

Deep Learning for Finance
Creating Machine and Deep Learning Models for

Trading in Python

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Sofien Kaabar

Deep Learning for Finance
by Sofien Kaabar

Copyright © 2024 Sofien Kaabar. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Michelle Smith

Development Editor: Corbin Collins

Production Editor:
Elizabeth Faerm

Copyeditor:
TO COME

Proofreader:
TO COME

Indexer:
TO COME

Interior Designer:
David Futato

Cover Designer:
Karen Montgomery

Illustrator:
Kate Dullea

April 2024:
First Edition

Revision History for the Early Release

http://oreilly.com/

2023-06-09:
First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098148393
for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.. Deep
Learning for Finance, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the
author have
used good faith efforts to ensure that the information and
instructions
contained in this work are accurate, the publisher and the
author disclaim all
responsibility for errors or omissions, including
without limitation
responsibility for damages resulting from the use of or
reliance on this
work. Use of the information and instructions contained
in this work is at
your own risk. If any code samples or other technology
this work contains
or describes is subject to open source licenses or the
intellectual property
rights of others, it is your responsibility to
ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-14833-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098148393

Chapter 1. Introducing Data
Science and Trading

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

The best way to begin learning about complex topics is to slowly build up
momentum until you start completing the puzzle. Understanding deep
learning for finance requires a certain knowledge in basic and intermediate
data science topics as well as financial markets and their structure.

This chapter lays the building blocks needed to have a thorough
understanding of data science and its uses, but also of financial markets and
how trading and forecasting can benefit from data science.

By the end of the chapter, you should know what data science is, what its
applications are, and how you can use it in finance to extract value.

Understanding Data
It is impossible to understand the field of data science without
understanding the types and structures of data first. After all, the first word

for the name of this immense field is data. So what is data? And more
importantly, what can you do with it?

Data in its simplest and purest form is a collection of raw information that
can be of any type (numerical, text, boolean, etc.).

The final aim of collecting data is decision-making. This is done through a
complex process which ranges from the act of gathering and processing
data to interpreting it and using the results to make a decision.

Let’s take an example of using data to make a decision. Suppose you have a
portfolio composed of five different equal-weighted dividend-paying stocks
as detailed in table 1-1.

	

T
a
b
l
e

1
-
1
.
D
i
v
i
d
e
n
d

t
a
b
l
e

	

	

Stock Dividend yield

A 5.20%

B 3.99%

C 4.12%

D 6.94%

E 5.55%

NOTE
A dividend is the payment made to shareholders from a company’s profits. The dividend yield is
the amount distributed in monetary units over the current share price of the company.

Analyzing this data can help you understand the average dividend yield you
are receiving from your portfolio. The average is basically the sum divided
by the quantity, and it gives a quick snapshot of the overall dividend yield
of the portfolio:

Average dividend yield = 5.20%+3.99%+4.12%+6.94%+5.55%
5 = 5. 16%

Therefore, the average dividend yield of your portfolio is 5.16%. This
information can help you compare your average dividend yield to other
portfolios so that you know if you have to make any adjustments.

Another metric you can calculate is the number of stocks held in the
portfolio. This may provide a first information brick in constructing a wall
of diversification. Even though these two pieces of information (average
dividend yield and the number of stocks in the portfolio) are very simple,
complex data analysis begins with simple metrics and may sometimes not
require sophisticated models to properly interpret the on-going events.

The two metrics you have calculated in the previous example are called the
average (or mean) and the count (or number of elements). They are also
part of a field called descriptive statistics which is also itself part of data
science.

Let’s take another example of data analysis for inferential purposes.
Suppose you have calculated a yearly correlation measure between two
currency pairs and you want to predict whether the next yearly correlation
will be positive or negative. Table 1-2 has the details of the calculations.

	

T
a
b
l
e

1
-
2
.
C
o
r
r
e
l
a
t
i
o
n

t
a
b
l
e

	

	

Year Correlation

2015 Positive

2016 Positive

2017 Positive

2018 Negative

2019 Positive

2020 Positive

2021 Positive

2022 Positive

2023 Positive

NOTE
Correlation is a measure of the linear reliance between two time series. A positive correlation
generally means that the two time series move on average in the same direction, while a negative
correlation generally means that the two time series move on average in opposite directions.

From table 1-2, the historical correlations between the two currency pairs
were mostly positive with around 88% of the time. Taking into account
historical observations, you can say that there is an 88% probability that the
next correlation measure will be positive. This also means that there is a
12% probability that the next correlation measure will be negative:

E (Positive correlation) = 8
9 = 88. 88%

This is another simplistic example of how to use data to infer observations
and make decisions. Of course, the assumption here is that historical results

reflect exactly the future results, which is unlikely in real life, but
occasionally, to predict the future, all you have is the past.

Now, before discussing data science, let’s review what types of data there
can be and segment them into different groups.

Numerical data

This type of data is composed of numbers that reflect a certain type of

information that is collected at regular or irregular intervals. Examples

can include market data (OHLC1, volume, spread, etc.) and financial

statements data (assets, revenue, costs, etc.).

Categorical data

Data that can be organized into groups or categories using names or

labels. It is qualitative rather than quantitative. For example, the blood

type of patients is a type of categorical data.

Text data

Text data is on the rise during the recent years with the development of

natural language processing (NLP). Machine learning models use text

data to translate, interpret, and analyze the sentiment of the text.

Furthermore, you can even use the models to create an algorithm that

outputs structured paragraphs.

Visual data

Images and videos are also considered data, and you can process and

transform them into valuable information. For example, a convolutional

neural network (CNN) is a type of algorithm that can recognize and

categorize photos by labels (for example, labeling cat photos as cats).

Audio data

Audio data is very valuable and can help save time on

transcriptions. For example, you can use algorithms on audio to create

captions and automatic subtitles. You can also create models that

interpret the sentiment of the speaker using the tone and the volume.

You are likely to encounter the following data when dealing with Python:

Integers

These are whole numbers, which can be either positive or negative.

Examples are −8 and 745. They are, however, limited to between

−2147483648 and 2147483647.

Floats

These are real numbers with decimal points such as 18.54 and 311.52.

Strings

These are words stored in a variable. More scientifically, they are a set

of structured characters (text). In Python, you write strings between

single or double quotes.

Boolean

These are true or false statements to evaluate a condition.

Data science is an transdisciplinary field that tries to extract intelligence
and conclusions from data using different techniques and models, be they
simple or complex. The process of data science is composed of many
phases besides to just analyzing data. The following summarizes the
different stages of data science:

1. Data gathering: This process involves the acquisition of data from
reliable and accurate sources. A widely known quote in computer
science generally credited to George Fueschel goes as follows
"Garbage in, garbage out“, and it sums up the need to have quality
data that you can rely on for proper analysis. Basically, if you have
inaccurate or faulty data, then all your process would be invalid and it
would be waste of time.

2. Data preprocessing: Occasionally, when you acquire data, it can be in
a raw form that needs preparation for the data science models in the
data analysis step to come. For example, dropping some unnecessary
data, handling missing data, or eliminating invalid and duplicate data
are part of the preprocessing phase. Other more complex examples can
include normalization and denoising of data. The aim of this step is to
get the data ready for analysis.

3. Data exploration: This is the first step in data analysis, and it is a basic
statistical exploration in order to find trends and different properties so
that you have a preliminary idea on the expected behavior. One
example is to check for data stationarity, a concept discussed in detail
throughout the book.

4. Data visualization: This is an important step that is an add-on to the
previous step. It includes creating visualizations such as histograms
and heatmaps to help identify patterns and trends and make the
interpretation easier.

5. Data analysis: This is the long-awaited step which is basically the
main focus of the data science process. This is where you fit the data

using different learning models so that they interpret and predict the
future outcome based on the given parameters.

6. Data interpretation: This phase deals with the feedback and
conclusions after the models have performed their jobs. Optimization
may also be a part of this phase which then loops back to phase 5 in
order to run the models again with the updated parameters before
interpreting them again and evaluating the performance.

NOTE
To sum up the previous points, data science comprises many steps that start with acquiring the
data through interpreting and optimizing the models that predict the future values of the data.

Let’s take a simple example in Python that applies the data science process
discussed in the previous six steps. Suppose you want to analyze and
predict the VIX, a volatility time series indicator published by the CBOE on
a daily basis.

NOTE
There is a hidden step that I refer to as step zero which is the idea and the intuition for the whole
process. You wouldn’t be applying the process if you didn’t have a motive first. For example,
believing that inflation numbers may drive the returns of certain commodities is an idea and a
motive to start exploring the data in search for real numbers that prove this hypothesis.

The first step is data gathering, which in this case can be automated using
Python. The next code block connects to the website of the Federal Reserve
of Saint Louis and downloads the historical data of the VIX between
January 1990 and January 2023.

NOTE
The VIX stands for the volatility index and it represents the implied volatility of the S&P 500
index. It has been available since 1993 and is issued by the Chicago Board Options Exchange
(CBOE).

Because it is meant to measure the level of fear or uncertainty in the stock market, the VIX is
frequently referred to as the fear index. The index is a percentage and is computed using the
pricing of options on the S&P 500 index. A higher VIX value correlates with a greater market
turbulence and uncertainty, whereas a lower value correlates with greater stability on average.

Note that Chapter 3 is entirely dedicated into introducing Python and
harnessing its power. For the moment, you do not have to understand the
code as it is not yet the learning outcome:

Importing the required library

import pandas_datareader as pdr

Setting the beginning and end of the historical data

start_date = '1990-01-01'

end_date = '2023-01-23'

Creating a dataframe and downloading the VIX data using its

code name and its source

vix = pdr.DataReader('VIXCLS', 'fred', start_date, end_date)

Printing the latest five observations of the dataframe

print(vix.tail())

The code uses the pandas library to import the DataReader function, which
fetches historical data online from a variety of sources such as Yfinance and
Fred. The DataReader function takes the name of the data as a first
argument, followed by the source, and the dates. The output
of print(vix.tail())is shown in table 1-3:

	

T
a
b
l
e

1
-
3
.
O
u
t
p
u
t
o
f
t
h
e

c
o
d
e

	

	

DATE VIXCLS

2023-01-17 19.36

2023-01-18 20.34

2023-01-19 20.52

2023-01-20 19.85

2023-01-23 19.81

Let’s move on to the second step: data preprocessing. I divide this part into
checking for invalid data and transforming the data so that it is ready for
use. When dealing with time series, especially downloaded time series, you
may sometimes encounter NaN values which are not numbers as there has
not been a proper input in their respective cells.

NOTE
NaN stands for Not a Number and it occurs due to missing, invalid, or corrupt data.

You can deal with NaN values in many ways. For the sake of this example,
let’s see the simplest way of dealing with these invalid values, which is to
eliminate them. But first, let’s write a simple code that outputs the number
of NaN values in the dataframe so that you have an idea on how many
values you will delete:

Importing the required library

import pandas as pd

Checking if there are NaN values in the VIX dataframe

previously imported

count_nan = vix['VIXCLS'].isnull().sum()

Printing the result

print('Number of NaN values in the VIX dataframe: ' + str(count_nan))

The code uses the isnull() method and sums the number it gets which
gives out the number of NaN values. The output of the previous code
snippet is as follows:

Number of NaN values in the VIX dataframe: 292

Now that you have an idea of how many rows you will delete, you can use
the following code to drop the NaN rows, thus cleaning up the dataframe
from any invalid inputs:

Dropping the NaN values from the rows

vix = vix.dropna()

The second part of the second step is to transform the data. Data science
models typically like stationary data which is data with stable statistical
properties such as the mean and the standard deviation.

NOTE
The concept of stationarity and the required statistics metrics are discussed in detail in Chapter 2.
For now, all you need to know is that it is likely that you will have to transform your raw data into
stationary data when using data science models.

To transform the VIX data into stationary data, you can simply take the
differences from one value relative to the previous value. This is similar to
taking price data and transforming it into returns data. The following code
snippet takes the VIX dataframe previously defined and transforms it into a
theoretically implied2 stationary data:

Taking the differences in an attempt to make the data

stationary

vix = vix.diff(periods = 1, axis = 0)

Dropping the first value of the data frame

vix = vix.iloc[1: , :]

The third step is data exploration, which is all about understanding the data
you have in front you, statistically speaking. As you will see statistical
metrics in detail in the next chapter, I’ll limit the discussion to just
calculating the mean of the dataset.

The mean is simply the value that can represent the other values in the
dataset if they were to elect a leader. It is the sum of the values divided by
their quantity. The mean is the simplest stat in the descriptive statistics
world and it is definitely the most used one. The following formula shows
the mathematical representation of the mean of a set of values:

x = 1
n
∑i

i=1 xi

Using pandas, you can easily calculate the mean of the dataset as follows:

Calculating the mean of the dataset

mean = vix["VIXCLS"].mean()

Printing the result

print('The mean of the dataset = ' + str(mean))

The output of the previous code snippet is as follows:

The mean of the dataset = 0.0003

The next step is data visualization, which is mostly considered as the fun
step. Let’s chart the VIX’s differenced values through time. The following
code snippet plots the VIX data shown in Figure 1-1:

Importing the required library

import matplotlib.pyplot as plt

Plotting the latest 250 observations in black with a label

plt.plot(vix[-250:], color = 'black', linewidth = 1.5, label = 'Change in
VIX')

Plotting a red dashed horizontal line that is equal to the

calculated mean

plt.axhline(y = mean, color = 'red', linestyle = 'dashed')

Calling a grid to facilitate the visual component

plt.grid()

Calling the legend function so it appears with the chart

plt.legend()

If you are using a terminal or a script, you might want to add

plt.show()

Figure 1-1. Change in VIX since early 2022

Steps 5 and 6, data analysis and data interpretation, are what you are going
to study thoroughly in this book, so let’s skip them for now and concentrate
on the introductory part of data science.

Let’s go back to the invalid or missing data problem before moving on.
Sometimes, data is incomplete and has missing cells. Even though this has
the potential to hinder the predictive ability of the algorithm, it should not
stop you from continuing the analysis as there are quick fixes that help
lessen the negative impact of the empty cells. For instance, consider table 1-
4:

	

T
a
b
l
e

1
-
4
.
Q
u
a
r
t
e
r
l
y

G
D
P

	

	

Quarter GDP

Q1 2020 0.9%

Q2 2020 1.2%

Q3 2020 0.5%

Q4 2020 0.4%

Q1 2021 #N/A

Q2 2021 1.0%

Q3 2021 1.1%

Q4 2021 0.6%

The table contains the quartely gross domestic product (GDP) of a
hypothetical country. Notice how the table is missing the Q1 value of 2021.
There are three basic ways to solve this issue:

Delete the cell that contains the missing value: This is the technique
used in the previous example of the data science process. It simply
considers that the time stamp does not exist. It is the simplest fix.

Assume that the missing cell is equal to the previous cell: This
technique assumes that the current missing value equals the value
previous to it. It is also a simple fix that has the aim of smoothing the
data instead of completely ignoring the issue.

Calculate a mean or a median of the cells around the empty value:
This technique takes smoothing one step further and assumes that the
missing value is equal to the mean between the previous and the next
value.

Data science englobes a range of mathematical and statistical concepts. It
entails a deep understanding of machine learning algorithms, such as
decision trees, random forests, and neural networks. These concepts are
discussed in detail but also in an easy-to-grasp manner so that technical and

non-technical readers can benefit from their intuition. Many models are
assumed to be black boxes and there is a hint of truth in this, but the job of a
data scientist is to first understand the models before interpreting their
results. This helps in understanding the limitations of the said models.

This book uses Python as the go-to programming language to create the
algorithms. As mentioned, Chapter 3 introduces Python and the required
knowledge to know how to manipulate and analyze the data, but also
provides the foundations to create the different models which, as you will
see, are simpler than you might expect.

Before moving on to the next section, let’s have a look at the concepts of
data storage. After all, data is valuable, but you need to store it somewhere
where it is easily fetched and analyzed.

Data storage refers to the techniques and areas used to store and organize
data for future analysis. Data is stored in many formats, among them the
common ones such as CSV and XLSX files. Other types of formats may
include XML, JSON, and even JPG for images. The format is chosen
according to the structure and organization of the data.

Data can also be stored in clouds or on-premise depending on the capacity
of storage and the costs. For example, you may want to choose to keep your
historical 1-minute Apple stock data in a cloud so that you save space on
your local computer as opposed to keeping them in a CSV file.​

When dealing with time series in Python, you are mostly going to deal with
two types of data storages: arrays and data frames. Let’s take a look at what
they are:

Arrays

An array is used to store elements of the same kind. Typically, a

homogeneous data set (such as numbers) is best kept in an array. This

occurs when you perform back-tests with no need of time stamps. The

most used library to handle arrays in Python is numpy.

Data frames

A data frame is a 2-dimensional data structure that can hold data of

various types (such as float, string, and so on). It can be compared to a

table with columns and rows. This occurs when you perform back-tests

with a need for time stamps in tandem with their respective values. The

most used library to handle data frames in Python is pandas.

In general, arrays should be used whenever a homogeneous data collection
needs to be efficiently stored. When dealing with heterogeneous data or
needing to edit and analyze data in a tabular manner, you should use data
frames.

NOTE
Data science is continuously evolving. New storage methods are being developed by time in an
attempt to make them more efficient and increase their capacity and speed.

Understanding Data Science
Data science has rapidly become an essential part in technology and
progress. Algorithms rely on information provided from data science tools
to perform their tasks. But what are algorithms?

An algorithm is a set of ordered procedures, that have the aim of
completing a certain activity or address a particular issue. Algorithms can
be as simple as flipping a coin or as sophisticated as the Risch algorithm 3.

Let’s take a very simple algorithm that updates a charting platform with the
necessary financial data:

1. Connect the server and the online data provider.

2. Copy the financial data with the most recent time stamp.

3. Paste the data into the charting platform.

4. Loop back to the first step and redo the whole process.

That is the nature of algorithms: performing a certain set of instructions
with a finite or an infinite goal.

NOTE
The six data science stages that you saw in the previous section can also be considered an
algorithm.

Trading strategies are also algorithms as they have clear rules for the
initiation and liquidation of positions. An example of a trading strategy is
market arbitrage.

Arbitrage is a type of trading strategy that aims to profit from price
differences of the same asset quoted on different exchanges. These price
differences are anomalies that are erased by arbitrageurs through their
buying and selling activities. Consider a stock that is traded on exchange A
and exchange B in different countries (for simplicity reasons, the two
countries use the same currency). Naturally, the stock must trade at the
same price on both exchanges. When this condition does not hold,
arbitrageurs come out of their lairs to hunt.

They buy the stock on the cheaper exchange and immediately sell it on the
more expensive exchange, thus ensuring a virtually risk-free profit. These
operations are performed at lightning speed as differences do not last long
due to the sheer power and speed of arbitrageurs. Here’s a clear example:

The stock’s price at exchange A = $10.00

The stock’s price at exchange B = $10.50

The algorithm of the arbitrageur in this case will perform the following:

1. Buy the stock on exchange A for $10.00.

2. Sell the stock immediately on exchange B for $10.50.

3. Pocket the difference ($0.50) and repeat until the gap is closed.

NOTE
Trading and execution algorithms can be highly complex and require specialized knowledge and a
certain market edge.

Up until now, you should be aware of the main uses of data science: data
interpretation and prediction:

Data interpretation

Also commonly referred to as business intelligence or simply data
intelligence. The aim of deploying the algorithms is to understand the

whats and hows of data.

Data prediction

Also commonly referred to as predictive analytics or simply forecasting.

The aim of deploying the algorithms is to understand the whats next of

data.

The main aim of using learning algorithms in financial markets is mainly to
predict data so that you take an informed trading decision with the aim of
capital appreciation at a success rate higher than random. This is done
through many simple and complex algorithm that I discuss in this book.
These learning algorithms or models can be categorized as follows:

Supervised learning

Supervised learning algorithms are models that require labeled data to

function. This means that you must provide data so that the model trains

itself on these past values and understands the hidden patterns with the

aim of being able to deliver future outputs when encountering new

data. Examples of supervised learning include linear regression
algorithms and autoregressive integrated moving average (ARIMA)

models. More complex models include support vector regression
algorithms (SVR) and neural networks. Adding several layers to neural

networks transforms them into a deep learning model with a high

aptitude of analyzing complex multi-layered data. All of these

algorithms are discussed in greater depth later in the book.

Unsupervised learning

Unsupervised learning algorithms are models that do not require labeled

data to function. This means that they can do the job with unlabelled

data since they are built to find hidden patterns on their own. Examples

include clustering algorithms and principal component analysis (PCA).

Reinforcement learning

Reinforcement learning algorithms are models that do not require data

at all as they discover their environment and learn from it on their own.

As opposed to supervised and unsupervised learning models,

reinforcement learning models gain knowledge through feedback

obtained from the environment via a reward system. Since this is

generally applied to situations in which an agent interacts with the

environment and learns to adopt behaviors that maximize the reward

over time, it may not be the go-to algorithm for time series regression.

On the other hand, it can be used to develop a policy that can apply to

time series data to create predictions.

As you may have noticed, the book’s title is Deep Learning for Finance.
This means that in addition to other learning models, I will be spending a
sizable portion of the book discussing deep learning models and coding
trading strategies using them. This also means that the focus of the book is
mainly discussing neural networks and their different variations.

Deep supervised learning models (such as deep neural networks) can learn
hierarchical representations of the data because they include many layers,
with each layer extracting features at a different level of abstraction. As a
result, hidden and complex patterns are learned by deep models that may be
difficult for shallow (not deep) models to learn.

On the other hand, shallow supervised learning models (like linear
regression) have a limited ability to learn complex non-linear relationships.
But, they require less computational effort and are therefore faster.

Data science algorithms are deployed pretty much everywhere nowadays
and not just in finance. Examples include the following:

Business analytics: Optimizing pricing, predicting customer turnover,
or improving marketing initiatives using data analysis.

Healthcare: Improving patient outcomes, finding innovative therapies,
or lowering healthcare costs through in-depth analysis of patient data.

Sports: Sports data analysis to enhance team performance, player
scouting, or bets.

Research: Analyzing data to support scientific investigation, prove
theories, or gain new knowledge.

Now, when someone talks about data science applications, it helps to know
what a data scientist does.

A data scientist must evaluate and understand complex data in order to get
insights and provide guidance for decision-making. Common tasks involved
in this include developing statistical models, applying machine learning
techniques, and visualizing data. They support the implementation of data-
driven solutions and also inform stakeholders of their results.

A data engineer, on the other hand, is in charge of building and maintaining
the infrastructure and tools needed to support data science projects. This
entails tasks including constructing and executing data pipelines, optimizing
data storage and retrieval, and building and maintaining big data-processing
systems. They also work closely with data scientists to make sure they
acquire the data they need for their study.

In other words, a data scientist is more concerned with the interpretation
and analysis of data, whereas a data engineer is more concerned with the
tools and infrastructure needed to gather, store, and analyze data.

By now you should understand everything you need to get you started with
data science. Let’s introduce the second main topic of the book: financial
markets. After all, this book aims to show how to create data science
models and algorithms and apply them on financial data in order to extract
predictive value from them.

Introduction to Financial Markets and
Trading
The aim of this book is to present a hands-on approach onto applying
different learning models to create different trading strategies. It is therefore
imperative to gain a solid knowledge on how trading and financial markets
work.

Financial markets are places where people can trade financial instruments,
such as stocks, bonds, and currencies. The act of buying and selling is
referred to as trading. The main, but not only, aim of buying a financial
instrument is capital appreciation. The buyer believes that the value of the
instrument is greater than its price, therefore the buyer buys the stock (goes

long) and sells whenever they believe that the current price equals the
current value. In contrast, traders can also make money if the price of the
instrument goes down. This process is referred to as short selling and is
common in certain markets such as futures and foreign exchange (FX).

The process of short selling entails borrowing the financial instrument from
a third party, selling it on the market, and buying it back, before returning it
to the third party. Ideally, as you expect the price of the instrument to drop,
you would buy it back cheaper (after the price decrease) and give it back to
the third party at the market price thus pocketing the difference.

Long (buy) position example

A trader expects the share price of Microsoft to increase over the next

couple of months due to improved technological regulations, which

would increase the earnings. They therefore buy a number of shares at

$250 and aim to sell them at $500. The trader is therefore long

Microsoft stock (also referred to as being bullish).

Short (sell) position example

A trader expects the share price of Lockheed Martin to decrease over

the next couple of days due to signals from a technical strategy. They

therefore sell short a number of shares at $450 and aim to buy them

back at $410. The trader is therefore short Lockheed Martin stock

(called being bearish).

NOTE
Markets that are trending upwards are referred to as bullish markets. Derived from the word bull
and its aggressive nature, being bullish is related to optimism, euphoria, and greed. On the other
hand, markets that are trending downwards are referred to as bearish markets. Derived from the
word bear and its defensive nature, being bearish is related to pessimism, panic, and fear.

Financial instruments may come in their raw (physical) form or what is also
known as spot and also in derivatives form. Derivatives are products that
traders use to trade markets in certain ways. For example, a forward or a
futures contract is a derivative contract where a buyer locks in a price for an
asset to buy it at a later time.

Another type of derivatives is an option. An option is the right but not the
obligation to buy a certain asset at a specific price in the future by paying a
premium now (the option’s price). When a buyer wants to buy the
underlying stock, they exercise their option to do so; otherwise, they may
let the option expire.

Trading activity may also occur for hedging purposes as it is not limited to
just speculation. An example of this would be AirFrance (the main French
airline company) hedging its business operations by buying oil futures.
Buying oil futures protects AirFrance from rising oil prices which may hurt
its main operations (aviation). The rising costs from using fuel to power the
planes are offset by the gains from the futures. This allows the airline to
focus on its main business. This whole process is called hedging.

Let’s take an example to make things clearer, let’s say an airline company
expects to consume a certain amount of fuel in the next six months, but they
are worried about the potential increase in oil prices over that period. To
protect against this price risk, the airline can enter into a futures contract to
purchase oil at a fixed price on a future date.

If the price of oil increases during that time, the airline would still be able to
purchase the oil at the lower, fixed price agreed upon in the futures contract.
On the other hand, if the price of oil decreases, the airline would be
obligated to pay the higher, fixed price, but the lower market price for the
oil would offset that cost.

In this way, the airline can mitigate the risk of price fluctuations in the oil
market and stabilize their fuel costs. This can help the airline to better
manage its budget and forecast its future earnings.

As you can see, the aim is to make financial gains from the trading
operations -- it aims to simply stabilize its costs by locking in a known price

for oil.

Typically, financial instruments are grouped in asset classes based on their
type:

Stock markets

A stock market is an exchange place (electronic or physical) where

companies issue shares of stock to raise money for business. When

people buy shares of a company’s stock, they become part owners of

that company and may become entitled to dividends according the

company’s policy. Depending on the type of stocks, they can also gain

the right to vote in board meetings.

Fixed income

Governments and businesses can borrow money in the fixed income

market. When a person purchases a bond, they are effectively lending

money to the borrower, who has agreed to repay the loan along with

interest. Depending on the borrower’s creditworthiness and the

prevailing interest rates, the bond’s value may increase or decrease.

Currencies

The FX market, also referred to as the currencies market, is a place

where people may purchase and sell various currencies. A currency’s

value can increase or decrease based on a variety of variables, including

the economy, interest rates, and political stability of the nation.

Commodities

Agricultural products, gold, oil, and other physical assets with industrial

or other uses are referred to as commodities. They typically offer a

means to profit from global economic trends as well as being a form of

hedge against inflation.

Alternative investments

In the world of finance, non-traditional investments such as real estate,

private equity, and hedge funds are referred to as alternative asset
classes. These alternative asset classes have the potential to offer better

returns than traditional assets and offer the benefit of diversity, but they

also tend to be less liquid and may be more difficult to evaluate. It’s

crucial to remember that each of these asset classes has unique qualities

and various levels of risk, so investors should do their homework before

investing in any of these assets.

Financial markets allow businesses and governments to raise money they
need to operate. They also provide opportunities for investors to make
money speculating and investing in interesting opportunities. Trading
activities provide liquidity to the markets which makes the price more
efficient and less costly. In other words, the more the market is liquid, the
less are the costs to trade in it as the number of orders makes it less likely to
heavily impact the market when trading. But how do markets really work?
What causes the price to go up and down?

Market microstructure is the research that deals with the trading of
securities in financial markets. It looks at how trading works as well as how
traders, investors, and market makers behave. Understanding price
formation and the variables that affect trading costs is the aim of market
microstructure research.

Order flow, liquidity, market effectiveness, and price discovery are just a
few of the many subjects covered by market microstructure research.
Additionally, it looks at how various trading techniques, including limit
orders, market orders, and algorithmic trading, affect market dynamics.
Liquidity is possibly the most important market microstructure concept. It
describes how easily an asset may be bought or sold without materially
changing its price. Liquidity can vary between financial instruments and
over time. It can be impacted by a number of variables, including trading
volume and volatility.

Furthermore, market efficiency is a crucial component of market
microstructure research. Research in this area has demonstrated that some
markets are more efficient than others and that elements like insider trading,
price manipulation, and information asymmetry can have an impact on
prices. Market efficiency is revisited in Chapter 4, which deals with
technical analysis, a key analysis field in trading.

Finally, I want to discuss another important area of market
microstructure: price discovery. This refers to the method used to set prices
in a market. Prices can be affected by elements like order flow, market
maker activity, and the presence of various trading methods.

Imagine you want to buy a sizable number of shares in two stocks: stock A
and stock B. Stock A is very liquid while stock B is very illiquid. If you
want to execute the buy order on stock A, you are likely to get filled at the
desired market price with minimal impact if any. However, with stock B,
you are likely to get a worse price as there is not enough sellers willing to
sell at your desired buy price, and therefore, as you create more demand
from your orders, the price rises to match the sellers’ prices and thus, you
will buy at a higher (worse) price. This is the impact liquidity can have on
your trading.

Applications of Data Science in Finance
Let’s begin peeking into the main areas of data science for finance. Every
field has its challenges and problems that need simple and complex

solutions. Finance is no different. Recent years have seen a gigantic leap in
using data science to improve the world of finance, from the corporate
world to the markets world. Let’s discuss some of these areas:

Financial fraud detection

Financial transactions can be examined for patterns and anomalies using

data science models, which attempt to spot possible fraud. By

examining transaction data from credit cards to spot odd or suspect

spending patterns, one way to use data science to stop financial fraud is

to find unusual or suspicious patterns of expenditures. This can involve

making numerous minor purchases quickly after one another or making

significant or frequent purchases from the same store. On the basis of

this data, machine learning algorithms are trained to find anomalies that

point to fraudulent conduct.

Risk management

To examine financial data and spot potential risks to portfolios, data

science approaches might be applied. This can assist financial

institutions in managing their risk exposure and making better-informed

decisions. Analysis of market data to forecast changes in stock prices

and other financial indicators is one example of applying data science

for risk management in finance. This can involve analyzing vast

amounts of historical data using methods like statistical modeling,

machine learning, and artificial intelligence in order to spot patterns and

trends that can be used to forecast the state of the market in the future.

Credit scoring

Data science can be used to examine financial data and credit history,

forecast a person’s or a company’s creditworthiness, and make loan

decisions. Utilizing financial data, such as income and credit history, to

forecast a person’s creditworthiness is one example of applying data

science for credit score research. This can involve developing a

prediction model that can use a number of indicators, such as prior

credit performance, income, and job history, in order to evaluate a

person’s likelihood of repaying a loan using techniques like statistical

modeling and machine learning.

Natural Language Processing (NLP)

In order to make better judgments, NLP analyzes and extracts insights
from unstructured financial data, such as news articles, reports, and
social media posts. A famous example of NLP is using the sentiment of
the text to extract possible trading opportunities stemming from the
intentions and feelings of the market participants and experts. NLP falls
into the field of sentiment analysis (with help from machine learning).

Summary
Data science keeps growing every day with new techniques and models
appearing regularly that aim to improve the interpretation of data. This
chapter has provided a simple introduction to what you need to know about
data science and how you can use it in finance.

The next chapter presents the required knowledge in statistics, probability,
and math that you may need when trying to understand data science models.
Even though the aim of the book is to present a hands-on approach of
creating and applying the different models using Python, it helps for you to

understand what you’re dealing with instead of blindly applying them onto
data.

If you need a Python refresher, see Chapter 3, which is a basic introduction.
It sets the foundations to what’s to come next in the book. You do not need
to become a Python master to perform data science but you must
understand code and what it refers to, and especially how to debug and
detect errors in the code.

1 OHLC refers to the four essential pieces of market data: open price, high price, low price, and
close price.

2 The reason I am saying implied is because stationarity must be verified through statistical
checks that you will see in the next chapter. At the moment, the assumption is that differencing
the data gives stationary time series.

3 The Rish algorithm is an indefinite integration technique used to find antiderivatives.

Chapter 2. Essential Probabilistic
Methods for Deep Learning

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
ccollins@oreilly.com.

The rise and accessibility of technology have made it possible for everyone to deploy machine
learning and deep learning algorithms for data analysis and optimization. But unfortunately, this
means that a large number of users do not understand the basics and underlyings of the different
learning models. This makes machine learning nothing short of a black box to them, which is a
recipe for disaster.

Fundamental concepts in probability, statistics, and math are essential for understanding and
mastering data as well as the creation of models that seek to interpret and forecast it if possible.
This chapter presents the basics of the numerical concepts needed to understand the different
learning algorithms, or at the very least, shows the starting points from where you can build up your
knowledge towards mastering these mathematical topics.

For simplicity, the term machine learning used in this book refers to all types of learning models
(such as machine, deep, and reinforcement learning).

A Primer on Probability
Probability is all about describing random variables and random events. The world is filled with
randomness, and the best way to find your way through chaos is to try to explain it using
probabilistic methods. Granted, the phrase explain chaos may be an oxymoron, as chaos cannot
really be explained, but we humans cannot relinquish control over uncertain events, and with
progress we have developed tools to make sense out of the scary world.

You may wonder what is the use of understanding the basics of probability when trying to develop
machine learning algorithms for financial trading. This is a reasonable question, and you must
know that the foundations of a discipline do not necessarily resemble it.

For example, to become a pilot, you have to have to study aerodynamics first, which is filled with
technical concepts that do not resemble the final skill acquired at graduation. This is similar to what
is being done in this chapter; by studying probabilistic essentials, statistical concepts, and
mathematical topics, you will start on the right track towards being a machine learning developer.

Knowing the utility of what you are learning should give you a motivation boost. Here are some
key probability topics that are important for machine learning:

Probability distribution functions

The possibility of seeing various outcomes of a random variable is described by a probability
distribution. For many machine learning techniques, it is essential to comprehend the features

and attributes of typical probability distributions. Probability distribution functions also describe

different types of time series data, which in turn helps in choosing the right algorithm.

Bayes’ theorem for updating probabilities

Bayes’ theorem is a cornerstone of probability theory and offers a method for updating an

event’s probability in light of new data. It is incorporated into a variety of machine learning

techniques, including as Bayesian networks and classifiers.

Hypothesis testing

Hypothesis testing is used to establish whether a population-based assertion is more likely to be

true or incorrect based on a sample of data. Many machine learning models employ hypothesis

testing in their process.

Decision trees

Decision trees are a type of machine learning algorithm that borrows from probabilistic

concepts such as conditional probability, a concept covered in this chapter. For more detail,

decision trees are covered in Chapter 7.

Information theory

Information theory is the complex study of how information is quantified, stored, and

transmitted. It is incorporated into numerous machine learning techniques, including decision

trees.​

Introduction to Probabilistic Concepts

The most basic piece of probabilistic information is a random variable, which is an uncertain
number or outcome. Random variables are used to model events that are considered uncertain, such
as the future return of a currency pair.

A random variable is either discrete or continuous. A discrete random variable has a finite set of
values, while a continuous random variable has values within a certain interval. Consider the
following two examples to clarify things:

An example of a discrete random variable would be the result of a rolling a die. They are
limited by the following set {1, 2, 3, 4, 5, 6}.

An example of a continuous random variable would be the daily price returns of EURUSD
(The exchange rate of 1 Euro per US Dollars).

Random variables are described by probability distributions, which are functions that give the
probability of every possible value of these random variables. Generally, a histogram is used to
show the probability. Histogram plotting is discussed later in the chapter.

At any moment, the probability that a certain event unfolds is between 0 and 1. This means that
probability is assigned to random variables on a scale between 0 and 1 such that a probability of 0
represents zero chance of occurence and a probability of 1 represents a certainty of occurence.

You can also think of this in percentage terms, which range from 0% to 100%. Values within the
two numbers are valid, which means that you can have a 0.5133 (51.33%) probability of a certain
event occurring. Consider rolling a die that has six sides. What is the probability of getting 3
knowing that the die is not manipulated in any way?

As the die has six sides, there are six equal probabilities for every outcome, which means that for
any outcome, the probability is found as follows:

P (x) = 1
6 = 0. 167

With P(x) designating the probability of event x. This gives the answer to the question:

P (3) = 1
6 = 0. 167

When a die is rolled, there can only be one result. It cannot give 3 and 4 simultaneously, since one
side has to dominate the other. This is the concept of mutual exclusivity. Mutually exclusive events
(such as getting a 3 or getting a 4 in a die roll) eventually sum up to 1. Take a look at the following
example:

P (1) = 1
6 = 0. 167

P (2) = 1
6 = 0. 167

P (3) = 1
6 = 0. 167

P (4) = 1
6

= 0. 167

P (5) = 1
6

= 0. 167

P (6) = 1
6 = 0. 167

Summing all these mutually exclusive events gives 1, which means that the sum of the possible
probabilities in a six-sided die is as follows:

P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1

NOTE
Stating that a random variable has a 0.8 probability of occurring is the same as stating that the same variable has a 0.2 probability
of not occurring.

Probability measures can be conditional or unconditional. A conditional probability is where the
occurrence of an event impacts the probability that another events occurs. For example, the
probability of a sovereign interest rate hike given positive employment data is an example of a
conditional probability. The probability of event A given the occurrence of event B is denoted by
the following mathematical notation: P(A|B)

In contrast, unconditional probability is not dependent on other events. Taking the example of the
conditional probability, you can formulate an unconditional probability calculation which measures
the probability of an interest rate hike regardless of other economic events.

Probabilities have specific addition and multiplication rules with their own interpretations. Let’s
take a look at the formulas before seeing an example. The joint probability of the realization of two
events is the probability that they will both occur. It is calculated using the following formula:

P(AB) = P(A|B) × P(B)

What that formula says is that the probability of occurence for both A and B is the probability that
A occurs given B occurs multiplied by the probability that B occurs. Therefore, the right side of the
equation multiplies a conditional probability by an unconditional probability.

The addition rule is used to determine the probability that at least one of the two outcomes will
occur. This works in two ways: the first one deals with mutually exclusive events, and the second
one deals with events that are non mutually exclusive:

If the events are not mutually exclusive, then to add avoid double counting, the formula is:

P(A or B) = P(A) + P(B) − P(AB)

If the events are mutually exclusive, then the formula is simplified to the following:

P(AB) = 0

P(A or B) = P(A) + P(B) − 0

P(A or B) = P(A) + P(B)

Notice how in mutually exclusive events, it’s either A or B that can be realized, and therefore the
probability that both of them will occur is zero. To understand why you need to subtract the joint
probability of A and B, take a look at Figure 2-1.

Figure 2-1. The addition rule of probability

Notice how the probability of either A or B occurring while they are mutually exclusive must not
include their joint probability. Let’s now look at the concept of independent events.

Independent events are not tied together (for example, rolling the die twice). The joint probability is
calculated as follows:

P(AB) = P(A) × P(B)

Independent events therefore refer to instances where the occurrence of one has absolutely zero
impact on the occurrence of the others. Now, let’s see an example to validate these concepts.
Consider a simple coin toss. The probability of getting heads does not depend on what you have
gotten in the previous coin toss. Therefore the probability of getting heads is always 0.50 (50%). To
take things further, what is the probability of getting only heads after five coin tosses?

As the probability of each event is independent from the previous or the next one, the formula is as
follows:

P(x) = 0. 50 × 0. 50 × 0. 50 × 0. 50 × 0. 50 = 0. 03125 = 3. 125%

The expected value of a random variable is the weighted average of the different outcomes.
Therefore, the expected value is really another way of referring to the mean. Mathematically, the
expected value is as follows:

E (X) = ∑n
i=1 (P (xi)xi)

Take a look at Table 2-1 and try to calculate the expected value of the next employment numbers in
a certain month of the year.

	

T
a
b
l
e

2
-
1
.
E
m
p
l
o
y
m
e
n
t
t
a
b
l
e

	

	

Non-farm payrolls Probability

300,000 0.1

400,000 0.3

500,000 0.5

600,000 0.1

Non-farm payrolls refer to a monthly report issued by the US Department of Labor that gives
information on the total number of paid employees in the nation, excluding those employed in the
agriculture sector, as well as those employed by the government and non-profit organizations.

From Table 2-1, economists assume there is a 50% probability that there will be a 500,000 increase
in the total number of paid employees and a 30% probability that there will be a 400,000 increase in
the total number of paid employees. The expected value is therefore:

E(X) = (300, 000 × 0. 1) + (400, 000 × 0. 3) + (500, 000 × 0. 5) + (600, 000 × 0. 1) = 460, 000

Therefore, the number that represents the economists’ consensus is 460,000, as it is the closest
weighted value to most forecasts. It is the value that represents the dataset.

Before closing the section on introductory probability, there exists a mathematical formula known
as Bayes’ Theorem that estimates an event’s likelihood based on knowledge of previous, related
events. The formula for Bayes’ Theorem is as follows:

P (A|B) =
P(B|A).P(A)

P(B)

where:

P(A|B) is the probability of event A occurring given that event B has occurred.

P(B|A) is the probability of event B occurring given that event A has occurred.

P(A) is the probability of event A occurring.

P(B) is the probability of event B occurring.

In other words, Bayes’ Theorem allows you to update your beliefs about the probability of an event
based on new information.

NOTE
The main takeaways from this section are as follows:

Probability describes random variables and random events. It is a value between 0 and 1.

Probabilities of events may be grouped together to form more complex scenarios.

The expected outcome is the weighted average of every probability in the designated universe.

Sampling and Hypothesis Testing
When populations are large, representative samples are taken so that they become the main
describers of data. Take the United States. Its democratic system means that the people hold the
right to decide their own fate, but it’s not possible to go to every person and ask them about their
detailed opinions on every topic out there. This is why elections are held and representatives are
elected so that they act in the people’s name.

Sampling refers to the act of selecting samples of data within a larger population and and making
conclusions about the statistical properties of the population. There are a few different methods of
sampling. The most known ones are the following:

Simple random sampling

With simple random sampling, each element in the population has an equal chance of being

selected for the sample. This can be a random number generated on a labeled population where

each individual has the same probability of being selected.

Stratified sampling

With stratified sampling, the population is divided into groups based on some characteristic, and

then a simple random sample is taken from each group in proportion to its size.

Cluster sampling

With cluster sampling, the population is divided into clusters, and a random sample of clusters

is selected. Then, all elements within the selected clusters are included in the sample.

Systematic sampling

With systematic sampling, an element is selected by choosing every nth individual from the

population, where n is a fixed number. This means that it is not random but pre-specified in

advance.

A rule of thumb is that the more data you acquire, the better the metrics reflect the population.
Sampling is extremely important in the world of machine learning as quite often, you are taking
samples of data to represent the true population. For example, when performing a back-test on a
strategy, you will be required to split the whole data set into a training sample and a testing sample
where the first is the sample of data on which the algorithm understands its structure, and the
second is the sample of data on which the algorithm tests its predictive power.

Similarly, another example of using sampling is cross validation, a technique that divides a dataset
into two or more subgroups. The model is trained using one subset, and its results are tested using
the other subsets. For various subsets of the data, this procedure is repeated numerous times, and
then the model’s average performance is determined.

These terms are discussed in more depth in the coming chapters. For now you should understand
that the concept of sampling is very important in machine learning (and even more in deep learning
with optimization techniques).

Sampling is not perfect and errors may be possible just as any other estimation method. Sampling
error refers to the difference between the statistic of the sample and the statistic of the population
(if it’s known). A statistic is a metric that describes the analyzed dataset (an example of this would
be the mean, a statistic you will see in greater detail in Chapter 3 dealing with statistics). Now, what
is the minimum sample size you should have to be able to make inferences about the population?
The rule of thumb is to have a minimum of 30 observations and the more the merrier. This brings
the discussion to the central limit theorem which states that random samples drawn from a

population will approach a normal distribution (a probability distribution that is symmetric and bell-
shaped) as the sample gets larger.

The central limit theorem makes it simple to apply inferences and conclusions as hypothesis testing
goes well with a normal distribution. Before proceeding to hypothesis testing, let’s look
at confidence intervals, ranges of values where the population parameter is expected to be.
Confidence intervals are generally constructed by adding or subtracting a factor from the point
estimate. For example, given a sample mean x̄, a confidence interval can be constructed as follows:

x ± (reliability factor × standard error)

Let’s try to understand the calculation step by step. The sample mean is an estimate of the
population and is calculated because it is not possible to calculate the population means, therefore,
by performing a random sample, the assumption is that the sample mean should be equal to the
population mean. However, in real life, things may differ, and this why you should construct a
confidence interval using probabilistic methods.

NOTE
The significance level is the threshold of the confidence interval. For example, a confidence interval of 95% means that with 95%
confidence, the estimate should lie within a certain range. The remaining 5% probability that it does not, is called a significance
level (generally marked with the alpha symbol α).

A reliability factor is a statistical measure that depends on the distribution of the estimate and the
probability that it falls within the confidence interval. For the sake of simplicity, let’s assume that
the variance of the population is normal and the population is normally distributed. For a
significance level of 5% (thus, a confidence interval of 95%), the reliability factor is 1.96 in this
case (the way you get this number is less relevant to the discussion).

The standard error is the standard deviation of the sample. Standard deviation is discussed in
greater depth in Chapter 3; for now, just know that it represents the fluctuations of the different
values around the mean. Standard error is found using the following formula:

s = σ

√n

σ is the population standard deviation

√n is the square root of the population number

It is also worth knowing that for a 1% significance level, the reliability factor is 2.575, and for a
10% significance level, the reliability factor is 1.645. Let’s take a practical example to make sense
out all of this math.

Consider a population of 100 financial instruments (bonds, currency pairs, stocks, structured
products, etc.). The mean annual return of these instruments is 1.4%. Assuming a population
standard deviation of 4.34%, what is the confidence interval at 1% significance level (99%
confidence interval) of the mean?

The answer is just plugging the values in the formula as follows:

1. 4% ± 2. 575 × 4.34%
√100

= 1. 4% ± 1. 11%

This means that the confidence interval is between (0.29%, 2.51%).

Let’s see another example. Consider that the annual returns on precious and industrial metals (such
as gold and copper) are normally distributed with a mean of 3.5% and a known population standard
deviation of 5.1%. What is the confidence interval with 10% significance level of the annual returns
on 5 different commodities? The answer is as follows:

3. 5% ± 1. 645 × 3.5%
√5

= 3. 5% ± 2. 23%

This means that the confidence interval is between (1.27%, 5.8%).

NOTE
If the sample size is small and / or the population standard deviation is unknown, a t-distribution may be a better choice than a
normal distribution.

The t-distribution is a type of probability distribution used to model the distribution of a sample mean when the sample size is
small and/or when the population standard deviation is unknown. It resembles the normal distribution in shape, but with heavier
tails, which represents the uncertainty associated with smaller sample sizes.

Before closing the discussion on sampling and estimation, the following list shows the appropriate
distributions given the characteristics of the population:

A small normal distribution with known variance should use the reliability factor of the normal
distribution.

A large normal distribution with known variance should use the reliability factor of the normal
distribution.

A small normal distribution with unkown variance should use the reliability factor of the t-
distribution.

A large normal distribution with unkown variance should use the reliability factor of the t-
distribution.

A large non-normal distribution with known variance should use the reliability factor of the
normal distribution.

A large non-normal distribution with known variance should use the reliability factor of the t-
distribution.

Remember that large means that the number of observations are greater than 30. The non covered
combinations in the previous list are complex and out of scope of this discussion.

The next stop is hypothesis testing, a key probabilistic technique of getting conclusions on samples
of data. This part is extremely important as it’s used in almost all types of statistical analyses and
models.

In statistics, hypothesis testing is a technique for drawing conclusions about a population from a
small sample of data. It entails developing two competing hypotheses, the null hypothesis and the

alternative hypothesis, about a population parameter, and then figuring out which is more likely to
be accurate using sample data.

For example, a financial analyst is evaluating two portfolios from a risk perspective. They
formulate two hypotheses:

The null hypothesis states that there is no significant difference in the volatility of the two
portfolios.

The alternative hypothesis states that there is a significant difference in the volatility of the two
portfolios.

The hypothesis is then tested using statistical analysis to determine if the difference in volatility is
statistically significant or due to pure chance.

Following the definition of the null and alternative hypotheses, a test statistic is computed using the
sample data. To assess the result’s significance, the test statistic is then compared to a critical value
drawn from a standard distribution. The null hypothesis is rejected and the alternative hypothesis is
accepted if the test statistic is inside the crucial zone. The null hypothesis is not rejected and the
conclusion that there is insufficient evidence to support the alternative hypothesis is reached if the
test statistic does not fall inside the crucial zone.

This is all fancy talk to say that hypothesis testing is basically creating two opposing scenarios,
running a probability check, and then deciding which scenario is more likely true. Hypothesis
testing can take two forms:

One-tailed test: An example of this would be to test if the return on certain financial
instruments is greater than zero.

Two-tailed test: An example of this would be to test if the the return on certain financial
instruments is different from than zero (meaning that it can be either greater or smaller than
zero).

NOTE
Hypothesis tests are generally two-tailed.

The null hypothesis is the one that you want to reject and therefore is tested in the hopes of getting
rejected and accepting the alternative scenario. A two-tailed test takes the following general form:

H0 : x = x0

Ha : x ≠ x0

As the alternative scenario allows for values above and below zero (which is the stated level in the
null hypothesis), there should be two critical values. Therefore, the rule of a two-tailed test is to
reject the null hypothesis if the test statistic is greater than the upper critical value or if the test
statistic is lower than the lower critical value. For instance, for a normally distributed data, the test
statistic is compared with the critical values (at 5% significance level) at +1.96 and -1.96. The null
hypothesis is rejected if the test statistic falls outside the range between +1.96 and -1.96.

The process of hypothesis testing entails the calculation of the test statistic. It is calculated by
comparing the point estimate of the population parameter with the hypothesized value of the null
hypothesis. Both are then scaled by the standard error of the sample. The mathematical
representation is as follows:

test statistic = sample statistic−hypothesized value

standard error

An important consideration in hypothesis testing is that the sample may not be representative,
which leads to errors in describing the population. This gives rise to two types of errors:

Type I error: This error occurs when rejecting the null hypothesis even though it is true.

Type II error: This error occurs when failing to reject the null hypothesis even though it is
false.

Intuitively, the significance level is the probability of making a type I error. Remember that if α =
5%, then there is a 5% chance of rejecting a true null hypothesis by mistake. An example would
make things clearer.

Consider an analyst doing research on the annual returns of a long-short portfolio over a period of
20 years. The mean annual return was 1% with a standard deviation of 2%. The analyst’s opinion is
that the annual mean return is not equal to zero and they want to constuct a 95% confidence interval
for this and then construct a hypothesis test:

1. State the variables. The size of the sample is 20, the standard deviation is 2% and the mean is
1%.

2. Calculate the standard error, which in this case is 0.44% as per the formula.

3. Define the critical values for the 95% confidence interval, which are +1.96 and -1.96.

4. The confidence interval is therefore (0.13%, 1.86%).

5. Specify the null hypothesis, which is, according to the analyst’s opinion, a two-tailed test. The
null hypothesis is that the annuel return equals zero. You should reject it if the test statistic is
less than -1.96 or greater than +1.96.

6. Using the formula to find the test statistic gives 2.27. Therefore, the null hypothesis is rejected.

One more important metric to discuss: the p-value. The p-value is the probability of seeing a test
statistic more extreme than the one seen in the statistical test given that the null hypothesis is
true. Comparing a p-value to a significance level—typically 0.05—allows you to understand it. The
result is deemed statistically significant, and the null hypothesis is rejected in favor of the
alternative hypothesis if the p-value is less than or equal to the significance level.

If the p-value is less than the significance level of 5%, it means that there is a 5% chance to see a
test statistic as extreme as the current one if the null hypothesis is true. Another way of defining the
p-value is to consider it as the smallest significance level for which the null hypothesis can be
rejected.

NOTE
The main takeaways from this section are as follows:

Sampling refers to the collection of data within a population in the aim of making conclusions about the statistical
properties of the aforementioned population.

Sampling is used extensively in machine learning. One example is cross validation.

Hypothesis testing is a technique for drawing conclusions about a population from a small sample of data.

A Primer on Information Theory
Information theory is a complex abstract mathematical field that is closely related to probability. It
is the study of how information is quantified, stored, and transmitted. There are three conditions of
occurrence when it comes to an event:

Uncertainty: If the event has not occurred yet.

Surprise: If the event has just occurred.

Information: If the event has occurred in the past.

One of the key concepts in information theory is entropy: the level of uncertainty or randomness in
a message or information source. It describes the degree to which an event or message is
unexpected. In contrast, information gain measures the reduction in entropy (surprise) when
receiving new information.

Basically, information theory describes the surprise of events. When an event has a low probability
of occurrence, it has more surprise and hence, more information to provide. Similarly, when an
event has a high probability of occurrence, it has less surprise and therefore, less information. What
you should retain from this is that the amount of information learned from an unlikely event is
greater than the amount of information learned from a likely event.

Before starting to dig a little deeper in information theory, it is important to understand what a
logarithm is and for that matter what an exponent is. A general exponential function takes a certain
constant or a variable to a certain power:

f (x) = ax

In other words, the exponent of a number is the number of times you will multiply it by itself:

43 = 4 × 4 × 4 = 64

In contrast, a logarithm is the opposite of an exponent, and its aim is to find the exponent (knowing
4 and 64 from the previous example and finding 3):

log4 (64) = 3

A logarithm, therefore, is the answer to how many of one number to multiply to get another
number. Since they are literally inverse functions, you can use them together to simplify or even
solve for x. Take the following example:

log4 (x) = 3

The objective here is to find x given the logarithmic function. The first step is simply to use the
exponential function on one side as you want it to cancel out the logarithm on the right (remember,
inverse functions cancel each other out). This gives us the following result:

4log4(x) = 43

x = 43

x = 64

Logarithms can have different bases. However, the most used logarithm has a base of 10. In
computer science, base 2 logarithms represent bits (binary digits). Therefore, information is
represented as bits. The formula of information gain is as follows:

H (xi) = −log2 (P (xi))

Let’s assume two variables x and y where x has a probability of 1 (100% and therefore, certain) and
y has a probability of 0.5 (50% and therefore, mostly random), what would be the information in
these two cases? The answer is as follows:

H (x) = −log2 (P (1)) = 0

H (y) = −log2 (P (0. 5)) = 1

So the certain event gives zero information and the one that has a fifty-fifty chance of realizing has
an information of 1. What about the very unlikely event z that has a probability of 0.05 (5%)?

H (z) = −log2 (P (0. 05)) = 4. 32

A negative relationship between probability and information is therefore one of the principles of
information theory. Entropy and information are related concepts, but they have different meanings
and applications.

Entropy is a metric used to assess how chaotic or random a system is. Entropy describes how
uncertain or unpredictable a signal is. The degree of disorder or unpredictability in the system or
communication increases as entropy increases.

Information is the decrease in entropy or uncertainty that happens as a result of receiving a signal.
A signal’s ability to lessen the receiver’s uncertainty or entropy increases with its informational
content.

NOTE
Entropy is maximized whenever all the events are equally likely.

Entropy is calculated using the following formula:

S (xn) = ∑n
i=1 (−log2 (P (xi)). (P (xi)))

Therefore, it is the average of the sum of logarithms times their respective probabilities.

Now, let’s discuss the final concept of the section, information gain. The reduction in entropy
caused by changing a dataset is calculated via information gain.

Information gain is one of the key concepts you will see in Chapter 7 with decision trees, and
therefore you may want to refer to this section after understanding what decision trees are.

You mainly calculate information gain by comparing the entropy of a dataset before and after a
transformation. Recall that entropy is maximized when all the outcomes of a random event have the
same probability. This can also be presented as a distribution where a symmetrical distribution
(such as the normal distribution) has high entropy and a skewed distribution has low entropy.

NOTE
Minimizing entropy is related to maximizing information gain.

Before closing this introductory section on information theory (you will see it in greater depth when
discussing decision trees), let’s look at the concept of mutual information. This measure is
calculated between two variables, hence the name mutual, and it measures the reduction in
uncertainty of a variable given another variable. The formula for mutual information is as follows:

MI(x, y) = S(x) − S(x|y)

MI(x, y) is the mutual information of x and y

S(x) is the entropy of x

S(x|y) is the conditional entropy of x given y

Mutual information therefore measures the dependence between the variables. The greater the
mutual information, the bigger the relationship between the variables (a value of zero represents
independent variables). Keep this concept in mind as you will see it in Chapter 3 in the section that
deals with correlations. This is because mutual information can also be a measure of non-linear
correlation between the variables.

NOTE
Let’s do a summary of what you need to retain in information theory to have a basic knowledge of what’s to come:

Information theory uses concepts from probability to calculate information and entropy that are used in machine learning
models and other calculations (such as correlation).

Information is the decrease in entropy or uncertainty that happens as a result of receiving a signal. Entropy is a metric used
to assess how chaotic or random a system is.

Mutual information is a measure of dependence between two random variables. It can also be used to calculate the
correlation between the two.

Tools from information theory are used in some machine learning models such as decision trees.

Summary

Probability presents a basic framework before continuing towards more advanced topics. This
chapter skimmed over the concepts that you may encounter when dealing with machine and deep
learning models. It is important to understand how probability is calculated and how hypothesis
testing is performed (even though, in reality algorithms will do this for you).

The next chapter is extremely important and presents the required statistical knowledge you need,
not just for machine learning but also for financial trading and even complex data analysis.

Chapter 3. Descriptive Statistics and Data
Analysis

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content
as they write—so you can take advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later
on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.

Descriptive statistics is a field that describes data and extracts as much information as possible from it.
Basically, descriptive statistics can act like the representative of the data since it briefs up its tendencies,
behavior, and trends.

Trading and analysis borrows a lot from the metrics of this field. You will see in this chapter the main
concepts that you need in order to have a solid grasp on data analysis. I always found that the best
educational tools are practical examples, therefore, I will present this chapter using one example of an
economic dataset.

Let’s take inflation numbers coming from the USA. The consumer price index (CPI) measures the prices
paid by urban consumers for a selection of products and services on a monthly basis (meaning that every
month, a new observation is released to the public, thus forming a continuous time series). The inflation
rate between any two time periods is measured by percentage changes in the price index. For example, if
the price of bread last year was $1.00 and the price today is $1.01, then the inflation is 1.00%.

The code that you can use to get the CPI data resembles the one you have used to get the VIX data in
Chapter 1.

Importing the required library

import pandas_datareader as pdr

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2023-01-23'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Printing the latest five observations of the dataframe

print(cpi.tail())

Importing the required library

import pandas as pd

Checking if there are NaN values in the CPI dataframe previously defined

count_nan = cpi['CPIAUCSL'].isnull().sum()

Printing the result

print('Number of NaN values in the CPI dataframe: ' + str(count_nan))

Dropping the NaN values from the rows

cpi = cpi.dropna()

Transforming the CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

cpi = cpi.dropna()

By now, you should have a data frame that contains the yearly changes on the CPI. The year-on-year
change is the most observed transformation on the CPI as it gives a clear and simple measurement of the
change in the overall price level over a sufficiently enough period of time to account for short-term swings
and seasonal impacts (recall the bread example).

Hence, the yearly change of the CPI serves as a gauge of the general trend in inflation. It is also simple to
comprehend and compare across other nations and historical times, making it a popular measure among
policymakers and economists (albeit the flaw of element weightings in the baskets between different
countries). Let’s see how to analyze the dataset from a statistical point of view.

Measures of Central Tendency
Central tendency refers to the calculations that summarize the dataset into a value that can represent them.
The first and most known central tendency measure is the mean (average). The mean is simply the sum of
the values divided by their quantity. It is the center point of the dataset and most likely the value that
represents it the best. The mathematical formula of the mean is as follows:

x = 1
n
∑i=1

n xi = 1
n

(x1+. . . +xn)

Let’s take a simple example of two datasets. Suppose you want to calculate the mean on dataset A and
dataset B. How would you do it?

Dataset A = [1, 2, 3, 4, 5]

Dataset B = [1, 1, 1, 1]

Dataset A contains 5 values (quantity) with a total sum of 15. This means that the mean is equal to 3.
Dataset B contains 4 values with a total sum of 4. This means that the mean is equal to 1.

NOTE
When all the values in a dataset are the same, the mean is the same as the values.

Figure 3-1 shows the US CPI year-on-year values for the last twenty years. The higher dashed line is the
monthly mean calculated over the past twenty years. The lower dashed line symbolizes zero where below it
are deflationary periods.

Figure 3-1. US CPI year-on-year changes for the last twenty years

You can create Figure 3-1 by using the following code:

Calculating the mean of the CPI over the last 10 years

cpi_last_ten_years = cpi.iloc[-240:]

mean = cpi_last_ten_years["CPIAUCSL"].mean()

Printing the result

print('The mean of the dataset: ' + str(mean), '%')

Importing the required library

import matplotlib.pyplot as plt

Plotting the latest observations in black with a label

plt.plot(cpi_last_ten_years[:], color = 'black', linewidth = 1.5, label = 'Change in CPI Year-on-Year')

Plotting horizontal lines that represent the mean and the zero threshold

plt.axhline(y = mean, color = 'red', linestyle = 'dashed', label = '10-Year Mean')

plt.axhline(y = 0, color = 'blue', linestyle = 'dashed', linewidth = 1)

Calling a grid to facilitate the visual component

plt.grid()

Calling the legend function so it appears with the chart

plt.legend()

The output of the mean should be as follows.

The mean of the dataset: 2.4794 %

This means that the average observation of the CPI’s change on a yearly basis is around 2.50%. Even
though the Federal Reserve does not have an explicit inflation target, it is generally believed that there is a
consensus to maintain the annual change in inflation around 2.00%, hence not far from the historical

observations. With the recent high inflation numbers since 2021 as a result of political and economic
turmoil, it becomes necessary to revert back to the mean to stabilize the current situation. This examples
gives a numerical value to what is referred to as normality (~2.50%) in the past 10 years.

Clearly, with the high inflation numbers (~6.00%) around the beginning of 2023, the situation is a bit far
from normality, but how far? This question is answered in the next section that discusses measures of
variability. For now, let’s continue the discussion on central tendency.

The next measure is the median which in simple terms is the value that splits the data set into two equal
sides. In other words, if you arrange the dataset in an ascending order, the middle value is the median. The
median is used whenever there are many outliers or skew in the distribution (which may bias the mean and
make it less representative).

There are generally two topics associated with calculating the median, the first one relates to a dataset that
contains an even number of values (for example, 24 rows) and the second one relates to a dataset that
contains an uneven number of values (for example, 47 rows):

Calculating the median of an even data set

If the arranged dataset has an even number of values, the median is the average of the two middle

values.

Calculating the median of an uneven data set

If the arranged dataset has an uneven (odd) number of values, the median is simply the middle value.

Let’s take a simple example of two datasets. Suppose you want to calculate the median on dataset A and
dataset B. How would you do it?

Dataset A = [1, 2, 3, 4, 5]

Dataset B = [1, 2, 3, 4]

Dataset A contains five values which is an uneven number. This means that the middle value is the median.
In this case, it is 3 (notice how it is also the mean of the dataset). Dataset B contains four values which is an
even number. This means that the average between the two middle values is the median. In this case, it is
2.5 which is the average between 2 and 3.

Figure 3-2 shows the US CPI year-on-year values for the last twenty years. The higher dashed line is the
monthly median calculated over the past twenty years. The lower dashed line symbolizes zero. Basically,
this is like Figure 3-1 but instead of the mean, the median is charted.

Figure 3-2. US CPI year-on-year changes for the last twenty years with the median

You can create Figure 3-2 by using the following code:

Calculating the median of the dataset

median = cpi_last_ten_years["CPIAUCSL"].median()

Printing the result

print('The median of the dataset: ' + str(median), '%')

Plotting the latest observations in black with a label

plt.plot(cpi_last_ten_years[:], color = 'black', linewidth = 1.5, label = 'Change in CPI Year-on-Year')

plt.axhline(y = median, color = 'red', linestyle = 'dashed', label = '10-Year Median')

plt.axhline(y = 0, color = 'blue', linestyle = 'dashed', linewidth = 1)

Calling a grid to facilitate the visual component

plt.grid()

Calling the legend function so it appears with the chart

plt.legend()

The output of the median should be as follows:

The median of the dataset: 2.1143 %

Clearly, the median is less impacted by the recent outliers that are coming from unusual environments. The
median is around 2.10% which more in line with the implied target of 2.00%.

NOTE
Remember that Chapter 6 will give you all you need to know about the Python snippets you are seeing in this chapter, so you don’t need to
worry if you are missing out on the coding concepts.

The last central tendency measure in this section is the mode. The mode is the value that is the most
frequently observed (but also the least used in data analysis).

Let’s take a simple example of two datasets. Suppose you want to calculate the mode on the following
datasets. How would you do it?

Dataset A = [1, 2, 2, 4, 5]

Dataset B = [1, 2, 3, 4]

Dataset C = [1, 1, 2, 2, 3]

Dataset A contains two times the value 2 which makes it the mode. Dataset B doesn’t have a mode as every
value is observed once. Dataset C is multimodal since it contains more than one mode (which are 1 and 2).

NOTE
The mode is useful with categorical variables (like credit rankings) as opposed to continuous variables (like price and returns time series)

You are unlikely to use the mode in analyzing time series as the mean and the median are more useful. To
list a few examples that use the mean and the median in financial analysis:

Calculating a moving mean (average) on the price data to detect the underlying trend.

Calculating a rolling median on a price-derived indicator to know its neutral zone.

Calculating the expected return of a security using the historical mean.

Checking for the normality of the returns distribution by comparing the mean to the median.

The discussion on central tendency metrics is very important especially that the mean and the median are
heavily used not only as standalone indicators but also as ingredients in more complex measures.

NOTE
The key takeaways from this section are as follows:

There are mainly three central tendency measures: the mean, the median, and the mode.

The mean is the sum divided by the quantity while the median is the value that splits the data in half. The mode is the most frequent
value in the dataset.

Measures of Variability
Measures of variability describe how spread out the values in a dataset are relative to the central tendency
measures. The first and most known measure of variability is the variance. The variance describes a set of
numbers’ variability from their mean. The idea behind the variance’s formula is to determine how far away

from the mean each data point is, then square those deviations to make sure that all numbers are positive
(this is because distance cannot be negative).

The formula to find the variance is as follows:

σ2 = 1
n
∑i=1

n (xi − x)2

The intuition behind this formula is to calculate the sum of the squared deviations of each data point from
the mean thus giving different distance observations and then calculating the mean of these distance
observations.

Let’s take a simple example of two datasets. Suppose you want to calculate the variance on dataset A and
dataset B. How would you do it?

Dataset A = [1, 2, 3, 4, 5]

Dataset B = [5, 5, 5, 5]

The first step is to calculate the mean of the dataset as that is the benchmark from where you will calculate
the dispersion of the data. Dataset A has a mean of 3. The next step is to use the variance formula step by
step as follows:

(x1 − x)2 = (1 − 3)2 = 4

(x2 − x)2 = (2 − 3)2 = 1

(x3 − x)2 = (3 − 3)2 = 0

(x4 − x)2 = (4 − 3)2 = 1

(x5 − x)2 = (5 − 3)2 = 4

The previous results are summed up as follows:

4 + 1 + 0 + 1 + 4 = 10

And finally, the result is divided by the quantity of the observations to find the variance:

σ2 = 10
5 = 2

As for dataset B, you should think about it intuitively. If the observations are all equal, they all represent
the dataset which also means that they are their own mean. What would you say about the variance of the
data in this case, considering that all the values are equal to the mean?

If your response is that the variance is zero, then you are correct. Mathematically, you can calculate it as
follows:

(x1 − x)2 = (5 − 5)2 = 0

(x2 − x)2 = (5 − 5)2 = 0

(x3 − x)2 = (5 − 5)2 = 0

(x4 − x)2 = (5 − 5)2 = 0

The previous results sum up to zero and if you divide zero by 4 (the quantity of the dataset), you will get
zero. Intuitively, there is no variance because the all the values are constant and they do not deviate from
their mean.

σ2 = 0
5 = 0

You can calculate the variance in Python using the following code:

Calculating the variance of the dataset

variance = cpi_last_ten_years["CPIAUCSL"].var()

Printing the result

print('The variance of the dataset: ' + str(variance), '%')

The output of the variance should be as follows:

The variance of the dataset: 3.6248 %

There is a flaw nonetheless, and it is that the variance represent squared values and are not comparable to
the mean since they use different units. This is easily fixable by taking the square root of the variance.
Doing so brings the next measure of variability, the standard deviation. It is the square root of the variance
and is the average deviation of the values from the mean.

A low standard deviation indicates that the values tend to be close to the mean (low volatility), while a high
standard deviation indicates that the values are spread out over a wider range relative to their mean (high
volatility).

NOTE
The words standard deviation and volatility are used interchangeably. They refer to the same thing.

The formula to find the standard deviation is as follows:

σ = √ 1
n
∑i=1

n (xi − x)2

If you consider the previous examples with the variance, then the standard deviation can be found as
follows:

σDatasetA = √2 = 1. 41

σDatasetB = √0 = 0

Standard deviation is commonly used with the mean since they use the same units. You will soon
understand the importance of this stat when I discuss the normal distribution function, a key concept in
descriptive statistics.

You can calculate the standard deviation in Python using the following code:

Calculating the standard deviation of the dataset

standard_deviation = cpi_last_ten_years["CPIAUCSL"].std()

Printing the result

print('The standard deviation of the dataset: ' + str(standard_deviation), '%')

The output of the standard deviation should be as follows:

The standard deviation of the dataset: 1.9039 %

How are you supposed to interpret the standard deviation? On average, the CPI year-on-year values tend to
be ±1.90% from the mean of the same period which is at 2.48%.

In the coming section, you will see how to make better use of standard deviation numbers. The last
measure of variability in this section is the range. The range is a very simple stat that shows the distance
between the greatest value and the lowest value in the dataset. This gives you quick glance about the two
historical extreme values. The range is used in the normalization formula that you will see later chapters.
The formula to find the range is as follows:

Range = max(x) − min(x)

Let’s take the same example and calculate the range. In Python, you can easily do this as there are built-in
functions that show the maximum and the minimum value given a set of data:

Calculating the range of the dataset

range_metric = max(cpi["CPIAUCSL"]) - min(cpi["CPIAUCSL"])

Printing the result

print('The range of the dataset: ' + str(range_metric), '%')

The output of the following code should be as follows:

The range of the dataset: 16.5510 %

Figure 3-3 shows the CPI values since 1950. The diagonal dashed line represents the range.

Figure 3-3. US CPI year-on-year change since 1950 with a diagonal dashed line that represents the range

The range of the CPI shows the size of the variations in inflation measures from one period to another
considering that the range occurred in 30 years. Yearly changes in inflation numbers vary from one country
to another. Generally, developed world countries such as France and the United States have stable

variations (in times of stability) while emerging and frontier world countries such as Argentina and Turkey
have more volatile and more extreme inflation numbers.

NOTE
Make sure to retain the following points as you continue to the next section:

Three key variability metrics that you should know are the variance, the standard deviation, and the range.

The standard deviation is the square root of the variance. This is done so that it becomes comparable to the mean.

The range is the difference between the highest and the lowest value in a dataset. It is a quick snapshot of the overall volatility of the
observations.

Measures of Shape
Measures of shape describe the distribution of the values around the central tendency measures in a
dataset.

The mean and the standard deviation are the two factors that describe the normal distribution. The standard
deviation depicts the spread or dispersion of the data and the mean reflects the distribution’s center.

A probability distribution is a mathematical function that describes the likelihood of different outcomes or
events in a random experiment. In other words, it gives the probabilities of all possible values of a random
variable.

There are many types of probability distributions, including discrete and continuous distributions. Discrete
distributions take on a finite number of values. The most known discrete distributions are the Bernoulli
distribution, Binomial distribution, and Poisson distribution.

Continuous distributions are used for random variables that can take on any value within a given range
(such as stock prices). The most known continuous distribution is the normal distribution.

The normal distribution (also known as the Gaussian distribution) is a type of continuous probability
distribution that is symmetrical around the mean and has a bell shape. It is one of the most widely used
distributions in statistical analysis and is often used to describe natural phenomena such as age, weight, and
test scores. Figure 3-4 shows the shape of a normal distribution.

Figure 3-4. A normal distribution plot with mean = 0 and standard deviation = 1

You can generate Figure 3-4 using the following code block:

Importing libraries

import matplotlib.pyplot as plt

import numpy as np

import scipy.stats as stats

Generate data for the plot

data = np.linspace(-3, 3, num = 1000)

Define the mean and standard deviation of the normal distribution

mean = 0

std = 1

Generate the function of the normal distribution

pdf = stats.norm.pdf(data, mean, std)

Plot the normal distribution plot

plt.plot(data, pdf, '-', color = 'black', lw = 2)

plt.axvline(mean, color = 'black', linestyle = '--')

Calling a grid to facilitate the visual component

plt.grid()

Show the plot

plt.show()

NOTE
Since normally distributed variables are common, most statistical tests and models assume that the analyzed data is normal. With financial
returns, they are assumed normal even though they experience a form of skew and kurtosis, two measures of shape discussed in this section.

In a normal distribution, the data is distributed symmetrically around the mean which also means that the
mean is equal to the median and to the mode. Furthermore, around 68% of the data fall within one standard
deviation of the mean, around 95% fall within two standard deviations, and around 99.7% fall within three
standard deviations. This property makes the normal distribution a useful tool for making inferences.

To sum up, what you should retain from the normal distribution is the following:

The mean and the standard deviation describe the distribution.

The mean splits the distribution halfway making it equal to the median. Due to the symmetrical
property, the mode is also equal to the mean and the median.

Now, let’s discuss the measures of shape. The first measure of shape is skewness. Skewness describes a
distribution’s asymmetry. It analyzes how far from being symmetrical the distribution deviates.

As you may have already understood, the skewness of a normal distribution is equal to zero. This means
that the distribution is perfectly symmetrical around its mean, with an equal number of data points on either
side of the mean.

A positive skew indicates that the distribution has a long tail to the right which means the the mean is
greater than the median due to the fact that the mean is sensible to outliers which will push it upwards
(therefore, to the right of the x-axis). Similarly, the mode which represents the most frequent observations
will be the lowest value between the three central tendency measures. Figure 3-5 shows a positive skew.

Figure 3-5. An example of a positively skewed distribution

A negative skew indicates that the distribution has a long tail to the left which means the the mean is lower
than the median for the reasons mentionned when discussing the positive skew. Similarly, the mode will be
the greatest value between the three central tendency measures. Figure 3-6 shows a negative skew.

Figure 3-6. An example of a negatively skewed distribution

NOTE
How can skewness be interpreted in the world of financial markets? If the distribution is positively skewed, it means that there are more
returns above the mean than below it (the tail of the distribution is longer on the positive side).

On the other hand, if the distribution is negatively skewed, it means that there are more returns below the mean than above it (the tail of the
distribution is longer on the negative side).

The skew of a returns series can provide information about the risk and return of an investment. For example, a positively skewed returns
series may indicate that the investment has a higher potential for high returns, but also a higher risk of large losses. In contrast, a negatively
skewed returns series may indicate that the investment has a lower potential for high returns, but also a lower risk of large losses.

The formula to find skewness is as follows:

μ̃3 =
∑i

n=1 (xi−x)3

Nσ3

The formula divides the third central moment by the standard deviation to the power of three. Let’s check
the skewness of the US CPI year-on-year data:

Calculating the skew of the dataset

skew = cpi["CPIAUCSL"].skew()

Printing the result

print('The skew of the dataset: ' + str(skew))

The output of the following code should be as follows:

The skew of the dataset: 1.4639

The skew of the data is 1.46 but what does that mean? Let’s chart the distribution of the data so that the
interpretation becomes easier. You can do this using the following code snippet:

Plotting the histogram of the data

fig, ax = plt.subplots()

ax.hist(cpi['CPIAUCSL'], bins = 30, edgecolor = 'black', color = 'white')

Add vertical lines for better interpretation

ax.axvline(mean, color='black', linestyle='--', label='Mean', linewidth = 2)

ax.axvline(median, color='grey', linestyle='-.', label='Median', linewidth = 2)

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Figure 3-7 shows the result of the previous code snippet. The data is clearly positively skewed since the
mean is greater than the median and the skewness is positive (above zero).

Figure 3-7. Data distribution of the US CPI year-on-year

Remember, skewness is a measure of the asymmetry of a probability distribution. It therefore, measures the
degree to which the distribution deviates from normality. The rules of thumb to interpret skewness are as
follows:

If skewness is between -0.5 and 0.5, the data is considered symmetrical.

If skewness is between -1.0 and – 0.5 or between 0.5 and 1.0, the data is considered mildly skewed.

If skewness is less than -1.0 or greater than 1.0, the data is considered highly skewed

What does a positive skew mean? 1.17 is a highly skewed data (in the positive side) which is in line with a
monetary policy that favors inflation as the economy grows (with a few inflationary spikes that cause the
skew).

NOTE
It may be interesting to know that with a skewed distribution, the median is the preferred metric since the mean tends to be pulled by
outliers, thus distorting its value.

The next measure of shape is kurtosis which a measure of the peakedness or flatness of a distribution
relative to a normal distribution. Kurtosis describes the tails of a distribution, in particular, whether the tails
are thicker or thinner than those of a normal distribution. Mathematically, kurtosis is the fourth central
moment divided by the fourth power of the standard deviation.

A normal distribution has a kurtosis of 3, which means it is a mesokurtic distribution. If a distribution has a
kurtosis greater than 3, it is referred to as leptokurtic, meaning it has a higher peak and fatter tails than a
normal distribution. If a distribution has a kurtosis less than 3, it is referred to as platykurtic, meaning it has
a flatter peak and thinner tails than a normal distribution.

The formula to find kurtosis is as follows:

k =
∑i

n=1 (xi−x)4

Nσ4

Sometimes, kurtosis is measured as excess kurtosis to give it a starting value of zero (for a normal
distribution). This means that the kurtosis measure is subtracted from 3 so as to calculate the excess
kurtosis. Let’s calculate excess kurtosis for the US CPI year-on-year data:

Calculating the excess kurtosis of the dataset

excess_kurtosis = cpi["CPIAUCSL"].kurtosis()

Printing the result

print('The excess kurtosis of the dataset: ' + str(excess_kurtosis))

The output of the following code should be as follows:

The excess kurtosis of the dataset: 2.2338

The excess kurtosis obtained from pandas should be zero in the case of a normal distribution. In the case of
the US CPI year-on-year values, it is 2.23 which is more in line with a leptokurtic (peakier with fatter tails)
distribution. A positive value indicates a distribution more peaked than normal and a negative kurtosis
indicates a shape flatter than normal.

NOTE
Independent from statistics, it is interesting to know the terminology of what you are analyzing. Inflation is the decrease in the purchasing
power of the economic agents (such as households). The decrease in the purchasing power means that agents can buy less over time with the
same amount of money, otherwise referred to as a general price increase. Inflation in the economic sense has the following forms:

Inflation: Controlled inflation is associated with a steady economic growth and expasion. It is a desired attribute for a growing
economy. Regulators monitor inflation and try to stabilize it in order to prevent social and economic issues.

Deflation: Whenever inflation is in the negative territory, it is referred to as deflation. Deflation is very dangerous for the economy
and as tempting as it may be for consumers who see a price decrease, deflation is a growth killer and may cause extended economic
gluts which lead to unemployment and bearish stock markets.

Stagflation: This occurs where inflation is either high or rising while the economic growth is slowing down. Simultaneously,
unemployment remains high. It is one of the worst possible case scenarios.

Disinflation: This is a decrease in inflation but in the positive territory. For example, if this year’s inflation is 2% while last year’s
inflation is 3%, you can say that there was a disinflation situation on a yearly basis.

Hyper inflation: This is the nightmarish scenario that occurs when inflation goes out of control and experiences astronomical percent
changes such as millions of percentage change from year to year (famous cases include Zimbabwe, Yugoslavia, and Greece).

Finally, one last metric to see in the descriptive statistics department, the quantiles. Quantiles are measures
of both shape and variability since they provide information about the distribution of values (shape) and
provide information about the dispersion of such values (variability). The most used type of quantiles are
called quartiles.

Quartiles divide the dataset into four equal parts. This is done by arranging the data in order and then
performing the split. Consider table 3-1 as an example:

	

	

Value

1

2

4

5

7

8

9

The quartiles are as follows:

The lower quartile (Q1) is the first quarter which in this case is 2.

The midde quartile (Q2) which is also the median which in this case is 5.

The upper quartile (Q3) in this case is 8.

Mathematically, you can calculate Q1 and Q3 using the following formulas:

Q1 = (n+1
4)

Q3 = 3 (n+1
4)

Keep in mind that the result of the formulae gives you the ranking of the values but not the values
themselves:

Q1 = (7+1
4) = 2nd term = 2

Q3 = 3 (7+1
4) = 6th term = 8

The interquartile range (IQR), is the difference between Q3 and Q1 and provides a measure of the spread
of the middle 50% of the values in a data set. The IQR is robust to outliers (since it relies on middle values)
and provides a brief summary of the spread of the bulk of the values. The IQR of the data in table 3-1 is 6
as per the following formula:

IQR = Q3 − Q1

IQR = 8 − 2 = 6

The IQR is a valuable indicator and can be used as an input or a risk metric in many different models. It
can also be used to detect outliers in the data since it is immune to them. Also, the IQR can help evaluate
the current volatility of the analyzed asset which in turn can be used with other methods to create more
powerful models. As understood, the IQR outperforms the range metric in terms of usefulness and
interpretation as the former is prone to outliers.

Be careful with calculating quartiles as there are many methods that use different calculations for the same
dataset. The most important thing is to use a consistent way all throughout your analyses. The method used
to calculate the quartiles in table 3-1 is called the Tukey’s hinges method. By default, when you want to
calculate the quartiles using pandas, the default method is the linear interpolation method which will give
different results.

The key diffences between the methods is that some may fit better with smaller datasets or normal-sized
datasets with different distribution characteristics.

NOTE
The key takeways from this section are the following:

The normal distribution is a continuous probability distribution that has a bell-shaped curve. The majority of the data cluster around
the mean. The mean, median, and the mode of a normal distribution curve are all equal.

Skewness measures the asymmetry of a probability distribution.

Kurtosis measures the peakedness of a probability distribution. Excess kurtosis is commonly used to describe the current probability
distribution.

Quantiles divide the arranged dataset into equal parts. The most famous quantiles are quartiles which divide the data into four equal
parts.

The IQR is the difference between the third quartile and the first quartile. It is immune to outliers and thus, very helpful in data
analysis.

Visualizing Data
If you remember from the previous chapter, I have presented a six-phase process in data science. Phase
four dealt with data visualization. This section will show you a few ways to present the data in a clear
visual manner that allows you to interpret it.

There are many types of statistical plots that are commonly used to visualize data such as scatter plots and
line plots. Let’s discuss these plots and create them using the same inflation data.

The first data visualization method is scatter plots, which are used to graph the relationship between two
variables through points that correspond to the intersection between the variables. Let’s create and visualize
a scatter plot using the following code:

Importing the required library

import pandas_datareader as pdr

import pandas as pd

import matplotlib.pyplot as plt

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Transforming the CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

Dropping the NaN values

cpi = cpi.dropna()

Resetting the index

cpi = cpi.reset_index()

Creating the chart

fig, ax = plt.subplots()

ax.scatter(cpi['DATE'], cpi['CPIAUCSL'], color = 'black', s = 8, label = 'Change in CPI Year-on-Year')

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Figure 3-8 shows the result of a scatter plot in time. This means that you have the CPI data as the first
variable (y-axis) and time as the second variable (x-axis). However, scatter plots are more commonly used
to compare variables, thus removing the time variable can give more insights.

Figure 3-8. Scatter plot of US CPI versus the time axis

If you take the UK CPI year-on-year change and want to compare it with the US CPI year-on-year change,
you will should get Figure 3-9. Notice the positive association between the two, as higher values of one are
correlated with higher values of another. Correlation is a key measure that you will see in detail in the next
section. The code to plot Figure 3-9 is as follows:

Setting the beginning and end of the historical data

start_date = '1995-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi_us = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

cpi_uk = pdr.DataReader('GBRCPIALLMINMEI', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.dropna()

Transforming the CPI into a year-on-year measure

cpi_us = cpi_us.pct_change(periods = 12, axis = 0) * 100

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.pct_change(periods = 12, axis = 0) * 100

cpi_uk = cpi_uk.dropna()

Creating the chart

fig, ax = plt.subplots()

ax.scatter(cpi_us['CPIAUCSL'], cpi_uk['GBRCPIALLMINMEI'], color = 'black', s = 8, label = 'Change in CPI Year-
on-Year')

Adding a few aesthetic elements to the chart

ax.set_xlabel('US CPI')

ax.set_ylabel('UK CPI')

ax.axvline(x = 0, color='black', linestyle = 'dashed', linewidth = 1) # vertical line

ax.axhline(y = 0, color='black', linestyle = 'dashed', linewidth = 1) # horizontal line

ax.set_ylim(-2,)

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Figure 3-9. Scatter plot of UK CPI versus US CPI

Scatter plots are good when visualizing the correlation between data. They are also easy to draw and
interpret. Generally, when the points are scattered in such a way that when a diagonal upwards sloping line
can be drawn to represent them, the correlation is assumed to be positive since whenever variables on the
x-axis increase, variables on the y-axis also increase.

On the other hand, when a diagonal downwards sloping line can be drawn to represent the different
variables, a negative correlation may exist. A negative correlation implies that whenever variables on the x-
axis move, it is likely that variables on the y-axis move the other way. Figure 3-10 draw a best fit line
(generated through code) between the two inflation data. Notice how it is upwards sloping:

Figure 3-10. Scatter plot of UK CPI versus US CPI with a best fit line

Let’s now move to another charting method. Line plots are basically scatter plots that are joined and are
mostly charted against the time axis (x-axis). You have already seen line plots in previous charts such as
Figure 3-1 and Figure 3-2 as it is the most basic form of plotting.

​The advantage of line plots is their simplicity and ease of implementation. They also show the evolution of
the series through time which helps detecting trends and patterns. In Chapter 5, you will see a more
elaborate version of plotting financial time series called candlestick plots. Figure 3-11 shows a basic line
plot on the US CPI since 1950:

Figure 3-11. Line plot of US CPI versus the time axis

To create Figure 3-11, you can use the following code snippet:

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Transforming the CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

Dropping the NaN values

cpi = cpi.dropna()

Resetting the index

cpi = cpi.reset_index()

Creating the chart

plt.plot(cpi['DATE'], cpi['CPIAUCSL'], color = 'black', label = 'Change in CPI Year-on-Year')

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Next up are bar plots which display the distribution of variables (generally, categorical). Figure 3-12
shows a bar plot on the US CPI since the beginning of 2022:

Figure 3-12. Bar plot of US CPI versus the time axis

To create Figure 3-12, you can use the following code snippet:

Taking the values of the previous twelve months

cpi_one_year = cpi.iloc[-12:]

Creating the chart

plt.bar(cpi_one_year['DATE'], cpi_one_year['CPIAUCSL'], color = 'black', label = 'Change in CPI Year-on-Year',
width = 7)

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Bar plots are easy to implement and are versatile. However, they can be limited for plotting continuous
data such as the US CPI or stock prices. They can also be misleading when the scale is off. Bar plots are
also not recommended for large datasets since they clutter up the space. For the latter reason, histograms
are a better fit.

A histogram is a specific sort of bar chart that is used to display the frequency distribution of continuous
data by using bars to represent statistical information. It indicates the number of observations that fall into
the class or bin of values. An example of a histogram is Figure 3-13 (and Figure 3-7 from the last section):​

Figure 3-13. Histogram plot of US CPI

Creating the chart

fig, ax = plt.subplots()

ax.hist(cpi['CPIAUCSL'], bins = 30, edgecolor = 'black', color = 'white', label = 'Change in CPI Year-on-Year',)

Add vertical lines for better interpretation

ax.axvline(0, color='black')

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Notice how the bar plot is charted against the time axis while the histogram does not have a time horizon
because it is a group of values with the aim of showing the overall distribution points. Visually, you can see
the positive skewness of the distribution.

NOTE
An example of a categorical variable is gender while an example of a continuous variable is a commodity’s price.

Another classic plotting technique in statistics is the famous box and whisker plot. It used to visualize the
distribution of continuous variables while including the median and the quartiles, as well as the outliers.
The way to understand the box and whisker plot is as follows:

The box represents the IQR. The box is drawn between the first quartile and the third quartile. The
height of the box indicates the spread of the data in this range.

The line inside the box represents the median.

The whiskers extend from the top and bottom of the box to the highest and lowest data points that are
still within 1.5 times the IQR. These data points are called outliers and are represented as individual
points on the plot.

Figure 3-14 shows a box and whisker plot on the US CPI since 1950:

Figure 3-14. Box and whisker plot of US CPI

You can also plot it without the outliers (any value that lies more than one and a half times the length of the
box from either end of the box). To create Figure 3-14, you can use the following code snippet:

Taking the values of the last twenty years

cpi_last_ten_years = cpi.iloc[-240:]

Creating the chart

fig, ax = plt.subplots()

ax.boxplot(cpi_last_ten_years['CPIAUCSL'])

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

To remove the outliers from the plot, you simply use the following tweak:

Replace the corresponding code line with the following

ax.boxplot(cpi_last_ten_years['CPIAUCSL'], showfliers = False)

Which will give you Figure 3-15:

Figure 3-15. Box and whisker plot of US CPI with no outliers

​Many more data visualization techniques exist such as heatmaps (commonly used with correlation data
and temperature mapping) and pie charts (commonly used for budgeting and segmentation). It all
depends on what you need to understand and what fits better with your needs. For example, a line plot is
better suited for time series that only have one feature (for example, only the close price of a certain
security is available). A histogram plot is better suited with probability distribution data.

NOTE
Let’s do a summary of everything you need to retain:

Data visualization depends on the type of analysis and interpretation you want to do. Some plots are better suited with certain types of
data.

Data visualization helps with an initial interpretation of data before confirming it numerically.

You are more likely to use line plots and candlestick plots when dealing with financial time series.

Correlation
Correlation is a measure used to calculate the degree of the linear relationship between two variables. It is
a number between -1.0 and 1.0 with -1.0 designating a strong negative relationship between the variables
and 1.0 designating a strong positive relationship.

A value of zero indicates that there is no linear association between the variables. However, correlation
does not imply causation. Two variables are said to be correlated if they move in the same direction, but
this does not imply that one causes the other to move or that they move as a result of the same events.

Most people agree that some assets have natural correlations. For instance, because they are both part of the
same industry and are affected by the same trends and events, the stocks of Apple and Microsoft are
positively connected (which means their general trend is in the same direction). Figure 3-16 shows the
chart between the two stocks. Notice how they move together.

Figure 3-16. Apple and Microsoft stock prices since 2021

The tops and bottoms of both stocks occur at almost the exact same time. Similarly, as the United States
and the UK have similar economic drivers and impacts, they are also likely to have positively correlated
inflation numbers.

Checking for correlation is done through visual interpretation and mathematical formulae. Before seeing an
example, let’s deeply understand the roots of calculating correlation so that you know where it comes from
and what are its limitations.

NOTE
Simply put, to calculate correlation, you need to measure how close the points in a scatter plot of the two variables are to a straight line. The
more they look like a straight line, the more they are positively correlated, hence the term, linear correlation.

There are two main1 ways to calculate correlation, it is either by using the Spearman method or the Pearson
method.

The Pearson correlation coefficient, is a measure of the linear association between two variables calculated
from the standard deviation and the covariance between two variables. But, what is covariance?

Covariance calculates the average of the difference between the means of the two variables. If the two
variables have a tendency to move together, the covariance is positive and if the two variables typically
move in opposite directions, the covariance is negative. It ranges between infinity and negative infinity
with values close to zero representing no linear correlation.

The formula for calculating the covariance between variables x and y is as follows:

covxy =
∑n

i=1(xi−x)(yi−y)

n

Therefore, covariance is the sum of the products of the average deviations between the variables and their
respective means (which measures the degree of their association). An average is taken to normalize this
calculation. The Pearson correlation coefficient is calculated as follows:

rxy =
∑n

i=1(xi−x)(yi−y)

√∑n
i=1 (xi−x)2√∑n

i=1 (yi−y)2

Simplifying the previous correlation formula gives you the following:

rxy =
covxy

σxσy

Therefore, Pearson correlation coefficient is simply the covariance between two variables divided by the
product of their standard deviation. Let’s calculate the correlation between the US CPI year-on-year
changes and the UK CPI year-on-year changes. The intuition is that the correlation is above zero as
economically, the UK and the US are related. The following code block calculates the Pearson correlation
coefficient for the two time series:

Importing the required libraries

import pandas_datareader as pdr

import pandas as pd

Setting the beginning and end of the historical data

start_date = '1995-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi_us = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

cpi_uk = pdr.DataReader('GBRCPIALLMINMEI', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.dropna()

Transforming the US CPI into a year-on-year measure

cpi_us = cpi_us.pct_change(periods = 12, axis = 0) * 100

cpi_us = cpi_us.dropna()

Transforming the UK CPI into a year-on-year measure

cpi_uk = cpi_uk.pct_change(periods = 12, axis = 0) * 100

cpi_uk = cpi_uk.dropna()

Joining both CPI data into one dataframe

combined_cpi_data = pd.concat([cpi_us['CPIAUCSL'], cpi_uk['GBRCPIALLMINMEI']], axis = 1)

Using pandas' correlation function to calculate the measure

combined_cpi_data.corr(method = 'pearson')

The output is as follows:

 CPIAUCSL GBRCPIALLMINMEI

CPIAUCSL 1.000000 0.732164

GBRCPIALLMINMEI 0.732164 1.000000

The correlation between the two is a whopping 0.73. This is in line with the expectations. Pearson
correlation is usually used with variables that have proportional changes and are normally distributed. This
may be an issue as financial data is not normally distributed. Therefore, it is interesting to discuss
Spearman correlation.

Spearman correlation is a non-parametric rank correlation that measures the strength of the relationship
between the variables. It is suitable for variables that do not follow a normal distribution.

NOTE
Remember, financial returns are not normally distributed but are sometimes treated that way for simplicity.

Unlike Pearson correlation, the Spearman rank correlation takes into account the order of the values, rather
than the actual values. To calculate Spearman correlation, follow these steps:

1. Rank the values of each variable. This is done by inputing 1 instead of the smallest variable and
inputing the length of the dataset instead of the largest number.

2. Calculate the difference in ranks. Mathematically, the difference in ranks is represented by the letter d
in the mathematical formula to come. Then, calculate their squared differences.

3. Sum the squared differences you have calculated from step 2.

4. Use the following formula to calculate Spearman correlation.

ρ = 1 −
6∑n

i=1 d
2
i

n3−n

As with Pearson correlation, Spearman correlation also ranges from -1.00 to 1.00 with the same
interpretation.

NOTE
Strong positive correlations are generally upwards of 0.70, while strong negative correlations are generally downwards of -0.70.

The following code block calculates the Spearman rank correlation coefficient for the two time series:

Importing the required libraries

import pandas_datareader as pdr

import pandas as pd

Setting the beginning and end of the historical data

start_date = '1995-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi_us = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

cpi_uk = pdr.DataReader('GBRCPIALLMINMEI', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.dropna()

Transforming the US CPI into a year-on-year measure

cpi_us = cpi_us.pct_change(periods = 12, axis = 0) * 100

cpi_us = cpi_us.dropna()

Transforming the UK CPI into a year-on-year measure

cpi_uk = cpi_uk.pct_change(periods = 12, axis = 0) * 100

cpi_uk = cpi_uk.dropna()

Joining both CPI data into one dataframe

combined_cpi_data = pd.concat([cpi_us['CPIAUCSL'], cpi_uk['GBRCPIALLMINMEI']], axis = 1)

Using pandas' correlation function to calculate the measure

combined_cpi_data.corr(method = 'spearman')

The output is as follows:

 CPIAUCSL GBRCPIALLMINMEI

CPIAUCSL 1.000000 0.472526

GBRCPIALLMINMEI 0.472526 1.000000

Let’s answer a very important question after getting this difference in results. Why are the two measures so
different?

The first thing to keep in mind is what they measure. Pearson correlation measures the linear relationship
(trend) between the variables while Spearman rank correlation measures the monotonic trend. The word
monotonic refers to moving in the same direction but not exactly at the same rate or magnitude. Also,
Spearman correlation transforms the data to an ordinal type (through the ranks) as opposed to Pearson
correlation which uses the actual values.

Autocorrelation (also referred to as serial correlation) is a statistical method used to look at the relationship
between a given time series and a lagged version of it. It is generally used to predict future values through
patterns in data, such as seasonality or trends. Autocorrelation is therefore the values’ relationship with the
previous values. For example, comparing each day’s Microsoft stock price to the preceding day and see if
there is a discernible correlation there. Algorithmically speaking, this can be represented in table 3-2:

	

T
a
b
l
e

3
-
1
.
L
a
g
g
e
d

v
a
l
u
e
s
t
a
b
l
e

	

	

 t t-1

 $ 1.25 $ 1.65

 $ 1.77 $ 1.25

 $ 1.78 $ 1.77

 $ 1.25 $ 1.78

 $ 1.90 $ 1.25

Each row represents a time period. Column t is the current price and column t-1 is the previous price put on
the row that represents the present. This is done when creating machine learning models so as to

understand the relationship between the current values and the previous ones at every time step (row).

Positive auto correlation frequently occurs in trending assets and is associated with the idea of persistence
(trend following). On the other hand, ranging markets exhibit negative auto correlation, which is associated
with the idea of anti-persistence (mean reversion).

NOTE
Measures of short-term correlation are typically computed using returns on prices rather than real prices. However, it is possible to utilize
the prices directly to identify long-term trends.

The following code block calculates the autocorrelation of the US CPI year-on-year:

Importing the required libraries

import pandas_datareader as pdr

import pandas as pd

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi = cpi.dropna()

Transforming the US CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

cpi = cpi.dropna()

Transforming the data frame to a series structure

cpi = cpi.iloc[:,0]

Calculating autocorrelation with a lag of 1

print('Correlation with a lag of 1 = ', round(cpi.autocorr(lag = 1), 2))

Calculating autocorrelation with a lag of 6

print('Correlation with a lag of 6 = ', round(cpi.autocorr(lag = 6), 2))

Calculating autocorrelation with a lag of 12

print('Correlation with a lag of 12 = ', round(cpi.autocorr(lag = 12), 2))

A lag of 12 means that every data is compared to the data from twelve periods ago and then a calculation
measure is calculated. The output of the code is as follows:

Correlation with a lag of 1 = 0.99

Correlation with a lag of 6 = 0.89

Correlation with a lag of 12 = 0.73

Now, before proceeding to the next section, let’s revert back to information theory and discuss one
interesting correlation coefficient that is able to pick-up on non-linear relationships. One of these ways is
the maximal information coefficient (MIC).

The maximal information coefficient (MIC) is a non-parametric measure of association between two
variables designed to handle large and complex data. It is generally seen as a more robust alternative to

traditional measures of correlation, such as Pearson correlation and Spearman rank correlation. Introduced
by Reshef et al., the MIC uses concepts from information theory that you have seen in Chapter 2.

The MIC measures the strength of the association between two variables by counting the number of cells in
a contingency table that are maximally informative about the relationship between the variables. The MIC
value ranges from 0 to 1, with higher values indicating stronger associations. It can handle high-
dimensional data and can identify non-linear relationships between variables. It is however non-directional
which means that values close to 1 only suggest a strong correlation between the two variables but it does
not say whether the correlation is positive or negative.

NOTE
In other words, the mutual information between the two variables within each bin is calculated after the range of each variable has been
divided into a set of bins.

The strength of the association between the two variables is then estimated using the maximum mutual information value across all bins.

Let’s check out a practical example that showcases the strength of the MIC in detecting non-linear
relationships. The following example simulate a Sinus and Cosinus time series. Intuitively, looking at
Figure 3-17, it seems that there is a lag-lead relationship between the two.

Figure 3-17. The two wave series showing a form of non-linear relationship

The following Python code snippet creates the two time series and plots Figure 3-17:

Importing the required libraries

import numpy as np

import matplotlib.pyplot as plt

Setting the range of the data

data_range = np.arange(0, 30, 0.1)

Creating the sine and the cosine waves

sine = np.sin(data_range)

cosine = np.cos(data_range)

Plotting

plt.plot(sine, color = 'black', label = 'Sine Function')

plt.plot(cosine, color = 'grey', linestyle = 'dashed', label = 'Cosine Function')

plt.grid()

plt.legend()

Now, the job is to calculate the three correlation measures and analyze their results. This can be done using
the following code:

Importing the libraries

from scipy.stats import pearsonr

from scipy.stats import spearmanr

from minepy import MINE

Calculating the linear correlation measures

print('Correlation | Pearson: ', round(pearsonr(sine, cosine)[0], 3))

print('Correlation | Spearman: ', round(spearmanr(sine, cosine)[0], 3))

Calculating the MIC

mine = MINE(alpha = 0.6, c = 15)

mine.compute_score(sine,cosine)

MIC = mine.mic()

print('Correlation | MIC: ', round(MIC, 3))

Note that since the code creates an array (and not a data frame), it is mandatory to import the required
libraries before calculating the measures. This will be made clear in the next chapter. The following is the
output of the code:

Correlation | Pearson: 0.035

Correlation | Spearman: 0.027

Correlation | MIC: 0.602

Let’s interpret the results:

Pearson correlation: Notice the absence of any type of correlation here due to it missing out on the
non-linear association.

Spearman correlation: The same situation applies here with an extremely weak correlation.

MIC: The measure returned a strong relationship of 0.60 between the two which is closer to reality. It
seems that the MIC states that both waves have a strong relationship albeit non-linear.

NOTE
You may need to update Microsoft Visual C++ (at least version 14.0 or greater) to avoid any errors in trying to run minepylibrary.

The MIC is very useful in economic analysis, financial analysis, and even finding trading signals if used
properly. Non-linear relationships are abundant in such complex fields and being able to detect them may
give a sizable edge.

NOTE
The main takeaways from the correlation section are the following points:

Correlation is a measure used to calculate the degree of the linear relationship between two variables. It is a number between -1.0 and
1.0 with -1.0 designating a strong negative relationship between the variables and 1.0 designating a strong positive relationship.

There are two main types of correlation measures, Spearman and Pearson. Both have their advantages and limitations.

Autocorrelation is the correlation of the variable with its own lagged values. For example, if the autocorrelation of Nvidia’s stock
returns is positive, it denotes a trending configuration.

Correlation measures can also refer to non-linear relationships when you use the right tool, for example, the MIC.

The Concept of Stationarity
Stationarity is one of the key concepts in statistical analysis and machine learning. Stationarity is when the
statistical characteristics of the time series (mean, variance, etc.) are constant over time. In other words, no
discernable trend is detectable when plotting the data across time.

The different learning models rely on data stationarity as it is one of the basics of statistical modelling and
this is mainly for simplicity. In finance, price time series are not stationary as they show trends with
varying variance (volatility). Take a look at Figure 3-18 and see if you can detect a trend. Would you say
that this time series is stationary?

Figure 3-18. Simulated data with a varying mean across time

Naturally, the answer is no as a rising trend is clearly in progress. States like this are undesirable for
statistical analyses and machine learning. Luckily, there are transformations that you can apply to the time
series to make them stationary. But first, let’s see how to check for stationarity the mathematical way as the
visual way does not prove anything. The right process to deal with data stationarity problem is to follow
these steps:

1. Check for stationarity using the different statistical tests that you will see in this section.

2. If the tests show data stationarity, you are ready to use the data for the different learning algorithms. If
the tests show that the data is not stationary, you have to proceed to the next step.

3. Apply the price transformation technique that you will see in this section.

4. Re-check for stationarity using the same tests on the new transformed data.

5. If the test shows data stationarity, then you have successfully transformed your data. Otherwise, re-do
the transformation and check again until you have stationary data.

NOTE
Ascending or descending time series have varying mean and variances through time and are therefore most likely non-stationary. There are
exceptions to this and you will see later why.

Remember, the aim of stationarity is stable and constant mean and variance over time. Therefore, when you
look at Figure 3-19, what can you say about it?

Figure 3-19. Simulated data with a mean around zero across time

Visually, it looks like the data does not have a trend and it also looks like it fluctuates around a stable mean
with stable variance around it. The first impression is that the data is stationary. Of course, this must be
proved by statistical tests.

The first and most basic test is the Augmented-Dickey-Fuller (ADF) test. The ADF tests for stationarity
using hypothesis testing.

The ADF test searches for a unit root in the data. A unit root is a property of non-stationary data and in the
context of time series analysis, refers to a characteristic of a stochastic process where the series has a root
equal to 1. In simpler terms, it means that its statistical properties, such as the mean and variance, change
over time. Here’s what you need to know:

The null hypothesis assumes the presence of a unit root. This means that if you are trying to prove that
the data is stationary, you are looking to reject the null hypothesis (as seen in the hypothesis testing
section from Chapter 2).

The alternative hypothesis is therefore the absence of a unit root and the stationarity of the data.

The p-value obtained from the test must be less than the significance level chosen (in most cases, it is
5%).

Let’s take the US CPI year-on-year data and test it for stationarity. The following code snippet checks for
stationarity using the ADF test:

Importing the required libraries

from statsmodels.tsa.stattools import adfuller

import pandas_datareader as pdr

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi = cpi.dropna()

Transforming the US CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

cpi = cpi.dropna()

Applying the ADF test on the CPI data

adfuller(cpi)

print('p-value: %f' % adfuller(cpi)[1])

The output of the code is as follows:

p-value: 0.0152

Assuming a 5% significance level, it seems that it is possible to accept that the year-on-year data is
stationary (however, if you want to be more strict and use a 1% significance level, then the p-value
suggests that the data is non-stationary). In any way, even looking at the chart can make you scratch your
head. Remember that in Figure 3-11, the yearly changes in the US CPI seem to be stable but does not
resemble stationary data. This is why numerical and statistical tests are used.

Now, let’s the do the same thing but omit taking the yearly changes. In other words, applying the code on
the raw US CPI data and not taking year-on-year changes. Here’s the code:

Importing the required libraries

from statsmodels.tsa.stattools import adfuller

import pandas_datareader as pdr

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi = cpi.dropna()

Applying the ADF test on the CPI data

adfuller(cpi)

print('p-value: %f' % adfuller(cpi)[1])

The output of the code is as follows:

p-value: 0.999

Clearly, the p-value is greater than all significance levels which means that the time series is non-stationary.
Let’s sum up these results:

It seems that you can reject the null hypothesis using a 5% significance level when it comes to the
year-on-year changes on the US CPI. The dataset is assumed to be stationary.

It seems that you cannot reject the null hypothesis using a 5% significance level when it comes to the
raw values of the US CPI. The dataset is assumed to be non-stationary.

This becomes obvious when you plot the raw values of the US CPI, as shown in Figure 3-20.

Figure 3-20. Absolute values of the US CPI showing a clearly trending nature

The other test that you must be aware of is called the The Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
which is also a statistical test with the aim of determining whether the time series is stationary or non-
stationary. However, the KPSS test can detect stationarity in trending time series which makes it a powerful
tool.

Trending time series can actually be stationary on the condition they have a stable mean.

WARNING
The ADF test has a a null hypothesis that argues for non-stationarity and an alternative hypothesis that argues for stationarity. The KPSS test
on the other hand, has a null hypothesis that argues for stationarity and an alternative hypothesis that argues for non-stationarity.

Before analyzing the inflation data, let’s see how can a trending time series be stationary. Remember that
stationarity refers to a stable mean and standard deviation so if somehow, you have a gradually ascending
or descending time series with stable statistical properties, it may be stationary. The next code snippet
simulates a sine wave and then adds a touch of a trending nature to it:

Importing the required libraries

import numpy as np

import matplotlib.pyplot as plt

Creating the first time series using sine waves

length = np.pi * 2 * 5

sinewave = np.sin(np.arange(0, length, length / 1000))

Creating the second time series using trending sine waves

sinewave_ascending = np.sin(np.arange(0, length, length / 1000))

Defining the trend variable

a = 0.01

Looping to add a trend factor

for i in range(len(sinewave_ascending)):

 sinewave_ascending[i] = a + sinewave_ascending[i]

 a = 0.01 + a

Plotting the two series as shown in Figure 3-21 shows how the trending sinewave seems to be stable. But
let’s prove this through statistical tests.

Figure 3-21. A normal sine wave simulated series with a trending sine wave

Figure 3-21 is generated using the following code (make sure you have defined the series using the
previous code block):

Plotting the series

plt.plot(sinewave, label = 'Sine Wave', color = 'black')

plt.plot(sinewave_ascending, label = 'Ascending Sine Wave', color = 'grey')

Calling the grid function for better interpretability

plt.grid()

Calling the legend function to show the labels

plt.legend()

Showing the plot

plt.show()

Let’s try the ADF test on both series and see what the results are:

ADF testing | Normal sine wave

adfuller(sinewave)

print('p-value: %f' % adfuller(sinewave)[1])

ADF testing | Ascending sine wave

adfuller(sinewave_ascending)

print('p-value: %f' % adfuller(sinewave_ascending)[1])

The output is as follows:

p-value: 0.000000 # For the sine wave

p-value: 0.898635 # For the ascending sine wave

Clearly, the ADF test is consistent with the idea that trending markets cannot be stationary. But what about
the KPSS test? The following code uses the KPSS on the same data to check for stationarity:

Importing the KPSS library

from statsmodels.tsa.stattools import kpss

KPSS testing | Normal sine wave

kpss(sinewave)

print('p-value: %f' % kpss(sinewave)[1])

KPSS testing | Ascending sine wave

kpss(sinewave_ascending)

print('p-value: %f' % kpss(sinewave_ascending)[1])

KPSS testing while taking into account the trend | Ascending sine wave

kpss(sinewave_ascending, regression = 'ct')

print('p-value: %f' % kpss(sinewave_ascending, regression = 'ct')[1])

'''

The 'ct' argument is used to check if the dataset is stationary

around a trend. By default, the argument is 'c' which is is used

to check if the data is stationary around a constant.

'''

The output is as follows:

p-value: 0.10 # For the sine wave

p-value: 0.01 # For the ascending sine wave without trend consideration

p-value: 0.10 # For the ascending sine wave with trend consideration

Remember that the null hypothesis of the KPSS test is that the data is stationary, therefore if the p-value is
greater than the significance level, the data is considered stationary since it is not possible to reject the null
hypothesis.

The KPSS statistic when taking into account the trend, states that the ascending sine wave is a stationary
time series. This is a basic example on how you can find stationary data in trending time series.

Let’s take the US CPI year-on-year data and test it for stationarity. The following code snippet checks for
stationarity using the KPSS test:

Importing the required libraries

from statsmodels.tsa.stattools import kpss

import pandas_datareader as pdr

Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date = '2022-12-01'

Creating a dataframe and downloading the CPI data using its code name and its source

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

Dropping the NaN values from the rows

cpi = cpi.dropna()

Transforming the US CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

cpi = cpi.dropna()

Applying the KPSS (no trend consideration) test on the CPI data

kpss(cpi)

print('p-value: %f' % kpss(cpi)[1])

Applying the KPSS (with trend consideration) test on the CPI data

kpss(cpi, regression = 'ct')

print('p-value: %f' % kpss(cpi, regression = 'ct')[1])

The output of the code is as follows:

p-value: 0.036323 # without trend consideration

p-value: 0.010000 # with trend consideration

It seems that the results from the KPSS test are in contradiction with the results from the ADF test. This
may happen from time to time and differencing may solve the issue (bear in mind, that the year-on-year
data is already a differenced time series from the absolute CPI values but some time series may need more
than one differencing to become stationary and it also depends on the period of differencing). The safest
solution in contradiction is to transform once more the data.

Before finishing this section on stationarity, let’s discuss a complex topic that you will later see in action in
Chapter 7. Transforming the data may cause an unusual problem that is, memory loss. In his book, Marco
Lopez de Prado proposed a technique called fractional differentiation with the aim of making data
stationary while preserving some memory.

When a non-stationary time series is differenced in the aim of making it stationary, memory loss occurs
which is another way of saying that the autocorrelation between the values is greatly reduced, thus
removing the trend component and the DNA of the underlying asset. The degree of differencing and the
persistence of the autocorrelation structure in the original series determines how much memory loss occurs.

NOTE
This section has presented many complex concepts. You should retain the following:

Stationarity refers to the concept of stable mean and variance through time. It is a desired characteristic as most machine learning
models rely on it.

Financial price time series are most likely non-stationary and require a first order transformation to become stationary and ready for
statistical modelling. Some may even require a second order transformation to become stationary.

The ADF and KPSS tests check for stationarity in the data with the latter being able to check for stationarity in trending data, thus
being more thorough.

Trending data may be stationary. Although this characteristic is rare, the KPSS is able to detect the stationarity as opposed to the ADF
test.

Regression Analysis and Statistical Inference
Inference, as Oxford Languages defines it, is a conclusion reached on the basis of evidence and reasoning.
Therefore, as opposed to descriptive statistics, inferential statistics use the data or a sample of the data to
make inferences (forecasts). The main tool in statistical inference is linear regression.

Linear regression is a basic machine learning algorithm you will see in this book as of Chapter 7 with the
other machine learning algorithms. Hence, let’s present the intuition of regression analysis in this section.

The most basic form of a linear regression equation is as follows:

y = α + βx + ϵ

y is the dependent variable, it is what you want to forecast

x is the independent variable, it is what you use as an input to forecast y

α is the expected value of the dependent variable when the independent variables are equal to zero

β represents the change in the dependent variable per unit change in the independent variable

ϵ is the residual or the unexplained variation

The basic linear regression equation states that a dependent variable (what you want to forecast) is
explained by a constant, a sensitivity-adjusted variable, and a residual (error term to account for
unexplained variations). Consider table 3-3:

	

T
a
b
l
e

3
-
2
.
P
r
e
d
i
c
t
i
o
n

t
a
b
l
e

	

	

y x

100 49

200 99

300 149

400 199

? 249

The linear equation to predict y given x, is as follows:

yi = 2 + 2xi

Therefore, the latest y given x = 249 should be 500:

yi = 2 + 2xi = 2 + (2 × 249) = 500

Notice how linear regression perfectly captures the linear relationship between the two variables since there
is no residual (unexplained variations). When a linear regression perfectly captures the relationship
between two variables, it means that their coordinate points are perfectly aligned on a linear line across the
x-axis.

Multiple linear regression can take the following form:

yi = α + β1x1+. . . +βnxn + ϵi

This basically means that the dependent variable y may be impacted by more than one variable. For
instance, if you want to estimate housing prices, you may want to take into account the number of rooms,
the surface area, the neighborhood, and any other variable that is likely to impact the price. Similarly, if
you want to predict commodity prices, you may want to take into account the different macroeconomic
factors, currency values, and any other alternative data.

It is important to understand what every variable refers to. Make sure to memorize the previous formula.
Linear regression has a few assumptions:

Linear relationship

The relationship between the dependent variable and the independent variable(s) should be linear,

meaning that a straight line across the plane can describe the relationship. This is rare in real life when

dealing with complex financial variables.

Independence of variables

The observations should be independent of each other, meaning that the value of one observation does

not influence the value of another observation.

Homoscedasticity

The variance of the residuals (the difference between the predicted and actual values of the dependent

variable) should be constant across all levels of the independent variable(s).

Normality of the residuals

The residuals should be normally distributed, meaning that the majority of the residuals are close to

zero and the distribution is symmetrical.

​In case of a multiple linear regression, you can add a new assumption, that is the absence of
multicollinearity. ​The independent variables should not be highly correlated with each other, otherwise it
can make it difficult to determine the unique effect of each independent variable on the dependent variable.
In other words, this prevents redundancy. You will see linear regression in detail with more in-depth
examples in Chapter 7 as this section only introduces it as part of the statistics field.

NOTE
Now, you should have a solid understanding in the key concepts of statistics. Let’s do a summary of everything you need to retain:

Linear regression is part of the inferential statistics field and it is a linear equation that describes the relationship between variables.

Linear regression interprets and predicts data following an equation that you obtain when you train past data and expect the
relationship to hold in the future.

Summary
Being able to perform data analysis is key towards deploying the right algorithms in order to predict the
future values of the time series. Understanding data is done through a wide selection of tools coming from
the statistics world. Make sure you understand what stationarity and what correlation are as they offer
extremely valuable insights in modeling.

1 Among others but these two ways are the most popular representations.

Chapter 4. Linear Algebra and
Calculus for Deep Learning

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s
raw and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we might improve the content and/or examples
in this book, or if you notice missing material within this chapter, please reach
out to the editor at ccollins@oreilly.com.

Algebra and calculus are pillars of data science, especially the learning algorithms
which are based on concepts from these two mathematical fields. This chapter
presents some key algebra and calculus topics in a way that everyone can understand.

It helps to know why you’re learning something. This way, you gain the motivation to
continue and you know which way to point your focus.

Algebra is the study of operations and relational rules, as well as the constructions
and ideas that result from them. Algebra covers topics such as linear equations and
matrices. You can consider algebra as the first step towards calculus.

Calculus is the study of curve slopes and rates of change. Calculus covers topics such
as derivatives and integrals. It is heavily used in many fields such as economics and
engineering. Different learning algorithms rely on the concepts of calculus to perform
their complex operations.

The distinction between the two is that while calculus works with ideas of change,
motion, and accumulation, algebra deals with mathematical symbols and the rules for
manipulating those symbols. Calculus focuses on the characteristics and behavior of
changing functions, while algebra offers the foundation for solving equations and
comprehending functions.

[Heading to Come]

Vectors and Matrices
A vector is an object that has a magnitude (length) and a direction (arrowhead). The
basic representation of a vector is an arrow with coordinates on the axis. But first,
let’s see what an axis is.

The x-axis and y-axis are perpendicular lines that specify a plane’s boundaries and
the locations of different points within them in a two-dimensional Cartesian
coordinate system. The x-axis is horizontal and the y-axis is vertical.

These axes may represent vectors, with the x-axis representing the vector’s horizontal
component and the y-axis representing its vertical component.

Figure 4-1 shows a simple 2-dimensional Cartesian coordinate system with both axes.

Figure 4-1. 2-dimensional Cartesian coordinate system

The 2-dimensional Cartesian coordinate system uses simple parentheses to show the
location of different points following this order:

Point coordinates = (horizontal location (x), vertical location (y))

Therefore, if you want to draw point A which has (2, 3) as coordinates, you are likely
to look at a graph from point zero, move two points to the right and from there, three
points upwards. The result of the point should look like Figure 4-2.

Figure 4-2. The location of A on the coordinate system

Let’s now add another point and draw a vector between them. Suppose you have also
point B with (4, 5) as coordinates. Naturally, as the coordinates of B are both higher
than the coordinates of A, you would expect vector AB to be upwards sloping. Figure
4-3 shows the new point B and vector AB.

Figure 4-3. Vector AB joining A and B points together in magnitude and direction

However, having drawn the vector using the coordinates of both points, how would
you refer to the vector? Simply put, vector AB has its own coordinates that represent

it. Remember that the vector is a representation of the movement from point A to
point B. This means the 2-point movement along the X-axis and the Y-axis is the
vector. Mathematically, to find the vector, you should subtract the two coordinate
points from each other while respecting the direction. Here’s how:

Vector AB means that you are going from A to B, therefore, you need to subtract
the coordinates of point B from the coordinates of point A:

AB = < 4 − 2,5 − 3 >

AB = < 2,2 >

Vector BA means that you are going from B to A, therefore, you need to subtract
the coordinates of point A from the coordinates of point B:

BA = < 2 − 4, 3 − 5 >

BA = < −2, −2 >

To interpret AB and BA vectors, you think in terms of movement. AB vector
represents going from point A to point B, two positive points horizontally and
vertically (right and upwards respectively). BA vector represents going from point B
to point A, two negative points horizontally and vertically (left and downwards
respectively).

NOTE
Vectors AB and BA are not the same thing even though they share the same slope. But what is a slope anyway?

The slope is the ratio of the vertical change between two points on the line to the horizontal change between the
same two points. You calculate the slope using this mathematical formula:

Slope = (ΔY)
(ΔX)

Slope of AB = 2
2 = 1

Slope of BA = −2
−2 = 1

If the two vectors were simply lines (with no direction), then, they would be the same object. However, adding
the directional component makes them two distinguishable mathematical objects.

Figure 4-4 sheds more light on the concept of the slope, as x has shifted two points to
the right and y has shifted two points to the left.

Figure 4-4. The change in x and the change in y for vector AB

Figure 4-5 shows the change in x and the change in y in the case of vector BA.

Figure 4-5. The change in x and the change in y for vector BA

NOTE
A vector that has a magnitude of 1 is referred to as a unit vector.

Researchers typically use vectors as representations of speed especially in
engineering. Navigation is one field that heavily relies on vectors. It allows
navigators to determine their positions and plan their destinations. Naturally,
magnitude represents speed and the direction represents the destination.

You can add and subtract vectors from each other and from scalars. This allows for a
shift in direction and magnitude. What you should retain from the previous discussion
is that vectors indicate directions between different points on the axis.

NOTE
A scalar is a value with magnitude but no direction. Scalars, as opposed to vectors, are used to represent
elements like temperature and prices. Basically, scalars are numbers.

In machine learning, the x-axis and y-axis respectively represent data and the model’s
results. The independent (predictor) variable is represented by the x-axis in a scatter
plot, and the dependent (forecast) variable is represented by the y-axis.

A matrix is a row-and-column-organized rectangular array containing numbers1.
Matrices are useful in computer graphics and other domains as well as to define and
manipulate linear systems of equations. What differentiates a matrix from a vector?
The simplest answer is that a vector is a matrix with a single column or a single row.
Here’s a a basic example of a 3 x 3 matrix:

Matrices’ sizes are referred to using their rows and columns respectively. A row is a
horizontal line and a column is a vertical line. The following representation is a 2 x 4
matrix:

[]

The following representation is another example of a matrix. This time it is a 4 x 2
matrix:

5 2 9

−8 10 13

1 5 12

5 2 1 3

−8 10 9 4

NOTE
Matrices are heavily used in machine learning. Rows generally represent time and columns represent features.

The summation of different matrices is straightforward but must be used only when
the matrices match in size (which means they have the same number of columns and
rows). For instance, let’s add the two following matrices:

[] + [] = []

You can see that to add two matrices, you simply have to add the numbers in the
same positions. Now, if you try to add the two following matrices, you won’t be able
to do it as there is a mismatch in what to add:

[] +

The subtraction of matrices is also straighforward and follows the same rules as the
summation of matrices. Let’s take the following example:

[] − [] = []

Evidently, subtraction of matrics is also a summation of matrices with a change of
signals in one of them.

Matrix multiplication by a scalar is quite simple. Let’s take the following example:

3 × [] = []

So basically, you are multiplying every element in the matrix by the scalar. Matrix
multiplication by another matrix is a bit more complicated since they use the dot
product method. First of all, in order to multiply two matrices together, they must
satisfy this condition:

5 2

−8 10

8 22

7 3

1 2

5 8

3 9

1 5

4 11

6 13

8 3

3 2

3 9

1 5

5 4

5 2

−8 10

3 9

−1 −5

2 −7

−9 15

5 2

8 22

15 6

24 66

Matrixxy × Matrixyz = Matrixxz

This means that the first matrix must have a number of columns equal to the number
of rows in the second matrix, and the resulting matrix from the dot product is a matrix
that has the number of rows of the first matrix and the number of columns of the
second matrix. The dot product is explained in this example representation of a 1 x 3
and 3 x 1 matrix multiplication (notice the equal number of columns and rows):

[] × = [] = []

Let’s take another example of a 2 x 2 matrix multiplication:

[] × [] = []

There is a special type of matrix called the identity matrix which is basically the
number 1 for matrices. It is defined as follows for a 2 x2 dimension:

I = []

And as follows for a 3 x 3 dimension:

I =

Multiplying any matrix by the identity matrix yields the same original matrix. This is
why it can be referred to as the 1 of matrices (multiplying any number by 1 yields the
same number). It is worth noting that matrix multplication is not commutative, which
means that the order of multiplication changes the result such as:

AB ≠ BA

Matrix transposing is a process that involves changing the rows of into columns and
vice versa. The transpose of a matrix is obtained by reflecting the matrix along its
main diagonal:

[]
T

=

1 2 3

3

2

1

(1 × 3) + (2 × 2) + (3 × 1) 10

1 2

0 1

3 0

2 1

7 2

2 1

1 0

0 1

1 0 0

0 1 0

0 0 1

4 6 1

1 4 2

4 1

6 4

1 2

Transposing is used in some machine learning algorithms and is not an uncommon
operation when dealing with such models. If you are wondering about the role of
matrices in data science and machine learning, you can refer to this non-exhaustive
list:

Representation of data

Matrices often represent data with rows representing samples and columns

representing features. For example, a row in a matrix can present OHLC data in

one time step.

Linear algebra

Matrices and linear algebra are intertwined, and many learning algorithms use the

concepts of matrices in their operations.

Data relationship matrices

If you remember from Chapter 3, covariance and correlation measures are often

represented as matrices. These relationship calculations are important concepts in

machine learning.

NOTE
You should retain the following key concepts from this section:

A vector is an object that has a magnitude (length) and a direction (arrowhead). Multiple vectors grouped
together form a matrix.

A matrix can be used to store data. It has its special ways of performing operations.

Matrix multiplication uses the dot product method.

Transposing a matrix means to swap its rows and its columns.

Introduction to Linear Equations
You have already seen an example of a linear equation in the section that discusses
linear regression and statistical inference from Chapter 3. Linear equations are
basically formulae that present an equality relationship between between different

variables and constants. In the case of machine learning, it is often a relationship
between a dependent variable (the output) and the independent variable (the
input). The best way to understand linear equations is through examples.​

NOTE
The aim of linear equations is to find an unknown variable, usually denoted by the letter x.

Let’s see a very basic example which you can consider as a first building block
towards more advanced calculus concepts you will see later on. The following
examples requires finding the value of x:

10x = 20

You should understand the equation as "10 times which number equals 20?”. When a
constant is directly attached to a variable such as x, it refers to a multiplication
operation. Now, to solve for x (so, finding the value of x that equalizes the equation),
you have an obvious solution which is to get rid of 10 so that you have x on one side
of the equation and the rest on the other side.

Naturally, to get rid of 10, you divide by 10 so that what remains is 1 which if
multiplied by the variable x does nothing. However, keep in mind two important
things:

If you do a mathematical operation on one side of an equation, you must do it on
the other side as well. This is why they are called equations.

For simplicity, instead of dividing by the constant to get rid of it, you should
multiply it by its reciprocal.

The reciprocal of a number is one divided by that number. Here’s the mathematical
representation of it:

Reciprocal (x) = 1
x

Now, back to the example, to find x, you can do the following:

(1
10)10x = 20 (1

10)

Performing the multiplication and simplifying gives the following result:

x = 2

This means that the solution of the equation is 2. To verify this, you just need to plug
it into the original equation as follows:

10 × 2 = 20

Therefore, it takes two 10’s to get 20.

NOTE
Dividing the number by itself or multiplying it by its reciprocal is the same thing.

Let’s take another example of how to solve x through linear techniques. Consider the
following problem:
8
6 x = 24

Performing the multiplication and simplifying gives the following result:

(6
8) 8

6 x = 24 (6
8)

x = 18

This means that the solution of the equation is 18. To verify this, you just need to
plug it into the original equation as follows:
8
6 × 18 = 24

Let’s dig in a little deeper, because typically, linear equations are not this simple.
Sometimes they contain more variables and more constants, which need more
detailed solutions, but let’s keep taking it step by step. Consider the following
example:

3x − 6 = 12

Solving for x requires rearranging the equation a little bit. Remember, the aim is to
leave x on one side and the rest on the other. Here, you have to get rid of the constant
6 before taking care of 3. The first part of the solution is as follows:

3x − 6(+6) = 12(+6)

Notice how you have to add 6 to both parts of the equation. The part on the left will
cancel itself out while the part on the right will add up to 18:

3x = 18

Finally, you’re all set to multiply by the reciprocal of the constant attached to the
variable x:

(1
3)3x = 18 (1

3)

Simplifying and solving for x leaves the following solution:

x = 6

This means that the solution of the equation is 6. To verify this, just plug it into the
original equation as follows:

(3 × 6) − 6 = 12

By now, you should start noticing that linear algebra is all about using shortcuts and
quick techniques to simplify equations and find unknown variables. The next
example shows how sometimes the variable x can occur in multiple places:

6x + x = 27 − 2x

Remember, the main focus is to have x on one side of the equation and the rest on the
other side:

6x + x + 2x = 27

Adding the constants of x gives you the following:

9x = 27

The final step is dividing by 9 so that you only have x remaining:

x = 3

You may now verify this by plugging 3 in the place of x in the original equation. You
will notice that both sides of the equation will be equal.

NOTE
Even though this section is quite simple, it contains the basic foundations you need to start advancing in
algebra and calculus. The main points to retain before going further are as follows:

A linear equation is a representation in which the highest exponent on any variable is one. This means
that there are no variables that are raised to the power of two and above.

A linear equation line is straight when plotted on a chart.

The application of linear equations in modeling a wide range of real-world occurrences makes them
crucial in many branches of mathematics and research. They are also widely utilized in machine
learning.

Solving for x is the process of finding its value that equalizes both sides of the equation.

When performing an operation (such as adding a constant or multiplying by a constant) on one side of
the equation, you have to do it on the other side as well.

Reciprocals are useful to simplify equations.

Systems of Equations
A system of equation is when there are two or more equations working together to
solve a variable or more. Therefore, instead of the usual single equation like the
following:

x + 10 = 20

Systems of equations resemble the following:

x + 10 = 20

y + 2x = 10

There are methods that solve them and particularities, which are discussed in this
section. Systems of equations are useful in machine learning and are used in many of
its aspects.

Let’s look at the previous system of equation from the beginning of this section and
solve it graphically. Plotting the two functions can actually give the solution directly.
The point of intersection of linear equations is the solution. Therefore, the coordinates
of the intersection (x, y) refer to the solutions of the x and y respectively.

From Figure 4-6, it seems that x = 10 and y = -10. Plugging these values into their
respective variables gives the correct answer:

10 + 10 = 20

(−10) + (2 × 10) = 10

Figure 4-6. A graph showing the two functions and their intersection (solution)

As the functions are linear, there can be three cases to solving them:

1. There is only one solution for each variable.

2. There is no solution. This occurs when the functions are parallel (this means
that they never intersect).

3. The is an infinite number of solutions. This occurs when it’s the same function
(since all points fall on the straight line).

Before moving on to solving systems of equations using algebra, let’s visually see
how can there be no solution and how can there be an infinite number of solutions.
Consider the following system:

2x = 10

4x = 20

Figure 4-7 charts the two together. Since they are exactly the same equation, they fall
on the same line. In reality, there are two lines in Figure 4-7, but since they are the
same, they are indistinguishable. For every x on the line, there is a corresponding y.

Figure 4-7. A graph showing the two functions and their infinite intersections

Now, consider the following system:

3x = 10

6x = 10

Figure 4-8 shows how they never intersect which is intuitive as you cannot multiply
the same number (represented by the variable x) with different numbers and expect to
get the same result.

Figure 4-8. A graph showing the two functions and their impossible intersection

Algebraic methods are used when there are more than two variables since they cannot
be solved through graphs. This mainly entails two methods, substitution and

elimination.

Substitution is used when you can replace the value of a variable in one equation and
plug it in the second equation. Consider the following example:

x + y = 2

10x + y = 10

The easiest method is to rearrange the first equation so that you have y in terms of x:

y = 2 − x

10x + (2 − x) = 10

Solving for x in the second equation becomes simple:

10x + (2 − x) = 10

10x + 2 − x = 10

10x − x = 10 − 2

9x = 8

x = 8
9

x = 0. 8889

Now that you have found the value of x, you can easily find y by plugging the value
of x in the first equation:

0. 8889 + y = 2

y = 2 − 0. 8889

y = 1. 111

To check if your solution is correct, you can plug in the values of x and y in both
formulas:

0. 8889 + 1. 111 = 2

(10 × 0. 8889) + 1. 111 = 10

Graphically this means that the two equations intersect at (0.8889, 1.111). This
technique can be used with more than two variables. Follow the same process until
the equations are simplified enough to give you the answers. The issue with
substitution is that it may take some time when you’re dealing with more than two
variables.

Elimination is a faster alternative. It is about eliminating variables until there is only
one left. Consider the following example:

2x + 4y = 20

3x + 2y = 10

Noticing that there is 4y and 2y, it is possible to multiply the second equation by 2 so
that you can subtract the equations from each other (which will remove the y
variable):

2x + 4y = 20

6x + 4y = 20

Subtracting the two equations from each other gives the following result:

−4x = 0

x = 0

Therefore, x = 0. Graphically, this means that they intersect whenever x = 0 (exactly
at the vertical y line). Plugging in the value of x in the first formula gives y = 5:

(2 × 0) + 4y = 20

4y = 20

y = 5

Similarly, elimination can also solve equations with three variables. The choice
between substitution and elimination depends on the type of equations.

NOTE
Key takeaways from this section can be summed up as follows:

Systems of equations solve variables together. They are very useful in machine learning and are used in
some algorithms.

Graphical solutions are preferred for simple systems of equations.

Solving systems of equations through algebra entails the use of substitution and elimination methods.

Substitution is preferred when the system is simple but elimination is the way to go when the system is a
bit more complex.

Trigonometry

Trigonometry explores the behavior of what is known as trigonometric functions that
relate the angles of a triangle to the lengths of its sides. The most-used triangle is the
right-angled triangle which has one angle at 90°. Figure 4-9 shows an example of a
right-angled triangle.

Figure 4-9. A right-angled triangle

Let’s define the main characteristics of a right-angled triangle:

The longest side of the triangle is called a hypotenuse.

The angle in front of the hypotenuse is the right angle (the one at 90°).

Depending on the other angle (θ) you choose (from the two that remains), the
line between this angle and the hypotenuse is called the adjacent and the other
line is called the opposite.

Trigonometric functions are simply the division of a line by the other. Remember that
you have three lines in a triangle (hypotenuse, opposite, and adjacent). The
trigonometric functions are found as follow:

sin (θ) = Opposite

Hypotenuse

cos (θ) = Adjacent

Hypotenuse

tan (θ) = Opposite

Adjacent

From the previous three trigonometric functions, it is possible to extract a
trigonometric identity which reaches tan from sin and cos using basic linear algebra:

tan (θ) = sin(θ)
cos(θ)

Hyperbolic functions are similar to trigonometric operations but are defined using
exponential functions.

NOTE
This part on hyperbolic functions is extremely important as it forms the basis of what is known as activation
functions, a key concept in neural networks, the protagonists of deep learning models. You will see them in
detail in Chapter 8.

Euler’s number (denoted as e) is one of the most important numbers in mathematics.
It is an irrational number, which is a real number that cannot be expressed as a
fraction. The word irrational comes from the fact that there is no ratio to express it; it
has nothing to do with its personality. Euler’s number e is also the base of the natural
logarithm ln and the first digits of it are 2.71828. One of the best approximations to
get e is the following formula:

e = (1 + 1
n
)
n

By increasing n in the previous formula, you will approach the value of e. It has
many interesting properties, notably the fact that its slope is its own value. Let’s take
for example the following function (also called the natural exponent function):

f (x) = ex

At any point, the slope of the function is the same value. Take a look at Figure 4-10.

Figure 4-10. The graph of the natural exponent function

NOTE
You may be wondering about the use of explaining exponents and logarithms in this book. There are mainly
two reasons for this:

Exponents and more importantly Euler’s number are used in hyperbolic functions where tanh(x) is one of
the main activation functions for neural networks, a type of machine and deep learning model.

Logarithms are very useful in data normalization but also in loss functions, concepts that you will see in
later chapters.

Therefore, having a deep understanding of what they refer to is primordial in building up expertise in the
subsequent models.

Hyperbolic functions use the natural exponent function and are defined as follows:

sinh (x) = ex−e−x

2

cosh (x) = ex+e−x

2

tanh (x) = ex−e−x

ex+e−x

Among the key characteristics of tanh(x) is non-linearity, the limitation between [-1,
1], and the fact that it is centered at zero. Figure 4-11 shows the graph of tanh(x).

Figure 4-11. The graph of tanh(x) showing how it’s limited between -1 and 1

NOTE
Key concepts to retain from this section are summed up as follows:

Trigonometry is a field that explores the behavior of trigonometric functions which relate the angles of a
triangle to the lengths of its sides.

A trigonometric identity is a shortcut that relates the trigonometric functions with each other.

Eurler’s number e is irrational and is the base of the natural logarithm. It has many applications in
exponential growth and in hyperbolic functions.

Hyperbolic functions resemble trigonmetric functions but are not the same thing. While trigonometric
functions relate to a triangles and circles, hyperbolic functions relate to hyperbolas.

The hyperbolic tangent function is used in neural networks, a deep learning algorithm.

Limits and Continuity
Calculus works by making visible the infinitesimally small.

- Keith Devlin

Let’s move now to calculus after seeing the major topics of linear algebra. Limits
don’t have to be nightmarish. I have always found them to be misunderstood. They
are actually quite easy to get. But first, you need motivation and this comes from
knowing the added value of learning limits.

Understanding limits is very important in machine learning models for many reasons:

Optimization

In optimization methods like gradient descent, limits can be used to regulate the

step size and guarantee convergence to a local minimum (a concept you will learn

in Chapter 8).

Feature Selection

Limits can be used to rank the significance of various model features and perform

feature selection, which can make the model simpler and perform better.

Sensitivity analysis

A machine learning model’s sensitivity to changes in input data and its capacity to

generalize to new data can be used to examine a model’s behavior.

​Also, limits are used in more advanced calculus concepts you will run across in the
coming pages.

The main aim of limits is to know the value of a function when it’s undefined. But
what is an undefined function? When you have a function that gives a solution that is
not possible (such as dividing by zero), limits help you bypass this issue in order to
know the value of the function at that point. So the aim of limits is to solve functions
even when they are undefined.

Remember that the solution to a function that takes x as an input is a value in the y
axis. Figure 4-12 shows a linear graph of the following function:

f(x) = x + 2

Figure 4-12. The graph of the function f(x) = x + 2

The solution of the function in the graph is the one that lies on the linear line taking
into account the value of x every time.

What would be the solution of the function (the value of y) when x = 4? Clearly, the
answer is 6, as substituting the value of x by 4 gives 6.

f(4) = 4 + 2 = 6

Thinking of this solution in terms of limits would be saying, what is the solution of
the function as x approaches 4 from both sides (the negative side and the positive
side)? Table 4-1 simplifies this dilemma:

	

T
a
b
l
e

4
-
1
.
F
i
n
d
i
n
g

x

	

	

f(x) x

5.998 3.998

5.999 3.999

6.000 4

6.001 4.001

6.002 4.002

Approaching from the negative side is the equivalent of adding a fraction of a number
while below 4 and analyzing the result every time. Similarly, approaching from the
positive side is the equivalent of removing a fraction of a number while above 4 and
analyzing the result every time. The solution seems to converge to 6 as x approaches
4. This is the solution to the limit.

Limits in the general form are written following this convention:

limx→a f (x) = L

The general form of the limit is read as follows: as you approach a along the x-axis
(whether from the positive or the negative side), the function f(x) gets closer to the
value of L.

NOTE
The idea of the limit states that as you lock-in and approach a number from either side (negative or positive),
the solution of the equation approaches a certain number, and the solution to the limit is that number.

As mentioned previously, limits are useful when the exact point of the solution is
undefined using the conventional way of substitution.

A one-sided limit is different from the general limit. The left-hand limit is where you
search for the limit going from the negative side to the positive side, and the right-
hand limit is when you search for the limit going from the positive side to the
negative side. The general limit exists when the two one-sided limits exist and are
equal. Therefore, the previous statements are summarized as follows:

The left-hand limit exists.

The right-hand limit exists.

The left-hand limit is equal to the right-hand limit.

The left hand limit is defined as follows:

limx→a− f (x) = L

The right hand limit is defined as follows:

limx→a+ f (x) = L

Let’s take the following equation:

f (x) = x3−27
x−3

What is the solution of the function when x = 3? Substitution leads to the following
issue:

f (3) = 33−27
3−3 = 27−27

3−3 = 0
0 = Undefined

However, thinking about this in terms of limits as Table 4-2 shows, it seems that as
you approach x = 3, either from the left side or the right side, the solution tends to
approach 27.

	

T
a
b
l
e

4
-
2
.
F
i
n
d
i
n
g

x

	

	

f(x) x

2.9998 26.9982

2.9999 26.9991

3.0000 Undefined

3.0001 27.0009

3.0002 27.0018

Graph-wise, this can be seen as a discontinuity in the chart along both axes. The
discontinuity exists on the line around the coordinate (3, 27).

Some functions do not have limits. For example, what is the limit of the following
function as x approaches 5?

limx→5
1

x−5

Looking at Table 4-3, it seems that as x approaches 5, the results highly diverge when
approaching from both sides. For instance, approaching from the negative side, the
limit of 4.9999 is -10,000 and from the positive side, the limit of 5.0001 is 10,000.

	

	

f(x) x

4.9998 -5000

4.9999 -10000

5.0000 Undefined

5.0001 10000

5.0002 5000

Remember that for the general limit to exist, both one-sided limits must exist and
must be equal, which is not the case here. Graphing this gives Figure 4-13, which
may help you understand why the limit does not exist.

Figure 4-13. The graph of the function proving that the limit does not exist

But what if the function that you want to analyze looks like this:

limx→5
1

|x−5|

Looking at Table 4-3, it seems that as x approaches 5, the results rapidly accelerate as
they diverge to a certain very big number referred to as infinity (∞). Take a look at
Table 4-4:

f (x) = 1
|x−5|

	

T
a
b
l
e

4
-
3
.
F
i
n
d
i
n
g

x

	

	

f(x) x

4.99997 33333.33

4.99998 50000

4.99999 100000

4.9999999 10000000

5 Undefined

5.0000001 10000000

5.00001 100000

5.00002 50000

5.00003 33333.33

See how at every tiny step x approaches 5, y approaches positive infinity. The answer
to the limit question is therefore, positive infinity (+∞). Figure 4-14 shows the graph
of the function. Notice how they both rise in value as x approaches 5.

Figure 4-14. The graph of the function proving that the limit exists as x approaches 5

TO INFINITY AND BEYOND
In this optional note, you can understand what infinity represents in terms of
mathematics. Infinity is an idea or a concept rather than a number. The symbol
(∞) is often referred to as a lemniscate.

Positive infinity (∞) and negative infinity (-∞) are both concepts that exist across
the axis where the former tends towards the left and the latter tends towards the
right.

Interestingly, infinity is often thought of as an ever-growing measure, but it is not
expanding or getting bigger. It is already what it is.

Mathematical operations including the concept of infinity may be hard to grasp
and have many considerations. One of the most interesting examples is the
answer to why the result of 1 divided by zero is undefined.

Imagine dividing an apple by ten people; normally every person will get an equal
fraction of that apple until the apple is consumed. But what if you want to divide
the apple by zero people? The number of people required to consume the apple
will tend towards infinity (the logic is hard to grasp, but mathematically you can
think of infinitesimally small parts of the apple requiring a huge number of
people to consume them).

Therefore, following this logic, you can say that 1 divided by 0 is infinity and is
actually defined. So, why is it generally considered as undefined? The issue is
that the infinity described in the apples’ example is the positive one, and if you
want to follow the example of dividing 1 by infinitesimally small negative
numbers that tend towards zero, then you will also say that 1 divided by 0 is
negative infinity.

So which is it? Positive or negative infinity? Because of this conflict, the result is
undefined.

Continuous functions are ones that are drawn without gaps or holes in the graph,
while discontinuous functions contain such gaps and holes. This usually means that
the latter contain points where the solution of the functions is undefined and may
need to be approximated by limits. Therefore, continuity and limits are two related
concepts.

Let’s proceed to solving limits; after all, you are not going to create a table every time
and analyze the results subjectively to find the limits. There are three ways to solve

limits:

Substitution: This is the simplest rule and is generally used first.

Factoring: This comes after substitution does not work.

Conjugate methods: This solution comes after the first two ways do not work.

The substitution way is simply plugging in the value which x approaches. Basically,
these are functions that have solutions where the limits are used. Take the following
example:

limx→5 x + 10 − 2x

Using the substitution way, the limit of the function is found as follows:

Therefore, the answer to the limit is 5.

The factoring way is the next option when substitution does not work (for example,
the limit is undefined after plugging in the value of x in the function). Factoring is all
about changing the form of the equation using factors in a way that it is not undefined
anymore when using the substitution way. Take the following example:

limx→−6
(x+6)(x2−x+1)

x+6

If you try the substitution way, you will get an undefined value as follows:

Factoring may help in this case. For example, the nominator is multiplied by (x+6)
and then divided by (x+6). Simplifying this by canceling the two terms could give a
solution:

limx→−6
(x+6)(x2−x+1)

x+6 =limx→−6 x
2 − x + 1

Now that factoring is done, you can try substitution once again:

limx→−6 x
2 − x + 1 = (−6)2 − (−6) + 1 = 43

The limit of the function as x tends towards -6 is therefore 43.

The conjugate way is the next option in case substitution and factoring do not work.
A conjugate is simply the changing of signs between two variables. For example, the
conjugate of x + y is x - y. The way to do this in the case of a fraction is to multiply

lim
x→5

x + 10 − 2x = 5 + 10 − (2 × 5) = 5

lim
x→−6

(x + 6) (x2 − x + 1)

x + 6
=

(−6 + 6)((−6)2 − (−6) + 1)

−6 + 6
=

0

0
= Undefined

the nominator and the denominator by the conjugate of one of them (with a
preference to use the conjugate of the term that has a square root since it will get
canceled out). Take the following example:

limx→9
x−9

√x−3

By multiplying both terms by the conjugate of the denominator, you will have started
to use the conjugate way to solve the problem:

limx→9
x−9

√x−3
(√x+3

√x+3
)

Taking into account the multiplication and simplifying gives the following:

limx→9
(x−9)(√x+3)

(√x−3)(√x+3)

You will be left with the following familiar situation:

limx→9
(x−9)(√x+3)

x−9

limx→9 √x + 3

Now, the function is ready for substitution:

limx→9 √9 + 3 = 3 + 3 = 6

The solution to the function is therefore 6. As you can see, sometimes work needs to
be done on preparing the equations in order to be ready for substitution.

NOTE
The main key points of this section on limits are as follows:

Limits help find solutions for functions that may be undefined in certain points.

For the general limit to exist, the two one-sided limits must exist and must be equal.

There are ways to find the limit of a function, notably substitution, factoring, and the conjugate way.

Limits are useful in machine learning such as sensitivity analysis and optimization.

Derivatives
A derivative measures the change in a function given a change of one or more of its
inputs. In other words, it is the rate of change of a function at a given point.

Having a solid understanding of derivatives is important in building machine learning
models for multiple reasons:

Optimization

In order to minimize the loss function (a concept you will see in Chapter 8),

optimization methods employ derivatives to ascertain the direction of the steepest

descent and modify model parameters. Gradient descent is one of the most

frequently used optimization techniques in machine learning.

Backpropagation

To execute gradient descent in deep learning, the backpropagation technique uses

derivatives to calculate the gradients of the loss function with respect to the

model’s parameters.

Hyperparameter tuning

To improve the performance of the model, derivatives are used for sensitivity

analysis and tuning of hyperparameters (another concept you will perfectly grasp

in Chapter 8).

Do not forget what you have learned from the previous section on limits, as you will
be needing them for this section as well. Calculus mainly deals with derivatives and
integrals. This section discusses derivatives and their uses.

You can consider derivatives as functions that represent (or model) the slope of
another function at some point. A slope is a measure of a line’s position relative to a
horizontal line. A positive slope indicates a line moving up, while a negative slope
indicates a line moving down.

Derivatives and slopes are related concepts, but they are not the same thing. Here’s
the main difference between the two:

The slope measures the steepness of a line. It is the ratio of the change in the y-
axis to the change in the x-axis. You have already seen this in the section that
discusses linear algebra.

The derivative describes the rate of change of a given function. As the distance
between two points on a function approaches zero, the derivative of that function
at that point is the limit of the slope of the tangent line.

Before explaining derivatives in layperson’s terms and seeing some examples, let’s
see their formal definitions (which means their mathematical representation in their
default form):

f ′ (x) =limh→0
f(x+h)−f(x)

h

The equation forms the basis of solving derivatives, although there are many
shortcuts that you will learn and understand where they come from. Let’s try finding
the derivative of a function using the formal definition. Consider the following
equation:

f (x) = x2 + 4x − 2

To find the derivative, plug f(x) inside the formal definition and then solve the limit:

f ′ (x) =limh→0
f(x+h)−f(x)

h

To simplify things, let’s find f(x + h) so that plugging it in the formal definition
becomes easier:

f (x + h) = (x + h)2 + 4 (x + h) − 2

f (x + h) = x2 + 2xh + h2 + 4x + 4h − 2

Now, let’s plug f(x + h) into the definition:

f ′ (x) =limh→0
x2+2xh+h2+4x+4h−2−x2−4x+2

h

Notice how there are many terms that can be simplified so that the formula becomes
clearer. Remember, you are trying to find the limit for the moment, and the derivative
is found after solving the limit:

f ′ (x) =limh→0
2xh+h2+4h

h

The division by h gives further potential for simplification since you can divide all
the terms in the numerator by the denominator h:

f ′ (x) =limh→0 2x + h + 4

It’s now time to solve the limit. Because the equation is simple, the first attempt is by
substitution, which is, as you have guessed, possible. By substituting the variable h
and making it zero (according to the limit), you are left with the following:

f ′ (x) = 2x + 4

That is the derivative of the original function f(x). If you want to find the derivative of
the function when x = 2, you simply have to plug it in to the derivative function:

f ′ (2) = 2 (2) + 4 = 8

Take a look at the graph of the function that you have just solved. Figure 4-15 shows
the original function’s graph with the derivative (the straight line). Notice how f'(2)
lies exactly at 8. The slope of f(x) when x = 2 is 8.

Figure 4-15. The original f(x) with its derivative f'(x)

NOTE
Notice that when f(x) hits the bottom and starts rising, f'(x) crossed the zero line at -2. This is a concept you will
later in this chapter.

You are unlikely to use the formal definition every time you want to find a derivative
(which can be used on every function). There are derivative rules that allow you to
save a lot of time through shortcuts. The first rule is referred to as the power rule,
which is a way to find the derivative of functions with exponents.

It is common to also refer to derivatives using this notation (which is the same thing
as f'(x)):
dy

dx

The power rule for finding derivatives is as follows:
dy

dx
(axn) = (a.n)xn−1

Basically, what this means is that the derivative is found by multiplying the constant
by the exponent and then subtracting 1 from the exponent. Here’s an example:

f (x) = x4

f ′ (x) = (1 × 4)x(4−1) = 4x3

Remember that if there is no constant attached to the variable, it means that the
constant is equal to 1. Here’s a more complex example with the same principle:

f (x) = 2x2 + 3x7 − 2x3

f ′ (x) = 4x + 21x6 − 6x2

It is worth noting that the rule also applies to constants even though they do not
satisfy the general form of the power rule. The derivative of a constant is zero.
However, it helps to know why, but first, you must be aware of this mathematical
concept:

x0 = 1

With this being said, you can imagine constants as always being multiplied by x to
the power of zero (since it does not change their value). Now, if you want to find the
derivative of 17, here’s how it would go:

17 = 17x0 = (0 × 17)x0−1 = 0x−1 = 0

As you know, anything multiplied by zero returns zero as a result. This gives the
constants rule for derivatives as follows:
dy

dx
(a) = 0

You follow the same logic when encountering fractions or negative numbers in the
exponents.

The product rule of derivatives is useful when there are two functions multiplied by
each other. The product rule is as follows:
dy

dx
[f (x)g (x)] = f ′ (x)g (x) + f (x)g′ (x)

Let’s take an example and find the derivative using the product rule:

h (x) = (x2 + 2) (x3 + 1)

The equation can clearly by segmented into two terms, f(x) and g(x), like this:

f (x) = (x2 + 2)

g (x) = (x3 + 1)

Let’s find the derivatives of the two terms before applying the product rule. Notice
that finding the derivative of f(x) and g(x) is easy once you have understood the
power rule:

f ′ (x) = 2x

g′ (x) = 3x2

When applying the product rule, you should get the following:

h′ (x) = (x2 + 2) (3x2) + (2x) (x3 + 1)

h′ (x) = 3x4 + 6x2 + 2x4 + 2x

h′ (x) = 5x4 + 6x2 + 2x

Figure 4-16 shows the graph of h(x) and h'(x).

Figure 4-16. The original h(x) with its derivative h'(x)

The next step is to see the quotient rule, which deals with the division of two
functions. The formal definition is as follows:

dy

dx
[f(x)
g(x)

] = f ′(x)g(x)−f(x)g′(x)

[g(x)]2

Let’s apply it into the following function:

f (x) = x2−x+1
x2+1

As usual, it’s better to start by finding the derivatives of f(x) and g(x) which in this
case are clearly separated, with f(x) being the nominator and g(x) being the
denominator. When applying the quotient rule, you should get the following:

f ′ (x) =
(2x−1)(x2+1)−(x2−x+1)(2x)

(x2+1)2

f ′ (x) = 2x3+2x−x2−1−2x3+2x2−2x

(x2+1)2

f ′ (x) = x2−1

(x2+1)2

Exponential derivatives deal with power rule applied to constants. Take a look at the
following equation -- how would you find its derivative?

f (x) = ax

Instead of the usual variable-base-constant-exponent, it is constant-base-variable-
exponent. This is treated differently when trying to calculate the derivative. The
formal definition is as follow:
dy

dx
ax = ax (ln a)

The following example shows how this is done:
dy

dx
4x = 4x (ln 4)

Euler’s number, mentioned earlier, has a special derivative. When it comes to finding
the derivative of e, the answer is interesting:
dy

dx
ex = ex (ln e) = ex

This is because the natural log function and the exponential function are inverses of
one another, so, the term ln e equals to 1. Therefore, the derivative of the exponential
function function e is itself.

In parallel, let’s discuss logarithmic derivatives. By now, you should have known
what exponents and logarithms are. The general definition for both types of
logarithms is as follows:
dy

dx
loga x = 1

xlna

dy

dx
ln x =loge x = 1

xlne = 1
x

Notice how in the second derivative function of the natural logarithm, the term ln e is
once again encountered, thus making simplification quite easy since it is equal to 1.

Take the following example:

f (x) = 7log2 (x)

Using the formal definition, the derivative of this logarithmic function is as follows:

f ′ (x) = 7 (1
xln2) = 7

xln2

NOTE
Remember that the logarithm log has a base of 10, but the natural logarithm ln has a base of e (~2.7182)

The natural logarithm and the log function are actually linearly related through simple multiplication. If you
know the log of the constant a, you can find its natural logarithm ln by multiplying the log of a by 2.303.

One major concept in derivatives is the chain rule. Let’s back up to the power rule,
which deals with exponents on variables. Remember the following formula to find
the derivative:
dy

dx
(axn) = (a.n)xn−1

This is a simplified version because there is only x, but the reality is that you must
multiply by the derivative of the term under the exponent. Until now, you have seen
only x as the variable under the exponent. The derivative of x is 1, which is why it is
simplified and rendered invisible. However, with more complex functions such as this
one:

f (x) = (4x + 1)2

The derivative of the function is found by following these two steps:

1. Find the derivative of the outside function without touching the inside function.

2. Find the derivative of the inside function and multiply it by the rest of the
function.

The solution is therefore as follows (knowing that the derivative of 4x + 1 is just 4):

f ′ (x) = 2 (4x + 1). 4

f ′ (x) = 8 (4x + 1)

f ′ (x) = 32x + 8

The same applies with the exponential functions. Take the following example:

f (x) = ex

f ′ (x) = ex (1) = ex

The chain rule can actually be considered as a master rule as it applies anywhere even
in the product rule and the quotient rule.

There are more concepts to master in derivatives, but as this book is not meant to be a
full calculus masterclass, you should at least know the meaning of a derivative, how it
is found, what does it represent, and how can it be used in machine and deep learning.

NOTE
The key points of this section on derivatives are as follow:

A derivative measures the change in a function given a change of one or more of its inputs.

The power rule is used to find the derivative of a function raised to a power.

The product rule is used to find the derivative of two functions that are multiplied together.

The quotient rule is used to find the derivative of two functions that are divided by each other.

The chain rule is the master rule used in differentiating (which means the process of finding the
derivative). Due to simplicity, it is often overlooked.

Derivatives play a crucial role in machine learning such as enabling optimization techniques, aiding
model training, and enhancing the interpretability of the models.

Integrals and the Fundamental Theorem of Calculus
An integral is an operation that represents the area under a curve of a function given
an interval. It is the inverse of a derivative, which is why it is also called an anti-
derivative.

The process of finding integrals is called integration. Integrals can be used to find
areas below a curve and they are also heavily used in the world of finance such as
risk management, portfolio management, probabilistic methods, and even option
pricing.

The most basic way of understanding an integral is by thinking of calculating an area
below the curve of a function. This can also be done by manually, calculating
different changes in the x-axis, but it won’t be accurate (accuracy increases as you

add up much smaller slices). Therefore, as the size of the slices approaches zero, the
accuracy of the area gets better. Since this is a tedious process, integrals are here for
the rescue.

Keep in mind that an integral is the inverse of a derivative. This is important because
it implies a direct relationship between the two. The basic definition of an integral is
as follows:

∫ f(x) dx = F(X) + C

The ∫ symbol represents the integration process

f(x) is the derivative of the general function F(x)

C represents the lost constant in the differentiation process

dx represents slicing along x as it approaches zero

What the preceding equation means is that the integral of f(x) is the general function
F(x) plus a constant C which was lost initially in the initial differentiation process.
Here’s an example to better explain the need to put in the constant:

Consider the following function:

f (x) = x2 + 5

Calculating its derivative, you get the following result:

f ′ (x) = 2x

Now, what if you wanted to integrate it so that you go back to the original function
(which in this case is represented by the capital letter F(x) instead of f(x))?

∫ 2x dx

Normally, having seen the differentiation process (which means taking the
derivative), you would return 2 as the exponent, which gives you the following
answer:

∫ 2x dx = x2

This does not look like the original function. It’s missing the constant 5. But you have
no way of knowing that or even if you knew there was a constant, what is it? 1? 2?
677? This is why a constant C is added in the integration process so that it represents
the lost constant. Therefore, the answer to the integration problem is as follows:

∫ 2x dx = x2 + C

NOTE
Up until now, the discussion has been limited to indefinite integrals where the integration symbol is naked
(which means there are no boundaries to it). You will see what this means right after defining the necessary
rules to complete the integration.

For the power function (just like the previous function), the general rule for
integration is as follows:

∫ xa dx = xa+1

a+1
+ C

This is much simpler than it looks. You are simply reversing the power rule you saw
earlier. Consider the following example:

∫ 2x6 dx

∫ 2x6 dx = 2x7

7 + C

∫ 2x6 dx = 2
7 x

7 + C

To verify your answer, you can find the derivative of the result (using the power rule):

F (x) = 2
7 x

7 + C

f ′ (x) = (7) 2
7 x

7−1 + 0

f ′ (x) = 2x6

Let’s take another example. Consider the following integration problem:

∫ 2 dx

Naturally, using the rule, you should find the following result:

∫ 2 dx = 2x + C

Let’s move on to definite integrals, which are integrals with numbers on top and
bottom that represent intervals below a curve of a function. Hence, indefinite integrals
find the area under the curve everywhere but definite integrals are bounded within an
interval given by point a and point b. The general definition of indefinite integrals is
as follows:

∫ b

a
f (x) dx = F (B) − F (A)

This is as simple as it gets. You will solve the integral, then plug in the two numbers
and subtract the two functions from each other. Consider the following evaluation of
an integral (integral solving is commonly referred to as evaluating the integral):

∫ 6
0 3x2 − 10x + 4 dx

The first step is to understand what is being asked. From the definition of integrals, it
seems that the area between [0, 2] on the x-axis is to be calculated using the given
function:

F (x) = ([x3 − 5x2 + 4x + C])
6

0

To evaluate the integral at the given points, simply plug in the values as follows:

F (x) = ([63 − 5(6)2 + 4 (6) + C]) − ([03 − 5(0)2 + 4 (0) + C])

F(x) = ([216 − 180 + 24 + C]) − ([0 − 0 + 0 + C])

F(x) = ([60 + C]) − ([0 + C])

F(x) = (60 − 0)

F(x) = 60

NOTE
The constant C will always cancel out in definite integrals so you can leave it out in this kind of problems.

Therefore, the area below the graph of f(x) and above the x-axis, as well as between
[0, 6] on the x-axis, is equal to 60 square units. The following shows a few rules of
thumb on integrals (after all, this chapter is supposed to refresh your knowledge or to
give you a basic understanding of a few key mathematical concepts):

To find the integral of a constant:

∫ a dx = ax + C

To find the integral of a variable:

∫ x dx = 1
2 x

2 + C

To find the integral of a reciprocal:

∫ 1
x
dx =ln |x| + C

To find the integral of an exponential:

∫ ax dx = ax

ln(a) + C

∫ ex dx = ex + C

The fundamental theorem of calculus links derivatives with integrals. This means that
it defines derivatives in terms of integrals and vice versa. The fundamental theorem
of calculus is actually made up of two parts:

Part I

The first part of the fundamental theorem of calculus states that if you have a

continuous function f(x), then the original function F(x) defined as the

antiderivative of f(x) from a fixed starting point a up to x, is a function that is

differentiable everywhere from a to x, and its derivative is simply f(x) evaluated at

x.

Part II

The second part of the fundamental theorem of calculus states that if you have a

function f(x) that is continuous over a certain interval [a, b], and you define a new

function F(x) as the integral of f(x) from a to x, then the definite integral of f(x)
over that same interval [a, b] can be calculated as F(b) - F(a).

The theorem is useful in many fields including physics and engineering, but
optimization and other mathematical models also benefit from it. Some examples of
using integrals in the different learning algorithms can be summed up as follows:

Density estimation

Integrals are used in density estimation, a part of many machine learning

algorithms, to calculate the probability density function.

Reinforcement learning

Integrals are used in reinforcement learning to calculate expected values of

reward functions. Reinforcement learning is covered in Chapter 10.

Bayesian models

Integrals are used in Bayesian inference, a statistical framework for modeling

uncertainty.

NOTE
The key points of this section on integrals are as follow:

Integrals are also known as antiderivatives and they are the opposite of derivatives.

Indefinite integrals find the area under the curve everywhere while definite integrals are bounded within
an interval given by point a and point b.

The fundamental theorem of calculus is the bridge between derivatives and integrals.

Integrals are used in machine learning for modeling uncertainty, making predictions, and estimating
expected values.

Optimization
Several machine and deep learning algorithms depend on optimization techniques to
decrease error functions. This section discusses a primordial concept in the different
learning algorithms.

Optimization is the process of finding the best solution among the possible solutions’
universe. Optimization is all about finding the highest and lowest points of a function.
Figure 4-17 shows the graph for the following formula:

f (x) = x4 − 2x2 + x

Figure 4-17. The graph of the function

A local minimum exists when values on the right of the x-axis are decreasing until
reaching a point where they start increasing. The point does not have to necessarily

be the lowest point in the function, hence the name local. In Figure 4-18, the function
has a local minimum at point A.

A local maximum exists when values on the right of the x-axis are increasing until
reaching a point where they start decreasing. The point does not have to necessarily
be the highest point in the function. In Figure 4-18, the function has a local maximum
at point B.

A global minimum exists when values on the right of the x-axis are decreasing until
reaching a point where they start increasing. The point must be the lowest point in the
function hence the name global. In Figure 4-18, the function has a global minimum at
point C.

A global maximum exists when values on the right of the x-axis are increasing until
reaching a point where they start decreasing without. The point must be the highest
point in the function. In Figure 4-18, there is no global maximum, as the function will
continue infinitely without shaping a top. You can clearly see how the function
accelerates upwards.

When dealing with machine and deep learning models, the aim is to find model
parameters (or inputs) that minimize what is known as a loss function (a function that
gives the error of forecasts). If the loss function is convex, optimization techniques
should find the parameters that tend towards the global minimum where the loss
function is minimized. Furthermore, if the loss function is non-convex, the
convergence is not guaranteed, and the optimization may only lead towards
approaching a local minimum, which is a part of the aim, but this leaves the global
minimum which is the final aim.

But how are these minima and maxima found? Let’s look at it step by step:

1. The first step is to perform the first derivative test (which is simply calculating
the derivative of the function). Then, setting the function equal to zero and
solving for x will give what is known as critical points. Critical points are the
points where the function changes direction (the values stop going in one
direction and start going in another). Therefore, these points are maxima and
minima.

2. The second step is to perform the second derivative test (which is simply
calculating the derivative of the derivative). Then, setting the function equal to
zero and solving for x will give what is known as inflection points. Inflection
points give where the function is concave up and where it is concave down.

In other words, critical points are where the function changes direction and inflection
points are where the function changes its concavity. Figure 4-19 shows the difference
between a concave up function and a concave down function.

Figure 4-18. A concave up versus a concave down functions

Concave up function = x2

Concave down function = −x2

The steps to find the extrema are as follows:

1. Find the first derivative and set it to zero.

2. Solve the first derivative to find x. The values are called critical points and they
represent the points where the function changes the direction.

3. Plug in values in the formula that are either below or above the critical points. If
the result of the first derivative is positive it means that it’s increasing around
that point and if it’s negative, then it means that it’s decreasing around that point.

4. Find the second derivative and set it to zero.

5. Solve the second derivative to find x. The values, called inflection
points, represent the points where concavity changes from up to down and vice
versa.

6. Plug in values in the formula that are either below or above the inflection points.
If the result of the second derivative is positive, it means there is a minimum at
that point, and if it’s negative it means there is a maximum at that point.

It is important to understand that the first derivative and second derivative tests relate
to critical points as opposed to the second derivative test relating to inflection
points. The following example finds the extrema of the function:

f (x) = x2 + x + 4

The first step is to take the first derivative, set it to zero, and solve for x:

f ′ (x) = 2x + 1

2x + 1 = 0

x = − 1
2

Therefore, there is a critical point at that value. Now, the next step is to find the
second derivative:

f ′′ (x) = 2

Next, the critical point must be plugged into the second derivative formula:

f ′′ (− 1
2) = 2

The second derivative is positive at the critical point. This means that there is a local
minimum at that point.

In the next chapters, you will see more complex optimization techniques such as the
gradient descent and the stochastic gradient descent, which are fairly common in
machine learning algorithms.

NOTE
The key points of this section on optimization are as follow:

Optimization is the process of finding the function’s extrema

Critical points are the points where the function changes direction (the values stop going in one direction
and start going in another)

Inflection points give where the function is concave up and where it is concave down.

A loss function is a function that measures the error of forecasts in predictive machine learning. It needs
to be minimized in order to increase the accuracy of the model. Optimization of the loss function can be
done through the discussed ways or through what is known as a gradient, a technique out of scope of the
book.

Summary
Chapters 2, 3, and 4 have presented the main numerical concepts that you need to
start understanding basic machine and deep learning models. I have made all
reasonable efforts to simplify as much as possible the technical requirements, I do
encourage you to read these three chapters at least twice so that everything you have
learned becomes a second nature.

Naturally, such a complex field requires more in-depth knowledge in mathematics,
but I believe that with the concepts seen in this chapter, you may start discovering
and building the models in Python. After all, they come pre-built from packages and
libraries, and the aim of this chapter is to understand what you are working with It is
unlikely that you will build the models from scratch using archaic tools.

By now, you should have gained a certain understanding of data science and the
mathematical requirements that will get you started comfortably.

1 Matrices can also contain symbols and expressions but for the sake of simplicity, let’s stick to numbers.

Chapter 5. Introducing
Technical Analysis

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

Technical analysis presents many types of inputs that you can use in your
deep learning models. This chapter introduces this vast field so that you are
equipped with the necessary knowledge to create technical-based learning
models in the chapters to follow.

Technical analysis relies on the visual interpretation of the price action’s
history to determine the likely aggregate direction of the market. It relies on
the idea that the past is the best predictor of the future. There are several
types of techniques within the vast field that is technical analysis, notably
the following:

Charting analysis

This is where you apply subjective visual interpretation techniques onto

charts. You generally use methods like drawing support and resistance

lines as well as retracements to find inflection levels that aim to

determine the next move.

Indicator analysis

This is where you use mathematical formulas to create objective

indicators that can be either trend following or contrarian. Among

known indicators are moving averages and the relative strength index
(RSI), both of which are discussed in greater detail in this chapter.

Pattern recognition

This is where you monitor certain recurring configurations and act on

them. A pattern is generally an event that emerges from time to time

and presents a certain theoretical or empirical outcome. In finance, it is

more complicated, but certain patterns have been shown to add value

across time, and this may partly be due to a phenomenon called self-
fulfilling prophecy (a process by which an initial expectation leads to its

confirmation).

Let’s take a quick tour of the history of technical analysis so that you have a
better idea of what to expect. Technical analysis relies on three principles:

History repeats itself.

You are likely to see clusters during trends and ranges. Also, certain

configurations are likely to have a similar outcome most of the time.1

The market discounts everything.

It is assumed that everything (all fundamental, technical, and

quantitative information) is included in the current price.

The market moves in waves.

Due to different time frames and needs, traders buy and sell at different

frequencies, therefore creating trends and waves as opposed to a straight

line.

Unfortunately, technical analysis is overhyped and misused by the retail
trading community, which gives it a somewhat less than savory reputation
in the professional industry. Every type of analysis has its strengths and
weaknesses, and there are successful fundamental, technical, and
quantitative investors, but there are also failed investors from the three
fields.

Fundamental analysis relies on economic and financial data to deliver a
judgment on a specific security or currency with a long-term investment
horizon, whereas quantitative analysis is more versatile and is more often
applied to short-term data. It uses mathematical and statistical concepts to
deliver a forecast.

Among other assumptions, technical analysis suggests that markets are not
efficient, but what does that mean? Market efficiency states that information
is already embedded in the current price and that price and value are the
same thing. When you buy an asset, you are hoping that it
is undervalued (in fundamental analysis jargon) or oversold (in technical
analysis jargon), which is why you believe the price should go up to meet
the value. Therefore, you are assuming that the value is greater than the
price.

Market efficiency rebuffs any claims that the price does not equal the value
and therefore suggests that any alpha trading must not result in above-
average returns (alpha trading is the act of engaging in speculative
operations to perform better than a benchmark, which is typically an index
or a weighted measure).

The market efficiency hypothesis is the technical analyst’s greatest enemy,
as one of its principles is that in the weak form of efficiency, you cannot

earn excess returns from technical analysis. Hence, technical analysis gets
shot down right at the beginning, and then fundamental analysis gets its
share of the beating.

It is fair to assume that at some point in the future, markets will have no
choice but to be efficient due to the number of participants and the ease of
access to information. However, as political and abnormal events show us,
markets tend to be anything but efficient.

NOTE
An example of a political event that triggers panic and irrationality in the markets is the Russian
invasion of Ukraine. Similarly, an example of an abnormal economic event is an unexpected
interest rate hike from a central bank.

Charting Analysis
Before you can understand what charting analysis is, you need to know
what you see when opening a chart, more specifically a candlestick chart.

Let’s assume that the market opens at $100. Some trading activity occurs.
Let’s also record the high price ($102) and the low price ($98) printed
during the hourly period. Also, record the hourly close price ($101). Recall
that these four pieces of data are referred to as open, high, low,
and close (OHLC). They represent the four basic prices that are necessary
to create candlestick charts.

Candlesticks are extremely simple and intuitive. They are box-shaped
chronological elements across the timeline that contain the OHLC data.
Figure 5-1 shows everything you need to know about how a candlestick
works.

Figure 5-1. On the left, a bullish candlestick; on the right, a bearish candlestick

A bullish candlestick has a close price higher than its open price, whereas
a bearish candlestick has a close price lower than its open price.

Candlestick charts are among the most famous ways to analyze financial
time series. They contain more information than simple line charts and offer
more visual interpretability than bar charts.

NOTE
A line chart is created by joining the close prices chronologically. It is the simplest way to chart an
asset. It contains the least information among the three chart types since it shows only the close
price.

Charting analysis is the task of finding support and resistance lines through
subjective drawing. Lines, whether horizontal or diagonal, are the essence
of finding levels to predict the market’s reaction:

A support level is a level from where the market should bounce, as it is
implied that demand should be higher than the supply around it.

A resistance level is a level from where the market should retreat, as it
is implied that supply should be higher than the demand around it.

The asset’s direction on a timeline axis can be threefold: uptrend where
prices are making higher highs, downtrend where prices are making lower
lows, and sideways (or ranging) where prices fluctuate around the same
level for extended periods of time.

Figure 5-2 shows a support level on EURUSD close to 0.9850. Generally,
traders start thinking about buying when a price is close to support. This is
in anticipation of a reaction to the upside since the balance of power should
shift more to the demand (positive) side, where traders accept to pay a
higher price as they expect an even higher price in the future (remember the
price-to-value argument discussed earlier). The implication here is that most
traders see a price that is lower than the value.

Figure 5-2. Candlestick chart on EURUSD showing support at 0.9850

Figure 5-3 shows a resistance level on EURUSD close to 0.9960. Generally,
traders start thinking about shorting the market when it is close to
resistance. This is in anticipation that a reaction to the downside should
occur since the balance of power should shift more to the supply side. The
implication here is that most traders see a price that is higher than the value.

Figure 5-3. Candlestick chart on EURUSD showing resistance at 0.9960

Ranging (sideways) markets give more confidence that horizontal support
and resistance lines will work. This is because of the already implied
general balance between supply and demand. Therefore, if there is excess
supply, the market would adjust quickly, as demand should rise enough to
stabilize the price.

Figure 5-4 shows a ranging market trapped between two horizontal levels;
this is the case of EURUSD. Whenever the market approaches the
resistance line in a ranging market, you should have more confidence that a
drop will occur than you would in a rising market, and whenever it
approaches support, you should have more confidence that a bounce will
occur than you would in a falling market.

Furthermore, charting analysis is also applied on trending markets. This
comes in the form of ascending and descending channels. They share the
same inclination as horizontal levels but with a bias (discussed later).

Figure 5-4. Candlestick chart on EURUSD showing support at 0.9850 and resistance at 0.9960

Figure 5-5 shows an ascending channel where support and resistance points
rise over time to reflect the bullish pressure stemming from a steadily rising
demand force.

Figure 5-5. Candlestick chart on AUDUSD showing an ascending channel

Traders seeing this would anticipate a bullish reaction whenever the market
approaches the lower part of the ascending channel and would expect a
bearish reaction whenever the market approaches the upper part of the
channel.

This has no sound scientific backing because nothing says that the market
must move in parallel, but the self-fulfilling prophecy may be why such
channels are considered predictive in nature.

Figure 5-6 shows a descending channel where support and resistance points
fall with time to reflect the bearish pressure coming from a steadily rising
supply force. Generally, bearish channels tend to be more aggressive as fear
dominates greed and sellers are more panicky than buyers are greedy.

Figure 5-6. Candlestick chart on EURUSD showing a descending channel

I mentioned a bias when dealing with ascending and descending channels. I
refer to this bias as the invisible hand. Here’s why:

“The trend is your friend.” This saying, coined by Martin Zweig, means that
with ascending channels, you need to be focusing more on buying
whenever the market reverts to the support zone. That’s because you want
the invisible hand of the bullish pressure to increase your probability of a
winning trade. Similarly, in the case of a descending channel, focus more on
short selling whenever the market reaches the upper limit. The full version
of Zweig’s axiom goes as follows: “The trend is your friend, until the end
when it bends.” This means that at any point in time, the market may
change its regime, and any friendship with the trend gets terminated. In the
end, charting analysis is subjective in nature and relies more on the
experience of the trader or analyst.

It is worth mentioning also that there are many ways of finding support and
resistance levels other than drawing them through visual estimation:

Fibonacci retracements

This is where you use Fibonacci ratios to give out reactionary levels.

Fibonacci retracements are usually calculated on up or down legs so that

you know where the market will reverse if it touches one of these levels.

The problem with this method is that it is very subjective and, as with

any other technique, not perfect. The advantage is that it gives many

interesting levels.

Pivot points

With pivot points you use simple mathematical formulas to find levels.

Based on yesterday’s trading activity, you use formulas to project

today’s future support and resistance levels. Then whenever the market

approaches the levels, you try to fade the move by trading in the

opposite direction.

Moving averages

These are discussed in the next section. They are dynamic in nature and

follow the price. You can also use them to detect the current market

regime.

TIP
The best way to find support and resistance levels is to combine as many techniques as possible so
that you have a certain confluence of methods, which in turn will increase your conviction for the
initial idea. Trading is a numbers game, and stacking as much odds as possible on your side
should eventually increase your chances for a better-performing system.

Indicator Analysis

Indicator analysis is the second-most used technical analysis tool. It
generally accompanies charting to confirm your initial idea. You can
consider indicators as assistants. They can be divided into two types:

Trend-following indicators

Used to detect and trade a trending market where the current move is

expected to continue. Therefore, they are related to the persistence of

the move.

Contrarian indicators

Used to fade the move2 and best used in sideways markets3 as they

generally signal the end of the initial move. Therefore, they are related

to the expected reversal of the move (and therefore to the anti-

persistence of the move).

The next sections present two pillars of technical analysis: moving
averages (trend following) and the relative strength index (contrarian).

NOTE
Indicators are important as you will use them as inputs in the different learning algorithms in the
subsequent chapters.

Moving Averages
The most famous trend-following overlay indicator is the moving average.
Its simplicity makes it without a doubt one of the most sought-after tools.
Moving averages help confirm and ride the trend. You can also use them to
find support and resistance levels, stops, and targets, as well as to
understand the underlying trend.

There are many types of moving averages, but the most common is the
simple moving average where you take a rolling mean of the close price, as
shown in the following formula:

Moving averagei =
Pricei+Pricei−1+...+Pricei−n

n

Figure 5-7 shows the 30-hour simple moving average applied on USDCAD.
The term 30-hour means that I calculate the moving average of the latest 30
periods in case of hourly bars.

Figure 5-7. Candlestick chart on USDCAD with a 30-hour simple moving average

Rules of thumb with moving averages include the following:

Whenever the market is above its moving average, a bullish
momentum is in progress, and you are better off looking for long
opportunities.

Whenever the market is below its moving average, a bearish
momentum is in progress, and you are better off looking for short
opportunities.

Whenever the market crosses over or under its moving average, you
can say that the momentum has changed and that the market may be
entering a new regime (trend).

You can also combine moving averages so that they give out signals. For
example, whenever a short-term moving average crosses over a long-term
moving average, a bullish crossover occurs, and the market may continue to
rise. This is also referred to as a golden cross.

In contrast, whenever a short-term moving average crosses under a long-
term moving average, a bearish crossover has occurred, and the market may
continue to drop. This is also referred to as a death cross.

Figure 5-8 shows USDCAD with a 10-hour (closer to the market price) and
a 30-hour moving average (further from the market price). Note that, at the
beginning, a golden cross appeared and signaled a beginning of a bullish
trend.

Figure 5-8. Candlestick chart on USDCAD with a 30-hour and a 10-hour simple moving average

The Relative Strength Index

Let’s now look at the contrarian indicator. First introduced by J. Welles
Wilder Jr.,4the relative strength index (RSI) is one of the most popular and
versatile bounded indicators. It is mainly used as a contrarian indicator
where extreme values signal a reaction that can be exploited. Use the
following steps to calculate the default 14-period RSI:

1. Calculate the change in the closing prices from the previous ones.

2. Separate the positive net changes from the negative net changes.

3. Calculate a smoothed moving average on the positive net changes and
on the absolute values of the negative net changes.

4. Divide the smoothed positive changes by the smoothed absolute
negative changes. Refer to this calculation as the relative strength
(RS).

5. Apply this normalization formula for every time step to get the RSI:

RSIi = 100 − 100
1+RSi

NOTE
The smoothed moving average is a special type of moving average developed by the creator of the
RSI. It is smoother and more stable than the simple moving average.

Generally, the RSI uses a lookback period of 14 by default, although each
trader may have their own preferences on this. Here’s how to use this
indicator:

Whenever the RSI is showing a reading of 30 or less, the market is
considered to be oversold, and a correction to the upside might occur.

Whenever the RSI is showing a reading of 70 or more, the market is
considered to be overbought, and a correction to the downside might
occur.

Whenever the RSI surpasses or breaks the 50 level, a new trend might
be emerging, but this is generally a weak assumption and more
theoretical than practical in nature.

Figure 5-9 shows EURUSD versus its 14-period RSI in the second panel.
Indicators should be used to confirm long or short bias and are very helpful
in timing and analyzing the current market state.

Figure 5-9. Hourly EURUSD values in the top panel with the 14-period RSI in the bottom panel

To summarize, indicators can be calculated in many ways. The two most
commonly used ones are moving averages and the RSI.

Pattern Recognition
Patterns are recurring configurations that show a specific prediction of the
ensuing move. Patterns can be divided into the following types:

Classic price patterns

These are known technical reversal price patterns, which are extremely

subjective and can be considered unreliable due to the difficulty of

back-testing them without taking subjective conditions. However, they

are still used by many traders and analysts.

Timing patterns

Based on a combination of timing and price, these patterns are less well

known but can be powerful and predictive when used correctly.

Candlestick patterns

This is where OHLC data is used to predict the future reaction of the

market. Candlesticks are one of the best ways to visualize a chart as

they harbor many patterns that could signal reversals or confirm the

move.

Classic price patterns refer to theoretical configurations such as double tops
and rectangles. They are usually either reversal or continuation patterns:

Continuation price patterns

These are configurations that confirm the aggregate ongoing move.

Examples include rectangles and triangles.

Reversal price patterns

These are configurations that fade the aggregate ongoing move.

Examples include head and shoulders and double bottoms.

Old-school chartists are familiar with double tops and bottoms, which
signal reversals and give the potential of said reversals. Despite their
simplicity, they are subjective, and some are not visible like others.

This hinders the ability to know whether they add value or not. Figure 5-10
shows an illustration of a double top where a bearish bias is given right
after the validation of the pattern, which is usually breaking the line linking
the lows of the bottom between the two tops. This line is called
the neckline.

Figure 5-10. Double top illustration

Notice these three important elements in a double top:

The neckline

This is the line linking the lowest low between the two peaks and the

beginning/end of the pattern. It serves to determine the pull-back level.

The pull-back

Having broken the neckline, the market should shape a desperate

attempt toward the neckline but fails to continue higher as the sellers

use this level as re-entry to continue shorting. Therefore, the pull-back

level is the theoretical optimal selling point after validating a double

top.

The potential

This is the target of the double top. It is measured as the midpoint

between the top of the pattern and the neckline projected lower and

starting from the same neckline point.

The double top or bottom can have any size, but preferably it should be
visible to most market participants so that its impact is bigger.
Theoretically, the pattern’s psychological explanation is that with the
second top or bottom, the market has failed to push the prices beyond the
first peak and therefore is showing weakness, which might be exploited by
the seller.

There are other patterns that are more objective in nature; that is they have
clear rules of detection and initiation. These are all based on clear objective
conditions and are not subject to the analyst’s discretion. This facilitates
their back-testing and evaluation.

Before ending this chapter, I want to point out some misconceptions and
best practices of technical analysis so that you start the right way.

Common Pitfalls of Technical Analysis
Technical analysis can be misused, and this unfortunately fuels an
everlasting debate about its utility and place relative to fundamental

analysis. The important thing is to set expectations right and to remain
within the means of logical thinking. This section talks about known pitfalls
of technical analysis that you must make sure to avoid in order to maximize
your survival rate in the financial jungle.

Wanting to Get Rich Quickly
This pitfall is mostly psychological, as it deals with a lack of discipline and
poor management. The need to make money as soon as possible to impress
society pushes a trader to make emotional and bad decisions with regard to
trades and trading-related activities.

This is also related to the fact that with the need to make money, you are
likely to keep changing your trading plan because you believe that the new
plan is a quicker way to wealth.

When you do not have enough faith in yourself and think that other people
are better than you at making money, you are more likely to follow them,
especially because of the abundance of information they provide. No one
except you can change your future.

Forcing the Patterns
A common psychological deficiency known as confirmation bias prevents
traders from seeing signals that contradict their already established views.

Sometimes, you have an initial view on some market and therefore start
looking for anything that agrees with the view, and this can also force
patterns into existence even though there is no validity to them.

WARNING
You have to always be neutral in your analysis and approach elements with caution
while retaining a maximum of objectivity. Of course, this is easier said than done, and
the best alternative for absolute neutrality is an algorithmic approach that comes at the
expense of the human intelligence factor.

Hindsight Bias, the Dream Smasher
Technical analysis looks good in the past. Everything looked obvious and
easy to predict, even with very basic strategies; however, when you apply
the latter, you find deceiving results due to the harsh reality that your brain
is wired to trick you into believing the past was perfectly predictable.

This is also why back-testing results almost always outperform forward-
testing. When you look at past patterns and believe that they should have
been easy to spot, you are exhibiting hindsight bias. To remedy this
problem, you have to back-test using unbiased algorithms. Only then can
you know for sure if the pattern adds value or not. Many retail traders fall
into the trap of taking a general and simplistic look at the past to determine
the validity of their strategies, which then fail to perform.

Assuming That Past Events Have the Same Future
Outcome
You’ve heard the saying “History doesn’t repeat itself, but it does often
rhyme.” This saying is key to understanding how the markets function.
When you apply technical analysis, you must not expect exact outcomes
from past signals and patterns. Rather, you must use them as guidelines and
probabilistic elements that suggest markets may have a similar reaction that
can be correlated with past reactions.

Trading is a numbers game, and you have to stack the odds in your favor.
Humans sometimes do behave the same way when they are confronted with
similar events. However, as different participants enter and leave the
activity of buying and selling, with their motives changing all the time, you
can be certain that the future reaction of the market after encountering a
pattern similar to one in the past will not be exactly the same, although it
might rhyme with the past, meaning it might have a correlated reaction on
average.

This being said, do not expect to time the market perfectly every time you
see a distinct pattern.

Making Things More Complicated Than They Need to Be
Another saying is “Everything should be made as simple as possible, but no
simpler.” This is a perfect description of how you should do research and
trade.

Financial markets are highly complex, semi-random environments that
require more than simple strategies, yet strategies must not be so
sophisticated that you fall into the trap of overfitting, a common issue where
traders perfectly predict the past and assume it will behave exactly the same
in the future, thus resulting in huge paper gains in the past but huge real
losses in the future.

Summary
Technical analysis offers a big selection of tools to analyze the markets
either mathematically, graphically, or even psychologically (through
patterns). This chapter has marked the end of the warm-up exercise before
starting the real aim of the book, machine and deep learning applications for
trading and forecasting purposes. The learning outcome of this chapter
should be in the form of a deep understanding what technical analysis is and
what are its limitations. Similarly, you should also have a deep
understanding in the two main technical indicators I have presented:
moving averages and the RSI as they form key features in the coming
models.

1 This assumes a nonrandom probability that over the long term shows deterministic
characteristics.

2 Fading the move is a trading technique where you trade in the opposite direction of the on-
going trend in the hopes that you are able to time its end.

3 Sideways markets are generally in equilibrium and no specific trend describes them. They
tend to swing from top to bottoms that are close to each other.

4 See New Concepts in Technical Trading Systems by J. Welles Wilder Jr. (1978), published by
Trend Research.

Chapter 6. Introductory Python
for Data Science

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

One more stop to go before diving into the realm of machine and deep
learning. This chapter is optional for experienced Python developers but is
crucial for anyone without a solid programming background. Understanding
the intuition behind the algorithms is a great advantage but it will not get
you far if you fail to properly implement them. After all, these algorithms
need code to work and do not function manually. Make sure to understand
the basic syntax and how to manipulate data and transform it.

As the book is not meant to be an A-Z guide to programming in Python,
this chapter gently brushes on some essentials and a few more techniques
that should help you navigate smoothly the subsequent chapters.

Downloading Python

Coding is defined as a set of instructions designed to be executed by a
computer. Generally, specific syntax is required so that the computer
applies the set of instructions without errors. There are many coding
languages and are divided into two broad categories:

Low-level coding languages

These are machine languages usually for operating systems and

firmwares. They are very difficult to read. These languages have a

sizable level of control over hardware. An example of a low-level

language is assembly (with its various types).

High-level coding languages

These are user-friendly languages (with a high level of abstraction).

They are generally used to code programs and softwares. An example of

a high-level language is Python and Julia.

The coding language used in this book is Python, a popular and versatile
language with many advantages and wide adoption in the research and
professional community. As you have seen from the chapter’s name, you
will see an introduction to Python with the necessary tools to start building
your own scripts. But before that, let’s see how to actually download
Python.

A Python interpreter is a software used to write and execute code written
using Python syntax. I use a software called Spyder. Some people may be
more familiar with other interpreters such as Jupyter and PyCharm, but the
process is the same. You can download Spyder from the official website or,
even better, download it as part of a bigger package called Anaconda, which
facilitates installation and offers more tools. Note that it is an open source
and free-to-use software.

https://www.spyder-ide.org/
https://oreil.ly/nI8Ed

Spyder’s interface is split into three windows, as you can see in Figure 6-
1. The window on the left is used to write the code that is later executed
(the algorithm is told to run and apply the code). Typically, you will see
multiple lines of code in that area.

The window on the upper right is the variable explorer. Every time a
variable is stored (defined), you can see it there. The window on the lower
right is the console that shows the result of the code, whether it is an error
or an output.

Figure 6-1. Spyder’s interface

Python files have the extension name.py and they allow you to save the
code and refer to it at a later stage. You can also open multiple files of code
and navigate between them. The outline of this chapter is as follows:

1. Understand the language of Python and how to write error-free code.

2. Understand how to use control flow and its importance with time
series analysis.

3. Understand what are libraries and functions and their role in
facilitating coding.

4. Understand how to handle errors and their different types.

5. Understand how to use data manipulation libraries such as numpy and
pandas.

6. Finally, see how to import historical financial time series data into
Python so that it gets analyzed with the proper tools that you have seen
in previous chapters but also in the coming chapters.

Basic Operations and Syntax
Syntax is the proper way of writing error-free code, it is the structure of
statements needed to write code that functions. When you are
communicating with a computer, you have to make sure it understands you
and therefore, having a solid understanding of syntax is important.

Understanding code comes with a useful action called comments. A
comment is a non-executable code used to explain the executable code right
after. This is used so other programmers understand the code. Comments
are preceded by a hashtag #:

This is a comment. Comments are ignored by the interpreter

Comments explain the code or give more details about its use

Comments are written in one line, otherwise, you have to re-

write '#'

NOTE
Make sure you understand that comments are non-executable. This means that when you run
(execute) the code, they will be ignored by the interpreter and they will not return an error.

Sometimes you need to write documentation for your code which may
require multiple lines of code (even paragraphs in some instances). Writing
the hashtag symbol at every line can be tedious and cluttersome. This is
why there is a way to write long comments. To do this you have to write
your comments between three quotes at every end as follows:

'''

Python was created in the late 1980s by Guido van Rossum.

The name "Python" was inspired by the comedy group Monty Python.

'''

It is worth noting that triple quotes are considered docstrings and not really
comments (according to the official Python documentation).

Let’s discuss variables and constants. A constant is a fixed value that does
not change while a variable takes on different values given an event. A
constant can be the number 6 while a variable can be the letter x which
takes on any number given a set of conditions or a state. A variable is
defined using the '=' operator:

Defining a variable

x = 10

y = 5

Writing a constant

6

Running the previous code will store the variables x and y with their
respective values (in the variable explorer). Simultaneously, the output of
the code will be 6. Variables are case sensitive, therefore:

Declaring my_variable

my_variable = 1

Declaring My_variable

My_variable = 2

The variable my_variable is different from My_variable

Variable declaration cannot start with a number but it can contain one in the
middle or the end of its name:

Returns a SyntaxError

1x = 5

Valid declaration

x1 = 5

Valid declaration

x1x = 5

Variables can also contain underscores but nothing else:

Returns a SyntaxError

x-y = 5

Valid declaration

x_y = 5

It is heavily recommended that variables are short and straightforward. For
example, consider creating the variable that holds the lookback period of a
certain moving average (a concept seen in Chapter 5):

Recommended name

ma_lookback = 10

Not recommended name

the_lookback_on_that_moving_average = 10

There are several different data types with different characteristics:

Numerical data types

This is simplest data type. It is formed exclusively from numbers.

numerical data types are even further divided into integers, float

numbers, and complex numbers. Integers are simple whole numbers

(positive or negative). An example of an integer would be 6 and -19.

Float numbers are more precise than integers as they incorporate the

values after the comma. An example of a float number would be 2.7 and

-8.09. Complex numbers include imaginary numbers1 and are less

relevant than the other two.

Strings

As you have seen previously with comments and docstrings, it is

possible to write text next to the code without it interfering with the

execution process. Strings are text structures that represent sequences of

characters. Strings can be inputs and arguments of functions and not

necessarily just comments.

Booleans

This is a binary (true or false) data type used to evaluate the truth value

of the given expression or condition. For example, you can use booleans

to evaluate if the market price is above or below the 100-period moving

average.

Data collection

These are sequences that contain multiple data with each having a

different and unique usage. An array is a sequence of elements of the

same type (mostly numerical). Arrays will be used frequently in this

book (used with a Python library called numpy that is discussed in this

chapter). A data frame is a two-dimensional table of structured data that

is also frequently used in this book (used with a Python library called

pandas that is discussed in this chapter). A set is a sequence of

unordered elements. A list is an ordered collection of elements that can

be of different data types. A tuple is an ordered, immutable collection of

elements that may be of different data types. It is used for storing a

fixed sequence of values. A range is a built-in Python function that

returns a sequence of numbers. The range function is mostly used in

loops. A dictionary represents a collection of key-value pairs grouped

together.

The following code snippet shows a few examples on the numerical data
type:

Creating a variable that holds an integer

my_integer = 1

Creating a variable that holds a float number

my_float_number = 1.2

Using the built-in Python function type() to verify the

variables

type(my_integer)

type(my_float_number)

The output should be as follows (remember that anything after the hashtag
symbol is a comment and will not be executed):

int # The output of type(my_integer)

float # The output of type(my_float_number)

Strings are simply text. The most famous example of explaining a string is
the "Hello World" phrase as explained in the following code snippet:

Outputting the phrase "Hello World"

print('Hello World')

The output should be as follows:

Hello World

Strings can also be used as arguments in functions, both concepts you will
see later in this chapter.

Booleans as mentioned in the previous list are either true or false values.
The following code snippet shows an example of using them:

Make a statement that the type of my_integer is integer

type(my_integer) is int

Make a statement that the type of my_float_number is float

type(my_float_number) is float

Make a statement that the type of my_integer is float

type(my_integer) is float

'''

Intuitively, the two first statements will return True as they are

indeed true. The third statement is False as the variable my_integer

is an integer and not a float number

'''

The output of the previous code is as follows:

True

True

False

Let’s discuss how operators work. You have actually already seen an
example of an operator which is the assignement operator '=' used to
defined variables. Operators perform special mathematical and other tasks
between variables, constants, and even data structures. There are different
types of operators. Let’s start with arithmetic operators as shown in the
following snippet:

Arithmetic operator - Addition

1 + 1 # The line outputs 2

Arithmetic operator - Subtraction

1 - 1 # The line outputs 0

Arithmetic operator - Multiplication

2 * 2 # The line outputs 4

Arithmetic operator - Division

4 / 2 # The line outputs 2.0 as a float number

Arithmetic operator - Exponents

2 ** 4 # The line outputs 16

The next type of operators is the comparison operators which are used to
compare different elements. They are mostly used in control flow events as
explained in the next section of this chapter. The following snippet shows a
few comparison operators:

Comparison operator - Equality

2 == 2 # The line outputs True

Comparison operator - Non equality

2 != 3 # The line outputs True

Comparison operator - Greater than

2 > 3 # The line outputs False

Comparison operator - Greater than or equal to

2 >= 2 # The line outputs True

Comparison operator - Less than

2 < 3 # The line outputs True

Comparison operator - Less than or equal to

2 <= 2 # The line outputs True

Logical operators combine two or more conditions that are later evaluated.
There are three logical operators: and, or, and not. The following code
block shows an example of logical operators:

Logical operator - and

2 and 1 < 4 # The line outputs True

2 and 5 < 4 # The line outputs False

Logical operator - or

2 or 5 < 4 # The line outputs 2 which is the integer less than 4

Data collection structures (arrays an data frames) are discussed in a later
section as they require an in-depth presentation due to their complexity and
unique tools. Let’s end this section with a code that englobes what has been
discussed so far:

Declaring two variables x and y and assigning them values

x = 10

y = 2.5

Checking the types of the variables

type(x) # Returns int

type(y) # Returns float

Taking x to the power of y and storing it in a variable z

z = x ** y # Returns 316.22

Checking if the result is greater than or equal to 100

z >= 100 # Returns True as 316.22 >= 100

Control Flow
Conditional statements form the first part of what is known as control flow
(the second part is loops). Conditional statements are the ancestors of
today’s artificial intelligence as they only execute code if certain conditions
are met.

Conditional statements are managed using if, elif, and else. Take the
following code snippet as an example to clear things out:

Declaring the variables

a = 9

b = 2

First condition (specific)

if a > b:

 print('a is greater than b')

Second condition (specific)

elif a < b:

 print('a is lower than b')

Third condition (general)

else:

 print('a is equal to b')

Therefore, conditional statements start with if, then for every new unique
and specific condition, elif is used, until it makes sense to use the rest of

the probability universe as a condition on its own which is used by the else
statement. Note that the else statement does not need a condition as it exist
to cover the rest of the uncovered universe.

Loops are used to execute blocks of code repeatedly until a pre-defined
condition is met. Loops are heavily used with time series to calculate
indicators, verify states, and to back-test trading strategies.

Loops are managed using for (used to iterate over a finite and defined
sequence or a range of elements) and while (used to continue the iteration
until a condition is met) statements. Take as an example the following code
that prints the values {1, 2, 3, 4} using a loop:

Using a for loop

for i in range(1, 5):

 print(i)

Using a while loop

i = 1

while i < 5:

 print(i)

 i = i + 1

The for loop when translated is simply saying that for every element which
is called i (or any other letter depending on the coder) in the range that
starts at 1 and ends at 5 (excluded), print the value of i at every loop
(hence, in the first loop, the value of i is equal to 1 and in the second loop,
it is equal to 2).

The while loop when translated is saying that starting from a value of i =
1, while looping, print its value and then add 1 to it before finishing the first
loop. End the loop when i becomes greater than 4

NOTE
Theoretically, a while loop is infinite until told otherwise.

It is worth noting that i = i + 1 can also be expressed as i += 1. The
goal of an algorithm is the ability to apply many operations recursively in
an objective way which makes loops extremly useful especially when
combined with conditional statements. Let’s take an example of a financial
time series:

1. Create a range of values to simulate hypothetical daily close prices.

2. Loop through the range of the data while creating the condition that if
the price rose from the last period, print 1. Similarly, if the price fell
from the last period, print -1. Lastly, print 0 if the price didn’t change
from last period.

This can be done in the following code block:

Creating the time series

time_series = [1, 3, 5, 2, 4, 1, 6, 4, 2, 4, 4, 4]

for i in range(len(time_series)):

 # The condition where the current price rose

 if time_series[i] > time_series[i - 1]:

 print(1)

 # The condition where the current price fell

 elif time_series[i] < time_series[i - 1]:

 print(-1)

 # The condition where the current price hasn't changed

 else:

 print(0)

The code defines a list of values (in this case, a time series called
time_series), then loops around its length using the len() function to
apply the conditions. Notice how at every loop, the current time step is
referred to as i thus making the previous time step i - 1.

Libraries and Functions
A library in Python is a group of pre-written code that offers functionality
to make the creation of applications easier. Modules, which are individual
Python files with reusable code and data that can be imported and used in
other Python code, are commonly found in libraries. A module is therefore
a single Python file that contains functions and other types of code that may
be used and imported by other Python programs. Large code bases are often
easier to manage and maintain by using modules to divide similar code into
different files.

Coding is all about simplifying tasks and making them clearer. When you
have a recurring task such as calculating a moving average of a time series,
you can use a function so that you do not have to write the moving average
code all over again every time you want to use it. Instead, you define the
function with the original code and then, you call it whenever you need to
calculate the moving average. But what is a function? It is a block of
reusable code that performs a specific task when called. It needs to be
defined once.

Multiple functions form a module and multiple modules form a library. A
library is generally theme-oriented. For example, in this book,
sklearn library will be used with machine learning models. Similarly, data
manipulation and importing is done using numpy and pandas, two libraries
discussed in a later section of this chapter. Plotting and charting is done
using matplotlib library.

Libraries must be imported first to the Python interpreter before being used.
The syntax of doing this is as follows:

The import statement must be followed by the name of the

library

import numpy

Optionally, you can give the library a shortcut for easier

references

import numpy as np

Sometimes, you need to import just one function or module from a library.
For this, you don’t need to import the totality of the library:

Importing one function from a library

from math import sqrt

So, it is established that math is a Python library that harbors many
mathematical functions, namely sqrt function which is used to find the
square root of a given number. Let’s see how to define a function. A
function is defined using def followed by the name of the function and any
optional arguments. Consider the following example that creates a function
that sums any two given variables:

Defining the function sum_operation and giving it two arguments

def sum_operation(first_variable, second_variable):

 # Outputing the sum of the two variables

 print(first_variable + second_variable)

Calling the function with 1 and 3 as arguments

sum_operation(1, 3) # The output of this line is 4

NOTE
Calling a function means executing what it’s supposed to do. In other words, calling a function is
simply using it. The time line of a function is getting defined and then getting called.

Let’s see how to import a function from a library and use its functions:

Importing the library

import math

Using the natural logarithm function

math.log(10)

Using the exponential function (e)

math.exp(3)

Using the factorial function

math.factorial(50)

As a side note, the factorial operation is a mathematical operation that used
to calculate the product of all positive integers from 1 up to a certain
number (which is the argument requested in math.factorial()).

Libraries may not be as easy as one plus one. Sometimes, external libraries
require installation first before being able to be imported to the Python
interpreter. Installation can be done through the prompt using the following
syntax:

pip install library_name

Let’s revert back to Chapter 3 where the MIC was discussed. Prior to the
following already seen code of the MIC:

Importing the library

from minepy import MINE

Calculating the MIC

mine = MINE(alpha = 0.6, c = 15)

mine.compute_score(sine,cosine)

MIC = mine.mic()

print('Correlation | MIC: ', round(MIC, 3))

Importing the library directly will likely lead to an error as it has not been
pip installed. Therefore, you must install it first using the following syntax
on the prompt (not the Python interpreter):

pip install minepy

It is also important to read the documentation that comes with libraries in
order to use them correctly. Documentation helps knowing the aim of the

functions and what arguments go inside. Furthermore, it tells you what type
of arguments the function can accept (for example, strings or numerics).
Let’s go back to functions now (notice how both are intertwined and
discussing one may result in discussing the other).

Functions can have a return statement which allows the result to be stored
in a variable so that it can be used in other parts of the code. Let’s take two
simple examples and then discuss them step-by-step:

Defining a function to sum two variables and return the result

def sum_operation(first_variable, second_variable):

 # The summing operation is stored in a variable called

final_sum

 final_sum = first_variable + second_variable

 # The result is returned

 return final_sum

Create a new variable that holds the result of the function

summed_value = sum_operation(1, 2)

Use the new variable in a new mathematical operation and store

the result

double_summed_value = summed_value * 2

The previous code defines the sum_operation function with two
arguments, then stores the operation in a variable called final_sum before
returning it so it can be stored externally. Afterwards, a new variable called
summed_value is defined as the output of the function. Finally, another
variable is created under the name of double_summed_value and is the
result of summed_value multiplied by 2. This is an example on how to use
results from functions as variables in external operations. Now, let’s
consider another example (while keeping in mind the previously defined
sum_operation function):

Defining a function to square the result gotten from the

sum_operation function

def square_summed_value(first_variable, second_variable):

 # Calling the nested sum_operation function and storing its

result

 final_sum = sum_operation(first_variable, second_variable)

 # Creating a variable that stores the square of final_sum

 squared_sum = final_sum ** 2

 # The result is returned

 return squared_sum

Create a new variable that holds the result of the function

squared_summed_value = square_summed_value(1, 2)

The latest code snippet defines a function called square_summed_value
which takes on two arguments. Furthermore, it uses a nested function inside
which in this case is sum_operation. The result of the nested function is
once again stored in a variable called final_sum which is used as an input
in finding the squared_sum variable. The variable is found as final_sum
to the power of two. This was an example on how to create functions out of
other functions inside of them (in other words, nested functions).

Let’s end the section with common libraries in Python and machine learning
(other than numpy and pandas):

matplotlib # For plotting and visualizing data

sklearn # For machine learning models

scipy # For scientific computing and optimization

keras # For neural networks

math # For using mathematical tools such as square roots

random # For generating random variables

requests # For making HTTP requests used in web scraping

Exceptions Handling and Errors
Quite often you will run into errors due to issues with the code during
execution. In other words, errors occur when the code is executed and the
interpreter finds an obstacle that prevents it from continuing further. The

most basic error is SyntaxError which occurs when there are misspelled
words or missing elements which make the code unintelligible:

Will not output a SyntaxError if executed

my_range = range(1, 10)

Will output a SyntaxError is executed

my_range = range(1, 10

As you can see from the previous code, there is a missing parenthesis at the
end of the second code line, which is not understood by the interpreter. This
type of error is likely to be the most common one. Another common error is
NameError which occurs when failing to define a variable before executing
a code that contains it. Consider the following example:

x + y

The previous code will give you a NameError because the interpreter does
not know the value of x and y since they were not defined.

The ModuleNotFoundError occurs when the interpreter cannot find the
library or module you are trying to import. This generally occurs when it is
installed in the bad directory or when it is not properly installed. Common
fixes for this issue include:

Verifying if the module’s name has been written correctly.

Verifying if the module has been correctly pip installed.

Verifying if the module is installed in the correct location.

Another type of common errors is TypeError and it occurs when you apply
a certain operation on an incompatible element such as summing an integer
with a string. The following operation raises a TypeError:

Defining variable x

x = 1

Defining variable y

y = 'Hello

Summing the two variables which will raise a TypeError

x + y

In time series analysis, you will likely to encounter these four errors:

IndexError: This is raised referring to an index that is out of range
regarding the current array or data frame. Imagine having an array of
300 values (rows). If you want to loop through them and at each loop,
you want to input the number 1 in the next cell (time step + 1), you are
likely to encounter an IndexError as in the last loop, there is no next
cell and the interpreter will raise this error.

ValueError: This is raised when you try to call a function with an
invalid argument. An example of this would to be try to pass an integer
element as a string when calling a function.

KeyError: This occurs when trying to access an element in a data
frame that does not exist. For example, if you have three columns in
the data frame and you refer to one that does not exist (maybe due to a
syntax issue), you are likely to run into a KeyError.

ZeroDivisionError: This error is intuitive and occurs when trying to
divide a number by zero.

There are other types of errors that you may encounter. It is important to
understand what they refer to so that you are able to fix them.

Exceptions on the other hand may be not fatal to the code in the sense that
they only show a warning but not necessarily terminate the code. Therefore,
exceptions occurs during the execution (as opposed to errors which occur
because the interpreter is unable to execute).

NOTE
Understanding the error will help you fixing it and getting the code running again.

To ignore certain exceptions, the try and except keywords are used. This
is useful when you are certain that handling the exception will not alter the
output of the code. Let’s take an example of creating a function that divides
the first column of a time series by the next value of the second column.
The first step is to define the time series as a data frame or as an array (or
any other data collection structure):

Importing the required library to create an array

import numpy as np

Creating a two-column list with 8 rows

my_time_series = [(1, 3),

 (1, 4),

 (1, 4),

 (1, 6),

 (1, 4),

 (0, 2),

 (1, 1),

 (0, 6)]

Transforming the list into an array

my_time_series = np.array(my_time_series)

Now, let’s write the division function which will take any value in the first
column and divide it by the next value in the second column:

Defining the function

def division(first_column, second_column):

 # Looping through the length of the created array

 for i in range(len(my_time_series)):

 # Division operation and storing it in the variable x

 x = my_time_series[i, first_column] / my_time_series[i + 1,
second_column]

 # Outputting the result

 print(x)

Calling the function

division(0, 1)

Running the two previous code blocks will give an IndexError because in
the last loop, the function cannot find the next value of the second column
because it simply does not exist:

IndexError: index 8 is out of bounds for axis 0 with size 8

Fixing this through try and except will ignore the last calculation that is
causing the problem and will return the expected results:

Defining the function

def division(first_column, second_column):

 # Looping through the length of the created array

 for i in range(len(my_time_series)):

 # First part of the exception handling

 try:

 # Division operation and storing it in the variable x

 x = my_time_series[i, first_column] / my_time_series[i + 1,
second_column]

 # Outputting the result

 print(x)

 # Exception handling of a specific error

 except IndexError:

 # Ignoring (passing) the error

 pass

Calling the function

division(0, 1)

The output is as follows:

0.25

0.25

0.16666666666666666

0.25

0.5

0.0

0.16666666666666666

This section discussed errors and exceptions and how you can handle such
issues. In the coming chapters, such issues will be handled using try and
except blocks due to their simplicity and effectiveness.

Data Structures in Numpy and Pandas
The words numpy and pandas may come familiar to you since I have used
them in most of the code snippets in the previous chapters. Moreover, you
now understand what a library is and therefore, you know that these two are
the go-to libraries to manipulate, handle, and import data in Python. This
section shows the differences between the two and their key functions that
are definitely a great addition to your data analysis. But first, let’s define
these two libraries:

numpy

NumPy (short for Numerical Python) is a Python library that allows

working with multi-dimensional arrays and matrices. NumPy provides a

powerful interface for performing various operations on arrays and

matrices.

pandas

Pandas (short for Panel Data) is a Python library that allows working
with data frames (a type of tabular data). Pandas provides two main data
structures: series and data frames. A series is a one-dimensional array-

like object that can hold any data type. A data frame is a two-
dimensional table-like structure that consists of rows and columns
(similar to a spreadsheet).

Both libraries are very useful in analyzing time series data. Arrays hold
only numerical type data and therefore, they do not really hold date type
data as opposed to data frames. This may be one of the advantages of using
pandas as opposed to numpy but both have the strengths and relative
weaknesses. In the end, it is a matter of choice. This book will prioritize
using numpy due to the simplicity and due to the fact that the machine
learning models seen in the next chapter use sklearn library which is
applied on arrays. This must not prevent you from using data frames until
you are ready to apply the models.

NOTE
Switching between numpy and pandas requires converting the time series type. It is a relatively
easy task but can sometimes cause loss of certain types of data (for example, date data).

Let’s import both libraries before starting to see some of their potential:

import numpy as np

import pandas as pd

The following code creates two time series with two columns and three
rows. The first time series is called my_data_frame and is created using the
function pd.DataFrame of pandas. The second time series is called
my_array and is created using the function np.array of numpy:

Creating a data frame

my_data_frame = pd.DataFrame({'first_column' : [1, 2, 3],

 'second_column' : [4, 5, 6]})

Creating an array

my_array = np.array([[1, 4], [2, 5], [3, 6]])

As can be seen from Figure 6-2, data frames have real indexes and can have
column names. Arrays are purely numerical and do not allow for this:

Figure 6-2. On the left, a data frame (pandas) and on the right, an array (numpy)

To switch between the two types of data, it is quite intuitive as you will be
using the same two functions used in the previous code block:

To transform my_data_frame into my_new_array

my_new_array = np.array(my_data_frame)

To transform my_array into my_new_data_frame

my_new_data_frame = pd.DataFrame(my_array)

NOTE
You can notice that my_new_data_frame does not have column names.

Let’s now take a look at useful functions that will come in handy when
dealing with models. Slicing, concatenating, and other tools are things that
you must master in order to smoothly navigate through the data analysis
part. Consider the following arrays:

first_array = np.array([1, 2, 3, 5, 8, 13])

second_array = np.array([21, 34, 55, 89, 144, 233])

Concatenation is the act of fusing two datasets together either through rows
(axis = 0) or through columns (axis = 1). Let’s do both of them:

Reshaping the arrays so they become compatible in

multidimensional manipulation

first_array = np.reshape(first_array, (-1, 1))

second_array = np.reshape(second_array, (-1, 1))

Concatenating both arrays by columns

combined_array = np.concatenate((first_array, second_array), axis = 1)

Concatenating both arrays by rows

combined_array = np.concatenate((first_array, second_array), axis = 0)

Now, let’s do the same thing for data frames. Consider the following data
frames:

first_data_frame = pd.DataFrame({'first_column' : [1, 2, 3],

 'second_column' : [4, 5, 6]})

second_data_frame = pd.DataFrame({'first_column' : [7, 8, 9],

 'second_column' : [10, 11, 12]})

Concatenation is useful when you want to combine data into one structure.
This is how it can be done with data frames (notice how it’s simply a
change of syntax and function source):

Concatenating both data frames by columns

combined_data_frame = pd.concat([first_data_frame, second_data_frame], axis =
1)

Concatenating both data frames by rows

combined_data_frame = pd.concat([first_data_frame, second_data_frame], axis =
0)

Remember that with time series, rows (horizontal cells) represent one time
step (for example, hourly) with all the data inside while columns represent
the different types of data (for example, open price and close price of a
financial instrument). Now let’s see slicing techniques for arrays:

Defining a one-dimensional array

my_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Referring to the first value of the array

my_array[0] # Outputs 1

Referring to the last value of the array

my_array[-1] # Outputs 1​0

Referring to the fifth value of the array

my_array[6] # Outputs 7

Referring to the first three values of the array

my_array[0:3] # Outputs array([1, 2, 3])

my_array[:3] # Outputs array([1, 2, 3])

Referring to the last three values of the array

my_array[-3:] # Outputs array([8, 9, 10])

Referring to all the values as of the second value

my_array[1:] # Outputs array([2, 3, 4, 5, 6, 7, 8, 9, 10])

Defining a multi-dimensional array

my_array = np.array([[1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10],

 [11, 12, 13, 14, 15]])

Referring to the first value and second column of the array

my_array[0, 1] # Outputs 2

Referring to the last value and last column of the array

my_array[-1, -1] # Outputs 15

Referring to the third value and second to last column of the

array

my_array[2, -2] # Outputs 14

Referring to the first three and fourth column values of the

array

my_array[:, 2:4] # Outputs array([[3, 4], [8, 9], [13, 14]])

Referring to the last two values and fifth column of the array

my_array[-2:, 4] # Outputs array([10, 15])

Referring to all the values and all the columns up until the

second row

my_array[:2,] # Outputs array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

Referring to the last row with all the columns

my_array[-1:, :] # Outputs array([[11, 12, 13, 14, 15]])

NOTE
It is important to know that Python indexing starts at zero. This means that to refer to the first
element in a data structure, you refer to its index as index = 0. On another note, it is also worth
noting that in ranges, the last element is excluded which means that the first three elements in a
data structure are referred to as [0, 3] which will give the elements indexed at 0, 1, and 2.

Let’s see the same thing for data frames so that this section becomes a sort
of a mini encyclopedia whenever you want to manipulate data structures:

Defining a one-dimensional data frame

my_df= pd.DataFrame({'first_column': [1, 2, 3, 4, 5,

 6, 7, 8, 9, 10]})

Referring to the first value of the data frame

my_df.iloc[0]['first_column'] # Outputs 1

Referring to the last value of the data frame

my_df.iloc[-1]['first_column'] # Outputs 10

Referring to the fifth value of the data frame

my_df.iloc[6]['first_column'] # Outputs 7

Referring to the first three values of the data frame

my_df.iloc[0:3]['first_column'] # Outputs ([1, 2, 3])

Referring to the last three values of the data frame

my_df.iloc[-3:]['first_column'] # Outputs ([8, 9, 10])

Referring to all the values as of the second value

my_df.iloc[1:]['first_column'] # Outputs ([2, 3, 4, 5, 6, 7, 8, 9, 10])

Defining a multi-dimensional data frame

my_df = pd.DataFrame({'first_column' : [1, 6, 11],

 'second_column' : [2, 7, 12],

 'third_column' : [3, 8, 13],

 'fourth_column' : [4, 9, 14],

 'fifth_column' : [5, 10, 15]})

Referring to the first value and second column of the data

frame

my_df.iloc[0]['second_column'] # Outputs 2

Referring to the last value and last column of the data frame

my_df.iloc[-1]['fifth_column'] # Outputs 15

Referring to the third value and second to last column of the

data frame

my_df.iloc[2]['fourth_column']​ # Outputs 14

Referring to the first three and fourth column values of the

data frame

my_df.iloc[:][['third_column', 'fourth_column']]

Referring to the last two values and fifth column of the data

frame

my_df.iloc[-2:]['fifth_column']​ # Outputs ([10, 15])

Referring to all the values and all the columns up until the

second row

my_df.iloc[:2,] # Outputs ([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

Referring to the last row with all the columns

my_df.iloc[-1:,] # Outputs ([[11, 12, 13, 14, 15]])

NOTE
Try going back to the earlier chapters to execute the code given there. You should have a more
solid understanding by now.

Importing Financial Time Series in Python
This section presents a key part in deploying machine and deep learning
algorithms. It deals with the historical OHLC data that is needed to run the
models and evaluate their performance.

The first step is to prepare the environment and everything else necessary
for the success of the algorithms. For this, you need two programs:

A Python interpreter that you use to write and execute code. You have
already completed this step.

Charting and financial software that you use as a database. This part is
covered in this section.

Throughout the book, I use MetaTrader 5, a benchmark charting program
used by many traders around the globe. Follow these steps:

1. Download SPYDER and familiarize yourself with how it works.

2. Download the MetaTrader 5 software.

3. Use SPYDER to import historical prices from MetaTrader 5.

From the official website, download and install MetaTrader 5. You need to
create a demo account, which is simply a virtual account with imaginary
money. The word demo does not refer to a limited duration of use but to the
fact that it is not using real money.

https://www.metatrader5.com/en

To open an account, select File > Open an Account, choose MetaQuotes
Software Corp, and then click Next. Then, choose the first option to open a
demo account; this will let you trade virtual money. Finally, enter some
basic information such as name, email, and account type. You will not
receive a verification request or any type of confirmation as the demo
should launch directly, allowing you to see the charts.

Figure 6-3 shows the platform’s interface. By default, MetaTrader 5 does
not show all the markets it covers, so you need to make them accessible for
import and visualization if necessary. Click View, click Market Watch, and
then right-click any of the symbols shown in the new tab and choose Show
All. This way you can see the extended list with more markets.

Figure 6-3. MetaTrader’s 5 interface

Before proceeding to the coding part, you need to install the MetaTrader 5
Python integration library so you can use it later in Spyder. This is easy and
requires one step. Open the Anaconda prompt and type:

pip install MetaTrader5

Installation is the bridge that allows you to use Python modules and
functions designed for MetaTrader 5 in the interpreter.

The following code block uses the import built-in statement, which calls
for internal (self-created) or external (created by third parties) libraries. A
library is a store of functions, and thus, you need to import the libraries that
are pertinent to what you want to do. For demonstration purposes, import
the following modules, packages, and libraries:

import datetime # Gives tools for manipulating dates and time

import pytz # Offers cross-platform time zone calculations

import MetaTrader5 as mt5 # Importing the software's library

import pandas as pd

import numpy as np

The next step is to create the universe of the time frames that you will be
able to import. Even though I will be showing you how to analyze and
back-test hourly data, you can define a wider universe, as shown in the
following code snippet:

frame_M15 = mt5.TIMEFRAME_M15 # 15-minute time

frameframe_M30 = mt5.TIMEFRAME_M30 # 30-minute time frame

frame_H1 = mt5.TIMEFRAME_H1 # Hourly time frame

frame_H4 = mt5.TIMEFRAME_H4 # 4-hour time frame

frame_D1 = mt5.TIMEFRAME_D1 # Daily time frame

frame_W1 = mt5.TIMEFRAME_W1 # Weekly time frame

frame_M1 = mt5.TIMEFRAME_MN1 # Monthly time frame

NOTE
The full code is found in the GitHub repository under the name Master_Function.py

A time frame is the frequency with which you record the prices. With
hourly data, you will record the last price printed every hour. This means
that in a day, you can have up to 24 hourly prices. This allows you to see
the intraday evolution of the price. The aim is to record the totality of the
OHLC data within a specific period.

The following code defines the current time, which is used so that the
algorithm has a reference point when importing the data. Basically, you are
creating a variable that stores the current time and date:

now = datetime.datetime.now()

Let’s now proceed to defining the universe of the financial instruments you
want to back-test. In this book, the back-tests will be done exclusively on
the FX market. Therefore, let’s create a variable that stores some key
currency pairs:

assets = ['EURUSD', 'USDCHF', 'GBPUSD', 'USDCAD']

Now that you have your time and asset variables ready, all you need is to
create the structure of the importing algorithm. The get_quotes() function
does this:

def get_quotes(time_frame, year = 2005, month = 1, day = 1,

 asset = "EURUSD"):

 if not mt5.initialize():

 print("initialize() failed, error code =", mt5.last_error())

 quit()

 timezone = pytz.timezone("Europe/Paris")

 time_from = datetime.datetime(year, month, day, tzinfo = timezone)

 time_to = datetime.datetime.now(timezone) + datetime.timedelta(days=1)

 rates = mt5.copy_rates_range(asset, time_frame, time_from, time_to)

 rates_frame = pd.DataFrame(rates)

 return rates_frame

Notice that in the get_quotes() function, you use
the pytzand pandas libraries. The function starts by defining the Olson
time zone, which you can set yourself. Here is a brief, nonexhaustive list of
what you can enter depending on your time zone:

America/New_York

Europe/London

Europe/Paris

Asia/Tokyo

Australia/Sydney

Afterward, I define two variables called time_from and time_to:

The time_from variable contains the datetime referring to the
beginning of the import date (e.g., 01-01-2020).

The time_to variable contains the datetime referring to the end of the
import date which uses the now variable to represent the current time
and date.

The next step is to create a variable that imports the financial data using the
time periods you have specified. This is done through the rates variable
using the mt5.copy_rates_range() function. Finally,
using pandas, transform the data into a data frame. The final function
required for the importing process is the mass_import() function. It lets
you choose the time frame using the variable and then uses
the get_quotes() function to import the data and format it to an array. The
following code snippet defines the mass_import() function:

def mass_import(asset, time_frame):

 if time_frame == 'H1':

 data = get_quotes(frame_H1, 2013, 1, 1, asset = assets[asset])

 data = data.iloc[:, 1:5].values

 data = data.round(decimals = 5)

 return data

The mass_import() function automatically converts the data frame into an
array, so you do not have to worry about conversion when using the
automatic import.

NOTE
The algorithm imports a number of historical data limited by MetaTrader 5. Although that number
is high, in time you may need to adjust the year argument higher in order to get the data. For
instance, if you get an empty array using the mass_import() function, try putting a more recent
year in the get_quotes() function (“2014” instead of “2013”).

To import the historical hourly EURUSD data since beginning of 2014 to
date, you may type the following (assuming get_quotes(), now, the
frames, and the libraries are already defined):

Defining the universe of currency pairs

assets = ['EURUSD', 'USDCHF', 'GBPUSD', 'USDCAD']

Re-defining the mass_import function to switch to a default

2014

def mass_import(asset, time_frame):

 if time_frame == 'H1':

 data = get_quotes(frame_H1, 2014, 1, 1, asset = assets[asset])

 data = data.iloc[:, 1:5].values

 data = data.round(decimals = 5)

Calling the mass_import function and storing it into a variable

eurusd_data = mass_import(0, 'H1')

NOTE
Notice how the return statement is used in the mass_import function in order to store the
historical data in chosen variables.

Even though there is a MAC version of MetaTrader 5, the Python library
only works on Windows. It requires a Windows emulator on a Mac. For
Mac users, you may want to try the manual import method.

Automatic import is a huge time saver but MAC users or even Windows
users may run into frustrating errors. For this, I will show you the manual
import way which you can use as a fix. In the GitHub link, you will find a
folder called Historical Data. Inside the folder there is a selection of
historical financial time series in the form of excel which you can
download.

The manual way is to have an Excel file with OHLC data that you have
downloaded from a third party (such as the excel files provided in the
Github repository). In this case, you can use the pandas library to import it
and transform it into an array.

Let’s take an example of eurusd_data. Download and the file and store it on
your desktop. You now have to make sure that the Spyder’s directory is in
the same place as the file (so, in the desktop). In layperson’s terms, Spyder
must search the desktop for the Excel file. To choose the right directory,
you must click the folder button next to the arrow, as shown in Figure 6-4:

Figure 6-4. Directory tab

You should get a separate window where you can choose the desktop
location and then validate the choice. Having done this, the tab should look
like Figure 6-5:

Figure 6-5. Directory tab

You must use the read_excel() function (built-in in pandas and accessible
after importing it) to get the values inside the Excel file. Follow this syntax:

Importing the excel file into the Python interpreter

my_data = pd.read_excel('eurusd_data.xlsx')

Right about now, you have a data frame called eurusd_data with four
different columns representing open, high, low, and close prices. You
generally have to enter the library’s name before using a function that
belongs to it; this is why read_excel() is preceded by pd.

NOTE
I recommend using the automatic way for Windows users and the manual way for macOS users
due to compatibility issues.

You can get an array directly in one line by just adding .values to
pd.read_excel('eurusd_data.xlsx'), thus becoming
pd.read_excel('my_data.xlsx').values and resulting in an array
instead of a data frame.

Summary
Python, one of the stars of coding languages. It did enjoy and still enjoys a
widespread adoption by the developers’ community. Mastering it is key to
unlocking huge potential in the data science world.

The next chapter presents machine learning and different prediction
algorithms. The main aim is to understand the intuition and be able to code
the algorithms and run a back-test over financial data. You will see that
once you start understanding the process, it becomes a matter of removing
an algorithm an plugging another (in case they have the same assumptions).
The warm-up chapters are over and it’s time to start coding.

1 Imaginary numbers are a type of complex number that represent the square root of a negative
number.

About the Author
Sofien Kaabar is a financial author, trading consultant, and institutional
market strategist specializing in the currencies market with a focus on
technical and quantitative topics. Sofien’s goal is to make technical analysis
objective by incorporating clear conditions that can be analyzed and created
with the use of technical indicators that rival existing ones.

Having elaborated many successful trading algorithms, Sofien is now
sharing the knowledge he has acquired over the years to make it accessible
to everyone.

	1. Introducing Data Science and Trading
	Understanding Data
	Understanding Data Science
	Introduction to Financial Markets and Trading
	Applications of Data Science in Finance
	Summary

	2. Essential Probabilistic Methods for Deep Learning
	A Primer on Probability
	Introduction to Probabilistic Concepts
	Sampling and Hypothesis Testing
	A Primer on Information Theory
	Summary

	3. Descriptive Statistics and Data Analysis
	Measures of Central Tendency
	Measures of Variability
	Measures of Shape
	Visualizing Data
	Correlation
	The Concept of Stationarity
	Regression Analysis and Statistical Inference
	Summary

	4. Linear Algebra and Calculus for Deep Learning
	[Heading to Come]
	Vectors and Matrices
	Introduction to Linear Equations
	Systems of Equations
	Trigonometry
	Limits and Continuity
	Derivatives
	Integrals and the Fundamental Theorem of Calculus
	Optimization
	Summary

	5. Introducing Technical Analysis
	Charting Analysis
	Indicator Analysis
	Moving Averages
	The Relative Strength Index

	Pattern Recognition
	Common Pitfalls of Technical Analysis
	Wanting to Get Rich Quickly
	Forcing the Patterns
	Hindsight Bias, the Dream Smasher
	Assuming That Past Events Have the Same Future Outcome
	Making Things More Complicated Than They Need to Be

	Summary

	6. Introductory Python for Data Science
	Downloading Python
	Basic Operations and Syntax
	Control Flow
	Libraries and Functions
	Exceptions Handling and Errors
	Data Structures in Numpy and Pandas
	Importing Financial Time Series in Python
	Summary

	About the Author

