented directly by 
some CPU cores. The CPU can also act on information loaded from memory or read from 
an input device. The CPU can also change its execution path based on the information it 
has calculated or read elsewhere. These control flow instructions are the building blocks 
for high-level language constructs, such as conditional statements or loops.



60     HFT System Foundations – From Hardware to OS

When market data arrives on a network interface, the CPU handles it. This means parsing 
the data sent over the network, managing this market data across the different functional 
parts of the trading systems, and possibly sending an order triggered by this market data 
to the exchange. In Chapter 2, The Critical Components of a Trading System, we described 
the essential elements. We discussed that the gateways, order book, and trading strategies 
were all components working together to trigger an order. With a single CPU execution 
core, each of these actions would have to happen in sequence, meaning only a single 
packet could be processed at one time. This means that packets could queue up and wait 
for the previous packet to finish being processed; this increases the time a message could 
wait before the trading system can provide this new data to a trading strategy. To reduce 
latency, we want many processing units working in parallel, handing off the processed 
market data as quickly as possible to move on to the following message that has arrived. 
Parallel computing systems have been around since the dawn of computing, though these 
were used in highly specialized scientific computing applications in the early days. In the 
1990s, multi-socket servers became prevalent with two or more CPUs on the same board. 
Since single-CPU cores could not scale in performance due to Moore's law's limitations, 
CPU vendors started to add multiple processing cores on a single chip. A modern server 
can have multiple CPU sockets, each with multiple CPU cores present, achieving a 
considerable amount of parallelism in a single machine.

Figure 4.2 depicts a modern multi-socket system architecture. Memory or I/O devices 
are attached directly to a particular CPU socket. These are referred to as being local to 
the CPU. Other CPUs can be connected in a single system using an interconnect, such as 
Intel's Ultra Path Interconnect or AMD's Infinity Fabric. Suppose one CPU attempts to 
access memory or an I/O device attached to a different CPU. In that case, this is referred 
to as accessing a remote resource. When we compare the time it takes for one CPU to 
access its local resources with that of a remote CPU over an interconnect, we find that  
the interconnect is much slower than just accessing local memory. We call this access time 
non-uniform and call these architectures non-uniform memory access (NUMA). The 
term cache-coherent NUMA or ccNUMA refers to the fact that a CPU core is guaranteed 
to have the correct view of memory even if another CPU core has modified the data. 
NUMA architectures can scale to large numbers of cores. It's possible to think  
of each CPU as being a separate computer system, all interconnected with each  
other over a fabric.
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Figure 4.2 – A four-way NUMA architecture. Note how the CPUs form a fully connected graph  
in this configuration

Figure 4,2 also represents a few more components. PCIe is a bus connecting other devices, 
such as the Network Interface Card (NIC). When there is more than one CPU present in 
a NUMA architecture, additional CPUs are capable of sharing data by requesting it over 
the interconnect bus.

A note about hyper-threading and simultaneous multithreading
Simultaneous multithreading, known on Intel CPUs as hyper-threading, is a trick where 
the CPU keeps track of multiple parallel execution states (two such states, in the case 
of hyper-threading). When one execution state needs to wait for a high-latency event 
(such as fetching data from a higher-level cache or RAM), the CPU switches over to the 
other execution state while waiting for the fetch to complete; this is a kind of automatic 
threading that is managed by the CPU itself and makes each physical core appear as 
multiple virtual cores.

There is a temptation to double the number of physical cores using hyper-threading, but 
this introduces hard-to-control latency that looks like a context switch.
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Figure 4.3 depicts the use of hyper-threading in one hyperthreaded core. We can observe 
that the hardware can fake a concurrent execution if a task needs to wait to access a 
memory segment while running another one simultaneously. If a system call (or an 
interruption) demands access to the Kernel, all the tasks will be on hold. 

Figure 4.3 – Hyper-threading

The major problem of hyper-threading is that it removes the control of task switching (at 
the software level), which can create higher jitter and higher latency.

Main memory or RAM
Often called Random Access Memory (RAM), main memory is a large, non-persistent 
store for program instructions and data. RAM is the first stop for any data read from 
an I/O device, such as a network card or a storage device. Modern RAM can return 
data bursts at high throughput but at the expense of latency when data at an address is 
requested and the data becomes available.

In a typical NUMA architecture, each CPU has some local RAM. Many configurations 
will have an equal amount of RAM connected to each NUMA node, but this is not a firm 
requirement. The latency of access to RAM, especially on a remote NUMA node, can be 
pretty high. So, we need other ways to hide this latency or buffer data, close to the CPU 
executing some code. This is where caches come into play.

Caches
Modern processors, with many cores, have caches local to each core and caches shared by 
all cores on a single socket. These caches are designed to take advantage of the fact that 
programs typically operate on data in the same memory region within a particular time 
window. This spatial and temporal locality of data access presents an opportunity for the 
CPU to hide the latency of access to RAM.
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Figure 4.4 shows a typical cache hierarchy for a modern multi-core CPU. The L1 cache is 
split into two parts: a data cache and an instruction cache. The L2 and L3 caches will mix 
instructions and data freely, as does the main memory.

Figure 4.4 – Cache system

We will now talk about the structure of the caching system.

Cache structure
Rather than reading a single word or byte from the main memory at a time, each cache 
entry typically stores a particular number of words, referred to as a cache line. The 
entire line is read and cached at the same time. When a cache line is read in, another line 
needs to be evicted to make room for the new cache line. Which line is evicted is often 
determined on a least-recently-used basis, but other schemes exist. Different levels of 
cache have different cache line sizes – this is a property of the CPU design itself. There are 
a variety of details on how to align data structures to cache line sizes to increase the odds 
of a cache hit, mainly when many related data structures are accessed. 

L1 cache
The L1 cache (Level 1) is the quickest memory available in a computer system and it is 
placed close to the execution units of the CPU. The L1 cache has the data that the CPU 
has most recently accessed and loaded into registers. The CPU vendor determines the L1 
cache size. 

The L1 cache is divided into the data cache and the instruction cache. The instruction 
cache stores information on the operation that the CPU must complete, whereas the data 
cache stores the data on which the process will be performed.
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L2 cache 
The L2 cache (Level 2) is slower than the L1 cache but larger. Modern L2 memory caches 
are measured in megabytes(MB), whereas L1 caches are measured in kilobytes(KB). The 
size of the L2 store varies depending on the CPU. However, it is usually between 256 
KB and 8 MB. Most current CPUs have a larger L2 cache than 256 KB, which is now 
considered small. Today's most powerful CPUs have an L2 memory cache of more than 
8 MB. The L2 cache trails behind the L1 cache in terms of performance, but it is still far 
quicker than the system RAM. The L1 cache is generally 100 times faster than RAM, while 
the L2 cache is about 25 times faster.

L3 cache
The L3 cache is the largest, but it's also the slowest. The L3 cache is included in modern 
CPUs. The L3 cache is more analogous to a global memory pool that the whole chip may 
utilize, whereas the L1 and L2 caches are dedicated to each core on the chip. The L3 cache 
is what we call a victim cache: any cache line evicted from the L1 and L2 caches local to 
a core will be delivered to L3 before being sent to the main memory. It is a usually fully 
associative cache placed in the refill path of a CPU cache that stores all the blocks evicted 
from that level of cache. All cores share the L3 cache on a modern CPU.

Shared memory
Most computer systems today, especially those with multiple sockets, create the illusion 
of a single design with one pool of main memory. We refer to these as shared memory 
systems, where programs running on any CPU can access any memory attached to 
another CPU as though it were local to the CPU running the code.

Today, there are two types of shared memory models: uniform memory access (UMA) 
and non-uniform memory access (NUMA). UMA uses a single memory controller, and 
all CPUs communicate with the system memory through this single memory controller. 
In most cases, the memory controller is a separate chip that all CPUs connect to directly. 
In NUMA architectures, there are memory controllers, with memory being physically 
connected to a particular socket. The main benefit of a NUMA architecture over UMA 
is that a NUMA system can scale more quickly to a more significant number of CPUs, 
because interconnecting NUMA nodes is less complex than connecting several CPUs to a 
single pool of system memory.

In the case of UMA, as more microprocessors are added, the shared bus becomes 
congested and becomes a performance bottleneck. This severely limits the ability of a 
UMA system to scale the number of available CPUs, and it increases the amount of time 
each CPU core has to wait for requests to main memory to be serviced.
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All modern multi-socket servers on the market today are NUMA architectures. Each CPU 
socket has its pool of memory physically connected to it. Since each CPU has multiple 
layers of cache present, it's a possibility that the CPU will have cached an old version of 
data contained in another CPU's memory (or even that another remote CPU will have 
modified memory local to this CPU). To solve these cases, we need cache coherency 
protocols. These protocols enable a CPU to determine whether it uniquely owns, shares, 
or has a locally modified version of a particular memory region, and share information 
with other CPUs if they try to access the exact memory location. Ideally, an application 
is written to rarely require the use of these protocols, especially where latency and 
throughput matter, since the cost of synchronizing this ownership is high.

SMP and NUMA systems are commonly employed for HFT systems, in which processing 
could be distributed among several processors working in a single memory location. This 
must be considered when designing data structures and systems to pass messages between 
trading system components.

I/O devices
There are many different types of I/O devices connected to a computer, such as hard 
drives, printers, keyboards, mice, network cards, and many others. The primary device 
we should consider in HFT is the network card described in Chapter 5, Networking 
in Motion. Most I/O devices are connected to a CPU using Peripheral Component 
Interconnect Express (PCIe). PCIe devices are directly related to a particular CPU in a 
NUMA infrastructure. When building a trading system, you need to consider which CPU 
your networking code (such as market data gateway), is keeping local to the CPU that the 
network device is connected to minimize latency.

A device that we always try to limit the usage of is the hard disk. Accessing the data on 
a hard disk is very costly and will rarely be used in HFT systems. However, when we 
backtest a trading strategy, the information is stored on disks. We will need to have data 
stored in a specific way to ensure fast access. We will not address this part in this book 
since it is not specific to HFT systems.

Using the OS for HFT systems
Any HFT software runs on top of an OS. The OS is an abstraction on top of the hardware, 
hiding the details of how to launch executables, manage memory, and access devices. One 
of the techniques used to reduce latency is to break this abstraction where appropriate 
and interact directly with the hardware. These applications interface between the users 
(programmers) and hardware. 
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The OS has several main functionalities, including the following:

•	 Abstracting access to hardware resources

•	 Process scheduling

•	 Memory management

•	 A means of storing and accessing data

•	 A means of communicating with other computers

•	 Interruption management

For HFT systems, the main critical functionality is process scheduling. We will describe in 
detail what the process of scheduling tasks is in the following sections.

User space and kernel space
The heart of the OS is its kernel. The kernel is a highly privileged chunk of code that sits 
between applications and the hardware. The kernel typically provides many services, 
ranging from managing protocol stacks for networking and communication to providing 
abstractions on top of hardware devices in the form of device drivers. A kernel is highly 
privileged and can control how a system works, including reading and writing from 
arbitrary physical memory addresses, creating and destroying processes, and even altering 
data before making it available to applications running on the system. The kernel must be 
carefully protected, and only trusted code should run in the kernel context, referred to as 
kernel space.

User space is where applications run. A user space process is a separate virtual memory 
space with multiple threads. User space processes tend to be much less privileged and 
require exceptional support from the kernel to access devices, allocate physical memory, 
or alter the machine state. A trading system runs in user space, but one of the challenges 
of building a low-latency trading system is to minimize the number of abstractions 
between the hardware and your trading system. After all, the more code that has to be 
executed to convert data between different formats, switch context to the kernel or other 
processes to deliver messages, or handle unnecessary changes in the state of hardware, the 
more time is wasted not running critical trading system code.
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One important concept is the separation of address spaces. As we'll see, this is in part 
related to how memory is allocated by the OS and understood by the CPU, but this is also 
a security and stability feature. One process should not be able to impact the kernel or 
another process without explicit permission to do so. Without shared memory or similar 
communication techniques, there are few ways that processes in user space can directly 
interact with each other. This applies equally to the kernel, as there are very few ways a 
process can directly interact with the kernel. The kernel is designed to protect access to its 
sensitive resources and data structures carefully.

Process scheduling and CPU resource management
Any software is first compiled and sits on durable long-term storage (some solid-state 
drive or hard disk). When we want to launch a trading system (or any software), we 
invoke one or more executables stored on a disk. This results in the OS creating one or 
more processes. 

The OS will load the software into the main memory, create a virtual memory space, and 
invoke a thread to execute the code that was just loaded. This combination of the software 
running, the virtual memory space, and one or more threads is called a process. Once 
loaded, the OS will eventually schedule the process' main thread. The scheduler is in 
charge of determining where and when threads associated with a process will be executed. 
The scheduler can manage the execution of threads across multiple execution cores, 
which can be scheduled in parallel across multiple physical CPU sockets. The scheduler 
is an abstraction on top of this multitude of CPU cores, as in a modern computer system 
described in the previous section.

When we have more processes than execution cores available, the scheduler can restrict 
how long a thread executes before it steps in to swap with another waiting thread. This is 
called multitasking. The action of changing the process running from one to another is 
called a context switch. 

A context switch is an expensive operation. The OS saves the execution environment 
of the process being switched out and restores the environment of the process being 
resumed. As discussed earlier, trading systems leverage multiple cores to achieve real-time 
parallelism. The more physical execution cores there are available, the more threads there 
are running in parallel, typically mapping one thread to one execution core.
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There are two traditional approaches to process scheduling used in modern OSs:

•	 Preemptive multitasking: Linux and most OSs implement a preemptive 
multitasking approach. Preemptive multitasking aims to ensure that one process 
cannot monopolize the system. Each process is given a specific amount of time to 
run. This amount of time is called a timeslice. The scheduler will stop the process 
from running after that timeslice has expired. In addition to preventing processes 
from consuming too much time, this approach allows the scheduler to make global 
processing decisions. Many preemptive multitasking schedulers try to be NUMA 
topology-aware and execute a thread close to its resources, but this is generally 
difficult to achieve.

•	 Cooperative multitasking: This differs primarily because it will allow a process 
to run until the process voluntarily decides to stop running. We call the act of a 
process willingly choosing to stop running yielding. This approach is typical for real-
time OSs since engineers would not want latency-sensitive code disrupted by the 
scheduler or other running tasks. You could imagine that this would be disastrous 
in a real-time control system for some critical safety process, or if you delayed an 
order reaching the market until long after someone else took that liquidity. OSs such 
as Linux have a form of cooperative multitasking available, which can be useful 
for latency-sensitive code if used with care. Usually, this is to support real-time 
applications using Linux.

Almost all task scheduler implementations provide several mechanisms to tune 
the scheduler's behavior. This can include guidance on a per-process basis, such as 
prioritization, NUMA and execution unit affinity, hints about memory usage, rules on 
I/O priority, and so on. Linux allows multiple scheduling rules to be applied to running 
processes, enabling some groups of tasks to use real-time scheduling rules. Many of these 
settings are helpful when designing low-latency systems but they need to be used with 
care; incorrect prioritization could lead to priority inversions or other deadlock scenarios.

A scheduler will always use the same fairness for all the resources and processes in 
its default configuration. This gives the assurance of granting each request, from a set 
of requests, within a predetermined bound time, even though the scheduling request 
primitives are unfair or random. In Chapter 6, HFT Optimization – Architecture and 
Operating System, we will explain how to make this process scheduling specialized for 
HFT systems by limiting the number of context switches.

Memory management
To be executed, the software needs to have its instructions and data available in memory. 
The OS instructs the CPU on which memory belongs to which process.
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The OS must track what memory regions have been allocated, map memory to each 
process, and specify how much memory to allocate to a given process. 

The address space that the memory management unit accesses is called the physical 
address space. This is the physical memory that is available on your computer. The CPU 
will allocate portions of this space to the executing processes. These subdivided spaces are 
referred to as the virtual address space. The memory management unit's job is to map 
that space from physical to logical in real time, so that the CPU can quickly figure out 
which physical address a virtual address corresponds to.

Paged memory and page tables
Modern OSs do not know the objects or data that a process is accessing or storing. 
Instead, the OS focuses on fundamental system-level units of memory. The most basic 
team of memory the OS manages is a page. Pages are uniformly sized regions of physical 
memory with exact alignment, the size of which is usually determined architecturally by 
the CPU. A page can be mapped to a particular virtual address using hardware built into 
the CPU called the memory management unit (MMU). By remapping disparate physical 
pages to a contiguous, virtual range of talks, application developers don't have to think 
about how the hardware manages memory or where pages exist in physical memory. Each 
process executed by the OS will have its page mappings, referred to as a page table.

Figure 4.5 represents processes using pages. Any physical page can exist in multiple sets of 
page mappings. This means that various threads, perhaps running on different CPU cores, 
can access the same memory page within their address space.

Figure 4.5 – Pages and processes
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Translating physical and virtual addresses back and forth is done automatically by 
hardware in the CPU. For this reason, the performance of the translation would be 
improved if the information we are translating was in a speedy location close to the CPU. 
Indeed, a location used to store this information, the page table, will often be in dedicated 
registers in the CPU, but this is only possible when the page table is tiny.  A special-
purpose high-speed cache in the CPU called the translation lookaside buffer (TLB) is 
used for any practical page tables. Since page tables are an in-memory data structure,  
if the address space for a process is too large to fit inside the TLB, most CPUs have 
hardware that will pull the relevant page tables into the TLB from other CPUs' caches  
or even main memory.

Paging can hurt the performance of a process. When there is a cache miss in the TLB, the 
OS must load data from elsewhere in memory. In HFT systems, we sometimes minimize 
the impact of the TLB cache miss by increasing the page size. Virtual memory pages larger 
than the standard base page size of 4 KB are referred to as huge pages. For frequent access 
patterns on big datasets, huge pages can increase memory speed. Huge pages come with a 
cost – the TLB that tracks huge pages can sometimes be orders of magnitude smaller than 
that which manages standard pages, meaning more frequent trips to memory could be 
needed if you have many huge pages mapped. Thus, huge pages must be used with care.

System calls
A system call means a user space application requests a service from the OS' kernel. 
A system call is a way for applications to communicate with the OS. A system call is a 
request from software to the kernel of an OS to perform some sensitive action such as 
manipulating the hardware state. Some critical system calls on modern OSs are requested 
to handle process creation and termination, manage files on disk, manage I/O devices, and 
communicate with the outside world. 

When a system call is requested, the kernel will carry out the operation if the request 
is allowed. For many system calls, if the call is completed successfully, the application 
receives some response from the kernel. Once the system call is complete, the scheduler 
can schedule the requesting task to resume if it has time left in its timeslice, or if there 
isn't a higher priority task waiting for CPU time. The kernel provides the results to the 
application and then transfers data from kernel space to user space in memory after the 
procedure is completed. 
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Some particular system calls, such as getting the system date and time, may take a few 
nanoseconds to complete. A more extended system call, such as connecting to a network 
device or interacting with files on disk, may take several seconds. Most OSs launch a 
separate kernel thread for each system call to minimize bottlenecks. Multi-threaded OSs 
can handle several system calls at the same time. An HFT system will heavily use this 
notion of concurrent execution, such as using threads.

Modern versions of Linux provide the virtual dynamic shared object (vDSO) exporting 
some special kernel space functions to user space, especially those related to retrieving 
current system time. The power of vDSO is that these functions, under the control of the 
kernel and thus aware of the hardware specifics, execute directly in the user space process. 
Unlike open and read system calls that require an entire trip into the kernel (and thus a 
complete context switch), functions such as clock_gettime (in the case of CLOCK_
MONOTONIC at least) have a very low overhead to call because the call is in vDSO.

Threading
The most fundamental division of work in any process is a thread. By doing work across 
many threads, parallelism may be achieved. All threads inside a single process share a 
common virtual memory space. Each process, a grouping of one or more threads, has its 
own unique memory space. The main activity of a trading system is to share data across 
the different functionalities (potentially processes) to decide to send an order. The use 
of threads or a process will be considered when optimizing the communication between 
concurrent functionalities. This also impacts how you structure data being passed between 
threads and processes. Data passed between threads can take advantage of concurrency in 
memory allocation, allowing you to pass data by simply giving another thread a pointer 
to the message in a data structure. Passing data between processes either requires a shared 
memory pool mapped by both processes or serializing messages into some queue, as 
discussed in Chapter 6, HFT Optimization – Architecture and Operating System.

On top of being capable of sharing memory, threads have a faster response time than 
processes. If a process is separated into numerous threads, the output of one thread may 
be returned promptly as it completes its execution. Their context switch time is also 
shorter than the one for processes.

Because system calls are required in any HFT system, it is essential to offset the cost. We 
will see how to benefit from threads and processes in Chapter 6, HFT Optimization – 
Architecture and Operating System.
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Interruption management
Interrupt requests are how peripherals alert the CPU when something has happened. The 
CPU will then halt one of the processing cores and switch the context to the interrupt 
handler assigned to that device. Limiting the number of interruptions that can create 
context switches; we will also return to this in Chapter 6, HFT Optimization – Architecture 
and Operating System.

Figure 4.6 depicts the impact of using an interruption (or a system call) in a CPU's time 
executing a task in a single-core model. We can observe that the scheduler will switch 
between the currently running task and the interrupt context in the kernel. The kernel 
spends more time on servicing interrupt requests, and then there's less CPU time available 
to run user tasks.

Figure 4.6 – Interruption or system call impact on task scheduling

Figure 4.7 shows the benefit of two CPU cores, having two tasks that do not need to share 
time. This example shows that if we pin a task to a given core, we will reduce the number 
of context switches and reduce the impact of kernel interruptions. This example also 
assumes that interrupt requests are serviced by only one core. Thus, only Task 1 will be 
disrupted to service hardware.

Figure 4.7 – Advantage of two CPU cores
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Chapter 6, HFT Optimization – Architecture and Operating System, details this task 
scheduling pinning a task to a given core.

In the first two sections, we learned about the hardware, the OS, and their involvement in 
HFT systems. We will now tackle the last piece: the compilation and libraries, which are 
also essential to HFT systems.

The role of compilers
Compilers translate human-readable code written in a programming language (the source 
language) into another language, usually a machine-specific language, though this can 
be a virtual machine. They translate code from a high-level language to a lower-level one. 
They can generate intermediate code, assembly languages, object code, or machine code. 
They also play an essential role in speeding up software runtime. Compilers keep getting 
smarter by improving the abstraction of what developers wanted to express with efficient 
execution in hardware. New programming paradigms were added to improve software 
engineering. In the 1990s, Python and Java made object-oriented programming available 
to everyone. We recommend that the reader check out the book Compilers: Principles, 
Techniques, and Tools, also known as the Dragon Book, written by Aho, Lam, Sethi, and 
Ullman. This book will explain in depth how compilers are designed.

In HFT systems, the compilers can help optimize the part of the code where we spend 
most of the time: loops. Advanced Compiler Design and Implementation, written by Steven 
Muchnick, describes the loop optimization that compilers can do. We must keep in mind 
that the critical part of HFT systems is the space-time tradeoff (increasing memory usage 
and cache utilization while decreasing execution time). We can talk about a few examples 
of optimization using this paradigm:

•	 Loop unrolling is an example of this tradeoff. Because there are fewer iterations 
when a loop is unrolled, the overhead of exit checks is reduced. Furthermore, there 
are fewer branch instructions, which may have an overhead depending on the 
architecture. There are no exit tests in the case of a fully unrolled loop. Unrolling 
a loop can lead to further optimizations that a compiler can do (for example, in 
the preceding fully unrolled version, all the array offsets are constants, which is 
something the compiler may be able to exploit).

•	 Function inlining can replace the function call by the assembly code of this function 
itself on the callee side, giving opportunities for more assembly code optimizations.

•	 Table and calculation. The compilers can help create data structures to avoid 
recalculation. They will hold values of values already calculated.
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The primary function of the compiler is to generate an executable that's runnable by the 
OS. We will now discuss the executable file formats.

Executable file formats
The compiler and linker convert a high-level program into an executable file format 
appropriate for the target OS. The OS parses the executable file to figure out how to load 
and run the program. On Windows, this is a portable executable (PE) file, whereas on 
Linux, this is an executable and linkable format (ELF) file. Each OS has a loader. The 
loader determines which chunks of the program on the disk are loaded into memory. The 
loader allocates the virtual address range that the executable will be using. Then, it will 
start the execution from the entry point (in the example of the C language, the _start 
function), which then calls the programmer-defined main function. In terms of memory, 
it is essential to remember that the OS protects processes from one another by using 
virtual memory, as we described when discussing virtual memory and paging. Every 
executable runs isolated in its own virtual address space.

Static versus dynamic linking
Many executable programs on modern systems depend on external code libraries, often 
provided by third parties, such as an OS vendor. To deal with these external dependencies, 
there are two ways that a program can integrate this code. The first is by statically linking 
in all the code, building a standalone binary. The second is by dynamically linking in the 
external code, requiring the OS to inspect the executable file to figure out which libraries 
are needed to run the program, loading them separately.

The linker will arrange the application code and dependencies into a single binary object 
with static linking. Since this binary object has all the dependencies included, there is no 
opportunity for a program to take advantage of the same library being reused by multiple 
programs, thus requiring all the code to be loaded separately at runtime. For example, on 
Linux, many programs utilize the glibc library. If these programs were statically linked, 
they would waste a lot of memory storing the same dependent library repeatedly. Static 
linking has a significant advantage: the compiler and linker can work together to optimize 
all function calls, even with objects pulled in from an external library.
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Dynamic linking allows the linker to create a smaller binary file where the dependent 
libraries' locations would have been replaced with a stub. The dynamic linker will load 
that library, often on application startup, by loading the appropriate shared object from 
the disk. Only when the dependency is needed will it be loaded into memory. If multiple 
running processes use the same library, the library's code's memory can be shared 
across multiple processes. However, this efficiency comes at a cost: library functions 
are referenced indirectly when called through the procedure linkage table (PLT). This 
indirection can lead to added overhead, especially if a short function within the library  
is called frequently. Typical HFT systems will use static linking where possible to avoid 
this overhead.

Summary
In this chapter, we developed a conceptual model of how computers work and how to 
think about the overall performance impact of the various components. Each of the 
multiple pieces of hardware and software must work in a manner ideal for a trading 
system. That often requires an understanding of how the hardware and software interact 
so that the negative impact of inefficient algorithms or interactions can be circumvented 
or optimized.

Then we are using the fundamentals developed in this chapter as a foundation. The 
following chapters will build on optimizing the OS, kernel, and application for HFT 
systems. This will include reducing the impact of context switching, techniques for safely 
accessing shared data structures, and other means of mitigating inefficient components of 
the underlying hardware and software.

The next chapter will focus on networking. We will explain the role of a network card  
for HFT systems and how communication with the exchange needs to be optimized to 
reduce latency.





5
Networking in 

Motion
In the previous chapter, we talked in depth about the hardware and the operating system. 
Any trading system must collect data from the exchange and make decisions based on this 
data. To do so, communication will be essential in the performance of the high-frequency 
training (HFT) system. In this chapter, we will review how trading systems communicate 
in depth, how to use networks in HFT systems, and how to monitor network latency.

In this chapter, we will cover the following topics:

•	 Understanding networking in HFT systems

•	 Network communications between systems in HFT

•	 Important protocol concepts

•	 Designing financial protocols for HFT exchanges

•	 Interior networks versus exterior networks

•	 Understanding the packet life cycle

•	 Monitoring the network

•	 Valuing time distribution
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The following section will describe networking basics; we will go through the 
fundamentals that we will optimize later on.

Understanding networking in HFT systems
Trading systems receive market data and send orders from/to exchanges. The numerous 
processes spread out across different machines within a trading system need to 
communicate with one another—for instance, a process keeping track of a position of an 
instrument across the design will need to send information to all components regarding 
the position of a given asset. Networking defines how devices are interconnected with 
each other. Networking is required to transfer data from a machine to another one (by 
extension, to an exchange).

The network is the underpinning of all HFT systems and needs to be considered as 
carefully as the design decisions for software systems.

The device ensuring communication in any system is called the Network Interface Card 
(NIC). It allows communication between the computer where software runs and the 
outside world. When we understand how a trading system works, we must examine the 
layered model used to describe the networking stack within the operating system required 
for computers to talk with each other.

Learning about network conceptual models
The Open Systems Interconnection (OSI) model is arguably the most common depiction 
of how computers speak to each other in modern networked environments. The OSI 
model is a conceptual framework used to describe the functions of a networking system. 
The following screenshot depicts the complete seven layers of the OSI model and the 
related operations typically found at each layer:

Figure 5.1 – The seven-layer OSI model 
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This model is divided into seven independent layers, which all have specific functions and 
communicate with their adjacent layers only and don't communicate with all the other 
layers. The layers are described in more detail here:

•	 The session, presentation, and application layers: These three layers can be 
regrouped (to simplify) because these are the layers that we will use at the software 
level. In HFTs, we focus on the following four layers because they give advanced 
optimization opportunities.

•	 Transport layer: This manages the delivery and also contains errors in data packets. 
Sequencing, packet size, and transfer of data between systems are the responsibility 
of the network layer. In finance, we mainly use two protocols: the Transmission 
Control Protocol (TCP) and the User Datagram Protocol (UDP).

•	 Network layer: This receives frames from the data link layer and delivers them 
to the intended destinations using logical addresses. We will use the addressing 
protocol called Internet Protocol (IP). Unlike IP version 6 (IPv6), IP version 4 
(IPv4) is a light and user-friendly protocol and is the most widely used protocol in 
the financial sector.

•	 Data link layer: This layer corrects errors that may have occurred at the physical 
layer by detecting errors with techniques such as parity checks or cyclic 
redundancy checks (CRCs).

•	 Physical layer: This is the media that two machines use to communicate, 
including optical fiber, copper cable, and satellite. All these media have different 
characteristics (latency, bandwidth, and attenuations). Based on the type of 
application we want to build we will leverage one versus the other. This physical 
layer is considered the lowest layer of the OSI model. It is concerned with delivering 
raw unstructured data bits across the network, either electrically or optically, from 
the sender's physical layer to the receiver's physical layer. Network hubs, cabling, 
repeaters, network adapters, and modems are examples of physical resources found 
at the physical layer.

As you can see from how the layers are grouped in Figure 5.2, we often refer to several of 
them simultaneously. For example, we may refer to layers 5-7 as the software layer and 
layers 1-3 as the hardware layer, with layer 4 getting mixed between the two. This is so 
common that a simplified model that consolidates the software, transport, and hardware 
layers is frequently used and looks like this: 

Figure 5.2 – Simplified OSI model
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Now that we have discussed the high-level layered path that a packet must take when 
moving through the networking stacks on two communicating computers, we will discuss 
how to design a network for HFTs.

Network communications between  
systems in HFT
When designers build a network for HFT systems, they focus on the different modes of 
communication. Because microseconds matter, they must consider the benefits of using a 
microwave network or a Cisco switch over another switch.

The innovation in networking has the potential to make enormous differences in trading.

The following diagram represents an abstract model of a network. When two devices 
communicate, they need a medium to have the data transferred. They communicate 
through a physical connection connected to a network device such as a switch. The switch 
is in charge of moving the packet from one part of the network to the other, where we can 
find the recipient of the data the sender sends: 

Figure 5.3 – Abstract model of a network

Every network component is essential for network latency. These are all sources of latency:

•	 The NIC converts the signal from a computer to a network and vice versa. The 
time for the NIC to process data is negligible but is not zero. The NIC is chosen for 
low-latency data paths and other capabilities, such as the following:

	� Bus: A bus transfers data from one component of a computer to another one. We 
can find three main types of buses: Peripheral Component Interconnect (PCI), 
PCI eXtended (PCI-X), and PCI Express (PCIe). They all have different speeds. 
In 2017-2018, the industry started using PCIe 5.0, working with a rate of 63 
gigabytes per second (GB/s). Even though PCIe 6 was announced in 2019, PCIe 
5.0 is the fastest bus for NIC.
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	� Number of ports: A NIC card can have different numbers of ports: one, two, 
four, or six. It can allow a machine to access multiple networks at the same time. 
However, it is also possible to have multiple NICs on the same machine.

	� Port type: NICs can have different types of connections. A Registered Jack-45 
(RJ-45) port is one type of port. It uses a twisted-pair cable named Category 5 
(Cat5) or Category 6 (Cat6). The other common cable type we can have is the 
coaxial one, which connects to a Bayonet Neill-Concelman (BNC) port. The last 
one is an optical port that works with a fiber-optic cable.

	� Network speed: The standard supported network speed is single-lane 100 gigabits 
per second (Gbps), 25 Gbps, and 10 Gbps signaling. Anything else (that is, 400 
Gbps, 50 Gbps, 40 Gbps, and so on) comprises multiple parallel lanes. Ethernet with 
10 Gbps and 25 Gbps is used in data centers and financial applications every day.

	� Application-specific integrated circuit (ASIC): Integrates the functionality to 
interface with the host PC over PCIe and the network itself.

•	 Hub: A hub is a device with several ports connecting a local area network (LAN) 
network together. When a packet gets into the system by a port, it is replicated 
throughout the LAN, allowing all recipients to see all packets. A hub serves as a 
central connecting point for all devices in a network. This technology has been 
almost obsolete. Metamako/Exablaze revived this technology, and it is a latency-
saving method for applications in HFTs.

•	 Switch: A switch works at the data link layer (layer 2) and sometimes the network 
layer (layer 3); therefore, it can support any packet protocols. Its main role is to filter 
and forward packets across the LAN.

•	 Router: A router joins—at a minimum—two networks and facilitates packet 
delivery from hosts on one network to those on the other. In an HFT system, the 
router is found at the gates (gateways in Chapter 2, The Critical Components of a 
Trading System) of the trading system. The router finds the best way to forward a 
packet from one host to another.

The primary components (such as routers, NICs, and switches) will introduce latency in 
the HFT system.
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Comprehending how switches work
Switches are the primary support of communication within an HFT network. Observe the 
following diagram:

Figure 5.4 – Abstract model of a switch

Figure 5.4 represents the abstract model of a switch. Ingress and egress are words used in 
the industry to denote the input and output (I/O) of any network device. The switch 
works at the network layer 2. Its primary function is to transfer a packet from its input to 
its output, which you can see in the preceding diagram as Ingress Interface and Egress 
Interface, by applying forwarding rules. A switch handles two sorts of operations, as 
outlined here:

•	 Configuring packet forwarding: For a naive switch, the model is just to observe 
media access control (MAC) addresses on a port and switch traffic to that port. 
More sophisticated switches (that is, ones that support layer 3/4) will allow actions 
on other match patterns (that is, IP address or port).

•	 Forward/filter decisions: Switches read configuration tables to forward packets 
accordingly and remove packets when necessary.

The switch is set up once at startup time, and then tables are generated on the fly as new 
forwarding entries are required, such as when routing tables are updated.

The parser is the first to deal with new packets (the packet body is buffered independently 
and is unavailable for matching). The parser defines the switch's protocols, identifying and 
extracting information from the header.
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Following that, the extracted header fields are sent to the match-action tables (component 
matching header fields to perform an action). Ingress and egress are separated in the 
match-action tables. Ingress match-action decides the egress port(s) and the queue into 
which the packet is routed, while both may alter the packet header. The packet may 
be forwarded, duplicated, discarded, or triggered by a control flow based on ingress 
processing. The egress match-action modifies the packet header on a per-instance basis 
(for example, for multicast copies). To track frame-to-frame state, action tables (counters, 
policers, and so on) can be linked to a flow.

Metadata, regarded similarly to packet header fields, can be carried by packets between 
stages. All metadata instances are the ingress port, the transmit destination and queue, 
and data moved from table to table without modifying the packet's parsed representation.

Beyond the network structure, the key part of the networking metrics is speed. We will 
define some metrics for speed in the following section.

Bandwidth, throughput, and packet rate/size
The bandwidth is the theoretical number of packets exchanged between two hosts. 
The pace at which communications reach their intended destination is referred to as 
throughput. The key distinction between the two is that the throughput measures real 
packet delivery rather than theoretical packet delivery. You can see how many packets 
arrive at their destination by looking at the average data throughput. Packets must 
effectively reach their destination to provide a high-performance service. It is very 
important to not lose any packets. If, for instance, we want to build an order book by 
incremental update, losing a packet means having an incoherent book.

When assessing and measuring the performance of networks, packet size and packet rate 
are two crucial criteria to take into account. The network performance varies depending 
on the settings of these parameters. The throughput value rises in proportion to packet 
size, then falls until it reaches the saturated value. Increasing the packet size increases the 
quantity of data sent, thus boosting throughput.
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The following screenshot illustrates the network throughput (in kilobits per second, or 
Kbps) versus the packet rate (number of packets per second in bytes): 

Figure 5.5 – Throughputs versus packet rate for different packet sizes

Each of the two lines shown in Figure 5.5 corresponds to a different packet size (512 
bytes and 1,024 bytes). The network throughput improves when the packet rate increases 
because raising the packet rate means increasing the amount of data, which raises the 
throughput. In addition, the chart shows that as the number of packets increases, the 
throughput declines until it approaches the saturation point. The increase in throughput 
for bigger packets is faster than for smaller ones, and the peak value of throughput for 
1,024-byte packets is reached at 50 packets.

When the maximum throughput of an interface is reached, multiple ingress interfaces 
trying to submit outbound packets to the same egress interface can lead to buffering.
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Switch queuing
A switch's main function is to route packets to the proper recipients. When there is too 
much incoming data, the time to process data can take longer than the arrival time of this 
data into the switch. To not lose any data, it is essential to have a buffer. This buffer will 
store data waiting to be processed. The primary role of a switch is to receive a packet on 
the input port. It looks up the destination to get an output port and then puts the packet 
in the output port queue. A large data stream going toward an output port can saturate the 
output port queue. If too much data sits in the queue, this will result in significant latency. 
Data can be lost if the buffer is full (packet drops). If market data packets drop, it becomes 
impossible to build the order book, which interrupts trading. The following diagram 
depicts the queue for a switch:

Figure 5.6 – Switch queuing

One of the significant problems is head-of-line (HOL) blocking. This problem occurs 
when many packets are held up in a queue by a packet about to leave the queue, which can 
increase latency or reordering of the packets. Indeed, if many packets are blocked in one 
queue, the switch will keep processing other packets going toward another output; this 
will result in packets being received not in order.

We saw how queuing can impact packet delivery; now, we will talk about the two main 
switching modes.
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Switching modes – Store-and-forward versus cut-through
The switch must receive and review various bytes depending on the switching mechanism 
before processing the packet and forwarding the packet to the correct egress port. There 
are two switching modes, as detailed here:

•	 Cut-through switching mode has two forms, as follows:

	� Fragment-free switching

	� Fast-forward switching

•	 Store-and-forward switching mode

Both switching types make forwarding decisions based on the destination MAC address 
of the Ethernet frames. They parse the bits of the source MAC address in the Ethernet 
header; they record MAC addresses and create MAC tables. The amount of frame data 
that the switch must receive and review before the frame may be transmitted out the 
egress port varies between switching types, as illustrated in the following screenshot:

Figure 5.7 – Switching modes based on frame bytes received
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Figure 5.7 shows the three modes and represents how much information should be 
received. Here, we will learn about them in detail, as follows:

•	 Store-and-forward mode: Before forwarding the frame, the switch must receive 
the frame entirely. The decision to forward this frame is based on a destination 
MAC address lookup. To confirm the integrity and accuracy of the data, the switch 
uses the frame-check-sequence (FCS) field of the frame. The frame is invalid and 
discarded if the CRC values do not match. Before the frame is transmitted, the 
destination and source MAC addresses are checked to see if they match. 

By default, any frame size between 64 bytes and 1,518 bytes is accepted and the other 
size will be discarded, resulting in a higher delay than the other three methods.

•	 Cut-through switching mode: This mode allows an Ethernet switch to make a 
forwarding choice when it receives the first few bytes of a frame. This mode has two 
types, as outlined here:

	� Fragment-free switching: This mode requires switches to parse the first 64 bytes 
of a frame before forwarding it. 

	� Fast-forward switching: A cut-through switch forwards the frame when it 
receives the frame's destination MAC address, which implies just the first 6 bytes 
are required.

We saw the two main switching modes; we will now describe the different layers where 
switches can perform packet forwarding.

Layer 1 switching
A physical layer switch, also known as a layer 1 switch, is part of the OSI model's physical 
layer. A layer 1 switch may be an electronic and programmable patch panel. It does 
nothing more than establishing a physical connection between ports. The link is made 
by software instructions, allowing test topologies to be configured automatically or 
remotely. A layer 1 switch does not read, alter, or use packet/frame headers to route data. 
These switches are entirely invisible to data and have very low latency. In testing settings, 
transparent connections between ports are critical because they allow the tests to be as 
accurate as though a patch cable connected the devices. Arista/Cisco is an example of a 
layer 1 switch.
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Layer 2 switching (or multiport bridge)
A layer 2 switch has two functionalities, as outlined here:

•	 Transferring data on layer 1 (physical layer)

•	 Checking errors for any frames that are received and sent

This type of switch needs the MAC address to forward frames to the correct recipients. All 
the MAC addresses received will be kept in a forwarding table. This table allows the switch 
to forward data in a very efficient way. Unlike higher-level switches (higher than 3) that 
can transfer packets based on IP addresses, a layer 2 switch cannot use IP addresses and 
has no prioritization mechanism. 

Layer 3 switching
A layer 3 switch is a device that acts as the following:

•	 A router with smart IP routing by analyzing and routing packets based on the 
source and destination addresses

•	 A switch linking devices on the same subnet

We will now talk about the system that is capable of routing data from many private IP 
addresses using a public address.

Network address translation
The process of converting private IP addresses into public addresses is known as network 
address translation (NAT). Most routers employ NAT to allow many devices to share 
a single IP address. When a machine communicates with the exchange, it looks for 
directions to the exchange. This request is sent as a packet from a machine to the router, 
forwarding it to the business. The router must first transform the source IP address from 
a private local address to a public one. The receiving server will not know where to send 
the information back if the packet contains a private address. The information will be 
returned to the laptop using the router's public address rather than the laptop's private 
address, thanks to NAT.
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NAT is a resource-intensive operation for any device that uses it. This is because NAT 
requires reading and writing to the header and payload information of every IP packet 
to accomplish address translation, which is a time-consuming process. It increases the 
consumption of the central processing unit (CPU) and memory, which might reduce 
throughput and increase packet delay. As a result, while installing NAT in a live network, 
knowing the performance impact of NAT on a network device (specifically, a router) 
becomes critical, especially for HFT. Most modern switches can perform at least static 
NAT in an ASIC, but an increasing number can also do dynamic NAT with a little 
performance penalty.

We studied in detail how to transmit packets. We will now describe the protocols setting 
the rules for packet forwarding.

Important protocol concepts
When two devices need to communicate, once they have a way to transfer a signal 
from the sender to the recipient, we need to have protocols setting the communications 
rules. A protocol is like a language that two components agree to use in the system to 
communicate; it sets the rule of communication. The following diagram represents a 
network infrastructure of exchanges and trading systems: 

Figure 5.8 – Trading network infrastructure of trading exchange and trading servers
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In Chapter 2, The Critical Components of a Trading System, and Chapter 3, Understanding 
the Trading Exchange Dynamics, we saw that the trading exchange, market data-feed 
handlers, and market participants are the three main components of a conventional 
trading system.

Through gateway servers, the matching receives orders from market participants. The feed 
handlers get their data from the stock exchange and deliver it to interested market players 
with minimal delay. To transport market data, we use the FIX Adapted for STreaming 
(FAST) protocol (described later in the FAST protocol section).

We will now talk about the Ethernet protocol for HFTs.

Using Ethernet for HFT communication
Ethernet is the most used protocol to link devices in a wired LAN or wide area network 
(WAN). This protocol sets the communication rules between devices.

Ethernet specifies how network devices structure and send data so that it may be 
recognized, received, and processed by other devices on the same LAN or company 
network. This protocol is highly reliable (resistant to noise), fast and secure, and was 
designed by the Institute of Electrical and Electronics Engineers (IEEE) 802.3 working 
group in 1983. The technology kept improving to get a better speed.

The different norms—802.3X and 802.11X—defined another type of support, such as 
100BASE-T, which has been named Fast Ethernet that we are still using today.

Using IPv4 as a network layer
The IP protocol operates at the OSI model's network layer while TCP and UDP models 
operate at the internet layer. As a result, this protocol is in charge of recognizing hosts based 
on their logical addresses and routing data between them through the underlying network. 

An IP addressing system offers a technique for uniquely identifying hosts. IP utilizes 
best-effort delivery, which means that it cannot promise that packets will be sent to the 
intended host, but it will try its hardest to do so. The logical address in IPv4 is 32 bits.

We can use three different addressing modes when using the IPv4 protocol, as  
detailed next.

Unicast mode
Only one designated host receives data in this manner. The 32-bit IP address of the target 
host is stored in the Destination Address field. In this case, the client transmits data to 
the desired server, as illustrated in the following diagram:
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Figure 5.9 – Unicast mode

As seen in the preceding diagram, Machine A sends information to Machine C.

Broadcast mode
The packet is addressed to all hosts in a network segment in this mode. A specific 
broadcast address, 255.255.255.255, is included in the Destination Address field. 
When this packet is seen on the network, a host is obligated to process it. In this case, the 
client transmits a packet received by all of the servers. Broadcast is rarely used in HFT 
systems because it gives you almost no control over which machines will receive traffic 
and could create unnecessary overhead. You can see an illustration of broadcast mode in 
the following diagram:

Figure 5.10 – Broadcast mode

As seen in the preceding diagram, Machine A sends information to all the machines.
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Multicast mode
This mode is a hybrid of the previous two in that the packet is transmitted to neither a 
single host nor all of the hosts on the segment. The Destination Address field in this 
packet has a unique address that starts with 224. x.x.x and can be served by several 
hosts. Hosts will subscribe to particular multicast feeds. A machine communicates to the 
upstream service using the Internet Group Management Protocol (IGMP) that it wishes 
to subscribe to a specific feed. Many switches have the logic that monitors IGMP traffic 
from hosts and snoops on subscriptions for feeds. This enables the switch to determine 
which hosts it should replicate multicast traffic to. Switches that don't implement IGMP 
snooping treat multicast traffic like broadcast traffic. You can see an illustration of 
multicast mode in the following diagram:

Figure 5.11 – Multicast mode: Machine A sending information to Machine B and C

In this section, we reviewed the network layer and its components. We will now talk about 
the transport layer and the UDP and TCP protocols.

UDP and TCP for the transport layer
TCP/IP or UDP over Ethernet is the most common communication protocol used by 
stock exchanges and other market players. Non-essential data, such as market data 
feeds, is often transmitted using UDP to reduce latency and overhead. One of the most 
important protocols in the TCP and UDP protocol family is IP. Critical data such as 
orders is carried out using the TCP/IP protocol. 
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TCP specifies how a computer is connected to another machine and how we can transmit 
data between them. This protocol is reliable and provides an end-to-end (E2E) byte 
stream over the network.

A datagram-oriented protocol (UDP) is used for broadcast and multicast types of network 
transmission. UDP is different from TCP as it does not ensure packet delivery.

The main differences are outlined here:

•	 TCP is a connection-oriented protocol, and UDP is a connectionless protocol.

•	 Because UDP doesn't have any mechanism to check errors, UDP is faster than TCP.

•	 TCP needs a handshake to start communicating while UDP does not.

•	 TCP checks errors and has error recovery, while UDP checks for errors and discards 
packets when there is a problem.

UDP doesn't have TCP's session, ordering, and delivery guarantee features. UDP is used 
where latency matters because data is delivered on a datagram basis. Market data often 
uses it for one of two reasons, as outlined here:

•	 Datagram-oriented delivery can be lower-latency (but recovery is more complicated 
if something gets lost).

•	 Multicast inherently does not support connection-oriented protocols (since the 
traffic is a many-to-many communication type).

This is often addressed through sequence numbers in the application-layer protocol and 
providing an out-of-band mechanism to request retransmission of missing sequence 
numbers. Today, there is a trend to use UDP for Orders (UFO), which allows us to send 
orders faster.
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Designing financial protocols for  
HFT exchanges
Let's come back to the following diagram, introduced in Chapter 2, The Critical 
Components of a Trading System. It is important to understand how communication works 
between a trading system and an exchange:

Figure 5.12 – Communication between exchange and trading system

Two entities must speak the same language to communicate with one another. To 
accomplish that, they use a protocol used in networking. This protocol is utilized in 
trading for any exchanges (sometimes called venues). Depending on the venue, there may 
be a variety of protocols. The connection is possible if the protocol between a given venue 
and your trading system is the same. Depending on the number of venues, one venue will 
frequently use a given protocol, and another venue will use a different one. The trading 
system will need to be built on understanding the other protocols. Even though their 
protocols differ among venues, the processes they take to create a connection and begin 
trading are similar, as outlined here:

1.	 They establish a logon that specifies who the trade initiator is, who the recipient is, 
and how the connection will continue to exist.
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2.	 They next enquire about what they expect from the various companies, such as 
trading or receiving price updates by subscription. 

3.	 They then get orders as well as pricing changes. 
4.	 They then send heartbeats to sustain a connection. 
5.	 Finally, they say their goodbyes. 

We will now introduce the Financial Information eXchange (FIX) protocol in the 
following section.

FIX protocol
Because it is the most used protocol in trading, the Financial Information eXchange 
(FIX) protocol is the one we'll be discussing in this chapter. It was founded in 1992 to 
handle securities between Fidelity Investments and Salomon Brothers on an international 
real-time exchange. Foreign exchange (FX), fixed income (FI), derivatives, and clearing 
were included. This is a string-based protocol, which implies that people can read it. It's 
platform-agnostic, open, and comes in a variety of flavors. 

There are two different kinds of messages, as outlined here:

•	 Administrative notifications that do not include any financial information

•	 Messages sent by the program to get pricing changes and orders 

The content of these messages is a list of key-value pairs, similar to a dictionary or a map. 
Predefined tags serve as the keys; each tag is a number that corresponds to a particular 
characteristic. Values, which might be numerical or textual values, are associated with 
these tags. Consider the following scenario:

•	 If we wish to send an order for $1.23, let's imagine the price tag has the number 44. 
As a result, 44=1.23 will be in the order message. 

•	 Character 1 separates all of the pairs. This indicates that if we add the quantity 
100,000 using tag 38 corresponding to the quantity in the FIX message 
definition in our previous example, we'll get 44=1.23|38=100000. The | symbol 
symbolizes character 1. 

•	 8=FIX.X.Y is the prefix used in all messages. This prefix denotes the FIX version 
numbers. Version numbers are represented by X and Y. 

10=nn is equal to the checksum. The checksum is the total of the message's binary values. 
This aids in the detection of infection.
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Here is a FIX message example:

8=FIX.4.42|9=76|35=A|34=1|49=TRADER1|52=20220117-
12:11:44.224|56=VENUE1|98=0|108=30|141=Y|10=134

The necessary fields in the preceding FIX message are listed here: 

•	 A tag containing the number 8 and the value FIX.4.42. This is the same as the 
FIX version number. 

•	 8 (BeginString), 9 (BodyLength). 

•	 35 (MsgType), 49 (SnderCompID), and 56 (SnderCompID) are version 
numbers greater than FIX4.42. 

•	 The tag 35 specifies the message type. 

•	 The character count from tag 35 to tag 10 is represented by the body-length tag, 
which is 9. 

•	 The checksum is stored in field 10. The value is derived by multiplying the decimal 
value of the American Standard Code for Information Interchange (ASCII) 
representation of all bytes up to the checksum field (which is the final field) by 256.

Now that we know what the FIX protocol is, we will see in detail how this protocol is used 
in trading.

Protocols for FIX communication 
To be able to trade, a trading system requires two connections: one to receive price 
updates and another to place orders. The FIX protocol complies with this criterion by 
utilizing different messages for each of the following connections.

We will discuss the price changes connection first and then describe the order connection.

Price changes 
When building a trading system, the first feed to get is price updates. Price updates are the 
orders from the other market participants. The trading system will initiate a connection 
with the exchange to get a connection established and subscribe to the price updates. We 
will define the trading system as the initiator and the exchange as the receiver or acceptor, 
as depicted in Figure 5.13.

Trading systems require prices for the instruments that traders choose to trade. To do so, 
the trading system establishes a connection with the exchange to subscribe to liquidity 
updates. The connection between the initiator, which is the trading system, and the 
acceptor, which is the exchange, is depicted here:
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Figure 5.13 – Trading system asking for price updates

The FIX messages that are sent between the acceptor and the initiator are depicted in the 
following screenshot:

Figure 5.14 – Trading system using FIX protocol to get price updates
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When the trading system receives these price updates, it updates the books and places 
orders depending on the signal. 

Orders
The second feed that a trading system needs is communication with the exchange for the 
order side. The trading system (initiator) will establish communication with the exchange 
(receiver). Once the communication is established, the initiator will send orders to the 
exchange. When the exchange needs to send updates about an order, it will use this 
channel to communicate. 

By initiating a trading session with the exchange, the trading system will send orders to 
the exchange. Order communications will be delivered to the exchange while this active 
trading session is open. The exchange will use FIX messages to transmit the status of these 
orders. This is depicted in the following diagram:

Figure 5.15 – Trading system sending an order to the exchange

The FIX messages that are sent between the initiator and the acceptor are depicted in the 
following screenshot:
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Figure 5.16 – A trading system using the FIX protocol to send an order to the exchange

Because the FIX protocol is string-based, parsers can take some time to process the 
stream. The FAST protocol has been developed to be faster than the FIX protocol. 

FAST protocol
The FAST protocol is the high-speed version of the FIX protocol. Market data is 
transmitted from exchanges or feed handlers to market participants via the FAST protocol, 
which operates on top of UDP. FAST messages feature a variety of fields and operators for 
transporting meta- and payload data. FAST has been designed to use as little bandwidth as 
possible. Hence, it makes use of a variety of compression techniques, as outlined here: 

•	 The first essential approach is delta updates, which offer just changes—such as the 
current stock price and the previous one—rather than continually transferring all 
stocks and their accompanying data. 

•	 The second approach uses variable-length encoding for each data word to compress 
the raw data. While these strategies allow for keeping up with the increased data 
speeds given by feed handlers, they significantly increase processing complexity. 

The compressed FAST data stream must be decoded and analyzed in real time to convert 
it into processable data. If the processing system cannot keep up with the data flow, critical 
information is lost.
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Furthermore, decompressing the data stream increases the amount of bandwidth that 
must be handled successfully. As a result, two distinct criteria must be met to design a 
high-performance trading accelerator, as follows:

•	 First, the various protocols' decoding must be done with the shortest possible delay. 

•	 Second, it must sustain data processing at a given data rate. A deeper look at the 
FAST protocol is necessary to examine the data rates of modern trading systems.

The UDP protocol is used to send FAST messages. Multiple FAST messages are packed in a 
single UDP frame to decrease UDP overhead. FAST communications do not provide any 
size information or a framing definition. Instead, each letter is specified by a template that 
must be understood before decoding the stream. Most feed handlers design their FAST 
protocol by offering distinct template requirements. Care must be taken because a single 
decoding error will drop the entire UDP frame. Templates define a set of fields, sequences, 
and groups. These groups specify a set of fields. 

FAST belongs to a family of protocols developed to improve the bandwidth and the 
speed of communication named Simple Binary Encoding (SBE). We will now talk about 
protocols that are way more efficient than string-based protocols for communication.

ITCH/OUCH protocol
ITCH and OUCH are considered binary protocols. OUCH is usually over TCP, and ITCH 
is multicast or TCP. ITCH is mainly for market data, while OUCH is made for the orders. 
Nasdaq created these protocols in 2000 after a patent infringement lawsuit impacted 
FAST. ITCH-based exchange feeds are widely used in the industry. Because many different 
exchanges than Nasdaq use it, it has different versions. The Chicago Board Options 
Exchange (CBOE) is also another major exchange that heavily uses a variant of ITCH 
(such as the CBOE protocol).

Let's study another one—the Chicago Mercantile Exchange (CME) market data protocol.

CME market data protocol
CME also created its SBE protocol optimized for HFT.

Additionally to the prior protocols, many other proprietary binary protocols are famous 
for low-latency venues. All these protocols are considered exterior protocols that are 
responsible for connecting/interacting with exchanges. We will now talk about the 
difference between exchange protocols made for exterior networks and protocols made for 
internal networks.
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Interior networks versus exterior networks
When looking at Figure 5.8, we can observe two different levels of the network. There is 
the level of network talking to the outside world using the prior protocols, and there is 
the networking within the company network (interior network). The following diagram 
illustrates the main difference between the exterior and internal networks in trading and 
exchange networks:

Figure 5.17 – Interior network and exterior network

A trading server communicating with the risk server uses the interior network, while 
the trading system on the left side of the preceding diagram will be connected with the 
exchange through the external network.

The internal network will be for the following activities:

•	 Internal market data distribution

•	 Signal sharing

•	 Order entry

It is essential in this network to minimize hops between hosts (servers). The best system 
will be a system where there is a segue into systems that exist purely on the NIC (in other 
words, a field-programmable gate array (FPGA), which we will discuss in Chapter 11, 
High-Frequency FPGA and Crypto. The choice of switches and routers is decisive for the 
network latency.

The external network will be for the exchange native protocol for order entry and  
market updates.
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We are now aware of which network can be considered interior and exterior. We also 
know which hardware a packet will use to go from one place to another. In the next 
section, we will describe the structure of a packet and dig further into the life cycle of a 
packet and what happens as a packet moves from one point to the other. 

Understanding the packet life cycle
In the Learning about network conceptual models section, we explained that to optimize 
the communication between the exchange and trading systems, we will use copper or 
optical wire. This wire is connected to the NIC. This wire will transport the packets 
containing market data from the exchange and orders going to the exchange. 

We first need to discuss which message we are passing on this wire. This section will use 
the FIX protocol we defined in this chapter. Let's consider the following example of a  
FIX message: 

8=FIX.4.2|9=95|35=X|34=5|49=NYSE|52=20160617-23:12:05.551|56=TR
ADSYS|268=1|279=1|269=1|270=110|271=5|37=9|10=209|.

This FIX message will be the payload of the packet shown in Figure 5.18.

The packet has two main parts. The headers contain information for each layer of the OSI 
model and a payload containing the FIX message, as shown here:

Figure 5.18 – Packet headers 

The Ethernet layer will represent the data link layer (as shown in Figure 5.19), the IP 
header for the network layer, and the TCP header for the transport layer. The FCS is an 
error-detecting code added to this packet. As we described earlier, each layer of a packet 
(or a frame) contains information for each layer. We will specify in Figure 5.20 how this 
packet is processed in the machine, but first, observe the following diagram:
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Figure 5.19 – Headers and OSI layers 

In the following diagram, you can follow the life of a packet carrying a market data update 
getting through the system to reach the trading system (one of the applications running 
on this architecture):

Figure 5.20 – Market data moving through the operating system



104     Networking in Motion

We will talk in detail about all the necessary steps to get the packet from the wire to the 
application—our trading system. We will first talk about the send/receive path.

Comprehending the packet life in the send/receive 
(TX/RX) path 
The exchange connected to the trading system sends a packet to the trading system.  
The copper wire will transfer this packet to the machine. Here are the steps that the packet 
will follow: 

1.	 The NIC receives the packet and verifies if the MAC address (unique identifier 
(UID) assigned to a NIC) address corresponds to its MAC address. If that is the 
case, this NIC will process this packet. 

2.	 Then the NIC validates that the FCS is correct (checksum operation). 
3.	 When these two verifications are completed, the NIC will use a direct memory 

access (DMA) operation to copy the packet to the buffer in charge of receiving data 
(receive (RX) buffer).

4.	 In Figure 5.20, the RX buffer is a circular buffer (or ring buffer), which is a data 
structure using a fixed-size buffer, connected E2E (mainly used to avoid using 
locks). DMU speeds up memory operations by allowing an I/O device to transmit 
or receive data directly to or from the main memory, bypassing the CPU. 

5.	 The NIC then triggers an interrupt for the CPU to take care of this packet. Interrupt 
handlers are typically broken up into two halves—a top half and a bottom half. 
The top half handles any work that needs to be done urgently, and the bottom 
half deals with all other processing. The top half will manage activities such as 
acknowledging the interrupt and moving data from the network to a buffer for 
subsequent processing by the bottom half. The processor will switch from the user 
space to the kernel space, look up the interrupt descriptor table (IDT), and calls 
the corresponding interrupt service routine (ISR). Then, it will switch back to the 
user space. These operations are done at the NIC driver level. 

6.	 The CPU will then initiate the bottom half when free (the soft interrupt request 
(soft-IRQ)). We will switch from the user space to the kernel space. The driver 
allocates a socket buffer or SK-buff (also called SKB). The SKB is an in-memory 
data structure containing the packet headers (metadata). It includes pointers to the 
packet headers and, obviously, the payload. For all packets in the buffer (RX buffer), 
the NIC driver dynamically allocates an SKB, updates the SKB with the packet 
headers, removes the Ethernet header, and then passes the SKB to the network 
stack. The socket is the endpoint to send and receive data on the software level.
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7.	 We will now address the network layer. We know that the network layer contains 
the IP address. This layer will verify the IP address and the checksum and remove 
the network header. When verifying the IP address, the address will be compared 
against the route lookup. If some packets are fragmented, this layer would be in 
charge of recombining all the fragmented packets. Once this is done, we are taking 
care of the next layer. 

8.	 The transport layer is specific to the TCP (or UDP) protocol. This layer handles the 
TCP state machine. It will enqueue the packet data to the socket read queue. Then, 
at the end, it will signal that a message can be read in the reading socket. 

We will conclude this section by talking about the software layer in charge of writing and 
reading network data.

Software layer receiving the packet 
Once the payload is written in the reading socket named read queue, the only missing step 
is to have the application (trading system) read the payload. We know that the operating 
system schedules the application to read data from the socket when possible (fairness 
rules). Once the trading system (the application) reads the payload (which is in this 
example the FIX message in the Understanding the packet life cycle section), it will start 
parsing the different tags and values of the message.

When we review all the steps that a trading system must do just to read market data, HFT 
is predominantly concerned with the amount of time required for an operation to complete 
in microseconds or nanoseconds. Therefore, we will see how to improve this path. 

Since the network is critical in terms of speed, we need to be able to monitor it. In the next 
section, we will talk about monitoring techniques.

Monitoring the network
The network is critical for HFTs. Saving microseconds from the critical path to send 
orders in the network is key. When the network is built and the system is running, it is 
essential to analyze network traffic. In HFT, security is not a real issue since the network 
is located in a co-location most of the time. The part of the monitoring that we will give 
more weightage to is analyzing the amount of data loss, latency, and interruption. We need 
to ensure that the network is up and running and delivers the best possible performance.
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Packet capture and analysis
Capturing Ethernet frames for examination or analysis is referred to as packet capture. 
The word can also refer to the files produced by packet-capture programs, commonly 
saved in the .pcap format. Capturing packets is a typical network troubleshooting tool, 
and it's also used to look for security vulnerabilities in network traffic. Packet captures 
give crucial forensic information that enhances investigations following a problem with 
the number of orders rejected, which could seem like a network latency problem. 

What is packet capture and how does it work? 
A packet can be caught in a variety of ways. Packet captures can be performed via 
networking equipment such as a router or switch with specific hardware known as a 
test access point (TAP) (which we will describe in the following section). The final aim 
determines the method utilized. Regardless of the mechanism used, packet capture works 
by creating copies of some or all packets traveling through a given place in the network.

The simplest method to get started is to capture packets from your system, but there are a 
few limitations. Network interfaces handle only traffic destined for them by default. You 
can put the interface in promiscuous mode or monitor mode for a more comprehensive 
view of network activity. Remember that this method only captures a portion of the 
network. For example, on a wired network, you'll only observe activity on the local switch 
port to which your computer is attached.

Port mirroring, port monitoring, and switched port analyzer (SPAN) are capabilities 
on routers and switches that allow us to duplicate network traffic and transmit it to a 
specific port. Much network equipment has a packet-capture feature that may be used to 
diagnose problems directly from the hardware's command-line interface (CLI) or the 
user interface (UI).

A dedicated network TAP can be ideal for doing a packet capture on a particularly big or 
busy network. TAPs are an expensive way to collect packets, but there is no performance 
impact because they are dedicated hardware. To make the TAP effective, it is necessary to 
capture both directions (transmit (TX) and RX). We need to tap both the RX and TX side 
to build a complete picture.
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Ethernet TAPs – passive versus active TAP trade-offs
A network TAP is the most precise technique to reproduce traffic for monitoring and 
analysis. There are a variety of network TAPs, each with its own set of advantages for 
network uptime and analytical dependability. This method can be passive and active 
network TAPs. The distinctions between passive and active TAPs might be perplexing.

Passive network TAP
A device with no physical separation between its network ports is referred to as a passive 
network TAP, as shown in the following diagram. This implies that traffic can continue to 
flow across network ports, maintaining the connection even if the device loses power:

Figure 5.21 – Passive network TAP

This is true for network TAPs with 10/100-meter (10/100M) copper interfaces and fiber 
TAPs. Fiber TAPs work by dividing the incoming light into two or more pathways and 
do not require electricity. When utilized, 10M or 100M copper TAPs require electricity, 
although they are entirely passive due to a lack of physical separation between network 
ports. In their situation, the link remains operational during a power loss with no failover 
time or link restoration delay.
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Active network TAP
Because of the electrical components utilized inside the TAP, active TAPs have a physical 
separation between network ports, unlike passive TAPs. As a result, they require a fail-safe 
mechanism to ensure that the network remains operational even if the TAP loses power. 
The system works by keeping a set of relays open when the gadget is turned on. These 
relays switch to a direct traffic flow through the TAP when the power goes out, ensuring 
that the network operates. You can see an illustration of this in the following diagram:

Figure 5.22 – Passive network TAP

These two TAPs will help capture market data to analyze latency and troubleshoot issues 
in the network. Getting this data will not be sufficient if the time of this data is not 
accurate. It is essential in HFT to measure time accurately. In the next section, we will 
explain how to do so.

Valuing time distribution
As you certainly understood with this book, HFT fights with time. This is the most critical 
resource we have to be sure to get our trading models right. Because we send orders that 
can be executed or not depending on the arrival time, we need to be confident when 
we build trading strategies that the time we will use to make them fits the time that the 
exchange is using. We will need to use time-synchronization services to accomplish this 
measurement accuracy.
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Time-synchronization services
Before starting this section, we need to talk about getting precision time. Anywhere in 
the world, we can have precise time without engineering timing distribution. We use the 
Global Positioning System (GPS) or the Global Navigation Satellite System (GNSS), as 
they use atomic clocks.

The Network Time Protocol (NTP) service is one of the most widely used to synchronize 
the uptime of our computers with a time server. This service has a few layers called strata, 
as described in more detail here:

•	 Stratum 0: The highest layer, this uses GNSS satellites

•	 Stratum 1: The layer that gets the time servers, having a one-on-one direct 
connection with the stratum 0 clock. You can accomplish a microsecond-level 
synchronization with this layer.

•	 Stratum 2: The layer that connects to multiple servers of stratum 1. 

There are up to 15 layers that help get different types of accuracy. The returned timestamp 
is as large as a 64-bit timestamp and can accurately be in the order of picoseconds. There 
will be a day in the near future when a 128-bit timestamp will be in place, and we might 
even get an accuracy of femtoseconds.

The Precision Time Protocol (PTP) is a network-based time synchronization standard 
that strives for nanosecond—or, perhaps, picosecond—precision. PTP equipment employs 
hardware timestamping rather than software, and it is designed for one unique purpose: 
keeping devices synchronized. PTP networks provide far higher time resolutions than 
NTP networks. PTP devices, unlike NTP devices, will timestamp the amount of time 
synchronization messages spend in each device, allowing for device latency.

These two synchronization mechanisms use pulse-per-second (PPS) signals from 
satellites, giving high accuracy. These signals have an accuracy going from 12 picoseconds 
to a few microseconds per second.

Why does timing matter so much in HFT?
When inserting timestamps in orders, HFTs require accurate Coordinated Universal 
Time (UTC) to follow orders in the market. Most HFTs run many computer systems 
on dedicated LANs, with each LAN utilizing a single PTP grandmaster clock and each 
computer on the LAN synced to that grandmaster. A grandmaster takes its time from an 
external source, and it is necessary to have a grandmaster per physical location. These 
parallel, high-speed computer systems must be coordinated for the algorithms to handle 
market buy-side and sell-side data. In network analysis of log files and all trading activity, 
timestamps and computer synchronization are also utilized. 
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Understanding and analyzing LAN latency is critical to HFT performance. HFTs would 
struggle to optimize both hardware and software if time synchronization were not exact 
to the microseconds. For non-co-located traders, real-time market data travels via cables, 
switches, and routers, with a delay ranging from 1 millisecond to 5 milliseconds. When 
compared to traders who are not co-located, co-located HFTs cut latency to below 5 
microseconds, allowing them a substantial amount of time to process market data. 

It is critical to measure market behavior and algorithm signals accurately, therefore the 
accuracy of measurement must be very high.

Summary
During this chapter, we talked about the importance of communication and networking. 
We learned about the network components of HFTs. We talked in depth about the 
Ethernet protocols adapted to fast communication. We described the design of financial 
protocols, and we finished by talking about the value of time distribution. You are now 
equipped with the knowledge to understand networking in HFT. 

In the next chapter, we will finally start talking about how to optimize all the pieces of the 
puzzle we talked about during this chapter and the previous chapters.



6
HFT Optimization 

– Architecture and 
Operating System

In the previous chapter, we were presented with an outline of how a computer works with 
a focus on the main components that relate to HFT. In this chapter, we will discuss some 
of the commonly employed computer science and architecture optimization techniques 
specifically as they relate to HFT applications. We will provide some context with the 
details of how certain specific operations work in terms of what goes on under the hood, 
why they are inefficient, slow, and problematic for HFT software, and what techniques are 
used to get around it.

Some of the operations and constructs we will discuss are context switching  
between threads, locks to concurrently access shared data structures, and memory 
management/optimization motivations and techniques.
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HFT is primarily an arms race where each HFT competitor is trying to execute trades as 
quickly as possible. So, getting to grips with the computer science fundamentals for the 
topics we cover in this chapter will help the reader understand how to produce extremely 
optimized and high-performing HFT applications. We will cover the following topics in 
this chapter:

•	 Understanding context switches

•	 Building lock-free data structures

•	 Pre-fetching and pre-allocating memory

Performance mental model
When we talk about HFT optimizations, we could use an endless number of techniques 
to reach the lowest possible latency. The most important question to ask is what we are 
trying to achieve – what level of performance is good enough for HFT trading strategies? 
In this book, we present a lot of optimizations and it would be overwhelming and time 
consuming to implement all of them. In order to guide the readers through all the 
optimizations, we will differentiate optimizations by considering them in terms of three 
groups that lowers the latency by a specific number of microseconds, represented by the 
following icons:

•	 : Lower than 20 microseconds

•	 : Lower than 5 microseconds

•	 : Lower than 500 nanoseconds

Let's get started!

Understanding context switches 
A context switch in computer science is the operation or set of tasks by which all the 
states associated with a running process or thread is saved and the state associated with 
a different process or thread to be run next is restored so that it can resume where the 
execution left off. The principle of context switching is the cornerstone on which modern 
Operating Systems' (OSs') support for multitasking is based, and which gives the illusion 
of running a lot more processes than the number of CPU cores available in the hardware.
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Types of context switches
Context switches can be grouped into different types depending on which aspect of the 
context switching process we look at. We will briefly discuss them as follows.

Hardware or software context switches
Context switches can be performed in hardware or software. In hardware context 
switching, special hardware features such as Task State Segments (TSSs) can be used to 
save the register and processor state for the currently running process and then jump to  
a different process. In software context switches, the current stack pointer is saved and  
the new stack pointer is loaded to execute the new code. Registers, flags, data segments, 
and all other relevant registers are also pushed onto the old stack and popped off the  
new stack.

Hardware context switching requires special registers and/or processor instructions to 
implement and can be expected to be faster than software context switching due to the 
availability of special registers and instructions. However, in some cases, hardware context 
switches can be slower than software context switches since it needs to save all registers. 
Modern OSs, however, choose to implement context switching in software due to better 
fault tolerance and the ability to customize what registers are saved and restored.

Context switches between threads or processes
Another way to classify different types of context switching is whether it occurs between 
threads or processes. The latency associated with context switching between processes 
is referred to as process switching latency and between threads is referred to as thread 
switching latency. If threads or processes share the same address space, then the context 
switching is faster because the code to be executed is most likely already loaded in the 
cache/memory due to the shared address space. During context switching, not only 
does the OS need to remove and reload code from the cache and memory; it also has to 
clean/flush the data structure that holds the memory address mapping known as virtual 
memory space. So, context switching between threads is generally faster since they 
share the virtual memory space, and flushing and cleaning/invalidating the Translation 
Lookaside Buffer (TLB) is not necessary. The details of virtual memory space and the 
TLB are advanced OS concepts and out of the scope of this book, so we will not dive into 
too many details on those topics.
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Why are context switches good
Context switching is worthwhile functionality for most applications that have a good 
mixture of user inputs, disk Input/Output (I/O), and CPU-intensive processing, such 
as the Microsoft Office suite of applications, video games, or browsers. Within the HFT 
ecosystem, some (but not all) components such as logging processes, Graphical User 
Interface (GUI) applications, and so on benefit from context switching. As mentioned 
previously, supporting multitasking in modern OSs would not have been possible without 
context switching. The most important ones would be multitasking, interrupt handling 
in the OS, and switching between user and kernel modes (often invoked when handling 
interrupts). We will discuss them in the following sections.

Multitasking
All modern OSs have a task scheduler that switches out one process for another to 
be processed in the CPU. There can be several reasons for a running process to be 
switched out. For example, when the process is completed, or it is stuck on an I/O or 
synchronization operation – in both cases, waiting for input from another process, 
thread, or disk. It is possible for a thread or process to be switched out to prevent a single 
CPU-intensive thread or process from hogging all the CPU resources and preventing 
other waiting tasks from being finished, which is known as CPU starvation.

Interrupt handling
Interrupt-driven data flow is common in most modern architectures. When processes 
need to access resources, such as fetching something from or writing something to disk 
(disk I/O) or sockets/Network Interface Cards (NICs) – the process does not sit around 
consuming CPU resources waiting for the operations to finish. This is mainly because disk 
and network I/O operations are orders of magnitude slower than CPU operations, so this 
would waste a tremendous amount of CPU resources.

In the interrupt-driven architecture, such a process initiates the I/O operation and is 
blocked on that operation. Then the scheduler context switches out that process and 
resumes another waiting process. Behind the scenes, the OS also installs an interrupt 
handler with the hardware, which will interrupt the running process at the time the 
operation finishes and wake up the process that initiated the request and let it handle the 
request completion.
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User and kernel mode switching
In the previous section, we saw an interrupt-driven example where the disk or packet read 
finishes and then the interrupt handler wakes up the process that initiated the request. 
In that sequence of events, part of the operation is carried out in kernel space, namely 
invoking the interrupt handler with the necessary signals, and the new process acquiring 
some CPU resources and starting to process the data. The actual data processing usually 
takes place in user space and depends on the application itself. This is not the only case 
where there are switches made between kernel and user space; some instructions invoked 
by a process running in user space also force a transition into kernel mode. For most 
systems, this switching does not invoke a context switch, but it might happen for some 
systems when switching between user and kernel mode. In the next section, we will look 
at the sequence of actions involved in a context switch operation. A good understanding 
of this is important because it then becomes clear how context switching can become 
expensive in the context of HFT applications.

Steps and operations involved in a context  
switch operation
Let's look at some of the operations involved in a context switch – specifically the  
tasks involved in saving the state of the currently running thread or process and  
restoring the state of the next thread or process to be run, as decided by the task  
scheduler. Please note that this section provides a high-level view of tasks involved and 
might be missing a few specific details for specific architectures; that is, each architecture 
and OS has caveats specific to them aside from this list, but this list still serves as a generic 
list of steps involved:

1.	 Saving the state of the current process involves saving the state in what is often 
known as a Process Control Block (PCB). That contains the registers, Stack 
Pointer register (SP), Program Counter (PC), and memory maps. There are also 
various tables and lists for the current thread or process.

2.	 There are likely a few steps to flush and/or invalidate the cache and flush the TLB, 
which handles the virtual memory address to physical memory address translations.

3.	 Restoring the state for the next thread or process to be run is the opposite step of 
what it takes to save the state, that is, restoring the registers and data contained in 
the PCB for the thread or process to be restored.
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This section presented a higher-level view of the all the steps involved in facilitating a 
context switch. In practice, there can be additional steps depending on the hardware 
architecture and OS and these can get quite complex and expensive. For an extremely 
low-latency application like HFT, these can lead to a large overhead. We will see the 
drawbacks of context switches in the next section.

Why are context switches bad for HFT?
Now that we have a good background on context switching, let's look at why context 
switches are not ideal for HFT applications.

Default CPU task scheduler behavior
Default CPU task-scheduling algorithms for a multi-core server are often not the best 
scheduling mechanisms for HFT. The different task-scheduling mechanisms try to 
consider several factors such as maintaining fairness in terms of CPU resources allocated 
across all threads and processes available to run, conserving energy/improving energy 
consumption efficiency, and maximizing CPU throughput/efficiency by either running the 
shortest jobs first or the longest jobs first, among others. 

These tasks are often at odds with what is critical for HFT applications:

•	 We would rather not conserve energy and put measures in place so that the server 
does not overheat.

•	 We want to support overclocked servers, which again are not energy efficient. 

•	 We want to control the scheduling/priority of processes so that it's preferred 
that very low priority tasks rarely get CPU time and/or get starved over the HFT 
application not getting as much CPU time as possible.

•	 We do not pre-empty the HFT thread or process even when it has already 
consumed a lot of CPU resources, that is, no need to be fair, and so on. 

In general, most of these objectives are achieved for HFT servers by changing the kernel 
and OS parameters and having multi-core servers where the critical HFT processes are 
pinned to specific isolated and dedicated cores so that they never get pre-empted, often in 
combination with moving non-HFT processes to a specific tiny subset of available cores.
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Expensive tasks in context switching
We have outlined the operations that need to take place when a context switch happens 
to save the PCB for the thread or process being removed from the CPU and to restore 
the PCB for the thread or process to be scheduled next on that CPU. Any work is more 
expensive than no work, but some of the steps in the case of context switching are very 
computationally intensive. We discussed task scheduling in the previous section, and it 
is one of the overheads of a context switch. Flushing the TLB and the cache if needed 
during a context switch are expensive tasks as well. Cache invalidation is another task 
when performing context switches. We saw TLB invalidation in a previous section; cache 
invalidation works very similar to that. During cache invalidation, data that has been 
edited in the cache but not written in memory is written to memory. Also, as new code 
replaces the space used by the old code, new code has to be fetched from memory and 
brought into the cache, which takes longer than accessing the cache (known as a cache 
miss). These cache invalidation steps cause the next thread or process to have quite a 
few initial cache misses, leading to a slow resumption for the process that got the CPU 
resource assigned after the context switch.

Techniques to avoid or minimize context switches
Finally, let's discuss how to design and configure a server/system for HFT with the aim of 
avoiding or minimizing context switches as much as possible.

Pinning threads to CPU cores
We discussed this in the Default CPU task scheduler behavior section, but to reiterate here, 
by explicitly implementing CPU isolation and pinning critical or CPU-intensive threads 
(a.k.a. hot or spinning threads) to specific cores, it is possible to make sure that little to no 
context switches occur on the hot threads/processes.

Avoiding system calls that lead to pre-emption   
Another item we discussed before is that system calls that block disk or network I/O cause 
the calling thread to block and cause a context switch followed by a kernel interrupt when 
the data request is finished. To minimize these context switches, one obvious solution is to 
minimize the use of blocking system calls as much as possible. The other solution is to use 
a kernel bypass, to which we dedicate an entire section named Using kernel bypass in the 
following chapter. To introduce it quickly here, it avoids system calls altogether as far as 
network I/O operations are concerned (which are very prevalent in HFT applications) by 
trading in system call overhead for CPU utilization and thus avoiding context switches.
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This section discussed context switching in great detail. We covered the following topics:

•	 Types of context switches

•	 Which applications benefit from context switches

•	 The tasks involved in performing a context switch

•	 Why context switches are not ideal for HFT applications

•	 Techniques to maximize HFT application performance by minimizing  
context switching

In the next section, we will discuss another fundamental computer science concept of 
locks. We will also design lock-free data structures and understand how avoiding locks 
maximizes HFT application performance.

Building lock-free data structures 
In this section, we will discuss data structures that are shared between threads or between 
processes in an HFT ecosystem and the concurrency and synchronization considerations 
involved, especially given the extremely high-throughput and low-latency requirements 
of HFT systems. We will also design and discuss the performance implications of lock-
free data structures. A lock-free data structure is a mechanism to share data between 
producers and consumers running in different threads and/or processes. The interesting 
point here is that it achieves this by avoiding locks altogether and thus performs 
significantly better for HFT purposes. We will investigate these items in more detail in the 
sections that follow.

When/why are locks needed (non-HFT applications)
Let's look at why locks are needed in a traditional multi-threaded/multi-process 
programming paradigm. The reason comes down fundamentally to the need to allow 
concurrent access to shared data structures and the use of synchronization primitives 
on shared resources. We will look at synchronization primitives including mutexes, 
semaphores, and critical sections in the following Types of synchronization mechanisms 
section. These help ensure that certain thread-unsafe sections of code do not execute 
concurrently if doing so could corrupt shared data structures. When using locks, if 
one thread attempts to acquire a lock that is already held by another thread, the second 
thread will block until the lock is freed by the first thread. We will see in the Problems and 
inefficiencies with using locks section the performance implications of using locks, as well 
as how we can get around them, especially when it comes to HFT systems.
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Types of synchronization mechanisms
In this section, we will look at some of the common synchronization methods available to 
achieve concurrent access using some form of locking/blocking/waiting mechanism.

Memory barriers
A memory barrier a.k.a. memory fence or fence is used to instruct the compiler and 
processors to not reorder the loads and stores. This boosts performance, which is perfectly 
fine for single-threaded applications but can lead to strange, unpredictable, incorrect, and 
inconsistent behavior in multi-threaded applications. Using memory barriers disallows 
the compiler and preprocessor from reordering the sequence of loads and stores for 
a specific critical section, which can cause performance penalties in a multi-threaded 
HFT environment. Memory barriers are often lower-level instructions on top of which 
synchronization primitives and lock-free data structures are built.

test-and-set
test-and-set is a computer science primitive (basic code/instruction) that takes a 
pointer to a Boolean variable, sets it to true, and returns the old value as a single atomic/
non-interruptible operation. The atomic nature of the operation makes it a perfect 
primitive to use to build synchronization mechanisms.

fetch-and-add
fetch-and-add is a primitive that takes a pointer to a variable, adds a number to it, 
and returns the old value as a single atomic/non-interruptible operation. It is used to build 
synchronization mechanisms where counting is required.

Compare-and-swap
compare-and-swap (CAS) is the most widely used primitive. It only stores a value to 
an address if the variable at the address has a given value. The steps of fetching the value, 
comparing it, and updating it are one atomic operation. CAS does not acquire a lock on 
the data structure but returns true if the update was successful and false otherwise.

Problems and inefficiencies with using locks
In this section, we will investigate some of the complications/problems and inefficiencies 
associated with using locks for synchronization for concurrent access of shared data 
structures by threads and processes.
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Application programming and debugging skill requirements
Programming with locks is not trivial from a software development perspective.  
A simple task of atomically deleting something from one data structure and inserting it 
into a different data structure requires managing multiple concurrent locks and  
elaborate software support and rigorous validations to make sure all edge cases have 
been mapped out and handled since it is difficult to reproduce the edge cases in a multi-
threaded application.

To reiterate, bugs associated with or caused by locks depend on the timing of the 
operations and the code path. Overall, they can be very subtle and extremely difficult to 
reproduce, such as deadlocks. Therefore, debugging applications that use synchronization 
mechanisms is quite a daunting task.

It is important to strike an optimal balance between lock overhead (extra memory/CPU 
resources to use locks) and lock contention (instances where a thread tries to acquire a 
lock that is already in an acquired state from another thread/process) and it depends on 
the problem domain, the design, the implementation of the solution, and the low-level 
architectural designs. During the life cycle of an application, as use cases change, there 
might be significant changes to these design considerations as well as how to achieve/
maintain the optimal balance between lock overhead versus lock contention. 

Lock overhead and performance
Using locks requires extra resources such as memory space for the locks, and the CPU 
resources to initialize, destroy, acquire, and release locks. As we discussed before, even 
trivial tasks can often require multiple locks and multiple lock acquisition and release 
operations to do correctly, hence as application complexity grows, so does the overhead 
associated with the locks. Although the chance for contention is rare, anywhere we 
use locks to protect access to a shared resource, there is additional overhead. However, 
modern processors are often able to avoid context switches during lock acquisition or 
release operations when contention does not exist at the time of the operation.

Lock contention
When a process or thread tries to acquire a lock that is already held by another thread 
or process, lock contention occurs. The more fine-grained locks (that is, individual locks 
that lock smaller code regions or data structure pieces) the lower the contention, but the 
higher the lock overhead (since a higher number of locks means more resources required).
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There are many things to be considered with lock contention. Threads or processes 
that are waiting to acquire a lock (or locks) must wait till the locks are released, which 
introduces queuing delays. More importantly, if one of the threads or processes in that list 
dies, stalls, blocks, or enters an infinite loop, this will break the entire system since now 
the threads waiting on that lock will wait forever, leading to a deadlock condition.

Deadlock
We described the possibility of a deadlock scenario where if the thread holding the lock 
never finishes, all other threads waiting to acquire that lock will wait forever. The classic 
deadlock definition however is described as a scenario in which at least one of two tasks is 
stuck waiting to acquire a lock that the other process is holding on to. A simple example 
would be where process-1 holds lock-A and tries to acquire lock-B at the same time as 
process-2 holds lock-B and tries to acquire lock-A. In the absence of any external actions, 
the two tasks will be stuck forever.

Async signal safety, kill tolerance, and pre-emption tolerance
This section will revisit and expand on the concerns we raised in the Application 
programming and debugging skill requirements section about lock contention (instances 
where a thread tries to acquire a lock held by another) where if a thread or process that 
holds a lock dies or cannot finish for any reason, it brings the entire system down since no 
threads or processes that need to acquire that lock can ever make progress. The scenario 
where threads die or crash while holding locks and what would happen to the system in 
that case is referred to as its kill tolerance. Possible impacts can range from a lot of wasted 
time before the OS detects a deadlocked thread/process, to loss of progress due to the 
need to restart the whole system and possibly a complete halt to processing.

Signal handlers (an OS mechanism to handle unexpected scenarios/code paths) for 
instance cannot use lock-based primitives since it is impossible to guess what the state 
of the application might be in terms of which code was being executed/what locks were 
acquired at the time the asynchronous signal handler was invoked. A special example 
would be the C programming language functions malloc() and free(). For instance, 
if a thread is holding a lock during a memory allocation task and it happens to receive a 
signal, the context is switched right away to the signal handler, so the thread never gets an 
opportunity to release the lock. Then, if the signal handler executes and calls malloc(), 
requiring a lock, then we are in a deadlock situation again. In this scenario where the 
original thread is pre-empted (or in general when a thread is pre-empted while holding a 
lock for any other reason), the expected behavior of the component or system is referred 
to as Pre-emption tolerance.
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Priority inversion
Priority inversion is a scenario where a low-priority thread or process holds a common 
lock that it shares with a higher priority thread or process. The low-priority thread 
holding the lock can slow down or prevent the progress of the higher priority thread or 
process. This is because in some cases the lower priority process holding the lock might 
not be picked up by the scheduler to be run due to its lower priority but each time the 
higher priority process gets picked up to be run, it blocks on the lock acquisition and does 
not make progress anyway. 

Priority inheritance is one solution where if a high-priority process is waiting on a 
low-priority process due to a shared lock as described above, the scheduler assigns either 
the same priority or the highest priority to the low-priority process to handle the priority 
inversion issue. Priority ceiling protocol is a similar solution  designed more for systems 
with a single processor. It aims to minimize the worst-case duration and possibly prevent 
deadlocks when priority inversion scenarios happen. 

Convoying
Convoying refers to another case that causes degradation in software/application 
performance when using synchronization primitives. If multiple processes/code paths 
attempt to acquire the same locks in similar order and then somehow a slower process 
manages to get to the lock first, then all the other processes will be held back (in terms of 
making progress) to the speed of the first one, because even though the other processes 
finish their operations quickly, they still need to wait on the slow leading process for the 
lock acquisition operations. Also, if the thread holding the lock is context switched out for 
any reason (such as the thread holding the lock invokes an I/O operation, a higher priority 
process starts up, or an interrupt handler is invoked), then that will again add more 
latency to the completion of the other processes.

To summarize this section, building applications that use synchronization mechanisms 
is complicated, each lock instance and lock operation adds additional overhead, there 
are risks of deadlocks, and some peculiar scenarios where the system can slow down, 
requiring special solutions. Thus, locks are often inefficient and expensive and given 
their blocking, unblocking, and context switching nature are often not the preferred 
mechanisms for HFT applications.
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Prototype for lock-free data structure
In this section, we will discuss lock-free data structure design to avoid all the problems 
and inefficiencies that come with using synchronization primitives in HFT applications. 
In general, designing generalized lock-free algorithms is hard, so the usual approach is 
to design lock-free data structures instead – some examples of which are lock-free lists, 
stacks, queues, maps, and deques. We can then use these lock-free data structures in spots 
where the HFT system requires interaction or data sharing between different threads 
and/or processes. In this section, we will design and understand the details of lock-free 
producer-consumer data structures. Producer-consumer data structures are basically 
queues where producers can write data to and consumers can read data from – a common 
task when passing data between HFT components. When there is a single producer and 
a single consumer, it is referred to as Single Producer Single Consumer (SPSC) and 
when there are multiple producers and consumers, it is referred to as Multiple Producer 
Multiple Consumer (MPMC).

There is a good amount of research on thread-safe malloc() and free() with no locks 
as well. Michael (PLDI 2004), Scalable Lock-Free Dynamic Memory Allocation is one such 
instance. The thread-safe malloc() and free() scale almost perfectly when adding 
additional processors. They also handle different contention levels well and offer very low 
latency when compared to other specialized malloc() implementations. As we will see 
in the Pre-fetching and pre-allocating memory section, this is not necessarily a huge win 
for HFT applications since they generally avoid dynamic memory allocations as far as 
possible, but this can still be quite valuable in cases where we need to use thread-safe and 
lock-free malloc() and free().

Fundamentally, the main argument for lock-free data structures is to maximize 
concurrency. For containers that use locks, there always exists the possibility of a thread 
having to block on a lock acquisition step and wait and incur expensive context-switching 
latencies before it can make progress since mutual exclusion is the goal of mutex locks 
anyway. With lock-free data structures, a thread makes progress each time it runs, and this 
is effectively implemented as a spin lock. A spin lock does not block but instead repeatedly 
keeps checking if the lock is available. This behavior is known as busy wait.
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SPSC and MPMC
To discuss what a lock-free data structure might look like, we will discuss a simple lock-
free SPSC example – although the same ideas we discuss here can be extended all the way 
to MPMC. We can improve SPSC by turning it into MPMC by having different queues in 
memory per producer and having different location tracking variables per consumer. In 
the MPMC design, each producer writes new data to its own queue and each consumer 
has its own variables that track what the last element consumed was. With that design, the 
producers can produce and write data independent of each other without worrying about 
trampling on other producers' toes, and each consumer can consume data independent of 
each other from one or more of these queues.

Here is a diagram that describes how the Producer and Consumer track memory slots 
being written to and read from in a lock-free SPSC design:

Figure 6.1 – Producer and consumer track memory slots being written to and read from in a lock-free 
SPSC design

In the most common implementation of lock-free SPSC or MPSC, new data is added 
to the back of the queue by the producer(s) and old data is consumed from the front of 
the queue by the consumer(s) – so it is a First In, First Out (FIFO) style queue. Quite 
often the underlying data structure/memory store for the queue is chosen to be a large, 
fixed-size, pre-allocated array, which has a lot of advantages such as no dynamic memory 
allocation and contiguous memory access. We will discuss this further in the Memory 
pools section. 
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There is a variable that the producer uses – last_write – to track which index in that 
array the last data was written to, or the next data will be written to – conceptually they 
both get the job done. The producer adds the nodes and increments the variable that 
tracks the last slot that data was written to. The consumer has a variable – last_read – 
which it uses to track the index that it last read data from. The consumer checks if there 
is new data available to read by comparing the last_write and last_read variables 
and consumes data till there is no more data left to consume. 

Here, the producer will often use a CAS atomic operation to increment last_write 
(and similarly the consumer will use a CAS atomic operation to increment the last_
read variable), but that is not necessary in an SPSC setup since the worst-case possibility 
is that the new node has been added to the queue but last_write has not been updated 
when the consumer checks for data, in which case it will just be read the next time the 
consumer checks for data and last_write has been updated. 

When the producer and consumer read the end of the array, the indices wrap around 
and start from 0 again. The one invariant that is maintained is last_read <= last_
write. This design works best when the array size chosen is large enough and the 
consumer is fast enough to process the data so that it is not struggling to keep up with the 
producer and/or slowing the producer down in its ability to write data to the queue. 

Applications of lock-free data structures in HFT
We shall reiterate this point one last time, but lock-free data structures (and operations on 
them) have significantly higher throughput (no contention) as well as lower latencies (no 
overhead) compared to alternatives that use locks under periods of heavy load. If a process 
holding a lock to a critical section gets context-switched out, it will end up blocking other 
threads/processes that need to access that lock before proceeding. These threads wait until 
the original thread is scheduled to run again, finishes its tasks in the critical section, and 
releases the lock. The same sequence of events in a lock-free algorithm does not waste any 
time since they can change the shared variable without waiting. The original thread that 
wanted to modify the variable now must loop at least once more and try it again.

Lock-free Single Producer Single Consumer (SPSC), Single Producer Multiple 
Consumers (SPMC), Multiple Producers Single Consumer (MPSC) and Multiple 
Producers Multiple Consumers (MPMC) are used in various places in an HFT system. 
Without listing all applications, the following sections cover some of the important ones 
and it should not be hard for you to extrapolate from these examples where you want to 
use one of these lock-free data structures.
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Market data dissemination on a critical path
Depending on how many market data feed handler processes a strategy is consuming 
market data from, we can have an MPSC-style setup per trading process that is consuming 
market data from multiple sources over a lock-free queue. If there are multiple trading 
processes running per trading server, then that setup can become an MPMC-style setup 
where the different market data feed handlers are the multiple producers and the different 
trading processes are the multiple consumers.

Order requests on critical path
The setup here is identical to the one described in the Market data dissemination on 
critical path section, except that here the flow of data is from the trading processes to the 
order gateways. Here, again depending on the number of trading processes and order 
gateways, it can be set up as a lock-free SPSC, MPSC, or MPMC.

Logging and online computation of statistics
Logging is another interesting application of these lock-free data structures we discussed 
in this section. A lot of the tasks in logging can be slow and not ideal on a critical 
performance path, such as the following:

•	 Formatting data into some human-readable format – this is not always necessary 
but when needed, it involves slow string operations.

•	 Writing logs to disk – this involves the use of super slow disk I/O operations.

•	 Computing running statistics – this can be slow depending on the amount of data 
and the nature of the statistics themselves.

Due to the slow and non-deterministic nature of these tasks, it is not uncommon for the 
different processes involved in the HFT ecosystem to ship off data in its simplest format 
to a separate logging thread or process that does the slower tasks off the hot path. Here 
again, lock-free data structures come in handy. We will discuss logging and statistical 
computations in Chapter 7, HFT Optimization – Logging, Performance, and Networking, in 
the Diving into logging and statistics section, since that is a particularly key component in 
HFT applications. The diagram that follows shows the different components that can use 
lock-free queues for efficient data transfer:

•	 From market data feed handlers to trading process(es)

•	 From the trading process to order gateway(s)

•	 Also from market data feed handlers, trading processes, order gateways, and other 
components to offload the logging to the logging processes
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Let's look at the following diagram that shows the different types of lock-free queues:

Figure 6.2 – The layout and use of different types of lock-free queues (SPSC, SPMC, and MPMC) in a 
complete HFT ecosystem

In this section, we discussed traditional computer science concurrency/synchronization 
mechanisms and why they are needed in multi-threaded applications. We then looked 
at why the use of locks is inefficient for HFT applications. Finally, we designed a lock-
free data structure to be used in the presence of multiple producers of data and multiple 
consumers of that data and saw how that fits into an HFT ecosystem. In the next section, 
we will look at another important topic concerning all applications in general, but 
especially relevant to HFT applications – memory allocation during the course of an HFT 
application's life cycle.

Pre-fetching and pre-allocating memory
In this section, we will look at two things when it comes to accessing and allocating 
memory used by HFT applications mostly from the perspective of improving memory 
access and allocation latencies, especially on the critical path.

We will start off by discussing the hierarchy of memory – all the way from memory with 
super-fast access but that is expensive and limited in capacity, to those offering super-slow 
access but cheaply and of huge capacity. We will also discuss some strategies to design 
HFT applications to aim for optimal memory access latencies.
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The other topic of discussion will be how dynamic memory allocation works, why 
dynamically allocating memory on the hot path is inefficient, and what techniques are 
employed to extract maximum performance without sacrificing too much of the flexibility 
that dynamic memory allocation allows.

Memory hierarchy
First, we will discuss the memory hierarchy in modern architecture. We will start 
from the storage closest to the processor, which has the lowest access latencies (but the 
highest cost and lowest storage capacity) and move further out from processor registers 
to various levels of caches to main memory (RAM) and then finally to the disk storage 
where applications reside before they are loaded into memory on startup. Note that these 
numbers vary from architecture to architecture and processor to processor and are in 
a constant state of evolution, so these are meant to be rough approximations of what to 
expect and are likely to change in the future.

First, let's look at a diagram that describes the pyramid of memory hierarchy from  
fastest, smallest, and most expensive at the top to slowest, largest, and least expensive  
at the bottom:

Figure 6.3 – Memory hierarchy in a modern architecture

As we move from the bottom to the top, the memory/storage options become faster, lower 
in capacity, and more expensive.
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Processor registers
Processor registers have the fastest possible access (usually 1 CPU cycle). The processor 
register banks can hold up to a few bytes in size per register.

Caches
After the processor registers comes the cache bank, which comprises a few different  
cache levels. We will discuss those here in order from fastest (and smallest) to slowest  
(and largest).

L0 cache
Level 0 (L0) cache – this is accessed after the processor registers. The L0 cache is around 6 
kilobytes in size.

L1 cache
Level 1 (L1) caches (the instruction and data caches) is 128 kilobytes in size. Access 
times are around 0.5 nanoseconds for the data cache and 5 nanoseconds for a branch 
misprediction for the instruction cache. Branch prediction is an advanced computer 
architecture feature where, based on previous access patterns, the processor/OS tries 
to guess which code path will be taken next. When it guesses the path correctly, it can 
pre-fetch the code before it is needed, thus speeding up access and execution when it is 
finally needed. Since it is a guess, sometimes it is incorrect, which is known as branch 
misprediction. We will not dive into too many details on branch prediction since that is 
outside the scope of this book.

L2 cache
Level 2 (L2) caches - instruction and data (shared) – sizes vary here but can range from 
256 kilobytes to 8 megabytes. L2 cache access takes around 5-7 nanoseconds.

L3 Cache
Level 3 (L3) shared cache – L3 caches can vary in size from 32 to 64 megabytes. The L3 
cache is the largest but also the slowest, with access times of around 12 nanoseconds. The 
L3 cache can exist on the CPU itself, however, there are L1 and L2 caches for each core, 
while the L3 cache is more of a shared cache for all cores on the chip.

L4 Cache
Level 4 (L4) shared cache – these can vary from 64 to 128 megabytes. Access times are 
around 40 nanoseconds.
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Main memory
Main memory (primary storage) – this varies in size from 16 to 256 gigabytes. Access 
times are around 60 nanoseconds. Non-Uniform Memory Access (NUMA) machines 
experience non-uniform access times. NUMA is an advanced concept where in a multi-
threaded environment the access times depend on the memory location relative to the 
processor, but diving into NUMA is outside the scope of this book.

Disk storage
Disk storage (secondary storage) – This goes up to terabytes in size. For solid-state  
storage, access speeds are around 100 microseconds, and for non-solid-state storage, 
around 300 microseconds.

Inefficiencies with memory access
In the previous section, we discussed the memory hierarchy and latencies incurred when 
fetching data from the different storages – basically, when an application requests a data 
for the first time, it might not be available in the registers or the caches and possibly (we 
will discuss why we use the word possibly in the Pre-fetching based alternatives to boost 
performance section) not even in the main memory, in which case it is loaded from disk 
to main memory (incurring the 100-300 microseconds latency), then from main memory 
to the L0 to L4 caches. Data is not loaded a few bytes at a time but one or few pages (a 
few kilobytes) at a time, so subsequent references to the same data (or data residing at a 
memory address close to that data) lead to cache hits and experience significantly lower 
access latencies.

So, the worst-case access time latencies are incurred when we experience a miss at the 
faster storage levels and must go to the slower storage, fetch it, cache it into the faster 
storage, and then access the requested data, yielding a few hundred microseconds in 
access latency. 

The best-case scenario is when the data is already present in the L0/L1 cache and access 
times drop to less than a nanosecond. The average-case latency (referred to as Average 
Access Time) (AAT)), which is what we are really trying to optimize, is the average of 
access times over the course of an application's life cycle.
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Let's say we have a hypothetical setup where the main memory has an access time 60 
nanoseconds, the L1 cache has an access time of 0.5 nanoseconds but a miss rate of 10%, 
the L2 cache has an access time of 5 nanoseconds with a miss rate of 1%, and the L3 cache 
has an access time of 12 nanoseconds and a miss rate of 0.1%, then the AAT will be as 
follows for the different scenarios:

•	 No cache: AAT-no-cache = 60 nanoseconds 

•	 L1 cache: AAT-L1 = L1-hit-time + (L1-miss-rate * AAT-no-cache) = 0.5 + (0.1 * 60) 
= 6.5 nanoseconds 

•	 L2 cache: AAT-L2 = L1-hit-time + (L1-miss-rate * (L2-hit-time + L2-miss-rate * 
AAT-no-cache)) = 0.5 + (0.1 * (5 + 0.01 * 60)) = 1.06 nanoseconds 

•	 L3 cache: AAT-L3 = 0.5 + (0.1 * (5 + 0.01 * (12 + 0.0001 * 60))) = 1.012 
nanoseconds 

The takeaway here is that applications that have memory access patterns that lead to a lot 
more cache hits (and thus fewer cache misses) will have significantly better performance 
in terms of accessing memory than an application that has access patterns that lead to a lot 
more cache misses (and thus fewer cache hits).

Pre-fetching based alternatives to boost performance
In the previous section, we discussed how cache hits affect memory access performance. 
So, to get the most out of cache performance, HFT application developers need to focus 
on writing cache-friendly code, the most important aspect of which is the principle of 
locality, which basically describes why related datasets placed near each other in memory 
allow for more efficient caching. You must be aware of how big each of the caches are, how 
much data fits in a cache line, and cache access times for the specific architecture where 
the HFT ecosystem lives.

Temporal locality
Temporal locality refers to the principle that given that a certain memory location was 
accessed, it is highly likely that the same location will be referenced/accessed again soon. 
So based on that principle, it makes sense to cache data that was recently accessed since 
there is a good chance that it will be accessed again and likely that it will still be cached at 
that point.



132     HFT Optimization – Architecture and Operating System

Spatial locality
Spatial locality refers to the principle of placing related pieces of data close to each other. 
Typically, memory loaded into RAM is fetched in large chunks (larger than what the 
application requested) and similarly for hard disk drives and CPU caches. The reasoning 
here is that application code is often executed serially (instead of jumping around 
randomly across memory addresses) and so the program will most likely require the data 
from the large chunk that was fetched in the previous instance. Thus, it is likely to produce 
cache hits or memory hits instead of having to fetch it from disk.

Appropriate containers
It is important to think carefully about the containers being used when writing cache-
friendly low-latency HFT code. A quite simple example often presented is the choice 
between the C++ Standard Template Library (STL) vectors and lists. While both might 
appear to be serving similar purposes from the API perspective, the elements of a vector 
are saved in contiguous memory locations and they are much more cache friendly when it 
comes to accessing them compared to lists where the elements are not necessarily stored 
in contiguous memory and often all over the place in memory. Here, the principle of 
spatial locality kicks in and causes vector element access to perform significantly better 
than list element access.

Cache-friendly data structures and algorithms
This is a generalization of the previous point – when designing data structures and 
algorithms, it is important to be cognizant of cache and cache performance and try to 
tailor the design in a way that maximizes the use and performance of the cache, especially 
for HFT applications.

Exploit the implicit structure of data
Another simple example that is often presented when discussing spatial locality is the 
classic 2D array, which can be column-major (where elements of a column are next to 
each other in memory) or row-major (where elements of a row are next to each other in 
memory). We should consider this and access the element accordingly – for example, for 
column-major 2D arrays, accessing elements in the same column is much better than 
accessing elements in the same row, and the reverse is true for row-major 2D arrays. Data 
that is fetched from the main memory and cached in the cache bank is fetched in units 
of blocks. So, when a certain element of a matrix is accessed, elements near it in memory 
locations are also fetched and cached. Exploiting this ordering allows us to perform 
operations with fewer memory accesses because computations that need to access the 
subsequent elements already find them in the cache line. 
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Avoid unpredictable branches
Modern compilers, processor pipelines, and architecture are extremely good at prefetching 
data and reordering code to minimize memory access delays. But one place where they 
suffer in performance is if the critical code contains unpredictable branches since it is 
impossible to pre-fetch data and exploit temporal or spatial locality and pre-fetch data. 
This therefore leads to significantly more cache misses compared to code without a lot of 
unpredictable branches.

Avoid virtual functions
Virtual functions in the context of C++ are something that we try to avoid when writing 
low-latency HFT software in general, mostly because they make a lot of especially 
important compiler optimizations impossible simply because the compiler cannot 
determine which method implementation will get called at compile time, so it cannot 
inline the methods and processors cannot pre-fetch data. This results in a lot more cache 
misses during lookup if the specific method is not called often (otherwise at least the 
method body is likely to be cached and will not incur cache misses). The presence of 
virtual functions is not the biggest problem when it comes to cache friendliness, but still, 
this is something to be cognizant of.

In the next section, we will look at another topic related to memory allocation and 
access – dynamic memory allocation. Dynamic memory allocation is quite common in 
complex large-scale applications, so it is important to build a good understanding of that 
concept. You should build a good understanding of the fact that there are multiple steps 
involved each time a dynamic memory allocation operation is invoked and that can have 
performance penalties for HFT applications.

Dynamic memory allocation
Dynamic memory management is an excellent feature that has existed since the 
beginning of C – it allows applications to manage (allocate/move/deallocate) memory 
blocks of dynamic sizes determined at runtime. The actual internal implementation and 
performance impact, however, makes it less than ideal for extremely low latency HFT 
applications that need very tight (low variance on latencies on operations) performance. 
The memory allocated during dynamic memory allocation lives on the heap segment 
and when memory is freed, it is returned to the heap. However, in practice working 
with dynamic memory management is non-trivial and small mistakes in the application 
implementation can lead to subtle memory leak issues and performance issues on the 
critical path.
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Steps in dynamic memory allocation
The OS maintains the free heap memory blocks using two linked lists – one is a freed list 
of heap memory blocks that are not currently allocated, and the other is an allocated list 
of heap memory blocks. When a request comes in for a new memory block, it traverses 
the freed list till it finds a memory block that is large enough to service the request, then 
moves part or all of the memory block from the freed list to the allocated list and returns 
the now allocated memory address back to the caller.

Over the course of a program's life cycle there can be any number of allocations and 
deallocations of random amounts in random orders. Due to these operations, the freed 
list can have holes when previously allocated memory is returned to the free list in 
between still allocated memory blocks. A new request for dynamically allocated memory 
can return something from one of the holes. This concept of the freed heap block list 
developing holes is known as memory fragmentation. In some rare cases it is possible for 
a lot of fragmentation and due to the presence of too many holes, memory is wasted and 
the holes cannot be used to satisfy dynamic memory allocation requests because each 
hole individually might be too small to satisfy the request. There are some techniques and 
strategies that the allocator invokes periodically to collect and consolidate such chunks to 
prevent heap fragmentation, but covering those is outside of the scope of this chapter.

Memory leaks are another problem for dynamic memory allocation, whereby a memory 
block is allocated but remains unused and is never freed by the application and hence not 
returned to the free pool. This is known as a memory leak and it causes memory usage 
to balloon, along with worsened performance due to the gigantic memory footprint, and 
might even cause the OS to terminate the process that is leaking memory and/or starve all 
processes that need dynamic memory to be allocated.

To summarize this section, dynamic memory management introduces application 
complexity, the potential for bugs, has an overhead and latency (due to the tracking/
updating of the linked lists tracking the memory blocks), and can have performance issues 
due to memory fragmentation. The performance implications make dynamic memory 
management less than ideal for HFT applications.

Pre-allocation-based alternatives to dynamic  
memory allocation
In this section, we will investigate some alternatives when it comes to dynamic memory 
management. Here we want to preserve the flexibility of being able to allocate and 
deallocate an arbitrary number of elements at runtime, but we will try to see how we 
might be able to achieve this without encountering the performance issues of the dynamic 
memory management provided by the OS.
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Some solutions to the dynamic memory management problem are listed here.

Limit memory to stack
One obvious solution is to limit dynamic memory allocation on the heap. What that 
means is that if something can be allocated on the stack, that should be the preference. 
Simple techniques such as having an upper bound on the number of elements and having 
a local variable on the stack to handle up to that number of elements can help eliminate 
the drawbacks of using dynamic memory allocation anytime an unknown number (at 
compile time) of elements could be needed.

Memory pools
If the type of object is known (as is quite frequently the case; for example, an Order 
object type that contains details about an order in market data, such as price, side, and 
quantity), it is often much more efficient to create a memory pool, allocate a huge block 
of memory, and manage the memory in software ourselves. Since the type and size of 
the object are known, the actual memory pool implementation can be made generic but 
super-efficient by using templates. Also, since the size of each element, we do not have to 
worry about holes/memory fragmentation. Additionally, we can use a LIFO stack-style 
deallocation/allocation scheme instead of a linked list, which is likely to give much better 
cache performance as well. Finally, using huge pages can help with the TLB translation 
efficiency in scenarios where we expect to create many specific kinds of objects. 

In this section, we addressed details around accessing memory on modern  
architectures and OSs – the design of memory hierarchy, the inefficiencies of normal 
access patterns, and some techniques to maximize performance for HFT application 
requirements. We also discussed dynamic memory allocation, the drawbacks of using  
it on performance-critical paths, and techniques to use it without impacting performance 
for HFT applications.

Summary
We discussed the implementation details of various computer science constructs  
such as context switching, synchronization, and concurrency primitives. We also 
discussed the implications that these features have on HFT applications and found  
that often the default behavior that works best for most applications is not the optimal 
setup for HFT applications.
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Finally, we discussed approaches/tools/techniques/optimizations for optimal HFT 
ecosystem performance. We hope this chapter provides you insight into advanced HFT 
optimization techniques and their impact on the HFT ecosystem's performance. 

For developers and traders that want to build HFT systems and trading strategies, it is 
imperative that you understand the use of these HFT optimization techniques. The biggest 
edge in HFT comes from ultra-low latency algorithms/software and to be able to compete 
in that space, you will need to employ these techniques. 

The next chapter will continue on the subject of HFT optimization technologies/
techniques. We will discuss HFT optimizations that apply to kernel bypass technology, 
networking, logging, and performance measurement.



7
HFT Optimization 

– Logging, 
Performance, and 

Networking
In the previous chapter, we investigated a lot of lower-level HFT optimization tasks and 
optimization tips and techniques. In this chapter, we will continue the discussion and 
look at more topics in HFT optimization. The focus here will be on kernel and user space 
operations and optimizations related to them. We will also explore kernel bypass as well as 
optimization topics related to networking, logging, and measuring performance.

Some of the operations and constructs that we will discuss will be memory, disk,  
and network access operations at the operating system (OS) and server hardware 
levels and network architectures between data centers in different physical locations 
(microwave/fiber options). We will also discuss topics related to logging and statistical 
metrics around real-time performance measurement. Including the topics covered in the 
last chapter, by the end of this chapter, you will have a very good understanding of all the 
modern performance optimization tools, technologies, and techniques involved in HFT 
trading architectures.
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In this chapter, we will cover the following topics:

•	 Comparing kernel space and user space

•	 Using kernel bypass

•	 Learning about memory-mapped files

•	 Using cable fiber, hollow fiber, and microwave technologies

•	 Diving into logging and statistics

•	 Measuring performance

Important Note
In order to guide you through all the optimizations, you can refer to the 
following list of icons that represent a group of optimizations lowering the 
latency by a specific number of microseconds:

: Lower than 20 microseconds

: Lower than 5 microseconds

: Lower than 500 nanoseconds

You will find these icons in the headings of this chapter. 

It is important to understand these topics well since no modern HFT system is complete 
without incorporating these techniques to maximize performance. Understanding these 
topics is essential to building a competitive HFT business.

Comparing kernel space and user space 
We touched upon the concepts of kernel and user space in the previous chapter. To  
refresh our memory, some privileged commands/system calls can only be made from 
kernel space, and this design is intentional so that errant user applications cannot harm 
the entire system by running whatever commands they want. The inefficiency from the 
perspective of an HFT application is that if it needs to make system calls, it requires a 
switch to kernel mode and possible context switches, which slows it down, especially if 
the system calls are made quite often on the critical code path. Let's formally wrap up the 
discussion in this section.
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What is kernel and user space?
The kernel is the core component of all modern OSs. It has access to all the resources – 
memory, hardware devices, and interfaces, essentially everything on the machine. Kernel 
code has to be the most tested code that is allowed to run in kernel mode or kernel space 
to maintain machine stability and robustness. User space is where normal user processes 
run. The OS kernel still manages user space applications and polices the resources they 
are allowed to access. The virtual memory space is also divided into kernel space and user 
space. While the physical memory does not distinguish between the two spaces, the OS 
controls access. User space does not have access to kernel space, but the reverse is true, 
that is kernel space has access to user space. The diagram that follows will help you to 
understand the layout of these components:

Figure 7.1 – Communication between kernel space and user space components
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When processes running in user space need to execute system calls such as disk I/O, 
network I/O, and protected mode routine calls, they do so via system calls. In that design, 
system calls are the part of the kernel interface exposed by the kernel to user space 
processes. When a system call is invoked from a user space process, first an interrupt is 
sent to the kernel for the system call. The kernel finds the correct interrupt handler for the 
system call and launches the handler to handle the request. Once the interrupt handler is 
finished, processing continues onto the next set of tasks. This is not the only case where 
there are switches made between kernel and user space; some instructions invoked by a 
process running in user space also force a transition into kernel mode. For most systems, 
this switching does not invoke a context switch, but for some systems that might happen 
when switching between user and kernel mode.

Investigating performance – kernel versus user space
In general, code that runs in kernel space runs at the same speed as code in user space. 
The difference in performance comes into play when system calls are made – code 
executing in kernel space executes more quickly when system calls are involved and code 
executing in user space executes more slowly since when it encounters a system call, it 
needs to switch to kernel/supervisor mode and that switch is slow and can trigger even 
more expensive context switches. So, for user applications, it makes sense to minimize the 
use of system calls and try to eliminate them altogether if possible.

Another example is gettimeofday() and clock_gettime(), which, under the 
hood, invoke system calls. Since HFT applications update time very frequently, this can 
add up to a lot of system calls. Alternatives to that approach that would eliminate system 
calls are rdtsc() instructions, and on some architectures, even chrono time calls are 
able to avoid system calls.

Overall, there can be many opportunities during HFT application development where it 
is possible to eliminate or minimize (the latter being more realistic) system calls invoked 
from the user space application. You just need to give some thought to what methods 
are being called, if they invoke system calls, and if there is a better way to have the same 
functionality but without invoking system calls – at least as far as code in the critical hot 
path is concerned.

We will see an example of eliminating system calls in the section on Learning about 
memory-mapped files. By loading up the file into memory and allowing the processes to 
make changes directly to the memory and delay/throttle how often changes get committed 
to disk, the design minimizes system calls. Another example of eliminating systems calls 
altogether for network read/write operations is kernel bypass, which we will discuss 
shortly in the Using kernel bypass section. 
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We will discuss the latency improvements achieved by using that technique; however, 
you should know that a part of the improvement is achieved by eliminating unnecessary 
copies of data buffers. Before we look into the details, we will present some data here 
regarding the improvements. UDP read/write times without kernel bypass range between 
1.5 to 10 microseconds, and with kernel bypass, range between 0.5 and 2 microseconds. 
TCP read/write times also have similar performance increases, except a tiny bit slower. 
Let's start by discussing the details of kernel bypass technology and its benefits next.

Using kernel bypass
In this section, we will discuss using the kernel bypass technique to improve the 
performance of User Datagram Protocol (UDP) sockets to process inbound market data 
updates from the exchanges and Transmission Control Protocol (TCP) sockets to send 
outbound order flow/requests to the exchange. Fundamentally, kernel bypass looks to 
eliminate the expensive context switches and mode switches between kernel mode and 
user mode as well as duplicate copying of data from the Network Interface Card (NIC) to 
user space, each of which ends up reducing the latency quite a bit.

Network processing driven by system calls/interrupts in the non-kernel bypass design, 
threads, or processes that want to read incoming data on UDP or TCP socket block on the 
read call, as described in the Understanding context switches – interrupt handling section 
in the previous chapter. That leads the blocked thread or process being context switched 
out, and then it is woken up by the interrupt handler when data is available on the socket. 
We discussed in the previous chapter, how the context switching of threads and switches 
between kernel mode to user space are inefficient since it adds latency on every single 
packet read.

For HFT applications that process market data and order responses, millions of such 
packet reads occur throughout the day and hence the delay adds up and causes significant 
performance degradation. Additionally, data is copied from the NIC buffers from kernel 
space to application buffers in user space, so the additional copy is another source of 
latency. A similar copy mechanism exists on outgoing UDP or TCP packets (TCP is 
the most common protocol for HFT applications, but outgoing UDP packets can exist 
depending on how the applications are designed).
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Understanding why kernel bypass is the alternative
The alternative to eliminate the latencies incurred in traditional socket programming, 
which make it a bad fit for HFT, has two aspects: spinning on a CPU core in user space and 
zero copy of incoming and outgoing data. Both require special NICs and accompanying 
Application Programming Interfaces (APIs) that support these features – some 
examples are Solarflare NICs and the OpenOnload/TCPDirect/ef_vi API to support kernel 
bypass, Mellanox NICs and Mellanox Messaging Accelerator (VMA) APIs, and Chelsio 
adapters and WireDirect/TCP Offload Engine (TOE) APIs. Let's look at them in more 
detail in the following sections.

User space spinning
The alternative to the blocking and context switching design is for the calling thread or 
process to spin in user space while constantly polling the UDP and/or TCP sockets that 
are enabled for kernel bypass. This comes at the price of constantly polling and utilizing 
100% of the CPU core. The good news is that polling is strictly in the user space, that 
is, no system calls or kernel time and CPU cores are plentiful in modern HFT trading 
servers, so this is a good trade-off. In this design, the NIC buffer mirrored into user space 
is polled constantly for new packets/data.

Zero copy
After user space spinning, the second part of the optimization eliminates the need to copy 
from the NIC kernel space buffers to the process's user space buffers. This is also part of 
the NIC, and the NIC buffers are just forwarded/duplicated straight into user space as 
soon as packets arrive (or packets are sent out); there is no extra copy step involved. This 
lack of copying is referred to as zero copy in the kernel bypass lingo.

Presenting kernel bypass latencies
UDP read/write times without kernel bypass latencies range between 1.5 to 10 
microseconds, and with kernel bypass, latencies range between 0.5 to 2 microseconds. 
TCP read/write times have a similar performance increase, except a tiny bit slower. Peak 
latencies have an even better performance increase for UDP and TCP read/write. Over 
the course of millions of UDP reads and thousands of TCP reads/writes, the performance 
adds up and makes an enormous difference.
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In this section, we introduced kernel bypass technologies to move NIC reads/writes to 
user space. We also discussed advanced kernel bypass techniques and presented empirical 
evidence of the achievable latency reductions. While single-digit microsecond latency 
reduction might seem small, for HFT applications it makes a big difference. We will dive 
into this in more depth in the Reducing latencies with FPGA section in Chapter 11, High-
Frequency FPGA and Crypto, where we will look at nanosecond-level performance. In 
the next section, we will dive into more details about using memory-mapped files which 
allows us to eliminate/reduce system calls and boost performance for HFT applications.

Learning about memory-mapped files
In this section, we will discuss memory-mapped files, which are a neat abstraction that 
most modern OSs provide and have some benefits in terms of ease of use, ease of sharing 
between threads and/or processes, and performance compared to regular files. Due to 
their improved performance, they are used in HFT ecosystems, which we will discuss in 
the Applications of memory-mapped files section, after we investigate what they are and 
their benefits and drawbacks.

What are memory-mapped files?
A memory-mapped file is a mirror of a portion (or all) of a file on disk that is held in 
virtual memory. It has a byte-for-byte mapping in virtual memory corresponding to a file 
on disk, or a device, or shared memory, or anything that can be referenced through a file 
descriptor in UNIX/Linux-based OSs. Due to the mapping between the physical file and 
the memory space associated with it, it allows applications consisting of multiple threads/
processes to read/modify the file by directly reading/modifying the memory that the file 
is mapped to. Behind the scenes, the OS takes care of committing changes to the memory 
to the file on disk. It updates the memory mapping when the file on disk changes, among 
other tasks. The application(s) themselves do not have to manage any of these tasks.

In C, memory-mapped files are created using the mmap() system call, which lets us 
read and write files on disk by reading and writing memory addresses. The two primary 
modes supported here are private to the process (the MAP_PRIVATE attribute) and shared 
between processes (the MAP_SHARED attribute). In the private mode, changes made to 
the memory map are not written to the disk, but in shared mode, changes made to the 
memory map are eventually committed to disk (not instantaneously, because that would 
be just as inefficient as reading/writing to the file on disk directly).



144     HFT Optimization – Logging, Performance, and Networking

Types of memory-mapped files
There are two types of memory-mapped files:

•	 Persisted memory-mapped files

•	 Non-persisted memory-mapped files

Let's look at each of these in detail in the following sections.

Persisted memory-mapped files
Persisted memory-mapped files should be thought of as memory maps for which the files 
do/will exist on disk. When the application finishes working with the memory map of 
the file, then changes are committed to the actual file on disk – the functionality we have 
been discussing so far. This is a convenient and efficient way to work with large files or for 
applications where some end-of-process/end-of-day data needs to be saved to a file.

Non-persisted memory-mapped files
Non-persisted memory-mapped files are more like temporary files that only exist in 
memory and are not associated with an actual file on disk. So, these are not files at all – 
they are simply memory blocks that look like memory-mapped files, and they are used 
mostly for temporary data storage as well as sharing data using shared memory between 
processes – Inter-Process Communication (IPC). This option is used in cases where 
memory-mapped files are just protocols that two or more processes communicate over 
but the data does not need to be saved/persisted.

Advantages of memory-mapped files
Let's look at some of the advantages of memory-mapped files – most of which are related 
to performance and access latency, which are quite important for HFT applications.

Improving I/O performance
The primary benefit, which should be obvious by now, is improving I/O performance. 
Accessing memory-mapped files is orders of magnitudes faster than a system call to 
read/modify something on disk, which takes an extremely long time compared to an 
operation in the main memory, as we saw in the previous chapter in the Pre-fetching and 
pre-allocating memory, Memory hierarchy, and Inefficiencies with memory access sections. 
Also, since the OS handles reloading/writing files to disks, it can do so efficiently and at 
optimal times (for example, when the system is not too busy with other tasks).
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Understanding random access and lazy loading
Accessing a specific location in a large file on disk is slow because it involves seeking 
operations to find the correct location to read from/write to. However, with memory-
mapped files, this is much faster since applications have direct read/write access to the 
data in the file in memory. Updates are also in-place, that is, they do not need additional 
temporary copies. Seeking a location in memory is fast since when page boundaries are 
crossed, the entire next page is brought into memory (which is slow) but then in-memory 
operations to that page following that are super-efficient.

Lazy loading is another benefit of memory-mapped files where tiny amounts of RAM can 
support large files. This is achieved by loading small page-sized sections into memory as 
data is being accessed/modified. This avoids loading a huge file into memory, which will 
cause other performance issues, such as cache misses and page faults.

Optimized OS-managed page file management
Modern OSs are extremely efficient at memory mapping and paging processes since that 
is the system that also deals with critical virtual memory management tasks – the virtual 
memory manager. For this reason, the OS can manage the memory mapping process very 
efficiently and select optimal page sizes (sizes of memory blocks/chunks), and so on.

Parallel access
Memory-mapped regions allow concurrent read/write access to different sections of the 
file from multiple threads and/or processes. Thus, parallel access is possible in this case.

Disadvantages of memory-mapped files
We saw the concept of cache misses in the previous chapter in the Understanding context 
switches – Expensive tasks in a context switch section. Cache misses are basically when 
code/data that a running process needs is not available in the cache bank and needs to 
be fetched from main memory. Page faults are a similar concept, except here the OS has 
to fetch data from the disk when it is not available in main memory. Page faults are the 
biggest concern with memory-mapped files. This is often the case where memory-mapped 
files are not being accessed sequentially. A page fault makes the thread wait until the I/O 
operation finishes, which slows things down. If address space availability is an issue (for 
instance, in a 32-bit OS), then too many or large memory-mapped files can cause the 
OS to run out of address space and make the page fault situation worse. Due to the extra 
operations and address space overhead described previously, sometimes standard file I/O 
can beat memory-mapped file I/O performance.



146     HFT Optimization – Logging, Performance, and Networking

Applications of memory-mapped files
The most well-known application for memory-mapped files is the process loader that  
uses a memory-mapped file to bring the executable code, modules, data, and other  
things into memory.

Another well-known application for memory-mapped files is sharing memory between 
processes: IPC, as we discussed in the Types of memory-mapped files section under 
Non-persisted memory-mapped files. Memory-mapped files are one of the most popular 
IPC mechanisms to share memory/data between processes. This is used quite heavily in 
HFT applications, often in combination with lock-free queues, which we discussed in the 
previous chapter in the Building a lock-free data structure section. That design is used to 
set up a communication channel between different processes sharing high-throughput 
and latency-sensitive data. This is usually the non-persisted memory-mapped file option. 
Memory-mapped files in HFT applications are also used to persist information between 
runs using the persisted memory-mapped file option. This section covered the concepts, 
benefits, and applications of memory-mapped files that are used in a bunch of places  
in an efficient and performant HFT ecosystem. In the next section, we will transition  
from discussing low-latency communication options between processes on the same 
server/data center to network communication between different servers possibly in 
different locations.

Using cable fiber, hollow fiber, and microwave 
technologies 
Another key (but extremely expensive) area of competition in HFT is that of setting up 
connectivity between data centers sitting in different geographical locations – for example, 
Chicago, New York, London, Frankfurt, and so on. Let's take a look at the options that 
enable this connectivity:

•	 Cable fibers are a standard option – they have high bandwidth and extremely  
low packet losses, and they are slower and more expensive than some of the  
other options.

•	 Hollow fiber is a modern technology that is an improvement on solid cable fibers 
and provides lower latency for signal/data propagation between data centers.

•	 Microwave is another option, but it is often used for very specific purposes. It 
has extremely low bandwidth and suffers from packet losses in certain weather 
conditions and because of interference from other microwave transmissions. 
However, microwaves are the fastest way to transfer information and are cheaper to 
set up and move than the other two options.
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Now that we have introduced the different network technologies that we shall be 
discussing, in the next section, let's look at the evolution of those technologies.

Evolution from cable fiber to hollow fiber  
to microwave
Let's quickly discuss the evolution of cable fiber to hollow fiber and microwave. It is 
important to see how the arms race to achieve ultra-low latencies in HFT drove the 
evolution from cable fiber to hollow fiber to microwave technologies because HFT will 
continue to evolve with technological improvements. Hollow fiber is the next step in the 
evolution of fiber optic cables. Hollow fibers are made of glass and carry beams of light 
that encode the data being transmitted. However, they are not solid like regular cable 
fibers: they are hollow (hence the name) and have parallel air-filled channels (we will see 
why shortly).

Microwave is an old technology, but it suffers from not having a lot of bandwidth  
and losing data during rain/bad weather. Microwave technology was abandoned in  
favor of solid cable fibers due to the reliability and huge bandwidth availability for  
most applications.

However, with the rise of HFT, a lot of participants realized that latency arbitrage 
strategies can rake in billions of dollars by employing microwave networks to transmit 
data a few milliseconds or microseconds faster than solid cable, even though they suffer 
from low bandwidth and experience much more frequent packet losses.

Finally, another advance in the landscape of HFT competition is hollow fiber, which 
still supports the high bandwidth and low packet loss behavior but is slightly faster than 
solid fiber cables. A while back, a company called Spread Networks laid a fiber-optic 
cable line from Chicago to New York, and the transmission latency for the route was 13 
milliseconds. A few years after that, microwave networks were set up on the same route 
and reduced the transmission latency to less than 9 milliseconds.

How hollow fiber works
Hollow fiber technology simply tries to make better use of the fact that light travels 50% 
faster in air than in solid glass. There are some design limitations, however, so in practice, 
sending data through hollow fiber takes about 65% of the time of sending it through a 
standard fiber. As mentioned before, hollow fiber cables are hollow instead of solid, like 
standard fiber cables, and have parallel air-filled channels to allow light to travel through 
air and not glass.
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In HFT, hollow fiber cables are used for brief stretches – several hundred yards at most – 
and are commonly used to connect data centers with nearby communication towers from 
where the rest of the path is connected via microwaves. Using hollow fiber cables results in 
speed-ups of a few hundred to a thousand nanoseconds – not a massive improvement, but 
still big enough to make a significant impact on the profitability of purely latency arbitrage 
trading strategies.

How microwave works
As mentioned before, microwave transmission technology is quite old (dating back to the 
90s) and was abandoned for solid fiber cable transmission (since for most applications, 
that was the correct choice). However, HFT traders have found novel ways to utilize 
microwave transmissions between geographically distributed data centers to save 
microseconds and milliseconds and profit from being able to beat the competition by a 
tiny amount of time.

The reason for the lower latencies is two-fold – first, light travels 50% faster in air than it 
does in solid glass, and second, with microwaves it is possible to beam the signal from one 
location to another in a straight line, whereas with solid fiber cables, that is not possible 
in practice. With solid fiber cables, each time the path turns and deviates from a straight/
optimal path, it introduces delays. In practice, microwave networks use line-of-sight 
transmissions and the sending and receiving microwave dishes must be able to see each 
other. For that reason, over long distances the earth's curvature means additional towers 
are required a few miles apart to relay the signal, and the towers need to be as tall as 
possible to use as few relay hops as possible.

Advantages and disadvantages of microwaves
So far, based on the discussion, it should be becoming obvious where microwave 
transmission has the upper hand on solid/hollow fiber cables and where it might suffer 
from some drawbacks. Let's formalize the advantages and disadvantages of microwave and 
fiber transmission in this section.

Advantages
The most important advantage of microwave transmission that makes it so useful in 
HFT is obviously the speed of transmission. This allows HFT traders to execute a few 
microseconds or milliseconds ahead of their competition and profit from that. Basically, 
being second in this game means losing the competition altogether.
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Disadvantages
One of the disadvantages of microwave transmission is its extremely limited bandwidth. 
The extremely low bandwidth availability means HFT networking architecture and 
strategies need to be designed in such a way as to send only the most important/critical 
data over microwaves as well as engineering techniques to reduce the size of packet 
payloads as much as possible (we will look at this shortly).

The other big issue with microwave transmission is the reliability of the transmission link, 
especially in scenarios where anything that hampers the quality of the signal being sent 
makes it unusable. Anything from mountains, skyscrapers, rain, clouds, planes, and even 
other microwave networks operating around the same frequency can cause the signal to 
be dropped or garbled/corrupted. This leads to extra engineering requirements, such as 
larger dishes, hydrophobic coatings on the dishes, fail-over protocols (often in conjunction 
with a much more reliable transmission method, such as cable fiber), drop/corruption 
detection mechanisms in the network (packet) and HFT application layer, and so on. 

Impact of microwave
Based on the speed of light, the theoretical limit for sending information between 
Carteret, New Jersey and Aurora, Illinois is 3.9 milliseconds. The theoretical limit is 
computed from the shortest straight line distance between Carteret and Aurora and the 
speed of light in a vacuum. Right now, the state-of-the-art among microwave service 
providers is about 3.982 milliseconds. The high-speed fiber-optic network between 
London and Frankfurt takes around 8.3 milliseconds and the microwave transmission 
network is less, 4.6 milliseconds, which means competitors with the microwave network 
will always beat cross-colocation latency arbitrage HFT participants who do not have 
access to the microwave network or do not have the best microwave network.

We are yet to figure out what the future of this space will look like, but there are efforts 
being made to use laser beam military technology to cut this latency down even further. 
This might show up between Britain and Germany or between New York and exchange 
locations around New York. In either case, the competition continues to tighten and HFT 
participants in the cross-colocation HFT latency arbitrage space continue to fight in the 
realm of nanoseconds.

In the next section, we will move on to mechanisms and techniques used for logging and 
statistics computation in HFT systems. Since HFT applications trade in the nanosecond 
and microsecond performance space, it is important to have an extremely robust and 
efficient logging system. Also important is a statistics computation system to gain insights 
into the strategy/system behavior and performance.
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Diving into logging and statistics
Logging (outputting information from the various HFT components in some format and 
using some protocol/transport) and statistics generation (offline or online) on various 
performance data are less glamorous aspects of the HFT business but they are quite 
important, nonetheless. Implemented poorly, they can also bog down the system or 
reduce visibility into the system, so it is important to build a proper infrastructure for that. 
In this section, we will discuss logging and statistics generation from the perspective of 
the HFT ecosystem.

The need for logging in HFT
Logging in most software applications serves to provide the users and/or developers 
insights into the behavior and performance, alerting them to unexpected situations that 
might be a concern/need attention as far as the operation of the applications is concerned. 
For HFT applications, especially where thousands of complex decisions are being made 
each second, complex software components interact with each other, and a lot of money  
is at stake, proper logging and a proper logging infrastructure are extremely important. 
Logs generated by HFT applications vary in severity levels – critical errors, warnings, 
periodic logs, usual performance statistics – and they vary in verbosity as well. The 
less frequent the log types, the more verbose they might be – but this is not necessarily 
required to be true.

The need for online/live statistics computation in HFT
HFT applications execute thousands of instructions each second and make thousands 
of complex decisions related to processing market data, generating trading signals, 
generating trading decisions, and generating order flow, handling all of that every second. 
Also, HFT trading strategies in general do not seek to have a small number of trades on a 
few trading instruments that make a lot of money per trade but instead have an enormous 
number of trades across many trading instruments that make an average of tiny amounts 
of money per trade.
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Given the nature of the HFT trading strategies' behavior/performance, summary 
statistics for various components in the system is an important way to evaluate system 
functionality. These summary statistics can apply to software latency performance 
statistics and statistics on trading signal outputs (per individual trading signal and 
aggregated across different signals and/or trading strategies). Additionally, there are 
statistics pertaining to order flow and/or executions on orders, statistics for trading 
strategy performance (Profit and Loss (PnL)) statistics, trading fee statistics, position 
size statistics, position duration statistics, passive versus aggressive trading, and so on – 
anything that provides insights into the strategies' behavior/performance. Many other 
statistics can be generated continuously in an online computed fashion or in an offline 
fashion (at the end of a trading session).

Problems with logging and live statistics
The fundamental issue with logging and statistics computation with regard to HFT 
applications is that they are extremely slow operations. Logging involves disk I/O at some 
level, which, as we saw in the section on memory hierarchy, is the slowest operation by far.

Offline/online computation of statistics can be expensive due to the nature of the 
computations themselves, which can be complex/expensive. Another reason for the  
slow computation of statistics is that they often involve a rolling window of past 
observations. These properties make both tasks too inefficient to be performed on  
the hot/critical thread.

HFT logging and statistics infrastructure design
Let's discuss the architecture/design of an efficient logging and statistics infrastructure 
that would be suitable for the processes that make up an efficient HFT system.

First, it is best to move the logging and the statistics computation threads or processes  
out of the critical trading thread or process. Then we can control how often the logging 
and stats computing threads are active by varying the sleep times, checking for system 
usage, deciding how real-time we want the logging and stats computation to be, and  
so on – factors that depend on the specific nature and expected utilization of the HFT 
system in question.

We will ideally avoid locks by using lock free-data structures and non-persistent  
memory-mapped files to transfer data from the critical threads to the logging threads, 
avoid context switches on the hot path by pinning the logging and statistics computation 
threads or processes to their own set of isolated CPU cores, and reduce the amount of 
time spent on disk I/O using persistent memory-mapped files and controlling when the 
write to disk occurs.
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This is the overall architecture for the optimized logging and statistics computation 
framework for HFT applications. We saw parts of it in the previous chapter in the 
Applications of lock-free data structures section. However, there are some alternative design 
choices that we have seen in our experience. Instead of flat files, we can use different 
interfaces, such as SQL databases, especially when it comes to recording structured 
datasets for statistical computations. We have also seen the use of UDP- and TCP-based 
reliable multicast publishing-based logging setups to send log records over the network, 
the motivation here being to have them in a single centralized location, publish to trading/
monitoring GUIs, and so on. We do not use kernel bypass for this network traffic since it 
is not that latency sensitive and, overall, this is not the most popular design we have seen.

Measuring performance
No text on HFT optimization would be complete without discussing performance 
measurement. Due to the ultra-low latency nature of HFT applications, performance 
measurement infrastructure is often something that is built early on and maintained 
throughout the evolution of the HFT system. In this section, we will discuss in more  
detail why performance measurement is such a critical aspect, tools and techniques to 
measure performance for HFT systems, and what insights we can glean from the output  
of the measurements.

Motivation for measuring performance
Since HFT applications are incredibly reliant on super low average latency performance 
and low variance on the latency of their components, measuring the performance of  
each of their components on a regular basis is a particularly important task. As changes 
and improvements are made to the various components of an HFT system, there is  
always the possibility of introducing unexpected latency, so not having a robust and 
detailed performance management system can cause such detrimental changes to slip 
under the radar.

The other nuance of measuring performance, especially for HFT applications, is that the 
components of HFT applications themselves operate in the nanosecond and microsecond 
space. The implication is that the performance measurement system itself will have to 
make sure to introduce extremely few additional latencies. This is very important to 
make sure that invoking the performance measurement system does not change the 
performance itself.
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Due to these reasons, performance measuring tools and infrastructure for HFT have the 
following characteristics:

•	 They are very precise in their measurements.

•	 They have extremely low overhead themselves.

•	 They often invoke special CPU instructions for target architectures to be  
very efficient.

•	 They sometimes resort to some non-trivial methods to measure performance such 
as mirroring network traffic and capturing it, inserting fields in outbound traffic to 
link with inbound traffic, and using hardware timestamping at NICs and switches.

One important principle when it comes to approaching HFT application (or any 
application) performance optimization is the 90/10 rule, which states that the program 
spends 90% of its run time in 10% of its code. This heuristic implies that certain 
code blocks/paths are executed very rarely, hence should not really be the target for 
optimizations (unless they are insanely inefficient/slow) and that certain code blocks/
paths are executed very frequently, and these hot paths should be the targets for the 
majority of the optimization efforts. The key to finding these hot paths/critical code 
sections is measuring performance accurately, efficiently, and regularly. In the next 
section, we will cover the available tools to measure and profile Linux-based application 
performance. We will limit the tools to ones available on Linux since it is the most 
common platform for deploying/running HFT applications.

Linux tools for measuring performance
In this section, we will look at some tools/commands available in Linux that can be used 
to measure the performance of an HFT application. They vary widely in various ways:

•	 Ease of use

•	 Accuracy and precision

•	 Granularity of measurement (that is, measuring overall application performance, 
methods in applications, lines of code, instructions, and so on)

•	 Application overhead introduced by the measurement process by which resource 
utilization is tracked – cache, CPU, cache, stack memory, heap memory, and so on 

It is important for you to get familiar with these tools and commands because application 
performance measurement is a key part of HFT system maintenance and improvement. 
The tools and commands are presented next.
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Linux – time
This is a Linux command that requires code changes or compilation/linking changes. 
It can be used to determine the run time of a program, separately counting user time 
and system time, and CPU time and clock time. You can find more information here: 
https://man7.org/linux/man-pages/man1/time.1.html.

GNU Debugger – gdb
This is the GNU Debugger (gdb). While this is not a traditional profiling tool, letting 
an application run and then break periodically and randomly can be used to see where 
the application spends most of its time. The probability of breaking at a specific code 
section is a fraction of the total time spent in that code region. So, performing these steps 
(randomly breaking in gdb) a few times is a good starting point. You can check out this 
link for reference: https://www.sourceware.org/gdb/. 

GNU Profiler – gprof
The GNU Profiler (gprof) uses instrumentation inserted into the application by the 
compiler and runtime sampling. Instrumentation (adding additional code around function 
calls with the purpose of measurement) is used to gather function call information and 
sampling the measurements is used to gather profiling information at runtime. The 
Program Counter (PC) is checked at regular intervals by interrupting the program with 
interrupts to check the time since the last time the PC was probed. This tool outputs 
where the application spends its time and which functions are calling which other 
functions while it is executing. It is similar to callgrind (which we will discuss shortly), 
but it is different in that unlike callgrind, gprof does not do a simulation of the run. 
There are tools to visualize the output of gprof such as VCG tools and KProf. You can 
access gprof here: https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/
html_mono/gprof.html.

Performance analysis tool for Linux – perf
perf is another Linux tool that is used to collect and analyze performance and trace data. 
This can operate on an even lower level than gprof by reading from hardware registers 
and getting an accurate idea of CPU cycles, cache performance, branch prediction, 
memory access, and so on. It uses a similar sampling-based approach to gprof in that 
it polls the program to see what functions are being called. You can refer to this link for 
further reading: https://man7.org/linux/man-pages/man1/perf.1.html.

https://man7.org/linux/man-pages/man1/time.1.html
https://www.sourceware.org/gdb/
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://man7.org/linux/man-pages/man1/perf.1.html


Measuring performance     155

Linux Trace Toolkit: next generation – LTTng
Linux Trace Toolkit: next generation (LTTng) is used for tracing Linux kernels and 
applications to get information regarding which kernel calls and application methods 
are called when an application runs to understand the system, libraries, and application 
performance. You can access it here: https://lttng.org/.

valgrind, cachegrind, and callgrind
valgrind and its suite of tools is a well-rounded set of tools that support the following:

•	 Debugging

•	 Profiling

•	 Detecting memory management and threading bugs

•	 Profiling cache and branch prediction performance (cachegrind)

•	 Collecting call-graphs and data on a number of instructions, correlating them 
with source code, functions callers and callees, frequency of calls, and so on 
(callgrind)

•	 Profile heap usage to try to reduce an application's memory usage/footprint 
(massif)

So, it is an instrumentation framework for everything you might need to debug and 
profile your applications. It acts as a virtual machine. It does not run the compiled 
machine code directly but instead simulates the execution of the application. It also 
has a bunch of visualization tools to analyze the output of the valgrind suite of tools 
(KCachegrind would be one particularly good example of a visualization tool). You can 
access valgrind here: https://valgrind.org/.

Google perftools – Gperftools
This is another set of tools from Google that helps analyze and improve performance, 
and it can work on multi-threaded applications as well. Offerings include a CPU profiler, 
memory leak detector, and heap profiler. You can access it here: https://github.
com/gperftools/gperftools.

In this section, we looked at existing out-of-the-box solutions to measure HFT application 
performance. Next, we will explore custom techniques to instrument HFT code and 
measure performance. These involve adding/enabling additional architecture/OS/kernel 
parameters and adding additional code to the applications.

https://lttng.org/
https://valgrind.org/
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
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Custom techniques for measuring performance
We have seen some Linux tools that can help us profile most applications. It is common 
to add custom instrumentation code into the HFT applications in critical sections of the 
code. We have already discussed logging and statistics computation, and we mentioned 
that the latency performance of the different components/code paths of HFT applications 
is another application for that. Additionally, the data inside the HFT application that gets 
fed to the logging/stats infrastructure is often from custom timestamping/performance-
measurement code.

In this section, let's discuss a few additional techniques to measure HFT application 
performance – how to make the performance measurement setup as consistent as possible 
between runs, C++ specific instrumentation libraries/functions, and finally, Tick-To-
Trade (TTT), which is a standard and important way to measure an HFT system's end-to-
end performance with as much granularity as required.

Getting consistent results on benchmarks
As with any process driven by repeated experiments and accurate readings from the 
experiments, performance measurement of HFT applications needs to be precise and 
consistently repeatable, that is, the experimentation process itself should not introduce too 
much noise/variance. Modern CPU, architecture, and OS features are intended to increase 
performance on higher demand, but they introduce non-determinism and higher variance 
in performance latencies. Non-deterministic performance is when similar input data and 
code paths trigger slightly different performance due to factors outside of the application 
developers' control, such as data in cache, memory, and instruction sets. For the purposes 
of benchmarking HFT application performance, we need to take steps to reduce the 
variance introduced by these features as much as possible (often by turning these 
features off). In summary, when doing benchmarking experiments, we disable potential 
sources of non-deterministic performance. A couple of the major features that can cause 
non-determinism are discussed next.

Intel Turbo Boost
Turbo Boost is a feature specific to Intel processors and architecture that raises CPU 
frequency when under heavy CPU load. While this is a good feature for most applications, 
when profiling/benchmarking extremely low-latency HFT applications, it introduces 
variance in the performance data by turning on and off at various times outside of the 
applications' controls, so it is best to disable it. This is achieved through the Basic Input/
Output System (BIOS), which basically is used to control hardware parameters when 
booting up.
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Hyper threading
Hyper threading allows modern CPU cores to have two threads of simultaneous 
execution inside a single physical core. Another feature that makes total sense for most 
applications except when benchmarking HFT applications' performance. Here some of the 
architecture resources – ALUs, caches, and so on are not replicated exactly as they should 
be. What this means is that one may observe non-deterministic behavior if, say, threads 
randomly get scheduled that steal resources from the process being measured. This is 
another modern feature that needs to be disabled when benchmarking HFT applications, 
which is another configuration option in the BIOS.

CPU power-saving options
When power-saving options are enabled, the kernel/OS can decide if it is better to 
save power and throttle. Disabling this feature is recommended to avoid sub-nominal 
CPU clocking kicking in unpredictably and causing degradation in performance (and 
performance measurements).

CPU isolation and affinity
We have touched upon this in the previous chapter under Techniques to avoid or minimize 
context switches in the Pinning threads to CPU cores section, but this is to make sure 
critical threads are pinned/bound to a specific CPU core and non-critical threads have 
no chance of interrupting those threads and causing context switches. This results in 
significantly greater determinism and lower variance in performance data.

Linux process priority
In Linux, we can change process priority using the nice command (more about the tool 
can be found at https://man7.org/linux/man-pages/man1/nice.1.html ). 
By increasing process priority using the nice command, the process can get more  
CPU time. Additionally, the Linux scheduler prioritizes it above processes with  
normal/lower priority.

https://man7.org/linux/man-pages/man1/nice.1.html
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Address Space Layout Randomization
Address Space Layout Randomization (ASLR) is a security technique to prevent exploits 
based on memory locations of different sections (code, static data, constant data, stack, 
and so on) staying the same across multiple runs. A simple example of such an exploit/
attack would be a malicious virus that steals or corrupts data written to a memory location 
if the memory location stays the same across application executions. The simple solution 
that ASLR adopts to prevent this is to randomly arrange the address space positions 
of key data areas of the process. But this introduces non-determinism and variance in 
performance data, so for the purposes of benchmarking HFT applications, this security 
feature needs to be disabled.

Measurement data statistics
Choosing the correct statistic for the performance data is also a key component. This 
can depend on a lot of factors, but the primary one is the objective of the optimization 
process: are we looking to reduce latency on an average, reduce maximum or minimum 
latency ever incurred, or somewhere in between (averages or percentiles such as 50% 
(median), top 90% latencies, and so on)? Depending on these factors, we might want to 
compute and compare any of the various statistical measures available – mean, median, 
variance, inter-quartile region, min, max, skew of distribution, and so on.

In the next section, we will discuss some additional performance measurement techniques 
specifically for the Linux environment when developing C++ applications, which is the 
optimal language and platform choice for HFT.

C++/Linux specific measurement routines/libraries
In this section, we will discuss some of the libraries/routines that can be used to insert 
instrumentation directly into source code when building HFT applications. Here, 
we will only cover Linux and C/C++ since that is the most common HFT setup, but 
analogous methods exist for most platforms and programming languages. For instance, 
a comprehensive guide to profiling applications running on Windows can be found 
at https://docs.microsoft.com/en-us/visualstudio/profiling/
profiling-feature-tour?view=vs-2022.

gettimeofday
This has been used for a long time in C. It returns the time elapsed since 00:00:00 UTC on 
January 1st, 1970 (often called Epoch time). It returns both seconds and microseconds, 
but not nanoseconds. This is not the timestamping mechanism of choice in modern 
HFT applications C/C++ anymore, since this method invokes system calls and has larger 
overhead than more modern timestamping mechanisms.

https://docs.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour?view=vs-2022
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Time Stamp Counter (TSC) using rdtsc
This is another method that was a high-resolution and low-overhead way to get CPU 
timing information but is no longer really accurate/used with multi-core, multi-CPU, 
and hyper-threaded processor architectures. The chrono library, which we will see next, 
overcomes the limitations mentioned here. rdtsc() is a CPU instruction that reads the 
Time Stamp Counter (TSC) register and returns the number of CPU cycles elapsed since 
reset. This cannot be directly used to extract the current time but can be used to calculate 
how many CPU cycles have elapsed between subsequent calls to rdtsc() and then that 
can be used (using CPU frequency) to compute how many microseconds have elapsed 
between the two calls to rdtsc() between the two locations in the code being measured.

chrono
This is the standard library in C++ used nowadays and it is easy to use and portable, 
has access to a multitude of clocks and resolutions, and needs C++ 11 or later versions. 
Std::chrono::high_resolution_clock from the <chrono> header file 
(available within the chrono library) contains a method called now() for extracting the 
current time using different clock resolutions, the most common of which is the high_
resolution_clock, which provides the highest resolution clock so is the best fit for 
measuring HFT application performance.

End-to-end measurement – Tick-To-Trade (TTT)
We have seen a lot of performance measurement methods where the HFT application is 
profiled in a benchmark lab and/or simulation setting. But the thing that matters with 
performance measurement at the end of the day is how the application will run in a real 
production setting. We use the techniques mentioned in the previous section on C++/
Linux-specific measurement routines/libraries with a combination of lock-free data 
structures, memory-mapped files, and the discussion in the Diving into logging and 
statistics section to build an end-to-end latency measurement system.

We measure the latencies of the various components (hops) in the system on the critical 
path, starting from when the market data update leaves the exchange infrastructure, hits 
the participants' trading server NIC, gets processed by the market data feed handler, 
gets transported to the trading strategy, gets processed in the sub-components inside 
the trading strategy (book building, trading signal updates, execution logic, order 
management, risk checks, and so on), then gets sent over to the order gateway, and finally 
sent out on the NIC to the exchange. This is referred to as Tick-To-Trade (TTT), where 
the tick is the incoming market data update and the trade is the outgoing order request to 
the exchange.
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Here is a diagram that shows an example TTT measurement system. This assumes all 
trading decisions are made based on market data updates, which is not necessarily true 
but was assumed here for the sake of simplicity. The differences between the timestamps (
𝑡𝑡1  to 𝑡𝑡10 ) taken on various hops on the critical path can be used to derive the latencies of 
the various components of the system.

Figure 7.2 – Hops on the round trip path from the exchange to a participant and back to the exchange

The following table describes the different timestamps on the round trip path in greater 
detail. This outlines the different hopes when a single market data update generated from 
the exchange reaches a market participant and gets processed. On the path from the 
participant to the exchange, it describes the different hops for the order sent in reaction to 
the market update.
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Figure 7.3 – Details of timestamps captured at different hops on the round trip path between the 
exchange and a market participant

This section described a typical end-to-end measurement system for an HFT ecosystem. 
We also investigated the different timestamps captured on the hops between market 
participants and the exchange in detail.
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Summary
We discussed the implementation details of various computer science constructs, such as 
memory access mechanisms, network traffic access from the application layer, disk I/O, 
network transmission methods, and performance measurement tools and techniques.

We also discussed the implications that these features have on HFT applications and 
found that, often, the default behavior that works best for most applications is not the 
optimal setup for HFT applications.

Finally, we discussed approaches, tools, techniques, and optimizations for optimal HFT 
ecosystem performance. We hope this chapter provided insights into advanced HFT 
optimization techniques and their impact on the HFT ecosystem's performance. 

You should have a good idea of all the important optimization considerations in an HFT 
ecosystem. We also discussed in great detail the different performance measurement and 
optimization tools and techniques you can use to profile the performance of your HFT 
system and maintain and improve on it.

In the next chapter, we will dive into modern C++ programming language details, 
specifically with the goal of building super-low-latency HFT systems that use all the power 
that modern C++ has to offer.



This part will give you a hands-on experience by giving you the guidelines to implement 
a high-frequency trading (HFT) system in programming languages. We will start our 
journey with the most used language in HFT: C++. Then, we will continue with Java  
and its virtual machine. We will explain how Python can use HFT libraries. We will 
conclude this book by describing how field programmable gate arrays (FPGAs)  
reduce the tick-to-trade latency and by talking about HFT in cryptocurrencies.

This part comprises the following chapters:

•	 Chapter 8, C++ – The Quest for Microsecond Latency

•	 Chapter 9, Java and JVM for Low-Latency Systems

•	 Chapter 10, Python – Interpreted but Open to High Performance

•	 Chapter 11, High-Frequency FPGA and Crypto

Part 3:  
Implementation of 

a High-Frequency 
Trading System





8
C++ – The Quest 
for Microsecond 

Latency
In this chapter, we discuss some features and constructs available in C++. One disclaimer 
before we start is that covering a lot/most of what modern C++ (C++ 11/14/17) offers  
is beyond the scope of a single chapter (and often a single book), so we will focus on  
a few aspects that are important to developing, maintaining, and improving multi-
threaded and ultra-low runtime latency HFT applications. Before starting to dig into  
this chapter, we recommend you to be fluent in C++. We recommend a couple of books 
to serve this purpose such as Programming: Principles and Practice Using C++ written by 
Bjarne Stroustrup.

We will start out by looking into modern C++ memory models, which specify how  
shared memory interactions work in a multi-threaded environment, then look at 
static analysis, which is an important aspect of application development, testing, 
and maintenance. Then we will dive into how to optimize applications for runtime 
performance, before finally dedicating an entire section to templates, which are super 
important for top-tier HFT ecosystems.
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In this chapter, we will cover the following topics:

•	 C++ memory model

•	 Removing runtime decisions

•	 Dynamic memory allocation

•	 Template for reducing runtime

•	 Static analysis

By the end of this chapter, you will be capable of optimizing your C++ code for HFT 
systems. Finally, we will review an industry use case. We will talk about the technology 
that we used to build a Foreign Exchange (FX) high-frequency hedge fund.

Important Note
In order to guide you through all the optimizations, you can refer to the 
following list of icons that represent a group of optimizations lowering the 
latency by a specific number of microseconds:

: Lower than 20 microseconds

: Lower than 5 microseconds

: Lower than 500 nanoseconds

You will find these icons in the headings of this chapter. 

Let's first start by talking about the C++ memory model.

C++ 14/17 memory model 
In this section, we will explore the definition and specification of the memory model for 
modern C++ (11, 14, and 17). We will investigate what it is, why it is needed for multi-
threaded applications, and the important principles of the C++ memory model.

What is a memory model?
A memory model, a.k.a. a memory consistency model, specifies the allowed and expected 
behavior of multi-threaded applications that interact with shared memory. The memory 
model is the foundation of the concurrency semantics of shared memory systems. If there 
are two concurrent programs, one writing to and another reading from a shared memory 
space, the memory model defines the set of values that a read operation is allowed to 
return for any combination of reads and writes. 
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Implementation of the memory models (C++ or otherwise) must be constrained by the 
rules specified by the memory models, because if the outcome cannot be inferred from 
the order of reads and writes, then it is not an unambiguous memory model. Another 
way to think about the restrictions enforced by a memory model is that they define which 
instruction reordering is allowed by the compiler, the processor, and the architecture (the 
memory). Most research on memory models tries to maximize freedom for compiler, 
processor, and architecture optimizations.

Even if the optimizations become more and more complicated and complex, they must 
keep the semantics of what the developer wants to do. They should never break the 
constraints of the memory model.

At this point, let's formally define a few terms.

•	 Source code order

This is the order of instructions and memory operations that the programmer has 
specified in the programming language of their choice. This is the code or set of 
instructions as it exists before the compiler has compiled the code.

•	 Program order

This is the order of instructions and memory operations in the machine code that 
will be executed on the CPU after the compilation of the source code. The order of 
instructions and/or memory operations can be different here since, as mentioned 
previously, compilers will try to optimize and reorder instructions as part of the 
optimization process.

•	 Execution order

This is the order of actual execution of instructions and memory references as 
executed on the CPU. This is different from the compiled program order because 
at this stage, the CPU and the architecture in general are allowed to reorder the 
instructions in the machine code generated by the compiler. The optimizations here 
depend on the memory model of the specific CPU and its architecture.

We will now discuss the need for a memory model.

The need for a memory model
Let's discuss why we need a well-defined memory model at all. The fundamental reason 
comes down to the fact that the code we wrote is not exactly the code that is output 
after the compilation process and also not the code that is run on the hardware. Modern 
compilers and CPUs are allowed to execute instructions out of order to maximize 
performance and resource utilization. 
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In a single-threaded environment, this does not matter but in a multi-threaded 
environment running over a multi-core (multi-processor) architecture, different threads 
trying to read and write to a shared memory location causes race conditions and can 
lead to undefined and unexpected behavior in the presence of instruction reordering. 
As we saw in Chapter 4, HFT System Foundations – From Hardware to OS, scheduling 
and context switching are non-deterministic. They can be controlled but when context 
switching occurs at extremely specific places, it is possible that the optimizations cause 
the instructions to be executed and the memory accesses to occur in an order that causes 
results to be different depending on the sequence of events.

Having a memory model gives optimizing compilers a high degree of freedom when 
applying optimizations. The memory model dictates the synchronization barriers that use 
synchronization primitives (mutexes, locks, synchronized blocks, barriers, and so on), 
which we saw in the previous Chapter 7, HFT Optimization – Logging, Performance, and 
Networking. When shared variables change, the change needs to be made visible to other 
threads when a synchronization barrier is reached; that is, the reordering cannot break 
this invariant. We will now describe in detail how the C++ memory model works.

The C++ 11 memory model and its rules
Before we investigate the details of the C++ 11 memory model, let's recap the previous 
two sections. A memory model is meant to do the following:

•	 Specify the possible outcomes of the interactions of threads through  
shared memory.

•	 Check whether a program has well-defined behavior.

•	 Specify constraints for compiler code generation.

The C++ memory model has minimal guarantees about memory access semantics. 
As expected, there is a limit on the acceptable effects of compiler processing and 
optimizations (optimizations that reorder instructions and memory accesses) and CPU/
architecture that executes instructions and memory accesses out of order. The guarantees 
about memory access semantics in the C++ memory model itself are quite weak – weaker 
than you would expect and weaker than what is typically implemented in practice. The 
memory model in practice mirrors the rules the system imposes, such as total store 
ordering (TSO) for x86_64 or a relaxed ordering with ARM.

For the C++ memory model, there are three rules with regard to transferring data 
between main memory (shared) and memory per-thread. We will discuss those three 
rules as follows. We will address memory ordering along with Sequential Consistency in 
the next section.
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Atomicity
We have seen this before in Chapter 6, HFT Optimization – Architecture and Operating 
System, in the Lock-free data structures section. It needs to be clear which operations are 
indivisible when working with global/static/shared variables/data structures. 

Let's introduce some constructs available from C++ 11 onward to support atomicity that 
can be generalized to different types of objects (templates) and support atomic loads and 
stores. We will quickly introduce the memory ordering support that C++ 11 provides 
and will take a closer look at it later in the Memory ordering section under C++ memory 
ordering principles.

std::lock_guard
std::lock_guard is a simple mutex wrapper that uses the principle of resource 
acquisition is initialization (RAII) for owning a mutex within the scoped block. It tries 
to take ownership of the mutex as soon as it is created and the scope in which it was 
created is finished, the lock_guard destructor is called, which releases the mutex. For 
convenience C++ 11 provides the std::atomic<T> template class to support atomic 
loads and stores for objects of type T.

std::atomic
The generic class std::atomic<T> we mentioned before to support atomic operations 
on generic objects supports the following atomic operations (there are more but we list the 
most important ones):

•	 load(std::memory_order order), which loads and returns the current 
value but does so atomically

•	 store(T value, std::memory_order order), which saves the current 
value atomically

•	 exchange(T value, std::memory_order order), which does a similar 
job as store but performs a read-modify-write operation

For integral and pointer types it also provides the following operations:

•	 fetch_add(T arg, std::memory_order order), which takes an 
additional argument arg and atomically sets the value to the arithmetic addition of 
the value and arg

•	 fetch_sub(T arg, std::memory_order order), which is like fetch_
add except it subtracts instead of adding
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And exclusively for integral types, it provides the following additional logical operations:

•	 fetch_and(T arg, std::memory_order order), which is like fetch_
add except it performs the bitwise AND operation.

•	 fetch_or(T arg, std::memory_order order), which is like fetch_
and except it performs the bitwise OR operation.

•	 fetch_xor(T arg, std::memory_order order), which is like fetch_
and except it performs the bitwise XOR operation.

The default value for the std::memory_order order parameter is std::memory_
order_seq_cst (Sequential Consistency). There are other values that can be specified 
here instead of Sequential Consistency to define a weaker memory model. The different 
options and their effects will be discussed in the Memory ordering section of C++ memory 
model principles.

Properties of atomic operations
The properties of atomic operations are as follows:

•	 Operations can be performed concurrently from multiple threads without risking 
undefined behavior.

•	 Atomic load sees either the initial value of a variable or the value written to it via an 
atomic store.

•	 Atomic stores for the same object are ordered identically in all threads.

Let's look at the next rule.

Visibility
We briefly touched upon visibility in the prior section, where we mentioned that when 
there are read and write operations happening on shared data, the effects of one thread 
writing to the variable needs to be made visible to threads reading from it at the boundary 
of the synchronization barrier.

Let's discuss the rules with regard to visibility of changes made by one thread to  
another thread. Changes made by one thread are visible to other threads under the 
following conditions:

•	 The writing thread releases the synchronization lock, and the reading thread 
acquires it after that. Releasing the lock flushes all writes and acquiring the lock 
loads or reloads the values.
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•	 For atomic variables, values written to it are flushed immediately before the next 
memory operation on the writer's side, but readers must call a load instruction 
before each access.

•	 When a writing thread terminates, all written variables are flushed, so threads that 
have synchronized with this thread's termination (join) will see the correct values 
written by this thread.

The following are some additional items to be cautious of with regard to visibility:

•	 When there are long stretches of code that use no synchronization with other 
dependent threads, the threads can be quite out of sync with the values of shared 
data members.

•	 Loops that wait or check against values written by other threads are wrong unless 
they use atomic or synchronization.

•	 Visibility failures and safety violations in the absence of correct synchronization are 
not guaranteed or required, merely a possibility. It might not happen in practice, 
only extremely rarely, or only on certain architectures or due to some specific 
external factors. Overall, it is almost impossible to be a 100% confident that there 
are no visibility-based errors.

We will now discuss instruction ordering.

Ordering
Since memory accesses are reordered by the compiler or CPU, the memory model  
needs to define when the effects of the assignment operations can appear out of order  
to a given thread:

•	 Sequential Consistency is a C++ machine memory model that requires that all 
instructions from all threads appear like they are being executed in an order 
consistent with the program or source code order on each thread.

•	 Memory ordering is another concept we will explore shortly in some detail. It 
describes the sequence of memory access instructions. The term can be used to 
refer to memory access ordering during compile time or runtime. Memory ordering 
allows the compiler and CPU to reorder memory operations, so they are out of 
order and that leads to optimal utilization of the different layers of the memory 
hierarchy (registers, caches, main memory, and so on) as well maximizing the use of 
the data transfer architecture and its bandwidth.
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Let's learn about the principles of the C++ memory model and memory order concepts in 
the following section.

C++ memory model principles
In this section, we will look at the different options available to us in the modern C++ 
memory model paradigm with regard to accessing and writing to shared data structures in 
a multi-threaded and multi-processing environment.

Memory order concepts
The memory model is important to understand when using threads in HFTs since we may 
modify the semantics of a piece of software if we are not using the model accurately. We 
start by introducing some notations and concepts in the following list, and then dive into 
the different control options:

•	 Relaxed memory order: In the default system, memory operations are ordered 
quite loosely, and the CPU has a lot of leeway to reorder them. Compilers can 
likewise arrange the instructions they output in whatever sequence they choose, 
as long as it doesn't impair the program's apparent execution. Memory operations 
executed on the same memory region by the same thread are not reordered 
according to the modification order.

•	 Acquire/Release: All load-acquire operations reading the stored value synchronize 
with a store-release action. Any activities in the releasing thread that occur before 
the store-release occur before all operations in the acquiring thread that occur after 
the load-acquire.

•	 Consume: Consume is Acquire/Release's lighter variant. If X depends on the value 
loaded, all operations in the releasing thread before the store-release happen before 
an operation X in the consuming thread.

We looked at some features of memory ordering in this section. We will now focus on 
defining memory ordering in C++.

Memory ordering
Table 1 provides a quick introduction to the different memory ordering tags, which we 
will explore in greater detail in the subsequent sections.
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Figure 8.1 – C++ memory model

These memory order tags allow four different memory ordering modes: Sequential 
Consistency, Relaxed and Release-Acquire, and the similar Release-Consume. Let's explore 
those next.

Sequential Consistency
Sequential Consistency (SC) is the principle that states that all threads involved in 
a multi-threaded application agree on the order in which memory operations have 
occurred or will occur. Another requirement is that the order is consistent with the order 
of operations in the source program. The technique to achieve this in modern C++ is to 
declare the shared variables as C++ 11 atomic types with memory ordering constraints. 
The result of any execution should be the same as if the operations of all processors were 
executed in sequential order.

Additionally, operations executed on each processor also follow program order. SC in a 
multi-threaded and multi-processor environment means that all threads are on the same 
page with regard to the order in which memory operations occurred and that this is 
consistent each time the program is run. 

One way to achieve this in, say, Java is to declare shared variables as volatile and the  
C++ 11 equivalent would be to declare shared variables as atomic types with memory 
ordering constraints. When this is done, the compiler takes care of enforcing these 
ordering constraints by introducing additional instructions behind the scenes like  
memory fences (please check the Fences section in this chapter). The default memory  
order for atomic operations is sequential consistency, which is the std::memory_
order_seq_cst operation. 
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Note
Although this mode is easy to understand, it will lead to the maximum 
performance penalty because it prevents compiler optimizations that might try 
to reorder operations past the atomic operations.

Relaxed Ordering
Relaxed Ordering is the opposite of SC, activated using the std::memory_order_
relaxed tag. This mode of atomic operation will impose no restrictions on memory 
operations. However, the operation itself is still atomic.

Release-Acquire Ordering
In the Release-Acquire Ordering design, atomic store or write operations, a.k.a. store-
release, use std::memory_order_release, and atomic load or read operations, a.k.a. 
load-acquire, use std::memory_order_acquire. The compiler is not allowed to 
move store operations after a store-release operation, and it is not allowed to move load 
operations before load-acquire operations. When the load-acquire operation sees values 
written by a store-release operation, the compiler makes sure that all the operations before 
the store-release happen before the load operations after the load-acquire.

Release-Consume Ordering
Release-Consume Ordering is like Release-Acquire Ordering but here the atomic load uses 
std::memory_order_consume and becomes an atomic load-consume operation. 
The behavior of this mode is the same as Release-Acquire except that the load operations 
that come after the load-consume operation and depend on the value loaded by the load-
consume operation are ordered/sorted correctly.

We have seen that atomic objects have store and load methods for atomically writing to 
and reading from shared data and the default mode is Sequential Consistency. Under 
the hood, the compiler adds additional instructions to create memory fences after each 
store. We also discussed that adding a lot of memory fences creates inefficient code by 
preventing compiler optimizations. These fences are also not necessary for publication 
safety, in which case the question becomes how do we write code that generates minimal 
fencing operations (and hence much more efficient code)?
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Here is what the compiler knows when it comes to memory access and operations on 
shared data:

•	 All memory operations in each thread and what they do, as well as any  
data dependencies

•	 Which memory locations are shared and which variables are mutable variables, that 
is, could change asynchronously due to memory operations in another thread.

So, then the solution to minimizing memory fences is to simply tell the compiler 
which operations on mutable and shared locations can be reordered and which cannot. 
Independent memory operations can be performed in random order with no implications 
as before.

Fences
Fences in programming are a sort of barrier instructions. They force the processor to 
enforce a specific ordering on memory operations. These operations will be modified 
based on the fences. Memory operations can be ordered between threads using fences. 
A fence can be either Release or Acquire. If the Acquire fence comes before the Release 
fence, then the stores take place before the loads following the acquire fence. We employ 
other synchronization primitives that allow atomic operations to ensure that the release 
fence comes before the acquire fence.

Like operations on atomic objects, the atomic_thread_fence operation has a 
memory_order parameter, which can take on the following values:

•	 If memory_order is memory_order_relaxed, this has no effects.

•	 If memory_order is memory_order_acquire or memory_order_consume, 
then it is an acquire fence.

•	 If memory_order is memory_order_release, then it is a release fence.

•	 If memory_order is memory_order_acq_rel, then it is both an acquire fence 
and a release fence.

•	 If memory_order is memory_order_seq_cst, then it is a sequentially 
consistent acquire and release fence.

We reviewed the order of the operation for fences. We will now finish off this section by 
talking about the changes in C++20.
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C++ 20 memory model changes
There are some minor changes in C++ 20 as far as memory models are concerned. 
Some issues were discovered after the formalization of the C++ 11 memory model. 
The old model was defined with the objective that different regimes of memory access 
could be implemented on common architectures using costly hardware instructions. 
Specifically, memory_order_acquire and memory_order_release were supposed 
to be implementable on ARM and Power CPU architectures using lightweight fence 
instructions. Unfortunately, it turns out that they cannot, and this is also true for NVIDIA 
GPUs, although those were not really targeted a decade ago.

So that fundamentally leaves us with two options:

•	 Implement the standard as is. This is possible but will suffer from performance 
degradation, which goes against the purpose of why we have these memory models 
in the first place, and would degrade the efficiency of C++.

•	 Fix the standard to better handle the new architecture without messing up the 
concepts and ideas of memory models.

Option 2 being the more sensible choice was finally chosen by the C++ standards 
committee as the solution

In this section about memory models, we reviewed the different models. Since HFT 
processes run concurrently, it is important to know how the memory model works in 
the context of multi-threaded software. As part of our journey toward achieving peak 
performance for HFTs, we now need to learn how to reduce the execution time by 
removing the decision which could happen during runtime. That's going to be the topic 
for our next section.

Removing runtime decisions 
As C++ is a compiled language, it can optimize the source code during the compilation 
process and generate machine code with as much code and data resolved at compile time. 
In this section, we will look at the motivation for removing runtime decisions, consider 
some C++ constructs that are resolved at runtime, and see how an ultra-low latency HFT 
application tries to minimize or substitute runtime decisions.
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Motivation for removing runtime decisions
The more code that lies on the critical path and can be resolved at compile time (instead 
of being resolved at runtime), the better the application performance – a key element in 
optimizing HFT applications. Here we discuss the advantages obtained by the compiler, 
CPUs, and memory architecture in terms of performance when the application has 
minimal runtime decisions and most of the code can be resolved at compile time.

Compiler optimizations
If the compiler can resolve the source and constant/static data at compile time, it opens 
up the possibility of a lot of compile-time optimization. Resolving at compile time means 
it knows at compile time what each object type is, which method/functions/subroutines 
are called at each invocation, how much memory is required and where when executing 
each method, and so on. Compile-time resolution allows the compiler to apply a lot of 
optimizations, including the following:

•	 Inlining: This is where the compiler replaces the function call with the body of  
the called function.

•	 Dead code removal: The compiler removes code that doesn't affect the  
program result.

•	 Instruction reordering: This allows us to break dependencies and run a code faster.

•	 Replacing compile time macros: These are very similar to inlining except technically, 
uses of macros are replaced by the actual code for the macros in the pre-processing 
step that precedes the compiler optimization steps.

This leads to the generation of machine code that is massively faster than if the compiler 
was unable to optimize due to a failure of compile-time resolution.

CPU and architecture optimizations 
Not only is the machine code generated by the compiler significantly more optimized, 
but it works much better with the prefetching and branch prediction optimizations at the 
CPU, pipeline, and architecture hardware levels.

Due to the CPU pipeline, modern CPUs prefetch instructions and data that will be 
required to be accessed and executed shortly. This works significantly better when the 
data and instructions are known at compile time – think about inlined versus non-inlined 
methods. If the objects that will be accessed and/or the methods that will be needed are 
not known at compile time (because they're resolved at runtime), this process is hard to 
do correctly and often ends up prefetching the incorrect data and instructions from caches 
or main memory.
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Another prefetching-related optimization is the branch prediction optimization, where  
the CPUs try to predict which branch will be taken (conditional switches, function  
calls, and so on). This is harder in the presence of dynamic resolution, as is the case  
when C++ applications use virtual functions, Run Time Type Identification (RTTI),  
and so on. This is because it is either impossible to predict the branches that will be  
taken since the type of object might not be known, and/or the method body might not  
be known or is just super difficult to get right most of the time. When the branch 
prediction is incorrect, it incurs a penalty since the data and code that was prefetched 
now needs to be evicted from the CPU pipeline, caches, memory, and so on. And then the 
correct data and code needs to be fetched at the call. We recommend reading the book 
Computer Architecture: A Quantitative Approach if you would like to know more about the 
theory of branch prediction.

Virtual functions
Virtual functions are key to one of C++'s particularly important features – dynamic 
polymorphism. This is an excellent feature that reduces code duplication, lends semantics 
to control and data flow program design, and lets us have generic interfaces that can 
be overridden and customized for specific object types. It is an important principle 
in Object-Oriented Programming (OOP) design, but unfortunately it comes with a 
runtime performance penalty. Due to the runtime resolution of virtual functions and 
the associated runtime performance penalty, HFT applications are typically extremely 
careful with regard to when and where virtual functions are used and try to eliminate 
unnecessary virtual functions. This section explores C++ virtual function performance in 
more detail. 

How they work
Let's discuss how virtual functions are implemented from the compiler and operating 
system's perspective. When the compiler is compiling the source code, it knows which 
functions are virtual and their addresses. For each object that is created that has at least 
one virtual function, a table (called the virtual table, or vtable for short) is created 
that holds pointers to the virtual functions the type has. Objects of types that have virtual 
functions have a pointer referred to as a vptr that points to the virtual table for that 
object. When virtual functions are overridden by a derived class, the vtable entries for 
those overridden virtual functions point to the derived class implementation. At runtime, 
calling virtual functions requires a few additional steps over non-virtual functions: the 
runtime accesses the vptr, finds the vtable for that corresponding object type, figures 
out the address of the function it needs to call, and performs the virtual function call.
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Performance penalties 
In the previous section, we described how virtual functions are set up and how they are 
called. Since the runtime needs to access the vtable, virtual function calls have a little bit 
more overhead than non-virtual functions, but in this section, we will explore the biggest 
performance penalties that are incurred in the presence of virtual functions.

Compiler optimizations
One big source of performance penalty when using virtual functions is that it prevents 
compiler optimizations. To recap, the address of the virtual function depends on the 
type of the object, which is often not known till runtime. What that means is that the 
address and body of the virtual function that needs to be called are also not known till 
runtime. So, the compiler has no chance of inlining the function. That would save a few 
instructions for the call to the function and the return from it. Additionally, inlining 
would eliminate unused parameters and variables, often then eliminating operations 
before the call to the function. This becomes significantly worse when there are multiple 
objects with different virtual functions being called in a loop. In that case not only is 
inlining the calls not possible, but unrolling the loop is also impossible, as is exploiting the 
hardware for performance. We will discuss this in another section shortly, but this also 
kills the CPU pipeline and cache performance.

Prefetching and branch prediction
We mentioned before how the hardware tries to prefetch data and code that might be 
accessed and executed shortly. It also tries to predict which branches might be taken 
(a.k.a. speculative execution) and tries to prefetch the data and code from the branch that 
might be taken. In the case of objects with virtual functions and virtual function calls, it 
does not know the jump destination till the actual object type and virtual function address 
are resolved at runtime. 

By this time, it has already prefetched instructions based on the branch it predicted and 
started executing those instructions already. If it happened to have predicted the branch 
correctly then it is all good, but if not then all the work done from the prefetch has to be 
stopped and reversed, and the correct instructions must now be fetched and executed after 
the fetch finishes. 

This makes the program slower on branch mispredictions due to not only having to fetch 
the instructions once the correct addresses are resolved, but also since it must undo the 
effect of incorrect instructions being prefetched and executed. Also, the shorter the virtual 
function, the greater the slowdown observed since the overhead of branch misprediction 
becomes a larger fraction of total function call time.
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Cache evictions and performance
We discussed the design and performance benefits derived from having different cache 
layers in the Memory hierarchy section in Chapter 6, HFT Optimization – Architecture and 
Operating System. We have also mentioned that L1 and L2 caches have instruction caches 
that cache frequently and recently used instructions. There is another cache that holds the 
comparison results for branch instructions – it is used to predict the destination branch 
from the previous executions of the same instructions and speed up computations by 
prefetching instructions and speculatively executing them.

Cache performance is best when the required instructions and branch results are in the 
appropriate caches, but virtual functions (especially large virtual functions with different 
implementations for each object type) are problematic here. This is especially bad if, say, 
there is a container of base class pointers and each one of them is pointing to potentially 
different object types or is randomly arranged (that is, the container is not sorted by type). 
This is bad because most calls to the virtual functions will result in calls to a different 
function in a potentially random memory location. 

So, if the functions are large enough, each call to a virtual function will cause the cache 
to evict the data and instructions from the previous function call and load data and 
instructions for the new one. This is on top of the branch prediction penalties being  
paid (quite frequently). Virtual functions may cause a lot of cache evictions and cache 
misses and significantly hurt performance. But this is not always the case since if we  
have a function invocation through a vtable, and we perform this in a tight loop,  
the CPU will cover up the latency from accessing the vtable through the power 
of branch prediction and cache locality. It is always important to analyze where the 
performance issues of code occur.
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Figure 8.2 describes this situation better. Let's assume the following class structure where 
a single base class with a virtual function gets derived by different implementations that 
override the virtual function.

Figure 8.2 – Virtual function: class structure with a single base class and multiple derivations

Let's say there is a container of base class pointers that point to different derived class 
implementations that are potentially in different memory locations. If the code tries to 
loop through this container and call the virtual function, it will lead to a lot of cache 
evictions, cache misses, and overall terrible runtime performance. This is on top of the 
compiler not being able to unroll the loop and the branch misprediction penalties.
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Figure 8.3 shows how the vtable can impact the performance by having different 
memory locations for the different virtual functions.

Figure 8.3 – Container of base pointers pointing to different derived objects at random  
memory locations

Since we saw that using virtual functions can be detrimental to performance, we will now 
talk about a method to remove them: the curiously recurring template pattern (CRTP).

Curiously recurring template pattern (CRTP)
We often oppose the CRTP method with virtual functions. We should first say that the 
virtual functions discover interface implementation at runtime, which is not the case 
for the CRTP. The CRTP is an example of static polymorphism as opposed to virtual 
functions, which are examples of dynamic polymorphism. The CRTP is a compile-time 
construct, which means it has no runtime overhead. It is used with a base class exposing 
an interface and the derived classes implementing that interface. As we saw in this section, 
invoking a virtual function via a base class reference frequently necessitates a call via a 
pointer to function, incurring indirection costs and preventing inlining.

In summary, we learned how to remove the latency that might be introduced by virtual 
functions. The use of virtual functions needs to be done very carefully. The CRTP is a way 
to avoid using virtual functions by opting for static polymorphism.

We will now introduce another type of latency that could cause slowdowns at runtime.
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Run Time Type Identification (RTTI) 
The previous section on virtual functions outlined the impact of having objects and 
function calls that are resolved at runtime on performance. Most of the performance 
penalties outlined in that section apply to all object types resolved at runtime. In C++, 
Run Time Type Identification (RTTI) is the term used to describe the feature by which 
the types of objects are checked at runtime for objects where the types are not known at 
compile time.

What is RTTI?
C++'s RTTI is the mechanism that tracks and extracts information about an object's 
type when required at runtime. This only makes sense for classes that have at least one 
virtual function, meaning there is a possibility of base class pointers pointing to different 
types of derived class objects at runtime. So RTTI allows you to find the type of an object 
dynamically at runtime from the available pointer or reference of the base class type. 
This was introduced into C++ when exceptions and exception handling were added to 
C++ because knowing the runtime type of an object was critical to exception handling. 
Thus, RTTI allows applications to explicitly check for runtime types instead of relying on 
dynamic polymorphism, which implicitly deals with runtime type resolution.

C++ provides the dynamic_cast built-in operator for safely downcasting base 
class objects in an inheritance hierarchy. When downcasting pointers, it returns a 
valid pointer of the converted type on success and a nullptr on failure. dynamic_
cast<Derived*>(base_ptr) attempts to convert the value of base_ptr to type 
Derived*. When downcasting references, it returns a valid reference of the converted 
type on success and raises an exception on failure. We will cover this in the Exceptions 
impeding performance section later in this chapter.

Another C++ built-in operator typeid is used fetch the runtime information of an object 
and returns it as a std::type_info object. The std::type_info object contains 
information about the type, type name, check equality between two object types, and so 
on. For polymorphic types, the typeid operator provides additional information about 
the derived types. typeid(*base_ptr) == typeid(Derived) returns true if 
base_ptr points to an object of type Derived.
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Performance penalties
Let's discuss the performance penalties associated with the C++ RTTI mechanism.

•	 There is some additional space allocated per class and object, which is not a  
huge deal, but can become an issue if there are a lot of objects, and causes  
reduced cache performance.

•	 The typeid call can be quite slow as it usually involves fetching type information 
that is not often accessed.

•	 The dynamic_cast operation can be extremely slow. It involves fetching type 
information and checking for casting rules, which can lead to exceptions that are 
extremely expensive themselves (we will discuss that shortly).

In the following section, let's understand dynamic memory allocation.

Dynamic memory allocation 
Allocation in the heap (or dynamic allocation) is common in programming. We need 
dynamic allocation for the flexibility to allocate at runtime. The operating system 
implements the dynamic memory management structures, algorithms, and routines. 
All dynamically allocated memory goes to the heap section of main memory. The OS 
maintains a few linked lists of memory blocks, primarily the free list to track contiguous 
blocks of free/unallocated memory and the allocated list to track blocks that have been 
allocated to the applications. On new memory allocation requests (malloc()/new), it 
traverses the free list to find a block free enough, then updates the free list (by removing 
that block) and adds it to the allocated list and then returns the memory block to the 
program. On memory deallocation requests (free()/delete), it removes the freed 
block from the allocated list and moves it back to the free list.

Runtime performance penalty
Let's recap the performance penalties associated with dynamic memory management  
that makes it unfit for use on the critical/hot path, especially for super latency-sensitive 
HFT applications.
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Heap tracking overhead
Serving dynamic memory allocation/deallocation requests requires traversing lists of 
free memory blocks, which is not as efficient as using already available CPU registers or 
pushing additional variables onto a stack. So, the heap tracking mechanism adds some 
overhead and often the latencies are non-deterministic depending on the contents of the 
free list, how fragmented the memory is, the memory block size requested, and so on. 
In summary, metadata created by heap memory management can get quite involved to 
manage, and a lot of operations are performed just to free that block of memory.

Heap fragmentation
Over the course of many allocations and deallocations of varying sizes, the heap memory 
can get fragmented, meaning there are many small memory blocks with holes in between, 
which makes the free list long and can make it difficult and time-consuming, and in the 
worst case, impossible to service a memory allocation request that is larger than any of 
the free blocks, even though there is plenty of free memory available across the different 
free blocks. The OS employs some heap de-fragmentation techniques to manage these 
potential issues, but again that comes at a performance cost. 

Cache performance
Dynamically allocated memory blocks can often be randomly distributed in heap 
memory. This can lead to significant cache performance degradation, higher cache 
evictions, and cache misses, among others. Application developers should be conscious 
of this and try to request dynamic memory in a cache-friendly way – often by requesting 
a large block of contiguous memory and then managing the objects in that memory to 
improve cache performance.

Alternatives/solutions for dynamic memory allocation
Not all parts of an HFT system are time critical. So, we need to be concerned about the 
speed of dynamic allocation and deallocation only on the time-critical hot paths.

Most high-performance dynamic memory allocation techniques come down to moving 
dynamic memory allocations off the critical path either by pre-allocating huge blocks  
of memory or managing them in the application themselves (Memory pools). Memory 
pools are basically data structures where an application allocates a huge chunk of  
memory at startup and then manages the use of this memory in critical code paths. 
The advantage here is that this allows the application to use very specialized allocation 
and deallocation techniques that maximize performance for the specific use case the 
applications are built for.
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Another technique is to thoroughly inspect dynamic memory management uses and 
minimize them as much as possible, often at the cost of some assumptions that might 
make the application less flexible or generic.

We can also redefine the C++ new and delete operators, although this is not the 
recommended approach – it is better to have custom new and delete methods (my_
new() and my_delete() methods would be examples) and call them explicitly. We can 
also talk about placement new, which gives us most of the semantic benefits of invoking 
new / delete, but with control over where the operator places the object. The downside 
is that you have to manage the memory life cycle separately. 

Using constexpr efficiently 
constexpr in C++ is used to make functions run at compile time – not as a guarantee, 
but it provides the possibility. There are a few restrictions to constexpr functions – 
they must not use static or thread_local variables, exception handling, or goto 
statements, and all variables must be of literal types and must be initialized – in short, 
everything the compiler needs to resolve the entire function body at compile time.

As we mentioned, declaring a constexpr function does not mean that it must run at 
compile time. It means that the function has the potential to be run at compile time. A 
constexpr function must be executed at compile time if used in a constant expression – 
for instance, if the result of the function call is assigned to a constexpr variable, then it 
must be evaluated at compile time.

The benefits of constexpr functions are along the same lines as has been discussed so 
far. Allowing the compiler to resolve and evaluate the function at compile time means no 
runtime costs for evaluating that function.

Exceptions impeding performance 
Exceptions are the modern C++ mechanism for error handling and seek to improve upon 
the traditional error-code and if/else statement-based error handling from C. In this 
section, we will investigate what advantages they bring, what drawbacks and performance 
penalties they impose, and why that is suboptimal for HFT applications.
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Why use exceptions?
Let's discuss the reasons for and benefits of using C++ exceptions for error handling:

•	 Using exceptions for error handling makes the source code simpler, cleaner, and 
better at handling errors. It is a more elegant solution to a long-nested list of 
if-else statements that grow over time and lead to spaghetti code, require tests 
for each scenario, and so on. Overall, requiring handling for each error code (and 
associated tests) leads to slower development.

•	 There is some code that cannot be done elegantly or cleanly without exceptions. 
The classic example is an error in a constructor – since it returns no value, how do 
we report the error? The elegant solution is to throw an exception and that serves 
as the basis for the Resource Acquisition Is Initialization (RAII) principle in 
modern C++ design. The alternative would be to set an error flag that needs to be 
checked each time an object is created after the constructor returns, which is ugly 
and requires a lot more code to check each time any object is created. Similar ideas 
apply even to regular functions, where you would have to return an error code or set 
a global variable. Returning error codes works but every time we add a new failure 
case, it requires updating code in a bunch of locations and leads to the if-else 
spaghetti code mentioned before. Setting global variables comes with its own set 
of issues – the variable must be checked after the function returns, would take 
on different values for different failures, is hard to maintain, and fails in a multi-
threaded application.

•	 Exceptions are difficult to ignore, unlike return error codes, which often get ignored 
if application developers are not careful. Failure to catch an exception leads to 
program termination.

•	 Exceptions propagate automatically over method boundaries – that is, they can be 
caught and re-thrown up the caller stack.

We now know why exceptions should be used from the software engineering point of 
view. Next, we will explain what the performance impact is.

Drawbacks and performance penalties
Let's discuss some complexities, drawbacks, and performance penalties related to the use 
of C++ exceptions for error handling:

•	 Exception handling takes discipline and practice, especially for developers used to 
a more traditional error-code, if-else statement-driven type of error handling. 
So, as with any other programming construct, it needs good developers and careful 
consideration during application design.
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•	 As far as performance is concerned, the good thing with C++ exceptions is that 
on the path where exceptions are not raised, there is no additional cost. However, 
when exceptions are thrown, it has an extremely prohibitive cost compared to, say, a 
function call and requires thousands of CPU cycles. 

For HFT, if the applications are designed carefully so that exceptions are raised 
only for the rarest and most critical errors where it is unsafe to continue normally 
anyway, then the additional performance penalty is not an issue. However, if 
exceptions are treated lightly and raised as part of the normal functioning of the 
algorithm, then that can lead to major performance issues and what was initially 
thought to be rare might end up being performed quite frequently, leading to major 
performance degradation.

To continue with the runtime decision impacting performance, we will now talk about 
templates whose goal is to actually replace any runtime decision by generating multiple 
specialized versions of code.

Templates reducing the runtime 
In this section, we will continue our discussion on removing or minimizing runtime 
decisions on the critical or hot path by introducing another important C++ feature. We 
will discuss what templates are, the motivation for using them, their advantages and 
disadvantages, and their performance relative to the alternatives.

What are templates?
Templates are the C++ mechanism to implement generic functions and classes. Generic 
programming is when generic types are used as arguments in algorithms and classes for 
compatibility with different data types. This eliminates code duplication and the need 
to repeatedly write similar or shared code that is independent of data type. Templates 
not only work with different data types, but based on what different types are needed 
at compile time, the source code for the classes and methods for those data types is 
generated automatically at compile time, just as with C macros. Unlike macros, however, 
the compiler can check for types instead of blindly substituting as with macros.

There are a few different types of templates:

•	 Function templates: Function templates are like normal C++ functions, except with 
a key difference. Normal functions work only with the defined data types inside the 
function, whereas function templates are designed to make them independent of 
data types, so they can work with any data type.
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•	 Class templates: Class templates are also like regular classes, except they have 
members of one or more generic types passed as template parameters. These  
class templates can be used to store and manage any type of data. Instead of  
creating a new class each time for a different type, we define a generic class template 
that can work with most data types. This helps with code reusability, runs faster,  
and is more efficient.

•	 Variadic templates: This is another important template type and applies to both 
functions and classes. It supports a variable number of arguments, as opposed to 
non-variadic templates, which support only a fixed number of arguments. Variadic 
templates are usually used to create functional, list-processing constructs with 
template metaprogramming. 

We will now talk about another advanced template-related technique,  
template specialization.

Template specialization 
So far, we have been discussing the idea that a single template class or function can 
handle all data types. But it is also possible to have customized behavior based on some 
specific data types, which is known as template specialization. Template specializations are 
mechanisms by which we can customize function, class, and variadic templates for specific 
types. When the compiler encounters a template instantiation with specific data types, it 
creates a template instance for that type or set of types. If a template specialization exists, 
then the compiler uses that specialized version by matching the passed-in parameters with 
the data types specified. If it cannot match it to a template specialization, then it uses the 
non-specialized template to create an instance.

Why use templates?
Let's discuss the motivation behind using C++ templates to reduce latency at runtime.

Generic programming
The main advantage of using templates is obviously generic programming and producing 
code that is efficient, reusable, and extensible. One particularly good implementation of 
the generic programming paradigm using templates is the Standard Template Library 
(STL). This supports a wide range of data containers, algorithms, iterators, functors, and so 
on that are generic and operate on all data types.
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Compile-time substitution
The substitution takes place during compile time and only the class or function bodies 
needed in the program are generated – that is, only the data types for which the template 
has been used in the application produce an instance of this template class at compile 
time. Knowing the parameters at compile time also makes template classes significantly 
more type-safe compared to runtime-resolved objects or functions.

Development cost, time, and lines of code (LOC)
Since we can implement a class or a function a single time that works with all data types, 
it cuts down on development effort, time, and source code complexity. It also makes 
debugging easy because there is less code, and it is contained in a single class or function.

Better than C macros and void pointers
C used preprocessor macros and void pointers to support some form of generic 
programming. But templates are a much better solution in each case as they are 
significantly more readable, type-safe, and less error prone. Macros are also always 
expanded inline, but with templates, the compiler has the choice to expand inline only 
when appropriate, which is useful for preventing code bloat. Macros are also clunky and 
hard to write due to the need to fit onto a single logical line of code, but templates appear 
as regular functions in their implementation.

Compile-time polymorphism
This is one of the most important applications at least for HFT applications (on top 
of everything else that has been mentioned here). We discussed in detail how virtual 
functions and dynamic polymorphism have significant performance penalties. Templates 
and the generic compile-time polymorphism they offer are often used to eliminate virtual 
inheritance and dynamic polymorphism as much as possible. By moving the code 
resolution and construction to compile time instead of runtime, and more importantly 
allowing compiler, CPU, and architecture optimizations to kick in, the performance is 
improved significantly.
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Template metaprogramming
This is a more advanced use of C++ templates and is often either not understood well 
or is abused (by converting existing code constructs to use template metaprogramming 
unnecessarily and prematurely). Template metaprogramming gives us the ability to write 
code that is expanded at compile time to yield the actual machine code that will be used at 
runtime, essentially using templates to pre-compute a results table that can be referenced 
later. Expression templates are another similar advanced use of templates that are used 
to evaluate mathematical expressions at compile time to produce more efficient code 
executed at runtime.

Disadvantages of templates
Now let's look at some of the disadvantages and drawbacks of using templates.

Compiler support
Historically, a lot of compilers have had poor support for templates and can lead to 
reduced code portability. Also, it is not clear what compilers should do when they detect 
template errors, which can increase development time when using templates. Some 
compilers still do not support nesting of templates.

Header only
Templates are header only, which means all the code sits in the header files and none in 
any compiled libraries. When changes are made, it requires a complete rebuild of all pieces 
of the project. Also, there is no way to hide code implementation information since it is all 
exposed in the header file.

Increased compilation times
As mentioned before, templates reside entirely in headers and cannot be compiled into 
a library; they are linked during the application compilation and linking process. The 
advantage we gain from compiled libraries is that when a change is made, only the 
components that are affected need to be rebuilt. However, with templates that is not 
true, so each time changes are made, all the templated code has to be rebuilt. This leads 
to increased compilation times and as application complexity grows and template usage 
increases, this can go up signif﻿icantly and become a problem. However, this is manageable 
and a non-issue.
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Difficult to understand
Templates confuse a lot of developers (advanced C++ programmers included) because 
the rules around their use are complex. Issues such as name resolution in templates, 
template specialization matching, and template partial ordering can be confusing to 
understand and implement correctly. In general, generic programming is a different 
programming paradigm and requires time, effort, and practice to get used to – it does not 
come naturally if you are used to imperative programming in C++ (which is what 90% of 
C++ programmers use regularly). Overall, templates have a lot of advantages including 
development and debugging speed, but it takes a while to get to that point as there is quite 
a learning curve to understand templates properly.

Tough to debug
Debugging code that has a lot of templates can be difficult. Since the compiler replaces 
the template instantiation and calls with the substituted implementation, it is difficult for 
the debugger to find the actual code at runtime. This is similar in nature to how it can be 
difficult to debug inlined methods at runtime since the source code does not match what 
the debugger sees exactly. Error messages are extremely verbose and very confusing and 
time-consuming to understand. Even most modern compilers produce large, unhelpful, 
and confusing error messages.

Code bloat
Templates are expanded at the source code level and compiled into the source code. The 
compiler generates additional code for each template type or instance. If we have a lot of 
templated classes and functions or a lot of different data types that generate instances, the 
code generated by the compiler can grow quite large. This is known as code bloat, which 
also contributes to increased compilation times. The more subtle issue that hurts runtime 
performance from over-templated code bases is that since the size of the application itself 
is so large, it can have poor cache performance since there is a greater chance of cache 
evictions, misses, and so on.

Performance of templates 
Fundamentally, the runtime performance of templates is as efficient and low latency as 
possible since it moves away from runtime object resolution and function calls to compile-
time resolution. As mentioned before, this opens up a world of compiler optimization 
opportunities, such as inlining (among many others), and when executed, works much 
better with CPU and architecture optimizations such as prefetching and branch prediction 
to yield particularly superior performance.
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It's important to avoid using the template and virtual keywords in the same class 
declaration. When a class template is used for the first time, it creates a copy of all member 
functions (applied to that new type). Having virtual functions means that even the vtable 
and RTTI will be duplicated, leading to additional code bloat (on top of what templates 
already cause). 

Standard Template Library (STL)
Let's explore the C++ STL, which has become quite common among recent C++ 
applications. There are also some variants and libraries that operate similarly to the STL 
but improve upon some issues and add some functionalities.

What is the STL?
The STL is a very widely used library that provides containers and algorithms using 
templates for all data types. The STL is a repository of template classes that implement 
commonly used algorithms and data structures and work well with user-defined types as 
well as built-in types, and its algorithms are container independent. They are implemented 
as compile-time polymorphism, not runtime polymorphism.

Commonly used containers
Let's explore the most popular and commonly used C++ STL containers and when they 
are used:

•	 vector: This is the default go-to for a lot of applications, has the simplest data 
structure (C-array-style contiguous memory layout), and provides random access.

•	 deque: deque implements a double linked list and has better performance than 
a vector when elements are inserted and removed from the beginning or the end. 
deque is also efficient with memory and usually uses only as much memory as 
needed based on the number of elements. Accessing random elements is slower 
since it involves traversing the list and walking over potentially random memory 
locations (poor cache performance).

•	 list: list is like deque in that it is also implemented as a linked list and has 
similar benefits and drawbacks as deque. The difference here is that list does 
not invalidate iterators that refer to elements when elements are added or removed, 
unlike vector and deque.
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•	 set, unordered_set, and multiset: These are associative containers that 
are used to track whether an element exists in the container or not. Associative 
containers are basically ones that are designed specifically to support quick and easy 
storage and retrieval of values referred to by keys. unordered_set uses hashes on 
the elements to perform lookup in amortized constant time but have no ordering. 
Amortized constant time lookup means under normal conditions, it takes constant 
time to perform the operation regardless of the size of the container. set and 
multiset on the order hand have keys that are ordered/sorted. multiset and 
set are identical except the former allows multiple elements with the same value to 
be saved.

•	 unordered_map and map, and unordered_multimap and multimap: These 
are also associative containers as discussed in the previous point, except they track 
key-value pairs. unordered_map and map save single key-value pairs, with the 
difference being that the former has no ordering on keys and the latter is ordered 
by key values. Unordered_multimap and multimap are like unordered_map 
and map respectively, except they allow multiple values per key.

Performance at runtime
Let's look at the performance of the STL at runtime:

•	 The STL, being a templated library, has particularly good runtime performance 
compared to C-style solutions or dynamic polymorphism-based solutions. Another 
way to squeeze performance from the STL is to optimize the user-defined structures 
to work exactly as we need them in the context of the HFT application. 

•	 Using the STL effectively to build low-latency HFT applications requires the 
developers to understand the working of the STL properly and design programs 
carefully. Often developers misuse the STL and without understanding the 
computational complexity involved, they blame the library.

•	 Another problem with the STL is that many calls to STL library functions allocate 
memory internally, and without being careful to build and pass allocators to the 
STL containers, non-deterministic performance can result, especially for HFT 
applications (if they use the default dynamic memory allocators).

In this section, we studied data structures that can help to reduce latency because they 
are already optimized for performance. In this next section, we will learn how to improve 
performance by doing static analysis.
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Static analysis
In this section, we will look at the development and testing techniques of static analysis. 
This is a set of tools and techniques to aid in the software development/testing/
maintenance life cycle. It applies to all software application development processes in 
general, but especially to HFT applications where it is important to make changes quickly 
(adapting to changing market conditions and inefficiencies is key to being profitable) but 
very carefully without breaking existing expected functionality (bugs/errors/mistakes can 
lead to significant monetary losses).

What is C++ static analysis?
Static code analysis means debugging software applications by examining the code and 
using tools to automatically detect errors without actually executing the application or 
providing inputs. This can also be thought of as a code review-style debugging process 
that examines the code and tries to check the code structure and coding standards. 
Having automated tools and processes in place that can do this means we can make 
significantly more thorough checks for vulnerabilities while validating the code than a 
team of developers could. The algorithms and techniques used to analyze the source code 
and automatically spit out errors and warnings are similar in spirit to compiler warnings, 
except taken a few steps forward to find issues that dynamic testing at runtime would have 
revealed. There has been a good amount of progress with static analysis tools, from basic 
syntax checkers to something that can find even subtle bugs.

Static analysis aims to find software development issues such as programming errors, 
coding guideline violations, syntax violations, buffer overflow type issues, and security 
vulnerabilities, among others.

Let's explain why we need static analysis.

The need for static analysis
The motivation behind static analysis is to find errors and issues explained previously that 
dynamic analysis (unit tests/test environments/simulations that seek to uncover errors 
when the program is executed) does not find. Thus static analysis can uncover an issue 
that might have caused a major problem down the road when the system encounters 
data and scenarios that were not encountered during dynamic testing, triggering a failure 
(potentially a huge failure). Note that static analysis is just the first step in a large list of 
tools and practices to enforce software quality control.
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In addition to static analysis, dynamic analysis relies on setting up enough test scenarios 
and feeding enough input and data to hopefully cover all the use cases for the application. 
Some coding errors might not surface during dynamic analysis (since we did not think 
of them when writing or carrying out the unit tests). These are the defects that dynamic 
analysis would miss, and the hope is that static analysis would find them.

Types of static analysis
One way of classifying types of static analysis based on the errors they aim to find is  
as follows:

•	 Control flow analysis: Here, the focus is on the caller-callee relationships and 
the flow of the control in the calling structure, such as process, thread, method, 
function, subroutine, instructions, and so on.

•	 Data flow analysis: Here, the focus is on the input, intermediate, and output data – 
the structure, the validation of types, and correct and expected operation.

•	 Failure analysis: This tries to understand faults and failures in different components 
(that do not fall into the first two categories).

•	 Interface analysis: This aims to make sure the components fit in with the overall 
pipeline – that they implement interfaces comprehensively and correctly. In HFT, 
this means a trading strategy process is correctly implemented with all the interfaces 
it needs to operate correctly and optimally in simulations and live trading.

Another way to break down static analysis types is as follows:

•	 Formal: The goal here is to answer the question, is the code correct?

•	 Cosmetic: The question here is, does the code look consistent? Does it align with 
the coding standards to the required degree?

•	 Design: The question here is, based on established firm-wide standards, have 
the components (such as class structures, method sizes, and organization) been 
designed correctly?

•	 Error checking: This is self-explanatory and focuses on faults, failures, and  
code violations.

•	 Predictive: This is more advanced, but the goal is to predict how the application will 
behave when executed, preparing for dynamic analysis.

In the following section, we will give a walkthrough of static analysis.
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Steps in static analysis
The goal of static analysis is to automate it so that it is easy, fast, and thorough when 
applied to large code bases. Hence the process itself needs to be simple and algorithmic 
enough to be automated. Once the source code is ready or semi-ready from the 
developer's perspective, a static code analyzer runs through the code and flags compilation 
issues, issues with coding standards, code or data flow errors, design warnings, and so on. 
False positives are common, so the output of the static code analyzer is analyzed manually 
(by the developers) and once all real (true positive) issues are fixed, it is run through the 
static code analyzer again and then progresses to the dynamic analysis phase.

Static analysis is nowhere near perfect – it produces false positives and misses issues 
as well – but it is a good orthogonal debugging and troubleshooting tool that can save 
developers and code reviewers time and thus yield a more efficient work environment.

Benefits and drawbacks of static analysis
Let's look at the benefits and drawbacks of static analysis. The benefits have been discussed 
before, so we simply formalize and list them in this section. You can also likely guess what 
some of the drawbacks might be, but we will formally discuss them here as well.

Benefits
We present the list of the benefits of static analysis:

•	 Standardized and uniform code: Static analyzer tools started out as linters, so they 
are extremely good at flagging when new code does not meet coding guidelines and 
design standards. This yields a uniform code base that complies with established 
(firm-wide or industry-wide) coding standards and design patterns.

•	 Speed: Manual code reviews are extremely time consuming for the entire team of 
developers. Automated static analysis can help eliminate a lot of the issues before 
the code goes into code review. Additionally, it finds these issues early on, when 
errors are always easier and faster to fix. Overall, this leads to higher development, 
review, and maintenance speed across the entire software development life cycle for 
the entire team.

•	 Depth: We have mentioned this before, but building unit tests or running 
dynamic analysis such that they cover all edge cases and all code execution paths is 
downright impossible. Static code analyzers do much better in these cases as they 
can check for bugs and errors that are non-trivial or deep.
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•	 Accuracy: Another obvious advantage of having an automated static analysis 
approach is that it is extremely accurate where manual code reviews and dynamic 
analysis cannot be. Accuracy helps with both thoroughness and quality.

•	 Offline: In most real-world applications (especially HFT applications), there are 
many moving pieces, so dynamic analysis in a simulated, test, or lab environment 
requires a lot of setup and resources. For HFT, this means different processes and 
components (feed handlers, order gateways, simulated exchanges, and loggers), 
along with network, IPC, and disk resources. That can be painful, expensive, and 
time consuming. Static code analysis on the other hand is performed offline in the 
absence of all these moving pieces so it is easy, cheap, and quick.

We described in detail what the benefits of static analysis are, so we will now talk about  
its weaknesses.

Drawbacks
The drawbacks of static analysis are as follows:

•	 Understanding semantics/developer intent is difficult

Consider the following code:
int area(int l, int w) {

    return l + w;

}

A static analyzer here can detect that for some combination of l and w int values, 
their sum will yield an overflow, but it cannot determine that the function is 
incorrect to compute area.

•	 Coding rules are complex

A lot of coding rules are too complex for a static analyzer to statically enforce or 
detect. They might depend on external documentation, be subjective, depend on the 
firm or the application, and so on.

•	 False positives

We mentioned this before: false-positive detections can occur, and waste  
developers' time.

•	 Static analysis is not free or instantaneous

Like the compilation process, it takes time to run a static analyzer on the entire 
application. The larger and more complex the code base is, the longer it takes to run.
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•	 Static analysis can never replace dynamic analysis

Despite their utility, static analyzers can never guarantee what will happen when the 
application is executed, so static analysis can supplement but never replace dynamic 
analysis, unit testing, simulations, or testbeds.

•	 System and third-party libraries

These often throw off static analyzers since the source might not be easily available 
or accessible.

We have seen the benefits and weaknesses of static analysis, so we will now consider the 
tools used to perform this kind of analysis.

Tools for static analysis
Let's quickly introduce some of the best and well known static code analyzers available for 
C and C++:

•	 Klocwork by Perforce

Klocwork is one of the best C++ static code analyzers out there. It works well with 
large code bases, has an enormous number of checkers, allows the customization 
of checkers, supports differential analysis (to help analysis times when only a small 
amount of code in a large code base has changed), and integrates with many IDEs 
and CI/CD tools.

•	 Cppcheck

Cppcheck is a free, open source, cross-platform static code analyzer for C  
and C++.

•	 CppDepend by CoderGears

CppDepend is a commercial C++ static code analyzer. Its strengths are in analyzing 
and visualizing the code base architecture (dependencies, control, and data flow 
layers). It has a dependency graph feature and monitoring capabilities to report 
differences between builds. It also supports rule checker customization.

•	 Parasoft

Parasoft has a commercial set of testing tools for C and C++ featuring a static 
code analyzer and supporting dynamic code analysis, unit tests, code coverage, 
and runtime analysis. It has a large, rich set of techniques and rules for static code 
analysis. It also lets you manage the analysis results in an organized manner, thus 
offering a comprehensive set of tools for the software development process.
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•	 PVS Studio

This is another commercial tool that supports a lot of programming languages, C 
and C++ included. It detects non-trivial bugs, integrates with popular CI tools, and 
is well documented.

•	 Clang Static Analyzer

The Clang C and C++ compiler comes with a static analyzer that can be used to find 
bugs using path-sensitive analysis.

Finding a single recipe that works for all aspects of an HFT system is impossible. Learning 
how to analyze performance and run static analysis helps you to avoid the biggest 
mistakes we can make when coding in C++. By removing the biggest issues our code can 
have, we can focus on things that are critical for performance.

By combining static analysis and the runtime optimizations we talked about, such as using 
a proper memory model and reducing the number of function calls, we will reach an 
acceptable level of performance for an HFT system.

Use case - Building an FX high-frequency 
trading system
A company needs an HFT system capable of sending an order within 20 microseconds. To 
do this, the company can follow this approach:

•	 Choose a multi-process architecture over a multi-core architecture.

•	 Ensure each process is pinned to a specific core to reduce context switches.

•	 Have processes communicating over a circular buffer (lock-free data structure) in 
shared memory.

•	 Design the network stack using Solarflare OpenOnload for network acceleration.

•	 Increase the page size to reduce the number of TLB cache misses.

•	 Disable hyperthreading to get more control over the concurrency execution of  
the processes.

•	 Use the CRTP to reduce the number of virtual functions.

•	 Remove runtime decisions by using templated data structures.

•	 Pre-allocate data structures to avoid any allocation on the critical path.

•	 Send fake orders to keep caches hot and allow an order to go out at the last moment. 
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In any trading system, the number of orders is way lower than the amount of market data 
received. The critical path from getting market data to sending an order is exercised very 
infrequently. The cache will be overtaken by non-critical path data and instructions. That's 
why it is very important to run a dummy path to send orders through the entire system 
to keep the data cache and instruction cache primed. This will also keep the branch 
predictors hot.

The main idea of all these optimizations is to reduce the number of costly operations. 
Removing function calls, using lock-free data structures, and reducing the number of 
context switches are a part of this strategy.

Additionally, any decision taken at runtime is costly. That's why templated functions 
and inlining will be part of the common code in any HFT system. The most costly 
operations are those involving networking communications. Using an end-to-end kernel 
bypass such as Solarflare optimizes the network latency within the trading system. By 
using these optimizations, this company could achieve 20 microseconds for the tick-to-
trade. The latency distribution is very important to measure. We need to be sure that 20 
microseconds is the latency upper bound. We should never consider the average values 
because it is difficult to assess high latency with this value.

In HFTs, some strategies are very profitable when a lot of trades occur. If most of the  
time a trading system works as expected, there is no guarantee that the system will  
always perform well. When a trading system receives a lot of data, if it is not built 
correctly, the maximum latency can be 10 times more than the average. We should keep 
in mind that any optimization is not guaranteed to be faster if we have not measured it 
ourselves in production.

Summary
In this chapter, we covered a lot of modern C++ 14, 17, and 20 features for multi-threaded 
and ultra-low latency applications that deal with shared memory interactions. We also 
covered static analysis for application development. Finally, we discussed runtime 
performance optimization techniques that move as much decision, code evaluation, and 
code branching away from runtime into compile time as possible. The contents of this 
chapter address the major design and development decisions and techniques critical to the 
development and performance of C++ HFT applications.

We also saw how to build an HFT system for a small hedge fund specialized in FX. In the 
next chapter, we will learn about the usage of Java in an ultra-low-latency system such as 
an HFT system.





9
Java and JVM 

for Low-Latency 
Systems

When people think about high-frequency trading (HFT), Java does not often come to 
mind. The Java virtual machine (JVM) warm-up, the fact that it is running on a virtual 
machine, and the infamous garbage collector have been big deterrents for programmers. 
However, if you smartly understand those limitations and code, Java can be used in a 
low-latency environment. You will then be able to benefit from all the advantages that 
come with Java:

•	 A very active and deep offering of free third-party libraries.

•	 Write it once, and compile and run it everywhere.

•	 Greater stability, avoiding the infamous segmentation fault due to bad  
memory management.

In this chapter, you will learn how to tune Java for HFT. The performance at runtime is 
largely based on the performance of the JVM. We will explain in depth how to optimize 
this critical component. 
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We will cover the following topics:

•	 Garbage collection

•	 JVM warm-up

•	 Measuring performance in Java

•	 Java threading

•	 High-performance data structures

•	 Logging and Database (DB) access

Important Note
In order to guide you through all the optimizations, you can refer to the 
following list of icons that represent a group of optimizations lowering the 
latency by a specific number of microseconds:

: Lower than 20 microseconds

: Lower than 5 microseconds

: Lower than 500 nanoseconds

You will find these icons in the headings of this chapter. 

Before getting into the optimization, we would like to remind you how Java works. In the 
next section, we will describe the basics of Java.

Introducing the basics of Java
Java was created by Sun Microsystems in 1991. The first public version was released 5 
years later. The main purpose of Java was to be portable and highly performant in internet 
applications. Unlike C++, Java is platform independent. The JVM ensures any architecture 
and operating system's portability.
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Figure 9.1 shows the compilation chain for Java. We can observe that the Java  
compiler doesn't produce an executable but a bytecode. JVM will run this bytecode  
to run the software.

Figure 9.1 – Java compilation chain

We recommend reading the Packt book Java Programming for Beginners, written by 
Mark Lassof, to learn the characteristics of this language in detail. In this chapter, we will 
talk about the factors that will affect the performance of HFT. As we described for C++, 
one critical component is the memory management structure. Unlike C++, where the 
developer must handle memory manually, Java has a garbage collector (GC). The main 
purpose of the GC is to free objects (memory segments) from the heap when these objects 
are not used anymore. 

Figure 9.2 describes how the memory is divided into different functional parts. The heap 
area is created when the JVM starts. To improve the data structures, objects at runtime 
are added to the heap area. In the section on the GC, we will see how to resize the heap to 
improve the performance at runtime. Like the heap, the method area is created at startup 
and stores class structures and methods.

Figure 9.2 – JVM memory area parts
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When we create a thread, the JVM stack is used. This part of memory is used to store data 
temporarily. Native stack and PC registers are also created when the JVM starts but will 
not be a critical component for performance in HFT.

The component that is critical for performance is the GC. JVM triggers the garbage 
collection to automatically deallocate the memory of objects that are not used anymore  
in the heap.

Figure 9.3 represents the organization of the Java heap memory. The garbage collection 
will manage the object allocation on this part of the memory.

Figure 9.3 – JVM heap memory model

The two main parts to remember for HFT are Eden and old memory. When we create new 
objects, they go to the Eden part, while the objects remaining for the longest time will stay 
in the old memory. Allocating and deallocating objects takes time; that's why the garbage 
collection will be the main performance component in HFT.

We will now talk about garbage collection.
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Reducing the impact of the GC 

When Java was released in 1996, one of the big promises was the end of the dreadful 
segFault error, so familiar to all C/C++ developers. Java decided to remove all the 
objects and pointer life cycle out of the hands of the developer and entrust the logic to the 
JVM. This gave birth to the GC.

There is not a single type of garbage collection. There have been multiple versions 
developed; all have different specifications to offer either low-latency pauses, 
predictability, or high throughput.

One of the biggest parts of tuning Java is to find the most appropriate GC for your 
application as well as the best parameters for it. The main GC algorithms are as follows:

•	 Serial GC: Recommended for the small dataset or single-threaded with no pause 
time requirements.

•	 Parallel/throughput collector: Recommended for peak performance and not pause 
time requirements.

•	 Concurrent Mark Sweep collector: Recommended for minimum GC pause time.

•	 G1 GC: Recommended for minimum GC pause time.

•	 Shenandoah collector: Improved version of G1 GC, where pause time is no more 
proportional to the heap size. You can find more information here: https://
wiki.openjdk.java.net/display/shenandoah.

•	 Z GC (Experimental): Recommended for high response time, very large heap, 
and small pause time. You can find more information here: https://wiki.
openjdk.java.net/display/zgc/Main.

•	 Epsilon GC (Experimental): For the bold and brave, this is known as Java's  
no-op GC. It has the lowest number of GC interventions possible with no memory 
reclamation. It is recommended for people that understand the complete life cycle 
of objects created in their application.

It is beyond the scope of this book to exactly recommend a specific GC. If you would 
like to have more information, we recommend Packt's Garbage Collection Algorithms 
by Dmitry Soshnikov (https://www.packtpub.com/product/garbage-
collection-algorithms/9781801074629). In a high-frequency environment, the 
less often and the less time we spend in the GC state, the better. That is why we will prefer 
using concurrent algorithms such as Concurrent Mark Sweep, G1, Shenandoah, and Z. 

https://wiki.openjdk.java.net/display/shenandoah
https://wiki.openjdk.java.net/display/shenandoah
https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/zgc/Main
https://www.packtpub.com/product/garbage-collection-algorithms/9781801074629
https://www.packtpub.com/product/garbage-collection-algorithms/9781801074629
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The only way to choose the best GC for your needs is to try all of them. It is important 
to measure performance to establish which algorithms will work the best. When testing 
performance, we want to enable the different GCs and run in an environment as close 
as the one running in production. Each GC algorithm also comes with a multitude of 
options that will allow you to control and tweak its behavior. There are no options that 
are better than the others; you will need to experiment to find the ones that have the best 
results for your application. We will find the right balance between the frequency and 
the duration of the GC. Do you prefer GC for 2 ms every 30 minutes or 4 ms every 60 
minutes? These are questions you will need to answer. For a more in-depth look at the 
different GC algorithms and options, you can refer to the latest documentation on the 
Oracle website: https://docs.oracle.com/en/java/javase/18/gctuning/
index.html.

We will now look at how we can limit the GC events as much as we can.

What to do to keep GC events low and fast
In HFT, we want to limit the effect of the GC. When a GC is triggered, it is difficult to keep 
control of the execution. The performance can be impacted whenever the GC is triggered. 
Therefore, it is important to keep the number of GC interventions low, and when the 
intervention is inevitable, we need to make it fast. The best way to reduce the number 
and the duration of the GC depends on the coding style. The more objects you create, 
the more pressure you are going to put on the GC. It is important to keep in mind that 
the creation of an object on the critical path may end up in the removal of this object at 
some point. The key is to pre-allocate objects that will live during the entire execution of 
the software to avoid allocation/deallocation triggering the work of the GC. Your primary 
goal is to avoid the frequent creation of short-lived objects.

You first need to identify the hot paths (functions or pieces of code that are constantly 
called at a very high frequency) in your program; once identified, you need to look for  
all the object creations in that path. If you know you will be creating thousands of  
objects for a very short time span, you will need to consider adding these objects to a 
cache pool. They will be first allocated and will be used afterward. Ideally, the hot path 
is single-threaded and spinning on a specific core (as we explained in the Reducing the 
number of contexts switched section in Chapter 6, HFT Optimization – Architecture and 
Operating System. This design will remove the need for any locks on the pool, and a 
simple counter to get and return the object will be enough. In some situations, even if it is 
multithreaded, it might still be good to use a pool even though you will need a lock. We 
can offset the cost of using a lock with a smaller GC time. By caching, we will increase the 
heap size. It is important to consider the tradeoff between the number of objects created 
with the heap size.

https://docs.oracle.com/en/java/javase/18/gctuning/index.html
https://docs.oracle.com/en/java/javase/18/gctuning/index.html
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We will continue this section by talking about other Java features increasing the number 
of objects allocated that can potentially trigger the use of the JVM.

Limiting the autoboxing effect
Another critical coding style to pay attention to is autoboxing. Moving back and forth 
between a primary type and its object wrapper will create a lot of unnecessary objects. 
When the compiler automatically converts the primitive types into their corresponding 
Java object wrapper, it is called autoboxing. For example, converting int to an Integer, 
double to a Double, and so on. Inboxing is when the conversion goes the other way. 
Even though some wrappers contain a cache, it is relatively small. For example, for 
Integer, it only caches values between -127 and 127. If you need to use a wrapper, it is 
recommended to use Integer, because it is the only wrapper that allows you to extend the 
cache (-XX:AutoBoxCacheMax).

By default, Java offers a multitude of Collection, List, and Set implementations that 
will solve most of your needs. Unfortunately, all those structures only support objects 
as parameters, and most of them are also creating new objects on each insert in order 
to implement the desired behavior. When coding, you need to keep this in mind. You 
can also use some third-party libraries (https://fastutil.di.unimi.it/ 
or https://github.com/real-logic/agrona) that will implement the Java 
collection using the Java primary type. Depending on your needs this could greatly reduce 
the object creation in your program.

You also need to be mindful of the different objects that are created by either the code 's 
Java classes or any third-party libraries. You need to be aware of the object creations of 
which the Iterator is a perfect example. It will create a new object each time you call it. 
This is why you might give preference to a structure that supports a simple loop for each 
iteration. Another example is the libraries used to connect to databases. They are very 
dynamic but they could create a ton of objects on each insert.

The GC may be tweaked to reduce latency while increasing memory usage. After Oracle 
Java 11, the Epsilon option appeared. This option sets a GC that manages memory 
allocation but doesn't implement a memory reclamation mechanism. The JVM will shut 
down whenever the available Java heap is depleted. At the price of memory footprint and 
speed, this Epsilon provides a passive GC approach with a defined allocation limit and the 
lowest possible latency overhead. However, introducing manual memory management 
features in the Java language was not a goal.

https://fastutil.di.unimi.it/
 https://github.com/real-logic/agrona
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Stop-the-world pause
In general, GC does not necessitate a stop-the-world (STW) pause. It means all the active 
threads pause and only the memory cleaner thread is running. It is called a stop-the-
world pause because during that time, your program is not actively running. There are 
JVM implementations that do not have any pauses. Azul Zing JVM is one of them. The 
algorithm it employs determines whether or not JVM needs STW to collect trash.

Mark Sweep Compact (MSC) is a standard algorithm that is used by default in hot spots 
(a critical part of a code). It contains three steps and is implemented in an STW fashion:

•	 Mark: Traverses the live object graph to mark things that are accessible

•	 Sweep: Searches memory for unmarked memories

•	 Compact: Defragments memory by moving designated things

The JVM should fix all references to this object when shifting items in a heap. The object 
graph is inconsistent throughout the relocation process, so a STW pause is essential. An 
object graph is a list reporting the relationship between the different objects created. It 
allows them to know which objects are still needed and which ones are not referred to by 
any other and are free to be collected.

Concurrent Mark Sweep (CMS) is a HotSpot JVM technique that does not need the STW 
pause to gather old space (not the same thing as a full collection).

CMS does not use Compact and instead uses a write barrier (the trigger that acts each 
time you write a reference in the Java heap) to construct a concurrent version of Mark. 
Lack of compaction can cause fragmentation, and if background trash collection is not 
quick enough, the program may be halted. CMS will resort to STW MSC collection in 
certain circumstances.

We will now talk about how the Java primitive types can improve the garbage collection. 

Primitive types and memory allocation
In addition to the previous methods to reduce the GC intervention, we can consider 
optimizing memory allocations. When primitive types are available, one technique to 
minimize latency is to employ them. Primitive types (often called primitives) use less 
memory than their object equivalents, which has the following benefits:

•	 It allows fitting more data into a single cache line. If the data the processor  
needs is not in the current cache line, a new 64-byte cache line will be loaded.  
If the CPU cannot anticipate the memory access, the retrieval operation might  
take 10 to 30 nanoseconds.
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•	 If we can utilize less memory, we can keep the maximum heap size short, which 
means the collector has fewer live roots to search while doing a full GC with a lesser 
number of objects. A complete GC can easily take 1 second/gigabyte.

•	 Primitives decrease the amount of waste generated by a program. Most of the items 
you make will need to be gathered at some point. A minor GC is very quick at 
disposing of dead items; in fact, disposing of dead objects takes essentially no time 
at all because only living things are moved between (and into) the surviving areas; 
nonetheless, copying the live objects uses resources that may be utilized to conduct 
business logic.

•	 Assigning to a primitive is faster than generating a new object on the heap. Object 
creation in Java is extraordinarily fast, even faster than malloc in C, identifying a 
suitable portion of the main memory. The object is constructed in Java in the next 
accessible spot in a pre-existing buffer, referred to as the Eden space.

•	 Many functions return double values rather than a single number when building a 
pricing system. In a perfect world, objects would be preferred; however, this is not 
feasible because our computations occasionally fail, and we must produce an error 
or status code. If we need to return an object, in some cases, it could be re-used, so 
we could just pass it in the function as an argument.

We saw how primitives can help optimize the garbage collection; we will now talk about 
the profiling of memory. 

Memory profiling
We talked about how to keep object creation to a minimum, but how do you keep track 
of the number of objects created by your program? The best way to do this is to use a Java 
profiler. There are many solutions (licensed or free) available:

•	 Profiler (https://www.ej-technologies.com/products/jprofiler/
overview.html)

•	 Java Profiler: https://www.yourkit.com/java/profiler

•	 Visual VM: https://visualvm.github.io

•	 Apache NetBeans – Java profiler: https://netbeans.apache.org/kb/
docs/java/profiler-intro.html

https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.yourkit.com/java/profiler
https://visualvm.github.io
https://netbeans.apache.org/kb/docs/java/profiler-intro.html
https://netbeans.apache.org/kb/docs/java/profiler-intro.html
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These software will give reports and graphs; they will be the primary visual evidence of 
a performance problem. Some will report the hotspots where most of the objects are 
created. They also incorporate performance measurement tools that could be helpful 
to find inefficiencies in your code. It is not recommended to use profiling software in a 
production environment. These tools are intrusive in terms of performance. They should 
run in a simulation environment, where we can recreate a mock of the production 
environment to make sure we explore all the paths in our code. We do not have to pound 
it with tons of data; profiling is not made to find what your system can handle, but how 
efficient it is with the resources.

Figure 9.4 represents the output of a Java profiler. We can actually see with the bars which 
part of the code is most time-consuming.

Figure 9.4 – Example of a Java profiler result

In this section, we talked in depth about the GC and its impact on performance. We saw 
how to limit its intervention by using coding techniques. We will now talk about the JVM 
warm-up, which is required to have performant code. 
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Warming up the JVM 
Compileable languages, such as C++, are so named because the provided code is entirely 
binary and can be executed directly on the CPU. Because the interpreter (loaded on the 
destination machine) compiles each line of code as it runs, Python and Perl are referred 
to as interpreted languages. In Figure 9.1, we showed that Java is in the middle; it compiles 
the code into Java bytecode, which can then be turned into binary when necessary.

It's for long-term performance optimization that Java doesn't compile the code upon 
startup. Java builds frequently called code by watching the program run and analyzing 
real-time method invocations and class initializations. It might even make some educated 
guesses based on past experience. As a result, the compiled code is extremely quick. The 
main caveat for having an optimal execution time is to call the function many times. 

Before a method can be optimized and compiled, it must be called a particular number  
of times to exceed the compilation threshold (the limit is configurable but typically  
around 10,000 calls). Unoptimized code will not run at full speed until then. There is  
a trade-off between getting a faster compilation and getting a better compilation (if the 
assumptions that the compiler takes in terms of execution were wrong, there would be  
a cost of recompilation).

We're back to square one when the Java application restarts, and we'll have to wait till we 
reach that threshold again. The HFT software has infrequent but crucial methods that are 
only called a few times but must be incredibly quick when they are.

Azul Zing solves these problems by allowing the JVM to store the state of compiled 
methods and classes in a profile. This one-of-a-kind feature, known as ReadyNow!®, 
ensures that Java programs always execute at maximum performance, even after a restart. 
You can find more information on ReadyNow on this website: https://www.azul.
com/products/components/readynow.

When we resume a software (such as a trading system) with an existing profile, the Azul 
JVM remembers its prior decisions and compiles the described methods directly, which 
eliminates the Java warm-up problem.

We can also create a profile in a development environment to simulate production 
behavior. After that, the optimized profile can be deployed in production with the 
assurance that all key pathways have been compiled and optimized.

https://www.azul.com/products/components/readynow
https://www.azul.com/products/components/readynow
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GraalVM recently also developed an ahead-of-time (AOT) project. We will not dive  
into the details, but it would allow you to pre-compile your binary code into native code. 
This would allow you to speed up the process at startup as the AOT native code would 
be used right away and until the tiered compilation kicked in. It was introduced in Java 9 
as an experimental function. We will now explain how JVM optimizes the runtime using 
tiered compilation.

Tiered compilation in JVM
At runtime, the JVM understands and executes bytecode. In addition, just-in-time  
(JIT) compilation is used to improve performance. We had to manually pick between  
the two types of JIT compilers accessible in the HotSpot JVM in older versions of Java. 
One (C1) was designed to speed up application startup, while the other (C2) improved 
overall performance. 

In order to attain the best of both worlds, Java 7 introduced layered compilation. For  
the most used parts, a JIT compiler converts bytecode to native code. HotSpot JVM  
gets its name from these parts, which are referred to as hotspots. As a result, Java may 
achieve performance comparable to a fully compiled language. There are two types of  
JIT compiler:

•	 C1 (client compiler), which optimizes the start-up time

•	 C2 (server compiler) is tuned for overall performance

In comparison to C1, C2 watches and analyzes the code for a longer length of time. This 
enables C2 to improve the compiled code's optimizations.
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Compiling the same functions using the C2 compiler takes longer and uses more memory. 
However, it creates native code that is more optimized than C1. Java 7 was the first to 
introduce the idea of tiered compilation. Its objective was to achieve both rapid startup 
and strong long-term performance by combining C1 and C2 compilers. 

Figure 9.5 shows the tiered compilation in JVM. When an application is first started, 
the JVM interprets all bytecode and accumulates profiling data. The acquired profiling 
information is then used by the JIT compiler to locate hotspots. To achieve native code 
speed, the JIT compiler first compiles the frequently performed parts of code using C1. 
When more profile data becomes available, C2 takes over. C2 recompiles the code using a 
more aggressive optimization algorithm.

Figure 9.5 – Tiered compilation in JVM
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Despite the fact that the JVM only has one interpreter and two JIT compilers, there are 
five layers of compilation, as shown in Figure 9.6. The reason is that the C1 compiler has 
three levels of operation. The quantity of profiling done is the difference between those 
three tiers.

Figure 9.6 – Compilation levels

We are going to describe the JVM compilation levels more in depth.

Level 0 – Interpreted code
The JVM understands all Java code the first time the code is run. When compared  
to compiled languages, performance is typically worse at this phase. However,  
following the warm-up phase, the JIT compiler kicks in and compiles the hot code  
at runtime. The profiling information gathered at this stage is used by the JIT compiler  
to conduct optimizations.

Level 1 – Simple C1 compiled code
The JVM compiles the code using the C1 compiler at this level, but without gathering any 
profiling data. For functions that are considered trivial (such as arithmetic operations), the 
JVM employs the compilation level 1. The C2 compilation would not make it quicker due 
to the minimal method complexity. As a result, the JVM believes that gathering profiling 
data for code that cannot be further optimized is pointless.

Level 2 – Limited C1 compiled code
At level 2, the JVM uses the C1 compiler with mild profiling to compile the code.  
When the C2 queue is full, the JVM switches to this level. To boost performance, the 
objective is to compile the code as fast as feasible. The JVM then recompiles the code on 
level 3 with full profiling afterward. Finally, the JVM recompiles the C2 queue on level 4 
once it is less crowded.
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Level 3 – Full C1 compiled code
At level 3, the JVM compiles the code with complete profiling using the C1 compiler. 
Level 3 is included in the standard compilation process. As a result, except for basic 
operations or when compiler queues are full, the JVM utilizes this level of compilation in 
all circumstances. In JIT compilation, the most typical case is that the interpreted code 
goes straight from level 0 to level 3.

Level 4 – C2 compiled code
On this level, the JVM uses the C2 compiler to build the code for the best long-term 
performance. Level 4 is likewise included in the standard compilation process. Except 
for simple methods, the JVM compiles all methods at this level. The JVM stops gathering 
profiling information because level 4 code is considered completely optimized. It may, 
however, decide to deoptimize the code and return it to level 0.

To summarize, the JVM interprets the code until a method reaches 
Tier3CompileThreshold. The method is then compiled using the C1 compiler, 
while profiling data is still being gathered. When the method's invocations reach 
Tier4CompileThreshold, the JVM compiles it using the C2 compiler. The JVM  
may eventually decide to deoptimize C2 compiled code. That implies the entire procedure 
will be repeated. 

Each compilation threshold is associated with number of iterations. To find out the default 
value we can ask the JVM to print them using -XX:+PrintFlagsFinal:

intx CompileThreshold = 10000

intx Tier2CompileThreshold = 0

intx Tier3CompileThreshold = 2000

intx Tier4CompileThreshold = 15000

You can change those values using the JVM options if you want to lower or increase 
them. There is no magic number, each program is unique, so it is best to monitor the 
performance using different parameter combinations and choose the one that best satisfies 
your performance requirements.

We will now show how to optimize the JVM as soon as we start the software.
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Optimizing the JVM for better startup performance
In HFT, we don't want to be able to get the best performance as soon as we  
run the software. We will explain the different methods we can use to avoid  
intermediate compilation.

Tiered compilation
We can run the JVM with the -XX:-Tiered Compilation option. It disables 
intermediate compilation tiers (1, 2, and 3) so that a method is either interpreted or 
compiled at the maximum optimization level (C2):

•	 ReservedCodeCacheSize:

The -XX:ReservedCodeCacheSize=N option specifies the maximum size of 
the code cache. The code cache is controlled in the same way as the rest of the JVM's 
memory: it has an initial size (given by -XX:InitialCodeCacheSize=N). 
The initial size of the code cache is allocated, and when the cache fills up, the size 
is increased. The code cache's initial size is determined by the architecture. This 
setting is useful because it has a small impact on speed.

•	 CompileThreshold:

The value of the -XX:CompileThreshold=N option triggers standard 
compilation. Java can run in client or server mode, and the default value will depend 
on that mode; it is 1,500 for client applications and 10,000 for server applications. 
Lowering this number could speed up the compilation to native code. It needs to be 
tuned based on the needs of each application; pick a number too small and the JVM 
will generate native code with limited profiling information and maybe not create 
the most optimized code for the long term. The threshold is determined by adding 
the total of the back-edge loop counter and the method entrance counter, despite 
the fact that there is only one flag here.
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•	 Warm up your code:

You could write your own code warmer. As you are aware of the hot path in your 
program, you could write a wrapper that would execute that hot path in order to 
reach the minimum number of iterations for bytecode optimization. In an HFT 
system, the market data process is usually not an issue as you will very quickly reach 
the iteration threshold with the sheer amount of data you will receive. You should 
focus on the less frequent events such as new orders or execution of code that are 
called periodically, but you do not want to have them slow down your hot path. You 
need to be extremely careful about JVM warm-up in a live environment. To warm 
up the JVM, we can utilize a variety of techniques. The Java Microbenchmark 
Harness (JMH) is a toolkit that assists us in appropriately implementing Java 
microbenchmarks. For HFT, it could be a function on the critical path, such as the 
function in charge of sending orders. Once loaded, it continually executes a code 
snippet while keeping track of the warm-up iteration cycle. JMH was created by 
the same team that created the JVM. You can read about it here for your reference: 
https://www.baeldung.com/java-jvm-warmup.

The quickest approach to get started with JMH is to use the JMH Maven prototype  
to create a new JMH project. We will dive more into the details of JMH in the  
following section.

Measuring the performance of a Java software
JMH is a toolkit that assists you in appropriately implementing Java microbenchmarks. 
Let's now discuss them in detail.

Why are Java microbenchmarks difficult to create?
It's difficult to create benchmarks that accurately assess the performance of a tiny area of 
a bigger program. When the benchmark runs your component in isolation, the JVM or 
underlying hardware may apply a variety of optimizations to it. When the component is 
operating as part of a bigger application, certain optimizations may not be available. As a 
result, poorly designed microbenchmarks may lead you to assume that your component's 
performance is better than it actually is.

Writing a good Java microbenchmark often requires avoiding JVM and hardware 
optimizations that would not have been done in a genuine production system  
during microbenchmark execution. That's exactly what it is about. Benchmarks that 
correctly measure the performance of a tiny part of a larger application are challenging  
to come up with. 

https://www.baeldung.com/java-jvm-warmup
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We are not going to dive into the details of how to implement JMH. There are multitudes 
of very good sources already available over the web. A must-read is the JMH GitHub 
(https://github.com/openjdk/jmh), which will provide you with instructions 
on how to install JMH but also has a multitude of examples. The JMH framework helps 
to reduce the warm-up period of an application. It could also be used to measure offline 
performances; it will help you in your design decisions. If you are hesitating between 
multiple design options or thinking about some optimizations, JMH can help you  
evaluate the performance and help confirm your choices. As we said a few times in  
this book, the key to optimization is to be sure that we measure the performance 
accurately to ensure that the optimization works. We will now talk about how to  
measure real-time performance.

Real-time performance measures
Harness testing will only allow you to make a decision on what is the best design  
to achieve the best throughput or speed. Once your code is released in a production 
environment, you need to keep track of the performance of the critical parts of  
your application. 

A good measure that will not give you a pure performance report, but will let you spot 
quite easily changes in performance behavior, is to keep a revolutions per minute (RPM) 
on your hot threads. In an HFT application, you always have one or multiple threads  
that will be spinning on a core. You could keep a simple counter that will increment  
on each spin. If for any reason you have some code in that loop that starts misbehaving 
and it starts to add some drag, you will be able to detect it by observing a change in the 
RPM behavior.

The next measure to keep is latency. You want to keep simple latency measures in the 
critical part of your code, and if you have a distributed system, you also want to measure 
the communication latency between the different processes. 

We need to be smart about collecting the latency and the RPM statistics. The last thing  
we want is to create more overhead and latency than in your standalone code when 
capturing statistics.

For this reason, the statistics collector should have very light and basic logic. There must 
be no lock or object creation at any time in the logic. You should have cumulative, 
incremental, and descriptive (min, max, avg, and pctXX) statistic collectors, as they will 
cover most of your needs. 

https://github.com/openjdk/jmh
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Here are the different types of counters that we can use:

•	 Cumulative is an easy counter that could be incremented by any values.

•	 Incremental is a simple counter that can only be incremented by one.

•	 Descriptive keeps track of the minimum, maximum, average, and percentile X over 
the collection period.

You now need to collect the statistics for the period and store them to be able to analyze 
them. The best course of action is to have a periodic thread that awakens every X minutes 
(1 minute is a good number) that will grab and reset the statistics from all the collectors. 
It will then store the statistics to be able to visualize or analyze them. The storing must 
also be made in a smart way. Speed is not critical but object creation is; logs or database 
storage will generate a lot of object creations. A good solution is to send those statistics to 
a different process through either Inter-Processing Communication (IPC) or the User 
Datagram Protocol (UDP) and let the remote process take care of the storing. It is easy to 
send data to a remote process without creating any lock or object.

On the remote server, you are now free to use any software to store statistics and 
access the data easily, including databases and time-series data (for example, Graphite: 
https://grafana.com/oss/graphite/).

To visualize the stored data, a good option is the Grafana dashboard (https://
grafana.com/grafana/). It is a frontend that can be linked to multiple data sources 
using different plugins. It will let you access those statistics through a nice website 
with lots of graph options and alert triggers. The raw data will be available on the box 
where Grafana is running or through a web API. The next section will talk about the 
performance that we can achieve with threading. 

Java threading 
Threads are the basic unit of concurrency in Java. Threads provide the advantage of 
reducing program execution time by allowing your program to either execute multiple 
tasks in parallel or execute on one portion of the job while another waits for something to 
happen (typically input/output (I/O)).

https://grafana.com/oss/graphite/
https://grafana.com/grafana/
https://grafana.com/grafana/
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HFT architecture heavily uses threads to increase the throughput, as we mentioned in 
Chapter 7, HFT Optimization – Logging, Performance, and Networking. Multiple threads 
are created to do tasks in parallel. Adding threads to a program that is completely CPU 
bound can only slow it down. Adding threads may assist if it's totally or partially I/O 
bound, but there's a trade-off to consider between the overhead of adding threads and 
the increased work that will be done. We know that the underlying hardware (CPU 
and memory resource) will limit this throughput. If we increase the number of threads 
beyond a certain limit (such as the number of cores or the number of threading units), we 
deteriorate the performance by increasing the memory footprint (potentially decreasing 
the cache usage) or by increasing the number of context switches. If we notice that the 
latency of our trading system has been impacted and the memory usage has sharply 
increased, monitoring the number of threads will be required.

As we explained in Chapter 8, C++ – The Quest for Microsecond Latency, the rule of thumb 
to optimize HFT software is to be aware of bottlenecks. For instance, if an algorithm is 
susceptible to cache contention between multiple CPUs, it has the ability to wreak havoc 
on the thread's performance. When employing many CPUs to run a highly parallelized 
algorithm, cache contention is a critical consideration. There is no magic number for 
thread count; the goal is to minimize them while achieving the best throughput.

The use of a Java profiler will show the number of threads and list the GC threads that 
will be used within the trading system. This graphical tool has many features that could 
be useful to find objects or data structure being the contention of the tasks accomplished 
by the threads (finding bottlenecks). When using this tool, it is important to keep in mind 
that any profiler can be intrusive. There are simpler alternatives to query the number of 
threads in an application; for a Linux-based operating system (OS), the best one is htop 
(https://htop.dev/). It will give you an immediate view of how many threads are 
running within your Java process. For a Linux-based OS and other useful command-line 
tools, sending a kill –3 pid command will force the JVM to dump a list of all the 
threads in your program as well as what they are executing at the time of the call. This is a 
useful tool to use to diagnose blocked threads or unexpected behaviors. 

Using a thread pool/queue with threads
Threads in Java are mapped to system-level threads, which are the resources of the OS. 
Creating too many threads can impact the performance, reduce the cache efficiency,  
and we can run out of these resources quickly. Because the OS will handle the  
scheduling of these threads, it is easy to conclude that these threads will have less  
time to do actual work.

https://htop.dev/
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The goal of the thread pool is to help resources and contain the parallelism in a certain 
capacity. When using thread pools, we write concurrent code that will be called in parallel 
when submitting tasks. The thread pool will perform these tasks by re-using threads. We 
will not pay the thread creation cost and we will be able to limit the number of threads. 
Figure 9.7 represents code (a submitter) submitting tasks to a thread pool. The thread 
pool will handle these tasks. We can see that the number of threads is important since it 
will increase the concurrent executions of these tasks:

Figure 9.7 – Tasks with a thread pool

It is a good practice to keep two distinct pools of threads: a smaller one in charge of 
running the short-lived task, and a bigger one for the long tasks (I/O access, DB, and 
logging, for example), the one that could take multiple seconds or even used in a forever-
spinning loop. 

There is also the concept of the scheduler in Java, where you can schedule a task to run at 
a specific time or at a constant interval. The scheduler usually runs on its own thread, and 
when triggered, delivers the task to the thread pool. It is helpful when you add your task 
to the scheduler to designate the pool it should be assigned to. You could also designate 
the tasks that will take a couple of microseconds to run directly in the scheduler thread. 
A typical example would be a triggered task that adds an event in a lock-free event queue. 
There is no need to handle the add logic in an external intermediary thread.

We will now talk about the different types of executors that can help to create  
thread pools.
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Executors, Executor, and ExecutorService
We will simplify the explanation of the Executors by saying that they contain methods 
to create preconfigured thread pool instances. We use them to work with different thread 
pool implementations in Java. The ExecutorService interface includes a significant 
number of ways for controlling task progress and managing service termination. We 
may submit tasks for execution and manage their execution using the returned Future 
instance using this interface.

Thread map
In an HFT system, there is always a hot path that logic should be bound to a specific 
looping thread, and that thread should be pinned to a core on the OS. If one thread is 
not enough to process the amount of data, we can start other spinning threads and assign 
to each of them a subset of the data to process. The spinning thread should never access 
blocking I/O or avoid any OS call or lock. OS calls could be blocked by other OS calls 
coming from other threads on the systems or the OS itself.

When it comes to thread affinity, we need to also be conscious of the CPU architecture: 
the number of cores, Non-Uniform Memory Access (NUMA) domain, and network card 
core binding. If threads need to communicate with each other or some other application 
over shared memory or network traffic, they should all be running on the same NUMA 
domain. When processes are running on the same NUMA domain, they are sharing the 
same memory cache and avoiding crossing NUMA boundaries, which will cost us more in 
terms of performance. We also want to isolate the core at the OS level, which will prevent 
the OS from scheduling any other process on the reserved core. On a Linux-based OS, 
this is done using the isolcpu functionality. It will exclude the designated cores to be 
accessed by the OS. 

Utility threads (logging, timer, DB, and others) do not need to be bound to specific cores; 
they just need to make sure they will not be running on a core shared with the OS. 

A very nice library to allow us to bind our Java thread to a specific core is found here: 
https://github.com/OpenHFT/Java-Thread-Affinity.

This library will allow you to pin threads to specific cores directly from Java. It is a pretty 
excellent tool with a simple API that will let you acquire a core when starting a thread. We 
have multiple options where you can ask for the next available core on the socket or lock 
a specific core number, or even pre-allocate a set of cores and have them assigned in the 
order of acquisition.

https://github.com/OpenHFT/Java-Thread-Affinity
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Let's see an example:

IRunnable command = new IRunnable() {

                    @Override

                    public void run() {

                             Affinity.acquireLock(true); // 
Acquire the next free lock from the preallocated list

           s_log.info("Cpu Lock:" + Affinity.getCpu());

        s_log.info("On Next Core The assignment of CPUs is\n: " 
+         AffinityLock.dumpLocks());

                        while (true) {

                                   processInternalEvent();

                        }

                    }

                };

A Linux-based OS offers another alternative: we could use htop (please see the previous 
reference) to manually assign a core for each thread. This is not ideal as it is a manual 
process and we need to redo the mapping each time the process is restarted. The 
advantage of this solution is that the assignment of the core is not final, so you could 
move your thread around to a different core. It is also a quick way to test the performance 
improvement or changes that your application could achieve when you are binding a 
thread to a core.

Taskset (https://man7.org/linux/man-pages/man1/taskset.1.html) on 
a Linux-based OS can also be used to limit which cores the Java application-free threads 
will be allowed to run on. This will apply to the main thread and all Java threads that are 
not bound to a core.

https://man7.org/linux/man-pages/man1/taskset.1.html
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In Figure 9.8, the diagram is the best-case scenario:

Figure 9.8 – Ideal scenario to execute a parallel program

We can run the entire program on one NUMA domain. If we start our Java application 
using tasket --cpu-list 6-8, the main starting thread and all non-bounded 
threads will be limited to run on CPU cores 6, 7, and 8, keeping them on the same  
NUMA domain. 

In HFT, the principal component for performance is the data structure. We will now study 
which data structure we should use in Java to build an HFT system.
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High-performance task queue 
To achieve performance, any trading system must have processes and threads working 
in parallel. Processing many operations at the same time is a way to save time. The 
communication between processes is very challenging in terms of speed and complexity. 
As we saw in Chapter 6, HFT Optimization - Architecture and Operating System, it is easy 
to create a segment of shared memory and share data between them. As we know, there 
is a problem with the synchronization of the access to the data because shared memory 
doesn't have any synchronization mechanism. The temptation of using a lock is high but 
performance will be affected by this kind of object.

In this section, we are going to review the dif﻿ferent Java data structures that we use in 
HFT. The first one is the simplest: the queue.

Queues
Queues generally have a write contention on the head and tail and have variable sizes. 
They are either full or empty but never operate on the middle ground where the number 
of writes is equivalent to the number of reads. They use locks to deal with the write 
contention. The lock can cause context switches in the kernel. Since any context switches 
save and load the local memory of a given process, the cache will lose the data. In order 
to use caching in the best way, we need to have one core writing. However, if two separate 
threads are writing, each core will invalidate the cache line of the other.

In Chapter 6, HFT Optimization - Architecture and Operating System, in the Using lock-
free data structures section, we showed how lock-free data structures are the way to go 
for HFT. The circular buffer or ring buffer enables processes or threads to transfer data 
without any locks. We are going to talk first about the circular buffer.

Circular buffer
There are several names for a ring buffer. Circular buffers, circular queues, and cyclic 
buffers are all terms you've probably heard of. They all imply the same thing. It's 
essentially a linear data structure with the end pointing back to the beginning. It's simple 
to think of it as a circular array with no end.

A ring buffer, as you might expect, is mostly used as a queue. It has read and write 
positions, which the consumer and producer utilize separately. The read or write index 
is reset to 0 when it reaches the end of the underlying array. The problem comes when a 
reader is slower than a writer. We have two options: the first is to overwrite the data if we 
do not need the data anymore or to block the writer from writing (potentially having a 
write buffer).
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The option to increase the size of a circular buffer is feasible. However, it must be done 
only if the read/write is blocked. In this situation, resizing will require moving all the 
elements to a newly allocated bigger array. This operation is very expensive and slow. It 
cannot be done on the critical path.

One of the implementations of the circular buffer is made by LMAX, and is called the 
LMAX disruptor.

LMAX disruptor
Disruptor uses a circular buffer. All events are broadcast (multicast) to all consumers for 
consumption concurrently via distinct downstream queues. Disruptors are similar to a 
multicast graph of queues in which producers send items to all consumers for concurrent 
consumption via distinct downstream queues. The consumer could be a chain of event 
handlers, allowing you to run multiple handlers for each consumed message. When we 
examine the network of queues more closely, we can see that it is actually a single data 
structure called a ring buffer. It is required to synchronize the dependencies between the 
consumers since they are all reading at the same time.

A sequence counter is used by producers and consumers to identify which slot in 
the buffer they are presently working on. Each producer/consumer can create their 
own sequence counters, but they may read the sequence counters of other producers/
consumers. Producers and consumers check the counters to confirm that the slot they 
wish to write in is unlocked.

The disruptor is designed to address internal latency issues in Java processes. It is not 
a permanent store; messages remain in memory, and it is primarily intended to reduce 
latency between two or more worker threads serving as producers or consumers. It's 
faster than using ArrayBlockingQueue, which is Java's standard thread-safe class for 
this purpose. If we work with a high-throughput system that also has to ensure that each 
message is delivered as rapidly as feasible, this library becomes more appealing.

The disruptor is a lock-free data structure. The benefits are the same as the ones we 
described in Chapter 6, HFT Optimization – Architecture and Operating System, in the 
Using lock-free data structures section. In terms of Java, when compared to LinkedList, 
the disruptor ensures that elements are stored in a single contiguous block of memory 
and that elements are pre-fetched/loaded into the local CPU cache. Each logical item in 
memory is physically assigned to the next, and values are cached before they are needed. 
When compared to LinkedList, values are dispersed broadly across the heap memory 
when allocated, resulting in the loss of valuable CPU cache hits. A predetermined number 
of container objects are also pre-allocated in the ring buffer.
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Because these containers are reference types or objects, they will reside on the heap, but 
they will be re-used once a buffer space is reclaimed. Because of this constant re-use, 
containers last indefinitely and are unaffected by the GC's STW pauses. To avoid indirectly 
allocating to the heap, we must remember that nested values on those objects are 
preserved as primitive values.

This section studied the LMAX disruptor; we will now review the conversant disruptor, 
another candidate for lock-free data structures. 

Conversant disruptor
We will first talk about the design of a conversant disruptor. The underlying data structure 
of this disruptor is a ring buffer and a queue. The main advantage is to flush the entire 
queue as a batch using CAS comparison.

The conversant doesn't require any extract code; it is based on the Java BlockingQueue 
interface and is not domain-specific. It also works without the need for memory 
pre-allocation. The performance to push-pull an object in the multithreaded versions is 20 
nanoseconds, whereas the push-pull variant takes 5 nanoseconds. This intrinsic quickness 
is primarily due to mechanical sympathy and simplicity. This implementation takes into 
account hardware specificities. 

The conversant disruptor is different from the LMAX disruptor and is not a fork of the 
LMAX disruptor. They are essentially diverse in design and implementation, but they both 
have similar functionality. It makes sense to utilize the LMAX disruptor's implementation 
if we use the domain model. The conversant disruptor is the ideal choice for the typical 
use case of using a Java BlockingQueue interface as a fundamental data structure at the 
center of an application.

Agrona circular buffer
This is another available solution provided by the Agrona Project (https://
aeroncookbook.com/agrona/concurrent/). Like the LMAX disruptor, it uses 
a specific interface, and we cannot simply swap classes that implement the Java queue 
interface with it. It offers one producer-one consumer (OneToOneRingBuffer), or 
many producers-one consumer (ManyToOneRingBuffer) solutions. It provides 
multiple options for the idle strategy, giving you more control over your reader and writer 
thread behavior. We reviewed the different lock-free data structures we can use in Java. 
We will now talk about the last part of this chapter, the logging and the DB access specific 
to Java programming.

https://aeroncookbook.com/agrona/concurrent/
https://aeroncookbook.com/agrona/concurrent/
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Logging and DB access
As we explained in Chapter 7, HFT Optimization – Logging, Performance, and Networking, 
logging is critical for any trading system. It enables users to debug strategies, improve the 
return, compare theoretical and actual profit and loss, and store information in databases. 
It always requires a costly input/output. Therefore, logging cannot be done on the critical 
path. Like C++, a specific technique is needed to achieve performance in Java.

When creating a log, it can store trades in a database or build a string in a flat file. When 
generating a string to be pushed in the logging system, creating a string is a very time-
consuming construction. It is essential to consider the speed of the system and the object's 
reaction. For instance, log4j zeroGC is a zero object creation logging framework, but it 
will generate the log message before putting it on the logger thread queue (in this case, the 
disruptor from LMAX). Your main application thread will need to generate the news, and 
this will have a cost on the performance. Nevertheless, this is still an acceptable solution 
for HFT systems.

You could develop your logging framework; we can still use the disruptor but store the 
unformatted log messages in the disruptor queue and then do the string creation in the 
consumer thread. You need to have objects added to the queue but writing the formatted 
logs into the appender can be done in a non-critical thread using a buffer without 
generating a string object. 

We can find many frameworks, including java.util.logging, log4j, logback, 
and SLF4J. If we are building a microservice or another application with complete 
control over the execution environment, we oversee choosing a logging framework. 
Changing logging frameworks is usually as easy as searching and replacing, or in the 
worst-case scenario, a more complicated structural search and replace accessible in more 
powerful IDEs. If logging speed is crucial, which is the case in HFT, a logging API will 
always be better.

Choosing a framework will imply doing some benchmarking. When comparing the 
different frameworks, we need to keep in mind that the java.util.logging 
philosophy is that logging should be rare rather than the rule, while log4j 2.x and 
logback have a design for permanent logging.
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Java util logging is less efficient than the logging API framework on the performance 
side because there is no buffer management, which affects logging speed significantly. 
The ability to buffer file I/O has the biggest influence on performance when configuring 
logging. The downside of activating buffer handling is the risk that the data is not pushed 
to disk if the process of writing this log fails. Another issue with buffering is that it might 
make it challenging to monitor the system in real time by tailing the log files. Buffering 
with a guaranteed maximum duration before flushing would be helpful if the various 
logging frameworks provided it. Having a flush every 100 ms would not have as large of 
an impact on system performance as flushing after each log statement, and it would allow 
humans to follow the log in real time.

Once we find the best logging infrastructure, we need to think about where to store the 
data. We can have a flat file or a database using the system logging framework.

We can review the advantages of these different media:

•	 file: Good for development and testing environments, but impacts the 
performance by the number of I/Os for the production environment. If the use  
of files is needed, we recommend a memory map file, which is blazing fast but  
not persisted.

•	 Database: Easy to retrieve and query but slow. The interaction with databases 
creates many objects. It might be better to send it on the wire (UDP or shared 
memory) and have an external process to do the logging. The downside is the need 
to ensure that the remote process keeps running.

•	 Syslog: Lets you send data on a UDP socket and is fast with low memory usage. 
We can configure Syslog in multiple ways. The logs can be kept locally or sent to a 
central server (https://github.com/syslog-ng/syslog-ng).

Let's see which process to choose for logging and database interactions.

External or internal thread?
When it comes to logging and database interactions, we have two choices: keep  
the logic in the main program using a dedicated thread or send the information to a 
reliable process using a straightforward and fast communication technique (UDP or 
shared memory). 

If we choose to use logic in the main program, we add reliability, but we risk putting more 
pressure on the GC because of the object creations. 

https://github.com/syslog-ng/syslog-ng
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If we rely on a specialized external process, we risk sending information in an insecure 
way as we cannot guarantee that someone isn't listening on the other end. The benefit is 
that your main program does not need to worry about object creations coming from the 
logging or DB framework. We can send all the information from our main program as 
byte-encoded messages, which could be done with zero object creation. We are now free 
to code in the specialized node without worrying about having the GC kicking in too 
often. An excellent library to handle all the binary encoding can be found at https://
github.com/real-logic/simple-binary-encoding.

For logging, fully encoding large messages could be too costly. A solution is to use a 
dictionary of the different messages assigned with numeric codes. When we want to send 
information to a specialized process, you encode the code and the values carrying the 
information. This can be done with zero objection creation and is amazingly fast. On the 
other hand, the specialized node is free to insert the data into the DB or recreate the string 
to log without having to worry about the pressure the object creation can have on the GC. 

Summary
This chapter showed that JVM eases software developers' lives but impedes a trading 
system's performance. We demonstrated that by understanding how the JVM behaves 
under the hood, following good coding practice, and tuning the JVM, we could use Java as 
a serious programming language candidate for HFT. We studied in detail how to measure 
performance with Java. We know that measuring the execution time is the only evidence 
that code performs better after optimization. As we did with C++, we introduced high-
performance data structures helping to get a performant code. We combined these data 
structures with the use of threads and thread pools. We concluded by discussing logging 
and database access, which are vital in HFT. 

C++ and Java are the most used languages in HFT. The next chapter will talk about 
another programming language: Python. We will see how Python can be used in HFT and 
run fast using external libraries.

https://github.com/real-logic/simple-binary-encoding
https://github.com/real-logic/simple-binary-encoding
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Python – Interpreted 

but Open to High 
Performance

In this chapter, we will introduce you to using Python in the high-frequency trading 
(HFT) system. Getting an HFT system using Python is problematic since Python was not 
built for speed and low latency. Because Python is the most used language and provides all 
the necessary libraries for data analysis, this language is the go-to in algorithmic trading. 
We will learn how to use HFT libraries in Python in this chapter. 

We will cover the following topics:

•	 Introducing Python

•	 Python limitations in the context of HFT

•	 How to use a C++ library in Python

We will provide you with the tools capable of transforming any C++ code into code that 
can be used by Python.

We will start by explaining why we should use Python, even in HFT.



234     Python – Interpreted but Open to High Performance

Introducing Python
Python is the most used programming language on the planet (one-third of all new 
code is written in Python). This language is used in software development. Python 
is a relatively simple language to learn and it is a high-level programming language 
that uses type inference, which is interpreted. Unlike C/C++, which requires you 
to concentrate on memory management and the hardware aspects of the computer 
you're programming, Python handles the internal implementation, such as memory 
management. As a consequence, this language will make it easier to concentrate on 
writing trading algorithms. 

Python is a flexible language that can construct applications in any sector. Python has 
been extensively used for years. The Python community is vast enough to provide many 
important libraries for your trading strategy, spanning from data analytics, machine 
learning, data extraction, and runtime, to communication; the list of open source libraries 
is enormous.

Python also contains concepts seen in other languages, such as object-oriented, 
functional, and dynamic types on the software engineering side. Python has an abundance 
of online resources and a wealth of books that will guide you through every subject where 
Python may be used. For example, you can read Learn Python Programming published by 
Packt and written by Romano and Kruger. In trading, Python isn't the only language used. 
To undertake data analysis and construct trading models, we'll want to utilize Python. 
We'll utilize C, C++, or Java in production code. Source code will be compiled into an 
executable or bytecode using these languages and as a result, the program will be 100 
times quicker than Python or R. Even though all three languages are slower than Python, 
we will utilize them to build libraries. These libraries will be wrapped so that they may be 
used with Python.

Python is an appropriate language for data analytics, which makes this language adaptable 
to create trading strategies. In the Packt book, Learn Algorithmic Trading, written by 
the authors of this book, we describe how to leverage this language and the pandas and 
NumPy libraries to create trading strategies.

Making use of Python for analytics
Python has all the features for quantitative researchers to be proficient in data analysis, 
and Python with scrapy or beautifulsoup can scrape websites (data crawling). It 
has many string libraries and the regular expression library, which can help clean data 
(data cleaning). The sklearn and statsmodels libraries help developers create 
models (data modeling). Matplotlib will help with data visualization. 
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Python is the go-to language for many developers in finance. It is essential to talk about 
this language in this chapter as Python is the most used programming language in the 
world. Raising the question of whether Python can do HFT is a fair question to ask. 
However, as we saw, it is difficult to use Python as it is because of its speed. We can, 
therefore, think about using other language libraries to exploit their speed.

Figure 10.1 represents the steps for building a trading strategy:

Figure 10.1 – Steps to create a trading strategy

HFT strategies are also made the same way by following these steps:

1.	 This part doesn't involve any programming since it just involves getting the trading 
idea which we will introduce in the market. In the case of an HFT strategy, we could 
use the example of a statistical arbitrage strategy. This strategy will assume that the 
derivative financial product and its underlying asset returns are correlated.

2.	 In this step, we can start getting market data to validate Step 1. From this moment, 
the use of Python will be beneficial for data analysis.

3.	 Any data transformations, such as normalizing and cleaning data to create the 
model, should be done with Python and the pandas and NumPy libraries.
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4.	 We can use the scikit-learn package to build models. It is an open source 
Python-based machine learning package, and it supports classification,  
regression, clustering, and dimensionality reduction. In the case of our HFT 
strategy example, we will be able to correlate returns between the two assets by 
using regression models.

5.	 In Steps 5 and 6, we will implement a first model with the market data collected and 
backtest this model.

6.	 Step 7 is essential to promote the need for speed in the trading strategy at this 
stage. Based on the prior data analytics done in the previous steps, we will be able 
to determine the time needed to enter and get out of a position to have a profitable 
trading strategy.

7.	 Steps 8 and 9 are the final stage of the trading strategy, and will be an iteration 
between the actual profit and the predicted profit.

Looking at the last steps, we can observe that speed matters. We need to understand  
why Python has a slow execution; it will not be possible to use it for the last steps of the 
trading strategy.

Why is Python slow?
Python is a high-level language (higher than C or C++); therefore, it handles software 
such as memory allocation, memory deallocation, and pointers. Python memory 
management makes it easy for programmers to write Python programs. Figure 10.2 
depicts the Python chain. Python code is converted into Python bytecode initially and 
internally, the bytecode interpreter conversion occurs, and most of it is hidden from the 
developer. Bytecode is a lower-level programming language that is platform agnostic. The 
purpose of bytecode compilation is to speed up source code execution. The source code  
is converted to bytecode and then run one after another in Python's virtual machine  
to carry out the operations. Python's virtual machine is a built-in feature. Python code  
is interpreted rather than compiled to native code during execution; therefore, it is a  
little slower:
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Figure 10.2 – Python chain

Python is first converted to bytecode. The Python virtual machine (PVM) then interprets 
and executes this bytecode.

Python is slow because of the following reasons:

•	 Python code is interpreted at runtime rather than converted to native code at 
compile time, unlike native languages such as C/C++. Python is an interpreted 
language, which means that the Python code we create must go through several 
abstraction steps before becoming machine code that can be executed.

•	 Compiler for Just-in-Time (JIT): Other interpreted languages, such as Java 
bytecode, run quicker than Python bytecode because they come with a JIT compiler 
that translates bytecode into native code at runtime, as explained in Chapter 9, 
Java and JVM for Low-Latency Systems. Python does not have a JIT compiler since 
it is challenging to create one due to the dynamic nature of the language. It's hard 
to predict what parameters will be supplied to a function, making optimization a 
difficult task.

•	 The Global Interpreter Lock (GIL) inhibits multi-threading by requiring the 
interpreter to run only one thread at a time inside a single process (that is, a Python 
interpreter instance).

Since we now understand why Python cannot achieve performance by itself, we will study 
how Python uses libraries in detail.
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How do we use libraries in Python?
A library helps developers to reuse code that has been already created and tested for 
specific functionalities. We use libraries by downloading a pre-compiled version for a 
specific platform and by linking them to our software. By doing so, we don't have to 
rewrite code, and we increase the trust in our implementation by using tested code. 
Libraries can be statically linked to software, which increases the size of the executable. 
They can also be used dynamically, which means the executable will load the libraries 
when starting up. We can find these libraries with the dynamic load library (.dll) 
extension on Windows or with the Shared Object (.so) extension in the Linux world. 
Python uses dynamic libraries by using the import command. 

Python standard modules are pretty numerous. The library includes built-in modules 
(written in C) that enable access to system capabilities such as file input/output (I/O) 
that would otherwise be unavailable to Python programmers, as well as Python modules 
that provide standardized solutions to many common programming issues. Some of these 
modules are specifically designed to promote and improve Python application portability 
by abstracting platform-specifics into platform-neutral application programming 
interface (APIs). Python has many other libraries that can help develop software. We 
introduce some of them here:

•	 Google's TensorFlow library was created in partnership with the Google Brain 
team. It's a high-level calculation library that's open source. It's also seen in deep 
learning and machine learning algorithms. There are a lot of Tensor operations in it. 

•	 Matplotlib is a library that allows you to plot numerical data. This library is useful 
to display charts in data analytics. It is often used in designing trading strategies to 
visualize how they perform by having a visual presentation of important metrics 
such as profit and loss.

•	 pandas: For data scientists, pandas is an important library. It's an open source 
machine learning package with a range of analytic tools and configurable high-
level data structures. It simplifies data analysis, processing, and cleansing. Sorting, 
re-indexing, iteration, concatenation, data conversion, visualizations, aggregations, 
and other operations are all supported by pandas.

•	 NumPy: Numerical Python is the name of the program. It is the most widely 
utilized library. It's a well-known machine learning package that can handle big 
matrices and multi-dimensional data. It has built-in mathematical functions for 
quick calculations. NumPy is used internally by libraries such as TensorFlow to 
conduct various Tensor operations. One of the most essential components of this 
library is the array interface.
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•	 SciPy: Scientific Python is a high-level scientific computation package in Python 
that is open source. This library is based on a NumPy extension, and it uses NumPy 
to do complicated calculations. The numerical data code is kept in SciPy, whereas 
NumPy supports sorting and indexing array data. It is also commonly used by 
engineers and application developers.

•	 Scrapy is an open source toolkit for scraping information from web pages. It allows 
for highly rapid web crawling as well as high-level screen scraping. It's also suitable 
for data mining and automated data testing.

•	 Scikit-learn is a well-known Python toolkit for dealing with large amounts of 
data. Scikit-learn is a machine learning library that is open source. It supports a 
wide range of supervised and unsupervised methods, such as linear regression, 
classification, and clustering. NumPy and SciPy are often used in conjunction with  
this package.

We now know that Python can work efficiently with libraries. Let's now explain how C++ 
HFT libraries can work with Python.

Python and C++ for HFT
As we showed in the previous section, Python is too slow to be adequate for high-
frequency trading. C++ is much faster and is the language of choice to get low latency. We 
are presenting in this section a means to integrate the two languages to unify both worlds. 
On one side, Python gives the developers ease and flexibility, and on the other side, 
C++ allows code to reach high performance and low latencies. In HFT, we need to have 
quantitative researchers and programmers build HFT strategies to run in the production 
environment. Having a Python ecosystem capable of using C++ libraries will allow quants 
(quantitative traders) to focus on their research and deploy code in production without 
the need for other resources. We will explain how to provide a standard interface to 
different C/C++ libraries. These C/C++ libraries will become Python modules. In other 
words, we will use them as dynamic libraries loaded in memory when we need them.

Let's first talk about motivation.
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Using C++ in Python
We want to use C++ with Python for the following reasons:

•	 We already have a vast, well-tested, and reliable C++ library that we would like to 
use in Python. This might be a communication library or a library to help with a 
specific project goal, such as HFT. 

•	 We want to transfer a vital portion of Python code to C++ to speed it up. C++ has a 
quicker execution speed, but it also lets us avoid the Python GIL restrictions. 

•	 We wish to utilize Python test tools to test their systems on a wide scale.

We now know the motivation to use C++, and we will explain how we can achieve  
that next.

Using Python with C++
To use Python with C++, we have mainly two ways:

•	 Extending involves using C++ libraries with the import command. We will 
provide C++ libraries with a Python interface. The function prototypes are in 
Python and the implementation is in C++. It is equivalent to creating a shared C++ 
library that will be dynamically loaded when the software starts. This library will be 
used in a critical portion of a code.

•	 Embedding is a technique in which the end user runs a C++ application that 
calls the Python interpreter as a library procedure. It's the equivalent of adding 
scriptability to an existing program. Embedding is the process of adding calls into 
your C or C++ program after it has started up to set up the Python interpreter and 
invoke Python code later.

Extending modules is frequently the best approach to use highly performant code. The 
operation of creating a C++ library and using it will be the code solution to what we are 
proposing. Embedding requires more effort than simply extending. Unlike embedding, 
extending gives us more power and freedom. When we are embedding, many valuable 
Python tools and automation techniques become significantly more difficult, if not 
impossible, to employ. 

A mapping of one object to another is referred to as binding. Binding is used to link one 
language with another one. For instance, if we create a library in C or C++, we can use this 
library with Python. The modification of these libraries requires their recompilation. 

When an existing C or C++ library designed for a specific purpose has to be utilized from 
Python, Python bindings are employed.



Python and C++ for HFT     241

To understand why Python bindings are necessary, consider how Python and C++ store 
data and the problems that this might generate. C or C++ saves data in memory in the 
most miniature feasible format. If you use uint8_t, the space required to store data is 8 
bits if structure padding is not considered. 

On the other hand, Python uses objects allocated in the heap. In Python, integers are 
large integers whose size varies depending on their data. This means that for each integer 
transmitted across the border, bindings convert a C integer to a Python integer.

When preparing data to be transported from Python to C or vice versa, Python bindings 
execute a method similar to marshaling by changing an object's memory representation to 
a data format acceptable for storage or transmission.

Boost.Python library
This library allows you to combine Python and C++. It enables you to use C++ objects 
and functions in Python and vice versa without using any further tools outside the C++ 
compiler. There is no need to modify the C++ code. The library is made to encapsulate 
C++ APIs without being intrusive:

1.	 To illustrate how this tool works, we will work on this example. This example 
illustrates how to compile the add function using a C++ compiler and how to use  
it in Python code. Let's assume we want to use the C++ add function defined  
as follows:

int add(int x, int y)

{

   return x+y;

}

2.	 This function can be exposed to Python by writing a Boost.Python wrapper:

#include <boost/python.hpp>

BOOST_PYTHON_MODULE(math_ext)

{

    using namespace boost::python;

    def("add", add);

}
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3.	 We will build a shared library with the preceding code, which will create a  
.dll or .so file. We will be able to use this library with Python by using the 
import command:

>>> import math_ext

>>> print math_ext.add(1,2)

3

As seen in the preceding example, the Boost.Python library is pretty easy to use and is 
a comprehensive library. It allows us to perform practically anything the C-API provides 
but in C++. With this package, we do not have to write C-API code, and when we bind 
code, either it compiles perfectly or fails. 

If we already have a C++ library to bind, it's undoubtedly one of the most acceptable 
options currently available. However, when we simply need to rebuild a simple C/C++ 
code, Cython is recommended. 

Cython
The Cython programming language is a Python superset that enables programmers to run 
C/C++ functions and declare C/C++ types on variables and class properties. This allows 
the compiler to build C code from a highly efficient Cython code. The C code is created 
once and then compiled with all significant C/C++ compilers. Technically, we write code 
in .pyx files, and those files are translated into C code, then compiled into CPython 
modules. Cython code can resemble standard Python (and pure Python files are valid 
.pyx Cython files), but it includes additional information such as variable types. Cython 
can create speedier C code by using this optional type. Both pure Python functions and C 
and C++ functions (and C++ methods) can be called from code in Cython files.

We are going to illustrate how to convert the add function into a more optimized 
function. This function will be compiled by a C/C++ compiler, and then we will use the 
function in regular Python code:

1.	 Let's reuse the same example we used earlier with the add function, and we will 
save this code to add.pyx:

def add(a,b):

   return a+b

add(3,4)
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2.	 Then, we create the setup.py file, which works like a build automation tool such 
as Makefile:

from setuptools import setup

from Cython.Build import cythonize

setup(

    ext_modules = cythonize("add.pyx")

)

3.	 We will build the Cython file by using the command line:

$ python setup.py build_ext --inplace

It will create the add.so file in Unix or add.pyd in Windows.
4.	 We can now use this file by using the import command:

>>> import add

7

That's an example of how to compile C/C++ code based on Python code.

When designing Python bindings for C or C++, Cython is a highly complex tool that may 
provide you with a lot of power. It gives a Python-like technique for building code that 
manually manages the GIL, which may significantly speed up certain issues, but we didn't 
explore it fully here. However, because that Python-like language isn't precisely Python, 
there's a slight learning curve for figuring out which bits of C and Python go where.

Using ctypes/CFFI to accelerate Python code
ctypes is a tool in the standard library for creating Python bindings.

With this tool, we load the C library, and we call the function in the Python program. To 
create the Python bindings in ctypes, we can follow these steps:

1.	 Load your library.
2.	 Wrap the input parameters.
3.	 Indicate ctypes as the return type of the function.
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The fact that ctypes is part of the standard library gives it a significant edge over the 
previous tools. It also doesn't necessitate any further steps because the Python application 
handles everything. Furthermore, the principles employed are simple. However, the 
absence of automation makes increasingly complicated jobs more complex, which was not 
the case with the previous tools we saw.

The C Foreign Function Interface for Python is known as CFFI. Python bindings are 
created using a more automated method. We design and utilize Python bindings in a 
variety of ways using CFFI. There are two modes to choose from:

•	 API versus ABI: API mode generates a complete Python module using a C 
compiler, but Application Binary Interface (ABI) mode imports the shared library 
and interacts with it directly. It's challenging to get the structures and arguments 
right without using the compiler, and the API model is strongly recommended in 
the manual. 

•	 Out-of-line versus inline: The difference between these two modes is a speed 
versus convenience trade-off.

The Python bindings are compiled every time a script runs in inline mode. This is useful 
since it eliminates the need for a second construction phase; however, it will slow down 
the software. 

Out-of-line mode necessitates an additional stage in which the Python bindings are 
generated once and then used each time the application is executed. This is far quicker, 
although that may not be a factor.

Ctypes appear to need less effort than CFFI. While this is true for simple use cases, due to 
the automation of most of the function wrapping, CFFI scales to more significant projects 
considerably better than ctypes. The user experience with CFFI is also pretty different. 
You can use ctypes to import a pre-existing C library into a Python application. CFFI, on 
the other hand, generates a new Python module that can be loaded in the same way as any 
other Python module.

SWIG
Simplified Wrapper and Interface Generator (SWIG) is not like any of the other tools 
listed previously. It's a comprehensive tool for creating C and C++ bindings for various 
languages, not just Python. In some applications, the ability to develop bindings for 
many languages might be pretty valuable. It does, of course, come at a cost in terms of 
complexity. The configuration file of SWIG is pretty cumbersome, and it takes some time 
to get it right.
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We illustrate the use of SWIG with the following code. Suppose we have some C functions 
we want to be added to Python:

 /* File : math.c */

  

 int add_1(int n) {

     return n+1;

 }

int add(int n, int m) {

     return n+m;

 } 

The configuration file of SWIG is made by an interface file. We will now describe  
this interface.

Writing an interface file
With this method, we write an interface file that SWIG will use.

This is an example of the interface file:

 /* example.i */

 %module math

 %{

 /* Put header files here or function declarations like below 
*/

 extern int add_1(int n);

 extern int add(int n, int m);

 %}

 

 extern int add_1(int n);

 extern int add(int n, int m);

We will now build a Python module in the following section.
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Building a Python module
The last step to turning C code into a Python module is as follows:

 unix % swig -python math.i

 unix % gcc -c math.c math_wrap.c \

        -I/usr/local/include/python3.7

 unix % ld -shared example.o example_wrap.o -o _example.so 

We will use this module by using the import command:

 >>> import math

 >>> math.add_1(5)

 6

 >>> math.add(5,2)

 7

We can talk about many other ways of using C/C++ in Python. This part aims to build an 
exhaustive list of all the ways of accomplishing the migration of a C++ library for Python 
use but to tackle the problem of speed that Python has by using a high-speed library.

Improving the speed of Python code in HFT
The critical components we defined during the previous chapters must run at high speed. 
Using any of the tools we described previously will help you create C/C++-like code 
and create performant Python code using libraries. It is essential to begin constructing 
a new algorithm in Python utilizing NumPy and SciPy while avoiding looping code by 
leveraging the vectorized idioms of both libraries. In reality, this means attempting to 
replace any nested for loops with similar calls to NumPy array functions. The purpose 
is to prevent the CPU from wasting time on the Python interpreter instead of crunching 
numbers for trading strategies. 

However, there are situations when an algorithm cannot be efficiently expressed in simple 
vectorized NumPy code. The following is the recommended method in this case: 

1.	 Find the primary bottleneck in the Python implementation and isolate it in a 
dedicated module-level function.

2.	 If there is a small but well-maintained C/C++ version of the same algorithm, you 
may develop a Cython wrapper for it and include a copy of the library's source code. 
Or you can use any of the other techniques we talked about previously.
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3.	 Place the Python version of the function in the tests and use it to ensure that the 
built extension's results match the gold standard, easy-to-debug Python version. 

4.	 Check whether it is possible to create coarse-grained parallelism for multi-
processing by utilizing the joblib.Parallel class once the code has been 
optimized (not a simple bottleneck spottable by profiling).

Figure 10.3 depicts the function calls to C++ when there is a need for low-latency 
functions for HFT: 

Figure 10.3 – Python and C++ interactions

The control code, which could be used to decide to liquidate a position, can be calculated 
in Python. C++ will be in charge of the execution of the liquidation by using the speed of 
these libraries.

The critical components include the following:

•	 Limit order book

•	 Order manager

•	 Gateways

•	 HFT execution algorithm

All these should be implemented in C/C++ or Cython.

Some companies that have compiler engineers invest in C++ code generation from 
Python. We will have a tool parsing Python code and generating C++ code in this 
situation. This C++ code will be compiled and run like any other code, and Python code, 
in general, can be used for coding trading strategies. Most people in charge of creating 
trading strategies have more Python skills than C++ knowledge. Therefore, it is easier for 
them to develop everything in Python than convert Python into C++ libraries used in the 
C++ trading system.

In this section, we learned how to improve Python code using C++. We will now wrap up 
this chapter.
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Summary
In this chapter, we illustrated how to use Python in HFT. Python is not a language for 
performance and low latency, and we highlighted how to use other languages such as C++ 
to get to the same performance level. You are now capable of using any HFT-specific C/
C++ code in your Python code.

We will now finish this book by opening up to some new topics in the next chapter, 
such as achieving less than 500 nanoseconds for tick-to-trade latency with Field 
Programmable Gate Array (FPGA), and opening HFT systems to cryptocurrencies.



11
High-Frequency 

FPGA and Crypto
Welcome to the final chapter of this book. In the previous chapters, we saw how to 
optimize traditional trading to obtain a high-frequency trading (HFT) system working 
with a tick-to-trade latency of 5 microseconds. In the next section, we will discuss how 
to improve this latency to 500 nanoseconds using advanced hardware optimization. 
Finally, we will conclude this book by exploring the difference between traditional and 
cryptocurrency trading. 

Our goal in this chapter is to show that the software solution we used in the past chapters 
has limitations in achieving latency lower than 1 microsecond. Using a specific piece of 
hardware, we will show you that it is possible. The second goal is to apply the optimization 
we explained in this book to cryptocurrencies. We will elaborate by extending the design 
to the cloud. 
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In this chapter, we will cover the following topics: 

•	 How Field Programmable Gate Arrays (FPGAs) hardware can perform for HFT to 
reduce latency 

•	 How to trade cryptocurrencies with HFT techniques 

•	 How to build a trading system in the cloud

Important Note
In order to guide you among all the optimizations, you can refer to the 
following list of icons that represent a group of optimizations lowering the 
latency by a specific number of microseconds:

: Lower than 20 microseconds

: Lower than 5 microseconds

: Lower than 500 nanoseconds

You will find these icons in the headings of this chapter. 

Reducing latencies with FPGA 
In this section, we will look at the Field Programmable Gate Array (FPGA), investigate 
the evolution of the fierce competition of speed in HFT, and then discuss the motivation 
for using FPGAs in modern HFT. We will also explore how an FPGA itself works, the 
design of an FPGA-based trading system, and the advantages and disadvantages of using 
FPGAs in HFT systems.

Evolution of the fierce competition of speed in HFT
As we have seen in this book, HFT has received a lot of attention, become extremely 
popular, and also grown to become a significant component of all financial market 
liquidity and trading. We have also seen that HFT (as the name implies) is all about 
speed/latency – the speed at which HFT systems and algorithms can analyze market data 
information, send order requests, and execute trades.
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To summarize, latency refers to the total time to travel from one point to another for a 
data packet. However, specifically in trading, latency means the time, in nanoseconds/
microseconds/milliseconds, that it takes from when a market participant receives a 
market update to when they can get their order to the exchange. Improving technology 
is the key to winning on trades at the best prices before the price moves, or some other 
market participant trades against the orders at a cost, or before the orders at that price 
are canceled. This is true for all market participants – manual traders, market makers, 
statistical arbitrage traders, or high-frequency traders.

For HFT, since speed is the critical component, the faster a participant's system becomes 
at processing and trade execution, the higher the profit they receive. So, there is endless 
fierce competition in this space, with competitors constantly investing massive amounts of 
money allocated to more powerful and faster trading solutions approaching the ability to 
trade securities/derivatives/stocks/financial instruments in a few nanoseconds. In addition 
to increasing profits by increasing the speed of HFT systems, the firms that fall behind by 
failing to keep up with continuous technological innovations will be unable to compete 
and, therefore, might go out of business.

To keep up, investment banks, hedge funds, and HFT firms spend massive amounts of 
money on faster software, co-location setups closest to the exchanges, and networks 
with the lowest latencies – we saw these in Chapter 7, HFT Optimization – Logging, 
Performance, and Networking. Participants purchase the fastest servers, processors, 
memory, and network cards when optimizing the hardware itself. Still, even that is not 
enough anymore – now, they need to invest in hardware acceleration-based solutions. 
The approach to hardware acceleration is to offload compute/CPU-intensive portions 
of trading systems to custom processors, graphics processing units (GPUs), or FPGAs. 
There are numerous solutions to scaling hardware computing performance. But, finally, 
right now, FPGAs are responsible for the technological revolution as far as HFT systems 
and algorithms are concerned. FPGAs have exciting and specific characteristics that 
enable them to execute relatively simple trading strategies/algorithms magnitudes (1000x) 
faster than even the most highly-optimized software solutions.

Introduction to FPGA
In this section, we will introduce the FPGA and then investigate the details of the 
components of an FPGA and its characteristics. An FPGA is hardware (in this case, a 
chip) that can be programmed (although not easily) for whatever purpose is required. 
It can also be reprogrammed as needed and as mentioned already, has the advantages of 
ultra-low latency, high performance, and energy efficiency.
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To understand where an FPGA fits in; you can think of a performance spectrum for 
processors/chips. We have central processing units (CPUs) on one end, which offer 
a generic and flexible instruction set. The instructions available can be combined in 
many different ways to perform almost any task, making them general purpose. But this 
flexibility leads to slow/poor performance when performing these tasks since it is not 
specialized; that is, a couple of instructions have to be executed to achieve any task.

On the other end, we have application-specific integrated circuits (ASICs), which are 
extremely fast because they are custom built with a specific/single task in mind, but they 
cannot be changed once built. They also cost a lot of time and money to develop. For 
example, a chip is used to mine Bitcoin.

FPGAs are in between CPUs and ASICs on this performance spectrum.

What is an FPGA?
An FPGA is nothing more than a chip that contains thousands, sometimes millions, of 
core logic blocks (CLBs) – CLB is Xilinx terminology. A comparison can be drawn to 
the microprocessors in laptops and smartphones, among others, which are composed 
of millions of logic blocks called Lookup Tables (LUTs). These contain Boolean 
logical operations such as AND, OR, NAND, and XOR, which are also referred to as gates. 
Additionally, LUTs work by acting as an n-input function that reduces to a single output. 
This means Xilinx's UltraScale CLB has a six-input LUT architecture (though this can be 
reconfigured to two five-input LUTs with unique outputs each). So, you can implement a 
sequence of Boolean operations in the LUT (that is, a six-input function can be reduced to 
a single LUT). 

In the FPGA, the CLBs can be configured and combined to process tasks, but compared 
to CPUs, they are not bogged down by extra hardware to slow them down. FPGAs are not 
great at control-flow-heavy operations but are fantastic for data flow applications. The bog 
down that CPUs see is that FPGAs are inherently parallel in the way they operate (you are 
simultaneously evaluating many n-input functions in parallel to achieve the same result). 
Still, they aren't infinite in terms of their performance. There's a steep penalty if your logic 
functions become too complex and your data buses become too wide (therefore, slowing 
the clock rate, you can close the design's synthesis).

FPGAs do not run code but rather implement logic circuits. FPGAs let you implement 
application-specific functions directly in hardware, slower than an ASIC would be but 
faster than executing a single code path on a CPU to do the same thing, potentially. 
FPGAs can be used to carry out extremely specific tasks and perform them extremely 
quickly and can also execute tasks in parallel simultaneously. Algorithms such as trading 
strategies are implemented directly on the FPGA. 
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The first FPGA was invented in 1985; the chip had a very small capacity, and it was very 
hard to implement logic on it. Modern FPGAs have multi-million gate counts and can 
accommodate very complex and large-scale designs. The major vendors are AMD, which 
manufactured Xilinx, Intel, which designed Altera, and Achronix, among others.

Characteristics of FPGA
In this section, we will discuss the important characteristics of FPGAs, which will help 
you understand and make it obvious in the next section why HFT firms benefit greatly 
from using FPGAs.

Programmability
We have already discussed in the previous section that FPGAs contain logic-blocks/CLBs/
LUTs connected with configurable switches and flexible fabric. This makes them relatively 
easily programmable (and reprogrammable) and capable of supporting complex  
trading algorithms.

Capacity
Modern FPGAs are equipped with millions of CLBs, which yield tremendous capacity. 
Not only can the algorithms be extremely complex, but they are also capable of scaling 
tremendously. Capacity comes at the cost of physics, though; a signal needs to propagate 
across the die. Conceptually, processor dies are just the silicon semiconductor material 
on which the CPU processors reside. As the silicon dies get larger, so do the times for 
signal propagation. Capacity is huge but not unlimited. In contrast, a CPU has a few 
points where physics is your enemy; implementing an FPGA requires some knowledge of 
electrical engineering along with logic design to be successful.

Parallelism
FPGAs, unlike CPUs, do not have a fixed processor architecture – meaning no operating 
system (OS) overhead and interrupts, and so on. On FPGAs, the processing paths are 
parallel, so different functions/operations are not competing for resources but can instead 
be running in parallel. On a modern FPGA, a single chip can have 10+ code paths 
running on it simultaneously at different rates.

This parallel architecture on the FPGA is key to it being able to execute buy and sell trades 
at maximum capacity and speed. One caveat here is that the algorithms or mathematical 
computations need to be broken down into a set of tasks. Only then can they be processed 
within different cycles in parallel.
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The parallelism also makes FPGAs very resilient and capable of providing a high level 
of service. Being stable and self-contained, FPGAs make the whole HFT infrastructure 
function smoothly and makes the infrastructure resilient against changes in non-FPGA 
hardware and software.

Determinism
As explained in Chapter 4, HFT System Foundations – From Hardware to OS, when 
executing instructions on CPUs, there is an element of possible non-determinism (out-of-
order processors). Additionally, the OS and event-driven interrupts can lead to many 
control paths that lead to a lot of randomness. CPUs are great for general purpose tasks 
that evolve/change over time but not great for guaranteeing performance metrics.

With FPGAs, we can implement hardware algorithms, which leads to a high level 
of determinism. So, when there are bursts in market activity and networks can be 
overloaded with data, FPGAs can process and provide market data very quickly and with 
low variance. An FPGA goes through the same sequence of states each time, providing 
repeatable and predictable latency/performance.

We talked about FPGA features; we will now talk about how the HFT system can  
leverage FPGAs.

Diving into FPGA trading systems
FPGA trading systems are the ones that utilize low-latency, high-frequency, and 
algorithmic trading strategies. These systems need to perform many different tasks and do 
so within a few nanoseconds. Some of the tasks that such a system would need to perform 
are described in the following subsections.

Market data
The very first task of an FPGA is to analyze market data from multiple stock exchanges. 
This involves building the network protocol stack and addressing components such as 
the Ethernet layer, the Internet Protocol (IP) layer, the User Datagram Protocol (UDP) 
layer, and market data protocols.
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Network stacks
Since network input/output (I/O) is handled at the kernel and OS layers in an FPGA 
setup, building the network stack on the FPGA is often the first step in optimizing a 
trading system. This means handling the Ethernet layer, the IP layer, the UDP layer, and to 
some extent, the transmission control protocol (TCP) layer. There are also opportunities 
to use hybrid stacks – there's a TCP stack that runs on the host to deal with weird 
circumstances, while the FPGA can receive TCP market data and decode it until one of 
these weird states happens (which is rare). The TCP straight in an FPGA is doable but 
difficult and often a non-elegant solution.

Feed arbitration and replication
Most trading exchanges disseminate market data on multiple channels for redundancy 
and fairness reasons. FPGA feed handlers that consume market data need to handle A/B 
feed arbitration (in HFT, it is pretty common to have two channels of communication, A 
and B, for redundancy when receiving market data) and deal with the redundant feeds. 
Conversely, trading exchanges or market data providers also need to use similar FPGA 
technology to process and distribute large volumes of market data updates.

Feed parsers and normalizers
FPGA feed handlers need to process different market data protocols – the FIX Adapted 
for STreaming (FAST) protocol is a very common example. Even the market data 
update semantics can differ based on the exchange, and FPGA market data parsers and 
normalizers need to deal with these optimally.

Trading signals
After processing market data received from the exchange, the next step is to calculate 
different trading signals for the algorithm to find trading opportunities. These trading 
signals find mispricing in prices and/or orders to see where some profitable trading 
possibilities exist.

Low-latency execution algorithms
After the trading signals/models are updated based on new market updates, we use the 
output to exploit fleeting trading opportunities by sending orders as quickly as possible to 
the market. Algorithms have to be extremely high-performant to beat other orders, that is, 
get to the exchange before other orders rush for the same opportunity.
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Considerations
FPGA trading systems need to be easily customizable and capable of being optimized and 
tested when handling live updates. Another consideration is to push trading algorithms 
as close to the Network Interface Cards (NICs) and minimize system latencies to the 
maximum possible extent. In this first part, we introduced FPGAs, their characteristics, 
and how they can be used in HFT systems. We will now talk about the advantages of 
trading systems built with an FPGA.

Advantages of FPGA trading systems
This section will investigate the advantages that HFT firms get from using FPGAs. In 
Chapter 1, Fundamentals of a High-Frequency Trading System, we explained the advantages 
of using HFT systems. FPGAs help make HFT systems even faster. This section will 
summarize the main benefits of using FPGAs in trading systems.

Higher profits
HFT algorithms that use FPGAs can beat other participants by being able to execute 
orders at a price before others. FPGA algorithms can detect and act on opportunities 
before other participants have a chance to react, and execution at the best prices leads 
to increased profits right away. The reprogrammable nature of FPGAs means you can 
change the algorithm's behavior and trading parameters quickly and stay ahead of the 
competition. The scalability that FPGA trading systems offer leads to being able to execute 
multiple trades on many instruments simultaneously and leads to even higher revenues. 
FPGA-based trading systems also allow HFT firms to create safer trading environments, 
save expenses, and so increase revenue even more.

Security compliance
Over the past several years, trading operations and HFT specifically have come under 
increased tightening of regulations and risk management. HFT firms have, therefore, been 
forced to look for new solutions to monitor trading activities and detect/handle potential 
losses. Traditional CPU-driven systems often have a limitation of being able to view/
compute portfolio risks instead of being in real time, so not providing the required level of 
security. FPGAs allow for near-real-time risk assessment on portfolios and allow firms to 
meet the stringent risk/regulation requirements that regulatory bodies ask for.
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Cheaper maintenance
Relying on FPGAs means HFT businesses can reduce expenses related to the maintenance 
of computer systems. A single well-designed FPGA can replace a lot of generic CPUs and 
help bring down company expenses by saving on energy costs, office rentals, and system 
cooling expenses. Being reprogrammable also means that the device can be modified  
after installation to meet evolving requirements, which leads to more cost savings related 
to maintenance.

Disadvantages of FPGA trading systems
We have discussed the advantages that having an FPGA brings to HFT firms; now, this 
section will look at what disadvantages an FPGA system has.

Hardware cost
FPGA chips are expensive; they can sometimes be significantly more expensive than 
traditional servers. Traditional servers are also a more cost-effective solution when it 
comes to running many processes that are not super performance sensitive. FPGAs tend 
to be hosted inside a normal server anyway, so FPGAs do not replace traditional servers. 
So, depending on the applications, if the systems are not well thought out and well 
designed, FPGA chips can lead to many hardware costs.

Development and debugging cost
FPGA chips are much harder to program algorithms for than traditional CPUs. Verilog 
is generally harder to develop, debug, and troubleshoot algorithms than traditional 
languages such as C, C++, Java, and so on. The tools and APIs available are much 
fewer too and quite limited for FPGAs compared to other languages. Debugging FPGA 
algorithms is also much harder than debugging traditional algorithms due to limited 
logging abilities and complex decision paths on the chip.

Additionally, there are many capable developers for traditional software development 
languages, but finding FPGA developers is harder due to less availability and higher costs. 
There are ongoing efforts to make the development process itself easier and faster. New 
tools are emerging, such as high-level synthesis tools that convert algorithms to gate-
level designs. They have limitations but could support rapid time-to-market or at least 
prototyping. There are a lot of such tools on the market today, but some popular examples 
would be Simulink (provided by Matlab), ISE, Vivado, Vitis, ChipScope (provided by 
Xilinx), and Altera Quartus (provided by Intel; Altera was a company acquired by Intel).
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Added trading risk
Generally, FPGA-driven HFT systems and trading algorithms reduce the risk caused by 
failing software components. But poorly designed or tested FPGAs can have the opposite 
impact and increase risks. This can be from bugs in the FPGA systems that only trigger 
under certain market conditions and/or trading parameters, leading to incorrect FPGA 
behavior. Another factor with FPGA systems is that they are extremely fast in their 
reactions and order executions, which means that a berserk FPGA system issue can 
cause significant losses before traditional risk systems can detect the problem and shut 
them down. In all these cases, firms experience substantial trading losses, regulatory and 
compliance actions/fines, and can even go bankrupt due to massive losses.

Strategy complexity limits
As mentioned in the What is FPGA? section, FPGAs are best suited for designing 
algorithms that maximize the parallel architecture and deterministic nature of FPGAs. 
Additionally, building and debugging algorithms for the FPGA is an expensive, time-
consuming, and complicated process. Both these factors mean a limit to how complex 
a trading strategy/algorithm can be built for the FPGA to maximize its benefits. So, 
implementing a very difficult algorithm with a lot of complex statistical signals, machine 
learning components, and execution behavior on FPGAs is not realistic/practical.

Final words on FPGAs
The fierce competition for speed in HFT has been an ongoing phenomenon since the 
year 2000 and is unlikely to end anytime soon. HFT firms will need to continue adopting 
emerging technological innovations to maintain their edge in the market, and failure to do 
so might lead to losses and extinction.

FPGAs, which we discussed in this section, are an example of these recently emerged 
technologies. The parallel architecture and deterministic nature allow FPGAs to deliver 
the lowest possible latencies in processing market data and order executions. Using 
FPGAs to accelerate HFT engines to nanoseconds provides many business benefits, such 
as increased trade volumes and higher profits.

In Chapter 6, HFT Optimization – Architecture and Operating System, and Chapter 7, HFT 
Optimization – Logging, Performance, and Networking, we enounced the main guidelines 
to optimize hardware and software for HFT. We saw in all the other chapters how to apply 
these optimizations concretely with C++, Java, and Python. The FPGA finishes this book's 
quest of making trading systems faster. We will now talk about the opposite in terms of 
performance: HFT for cryptocurrencies.
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Exploring HFT with cryptocurrencies
In this section, we will describe the differences between HFT in cryptocurrencies and 
HFT in traditional assets. There are many other resources on crypto-assets, such as 
Packt's Complete Cryptocurrency and Blockchain Course (video) written by Ravinder Deol, 
Rob Percival, and Thomas Wiesner (https://www.packtpub.com/product/
data/9781839211096). We will focus on the HFT in crypto by explaining how 
transactions work and how the exchange works to build low-latency transactions in this 
area. Cryptocurrencies have been getting into the trading world since Bitcoin became a 
major value on the crypto market. More and more companies got attracted by the benefit 
of trading cryptocurrencies. Like any other assets, hedge funds and trading firms started 
building HFT systems for digital assets.

What is crypto?
Cryptocurrencies are digital assets that are produced with the use of computer networking 
software. This computer network is not reliant on any central authority, such as a 
government or bank, to uphold or maintain it. Bitcoin (BTC) and other cryptocurrencies 
use blockchain technology, and it keeps track of who owns something and produces a 
tamper-proof record of transactions. This is a totally decentralized system.

The term cryptocurrency refers to the cryptographic techniques used by developers to 
combat fraud. These breakthroughs solved a problem that plagued previous attempts to 
develop totally digital currencies: how to prevent users from replicating their holdings and 
spending them twice.

Individual units of cryptocurrency are referred to as coins or tokens. Some are exchange 
units for goods or services, while others are designed to help computer networks that 
undertake more complex financial transactions function.

The way to produce Bitcoin is through mining. Mining is a time-consuming process. This 
process involves computers solving difficult puzzles to verify the legitimacy of network 
transactions. Owners of those computers may be rewarded with newly created Bitcoin. 
Other cryptocurrencies create and distribute tokens in different methods, with some 
having a far smaller environmental impact.

How do crypto transactions work?
Even if we can buy crypto assets using decentralized transactions, a centralized exchange 
is likely the most accessible for new traders. Customers have more trust in centralized 
exchanges regulating transactions as a third party. These exchanges make money by 
collecting fees for various services and selling cryptocurrency at market prices.

https://www.packtpub.com/product/data/9781839211096
https://www.packtpub.com/product/data/9781839211096
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There are decentralized exchanges for more advanced traders, with cheaper costs 
than those paid by centralized systems. They are harder to utilize and need more 
technical expertise, but they may provide some security benefits because no one 
target for a cyberattack exists. Peer-to-peer transactions are another way to exchange 
cryptocurrencies. We have defined what digital currencies are, so we will now learn how 
they are built.

What is a blockchain?
A blockchain is a distributed data ledger. It maintains the transaction history for each 
crypto unit, showing how asset ownership has changed over time. New blocks are added 
to the chain's frontend when transactions are recorded in blocks. A blockchain file is 
always kept on several computers throughout a network rather than in a single location. 
It is often available to all network users. Because there is no one weak spot vulnerable to 
hacking, human mistakes, or software mistakes, it is both transparent and difficult  
to modify.

Cryptography (a combination of advanced mathematics and computer science) connects 
the blocks. Any attempt to alter data disrupts the cryptographic links between blocks, 
allowing machines on the network to quickly recognize it as fake.

What is cryptocurrency mining? 
Cryptocurrency mining refers to checking recent crypto transactions and adding new 
blocks to the blockchain. Mining computers choose pending transactions from a pool 
and verify that the sender has enough money to finish the transaction. This is done by 
comparing the transaction information to the blockchain's transaction history. A second 
check verifies that the sender used their private key to authorize the cash transfer. 

Mining machines assemble legitimate transactions into a new block and try to discover 
a solution to the complicated process of building the cryptographic link to the previous 
block. When a machine successfully generates the link, it saves the block to its copy of the 
blockchain f﻿ile and broadcasts the change to the rest of the network.

Similarities between traditional asset trading and 
cryptocurrency trading
We will first look at the main similarities between these two worlds.
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What drives the price of cryptocurrencies? 
Like the traditional markets, markets for cryptocurrencies are driven by supply and 
demand. Due to their decentralized nature, they may sound immune to many economic 
and political issues plaguing traditional currencies. However, we can still observe some 
correlation between economic metrics and crypto-asset prices.

By comparing the traditional asset, we can notice that the following variables can have a 
significant influence on their prices: 

•	 The total quantity of coins in circulation and the speed they are released and 
removed will also impact the price.

•	 Market capitalization refers to the total worth of all currencies in circulation, as well 
as how users perceive this value to be changing. 

•	 The way some crypto-assets are perceived in the media and their popularity.

•	 Integration: Easiness of integrating into existing infrastructure.

•	 Regulatory events and security issues can impact cryptocurrencies and  
traditional assets.

All these parameters can also be a part of price movements for regular stocks, bonds,  
or other derivatives. The factors that are specific to cryptocurrencies are described  
as follows.

Cost of production
Mining is the process of creating cryptocurrency tokens. The capacity of cryptocurrency 
to function is thanks to a decentralized network of miners. The protocol creates 
cryptocurrency tokens and any fees paid to the miners by the trading parties. As mining 
expenses grow, so must the value of the cryptocurrency. Miners will not mine if the 
mining money is not worth paying their expenses. Because miners are necessary to 
operate the blockchain, the price will have to climb as long as demand exists.

Cryptography exchanges
Bitcoin and Ether, two popular cryptocurrencies, are traded on various platforms. The 
most popular tokens are listed on every exchange. On the other hand, some smaller 
tokens may only be available on a few exchanges, limiting access to some investors. Some 
wallet providers will compile quotes for any collection of cryptocurrencies from many 
exchanges, but they will charge a fee, increasing the cost of investing. In addition, if a 
cryptocurrency is lightly traded on a tiny exchange, the spread taken by the exchange may 
be too wide for certain investors. More exchanges listing a cryptocurrency can increase 
the number of investors ready and able to acquire it, therefore, raising demand. When 
demand rises, so does the price.
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Market participants and competitors
There are dozens of different cryptocurrencies, and new projects and tokens are launched 
daily. New rivals have a low entrance barrier. However, developing a viable cryptocurrency 
also involves the creation of a cryptocurrency user network. A useful blockchain 
application may quickly build a network, particularly if it fixes a defect in a competitor's 
service. If a new competitor develops traction, it depletes the value of the incumbent, 
causing the incumbent's price to fall while the new competitor's token's price rises.

Crypto-specific governance
Cryptocurrency networks seldom follow a set of rigid rules. Developers make changes 
to projects depending on the feedback they receive from the community. Some tokens, 
known as governance tokens, allow their owners a vote in how a project develops in the 
future, including how a token is mined and utilized. Stakeholder consensus is required 
before any modifications to a token's governance can be implemented. Going from a 
proof-of-work to a proof-of-stake system will render most of the expensive mining 
equipment in data centers and people's basements obsolete. Cryptocurrency values will 
surely be affected as a result of this. The long process of updating software to improve 
protocols, on the other hand, may limit the upside potential of Bitcoin values. It is 
detrimental to present stakeholders if an update that would unleash value for Bitcoin 
investors takes months to implement.

Crypto-specific regulations
Cryptocurrencies are securities or commodities. Securities and Exchange Commission 
(SEC) or Commodity Futures Trading Commission (CFTC) could eventually regulate 
the crypto assets. There is no clear way of knowing which one of them will apply rules 
to this type of trading. However, the regulation will help the trading of these assets. 
Exchange-Traded Funds (ETFs) and futures contracts, for example, provide investors 
wider access to cryptocurrencies, enhancing their value.

Furthermore, regulation may allow investors to take short positions or gamble against 
the price of cryptocurrencies via futures or options contracts. This should result in more 
accurate price discovery and less volatility in Bitcoin pricing. Meanwhile, if a government 
creates rules against crypto, the crypto value will drop significantly.
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What type of orders and in what market can we trade 
cryptocurrencies?
The same basic trading order types are available on most retail trading platforms: 

•	 Market order

•	 Limit order

•	 Stop order

Most decentralized exchanges (DEXs) only provide market orders at the moment, 
whereas most big, centralized exchanges (CEXs) offer a full range of orders (market, 
limit, stop, and others). Additional crypto exchanges are expected to include 
these capabilities as the crypto trading ecosystem grows. While buying and selling 
cryptocurrencies on platforms designed for easy user experiences may be quite similar, 
there are numerous key differences when dealing with these two distinct asset classes.

What is the spread in cryptocurrency trading?
The spread is the difference between an asset's advertised on top of the orderbook for buy 
and sale prices. When you open a position on a crypto market, we observe two prices, 
much like many other traditional marketplaces. You trade at the purchase price, which 
is slightly above the market price, to begin a long position. You trade at the selling price, 
which is somewhat below the market price, if you wish to initiate a short position.

In crypto trading, what is leverage? 
Leverage is a method of acquiring many cryptocurrencies without paying the entire worth 
of our deal upfront. Instead, we make a tiny down payment called a margin. When we 
terminate a leveraged position, the entire magnitude of the trade determines your profit or 
loss. This can be similar to trading, except that the leverage in crypto is much higher than 
traditional asset leverage. Since crypto is very volatile, the risk of loss is very high.

What is the definition of a margin in crypto trading? 
In leveraged trading, the margin is a crucial component. It's the term for the initial 
deposit made to open and maintain a leveraged position. Keep in mind that your margin 
requirements will vary depending on your broker and the size of your transaction when 
trading cryptocurrencies on a margin. The margin is expressed as a proportion of the 
entire position.
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Traditional futures contracts versus perpetual futures contracts
Traditional futures contracts have an expiration date that is quite critical when trading to 
determine the asset value, and the settlement procedure begins when a contract expires. 
Traditional futures contracts are typically settled every month or quarter, and the contract 
price converges with the spot price at settlement, and all open positions expire. Crypto-
derivative exchanges frequently provide perpetual contracts structured similarly to regular 
futures contracts.

Perpetual futures contracts have a significant advantage. Traders can retain holdings 
without an expiration date and do not need to keep track of different delivery months, 
unlike traditional futures contracts. A trader can keep a short position open indefinitely 
unless they are liquidated. As a result, perpetual trading contracts and trading pairs on 
the spot market are extremely similar. Since perpetual futures contracts never settle, 
exchanges require a system to ensure that futures and index prices regularly converge: a 
funding rate.

It is possible to short in the future market, but you need to store beta value for the 
underlying crypto-asset in the spot market. For example, if we want to trade a BTCUSD 
(Bitcoin/USD) pair with a short position, we need to purchase enough BTC and store  
it in our account before initializing our trading. This pre-purchased BTC action is our 
beta. Some exchanges offer lending options to encourage trading more but with some 
interest rates.

Funding rates
Funding rates are payments made to long or short traders depending on the difference 
between perpetual contract markets and spot prices regularly. Traders will either pay 
or get funds depending on open positions. Crypto funding rates avoid long-term 
price disparity in both markets. It is recalculated numerous times during the day, and 
depending on the exchanges, it can be calculated more often.

The idea behind the funding rate is to measure how expensive it is to open a position in 
the futures market.
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The two basic components of funding rates are the lending rate (the cost to borrow the 
coin needed to short) and the premium (difference between futures and spot market). 
The interest rate on some crypto exchanges is fixed at a small percent every day. In the 
meanwhile, the premium is determined by the difference in price between the perpetual 
contract and the market price. The perpetual contract and the market prices may differ 
during periods of extreme volatility. In such cases, the premium rises or falls under the 
situation. A wide spread means a big premium. A low premium, on the other hand, shows 
a limited gap between the two prices. Funding rates may have a significant influence on 
earnings and losses since funding calculations take into account the level of leverage 
applied. Even in low-volatility markets, a trader who pays for funding may experience 
losses and be liquidated due to high leverage.

On the other hand, collecting funds may be quite profitable, especially in range-bound 
markets. As a result, traders may devise trading methods to profit from funding rates, 
even in low-volatility markets. Funding rates encourage traders to adopt positions that 
align perpetual contract prices with spot markets.

To come back to the perpetual contract, if the perpetual price is higher than the spot price, 
whoever has the long position needs to pay the short position holder. On the other hand, 
if the perpetual price is lower than the spot price, the funding rate becomes negative, and 
whoever shorts pays the one in a long position. The funding rate can potentially become a 
cost or a benefit of the margin. This last part concludes the similarities between traditional 
trading and crypto trading. We will talk about the main differences next.

Main differences between traditional asset trading 
and cryptocurrency trading
The following components are the most important differences between traditional and 
crypto trading.

In crypto trading, what is ownership?
Stock shares are securities that reflect a proportion of ownership (or equity) in a firm, 
known as the issuer. Owners of stocks often get voting rights or a share of the issuer's 
earnings in the form of dividends. On the other hand, cryptocurrencies differ a lot in 
terms of how they're utilized and what they're supposed to stand for.
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Many digital assets, such as Ethereum (ETH), Basic Attention Token (BAT), and 
VeChain Token (VET), are utility tokens designed to be utilized inside a blockchain-
based ecosystem and do not reflect a legal interest in the company that issued them. Many 
cryptocurrencies, such as BTC and stablecoins, do not have clear use cases connected 
to actual company activities and are meant to store value. Although these assets are best 
thought of as digital commodities akin to gold, they do not represent an interest in a 
company or its activities.

What is market access?
Stock trading is often constrained to established business hours for most investors. Crypto 
markets never close, allowing anyone to take fresh positions and enter—or quit—the 
market at any time, regardless of where they live. The crypto markets trade actively during 
the intersection of the Asian time zone and the USA time zone.

What are the limits on issuance?
Publicly-listed firms that issue stock may choose to issue new shares, subject to the 
company's internal restrictions and any applicable local legislation. The entire supply of 
a cryptocurrency, on the other hand, is determined by the issuing organization's internal 
regulations or the blockchain protocol code it was developed with, rather than by-laws or 
policies. Furthermore, crypto projects may impose demonstrable and unchangeable hard 
restrictions on their entire coin supply easily and transparently.

What are the trading pairs?
Unlike equities, which are normally acquired and sold with fiat currencies, 
cryptocurrencies may be purchased and sold using trading pairs, allowing two 
cryptocurrencies to be directly traded. As BTC and ETH are two of the most widely 
traded cryptocurrencies, most trading pairings include one of them. If you wish to trade 
one cryptocurrency for another, you'll almost certainly need to swap the altcoin you want 
to trade for something more popular, such as BTC. Then, you may swap that BTC for the 
cryptocurrency you choose.

Suppose you wish to avoid numerous steps while exchanging one low-market-cap 
currency for another. In that case, you might choose to use one of the many DEXs that can 
execute these types of trades utilizing automated market makers (AMMs). While most 
stock brokerages provide fiat on- and off-ramps, not all cryptocurrency exchanges allow 
users to deposit and withdraw fiat. This means that you won't be able to buy crypto-assets 
using fiat on some exchanges.
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When trading crypto, what does liquidity look like?
When trading low-cap coins and tokens or buying and selling on smaller crypto 
platforms, investors may confront poor liquidity. In stock trading, liquidity concerns can 
arise, especially when dealing with micro-cap companies or over-the-counter (OTC) 
penny stocks.

Is there any transparency in crypto?
Publicly traded companies must maintain transparency, which is typically achieved 
through quarterly financial updates, annual reports, regular shareholder meetings, and 
other official means of informing investors about past performance and expected future 
earnings. While corporations that raise money through a Security Token Offering 
(STO) may be subject to similar reporting obligations, crypto initiatives are not subject to 
regulatory scrutiny as publicly traded companies.

Many crypto markets do not compel individual projects to share data regularly, making 
it difficult for investors and industry analysts to adequately analyze how specific crypto 
projects are functioning and whether their assets are worth investing in. On the other 
hand, many crypto projects try to be transparent in terms of community updates and 
open governance. Transparency is one of the primary concepts of crypto and blockchain, 
and most high-quality projects strive to adhere to it.

Since this book is about HFT, we will now focus on learning to trade with  
cryptocurrency exchange.

Trading with cryptocurrency exchange
As we described previously, a digital currency exchange (DCE) is another name for a 
cryptocurrency exchange. It's a website that allows users to convert their money into 
cryptocurrency and vice versa. The majority of exchanges are primarily focused on 
helping us swap a cryptocurrency such as BTC into other digital currencies, such as ETH 
or other crypto-assets.

Although most exchanges operate online, there are a few physical locations. Traditional 
payment methods and cryptocurrencies can both be exchanged on these exchanges. These 
alternatives are comparable to currency exchange kiosks seen in international airports, 
where you can exchange your home currency for the currency of another country.
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The following are the most well-known types of cryptocurrency exchanges. 

•	 CEXs are comparable to regular stock exchanges in that they are centralized. 
Traditional stock exchanges are similar to CEXs, and traders are brought together 
and the exchange acts as a third party. These exchanges often demand a fee to ease 
transactions between buyers and sellers. Centralization implies to entrust your 
money to someone else in the crypto industry. HFT crypto trading will mainly work 
with this kind of exchange.

Examples of CEXs include Binance, Coinbase, and KuCoin.
•	 DEXs aspire to keep faithful to the cryptocurrency industry's pure premise. A DEX 

does not need an intermediary to store coins, and it's an online marketplace where 
buyers and sellers meet and conduct business directly. DEXs, in other words, make 
peer-to-peer trading easier.

You may exchange crypto-assets directly with other market players on a DEX. Smart 
contracts and atomic swaps can be used to make transactions. Atomic swaps allow 
you to trade one cryptocurrency for another without going via a CEX. A smart 
contract is a piece of code self-executing the term of a contract. It is the foundation 
of atomic swaps.

Instead of providing cryptocurrencies to the CEX, we will provide them to an 
escrow controlled by the network that runs the exchange with the DEX, smart 
contracts, and atomic swaps. Because transactions can take up to 5 days to clear, the 
escrow is still in place. As a buyer, your money will be taken out of your account 
right away, but the funds will not be sent to the seller's account until the crypto 
transaction has cleared. 

Because of the latency involved in any transactions, performing high-performance 
trading on this kind of exchange will be difficult.

Examples of DEXs include UniSwap, PancakeSwap, and SushiSwap.
•	 Hybrid cryptocurrency exchanges are the next-generation cryptocurrency trading 

platforms. They are a hybrid of CEXs and DEXs. Hybrid exchanges, also known 
as semi-decentralized exchanges, include on-chain and off-chain parts. Off-chain 
transactions shift the value of your crypto-asset away from the blockchain. The 
hybrid approach to cryptocurrency exchanges combines the advantages of both 
CEXs and DEXs. Hybrids, in particular, aim to combine the functionality and 
liquidity of a CEX with the anonymity and security of a DEX. Many people believe 
that such exchanges are the true future of BTC trading. 
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Hybrid exchanges aim to give institutional users the same speed, simplicity, and 
liquidity that they expect from regular exchanges. The centralized aspects of a 
hybrid exchange are linked to a network of decentralized peers. Market participants 
can access the trading platform as they would on a CEX and then trade with their 
peers as they would on a DEX. The hybrid then offers blockchain confirmation and 
records transactions. 

Examples of hybrid exchanges include Qurrex and NEXT.
These exchanges cannot be found in a co-location where the trading will happen, and 
most of the time, they are located in the cloud. In the How to build a trading system in the 
cloud section, we will describe how to build a trading system in the cloud, unsurprisingly. 
Therefore, the main advantage we have with traditional trading in terms of latency by 
being in the same location as the exchange will not work for cryptocurrencies.

It is possible to know in which region the exchange (or the matching engine) is located. 
Therefore, it is possible to have an edge in speed over the other participants.

More recently, some exchanges have decided to have their matching engine in colocation, 
inviting participants to join them to perform HFT.

Using cryptocurrency market data
The data offered by a crypto exchange is Kline data, Level 1, and Level 2 data. The K line 
depicts the daily fluctuations in stock prices; it displays the close, open, high, and low 
prices for the day and illustrates the difference and magnitude between any two values.

The price quoting per IP is unlimited for VIP clients or some major market participants 
(depending on the volume they trade). But for regular clients, there are some quoting 
limits for each IP. Some newer exchanges use snapshots on data distribution, but the 
bigger exchanges use data streaming, creating some arbitrage opportunities.

For HFT, it is important to record any market data. This is because exchanges previously 
encountered technical issues pretty frequently, and we observe gaps in the historical 
data. An exchange typically chooses to interpolate data, which can be inefficient on the 
execution backtest.

Being aware of exchange fees
Transactions are charged in a variety of ways through exchanges. Customers are charged 
fees, which is how the exchange generates money to continue the business. The most 
popular technique is when the exchange takes a commission of the money we trade. Most 
exchanges charge a percentage of less than 1% to remain competitive.
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Unlike traditional trading, there are a lot of trading exchanges in crypto trading. It is 
difficult to have enough liquidity. Because DEXs are less common than CEXs, matching 
orders with other orders you buy or sell on a DEX may be more challenging. This is a 
vicious circle since DEX liquidity will stay low as long as they are less popular, and DEXs 
may stay unpopular as long as liquidity remains low. That is why, for the time being, CEXs 
are more popular than DEXs in HFT.

Additionally, a CEX will give rebates or lower their commission if traders add liquidities. 
As in traditional trading, a market-making strategy using a rebate to make money will 
work in this type of exchange.

In crypto, the transaction fees are 20 to 30 times higher than in traditional markets. In 
an exchange-based market such as Binance and Huobi, we pay a transaction fee by quote 
coins (indicating a lot of arbitrage room); in the non-fungible tokens (NFT) market, we 
pay a transaction fee called gas, which is in ETH.

Some exchanges, such as Binance and Huobi, have their market-making reward program 
by issuing rebates to qualified market makers who can successfully trade their assigned 
coins. This can help the rebate earning trading strategy.

Not being capable of selling (or liquidating) an investment promptly and at an acceptable 
price is likely to happen on any crypto exchange. For any traded asset, liquidity is critical. 
The foreign exchange (FX) market is the most liquid in the world, and lack of liquidity 
may concern any market, including the FX market. If you trade currencies with a small 
amount of volume, you can conclude your deal since the prices just won't change.

Illiquidity may occur with cryptocurrencies as well. It is one of the issues that contributed 
to the extreme volatility of BTC and other cryptocurrencies. When liquidity is scarce, 
there is a greater possibility of price manipulation.

When an initial coin offering (ICO) occurs on a crypto exchange, the exchange and the 
company doing its ICO will use market makers to help to sell their digital assets. When 
the assets are on the exchange, the market maker will help facilitate transactions. A crypto 
exchange will play a big part in the trading aspect of the exchange by increasing liquidities 
artificially. Some trading strategies such as spoofing can be used, and the best available 
prices may not be available.

The likelihood of being filled on the top of the book of a crypto exchange will be much 
lower than the one on a trading exchange. In HFT, we need to compete against the market 
maker associated with the exchange, which will make the trading a bit more challenging.

We will now talk about the type of trading strategies working in the cryptocurrency world. 
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HFT strategies in crypto
In Chapter 1, Fundamentals of a High-Frequency Trading System, we explained 
HFT-specific trading strategies. In this section, we will talk about cryptocurrency-specific 
strategies.

Market making
One of the most tried-and-true HFT tactics is market-making. It entails the continuous 
and simultaneous quotation of buy and sell orders. Market-making is a financial 
instrument that adds liquidity to the market and benefits the high-frequency traders 
engaged. Market makers are traditionally provided by large companies or HFT firms, 
which is regarded as a positive practice in the financial markets.

Statistical arbitrage
This is the act of betting on the price difference between two exchanges of the same 
cryptocurrency. The first trader to identify these inconsistencies generally uses the 
knowledge. To perform statistical arbitrage, you'll need powerful and quick processing 
machines and up-to-date HFT software. Balancing prices has the overall effect of 
equilibrating the market. 

Smart router trading
High-frequency traders can access liquidity pools simultaneously, choose the optimum 
order routing destination, and improve order execution. The best bid and offer bids for a 
certain order are scanned in a pre-defined or real-time market, resulting in the best price.

Maximizing short-term opportunities
Scalping is a word used to describe leveraging short-term possibilities. HFT uses powerful 
computers with the processing power to execute several orders in a fraction of a second. 

Maximizing the trading volume
Traders use automation to their advantage via HFT, also known as high-speed trading. 
These high-frequency traders can not only execute large numbers of trades, but they also 
profit from even small price movements.
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Building a high-frequency system for crypto trading
Data storage is a priority in all industries, as computer and mobile users have increased. 
Today's large and small organizations rely on their data, and they spend a lot of money 
to keep it up to date. It needs solid IT support as well as a storage hub. Not every 
company can afford the hefty costs of in-house IT equipment and backup support. Cloud 
computing is a less expensive option. Cloud computing reduces the user's hardware and 
software requirements. 

Like a lot of other domains, crypto started using cloud services heavily. The HFT system 
we described in the previous chapters can also be used in the cloud.

Types of cloud
We can use the cloud in different ways:

•	 Private cloud: Computing resources are deployed for a single enterprise in a private 
cloud, where they are managed, owned, and operated by the same company. 

•	 Community cloud: Computing resources are supplied for a community and 
organizations in the community cloud. 

•	 Public cloud: This cloud is often used for business to consumer (B2C) interactions. 
The computer resource is owned, managed, and administered by the government, 
academic institutions, or corporations. 

•	 Hybrid cloud: The computer resources are connected by distinct clouds; this 
deployment strategy is known as a hybrid cloud.

We saw the different types of cloud solutions; we will now talk about the benefits of using 
the cloud for trading systems. 

Benefits of cloud computing
Most of the crypto exchanges adopted cloud services because of the potential for cost 
savings and the short time-to-market. Cloud computing allows the flexibility to utilize 
services as needed and only pay for what's needed. We can run IT operations as an 
outsourced unit without many in-house resources. Additionally, the cost to get engineers 
is pretty high, and assembling a technical team can be pretty time-consuming.

The main advantages of cloud computing are as follows:

•	 Users' IT infrastructure and computing expenditures are reduced, resulting in  
better performance. 

•	 There are fewer maintenance difficulties. 
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•	 Updates to the software are available immediately. 

•	 Compatibility across operating systems has been improved. 

•	 Recovery and backup. 

•	 Scalability and performance. 

•	 Increased data security due to increased storage capacity.

The three major cloud computing models are described in the following sections.

Software as a service (SaaS)
SaaS is a software distribution model in which vendors or service providers host programs 
and make them available to clients through the internet. As foundational technology 
for service-oriented architecture (SOA) or web services, SaaS is becoming a more 
common delivery paradigm. This service is available to people all around the world via the 
internet. Traditionally, the software had to be purchased in advance and installed on your 
computer. SaaS consumers, on the other hand, rather than acquiring software, subscribe 
to it monthly via the internet. Anyone who requires access to a certain piece of software, 
whether one or two people or thousands of employees in a company, can register as a user. 
All internet-enabled devices are compatible with SaaS. Accounting, sales, invoicing, and 
budgeting are just a few of the critical duties that SaaS can help you with.

Platform as a service (PaaS)
PaaS provides a platform and environment for developers to create applications and 
services. Users can access this service over the internet because it is housed in the cloud. 
PaaS services are updated regularly, and new features are added. PaaS can help software 
developers, web developers, and businesses. It serves as a platform for application 
development. It covers software support and administration, storage, networking, 
application deployment, testing, collaboration, hosting, and maintenance.

Infrastructure as a service (IaaS)
IaaS is a cloud computing service model. It gives users online access to computer 
resources in a virtualized environment known as the cloud. It offers virtual server space, 
network connections, bandwidth, load balancers, IP addresses, and other computer 
infrastructure. The group of hardware resources is formed from a range of servers and 
networks spread across several data centers. IaaS gains redundancy and dependability as 
a result of this. IaaS is a comprehensive computing solution. It is one of the options for 
small organizations wanting to save costs on their IT infrastructure. Maintenance and 
the purchase of new components such as hard drives, network connections, and external 
storage devices cost a lot of money every year.
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We will now talk about the component managing the virtual machines (VMs):  
the hypervisor.

Hypervisor
A hypervisor is a piece of software, firmware, or hardware that allows the construction 
and operation of VMs on computers. A host machine is a computer on which a hypervisor 
runs one or more VMs, and each virtual system is referred to as a guest machine. 
Resources such as CPU, memory, and storage are treated as a pool by the hypervisor, 
which may be readily reassigned between current guests or new VMs. Because the guest 
VMs are independent of the host hardware, hypervisors enable the usage of more of a 
system's available resources and give more IT mobility. The hypervisor is also known as a 
virtualization layer since it allows them to be easily transferred across multiple systems. 
A single physical server can support several VMs.

Figure 11.1 represents two types of hypervisors:

Figure 11.1 – Types of hypervisor

Type-1, native, or bare-metal hypervisors
These hypervisors operate directly on the host's hardware to control the hardware and 
administer guest operating systems. As a result, they're sometimes referred to as bare-
metal hypervisors. This form of hypervisor is most popular in corporate data centers or 
other server-based environments.
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Type-2 or hosted hypervisors
Like other computer applications, these hypervisors run on a standard OS. On the host, 
a guest operating system runs as a process, and guest operating systems are abstracted 
from the host operating system by type-2 hypervisors. Individual users who want to run 
various operating systems on a personal computer should utilize a type 2 hypervisor. The 
trading system will run on the application level on the type-1 hypervisor. Cloud service 
providers will provide different hypervisors in different regions and availability zones. The 
goal will be to have the trading system and the exchange in the same availability zone to 
perform low latency operations. Figure 11.2 represents how cloud providers organize their 
availability zones and regions:

Figure 11.2 – Availability zone and regions

In this part, we reviewed the cloud structure. It is critical for HFT in crypto since you will 
need to be as close as possible to the availability zone where the crypto exchange is when 
we do HFT with a CEX.

We will now study how to build a trading system in the cloud.

How to build a trading system in the cloud
There are three major cloud service providers (CSPs): Amazon Web Services (AWS), 
Google Cloud Platform (GCP), and Microsoft Azure.
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The choice between providers will depend on the cost and the managed services you are 
familiar with. It would be difficult to advise one CSP over another one in this section. 
Their offering is pretty similar in terms of hardware, operating system, and open source 
software you can use. All of them have professional service teams that can help you to 
design the trading system. If we could recommend a CSP, we would choose the CSP based 
on the crypto exchange location you target for your HFT strategies.

Solution 1 – Running our HFT on a CSP
We first need to choose the region where the application will be running. This region 
should be the closest to the exchange. We will need to create the following components on 
the CSP of your choice:

•	 Computing instance

•	 Type of VM

•	 Storage instance

A computing server instance such as Amazon's Elastic Compute Cloud (EC2), Google 
Compute Engine (GCE), or Azure VM is required for running applications on the CSP 
infrastructure. It may be used to create an almost infinite number of VMs.

It is critical to know what type of VM you will spin up. Choosing the wrong type of 
hardware will not give you a performant architecture for HFT. You need to consider the 
number of cores, the memory, the storage, and of course, the type of network card.

We will need to apply the same rules we used during the previous chapters. Always 
remember that if you want to have a performant system in HFT, having many cores will 
help you to get better performance if the system you build works with many processes. 
Once you have selected the type of hardware, you will need to choose the OS you want 
to use. All the CSPs will give similar types of operating systems. Because in this book, 
we focus on the Unix-based OS, we would like to recommend the use of any Linux 
distribution. CSPs can provide their own OS version, such as Amazon Linux distributions.

The advantage of the cloud is to give you a flexible way of storing data. This part is less 
critical than the computing instance since all the processing will happen in memory. 
However, we have to collect logs for monitoring and debugging the systems and we need 
to record all the market data to build models. Amazon S3, Azure Blob storage, and Google 
cloud storage will provide you the scalability, data availability, and high reliability for your 
critical data.
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Once we choose the hardware features, the OS, and the storage unit, we can use the same 
code algorithm that we have built in the previous chapters of this book.

Now, we know how to move our software to the cloud on a cloud provider. We can also 
use the leverage that a CSP offers in terms of software. A CSP provides managed services 
and open source software to bootstrap quicker to an HFT system. We will now explain 
how to build a trading system from scratch with managed services.

Solution 2 – Using managed services from a CSP
CSPs provide building blocks to design software. The advantage of using managed services 
or open source software is to get tested and functioning software. You will just need to 
connect these building blocks together. We would invite you to contact the CSP for advice 
in terms of building your solution or to read blogs to see the experience of these CSPs in 
building trading systems. We would like to suggest one implementation inspired by some 
work done on the cloud. Let's look at the following figure:

Figure 11.3 – Key components for algorithmic trading and trading systems
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Figure 11.3 represents the components we need to build an entire trading system, which 
completes the information we gave in Chapter 2, The Critical Components of a Trading 
System, where we focused only on the essential path to send an order triggered by  
market data:

•	 The system's heart is Algorithmic Trading Engine, which allows users to build, 
test, and run trading strategies utilizing historical and real-time data while also 
managing relationships with other solution components and offering analytics and 
reporting capabilities. 

•	 Market Data Adapter provides a variety of data types to the engine, including real-
time market data, historical pricing data, and more. 

•	 Exchange/Broker Adapter handles interactions with the exchange and/or broker, 
such as placing and rescinding orders and checking the order status. 

•	 Data Store, employed by algorithmic trading engines, provides a long-lasting and 
safe data repository.

CSP offers a diverse set of services that enable the development of a wide range of 
solutions. The following assessments are proposed for defining the algorithmic trading 
solution architecture: 

•	 Trading speed: When we explained how to build a trading system in Chapter 2, The 
Critical Components of a Trading System, we showed how the speed was important 
to build an HFT system in the design choice. The managed service selection will 
be based on the latency speed. You have two types of software on CSP: software 
processing data in real time and software processing data by batch. Managed 
services (such as AWS Lambda, Azure Functions Serverless Compute, and Google 
Firebase Cloud Functions) will be able to provide a quick response to any event 
(such as market data coming into the system). An event engine capable of calling 
these functions (such as AWS EventBridge, Azure Event Grid, or Google Eventarc 
services) will be a good combination. The event engine will call a serverless function 
to process trading system events.

•	 Need for data and analytics: Designing trading strategy models requires market 
data to be stored in a very efficient way. We need to be able to run backtesting using 
this market data. The amount of data can rapidly grow and it is important to have 
a scalable solution. We already talked about the storage instance in the previous 
section. We will add on top of this storage unit some services capable of helping you 
to analyze data; AWS Athena, Azure Synapse Analytics, and Google BigQuery will 
help to query and use data.
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•	 Extensibility and flexibility: An event-driven approach that connects the 
algorithmic trading engine to market data adapters and external exchanges/brokers 
over a common API is preferred to decouple all architecture components.

•	 Security: CSPs provide security solutions for anything that is related to identity and 
authorization. For traditional HFT working in colocation, we don't need to consider 
security as much as when we have our software in the cloud. That's why we wanted 
to highlight in this part that the use of security services is important. AWS Identity, 
Azure Active Directory, or Google Cloud Identity will provide authentication, 
authorization, encryption, and segregation. 

We will now propose a design for a trading system that could be built in a few days 
on any CSP: 

Figure 11.4 – Trading system architecture on a CSP

Figure 11.4 represents a trading system architecture design using the components that we 
talked about. We simplify the system by using as a user interface just a Python Jupyter 
notebook. It provides enough flexibility to start processes and build trading strategies:

•	 The Load Data component (1) will help get historical data. Market data is obtained 
through the market data exchange and stored in a storage unit. Any data feed, such 
as news or other types of trading data sources, might be used depending on the 
backtesting approach (that is, data already available or produced in-house).

•	 The Data Catalog component (2) enables us to have a reference for all the data we 
have in the system. It will be able to dynamically update data. 
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•	 Using the Jupyter notebook supplied in this design (3), we train the machine 
learning (ML) model using the ML DevOps notebook instance (AWS Sagemaker, 
Azure ML studio, and Google Vertex AI AutoML). This architecture's notebook 
reads data straight from a data bucket, and the given notebook can be modified or 
changed as needed. 

•	 After the ML model has been trained (4), it is utilized for actual backtesting using 
data from a data bucket, and it may be deployed after the results fit your criteria.

•	 The part with the 5, 6, and 7 annotations shows taking care of collecting the data in 
real time from the exchange.

•	 Seeing annotation 8, functions such as task scheduling, monitoring, alerting, and 
logging are necessary after installing the strategy and communicating automatically 
with Broker/Market Data. For example, when profit and loss (PnL) exceeds  
preset levels, near-real-time notifications can be created, and alerts can be visual 
and audible.

This is how we can build an HFT system in the cloud to trade cryptocurrencies. We will 
now finish this chapter by summarizing what we have learned.

Summary
This chapter was the final chapter of this book. We discussed how to improve the tick-to-
trade latency using FPGA. We studied how crypto trading was different from traditional 
trading. We learned how to build an HFT system in the cloud. 

Since this is the end of this book, we would like to take the opportunity to remind you 
that technology evolves very fast. In this book, we presented the basics of HFT. However, 
we need to remember that being among the fastest HFT companies costs a lot in terms of 
money and time. Engineers, hardware, network, and connections are vital parts of HFT. 
Even if we don't have the quickest architecture, data analysis can always help build robust 
HFT strategies capable of performing within the limitation of our system. This book drew 
the basics of creating an HFT system by considering the HFT optimization technique. 

We are getting to the end of this journey together. We would like to thank you for reading 
this book and invite you to contact us if you would like to discuss HFT.
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