


“Doloc’s book is a masterfully written and essential handbook for anyone involved
in utilizing data to gain insights into their respective industries. With intellectual
honesty, Doloc separates hype from reality, skillfully and intricately weaving a
framework to harness the advances and recent developments in quantitative and
computational finance. He challenges readers to adopt the best approaches for their
applications, knowing the potential but also the limitations, and wisely problem
solve. The author may have expertly designed this book for the trading community,
but the takeaways are industry agnostic. A must-read for any academic or practitioner
in data science, machine learning, and AI fields.”

—Rob Friesen, president & COO, Bright Trading,
LLC; CEO & Director of Education, StockOdds, Inc.

“Cris Doloc’s book is a great introduction to a fascinating field of Computational
Intelligence and its applications to quantitative finance. Through examples and case
studies covering a wide range of problems arising in quantitative finance from market
making to derivative valuation and portfolio management the author demonstrates
how to apply complex theoretical frameworks to solving practical problems. Using a
sequence of case studies, Doloc shows quantitative researchers and practitioners the
power of emerging Computational Intelligence and machine learning technologies to
build intelligent solutions for quantitative finance.”

—Yuri Burlakov, Ph.D., head of Proprietary Research,
Volant Trading

“Cris Doloc has created a valuable guide to Computational Intelligence and the
application of these technologies to real-world problems. This book establishes a
firm foundation to update the Financial Mathematics program curriculum and prac-
titioners in this domain by presenting a systematic, contemporary development of
data-intensive computation applied to financial market trading and investing. Using a
sequence of case studies, Doloc shows quantitative researchers and practitioners the
power of emerging Computational Intelligence and machine learning technologies
to build intelligent solutions for quantitative finance.”

—Jeff Blaschak, Ph.D., data scientist and co-founder,
Social Media Analytics, Inc.

“Cris Doloc has written a book that is more than just a solid introduction to the current
state of the art in AI for quants; it is a solid introduction in how to think about AI for
quants. In a field that is changing daily, the focus on application of techniques and
critical thinking about the strengths and weaknesses of different approaches rather
than on details of the latest tools makes time spent with this book a good investment
in the future. The case studies in particular help ground the material in the real world
of quantitative finance and provide powerful examples of the informed application of
AI to finance.”

—John Ashley, Ph.D., director of Global Professional Services,
Nvidia



“Doloc’s book masterfully distills the complex world of quantitative trading into a
clear guide that’s an ideal starting point for new, would-be quants. It provides so
many fresh insights into the space that even more seasoned practitioners can learn
from it.”

—James L. Koutoulas, Esq., CEO,
Typhon Capital Management

“Through a series of case studies, Doloc illustrates a number of examples of
real-world problems designed to prepare the reader to work in the contemporary
world of quantitative finance. I recommend this book to students of financial
engineering and quantitative finance, and to all quantitatively oriented participants
in all areas of finance.”

—Ilya Talman, president,
Roy Talman & Associates, Inc.
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Introduction

“Life on earth is filled with many mysteries, but perhaps the most challenging
of these is the nature of Intelligence.”

–Terrence J. Sejnowski, computational neurobiologist

Two decades of participation in the digital transformation of the trading industry
as a system architect, quant, and trader, coupled with the experience of teaching in
the Financial-Mathematics program at the University of Chicago, provided me with
a unique perspective that I will convey to the reader throughout this book. As both a
practitioner and an educator, I wrote this book to assert the fact that the trading indus-
try was, and continues to be, a very fertile ground for the adoption of cutting-edge
technologies.

The central message of this book is that the development of problem-solving skills
is much more important for the career advancement of a quantitative practitioner than
the accretion and mastering of an ever-increasing set of new tools that are flooding
both the technical literature and the higher education curricula. While the majority of
these tools become obsolete soon after their release into the public domain, acquir-
ing an adequate level of problem-solving expertise will endow the learner with a
long-lasting know-how that will transcend ephemeral paradigms and cultural trends.

If the use of an exhaustive tool set is providing the solution architect with hori-
zontal scalability, mastering the expertise of what tools should be used for any given
problem will grant the user with the vertical scalability that is absolutely necessary
for implementing intelligent solutions. While the majority of books about the appli-
cation of machine intelligence to practical problem domains are focused on how to
use tools and techniques, this book is built around six different types of problems
that are relevant for the quantitative trading practitioner. The tools and techniques
used to solve these problem types are described here in the context of the case studies
presented, and not the other way around.
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xxiv INTRODUCTION

MOTIVATION

The impetus to write this book was triggered by the desire to introduce to my students
the most recent scientific and technological developments related to the use of com-
putationally intelligent techniques in quantitative finance. Given the strong interest of
my students in topics related to the use of Machine Learning in finance, I decided to
write a companion textbook for the course that I teach in the Financial-Mathematics
program, titled Case Studies in Computing for Finance.

Soon after I started working on the book, I realized that this project could also bene-
fit a much larger category of readers, the quantitative trading practitioners. An impor-
tant motivation for writing this book was to create awareness about the promises as
well as the formidable challenges that the era of data-driven decision-making and
Machine Learning (ML) are bringing forth, and about how these new developments
may influence the future of the financial industry. The subject of Financial Machine
Learning has attracted a lot of interest recently, specifically because it represents one
of the most challenging problem spaces for the applicability of Machine Learning.

I want to reiterate that the central objective of this book is to promote the primacy
of developing problem-solving skills and to recommend solutions for evading the
traps of keeping up with the relentless wave of new tools that are flooding the mar-
kets. Consequently the main purpose of this book is pedagogical in nature, and it is
specifically aimed at defining an adequate level of engineering and scientific clarity
when it comes to the usage of the term artificial intelligence, especially as it relates
to the financial industry.

The term AI has become the mantra of our time, as this label is used more and
more frequently as an intellectual wildcard by academicians and technologists alike.
The AI label is particularly abused by media pundits, domain analysts, and venture
capitalists. The excessive use of terms like AI disruption or AI revolution is the man-
ifestation of a systemic failure to understand the technical complexity of this topic.
The hype surrounding the so-called artificial intelligence revolution is nothing but
the most noticeable representation of a data point on Gartner’s hype curve of inflated
expectations.

This hype could be explained eventually by a mercantile impulse of using any
opportunity to promote products and services that could benefit from the use of the
AI label. It is rather common that a certain level of misunderstanding surrounds novel
technology concepts when they are leaving the research labs and are crossing into the
public domain. The idea that we are living in an era where the emergence of in sil-
ico intelligence could compete with human intelligence could very well qualify as
“intellectual dishonesty”, as Professor Michael Jordan from Berkeley said on several
occasions. Consequently, one of the main goals of this book is to clarify the termi-
nology and to adjust the expectations of the reader in regard to the use of the term AI
in quantitative finance.

Another very important driver behind this book is my own opinion about the neces-
sity of updating the Financial-Mathematics curriculum on two contemporary topics:
data-driven decision-making (trading and investing) and Computational Intelligence.
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As a result, the first half of this book is dedicated to the introduction of two modern
topics:

• Data-driven trading, as a contemporary trading paradigm and a byproduct of
the fourth scientific paradigm of data-intensive computation.

• Computational Intelligence, as an umbrella of computational methods that
could be successfully applied to the new paradigm of data-driven trading.

The general confusion created by the proliferation of the term AI is at the same
time enthralling and frightening. While mass fascination comes from the failure to
grasp the complexity of applying machine intelligence techniques to practical prob-
lems, the fear of an AI-world taking over humanity is misleading, distracting, and
therefore counterproductive. Whether or not Science will be able any time soon to
understand and properly model the concept of Intelligence, enrolling both computers
and humans into the fight to enhance human life is a major challenge ahead.

While solving the challenge of understanding general intelligence will be
quintessential to the development of Artificial Intelligence it may also represent the
foundation of a new branch of engineering. I will venture to call this new discipline
Quantitative and Computational Engineering (Q&CE). Like many other classic
engineering disciplines that have emerged in the past (e.g. Civil, Electrical, or
Chemical), this new engineering discipline is going to be built on already mature
concepts (i.e. information, data, algorithm, computing, and optimization). Many
people call this new discipline Data Science. No matter the label employed, this new
field will be focused on leveraging large amounts of data to enhance human life, so
its development will require perspectives from a variety of other disciplines: from
quantitative sciences like Mathematics and Statistics to Computational, Business,
and Social sciences. One of the main goals of writing this book is to acknowledge
the advent and to promote the development of this new engineering discipline that
I label Quantitative and Computational Engineering.

The intended purpose of this book is to be a practical guide for both graduate
students and quantitative practitioners alike. If the majority of books and papers
published on the topic of Financial Machine Learning are structured around the
different types and families of tools, I decided to center this book on practical
problems, or Case Studies. I took on the big challenge to bridge the perceived gap
between the academic literature on quantitative finance, which is sometimes seen as
divorced from the practical reality, and the world of practitioners that is sometimes
labeled as being short on scientific rigor. As a result I dedicated the second half of
the book to the presentation of a set of Case Studies that are contemporarily relevant
to the needs of the financial industry and at the same time representative of the
problems that practitioners have to deal with. For this purpose I will consider cat-
egories of problems such as trade execution optimization, price dynamics forecast,
portfolio management, market making, derivatives valuation, risk, and compli-
ance. By reviewing dozens of recently peer-reviewed publications, I selected what
I believed to be the most practical, yet scientifically sound studies that could illustrate
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the current state-of-the-art in Financial Machine Learning. I earnestly hope that
this review of recently published information will be useful and engaging for both
Financial-Mathematics students as well as practitioners in quantitative finance
who have high hopes for the applicability of Machine Learning, or more generally
Computational Intelligence techniques in their fields of endeavor.

Last but not least I hope that other industries and sectors of the digital economy
could use the financial industry’s adoption model to further their business goals in two
main directions: automation and innovation. Therefore, another important motivation
in writing this book was to share with decision-makers from other industries (e.g.
Healthcare and Education) valuable lessons learned by the financial industry during
its digital revolution.

The message that I want to convey in this book is one of confidence in the pos-
sibilities offered by this new era of data-intensive computation. This message is not
grounded on the current hype surrounding the latest technologies, but on a deep anal-
ysis of their effectiveness and also on my two decades of professional experience
as a technologist, quant, and academic. Throughout my career I was driven by the
passion to adopt cutting-edge technologies for as long as they could be useful in
solving real-world problems. I wanted to convey this philosophy to my students as
well as to the readers of this book. This book is an attempt to introduce the reader to
the great potential offered by the new paradigm of Data-Intensive Computing, or to
what is called the fourth paradigm of scientific discovery to a variety of industries.
Throughout this book I am going to promote the concept of Computational Intelli-
gence as an umbrella of new technologies aimed at augmenting human performance
(through automation) and engendering intelligence (via innovation and discovery)
with examples from the emerging field of data-driven trading. The use of computer
systems to analyze and interpret data, coupled with the profound desire to learn from
them and to reason without constant human involvement, is what Computational
Intelligence is all about. As a means to convey the message I chose to introduce
the reader to the realm of Computational Intelligence by presenting a series of Case
Studies that are actionable and relevant in today’s markets, as well as modern in their
data-driven approach.

TARGET AUDIENCE

This book is primarily intended for students and graduate students who contemplate
becoming practitioners in the field of Financial Machine Learning and Compu-
tational Intelligence as well as for more-seasoned trading practitioners who are
interested in the new paradigm of data-driven trading by using machine intelligence
methodologies.

Another possible target audience is represented by technologists and decision-
makers from other sectors of the economy that currently undergo structural digital
transformations and could have a major societal impact, like Education and Health-
care. This very large potential audience could learn extremely useful lessons from the
digital revolution that shaped the financial industry in the last 10 to 15 years and could
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apply similar approaches for the successful early adoption of the newest technology
available.

As mentioned before, the main goal of this book is to promote and advocate for the
use of Computational Intelligence framework in the field of data-driven trading. Since
this is a quite novel and technically advanced topic, I choose to embed this message
into a more readable narrative, one that will not exclude readers who may not be very
fluent in the language of quantitative and computational sciences. By embedding the
main message into a more readable narrative, I hope it will make it more appealing
to nontechnical people.

BOOK STRUCTURE

The first part of the book is dedicated to introducing the two main topics of the book:
Data-Driven Decision-Making and Computational Intelligence. As such:

• Chapter 1 describes the historical evolution of trading paradigms and the impact
that technological progress had on them. A good portion of this chapter is spent
on describing the new paradigm of data-driven trading.

• Chapter 2 introduces the reader to the role that data is playing in trading and
investing, especially in light of the new data-driven paradigm. This chapter will
guide the reader through a fascinating journey from Data to Intelligence.

• Chapter 3 endeavors to de-noise the AI hype by introducing an adequate level
of scientific clarity for the usage of the term Artificial Intelligence, especially
as it relates to the financial industry.

• Chapter 4 introduces the framework of Computational Intelligence, as
a more realistic and practical framework compared to the AI narrative.
Novel approaches to the solvability problem are presented and the Probably
Approximately Correct framework is introduced.

• Chapter 5 exemplifies the use of Computational Intelligence in Quantitative
Finance. It starts with assessing the viability of this methodology in the context
of financial data and it presents a brief introduction to Reinforcement Learning
as one of the most promising methods used in the next chapters on case studies.

The second part of the book introduces the reader to a series of Case Studies that
are representative of the needs of today’s financial industry. All the Case Studies
presented are structured as follows: an introduction to the problem, a brief presenta-
tion on the state-of-the-art in that specific area, a description of the implementation
methodology employed, and a presentation of empirical results and conclusions.

• Chapter 6, Case Study 1: Optimizing trade execution. This chapter gives a short
introduction to the Market Microstructure topic, specifically as it relates to Limit
Order Book dynamics in a high-frequency trading context, and then it describes
a series of methods for optimizing the Market impact problem.
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• Chapter 7, Case Study 2 – Price dynamics forecast. Several practical examples
that use Reinforcement Learning and a variety of Deep Neural Networks are
presented.

• Chapter 8, Case Study 3 – Portfolio management. This chapter compares the
more traditional methods for portfolio construction and optimization with the
more modern approaches like Reinforcement Learning and Deep Learning.

• Chapter 9, Case Study 4 – Market making. Reinforcement Learning and Recur-
rent Neural Network algorithms are applied to the problem of liquidity provi-
sioning and several practical examples are presented.

• Chapter 10, Case Study 5 – Valuation of derivatives. This chapter introduces the
reader to a fascinating new set of applications of ML. Well-established valuation
models like Black-Scholes are becoming outdated by the use of Deep Neural
Networks and Reinforcement Learning.

• Chapter 11, Case Study 6 – Financial risk management. This last chapter dedi-
cated to Case Studies exemplifies understanding and controlling credit, market,
operational, and regulatory risk with the help of ML techniques.

The book concludes with Chapter 12, a summary of the three main goals of this
book, namely to:

• Describe the new paradigm of Data-Driven Trading and the application of Com-
putational Intelligence techniques to implement it.

• Present from both a scientific and an engineering perspective a critical opinion
on the use of the term Artificial Intelligence attempting to de-noise it.

• Draw the blueprint of a new engineering discipline that in my opinion will be
absolutely quintessential to furthering the progress of Computational Intelli-
gence and its applications in Finance and other sectors of the digital economy.



CHAPTER 1

The Evolution of Trading Paradigms

“You never change things by fighting the existing reality. To change something,
build a new model that makes the existing model obsolete.”

– Buckminster Fuller, inventor, system theorist

1.1 INFRASTRUCTURE-RELATED PARADIGMS IN TRADING

Since the beginning of human civilization, commerce has been the main engine of
progress. The Cambridge dictionary defines commerce as “the business of buying
and selling products and services.” The exchange of valuables has been the main
driver of progress in any type of economy throughout history, and it was primar-
ily accomplished through trading. The mechanism of trading is considered to have
been the main instrument that linked different peoples and acted as the main channel
of communication for cultural and intellectual exchange. The primal forms of trade
appeared when prehistoric peoples started exchanging valuables for food, shelter, and
clothing. The concept of exchange for sustenance became a reality in a physical space
known as the marketplace. The concept of a marketplace as an area designated for
the exchange of goods or services became associated with a set of rules to operate
within it. As human civilization progressed and the sophistication of trading practices
advanced, the need for more modern avenues to trade have become prevalent, and
the world of financial instruments was created. Pioneering markets, like the Dojima
Rice Market or the Amsterdam Stock Exchange, were the early promoters of modern
trading, transacting products such as equities, futures contracts, and debt instruments.

The long history of trading (Spicer 2015) as the main vehicle to exchange valuables
and information could be studied by considering the evolution of different trading
paradigms. Since a paradigm is a conceptual representation for looking at, classifying,

1



2 THE EVOLUTION OF TRADING PARADIGMS

and organizing a specific human endeavor, one can look at trading paradigms from
two different perspectives:

• The infrastructure required to establish a marketplace, and

• The methods required to support and generate trading decisions.

Since the dawn of the financial markets, trading was strongly associated with
the technological progress of the time, by heavily employing the most recent break-
throughs. This section is meant to be a very brief history of the love affair between
trading and technology.

1.1.1 Open Outcry Trading

In its earliest manifestation, trading took place in a setting called the open outcry
system. This mechanism of transacting involved the matching of buyers and sellers
through direct, face-to-face verbal communication, where the information exchanged
consisted of bids and offer prices that were shouted out loud, thus the outcry designa-
tion. This primal system of trading developed out of the necessity for market partic-
ipants to see and verbally communicate with one another. The technology-enabling
direct communication had yet to be invented. Within this early paradigm of trad-
ing, the process of price discovery was initiated by an oral auction for a certain
asset. As supply and demand forces interplayed, the debate over the value of the
auctioned asset was settled. The access to this kind of marketplace was limited both
by monopolistic associations and by capital requirements. However, over time the
transactions taking place in the open outcry system became more securitized and the
appetite to engage in speculative trading increased. In order to service the growing
demand, the nascent trading industry had to consolidate into so-called exchanges, and
it started using more and more of the technology available at the time. As the demand
to access these markets increased, new marketplaces and financial products came
into being. The creation of futures and forward contracts enabled extensive hedging
practices for agricultural producers. The introduction of bonds serviced corporate
and government debt and satisfied the desire of investors and speculators to grow
their capital. From the mid-nineteenth century to the late-twentieth century, open
outcry markets commenced trading on a large scale and became the backbone of the
financial industry.

1.1.2 Advances in Communication Technology

As the vast majority of trading operations remained largely contained to the
traditional open outcry marketplaces, the technological progress achieved during
the nineteenth and twentieth centuries generated growth in market participation.
Inventions like the telegraph, the ticker tape, and the telephone established the
foundations for today’s computerized trading systems. The invention of the telegraph
by Samuel Morse in 1832 was quickly adopted by the trading industry. As a
result, financial information was quickly disseminated to areas far away from the
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usual marketplaces. By the mid-1850s, broker-assisted financial transactions of
exchange-based securities became a reality by using the telegraph.

The first stock ticker was implemented by the New York Stock Exchange in 1867.
Edward Callahan invented the stock ticker by adapting the telegraph technology to
transmit up-to-the-minute stock quotes originating at the NYSE nationwide. This new
technology created a new service that facilitated the reception of streaming market
data by remote traders. The invention of the telephone in 1876 augmented the poten-
tial of the telegraph by providing bi-directional means of communication between
market participants. As such, the telephone became a fundamental component for
the infrastructure of the financial industry as it developed into the industry’s standard
for interacting remotely with a marketplace.

The development of the Electronic Numerical Integrator and Computer (ENIAC)
in 1946 marked the beginning of the computer age. This was also a major devel-
opment in the history of the financial markets. The ENIAC was one of the first
digital general-purpose computers that were able to solve a large class of numerical
problems via reprogramming. The financial industry recognized immediately this
event as a technological breakthrough that could be readily adapted to perform
many market-related tasks. By the early 1960s, computer-based market data services
started to replace the traditional ticker-tape quotation services.

The inventions of the telegraph, ticker tape, and telephone all contributed to the
growth of marketplaces and exchanges in both the United States and Europe. When
coupled with the computational power developed by the breakthroughs in information
systems technology, the stage was set for the rapid evolution of computerized trading
systems and electronic trading.

1.1.3 The Digital Revolution in the Financial Markets

With the development of the first computerized stock quote delivery system in the
early 1960s, the financial markets began the transition toward full automation. The
availability of streaming real-time market quotes made possible the democratization
of the financial markets as the dissemination of market information in real-time was
a far more efficient medium than using ticker tapes or the telephone.

Instinet was developed in 1969 as the first fully automated system to trade US
securities, and this was done by leveraging the digital exchange-based streaming
quote technology developed a decade earlier. By using the Instinet trading system,
large institutional investors were able to trade pink sheet securities directly with one
another in a purely electronic over-the-counter (OTC) manner. This event marked
the birth of the electronic trading era and the departure from the ancient practice of
open outcry. Many new competitors jumped into this very hot market where technol-
ogy was the name of the game. All traditional brick-and-mortar exchanges started
automating their trade processing in order to be able to compete in this brave new
world where Electronic Communications Networks (ECNs) gained so much traction.

ECNs are digital networks that facilitate the trading of financial products outside
traditional exchanges (see Figure 1.1). These digital systems disseminate orders orig-
inated by market makers to third parties and allow these orders to be executed against
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FIGURE 1.1 The ECN concept.

either partially or completely. ECNs are generally passive computer-driven networks
that could internally match limit orders by charging a very small transaction fee,
making them extremely competitive in the marketplace.

The year 1971 saw the birth of NASDAQ as a fully automated OTC trading system.
As Instinet did a few years earlier, NASDAQ employed state-of-the-art information
technology systems to create a 100% digital trading infrastructure. This innovative
model was soon followed by NYSE, which in 1976 created the Designated Order
Turnaround (DOT) system, allowing their member firms to connect electronically
direct to the exchange. The SuperDOT system launched in 1984 marked a disruptive
leap in equities trade execution in terms of both speed and volume. Ten years later, the
SuperDOT system was capable of processing trading volumes of one billion shares
per day, with a standard response time from floor to firm of 60 seconds or less.

With all the progress achieved in the digitization of the US equity markets, the
open outcry remained the preferred way of trading in many futures and options mar-
kets until the turn of the twenty-first century. But as Internet connectivity technology
evolved and personal computers became more powerful and affordable, the push
toward market automation took over the last open outcry holdovers. During the last
decade of the twentieth century, the digital revolution of the financial markets went
on full gear driven by both institutional investors as well as individual retail traders.

The diminishing demand for open outcry trading in the United States coupled with
the direct competition from the electronic trading markets in Germany and the United
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Kingdom provided the conditions for a global move toward the full automation of
financial markets. Leading global exchanges like the Chicago Mercantile Exchange
launched web-based trading applications (the Globex platform) that enabled clients
to trade exclusively using online trading platforms. Just during the last decade of
the twentieth century, one billion futures contracts have been traded electronically
on the CME Globex platform. This electronic trading paradigm increased the overall
efficiency of the marketplace in ways that were not foreseeable just a few decades
before. As a result, greater liquidity, narrower bid-ask spreads, lower commissions
and fees, and especially the ease to access the markets represented the main gains
that the new trading paradigm made possible.

At the same time the critics of the new electronic trading paradigm claimed that
the advent of electronic markets enhanced market volatility, facilitated operational
fragility due to technology failure, induced a lack of transparency, and created the
conditions for market manipulation. Nevertheless it is undeniable that with the advent
of the Internet and the personal computer era, the financial markets have become a
very dynamic environment where change was the only constant. The pace of change
has accelerated so much that all market participants need to stay abreast of the lat-
est technological developments in order to survive in the marketplace. Being at the
leading edge of the technology game has become a survival instinct.

1.1.4 The High-Frequency Trading Paradigm

The High-Frequency Trading (HFT) paradigm emerged as the result of the very swift
technological progress coming from areas such as communication infrastructure
and hardware accelerators. It started at the turn of the twenty-first century with the
advent of the 10-gigabit ethernet and the PCI Express cards, and it continued later
with the availability of ultra-fast fiber-optic lines, wireless towers, and transatlantic
submarine cables linking the biggest US financial centers to London, Tokyo, or
Hong Kong.

The so-called race-to-zero had as an ultimate goal the almost instantaneous
end-to-end transmission of market data with the goal of preserving or even enhanc-
ing a trader’s edge. Expensive collocations facilities enabled trading firms to locate
their order processing hardware in very close proximity of financial exchanges.
The communication infrastructure had to be paired to extremely fast hardware
accelerators that could consume huge amounts of market data in time intervals
compatible with the speed of light. Hardware appliances such as Field Programmable
Gate Arrays (FPGAs) have been developed to obtain sub-micro-second end-to-end
market data processing. HFT became not just a technology consumer but also a
major contributing factor to the rapid development of fiber and wireless technology,
networking switching appliances, and the importance of developing specialized
coding skills.

But the rise of HFT has also created some serious side effects. Because the vast
majority of financial transactions are executed by machines in an automated and
lightning-fast fashion, a huge barrier of entry was erected for a large majority of mar-
ket participants, making HFT a very expensive and sometimes unaffordable game.
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Some opponents of this trading paradigm believe that HFT preyed on investors and
caused flash crashes. These critics claim that HFT created the conditions that tra-
ditional market participants are very likely to be transacting against very powerful
algorithms with very little chance to profit. Even for the tech-savvy trading firms
this high-speed game is converging very rapidly to the law of diminishing returns.
Small- to medium-sized trading firms are struggling to profit from investing in the
newest technology that will allow an incremental gain in speed. This effect is com-
pounded across the markets by reduced volumes and market volatility. If the 2009
HFT revenues were in the $7 billion to $8 billion range, in 2017 they were below the
$1 billion mark.

The combination of exploding operational costs and low volatility has created
the conditions for the onset of a new trading paradigm. As visionary traders quickly
adopted novel technology several decades ago to conquer the electronic trading land-
scape, today’s traders are in the process of enlisting not just the latest technology,
but also the power of Data Science and Computational Intelligence to drive trading
decisions that rely more on the power of data than on very expensive technology.

1.1.5 Blockchain and the Decentralization of Markets

Technology and modern financial markets have a good track record of double-
feedback: great technology has fueled the progress of financial markets through
the creation of new products and even the advent of new trading paradigms; and
conversely, the quick progress achieved in the financial markets has enabled and
accelerated the development of advanced technologies that have been in turn applied
to domains and industries well beyond the financial sector. The so-called blockchain
revolution is nevertheless a quite unique development in the sense that it changes in
a fundamental way the archetype of financial transactions. Some consider the advent
of blockchain similar in magnitude and impact to the introduction of the Internet
many decades ago. Although the effects will be undeniably long-reaching, it is quite
difficult to see all its potential yet. The blockchain technology is undoubtedly an
ingenious invention, which has grown to become one of the biggest digital transfor-
mations to date. Financial firms and banks have already invested large amounts of
resources into this new technology with the goal to maintain or differentiate their
competitive edge.

Through a transparent digital ledger of transactions and records that are immune
to any tampering (change or deletion), the notion of ownership, transfer of value,
and payment has gained profoundly new meanings. Through its decentralized
environment, the blockchain technology offers increased security, lowers costs, time
efficiency, and error resistance, and therefore promises a great impact on a variety of
industries. Blockchain’s security and transparency promise to protect businesses and
investors alike, and it represents the enabling force to removing the middle layers,
administration, and reconciliation steps currently hampering the global markets.
Modern-day markets need to be built with the interests of all participants at their
core. The goal is for trading to become a more seamless experience and for the
individual investor to regain trust in the markets. Through decentralization and the
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use of cryptocurrency, blockchain can provide a safer and more transparent network
for trading from both parties.

Currently all financial transactions have to go through a complex chain of clear-
ing houses, banks, and exchanges. This process may take days to verify the own-
ership of the securities being transacted. The process of trading is quite complex
and is involving settlement risk for both parties. There is an inherent lack of trust
between parties, and it is by eliminating this type of uncertainty that blockchain can
add value. Blockchain provides security and invokes trust mechanisms. By provid-
ing heightened visibility it will change how we carry out trade settlements and how
we manage counterparty risk. Over $2 trillion is transacted via trading every single
day. As the transactions associated with this volume of trading involve the physical
exchange of many documents, the large-scale implementation of blockchain could
completely revolutionize the whole financial industry. Both post-trade costs as well
as settlement times could decrease in a quite dramatic manner. Although there is a lot
of optimism already invested in the blockchain revolution, the technology is still in
its infancy. There are a great number of moral, practical, and technical questions that
need to be answered about the organization and the functioning of this new breed of
markets, as well as the legal framework to be considered.

1.2 DECISION-MAKING PARADIGMS IN TRADING

As in practically any business endeavor, decision-making is a central aspect of
trading and investing. But because the financial markets operate in a fast-changing
and extremely competitive environment, the process of making decisions accrues
an ever-increased importance. What is markedly different in trading compared to
other industries is that the decision to be taken (buy, sell, or hold) is generated by
a complex optimization process between a series of trade-offs in order to achieve
a given objective. The choices are simply not binary and they are usually more
complex than just being right or wrong. Choosing one trade-off over another is the
result of an optimization process that is supported by a series of different paradigms.

The process of decision-making generally involves navigating the problem space
instinctually or on autopilot, and by doing so, more often than not, one fails to con-
sider all potential implications and unintended consequences. What behavioral psy-
chology research has shown is that it is vital to recognize that every time one makes a
decision, one also makes a trade-off. But with the advent of modern technology, espe-
cially as it pertains to the era of Big Data, the dynamics of certain trade-offs could be
dramatically altered. By better understanding the parameters of the problem space,
one could potentially make better decisions. Since change is the only constant in
today’s business landscape, the decision-making process needs to be data dependent.

What makes today’s decision-making process much more amenable to opti-
mization is the availability of an extremely wide range of technology choices, the
availability of various types of data at scale, as well as recent advances in under-
standing the psychology of the behavioral process involved in decision-making.
Behavioral Finance is a well-established field of research, and it studies the
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psychology of irrationality in human decision-making in the area of financial
markets. Experimental psychologists have already built a substantial body of
knowledge demonstrating biases and shortcomings in expert decision-making in
general, and their applications to the financial markets are already available.

From a decision-making perspective, the history of the financial markets could be
classified into several periods:

• Discretionary trading

• Systematic trading

• Algorithmic trading

• Data-driven trading

These periods correspond to the adoption of different scientific and engineering
paradigms: from largely ignoring systemic experimental evidence by relying on
our own biases or a set of empirical rules (in discretionary trading), to the use of
rule-based systems (as in systematic trading), and from the use of computationally
implemented algorithms (as in algo-trading), to the more recent paradigm of
data-driven trading – a parallel to a fourth paradigm introduced by computer scientist
Dr. Jim Grey (Hey, Tansley, and Tolle 2009).

1.2.1 Discretionary Trading

Discretionary trading is commonly defined as a paradigm of trading based on a set of
empirical rules that traders tend to follow throughout their trading career. These rules
could be modified or replaced based on a trader’s experience, performance, and their
survivability. Some discretionary traders follow these rules rigorously while others
tend to experiment until the time they feel they have cracked the code and continue to
make required modifications in their strategy. A discretionary trader makes decisions
based on a large variety of signals: from pure gut-feeling to news-driven signals or
the study of market charts. The trader makes all decisions in discretionary trading
(i.e. when to enter or exit positions). In discretionary trading, maximum risk origi-
nates from decisions taken under the influence of uncontrolled emotions by the trader.
In most cases, these emotions can lead to decisions (trades) which cannot be logically
defended. Hence in order to make a profit, it becomes extremely important not to just
have a profitable strategy, but also have a check on one’s emotions.

1.2.2 Systematic Trading

Systematic trading is a trading paradigm that defines specific trade goals and the
associated set of rules and the ways and means to control the risk associated. This
trading style is also known as mechanical trading because all investment and trading
decisions are made in a methodical fashion (Carver 2015).

Systematic trading covers both manual trading and fully or partially auto-
mated trading. This style of trading relies mostly on technical rules but also on
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using fundamental analysis. Systematic trading is pretty much the antithesis of
discretionary trading that could be influenced by emotions, could not be easily back
tested, and where the control of risk is less rigorous. Systematic trading represents a
large umbrella of methods that cover also the field of quantitative trading.

An example of a systematic trading approach will be the replication of an equity
index using futures and stocks. Starting with the creation of a replication basket
and analyzing the correlations between different components, the systematic trading
strategy will be first back-tested on historical data, and then a profit and loss (P&L)
analysis will be generated to include transaction costs, rollovers, stop-loss orders, and
all other wanted risk controls. After the historical back-test was performed and the
P&L report was analyzed, the strategy will be used live for signal generation while
trying to optimize the P&L and controlling continuously the risks.

In general any systematic trading strategy should include components for:

• Data management – for both real-time and historical data.
• Signal generation – create buy and sell signals according to predefined

strategies.
• Portfolio and P&L tracking.
• Risk management – defining portfolio exposure.
• Execution and routing of the orders.

A key component of any systematic trading system is the back-testing module
that is used to verify the fitness of different strategies before being traded live.
A prerequisite is to have easy and robust access to historical trading data. A very
good review for all these techniques could be found in de Prado’s recently published
book (de Prado 2018). Any systematic trading strategy should take seriously the
importance of risk management by using a methodical approach to quantify the
trading risk and the quantity limits and to define how to close excessively risky
positions. This approach lends itself very well to controlling the risk because it
allows portfolio managers to define profit targets, allowable losses, and trade size
objectively and in advance of entering any trade.

1.2.3 Algorithmic Trading

Algorithmic trading (algo-trading) is one of the progenies of the third industrial rev-
olution and of the new era of digital computers. Also known as automated trading or
black-box trading, algo-trading is the process of using a proprietary set of instruc-
tions (an algorithm) implemented on a digital computer in order to generate a prof-
itable trade at a speed and frequency that is beyond the ability of a human trader
(Aldridge 2010).

The algorithmic trading rules are based on timing, price, quantity, or any mathe-
matical model. Aside from creating profit opportunities for traders, algo-trading con-
tributes to the generation of impressive amounts of liquidity in the financial markets
and makes trading more systematic by ruling out the impact of human emotions on
trading activities.
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Among the wide variety of trading strategies employed by algorithmic traders the
most common ones are:

• Trend following
• Arbitrage trading
• Mathematical-based models (e.g. delta-neutral)
• Mean-reversion or range trading
• Volume-weighted and time-weighted average price trading
• Implementation shortfall

The main benefits of algorithmic trading are:

• Execution of transactions is done at the best possible prices
• Instant and accurate trade order placement
• Reduced transaction costs and risk of manual errors in placing orders
• The possibility to back-test strategies on historical and real-time data
• Reduced impact of human errors based on emotional and psychological factors

Algorithmic trading is used nowadays in a variety of forms by the trading and
investment community. The main categories are:

• Mid- to long-term investors like buy-side firms – pension funds, mutual
funds, insurance companies – are using algo-trading to purchase securities
in large quantities in such a way that prices are not influenced by large-volume
purchases.

• Short-term traders and sell-side participants like market makers, speculators,
hedgers, and arbitrageurs. They could also benefit from automated trade
execution.

• Systematic traders like trend followers, hedge funds, or pair traders find
algo-trading to be much more efficient to implement their trading rules and let
the program trade automatically.

Algorithmic trading is also exhibiting some drawbacks, specifically as it relates to
how quickly an algorithmic error could escalate into a systemic problem for most of
the market participants. Since a single algorithm can trigger a very large amount of
transactions in a very short amount of time, when for some reason something goes
wrong, considerable amounts of money could be lost in that same time frame. There
have been multiple incidents of flash crashes on global markets resulting from prob-
lems with algorithmic trading.

One example is the so-called Flash Crash of 2010, which led US stock indexes
to collapse for a short period of time after recovering. Algorithmic trading has also
been linked to significant market volatility. While quality control measures could
help prevent losses due to poorly defined or coded algorithms, market participants
are keenly aware of the dangers of fully automating the trading workflow.
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1.3 THE NEW PARADIGM OF DATA-DRIVEN TRADING

The globalization of asset trading, coupled with the emergence of ultrafast commu-
nications and high-performance computing technology, has made it impossible for
humans to efficiently compete with algorithms in the low-level decision-making pro-
cess. Nowadays most of the micro-level trading decisions in the listed markets are
made by algorithms that define how to execute a trade (at what price and quantity)
and where to route the order. Given the very complex nature of the modern financial
markets, trading algorithms have to operate on multiple levels of granularity. The
decision-making process is generally driven by market data and quantitative models.
Up until very recently the trading algorithms were a mixture of quantitative mod-
els expressing a scientific view of the world, and heuristic rules which expressed the
very practical experience and preferences of human traders. The logic of a traditional
trading algorithm is generally encapsulated in tens of thousands lines of code. These
human-coded algorithms have to be continuously maintained, tweaked, or improved
to handle the ever-changing nature of the markets. The financial industry is also
heavily regulated by placing some very specific requirements on the participants.
Achieving the desired efficiency in trading while conforming to all the regulatory
constraints is becoming a huge challenge for most of the trading firms. The possibil-
ity of using a data-centric approach to this problem presents itself as a very attractive
opportunity to the financial industry.

As computing technologies are developing at an exponential rate and data gen-
eration is completely transforming our society, the financial industry is sensing the
powerful impact that data could have in its own future. And this impact seems to be
more of a splash than a ripple. Historically, the financial industry has relied on very
accurate and timely inputs into its decision-making models. Traditionally, numbers
were crunched by humans and decisions were made based on inferences drawn from
these computations and models. Nowadays, computers are operating in this environ-
ment by using inputs from a multitude of sources and performing computations at a
massive scale in order to generate more accurate outcomes almost instantaneously.

The history of trading is intertwined with the history of human civilization. No
matter what paradigm was driving the trading style of a certain epoch, the success in
trading was always dependent on three attributes that transcend time:

• Good knowledge of the market – what to trade

• Acute sense of timing – when to trade

• Ability to adjust quickly to the most current market conditions

If the first attribute – market knowledge – could be acquired through education
and experience, the second one – market timing – is more of an aptitude that is char-
acteristic to successful traders and therefore has an important survivorship bias. The
third attribute, the ability to rapidly adapt to changing market conditions, is what one
calls nowadays data-driven trading.

As a relatively new field of research and as a new paradigm, data-driven trad-
ing draws inspiration from a vast repository of trading knowledge as well as from
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FIGURE 1.2 The data-driven trading concept.

the multidisciplinary field of Data Science (see Figure 1.2). The wisdom of markets
claims that past performance is not indicative of future performance – or in other
words, one should not care much about past performance, but instead try to forecast
how well a strategy is going to perform in the future. On the other hand, Data Sci-
ence teaches that historical data is the only vehicle that one could utilize to train the
learning models on. Equally important is the fact that not all aspects of past data are
likely to occur in the future.

Adapting to current market conditions is not a new endeavor. What is really new
is the ability of market participants to tap into a huge data pool, be it pure market data
(historical or real-time), or what one calls alternative data. The world of alternative
data is developing at a very rapid pace, and it is becoming a very fashionable tool for
investment management firms that are seeking alpha. From geolocation information
to credit card transactions, from social media content to product reviews and customer
feedback, the market for alternative data is growing very fast and is expanding the
realm of traditional market data sources.

But the availability of large amounts of data to assist in the decision-making pro-
cess is not enough. A complex algorithmic infrastructure is also required to extract
actionable information from this data. The advent of Computational Intelligence tech-
niques to perform this knowledge extraction was a major step forward in the devel-
opment of data-driven trading.

Nevertheless, there are still major hurdles that need to be addressed:

• Given the very nature of financial markets, which are fundamentally nonlinear
and nonstationary processes, the learning process from past data needs to be
coupled with other exogenous techniques that could signal major departures
from stable conditions, and the need to retrain the learning algorithms on more
relevant data sets.

• Sometimes the algorithms that properly model a current market situation could
not be coded, either because their algorithmic complexity is too high or because
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they are not encode-able using current hard computing techniques. This subject
will be addressed in Chapter 4 when we will introduce the concepts of Compu-
tational Intelligence and soft computing.

Having foresight of market directionality is every investor’s dream, and this is
driving financial investment firms to mine for data in the digital information economy
(rather than for gold). Traders and investors have traditionally based their decisions
on fundamentals, intuition, and analysis drawn from traditional financial data sources.
In the new data-driven paradigm, High Performance Computing and Computational
Intelligence tools offer a more robust framework to generate data-driven profits.

Computational Intelligence techniques differ fundamentally from the ubiquitous
factor-driven style used by traditional quantitative methods that account nowadays
for about $1.5 trillion in total assets under management (AUM). These factor-driven
approaches model the markets through a simplified, linearly constrained lens.
Computational Intelligence, on the other hand, could integrate a multidimensional
set of perspectives into each investment decision through an ensemble of different
models by synthesizing the most pertinent information to guide decision-making.
Compared to a stylized and simplistic traditional quantitative approach, Com-
putational Intelligence has more in common with a human-driven approach by
combining the most appropriate aspects of data-driven modeling techniques with
guiding human-like rationales.

Traders and investors value information above everything else. The difference
between success and failure depends heavily on what information they may have
available to reach the proper decisions: from what they see on their screens to how to
search through the right information at the right time in order to make the right trade
in a fast-paced financial market. Relying only on traditional sources of financial data
is no longer sufficient to ensure success in the markets.

Using alternative data in their decision-making processes is becoming increasingly
common for traders and investors alike. The use of alternative data offers market par-
ticipants a firsthand glance into the markets beyond the traditional lenses, highlighting
new information and dynamics to complement their existing knowledge. Even more
so, the access to real-time information from alternative data sources gives traders a
competitive advantage to quickly harness new insights, assess situations, and make
critical business decisions as events unfold. One of the shortcomings of this universe
of alternative data sets is represented by its expanse and the speed at which it is bom-
barding the users with hundreds of data streams at once.

The primary source of alternative data is represented by the social media. A single
tweet from a prominent figure could roil the markets. Other sources of publicly avail-
able alternative data are blogs, satellite information, or even retail sites that could
provide a wealth of contextual information. But because the range of alternative
data sources is incredibly broad, the intrinsic value of each source is highly depen-
dent on context. Most of the time, combining multiple data points from a variety of
sources could provide traders and investors with significant insights to sharpen their
competitive edge. The use of alternative data provides traders and investors with a
more complete picture of the market. The more traditional pricing data sets and press
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releases lack critical, real-time context. By incorporating time-sensitive information
into their execution workflows, market participants could expand and deepen their
views of market events. There are situations in which alternative data could explain
recent market movements in or could even forecast a market move. By the time infor-
mation is widely publicized it is usually too late to profit from that information.

Despite the growing adoption by traders and investors alike, the data-driven
approach is still in its infancy. Major challenges remain to be addressed by both
individual users and the financial firms that are looking to incorporate this new
paradigm into their existing processes. The users of this new trading paradigm need
to learn how to derive actionable insights from all data available and ultimately
how to drive better trading decisions. With an enormous amount of data currently
available, it’s becoming increasingly difficult and expensive for trading firms, and
especially for individual market participants, to capture it, let alone to make use of it.

The biggest challenge is to summarize information that by its very nature is com-
plex and unstructured. This is where the latest developments in Computational Intel-
ligence and specifically in Machine Learning come into play. The new data-driven
trading paradigm is going to be a big consumer of Computational Intelligence and
Machine Learning techniques. By applying these algorithmic methods to the newly
expanded financial and alternative data sets, the data-driven paradigm is looking to
discover consistently predictive features and potentially useful patterns about the
markets beyond what is currently available from traditional financial data sources.
This new data-driven trading paradigm will create the conditions for both traders and
investors to trade more accurately and informedly.
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CHAPTER 2

The Role of Data in Trading
and Investing

“The secret to being successful from a trading perspective is to have an inde-
fatigable, an undying and unquenchable thirst for information and knowledge.”

– Paul Tudor Jones, famous investor, hedge fund manager

2.1 THE DATA-DRIVEN DECISION-MAKING PARADIGM

Due to an extraordinary wave of technological innovation our civilization has
reached a critical phase in its evolution. Because our ability to collect and analyze
massive amounts of data, conditions have been created for the development and
implementation of a new paradigm to assist the decision-making process: data-driven
decision-making.

This process is driven by several factors:

• VALUE: Due to the high costs associated with the process of collecting, cleans-
ing, and hosting data, as well as the potential future business value, organiza-
tions are considering their data as a strategic asset.

• CULTURE: Global competition forces corporations to adhere to the new data
culture, where high-quality data, broad access, and data literacy are the baseline
requirements.

• RELIABILITY: Ultimately, the decision-making process needs to become
more transparent, reproducible, and the desired business outcomes need to be
more forecast-able. Data as the single source of truth is becoming a central
theme of this new paradigm.

15
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FIGURE 2.1 The data-driven process.

Having access to what one calls a single source of truth will lend higher value to
the end user of any service or product, as it does for the decision-makers. Efficiency
will be enhanced by spending less time in gathering data from across fragmented
data stores, yet allocating more time to data analysis and the extraction of actionable
knowledge. By providing a richer context about the problem domain, the users will
be better positioned to leverage their access to data and find actionable insights.

Traditionally the decision-making process was driven by individuals who could
override signals coming from data at any point in time. The so-called HiPPO, or
the highest paid person’s opinion, a term introduced by Avinash Kaushik (n.d.), are
usually the experts with decades of experience in the problem domain. They may not
see data as a relevant part of the decision-making process, especially when this data
disagrees with their preconceived notions.

Data-driven decision making is going to require a cultural change in business
practice since it will mandate migrating from the current prevailing culture, where
intuition is valued more than evidence-based metrics, to a place where data is going
to represent the main source of truth. The new data-oriented culture will promote
data as the main vehicle for objective examination and experimentation. Nevertheless,
changing the corporate culture from intuition to evidence-based metrics will require
a broad data literacy training of the workforce, from engineers and data scientists to
data-trusting managers and decision-makers.

An absolutely necessary intermediary step in creating this culture change is to
become data-informed. This translates into blending intuition and data to come up
with testable hypotheses about a business decision to be made. The qualitative aspects
will complement the quantitative ones, and vice versa.

In conclusion:

• Data is at the center of the data-driven decision-making paradigm (see
Figure 2.1). It is the primary – and sometimes the only – input required. This
paradigm relies on data alone to decide the best path forward.

• In data-informed decision-making, data is a key input among many other vari-
ables. One uses the data to build a deeper understanding of the value one pro-
vides to decision-makers.
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2.2 THE DATA ECONOMY IS FUELING THE FUTURE

The explosion of technological innovation has created a deluge of new sources of
data. The most conspicuous manifestation of this development is reflected in both the
immense volume of data produced by the digital economy and the enhanced ability
to process it.

Data is quickly becoming the fuel of the new digital economy and the algorithms
are the engines to burn this fuel (Ng 2017). What is truly remarkable is that the data
is not merely an output of the fourth industrial revolution, but it is quickly becoming
its own fuel. Data has become an asset that could be traded. Implementing a novel
methodology to evaluate the commercial value of different types of data is complex
and could have far-reaching implications.

Data is representing for the current industrial revolution what oil and steam were
for the first one: a driver of growth and change. But data, as the main by-product of
the Digital Information age is unlike any of previous resources: it can be extracted,
refined, valued, and exchanged in a variety of ways. This ever-changing process
adjusts continuously the rules that markets are operating on, and it demands new
approaches from the market participants. Today’s cloud computing infrastructure is
becoming the new refinery of the twenty-first century, where data gets collected,
refined, and monetized. In 2016, Amazon, Google, and Microsoft spent together more
than $35 billion in capital expenditure and capital leases to build this new type of
refinery according to the Wall Street Journal.

The new data economy thrives on analyzing real-time streams of generally
unstructured data: either petabytes of information generated by social media users
or the flood of data collected from hundreds of sensors in a jet engine. From heavy
equipment to consumer accessories, all sorts of devices are becoming sources of
data. Because the world is filled with connected sensors, most of the activity will
leave a digital trail wherever and whenever it happens. Some of the players in
this new space are becoming data producers, and they are usually companies that
control the data flow; some other ones are becoming aggregators and custodians
of this data. On the next layer of the data stack there are new entrants that provide
the technology platforms; this service layer is supplemented by insight providers
and data presenters, as they leverage their access to data by interfacing with
the end consumer and by creating valuable user experiences. And finally there
are prospective players who cannot immediately participate in the data economy
but who are actively looking for opportunities to play a critical role in the very
near future.

As the new data economy grows, rapid changes in both technological advance-
ments and customer expectations will transform the supply chains into very complex
ecosystems. Corporate strategies will evolve, and collaboration across ecosystems
will create novel open flows of ideas and information. Companies will define their
role in this new data economy by evaluating their potential to engage in these ecosys-
tems. As innovation is becoming more and more driven by data, there is a renewed
hope that a number of societal challenges could be addressed by this new paradigm:
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from tackling traffic congestion and improving water and air quality, to developing
novel medical diagnostics, or just to make businesses more productive.

2.2.1 The Value of Data – Data as an Asset

The participants in the first three industrial revolutions had to manage tangible assets
such as property, equipment, inventory, or cash – and eventually intellectual property.
But in today’s digital world, a new type of asset is emerging: the data. Companies are
collecting, analyzing, and reporting very large volumes of data. Data is becoming a
key metric in whether a company will remain competitive in the digital era. Collecting
and analyzing data is increasingly becoming easier and cheaper. More and more data
is being exchanged within and among the participants in the new digital economy.
This has generated a new economy built upon using data to generate value through
both internal and external means. A recent report from the Organization for Economic
Cooperation and Development (OECD 2015) estimated that the global volume of data
in 2015 was of about 8 zettabytes (8 trillion gigabytes, or 8 followed by 21 zeros), an
order of magnitude increase from 2010. The forecast for 2020 points to an increase
of up to 40 times over, as new technologies will create vast new data sets.

However, the massive volume of available data is not the only indicator of eco-
nomic value. As most of the data is unstructured (e.g. text, social media content,
pictures and videos, or the exhaust data generated as a by-product of business), its
value is very hard to assess. As long as such data is inaccessible for analysis, its poten-
tial value will remain unrealized. But the advent of recent advances in data processing
(cloud storage and computing) and algorithms will enable new economic actors to
unlock new insights from their data assets (e.g. trends, patterns, or associations).

The potential to turn data into useful business insights is the major factor in creat-
ing economic value. These insights could be used by decision-makers to optimize the
resource allocation of and tackle new business opportunities. Research (Brynjolfsson
et al. 2011) has shown that firms adopting data-driven decision-making can have a
much higher output and productivity. Data also plays an essential role in the devel-
opment of automating Machine Intelligence. These cutting-edge R&D domains hold
a significant potential for economic growth, with prognosis suggesting that by 2030,
they could increase the world GDP by a factor of 10%. The value of data is constantly
increasing at this stage of the fourth industrial revolution. Although companies like
Facebook and Google initially used the data they collected from users mainly to target
better advertising, more recently they discovered that the same data can be turned into
any number of cognitive services, some of which will generate new sources of revenue
(The Economist 2017). These services could include translation, visual recognition, or
profiling someone’s personality by analyzing their purchasing behavior, all of which
can be sold to marketers.

The twenty-first-century data refiners are ready to exploit a powerful economic
engine called the data-network effect. This is the process of using data to attract
more users, who then could generate more data, which in turn could help to improve
services that will attract more users, and so on. The tech giants are pumping this
data from the most bountiful sources. The more users write comments, or otherwise
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engage via social media channels, the more the system learns about those users and the
better targeted the ads on newsfeeds could become. Data-driven startups are the trail-
blazers of the new data economy. In their quest for the digital oil, they will extract
value and turn insights into clever new services. These digital wells are becoming
attraction points for tech giants. As such, GE developed an operating system for the
industrial Internet, named Predix, to help customers control their heavy machinery.
But Predix is also a data-collection system: it pumps data from devices it is connected
to, fuses it with other data, and then trains the algorithms that can help improve the
operations or help maintain a jet engine before it breaks down.

But there is one aspect of the data economy that would look very atypical to
dealers in the oil market: if oil is the world’s most traded commodity by value,
then data by contrast, is more difficult to be traded or monetized, at least in the
current environment. The data economy may infer the existence of thriving digital
markets (The Economist 2017); but as it stands, it is currently mostly a collection
of independent silos. This absence of global markets for data is the result of the
same factors that have contributed to the creation of the data firms. All kinds of
transaction costs (e.g. information search, deal negotiation, and contract enforcing)
make it simpler and more efficient to bring these activities in-house. It is often more
profitable to generate and use data inside a company than to buy and sell it on an
open market.

Even in the era of Big Data, data streams are not yet a commodity: each stream
of information is different in terms of timeliness and completeness. This lack of
fungibility makes it difficult for buyers to find a specific set of data and to put a price
on it; the valuation process is poorly understood. As such there is a profound lack
of incentive to trade, as each side will worry about mispricing. As some researchers
have begun to develop data pricing methodologies, a new field called infonomics has
emerged. One of its pioneers is Professor Jim Short (2017) of the University of Cali-
fornia in San Diego. The pricing difficulty is an important reason why one firm might
find it simpler to acquire another, even if it is mainly interested in its data. In 2015,
IBM reportedly spent $2 billion on the Weather Company, just to get its hands on
mountains of weather data as well as the infrastructure to collect them. Another field
of interest is barter deals: parts of Britain’s National Health Service and DeepMind,
Alphabet’s AI division, have agreed to swap access to anonymous patient data for
medical insights extracted from them.

As an added complication in the process of valuation, and unlike oil as a com-
modity, the digital information can be copied and used by more than one customer
(or algorithm) at a time. This means that data can be eventually used for other pur-
poses than those agreed in a contract. And at the end of day, who will own the data?
Is it the manufacturer, the user, or the service provider? According to Hal Varian
(2006), Google’s chief economist, data exhibits decreasing returns to scale, that is,
each additional piece of data is somewhat less valuable and at some point collecting
more does not add anything. Google’s belief is that value is retrieved solely in the
quality of the algorithms that process the data and implicitly in the technical talent
of the firm that has developed the data. Google’s success is about recipes and not
ingredients.
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2.3 DEFINING DATA AND ITS UTILITY

“Torture the data, and it will confess to anything.”

– Ronald Coase, Nobel prize in Economics

Since data is at the core of this chapter, we need to define it. The term data is
one of the most overused terms in today’s culture. What is really the meaning of
data? According to some experts, data is a set of “unorganized and unprocessed
facts, raw numbers, figures, images, words and sounds derived from observations
or measurements.” Wikipedia (2019) defines data as “the values of subjects with
respect to qualitative and quantitative variables.” Very often, yet incorrectly, data
and information are used interchangeably. From an information theory perspective,
data is a precursor to information as characterized by its Shannon entropy measure:
The information entropy is the average rate at which information is produced by
a stochastic source of data. The word data has been present in the English language
since 1640, and it started to shine in the 1940s at the dawn of the computer era. The
origin of the word data could be found in the Latin language, where data is the plural of
datum, which means a given thing. In today’s English language, data is treated
as an undifferentiated collection (like “sand” or “rain”) and it is generally used in
the singular.

Data is a very general concept, and it is used to encode or represent information
and knowledge into formats that are suitable for processing. As a vague set of things
(facts, figures, etc.) data is generally obtained through measurements, and after it is
collected, it gets analyzed and eventually reported through visualization tools: graphs,
images, and other statistical and summarization tools. Before being processed, data
is considered to be raw data. The data cleaning process is often ambiguous and gen-
erally domain specific: outliers are removed and instrumentation errors get corrected.
Depending on the context in which data was collected (e.g. in an observational study
or as a result of a controlled experiment), causality could be inferred or not from
the data.

Data could come in different types, but the two main flavors are:

• Quantitative describes objects whose properties could be measured or valued
objectively (e.g. geometrical dimensions, areas, volumes, prices, or physical
properties such as temperature or pressure). This type of data could be con-
tinuous or discrete.

• Qualitative describes characteristics of objects that are difficult to measure,
but that can be observed in a subjective manner (e.g. smells, tastes, textures, or
attractiveness).

Another method of classifying data refers to the degree of complexity by which it
is organized and structured, and it relates to the ease of searching through it.

There are two main categories (see Figure 2.2):

• Structured is represented by repeatable patterns that make data easily search-
able by computer algorithms (e.g.. spreadsheets, databases).
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Structured data Unstructured data

FIGURE 2.2 Structured vs. unstructured data.

• Unstructured is represented in a much more complex fashion that is similar in
nature to the human language; the searching process becomes extremely chal-
lenging, sometimes unfeasible.

By blending these criteria together data could be classified in one of the following
four different categories (see Figure 2.3):

1. Numerical data is of a quantitative flavor, and it could be either discrete or
continuous.
⚬ Continuous data represents measurable properties of objects, where their

possible values cannot be counted, but they can only be described using real
number intervals.

⚬ Discrete data represents items that can be counted, and they could take on
possible values that can be listed in a discrete manner. The list of possible
values may be finite or infinite. When data is represented in a numeric
format, it is usually used for a quantitative representation of the object
studied.

DATA

Numerical
Categorical

NormalDiscreteContinuous Ordinal

Visual

Textual

FIGURE 2.3 Types of data.
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With numerical data one could represent:
⚬ Distributions on different scales (e.g. linear, log-linear, or curve-linear)
⚬ Graphics (e.g. histograms, kernel densities, fitted distributions)
⚬ Regression and apply methods (e.g. regularization, ridge, lasso, or boosting).

Since numerical data could be very sensitive to variance, a feature that
could come from either the measurement process or the generative process,
it is very important to ensure that one uses the proper scaling in order to
extract the optimal amount of information from the data.

2. Categorical data is a form of data describing categorical variables or data that
has been converted into that form, like binned data.

Categorical data could be derived from observations made of qualitative
data that are summarized as counts or cross-tabulations, or from observations
of quantitative data grouped within given intervals. Purely categorical data
could be summarized in the form of a contingency table. Generally, in the data
analytics parlance one uses the term categorical data to any data sets that, while
containing some categorical variables, may also contain non-categorical vari-
ables. A categorical variable that can take on just two values is termed a binary
variable or dichotomous variable. Some categorical variables could take on
more than two possible values and they are called polytomous variables. Cat-
egorical variables are generally assumed to be polytomous unless otherwise
specified. Categorical data could also be classified into:
⚬ Normal (regular) data – where observations could be assigned labels that

cannot be ordered.
⚬ Ordinal data – where labeled observations could be ranked (put in order).

These observations could be both counted and ordered.

By using discretization one can transform continuous data into a categori-
cal form. On the other hand, techniques like regression analysis could some-
times transform categorical variables into one or more quantitative dummy
variables.

The main utility of categorical data is to encode categorical features that
are used for the Representation, Classification, and Evaluation of Machine
Learning algorithms:

⚬ Representation – used for ordering ranks, visualizing data missingness,
re-binning, or for model selection;

⚬ Classification – used in combination with methods such as trees, boosting,
Support Vector Machines, or Neighbor-based classifiers;

⚬ Evaluation – used for assessing a classifier accuracy, precision, or recall,
as well as for any other parameters of the ROC-AUC (Receiver Operating
Characteristic–Area Under the Curve) or Confusion matrix.

3. Textual or Linguistic data is an unstructured type of data, and it comprises
speech and text databases, lexicons, text corpora, and other metadata-added
textual resources used for language and linguistic research. Given the unstruc-
tured nature of textual data, its analysis is very complex.
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Extracting knowledge from textual data requires special text analytics tools
such as Natural Language Processing or Computational Linguistics. These ana-
lytics tools could be used to assess the mood of a tweet or the truthfulness of a
product review. In a clinical setting, text analysis can add context to test results
and other forms of quantitative medical data.

Typical applications of this kind of unstructured data are:
⚬ Analyzing clinical notes from a healthcare records database
⚬ Sentiment analysis using social media data feeds
⚬ Quantitative and qualitative analysis of financial markets based on newsfeed

information

The process of textual data analysis includes Extraction and Normalization
of linguistic features, from orthographic features, to semantic and lexical ones.
Through a technique called vectorization, linguistic features could be trans-
formed into either numerical or categorical features, therefore structuring data
that is unstructured in nature.

4. Visual data is a structured type of data, and it encodes features such as color,
intensity, texture, or shape. Visual data is generally collected from light sensors,
including cameras, scanners, and devices such as the Microsoft Kinect.

According to numerous medical studies, the human brain responds to and
processes visual data much better than any other type of data. The human
brain processes images 60,000 times faster than text, and more than 90 per-
cent of information transmitted to the brain is visual. Since humans are visual
by nature, one could use this skill to enhance data processing and organiza-
tional effectiveness. Visual data analysis is becoming a large field of research
and development, and it includes techniques such as segmentation, convolution,
smoothing, or pattern matching.

Visual analytics has become an integrative approach by combining visual-
ization, psychology, and data analysis. Besides visualization and data analysis,
areas of cognition and perception play an important role in the communica-
tion between the human and the computer, as well as in the decision-making
process.

This goal of this section is to define data in the context of knowledge extraction and
to define its main categories. Finding one definition for data that fits all its possible
uses is not practical, and therefore the idea is to define data in the context of its use.

I will define data as the artifact employed to encode the surrounding reality. It is
an orthogonal dimension to the concept of Algorithm, which is the complementary
device used to decode or understand the world around us.

From a physicist’s perspective, data is nothing more than a messenger of the sur-
rounding reality and a reflection of its phenomena. From a computer scientist’s per-
spective, data is an encoding for the properties of the objects that one studies.

The next step in our journey to understand the utility of data is to seek the
ultimate reward – extracting actionable Intelligence from data via a process that
is quite often misunderstood and very opaque. On its own, data is nothing more
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than meaningless noise that needs to be captured, filtered, and analyzed in order to
decipher from it the true meaning of the process that generates it. More often than
not the generative process is hiding behind the scenes and can be brought to light.

2.4 THE JOURNEY FROM DATA TO INTELLIGENCE

The ability to extract actionable insights from data is absolutely critical to the dis-
covery and innovation process. The last decade has seen the emergence of a new
interdisciplinary field labeled Data Science (see Figure 2.4).

This relatively new discipline, according to Wikipedia, uses “scientific methods,
processes, algorithms and systems to extract knowledge and insights from structured
and unstructured data.” From a practical perspective Data Science studies the
processes and systems that could enable the extraction of actionable insights from
data. Data Science has evolved as an interdisciplinary field that integrates approaches
from statistics (e.g. data mining and predictive analytics) with advances in scalable
computing and data management. As a discipline, Data Science is only in its
infancy.

The raison d’être for Data Science is to accomplish a very lofty goal: extracting
actionable Intelligence from Data in order to drive better business decisions!

For this goal to become a reality, a lot of effort has to be directed toward under-
standing the process of how data could lead to business intelligence (see Figure 2.5).
Modeling this very complex transformation involves distilling Data into meaning-
ful Information and encoding it into Knowledge to eventually achieve the desired
outcome: actionable Intelligence.

The journey from raw Data to Intelligence (see Figure 2.6) is the subject of
this section. This evolutionary process was studied for some time and there are
several frameworks that have been proposed. From Kenneth Boulding (1955) in
the 1950s, to Russell Ackoff (1989) in the 1980s, many researchers attempted
to model the transformation of Data into a superior form, Intelligence (Schoech
et al. 2002).

• This metamorphosis starts with the capturing of signals from the environment
in its rawest and most unfiltered form: the Data. This digital ore could be a
set of symbols, a signal, or just a collection of facts. The output of the initial
distillation process, coupled with the contextualization of the Data, will identify
patterns that in turn will be structured into Information.

Data
Science

FIGURE 2.4 Data science.
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FIGURE 2.5 From perception to intelligence.

• Information is the output of the distillation process that aims at the structure of
the Data and its functionality. Once Data is contextualized and structured into
Information, a set of rules could be devised, and models could be inferred. This
will engender predictability and the informational patterns will be encoded into
Knowledge.

• The study of Knowledge is a very old branch of Sciences, called Epistemology.
An even more modern discipline called Epistemetrics was recently developed;
it deals with the theory of Knowledge from a quantitative perspective. Professor
Nicholas Rescher (2006) is one of its main promoters.

• Once Knowledge (or the know-how) is devised, the ability to apply it to
real-world problems becomes the ultimate goal – thus achieving Intelligence.
Knowledge is a very valuable asset, but its value degrades as technologies get
obsolete and are replaced by newer ones. Intelligence needs to be sustainable
and extend beyond temporal barriers. Although Einstein once said that “the
true sign of Intelligence is not Knowledge but imagination,” there is a very
powerful causality relationship between Knowledge and Intelligence.

• Intelligence is defined as the ability to use Knowledge to solve problems, to be
creative, to adapt to new situations, and to learn from past experiences. It is a
purely human trait and the main goal of Data Science is to create the tool set to
achieve it (see Figure 2.6).

• Achieving Intelligence creates the conditions to eventually crystalize everything
into the highest form of human ability: Wisdom. Wisdom is also known as the
know-why factor, or the ability to achieve progress. Wisdom implies the avail-
ability of sound judgment that in turn will drive the decision-making process.

The term Business Intelligence has been around for some time, and it was
defined as “a set of theories, methodologies, architectures, and technologies that
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FIGURE 2.6 Journey from data to intelligence. Source: Anthony Liew (2013), DIKIW: data, infor-
mation, knowledge, intelligence, wisdom, and their interrelationships. Business Management Dynamics 2
(10): 49–62. Licensed under CC-BY-3.0.

transform raw data into meaningful and useful information for business analy-
sis purposes.” Figure 2.6 summarizes the transformation process from Data to its
most refined form, Wisdom:

• Data
Probably the most challenging element to define in this transformation
process is the starting layer, the Data. Data is sometimes considered as
the know-nothing element, because the usability of this un-refined form is
pretty limited. Rowley described Data as being “a discrete, objective set of
observations, which are unorganized and unprocessed and therefore have
no meaning or value because of lack of context and interpretation” (Rowley
and Hartle 2006). Although most of the definitions relate to the abstract
nature of Data, different categories of abstractions could be used based on the
data type:
⚬ Symbols are placed at the highest level of abstraction in this layer, and they

represent properties of objects that are encoded as numbers, graphs, images,
or words. These symbols are the building blocks of the communication pro-
cess and they have to be captured and stored with the purpose of modeling
and understanding the processes that are responsible for their generation.
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⚬ Signals are situated more in the subjective domain because they are generated
either by sensors or perceived through our senses (i.e. light, sound, smell,
taste, or touch). This type of subjective data is related with a special type
of knowledge, Experiential Knowledge, or knowledge by acquaintance that
is based on direct experience of stimuli, and less on factual data (Zins and
Chaim 2007).

⚬ Facts are a special type of data that is considered to be factually true because
it reflects an objective reality and it can be verified. This would eliminate
any false, meaningless, or nonsensical data, and as such the principle
of garbage in–garbage out would not be accounted for.

No matter the category of data abstraction, the distillation process will
result in a superior form which will be structured, organized, and useful: the
Information.

• Information
The distillation process is driven by interrogative questions, of which the first
one is the what? question. Answering this question will reveal relationships
and it will detect patterns in very descriptive forms. Once Data is endowed with
meaning and purpose it becomes Information.

According to Rowley, Information is the outcome of “organized or structured
data, which has been processed in such a way that the information now has
relevance for a specific purpose or context, and is therefore meaningful, valu-
able, useful and relevant” (Rowley and Hartle 2006). As such, the relationship
between Data and Information could be seen either as functional or just struc-
tural, depending on whether one is interested in the dynamics of the process.
Depending on the data abstraction used (e.g. symbolic, factual, or subjective),
the generated Information could be of a symbolic or of a subjective type, or a
combination of the two. Sometimes Information is also equated to know-what.

• Knowledge
Knowledge is a much more abstract and complex concept than Information.
Let’s just think about how to measure it. Probably the simplest definition is that
Knowledge is like a map of the world imprinted in the human brain. This map
helps one to know where Information is located. It also contains one’s beliefs
and expectations (e.g. “If I do this, I will probably get that”). The brain links all
the information together into a giant network of ideas, memories, predictions,
and beliefs.

The decision-making process is usually grounded on this map and not on
factual realities. The human brain is constantly updating this map from the
signals coming from the sensorial receptors. The most natural place to store
Knowledge is in the brain, because the brain connects all acquired information
together. Comparatively, computers do not understand what they are process-
ing, and they cannot make independent decisions based on the inputs – therefore
computers do not exhibit “consciousness” in the human sense.

Although humans have studied Knowledge since ancient times (Plato’s
dialogues) through Epistemology, the modern definition is grounded on the
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concept of Information. Some definitions refer to Knowledge as Information
that was processed or organized such that it could be applied or put into
action. Answering the why? question is going to reveal the patterns that
will synthetize the contextualized data (a.k.a. Information). But probably the
most quoted definition of Knowledge is a “mixture of experience, values,
contextual information, expert insight and grounded intuition that provides an
environment and framework for evaluating and incorporating new experiences
and information.” Wallace (2007) notes that Knowledge “becomes embedded
not only in documents and repositories but also in organizational routines,
processes, practices and norms.” Internalized Information is becoming Knowl-
edge and as such it could be seen as the “synthesis of multiple sources of
information over time, and the organization and the processing necessary to
convey understanding, experience and accumulated learning” (Rowley and
Hartle 2006).

Knowledge could be procedural, i.e. know-how, know-who, or know-when,
but also propositional, which relates more to the subjective realm, or belief
structuring. According to ancient Greek philosophers, Knowledge is charac-
terized by an “individual’s justifiable belief that it is considered to be true.”
The distinction here between subjective Knowledge and subjective Informa-
tion is that the former is characterized by justifiable belief while the latter is a
description for the meaning of data.

• Intelligence as a concept is usually defined in a very loosely fashion. Amer-
ican Psychologist R.J. Sternberg once said that “there seem to be almost
as many definitions of intelligence as there were experts asked to define
it” (Sternberg 1998). Despite a long history of research and debate, there
is still no standard definition of intelligence. There are some experts who
believe that intelligence may be approximately described but cannot be fully
defined.

Let’s explore some of the most commonly accepted definitions of
Intelligence:
⚬ “The ability to use memory, knowledge, experience, understanding, reason-

ing, imagination and judgement in order to solve problems and adapt to new
situations” – AllWords Dictionary (2006).

⚬ “The capacity to acquire and apply knowledge” – American Heritage Dictio-
nary, 4th ed. (2000).

⚬ “The ability to learn, understand and make judgments or have opinions that
are based on reason” – Cambridge Advance Learner’s Dictionary (2006).

⚬ “The ability to adapt effectively to the environment, either by making
a change in oneself or by changing the environment or finding a new
one… Intelligence is not a single mental process, but rather a combination
of many mental processes directed toward effective adaptation to the
environment” – Encyclopedia Britannica (2006).
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⚬ “Intelligence is a very general mental capability that, among other things,
involves the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly and learn from experience” –
common statement with 52 expert signatories (Gottfredson 1997).

There are also more specialized definitions coming from either psychol-
ogists or Artificial Intelligence experts (Legg and Hutter 2007). In layman
terms, Intelligence is generally defined as “the ability to achieve complex
goals.” This definition comes down to two important concepts: understanding
and complexity.

A typical example is solving a puzzle game. The individual pieces are
simple units, very easy to define and manipulate. What makes the problem
highly complex is the understanding of how the pieces are related to each
other. Therefore a more accurate definition for Intelligence would be “the
ability to achieve difficult goals by understanding the parts that form the main
goal.” Examples of complex goals:

⚬ Sensorial: seeing, hearing, touching
⚬ Actions: moving
⚬ Cognitive: learning, understanding

• Wisdom or Understanding could be formulated as the “ability to transform
complexity into simple useful information.”

This process involves the decoding of the relationships between the con-
stituent parts that form the complex unitary item that represents the complex
goal to be achieved. And this process is called modeling. The process of under-
standing the surrounding reality consists of creating a higher-level representa-
tion that will describe the things one is seeing, hearing, or feeling, but not the
actual real thing.

Human Intelligence could be summarized as follows:

• Modeling the surrounding reality and understanding its parts.

• Transforming the raw Data into useful and simple Information.

• Understanding how these parts form more complex relationships, accomplish-
ing at the outset the difficult goals.

Generating intelligent decisions from Data is the ultimate goal of Data Science.
From a business point of view, this comes down to solving problems, or to Action-
ability. The tool set that Data Science employs covers a large array of domains, from
Mathematics to Computer Science and Scientific methods. It involves the generation
of hypotheses, the design of experiments and tests through the analysis of data, and
the development of predictive models. Once enough value is generated from Data, its
associated Information, and the acquired Knowledge, one could employ the degree
of Intelligence achieved to answer more questions such as What is best? and How to
optimize? (see Figure 2.7).
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FIGURE 2.7 The questions to ask.

2.5 THE UTILITY OF DATA IN TRADING AND INVESTING

The impact that Big Data is making in the financial world today has the proportions of
a tsunami. Technology is developing at an exponential rate and the consequences are
far-reaching. Solving problems of increasing complexity demands more high-quality
data and better algorithms for processing. These new trends are positioning the finan-
cial industry in a new post-digital revolution era.

Human activity worldwide is creating several quintillions bytes of data daily, and
this represents a unique opportunity for processing, analyzing, and leveraging the
information in ways that were not available until very recently. Machine intelligence
and algorithmic techniques are increasingly being used in financial trading and
investing to process vast amounts of data and generate predictions and decisions that
humans may not have the capacity for.

As many other human endeavors, financial trading and investment rely
on accurate inputs being fed into business decision-making models. Traditionally,
the decision-making process was driven by numbers handled by humans and
decisions were made based on inferences drawn from perceived risks and trends.
Nowadays, this functionality is provided by informatics systems that could compute
at massive scale and draw Intelligence from a multitude of sources to arrive at more
accurate conclusions practically instantaneously.

In recent years, both Data Science and Machine Learning have become the main
directions in which the financial industry is betting its future. According to Bacoy-
annis and collaborators (Bacoyannis et al. 2018), there are three distinct cultures of
data-centric applications in quantitative finance:
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• Data modeling culture

• Machine Learning culture

• Algorithmic decision-making culture

The Data modeling culture is characterized by the fact that the financial markets
could be described as a black boxes employing relatively simple models that are fed
by observational market data. The task of the data modeling practice is to find an
approximate functional approximation for this data-generating process (a quantitative
model) and to extract its parameters from the data. The model output is then fed
into a decision-making process. Although the approach may look straightforward, the
complexity of the financial markets and the collective behavior of market participants
pose very serious challenges to the data modeling culture. Such simple models are
prone to serious failures because they do not properly capture the essential properties
of the environment and may often give a false sense of certainty.

The Machine Learning culture takes an agnostic approach to the question
whether financial markets are simple. From an empirical perspective, the world of
finance looks more Darwinian than Newtonian since it is constantly evolving. From
this perspective the processes that are responsible for generating the observed market
data could be described as emerging behaviors rather than just data-generating
machines. In this approach “complex and sometimes opaque functions are used to
model the observations” (Bacoyannis et al. 2018). The functions inferred by the ML
techniques do not generally reveal the nature of the underlying processes. As in the
Data modeling culture, Machine Learning models are built and their outputs are fed
into decision-making processes. Complex ML models are prone to failures that are
due to the phenomenon of over-fitting; thus, the risk of the model failure increases
with its complexity.

In the Algorithmic decision-making culture the focus is on decision-making
rather than on model-building. By bypassing the stage of learning how the world
works, this technique proceeds directly to training agents to distinguish good deci-
sions from bad decisions. This approach presents its own challenges due to the gen-
eral inability to understand and explain the decisions that the algorithmic agent takes.
In this approach the agent learns that certain actions are to be avoided because they
lead to negative outcomes. The users of this technique still have to impose constraints
that will steer the agent away from taking actions which may be viewed as prohibited
but which the agent cannot learn from its environment or its history.

There is a large variety of use cases that could have a high impact on the adoption
of these methodologies by the industry as a whole:

• The use of Big Data analytics to feed financial models
Financial analytics is no longer just the narrow exploration of prices and

their dynamics, but it incorporates the fundamentals that affect prices, the polit-
ical and societal trends, as well as any available signals that could augment the
understanding of the problem space. The use of Big Data in the context of finan-
cial analytics could be accomplished by predictive models that estimate the rates
of return and probably outcomes on investments. Expanding the access to big



32 THE ROLE OF DATA IN TRADING AND INVESTING

data will provide more accurate predictions and therefore the ability to mitigate
more effectively the inherent risks associated with financial trading. This ongo-
ing data revolution will expand the realm of applicability for machine trading
beyond the current limited range of high frequency trading, where ultra-short
time processing is of the essence. In general Big Data requires much longer
processing times, and as a result a new automated trading paradigm is devel-
oping: market participants will take advantage of accurate extrapolations made
possible by models fed by very large amounts of data.

• The use of real-time analytics
Algorithmic trading is about executing trades at speeds and frequencies

that humans cannot operate on. This trading paradigm utilizes the best possible
prices, generates trades on very specific timelines, and mitigates the risk of
manual errors that could emerge due to behavioral mishaps. The advent of
real-time analytics has the potential to improve the applicability of algorithmic
techniques at time frames that are a lot longer than the usual microsecond
level of the HFT. It will also affect the markets by leveling the playing field
and providing all market participants with access to powerful information. The
advent of real-time analytics could provide algorithmic trading with almost
limitless capabilities. A variety of data could be employed to drive trading
decisions, from the traditional structured data (prices and volumes), to a more
unstructured one such as social media content, consumer data, or satellite
imagery.

• The use of Machine Learning
The use of the term Machine Learning is becoming ubiquitous in today’s

financial industry landscape. But as far as realizing a deep and long-lasting
impact on the financial sector, Machine Learning has a long way to go. Its
full potential has not yet been realized, although the prospects for its appli-
cability are immeasurable. Machine Learning is supposed to enable computing
systems to effectively learn from data and make decisions based on the newly
acquired information. The data-driven decision-making paradigm will mitigate
the human emotional response from trading models and will generate decisions
based on information without bias.

• Automated Risk Management
Risk management is a mission critical area for all financial institutions, since

it is responsible for company’s security, trustworthiness, and strategic decisions.
Since the last financial crisis, the approaches to handling risk management have
changed significantly, transforming the finance sector in a fundamental fashion.
Risk could arise from many sources, such as competitors, investors, regulators,
or company’s customers. Also, risk could be stratified by its importance and its
potential for losses.

The reliance on Data Science as the main toolset to take advantage of
the Big Data equates to identifying, prioritizing, and monitoring the risk
factors. Training ML models on large amounts of customer data, financial
lending, or insurance results could improve the risk-scoring models but are also
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expected to enhance cost efficiency and sustainability. Probably one of the most
important applications of Data Science and Machine Learning in Risk Man-
agement is identifying the creditworthiness of potential customers. To establish
the appropriate credit amount for a particular customer, ML algorithms are
used to analyze past spending behavior and detect behavioral patterns. The
process of digitalization and automatization of Risk Management workflows
is in the early stages, but the potential is considerable. The financial industry
will need to undergo structural changes in order to prepare for the large-scale
automation of its core financial processes. This will require improving the
analytical skills of its workforce and making strategic technology investments.

• Data Management
For many financial firms, data is arguably the most important resource after

its human and financial capital. Therefore, efficient data management is as
important as human capital or financial capital management. Financial firms
are spending a lot on improving their data management infrastructure and on
educating their workforce to use it efficiently.

• Consumer Analytics
For financial firms that are interacting with clients on a regular basis,

real-time analytics will facilitate a better understanding of their customers
and allow for effective personalization. Complex ML algorithms and cus-
tomer sentiment analysis techniques could generate insights from clients’
behavior, social media interaction, their feedback and opinions, and improve
personalization and ultimately enhance the bottom line.

• Fraud Detection
Guaranteeing the highest level of security to its users is today a very strict

legal requirement for any business in the financial sector. Fraud detection sys-
tems are tools for the detection or the prevention of any anomalies in user
behavior. Examples could be generating alerts for unusual financial purchases
or for large cash withdrawals that will lead to blocking those actions, until the
customer confirms them. In the financial trading sector, ML tools could identify
patterns in trading data that might indicate manipulations and alert enforcement
agencies to investigate.

The trading industry is a very competitive field of endeavor, and it will always
continue to be. Maintaining a competitive advance in this landscape is the principal
tool to survive, and as such this new era of Big Data is considered to be another
lifesaver. If a couple of decades ago digitalization was the name of the game, today the
buzzwords du jour are Big Data and AI. In reality the financial industry is looking for
novel ways to increase productivity by generating better returns through automation
and cost reductions. In 2015, Thomson Reuters reported that their data customers
were mostly machines, and therefore they were providing more information to be fed
directly into algorithms than to humans to make their own informed decisions. This
trend will likely continue at an increasing rate.

The reliance on Big Data is also evident in the world of Asset Management
and investment in general. Investors, both high-net-worth individuals as well as
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firms, are focused on creating data-driven investment models that can objectively
evaluate public companies globally through the use of both classic and alternative
financial data. Historically these investment models have utilized large sets of
company-specific data like publicly available financial statements, as well as market
data like prices, returns, and volumes. But the availability of nontraditional data
sources such as Internet web traffic, consumer data, patent filings, social media
content, and satellite imagery has created the conditions to use more specialized data
to gain an informational edge and make more informed investment decisions.

The new era of Big Data has created tremendous business opportunities not just
for financial firms, but especially for technology solution vendors. Big Data does not
refer to just the data itself but also to a set of technologies that capture, store, man-
age, and analyze large and variable collections of data to solve complex problems.
The proliferation of real-time and historical data from sources such as the web, con-
nected devices, sensors, social media, and transactional applications has generated
a Big Data boom that is aggressively promoted by a diverse range of vertical sec-
tors. Market research studies (Research and Markets 2018) estimate that Big Data
investments in the financial services industry accounted for about $9 billion just in
2018 alone. This demand was driven by a variety of business opportunities for banks,
insurers, credit card and payment processing specialists, asset and wealth manage-
ment firms, lenders, and other stakeholders. These investments are expected to grow
at a compound annual growth rate (CAGR) of approximately 17% over the next
three years.

The mainstream of traditional financial services are more attuned to the idea of
adopting cloud-based platforms in an attempt to alleviate the technical and scalability
challenges associated with the on premise Big Data environments. At the same time,
Big Data technologies are playing a very important role in the success of innovative
FinTech startups, most notably in the alterative insurance and money transfer sectors.
In addition to utilizing traditional data sources, the financial industry is increasingly
becoming reliant on alternative sources of data – ranging from social media to satellite
imagery – that can provide previously hidden insights for multiple application areas
including data-driven trading and investments, or credit scoring.

2.6 THE ALTERNATIVE DATA AND ITS USE IN TRADING
AND INVESTING

Alternative data refers to a wide variety of data used to obtain insight into the invest-
ment process. Alternative data sets contain information about a particular business
that is published by sources outside of the company and which can provide unique
and timely insights into investment opportunities. Alternative data sets are generally
classified as Big Data, since they may be very large and complex and often cannot be
handled by traditional databases.

The alternative data sets could be compiled from a variety of sources, but they are
generally by-products of individual business operations, which are often less readily
accessible and less structured than traditional sources of data. They are also known
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as exhaust data. In recent years many data brokers and aggregators, together with
other intermediaries, began specializing in providing alternative data to investors and
analysts. Alternative data has become today a very fashionable tool for investment
management firms seeking alpha. Although this field is still in its early phases of
development, investment managers participate more and more in this new paradigm.

The process of extracting benefits from alternative data could be very challeng-
ing. The technologies employed for processing such data are relatively new and most
institutional investors do not have the capabilities to integrate alternative data into
their investment decision process. However, by choosing the appropriate set of tools
and strategies, investment managers could alleviate costs while creating a solid com-
petitive advantage.

Examples of alternative data sets:

• Geolocation (business traffic)

• Financial transactions: credit card, point of sales, websites

• Social media content: images, videos, posts

• Satellite imagery: parking lots, store traffic, weather, shipping container traffic

• News outlets

• Product reviews and customer feedback

• Web traffic

• Public records: SEC filings, press releases, the Internet

• Private information: presentations, internal reports, consumer data, etc.

All these alternative data sets could be acquired through different methods:

• Raw data acquisition

• Web scrapping

• Third-party licensing

The main factors that are taken into account when analyzing alternative data are:

• Structure or lack thereof: CSV, JSON vs. text or images

• History, in a time-series form

• Granularity, or the level of aggregation detail (usually time)

• Coverage: local vs. global

• Scarcity or the frequency of overloading with financial-specific information

When it comes to investing, the name of the game is Information. Keeping up
with the competition or outperforming in an increasingly competitive market requires
that both institutional and retail investors alike are always on the lookout for crucial
information that will give them the desired edge. Information could come in a variety
of forms: from traditional financial data, to the rapidly expanding offering available
in the form of alternative data. Unlike the traditional data sources, alternative data
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is information collected and utilized in an investment strategy that does not come
directly from the company in question.

According to Deloitte (2017), “The lure of alternative data sets is largely the poten-
tial for an information advantage over the market with regard to investment decisions.
True information advantage has occurred at various times in the history of securities
markets, and alternative data seem to be just the most recent manifestation…Speed
and knowledge are advancing with the use of advanced analytics, and there will be
no waiting for laggards, no turning back.”

A recent study by Greenwich Associates (Johnson 2018) found that more than
60% of traditional asset managers and nearly 75% of hedge funds are already using
social media – a rich source of alternative data – as part of their investment process.
One major driver is represented by the transition of multifactor analysis from statisti-
cal models to Machine Learning. Gaining new insights into the alternative data may
represent a competitive advantage in harvesting more alpha.
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CHAPTER 3

Artificial Intelligence – Between
Myth and Reality

“If people do not believe that Mathematics is simple, it is only because they do
not realize how complicated life is.”

– John von Neumann, polymath, computer scientist

3.1 INTRODUCTION

We are witnessing today the onset of a new technological revolution that is driven by
what one calls the fourth paradigm of scientific discovery. This new development is
going to change forever many industries and the structure of the workforce for gen-
erations to come. Dr. James Gray, one of the greatest American computer scientists
of the twentieth century and recipient of the Turing award in 1998, has predicted this
development more than two decades ago. He has labeled this new era as eScience or
the Data exploration era. Dr. Gray has predicted that this will be a time when the-
ory, experimentation, and simulation will come together to solve some of the most
important problems of our civilization.

The accelerated pace of technological progress of the past decades has contributed
to the generation of vast amounts of data, and the birth of what one calls the Big Data
age. Recent advances in High Performance Computing (HPC) and hardware accelera-
tion (GPUs and FPGAs), coupled with new discoveries in algorithmic processing, has
created the conditions to train and utilize very complex Machine Learning algorithms
at an unprecedented speed. All these new technological developments are going to
have a revolutionary impact on many industries, and the financial industry is expected
to be at the forefront of the adoption process. A new concept is already making its way
in today’s financial world: data-driven decision-making, which we have explored in
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the previous chapter. Nowadays, both trading and investing are more and more driven
by large-scale data analysis, and the new concept of alternative data is becoming more
ubiquitous.

This brave new world will require a new breed of quantitative workforce – one
combining classical quant skills with deep knowledge of computer science and
hands-on knowledge of modern HPC technologies. Not so long ago, our world
stepped into the fourth industrial revolution era, where the name of the game is
Innovation. As Innovation is mainly driven by technology, achieving technology
fluency is a hard-core prerequisite that requires life-long education. The life cycle
of modern technologies is averaging less than two and a half years today and it
will get even shorter. This new breed of quants is going to be present in a variety
of industries, way beyond the realm of the finance. Fields like Computational
Medicine, Healthcare, and the Internet-of-Things and Education are going to be big
consumers of this modern profession. Since the whole society is so immersed and
dependent on data and the methods to extract actionable information from it, the
twenty-first-century quants will position themselves at the core of the system that
drives the most important business decisions.

The fabric of Data Exploration is essentially composed of two fundamental
threads:

• Data, which is the what-to-operate-on element, and the

• Algorithmic tool set, or the how-to-do-it component, which is used to extract
the actionable knowledge from data.

The previous chapter projected a comprehensive picture for the role of data
in today’s financial industry. From defining terminology, to classifying its dif-
ferent types, the previous chapter advocated for a principled use of data in the
decision-making process. This process was illustrated as the fascinating journey that
starts with raw Data being distilled into structured Information, which is leading
to Knowledge extraction and then eventually to the desired outcome, which is
Intelligence gathering. Data was interpreted as the agent that encodes and relays
to the astute observer a quantitative measure of the surrounding reality. As such,
Data is becoming nowadays the fuel of the modern digital economy and one of its
most important assets. Its utility exceeds that of classical commodities, specifically
because it fuels the generation of Knowledge and thus makes possible to extract
actionable Intelligence.

This chapter is dedicated to the second thread of the data exploration fabric,
namely the understanding of the how-to mechanism that is used to extract actionable
knowledge that is needed in the decision-making process. As I have mentioned in
the Introduction, one of the main goals of this book is to provide an adequate level
of engineering and scientific rigor and clarity to the usage of the term Artificial Intel-
ligence, especially as it relates to its use in the financial industry. This chapter will
attempt to uncover some of the hype surrounding the so-called Artificial Intelligence
revolution.
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The AI tag has become one of the most exploited labels in today’s tech parlance,
and I contend that its use should be carefully aligned with scientific facts and not
just with marketing needs. I also think that the expectations generated by this hype
should be appropriately calibrated with the current status of the progress achieved
in this field. Technologists, business leaders, and investors must not fall into the trap
of the hype curve of inflated expectations. When novel yet untested technologies are
moving from research labs into the real economy, a significant amount of hype is
usually baked in. Hence the main goal of this chapter is to clarify the terminology
surrounding the term AI and to adjust the expectations for the reader in regard to its
use in quantitative finance.

3.2 THE EVOLUTION OF AI

Although Artificial Intelligence has been a well-established field of research for many
decades, the term is still one of the most ambiguously defined topics in Computer
Science and other related fields. This is largely due to an ambigous characterization
of the term AI. This elusiveness eventually led to the birth of a new mantra (i.e. the
AI logo), which has become an intellectual wildcard in today’s tech vernacular.

One of the funniest yet most sobering illustration of this phenomenon was coming
from Baron Schwartz, one of the creators of MySQL, who tweeted:

“When you’re fundraising, it is AI,

When you’re hiring, it is ML,

When you’re implementing, it is linear Regression,

When you’re debugging, it is printf ()”
– Baron Schwartz, @xaprb

The goal of this chapter is to de-noise the hype surrounding AI. This ambitious
goal could be achieved only by understanding the scientific and technical complexity
of this topic. Let’s start by diving into the history of an ancient human undertak-
ing – understanding what Intelligence is and how it works. Although the term Artifi-
cial Intelligence was first coined by John McCarthy more than six decades ago, the
concept of intelligent machines has a much longer and more complex history. Many
of the fundamental ideas of AI have an ancient origin. Let’s review some of the most
important milestones on this journey.

3.2.1 Early History

• The intellectual roots of AI, and the concept of intelligent machines, could be
tracked deep into the Greek mythology (AAAI n.d.). Mythological figures like
Hephaestus, or the god of blacksmiths, was depicted as having manufactured
mechanical servants. The account of the bronze man named Talos is one of the
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first mentions of the idea of intelligent robots. Human-like artifacts have been
the subjects of many other myths in antiquity. According to historical accounts,
several mechanical models were actually constructed by skillful craftsmen and
artists like Hero, Daedalus, or Archytas of Tarentum.

• Logic, as a formal theory of reasoning, was first mentioned in the fourth century
bc in Aristotle’s Prior Analytics. The syllogistic logic is considered to be the
first formal deductive reasoning system – one of the stepping-stones of mod-
ern AI.

• An important milestone in the history of conceptual development of intelligent
machines originated in the thirteenth century. At that time Ramon Lull, a
Spanish poet and theologian (1232–1316), published Ars generalis ultima
or The Ultimate General Art, where he described a machine for discovering
non-mathematical truths through combinatorics (Glymour, Ford, and Hayes
1998). His original idea was that thinking is a computational process, which
involves combining symbols, and that computation could be mechanized via
the use of mathematical tools involving combinatorics.

• The second half of the second millennium was a very fertile ground for new
inventions like the printing press (Gutenberg 1456), the first clocks (fifteenth to
sixteenth centuries), as well as new attempts to build robots: DaVinci’s walking
Lion (1515) or Golem – the walking clay-man (Rabi Loew 1580).

• The debut of the Renaissance coincided with the creation of new theories:

– In 1646, the French philosopher, mathematician, and scientist Descartes sug-
gested that the bodies of animals could be modeled as complex machines.

– In 1642, the French mathematician, physicist, inventor, and writer Pascal cre-
ated the first mechanical digital calculating machine.

– Thomas Hobbes published in 1651 The Leviathan, where he was describing
a mechanistic and combinatorial theory of thinking.

– In 1666, the German mathematician and philosopher Leibniz improved on
Pascal’s machine to do multiplication and division with a machine called
the Step Reckoner (1673). He also envisioned a universal way of reasoning
by which arguments could be decided mechanically.

– In 1763, English statistician and philosopher Thomas Bayes developed a
framework for reasoning about the probability of events. Machine learning
will adopt later Bayesian inference as one of its main tools.

• The nineteenth century was a very progressive period in this journey:

– In 1801, the French weaver and merchant Joseph-Marie Jacquard invented
the first programmable machine, with instructions on punched cards.

– In 1832, the English polymath Charles Babbage and Ada Byron (Lady
Lovelace, the daughter of Lord Byron) designed a programmable mechanical
calculating machine, called the Analytical Engine.

– The English mathematician, philosopher, and logician George Boole
developed in 1854 a binary algebra representing the laws of thought.
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• At the beginning of the twentieth century, the British mathematicians Bertrand
Russell and Alfred North Whitehead published Principia Mathematica, which
revolutionized formal logic. Two other very important milestones happened in
quick succession:

– In 1936, Alan Turing, the famous British scientist, who pioneered the math-
ematical possibility of Artificial intelligence, proposed the ground-breaking
Universal Turing Machine concept (Turing 1937) – laying the foundations of
modern AI.

– In 1943, Warren McCulloch and Walter Pitts published A Logical Calculus of
the Ideas Immanent in Nervous Activity (McCulloch and Pitts 1943), laying
foundations for neural networks.

• The interest in this field exploded after modern computers became available,
following World War II. The advent of modern computers made possible the
creation of programs that perform difficult intellectual tasks. As such:

– An American inventor, Vannevar Bush, proposed a system which amplifies
people’s own knowledge and understanding, by publishing his seminal work
As We May Think (Bush 1945).

– In 1949, Alan Turing wrote a paper on the notion of machines being able to
simulate human beings and the ability to do intelligent things, such as to play
the game of chess. One year later, he published the paper Computing Machin-
ery and Intelligence (Turing 1950) – an introduction of the Turing Test as a
way of operationalizing a test of intelligent behavior. This seminal work orig-
inated during the World War II, when Turing worked on cracking the Enigma
code used by Germans by developing what was called the Bombe machine.
This work laid the foundations for Machine Learning and later inspired the
idea of an imitation game, or the Turing Test.

3.2.2 The Modern AI Era

In the first half of the twentieth century, science fiction familiarized the world
with the concept of artificially intelligent robots: be it the heartless Tin Man from
The Wizard of Oz or the humanoid robot that impersonated Maria in Metropolis. By
the mid-1950s, a new generation of scientists, mathematicians, and philosophers
was created having the concept of AI culturally baked-in. One of the brightest and
the most prominent figures of this generation was Alan Turing. He suggested that
if humans could readily use information and reasoning in order to solve problems
and make decisions, computers could just mimic this process as well. This idea
was representing the logical framework of Computing Machinery and Intelligence
in which he discussed how to build intelligent machines and how to test their
intelligence.

Unfortunately, the first generation of computers lacked a key prerequisite for
achieving intelligence; that is, they could not store commands, they could only
execute them. In addition computing was extremely expensive at that time. The cost
of leasing a computer ran up to $200,000 a month in the late 1950s. Only prestigious



44 ARTIFICIAL INTELLIGENCE – BETWEEN MYTH AND REALITY

universities and big technology companies could afford to use them. The year 1956
represents the beginning of the modern AI era. A first proof of concept – Logic
Theorist – was brought to life by Allen Newell, J.C. Shaw, and Herbert Simon. This
program was designed to mimic the problem-solving skills of a human and was
funded by the RAND Corporation. It’s considered by many to be the first artificial
intelligence program and it was presented at the Dartmouth Summer Research
Project on Artificial Intelligence hosted by John McCarthy and Marvin Minsky.

At this historic conference, McCarthy brought together top researchers from vari-
ous fields for an open-ended discussion on Artificial Intelligence. Unfortunately, the
conference fell short of McCarthy’s expectations since the participants failed to agree
on standard methods for the field. In spite of this, the general sentiment was that AI
was within the realm of the achievable, and this helped create the catalyst for the
next twenty years of AI research. AI has encountered a wide variety of obstacles,
the biggest one being the lack of computational power to do anything substantial:
computers simply could not store enough information or process it fast enough.

In its first stage of development, AI was represented by the vision of emu-
lating human intelligence. This human-imitative view later evolved toward the
development of a more applicable engineering discipline in which algorithms and
data are brought together to solve a variety of pattern recognition, learning, and
decision-making problems. More and more, the AI research started to intersect
with other engineering and scientific disciplines. A different approach was adopted,
where the human-imitative perspective was replaced by a more practical one –
intelligence-augmentation. The systems needed not to be intelligent themselves, but
to reveal patterns that humans could use. Examples are search engines, recommender
systems of natural language translation.

3.2.3 Important Milestones in the Development of AI

1956

• John McCarthy came up with the term Artificial Intelligence as the topic of
the Dartmouth Conference, the first conference devoted to the subject. The goal
of the project was to “proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can be precisely described that a
machine can be made to simulate it” (McCarthy et al. 2006).

• Demonstration of the first running AI program, the Logic Theorist (LT) written
by Newell, Shaw, and Simon (Carnegie Mellon).

• Arthur Samuel (IBM) wrote the first game-playing program, for checkers, to
achieve sufficient skill to challenge a world champion.

1958

• John McCarthy (MIT) invented the Lisp language.
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1963

• Edward A. Feigenbaum and Julian Feldman published Computers and Thought,
the first collection of articles about artificial intelligence.

1965

• Joseph Weizenbaum (MIT) built ELIZA, an interactive program that carries on
a dialogue in English on any topic.

1974

• Ted Shortliffe’s PhD dissertation on MYCIN (Stanford) demonstrated the power
of rule-based systems for knowledge representation and inference in the domain
of medical diagnosis and therapy – called the first expert system.

1981

• Danny Hillis designs the connection machine, a massively parallel architec-
ture that brings new power to AI and to computation in general (later founds
Thinking Machines, Inc.).

Mid-1980s

• Neural networks become widely used with the Backpropagation algorithm (first
described by Werbos in 1974).

1987

• Marvin Minsky publishes The Society of Mind, a theoretical description of the
mind as a collection of cooperating agents.

1989

• Dean Pomerleau at CMU creates the Autonomous Land Vehicle in a Neural Net-
work, which became the system that drove a car coast-to-coast under computer
control for all but about 50 of the 2,850 miles.

1990s

• Major advances in all areas of AI, with significant demonstrations in machine
learning (especially SVM), intelligent tutoring, case-based reasoning, multi-
agent planning, scheduling, uncertain reasoning, data mining, natural language
understanding and translation, vision, virtual reality, games, and other topics.

• The Deep Blue chess program beats the current world chess champion, Garry
Kasparov, in a widely followed match and rematch (May 11, 1997).
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The new millennium

• A.k.a. the era of Deep Learning (Hinton – 2006 and 2012 – CNN, Univ. of
Toronto).

• Google driverless car project (2009).

• IBM Watson system (2011).

• AI finds new applications in smartphones: Siri, Cortana, Alexa, Bixby.

• DeepMind and its quest to board games solving (2016, Go game).

Exaggerated levels of optimism had raised the expectations impossibly high, and
when the promised results failed to materialize, the necessary funding for AI research
disappeared (see Figure 3.1). The AI research has known two long periods of stagna-
tion, or the so-called AI-winters: 1974–1980 and 1987–1993. During these periods
of time AI was subject to critiques and financial setbacks. From the very beginning a
large majority of AI researchers had failed to appreciate the difficulty of the problems
they faced. Just two of the earliest examples:

“Machines will be capable, within twenty years, of doing any work what man can do.”
– Herbert A. Simon (CMU)

“Within a generation… the problem of creating Artificial Intelligence will substantially
be solved.”

– Marvin Minsky (MIT)

The second AI wave started in the 1980s and it was reignited by two sources: an
expansion of the algorithmic tool kit, and a substantial increase in funding. Alexey
Ivakhnenko and David Rumelhart popularized Deep Learning techniques which
allowed computers to learn using experience.

The third wave of AI (see Figure 3.2) was marked by events like the one when
IBM’s Deep Blue computer system defeated the reigning world chess champion and
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grand master Gary Kasparov. This highly publicized match was the first time a reign-
ing world chess champion lost to a computer and served as a huge step toward an
“artificially intelligent” decision-making program. In 1997 Deep Blue was the 259th
most powerful supercomputer with 11.4 GFLOPS.

The most powerful supercomputer then had 1,068 GFLOPS or as today’s the most
powerful supercomputer is 100 times more powerful. In 2011 IBM’s Watson system
defeated the two greatest Jeopardy champions. This was the beginning of a new era
where huge amounts of data were used in connection with massive computational
power.

To the surprise of many researchers the combination of massive amounts of data
and great computational power, aided by new innovations in the field of hardware
acceleration, managed to rapidly catapult a new field of research – Deep Learning.
The use of this novel approach yielded surprising outcomes, particularly in speech
and image recognition, as well as for most classification tasks. Impressive progress
has also been achieved in the field of board games; in 2016 Google’s Alpha Go was
able to defeat the world’s Go champion.

The big question that remains is “Have we gotten any smarter about the way we
understand and implement Artificial Intelligence nowadays?” Do we fully understand
the concept and grasp the current technological limitations? The fundamental limita-
tions – storage and compute power – that were holding AI back 40 years ago are no
longer a concern. Moore’s Law was quite correct for some time in the fact that the
memory and speed of computers doubles every year, and in many cases this expec-
tation is surpassing our needs. Looking back at the first 60 years of AI research one
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could find a quite plausible explanation for the AI roller-coaster effect. Given the
level of technological progress achieved on a specific time period (e.g. computer stor-
age and processing speed), the AI research was able to reach a plateau of progress,
and then it entered a new winter period in which it waited for Moore’s Law to catch
up again. The reality is that being able to emulate human Intelligence demands a
lot more than just very large amounts of data and compute power – it requires the
encoding of cognitive functions into computer code and this is just not available yet!

One can understand very well computer’s ability to process data in logical,
programmed fashion. But can machines think? A well-known example is the
Chinese room argument (Searle 1980). Let’s imagine someone trying to make
sense and answer to information passed in Chinese. By using an entire library of
knowledge-based rules the individual would be able to produce valid responses in
Chinese, but would she be really able to understand the language? This argument
is highly debated, and it is at the core of modern AI. What is the state-of-the-art
in AI today? In the age of Big Data, which is a time when one has the capacity of
collecting extremely large volumes of diverse information that is unpractical and
sometimes impossible for a human to process, the most conspicuous applicability of
AI comes in the form of automation.

The application of AI in this regard has already been quite successful in several
industries such as banking, marketing, or entertainment. Even with quite simplistic
algorithms, the availability of large amounts of data and massive computing power
provides the ability to learn through brute force. Even if there is enough evidence that
Moore’s law is plateauing, the increased access to data could keep the momentum for
a brief period of time until the next technological revolution will trigger the next AI
burst. Breakthroughs in computer science, mathematics, and neuroscience will all
serve as potential outs through the ceiling of Moore’s Law. The most notable suc-
cesses achieved by AI systems so far relate to very specialized areas, such as games
(chess, Jeopardy, or Go) or visual and voice recognition.

3.2.4 Projections for the Immediate Future

In the immediate future, AI will continue to oversell its potential and be depicted as
the next big thing. Although it is indisputable that AI research and related technology
have achieved a discernable amount of success in areas related to automation, like
call centers, chat bots, real-time translation, and recommender systems, there are still
unfulfilled promises related to the availability of expert systems that could maintain
an intelligent human-like conversation in areas that are more cognitive in nature, as
opposed to just automation. One of the biggest promises of AI is to see self-driving
cars on a large scale in the next decade. But the long-term goal is to understand and
program General Intelligence; that is, to design and implement a machine that meets
or surpasses human cognitive abilities in a variety of tasks. This very ambitious task is
extremely unlikely to be accomplished in the foreseeable future. But even if the goal
will be attained, a series of very strong ethical barriers will be erected against the use
of these technologies at scale. Personalities like Elon Musk, Stephen Hawking, and
Bill Gates have expressed serious concerns about the use of AI at scale, especially
before we understand very well the implications of such a transfer of decision powers
to machines.
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3.2.5 Meta-Learning – An Exciting New Development

Meta-Learning is an exciting new trend in ML research which tackles the problem
of learning to learn. The traditional paradigm in ML research is to get a huge data
set on a specific task and train a model from scratch using this data set. Evidently this
manner of learning is quite limiting, and it is very inefficient when compared with
how humans leverage past experiences in order to learn very quickly a new task from
only a limited set of examples.

Current ML-based systems implemented as artificial agents could master complex
skills from scratch, using large amounts of experience (data) and time for training.
But in order to add the intelligent attribute to the label, the artificial agent needs to be
able to acquire many skills and adapt to a variety of environments, as opposed to train
each skill in each setting from scratch. The artificial agents need to learn how to learn
new tasks faster by reusing previous experience, rather than considering each new
task in isolation. This approach of learning to learn, also called meta-learning, is an
important step toward implementing versatile agents that could continually learn a
variety of tasks throughout their lifetimes.

The goal of Meta-Learning is to train a model on a variety of learning tasks, such
that it can solve new learning tasks using only a small number of training samples.
Fast learning is a hallmark of human intelligence. Recognizing objects from a lim-
ited number of observations or rapidly learning new skills after a limited practice
is something that a human could do by default. The next generation of artificial
agents should be able to learn and adapt quickly after being exposed to only a few
examples and continuing to adapt as more data becomes available. A fundamen-
tal component of Intelligence is versatility, which is the capability of performing
many different tasks. Currently, ML-based systems are mastering very well on-off
skills, like games, for example (Go, Jeopardy). But, when asked to perform a vari-
ety of apparently simple tasks, they will struggle. For example, the AlphaGo pro-
gram that beat the Go world’s champion cannot hold a simple conversation about
the game of Go, for which it was not trained. By contrast, a human can adapt and
act intelligently to a wide range of new, unseen situations. Enabling the artificial
agents to acquire such versatility will be the next big revolution in Computational
Intelligence!

The ability to learn fast and in a flexible manner is very challenging for artificial
agents, because they must integrate all prior experience with a small amount of new
information while avoiding overfitting to the new data. Moreover, the encoding of
prior experience and new data is very much task-dependent. As such, the mechanism
of learning to learn (or Meta-Learning) should be very generic and independent of
the task or the form of computation required to complete that task. Meta-Learning
systems are trained by being exposed to a wide range of tasks, and then their ability
to learn new tasks is tested. Let’s take the example of classifying a new object within
100 possible classes, given one example of each class, or learning to efficiently play a
new board game with only one practice. This approach is very different as compared
to standard ML techniques, where training is performed just on a single task and
testing on held-out examples from that task. During the process of Meta-Learning, a
model is trained to learn tasks from the meta-training set. Two kinds of optimizations
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are performed: one for the learner, which learns new tasks, and the other for the
meta-learner, which trains the learner.

Meta-Learning methods can be classified in one of three categories:

• Recurrent models are ingesting the data set sequentially, and then it processes
new inputs from the task set. While the meta-learner is using Gradient Descent
for optimization, the learner simply rolls out the recurrent network.

• Metric learning involves learning a metric space in which learning is partic-
ularly efficient. The Meta-Learning optimization is performed using Gradient
Descent while the learner optimization comes down to a comparison scheme
(like Nearest Neighbors), in the meta-learned metric space.

• Learning optimizers, where one network (the meta-learner) learns to update
another network (the learner) so that the learner effectively learns the task.
The meta-learner is typically a Recurrent Network so that it can remember how
it previously updated the learner model. The meta-learner can be trained with
either Reinforcement Learning or Supervised Learning.

A more recent meta-learning algorithm called MAML (Model Agnostic
Meta-Learning) was developed at Berkeley Artificial Intelligence Research lab
(Finn, Abbeel, and Levine 2017). This model could be directly applied to any learn-
ing problem and model that is trained with a gradient descent procedure. The central
idea underlying this new method was to “train the model’s initial parameters such
that the model has maximal performance on a new task after the parameters have
been updated through one or more gradient steps computed with a small amount
of data from that new task.” The MAML task-agnostic algorithm is training the
parameters of a model in such a way that a small number of gradient updates could
lead to fast learning on a new task. The MAML algorithm was tested on different
model types, including both fully connected and convolutional networks, and in
several distinct domains, including few-shot regression, image classification, and
Reinforcement Learning.

The success of Machine Learning could be attributed in large part to its data-driven
philosophy that favors automatic discovery of patterns from data over the manual
design of expert systems. But there is a far-reaching paradox that is deep-rooted in
the current paradigm, the fact that the algorithms that power ML are still manually
designed. A natural question is whether one could learn these algorithms instead. It
is very likely that one could devise new algorithms that perform much better than
the manually designed ones, thus opening the possibility of improving the learning
process.

From a practical perspective, there are some serious obstacles that need to be over-
come. The most critical issue is how to parameterize the space of algorithms such that
it is both expressive and efficiently searchable. The expressivity and search-ability of
the algorithmic space are acting in opposition, and therefore a trade-off has to be
made. A small algorithmic space would allow for efficient searching (i.e. via simple
enumeration of algorithms in the set), but because the representation is so sparse, the
space would most likely not contain the best possible algorithm. Conversely, if the
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algorithmic space is represented by a large set containing the best possible algorithm,
the searching process could be very inefficient (as an example, enumeration would
take exponential time).

3.3 THE MEANING OF AI – A CRITICAL VIEW

“There’s no sense in being precise when you don’t even know what you’re talk-
ing about.”

– John von Neumann

Artificial Intelligence is becoming the tech-mantra of our time. This term is
overused by academicians and technologists alike, as well as by journalists, venture
capitalists, and others who do not have a solid understanding of the scientific and
technological complexity of this topic.

What is particularly worrisome about the overuse of the tag AI is the fact that
even a large category of scientists are often as confused as the general public when
it comes to properly using this term. When the verbal rampage is coming from
solution vendors, the justification may be purely business related; but when it is
perpetuated by scientists and engineers it is becoming worrisome. The mere idea
that the current AI tool set is emulating human intelligence in silico is indeed
far-fetched and could lead to some very dangerous consequences. Let’s just con-
sider situations involving computers taking life-or-death decisions in a healthcare
setting.

This in silico Intelligence fantasy was very quickly and carelessly extrapolated
to a “planetary-scale inference-and-decision-making system” (Jordan, 2018) by an
army of self-proclaimed AI pundits who are aggressively preaching the blending of
Computer Science with Statistics in order to better serve humanity.

According to Professor Jordan, “Whether or not we come to understand Intelli-
gence any time soon, we do have a major challenge on our hands in bringing together
computers and humans in ways that enhance human life.” This new challenge will
have to be encoded into a new branch of engineering, one that will be built on ideas
that are a century old, like information, algorithm, data, uncertainty, computing,
inference, or optimization. We witness today the existence of a very powerful current
within the technology and business media that is forcefully using AI as an intellectual
wildcard, one that makes it difficult to reason about the scope and consequences of
this emerging technology.

The first level of confusion comes from the fact that most of what is being called AI
today is what has been called Machine Learning (ML) for the past several decades.
ML is an interdisciplinary field that blends ideas from Statistics, Computer Science,
and other disciplines to design and implement algorithms that process data in order
to make predictions and help with decision-making. ML has already generated a
profound impact on the real world by helping businesses in solving mission-critical
problems such as fraud detection, supply-chain prediction, and building innovative
recommendation systems for their customers. As data sets and computing resources
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have grown at a sustained pace, Machine Learning has become an essential tool for
enterprises where decision-making could be related to large-scale data.

“All of machine learning is about error correction.”
– Yann LeCun, chief AI scientist, Facebook

But the idea that the current generation of AI is imitating human intelligence is
just aspirational at best at this point in time. Prior to the debut of the modern AI
era, there were many other academic fields that were inspired by human intelligence.
But the majority of these fields have been focused mostly on low-level primitives
such as signals or decisions. Scientific disciplines such as Statistics, Pattern Recog-
nition, Information Theory, Operations Research, and Control Theory are just a few
examples.

The central idea of AI is to focus on understanding and encoding into software
the high-level cognitive capability of humans, such as the ability to reason and to
think. More than 60 years later after the start of the modern AI era, the aspiration of
coding in silico high-level human reasoning remains a distant goal. The technologi-
cal developments that are currently labeled emerged mostly from engineering fields
associated with low-level pattern recognition and statistics, and they were focused on
finding patterns in data and on making well-founded predictions that could generate
efficient business decisions. R&D conducted in fields such as text classification and
document retrieval, fraud detection, recommendation systems, personalized search,
and social network analysis have been a major success and have powered companies
such as Google, Netflix, Facebook, and Amazon.

The current generation of AI could be characterized as Weak AI. It is fundamentally
an optimization algorithm that could learn from data that is very domain specific and
that could perform extremely well on a test set of the same kind of data. AI performs
reasonably well a vertical single task and has become a very useful tool that could
add value through automation of mundane tasks. The current AI algorithms cannot
learn behaviors such as common sense, emotion, or self-awareness, and therefore
they could not offer any understanding on what it means to be human. The current
algorithms also cannot learn creativity, one of the most valuable human traits, which
involves inventing things, curing diseases, creating art works, etc.

But beyond mislabeling, a more critical issue is that the use of this ill-defined
acronym may prevent a correct understanding of the range of intellectual and com-
mercial issues at play. The last two decades have seen a concerted effort to redefine
the initial scope of AI. A more recent concept referred to as Intelligence Augmenta-
tion (IA) addresses the use of data and computation for the development of services
that could augment human intelligence and creativity (Jordan, 2018). A search engine
could be viewed as an example of IA because it augments human memory and fac-
tual knowledge. By the same token natural language processing could augment the
ability of humans to communicate.

Another emerging discipline labeled as Intelligent Infrastructure (II) studies
the synergy between data, computation, and physical infrastructure side-by-side in
order to make human environments safer and more accommodating. This type of
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Intelligent Infrastructure is becoming present in industries such as transportation,
commerce, medicine, and finance. This vast area of R&D is sometimes referred to
as the Internet of Things.

AI research has made the imitation of human intelligence its main goal from
its inception. But Psychology research has decisively shown that humans are not
always flawless when it comes to reasoning; their behavior shows biases and
limitations, and modeling these traits from a quantitative perspective could be
extremely challenging. The biggest limitation of the human-imitative AI is related
to this challenge. Practical implementations of intelligent systems have shown
empirically that it is neither necessary nor sufficient to make each component of the
system be intelligent. Instead the focus should be on the development of intelligent
building blocks or components that work well with each other and with the human
operator. During their biological and cultural evolution, humans have not been
empowered with the necessary abilities to perform large-scale decision-making
tasks, such as the ones that modern AI systems are designed to implement. Humans
were not built to face or to handle the types of uncertainty that could arise in these
new contexts. Professor Jordan (2018) argues that “an AI system should not only
imitate human intelligence, but they should also correct it and scale it to arbitrarily
large problems.” According to him there are many algorithmic and infrastructural
challenges that are not addressed by the human-imitative AI research. Just a few
examples:

• Designing systems that can find abstractions quickly

• Designing systems that can explain their decisions

• Performing causal reasoning

• Robustness when facing unexpected situations or adversaries

• Protecting privacy and data ownership

While the digital economy will continue to drive technological development, the
academic research will maintain its essential role in providing fresh scientific ideas.
While the contributions from humanities and cognitive-social sciences are going to be
essential for the success of this enterprise, the engineering effort required will be of a
gigantic scale and scope. Visionaries like Professor Jordan believe that we are going
to witness the birth of a new engineering discipline – a human-centric engineering
discipline – that will be at the same time data-focused and learning-focused. Until
one finds a better nomenclature for this new engineering discipline, we will continue
to use the acronym AI as a placeholder. But let’s be aware of the very real limitations
that come with its use!

It took about 200,000 years for the human brain to evolve from a primitive state
to where it is today, and merely 80 years since Konrad Zuse created Z1, the first
programmable computer. The umbrella of Computationally Intelligent techniques has
developed at a very rapid pace in the last 60 years, and it offers the promise of building
the bridge between the awesome mystery of Human Intelligence and the aspirational
world of AI (see Figure 3.3).
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FIGURE 3.3 The place of computational intelligence.

3.4 ON THE APPLICABILITY OF AI TO FINANCE

Now that the reader has been exposed to a more comprehensive picture for the ori-
gins of AI, its historical development, and the controversy surrounding its name, it
will be quite useful to apply this knowledge to our domain of interest – Trading and
Investing. Since AI is generally used as an umbrella term for the different branches of
Machine Learning, this section is going to concentrate on evaluating the applicability
of ML techniques to the field Quantitative Finance. Machine learning is defined as
a set of computational tools that aim to create a mapping between the feature space
and the outcome space with the purpose of classification or of generating predic-
tions about the dynamics of the feature space. While traditional statistical modeling
relies on linear measures or linear estimators, Machine Learning is essentially a tool
set designed to find nonlinear relationships in large data sets. In the statistical par-
lance, ML algorithms are designed and implemented as a system of factors and their
respective weights. The main objective of any ML algorithm is to discover hidden
relationships between the feature space and the outcome space.

ML algorithms have an implicit problem space where they could be extremely
effective – examples are speech and image recognition. The main question that we
will address in this section is whether ML algorithms could be successfully applied
to financial market data. This exercise will require a solid understanding of the
nature of the problem space. What is really special about the financial markets?
How are the characteristics of this particular problem space going to impact the
applicability of general-purpose ML algorithms? In order to answer all these
important questions, one needs to carefully consider the nature of several important
mechanisms that are responsible for the uniqueness of financial market data,
that being:

• Data generation process – Is the generative process stationary such as to ensure
that training and testing could be performed on the same kind of data?

• Data quality – Is the financial market data associated with manageable
noise-to-signal ratio such that overfitting will be kept under control?
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• Dimensionality of the feature space – Could one engineer a feature space of
enough dimensions such that the measurable properties of the financial markets
could be properly learned by the ML algorithms?

Let’s start by defining the Problem: given an experimental data set and a specific
task to be carried out (e.g. Classification, Regression, Clustering, or Dimensionality
Reduction), the goal is to come up with the proper feature set and the most proficient
model that will map the feature space to the outcomes.

The process that maps the feature space to measurable outcomes starts with
processing the data set and culminates with the inference of the best model (by
determining its functional form) that could be applied to unseen data of the
same kind.

Let’s call this process the Machine Learning pipeline (see Figure 3.4).

• The ML pipeline starts with the ingestion of a certain amount of raw data that
usually requires some kind of pre-processing. The effectiveness of machine
learning techniques is very dependent on the quality of the data they consume.
Therefore ensuring a high standard of quality for the input data is a hard
requirement.

• After the data is cleansed it proceeds to the Feature engineering stage. Depend-
ing on the type of data and the ML algorithm utilized, the process of Feature
engineering could be manual or it could be automated.

• Once the features are extracted, and the feature space is fixed, the data is split
into several sets: training, testing, and hold-out.

• A complex iterative process is started whereby the selected ML algorithms are
used on these three different data sets to build the candidate data model.

• Complex validation procedures are used to ensure that the model produced by
the pipeline will be useable in real-world settings.

Testing

Model

TrainingData

preparation

Feature

extraction
Predictions

MODEL

FIGURE 3.4 Machine learning pipeline.
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FIGURE 3.5 Professor Ng on the rocket analogy.

• In many situations there is a combination of ML models that are produced by
the pipeline – what one calls the Ensemble methodology that usually offers the
best results.

One of the most distinguished Deep-Learning researchers, Professor Andrew Ng
from Stanford, co-founder of Coursera and key member of the Deep-Learning teams
at Google and Baidu, likes to use the rocket-fuel analogy to describe the Machine
Learning pipeline (Pitney 2015):

“A rocket ship is a giant engine together with a ton of fuel. Both need to be really big.
If you have a lot of fuel and a tiny engine, you won’t get off the ground. If you have
a huge engine and a tiny amount of fuel, you can lift up, but you probably won’t make
it to orbit. So you need a big engine and a lot of fuel. We finally have the tools to build
the big rocket engine – that is giant computers, that’s our rocket engine. And the fuel is
the data. We finally are getting the data that we need.”

– Andrew Ng (see Figure 3.5)

How can we judge the applicability of ML techniques to the world of financial
data? As mentioned in Chapter 2, data is nothing else but a vector-carrier of informa-
tion about the nature of the process generating this data. Acquiring, modeling, and
interpreting data will shed light into the nature of the process generating this data.

The applicability of Machine Learning methodologies to financial data
depends on:

• Ability to determine the nature of the process that generates the data –
stationary vs. nonstationary
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• Capacity to assure a high-quality standard for the data sets used for training and
testing

• Competence to select an informative, independent, and descriptive feature
space that must be an accurate representation of the process that generates
the data

3.4.1 Data Stationarity

The most commonly used Machine Learning techniques in Quantitative Finance
are Classification, Regression, and Dimensionality Reduction. If the Representation
phase of the ML-pipeline is well understood, what about the Evaluation step: How
well are these ML techniques working when applied to financial market data?
The majority of ML models assume that the data generation process is stationary
and Independent and Identically Distributed (iid). But what if by the time the ML
algorithm has learned the data, conditions may have changed significantly? Using
ML techniques to learn from market data may work well in one regime (training
data) but may be completely ineffective in another regime (test data, out-of-sample).
Is there any guarantee?

Predictive modeling of financial time-series is very different in nature from more
traditional predictive modeling tasks. And this is due to the temporal structure of the
data that has higher than usual dimensionality. In statistical modeling one assumes
that time-series are being generated by stationary processes. In general Statistics
makes quite strong assumptions about the data. Classical statistical time-series anal-
ysis and forecasting methods are concerned with transforming nonstationary time
series data into stationary ones. This is generally done by both identifying and remov-
ing the trends or by removing the seasonal effects. Stationarity tests use summary
statistics like mean and variance for a change over a period of time and then check
the statistical significance to identify if a time series is stationary or not. There are
several families of stationarity tests, but the Augmented Dickey-Fuller test (ADF) is
one of the most utilized statistical tests, also known as the unit root test. The intuition
behind the ADF test is to determine how strongly a time series is defined by a trend. It
uses an autoregressive model and optimizes an information criterion across multiple
lag values.

Now the question is how well general-purpose ML techniques could work on
financial market data given the very nature of it. This type of data is quite special in
the sense that it describes a very complex herd behavior that is highly nonlinear and
nonstationary in its nature. Dealing with nonstationarity is one of modern Machine
Learning’s greatest challenges. As such, the ability to detect transitions from station-
arity to nonstationarity and vice versa is an absolutely necessary tool in ensuring that
the ML algorithms are properly extracting actionable information from the market
data. There are several forms of stationarity that have been studied:

• Weak stationarity – shift-invariance in terms of mean, and
• Strong stationarity – shift-invariance in terms of all moments of the distribution.

It is generally accepted that the financial market data finds itself most of the time in
a weak stationarity regime. This implies the fact that even though the price levels are
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nonstationary, the use of price returns allows for a quite accurate approximation of
weak stationarity. There is a proven fact that for the majority of traded financial secu-
rities, price returns during time intervals smaller than 15 minutes are dominated by
the bid-ask bounce, and therefore after filtration of this kind of noise, the time-series
stays in a weak stationarity regime for most of the trading day. The state-of-the-art
research in this field is very well summarized by Sugiyama and Kawanabe (2012) in
Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift
Adaptation.

3.4.2 Data Quality

Financial market data is a very special kind of data not just because the process
that generates it could transition unexpectedly into a nonstationary regime, but also
because it is associated with a high noise-to-signal ratio. It is widely accepted that
the algorithms that power Machine Learning engines need high-quality data in order
to validate the conclusions they draw from it.

Bad Data + Good Models = Bad Results

The principal ingredients of any ML technique are the data consumed for the learn-
ing process and the algorithms used to actuate that. So is there a preference for one
or the other? Do we need more data or just better algorithms? According to Peter
Norvig, director of Engineering at Google, “We don’t have better algorithms. We just
have more data…We should stop acting as if our main goal is to author extremely
elegant theories… Instead use the best ally we have: the unreasonable effectiveness
of data” (Norvig and Pereira 2009).

The factors that are affecting the data quality are:

• Completeness of data set

• Consistency of data types

• Accuracy

• Validity – whether the data measures what it is intended to measure – noisiness

• Timeliness – real-time vs. historical

Noise is probably the principal factor that affects the quality of the data used by
Machine Learning applications in Quantitative Finance. There are two types of noise:

• Class or label noise occurs when an example is incorrectly labeled. This could
come in two flavors: contradictory examples and misclassifications.

• Attribute noise refers to corruptions in the values of one or more attributes.
These attributes could be erroneous attribute values, missing or unknown
attribute values, and incomplete attributes or do not care values. This type
of noise is more harmful than the class noise, especially for attributes highly
correlated with class labels.
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There are several useful de-noising techniques:

• Filters

• The use of Ensemble learning methods for eliminating systematic noise: com-
bining Bagging, Boosting, and Stacking

• Dimensionality Reduction – PCA

• The use sampling and x-fold cross-validation

• Selecting features that are less prone to noise

One of the most employed filtering techniques for noise reduction in financial
market data is the Kalman filter. The Kalman filter is an algorithm used to find a good
state estimation of stochastic time series data. The Kalman filter is the optimal linear
filter also known as the Best Linear Unbiased Estimator. It assumes that the noise is
Gaussian, and it minimizes the mean squared error of the estimated state parameters.

Other useful techniques are the Ensemble learning ones:

• Bagging (Bootstrap Aggregating) is a way to decrease the variance of predic-
tion by generating additional data for training from your original data set using
combinations with repetitions to produce multisets of the same cardinality/size
as your original data.

• Boosting is a two-step approach; in a first step, one uses subsets of the original
data to produce a series of averagely performing models. Then in a second step,
performance could be boosted by combining the average models together using
a majority vote cost function.

Training an ML model on noisy market data will likely produce an overfitted model
due to the presence of noise. When this overfitted model will be used for predictions
it may generate very costly false signals. The use of Regularization techniques and/or
Bagging could alleviate this problem.

3.4.3 Data Dimensionality

As the term feature is defined as a measurable property of a phenomenon, an essen-
tial step in the ML-pipeline is the engineering of the optimal set of features. The
goal of Feature engineering is to select informative, independent, and descriptive
features such that the ML pipeline will generate models with a specified degree of
predictability. The feature space refers to the numbers of attributes that a data set
possesses and it must preserve the most relevant aspects of the data. Mapping feature
space to the input data space requires having a weight for each of the distinct feature
that could determine the classes of the inputs. There are problem domains such as
Genomics or Astronomy where constructing a feature space is quite laborious given
the high dimensionality of that space. High dimensionality makes the learning process
easy yet prone to overfitting.
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There are some fundamental differences in the way that one could map the Fea-
ture space in Machine Learning as opposed to Probability theory, where one deals
with the Sample space. While the Feature space in ML could be further increased by
extracting new features, the dimensionality of the Sample space in Probability theory
cannot be increased. The Sample space is exhaustive while the Feature space in ML
is expandable. The ML pipeline derives a model from the raw data. After the raw data
is pre-processed and cleansed, it is subjected to Feature engineering. The features are
then passed onto algorithms to train a candidate model, which represents nothing but
a mathematical summary of features.

There are many Feature engineering approaches, but the most utilized ones are:

• Filters are using the most promising N features according to rankings from a
proxy measure.

• Wrappers are searching through the space of data subsets and are training and
evaluating a model using a greedy search.

• Embedded methods – feature selection is part of the model construction process.

In the special case of financial time-series, Feature engineering could be done by:

• Discretization – construct bins for continuous features.

• Delta method – taking the difference between two features.

• Windowing.

• Standardization – zero mean and unit standard deviation.

• Normalization – feature vectors with unit norm.

From a feature dimensionality perspective, the financial market data is very spe-
cial. The fundamental two features of market data are price and volume. Is it even
possible to play piano on just two strings? Fortunately given the time-varying nature
of this kind of data, one is able to fabricate quite easily more dimensions via split-
ting the time series into small fragments and constructing a multidimensional vector
that represents each fragment. In addition one may be able to synthesize new time
series from the initial one via derivation, integration, or filtering, and build a truly
multidimensional time series.

3.5 PERSPECTIVES AND FUTURE DIRECTIONS

The concept of Artificial Intelligence is very well anchored in today’s pop culture.
It is a term that is used so frequently and so liberally that it very soon could become
a verb or an adjective, à la “Let’s google that.” Beyond all one could say about the
intellectual honesty of promoting a term that is not factually correct, it is also fair
to mention that the development of the many scientific disciplines that one could
group under the AI umbrella is creating a lot of value to the society on several
levels, by:
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• Providing insights and foresights via the use of Statistical Learning techniques,
such as data mining and predictive analytics

• Augmenting human decision-making via the use of Machine Learning methods
(supervised or unsupervised)

• Providing adaptive learning techniques such as Reinforcement Learning that
could learn and adapt within continuously changing environments (robots and
autonomous vehicles).

The penetration of AI into the world of finance is not as easy as one may think.
Although the AI keyword is widely utilized, the real use of the concept is still in its
infancy. Switching the AI label to ML may bring us a bit closer to real-world appli-
cations. What makes financial market data very unique from an ML applicability
perspective is mainly related to the very complex nonlinear and nonstationary nature
of the processes that drive the financial markets. Therefore characteristics such as sta-
tionarity, noise-to-signal-ratio, and dimensionality are very important considerations
to be taken into account when one attempts to use ML techniques on this type of data.

To these specific characteristics of the financial market data one could add the
contribution of the very fine granularity of tick-data. This very special type of data
is the messenger of the market microstructure processes that are fundamental in the
understanding of price dynamics at very short time scales. This market microstructure
data is captured at the resolution of individual orders (therefore is very noisy and
nonstationary), but it encodes extremely useful information about factors like hidden
liquidity, or operations like cancellations and executions.

Time is an absolutely critical factor in trading, especially in the field of
High-Frequency trading. From this perspective applying a plain-vanilla ML-pipeline
in a trading setting is a very challenging, but not to say a practically impossible
task. For real-time decision-making, a typical ML pipeline could be a non-starter
since it creates a critical bottleneck for the trading-decision pipeline. Therefore ML
algorithms need extremely fast offloads.

New techniques have been recently developed whereby the learning is done online
from streaming real-time data, as opposed to historical data. These state-of-the-art
methods are looking to eliminate the need for lengthy lookups and complex calcula-
tions, by allowing fast memory access and hash-function lookups. These online learn-
ing techniques (Shalev-Shwartz 2012) are sometimes described as data in motion
analysis because it treats data as a running stream, and it learns as the stream flows.
Classical offline learning or batch learning treats data as a static pool, assuming that
all data is available at the time of training.

Given a financial market data set, the traditional offline learning produces only
one final model, with all the data being considered simultaneously. Online learning
algorithms look at a limited (usually quite small) data set at a time. With each read,
online learning makes a small incremental update to the model it built with past data.
The model gradually improves as it receives more data in real-time from the available
stream.

But probably the most important challenge in applying ML techniques to HFT data
is the profound lack of understanding of how such low-level data could be related to
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actionable circumstances, such as optimally executing large orders, or alpha genera-
tion. The case studies presented in Chapters 6 through 11 will bring to the reader the
latest research published in this field.
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CHAPTER 4

Computational Intelligence –
A Principled Approach for the Era
of Data Exploration

“The science of learning explores how a computationally limited entity can
succeed in a world that is too complex for it to model.”

– Leslie Valiant, Turing Award winner

4.1 INTRODUCTION TO COMPUTATIONAL INTELLIGENCE

The debate over the legitimacy of the term Artificial Intelligence is not going to set-
tle anytime soon. There is a continuous display of pros and cons, and both sides
rely on powerful advocacy groups. Whether or not one side will win the argument
over the other one is absolutely irrelevant. What matters more is the achievement of
some palpable progress that will advance the understanding of human intelligence
and hopefully pave the way for machines to emulate it in a way that will be beneficial
for the society as a whole.

4.1.1 Defining Intelligence

Since the concept of intelligence is fundamental to any human endeavor, and
especially because it makes up half of the term Artificial Intelligence, it is both
wise and fair to build upon its foundation any scientific endeavor that may claim
to emulate it. Intellectual honesty requires that any reference to AI should take
into consideration a clear definition of the term intelligence. So let’s attempt to
define this very complex concept. Webster’s definition, which is one of the most
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commonly used, states that Intelligence is “the ability to learn, or to understand, or to
deal with new or trying situations,” or alternatively “the ability to apply knowledge
in order to manipulate one’s environment, or to think abstractly as measured by
objective criteria (tests).” David Fogel (1995), one of the pioneers of evolutionary
computing, defined Intelligence as “the capability of a system to adapt its behavior
to meet its goals in a range of environments. It is a property of all purpose-driven
decision-makers.” This definition of Intelligence is perhaps more relevant to the
subject matter of this book, so we will keep it as a reference.

We have recently witnessed the development of a large variety of analytic and
computational tools that made possible solutions to problems that were previously
considered difficult or impossible to solve. Many of these new tools have been
grouped under the umbrella of yet another composite term that includes the word
Intelligence, namely Computational Intelligence. The concept of Computational
Intelligence refers to the ability of an algorithm to learn through computational
means a specific task from experimental observation from data. What is specific
to Computational Intelligence is the fact that it represents a set of nature-inspired
computational techniques that are applicable to complex real-world problems for
which traditional mathematical modeling does not work. The two main sets of
problems addressed by Computational Intelligence relate to modeling of processes
that might be either too complex for mathematical reasoning or could be considered
as stochastic in nature. Although both Computational Intelligence and Artificial
Intelligence may seek similar goals, there’s a clear distinction between them and this
will be the subject of this chapter.

An important note to the reader: there will be many references to Computational
Intelligence throughout this book. In many instances, the meaning of Computational
Intelligence is not going to be necessarily the one used in Computer Science (CS)
circles. My interpretation and use of the term CI is a lot more flexible and refers
specifically to any computational methodologies that could be used in the process of
learning from data with the purpose of driving decisions in the realm of trading and
investing. In the vast majority of cases, especially in the chapters that will introduce
the case studies, my definition of CI refers mainly to Machine Learning techniques
that are currently used in Quantitative and Computational Finance. But I also added
references to other methods, like the Probably Approximately Correct framework,
which promises to bring us closer to achieving true Intelligence via evolutionary tech-
niques (ecorithms) that are more akin to human behavior than to machines. I will
try to be consistent in the use of the term, by using the acronym CI for the more
narrow interpretation related to data-intensive computations, and Computational
Intelligence for the umbrella term that is used in computer science.

4.1.2 What Is Computational Intelligence?

From a pure computer science perspective, Computational Intelligence is focusing on
problems that only humans can solve, problems requiring Intelligence. The methods
used by Computational Intelligence are close to the human way of reasoning that
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is using inexact and incomplete information, with the declared scope of generating
controlled actions in an adaptive way.

Computational Intelligence encompasses a multidisciplinary framework that
includes well-established research fields such as:

• Artificial Neural Networks, which allow a system to learn from data in an expe-
riential way, by operating like a biological neural system

• Fuzzy logic, which enables a computer to understand natural languages

• Evolutionary computing, which is based on natural selection criteria

• Swarm intelligence, which studies the collective behavior of decentralized and
self-organized systems

• Statistical analysis, which helps dealing with uncertainty imprecision

Computational Intelligence is closely related to the field called soft computing.
According to Lofti Zadeh (1998), the inventor of fuzzy logic, “Soft computing is not
a single methodology. Rather, it is a consortium of computing methodologies which
collectively provide a foundation for the conception, design and deployment of intel-
ligent systems.” When compared with the traditional hard computing methodology,
soft computing is more permissive of imprecision, uncertainty, and partial truth. The
guiding principle of soft computing is to “exploit the tolerance for imprecision, uncer-
tainty and partial truth to achieve tractability, robustness, low solution cost and better
rapport with reality.” Zadeh believed that the philosophy of soft computing is foun-
dational to the emerging field of Computational Intelligence. He describes AI as a
discipline relying on hard computing techniques, whereas Computational Intelligence
is based on soft computing methods.

It is quite common that scientific disciplines are not statically defined, but they
slowly evolve in scope and coverage by sharing and clustering of common inter-
ests with other related fields. When the AI community started to develop in the late
1950s, the main objective was to encode human intelligence into a format that com-
puters could operate on (by developing in silico agents). The evolution of AI’s ini-
tial goal was summarized in the twenty-fifth anniversary issue of AI Magazine by
Mackworth (2005): “In AI’s youth, we worked hard to establish our paradigm by
vigorously attacking and excluding apparent pretenders to the throne of intelligence,
pretenders such as pattern recognition, behaviorism, neural networks, and even prob-
ability theory. Now that we are established, such ideological purity is no longer a
concern. We are more catholic, focusing on problems, not on hammers. Given that
we do have a comprehensive toolbox, issues of architecture and integration emerge
as central.”

The idea of Computational Intelligence was crystalized into an impressive number
of societies and scientific journals. The most active group is the IEEE Computational
Intelligence Society, which defines its subjects of interest as Neural Networks,
Fuzzy Systems and Evolutionary Computation, including Swarm intelligence.
The approach taken by both journals and by book authors was to treat Computational
Intelligence as an umbrella under which more and more methods could be added.
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Computational Intelligence is a computing methodology that provides a system with
an ability to learn and deal with new situations. The system is required to possess
reasoning attributes such as generalization, discovery, association, and abstraction.
Computational Intelligence systems usually incorporate a mixture of paradigms
such as Artificial Neural Networks, Fuzzy Systems, and Evolutionary Computation,
augmented with specific domain knowledge. They are often designed to mimic
one or more aspects of biological intelligence. The concept of Computational
Intelligence is also closely related to concepts such as adaptation and evolution;
this could facilitate the appropriate actions (via intelligent behavior) necessary for
systems to survive in complex and changing environments.

For many Computational Intelligence advocates, the field exhibits a series of obvi-
ous biological inspirations:

• ANNs use neurons as their building blocks.
• Fuzzy logic is founded on the idea of uncertainty and vagueness, and it draws

its roots from the behavioral expression of organisms and their interaction with
the environment.

• Evolutionary computing is using genetics and evolution at its core.

But there are also other categories of Computational Intelligence tools that have
no biological connections, such as Bayesian learning, probabilistic and possibilistic
reasoning, alternative approaches to handle uncertainty, kernel methods, or search
algorithms.

4.1.3 Mapping the Field of Study

Computer Science focuses on the study on computable processes and the design
of processing systems. Computational Intelligence studies a different set of prob-
lems for which there are no adequate practical implementations of algorithms. This
impracticality arises when either the problem formulation is not possible in a codable
form or when the problem is NP-hard and therefore a practical implementation does
not exist. I will define Computational Intelligence as a “branch of computer science
studying problems for which there are no effective computational algorithms” (Duch
2013). The implementation of truly intelligent in silico agents, which was the initial
goal of AI, is one of these problems.

Biological organisms deal with such hard problems every day: extracting mean-
ing from information that was acquired through perception, communicating, and
understanding via the use of languages, solving all kind of ill-defined problems.
These problem-solving skills have been acquired by living organisms as a result of
their ability to adapt to their environment. Biological organisms are facing a great
variety of problems, and they have acquired the capacity to survive by learning how
to solve these problems in a multitude of ways. Being inspired by nature’s ability to
adapt in order to survive and thrive, the Computational Intelligence’s field of study
is defined by the problems it tries to solve rather than by the methods and tools used
in the problem-solving process.
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The vast majority of Computational Intelligence research concentrates on
low-level cognitive functions, such as perception (e.g. object recognition and signal
analysis), pattern discovery, object association, and system control. By comparison,
the stated goal of AI was from the beginning to focus on problems that require higher
cognition. Higher-level cognitive functions are required to solve non-algorithmizable
problems involving systemic thinking, reasoning, planning, and understanding of
symbolic knowledge. These problems are currently addressed by the AI community
using methods based on search, symbolic knowledge representation, and Natural
Language Processing methods. The overlap between the low-level approach used
in Computational Intelligence and the high-level cognitive AI-style could be found
in both Machine Learning (e.g. Sequence Learning and Reinforcement Learning)
as well as Distributed Multi-Agent systems. All applications that require reasoning
based on perceptions, such as robotics or self-driving cars, require methods for
solving both low and high-level cognitive problems, and they represent a common
area of interest for both AI and Computational Intelligence experts.

The concepts of Learning and Adaptation are deeply grounded on evolutionary
biology, and they are becoming nowadays the conceptual foundation upon which
Computational Intelligence is developing (Eberhart and Shi 2007). While the Learn-
ing applies globally to the entire intelligent system, Adaptation is applicable just to
the portion of the system where Computational Intelligence is relevant. The three
main Adaptation paradigms are:

• Supervised Adaptation that uses a teacher paradigm

• Reinforcement Adaptation that uses a critic paradigm

• Unsupervised Adaptation that employs an algorithm operating on the data set
with no feedback (no labeling)

In Supervised Adaptation, a teacher has access to detailed input/output infor-
mation involving a number of specific examples. The more examples that are
available, the better the system will be able to adapt to model the structure under-
lying them, given that the distribution from which they were drawn is known and
stationary.

In the case of Reinforcement Adaptation, a critic agent has access to a metric
(and not a quantitatively defined cost function!) that determines whether a solution
is qualitatively better than another one in spite of the fact that it cannot calculate a
fitness measure for that problem. As such, the critic (see Figure 4.1) does not know
about the location of an optimum solution or even if one exists. By comparison,
the teacher from the supervised case may be able to discover the optimum solution
for the problem space. When there is neither fitness information nor any labeled
feedback available, the Adaptation process is becoming Unsupervised. This type
of Adaptation process will be used to find features (clusters) in the data. There are
situations when in spite of having labeling information available one still prefers to
use Unsupervised Adaptation to reduce the problem’s dimensionality and facilitate
the use of Supervised Adaptation for later stages.
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FIGURE 4.1 Different types of adaptation mechanisms.

All these types of adaptation are using similar principles with methods from the
field of Machine Learning. No matter what kind of Adaptation is implemented, there
are three different spaces that are used for any implementation choice:

• The Input Parameter (Problem) space is defined by the range of the input vari-
ables. These ranges are generally specified, but sometimes just sample patterns
are available.

• The System Output (Function) space is defined by the range of the outputs.
These ranges could be specified either by using hard or soft constraints. A hard
constraint is one that cannot be violated, as opposed to a soft constraint that
could be violated while applying a penalty to the Cost function.

• The Fitness space is the space used to define the goodness of the solutions in
the output space generated by the adaptive system.

One needs to emphasize the fact that AI is intrinsically connected with the concept
of hard computing. Important properties of systems such as the ability to generalize,
to deal with partial truths and uncertainty, to allow for some tolerance for errors and
noise, but mostly to perform well in changing and complex environments, are not
easily implemented (if at all) by using the hard computing paradigm.

Since most systems in real life are characterized by imprecision, uncertainty, par-
tial truths, and nonlinearity, Computational Intelligence becomes a more convincing
candidate for implementing optimization and diagnostics algorithms in complex and
changing environments.

4.1.4 Problems vs. Tools

Another defining characteristic of Computational Intelligence is represented by its
problem-solving focus. This multidisciplinary field is viewed more as an approach
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to solving problems than just another set of tools. And one should not confound
the field’s purpose with its methodology. The purpose is to understand how intel-
ligent behavior is possible, but the ultimate goal is to design, implement, and experi-
ment with computational systems that perform tasks commonly viewed as intelligent.
Creating these artifacts is an essential goal for Computational Intelligence that, after
all, is a truly empirical science.

The concept of Computational Intelligence was created initially with the desire
to avoid the use of the adjective artificial, which hints at simulated rather than
natural intelligence. But during its evolution Computational Intelligence’s goal
shifted to the understanding of both natural and synthetic intelligent systems by
means of implementing them. Let’s consider as an example the simulation of an
intergalactic flight mission. Computers could be seen as the archetype of a formal
symbol-manipulation system, and as such they are the tool carrying out most of
the simulations nowadays. But a computer simulation will not amount to a real
intergalactic flight. The goal of Computational Intelligence is to actually create the
intelligence that could make the practical implementation of this flight possible.

One has to realize that there is a healthy competition between the science of Com-
putational Intelligence, which is attempting to understand the principles of reasoning,
and the engineering of Computational Intelligence, which focuses on coding the pro-
grams required to solve particular problems. This duality is one of the main drivers
of this new discipline. As a scientific discipline Computational Intelligence is aim-
ing at the creation and testing of debatable theories, specifically looking at how hard
practical problems could be represented and solved by a computer. These theories
should have empirical support in real-world implementations, whose quality should
be judged by traditional Computer Science principles. The main purpose of Com-
putational Intelligence is to bridge the duality of specifying theories and building
implementations.

4.1.5 Current Challenges

From its inception, the world of AI has been accustomed to a number of grand chal-
lenges, and it started with the famous Turing test for machine intelligence. This test
is still unsolved today mainly because it requires a very-large knowledge base and a
super-efficient system for retrieval of information.

What could be today’s greatest challenge for Computational Intelligence? Natu-
rally the answer should align with the declared scope of Computational Intelligence,
which is dealing with low-level cognitive functions. The nature and the complexity of
dealing with Intelligence are not very different for low- or high-level representations
of cognition. Therefore the challenges are gravitating around the same themes,
which are represented by more efficient knowledge representation and retrieval
structures. Most of the Computational Intelligence research attempted to come up
with candidate models for knowledge representations by looking for inspiration in
the associative memory of the brain. Current forms of knowledge representation used
in Machine Learning such as vector- and similarity-based models cannot replace
the complexity of the reasoning processes. Semantic networks are representing
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alternatives that could provide efficient association and inference mechanisms, but
they have never been used on large-scale practical implementations. But the ultimate
challenge for Computational Intelligence would be to build an intelligent agent that
for example could be able to survive in a hostile environment. Several intermediary
steps will be required to achieve the ultimate solution, specifically being able to
understand and model:

• Perception – e.g. object recognition, auditory and visual analysis, spatial orien-
tation

• Memory organization and retrieval

• Learning process

• Behavioral control

• Reasoning and planning

This survival test may be a necessary prerequisite required to pass the Turing test.

4.1.6 The Future of Computational Intelligence

What Computational Intelligence intends to achieve is a form of Intelligence based
on computational power. Many questions remain unanswered. Is Intelligence even
computable, and if it is, could it be learned? Humans are natively able to draw general
lessons from life experiences. Can this be coded? Once our intelligent agent will be
able to learn how to survive simple situations, would it be able to evolve and adapt to
more complex scenarios?

Similarly to AI, Computational Intelligence will not escape the scrutiny of soci-
etal utility and safety, as its main objective should be human-centered. Because of its
emphasis on solving problems, Computational Intelligence should become an impor-
tant tool in the decision-making process by generating scenarios that are presenting
the users with choices and their possible consequences. A long-term goal for Compu-
tational Intelligence is to create cognitive systems that could compete with humans
in a variety of areas. Nowadays this is possible only in restricted domains, such as
pattern recognition, automation of the processing of a large amount of numerical
information, high-precision control for a limited number of degrees of freedom, and
reasoning in board games.

Despite a great deal of progress achieved by Computational Intelligence research,
systems designed to solve lower-level cognitive functions are still far behind the nat-
ural ones. The situation is even worse when higher-level cognitive functions (AI)
like language understanding, reasoning, problem solving, and planning are consid-
ered. The reality is that AI is a far cry from what the meaning of Intelligence will
infer. The ability of humans to apply semantic and episodic memory is vastly supe-
rior to the most sophisticated artificial systems, storing complex memory patterns
and rapidly accessing them in an associative way. As a majority of academics and
technologists agree, Computational Intelligence is defined as the science of solv-
ing non-algorithmizable problems. Therefore this new domain is firmly anchored
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in the field of Computer Science. Focusing on problems instead of just tools will
allow for a greater cooperation with the AI community, and it will enable a pro-
ductive competition between these two fields, facilitating real progress toward more
difficult problems.

4.1.7 Examples in Finance

As mentioned in the previous section, Computational Intelligence is a multidisci-
plinary field of research that aims at developing machine intelligence by incorporating
foundational concepts from biological intelligence, such as Learning and Adaptation.
This methodology represents a bottom-up approach.

One of the realities that quantitative finance practitioners have to deal with on
a daily basis is the fact that many of the problems they face have no closed form
solutions but require trade-offs and optimizations instead. A typical example is the
Optimal Execution problem that will be addressed in Chapter 6. From a high-level
decision-making perspective, it is obvious that for every order there is an optimal
execution rate or execution schedule. But reaching an optimal rate of execution or
an optimal execution schedule depends very much on preferences and tolerances
assigned by market participants. These parameters depend on market impact and
appetite for risk. This is an example of high-level decision-making under uncertainty
informed by low-level granular data and quantitative models.

But during the process of Learning and Adaptation to the state of the market,
the agent has to deal with a system of variable and high dimensionality. And this
will require a low-level decision-making capability. Every observed market state can
potentially evolve into an almost infinite number of other market states. In such an
environment the set of possible actionable parameters (e.g. order time, price, size, and
duration) is very large and dense. In addition, for this type of problem local optimality
does not necessarily translate into a global optimality; what could be considered as a
bad decision (trade) now could turn out to be an excellent one later. This is referred to
as non-local optimality. The usual Machine Learning techniques are not going to be
efficient for these kinds of problems! In the second part of the book we will explore
the applicability of Computational Intelligence methodologies to these very domain
specific problems.

As mentioned before, the field of Computational Intelligence is built on
well-established research areas such as Artificial Neutral Networks, Fuzzy Logic,
or Evolutionary Computing. The last few decades have seen these disciplines find
interesting applications in the financial industry. Financial applications are usually
aiming to predict the outcome of future events based on historical data.

Some of the areas where Artificial Neural Networks (Bishop 1995) have been
effectively used:

• Predicting equities market price direction

• Forecasting term structure of interest rates

• Loan application evaluation and underwriting

• Credit scoring
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Fuzzy logic has also been applied to a variety of applications in Finance in
Narayana (2017). Using historical data fuzzy, logic systems could be used to analyze
and predict future market price trends. Some examples are:

• Stock ranking, by evaluating corporations based on fundamental indicators,
such as: profitability, management performance, capital structure, volume of
transactions, and a variety of technical indicators;

• Stock selection, by using fuzzy rules and decision trees;

• Trading rule generation using fuzzification and de-fuzzification of technical
indicators.

There were also attempts to apply Evolutionary Computing in Financial Engineer-
ing (Iba and Aranha 2012), most of them related to the generation of trading strategies,
trend analysis, price forecasting, and portfolio optimization.

Although these techniques have been used for several decades, what Computa-
tional Intelligence brings new to Quantitative Finance and Financial Engineering is
the centrality of the learning process. Dealing with the ever-increasing complexity of
the financial markets will require a fresh new approach to cope with real-world situ-
ations for which hard computing techniques are not effective any longer. The ability
to adapt dynamically to rapidly changing environments, such as the financial mar-
kets, requires the use of different methodologies, more akin to the principle of soft
computing. Brand new algorithms need to be developed. What is specific to this new
family of algorithms is the fact that they do not run on environments already known
to the designer, but they need to learn from the environment they run on and cope
with unknown scenarios.

4.2 THE PAC THEORY

Since the beginning of the AI era, a considerable amount of time and effort was
spent by the Computer Science community studying the theory of Computational
Complexity. One of the most fundament questions was referring to which aspect
of Intelligence could be modeled as a quantitative theory. The vast majority of
researchers in this field agreed that the answer must be Learning.

Unfortunately there was a general lack of consensus on how to define the process
of Learning. For a long period of time Learning was not regarded as a field that would
qualify as a scientific discipline. Until relatively recently Learning was considered as
an extension of Education Psychology and other related non-quantitative disciplines.
In spite of the fact that Learning is a very reproducible process, a rigorous quantitative
modeling is still not available.

Last decade has seen a resurgence of interest in modeling the process of
Learning. Pioneering work in this area was published in 2012 by Koedinger and
collaborators at Carnegie Mellon (Koedinger, Corbett, and Perfetti 2012). They
introduced the Knowledge-Learning-Instruction framework that was used to identify
a broad range of learning events and influencing factors such as memory, induction,
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understanding, and sense-making processes. Other researchers believe that Learning
must be modeled from both a statistical and a computational perspective. Since
Learning is a central component to Computational Intelligence, this section is
dedicated to understanding the relationship between Learning, Evolution, and
Intelligence.

Dr. Leslie Valiant is one of the most prestigious computational theorists and com-
puter scientists of our time. Professor Valiant was the recipient of the Turing award
in 2010 for his “transformative contributions to the theory of computation, includ-
ing the theory of probably approximately correct (PAC) learning, the complexity of
enumeration and of algebraic computation, and the theory of parallel and distributed
computing.” He is the T. Jefferson Coolidge Professor of Computer Science and
Applied Mathematics at Harvard and also the author of the Probably Approximately
Correct (PAC) learning model (Valiant 1984, 2013) that I am going to use in this
section as the framework upon which to build the case for the use of CI in Quanti-
tative Finance. Professor Valiant is well known for avoiding the use of the term AI.
At the beginning of his scientific career, while talking to the famous Edsger Dijk-
stra (one of the most influential computer scientists of the twentieth century, inventor
of Dijkstra’s algorithm), he was asked about the subject of research that he worked on
at that time. After proudly responding AI, Dijkstra said: “Why don’t you work first
on the ‘Intelligence’ part?” That was a WOW moment for Dr. Valiant that prompted
him to dedicate most of his scientific career to studying the mechanisms of Learning
and Intelligence.

This section will introduce the PAC framework, which is a revolutionary way
of studying and emulating Intelligence. The PAC theory was introduced by Leslie
Valiant in 1984 and for this contribution he was given the Turing award in 2010.
Prof. Valiant is one of the pioneers of formalizing the fundamental equivalence
between the capabilities of brains and computers. Several decades of research in
this field allowed him to come up with the Probably Approximately Correct model,
which defines mathematically the conditions under which a mechanistic system
could be said to learn information.

4.2.1 The Probably Approximately Correct Framework

Algorithms are defined in classical computing as step-by-step instructions needed to
achieve an expected outcome, similar to recipes in cooking. The designer of the recipe
has full knowledge and is in full control of the environment utilized for achieving the
desired goal.

PAC theory introduced a novel algorithmic concept called the ecorithm. The
ecorithms are a special category of algorithms. Unlike classical algorithms, they
run in environments that are initially unknown to the designer. The ecorithms
learn new information that was not available at the design time by interact-
ing with the environment without being programmed to do so. After sufficient
interaction with the unknown environment, the ecorithms will gain new knowl-
edge that was not provided by the designer but extracted from the environment
instead.
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The Probably Approximately Correct model provides a mathematical framework
by which algorithmic designers could evaluate the expertise achieved through the
Learning process (the Representation step) and devise the Cost function associated
with it (the Estimation step). The performance of an ecorithm is evaluated against
input information collected from a rather uncontrolled and unpredictable environment
and its goal is to perform well enough to ensure survivability.

Another novelty introduced by the PAC theory is that ecorithms are not merely
characteristics of computers. Dr. Valiant generalizes the ecorithms as computational
concepts that could be used to explore fundamental mysteries related to the evolution
of life on Earth. Evolutionary Biology explains how evolution was shaped by living
organisms interacting with and adapting to their environments. According to PAC
the combination of bio-inheritance and the new knowledge acquired through learning
from the environment are the major factors on determining the dynamics of a system
or bio entity. The PAC theory suggests a unified way of studying the mechanisms of
learning, evolution, and intelligence using computer science methods.

If algorithms are currently implemented in in silico systems, ecorithms could be
applied to a much broader category of systems, from simple organisms to entire bio-
logical species. The PAC framework illustrates a computational equivalence between
the way that individuals learn and the way that entire biological systems could evolve.
For both cases, ecorithms are describing adaptive behavior in a mechanistic way.
PAC’s declared goal is to find “mathematical definitions of learning and evolution
which can address all ways in which information can get into systems.” (Valiant
1984, 2013) A possible outcome will result in integrating life and computer sciences
in novel ways never attempted before. The notions of Learning and Intelligence could
then be expanded to include non-biological entities.

Chapter 2 illustrates in great detail the transformative journey of data from
Information into Knowledge and eventually Intelligence. The PAC theory defines
as theoryful the mathematical rules for predicting the process of transforming
Information into Knowledge. Everything else is termed as theoryless. Theoryless
processes, including evolution in biological systems or decision-making in cognitive
systems, are considered as innovative applications of the ecorithm concept.

The computational features of the Learning process as modeled by the PAC theory
have the following important properties:

• The learning process should take place in a relatively limited number of steps
(in polynomial time).

• The number of interactions with the environment from which the entity is learn-
ing should be limited.

• The probability of making errors in applying the knowledge acquired by learn-
ing should be sufficiently small.

One of the main assumptions of AI has been that one could eventually emulate in
software the computations that our brains are performing by identifying their algo-
rithms. This claim asserts that Artificial Intelligence and General Intelligence are
practically one and the same. The biggest failure of AI so far lies in its inability
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to precisely determine what these computations should be and what the algorithms
responsible are. Fortunately Machine Learning has been proven to be a quite effective
mechanism of bypassing this deadlock. One of the biggest challenges for achiev-
ing the AI dream is the ability to implement computations that model evolutionary
behavior.

A typical example of this problem is the toddler learning to walk problem. What is
the process by which a small child is learning to walk by crawling, touching, and sens-
ing the surrounding environment? This is a process of learning that involves acquiring
knowledge that is not described in a user manual, could not be coded in the classical
sense of hard computing, and is very domain and individual specific.

Although this problem is clearly not of a hard computing type, a certain level
of computational activity is performed by the learner while the Learning process is
unfolding. Until very recently the general assumption was that Learning could take
place exclusively in biological systems. The novelty of the PAC theory is that Intelli-
gence is made up of tangible, mechanical, and ultimately understandable processes.
According to Professor Valiant, “We will understand the intelligence we put into
machines in the same way we understand the physics of explosives – that is, well
enough to be able to render their behavior predictable enough that in general they
don’t cause unintended damage.” (Valiant 2013)

4.2.2 Why AI Is a Very Lofty Goal to Achieve

The central idea of PAC’s theory is that the successful Learning of any concept of
unknown nature should involve the determination of a high-probability hypothesis
that represents a good approximation of it. This will assert that most decisions, either
conscious or evolutionary, could be represented in terms of PAC learning.

The field of Machine Learning has convincingly demonstrated that the notion
of Learning is central to Intelligence. Unfortunately the Learning algorithms
responsible for human intelligence are yet to be identified. Although the current ML
algorithms are detecting regularities or patterns that are learned from data, trying
to understand and emulate Intelligence, especially human Intelligence, requires a
lot more than that. The mere fact that one could detect regularities in data does not
make a problem simpler to solve. It has been experimentally proven that even the
most complex and theoryless data could exhibit predictable patterns. Functional
MRI analysis has shown that predictable patterns of blood flow in the brain could
be detected when the experimental subject is reading a text. This problem pertains
undoubtedly to the theoryless realm since the understanding of how knowledge is
represented in the brain is almost nonexistent.

How is computer science currently dealing with problems when using the hard
computing paradigm? For any given problem, a computer:

• Could be programmed to solve it via a predefined algorithm, or

• Could be instructed to learn how to solve it by giving it access to lots of data, or

• Could use a combination of these two approaches.
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Because the process of learning is statistical in nature, it cannot be made error-free.
If developing a flawless program is an achievable goal, the learning alternative will
always be exposed to the risk of not being sufficiently accurate. For problems where
the desired outcome could be explicitly specified, programming would be the best
solution, assuming that one is able to do so. For a variety of reasons there are situations
where one may not be able to program a solution. As a consequence, the learning
solution becomes vital whenever one cannot specify explicitly the outcome or one
cannot get direct programming access to the system. When the learner is a human
agent, all these conditions may apply, and there is no alternative to learning. When
the learner is a computer system, some or all of these conditions could be present and
then the learning solution is the only possibility.

The inability to explicitly specify outcomes is the most common use of
general-purpose ML applications. E-mail spam detection is a typical example. As
new sources of spam are rapidly developing, the task of manually incorporating ways
of detecting it into e-mail systems would be prohibitive. Instead ML algorithms learn
specific patterns from e-mail data that enable them to distinguish between e-mails
that users label as spam from e-mail that they do not.

The success of Machine Learning is due in large part to the effectiveness of several
learning algorithms, such as boosting or ensemble learners. One of the most remark-
able innovations in ML is the boosting methodology, which is used currently as a
generic technique for improving the performance of almost any basic learning algo-
rithm. The building block is represented by a weak learner that is using a learning
style in which the hypothesis employed predicts just marginally better than random
guessing. Then the Boosting algorithm will translate the weak learning algorithm into
a strong learning algorithm. The idea is to use the weak learning method several times
to get a succession of hypotheses and keep the focus on the examples that previous
hypotheses found difficult to classify. Because weak learning works for any distri-
bution, modifying the distribution at each stage will enable the learner to achieve
better results by this repeated refocusing. Boosting has proved to be a very robust
method for improving the predictive accuracy of a wide variety of simple learning
methods.

Besides the choice of what learning algorithm to use, the selection of features
to represent the problem is another important aspect in Machine Learning. It was
empirically proven that good choices yield to more accurate predictions. But how
can one gauge what a better choice of features is? The process of feature engineering
is computational in nature but not quite well understood. Biological systems for
example are using high-level features. These features are acquired most likely
through the evolution process and were passed from generation to generation in a
genetically encoded fashion. Learning these high level features from scratch individ-
ually every time one needs to use them would make the evolution a lot less efficient.
ML has benefited greatly not only from the development of better algorithms and
from the access to large volumes of data but also from the development of hardware
accelerators like GPUs or FPGAs. The success of ML on a broad variety of problems
is powerful evidence for the effectiveness of learning in areas related to human
information processing.
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Undoubtedly Machine Learning is the most successful branch of AI to date. One of
the most sobering questions about the use of this methodology is how can one predict
for which problems one expects ML to succeed, and for which to fail. This question
is especially important in Quantitative Finance. A strong requirement would be that
the distribution on which the system needs to perform well must be identifiable. The
distribution does not need to be described explicitly, but just unambiguously. This
means that one should have the assurance that algorithms trained on labeled data sets
of typical examples will perform at least as well when used out in the wild on unseen
data of the same kind. But even when this data distribution consistency is present, the
ML approaches may fail because the patterns that one searches are either inherently
hard to learn or because the information in the data set is not sufficient for the task
at hand.

What really makes AI so difficult to achieve?
The short answer is the inability of machines to handle common sense knowledge

in a way that is similar to humans. According to Professor Valiant, the human
cognitive system is the outcome of a very long period of evolution coupled with
a lifetime of learnable target pursuit since birth. Alan Turing’s dream was to
educate a computer as one would educate a child. That would entail endowing the
computer with human-like cognitive capabilities. But because human cognitive
abilities are the result of complex evolutionary ecorithms, and because of our very
limited understanding of how our brain is hardwired, this process is absolutely
theoryless. There have been attempts to describe the algorithms of evolution, but the
experimental results (the data) are no doubt, theoryless.

Let’s suppose that one may have access to a powerful super-theory that will allow
the computation of the atomic features of the human nervous system at birth. This
encoded information could be used to educate a computer in a similar way humans
are educating their offspring. But what to do about the knowledge encoded in the
human DNA by the evolutionary processes? The only alternative will be to start from
the beginning of life on Earth and simulate all evolution stages. Quite an unfeasible
task, not just computationally but also because the inputs and parameters that accom-
panied evolution are just impossible to determine. According to Professor Valiant, the
most important barrier to meaningful advances in AI is related to the lack of under-
standing of how humans acquire knowledge through learning after birth. There are
several means of communication through language, vision, smell, taste, and touch.
But encoding this knowledge into a computer-ready format is beyond our current
capabilities. One empirical observation is that the more common sense the knowl-
edge is, the more difficult is to encode it into a computer-ready format. And this is
just a reflection of our inability to identify how humans acquire and process common
sense information.

Alan Turing realized that some areas of human activities such as game playing,
language translation, cryptography, and mathematics were well suited to automation
by machines mainly because these tasks require little contact with the outside world
(Copeland 2004). What makes it really difficult for AI to succeed is the fact that the
system one attempts to emulate (i.e. human intelligence) is the outcome of the learn-
ing process that occurred throughout human evolution and whose explicit traces have
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been erased a long time ago. As long as a fundamentally new approach for under-
standing and modeling the human intelligence is not discovered the AI research is
going to be limited in its success. Al is not artificial because its computational pro-
cesses are different from the ones used in nature. As physicists know very well,
there is no impediment to emulating natural processes by using computer simula-
tions. If there is something fundamentally different between real intelligence and
artificial intelligence, then it must be in the way Knowledge is extracted from the
environment.

The vast majority of AI techniques may be construed as attempts to emulate the
human knowledge acquisition process by using computerized means. There are prob-
lem domains where these techniques are more effective than their natural counter-
parts. In board games, computers could proceed to massive searches of game trees
exploring billions of times faster than a human could. It is an artificial technique that
happens to be a lot more effective than its natural, human counterpart.

The most fundamental impediment in emulating natural intelligence is represented
by the immensity (and the practical impossibility) of the task for recreating the con-
ditions responsible for the natural evolution. The fundamental way that humans are
extracting knowledge from the environment is through a yet unknown learning pro-
cess that has evolved over billions of years of evolution. Even if the emulation of all
algorithmic processes involved in natural intelligence would be possible, emulating
the outcomes of these processes will be impossible because the environments from
which those algorithms learned are not available anymore.

The PAC theory provides the guidelines for the development of intelligent systems.
The task could be divided into several components:

• Providing generic Learning and Reasoning algorithms.
• Providing some architecture that describes how to use these algorithms.
• Producing appropriate teaching materials – the examples from which to learn.

Although the last issue is a fundamental component of human education, it is rarely
discussed in AI. As AI will become more learning centered, preparing a computer’s
curriculum should be done with no less care than a student’s. Placing learning at the
center of AI makes a lot of sense because it creates the interface between the current
state of knowledge of the learner and the invariably complex state of the environment
that one has to learn from.

4.2.3 Examples of Ecorithms in Finance

Ecorithms are a special type of algorithms that are meant to run in environments
unknown to the designer. They learn by interacting with the environment as opposed
to being programmed to deal with it. After interacting with the environment,
the Ecorithms will acquire the expertise (knowledge) that could not have been
provided by the designer ex-ante. The Probably Approximately Correct frame-
work provides a quantitative framework for Ecorithms in which designers can
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evaluate the expertise achieved and the cost of achieving it. Drawing inspiration from
evolutionary Biology, the Ecorithms could be seen as generic learning mechanisms
that could eventually explain how learning from data (the environment) coupled with
evolution could be conducive of Intelligence.

Let’s try to find examples of Ecorithms in the world of Trading and Investing.
In general trading algorithms are classic algorithms, where the rules are programmed
by the designer up-front. I would suggest considering a class of trading strategies
called Volatility Pumping. Volatility Pumping or the Optimal Growth strategy is
based on the Kelly Criterion and it was used for some time to calculate the optimal
size of your capital at risk. Volatility Pumping is based on concepts from information
theory and entropy. In 1956 – by a strange coincidence also the beginning of
the modern AI era – two Bell Labs scientists claimed to have discovered the
scientific formula for getting rich. One of them was the father of the Information
theory, the mathematician Claude Shannon, the other was John Kelly Jr., a Texas-
born physicist. The two of them have applied concepts of information theory to the
very general problem of portfolio theory.

Later Shannon and Ed Thorp, an MIT mathematician, took the Kelly Criterion
and tried to apply it to the Las Vegas casinos. And it worked, at least for a while.
In the process they realized that there were even more opportunities in the finan-
cial markets. Ed Thorp used the Kelly Criterion for his very successful hedge fund,
named Princeton-Newport Partners. Shannon became a successful investor as well,
topping even Warren Buffett’s rate of return. In the 1960s, Shannon gave a lecture in a
packed MIT hall, on the topic of maximizing the growth rate of wealth. He detailed his
method on how one can grow an investment portfolio by rebalancing a fund between
equities and cash while the stock component stays within a random ranging market.
The general idea of Optimal Growth was further explored by Prof. Thomas Cover
(1991), with his Universal Portfolios concept. Prof. Cover had left academia at one
point to work on a hedge fund. All these interesting developments were at the origin
of the Volatility Pumping family of strategies.

Much research has been done since in the field of portfolio rebalancing, with the
belief that this could be a source of additional performance – the rebalancing premium
(Maeso and Martellini 2017). This is sometimes referred to as the Volatility-Pumping
effect or the diversification bonus, since volatility and diversification turn out to be
key components of the rebalancing premium. Most of the research was concentrated
on the numerical and empirical analysis of the Volatility-Pumping effect in the equity
markets in order to determine the conditions under which the effect could be maxi-
mized. A completely different approach would be to consider an Ecorithm that will
learn all the information necessary directly from the markets without any a priori
programming of the rule set.

Figure 4.2 depicts the behavior in time of a Volatility Pumping strategy for a port-
folio of 10-year notes and cash. Please note the PNL growth profile obtained by
just following the realized variance of the security without any additional constraints
imposed by the algorithm’s designer. At the core of the Volatility-Pumping strategy
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FIGURE 4.2 Volatility-pumping strategy.

there is a very simple adaptation rule, whereby using the cash component one buys
more when the security price goes lower, or sells more when security price goes
higher, keeping an allocation of 50%–50% value at each interval. This very simple
adaptation rule allows for efficient learning without any pre-programmed rules. For
as long as the security price stays within a range (keeps its quasi-stationarity), the
strategy is going to produce a profit that is optimal among all different possibilities
to rebalance (Cover 1991).

Other examples of ecorithms in the financial world could be found in the use of
evolutionary algorithms, or Genetic programming. By using methods inspired from
Genetics, like crossovers, mutations, and selections, these algorithms could optimize
the PNL and the risk profile of a portfolio. Some of the steps of the Genetic program-
ming workflow include:

• Initializing a random population of parameters

• Selecting the parameters that presumably would increase the net profit

• Applying mutation or crossover operators to the selected parents and generating
an offspring set

• Recombining the offspring and the current population to form a new population
with the selection operator

• Repeating the steps until the optimization criterion is achieved
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4.3 TECHNOLOGY DRIVERS BEHIND THE ML SURGE

This section will consider the principal factors responsible for the recent progress
made in Machine Learning, as well as the surge in interest to apply it to a variety of
domains. Although Machine Learning has been an active field of research for many
decades, why are we hearing so much about it now?

According to a majority of researchers and practitioners working in this field, there
are three major factors at play:

• Data – A massive amount has become readily available.

• Algorithms – Significant progress has been achieved: Deep Learning, Boosting.

• Computation – Substantially more-powerful hardware acceleration platforms.

According to Erik Brynjolfsson and Andrew McAfee (2017) the availability of
data has increased by a factor of 1,000 over the last two decades, the efficiency of key
algorithms has improved by two orders of magnitude, and the ability of hardware to
accelerate computations has improved by at least 100-fold (see Figure 4.3). The com-
bination of these three factors could explain improvements for up to a million-fold
in applications such as image and sound recognition, self-driving cars, and others.
Researchers and academics have been excited about the promises of ML since the
beginning of the AI era. But for that vision to become reality a lot of history had to
be made and many industry giants had to rise and fall. Companies like Intel had to
build the microprocessor, Microsoft had to put a computer on every desk, Cisco had
to build the hardware to power global networks, AOL had to bring the Internet to
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the masses, Netscape had to invent the web browser, Amazon had to bring commerce
online, Google had to organize the world’s information, and Facebook had to digitize
human relationships.

4.3.1 Data

One of the greatest unintended consequences of the shift from desktop to web tech-
nologies is represented by the possibility to collect and analyze vast amounts of data
on just about everything. Companies like Google that have instant access to vast
repositories of search queries, clicks, page views, web pages, or links, were among
the first ones to apply ML to huge amounts of data, which is why technologies like
MapReduce and BigTable were invented there. Every day the world creates about
2.5 quintillion (1018) bytes of data. This huge amount of data comes from digital
footprints left on social media platforms, digital photos and videos, IoT sensors, wear-
ables, and e-commerce transactions to name just a few. Ninety percent of the digital
data in the world today has been created in the past two years alone. So far only about
1% of data collected is ever analyzed. To put it into perspective, all that innovation
and insights driven by analytics are from analyzing just 1% of the data collected
globally.

4.3.2 Algorithms

The data deluge was a crucial moment in the development of modern ML not only
because it made already-existing algorithms more effective, but also because it has
encouraged, supported, and accelerated the development of better algorithms.

Because great progress has been made in Optimization theory, many problems that
could not have been solved some years ago have nowadays found solutions. The two
families of algorithms that now dominate the field of ML such as Deep Learning and
Reinforcement Learning share a common trait – their results improve dramatically as
the amount of training data they’re given increases.

The performance of numerical algorithms as a function of the amount of data
ingested levels off at some point. After the saturation point was reached, feeding
it more data has little or no effect.

But this saturation point, which relates to the data absorption capacity of the
algorithm, seems to shift more and more toward higher values for many of the ML
algorithms used today (see Figure 4.4). At the same time the ability to pre-train and
to transfer the learning ability from one algorithm to another makes it easier to learn
from fewer and fewer examples.

4.3.3 Hardware Accelerators

Nowadays computation is becoming inexpensive and readily available. The begin-
ning of the twenty-first century has witnessed the rebirth of neural networks. The
Backpropagation algorithm has not changed fundamentally since it was invented in
1974. But because today one has a million times more compute power available, new
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technologies based on Deep Neural nets are not just possible, but they are becoming
quite ubiquitous.

Moore’s Law stated for more than 50 years that integrated circuit capability
steadily doubles every 18 to 24 months. Many have argued for some time that this
scaling law should be running up against the limits of physics and as such it will slow
down in the near future. Sure enough the clock speed for standard microprocessors
has leveled off.

But by a fortunate coincidence, another type of computer chip, called a Graphic
Processing Unit, or GPU, has been developed just in the last decade. It turns out to be
very effective when applied to the types of calculations needed for Artificial Neural
Networks. Speedups of 20 to 50 times are very common when neural nets are moved
from traditional CPUs to GPUs. As neural net applications become commonplace,
several companies have developed specialized chips optimized for this application,
including Google’s tensor processing unit, or the TPU.

GPUs have been critical to the growth of the ML industry, driving training and
inference in a data center environment. However, in the field, applications of all types
have different needs and there are so many possible use cases. There is a definite need
that chips have to be optimized for different types of application, and that could be
very expensive. That’s especially true for highly customized needs that don’t provide
enough of a market for economies of scale.

But there is another family of chips, called Field Programmable Gate Arrays or
FPGAs. They have been around since the 1980s and the main idea is that they can be
reconfigured on demand. The FPGA is a chip that helps companies and researchers
work around the problem of customization and economies of scale. The FPGA is
an integrated circuit that can be programmed for multiple uses. It has an array of
programmable logic blocks and a way to program the blocks and the relationship
between the blocks. It is a generic tool that can be customized for multiple uses. Since
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FPGAs can be reprogrammed, that makes them valuable for the nascent ML industry.
Algorithms are constantly being added and fine-tuned for different algorithms by
reprogramming the blocks. In addition, low-power FPGAs running lower-precision
computations could be a solution for remote sensors and the IoT domain. Whether
they are used in factories, on the roads and pipelines, or on drones for remote inspec-
tion, the FPGA allows system designers to use one piece of hardware flexibly, for
multiple purposes, allowing for a simpler physical design that can be more readily
hardened for field applications.

All these hardware acceleration developments have had a synergistic effect on
related components of the Machine Learning workflow. Faster hardware makes it
possible for engineers to test and develop better algorithms while enabling machines
to process bigger data sets in reasonable short time periods. Some of the most uti-
lized applications of ML, such as automated voice translation, would take literally
centuries to run on hardware from a decade ago. A natural consequence of these
well-advertised tech success stories should be that more researchers and engineers
are motivated to go into this field and more investors and executives are persuaded to
fund R&D work. But is this really the case? The decrease of storage costs coupled
with a tremendous increase in compute power has contributed to an explosion in ML
Research and Development. These great technological advances have been further
amplified by two additional technologies: global networking and the cloud infrastruc-
ture. The mobile Internet can now deliver digital technologies virtually anywhere on
the planet, connecting billions of potential customers to the latest ML breakthroughs.

With the advent of cloud computing there is a great potential for cloud-based
ML and robotics to accelerate learning and the diffusion of information and knowl-
edge in this field. Imagine an ML-based application that struggles with a task, such
as recognizing an object. Once it has mastered that task, it will be able to upload
that knowledge to the cloud and share it with other systems that use a compatible
knowledge-representation system. The cloud-based ML paradigm could effectively
help gather data from hundreds, thousands, and eventually millions of data sensors.
By combining all this information in a single system, they can learn vastly more
rapidly and share their insights almost instantaneously.
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CHAPTER 5

How to Apply the Principles
of Computational Intelligence
in Quantitative Finance

“Beating the wisdom of the crowds is harder than recognizing faces or driving
cars.”

– Marcos Lopes de Prado

5.1 THE VIABILITY OF COMPUTATIONAL INTELLIGENCE

The second chapter of this book is dedicated to understanding the importance of
knowledge extraction from data and its role in data-driven decision-making. Infor-
mation is a particularly invaluable asset for the financial markets. However, with the
digitization of the financial industry and the pervasiveness of information systems,
the sheer amount of information available for decision-makers (traders and investors)
could become a great obstacle in the quantitative analysis of financial assets.

The last decades have seen a resurgence of interest in developing computationally
intelligent methods and algorithms to support decision-making in different market
segments. The ultimate goal for the field of Computational Intelligence is to cre-
ate cognitive systems that could compete with or at least complement humans in a
variety of areas. Traders and investors have currently at their disposal a wide vari-
ety of tools for automating the processing of large amounts of information, which
will expedite data analysis and pattern recognition. The globalization of asset trad-
ing coupled with the emergence of ultrafast information and compute technology
have created an insurmountable handicap for humans to efficiently compete with
machines specifically in the low-granularity decision-making process. Currently most
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microstructure-level trading decisions in equities and electronic futures markets are
made by algorithms that decide what and where to trade, as well as in what quantity
and at what price.

Research in neurosciences has shown that humans have a limited ability in han-
dling large amounts of information at once. When the number of factors involved in
a decision-making process increases above a certain threshold, the modeling of the
decision-making process and its outcomes become both time-consuming and impre-
cise. If a typical chess algorithm is just about 40 steps long in average, and one for
the game of Go is approximately 200 steps long, a medium frequency electronic trad-
ing algorithm could account for up to 3,600 steps (Bacoyannis et al. 2018). And the
complexity does not come just computationally, but is also rooted in the complex-
ity of the state space for the problem. The space of possible states for the games of
Chess or Go is well known and fully contained, as opposed to the case of electronic
trading, where the resulting action space is extremely large and could exponentially
increase with the number of features that one considers in the modeling process.
Trading algorithms developed by humans are in general very complex. According
to Bacoyannis and co-authors, they are “a blend of scientific, quantitative models
which expressed quantitative views of how the world works.” They contain “rules
and heuristics which expressed practical experience, observations and preferences of
human traders and users of algorithms.” Encoding all this very human kind of infor-
mation could be extremely complex. Most human-compiled algorithms are “tens of
thousands lines of hand-written, hard to maintain and modify code.” Over time, they
could “accumulate many layers of logic, parameters, and tweaks to handle special
cases.” This is the hard programming concept that was described in some detail in the
previous chapter.

One of the most important objectives of this book is to persuade the reader about
the merits of Computational Intelligence in dealing with the complexity and the non-
linearity of problems on Quantitative Finance (Cavalcante et al. 2016). As a trained
physicist I am constantly asking this question: Is randomness truly a natural phe-
nomenon? Or maybe randomness is just simply a byproduct of simulations done by
deterministic programs run in silico? One needs to accept the possibility that natural
observations that one labels as random or stochastic could be actually the reflection
of nonlinear dynamics exhibited by complex systems. These questions are very ger-
mane to the field of Quantitative and Computational Finance and they are still waiting
for answers. In the meantime one should note one of Albert Einstein’s quotes: “God
does not play dice with the universe.”

Chapter 4 introduced Computational Intelligence as a collection of computing
methodologies that exhibit the ability to learn from, or at least deal with new situations
in a way that was not envisioned or programmed by the designer of the algorithm.
As a result, a system built on the premises offered by Computational Intelligence
is expected to possess one or more attributes of reason, such as generalization, dis-
covery, association, and abstraction. Computational Intelligence offers principles and
methods for practical adaptation and self-organization and allows for implementa-
tions that enable or facilitate the appropriate actions (intelligent behavior) in complex
and changing environments.
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In silico–based Computational Intelligence systems include crossbreeds of differ-
ent paradigms, from Artificial Neural Networks and Fuzzy Systems, to Evolutionary
algorithms, that are augmented with expert knowledge, and often designed to mimic
one or more aspects of the carbon-based biological intelligence. As such Compu-
tational Intelligence refers to the ability of natural and potentially artificial agents
to behave intelligently. Computational Intelligence is often used together with the
concepts of soft computing, which is a consortium of computing methodologies that
collectively provide a foundation for the design, development, and deployment of
intelligent systems. In contrast to the more traditional hard computing, soft comput-
ing is tolerant of imprecision, uncertainty, and partial truth. According to one of the
pioneers of this field, Lofti Zadeh (1997), the guiding principle of soft computing
is: “Exploit the tolerance for imprecision, uncertainty and partial truth to achieve
tractability, robustness, low solution cost and better rapport with reality.”

The section on the Probably Approximately Correct framework introduced in
Chapter 4 underlined the centrality of Learning and Adaptation in the process of
understanding and modeling Intelligence. Learning is defined as the process
of acquiring knowledge and skills by instruction or experience. The necessary
complement is Adaptation, defined as the process of adjusting to environmental
conditions such that it makes the learner more fit for survival under the conditions
of its environment. Professor John Henry Holland (1992), one of the pioneers in
the field of Evolutionary (genetic) algorithms, once said that “adaptation is any
process whereby a structure is progressively modified to give better performance
in its environment.” Adaptation overcomes the barriers of nonlinearity and local
optima. It involves the progressive modification of some structures and uses a set of
operators acting on the structures that evolve over time. But there are also barriers
to Adaptation:

• Large problem spaces, and large numbers of features

• Complex and nonlinear cost functions

• Cost functions that change over time and over the problem space

• Complex and changing environments

What makes Computational Intelligence particularly useful for these situations is
the Law of Sufficiency, which states that if a solution to a problem is good enough
(by meeting the specs), fast enough, and cheap enough, then it is deemed to be suffi-
cient. From a computational perspective there are several paradigms used to achieve
Adaptation:

• Supervised adaptation is the process of adjusting the parameters of a system
such that it generates specified outputs in response to a set of given inputs –
implemented by Supervised Learning. Example: backpropagation for ANNs.

• Unsupervised adaptation is the process of adjusting to regularities in data
according to rules implicit in its design. The design is a substitute for the
teacher and there is no indication of fitness. Offline evaluation occurs only after



90 PRINCIPLES OF COMPUTATIONAL INTELLIGENCE IN QUANTITATIVE FINANCE

the algorithm stops running. Examples: Clustering, Dimensionality Reduction
(PCA).

• Reinforcement adaptation is closely related to biological systems and its imple-
mentation is rooted in Dynamic Programming. The Cost function only looks
at outcomes and not at individual error measures. Example: Particle swarm
optimization.

As a result of the Adaptation process, systems could behave in different ways:
they could converge to stability, or they could exhibit a Cyclical, Chaotic, or Complex
behavior. A system is considered to be computationally intelligent when it:

• Deals only with numerical low-level data

• Has a pattern recognition component

• Exhibits computational adaptability, computational fault tolerance, speed
approaching human-like turnaround, and error rates that approximate human
performance

Let’s conclude this section by considering again the dividing line between
Computational and Artificial Intelligence. In the 1992 Dictionary of Science and
Technology published by Academic Press, Professor Gordon S. Novak defined AI
as “the study of the computation required for intelligent behavior and the attempt
to duplicate such computation using computers. Intelligent behavior connects
perception of the environment to action appropriate for the goals of the actor.
Intelligence, biologically costly in energy, pays for itself by enhancing survival. It
isn’t necessary to understand perfectly, but only to understand well enough to act
appropriately in real time.”

There are several Computational Intelligence attributes that do not hold for AI and
hard computing techniques:

• Ability to generalize

• Ability to deal with partial truths and uncertainty

• Graceful degradation of system performance

• Ability to perform well (survive) in complex and changing environments

One of the main goals of Learning is the ability to generalize already acquired
knowledge. Learning representation allows for the generation of a function y = f (x)
that is used to map each input x to an output y in the problem space, under the assump-
tion that the data set represents only a small part of the problem space. Generalizing
this representation involves building a model F(x) such that other values of x could
be mapped into the problem space Y in a way that F(x) ∼ f (x) for x not present in
the data set. Since the data set is split into training and test sets, one usually mea-
sures the generalization capability on the test set. On the other hand, hard computing
attributes like Precision and Certainty do not hold for Computational Intelligence
systems.
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In the quest to achieve Artificial Intelligence, Machine Learning is one of the very
few means currently available to give artificial agents (like computer programs) the
ability to behave intelligently. Machine Learning refers to the ability of a computer
program to learn from a set of inputs either in a supervised (by being actively trained)
or unsupervised (by exploring the characteristics of raw data on its own) fashion, in
order to provide answers to questions that it wasn’t specifically designed to know
the answer to. The field of Machine Learning strives to mimic natural occurring
processes associated with Computational Intelligence such as Neural Networks or
Genetic optimization algorithms. From this perspective Machine Learning is a foun-
dational element of Computational Intelligence.

5.2 ON THE APPLICABILITY OF CI TO QUANTITATIVE FINANCE

A brief review of the literature (Cavalcante et al. 2016) has revealed that a consid-
erable volume of scientific work has been done to investigate the utility of Com-
putational Intelligence in solving financial market problems. However most of the
published research has been limited in scope, focusing on either a specific finan-
cial market application or just a family of Computational Intelligence algorithms.
Achieving success in the financial markets depends greatly on the quality of the infor-
mation that one uses to support the decision-making process, but also on how fast the
decision-making process is. The fields of Quantitative and Computational Finance
have been developing at a rapid pace and they have drawn inspiration from more
established domains like Engineering and Mathematics (Yoo, Kim, and Jan 2005).

Both Statistical and Hard computing methodologies have been used for many
decades to provide support to decision-makers in different financial market segments.
Financial time-series prediction could be considered as one of the main challenges in
the Quantitative Finance literature. The two main classes of methods that are currently
in use to forecast financial time series are Statistical models and Machine Learning
techniques. The traditional Statistical methods are based on the simplifying assump-
tion that financial time series are generated by linear processes and they model them
as such in order to make predictions about the future values of the series. However,
since financial time series are fundamentally nonlinear, nonstationary, and stochastic
in nature, the linearity assumptions are not realistic. On the other hand, ML tech-
niques have been applied with some degree of success in modeling and predicting
financial time series. These ML techniques intend to capture nonlinear relationships
between relevant factors with no prior knowledge about the input data. Among these
techniques, Artificial Neural Networks have been used more frequently in time-series
forecasting. Because ANNs are both data-driven and self-adaptive methods, they are
able to capture nonlinear behaviors of time series without any statistical assumptions
about the data.

More recently techniques such as Natural Language Processing (NLP) have been
used to predict future market movements by mining information in textual format.
Textual data sources such as financial news, financial reports, or even professional
blogs are considered as relevant sources of information for predicting future market
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behavior. NLP techniques have been used to extract important features from textual
data in order to identify market sentiment and improve the forecasting of financial
assets.

The nonlinearity and non-stationarity of such dynamic systems as the financial
markets require the use of different kinds of modeling techniques in order to improve
the accuracy of financial forecast (Huang and Tsai 2009). Several Computational
Intelligence methods have been suggested recently as tools to be used in forecast-
ing financial markets (Lin, Chiu, and Lin 2009). Soft computing techniques, such as
ANNs and fuzzy systems, have been applied to the modeling and forecast of finan-
cial time series (Lee et al. 2009). The main goal of soft computing techniques is to
gain the ability to capture nonlinear relations among relevant market factors with-
out making any statistical assumptions about the nature of the input data (Atsalakis
and Valavanis 2009). Soft computing algorithms present several advantages when
compared with traditional statistical methods. These methods usually exhibit higher
tolerance to imprecision and perform well in noisy data environments. And because
they are data-driven, nonparametric, and self-adaptive mechanisms, they will require
less data to be trained on (Cheng and Wel 2014). It was reported (Liang et al. 2009)
that nonparametric methods outperform the parametric one in the accuracy of pre-
dicting future behavior.

As mentioned in Chapter 3, Bacoyannis and co-authors (2018) have described the
three paradigms associated with the use of data when developing trading algorithms:

• Data modeling

• Machine Learning

• Algorithmic decision-making

The Data modeling culture is based on the belief that financial markets act
like overly simplified black box models that are employed to generate the obser-
vational data. The goal is to find a plausible functional approximation for the
data-generating process (the quantitative model) and to extract its parameters from
the data by using a fitting procedure. The output of the model is then used by the
decision-making processes. Unfortunately the complexity of the markets and the
collective behavior of its participants raise an unsurmountable challenge to the data
modeling culture. Simple models are just not able to capture the complexity of the
environment. Moreover, critics of this approach argue that simple models offer “a
false sense of certainty and for this reason is prone to abject failures” (Bacoyannis
et al. 2018).

The Machine Learning culture uses a set of more opaque functions to model obser-
vations. This modeling paradigm does not claim that its functional representation
reveals the nature of the underlying processes. From this perspective the world of
finance looks more stochastic than deterministic because it is constantly evolving,
and the observed trading processes are better described as emerging behaviors rather
than data generating devices. Once the outputs of the ML models are generated they
are fed into the decision-making processes. At the same time, complex ML models
are more prone to failure and are much harder to interpret.
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The Algorithmic decision-making culture is about making decisions rather than
building models. Instead of trying to build a map about how the world works, this
paradigm attempts to train electronic agents (or algorithms) to distinguish between
good and bad decisions. What makes this approach very challenging is the ability to
understand and explain the decisions made by the algorithmic agent, to make sense of
its policies, and to be able to ensure that the agent will proceed with sensible actions
in all situations and environments. In the Algorithmic decision-making paradigm the
agent learns that certain actions are bad because they lead to negative consequences
(outcomes). But the agent still has to come up with the values, the rules, and the
constraints that steer the algorithm away from taking actions which could be deemed
as counterproductive and that could not be learned from its environment or its history.
The interplay between the algorithm’s constraints and its rewards makes possible
some practical applications for the financial markets.

Quantitative Finance represents a very rich area of research and development con-
nected to practical problems that could be precisely encoded in terms of objectives
and constraints. The last decade has seen a surge of interest in the application of
Machine Learning methodologies to problems in High Frequency Trading and Mar-
ket Microstructure data. The primary focus of this kind of research is on developing
computationally and informationally efficient algorithms for devising good predictive
models from large data sets. The main problems arising in HFT are natural candidates
for ML applications both for trade execution and the generation of alpha. The goal
to create predictive models based on historical data is not new in the field of Quan-
titative Finance. It started decades ago with the CAPM model, the Fama and French
factors, and similar approaches. The attempt to use ML in HFT brings on new chal-
lenges, mainly related to the very fine granularity of the data – an example is the
market microstructure data at the resolution of individual orders, partial executions,
cancellations, and hidden liquidity. There is an incomplete understanding of how such
low-level granular data could relate to actionable circumstances (e.g. buying or sell-
ing shares or optimally executing large orders) (Kerns and Nevmyvaka 2013). Models
such as CAPM have already prescribed the relevant features used for prediction and
modeling (excess returns, book-to-market ratios, etc.). However, in the HFT con-
text one may not have any prior intuitions about these relevant features necessary to
build a predictive model. Thus the process of feature selection or feature engineering
becomes a crucial aspect in the use of Machine Learning in the HFT world.

A special class of HFT problems that is of a particular interest and could be a good
candidate for the use of ML techniques is represented by the algorithmic approaches
to execution problems via the use of optimality. And here a specific ML paradigm
could be of great use – the Reinforcement Learning (RL) method. Given the speci-
ficity of the dynamics of financial markets, the problem could be framed in terms of
what is called a Markov Decision process. When a model to describe the probabilities
of transition between different states is available, the solution comes down to the use
of Dynamic Programming. When this model is not available or just impractical to use,
Reinforcement Learning is the technique to use. The applicability of RL algorithms to
HFT problems penalizes the algorithm for making a wrong decision while rewarding
it for making a profitable one. In general one could apply Reinforcement Learning
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whenever a problem could be framed as an agent acting within a given Environment,
where it can be informed of the State and a goal-driven Reward function. More for-
mally, Reinforcement Learning theory is based upon solutions to a Markov Decision
Process. Reinforcement Learning has been used quite successfully in the field of gam-
ing. This is due to the fact that game environments can be coded efficiently and could
run fast on generic hardware where one emulates very accurately both the environ-
ment and the agent. For classic board games, such as backgammon, checkers, chess,
or Go, human experts could be used to compare the results with.

Gordon Ritter (2017), a senior portfolio manager at GSA Capital Partners in New
York, recently published an interesting study on the applicability of Reinforcement
Learning to trading. When the results obtained within the training environment
meet a certain criteria, the algorithm could be used for live trading because it has
acquired an optimal course of action. The task given to the RL algorithm is to
maximize the expected utility of a trade, that is, the value of trade less all associated
costs, and adjusted for the risk of the trade. According to Ritter, “What has always
restricted traditional optimal execution algorithms is the number of factors that can
be used in the models.” The larger this number, the more difficult the problem is to
solve. RL algorithms learn by way of trial and error by being in different states and
figuring out the optimal path of execution on its own. An extremely large number of
scenarios (in the millions) could be run during the training process. Once the training
is complete, the technique can be used in real time to trade. Trading firms such as
JP Morgan and Portware are using RL techniques to optimize their trading schedule.

5.3 A BRIEF INTRODUCTION TO REINFORCEMENT LEARNING

Reinforcement Learning (Sutton and Barto, 1998) is the process of mapping the
states of the environment to the actions that need to be taken by the learner in order
to maximize a scalar Reward function or the Reinforcement signal. Informally,
Reinforcement Learning (RL) is seen as learning by trial and error from performance
feedback coming from the environment or from an external evaluator. The learner
has absolutely no prior knowledge of the actions to be taken, and it has to discover
through exploration which actions will be conducive of the highest reward.

A typical RL problem could be depicted by the diagram in the Figure 5.1:

Reward

Rt

Agent

Environment

State

St

Action

At

Rt+1

St+1

FIGURE 5.1 The reinforcement learning concept. Source: Adapted from https://i.stack.imgur.com/
eoeSq.png.
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The learner or the agent receives inputs from its environment in a descriptive form
that is encoding the current state of the environment. Based on the inputs received
from the environment, an action is performed, and then a reinforcement signal or
reward is received by the agent. This reward can be a positive or negative, depending
on the utility of the action. A negative reward has the effect of punishing the agent for
a detrimental action. It is important to note that the agent’s action may cause a change
in the environment, thereby affecting the future options and actions of the agent.
The consequences of actions on the environment and the evolution of future states
cannot always be predicted. Therefore it becomes necessary that the agent frequently
monitors its environment.

What differentiates Reinforcement Learning from other Machine Learning
paradigms is the fact that in RL there is no supervisor, but the feedback comes only
from a reward signal that tells the agent how beneficial was the action taken. The
feedback coming from the environment is not necessarily instantaneous, but it may
be delayed over several time steps. In some cases the feedback may be obtained
just at the end when the agent reaches its goal. By contrast, in supervised Machine
Learning the training data set describes the environment to the algorithm by pro-
viding the right answers or actions to be taken when faced with a specific situation,
and the algorithm tries to generalize from that data to new situations. One of the
most notable differences between supervised ML and RL is that in Reinforcement
Learning the data is not assumed to be Independent and Identically Distributed
(iid). As a result of this generalization the agent may spend a considerable amount
of time in specific regions of the environment and not spend enough time in other
ones which could be potentially interesting to learn the optimal behavior. Therefore
the agent is generally influencing the environment through its actions which in turn
affects the subsequent data it receives from the environment. From this perspective,
RL models are representing more realistic active learning processes.

A typical Reinforcement Learning process is composed of two phases:

• A trial and error search to find the most beneficial actions, which forms the
exploration component of RL.

• A memorization step that keeps track of which actions worked well and under
which conditions. This is the exploitation component of RL.

One of the most important aspects in understanding how Reinforcement Learning
works is the trade-off between exploration and exploitation. On one hand it is crucial
that the agent exploits what it has already learned, such that a reward can be secured.
On the other hand the trial and error search ensures that the agent must do an exhaus-
tive exploration to improve action selections in the future. In the phase of Exploration
the learner (agent) takes a new action with unknown consequences, and by that one
gets a more accurate model for the environment while discovering higher-reward
states than the ones found so far. At the same time by exploring the environment the
utility is not maximized. During the phase of Exploitation the agent proceeds with
the best strategy found so far by maximizing the current utility estimate. This phase
could impose some limitations on the state space search and slow down the process
of finding the optimal strategy.
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5.3.1 Defining the Agent

A Reinforcement Learning Agent could be characterized by the following compo-
nents:

• A Policy – 𝜋 is the decision-making function of the agent.
A Policy is used to specify which action to execute in each of the situa-

tions that the agent may encounter during the learning process. The policy
is basically a mapping between actions and states, or alternatively, a set of
stimulus-response rules. The Policy is a probability distribution over the actions
given the states.

A Policy could be either deterministically learned from experience
action = 𝜋(state) or it could be a stochastic function 𝜋(action|state) = P[At =
action|St = state].

• A Reward – rt is a scalar feedback signal that indicates how well the agent is
performing at a given time step t and it defines the goal of the agent.

The reward function defines the beneficial and the detrimental actions for the
agent in any possible situations. The reward is immediate and is representative
of the current state only. The goal of the agent is to maximize the total reward
that it receives over the long run. RL is based on the Reward Hypothesis which
states that “All goals can be described by the maximization of expected cumu-
lative rewards.” (Sutton and Barto, 1998) Although the agent’s goal is to select
the actions that maximize future rewards, there could be actions that might have
long-term negative consequences. Since some rewards could be delayed, the
agent cannot be greedy at all times. This translates into the fact that the agent
cannot take an action associated with maximum reward at the current time but
instead it has to plan ahead. Sometimes it may be preferable to sacrifice an
immediate reward to gain a more consistent long-term one.

• A Value function, which specifies the goal in the long run. The value function
is used to predict a future reward, and is used as a metric to indicate what the
benefit should be in the long run. For the value function, an important aspect is
how the future should be taken into account.

Several models are in use:

(a) The finite-horizon model, in which the agent optimizes its expected reward for
the next nt steps, where r(t) is the reward for time-step t:

E

[
nt∑

t=1

r(t)

]
(b) The infinite-horizon discounted model, which takes the entire long-run reward

of the agent into consideration. However, each reward received in future is
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geometrically discounted according to a discount factor, 𝛾 ∈ [0, 1):

E

[ ∞∑
t=0

𝛾
tr(t)

]
The discount factor enforces a bound on the infinite sum.

(c) The average reward model, which prefers actions that optimize the agent’s
long-run average reward:

lim
nt→∞

E

[
1
nt

nt∑
t=0

r(t)

]
Let’s take the example of training a dog. While teaching the dog a new skill, the

trainer will reward any positive attitude toward the learning process. The dog rep-
resents the Agent for the RL algorithm. The reward system and the training process
represent the Environment. The training phases are representing the States in which
the agent is found at any point during the process. The training process is usually an
optimization procedure: in the long run the dog will behave in such a way that she
will maximize the rewards. This is equivalent to implementing a decision-making
process by which the evaluation of a Value-function will ensure the maximization
of the rewards. Every time the dog moves from one state to another in the training
process she will get a Reward. The methods used to complete the training program
will generate the Policy.

A very important aspect in implementing any RL methodology is how one models
the Environment. The environmental model mimics the behavior of the environment.
This can be done by transition functions that describe transitions between different
states. The environment state St is the internal representation of the environment or
the data that the environment uses for the next state and reward. The environment state
is generally not visible to the agent. The state of the agent captures what happened to
the agent so far, summarizes it, and then the agent is using this information to pick
the next action.

Reinforcement Learning uses a Markov representation for the agent’s state:

P[St+1|St] = [St+1|S1, S2, … , St]

This means the agent state could be represented as a Markov state if that state con-
tains all the useful information the agent has encountered so far, which in turn means
that one can discard all the previous states and retain just the agent’s current state.
This also means that the future is independent of the past given the present. Once the
current state is known, the history may be discarded, and the current state becomes
a good metric to characterize the future at least as good as the whole state
history.
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In order to find an optimal policy, 𝝅, it is necessary to find an optimal value func-
tion. A candidate optimal value function could be:

V∗(s) = maxa∈A

{
R(s, a) + 𝛾Σs′∈ST(s, a, s′)V∗(s′)

}
, s ∈ S,

where

A is the set of all possible actions,

S is the set of environmental states,

R(s, a) is the reward function, and

T(s, a, s’) is the transition function.

The equation above states that the value of a state s is the expected instantaneous
reward, R(s, a), for action a plus the expected discounted value of the next state,
using the best possible action. As such a clear definition of the model in terms of the
transition function T and the reward function R is therefore required. A number of
algorithms have been developed for such RL problems.

There are several types of Reinforcement Learning agents:

• Value-Based – The agent evaluates all the states in the state space, and the policy
will be implicit. The Value function is used by the agent to choose the best
policy.

• Policy-Based – Instead of using a Value function representation, the policy will
be represented explicitly. The agent searches for the optimal action-value func-
tion which in turn enables it to act optimally.

• Actor-Critic is a combined value-based and policy-based agent. This type of
agent stores both the policy as well as how much reward it is getting from each
state.

• Model-Based – The agent builds a model for the environment, and then searches
for the best possible behavior.

• Model-Free – The agent is agnostic of the environment (i.e. it does not try to
model the dynamics). Instead the agent tries through trial and error to build a
policy of how to behave optimally to get the most possible rewards.

5.3.2 Model-Based Markov Decision Process

In model-based Reinforcement Learning an agent needs to learn both the model
of the transition probabilities and rewards, as well as how to act. In this paradigm
one needs to keep track of how many times state st+1 follows state st when one
takes an action a, and update accordingly the transition probability P(st+1 | st, a)
according to the relative frequencies. One also needs to keep track of all the
rewards R(s).

Reinforcement Learning is a learning process by which the agent is observing the
environment via some feedback consisting of a reward and the next state, and then
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acting upon that. This process is a known as the Markov Decision Process (MDP).
MDP is a mathematical formulation for the problem of learning from interacting with
an environment to achieve a goal. The agent and the environment are continually
interacting, whereby the agent is selecting actions and the environment is responding
to these actions and presenting new situations to the agent.

Formally, an MDP is used to describe an environment for RL, where the environ-
ment is fully observable. Almost all RL problems can be formalized as MDPs. The
Markov property states that the future is independent of the past given the present.
For a Markov state S and successor state S′, the state transition probability function
is defined by:

PSS′ = P[St+1 = s′|St = s]

It is a probability distribution over the next possible successor states, given the
current state. Given that the agent is in a specific state S, there is a probability to
transition to the first state and another probability to transition to the second state and
so on. This transition function could be represented as a matrix, where each row sums
to 1:

P = from
⎡⎢⎢⎣
P11 · · · P1n
⋮ ⋱ ⋮

Pn1 · · · Pnn

⎤⎥⎥⎦
The Markov process is a memory-less random process composed of a sequence of

random states S1, S2 … , Sn exhibiting the Markov property.
The state diagram in Figure 5.2 depicts the example of an Agent attempting to

learn three different skills in order to achieve a specific goal. There are several sce-
narios that could be composed by using different states. One example could be that
after acquiring Skill A the agent may acquire Skill B with probability 0.5 or just
Wait with probability 0.5. An episode would be for example [Skill A →Skill B →
Skill C → Goal], where Goal is the terminal state or absorbing state that terminates
this episode.

A Markov Reward Process is a Markov process that measures how much reward
was accumulated through a particular sequence that one has sampled. An RL agent
tries to maximize the expected sum of rewards from every state it lands in. In order
to achieve this objective one must try to get the optimal value function, i.e. the maxi-
mum sum of cumulative rewards. This is generally done using the Bellman equation.
Richard Bellman was an American applied mathematician who derived the following
equations which made it possible to solve MDPs. Using the Bellman equation, the
Value function will be decomposed into two components:

• An immediate reward, Rt+1, and
• A discounted value for the successor state 𝛾V(St+1),

V(s) = E[Rt+1 + 𝛾V(St+1)|St = s]

The value of the state S is the reward one gets upon leaving that state, plus a dis-
counted average over next possible successor states, where the value of each possible
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FIGURE 5.2 The graphical illustration of a Markov process.

successor state is multiplied by the probability that we land in it. A policy is nothing
but a way to choose a certain path (behavior) in a Markov process.

The state-value function vπ(s) of an MDP is the expected return starting from the
state “S” and then following policy “𝛑”:

vπ(s) = Eπ[Gt| St = s] = Eπ

[ ∞∑
k=0

𝛾
kRt+k+1| St = s

]
for all s ∈ S

The action-value function qπ(s) is the expected return starting from the state “s,”
taking action “a,” and then following policy “𝛑”:

qπ(s, a) = Eπ[Gt| St = s,At = a ] = Eπ

[ ∞∑
k=0

𝛾
kRt+k+1| St = s,At = a

]
The optimal state-value function V*(s) is the maximum value function over all

policies.
v∗(s) = max

π
vπ(s)
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The optimal action-value function q*(s, a) is the maximum action value function
over all policies.

q∗(s, a) = max
π

qπ(s, a)

An optimal Policy could be defined as a stochastic mapping from states to actions,
the goal being to know what the best one of these policies is. All optimal policies
achieve the optimal action-value function. The Bellman equation models the maxi-
mization of the utility of an agent over a time horizon. Very often the problems that
one seeks to solve are farming problems where the goal is to maximize the overall
utility of a resource over a period of time as opposed to harvesting the resource all at
once. Another way of looking at Bellman’s equation is as the method used to achieve
the proper balance between the local exploitation (in state’s space) versus exploring
more of the state space so that an optimal harvesting policy can be generated. Some
practical examples for the use of MDP:

• Scheduling problems
• Autonomous aircraft navigation
• Manufacturing processes
• Network switching and routing

5.3.3 Model-Free Reinforcement Learning

The other Reinforcement Learning paradigm is the model-free method that has
an objective to obtain an optimal policy without a model of the environment. The
two most popular model-free RL approaches are the Q-learning and the Temporal
Difference (TD) learning.

5.3.3.1 Q-Learning
In Q-learning, the task is to learn the expected discounted reinforcement values,
Q(s, a), of taking an action a in the state s then continuing by always choosing actions
optimally. The goal of Q-learning is to learn a policy as a recipe for what action to
take under what circumstances. This does not require a model of the environment
and can handle problems with stochastic transitions and rewards, without requiring
adaptations.

For any finite MDP the method of Q-learning finds a policy that is optimal in the
sense that it maximizes the expected value of the total reward over all successive steps,
starting from the current state. For any given MDP, Q-learning can identify an optimal
action-selection policy, given an infinite exploration time and a partly random policy.
Q stands for quality, and it names the function that returns the maximized reward.

Let’s look at the example of a robot that has to cross a maze and reach an end
point. Along the way there are traps, and the robot can only move one tile at a time.
If the robot steps onto a trap, the robot is considered out. The robot has to reach the
end point in the shortest time possible. The reward system works as follows:

1. The robot loses 1 point at each step. This is done so that the robot takes the
shortest path and reaches the goal as fast as possible.
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2. If the robot steps on a trap, it loses 100 points and the game ends.

3. If the robot advances properly one tile, it gains 1 point.

4. If the robot reaches the end goal, the robot gets 100 points.

A Q-Table is constructed as a simple lookup table where one calculates the max-
imum expected future rewards for actions taken at each state. This table will guide
the algorithm to proceed with the best action at each state. In a Q-table the columns
are the actions and the rows are the states. Each Q-table score will be the maximum
expected future reward that the robot will get if it takes that action at that state. This
is an iterative process, as one needs to improve the Q-Table at each iteration.

The Q-learning algorithm uses the Bellman equation and takes two inputs: the
state (s) and the action (a):

Q𝜋(st, at)
⎵⏞⏞⏞⏞⏞⏞⏞⏞⎵

Q-values for state s,
given an action a

= E[Rt+1 + 𝛾Rt+2 + 𝛾
2Rt+3 + · · ·]

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
Expected discounted cumulative reward

[st, at]
⎵⏞⏞⎵

Given state s
and action a

Using the function above, one can get the values of Q for the cells in the table.
At the beginning all the values in the Q-table are zeros. An iterative process will
update the Q-table values. As one starts to explore the environment, the Q-function
will give better and better approximations by continuously updating the Q-values in
the table.

The Q-learning algorithm consists of (see Figure 5.3):

• Initialization of the Q-table: there are n columns → number of actions and m
rows → number of states. All be will be initialized to 0.

• Choosing and performing an action: as an example one could use the epsilon
greedy strategy. At the beginning, the epsilon rates will be higher. The robot
will explore the environment and randomly choose actions. The logic behind
this is that the robot does not know anything about the environment. As the
robot explores the environment, the epsilon rate decreases and the robot will
start to exploit the environment. During the process of exploration, the robot
progressively becomes more confident in estimating the Q-values.

• Evaluation: after the actions have been taken it is time to measure the rewards
and determine the outcome by using the Bellman equation:

New Q(s, a) = Q(s, a) + 𝛼 ⋅ [R(s, a) + 𝛾⋅maxa′Q(s′, a′) − Q(s, a)]

5.3.3.2 Temporal Difference Learning
Temporal difference (TD) learning is a technique to learn how to predict a quantity
that depends on the future values of a given signal. The label TD derives from its
use of changes, or differences, in predictions over successive time steps to drive the
learning process. The prediction at any given time step is updated to bring it closer
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FIGURE 5.3 The Q-learning algorithm.

to the prediction of the same quantity at the next time step. The TD algorithms are
often used in RL to predict a measure of the total amount of reward expected in the
future. The Bellman equation could be represented as:

Q(s, a) = R(s) + 𝛾

∑
s′

P(s′|s, a)maxa′Q(s′, a′)

Let’s pretend that the currently observed transition (st, a, st+1) is the only possible
outcome and let’s adjust the Q values toward a local equilibrium:

Qlocal(s, a) = R(s) + 𝛾⋅maxa′Q(s′, a′)

Qnew(s, a) = (1 − 𝛼) ⋅ Q(s, a) + 𝛼 ⋅ Qlocal(s, a), or

Qnew(s, a) = Q(s, a) + 𝛼 ⋅ [R(s) + 𝛾⋅maxa′Q(s′, a′) − Q(s, a)]

At each time step t and from the current state s one should select an action “a”
that:

a = arg maxa′ f (Q(s, a′),N(s, a′))| |
Exploration

function
#times action′′a′′ was
taken from state′′s′′

This will define the state s and perform a TD update:

Q(s, a) ← Q(s, a) + a
∣

Learning rate

⋅ [R(s) + 𝛾 ⋅ maxa′Q(s′, a′) − Q(s, a)]

obs: the learning rate starts at 1 and decays as 1/t. Example: α(t) = 120/(119+t).
At any given time step a prediction is updated to bring it closer to the prediction

of the same quantity at the next time step. TD RL is a supervised learning process in
which the training signal for a prediction is a future prediction.

Temporal Difference algorithms are used in Reinforcement Learning to predict a
measure of the total amount of reward expected in the future.
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5.4 CONCLUSIONS

Given the recent progress achieved in developing Computational Intelligence meth-
ods that could be applied to a variety of problem domains, the second part of the book
will be dedicated to presenting a series of Case Studies that are relevant to the field
of Quantitative and Computational Finance.

The goal of achieving Intelligence via computational means has several milestones
along the way:

• The first is Automation via Optimization, and it is usually carried out by using
Machine Learning algorithms for pattern detection – see Deep Learning in
image and sound processing.

• The second is related to the possibility of involving the computational machin-
ery in Prediction, via Learning and Evolution using soft programming tech-
niques.

• The ultimate goal is to achieve a form of human-like Intelligence in a setting
where the computational algorithms will be able to adapt to the environment
without having to be programmed as such by the designer – very similar to the
concept of Ecorithms.

The second part of the book will examine in more detail the first milestone – how to
achieve Automation via Optimization techniques. Since this is a mature field of study,
the next chapters will present a series of Case Studies related to the most important
components of the Trading workflow: from optimizing trade execution, to valuing
derivatives and market making, to more complex topics such as short-time horizon
prediction of the limit order book dynamics, real-time risk management and portfolio
optimization, or the problem of market surveillance and compliance.
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CHAPTER 6

Case Study 1: Optimizing Trade
Execution

“The agent is learning about the optimal strategy and the cost without actually
building a model. In the training process, the agent tries all sorts of things and
gets to observe the reward and basically correct his algorithm.”

– Gordon Ritter, GSA Capital Partners

6.1 INTRODUCTION TO THE PROBLEM

The vast majority of problems in Quantitative Finance could be addressed by impos-
ing specific objectives and constraints. One such problem that has attracted a lot of
interest from market practitioners since the dawn of the electronic trading era is what
is called the market impact or the optimized trade execution problem. If a large trans-
action cannot be executed promptly due the lack of liquidity at the current market
price, it is customary to split it into a sequence of smaller-size transactions. This
execution strategy will produce a lesser impact on the price at which the transac-
tion is to be executed. But this optimization process may take a certain amount of
time to unfold, and therefore it will expose the market participant to the risk of an
adverse market move. This problem has been studied for at least two decades and
very interesting results have been reported in the literature (Almgren and Chriss 2000;
Bertsimas and Lo 1998; Coggins, Blazejewski, and Aitken 2003; El-Yaniv et al. 2001;
Kakade et al. 2004).

Practical solutions range from imposing time limits to the execution process, to
enforcing limits on the price at which transactions are to be executed. When these
limits are reached, the trading would stop even before reaching the final objective.
It is quite easy to understand why these hard limit methods do not result in an
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optimal execution which should translate into maximizing the wealth while reducing
the transaction costs. The execution strategy needs to have an adequate level of
robustness that could be insured just when its dynamics is aligned with the dynamics
of the market.

This robustness could eventually be achieved by using Dynamic Programming
(DP) as a general-purpose methodology to achieve optimality. The paradigm of DP
is employed to update the execution algorithm such that to reflect changing market
conditions and result in an optimal execution. Any Dynamic Programming implemen-
tation involves the use of computationally intensive numerical techniques in order to
find an optimal trading strategy. Does this problem require a complex mathematical
model, or maybe Computational Intelligence could come to the rescue? This problem
has been studied also in theoretical Computer Science where it is called the one-way
trading problem.

In recent years there was an increased interest in applying Reinforcement Learning
to simulate the market impact and find an optimal trading strategy that maximizes the
value of the trade adjusted for its risk (Nevmyvaka, Feng, and Kearns 2006; Rantil
and Dahlén 2018; Hu 2016). An assortment of Reinforcement Learning–based poli-
cies has been developed to specify the optimal action to be taken from any given
state according to a discounted future reward criterion. The central idea behind all
these RL models is to balance the short-term rewards of actions against the influence
that these actions may have on future states. The Optimized Trade Execution problem
could be defined as the strategy for buying or selling a given volume of a financial
asset within a given time horizon such that the transaction’s revenue will be maxi-
mized while minimizing the costs required to actuate the transaction. This is one of
the most common problems for practitioners in financial trading and investing. The
parameters of the decision-making algorithm are still underspecified in the current
problem definition, since various trade-offs could arise. The speed of execution and
the quality of the average price at which the execution takes place are anti-correlated
variables and they have to be balanced accordingly.

A short execution time requirement for a large order may result in a very unsatis-
factory average execution price, and conversely a more relaxed time window could
improve the average price for the transaction, but it may expose the execution to
adverse market movements, which in turn may result in potentially greater losses.
Therefore this problem of optimized execution could be framed as a classical opti-
mization problem and it represents one of the most classic problems in Quantitative
trading.

Prior to the digitization of the financial industry, the only information available
to agents attempting to optimize trade execution was the sequence of prices of
already-executed trades and the current bid and ask prices. But the advent of elec-
tronic trading has made available to market participants a variety of informational
tools that could assist in the process of optimizing the market impact of large
volume transactions. Nowadays market participants have access to very granular
market microstructure data, or what is called order book data. This type of data
has become available in real time and it is represented by two large data structures
containing all outstanding buy and sell limit order prices and volumes. Such data is
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extremely valuable for the problem of optimized execution, since the distribution
of outstanding limit orders may help predicting short-term price movements, the
likelihood of execution at a given price, as well as what is called buy-side or sell-side
imbalances.

The availability in real time of such data coupled with recent advances in the use
of Reinforcement Learning, has made possible practical solutions for the Optimized
Trade Execution problem. A great deal of work has been reported in the field of
Market Data microstructure (Smith et al. 2003; O’Hara 1997). This created the con-
ditions for the identification of relevant state variables that could be used in the RL
algorithms for the optimization of agent’s actions. These state variables could be
either private variables, such as the amount of time and shares remaining for the algo-
rithm in the execution problem, or market variables, which reflect various features of
the trading activity in the limit order book. An example of such a microstructure
variable is the current cost of a market order submission.

By exploiting the structure of the order book data, customizable RL algorithms
are employed to improve the computational efficiency of the optimized execution
problem, especially for the case of extremely large data sets. Several studies have
shown that combining the availability of market microstructure data with novel RL
algorithms could improve significantly the efficiency of the trade execution prob-
lem. Nevmyvaka, Feng, and Kearns (2006) have reported improvements in perfor-
mance for up to 50% compared to baseline cases. By combining Q-learning and
Dynamic Programming, the authors implemented efficient RL algorithms to take
advantage of the structural features of order book trade execution. The resulting RL
policies could be easily interpreted in terms of the state variables and the constraints
of the execution problem.

6.1.1 On Limit Orders and Market Microstructure

Modern financial markets are generally limit order markets. A limit order to buy or
to sell a certain number N of shares at price P may partially or completely execute
at prices at or below the bid or at or above the ask. Let’s consider the example of a
future contract on the 10-year note ZN (traded on CME’s Globex platform) that is
currently trading at a price of 121-205 (see Figure 6.1 for the actual snapshot of a ZN
order book):

A potential buyer is willing to buy a lot of 116 contracts at the price of 121-180
or lower. If one chooses to submit a limit order with this specification, the order will
be placed in the limit order book, which is ordered by price, with the highest price at
the top (this price is referred to as the best bid; the lowest sell price is called the best
ask). In the example provided above, the order would be placed in the price bracket of
120-180 which has a total of 5,169 bidded contracts. Although the bidder offers to buy
at the same price, the other orders (5,053) at this price level have arrived before this
one. An execution occurs only when arriving buying limit orders could be matched
with selling orders on the opposing side of the book. For example, a limit order to
buy 18 contracts at 121-205 will jump in front of the current best bid (121-200) and
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FIGURE 6.1 The limit order book for ZN future contract.
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it will generate an instant execution by matching with a lot of limit sell orders for
18 contracts at the same price, 121-205. The 121-200 price level will continue to be
the best available bid with 2,378 available contracts, and the 121-205 will represent
the best offer level with 3,115 available contracts. As more big orders arrive, they
will consume orders deeper on the opposite side of the book, therefore achieving
successively worse average execution prices.

The main source of data that is used to train the RL models is composed of limit
order book data. This data structure describes the order flow that needs to be modeled
and understood in order to find the best possible execution strategy for large orders.
This kind of optimization problem requires the development of a generative model
(or a simulator) that combines the real-world order flow with artificial orders gen-
erated by the execution strategies that one tries to optimize. This simulator needs to
maintain order queue priorities and to match the orders in the order book. Therefore
historical order book data could be used to run simulations and to capture all costs
and uncertainties of trade execution, such as the bid-ask spread, the market impact,
or the risk of non-execution. Because of the very granular nature of the order book
data and the frequency at which it arrives, these data sets could be extremely large,
taking up to several GBs of space per financial instrument and per trading day. A sta-
tistically robust study for the Optimized Trade Execution problem may require years’
worth of data.

6.1.2 Formulation of Base-Line Strategies

How is the dynamics of the order book going to influence the problem of Optimized
trade execution? Since the goal is to sell N shares in a specified time horizon T, there
are several benchmark strategies that could be used for performance comparison:

1. Submit at once is a simple strategy where one market order is submitted at the
beginning of the time interval T. This is equivalent to placing a limit order to
sell all N shares at price zero, which will have the net effect of obtaining the
average execution price at that very moment.

However, as N grows in size, the average execution price will get progres-
sively worse as one depletes the existing orders of the limit order book. This
simplistic strategy could be considered as the primal solution of the Optimized
Trade Execution problem.

2. Submit and leave (S&L) policies are a better class of strategies that would con-
sist of selecting a limit order price P and placing all N shares at that price.
After a preset period of time T, the unexecuted orders will be transformed into
market orders. Using this approach one would achieve a much better average
execution price than using the submit at once approach.

Another advantage of this kind of strategy is the fact that the limit orders
do not have to be continuously monitored. Continuous monitoring of limit
orders could be expensive and could also expose them to market fluctuations
and adverse selection.
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3. Portion out evenly at bid/ask: This strategy will entail dividing the order into
several smaller orders corresponding to the number of time periods allotted for
the execution (Hu 2016), If one wants to buy 10,000 units of an instrument in
10 equally spaced time intervals, one order of 1,000 units will be submitted at
bid/ask every time period. The leftover portion of the initial order that was not
executed within the maximum time period will be executed at the market price.

The application of Reinforcement Learning techniques to the problem of Opti-
mized trade execution involves the consideration of state-based strategies. These
strategies are aimed at examining relevant features of the order book and coupling
them with agent’s own trading activity in order to decide the best course of action.

6.1.3 A Reinforcement Learning Formulation for the Optimized
Execution Problem

This section will introduce a Reinforcement Learning formulation for the Optimized
Execution problem, by defining the terms of state, action, and reward as well as the
algorithms used.

6.1.3.1 States
A state is defined as a vector of attributes (x∈X) that describes the current config-
uration of a system. It is important to note that a state is actually an experimentally
observed state. The two most important state representations are the elapsed time t
and the remaining inventory q, which represent how much time of the horizon T has
passed and how many shares we have left to execute in the target volume N. These
variables are typically called private variables because they are known and meaning-
ful just for the execution strategy, and not to the external world. Different resolutions
of accuracy are investigated for these variables: Δt and Δq. The time horizon T is
divided into distinct intervals (Δt) at which the policy is allowed to observe the state
and take an action. As an example, if one wants to execute 10,000 contracts in 10
different episodes, for a time horizon of T = 5 min, one can submit a revised limit
order every 30 seconds, and the time remaining variable t can assume values from 0
(start of the episode) down to 10 (last decision point of the episode). One also con-
siders some additional state variables that are called market variables. They encode
dynamic properties of the limit order book and its recent activity. Thus, a state could
be encoded in the form of xn = ⟨t|q|o𝟏 , o𝟐 , … oK⟩ where the oj is a market variable.
It is important to note that a state representation is just a model and as such is by
no means sufficient to render a perfect picture for a system as complex as modern
financial markets.

6.1.3.2 Actions
For the Optimized Execution problem the Action space can be thought of as the
collection of limit order prices at which one could reposition the remaining inventory,
relative to the current ask or bid. For the problem of selling N shares, an action A
corresponds to placing a limit order for all unexecuted orders at price ask A. This
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means effectively canceling any previous outstanding limit order and replacing with a
new limit order. The action A could be positive, negative, or just A = 0 corresponding
to an order coming in at the current ask. A positive action A corresponds to crossing
the spread toward the buyers, and a negative action –A corresponds to placing an
order in the sell-side of the book. In the case of buying, A is defined relative to the
current bid. For both buying and selling, more positive actions mean movement
toward the opposing book, and more negative actions mean placement deeper within
our own book.

6.1.3.3 Reward Functions
Any action taken in a given state could result in immediate rewards: cash inflows or
outflows, depending on whether selling or buying from any (partial) execution of the
limit order placed. But because the execution of the entire lot of N shares is manda-
tory, any inventory remaining at the end of time T has to be immediately executed at
market prices. This translates into consuming all available orders from the opposing
side of the book to execute, no matter the quality of the average execution prices.

In order to compare different policies and their performance across instruments,
one always measures the execution prices achieved by a policy relative to the
mid-spread price at the start of the episode in question. This is representing an
idealistic expectation that is assuming an infinite liquidity available at the mid-spread
price point. Since this idealized policy cannot be generally realized, one always
expects a worse outcome. Therefore one defines the execution cost of a policy as
the underperformance compared to the mid-spread baseline. The reward function
captures very important features of the execution process, such as the bid-ask spread,
the market impact, or the opportunity cost. For practical purposes one generally
assumes that commissions and exchange fees are negligible and that the access to
exchanges is fast and unhampered by network delays.

6.1.3.4 Algorithms
There is a rich variety of RL algorithms that could be used for the Optimized Execu-
tion problem. The best results reported in the literature have been obtained by using
RL algorithms that were computationally fast and benefited from an efficient reuse
of the market data. One of the most significant assumptions across all RL models is
the alleged Markovian nature of trade execution. This feature allows for a significant
reduction in the number of state optimizations. If the problem’s state space is properly
defined, the optimal action at any given point in time is approximately independent of
any previous actions. By using the Markov property, the optimal action in a state s at
time t is independent of the actions in all states with elapsed time t ≤ t. By extending
this logic at time t = T (no time left), the optimal actions in the final states are inde-
pendent from all other actions taken before. When the allocated time runs out, the
agent is forced to submit a market order for the reminder of all unexecuted orders in
order to bring the inventory to the desired target level N independently of what hap-
pened between t = 0 and t = T–1. The Markovian trade execution model represents
an inductive method to solve the Optimized Execution problem. Having assigned
optimal actions for the final states (by placing a mandatory market order at t = T),
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one poses all the information needed to determine the optimal action for all previous
states (starting with t = T–1). This will allow for moving one time step back at
the time from t = T–2 to t = 0. Attaining the initial time step (t = 0) will guarantee the
achievement of a globally optimal policy under the Markovian assumption.

Another significant assumption made is that the agent’s own actions do not affect
the behavior of other market participants. The consequence of this assumption is that
the agent’s order submission does not follow any particular strategy in relationship
with how orders are submitted by the other market participants, like stepping in front
of large orders. From a formal perspective this means that the agent’s actions do not
affect market state variables o𝟏 , o𝟐 , … oK, but only the private variables t and q. The
independence between public and private variables is used in the implementation of
the algorithm to use the available data more efficiently and to reduce overfitting. This
in turn will ensure that every state encountered could be optimized. As a result for
every episode in the order flow data, one could ask the following question: What is
the optimal action to be taken in this state if we were to encounter this particular state
with t = 0, 1, 2, or T periods remaining? The same methodology is to be used for the
other private variable, the remaining inventory q. This will ensure that every possible
state that can be generated from the dataset {t, q}* {o𝟏 , o𝟐 , … oK} will be visited.

6.2 CURRENT STATE-OF-THE-ART IN OPTIMIZED TRADE
EXECUTION

This section will review the current state-of-the-art in Optimized Trade execution.
The most sophisticated strategies in use for optimizing the execution of large orders
require a finite amount of time to trade. Almgren and Chriss (2000) pointed out
that the time required for the execution of a large order entails an additional risk,
and consequently a risk-return trade-off must be considered. The authors developed
families of execution strategies that lie on a risk-return frontier by making specific
assumptions about the execution technology employed. Agents who are more risk
averse will trade faster, thus incurring higher transaction costs but at lower risk lev-
els. Bertsimas and Lo (1998) derived several dynamic optimal trading strategies that
minimize the expected cost of trading of a large block of equities over a fixed time
horizon. Given a fixed block of shares to be executed within a fixed time interval,
and given a price-impact function (that yields the execution price of an individual
trade as a function of the shares traded and market conditions), the authors gener-
ated an optimal sequence of trades or the best execution strategy as a function of
market conditions.

Coggins, Blazejewski, and Aitken (2003) introduced a new approach for optimiz-
ing trade execution in a limit order market. This approach was used for the scenario
of trade shortfall where limited liquidity leads to significant transaction costs. The
authors described a method for calculating a trade execution plan which balances
intraday variations in the supply of liquidity against the risk of adverse future price
movements. The trade execution plan corresponded to solutions of discrete time
Dynamic Programming problems by specifying transaction costs within a value
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at risk framework. El-Yaniv and co-authors (2001) addressed the one-way trading
problem from the perspective of a time series search problem. In a time series
search problem a player is searching for the maximum or minimum price in a
sequence that unfolds sequentially, by processing one price at a time. During the
game a player could decide just once to accept the current price p in which case
the game ends and the player’s payoff is p. In the one-way trading problem a trader
is given the task of trading a certain FX pair. Each day, a new exchange rate is
announced, and the trader must decide how many dollars to convert to the foreign
currency according to the current rate. The game ends when the trader trades his
entire dollar wealth to the foreign currency.

Kakade and collaborators (2004) introduced several online models for Vol-
ume Weighted Average Price trading and limit order books. They published an
extensive study of competitive algorithms for these problems and related them
to earlier online algorithms for stock trading. Algorithmic approaches to the
Optimal Execution problem using methods from Stochastic Control have been well
studied (Bouchaud, Mezard, and Potters 2002; Cont and Kukanov 2013; Guant,
Lehalle, and Tapia 2012; Kharroubi and Pham 2010). This approach starts with
the assumption that the underlying real stock price is generated by some known
stochastic process. An impact function is defined to specify how arriving liquidity
demand pushes market prices away from this true value. Having this information,
as well as time and volume constraints, it is then possible to compute the optimal
strategy explicitly. This could be done either in closed form or numerically by using
Dynamic Programming.

Nevmyvaka, Feng, and Kearns (2006) published one of the first research papers
in the area of trade execution optimization using Reinforcement Learning. They pre-
sented “the first large-scale empirical application of Reinforcement Learning to the
important problem of optimized trade execution in modern financial markets.” Their
results were based on analyzing 18 months’ worth of millisecond time-scale limit
order book data from NASDAQ. This paper was one of the first to promote the poten-
tial of Reinforcement Learning to address market microstructure problems.

Axel Rantil and Olle Dahlén (2018) published the results of a MS thesis titled
“Optimized Trade Execution with Reinforcement Learning” at the University of
Linköpings, in Sweden. They reported a series of very interesting findings for
the Optimized Trade execution problem following a purely empirical approach.
By using historical data to simulate the process of placing artificial orders in a
market, the two authors were able to model the problem as a Markov Decision
Process (MDP). Within this MDP framework they trained and evaluated a set of RL
algorithms having as an objective the minimization of transaction cost on yet unseen
test data.

Just a couple of years before, Robert Hu (2016) published a paper on the Optimal
Order Execution Using Stochastic Control and Reinforcement Learning. The
goal of the thesis was to “find the optimal order execution policy that maximizes
the reward from trading financial instruments.” Optimal execution policies were
devised by using an MDP built using a state space model and the Bellman equation.
Simulations on historical order book data have been used to find the state transition
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probabilities and the rewards associated with each state. An optimal policy was
generated using the Bellman equation and tested against a variety of naïve policies
on out-of-sample data. This thesis explored whether the MDP is still viable under
less constrained assumptions and attempted to estimate the value function using
various techniques from Reinforcement Learning.

6.3 IMPLEMENTATION METHODOLOGY

In this section we will address the general methodology used to solve the Optimized
Trade execution problem. From a practical perspective the main question is how to
determine the optimal action in a given state. The availability of large amounts of
market microstructure tick-level data has made possible in-depth studies of the Opti-
mized Trade execution problem. The main approach used to interact with the order
flow data set and to test several different RL algorithmic implementations is by way of
simulating trade executions. The use of simulated orders is needed for emulating the
passage through different possible states in order to optimize the RL policy needed
to achieve the best execution for a given inventory and specific timeline.

6.3.1 Simulating the Interaction with the Market Microstructure

Historical order flow data could be used to simulate a limit order–based market and
its microstructure dynamics. Rantil and Dahlén (2018) described in their study a
practical method for simulating the matching of artificial orders with historical order
book data.

Their order flow data set was composed of the proximal 10 ask and 10 bid
price levels and their associated total order volumes. The order book data was
time-stamped with a minute-level granularity and consisted of fields such as the
order side (buy or sell), the price level, and the total volume available for that
particular price level. Alongside the historical order book depth, aggregated market
trades were available for each one-minute interval. This aggregated data consisted
of all trades that took place during the succeeding one-minute period of the available
depth data.

By placing artificial orders into this simulated market, the authors were able to
evaluate the quality of the execution strategies. Depending on the type of the artificial
order, the current structure of the order book, and the list of the aggregated trades,
orders were matched with:

• Other orders from the depth of the book – immediate matching;

• The aggregated trades – continuous matching; or

• Both types.

For the continuous matching case, the authors assumed that after the occurrence
of immediate matching, the unexecuted part of the artificial order was placed in the
order book and could be matched with the trades that occurred after the immediate
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matching took place. This way all the volume traded at a lower (higher) price than the
order price when buying (selling) is matched with the artificial order. This is possible
because the simulated order was placed in the books before the orders that have been
historically traded. All the volume executed during the continuous matching phase
is being done at the price of the artificial order and not at the average price of the
aggregated trades.

To make the matching process as realistic as possible, the authors encoded into the
order-matching simulator several interesting properties:

• If the artificial order is not matched during the immediate matching phase, the
trade simulator will take into account the queue for that price by letting the
existing volume for that price level be matched during the continuous phase
before the artificial order is allowed to match.

• If the artificial order is matched during the immediate matching phase, the trade
simulator will adjust so that the same order cannot match with the same histor-
ical orders twice.

• For very aggressive orders, like large volume orders that could empty the order
book depth for all of the 10 price levels, the assumption made is that the volume
for the following price levels will be an average volume of the first 10 price
levels.

The outcomes of the matching process are:

• The amount of cash spent if buying, or received if selling, and

• The total volume executed.

After an artificial order has been placed and a matching has occurred, the process
could be repeated at the next time step. At specifically chosen time steps, an artificial
order is removed and replaced with another one. This could happen several times
during an episode until the time limit expires. Therefore a complete episode could be
simulated by several matching occurrences. Obviously this simulation method has
its own shortcomings since it only considers orders visible in the order book. Orders
like hidden orders or iceberg orders are not dealt with. Although hidden orders do
not appear in the books, they still could be matched. The iceberg orders will show
only part of the volume in the LOB. The ratio of hidden to visible orders can be quite
significant for certain markets.

A significant limitation of the market simulator described by Nevmyvaka and
co-authors (2006) was represented by the assumption that there is no market impact
due to artificial orders on the market as a whole. In a real market setting, the impact
of the agent’s trading on the order book may persist over time. Another limiting
assumption is that the execution strategies and their simulated orders will not affect
the behavior of other market participants. Therefore the reaction of the market was
not modeled. Market participants could adjust their existing resting orders following
a particularly aggressive order.
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6.3.2 Using Dynamic Programming to Optimize Trade Execution

Optimizing trade execution is a multistage decision process where the agent decides
what orders to place and at what times. It also has a clear objective to minimize
the transaction costs. As a consequence the problem of Optimized Trade Execution
could be treated as a control problem and it could be potentially solved analytically
using the Dynamic Programming paradigm (Almgren and Chriss 2000; Bertsimas
and Lo 1998).

Dynamic programming is a well-known method for solving optimal control
problems and it can be used for the Markov Decision Process (see Figure 6.2) where
the transition matrix and reward function are known. To find the optimal path one
could use Bellman’s principle of optimality: “An optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision”
(Wikipedia 2019).

There are several variants of Dynamic Programming that are currently in use.
Rantil and Dahlén (2018) have reported the use of a backward induction method.
The author considered the MDP as being represented by an acyclic graph, like in
Figure 6.2.

The task is to transact N units of an asset during a time interval of T steps. The
variable i represents the inventory left to transact and the variable t represents the
number of time steps elapsed. The action a is encoded by the number of units to
transact at time step t and the reward Ra is the cash flow from the resulting transaction.
The goal is to maximize the total reward during the process. Since the process is
assumed to be a Markov Decision Process (MDP), an optimal path can be found by
using the Bellman expectation equation. This equation allows for the breakdown of
the problem into smaller sub-problems.

The algorithm is iterating backwards in time, solving first the state for t = T and
then iterating to t = 0 (see Figure 6.3).

i = N

i = 1

i = 0

t = 0 t = 1 t = 2 t = T-2 t = T-1 t = T

i = N-1

FIGURE 6.2 The Markov decision process represented as an acyclic graph.
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s ← (t, i)

ν* (s) ← maxa∈A
t

Record the optimal action f or s

Rs
a

γ

- reward (cash) in state s from selling due to action a

- probability of transition from s to s′ given action a

- discount factor ∈ (0,1)

f or t = T – 1 to 0

f or i = 0 to N

Rs
a Pss′

+ γ Σ (s′)ν*a

s′∈S

Pss′
a

FIGURE 6.3 Pseudocode for MDP.

The optimal solution is given by Bellman’s principle of optimality and the opti-
mal policy is obtained by chaining together the recorded optimal action for each
state one has encountered during the training episode. Solving a control problem in a
model-free setting, that is without knowing or modeling the transition probabilities,
and the reward function is a more robust approach. Reinforcement Learning is the
method of choice to learn a policy through interaction with an environment while
maximizing the long-run reward.

6.3.3 Using Reinforcement Learning to Optimize Trade Execution

A more realistic approach would be to use historical market data and define a Markov
Decision Process assisted by a trading simulator in order to be able to model the
market microstructure dynamics. Reinforcement Learning is an appealing technique
(see Figure 6.4) for solving this problem since there is no need for the specification of
the transition probability or the reward function. In this new formulation, the problem
consists of episodes containing states, actions, and rewards. The environment initiates
an episode by returning a starting state. The agent then selects an action At based on
the start state St from the set of possible actions A. The environment returns a reward
rt and the next state St+1. This is done repeatedly until the episode terminates because
some end state was reached.

Reward

Rt

Agent

Environment

State

St

Action

At

Rt+1

St+1

FIGURE 6.4 The reinforcement learning method. Source: Adapted from https://i.stack.imgur.com/
eoeSq.png.

https://i.stack.imgur.com/eoeSq.png
https://i.stack.imgur.com/eoeSq.png
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6.3.3.1 Learning methods
There are several classic learning methods for solving the optimal control problem.
One category is using the action-value table Q(s, a) to update the value of taking an
action A in the state S. This method is using tables and therefore is limited to handling
just discrete states and actions. There are other learning methods that are similar in
that they gather information from episodes consisting of a state, action, reward, and
the next state where the action is chosen according to some policy. The algorithm
runs until the episode terminates. During this time the table Q(s, a) is continuously
updated.

Several learning methods are in use:

• Q-learning

• Temporal Differences

• Monte Carlo

• Sarsa(λ)

Nevmyvaka, Feng, and Kearns (2006) reported the use of the Q-learning
methodology that we introduced in the previous chapter. For every state that one
encounters, that is, for every possible combination of time and remaining inventory,
the agent checks all possible actions, updates the cost function associated with
taking each action, and then it follows the optimal strategy. Any action that is taken
will result in an immediate payout when a certain number of shares get bought
or sold. This will shift the agent into a new state a time step later. Because the
learning moves backwards in time, the new state has been previously optimized
and therefore the expected cost of following the optimal strategy from that state
is known.

The cost update rule takes the following form:

Cost(s, a) = n
n + 𝟏

Cost(s, a) + 𝟏
n + 𝟏

[Cost+𝟏(s, a) + arg max Cost(s+𝟏, a+𝟏)]

Where:

• Cost(s, a) is the cost of taking action a in the state s and then following the
optimal strategy in all subsequent states

• Cost+1(s, a) is the immediate cost of taking the action a in the state s
• s+1 is the new state after taking a in the state s
• n is the number of trials for action a in the state s
• a+1 is the action taken in s+1

Nevmyvaka and co-authors reported that in order to learn the optimal strategy, their
algorithms had to go through the data set NT x NI x NA times, where NT represents
the number of time steps, NI is the number of inventory units, and NA is the number
of actions in each state.
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According to the authors, the running time of the algorithm was much faster than
the worst-case scenario, and it has several interesting properties:

• Running time of the algorithm was independent of the number of market vari-
ables.

• Parameters NT and NI could be increased arbitrarily without running the risk
of overfitting because of the efficient use of the data set.

The optimal strategy for execution reported by Nevmyvaka, Feng, and Kearns
could be summarized by the pseudocode shown in Figure 6.5.

The optimal policy is created by selecting the highest-payout action in each and
every of the states. One very important aspect to note is that because of the assumption
that the private and market variables are considered to be independent, during the
training phase one considers that the actions generating a specific policy have no
effects on the subsequent evolution of the order book. Therefore after simulating that
a certain number of shares have been executed in a given order book state, the agent
continues to the next state as if the order book has not been affected by the actions
(execution) of the agent in the previous state.

The advantage of using this assumption is that it renders both the computation
time and the sample complexity almost independent of the number of market vari-
ables, since the agent’s actions do not influence market variable evolution. The results
reported by Nevmyvaka, Feng, and Kearns validated the assumption made above on
the test data set for which this assumption was not made. Consistent empirical results
were obtained for the test data set in spite of the independence assumption made for
the training data set.

The selected market variables were intended to summarize information from the
order books into several of low-resolution features.

Examples of market variables:

• Bid-Ask Spread – as a positive value indicating the current difference between
the bid and ask prices in the current order books

OptimalStrategy(N, T, NT, NI, NA)

Loop over time NT

Loop over inventory 0     NI

Go over dataset (1.5 yrs of tick data)

Transform book data      market variables

Loop over actions 0     NA

Set x = { t, i, o1, o2 … oR}

Simulate transition s to s+1

Calculate Cost+1(s,a)

Lookup argmax Cost(s+1, a+1)

Update Cost function

Select highest payout action argmax Cost(s+1, a+1)

0

FIGURE 6.5 The optimal strategy pseudocode.
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• Bid-Ask Volume Imbalance – as a signed quantity indicating the number of
shares at the bid minus the number of shares at the ask in the current order
book

• Signed Transaction Volume – as a signed quantity indicating the number of
shares bought in the last 15 seconds minus the number of shares sold in the
same time interval

• Immediate Market Order Cost – as the cost one would pay for purchasing the
remaining shares immediately with a market order

The training data set was partitioned into episodes and the RL algorithm was
applied to learn an optimized execution policy over the selected state space. For
example, for the two-minute time horizon case, the one-year training data set was
split into about 45,000 episodes. One of the advantages of using order microstructure
data is that they generate very large training and test sets, which are very beneficial for
the learning algorithms. The RL policies represented the outcome of the learning pro-
cess and these have been compared for the test set with several baseline strategies.
The trading costs were measured in basis points over the mid-price at the opening
of the episode. The benchmark comparison was made in respect with the optimized
Submit-and-Leave strategy. Comparisons between RL policies obtained using differ-
ent state variables were equally interesting.

6.4 EMPIRICAL RESULTS

In this section we will review the most significant results reported in the literature
about the use of Reinforcement Learning algorithms for Optimized Trade Execution.

6.4.1 Application to Equities

Nevmyvaka, Feng, and Kearns (2006) reported an interesting set of empirical results.
Their experimental setup consisted of simulating executions for some very liquid
stocks, such as NVDA, AMZN, and QCOM. The simulated volumes were 5,000 and
10,000 shares for time horizons of two and eight minutes respectively.

The main conclusions of their study were that:

• The least liquid financial instrument (NVDA) was also the most expensive to
trade, and conversely, the most liquid one (QCOM) was the cheapest to transact.

• Trading larger orders is always more costly than trading smaller ones.

• Having less time to execute a trade generally results in higher costs.

In practical terms this means that the agent has to accept the largest price conces-
sion when transacting a large number of shares in an illiquid instrument in a relatively
short amount of time. The learning process followed by the authors had two variants:
using private variables only, or coupling private and market variables together.
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6.4.2 Using Private Variables Only

One of the state space configurations consisted of just the two private variables
t – the number of decision points remaining in the episode, and i – the remaining
inventory. Even for this very simple setting, the Reinforcement Learning algorithm
used delivered a much-improved performance compared to benchmark policies like
Submit-and-Leave (which was already a major improvement over a simple market
order). The authors reported noticeable improvements over S&L strategies ranging
from 27% to 360% depending on the parameter choices for T and I. The increase
of either parameter (time and inventory unit resolutions) would lead to much better
results.

These improvements could be explained by RL’s ability to find optimal actions
that are conditioned on the state of the environment. The more inventory and less
time remains, the more aggressively the agent should price the orders to avoid sub-
mitting a costly market order at the end. The authors observed that the RL algorithm
was learning the same general shape for a range of different parameter values. On
the other hand, the exact policy specification was found to be instrument dependent.
One of the most interesting results reported in this study was the observation of how
actions were related to the trading costs. The optimal policies were derived from
Q-values. By fixing either the time or the inventory remaining, one could vary the
other private variable and plot the Q-values (or equivalently the trading costs) for
each action.

For each state the action learned was represented by the minimum of the corre-
sponding Q-value function. The shapes of the Q-value functions could explain the
relationship between state variables and the optimal actions to be taken. For large
inventories and little time remaining, the entire Q-value function shifts upwards,
reflecting higher expected costs. At the same time the minimum of the curve shifts in a
way that indicates that optimal action must be more aggressive for these situations. In
the case of small inventories and longer remaining times, the Q-value function shifts
downwards, reflecting lower expected costs, and the minimum of the curve shifts in
the opposite direction, suggesting a more passive behavior for the execution agent.

6.4.3 Using Both Private and Market Variables

By adding market variable to the study, Nevmyvaka, Feng, and Kearns observed fur-
ther improvements over using just the private variables. The results were averaged
over all instruments, sizes, execution periods, and private variable resolutions T and
I and for each market variable tested.

One of the market variables used in the study was the immediate market order
cost, which represents a global measure of liquidity beyond the bid-ask spread. This
market variable measures how much it would cost to submit a market order for the
balance of inventory immediately, as opposed to waiting until the expiration period
T. Another market variable utilized was the bid-ask volume imbalance, which is the
signed differences between volumes quoted at the bid and at the ask. Transaction
volume represented the signed volume of all trades within the last fifteen seconds
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assuming that all buy orders have a positive sign and the sell orders have a negative
sign. Each of these market variables could take their values from a relatively small
interval.

The authors also explored combinations of two and three market variables.
While they succeeded in identifying factors that can improve RL performance
significantly, there were many other combinations that did not result in more efficient
policies, which is a testimony to market efficiency. Overall, the authors reported
an improvement in execution of 50% or more over S&L policies and several times
over market orders when using RL together with private and market variables.
As such:

• Bid-ask spread resulted in about 8% improvement in the trading cost.

• Immediate market order revenue contributed to about 4.3% cost reduction.

• Signed transaction volume yielded about 2.5% improvement.

By combining all three informative features, a 13% improvement was reported
over the original private variables-only state space. These results showed that for
each of the features described above, the percentage reduction in trading cost (or the
implementation shortfall) was obtained by adding that feature to the original private
variables-only state space. The authors reported improvements for three of the
four features, with only bid-ask volume imbalance not yielding any discernable
usefulness.

This reported improvement in performance is certainly due to the RL algorithm
learning different actions for different values of market variables. As an example,
larger bid-ask spreads require more aggressive actions from the agent that must go
further to chase the opposing book. As was the case for the private variables–only case
study, the shape of Q-value function is quite explanatory for the difference of optimal
actions across states. For some market variables there is no visible improvement in
the performance of the RL algorithm.

6.4.4 Application to Futures

In a recently published study, Rantil and Dahlén (2018) reported a series of very
interesting results concerning the problem of Optimized Trade Execution. The
authors studied the problem empirically by placing artificial orders in a limit order
market simulated with historical order-flow data. The order-flow data was for future
contracts in the commodity space (Crude Oil – WTI), stock indexes (FTSE 250,
Nasdaq), and fixed income (Gilts). The data sets were selected for a period of
18 months and two thirds of it was used for training and the rest for testing the
RL models.

All models and strategies were evaluated in terms of transaction cost. Trans-
action cost was defined as the difference between the cash flow achieved by
the hypothetical scenario of transacting the desired quantity at the mid-price at
the beginning of the period and the actual cash flow generated by the model or
strategy.
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The baseline strategies chosen were:

• Immediate Execution (IE), where a market order is submitted for the entire
inventory at the beginning of the episode therefore reducing the risk of unfa-
vorable price movement.

• Submit and Leave (SL), where a limit order is submitted for the entire inventory
at the beginning of the episode and then the remaining volume is executed at
market at the expiration of the allotted time horizon.

• This strategy is a trade-off between risk of non-execution and a low cost.

• Constant Policy (CP), where one places a limit order for the entire remaining
inventory at a constant number of ticks from the bid if buying or ask if selling.
This order is replaced with a new order a given number of times (depending on
the problem setting).

• Each time the order is replaced, it will be placed with the remaining volume left
to execute and with a new price relative to the bid or ask for that particular time
point.

• Constant Policy with Volume (CPWV) is very similar to the CP policy with the
added feature of placing a fixed percentage of the remaining volume instead of
all the remaining volume at each order placement.

• Evenly Distributed (ED), where the large order is broken into smaller equal
sizes and executes at certain time intervals – the most commonly used strategy
in practice.

NFK was one of the models developed by Rantil and Dahlén with the goal of
validating the results reported by Nevmyvaka, Feng, and Kearns (2006). They also
extended their results into the Dual NFK model with the goal of regularizing the
outputs against external price movement. In addition to these two base models, the
authors implemented and evaluated:

• A classical RL algorithm, named Sarsa(𝜆), which employs a modified reward
function, and

• A Proximal Policy Optimization (PPO), which is an actor-critic RL algorithm
incorporating neural networks in order to find the optimal policy.

The authors evaluated the performance of all these RL-based models, by compar-
ing their results with the ones obtained by using the five simple baseline strategies
outlined above.

The results reported by Rantil and Dahlén were very similar with those found by
Nevmyvaka, Feng, and Kearns in terms of transaction cost relative to the Submit-and-
Leave baseline policies. For some problem settings, like tight bid-ask spreads or small
inventory to be executed in very liquid markets, the Submit-and-Leave baseline poli-
cies performed better. The Constant Policy strategy has consistently performed better
than Submit-and-Leave or NFK in terms of cost by using the same action space and
order update frequency as NFK. The NFK performed much better than SL while
being relatively simple to train and implement.
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The dual NFK model performed on par with NFK, suggesting that one can train
the execution model for both sides of the order book instead of training separately
for buys and sells. However, there are practical situations when the buy and the sell
sides of the order book are not symmetrical and the dual NFK method could not be
properly trained. As such the dual model can only be trained when the problem is
completely symmetric in respect to buys and sells.

The use of the Sarsa (𝜆) model with a modified reward function yielded superior
results to both NFK models. It outperformed the baseline Constant-Policy strat-
egy for some instruments and problem settings, something that the NFK model
did not.

It is worth noting that the baseline policies ED and CPWV performed better than
the NFK, dual NFK, and Sarsa (𝜆) models. However, the comparison is not very
relevant since these baseline policies take into account the volume when placing
orders. A much better comparison is done with the Proximal Policy Optimization
model.

The use of the Proximal Policy Optimization model for one specific problem
setting has shown excellent results that outperformed even the best of the baseline
strategies and models, showing promise for deep reinforcement learning methods for
the problem of Optimized Trade Execution.

As a general conclusion the Proximal Policy Optimization model reduces transac-
tion costs when compared to all baseline strategies by giving robust results on both
buying and selling for all instruments with the same hyper-parameters. The train-
ing process was reported to be very stable and has produced consistent results on
multiple runs.

6.4.5 Another Example

Robert Hu (2016) has published a detailed study for the problem of Optimized Trade
Execution. The main conclusions reported by this study are that:

• Naïve baseline strategies were outperforming the RL-based models when the
size of the order to be traded was not producing a sizable market impact. The
results obtained with a discrete model strongly suggest that naïve baseline
strategies perform better when there is no punishment on large volume
submissions and aggressive orders.

• The RL-based models implemented via a Markov Decision Process yielded
superior results when the market impact was present in order-flow simulations.
The superiority of RL-based models in high market impact scenarios could be
credited to the fact that MDP takes the average from all the simulations and then
incorporates the effect of market impact in the estimated average.

• When considering more realistic market conditions, like slippage on the
execution price, the naïve baseline strategies are outperforming the RL-based
models.
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6.5 CONCLUSIONS AND FUTURE DIRECTIONS

The financial industry has been historically a driving force in promoting the use
of novel quantitative and computational technologies. The last decade has seen an
increased interest in applying Machine Learning methodologies, specifically Rein-
forcement Learning, to the problem of Optimized Trade Execution. Designing and
implementing strategies that maximize the risk adjusted value of trading has been
the object of large research studies (Nevmyvaka, Feng, and Kearns 2006; Rantil and
Dahlén 2018; Hu 2016). A wide variety of Reinforcement Learning–based policies
have been developed to specify the optimal action to be taken from any given state
according to a discounted future reward criterion. These RL models are balancing
the short-term rewards of actions against the influence that these actions have on
future states.

The previous section has synthetized the latest developments in the area of Opti-
mized Trade Execution. Some important conclusions could be drawn:

• The advent of high-frequency trading and the opportunity to collect vast
amounts of tick order-flow data has made possible the empirical study of order
book microstructure. The granular analysis of the order book microstructure
has facilitated the implementation of the state-based models that in turn could
find better optimizations for the market impact problem.

• The appropriate choice of private and market state variables coupled with
the utilization of efficient Reinforcement Learning algorithms have resulted
in significant improvements over simpler forms of optimization such as
submit-and-leave, constant, or evenly distributed policies.

• The availability of novel information regarding order book microstructure has
had an important effect on reducing transaction costs. The net effect of using
both tabular RL methods (such as Q-learning) and Neural Network function
approximations has been the reduction of transaction costs.

• Following a recent surge of interest in Deep Learning and Reinforcement Learn-
ing research, new techniques that incorporate DL into RL have been developed
(Sutton and Barto 1998; Mnih et al. 2016; Schulman et al. 2015; Schulman et al.
2017). These techniques have been thoroughly evaluated on video games and
simulated control tasks.

6.5.1 Further Research

The current body of research could be augmented by expanding the simulations to
a wider spectrum of financial instruments. One of the fundamental questions to be
answered is whether the Markov Decision Process is a good choice for modeling
the Optimized Trade Execution problem and how this assumption depends on the
specificity of the financial instrument used.

Making the simulation of artificial orders more realistic is also an important goal
for future research. Aspects related to slippage, partial fills, and illiquidity have been
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topics of interest for some time and they are still under development. The use of
larger order-flow data sets could provide very valuable insight into key aspects of the
interaction between the executing agent and the market order flow.

New techniques to acquire and process this kind of data need to be developed.
These larger data sets could be also instrumental when Neural Networks are used to
better estimate the value function rather than just a parametrized function or what is
called Deep Reinforcement Learning.
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CHAPTER 7

Case Study 2: The Dynamics
of the Limit Order Book

“Prediction is very difficult, especially if it’s about the future.”

– Niels Bohr, physicist and founding father of atomic structure and quantum theory

7.1 INTRODUCTION TO THE PROBLEM

This chapter presents several case studies on the use of Machine Learning (ML) tech-
niques to study the dynamics of the limit order book (LOB). This problem could be
formulated as follows: given a large set of order book (microstructure) data, select a
suitable set of features to be used by a Machine Learning algorithm with the goal of
accurately predicting directional short-time price movements.

By reviewing a rich collection of recently published literature, this chapter exam-
ines the feasibility of applying Machine Learning techniques to the problem of pre-
dicting directional price movements for electronically traded financial instruments.
The selected case studies are describing models for predicting relatively short-term
price movements as measured by the bid-ask midpoint from market microstructure
signals.

While the use of ML techniques is becoming more common in today’s Quantitative
Finance, the vast majority of these efforts are proprietary in nature, and as such most
of the published work is originating from academic research. The majority of these
studies concluded that developing predictive models for the LOB dynamics could
be an achievable goal. One should caution the reader that all analysis is generally
performed relative to the midpoint between the bid and ask, which is a fictitious,
idealized price. Once we take into account transaction costs and the cost of crossing
of the bid-ask spread, profitability is becoming more uncertain.

129



130 CASE STUDY 2: THE DYNAMICS OF THE LIMIT ORDER BOOK

7.1.1 The New Era of Prediction

After several decades of hope and more than a few false starts, the applicability of
Machine Learning to the field of Quantitative Finance is finally coming of age. The
advent of inexpensive computing power, data-storage capabilities, and the prolif-
eration of alternative data sets has bolstered the hopes of a successful use of ML
in Quantitative Finance. This new phase in the evolution of Quantitative Finance
is called the age of prediction. This represents a new paradigm that could bolster
efficiency in trading and generate superior returns for firms and individuals that are
capable of effectively implementing ML-based strategies.

Although the financial trading industry is still hesitant in hastily adopting the
Machine Learning philosophy, there is one aspect in which quantitative trading
and investment professionals would agree: that this new paradigm has the chance
to change the financial industry in a fundamental way. There is a big wave of
expectations for the new age of prediction in which algorithmic trading models will
continue to become more and more accurate at predicting the dynamics of market
prices. This new paradigm of prediction comes as an innovation to the previous age
of estimation in which practitioners relied on classical linear models in order to
approximate financial markets outcomes. Practitioners are hopeful that this new age
of prediction will empower them to create empirical asset-pricing models that will
generate adequate out-of-sample predictions.

Linear state space models, such as Vector Autoregressive (VAR) models, have
been heavily used for the modeling of High-Frequency data and in empirical market
microstructure research (Hasbrouck 2007; Cont and de Larrard 2013; Guida 2018;
Kearns and Nevmyvaka 2013; Lehalle and Laruelle 2013; O’Hara 1997). These lin-
ear models provide a natural benchmark for evaluating the performance of forecast
algorithms because they are easy to estimate, and they capture in a reliable way trends,
linear correlations, and autocorrelations in the state variables. A classic linear Vector
Autoregressive model operates on market data, and at each observation it updates a
vector of linear features. Then it uses a logistic regression model for estimating the
conditional probability of an upward price move.

Modern ML techniques such as Deep Neural Networks have been proven to
outperform linear models because of their ability to estimate nonlinear relationships
between the price dynamics and the state of the order book (which represents
the visible supply and demand for the financial asset under consideration). These
observations are consistent with an abundant empirical and econometric literature
documenting nonlinear effects in financial time series. The success of these new ML
techniques may be attributed to the flexibility of neural networks in representing
nonlinearities. More specifically, sensitivity analysis performed on data-driven
ML models has uncovered the existence of stable nonlinear relations between state
variables and price moves, which are nonlinear features that are useful in forecasting.
An example is the relation between the LOB depth and the probability of a price
decrease. This kind of relationship has been studied in limit order book queueing
models (Cont and de Larrard 2013).

This paradigm shift from estimation to prediction is not necessarily coming
from the advent of new tools, since we have been the beneficiaries of statistical
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machine-learning models for many decades – but from the increased ability to
access more data and have access to much faster compute architectures. The recent
proliferation of open-source technology, coupled with the surge in computing power
and data-storage capacity and the access to more structured and unstructured data,
have made possible for financial firms the exploration of novel Machine Learning
techniques.

Nowadays financial firms could have easy access to a plethora of advanced satellite
and drone technologies that enables them to collect data on consumers’ geo-location,
spending habits, and advertising preferences, thus providing alternative data inputs
to novel ML models.

“We are living in a much more digital world than 20 years ago. All the factors
have lined up at the same time, which is benefiting from the trend of using modern
approaches for investing,” said Tony Guida (2018), portfolio manager in London.

7.1.2 New Challenges

The primary challenge for the financial practitioners is not necessarily technological
in nature, but it mostly relates to the implementation process. If a computer scientist
strives to get extremely high accuracy for their ML models (usually > 99%), a quan-
titative financial practitioner considers anything above 50% accuracy a success. The
field of Quantitative Finance is not a Silicon Valley type culture where open-source
code and collaboration is praised or even encouraged. Quantitative Finance has histor-
ically thrived on proprietary models and trade secrets. Therefore, according to Guida,
“One cannot do a pure copy-paste from computer science into finance.”

Again the challenge of the practical implementation is going to supersede the
technological aspect. The primary focus of applying ML techniques in Quantita-
tive Finance is to derive computationally and informationally efficient algorithms
for inferring good predictive models from large data sets. A natural candidate for
application of ML is to problems arising in High-Frequency Trading, for both trade
execution and alpha generation.

One major challenge to overcome in training ML models on financial data is
coping with the market dynamics, or the market microstructure. Understanding and
modeling the dynamics of the price-generating processes is a central aspect for the
applicability of ML techniques in Quantitative Finance. It is just unpractical to train
an algorithm to categorize and classify all the permutations of every potential mar-
ket dynamics scenario. From this perspective Market Microstructure is a very low
signal-to-noise problem domain, sometimes calling into question the applicability of
ML techniques.

While classic quantitative financial models usually prescribe what the relevant fea-
tures for predictive modeling should be (i.e. excess returns, book-to-market ratios) in
many HFT problems one may not have much prior intuition about what the rele-
vant features should be. One typical question is how the distribution of liquidity in
the order book is relating to future price movements, if at all. As such the process of
selecting the relevant modeling features (feature engineering) is becoming the central
theme for the use of ML in HFT.
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Artificial Neural Networks are considered to be one of the most emblematic and
utilized Machine Learning techniques nowadays. ANNs are considered to be univer-
sal function approximators and as such they are extremely flexible and may produce
highly nonlinear functions of arbitrary and essentially uncontrollable complexity (e.g.
highly non-smooth functions). As a consequence of being universal function approx-
imators, the ANNs exhibit both notable strengths and weaknesses. Let’s consider
the example of using a generic ANN to build a financial forecasting model. Such a
model will most likely be a highly nonlinear function of the input variables, but of an
unknown form. It could be as simple as a cubic polynomial or it could take a much
more complex mathematical form.

In ML parlance, if the model passes an out-of-sample test, it is considered to be
acceptable no matter the functional form it may take. But when one attempts to apply
this model to any market data set, one may be surprised by the results. If the market
regime has changed since the time when the training data set was collected, the type
of nonlinearity fitted by the model from the training data set does not correspond to
a current nonlinearity from the actual data one observes.

A large section of Chapter 3 was dedicated to discussing the applicability of Arti-
ficial Intelligence to financial data. What makes the problem very difficult to debug is
that one cannot detect easily the regime change since this regime is not an observable
variable. As a consequence one cannot predict nor control this new type of nonlinear-
ity. It makes it quite impossible to know when or why any ANN model would fail. It
is generally accepted that models that are more interpretable would provide a better
control of nonlinearities especially in transient situations that are very common in
Quantitative Finance.

For problem domains where one deals with human-made, non-smooth, unstruc-
tured data such as speech or images, it is hard to find better solutions than ANNs.
This is the main reason that Deep Neural Networks have enjoyed such success in
applications like image recognition or voice translation.

7.1.3 High-Frequency Data

What really differentiates Quantitative Finance from other problem domains is the
specificity of the data generation processes. And this specificity is reflected in the
data itself. This section will address the particularity of High-Frequency Trading
data as it relates to its use by Machine Learning algorithms. Even as the definition
of HFT remains a subjective matter, Quantitative Finance practitioners consider this
type of data to be the most granular financial data available. HFT data, also labeled
microstructure data, is collected, managed, and distributed by exchanges. Its content
details every order placed, every execution and every cancellation, all in real time.
The availability of this data is making possible an accurate reconstruction of the full
limit order book, both historically and in real time. Market microstructure-level data
could be used for a variety of tasks. Besides the forecast of the future price moves
other possible applications may include the early prediction of anomalous events,
like extreme changes in prices.

The two most important challenges posed by this very granular market
microstructure data relate to both its scale and interpretation. The size of recorded
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microstructure data for a highly liquid stock like GOOG for example could amount
to several gigabytes daily. Storing this data for any meaningful periods of time
and for a large number of financial assets requires significant storage space and
modern compression techniques. In addition, processing this data in an efficient
manner requires parsing the data and uncompressing it in small chunks at a time.
These requirements may raise some serious technological challenges for the market
participants that intend to have access to this data.

The challenge of interpretation is even more significant. What kind of mean-
ingful information, if any, could be extracted from the microstructure data? What
features could be inferred from this very granular, low-level data that would be
useful in building predictive models for the directional price movement prob-
lem? This kind of question is not necessarily specific to HFT data, but it seems
especially relevant when used in connection with a Machine Learning training
process.

Compared to the more traditional cases like low-frequency market data or generic
(not market-related) data, the meaning of microstructure data seems quite opaque. As
an example, data like daily opening, low, high, and closing prices which aggregate
market activity and integrate information across all market participants or earnings
reports could provide actionable signals about the performance of a particular finan-
cial instrument. What interpretation could be given to the action of placing a single
order in a massive stream of microstructure data? What is the meaning of an intraday
snapshot of the order book considering that any existing order could be canceled at
any time prior to execution?

Just for comparison let’s consider the application of ML to problems in Natural
Language Processing (NLP) or Computer Vision. While technically they are both
very challenging problems, their degree of interpretability is quite obvious: the basic
unit of meaning is the word for NLP and the objects for vision applications. In the
case of market microstructure data, the unit of meaning or actionable information is
a lot more difficult to identify. In addition to the opacity of meaning this type of data
is noisier than in other ML domains.

7.2 CURRENT STATE-OF-THE-ART IN THE PREDICTION
OF DIRECTIONAL PRICE MOVEMENT IN THE LOB

This section will review the current state-of-the-art as it relates to the ability to fore-
cast the dynamics of market microstructure LOB data. As in any empirical study it is
important to establish some benchmark models against which to compare the results
reported in the following case studies. The econometrics literature of the last two
decades has published many empirical studies reporting findings like:

• Weekly and monthly stocks returns are weakly negatively correlated, or
• Daily, weekly, and monthly index returns are positively correlated.

The behavior of price returns is very different in Foreign Exchange markets
where short-term returns (under a minute) are highly negatively correlated. All these
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econometric models represent very useful benchmarks for assessing the quality of
ML-based models presented in the case studies that will follow.

A great deal of research (Lehalle and Laruelle 2013; O’Hara 1997) has been done
recently on the limit order book and its corresponding microstructure, most of the
results being reported for individual stocks. The main objective was to characterize
features such as liquidity, volatility, and spreads and not necessarily to predict future
price action. But the current availability of market microstructure data is making
it possible to exploit the more ample dimensionality of the order book when mak-
ing trading decisions (Zheng, Moulines, and Abergel 2012; Han et al. 2015; Nousi
et al. 2018; Ganesh and Rakheja 2018; Tsantekidis et al. 2018; Doering, Fairbank,
and Markose 2017). These techniques are far more sophisticated than the standard
time series analysis tool set that was used in the past two decades to forecast direc-
tional movements in market prices.

Zheng and his co-authors (2012) reported interesting empirical results on the rela-
tionship between the bid/ask liquidity balance and the trade sign. They showed that
the liquidity balance between the best bid and the best ask prices could be a very
informative feature to be used for predicting the direction of future market moves. In
addition they defined the price jump concept, as the sell (or buy) market order that
could trigger an execution deep into the book at a price which is smaller (or larger)
than the best bid (or the best ask) price. Features related to limit order volumes, limit
order price gaps, market order information, and limit order event information were
built into their model. By using these features a Logistic Regression model was imple-
mented to predict price jumps. Then the authors applied LASSO regularization to
select the most informative features for the forecast of price jumps. Their analysis
has been performed on the components of the CAC40 French stocks.

Han and his co-authors (2015) developed a multi-class classifier for forecasting
price changes using LOB data.

Their predictors were divided into three categories:

• Basic set of features – containing 10 levels of bid-ask prices and their corre-
sponding volumes in the limit order book

• Time-insensitive set of features – including parameters such as bid-ask spreads,
mid-prices, prices differences, mean prices, volumes, and accumulated differ-
ences for the 10 levels of the time-sensitive set

• Time-sensitive set of features – containing time derivatives for prices and vol-
umes, average intensity of each type of orders (limit, market, and cancellation),
relative intensity indicators, and accelerations (market/limit) for the 10 consid-
ered price levels

The response variable generated was a label for one of the three possible classes:

• Upward mid-price change (U)

• Downward mid-price change (D)

• Stationary mid-price change (S)
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The reported results demonstrated that ML-based techniques could be success-
fully used to classify mid-price movements using limit order book data as features.
The authors proposed and implemented a classifier for predicting mid-price move-
ments in a stationary market microstructure regime. Both Support Vector Machines
and Random Forest were used for solving the classification problem, with Random
Forest being the most accurate in terms of forecasting mid-price movements. This
was largely due to the LOB features being not linearly separable.

Nousi and collaborators demonstrated the use of Machine Learning algorithms
for the prediction of future price movements using market microstructure data.
The authors employed two different sets of features: one containing handcrafted
features based on the raw order book data, and a second one composed of features
extracted by ML algorithms, resulting in feature vectors with high dimensionality.
Three different classifiers were evaluated using several combinations of these sets of
features.

Although a wide variety of ML algorithms have been used to address the price
dynamic forecast problem, the most popular ones have revolved around Artificial
Neural Networks. The ANN algorithms have the ability to scale up to problems that
were previously unsolvable by more classical ML techniques. In recent years a very
special type of NN algorithms, Deep Learning (DL), has become increasingly pop-
ular. This new family of ANNs has been proved very effective for use in large-scale
tasks and for some very specific problem domains, such as voice translation and image
processing. The success of DL was mostly due to the advent of modern hardware
accelerators such as GPU and FPFA and to the availability of more data for training
these ML algorithms. Although there is a lot of hype around the use of DL in Quanti-
tative Finance, there are a lot of questions about its applicability to a problem domain
where non-stationarity and noise could be significant challenges to overcome.

Ganesh (2018) published some initial results on the implementation of a DL
pipeline which uses information about past trading behavior and current order book
microstructure to predict price movement for the very near future.

The training of the deep neural network was divided into:

• An off-line training phase using the data from the previous day, and

• An online training phase done in mini batches, while consuming live data.

Tsantekidis and co-authors (2018) published a report on a new method to con-
struct stationary features that would allow Deep Learning models to be applied more
effectively.

Two important classes of DL models were evaluated:

• Recurrent Long Short-Term Memory (LSTM) networks, and

• Convolutional Neural Networks (CNN).

The novelty of their model was reflected in combining the ability of CNNs to
extract useful features with the ability of LSTMs to analyze time series. The authors
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were reporting that the combined LSTM-CNN model was able to outperform the
individual LSTM and CNN models in prediction done on short time horizons.

The ability of highly sophisticated ANNs to achieve unprecedented performance
across a variety of complex real-world problems was driven by the ability to detect
significant patterns autonomously. Research performed by Doering and collaborators
(2017) explored a new territory by designing and evaluating a Convolutional Neural
Network that could be potentially used for price prediction. Inspired by a visual
transformation process, a large set of high-frequency market microstructure data from
the London Stock Exchange was mapped into a four-channel market-event based
input, which was used to train six deep neural networks. Preliminary results indicated
that CNNs behave reasonably well on tackling this task and extracting interesting
microstructure patterns, which were in line with previous theoretical findings. This
research illustrated a novel approach on using modern Deep-Learning techniques for
exploiting and analyzing market microstructure behavior.

In a very recent paper Sirignano and Cont (2018) reported the use of large-scale
Deep Learning methods to a HFT database containing billions of electronic market
quotes and transactions for US equities. Their goal was to identify a “nonparametric
evidence for the existence of a universal and stationary price formation mechanism
relating the dynamics of supply and demand for stocks.” Their empirical study
has necessitated the use of a gigantic High-Performance Compute infrastructure
composed of 500 GPU nodes for the training of their DL models on massive
amounts of data. The reported results showed that their data-driven approach
outperformed linear-model accuracy and it has uncovered a set of universal features
that are common across all stocks studied. An even more remarkable result was
that the performance of their model in terms of price forecasting accuracy was
remarkably stable across time, even a year out of sample. The authors claimed that
this empirical result indicates the existence of a stationary relationship between
order flow and price changes. This case study will be presented in more detail later in
this chapter.

7.2.1 The Contrarians

“We know from physics that rare events might be extremely important for
defining the true dynamics of a system.”

– Igor Halperin, quant, adj. professor @ NYU

But in all fairness Deep Neural Networks are not popular models across the board in
the quantitative financial space. There is a group of academics and practitioners, albeit
not very numerous, but quite vocal, that does not fully trust this type of approach. One
of the most outspoken contrarians is Igor Halperin, Quant-Researcher and Research
Professor of Financial Machine Learning at NYU Tandon School of Engineering.
He published a series of papers on the subject of the applicability of DNN in quant
finance (Halperin and Feldshteyn 2018). He believes that all of the models currently
used by financial practitioners are wrong, and most of them are qualitatively wrong.
He explains that by saying that “everyone always complains that financial models fail
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when you need them the most, namely during periods of market turbulence or crises. I
say it’s embedded in the way models are constructed, and this applies to both classical
financial models and newer machine-learning models, albeit for different reasons.”

Halperin describes Paul Samuelson’s Geometric Brownian Motion model
as an inconsistent model that describes an unstable system characterized by an
inverted-parabola potential. According to him, “GBM model cannot be a consistent
model of a financial market, nor can it be viewed as a good ‘zero-order’ approxima-
tion to a more general theory with a non-linear potential that would produce stable
or metastable dynamics.” He adds that “all classical financial models are linear
models that are not only not self-consistent because they imply unstable dynamics,
but they also miss the whole complexity of financial markets altogether because they
correspond to systems without any interactions at all.”

But everyone knows that novel ML models can exhibit highly nonlinear behav-
ior and they may have numerous free parameters to fit the market. As an example,
Deep Learning could produce highly nonlinear functions with millions, or even bil-
lions, of free parameters. And according to Halperin, relying on DL for knowledge
extraction from financial data could be even a more ill-conceived idea than relying
on linear models in classical finance. Regime changes are fundamentally variations
in the underlying type of nonlinearity of the system. Since DNNs are black-box algo-
rithms where one does not have explicit control over the form of the nonlinearity, their
use could be very dangerous, according to Halperin. Because financial data could be
extremely noisy and nonstationary, it is of a very different nature compared with
the data generated from images or speech. By completely ignoring regime changes
in the processes that generate financial data, DL could produce highly questionable
results. If the underlying nonlinearity driver in the data changes as a result of a regime
shift, a model user may not notice that in a timely matter – and this is precisely because
Neural Networks in general and DNNs in particular do not explicitly allow the control
nonlinearities.

Halperin is advocating for a new type of approach in financial modeling that is to
build models with an explicit control over nonlinearities. One promising way to do it
is to combine ideas from Reinforcement Learning and Physics. One other interesting
approach is provided by Inverse Reinforcement Learning (IRL) that aims to infer the
Reward function from the observed behavior of agents. While IRL is widely used
in robotics, Halperin’s work (2018) provides a first application of this approach to
modeling of financial markets. Instead of using IRL to reverse engineer and learn
reward functions of individual traders, Halperin applied IRL to a financial market as
a whole, by viewing market dynamics as resulting from actions of an invisible hand.
Halperin’s idea was that modern methods of IRL can be used to learn the reward
function of the invisible hand from observed market prices. This new approach has
produced a novel market model with a nonlinear drift given by a quadratic polynomial
in price. This is a notable departure from conventional linear models such as the
GBM model of Samuelson that behaves well in stable market regimes but is becoming
subject to a set of instabilities during market regime changes.

I will conclude this brief literature review by saying that the use of modern ML
techniques should be carried out in a way that is fully consistent with the reality of
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non-stationarity and noisiness in the underlying processes responsible for generating
the market microstructure data. One also has to be fully aware of the possibility of
rare events and their importance in defining the true dynamics of the system.

The next sections of this chapter will introduce some of the most commonly used
methodologies to address the problem of forecasting the dynamics of price move-
ments using the information available in the limit order book. Finding a solution to the
problem of forecasting the directional movement of prices in the LOB would entail
developing learning models that would generate decisions as to when and under what
conditions to trade in a given state space and especially how much (size wise) and in
which direction (buy or sell) to transact.

The methodology to address this problem could be divided into two components:

• The engineering of features that will enable a reliable prediction of directional
price movements from certain states. The denomination reliable implies
a degree of accuracy that is high enough to ensure that profitable trades
counterbalance the unprofitable ones.

• The development of learning algorithms for executing trades that could capture
this predictability (alpha) at trading costs that will make the strategy profitable.

A viable ML-based methodology must devise profitable predictive signals, and
then ensure that they are not going to be obliterated by trading costs. If the former
objective is relatively feasible, the latter may be proved to be relatively difficult to
achieve. The case studies reviewed in Chapter 6 on Optimized Execution did not
consider features that directly captured directional movements in the execution prices.
There was no need for forecasting the dynamic of prices since the problem had already
specified the direction and the volume to be traded, so predictive signals were less
important than those capturing potential trading costs. But for the problem of alpha
generation the forecast of directional movement is centrally important.

7.3 USING SUPPORT VECTOR MACHINES AND RANDOM FOREST
CLASSIFIERS FOR DIRECTIONAL PRICE FORECAST

Before Deep Neural Networks and Reinforcement Learning techniques were com-
ing of age and started being adopted by the quantitative finance community, more
traditional ML methods have been used for directional market price forecast.

Han and collaborators (2015) developed a multiclass classifier for forecast-
ing price changes using market microstructure data. The authors used Support
Vector Machine and Random Forest to classify the possible future behavior of
the microstructure data into three categories: upward, downward, or stationary
mid-price change. SPY index microstructure-level tick data was used for this study.
The problem of forecasting the directional move of the price was turned into a
classification problem where the mid-price movement has been allocated to one of
the three class labels: upward, downward, or stationary.
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The authors divided their features into three categories: a basic set, a
time-insensitive set, and the time-sensitive set. The selected feature space was
represented by a complex feature vector as follows:

Basic Set
v1 = [0, 39] Price and Volume for 10 levels on Bid/Ask

Time-Insensitive Set
v2 = [40, 59] Bid-Ask spreads (10) and Mid-prices (10)
v3 = [60, 95] Price differences (2 x 18)
v4 = [96, 99] Mean prices and mean volumes
v5 = [100, 101] Accumulated differences

Time-Sensitive Set
v6 = [102, 141] Price and Volume derivatives (2 x 2 x 10)
v7 = [142, 147] Average intensity for limit, market, and cancels @ Bid/Ask
v8 = [148, 151] Accelerations (limit and market @ Bid/Ask)

Each row in the limit order book data represents a snapshot of the book at a specific
time and it records all order events, such as:

• A (Add Order) represents arrivals of limit bid/ask orders.
• D (Order Delete) represents order cancellations.
• CA (Order Execution) can be viewed as arrivals of market orders.

The authors used a 10-fold cross-validation to evaluate the performance of the two
classifiers. The training data set was split into 10 buckets, one bucket being the test
bucket, and the other 9 being used to train the classifier. This result was repeated 10
times until each bucket had been chosen as the test bucket.

To validate the classification model, performance was measured using three
common accuracy measures (averaged for the 10 buckets): Precision, Recall, and
F1-Measure:

Precision∶ P =
number of correctly predicted outcomes y

number of outcomes y in the predictions

Recall∶ R =
number of correctly predicted outcomes y

number of outcomes y in the sample

F1 − measure∶ F1 = 2PR
P + R

7.3.1 Empirical Results

The empirical research study done by Han and co-authors (2015) explored the
applicability of ML classification algorithms such as Support Vector Machine (with
Linear and Gaussian kernels) and Random Forest to the problem of predicting
the directional move for the SPY price. The principal result of this study was
that the Random Forest ensemble model performed relatively well in terms of the
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accuracy of the out-of-sample prediction for the mid-price directional movements
in the SPY index while the SVM model was deemed to be inadequate for this task.
However the data sample considered for training and testing was small in size and
that may impact the generality of the conclusions drawn by the study. The use
of linear SVM has exhibited poor results and that fact could be attributed to the
linear inseparability of data. By using RBF kernels the performance of classifier
has slightly improved, but while Upward and Downward Precision accuracy
measure was deemed acceptable, the Recall accuracy measure did not pass the
acceptability mark.

The performance of the Random Forest ensemble model was notably superior as
compared to the SVM models by producing good accuracy measures. High values
for both the Precision and Recall metrics validated the assumption that the three
classes were indeed separable. A possible explanation as to why the Random Forest
ensemble model has performed better than the SVM counterpart might be due to the
nonlinearity of the LOB features. While Support Vector Machines work relatively
well for classification problems that could be separated into linear or polynomial
kernels, Random Forest ensemble models are a much better choice for problems
that exhibit nonlinearity; and from this perspective the LOB feature space is a good
testing ground for this type of tool.

For a quantitative trader time is of the essence, and as such the size of the feature
space has to be manageable for the sake of faster calculations. For this study the
authors selected the 10 most informative features out of the total of 151 features:

1. Volume of the 1st level of bid

2. Volume of the 1st level of ask

3. Mean volume of the first 10 levels of bid

4. Derivative of the 10th level of ask price

5. Accumulated difference of volumes

6. Derivative of the 10th level of bid price

7. Volume of the 3rd level of ask

8. Mean volume of the first ten levels of ask

9. Volume of the 2nd level of ask

10. Volume of the 4th level of ask

The performance of the classifier using just the first 10 most informative features
was very similar to the performance of a classifier using all 151 features. The general
performance of the classifier for the 10 most informative features has exhibited Pre-
cision and Recall values in the interval 0f 80%–90%, which is truly remarkable for a
trading problem.

As future developments, the authors of the study have suggested extending the
3-class classifier to a 5-class classifier, together with the use of a more extensive
microstructure data set that should cover a larger variety of market regimes.
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7.4 STUDYING THE DYNAMICS OF THE LOB
WITH REINFORCEMENT LEARNING

Reinforcement Learning has become one of the most utilized ML techniques by quan-
titative finance professionals. RL methods are applicable to problems that could be
framed as “agents acting in environments of quantifiable states that act according to
goal-driven reward function.”

In one of the most cited research papers on the topic of using Reinforcement
Learning methods for directional price movement forecast, Kearns and Nevmyvaka
(2013) reported interesting results on a series of empirical studies done on market
microstructure data.

The authors used a set of features composed of:

• Price – for measuring the recent directional movement of execution price.
• Bid-Ask Spread – the price difference between the best offer and the best bid.
• Smart Price – a variant of mid-price where the average of the bid and ask prices

is weighted according to their inverse volume.
• Trade Sign – a feature measuring whether buyers or sellers crossed the spread

more frequently in recent N executions.
• Bid-Ask Volume Imbalance – a signed quantity indicating the volume of orders

placed at the bid minus the volume of orders placed at the ask for the first 10
levels of the order book.

• Signed Transaction Volume – a signed quantity indicating the total volume
bought in the last 15 seconds minus the total volume sold in the last 15 seconds.

The authors reported the use of these features after normalization and time-
averaging over a recent interval. In order to ensure the finiteness of the state space,
features were discretized into bins in multiples of standard deviation units. The goal
of the study was to examine the feasibility of a directional movement prediction
using RL techniques, and not necessarily the development of a practical algorithm
that could capture such movements in a cost-efficient way. As such the authors made
a set of optimistic execution assumptions by considering just two idealized classes
of possible actions for the learning algorithm:

• Buying shares at the bid-ask midpoint, and
• Holding the position for t seconds, after which the position is sold at the mid-

point. And conversely, after selling at the midpoint one buys back t seconds
later.

The methodology used by Kearns and Nevmyvaka could be summarized as:

• 19 different equity names were in used in the study: AAPL, ADBE, AMGN,
AMZN, BIIB, CELG, COST, CSCO, DELL, EBAY, ESRX, GILD, GOOG,
INTC, MSFT, ORCL, QCOM, SCHW, and YHOO.
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• For each of the 19 names used, several different LOB reconstructions were per-
formed using historical tick data.

• For each trading opportunity a state was computed based on the values of the
six microstructure features described above.

• The profit or loss for both actions (buy-sell or sell-buy) was computed via LOB
simulation (in order to get the midpoint movement).

• For each state in the state space, the cumulative payoff for both actions was
computed across all visits for any given state in the state space for any given
training period.

• The Learning process has generated a policy𝝅 that was mapping states to action,
where (x) was defined to be the action that yielded the greatest training set prof-
itability in the state x.

• Training was performed using a full year (2008) of historical tick data while
testing of the learned policy for each name was performed using all 2009 data.

By applying the methodology outlined above, the authors reported that the RL
policies that were generated were consistently profitable on the test set and across all
the 19 stocks studied.

7.4.1 Empirical Results

The two most important findings reported by Kearns and Nevmyvaka are that:

• Reinforcement Learning has consistently generated profitable policies on the
test set, and

• Generated policies were very similar across all the 19 financial instruments used
in the study.

By studying the correlation between feature values and the action learned, the
authors showed that for virtually every feature used in the study the sign of the cor-
relation is the same across all policies. By convention a +1 value was assigned to
this correlation for a buying→selling sequence, and a −1 value was attributed to a
selling→buying sequence.

A very notable result is that although the use of Reinforcement Learning
generates policies that are qualitatively similar, the learning process may generate
significantly different quantitative optimizations for each individual instrument. The
policies generated by the RL algorithms used in this study have consistently learned
momentum-based strategies. For each of the features that embedded directional
information (like Price, Smart Price, Trade Sign, Bid-Ask Volume Imbalance, and
Signed Transaction Volume) higher values translated into a greater frequency of
buying for the learned policies. The meaning of higher values for a specific feature
indicates either rising execution prices, rising midpoints, or buying pressure in the
form of spread-crossing.

However it should be noted that a simple mapping of the policies onto single
features is not an accurate view of the learning process. A lot of complexity could
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be encoded in the interactions between features. So instead of conditioning on a
single directional feature having a high value, the conditioning was done on several
features having high values. As such the correlation of a set of features with buying
becomes considerably stronger than for any isolated feature.

The authors also examined which of the features were more or less predictive of
profitability. Their findings showed that:

• Profitability is maximized by using all six features rather than any single one.
• Smart Price appeared to be the best single feature, sometimes slightly better than

using all features together, which may be a sign of mild overfitting in training.
• The bid-ask spread appeared to be the less informative single feature.

While the results of this study exhibited a consistent momentum-like relation-
ship between features and actions across all 19 names, the conclusion might be
different when exploring different holding periods. The study has shown that the
learning process may discover different models depending on the holding period
considered.

For very short holding periods the authors found a consistent momentum-
like behavior. For intermediate times ranging from milliseconds to seconds, the
price dynamics tends to continue in a momentum-like fashion. At these time
scales, buying is more profitable when the recent price movements are strongly
moving upwards, and unprofitable when the price are falling. Generally one con-
cludes that features that capture directional moves are positively correlated with
future returns.

For longer holding periods (from tens of seconds to minutes) the pattern of the
price dynamics may change. For these time horizons the learner discovers new
reversion-like strategies. In this new regime buying is becoming more profitable
after recent downward price movements, and selling is recommended after upward
price movements. All these observations were consistent across all 19 names and
their related features. Both the short-term momentum and longer-term reversion
strategies exhibit distinctly classifiable outcomes. And this is a desirable property of
the learning process. The relationship between the magnitude of the feature values
and the extent of future returns is monotonic in nature. This monotonicity breaks
when the holding period is extended beyond 30 minutes to several hours. For these
holding periods conditioning on any of the features will no longer separate future
positive and negative returns.

The behavior of the price formation mechanism for the three different holding
periods studied could be summarized as follows:

• When the time interval considered ranges from milliseconds to seconds, the
most likely scenario for the price formation process is momentum-like. In this
scenario large marketable orders interact with the order book, creating a definite
directional pressure.

• When the time interval increases from tens of seconds to several minutes, the
observed scenario is mean-reversion. The demand for liquidity pushes prices
too far from their equilibrium state, resulting in a price reversion.
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• For time scales beyond 30 minutes, the microstructure-based features become
less informative, supposedly losing their explanatory power.

It is important to note that the authors did not conclude that microstructure
features are immaterial to the price formation process for longer time hori-
zons. As a reminder to the reader, longer holding periods are of a particular
interest to asset managers and other quant trading practitioners for which over-
coming trading costs (crossing repeatedly the bid-ask spread) is of the outmost
importance.

The results of this study conclude in a quite convincing matter that the direction of
price dynamics is much easier to forecast over shorter time intervals. But the practical-
ity of these predictions (the ability to cover trading costs) grows with the magnitude
of the time holding period. Trading practitioners are looking for an optimal time hori-
zon that is long enough to allow prices to evolve sufficiently in order to overcome the
spread, but sufficiently short such that microstructure features are becoming infor-
mative of directional movements. The authors suggested a possible path to reducing
the influence of long-term directional price drifts by adjusting the learning algorithm.
Instead of evaluating the return from a buy action in a given state, one could monitor
the relative profitability of buying in that state versus buying in any other possible
state. This new methodology could filter out price trends and facilitate the analysis of
the price microstructure, thus allowing the learned policies to perform more robustly
out-of-sample.

7.4.2 Conclusions

This research study demonstrated that Reinforcement Learning techniques could be
successfully applied to a set of handcrafted LOB features in order to forecast price
dynamics. It also highlighted two very important aspects worth considering when
applying Machine Learning to High-Frequency data:

• What is the nature of the underlying price formation process?
• What is the role and limitations of the learning algorithm itself?

While this study clearly exhibits patterns in the short-term price formation pro-
cess, devising a profitable trading strategy from this predictability is far from trivial.
Because the average magnitude of predictions was measured in fractions of a penny,
the reported results cannot be interpreted as a recipe for profitability, since the mag-
nitude of predictability is not sufficient to cover the transaction costs.

What types of remedies are still available to find a practical solution to this
problem? According to Kearns and Nevmyvaka (2013), several scenarios should be
considered:

1. Hold positions for longer periods so that price changes are larger than the
bid-ask spreads, thus producing higher margins. However, the longer the hold-
ing period, the less informative market microstructure features seem to become,
thus making prediction more difficult.
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2. Trade with limit orders, thus avoiding paying the bid-asking spread. Although
very promising this direction must be weighed against adverse selection, i.e.
the probability of executing only when predictions turn out to be wrong.

3. Design better features that will induce about greater predictability, sufficient to
overcome transaction costs.

This case study introduced both the opportunities and the challenges of apply-
ing a Machine Learning approach to HFT and market microstructure. The authors
constructed a principled framework for how to devise sources of potential profits
by defining state spaces, examining LOB handcrafted features and their interplay
and using a training-test set methodology.

The main conclusions of this study are:

• Machine Learning does NOT provide a wide avenue to profitability, but it
does provide a principled approach for data-driven decision-making and
optimization.

• Machine Learning techniques should not be used as a black boxes, nor should
its users have any expectations about discovering magic strategies via its
application.

• The Learning process will succeed with the assistance of informative features
that should be expressed and optimized properly.

• Handcrafting and fine-tuning features are necessary to optimize the results.

The authors are firm believers in the fact that there will always be a “human in the
loop” for all Machine Learning applications to HFT. They suggest that all these appli-
cations should be designed and built “tastefully and with care,” in order to become
useful and scalable.

7.5 STUDYING THE DYNAMICS OF THE LOB WITH DEEP
NEURAL NETWORKS

Sirignano and Cont (2018) recently published a study about the existence of a
“universal and stationary price formation mechanism” relating the dynamics of sup-
ply and demand in equities, as revealed by the analysis of LOB microstructure-level
data. By using a Deep Learning (DL) methodology applied to a very extensive set
of High-Frequency microstructure data containing billions of electronic market
quotes and transactions for US equities, the authors claimed to have uncovered
“nonparametric evidence for the existence of a universal and stationary price
formation mechanism” in equities.

The authors assessed their model by testing its out-of-sample predictions for direc-
tional price movement using the history of transaction prices and order flow, across
a wide range of names and time periods. They demonstrated the existence of a “uni-
versal price formation mechanism” that exhibits a remarkably stable out-of-sample
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prediction accuracy across time, for a wide range of stocks from different US sectors.
Their observations hold remarkably well for equity names which are not part of the
training sample, showing that the relations captured by the model are universal and
not asset-specific. This universal model was trained on a very large data set of equities
and it was shown to outperform in terms of out-of-sample prediction accuracy, other
asset-specific linear, and nonlinear models trained on time series of individual names.

The current availability of large volumes of order flow and price dynamics data
provided quantitative finance professionals with a detailed view of the high-frequency
dynamics of supply, demand, and price in the electronic markets (Cont 2011). This
data has been recently used to explore the nature of the price formation mechanism
which describes how market prices react to fluctuations in supply and demand.

The price formation mechanism could be viewed as the functional mapping
between current market prices and the history of prices, order flow, and other
information:

Price(t + Δt) = F(PriceHistory(0 · · · t),OrderFlow(0 · · · t),OtherInfo) = F(Xt, 𝜖t)

This functional mapping depends on a set of state variables Xt (like lagged price
values, volatility, and order flow), and on a random noise term that represents the
arrival of new information and other effects not captured entirely by the state vari-
ables. All the models that attempt to explain both empirically and theoretically the
dynamic of the market microstructure, albeit stochastic models or ML price predic-
tion models, can all be viewed as ways of representing this functional mapping F,
at different time resolutions. One question that has not received a definite answer
yet is the degree to which this functional mapping F is universal, in the sense being
independent of the specific asset under consideration. Empirical evidence on the uni-
versality of certain stylized facts (Cont 2001) has been previously reported, but the
current study brings to life new evidence of this universality by using the immense
power of data.

Most of the models used in financial econometrics, trading, and risk management
are asset-specific and their parameters are estimated using data from a recent time
window. This methodology is reflecting the belief that financial data is non-stationary
in nature and that it is prone to regime changes which may render older data less
relevant for prediction. As a result of this modus operandi, financial data sets are
fragmented across assets and time and, even in the high-frequency domain, their size
is orders of magnitude smaller than those encountered in other fields where Big Data
analytics have been successfully applied. By using a nonparametric approach based
on Deep Learning, Sirignano and Cont (2018) claimed that the results of their study
provide a conclusive evidence for the existence of a universal and stationary rela-
tionship between the flow of orders and the market price fluctuations. This alleged
universal nature of the price formation mechanism is explained by the fact that a
model trained on data from all names outperforms, in terms of out-of-sample pre-
diction accuracy, all name-specific linear and nonlinear models. Remarkably, the
universal model is able to extrapolate, or generalize, to stocks not within the training
set. The universal model is able to perform well on completely new stocks whose
historical data the model was never trained on.
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The use of a data-driven approach such Deep Learning enables the model to cap-
ture features of the price formation mechanism which are robust across stocks and
sectors. Applications in areas such as image, text, or speech recognition have been
made possible by the advent of Deep Learning that is using multilayer neural net-
works and trains them on large data sets to uncover complex nonlinear relations
between high-dimensional inputs (or features) and the outputs. From a mathematical
perspective a Deep Neural Network (DNN) is a functional mapping y = f(x) between
a high-dimensional input vector x and an output y. The mapping is achieved by
performing repeated iterations in layers consisting of weighted sums of the inputs,
followed by the application of nonlinear activation functions. These Deep Neural Net-
works can be used as universal approximators for complex nonlinear relationships, by
appropriately choosing the weights in each layer. The network weights are estimated
by way of optimizing a regularized cost function, so as to minimize the in-sample
discrepancy between the network output and desired (labeled) output. In the case of
a DNN the optimization problem may have millions of parameters, and the computa-
tional requirements for training are extremely high. The most common optimization
algorithm employed is Stochastic Gradient Descent, and its practical implementation
requires the use of hardware accelerators such as the GPUs.

The authors used this approach to learn the relationship between supply
and demand on an electronic equity market as captured by the history of LOB
microstructure-level data. The data set used was an HF record of all orders, transac-
tions, and order cancellations for approximately 1,000 stocks traded on the NASDAQ
between Jan 1, 2014, and March 31, 2017. The size of this data set amounted to
several terabytes. The time series aspect of financial market data imposes some very
stringent causality requirements, such that the relation between inputs and outputs
needs to reflect time ordering. A specially designed network architecture that reflects
this constraint is what one calls a Recurrent Neural Network (RNN). One even more
special type of RNN is constructed based on Long Short-Term Memory (LSTM)
units (see Figure 7.1).

Recurrent network

Input layer

Output layer

Hidden layers

y

x1

x2

FIGURE 7.1 Typical recurrent neural network architecture.
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Each LSTM unit has an internal state which maintains a nonlinear representation
of all past data. This internal state is updated as new data arrives. The LSTM units are
specially designed to efficiently encode the temporal sequence of data. More details
on the functionality of LSTM will follow in the next section. The LSTM network used
by Sirignano and Cont involved hundreds of thousands of parameters. The scale of
the parameter’s space is relatively small compared to the one used in image or speech
recognition, but it is enormous compared to the traditional econometric models used
in finance. Until very recently the common belief was that financial data is way too
noisy to allow for the use of large models while avoiding overfitting. The authors of
this study seem to contradict this belief.

Given the extremely large size of the data set and the hyper-dimensionality of the
model employed to learn from it, enormous computational resources were required
for pre-processing the data as well as for training the network. A very large HPC
cluster of about 500 GPU nodes has been employed for this task. The affiliation of one
of the authors with the University of Illinois at Urbana-Champaign and the proxim-
ity of the National Center for Supercomputing Applications was probably a deciding
factor in getting access to these formidable compute resources that are not commonly
available to the average quant in trading! Training of DNNs could be highly paral-
lelized on GPUs. Each GPU has thousands of cores, and training is typically 10 to
20 times faster on a GPU than a standard CPU. The authors reported the use of a
distributed version of Asynchronous Stochastic Gradient Descent that runs across
a mini-cluster of 25 GPU nodes. Batches of data were randomly selected from all
equity names and they were sent to the 25 GPU nodes. The gradients were calculated
on the GPUs and then the model, which was held on a separate Parameter Server
node, was asynchronously updated.

7.5.1 Results

The universe of equities was separated into two groups of about 500 names. The
training was done on both transactions and quotes, on two separate groups:

• Name-specific models were trained using data on all transactions and quotes for
a specific name, and

• A universal model was trained using data on all transactions and quotes for all
the equity names in the training set.

All models were trained to predict the direction of the next price move.
The accuracy for the forecast of a given model was measured by the propor-
tion of observations for which it correctly predicts the direction of the next
price move:

Accuracymodel i =
# of price changes ∣ correct predictions of direction for i

Total number of price changes
⋅ 100%

A typical out-of-sample data set was composed of transactions and quotes for a
three-month time period. A high-frequency data set of such time length is made up
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of millions of observations and it provides the scope for testing model performance
and estimating model accuracy.

The main findings of this very extensive data-driven analysis of the LOB dynamics
could be summarized as follows:

• The models trained using Deep Learning substantially outperformed linear
models in terms of forecasting accuracy.

• The study uncovered universal features that were common across all equity
names considered. The universality held well for names which are not part of
the initial training sample.

• The performance of the model in terms of price forecasting accuracy was
remarkably stable across time, even a year out of sample. The authors claimed
this as an evidence for the existence of a stationary relationship between order
flow and price changes which was stable over long periods of time.

• The inclusion of price and order flow historical information into the study
was shown to substantially increase the accuracy of the forecast. The authors
claimed this as evidence that price dynamics depends not only on the current or
recent state of the LOB but on its history, possibly even over long time scales.

These results exhibited evidence for some kind of common structure across dif-
ferent financial instruments. These also illustrated the applicability of deep learning
methods for modeling of LOB dynamics by providing some fundamental insights
about the nature of price formation in financial markets.

One important question that remains to be answered is the feasibility of such an
enterprise outside the realm of a world-renowned Supercomputing center. Can such a
complex and resource-intensive process be carried out by any trading firm or invest-
ment fund?

7.6 STUDYING THE DYNAMICS OF THE LIMIT ORDER BOOK
WITH LONG SHORT-TERM MEMORY NETWORKS

The subsampling of financial time series was until very recently the most common
methodology used for the prediction of price dynamics. The best-known example of
subsampling is represented by the Open-High-Low-Close (OHLC) candles, which
have been used as a technique to reduce the number of features required in the
learning phase of the process. Although the use of OHLC candles preserves useful
information about market trend and movement ranges within specified time intervals,
it discards important microstructure information. Since the arrival of new order
events in the LOB happens at random times, the subsampling of features within a
predetermined time interval is not possible, and therefore there are no practical ways
to preserve all the information it contains.

This problem could be addressed by using more contemporary Machine Learn-
ing techniques such as Recurrent Neural Networks (RNN). Novel architectures like
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Long Short-Term Memory (LSTM) are capable of natively handling inputs of varying
size. This allows one to use the data directly without having to perform any time
interval-based subsampling. An example of applying this method was briefly men-
tioned in the previous case study.

Knowledge and its desired outcome Intelligence, (reflected by thinking and
decision-making) have persistence. The thinking process for humans does not start
from scratch every time one needs to use it. The usage of a natural language as a
communication requires the understanding of each word based on the understanding
of previous words. The process of evolution does not discard the acquired infor-
mation and knowledge in the past and start thinking from scratch again every time.
Unfortunately traditional neural networks do not behave this way, and this could be a
major shortcoming in learning from time series. Recurrent Neural Networks address
this issue by embedding networks with loops in them, and thus allowing information
to persist in time (see Figure 7.2).

One of the most appealing characteristics of the Recurrent Neural Networks is the
ability to feed the current task with information previously processed and persisted
within the network. Long Short-Term Memory networks are a special type of RNNs,
capable of learning long-term dependencies. These were introduced by Hochreiter
and Schmidhuber (1997), and they find applicability to a variety of problem domains.
LSTMs have been explicitly designed to remember information for long periods
of time.

Tsantekidis and co-authors (2018) studied the applicability of LSTM in con-
nection with market microstructure data. The market microstructure data used for
this study consisted of 10 days’ worth of events for five different Finnish company
stocks. The data set was composed of consecutive snapshots of the LOB states.
The state of the LOB could be altered either by the arrival of a new order, by an
execution, or by a cancellation. After an event interacts with the LOB and it changes
its state, a new snapshot of the LOB is taken. A total of 4.5 million snapshots
were used to train and evaluate the models presented in this work. The goal of this
study was to predict price movements based on current and past changes occurring
in the LOB.

A

ht
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FIGURE 7.2 Diagram of the LSTM concept.
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This prediction problem was formally defined as follows:

• Let x(t) ∈ q denote the feature vector that describes the condition of the LOB
at time t for a specific stock, where q is the dimensionality of the corresponding
feature vector.

• The direction of the mid-price of that stock was defined as lk(t)={−𝟏 , 𝟎 , 𝟏}
depending on whether the mid-price increased (+1), remained unchanged (0)
or decreased (–1) after k LOB events occurred. The number of events k is also
called prediction horizon.

• The goal was to learn a model f k(x (t)) where f k∶ n →{−𝟏 , 𝟎 , 𝟏}, that could
predict the directional move lk(t) of the mid-price after k orders.

But given the empirical observation that the price of a financial asset could change
in a manner that renders its distribution nonstationary, the authors proposed a new
method to transform the LOB data into a stationary form. Instead of normalizing
the raw values of the LOB depth, suggested to modify the price values to be their
percentage difference to the current mid-price of the order book.

The suggested stationary features could be summarized as follows:

Feature Description

Price level difference The difference of each price level to the current
mid-price:

p′(i)(t) =
p(i)(t)
pm(t)

− 1

Mid-price change The change of the current mid-price compared to the
mid-price of the previous time step:

p′m(t) =
pm(t)

pm(t − 1)
− 1

Depth volume cumsum Total depth volume at each price level:

v′(k)(t) =
k∑

i=1

vi(t)

This transformation will remove the non-stationarity from the price time series,
and it will make the feature extraction process much easier. The use of these derived
features was reported to significantly improve the performance of the models used for
the learning phase. The novelty of this study was the introduction of a set of stationary
features that could readily be extracted from the limit order book. The feature set
described above was used to predict future mid-price movements from large-scale
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high-frequency limit order data using two different flavors of Deep Learning models:

• Convolutional Neural Networks (CNNs) for feature extraction
• Long Short-Term Memory (LSTM) for the time series analysis

After constructing the three types of stationary features, each of these were
separately normalized using a standard z-score concatenated into a single feature
vector xt, where t denotes the time step. Three learning models (CNN, LSTM and
CNN-LSTM) were fed with a sequence of vectors X ={x𝟎, x𝟏, … xw} where w
is the total number of events each one represented by a different time step input.
These learning models aimed at predicting the future movements of the mid-price.
Although mid-price does not represent a tradable price level, the ability to predict
mid-price’s upwards or downwards movement provides a good estimate for the
directional move of the order book in the very near future.

The CNN model had a total of 42 features that were recorded over 300 time steps.
This data input matrix was fed into a CNN algorithm that used 16 to 32 convolutional
filters of variable sizes. The activation function used for all the convolutional and fully
connected layers of the CNN was a Parametric Rectifying Linear Unit. The last layer
used a softmax function for the prediction of the probability distribution between the
different classes. All the convolutional layers had a Batch Normalization (BN) layer
applied right after.

The LSTM network used 32 hidden neurons followed by a feedforward layer with
64 neurons using Dropout and PRELU as activation function. The authors found
empirically that the hidden layer of the LSTM should contain 64 or less hidden neu-
rons in order to avoid over-fitting. For a much larger dataset experimenting with a
higher number of hidden neurons would be advisable.

Finally the CNN-LSTM model applied the convolutional feature extraction layers
on the input and then fed them into the correct temporal order to an LSTM model.
The CNN component was composed of the following layers

• 1D Convolution with 16 filters of size (5, 42)
• 1D Convolution with 16 filters of size (5, )
• 1D Convolution with 32 filters of size (5, )
• 1D Convolution with 32 filters of size (5, )

7.6.1 Empirical Results

The study done by Tsantekidis and co-authors (2018) explored the practical applica-
bility of training CNN and LSTM deep learning networks with market microstructure
data. The goal of this study was to predict price movements based on current and past
changes occurring in the LOB over a number of events k also called the prediction
horizon.

The LOB microstructure data was split in a 70/30 fashion between the training
set and the test set, and all experiments were conducted for four different prediction
horizons k. The final results were compared for the models trained on the raw price
features with the ones trained using the extracted stationary features. The results con-
firmed that extracting stationary features from the data significantly will improve the
performance of Deep Learning models such as CNNs and LSTMs.
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Some of the most interesting results reported by the authors were that the mean
values for all the classifier metrics (e.g. Recall, Precision, and the F-1) were notice-
ably higher for the stationary features as compared to the raw features. (For details
see Tsantekidis et al. 2018.)

7.6.2 Conclusions

This research study illustrated a novel method for extracting stationary features
from raw LOB data, suitable for use with different DL models. By using CNNs and
LSTMs as well as a combination of the two, the authors experimentally demon-
strated that the newly suggested features significantly outperform the raw price
features.

For the prediction of price time series, a combined CNN-LSTM model was pro-
posed. This novel approach was conducive of a more stable behavior and has led to
better results than the individual CNN and LSTM models. As with any Deep Learning
applications, using more data would enable the development of bigger networks, but
it will not eliminate the risk of overfitting!

As a future direction, the authors suggested the use of a Recurrent Neural Network
that could perform an intelligent re-sampling by extracting useful features from a
specific and limited time-interval of depth events. This technique would allow for the
generation of directional price prediction for a certain time period as opposed to a
given number of future events.

Another possible improvement of the model would be the addition of a noise fil-
tering mechanism necessary to improve the quality of the data and allow the deep
networks to be trained just on relevant microstructure information.

7.7 STUDYING THE DYNAMICS OF THE LOB
WITH CONVOLUTIONAL NEURAL NETWORKS

Another novel approach to apply CNN learning from market microstructure data
was proposed by Doering and collaborators (2017). Their research explored new
ways to apply Convolutional Neural Networks in predicting future financial out-
comes. The authors suggested a visually inspired transformation process that trans-
lates high-frequency market microstructure data into four event-based input channels,
which were used to train six different deep networks. The results of this study support
the idea that CNN could be successfully applied to extraction of market microstruc-
ture patterns. CNN is a special type of Deep Neural Network architecture which has
been proven to be especially successful at classifying noisy data sets such as images
and speech. CNNs are promoting the use of shared weights within the neural network,
which is known to be a contributing factor to improving recognition rates without the
downside of overfitting. The principal advantage of using Convolutional Neural Net-
works is that it automatically identifies basic features that are useful in recognition
and that otherwise would have to be hand-crafted. This creates a major advantage
when solving problems where meaningful features are hard to extract, as it may be in
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the case in financial trading. As it is generally the case with any Machine Learning
approach, the use of CNN assumes that data encodes some form of repetitive struc-
ture that can be eventually transformed into meaningful features. This assumption
may very likely be violated when the market undergoes regime shifts.

In this study the authors trained a deep Convolutional Neural Network on a full
limit-order book data set obtained from the London Stock Exchange. The data set
covered 217 days, with approximately 72,000 events per day in average. The market
events from the dataset encoded every bid and ask order, as well as every order dele-
tion and matched trade. Their investigation concentrated on whether deep learning
could take advantage of a large amount of available market microstructure data for
forecasting purposes. A fair amount of data preparation was necessary to transform
the suite of market messages into a format that was acceptable for training the CNN.
Snapshots of the limit order book for any point in time were re-created from the list
of market messages such that the best bid and ask price were known at any time,
together with every trade that ever happened. The resulting time series of limit order
book snapshots, events, and prices allowed the authors to calculate training targets
and inputs for the CNN.

The targets for the CNN training were the forecasts of market price movement and
volatility. The inputs for the CNN were the snapshots of previous order book’s state.
Because the CNN requires the inputs to be in a matrix form, a mapping was needed
to convert the stream of market data into that form. Four different input matrices were
generated:

• The LOB’s state at time t (At)

• The most recent trades (Bt)

• All incoming buy and sell orders (Ct)

• All transmitted order deletions (Dt)

The suggested four-state representation encodes all of the market microstructure
information available to all market participants (both humans and algorithms). Each
of these matrices has a time axis of recent events and a price information axis. All
prices in the LOB were rescaled to the most current mid-price, by including just a
limited number of levels β above and below the current price pt. This formatting
transformed the LOB information into a matrix form to be used as an input by the
CNN. This way the LOB could be represented as a column vector of volumes corre-
sponding to the total bid and ask size at each price. By concatenating several column
vectors of this kind, side-by-side, from a time window of width N, moving forward in
chunks of time α, one could build the matrix At of dimension 2 β x N/α. The sampling
is done from (t–N, t–N+α, … t).

Similarly any trade matched at time t could be represented as a column vector
of zeros everywhere, except at the price level at which the order took place,
where the magnitude is set to the log(size) of the trade. As such the matrix Bt
is formed by concatenating these order vectors from times t – N to t. Similar
procedures were used for the matrices Ct and Dt. Note that 𝛼, 𝛽, and N are
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hyper-parameters that have to be chosen in advance. Each of these defines the
amount of information that the network is presented with and thus has a significant
influence on the outcome. The very important question to be answered is how much
information is necessary to build a meaningful and comprehensive representation
in order to learn the specific target. Based on their own heuristic approach the
authors of the study used some optimized values for the hyper-parameters: N, α,
and β.

CNNs are traditionally set up to be able to receive several different input
channels. In image analysis, for example, these channels might represent the
different red-green-blue content of an image. In the case of microstructure data, the
matrices At, Bt, Ct, and Dt were each treated as a different input channel. In order
to investigate their relative relevance to the forecasting problem, the authors trained
three different combinations of these input matrices.

As for the choice of the CNN architecture, the authors chose to adapt the existing
CaffeNet (Jia et al. 2014) and GoogleNet (Szegedy et al. 2015) architectures that have
been successfully used on very challenging image recognition tasks. The architecture
chosen by Doering and collaborators (2017) consisted of:

• 3 convolutional layers (kernel=5 x 5, stride=1)

• 3 ReLU layers

• 2 pooling layers (kernel=2 x 2, stride=2)

The final layers of the network were composed of two fully connected layers and
a final softmax-layer for classification. Dropout layers with a ratio of 75% were inter-
connected to prevent overfitting.

7.7.1 Empirical Results

Three data sets composed of several combinations of the four distinct input matrices
At, Bt, Ct, and Dt were used:

• Data set I containing just order book inputs.

• Data set II containing order flow inputs Bt + Ct + Dt.

• Data set III containing all combined At + Bt + Ct + Dt.

A Convolutional Neural Network was trained on each of these three data sets, for
both the price-trend and the price-volatility prediction tasks. All the six CN networks
were implemented and trained using the high-level framework of Caffe (Jia et al.
2014). The choice of the loss function was a cross-entropy function. The network
training process was done with optimized base learning rates and RMS decay values.
Training took about 200,000 iterations, corresponding to about 100 hours of training
time for each network, on a Tesla K80 GPU. The data sets were split into training,
validation, and test subsets, in a proportion of 80:15:5. The training process was done
in a very homogeneous manner by achieving a gradually decreasing loss for both the
training and the validation sets.
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The progress achieved in training was validated using the kappa statistic 𝜿 which
evaluated the prediction accuracy of the class frequency, thus showing the improve-
ment of the current classifier compared to a perfect one. For each of the three data sets,
the best performing network snapshot, as measured by its kappa on the validation set,
was taken to measure the accuracy on the retained test set.

The results reported in the study showed for both the Accuracy and kappa statistics
that all networks started to learn pretty fast with a different degree of success. While
some of the networks continued to improve the accuracy of prediction over time,
others reached the peak of their performance at the beginning or exhibited rather
unstable behavior.

The main results reported in this study indicate that:

• CNNs are capable of dealing reasonably well (𝜿 > 0) with forecasting price
trends and volatility by extracting meaningful features from the microstructure
data.

• Predicting the volatility of prices exhibited a better performance than forecast-
ing the direction of the price trend.

Although the prediction time window is short and the accuracy is just slightly
higher than random labeling, these results are very relevant to the HFT domain. The
highest achieved kappa statistic (𝜿 = 0.223) for price prediction on combined infor-
mation source shows that the CN networks are capable of making correct decisions
far above random guessing.

The reported results indicate also that the event-flow and the order-book snapshots
may encode different exploitable types of information. While the CNNs trained on
order flow data for price-move prediction showed a reasonable distinction between
class-Up and class-Down, the CNNs trained on order-book data could only learn
how to detect if the price will stay in a specific range. Combining patterns from both
event-flow and order-book data snapshots had the net result of achieving much higher
prediction accuracy than using these individually.

The authors also suggested the use of dropout as a regularization method to reduce
overfitting, although overfitting still remains a major obstacle to overcome for most
deep networks and great challenge for any financial-data forecasting problem.

7.7.2 Conclusions

This study showed how a set of CNNs could be trained on market microstructure data
for financial forecasting purposes. The results indicate that including both limit order
book and order-flow information leads to a sufficient prediction accuracy. And these
results were achieved without handcrafting any of the input features in advance.

Although extracting actionable knowledge from microstructure data is difficult,
this study provided a solid proof of concept for the use of Deep Learning to problems
related to market microstructure data. Although good results were reported for short
forecasting time frames, future work needs to validate the methodology for longer
forecasting time periods.
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Future research should concentrate on more experimental setups and different net-
work architectures. The goal will be to achieve a feature extraction ability that is more
generalizable to different sets of input data and to gain more actionable insights about
market microstructure patterns around specific market events. Given its high compu-
tational cost, it will be very useful to compare the accuracy of CNN methods with
other Machine Learning techniques.
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CHAPTER 8

Case Study 3: Applying Machine
Learning to Portfolio Management

“Science is what we understand well enough to explain to a computer.

Art is everything else.”

– Donald Knuth, Turing Award recipient

8.1 INTRODUCTION TO THE PROBLEM

Modern financial markets have evolved into extremely complex systems that are
working very efficiently and therefore offering less and less opportunities to the un-
sophisticated investor. This phenomenon was facilitated by a democratized access
to trading tools and information, as well as to an increased technological sophisti-
cation of market participants. The use of conventional tools such as basic economic
theory or classical market data has become insufficient. Investment professionals are
using a wealth of additional data types and they are feeding them into sophisticated
quantitative algorithms such as Machine Learning.

In today’s financial industry landscape there is a growing appetite for transforma-
tion and value creation. There are three main pillars that support the transformation
efforts:

• Alpha generation – by seeking organic growth in performance through
data-driven and ML approaches

• Boosting operation efficiency – via cutting-edge automation
• Managing risk – through automation of pattern discovery and filtering out of

false positives

159



160 CASE STUDY 3: APPLYING MACHINE LEARNING TO PORTFOLIO MANAGEMENT

The financial industry is quickly adapting to a global trend that is fueled by
an exponential rise in data generation and storage. IBM estimates that about 90%
of the world’s data was created just in the past two years. This data deluge is
generated primarily by individuals, companies, and sensors. Billions of individuals
are producing massive amounts of data via social media, online transactions, and
the use of sharing economy outlets like Uber. Companies are generating more
transactions than ever before and sensors are becoming ubiquitous, from washing
machines to wind turbines.

As a consequence the amount of data generated globally in 2017 was estimated
to be around 21 zettabytes (ZB) and is expected to rise to more than 160 ZB by
2025. The big data revolution is driven by advancements in computing and storage
technology and by a dramatic decline in information technology and communications
(IT&C) infrastructure costs. Many industries are now using Data Science paradigms
to advance their businesses and the financial industry makes no exception to this trend
(see Figure 8.1).

Many have argued for some time that Moore’s scaling law should be running up
against the limits of physics and as such it will slow down in the near future. Sure
enough the clock speed for standard microprocessors has leveled off. But it turns out
that the advent of new hardware accelerators such as GPUs and FPGAs has stimulated
the latest developments in Machine Learning. Speedups of 20 to 50 times are very
common when neural nets are moved from traditional CPUs to GPUs.

8.1.1 The Problem of Portfolio Diversification

Today’s financial world is flooded by data: financial data, economic data, alternative
data, and news are just the most glaring examples of practically limitless data sup-
plies. Today’s successful investors are expecting an almost instantaneous access to
these data and the availability of performant Machine Learning algorithms that could
help their investment strategies by enhancing returns. There is a widespread optimism

FIGURE 8.1 Data science applicability.
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across the financial industry about the use of Machine Learning in the investment
process. This is an especially legitimate goal when it comes to the automation of
certain tasks that could alleviate the effects of asset mispricing due to behavioral
human errors. Combining traditional portfolio management with Machine Learning
techniques could generate a substantial financial edge. Building a portfolio manage-
ment strategy is an essential component of the investment process which includes the
selection of important parameters such as:

• Asset and strategies types

• Net worth allocations

• The frequency of rebalancing

The process usually starts by selecting a risk-return profile, as well as the assets
and the strategies to be utilized. Active portfolio management involves a consistent
and quasi-continuous analysis of market trends with the goal of generating alpha by
frequently adjusting the positions and the risk exposure. This is what one calls the beat
the market approach. Passive portfolio management, or the buy and hold approach,
is associated with making bets on particular markets or financial assets over the long
run without constant supervision.

The principal factors that have to be considered when building a portfolio man-
agement strategy are:

• Diversification – selecting the assets that range in variety across different prod-
ucts with the goal of minimizing the downside risk (Kirchner and Zunckel
2011). Other types of diversification refer to different geographies, economic
sectors, or types of assets.

• Capital allocation – finding the right balance between the quality and the quan-
tity of assets (Davidow and Peterson 2014).

• Rebalancing – as the markets move and assets are repriced, the portfolio needs
to be re-optimized. Rebalancing (Jaconetti, Kinniry Jr., and Zilbering 2010) will
readjust the weights of the portfolio, and sometimes this may need to go beyond
specific asset allocation targets. Strategies may also need to shift, since their
profitability can change over time.

• Marketability – the availability and liquidity of a certain component (asset) of
the portfolio. Assets that have low liquidity will be harder to transact at the
desired volume or price.

8.2 CURRENT STATE-OF-THE-ART IN PORTFOLIO MODELING

8.2.1 The Classic Approach

One of the most computationally intensive problems in financial asset management
is the topic of portfolio diversification. The problem of portfolio diversification
is well known and it was solved mathematically by Markowitz (1952) in his
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paper, Portfolio Selection. Even though Markowitz’s work on Mean-Variance
optimization won him a Nobel Prize, the logic of this modern portfolio theory is very
intuitive and mathematically tractable. In Markowitz’s world, investors are concerned
about how to maximize the return while minimizing the risk. Every asset has a unique
set of expected returns and standard deviations, and it is defined in respect to all other
assets by the covariance matrix. Given these three parameters (i.e. expected return,
variance, and covariance matrix), the optimization process revolves around finding
the asset weights that will generate the portfolio with the highest risk-adjusted return
(the highest Sharpe ratio). This problem is solved in practice by trial and error.
An algorithm is testing every possible combination of weights and the associated
Sharpe ratios, and it keeps looping until it finds the portfolio with the highest risk-
adjusted return.

The computational complexity grows exponentially with the number of assets
in the portfolio. A 10-asset portfolio generates a 100-cell covariance matrix while
a 10-times-larger portfolio with 100 assets will generate a 10,000-cell covariance
matrix, which is 100 times larger. The Efficient Frontier optimization is a top-down
approach meant to achieve an optimal portfolio. Traditionally, the portfolio opti-
mization problem has been focused on finding the proper balance for allocations to
different asset classes based on the mean-variance tradeoff.

8.2.2 The ML Approach

The general problem of Mean-Variance optimization represents an excellent testing
ground for the applicability of Machine Learning techniques to portfolio modeling
which has such a well-established solution. Among the ML techniques, Deep
Learning has been the most popular method used for a variety of financial-related
problems. The use of Deep Learning techniques has been reported (Deluard 2018;
Heaton, Polson, and Witte 2017) in the training on data sets where the input data was
represented by the total returns of an equity portfolio and the output by the optimal
weights of the efficient frontier portfolio. Then, an out-of-sample data set was used
to test whether the model was able to replicate the optimization process on its own.
Interesting findings related to the fact that the vast majority of “the out-of-sample
results were generally close to the correct mathematical solution” (Deluard 2018).

Several studies have concluded that Deep Neural Networks are able to quickly
learn how to solve this complex optimization problem, and they are doing it without
any prior knowledge of the problem and with a relatively small data set (just thousands
of data points). One needs to reemphasize that Machine Learning technique in gen-
eral, and Deep Learning in particular, could be applied just to scenarios where the
stationarity of process that generates the data is guaranteed. In other words, the appli-
cability of ML to the Portfolio Diversification problem should be attempted just for
situations where “the future resembles the past.” As Nassim Taleb said, “a neural net-
work that has only seen white swans will never be able to fathom the existence of a
black swan” (Deluard 2018).

The paradigm of scientific discovery is based on the development of new
theories and the use of experiments to prove or disprove them. Theories that cannot
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be disproved are held to be true. On the contrary, Neural Networks do not rely
on theories. They make no assumptions regarding the nature of the relations
between variables or the causality between them. They endeavor to infer the
relationships between inputs and outputs and learn from repeating this process over
more data.

Neural networks work very much like the biological brain – by example and by
experimentation. A toddler has no concept of the laws of gravity and does not under-
stand how the muscular system works. Yet the toddler could learn how to walk after
having accumulated enough experience in falling such that she could start using her
muscles in a way that will avoid new falls. In a very similar way, in a Deep Neural
Network every neuron is trained to look for a specific attribute, and then it synthesizes
this raw information into a more complex object.

A similar process could be followed in the case of a portfolio optimization
problem. Adding the Deep Learning capabilities to more computing power and data
availability could offer significant benefits to risk managers because the more the
machines learn from the data sets over time, the better they get at pattern recognition
(Heaton, Polson, and Witte 2017; Freitas, De Souza, and De Almeida 2009; Niaki
and Hoseinzade 2013; Liang et al. 2018; Fu et al. 2018).

8.3 A DEEP PORTFOLIO APPROACH TO PORTFOLIO
OPTIMIZATION

Applying the Machine Learning methodology to portfolio construction problems
could produce more effective results than the standard quantitative methods used in
finance. In particular, the use of Deep Learning could make possible the detection
and the understanding of interactions within the data that are inconspicuous to the
current financial economic theory.

In a recent paper, Heaton and collaborators (2017) explored the use of Deep
Learning models and introduced the concept of Deep Portfolios. These portfolios
are constructed based on what the authors defined as deep features, which are
in effect abstractions of hidden layers that through the process of training could
be associated to independent variables. These deep feature abstractions, which
are implicit to any Deep Learning algorithm, are becoming the building block of
investible Deep Portfolios. The goal of this study was to determine how to use
available portfolio-data to construct this special type of portfolios. As Deep Neural
Networks have the theoretical flexibility to approximate virtually any nonlinear
payout function, the consideration of regularization in the process of training and
validation was placed at the center of Deep Portfolio theory.

As mentioned in Chapter 7, Deep Learning is a family of Machine Learning
algorithms that uses data to train a model with the goal of making predictions on
unseen data sets. The use of Deep Learning has dramatically enhanced the ability
of computers to classify and label images, translate speech in real-time, or play
complex board games at a higher level of performance than humans.

Problems that are specific to the financial markets may sometimes be atypical
when compared to more common Deep-Learning applications, like computer
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imaging. By contrast to image recognition or appropriately answering verbal
queries, humans have no inborn ability to select for example a particular financial
instrument that is likely to perform well in the future. Yet Deep Learning algorithms
may be useful in the portfolio selection process. The reason for having such high
expectations is that a deep learner is the best available technique to estimate any
functional mapping between data inputs and outputs, or what one calls universal
function approximators. A deep learner is expected to find the functional depen-
dency of a return, no matter how complex and nonlinear the features may be. This
novel approach is drastically different when compared to more simplistic linear
factor models or with very specific quantitative methods like statistical arbitrage
techniques.

Because Heaton and collaborators (2017) chose to apply Deep Learning to the
problem of portfolio selection by selecting an autoencoder implementation, let’s
introduce the Autoencoder concept.

8.3.1 Autoencoders

An autoencoder is a Deep Learning algorithm that trains a given network architecture
to replicate the input itself via a so-called bottleneck structure. A key element of an
autoencoder is the information bottleneck. This bottleneck forces a representation at
the intermediate hidden layer that has a smaller number of variables than the input.
This representation will require in turn that the autoencoder would keep only the
components that are useful for reconstructing the common features of the inputs, and
to reject the uncommon ones. As a result, an autoencoder will learn a representation
of the hidden layer that rejects most of the noise from the input.

Generally an autoencoder is composed of two symmetrical Deep Belief Networks
that could have three to five shallow layers representing the encoding half of the net
and a second set of three to five layers that make up the decoding half (see Figure 8.2).

ENCODING

Input Output

Compressed
feature vector

DECODING

FIGURE 8.2 The autoencoder concept.
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Autoencoders are essentially deep neural networks that aim to transform inputs
into outputs with the minimum possible error. An autoencoder has three main
layers:

• Encoder – encodes the input data in a compressed representation of a reduced
dimension, also called a latent space representation.

• Code – represents the compressed input and feeds it to the decoder.
• Decoder – decodes the encoded data back to its original dimension. The

decoded data is a lossy reconstruction of the original data by reconstructing
the input from a latent space representation.

Autoencoders are unsupervised ML algorithms (see Figure 8.3) that are used for
feature extraction in a manner analogous to nonlinear principal component analysis
(PCA). Because an autoencoder could have a high degree of freedom it could become
predisposed to overfitting given that it has just too many ways to represent the data.
This limitation could be avoided by using the so-called sparse autoencoders where a
non-sparsity penalty is added to the cost function.

The choice of using an autoencoder algorithm for the problem of deep portfo-
lios relates to the fact that autoencoders eliminate the need to model the variance-
covariance matrix explicitly. Heaton and collaborators (2017) pointed out that given
an estimated nonlinear combination of deep learners, a variance–covariance matrix
is represented implicitly in the network architecture.

The research study published by the authors described a four-step algorithm for
building Deep Portfolios. Then they applied this algorithm to showcase a smart index-
ing example by autoencoding the IBB biotechnology index.

Input Output

CODE

ENCODER DECODER

FIGURE 8.3 Another view of the autoencoder concept.
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8.3.2 Methodology – The Four-Step Algorithm

Heaton and collaborators (2017) considered in their study the weekly returns for the
stock component of the biotechnology IBB index for the period between 2012 and
2016. The goal was to find a selection of investments for which good out-of-sample
results could be obtained.

The authors suggested a novel data-driven and model-independent approach in
which the Deep Learning algorithm consists of four steps:

• Auto-encoding – a pre-processing phase in which an appropriately chosen
market-map is used to solve the market-regularization problem and to autoen-
code the inputs X and therefore create a more efficient representation of
them.

• Calibration – finding the portfolio-map that solves the portfolio-regularization
problem and retrieves the desired target Y; this phase creates a nonlinear port-
folio from X to the approximation of the objective Y.

• Validation – finding the appropriate trade-off between the two regularization
problem errors.

• Verification – selecting the proper market-map and portfolio-map according to
the validation step.

An important observation to be made is that single-variable activation functions
could be often interpreted as mixtures of financial put and call options on linear com-
binations of the input assets. As such, the Deep Portfolio theory introduced by Heaton
and co-authors relies on deep features, or hidden layer abstractions, which through
the training procedure could be mapped to the independent variables.

The fundamental question was how to use training data to construct Deep
Portfolios. The suggested four-step algorithm made the process of portfolio opti-
mization and inefficiency detection become entirely data-driven and model-free,
in sharp contrast to the classic portfolio theory. The authors have defined the deep
frontier as the goal to be reached as a function of the amount of regularization.

The autoencoding and calibration steps were done on data from January 2012 to
December 2013, and validation and verification on data from January 2014 to April
2016. Both the autoencoder and the deep learning algorithm used one hidden layer
with five neurons.

The authors defined a metric called the degree of communal information as the
two-norm difference between every stock and its autoencoded value and rank all
stocks using this measure. By using a bottleneck network structure, the autoencoder
reduces the information for the whole universe of stocks to an information subset.
Therefore, proximity of a stock to its autoencoded version provides a measure for the
similarity of a stock with the stock universe.

In order to eliminate information redundancy (i.e. having multiple stocks con-
tributing the same information), the authors used the 10 most communal stocks plus
a certain number of most noncommunal stocks. For the calibration step Rectified
Linear Units (ReLU) and fourfold cross-validation were used. The efficient deep
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frontier was represented by the plot of the number of stocks used in the deep portfo-
lio versus the validation accuracy achieved. Model selection was conducted through
comparison of efficient deep frontiers.

While the efficient deep frontier still requires that a choice has to be made between
two parameters, specifically minimizing either the number of stocks in the portfolio
or the validation error, these decisions are purely related to the cut-off sample perfor-
mance, thus making deep portfolio theory a strictly data-driven approach.

8.3.3 Results

In the asset management parlance, the 1% problem deals with finding the best strategy
to outperform a given benchmark by 1% per year. Translating this problem into the
realm of Deep Portfolios means devising a set of deep features that could improve
the performance of a portfolio by 1% annually. According to the Kolmogorov–Arnold
theorem (Kolmogorov 1957) hierarchical layers of univariate nonlinear payouts can
be used to scan for such features.

The authors reported some interesting results for the construction of a Deep
Portfolio composed of stocks from the iShares IBB biotechnology index. They
amended the target data during the calibration step by replacing all returns smaller
than −5% by exactly 5%, with the goal of creating an anticorrelation index tracker
for periods of large drawdowns. As a result learned deep portfolio outperformed
more classical portfolios during periods of drawdowns. This study has demonstrated
that Deep Learning could be an extremely useful framework for processing large
financial data sets in order to optimize predictive performance.

8.4 A Q-LEARNING APPROACH TO THE PROBLEM OF PORTFOLIO
OPTIMIZATION

The previous case study illustrated the application of Deep Learning to the problem
of portfolio construction and the reported results have led to some very encouraging
conclusions. But once they are built portfolios need to be optimized. Portfolio
Optimization is the process of assigning optimal weights to the individual assets
in a portfolio and it represents one of the most fundamental problems in Financial
Engineering. The problem of portfolio management falls into the broad category
of the Multi-armed bandit problem (MaB). This problem was very well studied
in the field of probability theory and could be formulated as follows: “Given set
of limited resources, allocate them between competing alternatives in a way that
maximizes their expected gain” (Wikipedia 2019). The characteristics of each
choice are partially known at the time of allocation, but they may become better
understood as time elapses. This is a classic Reinforcement Learning formulation
that exemplifies the exploration-exploitation tradeoff dilemma that was discussed
at the end of Chapter 5. The goal of the MaB problem is to codify an agent that
simultaneously attempts to acquire new knowledge by exploration and optimize its
decisions based on existing knowledge or exploitation. The agent attempts to balance
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these competing tasks in order to maximize their total value over the period of
time considered.

There are many practical applications of the MaB model, such as:

• Clinical trials

• Adaptive routing

• Financial portfolio management

In all these practical examples, the MaB problem attempts to find the proper
balance between maximizing the reward based on the knowledge already acquired
and attempting new actions to further increase the knowledge already captured.
From this perspective portfolio management is an MaB problem where an agent
makes decisions on reallocating different financial assets in order to maximize their
return.

A variety of approaches have been used traditionally for the problem of portfolio
management. Passive investors, for example, could choose a liquidity-based or
market capitalization-based weighting approach. But the most common solution is
represented by the Markowitz Optimal portfolio, where risk-adverse investors are
maximizing their return as a function of their acceptable level of risk.

8.4.1 Problem Statement

Formulating this problem in terms of Reinforcement Learning requires the imple-
mentation of an agent that could be trained to determine a set of optimal weights
by interacting with the market environment through a series of actions. The RL
formulation requires the assumption of a negligible market impact, which means that
the agent’s actions have a minor impact on the market where the assets are traded.
Because the asset prices represent the input data into the RL algorithm, these should
not be affected by the agent’s actions.

One of the most used RL algorithms is Q-learning. As seen in section 5.3.3 the
goal of Q-learning is to learn a policy that an agent could use to take a specific action
conditional on a given set of circumstances (states). Q-learning does not require a
model of the environment, and it could handle scenarios with transitions and rewards
that are stochastic in nature. In the particular case of finite Markov Decision process,
Q-learning finds the policy that maximizes the expected value of the total reward over
any of the successive steps, starting with the current one. The letter Q stands for the
quality of the action taken in a given state, action that was generated by the reward
function used to provide the reinforcement.

In a research report published by Jin and El-Saawy (2017), the Q-learning method-
ology was used to train a neural network with the goal of managing a portfolio of
stocks. Given the extreme complexity of the stock market, a model-free algorithm
like Q-learning is the preferred technique to achieve the balance between exploration
and exploitation in order to determine the optimal outcome. The portfolio under study
was composed of a high-volatility stock and a low-volatility stock, but that could be
generalized to a more complex scenario. The portfolio was fed into a neural network
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in order to generate a recommended action for the agent, like either buying more
low-volatility stocks while selling more high-volatility stocks, or just the opposite.

8.4.2 Methodology

Jin and El-Saawy trained a neural network using end-of-the-day historical market
data prices from Google Finance for 20 different stocks and for a period of time
period ranging from July 2001 to July 2016. A Python implementation using the
Keras library was used to build and train the NN models. Keras is an easy-to-use
interface that is built on top of efficient multidimensional numerical libraries such as
Theano or TensorFlow. The goal of the study was to build a Reinforcement Learning
(RL) agent that could manage a two-stock portfolio where one of the assets was
significantly more volatile than the other. The inputs used by the NN in each of
the states were the historical prices for a fixed time window (2, 7, or 30 days), the
position in each of the stocks, the total value of the portfolio, and the amount of
cash available.

The action space was discretized into seven different regions: at ∈ (–0.25, –0.10,
–0.05, 0, 0.05, 0.10, 0.25) where each region represented one of the seven possible
compositions of the portfolio. A value of at =0.25 signifies for example that the stock
A makes up 25% of the portfolio’s total value. For each action at the portfolio sells a
certain amount of the low-volatility stock and buys the corresponding amount of the
high-volatility stock (and vice versa for at < 0). This discrete action space, alongside
the simplified state space, helped in making the problem tractable. The NN architec-
ture chosen by the authors was composed of four hidden layers with 100 neurons per
layer. The main idea was that the architecture is simple enough to allow for a quick
yet robust training to adequately approximate the Q-function.

8.4.3 The Deep Q-Learning Algorithm

Jin and El-Saawy (2017), used an ε-greedy exploration strategy, where the agent
chooses a random action with probability 1 – ε. Because the dimensionality of the
state space was relatively small, being represented by the tuple (8, 18, 64), where (2, 7,
3) were the numbers of days taken into account (8 = 2 × 2 + 4, 18 = 7 × 2 + 4, or 64 =
30 × 2 + 4), the authors chose to use a fully connected feedforward architecture
instead of the more common convolution and pooling layers (which have typically
high dimensionality, like in image processing).

The performance of the model was compared against two very simplistic bench-
marks:

• Do-nothing benchmark – allocated in a 50–50 manner at the beginning and
then it does nothing. This benchmark acts as a very crude approximation of the
market since it represents the raw performance of the two stocks.

• Rebalance benchmark - reevaluated its holdings every 30 days and then it
bought or sold stock to ensure the total portfolio value is split 50–50 between
the two stocks.
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8.4.4 Results

All models were trained using a penalized reward of λ = 0.5. In terms of returns,
the two benchmarks outperformed all but two of the models tested. However, these
results came at the cost of a higher volatility in the portfolio’s value. But overall,
the NN models had a much higher Sharpe ratio and significantly less volatility than
the benchmarks. These results were a good illustration of the potential for neural
networks to manage financial portfolios using the Q-learning methodology.

It is likely that the choice of very simple network architecture (with just four hid-
den layers) could have impacted its flexibility and that the convolution layers tasked
with looking at the differences between successive stock prices could have performed
significantly better. This effect could have been compounded by the sparsity of the
action space and the simplicity of the state space. By encoding the states with more
meaningful features, the authors could have potentially increased the performance of
the outcomes.

8.5 A DEEP REINFORCEMENT LEARNING APPROACH
TO PORTFOLIO MANAGEMENT

In a recently published study, Jiang and collaborators (2017) suggested the use of
a Deep Reinforcement Learning framework as a solution tool kit for the portfolio
management problem.

Their Deep Reinforcement Learning framework consisted of several components:

• Ensemble of Identical Independent Evaluators

• Portfolio-Vector Memory component

• Online Stochastic Batch Learning scheme

• Explicit Reward function

This framework was implemented using three different network architectures:

• Convolutional Neural Network

• Recurrent Neural Network

• Long Short-Term Memory

All these Deep Learning models could be applied to any type of financial assets,
but the authors chose to train and test these on cryptocurrency market data.

8.5.1 Methodology

The portfolio consisted of 11 different cryptocurrencies and it was rebalanced every
30 minutes. The Ensemble of Identical Independent Evaluators (EIIE) was the cen-
tral component of this Deep RL framework. An Identical Independent Evaluator is a
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Neural Network tasked to inspect both the price history of a basket of assets and the
associated portfolio weights for the previous trading period. Based on this analysis
the EIIE is then forecasting the potential growth of the portfolio over the next time
period. The evaluation score obtained for each of the assets is then fed into a softmax
of the deep neural network layer, whose output will represent the new set of portfolio
weights for the next trading period. This set of portfolio weights defined the market
actions to be taken by the RL agent. As a result of this evaluation process, the posi-
tion of an asset that has earned a higher weight within the portfolio will be increased
accordingly, and the position of an asset that has acquired a smaller weight within the
portfolio will be decreased proportionally.

The portfolio weights for each trading period are recorded in a data structure
labeled Portfolio Vector Memory (PVM). The EIIE is trained using the Online
Stochastic Batch Learning scheme (OSBL) proposed by the authors, which is
compatible with both pre-trade and online training.

8.5.2 Data

The market data used for training and testing of the EIIE was acquired from the cryp-
tocurrency exchange Poloniex, where about 65 cryptocurrencies were traded at the
time the analysis was performed. However, the study has used only a subset of the
most traded 11 cryptocurrencies plus the Bitcoin Cash.

Historical prices for these 12 cryptocurrencies were fed into the IIEs to generate
the output portfolio vector.

The input to the neural network IIE at the end of the time period t is a tensor of
rank 3 called Xt. This tensor has three dimensions (see Figure 8.4):

• m = 11 – the number of selected non-cash assets,

• n = 50 – the number of trading periods before t, and

• f = 3 – the number of features.

Xt =

Vt

Vt
(hi)

Vt
(lo)

FIGURE 8.4 The market data tensor. Source: Adapted from Jiang, Xu, and Liang (2017).
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8.5.3 The RL Setting: Agent, Environment, and Policy

In a portfolio management setting, the Reinforcement Learning agent is represented
by the portfolio manager. This agent is looking to gain awareness of the state of a
very complex environment. The main features that the agent could access are trans-
action prices and order flow information, specifically the history of all orders placed
into the market since the beginning of the time period under consideration. Because
a potentially large amount of order flow data could hinder the performance of the
RL agent, shorter time periods were taken into consideration (n = 50 periods of 30
minutes, which amounts to 25 hours).

The actions taken by the agent were redefining the composition and the weights
of the portfolio at each time step (trading period). The Reward function employed by
this Deep RL framework was represented explicitly by the average of the logarithmic
returns over the trading periods under consideration. By using an explicit Reward
function, during training the EIIE evolves along the gradient ascending direction of
the function. The Deep RL method implies that the learned deep network is used as
the RL policy. Given the large variety of states for both the assets and the portfolio,
the deep network is used to extract features and suggest the necessary actions. The
deep neural networks were trained to maximize the reward at each time step.

Three different network architectures were used to implement the IIEs: Convolu-
tional Neural Networks, Recurrent Neural Networks, and Long Short-Term Memory
networks. In all cases, the input to the networks is the price tensor Xt and the output
is the portfolio vector wt.

8.5.4 The CNN Implementation

As described in Chapter 7, Convolutional Neural Networks are considered to be a
good choice when the dependency on the history of the asset price is short-dated.
The inputs that define the states could be shared sequentially. If L is defined as the
total number of assets in the portfolio and N as the number of different states, each
input is an N × L log return matrix plus a vector of length L representing the portfolio
at the previous time step.

For each asset the CNN will output a prediction score based only on its historical
return and its previous portfolio percentage. The individual scores are then combined
using a softmax layer to generate an action recommendation for the portfolio. The
input to the network is a 3 × 11 × 50 price tensor, composed of the high, low, and
closing prices of m non-cash assets over the past n periods. The outputs are the new
portfolio weights.

8.5.5 The RNN and LSTM Implementations

By using a recurrent version of the deep network architecture, the authors intended to
utilize input sequences of arbitrary length. For a basic RNN architecture, the hidden
state ht of a cell at time t could be expressed by using a nonlinear activation function
f that could be either a sigmoid or a tanh function:

ht = f (Wh ⋅ ht−1 + Wx ⋅ xt)
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In order to take a specific action based on the states of the N previous time periods,
the log return at each time step is fed into the RNN and an action is taken based on the
output generated. The prices of individual assets are fed into small recurrent subnets.
These subnets are identical for both basic RNNs and LSTMs. The structure of the
ensemble network past the recurrent subnets is the same as the second half of the
CNN. In order for the neural network to account for transaction costs, the portfolio
vector from the last period, wt−1, is inserted just before the softmax voting layer.

8.5.6 Results

Different metrics have been traditionally used to measure the performance of a par-
ticular portfolio selection strategy:

• Cumulative Portfolio Value

• Sharpe Ratio – or risk-adjusted mean return, defined as the average of the
risk-free return by its deviation

• Maximum Drawdown – the biggest loss from a peak to a trough

The performance of the three different implementations of the EIIE ensemble has
been compared with a series of benchmark portfolio selection strategies (Li and Hoi
2014; Li, Sahoo, and Hoi 2016).

The three benchmarks used for comparison were:

• The Best Stock – the asset with the best final cumulative portfolio value

• The Uniform Buy and Hold – an equally weighted portfolio of the preselected
assets that were held until the end of the period without rebalancing

• Uniform Constant Rebalanced Portfolios (Cover 1991, 1996).

The authors of this study (Jiang, Xu, and Liang 2017) claimed that their imple-
mentation of the Deep RL approach yielded superior results compared to other work
(Li and Hoi 2014; Li, Sahoo, and Hoi 2016; Cover 1991, 1996). In terms of Cumu-
lative Portfolio Value and Sharpe Ratio, the best performing algorithm was the CNN
EIIE. These results were showing the effectiveness of the RL policy and the potential
that useful information could be extracted from historical prices in order predict the
future dynamics of the portfolio. Note that at the beginning of the training process,
the CNN exhibits a lower performance compared to the baseline, but its performance
improves substantially in time due to the online learning when the policy gets better
through the process of exploration and exploitation.

Interestingly enough the RNN does not outperform either the CNN or the Uniform
Buy and Hold. An explanation could be due to the fact that the RNNs are depending
on an infinitely long price history, while CNN only depends on a finite time horizon.
Also the lower complexity of the RNN architecture coupled with the poor quality
of the market price data (noise) could have negatively impacted the RNN learning
process.
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We conclude the chapter on the applicability of Machine Learning techniques to
the portfolio selection and management problem with this brief introduction of the
Deep Reinforcement Learning framework by Jiang and collaborators. Their results
exhibited a superior performance when compared to more traditional methods,
like Uniform Buy and Hold or Uniform Constant Rebalanced Portfolios (Cover
1991, 1996).
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CHAPTER 9

Case Study 4: Applying Machine
Learning to Market Making

“We are drowning in information but are starved for knowledge.”

– John Naisbitt, futurist

9.1 INTRODUCTION TO THE PROBLEM

Market Making represents one of the most fundamental aspects of trading. This
chapter will address the topic of Market Making, which is the process of providing
liquidity by continually posting offers to buy and sell a financial asset. From a
practical perspective this problem is very challenging, and its complexity is due to
factors like adverse selection and inventory risk, which is the risk of accumulating
an unfavorable position and ultimately losing money. A Market Maker (MM) is
defined as the agent who facilitates trading in a double-sided auction market by
simultaneously quoting bids and offers and thus supplying the necessary liquidity
that enables markets to be functional and efficient.

In this framework, liquidity is defined as the availability of immediate trading
opportunities at prices that reasonably reflect current market conditions. As a result
of providing liquidity to market participants, an MM will profit from the spread or
the difference between the bids and offers they are executing transactions at. In addi-
tion to providing liquidity, Market Making has also a major contribution in stabilizing
prices and facilitating an accurate price discovery process (Schwartz and Peng 2013).

Market Making is a straightforward trading strategy:

• Buy at the bid,
• Sell at the offer (ask), and
• Repeat this as frequently as possible in order to make a profit.

175
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In actuality, the execution of this apparently simple strategy is rather complex. The
size of the spread (that is the difference between the best offer and the best bid) is the
most influential factor in the success of MM – the larger the spread, the greater are
the MM’s profits. But there are two factors that are adversely impacting the efficiency
of MM:

• A possible accumulated inventory, as this could limit the MM’s ability to main-
tain two-side quotes, and

• The necessary available information, as every market participant is relying on
having an informational edge.

Since the amount and the quality of the information sought through price discovery
is hard to gauge in real-time, a typical MM strategy is to quote a pair of bids and offers
that will maximize the profit while minimizing the accumulated inventory. Therefore
an optimal market making strategy is the ability to quote a bid-ask spread with the
least amount of risk (inventory build-up).

This process requires:

• A comprehensive analysis of the order flow for the financial assets traded via
the examination of the limit order book microstructure.

• A near real-time resolution of the side on which more trades are happening,
which in fact equates to a very short-term forecast of the price movement.

• The ability to accurately model the current volatility of the market and adopt the
quoting of the spreads to current market conditions (a proper volatility model
of the traded instrument is absolutely crucial to MM problem).

• Hedging in correlated instruments.
• Filtering out noise from the market data feeds.
• Incorporating in the quoting algorithm the feedback from the existing accumu-

lated inventory and the daily risk parameters.

All this information will be factored into a model and then will be fed in real-time
to the MM algorithm. In order for the strategy to be successful, the process of sending
the quotes to the market has to be executed faster than any other competing MM while
having the quickest possible access to the market data.

As a result, the market maker must be proficient at consistently updating the prices
of the asset based on the relative supply and demand provided by market participants
via the limit order book. The connection between the Market Making problem and
the Price Dynamics Forecast problem addressed previously becomes quite evident.
Obviously the ability to properly analyze and use market microstructure information
is central.

The two most important aspects for the success of a market-making strategy are:

• The ability to properly manage the accumulated inventory, or what one calls
Inventory-Driven Market Making, and

• The aptitude to forecast successfully the very short-term dynamics of the price
movement, also called Information-Driven Market Making.
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The proliferation of High Frequency and Algorithmic trading has triggered a
profound change in the microstructure of markets during the last two decades.
The abundance of highly granular HFT data, the fragmentation of the markets,
and the existence of ever more sophisticated trading algorithms has rendered the
microstructure of markets harder to understand and to exploit. As a result most
of the theoretical and empirical models used to explain market microstructure are
outdated and they may no longer be considered reliable for practical use. According
to Maureen O’Hara (2015), traditional models used in market microstructure might
have become obsolete and are in need of a profound rework.

From this perspective, Machine Learning methods are of great interest especially
given the availability of massive amounts of data and inexpensive computing power.
But traditional supervised ML approaches are not generally useful given the com-
plexity and the nonlinear dynamics of financial markets. The MM agents must be
able to adapt and dynamically learn their optimal behavior. As such, Reinforcement
Learning has become the tool of choice when it comes to studying the problem of
Market Making (Spooner et al. 2018; Elwin 2018; Sutton 1998).

This chapter will focus on the study of market microstructure trading dynam-
ics, such as the clustering of bid-ask spread, optimal trade execution, and optimal
inventory management. Most of the use cases presented will be applications of Rein-
forcement Learning agents.

9.2 CURRENT STATE-OF-THE-ART IN MARKET MAKING

The main goal of Market Making is to provide liquidity by facilitating transactions
with other market participants. Like many other major aspects of trading, Market
Making has become increasingly automated with the advent of the electronic limit
order book. The necessity for automation came with the need to handle ever more
data and to react to ever-changing market conditions on much shorter time scales.

Market Making has been studied across a number of disciplines, from Finance
and Economics, to Machine Learning and Operational Research. The most com-
mon approach used in the finance literature is to treat market making as a problem
of Stochastic Optimal Control. Models for order arrivals and executions have been
developed, and control algorithms for driving the Market-Making process have been
suggested (Avellaneda and Stoikov 2008; Chakraborty and Kearns 2011; Guilbaud
and Pham 2011).

More recent publications have reported studies on price impact, the role of adverse
selection and predictability (Abergel et al. 2016), as well as the importance of risk
measures and inventory constraints (Guéant, Lehalle, and Fernandez-Tapia 2013).

A popular topic in Market Making research has been the study of zero-intelligence
(ZI) agents. The ZI agents are tasked to be fully aware of inventory constraints (Gode
and Sunder 1992) while being oblivious to observing, remembering, or learning
from the microstructure. More intelligent variants have been recently suggested
and they are incorporating modern learning mechanisms (Vytelingum, Cliff, and
Jennings 2008). The agents are typically evaluated in simulated markets without
the use of real market data. A significant amount of research has been reported on
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the relationship between Market Making and the short-term predictability of price
dynamics (Othman 2012; Othman et al. 2013). In this context, the MM agent’s main
task is to extract information from informed market participants.

The specific role of an MM could vary substantially across market segments. In
what is called a pure dealer market, multiple MMs will competitively quote prices and
therefore incoming market orders from market participants will trade at the best avail-
able MM price (Huang and Stoll 1996). In a pure limit-order market, both investors
and MMs submit orders with limits in price. Whenever an incoming market order
matches an existing limit order, a trade occurs at the resting order’s limit price. This
market mechanism is called the Continuous Double Auction (CDA). For the so-called
specialist markets there is usually a unique designated MM that acts as a dealer
with a mandate (obligation) to maintain fair and orderly markets. In modern elec-
tronic markets, pure limit-order markets are the predominating MM type (Frey and
Grammig 2006).

The activity of providing liquidity to the market participants could generate prof-
its, while running the risk of adverse selection. This happens when traders with more
current or otherwise better information may be able to take advantage of the MM’s
standing offers. The vast majority of the Market Making literature has historically
focused on the tradeoff between profit potential and adverse selection risk and its
implications for MM strategies (Glosten and Milgrom 1985; Kyle 1985). The impact
of the MM activity may depend on the number of market makers acting in a specific
market and at a specific time. Several authors considered the effect of MMs compet-
ing for the orders of other traders. Their studies examined the MM competition in
models where orders are split across separate markets or in the same market through
a common Limit Order Book (Glosten and Milgrom 1985; Biais, Martimort, and
Rochet 2000).

Most of the literature on Market Making is centered predominantly within the field
of market microstructure, which examines the process by which prices, information,
and transactions are constructed by the stochastic-like interactions between traders in
a market setting (Biais, Glosten, and Spatt 2005; O’Hara 1997).

Early work focused on dealer markets, in which a monopolistic MM (the dealer)
controls trading by acting as the middleman. The seminal model of Glosten and
Milgrom (1985) framed spreads as arising from adverse selection. The standard
Glosten and Milgrom model assumes conditions of perfect competition and con-
strains the MMs to set prices to achieve zero expected profit. A separate line of
research investigated models where MMs could achieve positive outcomes (profits).
This research derived the prices that would be set by rational market makers,
either as monopolists (Das 2008) or in competition with each other. The model
of Biais, Martimort, and Rochet (2000) suggested that multiple market makers in
an imperfect competition setting could potentially earn positive expected profits.
Nevertheless these profits will vanish as the number of MMs goes to infinity.
Much of the relevant theoretical literature relies on simplifying assumptions about
MM behavior and trader interactions (Biais, Glosten, and Spatt 2005). Empirical
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studies provide insight into the effects of market makers in real-world markets
(Conrad, Wahal, and Xiang 2015; Shelton 2001). One of the conclusions of the study
was that historical data alone cannot elucidate the strategic choices faced by market
participants.

As we have seen in the previous two chapters, Reinforcement Learning was
applied successfully for many other financial trading problems, including but not
limited to optimal execution and the short-term prediction of price movement. The
first published study on applying RL to market making (Chan and Shelton 2001)
focused on the impact that the uninformed traders (noise) may have on the MM
agent’s quoting behavior.

The results demonstrated that the Reinforcement Learning agent successfully
converges on the expected strategies in controlled environments. However, the RL
methodology does not capture the complexity of handling order placement and
cancellation. These results could be attributed to partial observability of state
variables and to the excessive noise in the problem domain. In contrast Spooner and
co-authors (2018) found that temporal-difference RL could be an effective technique
for tackling the market making problem, provided that one uses eligibility traces and
carefully designed function approximators and reward functions.

Abernethy and Kale (2013) report the use of an online learning approach to
develop a market making agent. The authors produced very interesting theoretical
results for a stylized model and was able to empirically evaluate their agents under
strong assumptions on executions (like a market that has sufficient liquidity in order
to execute market orders entirely at the posted price with no slippage).

Market Making has been one of the early adopters of Machine Learning techniques
(Nevmyvaka, Sycara, and Seppi 2005). The study by Nevmyvaka and collaborators
demonstrated the effectiveness of learning algorithms for this kind of control prob-
lem. The authors’ approach was to create an electronic MM whose primary goal was
to optimally change the spread over the very next iteration instead of finding the best
model for the past transactions. The authors attempted to create a more normative (as
opposed to explanatory) model, and therefore they tried to determine which factors
are more important for generating a good spread update in response to the actions of
other market makers.

In one of the most recently published studies, Elwin (2018) used Reinforce-
ment Learning to understand the market microstructure of assets transacted on
NASDAQ Nordics and trained MM agents on a simulated electronic market with
similar characteristics. The author was using Deep-Q-Network (DQN) and Proximal
Policy Optimization (PPO) algorithms on these simulated environments. The MM
agents were reported to successfully reproduce stylized facts in historical trading
data, such as mean reverting prices and the absence of linear autocorrelations in
price changes. The interactions between the simulated MM agents exhibited realistic
aspects of the trading dynamics such as bid-ask spread clustering and optimal
inventory management, indicating that the use of RL with PPO and DQN could
yield to relevant choices when modeling market microstructure. The next section
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will illustrate some interesting Machine Learning approaches that could be used to
address the problem of market making.

9.3 APPLICATIONS OF TEMPORAL-DIFFERENCE RL IN
MARKET MAKING

In one of the most recently published papers on the topic of Market Making modeling,
Spooner and co-authors (2018) described a methodology to design a MM agent using
Temporal-Difference Reinforcement Learning (TD-RL). By using a “high-fidelity
simulation of the limit order book” the authors suggested a linear combination of
tile codings as value function approximators, and of a custom reward function that
controls the inventory risk. The goal of this study was to demonstrate the effectiveness
of this TD-RL method (Sutton 1988) by showing that the MM agent could outperform
both simple benchmark strategies, as well as more recently published online learning
approaches.

9.3.1 Methodology

This research study revisited some of the most important aspects of Market Making
modeling previously reported in the literature (Shelton 2001; Chan and Shelton
2001). By using a novel approach the authors developed a “high-fidelity simulation”
using high-frequency historical data. This study found innovative solutions to
previously unresolved issues associated with reward attribution, noise, and partial
observability. The authors proposed new formulations for both the Reward function
and the State representation, and they successfully demonstrated that these choices
are key factors in the success of the MM agent. The methodology employed by
the authors to construct the Market Making TD-RL agent could be summarized
as follows:

• Developing a data-driven simulation of the Limit Order Book.
This was done by using a basket of 10 equities across 5 different venues. The

LOB data included 5 levels of depth and millisecond-level transaction updates.

• Investigating the performance of a wide range of TD-based learning algorithms.
The authors addressed previously raised concerns about the efficacy of

one-step temporal-difference learning, by demonstrating that eligibility traces
are a simple and effective solution. Eligibility traces are one of the basic mech-
anisms used in Reinforcement Learning. In general any temporal-difference
method, such as Q-learning or Sarsa, could be combined with eligibility traces
to obtain a more general method that may learn more efficiently.

A more theoretical view sees eligibility traces as a bridge between TD to
Monte Carlo methods. When TD methods are augmented with eligibility traces,
they produce a family of methods spanning a spectrum that has Monte Carlo
methods at one end and one-step TD methods at the other.
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Another way to view eligibility traces is more mechanistic in nature. An eli-
gibility trace is viewed as a temporary record of the occurrence of an event, such
as the visiting of a state or the taking of an action. The trace marks the mem-
ory parameters associated with the event as eligible for undergoing learning
changes.

• Showing that the use of incremental PnL (profit and loss) as the natural choice
for the Reward function does not lead to the best performance.

The authors showed that the use of PnL as a Reward function actually
induces instability during the learning process. They proposed a novel solution
in the form of an asymmetrically dampened Reward function which they
claim improves learning stability and produces “higher and more consistent
returns.”

• Suggesting a series of three different State space designs and proposing a linear
combination of tile codings as the final representation.

The authors showed that the proper choice of the Reward function and the
Space state representation will generate a much better performance of the MM
strategy due to a more stable learning process.

• Introducing a consolidated design for the MM agent.
The authors showed that a consolidated MM agent will generate the best

risk-adjusted out-of-sample performance compared to a set of simple bench-
marks, basic RL agents, or compared with more recently published online learn-
ing approaches (Spooner et al. 2018). Moreover, the authors claimed that the
performance of the consolidated MM agent could be competitive enough to
represent a potentially viable approach for practical use.

9.3.2 The Simulator

Spooner and collaborators (2018) developed a market simulator by reconstructing
the LOB from historical data. Their data set contained 8 months’ worth of data for 10
securities chosen from 4 different sectors. Their simulator has tracked the top 5 price
levels in the LOB and allowed the MM agent to place quotes within these price
levels. Since the market simulator was fed with historical data, the orders placed
by the MM agent could not have impacted the market. For all intents and purposes,
the size of the orders used by the MM agent were small compared to the total
amount traded in the market, so the impact of the agent’s orders would have been
negligible.

One limitation of this LOB simulator was related to the fact that the data has
been previously aggregated per price level. Variations of the amount of volume at
a particular price level may indicate that some of the orders at that level either have
been executed or have been canceled. Because there is no discrimination between
the sizes of different orders for each level one does not know precisely which orders
have been canceled versus executed. This shortcoming may cause problems when
the MM agent’s order was simulated for that price level, because one does not know
whether the canceled order was ahead or behind the simulated order in the queue.
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The solution chosen by the authors was to assume that cancellations were distributed
uniformly throughout the queue, which means that the probability that the canceled
order is ahead of the agent’s order is proportional to the amount of volume ahead of
the agent’s order compared to the amount of volume behind it.

9.3.3 Market Making Agent Specification

9.3.3.1 Trading Strategy
Spooner and collaborators (2018) considered a state-based MM agent that acted on
events as they occurred in the LOB and was subject to inventory constraints. An
event was defined as a possible change in price, in volume, or the redistribution of
the orders in the LOB, that is, any observable change in the state of the environment.
This translates into the fact that the agent’s actions were not spaced regularly in time.
The MM agent was designed to quote prices at which it was willing to buy and sell
at all times unless the inventory constraints were violated. In that case the MM agent
was restricted just to orders that would bring the agent closer to a neutral position.

The action space suggested by the authors was based on a typical MM strategy in
which the agent is restricted to a single buy and sell order and cannot exit the market
(Chakraborty and Kearns 2011). There were 10 possible actions that the MM agent
could perform:

• The first 9 actions correspond to a pair of orders with a particular spread and
bias in their prices. Limit orders will be placed at fixed distances relative to a
reference price, Ref (ti) – the mid-price. At each time step the agent revises 2
control parameters, θa and θb.

Smaller values of the parameter θa,b lead to quotes that are closer to the top
of the book while larger θa,b values cause the quotes to be deeper in the book.
The MM agent may choose to quote wide or tight – or even to skew its orders
in favor of the buy/sell side.

• The last category of possible actions allowed for the MM agent to clear its inven-
tory using a market order. This market order was sized proportionately to the
agent’s current inventory. Note that volume is defined to be negative for buy
orders and positive for sell orders.

The full specification of the agent’s pricing strategy is:

pa,b(ti) = Ref (ti) + Dista,b(ti)

Dista,b(ti) = θa,b(ti) ⋅ Spread(ti)

The parameter Spread (ti) was a time-dependent scale factor which was calculated
by taking a moving average of the market half-spread, or s(ti)/2.
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9.3.3.2 Reward Functions
The more traditional reward function for trading agents was considered to be the PnL
(profit and loss). Under this reward function, the MM agent is encouraged to maintain
quotes and hold an inventory which will appreciate in value over time.

For a given time ti, one could define the parameters Matcheda(ti) and Matchedb(ti)
as the amount of volume matched (executed) against the agent’s orders since the last
time ti−1 for asks and bids respectively. Let m(ti) denote the mid-price at time ti.

Given the executions of the agent’s orders relative to the mid-price, let’s define
two functions to calculate the PnL:

𝜑a(ti) ≜ Matcheda(ti) ⋅ [pa(ti) − m(ti)] (9.1)

𝜑b(ti) ≜ Matchedb(ti) ⋅ [m(ti) − pb(ti)] (9.2)

If both orders are executed within the same time interval [ti−1, ti], then φa(ti) +
φb(ti) will simply become just the agent’s quoted spread.

If the agent’s inventory at time ti is denoted as Inv(ti), one could define the incre-
mental (non-dampened) PnL function Ψ(ti) by setting Ψ(t0)≜0 and:

Ψ(ti) ≜ 𝜑a(ti) + 𝜑b(ti) + Inv(ti)Δm(ti) (9.3)

The inventory term corresponds to the change in the agent’s cash holdings due
to changes in price in the market. Note that this term is only necessary because we
accounted for the PnL from the agent’s trades relative to the mid-price. While the
above definition for the reward function was traditionally considered as a natural
choice for this problem domain, the authors showed that such a basic formulation of
the reward function ignores the specific objectives of a market maker, often leading
to instability during learning and unsatisfactory out-of-sample performance.

The authors suggested (Spooner et al. 2018) two alternative definitions of
the reward function which were engineered to discourage trend-following and
reinforce the capture of the spread. The three reward functions that we study are
as follows:

PnL:
ri = Ψ(ti) (9.4)

Symmetrically dampened PnL:

ri = Ψ(ti) − η ⋅ Inv(ti)Δm(ti) (9.5)

Asymmetrically dampened PnL:

ri = Ψ(ti) − max[0, η ⋅ Inv(ti)Δm(ti)] (9.6)
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For the last two versions of the reward functions, the dampening is applied to the
inventory term using a scale factor η. This damping factor η reduces the incentive for
the MM agent to seek gains from trend-following speculation. The symmetric ver-
sion dampens both profits and losses from speculation while asymmetric dampening
reduces the profit from speculative positions but keeps losses intact. The remarkable
finding was that in both cases, the amount of reward that could be gained from captur-
ing the spread is larger compared to the amount of reward that can be gained through
speculation, thus encouraging market-making behavior.

9.3.3.3 State Representation
The state of the environment is constructed from attributes that describe both the
condition of the agent and market, that is, agent state and market state, respectively.
The agent-state is described by:

• The inventory, Inv(ti) – the quantitative measure of the asset owned or owed by
the agent – is a measure of risk exposure (a large absolute position could open
the agent to sizable losses).

• The active quoting distances, normalized by the current spread scale factor,
Spread(ti); these are the effective values of the control parameters, 𝛉a,b, after
stepping forward in the simulation.

But the most challenging aspect comes from the market. Unlike the agent’s inter-
nal features, the market state is subject to partial observability and may not have a
Markovian representation. In order to select the most representative market state
variables, one must balance expressivity with informational value while avoiding
Bellman’s curse of dimensionality. The authors of this study included the following
market state attributes:

• Market (bid-ask) spread(s)

• Mid-price move (Δm)

• Book/queue imbalance

• Signed volume

• Volatility

• Relative Strength Index

Based on these attributes three different representations of market state were con-
sidered. The agent state and the full state were represented using a conventional tile
coding approximation scheme. The third state takes into account approximations of
the agent state, the market state, and the full state simultaneously using a linear com-
bination of these three tile codings (LCTC). This approach is equivalent to learning
three independent value functions, each of which is updated using the same TD-error
for gradient descent.

The authors argued that a coarse state representation may improve learn-
ing efficiency by directing the MM agent toward more optimal regions of the
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policy space. This approach is exploiting the alleged independence between the
agent-state and market-state variables. This novel technique could be particularly
relevant for problems where a lot of domain-specific knowledge is available a priori.
Learning the value for the agent state, market state, and full state representations
independently enables the MM agent to learn this much faster as it does not rely on
observing every permutation of the full state to evaluate the value of its inventory. It
is plausible that this will also help the MM agent converge much more efficiently by
guiding it away from local optima in the policy space.

9.3.3.4 Learning Algorithms
The authors considered general-purpose TD-RL algorithms (Sutton 1988) such as
Q-learning (QL), Sarsa, and R-learning. Each algorithm was implemented using eli-
gibility traces (ETs). They used 1,000 days of training episodes with a typical training
sample of 120 days and a testing sample of 40 days.

During the training process a learning rate α = 0.001 was used and an R-learning
step-size of β = 0.005. The value of the discount factor chosen was γ = 0.97 and the
trace parameter λ = 0.96. From a market-making perspective an order size of 1,000
shares was employed and the limits for the inventory were 10,000 for both long and
short sides.

For each set of experiments, the data set was split into disjoint training and test-
ing sets, where all of the training data was older that the testing data. In addition to
that, separate validation data sets were used for hyper-parameter optimization and for
drawing comparisons between the various types of agents considered.

9.3.3.5 Performance Criteria
Customarily the primary metric used to assess the performance of a trading strategy is
the amount of returns. While this approach makes sense in terms of capital returns, it
certainly does not make much sense from a market maker optimization perspective,
especially because a multitude of strategies were tested across a variety of stocks,
each with varying prices and liquidity.

Instead of dollar returns the authors used a normalized daily PnL that rated how
well the strategies performed in terms of capturing the spread. This metric was defined
on a daily basis as the total profit divided by the average market spread which nor-
malizes the profit across different markets. This metric expresses to the number of
market spreads that would need to be captured in order to obtain that profit.

Another important goal for market makers is to avoid keeping large inventories.
To assess how well the TD-RL MM agents accomplish this task, a mean absolute
position (MAP) metric was introduced. High values of this metric indicate that the
agent has taken a sizeable amount of risk and therefore took a speculative approach
to trading. On the other hand, smaller values would suggest that the agent is relying
less on market trends and more on pure market making techniques.

9.3.4 Empirical Results

The most notable finding by Spooner and co-authors was that the Temporal-
Difference Reinforcement Learning implementation of the MM agent was
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shown to outperform both simple benchmark strategies as well as more recently
published online learning approaches.

9.3.4.1 Benchmarks
In order to relate the performance of the TD-RL agent to published literature let’s
quickly review the set of benchmarks used by this study. The benchmarks used for
comparison were represented by:

• A group of spread-based strategies based on the online learning approach intro-
duced by the work of Abernethy and Kale (2013), and

• A pair of basic agents, using an agent state representation, coupled with a
non-dampened PnL reward function and QL or Sarsa methods. These basic
agents represented the best prior reported results using standard techniques and
they were closely related to those introduced by Chan and Shelton (2001).

9.3.4.2 Spread-Based Strategies
The spread-based benchmark strategy uses an online learning meta-algorithm
inspired by the original work of Abernethy and Kale. The results this study tried
to reproduce were less conclusive compared to the ones reported by the original
Abernethy and Kale paper, where the online learning strategy was found to be
profitable over all time frames and all the stocks considered. This inconsistency
could be attributed to the use of less realistic market simulation capabilities in the
original work (the tracking of the LOB microstructure by Abernethy and Kale did
not exhibit the same level of accuracy as the one in Spooner and co-authors (2018)).

Another set of benchmarks were considered by using random policies over the
MM action space. These strategies were quoting at fixed, symmetric distances from
the chosen reference price (θa = θb) at all times. This different approach accounts
for market liquidity in a much better way by adapting the quoting prices to changes
in the bid-ask spread. Fixed strategies with θa,b > 1 were found to be profitable on
average, with decreasing MAP as θa,b increases.

But in all cases this strategy was found to suffer from high volatility that was
most likely caused by a lack of proper inventory management, as indicated by the
consistently high mean average positions.

9.3.4.3 Basic Agent
The basic agent used a state representation comprising:

• The agent-state, that is the inventory,

• The normalized bid/ask quoting distances, and

• The non-dampened PnL reward function (Equation 9.4).

This agent was trained using a one-step Q-learning and Sarsa algorithms. The
addition of eligibility traces (i.e. Q(λ) and Sarsa(λ)) was reported to improve
the agents’ performance, yielding strategies that occasionally generated profits
out-of-sample.
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9.3.4.4 Extensions
Three different extensions to the basic agent were proposed. They were related to
variations of the following:

• Learning algorithm

• Reward function

• State representation

9.3.4.5 Learning Algorithms
The first variation on the basic agents addressed the impact of using different learn-
ing algorithms, like Q-learning and Sarsa. The study reported that variants based on
off-policy learning tended to perform worse than their on-policy counterparts.

The reason that Q-learning is an off-policy algorithm is that it updates its
Q-values using the Q-value of the next state and a greedy action. In other words, it
estimates the return (total discounted future reward) for state action pairs assuming
a greedy policy were followed despite the fact that it’s not following a greedy
policy. On the other hand, Sarsa is an on-policy algorithm because it updates its
Q-values using the Q-value of the next state and the current policy’s action. It
estimates the return for state-action pairs assuming the current policy continues to be
followed.

Although some variants were found to outperform the basic agent for some equi-
ties, none of them were as consistent as the Sarsa version. This suggests that while
each stock could be optimized individually for maximal performance, Sarsa may be
used reliably as a baseline.

9.3.4.6 Reward Functions
The results of the study showed that the classical choice of reward function
(the non-dampened PnL) does not represent the best out-of-sample performance
across the basket of securities. Although the symmetric dampening was found
to exacerbate the flaws in the basic agent, the asymmetric dampening of the
trend-following term in Equation 9.3, with sufficiently high damping factor (η), was
found to produce superior risk-adjusted performance in most cases.

The results showed that there is a critical value of η ∼ 0.1 beyond which the agent
begins to converge on fundamentally different policies than those promoted by the
non-dampened PnL function. This shift in the final policy corresponds to a reduction
in the risk exposure. This was manifested by a change from holding large, unbalanced
inventories toward smaller and more neutral positions. This reduction in exposure
comes along with a change in PnL that exhibits a much lower variance. The impact
of asymmetric dampening was very noticeable by providing strong evidence that the
inventory term in Equation 9.3 was the main driver for the MM agent’s behavior, and
it should represent the main parameter to be manipulated to match a given risk pro-
file. The study has also observed that asymmetric dampening of the reward function
would lead to improved stability during learning and better asymptotic performance
compared to the basic agent. Another important conclusion was that the inventory
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component in Equation 9.3 is not only driving behavior, but it is also the main source
of instability – increasing the value of η seems to yield better and more consistent
performance.

9.3.4.7 State Representation
Three state representations were considered:

• An agent state (as used by the basic agent)

• A full state (agent and market variables)

• A Linear Combination of Tile Codings

The idea behind considering these different states was to identify and address chal-
lenges associated with increased state complexity when including market parameters.
The consideration of market parameters was found to have a strongly negative impact
on returns. The study did not detect any measurable improvement in performance with
increased training, but instead the TD-RL agent was regularly seen to degrade and
even diverge.

One of the findings was that the basic agent was a lot more efficient at learning
than the full-state variant and tended to be more stable – most likely because the
state-space was much smaller in size.

In order to capitalize on stability and efficiency while incorporating market infor-
mation, the authors considered what they called a Linear Combination of Tile Codings
(LCTC). This variant has considerably outperformed the full-state agent and did not
exhibit any issues of divergence as seen for the full-state variant. The conclusion was
that the LCTC combines expressivity and efficiency and helps to prevent divergence
even when the market variables have little informational content.

9.3.4.8 The Consolidated Agent
The study considered a consolidated version of the best variants on the basic agent
by using the asymmetrically dampened reward function with an LCTC state space
and training it using Sarsa. The study found that the consolidated agent generated
slightly lower returns than the best individual variants, but it had a much improved
out-of-sample stability.

In addition, the consolidated agent showed the tendency to hold smaller invento-
ries, which may have been a contributing factor toward the reduced uncertainty on
PnL and thus a better risk exposure. In conclusion, the consolidated agent was found
to produce superior risk-adjusted performance over the basic agent and extended vari-
ants overall.

By comparing the basic and the consolidated agents’ out-of-sample tests the study
showed that the former is highly volatile while the latter is stable. In general, the
basic agent holds non-zero inventory, therefore creating risk exposure to changes in
the security’s value for extended periods of time, thus contributing to some noise
observed in the equity curve.
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The consolidated agent learned a policy that usually targets a near-zero inventory,
relying less on speculative trading and thus yielding the consistency one expects from
a good market-making strategy.

9.3.4.9 Conclusions
By developing a realistic simulation methodology and by using eligibility traces
Spooner and co-authors (2018) developed a TD-RL-based MM agent that has
produced competitive out-of-sample performance across a basket of securities.

The study investigated different learning algorithms, reward functions, and state
representations and consolidated the best techniques into a single agent which was
shown to produce superior risk-adjusted performance.

The authors also outlined the directions of future research:

• Apply more advanced learning algorithms such as Greedy GQ, Q(σ), and true
online variants which could provide convergence with linear function approxi-
mation.

• Explore Deep Reinforcement Learning, specifically the use of Recurrent Neural
Networks that should be well-suited to the sequential nature of the problem.

• Introduce a parametrized action space as an alternative to discrete action sets.

• Extend the analysis to multiple orders and variable order size action spaces.

• Investigate the impact of market frictions such as rebates, fees, and latency on
the agent’s strategy.

• The use of sequential Bayesian methods for more efficient and accurate LOB
reconstruction and estimation of order queues.

9.4 MARKET MAKING IN HIGH-FREQUENCY TRADING USING RL

A recently published research study authored by Ye-Sheen Lim and Denise Gorse
(2018) described the application of Reinforcement Learning to optimal Market
Making in High-Frequency Trading. The authors suggested a novel formulation
for states, actions, and reward functions that are specific to market making in
High-Frequency Trading, including a novel use for CARA utility as a terminal reward
measure for improving the learning process. CARA is a risk aversion measure and
stands for Consumption with Constant Absolute Risk Aversion (Babcock, Choi, and
Feinerma 1993). The results reported by this study showed that an optimal policy
trained using Q-learning “outperforms state-of-the-art market making algorithms.”
The work has also analyzed the optimal RL policies and the influence of the CARA
utility from a trading perspective.

Given the challenging aspects of modeling the dynamics of financial markets,
even the most complex mathematical models could not entirely capture the reality
of the financial landscape. This challenge is even more notable in High-Frequency
Trading, a battlefield of great interest for both financial institutions and market regula-
tors. Given the complexity of this field, that is using ultra-high-speed communication
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technology to enable microseconds-level market data to drive all trading decisions,
generally HFT traders are considered to function as de facto market makers.

There was relatively little work published in the area of HF Market Making
(Fernandez-Tapia 2015). The vast majority of previously published work on HF
Market Making has proposed strategies derived from mathematical models that
made strong assumptions about market behavior. As such these models relied heavily
on parameters that had to be fitted from recent market data. Since these parameters
are subjected to regime changes, the fitting process could be extremely unreliable.
In addition to these limitations, the inherently nonlinear action space of the models
has been proven to be very unstable. As such very small perturbations in the action
space could lead to extreme control values.

A much more effective strategy will aim at building a framework that learns effec-
tive MM strategies from historical data and eliminates the need for such unstable and
unreliable market models. Lim and Gorse (2018) introduced a novel formulation of a
discrete Q-learning algorithm for market making, tested it against the model used by
Fernandez-Tapia (2015), and analyzed the resulting optimal policy. Market-making
control policies refer to the offsets from the best bid and best ask in the LOB at which
to post the bid and ask quotes. The authors also used the CARA utility (Babcock,
Choi, and Feinerma 1993) in a very creative fashion to improve learning based on the
measure of an agent’s risk aversion.

9.4.1 Methodology

9.4.1.1 States
Lim and Gorse (2018) have assumed that state transitions are Markovian in nature,
and they considered that the partially observable variables were fully observable. The
ultimate test of these assumptions will be considered in the final empirical evaluation
of the algorithm.

The two main states considered were the inventory i, and the remaining time τ.
In order to reduce the computational complexity, the inventory states were binned
into six categories (states) representing small, medium, and large inventory imbal-
ance for both bids and offers, with an additional category representing the flat (zero)
inventory.

The trading period T was partitioned into k time steps; therefore the remaining
time could be encoded as:

τ ∈
{1

k
T ,

2
k

T , · · · ,T
}

(9.7)

9.4.1.2 Actions
The authors defined the action of simultaneously quoting bid/ask limit orders at a
given time step as a tuple a = (db, da). The MM strategy employed dictates that at
every time step, any unexecuted orders previously placed will be canceled and new
limit orders will be submitted according to the action selected from the optimal policy
at any given state.
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9.4.1.3 Rewards
A traditional approach to the Market Making problem looks to maximize the expected
utility of the PnL measure for the MM agent. This type of utility is meant to evaluate
the performance of the agent at the end of a trading period and does not accurately
represent immediate rewards at each time step t.

The authors proposed a more suitable utility through the reward function Rt as
described below:

Rt = a(Vt − Vt−1) + ebτt sign(|it| − |it−1|) (9.8)

where a and b are constants, Vt is the equity value at time t, it is the inventory of the
agent at time t, and τt is the remaining trading time at t.

At the end of a trading period, the authors formulated a terminal reward based on
the Constant Absolute Risk Aversion (CARA) utility (Babcock, Choi, and Feinerma
1993) to represent the attitude of the agent to the gains or losses caused by having
inventory iT at the end of the trading period. The CARA utility takes the form:

Rt = 𝛼 − exp(−r(CT − iTST )) (9.9)

where α is a constant, r is the risk aversion parameter, CT is the profit or loss (PnL)
made during the trading period, and ST is the average price (including costs) at
which we can immediately liquidate iT shares.

9.4.2 Experimental Setting

A discrete Q-learning algorithm (Sutton and Barto 1998) was used to find the optimal
action-selection policy. Since the selected states and actions are naturally discrete
there was no need for a reward function approximation. Given the lack of a good
starting policy for an environment as complex as the HF market, the authors sug-
gested the use of an off-policy algorithm instead of an on-policy algorithm (for better
exploration).

During the learning process, the optimal actions are chosen in an 𝜀-greedy
manner. Both the ε and the learning rate were set to diminish as more episodes were
run. As for the experimental setup, each trading period was set to 120 seconds, with
k = 12 time steps. As for the inventory state i, a small inventory was defined to be
in the range 0 < i ≤ 200, a medium inventory in the range 200 < i ≤ 400, and a large
inventory as i > 400. In total there are 66 combinations of possible time and inventory
states.

A Poisson model was used to simulate the LOB dynamic. The RL agent was
trained for 10,000 episodes. For every episode, the simulation was first run for 5 min-
utes just to initialize the order book. By selecting the optimal offsets from Q, the RL
agent could submit simultaneous quotes every 10 seconds until the end of the trading
period. As already mentioned, any previously submitted orders that have not been
executed are canceled.



192 CASE STUDY 4: APPLYING MACHINE LEARNING TO MARKET MAKING

As a result Q is updated using the reward function Rt as described in Equation 9.8.
At the end of the trading period, a terminal reward RT is used to update the value
of the last encountered state, regardless of the action taken so far (see Equation 9.9).
This action signifies that the CARA utility is propagated through all previous states
and enables the agent to take into account its risk aversion in accumulating inventory
throughout the trading period.

The RL-based market maker could choose to quote an offset from the set {0, 1, 2}
ticks for each bid and ask side respectively, giving a total of 9 different tuples as
actions. The Zero Tick Offset method represents the simplest form of market making
where the bid and ask prices of the limit orders are set to the best bid and best ask.
Another experiment consisted of randomly choosing from the action set available to
the RL agent.

9.4.3 Results and Conclusions

The study performed by Lim and Gorse (2018) simulated trading scenarios for 2,000
trading periods. At the end of each period, the total inventory accumulated was
liquidated with a market order and the final total profit obtained by the agent was
computed.

This research study claimed that their RL agents outperformed in terms of profit
all the other methods, including the mathematical model of Avellaneda-Stoikov
(2008), which is still considered state-of-the-art in the literature. In addition, the
study showed that the RL agent was the most inventory neutral compared to all other
methods.

The use of the CARA utility has demonstrated that there is a lot of potential in the
integration of more classic mathematical models and Machine Learning methods.
The risk aversion parameter in the CARA utility represented the willingness of the
agent to risk these natural price movements.

For future work, the authors will consider the use of Reinforcement Learning to
tune the actions of the Avellaneda-Stoikov algorithm, depending on the limit order
book states.

9.5 OTHER RESEARCH STUDIES

A variety of other research studies on the topic of Market Making have been pub-
lished. One of them, authored by Wah and collaborators (2017), investigated “the
effects of market making on market performance, focusing on allocative efficiency
as well as gains from trade accrued by background traders.” The authors used empir-
ical simulation methods to evaluate heuristic strategies for market makers in a variety
of trading environments. A novel market model was introduced to incorporate both
private and common valuation attributes, with dynamic fundamental value and asym-
metric information.

The authors reported the presence of a surplus achieved by background
traders in strategic equilibrium, for use cases with and without a market maker.
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One of their main findings indicated that the presence of a market maker tends
to increase total welfare across various environments. The authors reported that
Market Making strategies tend to benefit investors in relatively illiquid markets and
in situations where background traders are impatient due to limited trading opportu-
nities. The presence of additional market makers tends to enhance these benefits, as
competition drives the market makers to provide liquidity at lower price spreads.

In a separate research study by Li and collaborators (2014) a two-tier MM frame-
work was presented. This framework included a trading signal generator based on a
supervised learning approach and an event-driven MM strategy. The trading signal
generator component was fed with market microstructure information from the LOB
and generated directional price movement predictions. The Market Making strategy
was implemented in a second tier and it was producing quotes based on the signals
generated by the first tier.

This interesting combination of directional movement prediction and Market
Making was reported to add an extra layer of risk control by preventing losses
due to market trending. The empirical results showed that when MM strategies
were coupled with directional forecasting signals, they would perform better than
strategies without any signal in terms of average daily profit and loss (PnL) and
Sharpe ratio (SR). Correct directional predictions may help the MM strategies
to readjust their quoting along with market trending, which avoids the strategies
triggering stop losses.

Dixon (2017) authored a study on the use of High-Frequency trade execution mod-
els and used them to evaluate the economic impact of supervised machine learners.
The author extended the concept of a confusion matrix to introduce that of a trade
information matrix by attributing the expected profit and loss of the high-frequency
strategy under execution constraints, such as fill probabilities and position depen-
dent trade rules, to correct and incorrect predictions. Dixon applied this novel trade
execution model market microstructure data to the E-mini S&P 500 futures contract.
His approach used Recurrent Neural Networks to directly evaluate the performance
sensitivity of a market-making strategy to prediction errors.

Other studies (Kanagal, Wu, and Chen 2017; Gil and Zahavi 2012; Jumadinova
and Dasgupta 2010) addressed the problem of agent-based Market Making. The gen-
eral conclusion is that the fundamental challenge in constructing Market-Making
strategies comes from the need for the MM to balance conflicting objectives of max-
imizing trading utility and market quality, or in other words to find the right balance
between reaching the profit goals (PnL) and fulfilling the role of an MM (i.e. to ensure
fair and stable markets).
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CHAPTER 10

Case Study 5: Applications of
Machine Learning to Derivatives
Valuation

“Everything should be made as simple as possible, but not simpler!”

– Albert Einstein

10.1 INTRODUCTION TO THE PROBLEM

One of the most momentous developments in the history of Quantitative Finance was
the publication of the Black-Scholes-Merton (BSM) options pricing theory in 1973
(Black and Scholes 1972, 1973). The significance of this event and its influence on
later developments in Quantitative Finance cannot be overstated. This event repre-
sented the beginning of a new field in Quantitative Finance: Derivatives Valuation.
The BSM formula quantifies the value of an option through its dependency on the
future volatility of the underlying asset, rather than on its expected return. The BSM
theory formulates the price of an option based on several input parameters, such as
the price of the underlying asset, the market’s risk-free interest rate, the time interval
until an option’s expiration date, the strike price of the contract, and the volatility of
the underlying asset. The revolutionary idea behind BSM was that it is not necessary
to use the risk premium when valuing an option, as the asset price already contains
this information.

This option pricing formula represents a theory-driven model based on the
assumption that asset prices follow a geometric Brownian motion. At the time of the
BSM publication, most of the computational tools that we are accustomed to today
were a decade away from becoming mainstream. Using a more data-driven approach
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to value options would not have been a viable prospect at that time. Although the
BSM theory was, and continues to be a remarkable development in the evolution of
Quantitative Finance, its inability to reproduce very important empirical facts repre-
sents a serious drawback. Its biggest flaw is represented by the mismatch between
the model volatility of the underlying option and the observed volatility from the
market, or what is called implied volatility. For several decades a new research field
developed in order to cope with this serious limitation. The development of modern
computational tools enabled more complex models to be calibrated on real market
data and to alleviate some of the BSM limitations. For a very long time, quantitative
researchers and academics in finance have been busy trying to model the derivatives
markets and come up with new and more realistic models.

Market practitioners are using nowadays more sophisticated models such as:

• Levy models – formulating a price dynamics of a higher mathematical
complexity than the Brownian motion.

• Variance-Gamma models.

• Stochastic volatility models.

• Heston volatility models.

The advent of modern computational technology enabled the valuation of exotic
options in a timely manner and has sped-up a plethora of computationally hungry
numerical methods such as Monte Carlo, Fast Fourier Transforms, and Partial
Differential Equations.

Quantitative professionals are passionate not just about the mathematical aspects
of problem solving, but they are also very interested in the latest technological
breakthroughs and in the development of new computational methods that could
be successfully applied to existing problems. The field of Quantitative and Com-
putational Finance is an ever-demanding taskmaster. The progress achieved by
Moore’s Law seems to never be sufficient to the impetus of the financial industry.
An ever-growing body of quantitative professionals is employed to develop new
techniques that deliver more accurate valuation models with as little computational
effort as possible. At the same time, computationally demanding tasks are becoming
commonplace in the landscape of derivative valuation and pricing of financial
derivatives (Green 2015). New financial regulations are adding even more pressure
to an already very competitive landscape.

As recent advances in algorithmic development and hardware accelerators have
been widely adopted by the financial industry, Machine Learning has become an inte-
gral part of the basic Quantitative and Computational modeling tool kit. The addition
of Machine Leaning to this toolbox is a direct consequence of the growing availabil-
ity of low-cost computational power and easy-to-access data (financial or alternative).
The most conspicuous outcome of this new trend is the advent of a new paradigm – a
data-driven approach to derivatives pricing. One of the most important advantages of
using ML methods compared with model-driven approaches is that they are able to
reproduce most of the empirical characteristics of financial derivatives.
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The general appeal of ML algorithms, especially the subfield of Artificial
Neural Networks, is that they are able to approximate a function based on the
function’s inputs and outputs if the number of data points is sufficiently large. If one
considers an option as a functional mapping between the contracted terms (inputs)
and the premium of the option (output), ANNs could be used to infer this relationship
based on empirical data. If the data sample is large enough and the ANN algorithm is
complex enough, then the function that the network will learn from the data set will
be close enough to the real one for any practical purpose (Hornik, Stinchcombe, and
White 1989). Although the training process could be quite time-consuming, once
the process is completed, the use of the ML model for prediction could be extremely
fast. Artificial Neural Networks are perhaps best known in finance in the context
of predictive algorithms used in trading strategies. But there are also many other
financial problems (e.g. credit scoring or bankruptcy prediction) that have pioneered
the use of ANN models.

An example could be the problem of Credit Value Adjustment where a classifier
approach has been used to map credit default swaps (CDS) to illiquid counterpar-
ties (Brummelhuis and Luo 2017). Alongside Artificial Neural Networks, a variety
of other ML techniques have been applied to the problem of derivatives valuation, the
two most used ones being Deep Neural Networks and Reinforcement Learning. The
field of Quantitative and Computational Finance has changed fundamentally since
Black, Scholes, and Merton published their seminal papers on options pricing in
1973. The exponential growth over the past decade in computational power and data
has allowed researchers to apply ML techniques to price derivatives with precision
unforeseen decades ago when options pricing was done by theoretical models based
on the foundation of stochastic calculus.

This chapter is dedicated to the study of modern Machine Learning techniques
that could be applied to the problem of derivatives valuation. The goal is to first intro-
duce the problem of derivatives valuation using ML, to quickly review the relevant
published literature, and then to present a series of case studies related to common
valuation tasks.

10.1.1 Problem Statement and Research Questions

• How feasible is it to use Machine Learning as a tool set for the development of
valuation models in financial derivatives?

• What are the criteria to select the most efficient architectures for training these
models?

• What is the proper metric to be used to assess the computational performance?
• How could hyper-parameter tuning affect the final valuation results?

The problem at hand is to efficiently price financial derivatives in a way that is
both fast and accurate. From this perspective a derivatives valuation model is a func-
tional mapping of inputs, like market data and contract specific terms, to an output
representing the fair value of the financial derivative. This functional representation
may have a tractable analytic form, or it may be numerically approximated using
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methods like Monte Carlo simulation, binomial trees, or finite difference. Simple
derivatives like European stock options could be valued with a relatively small num-
ber of inputs, while more complex products like Bermudan swaptions, for example,
may require many more inputs, involving all the properties of the underlying swap
and option exercise schedule.

Ultimately the parametrization of the mapping function may require a pretty large
number of parameters (could be in the hundreds or thousands for more complex
derivate products). The need for a large number of inputs is not a stringent require-
ment for Neural Networks. As an example, Deep Neural Network architectures used
for image recognition tasks could be trained quit efficiently on millions of parameters.

When it comes to training an ANN model to approximate a derivatives valuation
function, one has to make some up-front decisions that are specific to the applica-
tion domain. One could choose to train the network on all the parameters (speci-
fied by a classical valuation model) or only on a subset of them. Additionally one
could choose to train over a larger or a smaller domain for a given parameter. The
trade-off is usually dictated by model-complexity versus the training time. In the
case of path-dependent derivatives (e.g. Bermudan options) one may choose to take
as inputs the properties of a specific trade and then train the model against a variety
of input market data scenarios.

This specific choice will generate a considerable reduction in the size of the
parameter space, thus relaxing the training requirements such as the size of training
data set and the amount of time spent training. A very important aspect to keep in
mind is that the learned model could only be trusted to approximate the function
well just over the parameter ranges that were used in training. Outside these ranges
it is very unlikely that the functional approximation will perform effectively.

10.2 CURRENT STATE-OF-THE-ART IN DERIVATIVES VALUATION
BY APPLYING ML

The theory of options pricing is solidly based on the seminal work by Black, Scholes,
and Merton (Black and Scholes 1972, 1973). They devised a set of closed-form
solutions for option prices by using a dynamic hedging strategy and a no-arbitrage
requirement. The Black-Scholes formulas are classical examples of traditional para-
metric, no-arbitrage pricing formulas, the derivations of which depend heavily on
the assumptions and knowledge of the stochastic process that determines the price
dynamics of the underlying asset of the option. If for any reason the specification of
the stochastic process is incomplete or incorrect, the resulting model will generate
pricing errors.

Among market practitioners it is common knowledge that the Geometric
Brownian Motion (GBM) assumption is violated in practice; therefore a variety of
other corrective models have been used to extend the GBM assumption. In addition,
fair prices generated by these corrective models are further adjusted using traders’
judgment. This makes impossible the knowledge of the exact mathematical function
that is generating the market prices.
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One attractive solution to this challenge is to use a data-driven, nonparametric
approach. Because nowadays market data is plentiful and readily available, there is
the possibility to train an algorithm to learn the function that is collectively generating
option prices in the market.

10.2.1 The Beginnings: 1992–2004

The first attempt to use this new methodology was done by Hutchinson and his
co-authors in 1994 (Hutchinson, Lo, and Poggio 1994). Their publication is con-
sidered to be a seminal study on this topic. The authors demonstrated that a neural
network is an excellent vehicle to approximate the market’s option pricing function.
Hutchison proposed a nonparametric method for estimating the pricing formula of a
derivative asset using neural networks. Hutchison indicated that when the underlying
asset’s price dynamic is unknown, or when the pricing equation associated with
the no-arbitrage condition cannot be solved analytically, neural network-pricing
methods could be more accurate and computationally more efficient alternatives to
the more traditional arbitrage-based pricing formulas.

Hutchinson studied the use of three different NN models using American-style
S&P 500 index futures calls, and they found that all of the neural network mod-
els yielded superior results to the older parametric valuation models. They also
showed that the NN models could learn the Black-Scholes pricing formula with
very-high-degree accuracy from simulated data. The progress engendered by the
work of Hutchinson and co-authors was truly remarkable, especially because the use
of NN makes possible the capture of subtle nonlinearities in the data that was not
possible previously using linear statistical approaches.

In 1992 Trippi and Turban published one of the first books on this subject. They
titled it Neural Networks in Finance and Investing: Using Artificial Intelligence to
Improve Real World Performance (Trippi and Turban 1992). Back then the authors
speculated that Neural Networks will revolutionize “virtually every aspect of finan-
cial and investment decision making.” Their vision has come to life nowadays when
financial firms worldwide are employing NN to tackle difficult tasks involving data
patterns detection. More than 25 years ago the two authors claimed that “neural net-
works will eventually outperform even the best traders and investors.”

Earlier work done by Malliaris and Salchenberger (1993) studied the pricing per-
formance of NN models with American-style S&P 100 call options. The authors
found that the NN model yielded superior results in the case of out-of-the-money
options, but that Black-Scholes was superior for the in-the-money options.

Anders, Korn, and Schmitt (1996) published a study comparing the pricing accu-
racy of a neural network with European-style calls written on DAX 30 and has also
found that the results were superior to classical methods. Amilon (2003) compared
both the pricing and hedging performance of a neural network with European-style
calls on the OMX index with both implicit and historical volatilities and found that
the use of NN was yielding superior results in both cases.

Bennell and Sutcliffe (2004) compared the pricing accuracy with FTSE 100 call
options to a dividend-adjusted Black-Scholes formula and found that the neural
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network was producing superior results in terms of accuracy. The work published
by Hanke (1999) reported that the performance of the Black-Scholes model became
superior to the use of NN after the parameters for volatility and risk-free rate
were optimized. Yao, Li, and Tan (2000) conducted a study to forecast the option
prices of Nikkei 225 index futures by using back-propagation neural networks.
Their results suggested that for volatile markets an NN integrated option pricing
model outperforms the traditional Black-Scholes model, but that the performance of
Black-Scholes is generally better for at-the-money options.

Morelli and co-authors (2004) applied NN algorithms to the problem of option
pricing and used it to simulate the nonlinear behavior of such financial derivatives.
The authors used two different types of neural networks: multilayer perceptron and
radial basis functions. Their analysis was carried out for both standard European and
American options, including evaluation of the Greeks, necessary for hedging pur-
poses. They published a detailed numerical investigation showing that after a careful
phase of training, NNs are able to predict the option values and the Greeks with a
high degree of accuracy and very fast.

In general, the results of the earlier studies indicated that neural networks are
indeed capable of learning pricing formulas up to high degree of accuracy from real
market data. However, there are some serious limitations of these early studies. First
off the data used for training was relatively sparse given the limited availability of
market data at the beginning of the electronic trading era (1990s). Then the level of
computational resources available at that time was quite modest compared to today’s
availability. Given the significant increase in both available data and computational
power, the last decade made possible the development of deeper, more computation-
ally intensive data-driven models such as the Deep Neural Networks. Therefore, it is
of great interest to study the performance of such a deep neural network models in
pricing derivatives in general, and options in particular.

10.2.2 The Last Decade

Gradojevic and co-authors (2009) proposed a nonparametric modular NN model to
price S&P 500 European call options. The modules were constructed based on time
to maturity and moneyness of the options. The option price function of interest was
chosen to be homogeneous of degree one with respect to the underlying index price
and the strike price. When compared to several parametric and nonparametric models,
the method introduced by the authors consistently exhibited superior out-of-sample
pricing performance. This study found that modularity improves the generalization
properties of standard feedforward neural network option pricing models.

The paper published by Wang and Lin (2009) promoted a new approach: the
integration of an asymmetric volatility model into an ANN option pricing model
to improve forecasting ability of derivative securities price. The introduction
of a new hybrid asymmetric volatility method had as an effect the reduction of
the stochastic and nonlinearity of the error term sequence and has captured the
asymmetric volatility simultaneously. The published results demonstrated that
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the Grey-GJR-GARCH volatility provides a much higher predictability than other
volatility approaches.

The complexity of the NN models used for valuation has increased substantially
during the last decade, and the paper published by Hong-yan, Hui, and Jiang
(2010) was one of the first to tackle this new trend. The authors suggested a hybrid
Wavelet-Neural Network model based on the Black-Scholes model. Within this new
approach, options are classified according to their moneyness and the weighted
implied volatility rates are regarded as the inputs of the NN. A genetic algorithm
was used to determine the optimal weights of the implied volatility rates of different
kinds of options. The authors used this model for a case study on the Hong Kong
derivative market showing that these hybrid models are performing better than the
conventional Black-Scholes model or the other neural network models.

Another attempt to combine neural networks and evolutionary algorithms to
optimize pricing policies was done by Shakya and co-authors (2012). The authors
introduced the design of an NN-based demand model and the use evolutionary
algorithms to optimize policy over this model. Two key benefits of this approach
were reported. First, the use of MM provided the necessary flexibility to model a
range of different demand scenarios occurring within different products and services.
Secondly, the use of a genetic algorithm made it versatile enough to solve very
complex models. The results showed that their model was more consistent, adapted
well to a range of different scenarios, and found more accurate pricing policies than
other models.

Mitra (2012) published a study showing that the Black and Scholes formula
for theoretical pricing of options exhibits certain systematic biases. Past studies
attempted to reduce these biases by incorporating correction mechanisms for the data
used as inputs. Among all nonparametric approaches used to improve accuracy of the
BS model, Artificial Neural Networks were found to be the most promising alterna-
tive. Mitra’s study made an attempt to improve the accuracy of option price estimation
using ANNs with adjusted input parameters (using suitable multipliers). The
adjustment factors were determined by a process that minimized the valuation errors.

Chen and Sutcliffe (2012) compared the performance of ANNs with that of the
modified Black model in both pricing and hedging short sterling options. By using
high-frequency data, both standard and hybrid ANNs were trained to generate option
prices. The study showed that hybrid ANNs are “significantly superior to both the
modified Black model and the standard ANN in pricing call and put options.” The per-
formance of hedge ratios from ANNs directly trained on actual hedge ratios was sig-
nificantly superior to those based on a pricing model and to the modified Black model.
Finally the article by Park, Kim, and Lee (2014) provides an excellent overview of
the literature on parametric models and nonparametric machine learning models for
option pricing.

In conclusion it should be noted that most of the well-established nonparamet-
ric models have one thing in common: they are calibrated using supervised learning
techniques. As many of the studies mentioned previously have shown, this approach
could work very well in a variety of scenarios. But one has to be aware of the fact
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that there are some disadvantages to this approach as well. First off, in order to come
up with a good model, in general a large amount of data is required for training. This
makes the process applicable just for financial assets or markets where there is enough
historical data provided by an active and liquid derivatives market. Secondly, if the
historical market data contains biases, the valuation model is likely to learn them
as well.

10.3 USING DEEP LEARNING FOR VALUATION OF DERIVATIVES

Analytically tractable solutions to the derivatives pricing problem are known for just
a small subset of derivative products and they are generally based on rather stringent
assumptions. Practitioners are frequently resorting to the use of numerical approxima-
tion techniques. The most common approaches rely on using Monte Carlo simulations
(Broadie and Glasserman 1997; Longstaff and Schwartz 2001) or Dynamic Program-
ming (Ben-Ameur et al. 2007), which is an ingenious technique to relate the fair price
of a derivative to the optimal value function of a Markov Decision Process (MDP).

But even purely numerical techniques could be quite restrictive in their usage. As
an example, Monte Carlo methods would require the knowledge of the probability
distribution of the state space in order to generate random samples from which they
can extract their fair price estimates. In order to determine the optimal value, Dynamic
Programming methods would require the explicit knowledge of the transition proba-
bilities for the associated Markov Decision Process.

Fortunately there is a more efficient method to address this problem that is a
model-free, data-driven approach that is using Machine Learning. The general appeal
of ML algorithms, especially Neural Networks, comes from their ability to be uni-
versal function approximators. If one considers an option as a functional mapping
between the contracted terms (inputs) and the premium of the option (output), one
could use NN to infer this relationship based on empirical data. Feeding a large
enough data sample into a powerful NN algorithm will generate a functional map-
ping between the inputs and the outputs therefore inferring a model for the problem
at hand.

The objective of this section is to illustrate the application of Deep Learning to the
problem of valuation of derivatives by tapping into the most recently published liter-
ature. The main study to be referenced in this section (Ferguson and Green 2018) was
written by two market practitioners and it responds to the need to address the deriva-
tives valuation from a model-free data-driven perspective. The authors proposed the
use of the Deep Learning methodology to value an option call on a basket of stocks.
Their results suggest that this new methodology could yield very accurate and fast
results, according to the authors, “capable of producing valuations a million times
faster than traditional models.”

The use of computationally complex models is a common practice in modern
finance. This is especially true in the field of derivative products, where complex
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and computationally expensive valuation adjustments are becoming increasingly
important. The classical approach used to cope with these computational chal-
lenges is to develop approximations for these hard-to-compute valuation functions.
Approximation Theory methods such as the Chebyshev interpolation have been
applied to XVA models where trades are valued in the context of a Monte Carlo
simulation. The advent of Deep Neural Networks and its successful applications
in computer vision and image recognition has been a catalyst for new ideas in
the field of Quantitative Finance. For almost two decades financial quantitative
researchers and academics have suggested that neural networks may be successfully
used to learn option pricing models directly from the markets. The recent wave of
interest in the deep version of NN has attracted a lot of interest from the financial
industry, specifically when it comes to the use of universal nonlinear function
approximators.

What really makes the Deep Neural Networks more attractive than the standard
econometric models? The most plausible answer is that DNNs deal reasonably well
with nonlinearities. The majority of econometric models are either linear functions
or just simple transformations of linear functions. In practice, however, the rela-
tionship between inputs and outputs are profoundly nonlinear. This is where DNNs
could be very proficient at modeling nonlinearities. As the input data is transformed
from one layer of the network to the next, nonlinearity gets filtered away. Using
this approach one could learn almost any function to a high degree of accuracy.
This ability to detect and isolate nonlinearities makes DNN a very interesting candi-
date for a wide range of applications in Finance, derivatives valuation being just one
of them.

According to Ferguson and Green (2018), Deep Neural Networks present a series
of major advantages to more classical methods when it comes to approximating non-
linear functions. The most important advantage of using DNNs is the universality
aspect of the approximation, in the sense that feedforward networks could encode
almost any variety of functional dependency under very relaxed assumptions about
the activation function to be used by the network. Another advantage is that DNNs
could address independently the demand for accuracy from the computation speed
requirements (valuation time). DNNs are also ideal candidates for functional approx-
imators because they are not impacted by the curse of dimensionality. Therefore their
use does not impose any limitations on the size input parameter space.

10.3.1 Implementation Methodology

Ferguson and Green illustrated in their study a practical example for the use of DNNs
to the problem of derivatives valuation. The authors introduced a Deep Neural Net-
work that could learn to price a European call option on a worst-of basket with six
underlying stocks. This option valuation is done traditionally by using a Monte Carlo
simulation under the assumption that each of the stocks follows a geometric Brownian
motion.
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This simple example was introduced for two very practical reasons:

• The dimensionality of the valuation function is at a reasonable level. For a
basket of n = 6 stocks, the number of input parameters is 28 leading to a
28-dimensional input space: 6 stock prices, 6 volatilities, 1 time-to-expiration
and 15 correlations.

• To test the viability of using DNNs versus the more computationally intensive
Monte Carlo simulation.

The authors used Monte Carlo simulation to generate random sets of training
data [x(i), y(i)]. All parameters were generated independently with the distribution
selected individually for each parameter. The choice of the sampling distribution
was considered to be a very important aspect of the data generation process and
it was made on a case-by-case basis. The parameters were sampled indepen-
dently and randomly, with the exception of correlation matrices, which were
handled separately. As such a lognormal distribution was used for the six stock
prices, whereas for volatility and expiry uniform distributions were employed. The
correlation matrices were sampled from a β-distribution using a C-vine method
(Lewandowski, Kurowicka, and Joe 2009).

The process started by randomly generating a set of parameters. Then the function
to be approximated was called to generate a value. By using this approach a large
number of training samples could be created. In spite of the fact that this process
could be computationally intensive (the derivative valuation function is called many
times) this process needs to run just once for the initial training of the model. Because
the training examples are independent, the procedure could be readily parallelized.

The selection of a representative data set is central to the success to learning pro-
cess, because the primary goal of the Deep Learning model is to minimize the error
between its estimates and that of the training data that it’s presented with. Another
important consideration relates to the nature of the function being learned. As a result,
more training data needs to be fed to regions where the function values are more
volatile (change more rapidly). As such the authors generated more data for short
dated maturities since the convexity of the basket option valuation function is greatest
for at the money short dated options. Three different training data sets were gener-
ated, ranging from several millions to several hundreds of millions of examples and
Monte Carlo paths. It took approximately a week of computer time to generate each
of these three data sets.

The weights of the models were initialized using a pseudo-random number
generator. They were sampled either from a uniform or standard normal distribution.
The models were then trained in mini-batch sizes of 50,000 samples. The test set,
which consisted of 5,000 samples, was drawn randomly from a separate set of highly
accurate MC-generated data (∼100mm paths) used only for testing. The authors
reported that by using a 24-core AMD server they computed the values for the test
set in a little more than a week by fully using all of the cores. The use of 100 million
Monte Carlo paths yielded an accuracy of about 1%. However, the valuation time for
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a single option was about 300 seconds, making it impractical for a production envi-
ronment. For a reduced accuracy of 5% (using just 1 million MC paths) or 20% (100k
paths) the valuation time was a lot more acceptable (i.e. one hour and 45 minutes, or
10 minutes, respectively). All models were trained using an Adam optimizer.

Different network architectures with six hidden layers were used. The models were
differentiated by the training set used and by the number of nodes used in each hid-
den layer. Each hidden layer used a ReLU activation function with the exception of
the final output layer, where a simple linear function was employed to generate a
real valued output. The first experiment used models trained with the first training set
(A). The largest network employed (with about 600 nodes per layer) yielded negative
results due to overfitting. For this example the out-of-sample performance was “ma-
terially worse than that of the smaller models.” The second data set (B) was used to
train the second set of models. These models used 400, 600, 1,200, 1,400, and 1,600
nodes per layer. The final set of experiments were conducted with training models
with the same number of neurons per layer as case B, but using the third training
set C, with only 10,000 Monte Carlo paths.

10.3.2 Empirical Results

One of the most significant results reported by this study was that the use of larger
training data sets while employing Monte Carlo noise in each training example has
yielded significantly better results. The explanation offered by the authors was that
employing a much broader (noisier) distribution of the Monte Carlo scenarios through
the model domain is in effect much more beneficial to reducing overfitting as opposed
to just concentrating on generating highly accurate training data via Monte Carlo.
Feeding more data into larger models could lead to successful training before over-
fitting sets in.

Another key observation was that the test results were of better quality compared
to the training results. This is an indication of the fact that “the DNN models have
learned to average out the numerical noise associated with the lower-quality training
data.” The authors conclude that “the best approach may be obtained by using single
Monte Carlo paths directly.”

10.3.2.1 Benchmarks
The authors benchmarked their DNN approach against a classical Monte Carlo val-
uation method using QuantLib. The Monte Carlo valuation method required about
10 minutes to complete its calculations using all 24 cores of an AMD server. On the
other hand, the Deep Learning inference results needed less than 6 milliseconds to
compute on an NVIDIA GTX 1080ti GPU.

The whole process could be broken down into the three key phases:

• Generation of the training set

• Training the DNN

• Final inference step
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The authors generated three training data sets, balancing off the size of the data
set against the number of Monte Carlo scenarios per sample (quality of data). Each
dataset took approximately 1 week to generate using all 24 cores of an AMD server.
The complexity of the training phase is a function of the number of layers, the nodes
per layer, the size of the training set, the size of mini-batch, and the learning rate. The
time needed to train the models introduced in this study was anywhere between three
hours and one week. The time necessary to generate the training data set and to train
the model could be considered as one-off costs. One could compare these phases to
the time spent developing traditional models.

From a practical perspective the inference time, or the time necessary for a trained
model to return a valuation, is the only time one needs to be concerned about. This
time varies with the size of the model:

• For less complex architectures (e.g. 6 layers with 300 nodes per layer) the
authors reported that more than 20,000 valuations could be returned in parallel
in less than 50 microseconds.

• For more complex architectures (e.g. 6 layers with 1400 nodes per layer) 50,000
valuations could be returned in less than 6 milliseconds.

10.3.3 Conclusions and Future Directions

Ferguson and Green (2018) demonstrated that DNNs can be successfully used to
generate highly accurate derivatives valuations for a basket of options. Their models
were able to compute valuations approximately one million times faster than tradi-
tional Monte Carlo models. The authors developed a unique methodology to generate
a training data set. Their main finding was that using small numbers of Monte Carlo
paths in the training set could be very effective because the neural network learns
to “average out the random error component of the Monte Carlo model found in the
training set.”

The authors also suggested the exploration of other important aspects of the valu-
ation problem, such as:

• Scaling the dimensionality of the derivatives pricing model.

• Developing scoring techniques to determine the suitability of the trained model
to input data being applied.

• Using DNNs to approximate both valuation model and model calibration steps.

• Using DNNs to accelerate derivative valuations for XVA.

• Exploring the impact of the mini-batch size. Smaller mini-batches allow GPU
memory to be used for other purposes, such as building larger models.

10.3.4 Other Research Studies

Stark (2017) has recently defended a thesis on the subject of “Machine Learning
and Options Pricing: A Comparison of Black-Scholes and a Deep Neural Network
in Pricing and Hedging DAX 30 Index Options.” This work provides a comparison
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of the pricing and hedging performance of a Deep Neural Network model with
the classical Black-Scholes model. In this study the author applied the DNN
methodology to a data set of daily closing prices of DAX 30 call options for the time
period between 2013 and 2017, for a total of 1,231 days.

The data set used contains a total of 668 different call options with 25 different
strike prices. The total number of observed options prices was very large (>130,000).
The proposed model was a Multilayer Perceptron with four hidden layers, and it was
implemented using the Theano library (widely used in Deep Learning applications).
The sizes of the hidden layers were 100, 80, 60, and 40, respectively, and all neu-
rons in the hidden layers were using the logistic sigmoid as the activation function.
The output layer consisted of one neuron which used the SoftPlus as the activation
function. The optimization algorithm used was stochastic gradient descent with a
mini-batch size of 128. The number of training epochs (i.e. iterations) was 1,000.

The principal conclusion of this study was that a properly trained DNN would
exhibit superior performance in pricing and delta hedging European-style call
options than the classical Black-Scholes model. The pricing performance was
measured as both mean error and root mean squared error, and the delta hedging
performance was measured as the total value of the dynamic delta hedging portfolio
at the expiration of the option contract. The author presented a detailed analysis
of the pricing performance at different moneyness levels and maturity times.
The results revealed that Black-Scholes outperforms the neural network model in
pricing short-maturity options at all moneyness levels. But for medium- and long-
dated options, the pricing performance of the neural network is far superior to BS
especially for out-of-the money options, and this result is consistent with previous
reports from the literature.

In another recently published study by Culkin and Das (2007), a fully connected
feedforward DNN was used to reproduce the Black and Scholes option pricing for-
mula to a high degree of accuracy. The authors investigated the applicability of DNN
to option valuation problems and tried to revisit the original problem that Hutchinson
and collaborators examined in their seminal 1994 paper (Hutchinson, Lo, and Poggio
1994). They suggested the use of a much larger neural network than the one used by
Hutchinson more than two decades ago.

The advantage of using neural networks with many layers is the ability to capture
subtle nonlinearities in the data that were not possible with more or less linear statis-
tical approaches. Although this fact was known in 1994, the adequate compute tech-
nology was not available at that time. Nowadays progress in hardware acceleration
has rendered this problem computable, so that training a DNN on high-performance
CPUs, GPUs, and other specialized hardware is absolutely feasible. These DNNs cur-
rently provide remarkable performance on tasks such as language translation, image
recognition, self-driving cars, etc.

The authors have reported on the details of the DNN architecture they have used:

• The input space had 6 parameters.
• Four hidden layers of 100 neurons each were used. The neurons at each layer

were chosen based on different activation functions that are LeakyReLU, ELU,
ReLU, and ELU respectively.
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• The final output layer consisted of a single output neuron which we set to be
the standard exponential function (the output to be non-negative).

In order to counter overfitting, a dropout rate of 25% was used for each hidden
layer. The loss function used for optimization was the Mean-Squared error (MSE)
and a batch size of 64 was used with 10 epochs. The entire exercise resulted in fitting
a total of more than 31,000 weights for the DNN model. The model was trained using
Google’s TensorFlow package. An RMS error of 0.0112 for the in-sample results
has been reported (all the strike prices were normalized to $1). The average percent-
age pricing error (error divided by option price) was 0.0420, or about 4%. For the
out-of-sample results both the RMS error and the average percentage pricing error
were very similar to the results obtained from training. Therefore no overfitting was
evidenced. Another observation was that moneyness was not correlated with the pric-
ing error. Their results showed that simple DNN architectures could learn to price
options very accurately and efficiently.

10.4 USING RL FOR VALUATION OF DERIVATIVES

This section will illustrate the use of Reinforcement Learning in solving the deriva-
tives valuation problem in a data-driven, model-free fashion. Two research papers
will be discussed.

10.4.1 Using a Simple Markov Decision Process

Grassl (2010) published a paper where he has formulated a novel solution for finding
the fair price of a derivative. By using a simple Markov Decision Process (MDP) the
author suggested the equivalence between its optimal value function and the deriva-
tive’s fair price function. This formulation is equivalent to translating the derivatives
pricing problem in terms of a Reinforcement Learning MDP problem by using the
Kernel-Based Reinforcement Learning algorithm. Analytically tractable fair price
models are available for just a small subset of derivatives and are generally based
on rather strict assumptions. The world of practitioners usually turns to numerical
approximation techniques in order to estimate the fair price of a derivative contract.
In a Reinforcement Learning (RL) setting both the state space and the transition prob-
abilities are used in an implicit manner as the learning is based on trajectory samples
from the MDP. The biggest promise of RL is that one could learn a pricing model
directly from market data without making any assumptions that the underlying’s price
follows a specific price process. Hopefully one of the biggest drawbacks of classic
derivatives pricing methods could be therefore overcome.

10.4.1.1 Implementation Methodology
The author showed that the fair price of a specific derivative could be determined by
learning the optimal value function of a simple Markov Decision process. In order
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to generalize this methodology to any derivative, and avoid models that are product
specific, the author defined an enhanced state as the tuple (state, parametrization)
that defines a bijective (one-to-one) relationship between a given derivative and its
parametrization. Trading processes could be represented as finite MDPs. As market
participants need to act only at discrete times (when new information becomes avail-
able), prices and quantities could only change in discrete increments and the action
space in the MDP consists of only two choices, sell and buy. But as the dimensions of
the MDP could grow very rapidly, the problem may quickly become computationally
impractical.

To avoid this possibility the authors made the assumption that trading happens
in a continuous MDP state space. It is generally very difficult to generalize finite
state RL algorithms to the continuous state case. Instead, the use of RL in continuous
state space often attempts to approximate the optimal value function directly from a
given sample of trajectories from the MDP. One such approach is called Kernel-Based
Reinforcement Learning (Ormoneit and Sen 2002). The study by Grassl showed that
finding the approximate value function of an exact, continuous MDP is the equiv-
alent of finding the exact value function of an approximate, finite MDP while still
maintaining the same convergence guarantees. Applying this approach essentially
translates to interpreting the samples of a high-dimensional discrete MDP as sam-
ples from a continuous MDP that could be solved by approximating it with a simpler
discrete MDP.

10.4.1.2 Empirical Results
Grassl (2010) implemented a version of the Kernel-Based Reinforcement Learning
algorithm by using a Euclidian distance metric d and a Gaussian kernel 𝜑. Initial
numerical experiments showed that the function approximation was consistently
overestimating the fair price for out-of-the money options. This observation
translates into the fact that high prices from far away regions of the state space
could be propagated through to regions where the option is nearly worthless. This
problem was due to the choice of the Euclidian distance metric. These initial results
were improved by modifying the distance function d such that its contours were
egg-shaped curves tilted toward smaller values of 𝜎

√
(T-t). This change greatly

improved the quality of the model. Learning was based on data from 1,000 randomly
generated European calls and about 11,000 randomly generated transitions. The
returns of the underlying prices were sampled from a log-normal distribution and the
spot prices of the derivatives were assumed to be equal to the exact Black-Scholes
price. The resulting RMS error of this approximation corresponded to less than
2 cents in absolute $ value, which could be considered a promising result. The
model’s behavior was consistent across successive runs that used different initial-
izations of the random number generator. The work by Grassl showed how the
derivatives pricing problem could be represented by a Markov Decision process for
which RL techniques can readily be applied. The algorithm proposed by Grassl’s
version of Kernel-Based Reinforcement Learning yielded encouraging results on a
simple test problem – pricing a vanilla European call option.
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10.4.2 The Q-Learning Black-Scholes Model (QLBS)

In several recently published papers, Halperin (2017, 2018) reported the use of a
risk-adjusted Markov Decision process that was applied to a discrete-time version
of the classical Black-Scholes-Merton model. In this model the option price was the
optimal Q-function while the optimal hedge was the second argument of this optimal
Q-function. The pricing of the option was done by “learning to dynamically optimize
risk-adjusted returns for an option replicating portfolio” in a similar fashion to the
Markowitz portfolio theory. The remarkable conclusion of this paper is that once the
Q-Learning model is created in a parametric setting, it will able to perform model-free
and learn to price and hedge the option “directly from data generated from a dynamic
replicating portfolio which is rebalanced at discrete time intervals.”

In a risk-averse BSM-like setting, given enough training data the suggested
Q-Learner will always converge to the true BS price and to the hedge ratio of
the option in the continuous time limit Δt → 0. According to Halperin, in spite
of randomly generated hedges at the stage of data generation, the Q-Learner will
always converge because it is an off-policy algorithm. The reason that Q-learning
is an off-policy algorithm is that it estimates the total discounted future reward
(return) for state-action pairs assuming a greedy policy was followed despite the
fact that it’s not following a greedy policy. In other words, it updates its Q-values
using the Q-value of the next state and the next action. By contrast, Sarsa which is
an on-policy algorithm, updates its Q-values using the Q-value of the next state and
the current policy’s action. It estimates the return for state-action pairs assuming the
current policy continues to be followed.

If the conditions were different from a BSM-like world, the Q-Learner would per-
form as well as before, because the Q-Learning is a model-free algorithm. For finite
time steps Δt the Q-Learner is able to efficiently calculate in a model-free fashion
both the optimal hedge and optimal price of the option directly from trading data.
This is a convincing example of the fact that Reinforcement Learning could pro-
vide efficient data-driven and model-free methods for optimal pricing and hedging
of options in a discrete time setting. The suggested Q-Learning model is both sim-
ple and tractable by using just basic Linear Algebra and Monte Carlo simulation for
generating synthetic data.

10.4.2.1 Implementation Methodology
Extending the BSM model to a discrete-time setting was extensively studied and
reported in the literature. Halperin re-formulated some of this research and encoded
it as a risk-adjusted Markov Decision Process (MDP) problem. Within this new for-
mulation, an option seller is modeled as an agent that hedges its risk in the option by
trading in the underlying stock at discrete times. The author calls this model the QLBS
model. This model is based on the Q-Learning method introduced by Watkins. This
algorithm computes both the optimal price and the optimal hedge in a time-discretized
BS model directly from data.

The author derived the Bellman optimality equation for the action-value func-
tion of the QLBS model and then presented its solution using a backward-recursion
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Value Iteration Dynamic Programming (DP) method, which could be used when the
model parameters are known. This procedure generated both the optimal hedge and
optimal option price of the QLBS model that converge to their respective BSM val-
ues in the strict continuous-time limit Δt → 0. An interesting observation made by
Halperin was that the normally labor-intensive policy optimization step for the DP
backward recursion method could be done analytically in the QLBS model, due to
a particularly simple (quadratic) form of a proper objective function arising in this
optimization problem. For situations where the QLBS dynamics is unknown, Rein-
forcement Learning could be used to learn the optimal hedge and price directly from
trading data for a dynamic hedge portfolio. Solving the Bellman optimality equation
could be done without any knowledge of model’s dynamics but relying solely on sam-
ple data. An important note is that the suggested QLBS model could be formulated
either as a continuous-state or a discrete-state model, the latter being a finite-state
approximation for the former. While continuous-state financial models are more rel-
evant to practitioners, the discrete-state models are easier to interpret.

For benchmarking purposes the author generated data by means of MC simula-
tion of stock price history, actions (re-hedges) that implement the risk-minimization
strategies, and all risk-adjusted returns associated with these strategies. The simu-
lated data was then fed into a Q-Learner that was tasked to finding the best hedging
(risk minimization) strategy directly from the data, without requiring any knowledge
about the dynamics or the hedge strategy that generated the data. The simulation
process also included randomization of actions. As an example the author generated
sometimes actions that corresponded to suboptimal hedges. The goal was to task the
Q-Learner with finding the best hedging strategy, specifically using data generated
associated with suboptimal strategies. In a real trading environment a straightforward
application of this process would be to feed both historical market data and a specific
trading strategy to a Q-Learner agent that will be tasked to improve the outcomes of
the strategy. Off-policy algorithms like Q-Learning are very efficient at learning an
optimal policy even when the data used for training was generated in accordance with
a suboptimal policy. The suggested framework is truly general and can be extended
to more complex multi-asset portfolios. The QLBS model represents one of the most
recent contributions to the literature on hedging and pricing in incomplete markets.
Unlike most of the previous models on hedging and pricing, the QLBS provides con-
sistent hedging and pricing (in the same model) at each time step, by using an efficient,
model-free data-driven Q-Learning algorithm.

10.4.2.2 Conclusions
The QLBS model introduced by Halperin (2017, 2018) represents one of the
most recent attempts to model derivatives pricing using Reinforcement Learning.
The author’s goal was to develop a model for derivatives pricing “that would
implement the principle of hedging first and pricing second in a consistent way for
a discrete-time version of the classical Black-Scholes-Merton model.” An optimal
Action-Value Q-function was devised to perform the tasks of hedging and pricing
by learning. Based on this Q-function both hedging option pricing are determined
simultaneously.
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By stepping aside from the academic setting of Δt→0, the QLBS model achieves
model independence through the use of Q-Learning. The author’s original goal was to
develop a BSM-like simulated environment in a simple discrete-time and -space set-
ting that could eventually be used for pedagogical purposes to explain RL algorithms
such as Q-Learning. From this perspective the QLBS model could potentially be used
for benchmarking other RL algorithms (e.g. Policy Gradient methods, Actor-Critic
algorithms, or Deep Reinforcement Learning) in simulated environments.

The QLBS model is in many respects a much simpler mathematical representa-
tion than the continuous-time BSM model, which involves non-elementary functions
such as cumulative normal distributions of composite arguments. The QLBS model
involves only Linear Algebra concepts and finite sums, and both hedge and price are
contained in the same formula as opposed to two different ones in the BSM model.
The famous Black-Scholes formula could be re-created using the QLBS model by
feeding data generated by random strategies into a Deep Neural Network to approxi-
mate the value function for very small-time steps. This approach does not require the
use of any Partial Differential Equations.

Besides its mathematical simplicity QLBS could be used to price and hedge
options directly from data without the need to know anything about the process
dynamics or the nature of the hedge strategy employed. A complex problem such
as the volatility smile that is an important matter in the BSM world is solved
implicitly by QLBS, due to Q-Learning and reliance on data instead of a model.
The term volatility smile is just a label given by market practitioners to a specific
pattern in the option data. Unlike the classical BSM model that is rooted in Ito’s
calculus, the QLBS model is grounded in Dynamic Programming and Reinforcement
Learning and exploits the convergence properties of Q-Learning to establish its own
convergence to the classical BSM model in the academic limit Δt → 0.
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CHAPTER 11

Case Study 6: Using Machine
Learning for Risk Management and
Compliance

“With the advent of big data and the ability to link much more data than we
could have years ago, it should now be possible to know in advance when risks
are emerging.”

– Oliver Maspfuhl, Commerzbank

11.1 INTRODUCTION TO THE PROBLEM

Although the declared objective of this book is to illustrate the applicability of
Computational Intelligence to Data-Driven decision-making in trading, I have used
consistently the label Machine Learning throughout as a proxy term for CI. Machine
Learning represents today the most advanced and the most applicable component
of Computational Intelligence in solving practical problems in Quantitative and
Computational Finance. The great promise of applying Computational Intelligence
techniques to this problem domain is about increasing profits and operational
efficiencies, through automation, innovation, and pattern discovery. At the same
time one should acknowledge the emergence of a series of practical limitations that
could constitute significant barriers to a widespread adoption of CI by the financial
industry. These limitations are related to the availability and quality of data, to an
insufficient understanding of technology risks, as well as to regulatory constraints
and the need to transform the corporate culture.
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11.1.1 Challenges

According to a recent Deloitte study, the biggest challenge for financial firms “is less
about dealing with completely new types of risks and more about existing risks either
being harder to identify in an effective and timely manner or manifesting themselves
in unfamiliar ways” (Bigham et. al. 2018). One of the biggest challenges in adopting
ML technologies is the understanding and the interpretation of relationships between
the data driving the models and the value and the quality of the outcome. ML algo-
rithms continuously learn from new data, and make decisions which are driven by
complex statistical methods, rather than by predefined or clearly interpretable rules.
The use of modern ML techniques could render auditability and traceability very chal-
lenging. At the same time the speed at which the outcomes of models could evolve
may result in large scale, sometimes catastrophic errors. Nevertheless the potential to
deploy Machine Learning technology as a tool to support Risk Management, Com-
pliance, and Supervision could become a real game changer for the financial industry.
The last financial crisis was a manifestation of the failure to forecast, detect, and deal
with important sources of systemic risk. But nowadays the ability of modern ML
technology to detect patterns and anomalies in large data sets has become the tool
of choice to better protect the integrity of the financial system. The rising complex-
ity of the financial markets coupled with an increased technological sophistication
of trading and processing activities has driven the interest of market practitioners to
apply the most current ML-based technologies to fundamental business problems.
The most important drivers are boosting profits, coping with new regulations, cutting
costs, and improving operational efficiencies.

Nevertheless, applying the paradigm of Machine Learning in Risk Management
remains a work in progress and a considerable business challenge. “Risk manage-
ment will profit greatly from the opportunity to use more data sources than in the
past, because the complex dependencies between events have always been notori-
ously difficult to quantify. But with the advent of big data and the ability to link much
more data than we could have years ago, it should now be possible to know in advance
when risks are emerging from high dependencies in the system and then mitigate such
risks,” said Oliver Maspfuhl, from the Credit risk and Capital management group
at Commerzbank (O’Hara and Clark 2017). Some of the most promising applica-
tions of Machine Learning are related to cybersecurity and market surveillance, which
are two topics of particular interest to market practitioners and regulators. The need
to protect from cyber-intrusion and to monitor internal staff activity has increased
dramatically during the last decade. Both domains require a real-time monitoring
of extremely large volumes of data, and this process could benefit from the use of
ML technology. The application of ML to financial data offers a multitude of possi-
ble use cases: from alpha-seeking through order-book data mining, to cybersecurity
and market surveillance. Nevertheless the technical infrastructure required by ML
remains a major barrier of entry for a large segment of the financial industry, specif-
ically because this new technology requires a sophisticated data infrastructure and
considerable computing power that is still not widely available today to the majority
of financial firms.
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The technology infrastructure required for the usage of Machine Learning tech-
niques could be classified into two main categories:

• Data storage and retrieval – it generally demands very large volumes of disk
space for data storage.

• Compute power – that is required to train ML systems on large amounts of data
and in reasonable amounts of time.

One of the most critical aspects that financial firms are considering when apply-
ing Machine Learning methods to their Risk Management and Compliance needs, is
whether they could afford to hold all of the necessary data within their own infrastruc-
ture or alternatively to use commercial-grade cloud-based infrastructure. Despite the
proliferation of cloud-based services, most financial firms are still reluctant about
storing sensitive client and transactional information outside their premises. This
reluctance could become a major impediment in the effective adoption of ML, as in
some cases it would be practically impossible to store all of the data needed internally
without outsourcing it to a third-party cloud provider. Reservations about cloud-based
data storage are not strictly related to just data security but also to data accessibil-
ity when needed. Financial firms cannot afford to give up control over their data if
they choose to store it in the cloud. As the data requirements for more advanced ML
algorithms, such as Deep Learning, are becoming more demanding, financial firms
may soon be forced to commit all their data storage and computer infrastructure to
external vendors, incurring significant capital investments, and generating potential
accessibility and security implications.

11.1.2 The Problem

How to understand and control financial risk through the use of ML-driven solutions?
This formulation covers a wide spectrum of problems, from deciding how much a
bank should lend to a customer (credit risk), to providing warning signals to traders
about market risk, and from detecting customer and insider fraud (operational risk),
to improving compliance and reducing model risk (regulatory compliance risk). This
chapter will present a series of case studies related to the applicability of ML to finan-
cial risk management by category of risk: credit risk, market risk, operational risk,
and regulatory risk.

11.2 CURRENT STATE-OF-THE-ART FOR APPLICATIONS OF ML
TO RISK MANAGEMENT AND COMPLIANCE

11.2.1 Credit Risk

Credit risk is defined as the exposure to a potential loss that could arise from the fail-
ure of a counterparty to fulfill its contractual obligations or from an increased risk of
default during the term of the transaction. Financial firms have traditionally employed
classical linear or logistic regression techniques to model credit risk (Altman and
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Edward 1968). The practice of credit risk demonstrated that traditional statistical
methods do not provide a rigorous approach to model this type of risk. The advent of
modern ML methods raised the hope that credit risk management capabilities could
be significantly improved through leveraging the ability of the algorithms to gain a
semantic understanding of unstructured data. The use of ML to model credit risk dates
back to 1994 when Altman and collaborators performed the first comparative analy-
sis between traditional statistical methods of distress and bankruptcy prediction and
a Neural Network algorithm. Their conclusion was that a combined approach of the
two methods could significantly improve the accuracy of credit risk models (Altman,
Marco, and Varetto 1994).

The globalization and technological sophistication of modern financial markets
increased the complexity of assessing credit risk, and these conditions opened the
door for the applicability of Machine Learning in this field (Addo, Guegan, and Has-
sani 2018; Luo, Wu, and Wu 2017; Son et al. 2016; Khandani, Kim, and Lo 2010;
Kruppa et al. 2013; Khashman 2010). A typical example is represented by the Credit
Default Swaps (CDS) market. Modeling the CDS market comes down to determining
the likelihood of a default credit event, as well as estimating the cost of that default
in case it happens. This is a very complex problem to model from both a quantitative
and computational perspective.

Luo and collaborators (2017) investigated the performance of credit scoring
models applied to CDS data sets. The authors evaluated the performance of Deep
Belief Networks (DBN) with Restricted Boltzmann Machines and compared it
with more popular credit scoring models such as Logistic Regression, Multilayer
Perceptron, and Support Vector Machine. They found that the use of DBN yields the
best performance. Son and collaborators (2016) used CDS of different maturities
and different rating groups to show that Deep Learning models could outperform
traditional benchmark models in terms of prediction accuracy.

Other areas of credit risk, such as consumer or small business lending, have to
deal with large volumes of data, and there is an increasingly reliance on Machine
Learning algorithms to drive better lending decisions. Khandani and collaborators
(2010) proposed a technique based on decision trees and SVM that could lead to cost
savings of up to 25 percent. Another study by Figini, Bonelli, and Giovannini (2017)
showed that a multivariate outlier detection technique using ML could improve credit
risk estimation for small businesses lending using data from UniCredit Bank.

11.2.2 Market Risk

Market risk is generated in the process of trading and investing, and it is related
to the exposure to financial markets dynamics. A report by Kumar (2018) provides
an overview for the use of Machine Learning methods in market risk management.
Another report by the Financial Stability Board (2017) titled “Artificial Intelligence
and Machine Learning in Financial Services” provides a comprehensive overview of
current applications of Machine Learning to Market risk management.

Transacting in the financial markets may also involve the risk that the trading
model may be incomplete, obsolete, or just plain wrong. The market risk component
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is becoming prevalent in today’s markets and is generally known as model risk.
From this perspective ML is particularly well suited to stress test market models in
order to determine unintended or emerging risk in trading behavior. Woodall (2017)
published a study where he described a variety of use cases of ML for model valida-
tion. He noted that many trading forms and banks are currently using ML techniques
to monitor trading within the firm and to ensure that unsuitable assets are not being
used in trading models. A technology firm called yields.io provides real-time model
monitoring, model testing, and validation using ML techniques.

Another area of interest from a market risk perspective is the understanding of
the impact that trading in large volumes may have on market pricing. The entirety of
Chapter 6 was dedicated to the study of the problem of Market Impact or the Opti-
mized Trade Execution problem. Day (2017) explored how large trading firms are
using ML clustering techniques to optimize the costs of execution in illiquid mar-
kets. According to this study, up to two thirds of trade profits could be lost due to
market impact costs. Two ML techniques are of particular interest: cluster analysis
(Cavalcante et al. 2916) and Deep Learning (Heaton, Polson, and Witte 2017).

The family of Reinforcement Learning methods gained a lot of traction recently.
The use of RL endows trading algorithms with the ability to learn from market reac-
tions to their actions and thus to adjust future trading decisions to account for how
their behavior may impact market prices (Hendricks and Wilcox 2014). Chandrinos
proposed a combination of neural networks and decision tree techniques to provide
real-time warnings to traders about changes in underlying trading patterns while trad-
ing (Chandrinos, Sakkas, and Lagaros 2018). The use of Support Vector Machines
techniques was also reported (Olson and Wu 2015) for scenarios that could provide
traders with warning signals.

11.2.3 Operational Risk

Operational risk management involves the evaluation of exposure to direct or indirect
financial loss emerging from a potential host of operational failures (Moosa 2007).

This category of financial risk could arise from either:

• Failures that are internal to financial institutions, like deficient internal pro-
cesses, incompetent staff, operational errors, or faulty systems, or

• External factors such as fraud, system security vulnerability, or natural disasters.

Given the increased amount, variety, and complexity of operational risk exposure,
Machine Learning has become the preferred methodology to build enterprise
solutions to mitigate operational risk (Choi, Chan, and Yue 2017). From a risk
management process perspective, ML-based solutions could identify risk exposure
by estimating its potential effects (Sanford and Moosa 2015). They could also
suggest the appropriate risk mitigation strategy or the instruments that could hedge
this risk.

Historically the application of ML techniques in operational risk management
started more than a decade ago with the development of algorithms for preventing
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financial losses due to credit card frauds. Nowadays the use of ML has expanded
to new areas such as money laundering detection, which is a very complex process
that requires the analysis of large datasets. The use of ML algorithm offers the abil-
ity to implement better process automation and thus to accelerate the pace of routine
tasks, to minimize human and process errors, to parse unstructured data to detect rele-
vant content, or to map out complex networks of individuals in order to evaluate risky
clients. Network analysis techniques could be used to monitor employees and traders.
Classical ML methods, such as clustering and classification, could be employed to
generate behavioral profiles for traders, based on a combination of trading data, elec-
tronic, and voice communications records. All of these data enable financial firms to
observe developing patterns of behavior that could eventually facilitate the prediction
of latent risks.

11.2.4 Regulatory Compliance Risk and RegTech

One of the most critical consequences of the financial crisis of 2008 was a significant
surge in regulatory burden. As a consequence of this post-crisis environment, being in
compliance with risk management regulations has become one of the most vital obli-
gations for financial firms. Regulatory compliance has a direct impact on each of the
risk functions mentioned above, that is on credit, market, and operational risk. This
regulatory load has affected substantially the profitability for financial institutions
across the board.

In order to be able to handle these rapidly changing regulations, many firms have
turned to RegTech (Arner, Barberis, and Buckley 2016) or regulatory technology,
to help mitigate those problems. Prior to the advent of RegTech, regulatory com-
pliance was a heavily manual process, requiring the compliance staff to review alerts
related to suspicious activity or anomalies. The compliance personnel was specifically
looking for emerging suspicious patterns by applying their expertise and experience
to make small, incremental adjustments with the goal to improve the efficiency of the
process while staying within the risk tolerance threshold imposed by their firms. This
manual approach exhibits multiple shortcomings:

• The rules employed during the process were rather arbitrary and very dependent
on staff’s expertise and experience.

• It was a very slow changing process involving only incremental changes to rules
that were typically spaced months to years apart.

• The process relied mostly on internal expertise and personnel experience and
less on technology and automation.

This tediously manual approach often resulted in a significant volume of false
positives, which required a nontrivial level of investigation afterwards. The last
decade has seen a lot of interest from financial firms to start implementing new
RegTech-based solutions. Probably the most prominent category of solutions in the
RegTech space is represented by ML supervised algorithms. The use of labeled data
on prior alerted activity has made possible the fine-tuning of rules and had the net
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effect of reducing the number of false positives. Instead of relying on cumbersome
periodic reviews, this new methodology created the possibility for supervised
ML algorithms to compare current rules and investigatory results and recommend
the necessary changes. In the process, financial firms have gained the necessary
confidence in this new methodology and the efficiency of refining the rules has
increased accordingly. For the financial firms that are operating at the cutting edge
of RegTech, employing unsupervised ML algorithms offers even a more promising
alternative. The big advantage offered by unsupervised ML algorithms is represented
by the lack of bias due to existing rules. ML algorithms are the most effective tools
known for identifying new patterns and typologies. As an example, an unsupervised
algorithm may identify a subset of transactions that exhibit unusual inconsistencies
(like frequencies and amounts), even if no pre-existing rule would have alerted this
activity.

It should be noted, however, that ML-based risk solutions are not yet fully mature
and their adoption by the financial industry is still a work in progress. To reach their
full potential, further research, testing, and technological progress is still required.
It is also important to note that RegTech is not intended to fully replace all human
involvement in the risk and compliance life cycle. RegTech is an ideal tool set
for automation through the reduction and eventually the elimination of low-level,
repeatable, manual processes. One of the most significant hurdles in the adoption of
RegTech is the shortage of a sufficiently skilled workforce. Financial firms are in
need of individuals capable of showing a strong understanding from both a technical
and risk and compliance viewpoint.

11.2.5 Current Challenges and Future Directions

There are some significant practical challenges that need to be addressed before
Machine Learning techniques could be applied on a large scale to risk management.
Probably the most important challenge is represented by the availability of suitable
data. Data is generally held in separate silos across departments and systems that
face regulatory issues restricting their sharing. Another important issue is the
availability of skilled staff to implement these new techniques. Last but not least
there are important concerns about the accuracy and interpretability of ML solutions.
Financial firms cannot simply deploy off-the-shelf risk management solutions, but
they need to create a process requiring a constant evaluation of whether a particular
ML solution is considered best practice.

When it comes to full automation of risk processes, from data gathering to
decision-making, the need for human oversight becomes even more prevalent.
The case of Knight Capital from 2012 serves to illustrate this type of risk (Gandel
2012). The use of a state-of-the-art automated stock trading set of algorithms
resulting in a loss of $440 million in the space of just 45 minutes should be a stark
reminder of how important it is to understand and control model risk.

Automating lending and credit risk decisions will require the assurance that such
operational risks could be controlled at all times. Transparency is a particularly com-
plex issue for some of the more modern ML techniques like the increasingly popular
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method of Deep Learning. A black box system of this type could not easily be sub-
ject to an effective risk oversight and can cause regulatory compliance issues espe-
cially around demonstrating model validity. Nevertheless there is a wide consen-
sus across the financial industry that the time-consuming and costly nature of risk
management could be alleviated significantly in the future by the adoption of ML
techniques.

11.3 MACHINE LEARNING IN CREDIT RISK MODELING

The advent of modern ML-driven technology has compelled large banks and
lending institutions to revamp their business models. As such the monitoring of
credit risk and the reliability of its predictive abilities have become key factors in
the decision-making process. An impressive amount of research and development
resources has been dedicated to credit risk lately.

Addo and collaborators (2018) published a study about the stability of binary
classifiers by comparing the performance of tree-based models with multilayer deep
neural networks. The authors investigated six different ML approaches: a random for-
est model, a gradient boosting machine, and four deep learning models using credit
data from a European bank.

Random forests is a ML methodology introduced by Leo Breiman (1997, 2000,
2004) with the goal of building a predictor ensemble from a set of decision trees
that grows in randomly selected subspaces of data. A random forest is a classifier
consisting of a collection of tree-structured classifiers that are parameterized by a
set of iid random variables used to determine how the successive cuts are performed
when building the individual trees. The accuracy of a random forest method depends
on the quality of the individual tree classifiers and the dependency between them.

Gradient boosting is an ML technique applied to both Regression and Classifica-
tion problems. The outcome is a prediction model that takes the form of an ensem-
ble of weak prediction models, usually decision trees. The model is constructed in
a stage-wise fashion using the idea of gradient boosting introduced by Breiman.
According to the original paper, boosting could be interpreted as an optimization
algorithm on a suitable cost function.

Deep Neural Networks are a family of Neural Networks that are represented by a
significant number of hidden layers. The term Deep Learning was actually coined in
2006, when unsupervised pre-training of deep learning was made manifest through
gradient enhancements and automatic learning rate adjustments while performing
stochastic gradient descent optimization. As mentioned in previous chapters, Deep
Learning architectures could be of different classes:

• Convolutional Neural Networks are standard deep NNs that could be extended
across space using shared weights.

• Recurrent Neural Networks are NNs that could be extended across time. The
network edges feed into the next time step instead of into the next layer in the
same time step.
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• Recursive Neural Networks are hierarchical networks where inputs have to be
processed hierarchically as in a tree (there is no time dimension to the input
sequence).

These architectures are mainly using Stochastic Gradient Descent for backpropa-
gation, Regularization for coping with too much variance, and dimensionality reduc-
tion (max pooling). In addition to different metrics like the F-score, Recall, and
Precision, the authors used several performance measures to compare the perfor-
mance of the models including AUC, RMSE, Akaike information criterion (AIC),
and the Gini index. Introduced by Gastwirth (1972) and extended by Yitzhaki (1983)
the Gini index makes it possible to compare the performance of several algorithms.
The idea was based on the decision tree methodology and the entropy measure.

11.3.1 Data

Addo and co-authors (2018) used for their analysis a data set containing more than
117,000 records, each one labeling a default binary flag (Y/N) for companies applying
for bank loans. Out of this number of data records more than 115,000 records rep-
resented companies in good financial health and 1,700 were companies in default (a
quite imbalanced data set). The financial health of a company was modeled using
a large set of features (235) such as financial statements, balance sheets, income
statements, and cash flow statements. After cleaning the data the authors decided
to keep 181 features. Then the data was partitioned into three subsets: 60% for train-
ing, 20% for cross-validation, and 20% for testing. The training data set was also
used to verify how balanced the data were. By using a special data-preparation algo-
rithm, SMOTE (Chawla et al. 2002), a new balanced data set was produced (46% to
53% ratio).

11.3.2 Models

The models employed in the study were ranked with respect to the companies’ credit-
worthiness, by using the ROC curve and the AUC and RMSE criteria. The analy-
sis started with a 181 feature-set and then the first 10 more relevant features were
selected for each model. The models were calibrated using the balanced training
dataset described above. The following classes of models were considered:

• A Logistic Regression model M1 that was using an Elastic Net for regularization
(𝛼=0.5).

• A Random Forest model M2 that was using 120 trees and a stopping criterion
of 10–3 (if the process converged quicker than expected, the algorithm stopped
and used a smaller number of trees).

• A Gradient Boosting model M3 employing the logistic binomial log-likelihood
function L(y, f) = log(1 + exp(−2yf)), 120 trees for classification, a learning
rate of 0.3, and a stopping criterion of 10–3;
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• Four different versions of Deep Learning architectures:

D1: having 2 hidden layers and 120 neurons. This number of neurons represents
about 2/3 of the number of the initial features and corresponds also to the
number of trees used by the random forest model.

D2: employing 3 hidden layers each composed of 40 neurons, and a stopping
criterion of 10–3.

D3: using 3 hidden layers each composed of 120 neurons, a stopping criterion
of 10–3, and type-1 and type-2 regularization functions.

D4: Given the importance of hyper-parameter tuning for deep learning mod-
els, a grid of hyper-parameters has been specified to select the best model.
The hyper-parameters included the dropout ratio, the activation functions,
the type-1 and type-2 regularization functions, and the number of hidden lay-
ers. Early stopping criteria and regularization penalties were utilized to avoid
overfitting, reduce the variance of the prediction error, and handle correlated
predictors.

11.3.3 Results

By using the full set of 181 features, the seven models (M1-M2-M3 and D1-D2-
D3-D4) were applied and the ROC curves constructed. The AUC and the RMSE per-
formance metrics were computed for each model. The results obtained for the valida-
tion data set showed that the Random Forest (M2) and Gradient Boosting (M3) mod-
els had the best performance (AUC ∼0 .99) while the more complex Deep Learning
models (AUC 0.80-0.90)) were trailing in the ranking. Similar results were obtained
for the test data set. Note that the model D3-DL with regularization was the closest
performer with an AUC ∼0.97.

Although all 7 models used the whole set of 181 features for training, the 10 most
important features were different for each of the models employed. Note that 57
different features out of the whole set of 181 comprised the subset of the 10 most
important features.

As such:

• The Logistic Regression (M1) model selected more global and aggregated finan-
cial variables like balance sheets, assets, and liabilities.

• The tree-based algorithms, Random Forest (M2), and Gradient Boosting (M3)
models selected the more detailed financial variables like financial statements,
equities, and debt.

• The Deep Learning models (D1–D4) showed a preference for more granular
financial variables, usually the ones that provide more detailed information on
the customer.

In summary, the tree-based algorithms (M2 and M3) outperformed the more com-
plex Deep Learning (D1–D4) models for both the validation and test datasets using
all 181 features. The tree-based models M2 and M3 were proven to be not just the
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best in terms of accuracy, but also the most stable binary classifiers as they properly
create split directions, thus keeping only the efficient information. From a practi-
cal operational perspective, the set of the top 10 variables selected by model M3
could constitute the fundamental rule set for deciding whether to approve a loan
or not.

The work published by Addo and collaborators (2018) was an important con-
tribution to the study of applying modern Machine Learning techniques to credit
risk modeling. The authors demonstrated the importance of the data preparation and
cleaning process by filtering out redundant variables (54 out of 235) and by using
the SMOTE algorithm, (Chawla et al. 2002) to balance the training dataset in order
to avoid bias in respect to the majority class.

11.4 USING DEEP LEARNING FOR CREDIT SCORING

Corporate credit scoring has become a central topic in credit risk management
especially after the last financial crisis. Luo and co-authors (2017) investigated
the applicability of ML techniques to modeling credit scoring on CDS data sets.
The authors studied the classification performance of Deep Belief Networks with
Restricted Boltzmann Machines, and they compared it with other popular credit
scoring models such as Logistic Regression, Multilayer Perceptron, and Support
Vector Machines.

11.4.1 Introduction

A CDS contract is a derivative that protects the buyer against credit events with
respect to a corporation or sovereign entity. These credit events could take the form of
bankruptcy, the failure to pay or a credit rating downgrade. CDS were created in 1994
and their use drastically increased in the early 2000s. By the beginning of the 2008
financial crisis, the outstanding CDSs on the market were valued at more than $62
trillion. The CDS contracts are traded in the over-the-counter market between large
financial institutions. The buyer of the contract makes periodic payments to the seller
and the seller of protection pays compensation to the buyer if a credit event occurs
and the contract is terminated. The CDS spread is defined as the annual premium paid
to ensure this protection.

During the US subprime mortgage crisis and the European sovereign debt crisis
many well-established financial institutions experienced catastrophic losses. These
events raised serious concerns regarding the use of Credit Default Swaps (CDS).
As a result, credit risk management started attracting significant attention from both
academic researchers and market practitioners. Developing accurate credit scoring
models became a major focus for financial institutions in their quest to effectively
manage credit risk exposures and optimize profits. A large variety of different sta-
tistical and ML techniques were developed to build more trustworthy credit-rating
models.
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The last few decades have seen the rise of many statistical methods applied to
credit risk assessment. These statistical models are still in widespread use by credit
risk professionals, but they struggle to model effectively modern-day credit risk
specifically because of the linearity of their statistical assumptions. Recent academic
studies (Saberi et al. 2013) showed that ML techniques yield superior results when
it comes to dealing with credit scoring problems.

One of the most frequently used statistical models for credit scoring is Logistic
Regression. But other architectures such as Support Vector Machines (SVMs) and
Multilayer Perceptron (MLPs) have been widely applied to credit scoring as well.
These shallow architectures proved their effectiveness in solving many simple use
cases. These methods are focused solely on the output of classifiers while neglecting
other aspects that could carry a lot of actionable information. Because of their lim-
ited abilities to represent complex real-world situations, these models have become
obsolete.

A new generation of Deep Neural Networks has been developed to tackle some of
these drawbacks. One particular family of DNNs, the Deep Belief Networks (DBN)
emerged (Hinton, Osindero, and Teh 2006) as a powerful ensemble technique to cap-
ture some of the rich information contained in highly dimensional data. As previously
mentioned, Deep Neural Networks have been successfully applied to a variety of
classification task: from Computer vision to Healthcare, or from voice translation to
Natural Language Processing. One of the questions that Luo and co-authors (2017)
tried to address is whether Deep architectures could hold any theoretical advantage
compared to shallow architectures in problems related to credit risk assessment. The
results of their study represent one of the first comprehensive reports about the use of
DBN models in corporate credit rating. The authors investigated the performance
of different credit scoring models by conducting experiments on a CDS data set
containing information about 661 companies, using 11 features and generating 3 clas-
sification categories.

Eleven features were selected for training models: the 6-month, 1-year, 2-year,
3-year, 4-year, 5-year, 7-year, and the 10-year spreads, the recovery rate, the sector,
and the region. The classifier could generate three rating categories: A, B, and C. The
authors considered the outputs of the more classical ML techniques as baselines (i.e.
Logistic Regression, Multilayer Perceptron, and SVM) and they compared them with
the results generated by a DBN using Restricted Boltzmann Machines after applying a
10-fold cross-validation. Their findings showed that the DBN algorithm significantly
outperforms the baselines.

11.4.2 Deep Belief Networks and Restricted Boltzmann Machines

Luo’s study (Luo, Wu, and Wu 2017) considered a novel architecture, composed
of a Deep Belief Network (DBN), which was introduced in 2006 by Hinton and
collaborators (Hinton, Osindero, and Teh 2006). DBN is a multilayer generative
graphical model obtained by training and stacking several layers of Restricted
Boltzmann Machines (RBM) in a greedy manner (Salakhutdinov, Mnih, and Hinton
2007). An RBM is a bipartite undirected graph that is composed of two layers
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FIGURE 11.1 Restricted Boltzmann Machine concept.

of variable size. The underlying assumption for RBMs is that the hidden units are
conditionally independent, conditional on the visible units and vice versa. The
visible layer units are connected to the ones from the hidden layer but there are not
any possible connections between units in the same layers (i.e. hidden-hidden, or
visible-visible, see Figure 11.1).

A DBN is composed as a stack of RBMs where each layer is represented by a
Restricted Boltzmann Machine. The hidden layer of the first RBM is considered as a
visible layer for the second RBM, and so forth. The second RBM layer will learn the
feature distribution of the hidden layer of the first RBM. The input layer of the first
RBM is playing the role of the input layer for the whole DBN. As layers are stacked
on top of each other (see Figure 11.2), the DBN starts learning increasingly complex
combinations of features from the original data.

11.4.2.1 Data
The CDS data set consisted of 661 publicly traded companies from eight separate
geographical regions including North American, Asia, Europe, and from 10 different
sectors: Industrials, Consumer Services, Technology, Utilities, Telecommunications
Services, Healthcare, Financials, Energy, Basic Materials, and Consumer Goods.

Visible

Hidden

Hidden

Hidden

RBM

RBM

FIGURE 11.2 Deep belief network architecture.
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These 661 companies were arranged into three aggregated rating categories: A =
{A, AA, AAA}, B = {B, BB, BBB}, and C = {CCC}. The data set details 11
explanatory attributes for every company. Nine of these features were numerical
attributes (i.e. the recovery rate and the eight different tenure spreads) and two were
categorical attributes (sector and region). All categorical features were converted
into numeric ones. By using the one-attribute-per-value approach, an attribute with k
values is transformed into k binary attributes. Then all the numerical attributes were
normalized.

11.4.3 Empirical Results

Four different algorithms were used: Multinomial Logistic Regression (MLR),
Multilayer Perceptron (MLP), Support Vector Machines (SVM), and Deep Belief
Networks (DBN) with Restricted Boltzmann Machines. Both a Confusion matrix
and ROC methodologies were used to estimate the accuracy of these four models.
To improve the reliability of the estimates, a 10-fold cross validation was employed
to randomly partition the data set. In a 10-fold cross-validation process, the training
set is divided into 10 subsets of equal size, and each of the 10 subsets is then tested
using the classifier trained on the remaining 9 subsets. A clear advantage of using
cross-validation is that the credit-scoring model is developed with a large proportion
of the available data (90%). In addition, all of the data is used to train the models.

The Accuracy metric as the percentage of correctly classified instances provides a
quantitative measure for the ability to make accurate predictions on previously unseen
cases. The accuracy rate obtained for the DBN model with Restricted Boltzmann
Machines was the highest of all 4 models, followed by the Multilayer Perceptron
and the SVM (Luo, Wu, and Wu 2017). The False Positive metric is defined as the
proportion of the companies that are rated higher by the model than in reality. The
False Negative rate is the proportion of the companies that are rated lower than their
actual rating. From all models used in this study the Multinomial Logistic Regression
model had the largest false positive rate as well as the lowest accuracy. The study by
Luo and collaborators brought to light a fresh new perspective on the applicability
of Deep Belief Networks to the credit scoring problem. The reported results clearly
indicate that DBN with Restricted Boltzmann Machines outperforms the other more
classical ML algorithms.

11.5 USING ML IN OPERATIONAL RISK AND MARKET
SURVEILLANCE

11.5.1 Introduction

One of the most critical requirements for operating healthy and trustworthy capital
markets is to ensure the confidence of the investors in the markets themselves, as well
as in their participants: exchanges, trading venues, broker/dealers, regulators, and
ultimately in their operators (traders). Surveillance of trading activities and prevention
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of market manipulation is a very challenging and expensive process. Market abuse has
become a growing concern for financial institutions during the last decade. A number
of high-profile events such as the LIBOR and Foreign Exchange trading scandals and
the manipulation of ISDAFIX by Deutsche bank in 2018 resulted in substantial fines
(in the billions of dollars), pushing trader surveillance up the agenda.

Market operators are positioned in a quite conflicting role:

• On one hand they are the operators of the engine that generates liquidity and
therefore renders markets viable.

• On the other hand they are driven by the desire to create value for themselves
or for the financial firms they represent.

The line between good behavior and abuse could sometimes be blurred because
of this duality of roles. The surveillance process presents many challenges, the most
important ones being the extraction of actionable signals from the noise of the markets
and producing the evidence of intent and market abuse. This process is driven by
a variety of data, which is traditionally not well-integrated with trade monitoring
systems. The amount of data that needs to be assessed when monitoring the markets
is far larger than it was a decade ago.

Investigating abnormal trading activity requires a more complex analysis and sig-
nificantly more time from financial firms, exchanges, and regulators, in their constant
struggle to identify anomalies and separate true from false positives. Technology has
become a major player in the field and its mission is to support investor confidence by
providing tools to all market participants to quickly and effectively identify market
abuse or operational errors. The need for surveillance tools that increase the quality
and efficiency of the workflow has never been greater.

Technology firms have started to develop turnkey market surveillance solutions
for exchanges, market participants, and regulators. Their offerings seek to apply mod-
ern technology to create a seamless route from early detection of market abuse to
presentable evidence. To meet the demands of the modern trading industry and the
ever-changing regulatory landscape, these technology solutions are not only monitor-
ing for traditional market abuse scenarios like Spoofing, Layering, or Insider Trading,
but also for abusive patterns in high-frequency trading and best execution compliance.

The surveillance process is consisting of:

• Monitoring a variety of data sources and generating alerts based on a set of
predetermined abuse types.

• Building scenarios for possible investigations.

• Taking actions, either by escalating or reconciling.

• Documenting, reporting, and archiving all this information.

This surveillance process involves an incredibly large amount of data. So it is
extremely important for surveillance teams to be able to prioritize their work and
filter out market activity that needs immediate attention such as fat finger errors or
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leaks of inside information. The possibility of automating this process by extracting
specific market activity could provide these teams with the opportunity to react faster
to trading incidents and to identify abusive patterns in a more precise manner.

There are several important challenges related to the quality of the surveillance
process:

• Relatively high rate of false positives

• Issues with data quality and coverage

• Regulatory compliance requirements

• Operation costs and personnel

The most challenging aspect by far is the availability and the quality of data. When
the market surveillance process relies on rule engines and statistical analysis, it usu-
ally requires very high-quality data. These data need to be captured in a consistent
format, especially when extracted from multiple sources. Mapping all data across the
firm is a complex but necessary undertaking for a holistic and reliable surveillance
process.

11.5.2 An ML Approach to Market Surveillance

In order to increase the accuracy of the surveillance process, better analytical tools are
required to generate fewer, but higher quality alerts. Solution vendors addressed some
of these requirements and proposed the use of Machine Learning algorithms to detect
anomalies in a more accurate manner and match them against normal trader behavior.
Supervised ML was used to improve existing reactive systems in order to provide
better alerts. According to some industry reports (Chartis Research 2017), the use
of Machine Learning and unstructured data analysis has reduced market surveillance
false positives by as much as 50%, generating Returns on Investment (ROIs) of more
than 60%.

In 2018 NASDAQ announced that Hong Kong Exchanges and Clearing Limited
(HKEX) was their first customer to successfully deploy their so-called SMARTS
Market Surveillance solution. By implementing ML technology, SMARTS analyzes
unusual trading activities and suggests categorization to surveillance analysts. The
aim of the SMARTS suite of algorithms is to predict which actions analysts are likely
to take based upon their handling of historical activity as well as discovering new
relationships within the data.

The Tokyo Stock Exchange also chose to apply ML-based solutions to market
surveillance operations for monitoring and preventing unfair trading. As such a broad
range of suspicious orders could be first identified by the surveillance systems and
then surveillance personnel could conduct preliminary investigations to analyze the
trading situation surrounding such orders. The deployment of ML-based technology
enabled surveillance personnel with the ability to complete preliminary investigations
in a timely manner and focus their efforts on the detailed investigations.

Trading Technologies (TT) is one of the best known and most valued trading plat-
forms employed by futures and options traders. TT has adopted Machine Learning as
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the main approach to implement market surveillance tools. By collecting a variety of
trading data from numerous sources, especially from regulatory cases, TT used these
to train a suite of ML models – called TT Score to identify patterns of disruptive or
manipulative trading behavior.

TT Score’s clustering algorithm slices trading activity data into clusters based on
time, trader ID, traded instrument, and the time proximity of other order actions.
As each cluster represents a time slice of trading activity, the ML algorithm classi-
fies this activity in a specific category that is representative of the trader’s actions
for that time period. These trading activity clusters may be thought of as packets
of intent since each cluster contains a group of order actions (order placing, mod-
ifying, or canceling) that could be very likely related, given the time proximity of
these events.

This clustering approach may offer a better view to investigators since the full con-
text of the potentially abusive behavior is captured, analyzed, and visualized. Each
ML model targets a specific category of disruptive or manipulative trading activity.
Their Spoofing Similarity model focuses on simple spoofing behavior as well as on
layering, collapsing of layers, flipping, and vacuuming. Other TT models target other
types of abusive behavior, like momentum ignition, pinging, wash trading, or exces-
sive canceling of orders.

Traditional parameter-based surveillance tools could generate massive amounts of
alerts where only a small fraction might be considered true positives. TT surveillance
software introduced the concept of a similarity score that addresses this problem by
scoring each alert based on the degree of quantitative similarity to past actions. This
similarity score is generated for each cluster on a scale of 0 to 100. The TT Score
surveillance tool provides very specific guidance to its users by pointing to the clusters
that have the highest risk of drawing future regulatory attention and therefore are the
most important for immediate review.

11.5.3 Conclusions

The applicability of Machine-Learning techniques to market surveillance is still in
its infancy. The predictive power of current ML models is sometimes difficult to
gauge due to their complex black box nature. These ML models are also rather sen-
sitive to outliers, resulting in overfitting of the data and generating counterintuitive
predictions.

The adoption of ML-based technologies for regulatory compliance is very much
dependent on the ability to collect, store, and properly analyze large amounts of finan-
cial data. The access to tech talent is also a major challenge to overcome.

REFERENCES

Addo, Guegan, and Hassani (2018). Credit risk analysis using machine and deep learning models.
Risks 6 (2): 38–58.

Altman and Edward (1968). Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy. Journal of Finance 23 (4): 589–609.



234 USING MACHINE LEARNING FOR RISK MANAGEMENT AND COMPLIANCE

Altman, Marco, and Varetto (1994). Corporate distress diagnosis: Comparisons using linear discrim-
inant analysis and neural networks (the Italian experience). Journal of Banking and Finance
18 (3): 505–529.

Arner, Barberis, and Buckley (2016). The emergence of RegTech 2.0: From know your customer to
know your data. Journal of Financial Transformation 44: 9–86.

Bigham, Nair, Soral et. al. (2018). AI and Risk Management: Innovating with Confidence. Deloitte
Centre for Regulatory Strategy, 1. https://www2.deloitte.com/content/dam/Deloitte/global/
Documents/Financial-Services/deloitte-gx-ai-and-risk-management.pdf.

Breiman (1997). Arching the edge. Technical report 486. UC Berkeley.

Breiman (2000). Some infinity theory for predictors ensembles. Technical report 577. UC Berkeley.

Breiman (2004). Consistency for a sample model of random forests. Technical report 670.
UC Berkeley.

Cavalcante, Brasileiro, Souza et al. (2016). Computational intelligence and financial markets: A sur-
vey and future directions. Expert Systems with Applications 55: 194–211.

Chandrinos, Sakkas, and Lagaros (2018). AIRMS: A risk management tool using machine learning.
Expert Systems with Applications 105: 34–48.

Chartis Research (2017). The Future of Trader Surveillance. Report. https://www.ey
.com/Publication/vwLUAssets/ey-trader-surveillance-report/%24FILE/EY%20Trader
%20Surveillance%20report.pdf.

Chawla, Bowyer, Hall et al. (2002). SMOTE: Synthetic minority over-sampling technique. Journal
of Artificial Intelligence Research 16 (1): 321–357.

Choi, Chan, and Yue (2017). Recent development in big data analytics for business operations and
risk management. IEEE Transactions on Cybernetics 47 (1): 81–92.

Day (2017). Quants turn to machine learning to model market impact. Risk.net. https://www.risk
.net/asset-management/4644191/quants-turn-to-machine-learning-to-model-market-impact.

Figini, Bonelli, and Giovannini (2017). Solvency prediction for small and medium enterprises in
banking. Decision Support Systems 102: 91–97.

Financial Stability Board (2017). Artificial intelligence and machine learning in financial services.
https://www.fsb.org/wp-content/uploads/P011117.pdf.

Gandel (2012). Fortune (3 August). http://fortune.com/2012/08/02/why-knight-lost-440-million-
in-45-minutes.

Gastwirth (1972). The estimation of the Lorenz curve and the Gini index. Review of Economics and
Statistics 54 (3): 306–316.

Heaton, Polson, and Witte (2017). Deep learning for finance: Deep portfolios. Applied Stochastic
Models in Business and Industry 33 (1): 3–12.

Hendricks and Wilcox (2014). A reinforcement learning extension to the Almgren-Chriss framework
for optimal trade execution. IEEE Computational Intelligence for Financial Engineering and
Economics Conference, 457–464.

Hinton, Osindero, and Teh (2006). A fast learning algorithm for deep belief nets. Neural Computa-
tion 18 (7): 1527–1554.

Khandani, Kim, and Lo (2010). Consumer credit-risk models via machine-learning algorithms.
Journal of Banking and Finance 34 (11): 2767–2787.

Khashman (2010). Neural networks for credit risk evaluation: Investigation of different neural mod-
els and learning schemes. Expert Systems with Applications 37: 6233–6239.

Kruppa, Schwarz, Arminger et al. (2013). Consumer credit risk: Individual probability estimates
using machine learning. Expert Systems with Applications 40: 5125–5131.

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Financial-Services/deloitte-gx-ai-and-risk-management.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Financial-Services/deloitte-gx-ai-and-risk-management.pdf
https://www.ey.com/Publication/vwLUAssets/ey-trader-surveillance-report/%24FILE/EY%20Trader%20Surveillance%20report.pdf
https://www.ey.com/Publication/vwLUAssets/ey-trader-surveillance-report/%24FILE/EY%20Trader%20Surveillance%20report.pdf
https://www.ey.com/Publication/vwLUAssets/ey-trader-surveillance-report/%24FILE/EY%20Trader%20Surveillance%20report.pdf
https://www.risk.net/asset-management/4644191/quants-turn-to-machine-learning-to-model-market-impact
https://www.risk.net/asset-management/4644191/quants-turn-to-machine-learning-to-model-market-impact
https://www.fsb.org/wp-content/uploads/P011117.pdf
http://fortune.com/2012/08/02/why-knight-lost-440-million-in-45-minutes
http://fortune.com/2012/08/02/why-knight-lost-440-million-in-45-minutes


REFERENCES 235

Kumar (2018). Machine learning for model development in market risk. GARP Institute. https://
www.garp.org/#!/risk-intelligence/all/all/a1Z1W000003fM0yUAE.

Luo, Wu, and Wu (2017). A deep learning approach for credit scoring using credit default swaps.
Engineering Application of Artificial Intelligence 65: 465–470.

Moosa (2007). Operational Risk Management. Palgrave Macmillan, 75–129.

O’Hara and Clark (2017). AI and deep learning in risk and investment management. Financial
Markets Insights. The Realization Group, 3. https://verneglobal.com/uploads/TRG-AI-Deep-
Learning-Risk-and-Investment-Management-2017.pdf.

Olson and Wu (2015). Enterprise Risk Management in Finance. New York: Springer, 119–132.

Saberi, Mirtalaie, Hussain et al. (2013). A granular computing-based approach to credit scoring
modeling. Neurocomputing 122: 100–115.

Salakhutdinov, Mnih, and Hinton (2007). Restricted Boltzmann machines for collaborative filtering.
Proceedings of the 24th International Conference on Machine Learning, 791–798.

Sanford and Moosa (2015). Operational risk modelling and organizational learning in structured
finance operations: A Bayesian network approach. Journal of the Operational Research Society
66 (1): 86–115.

Son, Youngdoo, Byun et al. (2016). Nonparametric machine learning models for predicting the credit
default swaps: An empirical study. Expert Systems with Applications 58: 210–220.

Woodall (2017). Model risk managers eye benefits of machine learning. Risk.net. https://www.risk
.net/risk-management/4646956/model-risk-managers-eye-benefits-of-machine-learning.

Yitzhaki (1983). On an extension of the Gini inequality index. International Economic Review 24 (3):
617–628.

https://www.garp.org/#!/risk-intelligence/all/all/a1Z1W000003fM0yUAE
https://www.garp.org/#!/risk-intelligence/all/all/a1Z1W000003fM0yUAE
https://verneglobal.com/uploads/TRG-AI-Deep-Learning-Risk-and-Investment-Management-2017.pdf
https://verneglobal.com/uploads/TRG-AI-Deep-Learning-Risk-and-Investment-Management-2017.pdf
https://www.risk.net/risk-management/4646956/model-risk-managers-eye-benefits-of-machine-learning
https://www.risk.net/risk-management/4646956/model-risk-managers-eye-benefits-of-machine-learning




CHAPTER 12

Conclusions and Future Directions

“Live as if you were to die tomorrow.

Learn as if you were to live forever!”

– Mahatma Gandhi

12.1 CONCLUDING REMARKS

The ideas behind this book originated from three distinct, yet related sources: two
decades of professional experience in quantitative trading, the current interests and
needs of my students, and my desire to bring to the attention of a larger audience a
series of important recent developments related to the use of computationally intelli-
gent techniques in Quantitative and Computational Finance.

I had the privilege of working for more than two decades as a technologist, quant,
and trader in the financial industry. During this period of time I had the extraordi-
nary opportunity to have access to some of the most advanced High-Performance
Computing and high-speed communication technology available, and to work with
some of the brightest and most successful derivatives traders in the world. During
the last five years I had also the opportunity of being a faculty member in one of
the world’s most prestigious programs in Financial Mathematics, at the University
of Chicago. This affiliation gave me the chance to interact with a large and diverse
group of bright and inquisitive Financial Mathematics students. Countless classroom
interactions and working with them on many term projects helped me to refine the
content and the structure of this book. Last but not least, I wanted to bring to the atten-
tion of more seasoned quantitative practitioners both the promises and the formidable
challenges that this brave new era of intelligent computing brings about.

One of the main objectives of this book is to introduce an adequate level of
engineering and scientific clarity on the usage of the term Artificial Intelligence,
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especially as it relates to the financial industry. As the term is often used as an
intellectual wildcard, and sometimes without much scientific rigor, I deemed it
necessary to bring to the attention of the reader important aspects related to the
dangers of succumbing to this hype and to separate the pop culture fantasy from the
scientific and engineering reality.

An equally important objective for this book is to update the Financial Mathemat-
ics curriculum on two contemporary topics: Data-Driven decision-making (applied
to trading and investing) and Computational Intelligence. Another objective is to
bridge the gap between academic research and the practical needs of quantitative
professionals. The second half of the book is dedicated to the presentation of a set of
Case Studies that are contemporarily relevant to the needs of practitioners. As such,
Chapters 6 through 11 of this book illustrated the applicability of Machine Learn-
ing techniques to a plethora of practical problems: from trade execution optimization
and price dynamics forecast, to portfolio management, market making, derivatives
valuation, and risk management.

The three principal objectives of this book are:

• Describing the new paradigm of Data-Driven trading and the application of
Computational Intelligence techniques to implement it.

• Analyzing from both a scientific and an engineering perspective, the current
state of and attempting to demystify its hype factor.

• Popularizing the advent of new engineering discipline, a discipline that will be
at the same time data-focused and learning-focused and that I label Quantitative
and Computational Engineering.

Today we are witnessing the onset of a major transformation within our culture
that is driven by the groundbreaking technological achievements of the last decade,
as well as by the emergence of a new paradigm of scientific inquiry, called the fourth
paradigm. These new developments will fundamentally change the way many indus-
tries operate, but they will particularly revolutionize the structure of the workforce
for generations to come. Dr. James Gray, one of the greatest American computer sci-
entists of the twentieth century and Turing award recipient, predicted the advent of
this new era more than a decade ago. He called it the data exploration era, or a time
where theory, experimentation, and simulation will come together to solve some of
the most important problems of our time.

The maturation of some of the major technological achievements of the last decade
contributed to the generation of vast amounts of data, and the birth of what is called
the age of Big Data. Recent advances in High-Performance Computing and hardware
acceleration (e.g. GPUs and FPGAs), coupled with new discoveries in algorithmic
processing, created the conditions to apply complex machine learning algorithms to
a variety of practical problems. All these new technological developments are going
to have a revolutionary impact on many industries, and as usual the financial industry
will be one of the first ones to take advantage of them. A new concept is already
making its way in today’s financial world: data-driven decision-making. Today both
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high-frequency trading and longer time horizon investing are increasingly driven by
large-scale data analysis, while the use of alternative data is becoming ubiquitous.

12.2 THE PARADIGM SHIFT

“Without change there is no innovation, creativity, or incentive for improve-
ment. Those who initiate change will have a better opportunity to manage the
change that is inevitable.”

– William Pollard, theologian

One of the main objectives of this book is to inform the reader about a paradigm
shift that is happening before our eyes. This is the dawn of a new era where busi-
ness decisions are going to be driven by data and powered by algorithms. This new
paradigm is very different from the ones that preceded it, because it is actually a
combination of various models and archetypes from different domains. The fourth
paradigm of scientific discovery was introduced in 2007 by Dr. James Gray, who was
then a senior researcher at Microsoft. In his last public talk (Hey, Tansley, and Tolle
2009) Dr. Gray described his vision of the fourth paradigm, which in his opinion is
similar in importance to the invention of the printing press.

More than 400 years ago Johannes Kepler used Tycho Brahe’s catalog (Verbunt
and van Gent 2010) of systematic astronomical observations and discovered the laws
of planetary motion. This historical event represented the first documented usage of
data mining of experimental data for the creation of scientific theories. If many thou-
sands of years ago the scientific method of inquiry was empirical in nature, during the
Renaissance a new scientific paradigm appeared, and it was characterized by the use
of models and generalizations based on experiments. As a result of this paradigm,
many theories have been created, from Newton’s Laws of Motion, to Maxwell’s
equations, to mention just a few.

The advent of computers makes possible a new type of scientific method – the
in silico simulation of phenomena that may occur very infrequently or that are just
too complex or too expensive to study in the real world. Nowadays, vast volumes of
scientific, industrial, and commercial data are captured on a real-time basis. Along
with synthetic information generated by computer models, this enormous amount of
data is likely to reside in a live, readily accessible, curated state for the purposes
of continued analysis. And this analysis will most likely result in the development of
many new theories.

The world of science and engineering has changed substantially in the last 50
years. Data is either captured by instruments and sensors or generated by simulations
before being processed into information or knowledge that could be digitally stored
(Bell, Hey, and Szalay 2009). This new set of technologies and approaches employed
in data-intensive scientific research are at the origins of the fourth Paradigm (Hey,
Tansley, and Tolle 2009). The last decade has seen the parallel evolution of two
distinct, yet related branches in major scientific disciplines: there is Medicine and
there is Computational Medicine, as there is Biology and Computational Biology.
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And in our own industry, there is Theoretical Finance and there is Computational
Finance. The idea of computational thinking originated with Jeannette Wing (2006)
and addressed the representation of information (structured from data) in an algorith-
mic way, such that one could objectify Knowledge for different problem domains.
The work and ideas of Dr. Gray illustrated the profound impact that Information
Technology had on science and engineering. One of this book’s main objectives is
to illustrate the progress achieved in the field of Quantitative and Computational
Finance as a result of the onset of the fourth paradigm.

12.2.1 Mathematical Models vs. Data Inference

“All models are wrong but some are useful.”

– George Box, distinguished statistician

Since data was first used for scientific inquiry, Statistical modeling has been the
main tool set used by both scientists and practitioners. It is fascinating to explore the
two schools of thought that have contributed so much to the progress of Data Science.

Leo Breiman (2001) is the author of a seminal paper on this subject. Professor
Breiman was a very distinguished statistician at UC Berkeley, and the inventor of Ran-
dom Forests and Bootstrap Aggregation (which are fundamental methods in modern
ML). In this paper, Breiman described in rather stern terms the opposition between
the two cultures (see Figure 12.1) that employ statistical modeling to reach conclu-
sions from data. The data modeling school assumes that data is generated by a given
(parametrized) stochastic process. The algorithmic culture uses algorithmic models
inferred from data without making any assumptions on the mechanism that gener-
ates this data. Statisticians have been committed to an almost exclusive use of data
models, and according to Professor Breiman, this commitment has led to “irrelevant
theory, questionable conclusions, and has kept statisticians from working on a large
range of interesting current problems.” On the other hand, Algorithmic modeling
has developed very rapidly in fields outside the realm of Statistics (like Computer
Science).

The Data modeling culture starts with the assumption of a stochastic data model
that resides inside a gray box. The main goal is to be able to predict the values of
response variables by using a parametrized function that uses input (predictor) vari-
ables and eventually to include some random noise. These models are validated by
using goodness-of-fit tests and by examining the residuals.

Data Modeling

y yx x

Algorithmic modeling

decision trees

neural nets

linear regression

logistic regression

Cox model

unknown

FIGURE 12.1 The two cultures of statistical modeling. Source: Adapted from Breiman (2001).
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The algorithmic culture considers the inside of the box too complex to be modeled
and thus it labels it as black (unknown). Their approach is to find a functional repre-
sentation f(x) that is an algorithm that operates on x to predict the responses y. The
validation of this model is done by estimating the predictive accuracy in a fashion that
is similar to supervised ML training. A very important difference in the way these two
cultures approach the process of learning from data is related to the interpretability of
the models they construct. Within the algorithmic culture there is a school of thought
that completely trusts the black-box models (i.e. Deep Learning models), without any
regard for their interpretability. For this tribe, the correlation inferred from very large
amounts of data is considered to be enough to be able to train models that display
a high predictability score. This culture believes that by consuming more and more
data, one augments the complexity of the hypothesis space, and therefore one could
make up for its lack of interpretability.

But there is a branch of the algorithmic culture that is looking for interpretability
and it believes that causal inference is far more important in the learning process than
just finding correlations. This school of thought is looking to devise methods that
will work for problems that cannot benefit from the availability of huge amounts
of data, simply because there is not enough of it available. They are looking for
algorithms that decompose a problem into smaller pieces, easier to solve; they are
seeking for structural interpretability. According to this camp, the biggest challenge
ahead is to be able to devise new learning techniques that do not rely solely on mas-
sive amounts of data, but also on some other human intelligence techniques. After
all, we should address the Intelligence dimension of AI? This school of thought is a
firm believer in delivering on the promise of understanding and implementing truly
intelligent machines.

Both Mathematical modeling and Machine Learning modeling are dealing with
similar objects and processes, but they are dealing with them in very different ways.
There are many problem domains (such as healthcare, finance, and military) where
users of ML algorithms need to be able to interpret their decisions; unfortunately,
most of the advanced ML models are not designed to provide this feature. The main
selling point of Deep Learning is represented by its automatic feature extraction.
Given a large data set and a combination of linear and nonlinear transformations that
take place within the neural networks, a resulting vector, also called an embedding,
is produced at the output.

As a result, the main challenges associated with the use of Deep Learning meth-
ods are:

• Interpretability – The output vector does not carry any information about why
some particular decisions were taken during the learning process.

• Data needs – DNNs require a lot of data.

• The zero-shot reuse – A Deep Neural network trained on one data set could be
rarely applied directly on another similar data set without proper retraining.

• Theory – There is not much of a theoretical foundation on explaining why DL
works so well in some situations, and not at all in others.
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By comparison mathematical modeling presents a series of advantages like:

• Interpretability – Mathematical models are created with a clear motivation and
understanding. For example, when describing physical motion, the embedding
will consist of the object mass, its speed, and its coordinates – there are no
abstract vectors involved.

• Data needs – Most of scientific discoveries did not require very large data sets.
• The zero-shot reuse – The same stochastic differential equation, like for

example the geometric Brownian motion, could be applied in finance, biology,
or physics by just renaming its parameters.

• Theory – benefits of many centuries of scientific output.

The natural question that ensues is why not use partial differential equations for
everything? The obvious answer is that the simulation of complex phenomena and
the use of very large data sets render impossible the use of classical mathematical
models mainly due to computational performance issues. A lot of effort has been put
more recently into combining the discriminative and predictive power of ML with
the interpretability of human-based modeling. The concept of disentangled represen-
tations has become a popular topic in this respect (Higgins et al. 2018).

The discriminative power of Deep Learning in image processing is due to its
ability of transforming pixel level features (like color or shape) into more complex
ones, such as eyes, petals, or wheels. Using these high-level representations makes it
easier to explain and classify the content of a digital image. The lack of interpretabil-
ity comes from the mixing of these representations in a spaghetti-like fashion.
Anecdotally, Yoshua Bengio, one of the creators of DNN, once said that “if we can
take that spaghetti and disentangle it, that would be very nice” (Bengio et al. 2019).
The main idea behind disentangled representations is to come up with algorithms
that discover high-level features like eyes, petals, or wheels that are separable in
an unsupervised manner. The Variational Autoencoder (VAE) is a deep generative
model and it has been shown to be able to disentangle simple data generating factors
from a highly complex input space. After training is completed, one can vary each
of the hidden variables and observe its effect on the output, thus determining what
kinds of features the model has learned.

The importance of this result at the present time can not be overstated. The com-
plexity of the problems at hand and the expectations that surround them are going
to fundamentally change the educational process that is responsible for training the
future workforce. As a result the transition to this new paradigm will trigger the emer-
gence of new approaches in educating the future hi-tech workforce.
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12.3 DE-NOISING THE AI HYPE

“A lot of what we call ‘smart-systems’ are derailed from the reality of the empir-
ical process… .”

– Jaron Lanier, computer scientist and philosopher

Large companies are currently placing big bets on the AI buzz. Some of them like
Apple, Google, Microsoft, Intel, Uber, Facebook, or Amazon have their own research
labs where large teams of scientists and engineers are dedicated to the application of
technologies to their current product lines. The big question that needs to be answered
is two-pronged: How mature has AI become and how do we prepare the workforce
for its widespread adoption?

In that respect it is worth mentioning a few interesting statistics:

• According to Element AI, an independent lab in Montreal, fewer than 10,000
people in the world have the skills necessary to tackle AI research.

• According to some reports in 2017, Google DeepMind’s staff costs were at the
level of $138 million for about 400 employees (an average of $345,000 per
employee).

• Top academic talent has moved massively into the private sector. As an example
Uber hired 40 people from Carnegie Mellon’s groundbreaking AI program in
2015 to work on its self-driving-car project. Four of the best-known academic
AI researchers have left or taken leave from their professorships at Stanford.

Venture Capital firms are flocking into this field at an unprecedented rate. Merger
and acquisition activity in this sector reached an all-time high (see Figure 12.2).

Questions about both the affordability and feasibility of AI remain open. The hype
generated by the so-called Artificial Intelligence revolution is nothing but the most
noticeable manifestation of a systemic failure to understand the technical complexity
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of this topic. This effect is enhanced by a profit-making impulse that exploits any
opportunity to promote products and services that could benefit from the use of
the term. This hype-factor is always elevated for new technologies emerging from
the research labs into the public domain. But given the weight of the expectations
placed on AI a bit more scrutiny is to be expected.

12.3.1 Why Intellectual Honesty Should Not Be Abandoned

Major practical achievements like DeepMind’s victory over the world’s Go champion
have fed into the frenzy of the AI-era as a time where one does not need to work any
longer and all societal problems will be magically resolved. This hype feeds also the
opposite view that humanity is inching a step closer into some sort of Matrix-like
enslavement.

But fortunately there is also another camp, albeit smaller, that is more reluctant to
accept at face value the bold promise of Artificial Intelligence. One of the most criti-
cal voices is that of computer scientist and virtual reality pioneer, Jaron Lanier (92nd
Street Y 2016; Greenemeir 2016). He believes that the Go world’s champion was
not playing just against an algorithm, but also “against the aggregate of 30 million
moves made during previous games by human players.” The victory of the algo-
rithm over the human was the result of many Go gamers informing the Go algorithm
through the availability of massive amounts of data. DeepMind’s success was not
related to any magic algorithm that emulates human Intelligence, either artificially
or computationally. The same reasoning goes for the possibility of doing real-time
Skype translation, for example. “The only way we do it is by scraping the efforts
of millions of translators who don’t even know what’s happening to them to get the
examples.” Lanier is just one of the many researchers who are warning against this
hype that it seems to become more of a religious movement than an engineering dis-
cipline. He calls this hype a cultural fantasy, a promise that is not grounded, at least
not currently, on scientific discoveries or engineering realities. As long as there is no
clear understanding of how the human brain works, and therefore the emulation of
human intelligence is not yet possible, “pretending to have something working when
one really does not,” is an intellectually dishonest exercise, which Lanier labels as
“premature mystery reduction.”

This type of dealing with extreme complexity, such as the one represented by
human intelligence, is a reflection of poor scientific discipline. For many centuries
the most valuable best practice of scientists was their ability to accept and deal with
a certain level of ignorance. Discounting the unknown before discovering it could
have major negative consequences in the field of Sciences, from creating confusion
and false promises, to generating a false representation of the reality, and ultimately
to hampering the scientific progress. What is nowadays called the AI revolution may
qualify for what Lanier calls “premature mystery reduction.” The vast majority of
the so-called AI-driven software was developed using massive data sets representing
specific types of human activity. This is similar to “pretending that there is some AI
behind the curtain that is freestanding when in reality there are also millions of people
there, as well.” Jaron Lanier (92nd Street Y 2016; Greenemeir 2016)

As mentioned in Chapter 3, there are some very distinguished academics, like
Professor Michael Jordan from Berkeley, who are looking critically at the current
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state of affairs in AI. Many of them agree that in order to realize the full promise of
AI, some very daunting challenges need to be addressed. Some of the most pressing
challenges are engineering challenges in nature, and they are related to systems
and infrastructure. For AI to become applicable to real-world problems, especially
for domains such as financial trading and investing, or healthcare and medicine,
AI systems will need to make decisions that are not just faster, but also safer and
interpretable by human operators.

When it comes to interpretability, the debate within the ML community is even
more divisive. On the practical side there are many current and potential users of
ML algorithms who would want to get a basic understanding of how data should be
collected, how features should be engineered from the data, and eventually of how
the algorithms are generating the end results. Just consider applications where human
well-being is involved, like self-driving cars, medical applications, and financial deci-
sions. In all these situations, the human operator needs to trust the algorithms. The
best way to do this is to make the computer explain its decision-making process in a
way that humans could understand. The European Union passed a law in 2016 that
it will require the right to explanation from any algorithm that is used for making
predictions based on user-level predictors.

Until research in Cognitive sciences makes more tangible progress in the under-
standing of how human intelligence works and how it can be emulated, we will
need to focus our efforts to the development of Computational Intelligence meth-
ods, concentrating on improving the Automation aspects and making more progress
on Meta-Learning (Vanschoren 2018).

12.4 AN EMERGING ENGINEERING DISCIPLINE

“We should embrace the fact that what we are witnessing is the creation of
a new branch of engineering. In the current era, we have a real opportunity
to conceive of something historically new – a human-centric engineering
discipline.”

– Professor Michael I. Jordan, UC Berkeley

As someone who has been engaged for more than 20 years in the field of Quan-
titative and Computational Finance, from architecting and leading the development
of firm-wide software systems, to developing valuation and risk models as a quant,
or employing them as a trader, I especially appreciate the importance of the quantita-
tive and computational financial education. During my career in quantitative trading
I have interviewed hundreds of candidates and I have hired many of them. I always
recruited candidates who had a great formal education that was complemented by
the necessary passion for solving real-world problems. Today’s generation of Quants
and Financial Engineers are facing brand-new challenges. They are the quants of
the Post-Crisis generation and new sets of skills and knowledge are required from
them. This is a new era, one of risk aversion and frugality. Many firms and jobs have
disappeared in the last decade.

A brand-new set of expectations are emerging. The most important trend is the
great convergence between the quantitative and the computational domains. The most
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looked-after role has become recently the one called quant-developer. Pretty much
two experts for the price of one: a great quant and a very capable software engineer
in one person. Even the recruiting process has changed significantly. The interviewing
process is a lot more challenging and it definitely requires a better preparation and a
lot of stamina.

The most important lesson that I have learned in my career is that the potential
to solve complex business problems depends predominantly on being able to
recruit, train, and develop the necessary talent that could apply efficiently the latest
technology available.

12.4.1 The Problem

There is a widespread perception that the current higher education system is tech-
nically outdated, costly, inefficient, and often irrelevant to the needs of the financial
industry. The current models are in dire need of feedback from an industry where
tech recruiting and continuous education has become very costly and inefficient.
While technology firms are spending massive amounts of resources on recruiting
and corporate training, the learners are incurring ever-increasing costs to attend
educational programs that are not meeting the norms and the needs of the tech indus-
try. Educating the twenty-first century hi-tech workforce will require a brand-new
approach, one that is more Relevant, Modern, and Efficient, for both the tech firms
and their current and future workforce. Current research in Neuropsychology, Human
Cognition, and Cognitive Computing points to the fact that the learning process
should not be devoted principally to content acquisition, but it should be focused
on ways and means to efficiently apply the acquired knowledge to solve real-world
problems. The efficiency of the learning process must be quantitatively assessed, in
ways that will allow actionability to be quantified via a cost function score.

12.4.2 The Market

The global markets for professional education and talent management are two
extremely large markets estimated at about $250 billion to $300 billion annually.
Their identified inefficiencies are so large in scope and so critical to the success of the
current industrial revolution that they will require adopting a brand-new paradigm in
professional education: shifting the emphasis from content acquisition to experiential
learning. This paradigm shift will require adopting modern quantitative models
to continuously evaluate the efficiency of the educational process and develop the
algorithms to optimize it. Technology companies in general, and trading and asset
management firms in particular, need to gain the ability to have a quantifiable measure
of the in-house resident knowledge, as well as a framework of well-defined metrics
to be used in the recruiting process to seamlessly match business needs to talent.

12.4.3 A Possible Solution

Financial firms are looking for candidates who are mastering an ever-increasing set of
tools, from Financial Mathematics, to Computer Science, from Big Data Analytics to
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Machine Learning and Blockchain technology. But no matter how extensive the tool
set is, what they are especially looking for is the ability to solve problems. This brave
new world will require a new breed of quant workforce: one combining classical quant
skills with deep knowledge of Computer Science and hands-on knowledge of modern
HPC technologies. We have recently stepped into the era of data-driven intelligent
computing, a new realm where the most coveted prize is Innovation. And because
Innovation is principally driven by technological developments, being cognizant of
the latest tech developments becomes a hard-core prerequisite that requires life-long
education. The life cycle of modern technologies is averaging about 2.5 years today.
Next year it may be even shorter. Quants should be ready to embrace and thrive in
a life-long cycle of learning. Educators should be prepared to nurture an innovative
Engineering Mind that is driven by a powerful Mathematical Engine, supported by a
vigorous Research Impetus and guided by a strong Technology background. All of
these components have to be present, have to be nourished, and have to grow and
develop you the reader into the quant of the twenty-first century.

The main purpose for this new breed of engineering is to address the needs of
the current industrial revolution by making itself available to a variety of industries,
way beyond the realm of the finance. Fields like Computational Medicine (Johns
Hopkins n.d.), Healthcare, Education, or the Internet of Things are going to be big
consumers of this modern profession. Since the whole society is so immersed in and
dependent on data and the methods to extract actionable information from it, the
twenty-first-century quants will position themselves at the core of the system that
drives the most important business decisions.

12.5 FUTURE DIRECTIONS

The success of the current industrial revolution and the achievement of the AI dream
will heavily depend on the ability to thoroughly modernize the Education system and
to restore Scientific Research to its glory days. The AI-research labs are currently
being depleted of their talent that is massively migrating into the private sector. Doing
research in a proprietary environment is not conducive to sharing scientific results or
engendering collaboration with other scientists around the world. And the fundamen-
tal challenges that the field of AI is currently facing cannot be easily addressed by
isolated groups, even if they are backed by tech giants like Google, Microsoft, or
Amazon. This is in my opinion the most serious impediment in advancing the current
state of AI research.

Moving from the current paradigm of Representation Learning (or learning by
imitation from data) to a paradigm of Machine Consciousness (where the agent will
be able to make decisions based on independent thinking by using an approach that
is more akin to human behavior) is still a distant milestone. This paradigm shift will
require some major scientific and technological breakthroughs, and they will most
likely happen in a more collaborative setting, that is, in publicly funded research labs
and not in confined, proprietary corporate environments.
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But even if this singularity point could be reached any time soon, who is going
to implement the new theory into real-world products and services? What kind of
engineers are going to be able to do this work? How are business decision-makers
going to select the right tools for their given problems? This desired disruption will
require novel approaches to educate the future workforce and to train the existing
personnel.

Until these much anticipated scientific and technological breakthroughs occur, the
best course of action is to continue to make steady progress on automating some of the
most complex tasks at hand and in finding new ways of learning from data by using
the great computational tools already available. At the same time we would need to
redirect the focus of the education process from mastering ever-more complex tools
and frameworks, to the development of solid and scalable problem-solving skills.

One should hope that this quantitative accumulation of knowledge will one day
mutate into the great discovery that will trigger the singularity point.

Until then, happy reading, but especially happy Intelligent Computing!
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exploration, 189
framework, components, 170

De-fuzzification, usage, 72
Delta method, 60
De-noising techniques, 41, 59
Derivatives, fair price, 210–211
Derivatives valuation, 104

Deep Learning, usage, 204–210
benchmarks, 207–208
directions, 208
empirical results, 207–208
implementation methodology,

205–207
research studies, 208–201

Reinforcement Learning (RL), usage,
210–214

simple Markov Decision process,
usage, 210–211

Derivatives valuation, Machine
Learning (applications)

case study, 197
problem, 197–200

statement, 199–200
research questions, 199–200
staus, 200–204

Descartes, Rene, 42
Designated Order Turnaround (DOT)

system, creation, 4
Design time, 73
Dichotomous variable, 22
Digital ledger, 6–7
Digital oil, 19
Digital ore, 24
Digital wells, 19
Dijkstra, Edsger, 73
Dimensionality, 55

reduction, 59
Directional movements, 138

information, 144
Directional price

forecast
empirical results, 139–140
support vector machines/random

forest classifiers, usage,
138–140

movement, 129, 133–138
Discrete data, representation, 21
Discretionary trading, 8
Discretization, 22, 60
Disentangled representations, 242
Distillation process, 24, 25
Distributed computing, theory, 73
Distributed Multi-Agent systems, 67
Distributions, numerical data

representation, 22
Diversification, 79, 161
Do not care values, 58
Do-nothing benchmark, 169
Dropout layers, 155
Dropout, usage, 152
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Dual NFK model, 125–126
Dynamic Programming (DP), 90, 108

usage, 118–119

Ecorithms, 64, 78–80
Efficient deep frontier, representation,

167
Efficient Frontier optimization, 162
Electronic Communications Networks

(ECNs)
concept, 4f
impact, 3–4

Electronic Numerical Integrator and
Computer (ENIAC), 3

Element AI, study, 243
ELIZA, 45
Embedded methods, 60
Embedding, 150, 241
Emerging behaviors, 31, 92
Encoder, usage, 165
Encoding, 23
Engineering discipline, 44

emergence, 245–247
Ensemble learning methods, usage, 59
Ensemble of Identical Independent

Evaluators (EIIE), 170–172
Enumeration, 50

complexity, 73
Environments, complexity/change, 89
Epsilon greedy strategy, usage, 102
Equities, 1

market price direction, prediction, 71
trade execution optimization,

application, 122
Error rates, 90
eScience, 39
Estimation, paradigm shift, 130–131
European sovereign debt crisis, 227
European Union, explanation right, 245
Evaluation, categorical data (usage), 22
Evenly distributed (ED), baseline

strategy, 125
Event-flow, 156
Evolutionary algorithms, 80, 89

Evolutionary computing, 64, 65
genetics/evolution, usage, 66

Exhaust data, 18, 35
Expectations, 17

hype curve, 41
Experiential Knowledge, 27
Explicit Reward function, 170

Factor-driven style, usage, 13
Facts, data type, 27
False positives, 159, 232
Farming problems, 101
Fat finger errors, 231
Feature engineering

approaches, 60
stage, 55

Feature extraction, 55f
CNNs, usage, 152

Feature space, 54
dimensionality, 55
selection, competence, 57

Feedback
absence, 67
double-feedback, 6
scalar feedback signal, 96

Feed-forward architecture, usage, 169
Feigenbaum, Edward A., 45
Feldman, Julian, 45
Field Programmable Gate Arrays

(FPGAs), 83–84, 160, 238
usage, 5

Filters, usage, 59, 60
Finance

AI applicability, 54–60
ecorithms, examples, 78–80
examples, 71–72

Financial data, 13
ML methodologies, applicability,

56–57
Financial derivatives, 198

fair value, representation, 199–200
Financial markets, 2

data, time series aspects, 147
digital revolution, 3–5
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Financial markets (Continued)
history, classification, 8
quantitative/qualitative analysis, 23

Financial Mathematics programs, 237
Financial models, Big Data analytics

(usage), 31–32
Financial portfolio management, MaB

model application, 168
Financial time series, 91
Financial time-series, feature

engineering, 60
Financial transactions

alternative data sets, 35
processing, 7

broker-assisted financial transactions,
3

Finite-horizon model, 96
Fitness space, usage, 68
Fitting procedure, 92
Flash crashes, 6, 10
Fogel, David, 64
Foreign Exchange

markets, 133–134
trading scandals, 231

Formal logic, revolution, 43
Four-step algorithm, 165–167
Fraud detection, 33
Full state, 184, 188
Functional mapping, 146, 147
Fungibility, absence, 19
Future contract, 109

limit order book, example, 110f
Futures, trade execution optimization

(application), 124–126
Fuzzification, usage, 72
Fuzzy logic, 65

application, 72
founding, 66

Fuzzy systems, 65–66, 92

Gates, Bill, 48
Gaussian kernels, 139
General Intelligence, 48, 74–75
Genetic optimization algorithms, 91

Genetic programming workflow, steps,
80

Geolocation, 35
information, 12

Geometric Brownian Motion (GBM)
assumption, 200
model, 137

Global optimality, 71
Goodness-of-fit tests, 240
Google DeepMind, staff costs, 243
Google Finance, market data prices, 169
GoogleNet, 155
Gorse, Denise, 189
Gradient boosting machine, 224
Gradient Boosting model (M3), 225
Gradient Descent, 50
Gradient enhancement, 224
Graphics, numerical data representation,

22
Gray, James, 39, 238–240
Greedy CQ, 189
Greedy GQ, 189
Greeks, 202
Grey-GJR-GARCH volatility, 203
Grey, Jim, 8

Halperin, Igor, 136–137
Hard computing, 13

attributes, 90
methodologies, 65, 91
paradigm, usage, 75

Hard computing techniques
Computational Intelligence attributes,

impact, 90
usage, 13

Hard limit methods, 107–108
Hard problems, 66
Hard-to-compute valuation functions,

205
Hardware accelerators, 5, 82–84
Hash-function lookups, 61
Hawking, Stephen, 48
Herd behavior, 57
Heston volatility models, 198
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Hidden layers, 147f, 224
Hidden liquidity, 61
Hidden orders, 117
Higher cognition, requirement, 67
Highest paid person’s opinion (HiPPO),

16
High-fidelity simulation, development,

180
High-frequency data, 130, 132–133
High-Frequency Trading (HFT), 32, 127

data, 61–62, 177
market making, Reinforcement

Learning (usage), 189–192
experimental setting, 191–192
methodology, 190–191
results, 192

paradigm, 5–6
problems, 93, 131

High-level features, usage, 76
High-Performance Compute

infrastructure, 136
High Performance Computing (HPC),

39, 40
High-performance computing

technology, 11
Hillis, Danny, 45
Historical data, 9

usage, 181
Hobbes, Thomas, 42
Holland, John Henry, 89
Hong Kong Exchanges and Clearing

Limited (HKEX), 232
Hopfield, John, 46
How-to-do-it component, 40
Human-centric engineering discipline,

53
Human-coded algorithms, 11
Human decision-making, 8

augmentation, 61
Human errors, impact (reduction), 10
Human-imitative AI research, 53
Human-imitative view, 44
Human intelligence, summary, 29

Human-like Intelligence, achievement,
104

Human-like turnaround, 90
Hyper-parameters, 126, 155

optimization, 185
tuning, 199, 226

IBB index, 166, 167
Iceberg orders, 117
Identical Independent Evaluators, 170
IEEE Computational Intelligence

Society, 65
Immediate Execution (IE), baseline

strategy, 125
Immediate market order cost, 123–124

market variable example, 122
Immediate matching

occurrence, 116–117
phase, 117

Immediate reward
sacrifice, 96
value function component, 99

Immediate trading opportunities, 175
Implementation shortfall, 10
Impracticality, 66
Incremental PnL, usage, 181
Independent and Identically Distributed

(iid), 57
Inference time, 208
Infinite-horizon discounted model,

96–97
Infonomics, 19
Information, 27

bottleneck, 164
Information-Driven Market Making,

176
output, 25

Informational tools, 108–109
Information technology and

communications (IT&C)
infrastructure costs, 160

Information technology systems, 4
Information Theory (scientific

discipline), 52
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Input channels, 155
event-based input channels, 153

Input parameter (problem) space,
defining, 68

Insider Trading, 231
In silico simulation, 239
In silico systems, 74
Instinet, 3, 4
Intellectual honesty, retention, 244–245
Intelligence

achievement, 25
augmentation, 44
concept, 28–29
defining, 63–64
mental capability, 29
perception, 25f
swarm intelligence, 65

Intelligence Augmentation (IA), 52
Intelligent building blocks,

development, 53
Intelligent Infrastructure (II), 52–53
Intelligent machines

concept, 41
conceptual development, milestone,

42
Intelligent robots, 42
Intelligent systems, 53

development, PAC theory guidelines,
78

Interest rates, term structure
(forecasting), 71

Internet-of-Things (IoT), 40
sensors, 82

Interpretability, 133, 241, 242
In-the-money options, 201
Inventory

constraints, 182
inventory-driven Market

Making, 176
risk, 175

Inverse Reinforcement Learning (IRL),
137–138

Investing, alternative data (usage),
34–36

Investing, data
role, 15
utility, 30–34

Investment process, 34
Invisible hand, 137
ISDAFIX, manipulation, 231

Jacquard, Joseph-Marie, 42
Jordan, Michael, 51, 53, 244

Kalman filter, 59
Kappa statistics, 156
Kasparov, Garry, 45, 47
Kaushik, Avinash, 16
Kelly Criterion, 79
Kelly, Jr., John, 79
Kepler, Johannes, 239
Kernel, 155

densities, 22
Gaussian kernels, 139
linear kernels, 139, 140
methods, 66
polynomial kernels, 140
RBF kernels, usage, 140

Kernel-Based Reinforcement Learning,
211–212

algorithm, 210
Knight Capital, case, 223
Know-how, 25, 28
Knowledge, 27–28

definition, 28
goal, 150
know-how, creation, 25
representation, 69
study, 25
usage, 25

Knowledge-Learning-Instruction
framework, 72–73

Know-nothing element, 26
Know-when, 28
Know-who, 28

Label noise (class noise), 58
Large-scale Deep Learning methods,

136
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Lasso methods, 22
Latent space representation, 165
Laws of Motion (Newton), 239
Layering, 231, 233
LeakyReLU, 209
Learners, 76

inputs, 95
Learning

algorithms, 185
provision, 78
role/limitations, 144

events, 72–73
learning centered AI, 78
methods, 120–122
optimizers (meta-learning methods),

50
process, 70–72

computational features, 74
polynomial time, 74

solution, 76
Learning to learn, problem, 49
Leviathan, The (Hobbes), 42
Levy models, 198
LIBOR, 231
Limit order book (LOB), 117

Convolutional Neural Network, 154
data

dynamics, 133
stationary form, 151

data-driven simulation, development,
180

example, 110f
features, 144
feature space, 140
market microstructure information,

193
model, 115
reconstruction, 181

Limit order book (LOB), dynamics
case study, 129
challenges, 131–132
contrarians, impact, 136–138
data-driven analysis, findings, 149

deep neural network, training
(phases), 135

directional price movement,
prediction, 133–138

high-frequency data, 132–133
prediction, 130–131

problem, defining, 151
predictors, categories, 134
problem, 129–133

methodology, 138
response variable, generation, 134
stationary features, 151
study

convolutional neural networks,
usage, 153–157

deep neural networks, usage,
145–149

long short-term memory networks,
usage, 149–153

Reinforcement Learning, usage,
141–145

empirical results, 142–144
Limit orders, 109–111, 178

trading, 145
usage, 145

Lim, Ye-Sheen, 189
Linear Combination of Tile Codings

(LCTC), 184, 188
Linear kernels, 139, 140
Linear state space models, 130
Linguistic data, 22–23
Liquidity

balance, 134
defining, 175
generation, 9, 231
hidden liquidity, 61
impact, 114–115
increase, 5
providers, 4f

Lisp language, 44
Loan application

evaluation/underwriting, 71
Local equilibrium, 103
Logic, 11, 42
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Logic (Continued)
fuzzy logic, 65
revolution, 43

Logic Theorist, 44
Logistic Regression, 227, 228

model (M1), 130, 134, 225, 226
London Stock Exchange

high-frequency market microstructure
data, 136

limit-order book data set, 154
Longer-term reversion, 143
Long Short-Term Memory (LSTM), 170

concept, 150f
implementation, 172–173
networks, 135

usage, 149–153
time series analysis, 152
units, 147–148

Long-term directional price drifts,
influence, 144

Loss function
choice, 155
usage, 210

Low-level cognitive functions, 67, 69
Low-volatility stocks, 168, 169
Lull, Ramon, 42

MaB. See Multi-armed bandit
Machine Consciousness, 247
Machine Intelligence

automation, 18
development, 71
Turing test, 69
usage, 30

Machine Learning (ML), 14, 92
algorithms, 132
approach, 162–163
culture, 31
effectiveness, 75
methodologies, 93

applicability, 56–57
methods, 192

usage, 61
milestones, 47f

ML-based risk solutions, 223
models, combination, 56
pipeline, 55, 55f
process, dynamics, 56
profitability, 145
surge, technology drivers, 81–84
techniques, 149–150, 199

avoidance, 145
usage, 32, 199, 224–227, 230–233

feasibility, 199
validation procedures, 55

Making bets, 161
Manufacturing processes, MDP (usage),

101
MapReduce, 82
Marketability, 161
Market Making (MM), 104

algorithms, 189
efficiency, factors, 176
research studies, 192–193
status, 177–180
strategy, success, 176
trading strategy, 175

Market Making (MM) agent
basic agent, 186
consolidated design, 181
development, 179
extensions, 187
learning algorithms, 185, 187
performance criteria, 185
reward functions, 183–184, 187–188
specification, 182–185
spread-based strategies, 186
state representation, 184–185,

188–189
TD-RL implementation, empirical

results, 185–189
TD-RL performance, 186
trading strategy, 182

Market Making (MM), Machine
Learning (application)

case study, 175
problem, 175–177
process, 176
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Market Making (MM),
Temporal-Difference
Reinforcement Learning
(TD-RL) applications,
180–189

empirical results, 185–189
methodology, 180–181
MM agent specification, 182–185
simulator, 181–182

Marketplace, 1–5
concept, 1
establishment, 2

Markets
conditions

adaptation, 12
adjustment speed, 11

data feeds, noise (filtering), 176
data tensor, 171f
decentralization, 6–7
fluctuations, 111
frictions, impact (investigation), 189
impact, 107

problem, 221
simulation, 108

knowledge, 11
microstructure, 109–111, 145, 177

data, 109, 150
interaction, simulation, 116–117
LOB data, 133

operators, positioning, 231
order revenue, impact, 124
regime, 132
risk, 220–221
state variables, selection, 127
surveillance, Machine Learning

approach, 232–233
usage, 230–233

variables, 112, 121
usage, 123–124

volatility, 5–6, 10
modeling, accuracy, 176

Markov Decision Process (MDP),
93–94, 99, 115, 204

acyclic graph representation, 118f

problem, 212
pseudocode, 119f
risk-adjusted MDP, usage, 212
usage, 210–211

examples, 101
Markovian representation, 184
Markovian trade execution model,

113–114
Markov process

graphical illustration, 100f
memory-less random process, 99

Markov representation, usage, 97
Markov Reward Process, 99
Maspfuhl, Oliver, 217, 218
Matching process, outcomes, 117
Mathematical-based models, 10
Mathematical Engine, 247
Mathematical modeling, 64, 241

advantages, 242
Mathematical models, data inference

(contrast), 240–242
Maximum Drawdown (metric), 173
McAfee, Andrew, 81
McCarthy, John, 41, 44
McCulloch, Warren, 43
Mean absolute position (MAP), 185
Mean-reversion, 143

trading, range trading, 10
Mean-Variance optimization, 162
Mechanical trading, 8
Memorization process, Reinforcement

Learning process phase, 95
Memory organization/retrieval, 70
Metadata-added textual resources, 22
Meta-learning

development, 49–51
methods, classification, 50

Meta-training set, 49
Metric learning (meta-learning

methods), 50
Metropolis (movie), 43
Microstructure data, 61, 93, 108–109,

122, 132–133
Mid-price move, 184
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Mid-price movements
classification, 135
prediction, 151–152

Minsky, Marvin, 44–46
Model Agnostic Meta-Learning

(MAML), 50
Model-based Markov decision process,

98–101
Model-based Reinforcement Learning

agents, 98
Model-free algorithm, 168, 212
Model-free data-driven approach, 204
Model-free Reinforcement Learning,

101–103
agents, 98

Momentum-based strategies, 142
Momentum-like relationship, 143
Monte Carlo (MC) learning method, 120
Monte Carlo (MC) methods, 180, 198
Monte Carlo (MC) model, 208
Monte Carlo (MC) noise, 207
Monte Carlo (MC) paths, 206–207
Monte Carlo (MC) scenarios, 207–208
Monte Carlo (MC) simulation, 200,

204–206
Monte Carlo (MC) valuation method,

207
Moore’s Law, 47–48, 83, 198
Morse, Samuel, 2–3
Multi-agent planning, 45
Multi-agent systems, 67
Multi-armed bandit (MaB)

model, applications, 168
problem, 167

Multilayer neural networks,
usage/training, 147

Multilayer Perceptron (MLP), 202, 209,
220, 227–228, 230

Multinomial Logistic Regression
(MLR), 230

Multistage decision process, 118
Musk, Elon, 48
Mutation operators, application, 80

Naïve baseline strategies, performance
(contrast), 126

Name-specific linear/nonlinear models,
146

Name-specific models, training, 148
National Health Service (Britain), 19
Natural language, 65

translation systems, 44
understanding, 45
usage, 150

Natural Language Processing (NLP),
23, 52, 91–92, 133, 228

methods, 67
Neighbor-based classifiers, 22
Net profit (increase), parameters

(selection), 80
Network architectures, 147, 157,

164–165
choice/implementation, 170
Deep Neural Network architectures,

153, 200
hidden layers, 207
usage, 172

Network switching/routing, MDP
(usage), 101

Net worth allocations, 161
Neural Networks, 65. See also Artificial

Neural Networks
algorithms, 91, 220
architecture, 147f
depth/performance, contrast, 83f
foundations, 43
performance, 201
usage, 45

Nevmyvaka, Feng, and Kearns (NFK),
125–126

Newell, Allen, 44
News outlets (alternative data sets), 35
Newton, Isaac, 239
N features, 60
Ng, Andrew, 56
NN-based demand model, 203
No-arbitrage condition, 201
No-arbitrage metric, 201
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No-arbitrage requirement, 200
Noise, 24, 231

de-noising techniques, 59
filtering, 176
noise-to-signal ratio, 58
random noise, 146
types, 58

Non-algorithmizable problems, 70–71
Non-dampened PnL, 183, 187

reward function, 186
Nonlinear combinations, 165
Nonlinear cost functions, 89
Nonlinearities, 130, 205

capture, 201, 209
control, 132, 137

Nonlinear models, 146
Nonstationary characteristics, 61
Nonstationary data, stationary data

(contrast), 56
Nonstationary price levels, 57–58
Nonstationary processes, 12
Nonstationary time series, 91

data, transformation, 57
Normal (regular) data, 22
Normalization, 23, 60, 141

Batch Normalization (BN) layer, 152
Normalized bid/ask quoting distances,

186
Novel information, availability, 127
Numerical data, 21–22

representation, 22
Numerical low-level data, 90

Object recognition, 67, 70
Observed state, 112
Observed volatility, 198
Off-line training (deep neural network),

135
Off-policy algorithm, 187, 191,

212–213
Off-policy learning, 187
Offspring/current population,

recombination, 80
O’Hara, Maureen, 177

One-way trading problem, 108, 115
Online learning strategy, 186
Online Stochastic Batch Learning

(OSBL) scheme, 170–171
Online training (deep neural network),

135, 171
On-policy algorithm, 187, 191, 212
Open-High-Low-Close (OHLC)

candles, representation, 149
Open outcry trading, 2

demand, reduction, 4–5
Operational risk, 219, 221–223

Machine Learning (ML), usage,
230–233

Operation costs/personnel, 232
Operations Research (scientific

discipline), 52
Optimal action-value function, 101
Optimal Growing strategy, 79
Optimal policy, property, 118
Optimal state-value function, 100
Optimal strategy pseudocode, 121f
Optimization

algorithm, 52
automation, contrast, 104
criterion, steps, 80
principled approach, 145
process, 7, 107
theory, 82
types, 49–50

Optimized execution, 138
policy, 122

Optimized execution problem, 108–109
Reinforcement Learning, formulation

(usage), 112–114
solution, 113–114

Optimized Trade Execution
current status, 114–116
problem, 107–109, 111, 124

Options
future options, 95
markets, trading, 4
put/call options, mixtures, 166



264 INDEX

Options (Continued)
valuation, data-driven approach,

197–198
Order-book, 156

data mining, 218
Order flow (order-flow)

analysis, 176
availability, 146
data, 111, 114, 156
data set, 128

interaction/composition, 116
historical order-flow data, 124
history, 145
information, 156, 172
inputs, 155
price changes, stationary relationship,

136, 149
simulations, 126
tick order-flow data, collection, 127

Orders
consumption, 113
placement, manual errors (risk

reduction), 10
stepping in front, 114

Ordinal data, 22
Organized data, outcome, 27
Outcome space, 54
Out-of-sample, 57, 144

data, 116
set, 148–149, 162

performance, 183, 187, 189, 207
predictions, 130, 140, 145–146
pricing performance, 202
results, 166, 210
risk-adjusted out-of-sample

performance, 181
stability, improvement, 188
test, 132

Out-of-the-money options, 201, 211
Overfitting, 59, 165

avoidance, 49, 148, 226
control, 54
countering, 210
downside, absence, 153

impact, 207
prevention, 155
reduction, 114, 156, 207
result, 233
risk, 121, 153
sign, 143

Over-the-counter (OTC) market, 227
Over-the-counter (OTC) trading

systems, 4

PAC. See Probably approximately
correct

Packets of intent, 233
Paradigm shift, 130, 239–242
Parallel computing, theory, 73
Parameters

increase, 121
random population, initialization, 80

Parametric Rectifying Linear Unit
(PRELU), usage, 152

Parametrized action space, 189
Particle swam optimization, 90
Pascal, Blaise, 42
Passive portfolio management, 161
Pattern recognition, 44, 65, 70, 87, 163

component, 90
scientific discipline, 52

Perception, 70
Perception/intelligence, 25f
Perceptron, 220

multilayer perceptron, 202, 209, 220,
227–228, 230

Performance
criteria, 185
feedback, 94

Pink sheet securities, 3
Pitts, Walter, 43
Plain-vanilla ML-pipeline, 61
Planning, 70
PnL. See Profit and loss
PNL growth profile, 79–80
Policy based Reinforcement Learning

agents, 98
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Policy, Reinforcement Learning Agent
component, 96

Polynomial kernels, 140
Polynomial time, 74
Portfolio

diversification, problem, 160–161
exposure, 9
map, 166
rebalancing, 79
risk profile, 80

Portfolio management
CNN implementation, 172
Deep Reinforcement Learning

approach, 170–174
data, 171
methodology, 170–171

financial portfolio management, MaB
model application, 168

LSTM implementation, 172–173
results, 173–174
RNN implementation, 172–173

Portfolio management, Machine
Learning (application)

case study, 159
methodology, four-step algorithm,

166–167
results, 167

Portfolio modeling, status, 161–163
classic approach, 161–162
ML approach, 162–163

Portfolio optimization, 72
autoencoders, usage, 164–165
deep portfolio approach, 163–167
deep Q-learning algorithm, 169
methodology, 169
problem, Q-learning approach,

167–170
problem statement, 168–169
results, 170

Portfolio Vector Memory (PVM), 171
component, 170

Portion out evenly at bid/ask strategy,
112

Post-digital revolution, 30

Prediction, 27

age, 130
computational machinery,

involvement, 104
horizon, 151
paradigm shift, 130–131

Predictive analytics, 24
usage, 61

Premature mystery reduction, 244
Price, 141–142

changes
bid-ask spreads, contrast, 144
forecasting, multi-class classifier

(development), 134
formation mechanisms

behavior, 143–144

equation, 146

formation process, defining, 144

trend, direction (forecasting), 156

volatility, prediction, 156

Price dynamics, 61, 130, 143

data, 146

dependence, 149

direction, 144

formulation, 198

pattern, 143

prediction, 149

short-term predictability, 178

Price Dynamics Forecast, 176

Price jump concept, 134

Price-move prediction, order flow data,

156

Prior Analytics (Aristotle), 42

Privacy, protection, 53

Private information (alternative data

sets), 35

Private state variables, choice, 127

Private variables, 112, 121, 124

usage, 123
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Probably approximately correct (PAC)
framework, 64, 73–75, 78, 89
learning, theory, 73
model, 73
theory, 72–80

guidelines, 78
Problems

defining, 55
tools, contrast, 68–69

Problem spaces, adaptation barrier, 89
Product reviews (alternative data sets),

35
Profitability, 72

maximization, 143
Profit and loss (PnL)

function, 183
measure, 191
usage, 181

Profit and loss (P&L) optimization, 9
Programmable logic blocks, array,

83–84
Progress, factors, 81f
Proximal Policy Optimization (PPO),

125–126
algorithm, usage, 179

Pseudocode, 119f
optimal strategy pseudocode, 121f

Public records (alternative data
sets), 35

Q(λ), 186
Q-Learner, convergence, 212
Q-learning (QL), 101–102, 120, 168

algorithm, 102, 103f, 190
approach, 167–170
deep Q-learning algorithm, 169
goal, 101
methodology, 120, 170

Q-Learning Black-Scholes (QLBS)
model, 212–214

Q-table, initialization, 102
Qualitative analysis, 23
Qualitative data, 22
Qualitative variables, 20

Quantitative analysis, 23
Quantitative data, 20
Quantitative Finance, 54, 130

data-centric application cultures, 30
developments, 197
field, 131
Machine Learning applications, 58
problems, nonlinearity, 88

Quantitative finance, computational
intelligence

applicability, 91–94
principles, application, 87

Quantitative variables, 20
QuantLib, 207
Quant skills, 40, 247
Q-value function, shift, 123

Race-to-zero, 5
Random Forest, 135, 224

classifiers, usage, 138–140
model (M2), 225
usage, 138

Random noise, 146, 240
Range trading, 10
RBF kernels, usage, 140
Real-time analytics, usage, 32–33
Real-time resolution, 176
Real-world settings, 55
Reasoning, 28, 70

algorithms, provision, 78
formal theory, 42

Rebalance benchmark, 169
Rebalancing

frequency, 161
premium, 79

Re-binning, 22
Receiver Operating Characteristic--Area

Under the Curve (ROC-AUC),
22

Rectified Linear Unit (ReLU), 155,
166–167

Recurrent models (meta-learning
methods), 50
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Recurrent Neural Network (RNN), 147,
170, 224

characteristics, 150
implementation, 172–173
techniques, 149–150
usage, 189

Recursive Neural Networks, 225
Regime changes, 132, 137, 146, 190
Regression method, numerical data

representation, 22
RegTech, 222–223
Regularization techniques, 22, 59
Regulatory compliance

requirements, 232
risk, 222–223

Reinforcement Adaptation, 67
biological systems, relationship, 90

Reinforcement Learning (RL), 50,
94–104

agents
components, characterization,

96–98
types, 98

algorithmic implementations, 116
algorithms, 113
concept, 94f
exploitation component, 95
formulation, usage, 112–114
large-scale empirical application, 115
method, 119f
process phases, 95
profitable policies, 142
requirements, 168
research, interest, 127
RL-based models, implementation,
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