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The design of trading algorithms requires sophisticated mathematical models, a solid anal-

of financial data, and a deep understanding of how markets and exchanges function. 
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or collection of assets, and executing in dark pools. These models are grounded on how 

the exchanges work, whether the algorithm is trading with better informed traders (adverse 
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Algorithmic and High-Frequency Trading is the first book that combines sophisticated 

mathematical modelling, empirical facts and financial economics, taking the reader from 

basic ideas to the cutting edge of research and practice. 

If you need to understand how modern electronic markets operate, what information 

provides a trading edge. and how other market participants may affect the profitability of 

the algorithms, then this is the book for you. 
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Preface 

We have written this book because we feel that existing ones do not provide a 

sufficiently broad view to address the rich variety of issues that arise when trying 

to understand and design a successful trading algorithm. This book puts together 

the diverse perspectives, and backgrounds, of the three authors in a manner that 

ties together the basic economics, the empirical foundations of high-frequency 

data, and the mathematical tools and models to create a balanced perspective 

of algorithmic and high-frequency trading. 

This book has grown out of the authors' interest in the field of algorith­

mic and high-frequency finance and from graduate courses taught at Univer­

sity College London, University of Toronto, Universidad Carlos III de Madrid, 

IMPA, and University of Oxford. Readers are expected to have basic knowl­

edge of continuous-time finance, but it assumes that they have no knowledge 

of stochastic optimal control and stopping. To keep the book self-contained, we 

include an appendix with the main stochastic calculus tools and results that are 

needed. The treatment of the material should appeal to a wide audience and 

it is ideal for a graduate course on Algorithmic Trading at a Master's or PhD 

level. It is also ideal for those already working in the finance sector who wish 

to combine their industry knowledge and expertise with robust mathematical 

models for algorithmic trading. We welcome comments! Please send them to 

algo.trading.book©gmail.com. 

Brief guide to the contents 

This book is organised into three parts that take the reader from the work­

ings of electronic exchanges to the economics behind them, then to the relevant 

mathematics, and finally to models and problems of algorithmic trading. 

Part I starts with a description of the basic elements of electronic markets 

and the main ways in which people participate in the market: as active traders 

exploiting an informational advantage to profit from possibly fleeting profit op­

portunities, or as market makers, simultaneously offering to buy and sell at 

advantageous prices. 

A textbook on algorithmic trading would be incomplete if the development 

of strategies was not motivated by the information that market participants see 

in electronic markets. Thus it is necessary to devote space to a discussion of 
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data and empirical implications. The data allow us to present the context which 
determines the ultimate fate of an algorithm. By looking at prices, volumes, and 
the details of the limit order book, the reader will get a basic overview of some of 
the key issues that any algorithm needs to account for, such as the information 
in trades, properties of price movements, regularities in the intraday dynamics 
of volume, volatility, spreads, etc. 

Part II develops the mathematical tools for the analysis of trading algorithms. 
The chapter on stochastic optimal control and stopping provides a pragmatic 
approach to material which is less standard in financial mathematics textbooks. 
It is also written so that readers without previous exposure to these techniques 
equip themselves with the necessary tools to understand the mathematical mod­
els behind some algorithmic trading strategies. 

Part III of the book delves into the modelling of algorithmic trading strategies. 
The first two chapters are concerned with optimal execution strategies where the 
agent must liquidate or acquire a large position over a pre-specified window and 
trades continuously using only market orders. Chapter 6 covers the classical 
execution problem when the investor's trades impact the price of the asset and 
also adjusts the level of urgency with which she desires to execute the programme. 
In Chapter 7 we develop three execution models where the investor: i) carries 
out the execution programme as long as the price of the asset does not breach 
a critical boundary, ii) incorporates order flow in her strategy to take advantage 
of trends in the midprice which are caused by one-sided pressure in the buy or 
sell side of the market, and iii) trades in both a lit venue and a dark pool. 

In Chapter 8 we assume that the investor's objective is to execute a large 
position over a trading window, but employs only limit orders, or uses both limit 
and market orders. Moreover, we show execution strategies where the investor 
also tracks a particular schedule as part of the liquidation programme. 

Chapter 9 is concerned with execution algorithms that target volume-based 
schedules. We develop strategies for investors who wish to track the overall vol­
ume traded in the market by targeting: Percentage of Volume, Percentage of 
Cumulative Volume, and Volume Weighted Average Price, also known as VWAP. 

The final three chapters cover various topics in algorithmic trading. Chapter 
10 shows how market makers choose where to post limit orders in the book. The 
models that are developed look at how the strategies depend on different factors 
including the market maker's aversion to inventory risk, adverse selection, and 
short-term lived trends in the dynamics of the midprice. 

Finally, Chapter 11 is devoted to statistical arbitrage and pairs trading, and 
Chapter 12 shows how information on the volume supplied in the limit order 
book is employed to improve execution algorithms. 

Style of the book 

In choosing the content and presentation of the book we have tried to provide 
a rigorous yet accessible overview of the main foundational issues in market 
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microstructure, and of some of the empirical themes of electronic trading, us­
ing the US equities market as the one most familiar to readers. These provide 
the basis for a thorough mathematical analysis of models of trade execution, 
volume-based algorithms, market making, statistical arbitrage, pairs trading, 
and strategies based on order flow information. Most chapters in Part III end 
with exercises of varying levels of difficulty. Some exercises closely follow the 
material covered in the chapter and require the reader to: solve some of the 
problems by looking at them from a different perspective; fill in the gaps of some 
of the derivations; see it as an invitation to experiment further. We have set 
up a website, http://www. algorithmic-trading. org, from which readers can 
download datasets and MATLAB code to assist in such experimentation. 

This book does not cover any of the information technology aspects of algo­
rithmic trading. Nor does it cover in detail certain aspects of market quality or 
discuss regulation issues. 
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How to Read this Book 

This book is aimed at those who want to learn how to develop the mathematical 

aspects of Algorithmic Trading. It is ideal for a graduate course on Algorithmic 

Trading at a Master's or PhD level, and is also ideal for those already working in 

the finance sector who wish to combine their industry knowledge and expertise 

with robust mathematical models for algorithmic trading. 

Much of this book can be covered in an intensive one semester/term course 

as part of a Graduate course in Financial Mathematics/Engineering, Computa­

tional Finance, and Applied Mathematics. A typical student at this stage .will 

be learning stochastic calculus as part of other courses, but will not be taught 

stochastic optimal control, or be proficient in the way modern electronic markets 

operate. Thus, they are strongly encouraged to read Part I of the book to: gain 

a good understanding of how electronic markets operate; understand basic con­

cepts of microstructure theory that underpin how the market reaches equilibrium 

prices in the presence of different types of risks; and, study stylised statistical 

issues of the dynamics of the prices of stocks in modern electronic markets. And 

to read Part II to learn the stochastic optimal control tools which are essential 

to Part III where we develop sophisticated mathematical models for Algorithmic 

and High-Frequency trading. 

Those with a solid understanding of stochastic calculus and optimal control, 

may skip Part II of the book and cover in detail Part III. However, we still 

encourage them to read Part I to gain an understanding of the stylised statistical 

features of the market, and to develop a better intuition of why algorithmic 

models are designed in particular ways or with specific objectives in mind. 

For a shorter and more compact course on algorithmic trading, students should 

focus on learning about the limit order book, Chapter 1, then optimal control 

in Part II, and then concentrate on selected Chapters in Part III, for instance 

Chapters 6, 8 and 10. 

Readers in the financial industry who have some knowledge of how electronic 

markets are organised may want to skip Chapter 1 but are encouraged to read the 

other chapters which cover microstructure theory and the empirical and statis­

tical evidence of stock prices before delving into the details of the mathematical 

models in Part III. 



Part I 

Microstructure and Empirical 

Facts 





Introduction to Part I 

In the first part of the book we give an overview of the way basic electronic 

markets operate. Chapter 1 looks at the main practical issues when trading: 

what are the main assets traded and the main types of participants, what drives 

them to trade, and how do they interact. It also looks at the basic functioning of 

an electronic exchange: limit orders, market orders, and other types of orders, as 

well as the limit order book, and basic fee structures. It concludes by looking at 

the way the limit order book is organised and the basic experience of executing 

a trade. 

Chapter 2 provides an overview of the theoretical economics of trading: what 

are the economic forces driving the competitive advantage of market makers 

and other traders and how do they interact. It covers the basic market making 

models that describe how liquidity is affected by inventory risk or the presence 

of better informed traders. It also looks at the market maker's trade-off between 

execution frequency and expected profit per trade, and how informed traders 

optimally exploit their informational advantage by trading gradually to limit 

the information leakage of their impact on order flow. 

Chapters 3 and 4 look at equity market data to provide an overview of some 

of the basic empirical regularities that can be observed. Chapter 3 focuses on 

the time series properties of prices and returns, at daily and intraday frequency. 

It considers such issues as latency and the effects of limitations on price move­

ments, as well as the dynamic structure of price changes, market fragmentation 

in US markets, and the comovement of asset prices that drives trading in pairs 

of assets. Chapter 4 focuses on volume and market quality. It looks at the re­

lationship between volume and volatility, as well as known patterns in volume 

and prices. This is followed by an overview of different measures of liquidity and 

market quality : spreads, volatility, depth and trade size, and price impact. The 

chapter concludes by looking at other issues related to trading such as patterns 

in messages, order cancellations, executions and hidden orders. 



1 Electronic Markets and the Limit 

Order Book 

To understand how electronic markets work we must first understand the con­

text in which trading in financial markets occurs. In this chapter, Section 1.1, we 

provide an overview of how electronic markets function, including short discus­

sions on stocks, preferred stocks, mutual funds and hedge funds. We also discuss 

types of market participants (noise traders, informed traders/arbitrageurs, mar­

ket makers) and in Section 1.2 how they interact. Next, in Section 1.3 we describe 

how electronic exchanges are structured, what limit and market orders are ( as 

well as other order types), how exchanges collect orders in the limit order book 

(LOB), and the fees charged to market participants. Finally, Section 1.4 provides 

details of how the LOB is constructed and how market orders interact with it. 

1.1 Electrnnic markets and how they function 

Many types of financial contracts are traded in electronic markets today, so let us 

briefly and very superficially consider the main ones. The most familiar of these 

are shares or company stocks. Shares are claims of ownership on corporations. 

These claims are used by corporations to raise money. In the US, for these 

shares to be traded in an electronic exchange they have to be 'listed' by an 

exchange, and this implies fulfilling certain requirements in terms of the number 

of shareholders, price, etc. The listing process is usually tied to the first issuance 

of the public shares (initial public offering, or IPO). The fundamental value 

of these shares is derived from the nature of the contract it represents. In its 

simplest form, it is a claim of ownership on the company that gives the owner 

the right to receive an equal share of the corporation's profits (hence the name, 

'share') and to intervene in the corporate decision process via the right to vote 

in the corporation's annual general (shareholders') meetings. Such shares are 

called ordinary shares (or common stock) and are the most common type 

of shares. 

The other primary instrument used by large corporations to raise capital is 

bonds. Bonds are contracts by which the corporation commits to paying the 

holder a regular income (interest) but gives them no decision rights. The differ­

ences between stocks and bonds are quite clear: shareholders have no guarantees 

on the magnitude and frequency of dividends but have voting rights, bondhold-
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ers have guarantees of regular, pre-determined payments and no voting rights. 

There are other instruments with characteristics from both these contracts, the 

most familiar of which is preferred stock. Preferred stock represents a hybrid 

of stocks and bonds: they are like bonds in that holders have no voting rights 

and receive a pre-arranged income, but the income they receive has fewer guar­

antees: its legal treatment is that of equity, rather than debt. This difference is 

especially relevant when the corporation is in financial distress, as debt is senior 

to all equity, so that in case of liquidation, debt holders' claims have priority over 

the corporation's assets -they get paid first. Equity holders, if they get paid, arc 

paid only after all debtholders' claims are settled. 

The universe of financial contracts is separated into different asset classes or 

categories according to the characteristics of the underlying assets. Shares and 

preferred stock belong to Equities. Bonds belong to their own asset class and 

are usually differentiated from cash (investments characterised by short-term 

investment horizons and usually with very heavy guarantees and low returns, 

such as money market accounts, savings deposits, Treasury bills, etc). There are 

also more exotic asset classes such as Foreign Exchange (FX), Commodities, 

Real Estate or Property. An investor will find these different types of assets in 

electronic exchanges, usually in the form of specialised securities such as mutual 

funds and exchange-traded funds (ETFs), which allow investors to invest in 

these asset classes in a familiar, equity-like market which simplifies the process 

of diversification and is associated with greater liquidity. 

A mutual fund is an investment product that acts as a delegated investment 

manager. That is, when an investor buys a mutual fund, the investor gives her 

cash to a financial management company that will use the cash to build a portfo­

lio of assets according to the fund's investment objective. This objective includes 

the fund's assets and investment strategy, and, of course, its management fees. 

The fund's assets can belong to a large number of possible asset classes, including 

all those described above: equities, bonds, cash, FX, real estate, etc. The fund's 

investment strategy refers to the style of investment, primarily whether the fund 

is actively managed or passively tracks an index. 

An investor who puts money in a fund participates in both the appreciation 

and depreciation of the assets as allocated by the fund manager. In order to 

redeem her investment, i.e. to convert her investment into cash, the investor's 

options depend on the type of fund she purchased. There are two main types 

of mutual funds: open-end and closed-end funds. Closed-end funds are mutual 

funds that are not redeemable: the fund issues a fixed number of shares usually 

only once, at inception, and investors cannot sell the shares back to the fund. 

The fund sells the shares initially through an IPO and these shares are listed on 

an exchange where investors buy and sell these shares to each other. 

Open-end funds are funds with a varying number of shares. Shares can be 

created to meet the demand of new investors, or destroyed (bought back by the 

fund) as investors seek to redeem theirs. This process takes place once a day, as 

the value of the fund's (net) assets (its Net Asset Value, NAV) is determined 
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after the market close. Thus, closed-end funds, that do not have to adjust their 

holdings in response to investor demand, have different liquidity requirements 

than open-end funds and thus may trade at prices different from their NAV. 

A very popular type of fund that, like closed-end funds, are traded in electronic 

exchanges, are ETFs. Like mutual funds, ETFs act as delegated investment man­

agers, but they differ in two key respects. First, ETFs tend to have very specific 

investment strategies, usually geared towards generating the same return as a 

particular market index (e.g., the S&P500). Second, they are not obligated to 

purchase investors' shares back. Rather, if an investor wants to return their share 

to the fund, the fund can transfer to the investor a basket of securities that mir­

rors that of the ETF. This is possible because the ETF sells shares in very large 

units (Creation Units) which are then broken up and resold as individual shares 

in the exchange. A Creation Unit can be as large as 50,000 shares. Overall, the 

general perception one gets is that investors who are looking to reduce their 

trading costs and find diversified investments prefer ETFs, while investors who 

are looking for managers with stock-picking or similar unusual skills and who 

aim to beat the market will prefer mutual funds. 

Some investment firms feel that the regulation that is imposed on mutual 

fund managers to ensure they fulfill their fiduciary duties to investors are too 

constraining. In response to this they have created hedge-funds, funds that 

pursue more aggressive trading strategies and have fewer regulatory and trans­

parency requirements. Because of the softer regulatory oversight, access to these 

investment vehicles is largely limited to accredited investors, who are expected 

to be better informed and able to deal with the fund's managers. Although these 

funds are not traded on exchanges, their managers are active participants in 

those markets. 

There are also other securities traded in electronic exchanges; in particular, 

there is a great deal of electronic trading in derivative markets, especially fu­

tures, swaps and options, and these contracts are written on a wide variety of 

assets (bonds, FX, commodities, equities, indices). The concepts and techniques 

we develop in this book apply to the trading of any of these assets, although 

we primarily focus our examples and applications on equities. However, when 

designing algorithms and strategies one must always take into account the spe­

cific issues associated with the types of assets one is trading in, as well as the 

specifics of the particular electronic exchange(s) and the trading objectives of 

other investors one is likely to meet there. 

1.2 Classifying Market Participants 

When designing trading strategies and algorithms, it is important to understand 

the different types of trading behaviour one will probably encounter in these 

exchanges. For instance, one must consider who trades in these exchanges and 

why. Everyone's motivation is clear, they want to make money, but it is essential 
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to consider what drives them to trade -- how it is that they may be looking to 

make money - because in many cases this will interact with our algorithm de­

sign choices and affect whether and how different algorithms achieve the desired 

trading objective. 

Let us start from the creation of the objects of trade we have just discussed. 

The most familiar of these are shares. We have seen that corporations, or rather, 

their managers, issue stocks or equity in order to raise capital. These stocks 

are one of the primary objects of trade which are created when a company goes 

public and goes through the process of having them listed on an exchange, usually 

via an IPO. A corporation issues shares to raise capital for diverse economic 

activities, ranging from manufacturing electronic music players to mining ores 

in remote places. It is important to remember that these shares are claims on 

a corporation and as such are subject to the decisions of the company. Hence, 

one type of participant is corporate managers who create some of the assets 

that are traded in the exchanges, and who will, at times, actively participate in 

the market by increasing or reducing the supply of their corporation's shares, 

e.g., through secondary share offerings (SSOs), share buybacks, stock dividends,

conversion of bonds into shares (and vice versa), etc.

We have also seen that there are other objects traded in exchanges. In equity 

markets we find funds (mutual funds, ETFs) created by financial management 

companies to commercialise their services. These funds manage large numbers of 

financial contracts, are very active participants in electronic exchanges, and orig­

inate a substantial fraction of the trading observed in exchanges. These 'supply­

side' traders Can have long-term investment goals ( e.g., funds which focus on 

'value investing', the kind of strategies epitomised by Warren Buffett) or fo­

cus on very immediate strategies (e.g., ETFs that replicate the returns of the 

S&P500). There are also proprietary traders who trade on a (sometimes real, 

sometimes illusory) trading advantage, which range from the large hedge funds 

we saw earlier, to small individual 'day-traders' moving in and out of asset po­

sitions from their home-offices. Proprietary traders trade on their competitive 

advantage: be it identifying fundamentally mispriced assets, identifying price 

momentum or sentiment-based price changes, having special technical abilities 

to process market information and identify patterns (technical traders), being 

able to time price movements based on news (be it the announcement of gov­

ernment economic figures or processing Twitter feeds), or identifying fleeting 

unjustified price discrepancies between equivalent assets (arbitrageurs). 

Another, very important, group of market participants are 'regular investors' 

and 'fundamental traders'. These are investors who have a direct use for 

the assets being traded. They may be individuals who buy stocks in the hope 

of being able to share in their growth as the corporation increases its economic 

value-creation and its shares appreciate in value. Or, they may want to rebalance 

their investments because of a change in circumstances (in response to a sudden 

need for cash, a change in their taste for risk or their outlook for the future). They 

may be corporations that use financial contracts to hedge risks such as changes in 
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the prices of inputs and outputs from their production activity. Traders in Brent, 
copper, or electricity futures worry about non-financial issues such as the nurnber 
of refineries going offiine for repairs, the discovery of new methods for safely 
transmitting electricity, or whether that tropical storm off the coast of Florida 
is going to turn into a hurricane and make landfall near Miami or Dade. And, 
one cannot ignore that governments also have a stake in market outcomes. They 
may want to manage their currency, issue debt to finance public expenditures, 
or repurchase assets to increase liquidity or maintain market stability. 

The effects of the interaction amongst all these traders is one of the key issues 
studied in the field of market microstructure, which we will familiarise ourselves 
with in Chapter 2, and which helps us structure the concepts and issues behind 
our approach to trading. We differentiate three primary classes of traders ( or 
trading strategies) below. 

1. Fundamental ( or noise or liquidity) traders: those who are driven by eco­
nomic fundamentals outside the exchange.

2. Informed traders: traders who profit from leveraging information not re­
flected in market prices by trading assets in anticipation of their appreciation
or depreciation.

3. Market makers: professional traders who profit from facilitating exchange
in a particular asset and exploit their skills in executing trades.

Usually, one may consider arbitrageurs as a fourth type of trader, though, for 
our purposes we subsume arbitrageurs into informed traders moving in antic­
ipation of price changes. Also, although it is not unusual to bundle noise and 
liquidity traders together, it is unusual to put them together with fundamental 
traders. The term 'Noise traders' is frequently employed to describe trading that 
is orthogonal to any events driving market prices, and 'Liquidity traders' is used 
for traders driven by the need to liquidate or accumulate a position for liquidity 
reasons orthogonal to market events. 

'Fundamental traders', on the other hand, is a term usually reserved for traders 
that have medium- and long-term investment strategies based on detailed anal­
ysis of the actual business activity that underlies the asset being traded. This 
would naturally classify them as informed traders. However, a large fraction of 
their trading strategy arises from portfolio management and risk-return trade­
offs that have very little short-term price information beyond that contained in 
the sheer size of their positions. Thus, from the point of view of a high-frequency 
trading algorithm, it is reasonable to consider them as 'noise' trades relative to 
the specific market events within the algorithm's horizon. Having said this, as 
long as a fundamental trader is trading on information with a short-term price 
impact (such as knowledge of the volume of a substantial change in positions) 

they may also be included in the Informed trader category. 
We can think of market maker types as 'passive' or 'reactive' trading. This is 

trading that profits from detailed knowledge of the trading process and adapts 
to 'the market' as circumstances change, while the first two types represent 
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more 'active' or 'aggressive' trading that only takes place to exploit specific 

informational advantages gained outside of the trading environment noise and 
fundamental traders having only a fleeting effect on short-run movements, while 

informed traders anticipate short-run price movements. This distinction is useful 
when setting up a trading strategy, although the boundary between the two is not 

always clear. Professional traders often leverage informational advantages gained 

from trading practice into the trading strategies they use for market making. 
A common error is to equate market making with liquidity provision and in­

formed trading with the taking of liquidity. Market making activity generally 

favours the provision of liquidity but a particular market making strategy may 
at times provide liquidity while at others demand it. Similarly, informed trading 

does not always occur via aggressive orders, and may at times be better imple­

mented via passive orders that add liquidity. In Chapter 10 we develop algorithms 
for market makers who always provide liquidity to the market. These algorithms 
can be extended to show how market making changes when the market maker 

may take liquidity from the market. Moreover, in Chapter 8 we develop models 

of optimal execution where the agent's strategies both take and provide liquidity. 

L3 Trading in Electronic Markets 

After the who and what of electronic markets, let us look at the how. There 

are many ways to implement an electronic market, though essentially they all 
amount to hav'ing a way for people to signal their willingness to trade, and a 

matching engine to match those wanting to buy with those wanting to sell. 

1.3.1 Orders and the Exchange 

In the basic setup, an electronic market has two types of orders: Market Orders 
(MOs), and Limit Orders (LOs). MOs are usually considered aggressive orders 
that seek to execute a trade immediately. By sending an MO, a trader indicates 

that she wants to buy or sell a certain quantity of shares at the best available 
price, and this will (usually) result in an immediate trade (execution). On the 

other hand, LOs are considered passive orders, as a trader sending in an LO 

indicates her desire to buy or sell at a given price up to a certain, maximum, 
quantity of shares. As the price offered in the LO is usually worse than the 

current market price (higher than the best buy price for sell LOs, and lower 
than the best sell price for buy LOs), it will not result in an immediate trade, 

and will thus have to wait until either it is matched with a new order that wants 

to trade at the offered price (and executed) or it is withdrawn (cancelled). 

Orders are managed by a matching engine and a limit order book (LOB). The 

LOB keeps track of incoming and outgoing orders. The matching engine uses a 

well-defined algorithm that establishes when a possible trade can occur, and if so, 
which criterion is going to be used to select the orders that will be executed. Most 
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Figure 1.1 Snapshots of the NASDAQ LOB after the 10,000th event of the day. Blue 

bars represent the available sell LOs, red bars represent the available buy LOs. 

markets prioritise MOs over LOs and then use a price-time priority whereby, if an 

MO to buy comes in, the buy order will be matched with the standing LOs to sell 

in the following way: first, the incoming order will be matched with the LOs that 
offer the best price ( for buy orders, the sell LOs with the lowest price), then, if the 

quantity demanded is less than what is on offer at the best price, the matching 
algorithm selects the oldest LOs, the ones that were posted earliest, and executes 

them in order until the quantity of the MO is executed completely. If the MO 

demands more quantity than that offered at the best price, after executing all 

standing LOs at the best price, the matching algorithm will proceed by executing 

against the LOs at the second-best price, then the third-best and so on until the 

whole order is executed. LOs that have increasingly worse prices are referred to 

as LOs that are deeper in the LOB, and the process whereby an entering market 
order executes against standing LOs deeper in the LOB is called 'walking the 

book'. Section 1.4 provides a more detailed view on how the LOB is built, and 

how MOs walk the book. 

Figure 1.1 shows a snapshot of the limit order book (LOB) on NASDAQ after 

the 10,000th event of the day for two stocks, FARO and HPQ, on Oct 1, 2013 
(see subsection 3.1.1 for a description of how this is constructed from the raw 

event data). The two are quite different. The one in the left panel corresponds 

to HPQ, a frequently traded and liquid asset. HPQ's LOB has LOs posted at 

every tick out to ( at least) 20 ticks away from the mid price. In the right panel, 

we have FARO's LOB. FARO is a seldom traded, illiquid asset. This asset has 

thinly posted bids and offers and irregular gaps in the LOB. We discuss further 

details of this example in Section 1.4. 

1.3.2 Alternate Exchange Structures 

The above approach is not the only possible way to organise an exchange. For 
example, one could use an alternative matching algorithm, such as the prorata 

rules used in some money markets. With a prorata rule, MOs are matched 
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against the posted LOs available at the best price, in proportion to the quantities 

posted - there is no time-priority rule. There are also markets, e.g. in futures, 

that mix the two, pro-rata and time-priority. 

In addition to this basic setup there are a number of variations in the way 

exchanges organise offers and trades. For example, some markets introduce an 

additional priority to orders coming from a certain type of trader ( either a des­

ignated market maker, or, in some markets, a designated supply-side trader). 

Many exchanges also use auctions at particular points in time. It is quite typical 

to have an initial and/ or a closing auction, that is an auction at the start of the 

trading day and/or an auction to close the market. In addition, an exchange will 

use an auction after a market trading halt (e.g., after a volatility limit has been 

triggered) so as to smooth the transition back to active trading. 

Another dimension of importance when characterising an exchange is the de­

gree (and cost) of transparency. In the US there is clear (legal) distinction be­

tween regulated exchanges (such as NASDAQ and NYSE) which have specific 

obligations to publish information regarding the status of their LOBs, and other 

electronic markets (electronic crossing networks (ECNs), dark pools, and broker­

dealer internalisation). Beyond the legal definitions, we generically distinguish 

lit ( open order book) from dark markets based on whether limit book informa­

tion is publicly available or not. Within lit markets there are many differences 

on how and at what price information is available. For example, NASDAQ has 

an order-based book reporting mechanism whereby the exchange records every 

message, and each LO is assigned an order identification number which can then 

be used to match the order with subsequent events, such as cancellations or ex­

ecutions. Other markets (NYSE and NYSE MKT / AMEX in particular) use the 

level-book method, whereby the market receives a message every time there is an 

event that impacts the order book, but does not keep tabs on posted orders so 

they cannot be matched with subsequent cancellations or executions. Through­

out this book, most of the algorithms that we develop assume that the agent is 

trading in a lit market where she can observe the LOB. However, in Chapter 7 

we discuss dark pools and develop algorithms for optimal execution when the 

agent simultaneously trades in a lit and dark market. 

1.3.3 Colocation 

Exchanges also control the amount and degree of granularity of the information 

you receive ( e.g., you can use the consolidated/public feed at a low cost or pay 

a relatively much larger cost for direct/proprietary feeds from the exchanges). 

They also monetise the need for speed by renting out computer/server space 

next to their matching engines, a process called colocation. Through coloca­

tion, exchanges can provide uniform service to trading clients at competitive 

rates. Having the traders' trading engines at a common location owned by the 

exchange simplifies the exchange's ability to provide uniform service as it can 

control the hardware connecting each client to the trading engine, the cable (so 
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1.3.4 

all have the same cable of the same length), and the network. This ensures that 

all traders in colocation have the same fast access, and are not disadvantaged (at 
least in terms of exchange-provided hardware). Naturally, this imposes a clear 

distinction between traders who are colocated and those who are not. Those not 

colocated will always have a speed disadvantage. It then becomes an issue for reg­

ulators who have to ensure that exchanges keep access to colocation sufficiently 
competitive. 

The issue of distance from the trading engine brings us to another key dimen­

sion of trading nowadays, especially in US equity markets, namely fragmentation, 

which we discuss in greater detail in Section 3.6. A trader in US equities markets 

has to be aware that there are up to 13 lit electronic exchanges and more than 40 

dark ones. Together with this wide range of trading options, there is also specific 

regulation (the so-called 'trade-through' rules) which affects what happens to 

market orders sent to one exchange if there are better execution prices at other 

exchanges. The interaction of multiple trading venues, latency when moving be­

tween these venues, and regulation introduces additional dimensions to keep in 
mind when designing successful trading strategies. 

Extended Order Types 

The role of time is fundamental in the usual price-time priority electronic ex­

change, and in a fragmented market, the issue becomes even more important. 

Traders need to be able to adjust their trading positions fast in response to or in 

anticipation of changes in market circumstances, not just at the local exchange 

but at other markets as well. The race to be the first in or out of a certain 
position is one of the focal points of the debate on the benefits and costs of 

'high-frequency trading'. 

The importance of speed permeates the whole process of designing trading 

algorithms, from the actual code, to the choice of programming language, to 

the hardware it is implemented on, to the characteristics of the connection to 
the matching engine, and the way orders are routed within an exchange and 

between exchanges. Exchanges, being aware of the importance of speed, have 

adapted and, amongst other things, moved well beyond the basic two types of 

orders (MOs and LOs). Any trader should be very well-informed regarding all 
the different order types available at the exchanges, what they are and how they 

may be used. Some examples of the types of orders that you may find are: 

- Day Orders: orders for trading during regular trading with options to extend

to pre- or post-market sessions; 

- Non-routable: there are a number of orders that by choice or design avoid

the default re-routing to other exchanges, such as 'book only', 'post only', 
'midpoint peg', ... ; 

- Pegged, Hide-not-Slide: orders that move with the midpoint or the national

best price; 
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- Hidden: orders that do not display their quantity;

- Iceberg: orders that partially display their quantity (some have options so

that the visible portion will automatically be replenished when it is depleted 

by less than one round lot); 

- Immediate-or-Cancel: orders that execute as much as possible at the best

price and the rest are cancelled (such orders are not re-routed to another 

exchange nor do they walk the book); 

- Fill-or-Kill: orders sent to be executed at the best price in their entirety or

not at all; 

- Good-Till-Time: orders with a fixed lifetime built into them so that they

will be cancelled if not executed by its expiration time; 

- Discretionary: orders display one price (the limit price) but may be executed

at more aggressive (hidden) prices; 

and there are a myriad other variations on the classic JVIOs and LOs. 

When coding an algorithm one should be very aware of all the possible types of 

orders allowed, not just in one exchange, but in all competing exchanges where 

one's asset of interest is traded. Being uninformed about the variety of order 

types can lead to significant losses. Since some of these order types allow changes 

and adjustments at the trading engine level, they cannot be beaten in terms of 

latency by the trader's engine, regardless of how efficiently your algorithms are 

coded and hardwired. 1 Later, when developing the mathematical algorithms in 

Part III of the book, we assume that the agents employ MOs and LOs and that 

when LOs are cancelled this is done in full. 

Exchange Fees 

Another important issue to be aware of is that trading in an exchange is not free, 

but the cost is not the same for all traders. For example, many exchanges run 

what is referred to as a maker-taker system of fees whereby a trader sending an 

MO (and hence taking liquidity away from the market) pays a trading fee, while 

a trader whose posted LO is filled by the MO (that is, the LO with which the 

MO is matched) will a pay much lower trading fee, or even receive a payment 

(a rebate) from the exchange for providing liquidity (making the market). On 

the other hand, there are markets with an inverted fee schedule, a taker-maker 

system where the fee structure is the reverse: those providing liquidity pay a 

higher fee than those taking liquidity (who may even get a rebate). The issue of 

exchange fees is quite important as fees distort observed market prices (when you 

make a transaction the relevant price for you is the net price you pay /receive, 

1 The importance of order types, their use, and the transparency with which they are 

documented is a key issue. The trader Haim Bodek has made a number of public 

statements in the last few years that illustrate this. 
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which is the published price net of fees), and their effect in a fragmented market 

is strongly debated.2 

1.4 The Limit Order Book 

Having seen how complex things can get, let us start from the most basic de­

scription of the LOB and illustrate it first using an artificial LOB, and later 

(Figure 1.4) with some actual examples, using detailed message data from two 

assets, HPQ and FARO, on the NASDAQ stock exchange. 

Addition of LO to LOB. As mentioned above, electronic exchanges are, at 

their most basic, described by an LOB and a matching algorithm. We discussed 

how price-time priority works: an incoming LO joins the LOB at the order's 

price and is placed last in the execution queue at that price. This is illustrated 

in an artificial LOB, in Figure 1.2. In this figure, LOs are displayed as blocks of 

length equal to their quantities. LOs are ordered in terms of time priority from 

right to left, so that when a new buy LO comes in at $23.09 (the purple block 

in the bottom panel of Figure 1.2) it will be added to the line of blocks already 

resting at that price. This new LO joins the queue at the point closest to the 

y-axis, becoming the third LO waiting to be executed at $23.09.

MO walks the LOB or is re-routed. Suppose we are looking at the venue

with the LOB depicted at the top of Figure 1.2. Assume that this venue's best 

2 Colliard & Foucault (2012) provide a very clear theoretical overview of the role of trading 
fees and their effects on the relationship between quoted and underlying prices. 
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bid is the best buy quote that the market, across all venues, currently displays. 

A new MO (to·sell) 250 shares enters this market as depicted by the sum of the 

green blocks in the top 'panel of Figure 1.3. The matching engine goes through 

the LOB, matching existing (posted) LOs (to buy on the bid side) with the 

entering MO following the rules in the matching algorithm. In the LOB there 

are two LOs at the best bid $23.09, represented by the two red blocks, both for 

100 units, totalling 200 units. These 200 units are executed at the best bid. 

What happens to the final 50 units depends on the order type and the market 

it is operating in. In a standard market, the remaining 50 units will be executed 

against the LOs standing at $23.08 ordered in terms of time-priority (the MO 

will 'walk the book'). This is captured by the top panels in Figure 1.3: the left 

panel shows that the MO coming in is split into three blocks, the first two are 

matched with LOs at $23.09 and the last with the LOs at $23.08. After the MO 

is fully executed the remaining LOB is shown in the top right panel of Figure 

1.3. 

As we mentioned in subsection 1.3.3, in the US, there are order protection 

rules to ensure MOs get the best possible execution, and which ( depending on 

the order type) may require the exchange to re-route the remaining 50 units to 

another exchange that is also displaying a best bid price of $23.09. In this case, 

as shown in the bottom left panel of Figure 1.3, part of the remaining 50 units 

(the light blue block) is re-routed to another venue(s) with liquidity posted at 

$23.09. Only once all liquidity at $23.09 in all exchanges is exhausted, can the 
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remaining shares of the MO return and be executed in this venue against any LO 
resting at (the worse price of) $23.08. In this example, 25 units were re-routed to 
alternate exchanges, and 25 units returned to this venue and walked the book. 

The MO could in principle be an Immediate-or-Cancel (IOC) order, which 
specifies that the remaining 50 shares that cannot be executed at the best bid 
should be cancelled entirely. 

Because of these order protection rules (trade-through rules - there is no such 
rule in European markets), you will very seldom observe in the US an MO walking 
the book straight away. Rather, you may see a large MO being chopped up and 
executed sequentially in several markets in a very short span of time. This also 
implies that as depth disappears (as during the Flash Crash of May 6th, 2010) an 
MO at the end of a sequence of other orders may be executed against very poor 
prices, and, in the worst circumstances it may be matched with stub quotes 
- LOs at prices so ridiculous that clearly indicate they are not expected to be
executed (such trades were observed during the Flash Crash in the following
assets: JKE, RSP, Excelon, Accenture, amongst others). Thus, the LOB serves
to keep track of LOs and apply the algorithm that matches incoming orders to
existing LOs.

The LOB is defined on a fixed discrete grid of prices (the price levels). The 
size of the step ( the difference between one price level and the next) is called 
the tick, and in the US the minimum tick size is 1 cent for all stocks with a 
price above one dollar. In other markets several different tick sizes coexist. For 
example, in the Paris Bourse or the Bolsa de Madrid, tick sizes can range from 
0.001 to 0.05 euros depending on the price the stock is trading at. 

Figure 1.1 shows a sample plot of the limit order book (LOB) on NASDAQ 
after the 10,000th event of the day for two stocks, FARO and HPQ, on Oct 1, 
2013. In blue you find the sell LOs -traders willing to wait to be able to sell 
at a high price. The best sell price, the ask, is $21.16, while the best buy price, 
the bid, is $21.15. The difference between the ask and the bid price, the quoted 
spread is 

Quoted Spreadt = P? - Pt , 

(where P/ and Pt are the best bid and ask prices), which in this case, is one 
cent - the minimum quoted spread. However, some times the bid is equal to 
the ask and the spread is zero. In that case, the market becomes locked, but 
if this happens, it tends not to last long - although for some very liquid assets 
it is becoming an increasingly more frequent event. Another common object 
used when describing the LOB is the midprice. The midprice is the arithmetic 
average of the bid and the ask: 

Midpricet = ½(P? +Pt). 

It is often used to proxy for the true underlying price of the asset - the price for 
the asset if there were no explicit or implicit trading costs ( and hence no spread). 

As pointed out earlier, the two LOBs shown in Figure 1.1 are quite different. 
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Figure 1.4 Time series of the changes in 

the LOB for the three assets HPQ, 
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The one in the left panel corresponds to HPQ, a frequently traded and liquid 

asset. HPQ's LOB has LOs posted at every tick out to (at least) 20 ticks away 

from the midprice and the spread is the minimum spread of 1 tick. In the right 

panel, we have FARO's LOB. FARO is a seldom traded, illiquid asset. This asset 

has thinly posted bids and offers and irregular gaps in the LOB. The spread is 20 

ticks (20 cents) on a (approximately) $41 priced asset. The difference in liquidity 

between these assets is also noticeable from the time at which the 10,000th event 

of the day takes place for these assets. For HPQ, the 10,000th event corresponds 

to a timestamp of about 9:42 a.m. (less than 15 minutes after the market opened), 

while for FARO the 10,000th event did not occur until about 12:04 p.m. (more 

than two and a half hours after market open). Also note that there are less than 

100 units posted if we sum together the depth at the best two price levels on the 

bid and ask for FARO, while for HPQ there are more than 1,000 shares offered 

in those first two levels of the LOB - HPQ thus has much greater depth. If one 

takes into account that FARO trades at a price which is twice as high as that of 

HPQ, the depth in terms of dollar value of shares posted at those prices is also 

much greater for HPQ. 

The snapshot shown in Figure 1.1 only illustrates a static version of the LOB; 

however, its dynamics are quite interesting and informative. In Figure 1.4, we 

show how the LOB evolves through time (over 5 minutes) for three different 

stocks, HPQ, NTAP and ORCL. On the x-axis is time in minutes, and on the 

y-axis are prices in dollars. The static picture we saw in Figure 1.1 is captured by
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the shaded blue and red regions - the blue regions on top represent the ask side of 
the LOB, the posted sell volume, while the bid side is below in red, showing the 
posted buy volume. The best prices, the bid and ask are identified by the edges 
of the intermediate light shaded beige region, which identifies the bid-ask spread. 
Volume at each price level, which was captured in Figure 1.1 by horizontal bars, 
is now illustrated by the size of the shaded region just above/below each price 
level, although the height of these regions is no longer linear, but a monotonic 
non-linear transformation that is visually more illustrative. 

In addition, Figure 1.4 identifies when incoming orders were executed. The 
red/blue circles indicate the time, price and size (indicated by the size of the 
circle) of an aggressive MO which is executed against the LOs sitting in the LOB. 
When a sell MO executes against a buy LO, it is said to hit the bid; analogously, 
when a buy MO executes against a sell LO, it is said the lift the offer. The 
brown solid line depicts a variation of the asset known as the microprice defined 
as 

11 ,r· · v/ pa ½a
pb 1vncropncet =

b t 
+ 

b t ,
½ + ½a v_; + v_;a 

where 17tb and ½a are the volumes posted at the best bid and ask, and P/ and
Pt are the bid and ask prices. The microprice is used as a more subtle proxy for 
the asset's transaction cost-free price, as it measures the tendency that the price 
has to move either towards the bid or ask side as captured by number of shares 
posted, and hence indicates the buy (sell) pressure in the market. If there are 
a lot of buyers (sellers), then the microprice is pushed toward the best ask/bid 
price to reflect the likelihood that prices are going to increase (decrease). We 
explore the microprice and the effect of the relative volumes on the bid and ask 
side in more depth in Chapter 12 when developing algorithms that take into 
account volume imbalances in the LOB. 
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2 A Primer on the Microstructure of 

Financial Markets 

To understand the issues and problems faced in the design and implementation 

of trading strategies, we must consider the economics that drive these trading 

strategies. To do this we look to the market microstructure literature. Section 2.1 

considers the basic market making model that focuses on inventory and inventory 

risk, as well as the trade-off between execution frequency and profit per trade. 

It also looks at the conceptual basis for the basic measures of liquidity. The last 

two sections look at trading when there are informational differences between 

traders. Section 2.2 from the point of view of the better informed trader, and 

Section 2.3 from that of the less informed market maker. 

For the ecomomics of trading we look to market microstructure, as it is the 

subfield of finance which focuses on how trading takes place in very specific 

settings: it "is the study of the process and outcomes of exchanging assets un­

der explicit trading rules" (O'Hara (1995)). Thus, it encompasses the subject of 

this book, algorithmic and high-frequency trading. It is within the microstruc­

ture literature that we find studies of the process of exchanging assets: trading 

strategies, and their outcomes: asset prices, volume, risk transfers, etc. 

A key dimension of the trading and price setting process is that of information. 

vVho has what information, how does that information affect trading strategies, 

and how do those trading strategies affect trading outcomes in general, and 

asset prices in particular. Forty years ago finance theory introduced the tools to 

explicitly incorporate and evaluate the notion of price efficiency, the idea that 

"market prices are an efficient way of transmitting the information required to 

arrive at a Pareto optimal allocation ofresources" ( Grossman & Stiglitz (1976)). 

This dimension naturally appears in microstructure studies which look into the 

details of how different trading rules and trading conditions incorporate or hinder 

price efficiency. vVhat differentiates microstructure studies from more general 

asset pricing ones is that they focus on two aspects that are key to trading: 

liquidity and price discovery, and these are the two primary aspects that drive 

the questions and issues behind the design of effective algorithmic and high­

frequency trading.1 

Trading can take place in a number of possible ways: via personal deals settled 

over a handshake in a club, via decentralised chat rooms where traders engage 

1 Abergel, Bouchaud, Foucault, Lehalle & Rosenbaum (2012) provides a general overview of 
the determinants and effects of liquidity in security markets and related policy issues. 



20 A Primer on the Microstrnctme of Financial Markets 

each other in bilateral personal transactions, via broker-intermediated over-the­

counter (OTC) deals, via specialised broker-dealer networks, on open electronic 

markets, etc. Our focus is on trading and trading algorithms that take place in 

large electronic markets, whether they be open exchanges, such as the NASDAQ 

stock market, or in electronic private exchanges (run by a broker-dealer, a bank, 

or a consortium of buy-side investors). 

2.1 Market Making 

As we saw in Chapter 1, an important type of market participant is the 'passive' 

market maker (MM), who facilitates trade and profits from making the spread 

and from her execution skills, and must be quick to adapt to changing market 

conditions. Another type is the 'active' trader, who exploits her ability to an­

ticipate price movements and must identify the optimal timing for her market 

intervention. We start with the first group, the 'passive' traders. 

Because we are focusing on trading in active exchanges, it is natural to assume 

that there are many market makers (MMs) in competition. Naturally, trading in 

a market dominated by a few MMs would need to additionally incorporate how 

the MMs exercise their market power and how it affects the market as a whole. 

MMs play a crucial role in markets where they are responsible for providing 

liquidity to market participants by quoting prices to buy and sell the assets being 

traded, whether they be equities, financial derivatives, commodities, currencies, 

or others. A key dimension of liquidity as provided by MMs is immediacy: the 

ability of investors to buy ( or sell) an asset at a particular point in time without 

having to wait to find a counterparty with an offsetting position to sell ( or 

buy). By quoting buy and sell prices ( or posting limit orders (LOs) on both 

sides of the book), the MM is willing to provide liquidity to the market, but 

in order to make this a sustainable business the MM quotes a buy price lower 

than her quoted sell price. For example an MM is willing to purchase shares 

of company XYZ at $99 and willing to sell at $101 per share. Note that by 

posting LOs, the MM is providing liquidity to other traders who may be looking 

to execute a trade quickly, e.g. by entering a market order (MO). Hence, we 

have the usual dichotomy that separates MMs as liquidity providers from other 

traders, considered as liquidity takers. 

If our MM is the one offering the best prices, so that the ask is $101 and 

the bid $99, then the quoted spread is $2. There are a number of theories that 

explain what determines the spread in a competitive market. Before delving into 

some of these theories, we consider the issues faced by someone willing to provide 

liquidity. 
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The first issue faced by an MM when providing liquidity is that by accepting one 
side of a trade (say buying from someone who wants to sell), the MM will hold 
an asset for an uncertain period of time, the time it takes for another person 
to come to the market with a matching demand for liquidity ( wanting to buy 
the asset the MM bought in the previous trade). During that time, the MM is 
exposed to the risk that the price moves against her (in our example, as she 
bought the asset, she is exposed to a price decline and hence having to sell the 
asset at a loss in the next trade). 

Recall that the MM has no intrinsic need or desire to hold any inventory, so 
she will only buy (sell) in anticipation of a subsequent sale (purchase). Grossman 
& Miller (1988) provide a model that captures this problem and describes how 
MMs obtain a liquidity premium from liquidity traders that exactly compensates 
MMs for the price risk of holding an inventory of the asset until they can unload 
it later to another liquidity trader. 

Let us consider a simplified version of their model, with a finite number, n, of 
identical MMs for some given asset and three dates t E {1, 2, 3}. To simplify the 
situation, there is no uncertainty about the arrival of matching orders: if at date 
t = l a liquidity trader, denoted by LTl, comes to the market to sell i units of 
the asset, there will be (for sure) another liquidity trader (LT2) who will arrive 
at the market to purchase i units ( or more generally, to trade -i units, so that 
LTl's trade (of i units) could be negative or positive (LTl could be buying or 
selling). However, LT2 does not arrive to the market until t = 2. Let all agents 
start with an initial cash amount equal to W0 , MMs hold no assets, LTl holds i
units and LT2 -i units. 

There are no trading costs or direct costs for holding inventory. The focus is on 
price changes: the asset will have a cash value at t = 3 of S3 = µ + E2 + E3, where 
µ is constant, E2 and E3 are independent, normally distributed random variables 
with mean zero and variance o-2

. These will be publicly announced between dates 
t-1 and t, that is E3 is announced between t = 2 and t = 3, and E2 is announced 
between t = l and t = 2. Hence, the realised cash value of the asset can increase 
or decrease (ignore the fact that there are realisations of E2 and E3 that could 
make the asset value negative - the model serves to illustrate a point). Because 
the shocks to the value of the asset are on average zero a risk-neutral trader 
has no cost at all from holding the asset. The model becomes interesting if we 
assume that all traders, MMs and liquidity traders, are risk-averse. To be more 
specific, suppose they have the following expected utility for the future random 
cash value of the asset (X3): lE [U (X3)] where U (X) = -exp (-,X), and where 
1 > 0 is a parameter capturing the utility penalty for taking risks ( the risk 
aversion parameter). 

Solving the model backwards we obtain a description of trading behaviour and 
prices. At t = 3 the cash value of the asset is realised, S3 = µ + E2 + E3. At t = 2, 
the n MMs and LTl come into the period with asset holdings qfIM and qfTl 
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respectively. LT2 comes in with -i and they all exit with asset holdings q�, where 
j E {MM,LT1,LT2}. Note that if, for example, qi= 2 this denotes that agent 
j is holding 2 units when exiting date t, so that the agent will be long (that is, 
has an inventory of) two units. Given the problem as described so far, at t = 2 
agent j chooses q� to maximise his expected utility knowing the realisation of E2 that was made public before t = 2: 

subject to 
mtx!E [ U ( xO I E2] 

q2 

Xj xj j s 
3 

= 2 
+ q2 3, 

These two constraints capture: 
(i) the fact that the cash value of the agent's assets at t = 3, X3 , is equal to the 

agent's cash holdings at t = 3, which is equal to X2 plus the cash value of the 
agent's asset inventory q�, and 

(ii) the fact that the cash value of the agent's assets when exiting date t = 2 (X2 , 

and the inventory q�) was equal to the cash value of the agent's assets when 
entering date t = 2 ( X1, and the inventory qi). 
Given the normality assumption and the properties of the expected utility 

function it is straightforward to show that 
IE [ u (xO I E2] = - exp {-1 ( X� + q� IE[S3 I E2 J) + �,y2 ( q�) \-2 } 

Thus, the problem is concave and the solution is characterised by 
J,* _ IE[S3 I E2] - S2qz - 2 ' 10" 

for all agents: the n MMs, LTl, and LT2. 
As at date t = 2 demand and supply for the asset have to be equal to each 

other, we can solve for the equilibrium price S2 : 

(2.1) 
where we use the convention that qf TZ, the assets LT2 came into period 2 with, 
is equal to his desired trade, -i. As we have established above, all q� are equal, 
so that the right-hand side of the above equation is equal to 

n q!(1M + qfTl + qfT2 
= (n + 2) IE[S3 I E21- S2

10" (2.2) 
We also know that at date 1 the total quantity of the asset available was equal 
to the quantity of assets LTl brought to the market, so that the LHS of (2.1) is 

nqf!M + qfTl + qfT2 
= 

i + qfT2 
= 

i - i 
= 

Q. 
Hence, substituting into (2.2) and solving, we obtain that in equilibrium, at date 
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Figure 2.1 Trading and price setting in the Grossman�Miller model. 

t = 2, S2 = JE[S3] = µ + E2 + lE[e3] = µ + E2, and therefore, q; = 0. This makes
sense, as at t = 2 there are no asset imbalances, the price of the asset reflects 
its 'fundamental value' ( efficient price) and no one will want to hold a non-zero 
amount of the risky asset. This analysis is captured in the bottom half of Figure 
2.1, where we see the asset holdings of the three types of participants as they 
enter t = 2, q{, j E {MM,LTl,LT2}, and how after trading at a price equal to 
S2 they end up with holdings, q;, equal to zero. 

Consider now what happens at date t = l. Participating agents (the n MMs 
and LTl � recall that LT2 will not appear until t = 2) anticipate that whatever 
they do, the future market price will be efficient and they will end up exiting 
date t = 2 with no inventories, so that X3 = X2. Thus, their portfolio decision 
is given by 

subject to 

Repeating the analysis oft = 2 at t = l, we obtain that the optimal portfolio 
solution is 

for all agents, j, that are present: the n MMs, and LTl. Also, at date t l 
demand and supply for the asset have to be equal to each other, so that 

where qf;Tl = i (recall that if i > 0, LTl is holding i shares he wants to sell), 
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2.1.2 

and qf/1vI = 0. This gives us the following equation: 
µ - S1 2 i 't=(n+l)-- {==? S1=µ- 1CJ --. 

rCJ2 n + 1 
The top half of Figure 2.1 reflects how the MMs and LTl enter the market with 
asset holdings qb and after trading at S1 they exit date one and enter date t = 2 
with qi.

vVith this expression we can interpret how the market reaches a solution for 
LTl's liquidity needs: LTl, a trader who wants to sell a total of i > 0 units at 
t = 1, finds that there is no one currently in the market with a balancing liquidity 
need. There are traders in the market, but they will not accept trading at the 
efficient price of µ because if they do, they will be taking on risky shares ( they 
are exposed to the price risk from the realisation of E2) without compensation. 
But, if they receive adequate compensation (which we call a liquidity discount, 
as for i > 0, S1 < IE[S2 ] =µ),the n MMs will accept the LTl's shares. However, 
LTl is price-sensitive, so if he has to accept a discount on the shares, he will not 
sell all the 't shares at once. In equilibrium, both the n MMs and LTl end up 
holding q{'* = n�l units of the asset each, that is LTl sells n�l i units and holds 
on to n� 1 units to be sold later. Trading occurs at a price below the efficient 
price, S1 = µ,-1CJ2 n�l. The difference between the trading price and the efficient 
price, namely IS1 -µI = 11CJ2 

n�l I, represents the (liquidity) discount the MMs 
receive in order to hold LTl's shares. This size of the discount is influenced by 
the variables in the model: the size of the liquidity demand (Iii), the amount 
of competition amongst MMs (captured by n), the market's risk aversion b),

and the risk/volatility of the underlying asset (CJ2). These variables all affect 
the discount in an intuitive way: the size of the liquidity shock, risk aversion, 
and volatility all increase the discount, while competition reduces it. This occurs 
when LTl wants to sell, i.e. i > 0. If LTl wanted to buy, i < 0, then the solution 
would be the same except that instead of a discount, the MMs would receive a 
premium equal to IS1 -µI per share when selling to LTl. 

From this analysis we can also see that as competition (n) increases, the liq­
uidity premium goes to zero, the price converges to the efficient level, S1 = µ,

and LTl 's optimal initial net trade, qf Tl,* -qf;Tl, converges to his liquidity need 
( i). 

Trading Costs 

We have seen how the Grossman & Miller (1988) framework helps to understand 
how the cost of holding assets (in this case, via the uncertainty it generates 
to the risk-averse MMs) affects liquidity via the cost of trading (IS1 -µI) and 
the demand for immediacy (as at t = 1 LTl only executes n�l i rather than her 
desired i). Also, competition between MMs is crucial in determining these trading 
costs. But what drives n? A natural answer is that n is driven by the trading 
costs borne by the MMs. In this case, we must distinguish between participation 
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costs, which are needed to be present in the market and do not depend on trading 
activity, and trading costs that do depend on trading activity, such as trading 
fees (which we ignored in the previous analysis). 

Grossman & Miller (1988) link competition, n, with participation costs. They 
do this by introducing an earlier stage to the model in which potential MMs 
decide whether they want to actively participate in the market and provide liq­
uidity or prefer to do something else. The decision is determined as a function 
of a participation cost parameter c which proxies for the time and investments 
needed to keep a constant, active and competitive presence in the market, as 
well as the opportunity cost the MM gives up by being in the market and not 
doing something else. The conclusion, which can be obtained without going into 
the details of the analysis, is that the level of competition decreases monoton­
ically with supplier's participation costs. Thus, participation costs, proxied by 
the cost parameter c, increase the size of the liquidity premium (via its effect on 
competition, n). 

The parameter c captures the fixed costs of participating in the market, but 
we could also consider introducing into the model a cost of trading that depends 
on the level of activity in the market. In particular, we introduce trading costs 
that depend on the quantity traded, like actual exchange trading fees. Exchange 
trading fees are usually proportional to dollar-volume but here, for simplicity, 
we use fees proportional to number of shares traded parameterised by rJ. Given 
that fees are known, these fees act like a participation cost for liquidity traders. 

The first effect of having rJ > 0 is that liquidity traders with a desired trade 
(Iii) that is small relative to trading fees, will find trading too expensive and 
refrain from trading ( we invite the interested reader to compute the minimum 
desired trade size i as a function of rJ). For sufficiently large desired trades ( so 
that trading is preferred to not trading by all participants) the model gives us the 
following solution. Suppose every trader pays rJ per share regardless of whether 
they are buying or selling the asset. To simplify, assume that any remaining 
inventories after t = 2 are liquidated at t = 3. Also, assume LTl wants to sell 
Iii units (i > 0), and LT2 wants to buy the same amount (the reverse case looks 
the same but the trading fees enter the problem with the opposite sign). 

At t = 2, since the MMs and LTl enter the period with a positive inventory 
(and will be wanting to sell now or at t = 3) their optimal final period holdings 
are 

while the demand for shares by LT2 is 

LT2 E[S3 + rJ I E2] - (S2 + rJ) 
qz = 

2 
• 

''
W

As everyone anticipates that their trading positions need to be liquidated anyway, 
the trading fees do not affect the price at t = 2, and we obtain S2 = E[S3 J E2] =

µ + Ez (as before when there were no fees, rJ = 0). 
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At t = 1, LTl has a similar position to that at t = 2, as any quantities he
doesn't sell now he will have to sell later, so that 7/ disappears from the solution
and his supply will be given by:

LTl JE[S2 -TJ] -(S1 -7/) ql = 2 
. 10" 

On the other hand, MMs anticipate that whatever they buy, they will have to
sell later, which changes their asset demand functions to

MM JE[S2 -7/] -(S1 + 7/) ql = 2 
. 10" 

The resulting market equilibrium condition is now
. - MM

+ 
LTl - µ -S1 

+ 
µ -S1 -27)

i - n ql ql 
-

--2- n 2 10" 10" 
This gives us the following equation:

i=(n+l)----- � S1 =µ-10"2---2 -- 7/ ,. µ -S1 2 nT} i ( n ) 10"2 10"2 n + l n + l 
and recall that for LTl, i > 0.

Thus, we conclude that the presence of trading fees introduces an extra liq­
uidity discount to the initial price S1. What the model tells us is that almost
all the trading fees are paid by the liquidity trader initiating the transaction: he
pays his own trading fee, 7/ per share, plus a substantial fraction ( n/ ( n + l)) of
the two transaction fees paid by the MMs (27/) though indirectly, via a lower sale
price, a lower S1 . It also affects the immediacy he obtains from the market, as
his holdings at the end oft= 1 are no longer qfTl ,* = -i/(n + 1) but 

qLTl ,* = _i_· -
+ 2 (-n-) ...!}_

1 n + l n + l 10"2 · 

If we look at competition, we can see that participation costs and fees have
very different effects. Participation costs enter directly through c while trading
fees enter through expected future profits, which will be lower as MMs must bear
a fraction of the trading fees. In particular, for each trade, the MM pays 27), but
recovers 2n/(n + l)TJ through the liquidity discount. Therefore, an increase in
trading fees has a smaller effect on liquidity via competition but a greater direct
effect on immediacy and the liquidity discount.

Measuring Liquidity 

We have seen how in the Grossman & Miller (1988) model, trading costs, whether
setup costs or trading fees, are mostly paid by liquidity traders, whether explicitly
( as their own trading fees) or implicitly in the price (greater liquidity discount
when selling and larger premium when buying). We now consider how these
divergences from 'efficient' prices may be observed in electronic exchanges.

The Grossman & Miller (1988) model avoids looking into the details of the
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trading mechanism by solving for equilibrium prices and demands in a 'Walrasian 
auctioneer'-type context where all trading takes place at once, and at a single 
price. 2 In electronic asset markets, decisions are not taken all at the same point 
in time, but the equilibrium analysis can be easily reinterpreted in the context 
of an electronic market. For example, suppose liquidity traders are very eager to 
trade and do so by sending MOs into the exchange. When the liquidity trader's 
orders hit the market, they meet the LOs that were posted by the patient MMs 
and are resting in the limit order book (LOB). 

Then, the Grossman-Miller model would correspond to the following sequence 
of events: as LTl's MOs enter the market, they execute against LOs in the LOB 
which adjusts to the incoming MO. As the execution price changes, so does LTl's 
strategy and eventually, after selling i n�l shares, the price has moved too far
and LTl stops trading. Overall, LTl's market order executes at the average price 
of S1 , either because it was sent as a large order that walked the LOB ( or LOBs,
if the order is routed to multiple markets), or because it was split up into several 
small orders that triggered a gradual move of the bid side in the LOB away from 
the initial starting point. Then, the discount received by LTl is the difference 
between the average price received, S1 , and the initial mid price when the first
MO hit the market (which is the usual proxy for the efficient price, JE[S2]). 

We can rewrite S1 as a linear function of the quantity traded, qLTl : 

so that in the Grossman-Miller model we would have 

1 2 A= --"(CY 
' n 

and qLTl 
= i-n-

.
n+l

The>,. parameter captures the market's price reaction to LTl's total order, its 
price impact. The notion of price impact is very important both for trading and 
for theoretical work, and the use of a linear structure such as the one described by 
the parameter >,. is very common. In particular, >,. is used to describe the liquidity 
of the market for this asset - a more liquid market will have a lower >,., either 
because of greater competition ( n), lower risk tolerance ( "/), or lower volatility 
(a-2 ), and this results in a lower liquidity discount/premium for liquidity traders.

There is a second popular way to measure liquidity based on price changes, 
and it is quite easy to see how this model works. The measure is based on the 
autocovariance of the asset's return, though for the Grossman-Miller model it is 
easier to describe it when looking at the autocovariance in asset price changes 
rather than returns. To see how this measure is constructed, let us introduce an 
additional date t = 0 prior to LTl's order submission (t = 1), and a random 
public news event, E1, that affects the asset's final liquidation price, S3 = µ +

2 The notion of a Walrasian auctioneer comes from the work of Leon Walras who describes

the prices that arise under perfect competition as the result of a simultaneous auction in 

which supply is equated to demand. The Walrasian auctioneer is the abstract manager of 

this auction. 
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E1 + E2 + E3. The public news is announced between t = 0 and t = l. Define the 
following constants: 

and let Et, t = 1, 2, 3 be normal, i.i.d. random variables with mean zero and 
variance a2

. The discrete process µt is a martingale, and we refer to it as the 
efficient market price. 

According to the model above, at t = 0 there are no liquidity traders and no 
trade so that So = IE[S3] = µ0 will be the equilibrium price. The model shows 
that the subsequent equilibrium prices at t = 1 and t = 2 are: 

and 

To construct the autocovariance of price changes, let 6.1 = S1 -So and 6.2 = S2 -

S1 , and the autocovariance of price changes be given by the following expression: 

Cov [6.1 ' 6.2] = Cov [1,1 + >.. qLTl - µo, µ2 - µ 1 - >.. qLTl ]

= Cov [Er+ >.. q
LTl , E2 

- >.. q
LTl J = ->..2 Var [qLTl ] < 0.

In this simple ( essentially static) model, where all the action takes place at 
t = 1, the autocovariance of price changes captures market liquidity just like 
price impact does. An interesting effect that we see here is that as liquidity 
increases and >.. goes to zero, so the autocovariance of price changes, and the 
price process converges to the underlying ('efficient price') martingale process 
µt. 

The two measures, price impact and the autocovariance of price changes ( or 
returns), become distinct in richer dynamic settings, and capture different dimen­
sions of the market's reaction to incoming MOs. For example, in the continuous­
time models of later chapters, the average growth of the efficient price is affected 
by the rate at which MOs arrive to the market and this effect decays at an ex­
ponential rate. This permanent effect of the efficient price of the asset affects all 
market participants and is different from the temporary effect that each trader 
sees in their execution prices, which is captured by the parameter (>..) and does 
not affect the dynamics of the efficient price. 

Market Making using Limit Orders 

In the transition from the Walrasian auctioneer in the Grossman-Miller model 
to the measurement of price impact, we have proposed that MMs participate 
through the posting of LOs. We now consider why an MM would behave in this 
way and the simplest solution to how she does it. 

The usual first reference for this is the model of Ho & Stoll (1981), but work­
ing with the original model requires familiarity with the techniques for solving 
stochastic dynamic programming problems which we see in Part II. Instead, we 
set up a static version of the model that captures some of the basic elements 
of the MM's problem. As in the Grossman & Miller (1988) model, the MM is 
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a professional trader who profits from intermediating between different liquidity 
traders. In this case, we consider a small risk-neutral trader with costless inven­
tory management and infinite patience. She does not require compensation for 
her services, but makes a profit from optimally choosing how to provide liquidity 
in an uncertain environment populated by other MMs who do not react to our 
MM's decisions. 

Uncertainty in this context comes from the timing and size of large incoming 
MOs, and there are no information problems: all information is public so that 
everyone agrees what the current value of the asset is, which we denote by St 

and refer to as the midprice. Our trader is one of many MMs. vVe take other 
MMs' behaviour as given, and this behaviour is represented by a fixed LOB, 
unaffected by our MM's decisions. Our MM makes money by adding her LOs to 
the book and clearing the resulting inventory at later dates. Because our MM has 
no inventory costs, incurs no trading costs, is risk-neutral and infinitely patient, 
we can assume that she liquidates her inventory at the midprice at no cost. 

Then, the MM's problem is to choose where on the LOB to place her LOs so 
as to maximise her profit per trade, optimally balancing the increase in the price 
per trade received as she increases the distance of the LO from the midprice, 
with the frequency with which she will trade, which decreases with that distance 
from the midprice. Formally, the MM's problem is to choose the distance from 
the midprice, the depths 5± . Then, she will post her sell LO at St + 5+ and her 
buy LO at St �6-. The uncertainty from MOs comes from the probability that an 
MO arrives (P±) and the probability that once it arrives it walks the book up to 
where the MM's LOs are resting ( 5± away from the mid price), which is described 
by the cdf P±. Thus, the probability that the buy LO will be filled is p_P_(5-).
If we assume that the distribution of other LOs in the LOB is described by an 
exponential distribution with parameter r;-, we have p_P_(5-) = p_e_"_0_.
Similarly, the probability that the sell LO is filled is P+e_"

+ 
o

+
. Clearly, as the 

MM posts her LOs deeper in the LOB, the probability that her order ( once an 
MO arrives) decreases, though her profit per trade (5± ) increases. 

The left panel of Figure 2.2 illustrates a hypothetical LOB around a midprice 
of St and two possible limit orders: a sell LO on the ask side at St + 5+ , and a 
buy LO on the bid side at St � 5-. The right panel describes the corresponding 
probability distribution, p+ (P-), of execution of the order posted at a distance 
5+ (5-) from the midprice, conditional on the arrival of a buy (sell) MO. 

Using II to denote the MM's profit per trade, the MM's optimisation problem 
is given by the following expression: 

It is straightforward to see that the solution is to post LOs at the following 
depths: 

,±,*= _!__ u 
± 'K, 
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Biel Side 
p-

Cumulative Depth Fill Prob. 

Figure 2.2 The LOB and the probability of execution. 

Given our parametric choice of P± , the optimal depth is equal to the mean depth 

in the LOB. 

This model captures in a simple way the trade-off between the probability of 

execution and margin per trade. But, it is very unrealistic in several dimensions: 

the functional form of all the stochastic components of the model ( P ±, and p± ) is 

very special, constant and exogenous, the MM's decision and that of other traders 

(as captured by P(o)) are independent, the MM's objective function is static and 

very simple. However to address these other issues we need more sophisticated 

methods and models, so after developing those methods in the following chapters 

we will revisit some of them. For instance, in Chapter 10 we see how MMs decide 

how to post limit orders in a fully-fledged dynamic inventory model and how she 

adjusts her posts if trading with better informed counterparties � a topic that 

we discuss next. 

2.2 Trading on an Informational Advantage 

So far we have side-stepped one of the main issues in trading: informational 

differences. Many trades originate not because someone needs cash and sells an 

asset, or has extra cash and wants to invest, but because one party has ( or 

believes she has) better information about what the price is going to do than is 

reflected in current prices. So, having seen the basic market making models in 

the context of public information we turn to the next fundamental issue: how to 

exploit an informational advantage while taking into account one's price impact. 

The primary reference in this case is Kyle (1985). 

Kyle (1985) looks at the decision problem of a trader who has a strong infor­

mational advantage (the case of several competing informed traders is studied in 

Kyle (1989)) in a context where the price is 'efficient'. The model in Kyle (1985) 

tells us how the informed trader optimally adjusts his trading strategy to take 

into account the market reaction, and in particular, the price impact that his 

trades generate in equilibrium. 
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To get into the details of the model we first need to define what we mean 
by 'a strong informational advantage' and price efficiency in this context. To 
keep things simple we only consider the investor's static decision problem. The 
same basic idea extends to a dynamic setting. The formal static model is as 
follows: there is a market for an asset that opens at one point in time. The asset 
is traded at price S, and after trading, the asset has a cash value equal to v. 
The future cash value of the asset, v, is uncertain. In particular, v is assumed 
to be normally distributed with mean µ and variance cr2

. In the market, there 
are three types of traders: an informed trader, an anonymous mass of price­
insensitive liquidity traders (traders who need to execute trades whatever the 
cost), and a large number of MMs that observe and compete for the order flow 
- that is, the MMs observe and compete for the flow of incoming buy and sell
orders from the informed and the liquidity traders.

In contrast to the Grossman & Miller (1988) setting, MMs are risk-neutral, 
so they do not need a liquidity premium to compensate for the price risk from 
holding inventory. Therefore, any liquidity premium that arises will come from 
the need to compensate MMs for their informational disadvantage - and which 
will be borne by the price-insensitive liquidity traders. These liquidity traders 
will have, in aggregate, a net demand represented by the random quantity u, 
such that if u > 0, on aggregate liquidity traders want to buy u units, while if 
u < 0, these traders want to sell lul units of the asset. Assume that u is normally 
distributed with mean zero, variance er�, and is independent of v. In principle, 
as liquidity traders are not sensitive to the price ( u does not depend on S) MMs 
could charge very large liquidity premia, but competition for order flow between 
MMs drives the liquidity premium to zero, so that (when there are only MMs 
and liquidity traders) S = JE[v]. 

Now consider the possibility that a new trader enters the market, and that 
this trader (the "insider") knows the exact value of v. The insider is the only 
one who knows v and chooses how much to trade. Let x(v) denote the number 
of shares traded by the insider. MMs, on the other hand, know that there is an 
informed trader in the market, but do not know who this trader is. 

To make the analysis formal, the model is structured as follows: (i) the insider 
observes v, (ii) on observing v the insider chooses x(v), (iii) u is realised, (iv) 
the MMs observe the net order flow, x(v) + u, (v) based on the net order flow 
MMs compete to set the asset price, S. 

To solve the model we use the solution concept of (Bayesian) Nash equilibrium; 
without going into all the details, this means that all agents optimise given 
the decisions of all other players, according to their beliefs (which are updated 
according to Bayes' rule whenever possible). Thus, we require that in equilibrium 
the insider chooses x( v) to maximise his expected profit, taking into account 
the dynamics of the game (i.e. that his order will be mixed in with those of 
the liquidity traders), and anticipating that MMs will set their prices on the 
basis of what they learn from observing the order flow and what they know 
about the informed trader's decision problem. Also, we require that MMs choose 
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their prices taking into account the strategy of the insider (in particular, they 

anticipate the functional form of x ( v)) and the properties of the uninformed 

order flow that comes from liquidity traders. In particular, MMs set the market 

price as a function of net order flow, S(x + u). This is important, as the model 

naturally tells us that prices are affected by the order flow, so that trading 

automatically generates a price impact - the average price per unit traded, S, 

moves with the net order flow, x + v .. We need to look at the equilibrium of 

the model to see what that price impact function looks like. Nevertheless, in 

equilibrium, the insider will anticipate the functional form of S(x + u), that is, 

she will incorporate price impact when choosing x(v). 3 The equilibrium is a fixed 

point in the optimisation of x given the functional form of S, and of S given the 

functional form of x. 

Consider what the insider should do. The most natural response is: sell if 

v < lE[v] = µ and buy if v > µ, and whether selling or buying, do so as much 

as possible to leverage his informational advantage. This seems natural, but we 

must take into account that MMs will adjust their prices to the order flow they 

observe. Hence, even if v < µ, the insider cannot expect S = JL. In the extreme 

case where there are no liquidity traders everyone knows that any trade comes 

from the insider and so the MMs, anticipating the demand as a function of the 

realisation of v, behave optimally and set prices that incorporate all information 

on v in x(v). Fortunately for the insider, there are liquidity traders that add noise 

into order flow and allow the insider to camouflage his trade to gain positive 

expected profits. 

So, how do MJVIs set their prices? The first thing to note is that as MMs 

compete for order flow, any profits they could extract are competed away. Thus, 

whatever the price strategy, it will lead to zero expected profits for our (risk­

neutral) MMs - though never negative profits as they can always choose not to 

trade. The zero (expected) profit condition forces prices to have a very specific 

property: S = lE[v IF], where F represents all information available to MMs. 

This property is known as semi-strong efficiency: prices reflect all publicly 

available information (which in our case is order flow which is all the information 

MMs have).4 This is why we can readily identify a fundamental property of the 

MMs' equilibrium strategy: 

S(x + u) = lE[v Ix+ u] . 

To solve the model we need to find an :r( v) that is optimal, i.e. it maximises 

the insider's expected trading profits, conditional on this pricing rule. Because 

of the normality of v and u, we hypothesise that S(x + u) is linear in net order 

flow. In particular, let 

S(x+u) =µ+A(x+u), 

3 Formally, liquidity traders are substituted by a "nature" player that executes the random
demand u. 

4 The notion of price efficiency was introduced by the recent Nobel Laureate, Eugene Fama,
see Fama (1970). 
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where>. is an unknown parameter representing the linear sensitivity of the market 
price to order flow. 

Taking this particular functional form as given, consider the insider's problem: 

maxlE [x (v - S(x + u))] . 

Substituting for S ( x + u) = µ + >. ( x + u) and taking expectations with respect to 
u, we obtain that the objective function is concave and the first-order condition 
yields 

x*(v) = /3 (v - µ), 

where /3 = (2>.)- 1
. 

Because we have hypothesised the functional form of the price function, we 
must now confirm that the functional form is consistent with the optimal x( v) 

and at the same time we can characterise >.. We know that S = lE [v Ix+ u]. 
From the optimal x, we know that 

x + u = /3(v - µ.) + u = (3µ + (3v - u. 

As v and u are independent and normal, x + ·u is normal with mean µ(l + /3) and 
variance (32u2 

+ u;. We can now compute the joint distribution of v and x + ·u, 
and from it we can derive S = lE [v Ix+ u], which (using the projection theorem 
for normal random variables and simplifying) is given by 

so that the linear sensitivity parameter is >. = 2uu/ u. This confirms that the 
hypothesised equilibrium is indeed an equilibrium (for a formal proof, see Kyle 
(1985)). 

Even within the simple, static version of the Kyle model we can clearly see the 
issues that arise when facing informed trading ( also referred to as "toxic order 
flow"). While in the previous models MMs just needed a liquidity premium 
(discount) to cover the expected cost from future price uncertainty, the presence 
of informed traders implies that MMs will be adversely selected, buying when 
informed traders know it would be better to sell and selling when it would be 
better to buy. This adverse selection requires a higher premium borne by other 
(more impatient liquidity) traders. In this model, the additional premium takes 
the form of price adjustment to order flow (price impact) as described by Kyle's 
lambda (the >. parameter we have just derived). This premium accounts not for 
the risk that future price movements will be random, as described in Section 
2 .1.1, but for the adverse selection faced by MMs, as prices will on average move 
against the MMs' position because they trade with better informed traders in 
the market. The sign of>. will be the same as in Grossman & Miller (1988): prices 
move with the order flow, increasing as buy MOs hit the market and falling as 
traders sell aggressively. 
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µ 
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Bid: Ask: 

b = µ - ,0,,.b a = µ. + 6.a 

Figure 2.3 The Glosten-Milgrom model. 

2"3 Market Making with an Informational Disadvantage 

The Kyle model focuses on the informed trader's problem, while using com­

petition to characterise the MM's decisions. As we are very interested in the 

MM's problem, we now turn to Glosten & Milgrom (1985) for a model that puts 

the MM at the centre of the problem of trading with counterparties who have 

superior information. 

Again, we look at a simplified and (essentially) static version of the model that 

allows us to capture the nature of the MM's decision problem. The situation is as 

before: there are liquidity traders, informed traders, and a competitive group of 

MMs. The MM is risk-neutral and has no explicit costs from carrying inventory. 

Our simple model ( described in Figure 2.3) has a future cash value of the asset 

equal to v which we limit to two possible values: VH > VL , that is a High, and 

a Low value. The unconditional probability of v = VH is p. All orders are of one 

unit, MMs post an LO to sell one unit at price a, and a buy LO for one unit 

at price b. We start by assuming that liquidity traders are price insensitive and 

want to buy with probability 1/2 and want to sell with probability 1/2. There 

are many informed traders, all of whom know v but are limited to trade a single 

unit, which simplifies their decision: when v = VH they buy one unit if a < VH, 

and do nothing otherwise, while when v = VL they sell one unit if b > VL and 

do nothing otherwise. The total population of liquidity and informed traders is 

normalised to one, and of these, a proportion a are informed and a proportion 

(1 - a) are uninformed liquidity traders. 

Figure 2.3 captures the probabilistic structure of the model: Nature randomly 
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determines whether the underlying state is VH or VL. Independently of the state, 
a trader is picked at random from the population, so that with probability a she 
is informed, and with probability 1 - a she is uninformed. An informed trader 
will always buy at the ask price (a) when the asset's value is VH and sell at the 
bid (b) when the asset's value is VL, while an uninformed trader will buy or sell 
with equal probability, independent of the true (unknown) value of the asset. 

The MM's problem is to choose a and bin this setting. Because liquidity traders 
are price-insensitive, the optimal solution is trivial: set a= VH and b = VL, but 
since MMs compete for business, prices will be set to their (semi-strong) efficient 
levels - again, this happens because MMs use only public information, which 
includes order flow. Were the MMs to have private information in addition to 
the order flow, in this setting competition for order flow would incorporate some 
of that information into prices. 

Competition between MMs drives their expected profits to zero. Hence, a and b 
are determined by the no-profit condition. Rather than solve for a and b directly, 
define the ask- and bid-halfspreads, 6.a and 6.b respectively. The sum of the 
two, 6.a + 6.b , represents the ( quoted) spread. Let the expected value of the 
asset µ = JE[v IF] where F represents all public information prior to trading. 
Then, as described at the bottom of Figure 2.3, MMs will choose a = µ + 6.a 

and b = µ - 6.b optimally. To determine the effect of choosing a and b on the 
expected profit and loss, consider what happens when a buy order comes in: 

e if it comes from an uninformed liquidity trader she makes an expected profit 
of a - µ = 6.a , 

® if it comes from an informed trader she makes an expected loss of a - VH = 

6.a - (VH - µ).

From the point of view of the MM, the probability that a liquidity trader wants 
to buy is 1/2, while the probability that an informed trader wants to buy is p (as 
all informed traders will buy if the state is v = VH which occurs with probability 
p). As there are 1 - a liquidity traders and a informed ones, the expected profit 
from posting a price a = µ + 6.a is 

(1 - a)/2 pa 
+ (1 - a)/2 6.a + ap + (1 - a)/2 (6.a - (VH - µ))

Setting this expected profit to zero we obtain 
ap l6.a = ap+ (1- a)/2 (VH - µ) = l + 

1.=_gc_U_?_ (VH - µ)'

and following similar reasoning, 
u p 

To interpret these equations let us label the variables. If we think of asymmetric 
information as 'toxicity' then we can think of a as the prevalence of toxicity, l -p
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2.3.1 

and VH - µ as the magnitude of buy-toxicity and 1 - p andµ - VL that of sell­
toxicity. Then, the equations above describe how MMs adjust the ask-half-spread 

and the bid-half-spread, and increase it with the prevalence and magnitude of 

buy- and sell-toxicity. 

In later chapters we show how trading algorithms are built to either take 

advantage of informational advantages or to adjust the depth at which LOs are 

posted so as to recover losses from trading agents to more informed traders. For 

example, in Section 7.3 we develop trading algorithms that use the information 

provided in the order flow to adjust acquisition or liquidation rates when the 

agent seeks to enter or exit a large position. We also show how the strategy 

of the MM depends on whether she knows detailed high-frequency information 

about short-term deviations in the drift of the asset she is trading, see for example 

Section 10.4.2. 

Price Dynamics 

This simple model can be extended in two different and complementary ways: by 

incorporating a time dimension and by making liquidity traders price-sensitive. 

The former is straightforward. In order to avoid having to keep track of the inter­

est rate, set it equal to zero. Then index all variables by time t and set the time 

of the determination of the cash value of the asset to T. Moreover, ensure that 

probabilities and expectations are adjusted to incorporate the accumulation of 

public information from trade, as captured by the filtration Ft. As MMs observe 

different sequences of buy and sell orders they adjust (using Bayes' rule) the es­

timation of the distribution of v, and in particular they set Pt = IP' ( v = VH I Ft ), 

and µt = E[v I Ft]- Then, bid and ask prices will adjust in response to the history 

of trading, so that 

and 

The resulting bid-ask prices display dynamic changes that reflect the public 

information embedded in the order flow. Note also that at every execution, the 

execution price (at if it is the execution of a market buy order, and bt for a sell) 

is equal to the expectation of the underlying asset conditional on the history of 

order flow, Ft , and also on the information in the execution (that is a buy or a 

sell). Hence, it can be seen that the realised price process (the price process at 

execution times) is a martingale (with respect to the objective measure). 
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2.3.2 Price Sensitive Liquidity Traders 

An interesting extension of the static model (which can be further extended to 
include the dynamics we have just seen) is to allow liquidity traders to avoid 
trading if the half-spread, b., is too high. A direct way to do this is to assume 
that liquidity traders get an additional (exogenous) value from executing their 
desired trade, so that trader i gets a cash equivalent utility gain of Ci if he 
manages to execute his desired trade. Thus, if the transaction cost imposed by 
the half-spread is too high, higher than Ci, trader i will prefer not to execute 
his trade. Assume that the distribution of the parameter Ci in the population 
of liquidity traders is described by the cumulative distribution function F, such 
that F(c) is the proportion of liquidity traders that have Ci ::; c. We refer to Ci

as the agent's urgency parameter. 
Then, we can recompute the expected profit of the MM from setting an ask 

price a = µ + b.a as above, which will now be given by 

(1 -F(b.a))(l - a)/2 b. 
pa 

(b. _ (V _ )) 
exp+ (1 -F(b.a))(l - a)/2 a+ 

exp+ (1 -F(b.a))(l - a)/2 a H µ · 

In this expression we have incorporated the fact that whenever a liquidity trader 
wants to buy (1-a) /2, only 1-F(b.a) will have sufficient urgency to execute the 
trade with a buy-half-spread equal to b.a , Introducing this parameter increases 
the half-spreads, which are now implicitly defined by the following expressions: 

1 
b.a = ------ (VH -µ) 

1 + 1-a (l-F(�a))/2 
a p 

and following similar reasoning, 

1 
b.b = --�-�� (µ -Vi) 

1 + 1-a (l-F(�a))/2 
a 1-p 

A key issue now is that as the MM increases the halfspread, she faces a smaller 
population of liquidity traders. If the urgency parameters in the population are 
relatively small, the MM may find that the above expressions have only the 
extreme solutions b.a = VH -µ and b.b = µ -VL.5 These extreme solutions cor­
respond to the solutions without liquidity traders and represent market collapse. 
With those spreads no one gains anything from trade, and any trade that may 
occur will come from the informed agents who are indifferent to either trading 
or not trading - though any trade will immediately reveal the underlying value 
of the asset and the price will be strong-efficient. 
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3.1 

Em pi rica I and Statistica I Evidence: 
Prices and Returns 

Introduction 

The next two chapters contain empirical analysis of different aspects of trading: 

prices, returns, spreads, volume, etc., using primarily millisecond stamped data, 

though we start with daily data that will give us a general overview of the main 
issues. Chapter 3 focuses on prices and returns, while Chapter 4 is dedicated to 
volume and market quality measures such as spreads, volatility, or depth. 

This chapter, first looks at millisecond data. We then turn to look at the 

properties of returns both at the daily and at much shorter ( one second) time 

intervals, as well as looking at the interarrival times of price changes. Section 3.4 
looks at how market conditions may change when facing latency, as well as the 

issue of tick size. This is followed by a discussion on price dynamics. Section 3.6 

provides a glimpse of the issue of market fragmentation in the US, while the last 

section provides .a first look at the empirics of pairs trading. 
In addition to the empirical analysis, we also include plausible interpretations 

and speculation as to what could be behind some of the results of that analy­

sis. These speculations are included to make the chapter more engaging and to 

encourage the reader to think about the results. However, they should not be 
interpreted as anything other than speculative theorising, and should be kept 
separate from the descriptive analysis of the empirical facts that is limited in 

scope to the data sample we are using. 

3.1.1 The Data 

We use data from several sources. For daily and monthly data we use publicly 
available aggregated data from Yahoo! Finance, and data from the Center for 

Research in Security Prices ( CRSP). We also use millisecond timestamped ITCH 
data (publicly available industry standard data, similar to the direct data feed, 

recently timestamps go to nanosecond resolution). Our data have been converted 
into table format for easier processing and is in binary for speed and storage 

reasons. For illustration purposes we convert these to more human-readable form. 
The data are made up of the following fields ( we drop two fields that are irrelevant 

here): 

o Timestamp: number of milliseconds after midnight
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@ Order ID: Unique order ID 

® Message Type: 

"B" - Add buy order 

"S" - Add sell order 

"E" - Execute outstanding order in part 

"C" - Cancel outstanding order in part 

"F" - Execute outstanding order in full 

"D" - Delete outstanding order in full 

"X" - Bulk volume for the cross event 

"T" - Execute non-displayed order 

e Shares: order quantity (Zero for "F" and "D" messages) 

e Price: zero for cancellations and executions 

e Ticker : the ticker associated with the asset in question 

@ J\/IPID: Market Participant ID associated with the transaction 1 

o Exchange: ID of the current market (NASDAQ = 1)

These messages record events that affect the limit order book (LOB), so essen­

tially, they capture what happens to limit orders (LOs). LOs are posted (B,S) and 

later on they are cancelled (C,D) or executed (E,F). So, market orders (MOs) 

are not recorded but must be deduced from observing how they are executed 

against standing LOs ( or against non-displayed/hidden orders, T). 

Consider the following example ( the row numbers have been added to facilitate 

the discussion and we have dropped the MPID column): 

1: 33219784 4889087 B 1900 345800 TZA 1 

2: 33219784 4887036 C 200 0 FMS 1 

3: 33219784 4879129 D 0 0 QQQQ 1 

4: 33219784 4889088 s 2000 454800 QQQQ 1 

5: 33219784 4879130 D 0 0 QQQQ 1 

6: 33219784 4889089 s 500 454800 QQQQ 1 

7: 33219785 4882599 D 0 0 QQQQ 1 

8: 33219785 4888889 F 0 0 STD 1 

These messages are sent to the market between 33219784 and 33219785 ms 

from midnight (July 13th, 2010), that is between 09:13:39.784 and 09:13:39.785. 

We see several messages for the ETF QQQQ, and one each for the ETF TZA, 

and the stocks FJ\/IS and STD (STD has since changed its ticker to SAN). 

The first line is for the TZA ETF and should be read as follows: message 

recorded at 33219784 ms from midnight (09:13:39.784), with order ID number 

4889087, the LO is a posted LO to buy (B) for 1, 900 shares at a price of $34.58 

(all prices are in dollars x 10, 000). The number 1 in the final column represents 

the market code for NASDAQ. 

For QQQQ we observe an LO being cancelled (row 3), followed by the post­

ing of a sell LO (4), another LO cancellation (5), a second sell LO posted (6) 

1 This information is usually missing from the public feed. 
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and a third LO being cancelled (7). The posted sell orders include the quantity 

and price for the orders (2,000 at $45.48 and 500 also at $45.48), while can­

celled orders must be matched with their original posted orders (ID 4879130 and 

4882599) in order to identify the corresponding prices and quantities. vVe see the 

same pattern for the full execution of order ID 4888889 for STD (8) - i.e. no 

price or quantity - while for FMS (2) we see a partial cancellation of 200 units 

from order ID 4887036 (the price needs to be read off the original posted order). 

From this data, one can reconstruct the complete order book at any point in 

time, and study how the market changes over time using different variables and 

methods. We now proceed to give a brief overview of some of the features we 

observe. 

Daily Asset Prices and Returns 

When trading, the first variable of interest is the price level. If we have to ac­

quire/liquidate a position we want to know what price we can get if we aggres­

sively execute it, and if we are providing liquidity we want to know at what 

prices shares are being bought and sold. 

As we discussed in Section 1.2, each investor is in the market to meet some ob­

jective, and will participate for as long as she feels that she is not losing too much 

money in pursuit of her objective (e.g., if the transaction costs do not consume 

the expected price gains, or if the market will adjust prices in reaction to her 

order, eliminating the original mispricing she wanted to profit from - we discuss 

these below). The observed price process is the outcome of the interaction be­

tween these investors. In electronic markets, we see these prices continuously as 

traders change their positions to meet their objectives in response to changes in 

market conditions and information flows. Market efficiency theories tell us that 

the resulting price process is not predictable and any positive expected return 

you can predict, is there as compensation for bearing risk. Thus, long-term in­

vestors receive a compensation for risk, be this market risk, risk from monetary 

policy changes, or just compensation for future price fluctuations and dividend 

uncertainty. Liquidity providers also require compensation: they require compen­

sation for leaving offers at the bid and ask, and will continue to post orders while 

their trades are sufficiently profitable. Other traders pursue strategies aimed at 

exploiting deviations from market efficiency, such as keeping prices of similar 

assets close to each other. 

Whether one believes in market efficiency or not, the properties of the price 

process are amenable to analysis and in this chapter we look at some of the 

methods and results obtained from detailed message data for specific assets. 

We analyse the properties of the price process for a selection of assets from 

equity markets. Our primary focus is on 2013 prices for AAPL (Apple Inc.), as 

representative of a highly liquid, very highly traded asset. To illustrate differences 

across assets, we look at three other assets with tickers ISNS, FARO and MENT: 

ISNS is the company Image Sensing Systems, Inc. Industry (Application Soft-
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ware); FARO is FARO Technologies Inc. (Scientific & Technical Instruments); 
and MENT is Mentor Graphics Corp. Industry (Technical & System Software). 
These assets are all in the technology sector and represent different levels of 
trading activity (although depending on your definition, you can argue about 
whether AAPL is a technology or a consumer goods firm). 

3.1.3 Daily Trading Activity 

In Table 3.1 we can see different measures of trading activity for these assets: 
average number of transactions per day on NASDAQ (N), average total daily 
dollar value of shares traded on NASDAQ (V($), in OOOs), average number of 
shares traded daily on NASDAQ (V( Q), in OOOs), total average number of shares 
traded in all markets (Total V(Q), in OOOs), and share turnover (Turnover). 
Share turnover represents the total number of shares traded during 2013 divided 
by the number of outstanding shares -also included in Table 3.1 (ShrOut, in 
millions, as of Dec 30th, 2012). From the column with the number of transactions 
(N) and using the fact that the regular market is open for 6.5 hours (from 9:30
to 16:00) we can conclude that ISNS is a very rarely traded asset (traded about
once every half hour in 2013), while FARO and MENT are regular small assets
(with on average 1 to 3 trades per minute in 2013), and AAPL is one of the most
highly traded equity stocks ( around 1 trade per second - note that we are using
2013 data, and these numbers are not rescaled to account for the AAPL June 2,
2014 7-for-1 split).

Asset N V ($) V(Q) Total V(Q) ShrOut Turnover 
( X 103 ) ( X 103 ) ( X 103 ) ( X 106 ) 

ISNS 14 18 3 12 5 0.62 
FARO 315 1,396 34 137 17 2.04 
MENT 908 3,964 204 694 112 1.56 
AAPL 24,582 1,505,175 3,208 14,516 941 3.89 

Table 3.1 Daily Average Volume in 2013 for selected assets. 

This pattern is repeated regardless of which measures of volume in Table 3.1 
you look at, and whether measured only for the NASDAQ market or for all 
markets together. 

3.1.4 Daily Price Predictability 

We first look at the properties of the price process by considering returns con­
structed from changes in prices from market open to market close for each day in 
2013. According to the efficient market hypothesis, daily asset returns should 
be close to unpredictable and reflect information in the market. To investigate 
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this we run ordinary least squares (OLS) regressions for intra-day (market open 

to market close) returns for our four assets. We include a number of variables 

related to market efficiency and market forces as follows. 

The first of these variables is the return on the SPY: the SPY is an exchange­

traded fund (ETF) that tracks the S&P500 index. In subsection 1.1 we dis­

cussed ETFs in the context of the different types of asset classes in the market, 

and saw that the SPY is an asset traded on the exchanges, just like ISNS, FARO, 

MENT and AAPL. When we buy the SPY we buy a fund (similar to a mutual 

fund or a pension fund) whose objective is to track the S&P500 at the lowest 

possible cost. Thus, many investors who just want the value of their investments 

to move with "the market" (as represented by the S&P500) prefer to buy the 

SPY rather than invest in an equity-based mutual fund. Moreover, traders would 

rather purchase the SPY than acquiring all the 500 assets in the index, since it 

is (much) cheaper to do so, and removes the costs associated with constantly 

rebalancing one's portfolio to match changes in the weights the different assets 

represent in the S&P500. The cost of doing so, but doing so efficiently, is already 

incorporated into the SPY. 

Another variable is the volatility index VIX: the VIX is an index continu­

ously published by the Chicago Board of Options Exchange which is designed to 

measure the market's expectation on future short-term volatility in the S&P500 

index - it is computed by taking a certain weighted average of short-term op­

tions on the S&P500 index. It is used as a proxy for market uncertainty, investor 

sentiment, the market taste for risk (market risk aversion) and other related 

concepts. There are ETFs that try to track VIX, there are futures backed by it, 

and there are options based on the index. 

A third variable of importance is order flow. By order flow we mean the 

difference between the number of shares aggressively bought and shares aggres­

sively sold. Naturally, in a market, for every transaction there is a buyer and a 

seller. But, in electronic markets we can differentiate between posted limit orders 

(LOs) and executed market orders (MOs). Thus, if a transaction is the result of 

a passive limit sell (buy) order being lifted (hit) by an aggressive market buy 

(sell) order, we refer to it as an aggressive buy (sell) order. An aggressive buy 

(sell) order is driven by some trader's desire for a rapid buy (sell) and indicates 

her demand for (supply of) shares of this asset to the overall demand/supply 

in the market. Thus, the order flow is a proxy for the net demand for the asset 

which, as we saw in Chapter 2, can incorporate information relevant to market 

making strategies and future price movements. 

In Table 3.2 we show the regression coefficients from the OLS regressions for 

the following two models. 
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rt ,j = a+ /31,J ri-1,j + /32,J SPYt + /33,j VIXi + /34,j log(l + Qt) + /3s,J OFt + Et,i 

(3,1) 

rt ,j =a+ /31,J ri-1,j + /32,j SPYt + /33,j VIXt + /34,j log(l +Qt)+ /35,j OFt 
+ /36,J SPYt lsPY,<O + /37,j VIXt lvrx,<o + Et ,J,

(3,2) 

The first model (3,1) (Ml in Table 3,2) is an OLS regression for the intraday 
return for each of our four stocks, where rt ,j, ,j E { ISNS, FARO, MENT, AAPL }, 
The return is computed as the price of the stock at the close of the market minus 
the price of the stock at the opening of the market, divided by the price of the 
stock at the opening of the market: r = Pc1op-Popen. The model includes as

open 

right-hand side variables: 

(i) a: a constant which captures the mean-daily return and should be close to
zero,

(ii) Tt-l,( the previous day's intra-day return (should be insignificant as returns
should not be predictable),

(iii) SPYt: the contemporaneous intraday return on the SPY - computed like the
stock's intra-day return,

(iv) VIXt: the contemporaneous intraday 'return' on the VIX - computed like the
stock's intra-day return,

(v) log(l + Qt): the log of one plus the number of shares of the stock traded in all
markets that day (we add one so that when no shares are traded we do not
have to deal with log(O)),

(vi) OFt: order flow for the stock on NASDAQ that day,

In addition, the second model (3.2) (M2 in Table 3,2) includes the variables in 
the first model (Ml), plus the returns on the SPY and the VIX multiplied by 
indicators which equal 1 on days in which the VIX or the NASDAQ moved down, 
and O otherwise, These two variables allow us to verify if there is an asymmetric 
reaction of the asset's return to any 'good' or 'bad' news on the market ( or its 
volatility). 

The fitted models in Table 3.2 represent robust OLS estimates. Robust OLS 
estimation is very similar to the standard OLS minimisation of the sum squared 
residuals, that is, the minimisation of the sum of the squared distance between 
the observations and the fitted values, The main difference between standard and 
robust OLS is that with robust OLS the errors in the estimation are weighted so 
as to reduce the impact of outliers on the estimated parameters. To obtain the 
estimates in Table 3,2, the weighting is done iteratively and using the Huber's 
loss function which penalises large errors linearly rather than quadratically -
more details on OLS and robust OLS can be found in any standard econometrics 
textbook, e.g., see Greene (2011) or Cameron & Trivedi (2005). 



ISNS FARO 
Variables Ml M2 Ml M2 

constant 0.25 0.27 -2.83 -2.92

Tt-1,j -0.10 -0.09 0.06 0.06 
SPY(%) -0.60 -1.36 1.04 1.03 
VIX (%) -0.08 -0.01 -0.03 -0.05
Log Q 0.01 0.00 0.25 0.27 
Order Flow 0.03 0.02 0.05 0.05 

Negv SPY 1.43 0.11 
Negv VIX -0.19 0.06 
Adj R 0.01 0.01 0.17 0.17 
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MENT AAPL 
Ml M2 Ml M2 

-2.97 -3.07 1.09 1.18 
0.05 0.05 -0.12 -0.12

1.04 1.07 0.28 0.06
0.00 0.01 -0.03 -0.02
0.23 0.24 -0.08 -0.08

0.03 0.03 0.06 0.05 

-0.08 0.52 
-0.01 -0.01

0.27 0.27 0.31 0.31

Table 3.2 Robust OLS regression of intraday (open-to-close) return. (Bold: 5% 
significance) 

As Table 3.2 shows, the OLS results for the thinly traded ISNS reflect a lot 

of noise (in the sense that the R-squared ( "adj R") is very close to zero) and 

the significance of the coefficients is not very reliable. For the other assets we 

find that the OLS regression does pick up some information, and there is one 

variable that is consistently significant for the other three assets, namely order 

flow. The coefficient is significant and positive for all three assets indicating that 

NASDAQ order flow and the asset's return move together, which is consistent 

with the interpretation of order flow as the market's net demand for the asset, 

and the models of liquidity of Glosten and Milgrom, and Kyle. We expected 

the constant and the previous day's return to be insignificant, and we find the 

first to be the case, and the latter to be true for FARO and MENT. AAPL 

displays a negative autocorrelation in daily returns, which suggests a significant 

mean-reverting component in the return process which is not consistent with 

the efficient market hypothesis, and provides evidence of (negative) short-run 

momentum, although in the microstructure literature (Roll (1984)) the presence 

of negative autocorrelation can also be explained in terms of the 'bid-ask bounce' 

- that is, that trades do not take place at the 'market price' but rather an

aggressive buy has to cross a non-zero spread to match with the bid and executes

against the LO standing there, at the bid. Finally, we find that during 2013 our

assets' returns were not significantly affected by changes in market sentiment

(as measured through the VIX). FARO and MENT have significant exposure

to market movements, though AAPL (somewhat surprisingly) seems not to. We

also find no significant evidence that there is an asymmetry between 'good' and

'bad' news from movements either in the market or in market sentiment.
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Figure 3.1 Sample distribution and QQ-plot of the I-second returns of AAPL on July 
30, 2013. 

3.2 Asset Prices and Returns lntraday 

Daily market information is of primary interest only for investors with medium­
to long-term investment horizons, but high-frequency trading strategies are ex­
ecuted over very short horizons so we must look at what goes on in much finer 
detail. To do so, we use millisecond-stamped message-level ITCH data for the 
NASDAQ market to study prices over several sampling periods. 

Focusing on AAPL and on a single day, July 30th 2013, we construct asset 
returns over one-second intervals. The choice of dates is arbitrary. It was a day 
with a small positive price gain and positive net order flow: there were 1.45 
million shares bought vs 1.24 million shares sold on NASDAQ, and the price 
increased from market open ($449.96) to market close ($453.32) by $3.36 (+74 
bps). 

The asset's return is computed using the microprice. The microprice (S;), 
also called the weighted-midprice, is the weighted average of the best bid (Pl) 
and the best ask (P

t
a), weighted by the relative quantities posted at the bid CV/) 

and ask C\1ta): 

(3.3) 

The microprice is similar to the midprice, but it incorporates information on 
order imbalance: e.g., a relatively larger quantity of offers on the bid than on 
the ask indicates greater buying pressure, and the 'true' price is closer to the 
ask than to the bid ( the microprice was discussed at the end of Chapter 1 - also 
Chapter 12 is devoted to trading strategies that employ volume imbalance in 
the LOB as a key variable in trading decisions, the same volume imbalance that 
moves the microprice towards the ask or the bid). 

The choice of sampling frequency is important as it has a very significant 
effect on the properties of the empirical distribution of the asset's return. If the 
sampling frequency is very short then many of the observations will be equal to 
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Figure 3.2 Plot of the tails (log scales) for AAPL on July 30, 2013. 

zero. In our example, we sample at the one second frequency, and find that for AAPL on July 30, 2013, 33% of the returns are equal to zero. We carry out our analysis using returns, and we use basis points (bps) as our unit of analysis (that is, a value of 1 in Figure 3.1 represents a change in the microprice of 1/lOOth of a percentage point). In our sample, the average microprice is $454.30, so that a positive return of 1 bps represents an increase in the microprice of 4.5 cents, and 0.22 bps is equivalent to 1 tick, i.e. one cent. Looking at the histogram of the 1-second returns in the left panel of Figure 3.1, we find that the distribution is single-peaked and seems to have fat tails. This is confirmed by the QQ-plot in the right panel of Figure 3.1. The fat tails· exhibited by the asset returns occur often when sampling at short intervals, but may persist at longer frequencies. Figure 3.2 zooms into the right and left tails. Specifically, we use returns above the 95th percentile (1.94 bps) and below the 5th percentile (-1.94 bps) to define these tails. Taking these cutoff values as given, we assume the tails follow a power-law with a probability distribution function given by f (r), where 
f(r) = � (-,,. )-°', 

rmin rmin 

and estimate the parameter a using maximum likelihood estimation (MLE). The MLE for a can be shown to be (see, e.g., Clauset, Shalizi & Newman (2009)) 
a= 1 +T [tlog (�)]-

1 

t=l 
'rmrn 

Using the given cutoffs, these estimators give us &right = 3.35 and &1eft = 3.38.The model fit of the tails corresponds to the black dashed lines in Figure 3.2, and indicate that the 1-second returns have very heavy tails. To gain a sense of whether the market behaves in accordance with the efficient market hypothesis, we estimate the autocorrelation function (ACF) from the return data. Recall that the ACF f(n) is given by the correlation of 'rt-n with 'rt
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Figure 3.3 Sample ACF of 1-second 
returns for AAPL on July 30, 2013. 

and can be estimated from the sample correlation. The sample ACF for APPL on 

July 30, 2013 is shown in the right panel of Figure 3.3. This gives a negative and 

significant autocorrelation for the first lag, which indicates a significant mean­

reversion component in the microprice. We also find that the 12th lag is (weakly) 

significant and positive, while the 14th is negative and significant. There are no 

strong theoretical reasons to observe such patterns, so without further research 

we cannot be sure if this is a spurious pattern that appears on this particular 

day, or something truly significant. 

3.3 lnterarrival Times 

We have seen that even at one second intervals, 33% of the time there are no price 

changes. As the sampling frequency becomes smaller, it becomes increasingly 

tenuous to try to model the observed prices as a continuous process, and we 

need to consider discrete processes. We start by looking at the interarrival times 

between movements at either the bid or the ask. 

Let Ti denote the times at which there is change either in the bid or in the 

ask, and we look at the frequency of interarrival times, Xi = Ti+i -Ti. The mean 

is 10.4 ms and the median 3 ms. Figure 3.4 provides additional insight: the top 

panels describe the histogram of Xi in absolute and log scales, while the bottom 

panel contains the QQ-plot relative to the exponential (with the same mean). 

These graphs indicate that the interarrival times have a power-law distribution 

with very heavy tails. We estimate the parameter for the right tail (as we did for 

the 1-second returns above), and we obtain an MLE of a = 3.13 for the power 

using the 95th percentile ( 41 ms) as the cutoff. 

We also briefly look at the dynamics of the interarrival process. Figure 3.5 

describes the ACF. As shown, changes to the bid and ask are not independent, 

but have a strong autocorrelated component. This suggests a commonly observed 

empirical fact about such changes, namely, that they cluster. Rapid changes in 

the bid/ ask are followed by further rapid changes, while a relatively long calm 

period is also similarly followed by another calm period. 
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Suppose we wish to execute a trade, e.g., buy 1,000 shares of AAPL. The first 

trade-off we face is immediacy versus cost of execution. If you are concerned 

about immediacy, the fastest way to execute a trade is to cross the spread and 

aggressively execute as much as possible using a market order (MO). But, any 

agent for whom immediacy is very important needs to account for a new issue: 

message latency. Latency refers to the delay between sending a message to the 
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market and it being received and processed by the exchange. Sometimes the 

time it takes for the exchange to acknowledge receipt of the message is also 

added in. Latency is random and depends on many factors such as distance 

between sender and exchange, the structure and type of network, the amount 

of orders in the network (which can generate congestion), etc. In addition, the 

word latency is more generally used to express the time it takes for a message 

to travel from one point to another, such as the latency of a news feed. A classic 
example of latency is the time it takes for a message to go from the Chicago 

options exchange ( or rather, the CME colocation centre) to New York ( or rather, 

NASDAQ's processing centre in New Jersey). The latency between these two 

centres is estimated to be between 7.5 and 6.7 ms when travelling by fibre optic 

cable, or between 4.2 and 5.2 ms when travelling by microwave ( on a clear day). 

If an agent is trading from home, through a broker, she must be aware of the 

substantial delay between the moment she asks her broker to execute her order 

and the time it reaches the market. During that time, market conditions may have 

changed a great deal. If, however, the agent is trading directly through a broker's 

feed or she has her own feed into the market, the latency will be much shorter, 

though still significant relative to centres which are colocated. Being colocated, 

also known as colocation, means that an agent's trading system is physically 

housed at the electronic exchange's data centre and has a direct connection to 

the exchange's matching engine. In principle, those who are colocated face similar 

latency amongst themselves - though there will still be some latency dependent 

on their software and hardware configurations ( colocation was also discussed in 

Chapter 1). 

Latency is an issue for agents for several reasons. An agent who is trading 

frequently and on narrow margins needs to be aware of the state of the market 

and be able to adapt her orders, whether to post a new or cancel an existing 

LO, or submit an MO. Furthermore, when executing an MO, an agent needs 

to be aware of the relationship between her choice of routing strategy and how 

other traders may react to the information that may be extracted from observing 

the strategy's outcomes. A large, poorly routed MO will telegraph its progress 

through the several exchanges leading to poor execution quality and high exe­

cution costs, as other traders reposition themselves to absorb the order at more 

favourable prices (to them). 

For certain assets, circumstances change very fast while for others the market 

is quite stable. We see this in the movements of prices and spreads in Tables 

3.3 and 3.4. The former captures the slow changes in seldom traded assets, such 

as ISNS, FARO or MENT. The latter looks at more frequently traded stocks, 

AAPL and ORCL. 

Table 3.3 looks at what happens to the bid/ask/midprice/quoted spread from 

the end of one minute to the next for three assets: ISNS, FARO and MENT. A 

one minute delay is a very long time for a trader, and one would not expect such 

a delay unless one is trading through a very slow connection to the exchange ( or 

the order does not go directly to the exchange). We see this in the first column of 



L'l.X#O 

Asset Var (%) 

ISNS Bid 4.2 
Ask 3.4 
Mid price 6.7 
Quoted Spread 6.7 

FARO Bid 48.6 
Ask 49.0 
Midprice 63.4 
Quoted Spread 60.8 

MENT Bid 44.2 
Ask 44.1 
Mid price 52.8 
Quoted Spread 31.1 
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Stats (for L'l.X # 0) 
POl Ql Q2 Q3 P99 

-43.0 -4.0 1.0 5.0 40.0 
-51.0 -4.0 -1.0 3.0 51.0
-25.8 -2.0 0.5 2.0 26.8 
-45.0 -5.0 -1.0 4.0 46.0

-21.0 -2.0 1.0 3.0 19.0 
-19.0 -3.0 -1.0 3.0 22.0
-16.0 -1.5 0.5 2.0 16.0 
-18.0 -2.0 -1.0 2.0 18.0

-5.0 -1.0 1.0 1.0 6.0 
-5.0 -1.0 -1.0 1.0 5.0 
-4.5 -1.0 0.5 1.0 5.0 
-5.0 -1.0 -1.0 1.0 4.0 

Table 3,3 One minute changes in bid, ask, midprice, and quoted spread. 

Table 3.3 (labelled 6.X cf. 0) where we find the percentage of minutes for which 
the bid/ask/midprice/quoted spread is different (not equal to zero). For ISNS 
we observe that for only 4.2 percent of the time are there changes in the bid 
from one minute to the next. In the adjacent columns we can see the statistics 
for those minutes in which the variable of interest changed. From these, we can 
conclude that for half of the time ISNS's bid price changed, it moved between an 
increase of 5 cents (Q3) and a drop of 4 cents (Ql). If we look at the midprice 
for ISNS, we see that it changed only 6.7 percent of the time, and when it did, 
half of those changes were between an increase of 2 cents and a drop of 2 cents. 
On the other hand, if one considers assets such as FARO or MENT, a one­
minute delay will face changes in the bid (similarly in the ask) around half of 
the time, as well as (naturally) in the midprice and quoted spread. Note that 
this is an unconditional analysis for all minutes of 2013, and does not take into 
account that market participants react to order flow. For example, if one sends 
a market buy order, then other agents may quickly adjust their quotes upwards 
in response to this new information. Hence, it is natural that an asset with very 
little public information (in the form of trades/MOs) like ISNS will see fewer 
price movements than more frequently traded ones, like FARO or MENT. 

This is not the same picture that we find when looking at the most popular 
stocks (in terms of activity). Assets such as AAPL and ORCL will almost cer­
tainly experience changes in prices within one minute, but for these assets a one 
minute delay is unreasonably long by any standard. Table 3.4 reflects the same 
information as Table 3.3 but after a 100 ms delay rather than one minute (and 
for the last three months in 2013 rather than the whole year). Also, rather than 
report the statistics for the whole sample, we report the median values for the 
statistics computed at the daily level. That is, after computing the daily percent-
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b.X/0 Stats (for b.X # 0) 
Asset Var (%) POl Ql Q2 Q3 

AAPL Bid 3.84 -17.0 -3.0 -1.0 3.0
Ask 4.00 -18.3 -3.0 1.0 3.0 
Midprice 6.75 -11.5 -1.5 0.5 1.5 
Quoted Spread 6.69 -16.0 -3.0 -1.0 3.0

ORCL Bid 0.41 -2.0 -1.0 -0.5 1.0
Ask 0.40 -2.0 -1.0 1.0 1.0 
Midprice 0.47 -2.0 -1.0 0.5 1.0 
Quoted Spread 0.16 -3.0 -1.0 -1.0 1.0

pgg 

18.0 
17.0 
11.0 
18.0 

2.0 
2.0 
2.0 
2.0 

Table 3.4 One hundred ms changes in bid, ask, midprice, and quoted spread. 

age of 100 ms intervals with non-zero bid price changes for AAPL for each day 
from October to December 2013, we report that the median of these is 3.84%. 
Similarly, after computing the first quartile of the non-zero bid price changes for 
each day, we report the median of these, which is -3 cents, while the median of 
the third quartiles is an increase of 3 cents. 

Note that there is a noticeable difference in the frequency and magnitude of 
price changes for AAPL and ORCL. AAPL sees more frequent changes and of 
greater magnitude than ORCL. There are two factors that are important here: 
(i) the volume traded (in dollars) for AAPL is one order of magnitude greater
than for ORCL, but also, (ii) the price of AAPL in the last quarter of 2013 was
between $490 and $560, while that of ORCL was between $32 and $38. As both
assets have the same minimum tick size ( of one cent), this means that AAPL
can experience much smaller percentage changes in its price (1 cent = 0.2 bps
of $500) than ORCL (1 cent = 2.5 bps of $40). Thus, one would expect more
frequent price movements for AAPL than for ORCL ( even after AAPL's share
split of one old share into seven new ones, as after the split and AAPL prices
around $100, a one cent change is equivalent to a 1 bps change, much greater
than the 2.5 bps of ORCL).

3.5 Non-Markovian Nature of Price Changes 

In this section, we investigate how successive price changes are interrelated. For 
this, we first look at whether the sign of the current price change can predict 
the sign of the next (non-zero) price change. We continue using AAPL on July 
30, 2013 for the analysis, and record price changes every time they occur. In 
Table 3.5 we see how an increase in the price (bid or ask) is more often than not 
followed by a reversal, and similarly for a fall in the price. 

In Table 3.5 we see that an increase in the ask price (an uptick) is followed by 
a down tick 57% of the time, while a drop in the ask is followed by an increase 



t / t + 1 

Uptick ( 11') 
Downtick ( �) 
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Ask Bid 
Uptick Downtick Uptick Downtick 

(11') (�) ( 11') (�) 

43.0 57.0 Uptick (11') 36.5 63.5 
61.8 38.2 Downtick ( �) 55.3 44.7 

Table 3.5 Empirical Transition Rates: Single Price Change. 

61.8% of the time. For the bid price the numbers are 63.5% and 55.3% of the 
time. Earlier, in Table 3.4, we saw that a 100 ms latency resulted in no changes 
in the bid more than 96 percent of the time (in at least half the observation 
period). But, in Section 3.3 we saw that the median interarrival time of a change 
in either the bid or the ask is 3 ms ( that for the bid is 8 ms). The numbers in 
Table 3.5 help us reconcile these two seemingly contradictory statements: even 
though after a 100 ms delay one may not observe a net change in the bid, this 
zero net change is a result of both no changes during the 100 ms period and also 
of several changes that cancel each other out. So, for latencies greater than 8 ms, 
if you submit an MO, by the time it hits the market, the price may have moved 
away but it may also have returned to the price that was there when the MO 
was submitted. Latency, therefore, introduces execution risk specially for traders 
who are not colocated. 

Table 3.5 also illustrates an asymmetry that appears on this day in the relative 
frequencies of ptice reversals. This asymmetry suggests that a shrinking of the 
quoted spread ( a fall in the ask or an increase in the bid) was more likely to be 
reversed than an increase in the quoted spread ( an increase in the ask or a fall 
in the bid). 

So we present Table 3.6 to investigate whether the sign of the current price 
change can predict the sign of the price changes in the next two periods. This 
table describes the relative frequency of price reversals ('Reversal', 1r � or � 1r) rel­
ative to consecutive movements in the same direction ('Up'(il'il') and 'Down'(��)) 
conditional on the current price change being up 1r or down �- Around 60% of 
consecutive changes in the bid and in the ask are in opposite directions. Table 3.6 
shows not only the conditional probability of the future two price moves, but also 
the unconditional one. Comparing those transitions we are led to the conclusion 
that there seems to be little if any difference between the conditional and the 
unconditional transitions. Thus, even though price changes tend to be reversed, 
the direction of the current price change (whether it is an uptick or a downtick) 
does not carry additional information about future price changes. 

Finally, we consider a longer sequence of price changes, i.e. we consider whether 
the signs of the two past price changes can predict the next one. To accomplish 
this we define four states, one for each possible pair of signs of price changes 
as follows: A is an uptick followed by another uptick (A = i)'il'), B is an uptick 
followed by a downtick ( B = i)' �), C is a down tick followed by an uptick ( C = � 1r), 
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Ask 

Up(t+l,t+2) Reversal(t + 1, t + 2) 

(1r1r) (11'-!J,, -(!,11') 

Uptick(t) (11') 17.1 59.5 
Downtick( t) (-(!,) 19.6 59.1 

Unconditional 18.3 59.3 

Bid 
Up(t + 1, t + 2) Reversal(t + 1, t + 2) 

( 1r1r) (11'-!J,, -(!,11') 

Uptick(t) (11') 24.0 60.3 
Downtick( t) (-(!,) 23.7 58.1 

Unconditional 23.9 59.1 

Down(t + 1, t + 2) 
(-(!,-(!,) 

23.4 
21.3 

22.4 

Down(t + 1, t + 2) 
(-(!,-(!,) 

15.7 
18.2 

17.0 

Table 3.6 Empirical Transition Rates: Pairs of Tick Changes. 

and D is a down tick followed by another downtick ( D = JJ,JJ,). The price change 

signs are then used to generate a sequence of A, B, C, D with overlapping 

observations, so that, e.g., the sequence 11 JJ,JJ,11 would be represented as BDC. 

Note that there are several transitions that cannot occur. For example, B cannot 

be followed by A, since if the price change was B(11JJ,), then either (i) the next 

change is 11, in which case we transition to the state C(JJ,11), or (ii) the next 

change is JJ,, in which case we transition to the state D( JJ,JJ,). 

The estimated transition frequencies for this Markov chain are provided in 

Table 3.7. The transition AA should be interpreted as the sequence of ticks 111111, 

BC as 11JJ,11, and so on. In the table we can see confirmation of price reversals: 

the transitions BC and CB have markedly higher probability, suggesting that 

successive price movements (both for the bid and the ask) tend to go in opposite 

directions. 

3.6 Market Fragmentation 

Another issue to consider when executing aggressively is that of market fragmen­

tation. vVe only address this issue superficially here but it is a serious concern 

for high-frequency traders. 

So far we have focused on detailed data from one exchange, NASDAQ. As 

of October 2014 in the US there were 11 exchanges and around 45 alternative 

trading venues, most of which were dark pools - dark pools are trading venues 

that do not publicly display price quotes and in 2014 NASDAQ represented 

around 20 percent of the trading (later, in section 7.4, we provide execution 

algorithms were the agent has access to a standard lit market and also to a dark 



(t + 1) 

A(t) (1r1r) 
B(t) (11-li-) 
C(t) (-U,11') 
D(t) (-U,-U,) 

(t + 1) 

A(t) (1111') 
B(t) (11.!J,) 
C(t) (.!J,11') 
D(t) (-U-.!J,) 

A (1r1r) 

54.4 

34.4 

A ( 1r1r) 

43.0 

32.8 
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Ask 

B (11'-li-) C (-li-11') D (-U,-U,) 

45.6 
70.0 30.0 

65.6 0.0 0.0 
48.6 51.4 

Bid 

B (11-li-) C (-li-11') D (.!J,.!J,) 

57.0 
62.2 37.8 

67.2 
46.9 53.1 

Table 3. 7 Empirical Transition Rates: Pairs of Ticks. 

pool). So, we cannot truly talk about 'the market' as a single exchange, but as 
the aggregation of activity across a large number of venues. To get an idea of 
the degree of market fragmentation, that is, the extent to which the market for 
one asset is distributed across different venues, we look at trading during market 
hours (9:30-16:00) for one asset, AAPL, on July 30, 2013 across all venues using 
Consolidated Tape data. These data provide information on all transactions and 
best quotes from all venues. 

Here we have reconstructed the bid and ask for the venues for which we have 
AAPL activity reported during that day. With the reconstructed bid and ask, we 
compute the percentage of time each exchange's best price (the bid or the ask) 
coincides with the best price across all venues. Table 3.8 captures this informa­
tion. We can see that NASDAQ-0:MX's bid coincides with the best bid across 
all venues during 67 percent of regular trading hours, while the same figure is 
19 percent for BATS, 43 percent for the NYSE-ARCA, 35 percent for EDGE-X 
and never for EDGE-A markets. 

Thus, optimally executing a trade is not just about timing and prices dis­
played in one exchange, but also about: how to organise the way an order ( or 
orders) reaches a particular trading venue, what the different laws governing how 
exchanges should handle orders are and the rules exchanges use to implement 
them, how to programme the routing of the order, and which order types are 
best suited to one's particular routing and trading strategy, etc. 

In the US the specific regulation, Reg NMS (National Market System), has 
been set up to facilitate competition between exchanges and to protect investors. 
In particular, it has specific provisions to protect investors' orders by preventing 
trade-throughs (i.e. the execution of an order at an inferior price when a better 
price is available, especially when that price comes from a 'proper' (protected) 
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Percentage Time at NEBO 

Exchange Bid Ask 

NASDAQ 67.8 61.3 

BATS 18.8 15.7 

ARCA-NYSE 43.4 38.3 

NSE 0.0 0.0 

FINRA 0.0 0.0 

CSE 0.0 0.0 

CBOE 1.2 0.7 

EDGA 0.0 0.0 

EDGX 34.5 41.0 

NASDAQ-BX 0.0 0.0 

NASDAQ-PSX 0.0 0.0 

BATS-Y 4.5 0.0 

Table 3.8 Percentage of Time that Exchange's Best prices are at the NBBO. 

quote in another trading venue). Tables 3.9 and 3.10 look at trade executions 

in the different venues and compare the price at which the trade was executed 

relative to the best bid/ ask price in the exchange in which the trade is reported 

(Local) and relative to the best available price across all venues we have recon­

structed from the data (NBBO). 

Local NEBO 
Exchange Bid Ask Total Bid Ask Total 

NASDAQ 22,214 8,122 30,336 458,994 367,181 824,675 

BATS 1,854 2,200 4,054 118,205 108,407 225,512 

ARCA-NYSE 9,840 5,630 15,470 292,933 273,729 566,361 

NSE 901 200 1,101 13,244 11,057 24,301 

FINRA 0 0 0 534,178 406,346 940,424 

CSE 0 0 0 0 0 0 

CBOE 0 0 0 5,005 1,550 6,555 

EDGA 0 100 100 31,357 22,125 53,482 

EDGX 9,324 2,300 11,624 230,187 207,005 436,392 

NASDAQ-BX 1,016 1,100 2,116 60,971 48,365 109,336 

NASDAQ-PSX 0 100 100 600 1,525 2,125 

BATS-Y 100 1,000 1,100 16,519 16,178 32,497 

Table 3.9 Number of Shares Executed at Best Prices (Local refers to best price at local 
exchange if local best price is not NBBO). 

Table 3.9 compares for each venue, the executions that occurred at the best 

price across all venues (NBBO) versus the ones at the best price in that venue 
(Local), when that venue's best price was not the best across all venues. We can 



Exchange NBBO Local Best 

NASDAQ 39.8 1.5 
BATS 34.8 0.6 
ARCA-NYSE 43.3 1.2 
NSE 33.1 1.5 
FINRA 22.2 0.0 
CSE 0.0 0.0 
CBOE 63.3 0.0 
EDGA 27.8 0.1 
EDGX 30.6 0.8 
NASDAQ-BX 41.1 0.8 
NASDAQ-PSX 52.1 2.5 
BATS-Y 26.0 0.9 
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Inside Best Outside Best Shares (total) 

57.5 1.3 2,073,946 
64.2 0.4 648,137 
54.4 1.2 1,308,771 
64.3 1.1 73,486 
71.5 6.4 4,238,247 
0.0 100.0 122,250 

36.7 0.0 10,350 
71.6 0.5 192,202 
67.4 1.1 1,425,145 
55.5 3.4 266,166 
40.5 4.9 4,075 
73.2 0.0 125,220 

Table 3.10 Percentage of Shares Executed, by Execution Quality. 

see that when trading against a best price, it occurs against the NEBO most of 

the time. In Table 3.10, we allow for further types of executions, not just against 

a best price, but also inside the (Local) spread (between the local best bid and 

ask, while not at the NEBO) and outside the spread (for FINRA and CSE we 

use the NEBO as reference because no Local bid/ask quotes are reported). The 

numbers clearly show that almost all trades occur at the computed NEBO or 

inside the (local) spread: 40 and 58 percent for NASDAQ respectively, 43 and 

54 for NYSE-ARCA, 35 and 64 for BATS, and 30 and 67 percent for EDGE­

X. The same percentages for trades reported to FINRA are 22 and 72 percent 

respectively using the NEBO as reference. These numbers suggest quite high 

execution quality, although the proportion of trades inside the spread seems 

unusually large if one takes into account that a regular market order should be 

executing at best prices. A possible explanation is that many of these trades 

are being executed against hidden orders posted inside the spread and/or via 

alternative order types which allow aggressive postings inside spread. 

3. 7 Empirics of Pairs Trading 

Most traders do not look at one asset at a time, but consider the interactions 

between different assets. This makes sense when you can extract information 

from the interaction between different assets. This works best with groups of 

assets that share common shocks and occurs naturally for assets in the same 

industry. 

In this section we focus on the interaction between two technology stocks 

(Intel, INTC) and a technology ETF (Merrill Lynch Semiconductor ETF, SMH) 

on November 1, 2013. These two assets move together for two main reasons. The 

first is mechanical: around 20% of the ETF holdings are shares of INTC. The 
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second is economic: the ETF is designed to represent the semiconductor industry, 
and hence its price will move in response to news that affects that industry, and 
the same news will have a similar effect on the price of INTC. In Chapter 11, 
devoted to pairs trading and statistical arbitrage, we build on some of the ideas 
presented here to show how to take advantage of the information provided by a 
collection of assets. In particular, we present different trading algorithms based 
on the co-integration in the stock price level or in the drift component of a 
collection of assets that builds on the following empirical analysis. 

Our analysis is based on the following theoretical model: we assume that both 
INTC and SMH are stocks whose dynamics have a transitory (mean-reverting) 
component and a permanent (Brownian) component. We express the dynamics 
of this process in vector form as follows: 

dSt = K, (0 - St) dt + adWt, (3.4) 

where�= aa', and Wt is a Brownian motion. 
The presence of a mean-reverting component (the term proportional to dt) 

introduces the opportunity for generating positive expected returns from trad­
ing by exploiting that component's predictability. In this case, we use the joint 
information from the two processes to create a stronger trading signal by con­
structing a linear combination of the two assets, which is most strongly driven 
by the mean-reverting component (and which is the basis for the some of the 
algorithms of Chapter 11). 

This is done by transforming the system in Equation (3.4), which has a generic 
matrix K,, into an equivalent system, 

(3.5) 

where ;:;, is a diagonal matrix; that is, we look for the constants {an, 0'.12, a21, a22} 
such that 

and 

St,1 = auSt,1 + a1,2St,2 

St,2 = 0'.21St,l + 0'.2,2St,2 , 

K,= [ 
K:1 _o ] . 
0 K,2 

The resulting r;, matrix has { K-1, K:2} equal to the eigenvalues of K,, and the process 
St,j corresponding to the largest of these (in absolute terms), max{IK-1 I, IK-2 I}, will 
have the strongest exposure to the mean-reverting process, and hence should 
contain the most trading-relevant information - i.e. it will generate the best 
trading signal (see the algorithms developed in Chapter 11). 

We illustrate this by a simple estimation of the relationship between INTC 
and SMH during November 1, 2013. We sample using the midprice and estimate 
the process at regular intervals (every 5 seconds). We fit the discrete version of 



6.St,INTC 

6.St,SMH 
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B 

A 6.St-1,INTC 6.St-1,SMH 

0.011 
0.035 

0.997 
0.003 

*** 0.002 
0.998 ***

Table 3.11 Estimated parameters of VAR (*** significant at 1 % level). 

the model in (3.4) and use it to compute the values of the transformed model in (3.5) in order to build the trading signal. To estimate the discrete version of model (3.4) we estimate the vector autore­gressive process (VAR) 

where St 

= [St ,JNTC St,SMH]' are the asset prices, and !:::,,St ,j denotes the change in asset j - A is a vector of constants, B a matrix of constants and E:t a vector of white noise. The resulting estimates are described in Table 3.11. From these we can recover the parameters of model (3.4): 
,,,, = I[ - B = [ 0.003 !:::,,t -0.003 -0.002 ] 0.002 '

and diagonalise ,.,, to obtain i., and S: 
,,,, � U · A· u-

1
, 

St
= U St

= 

- -1 [ 0.682 -0.731 0.547 0.837 

[ 24.30691 ] 40.91387 ' 

0 0.0007 ] 

1.015
�-------i---H�I 

-2.7�----------

1.01 
g31.005 
-�

0.995 
0.5 Time 

� -2.75 
Ii.. 
§ -2.8 

to-2.85 
<J.) 

·- -2 9 
6

-2.950 0.5 Time 
Figure 3.6 INTC and SMH on November 1, 2013: (left) midprice relative to mean 
midprice; (right) co-integration factor. The x-axis is time in terms of fractions of the 
trading day. The dashed line indicates the mean-reverting level; the dash-dotted lines 
indicate the 2 standard deviation bands. 
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Constant Tt-1 Tt-2 

Tt,JNTC -0.000 -0.011 0.025 

Tt,SMH -0.000 -0.057 *** 0.014 

r- 0.000 -0.195 *** -0.079
St,1 

-0.000 0.013 0.044

*** 
*** 

Table 3.12 Estimated parameters of individual AR(n), *** significant at 1% level. 

In Figure 3.6 we display the price process for the two assets in the left panel, 
and in the right panel the price process for S1 , which is called the co-integration 
factor. Visual inspection (not included here) suggests a much stronger mean­
reverting (auto-regressive component) for S1 than for S2. We verify this by run­
ning autoregressions on the returns for all four price processes: TrNTC, rsMH, r 51, 

and r52. We can see the results in Table 3.12. For the assets, INTC and SMH,
the coefficient on lagged returns is only significant for the ETF, SMH. After es­
timating the model and applying the diagonalisation on K,, the return on one of 
the resulting portfolios, S1 ( the co-integration factor), has a coefficient on lagged 
returns that is almost four times larger than the one on SMH ( and includes an 
additional significant coefficient on the returns two periods prior). 
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4 Em pi rica I and Statistica I Evidence: 
Acti ity and Market Quality 

This chapter continues our overview of empirical matters by looking at volume 

and market quality. As in the previous chapter we start by looking at daily 

volume though focusing on its relationship with volatility. We then move on to 

'seasonal' patterns observed in the data, both in volume as well as in prices. Sec­

tion 4.3 turns to market quality. These are variables that affect trade execution, 

such as spreads, volatility, depth, and price impact. Section 4.4 looks at message 

activity and the relationship between cancellations, executions and distance from 

the midprice. The chapter concludes with a look at hidden orders. 

4.1 Daily Volume and Volatility 

So far we have seen that the price level (and the asset's returns) over the course 

of a whole day are difficult to predict and move with market forces. Over short 

horizons, these prices have fat tails, are subject to rapid changes (where the 

speed of change in price levels depends on the frequency with which the asset is 

traded), these changes tend to cluster in time, and are more likely than not to 

return to their previous level. 

But trading activity, usually measured using volume ( either in number of 

shares or the value of shares traded) has a different dynamic structure that 

has important ramifications for the way we look at market data. Andersen & 

Bondarenko (2014) capture this idea very well: 

Since volume and volatility are highly correlated and display strong time series persis­
tence, any variable correlated with volatility will, inevitably, possess non-trivial fore­
cast power for future volatility. This is true for bid-ask spreads, the quote intensity, the 
transaction count, the (normalized) trading volume ... 

This and subsequent sections will consider the empirical aspects of some of 

these variables associated with volatility. 

As a first step, we look at the relationship between volume and volatility using 

a robust regression for our four main assets (ISNS, FARO, MENT and AAPL) 

with daily volume as the dependent variable. As in subsection 3.1.4, we estimate 

two models using robust OLS. The left-hand side variable is the log of the number 

of shares traded on each trading day of 2013, log(l + Qt) (remember that we 
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must add 1 to Qt as for some assets, ISNS in particular, there are trading days 
with no trading and zero volume). 

The variables on the right-hand side are the variables we used in the model 
for intraday returns. In particular, the first model (Ml) includes a constant, the 
lagged values of the left-hand side variable (lagged volume), intraday returns on 
the VIX and the SPY, the contemporaneous intraday return of the asset, and 
OF which is the day's net order flow, on NASDAQ, defined as the volume of buy 
minus the volume of sell orders. 

Hence, Model 1 (Ml) is 

log(l + Qt,j) =a+ /31,j log(l + Qt-1,j) + /32,j SPYt + /33,j VIXt 

+ /34,j Tt,j + /35,j OFt + Ej, 

while Model 2 (M2) is 

log(l + Qt,j) 

=a+ /31,1 log(l + Qt-1,1) + /32 ,1 SPYt + /33,j VIXt + /34,j rt,1 + /35,j OFt

+ /36,j (SPYt)2 
+ /3?,1 (VIXt)2 

+ /3s,1 HLt + f3g,1 (rt)2 
+ E1 .

In addition to the variables appearing in Ml, M2 also includes 

• ( SPY t) 2: the squared value of the intraday return on the SPY ETF, as a proxy
for market wide volatility, 

• (VIXt)2: the squared value of the intraday 'return' on the VIX, as a proxy for
the volatility of volatility, or the variation in intraday changes in market 

• 

• 

sentiment, 
HLt (HL-volat): the asset's price range (max Pt - min Pt) during the day, as 

a measure of the day's price volatility, and 

r'f: the square of the asset's intraday return 
intraday volatility) 

Variables 

constant 
log 1 + Qt-1 

SPY(%) 
VIX(%) 
Tt 

Order Flow 
gpy2 

VIX2 

HL-volat 
r; 
Adj R 

ISNS 
Ml M2 

6.47 5.40 

0.22 0.22 

0.04 0.19 
0.02 0.02 

-0.01 -0.03
0.02 0.04 

-0.01
0.00

0.32

-0.01
0.03 0.18 

FARO 
Ml M2 

4.88 5.22 

0.58 0.52 

-0.17 -0.21

0.00 -0.01
0.05 0.04
0.00 -0.00

0.09
-0.00
0.10 

0.01 
0.30 0.50 

(another, distinct, measure of 

MENT AAPL 
Ml M2 Ml M2 

7.77 7.70 5.46 9.66 

0.41 0.39 0.67 0.38 

0.03 0.07 0.00 0.03 
0.01 0.02 0.00 -0.00
0.06 0.01 0.01 -0.01

-0.01 -0.00 -0.00 0.00
-0.11 -0.03
0.00 0.00

0.20 0.28

-0.02 -0.02
0.17 0.24 0.38 0.65 

Table 4.1 Robust OLS regression of intraday volume (Bold: 5% significance) 
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Figure 4.1 Intraday volume for AAPL on 
July 30, 2013 at three different scales. 
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The results in Table 4.1 display no evidence of significant effects from market 

variables (VIX e>r SPY) nor from order flow on volume. We also find no effect of 

the day's intraday return - FARO has a positive and significant effect in Ml, but 

it disappears as we include better proxies for intraday volatility. What we find 

is substantial support for Andersen and Bondarenko's statement: volume seems 

to have significant time series persistence as evidenced by the common, positive 

and significant coefficient on last period's volume (Ml and M2 for all assets), and 

positive and significant 'correlation' with volatility, as measured by HL-volatility 

(in M2, all assets). Volatility, as measured by the square of the intraday return, 

seems statistically insignificant in the presence of HL-volatility. 

4.2 lntraday Activity 

There are other well-known empirical patterns of intraday volume. F igure 4.1 

shows the volume (number of shares traded in NASDAQ) at three different time 

scales over the course of a single trading day for AAPL. The top panel shows 

the results over the whole day when volume is aggregated in one-minute buckets 

( although the volumes for the first and last couple of minutes are off the scale). 

A striking characteristic for this day are the peaks at the beginning of the day 

and at the end of the day. There is a third peak around noon but ( as we see 
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later) it represents a pattern that is specific to this trading day and is not a 

generic feature observed when trading in this asset. 

A second striking feature is the large variability in volume. Computing the 

descriptive statistics on volume we find a mean of 6,898 shares, a standard devi­

ation of 7,014, and quantiles Ql: 3,299, median: 5,349 and Q3: 8,039. The third 

and fourth moments give us a measure of skewness of 6.14 and kurtosis 60.83. 

All these confirm the impression that intraday volume has very large peaks of 

trading. 

The peaks in volume observable at certain minutes, form a pattern that is 

repeated as one zooms into smaller time intervals. The bottom two pictures in 

Figure 4.1 look at the pattern of volume during a 30-minute and a one-minute 

window in the middle of the day. The left panel compares volume aggregated in 

ten-second buckets with their one-minute average (the thick line). We see sub­

stantial variation with large peaks of trading mixed in with periods of relative 

calm. Zooming in further, the pattern in the right panel is even more striking. 

For a single minute of the day, the grey columns identify volume aggregated to 

one second, while the large dots represent volume aggregated at 20 ms (which 

is almost equivalent to plotting individual transactions). Transactions seem ran­

domly distributed over the minute, and it is not obvious whether the clustering 

of changes in prices we saw earlier (in subsection 3.3) is also taking place at this 

time scale. Transactions also appear to happen in multiples of 100 shares. 

The fact that transactions occur at round quantities is an institutional feature. 

The market designers and regulators differentiate between 'odd', 'even', 'mixed' 

and 'round' lots. A round lot is a message or transaction involving units of even 

lots (an even lot is 100 shares). Odd lots are trades smaller than an even lot, and 

can be more expensive to trade (in terms of fees/commissions), while mixed lots 

are transactions which include both round and odd lots. Odd lots are sometimes 

aggregated and even not displayed on the consolidated tape (the public ticker 

that includes 'all' transactions from all exchanges). Also, trading in odd lots is 

subject to special rules which are in the process of being changed and reviewed 

(see for example SEC Release No. 34-71057 SEC (2013b), on the reporting of 

odd lots and changes in the definitions of "market" orders). 

There are many algorithms which are based on or linked to volume. For ex­

ample, some execution algorithms (see Chapters 6, 7 and 8) may require that 

MOs sent to the exchange do not exceed a percentage of what other market 

participants are trading at that point in time. In the same vein, some algorithms 

are designed to trade in a given direction, buy or sell the asset, whilst targeting 

a given percentage of the market - these are known as POV or percentage of 

volume algorithms. Moreover, volume plays a very important role in determining 

execution cost benchmarks. One of the most important of these is VWAP, which 

stands for volume weighted average price. We devote Chapter 9 to algorithms 

that target POV and VWAP where we also expand on the discussion of intraday 

volume to which we now turn. 
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Figure 4.2 Volume as a function of the time of day. 

lntraday Volume Patterns 

To gain insight into the intraday volume patterns, in Figure 4.2 we show heat­

maps (left panels) of daily volume for the year 2013 for AAPL and MENT. 

The heat-maps are generated by first bucketing traded volume into five-minute 

windows throughout the day, for every day of the year. Then, for each five-minute 

bucket, we compute the distribution of volume. The heat-map is a visualisation 

of the collection of these distributions for each five-minute bucket all at once. In 

the figures we use coloured lines to represent the first and third quartiles, as well 

as the median. 

We see that volume for AAPL is very large at the beginning of the day, and 

it gradually slows down until around 14:00, at which time there is a small surge 

in activity. The 14:00 surge slowly builds up and accelerates during the last half 

hour of the trading day, peaking at the close. 

A reasonable hypothesis for the 14:00 surge is that at that time there are more 

announcements than is the norm, and these announcements tend to generate 

greater volume. For example, the monthly Treasury Budget is announced at 

that time of the day. Earlier we saw this figure for the day of July 30th. There 

we saw the usual peaks at the beginning and end of the day as well as a peak 

of trading volume around noon, which we can now show that is atypical for this 

asset. 
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To explain the peaks at the beginning and the end of the day, we need to 
hypothesise about the factors that drive volume. A common hypothesis in the 
literature, which is also made here, is that new information generates greater 
volume. In addition to the 14:00 surge, this would also explain why there is such 
a large volume at and just after the opening, as overnight news is gradually 
incorporated into prices during that time. But, this hypothesis does not explain 
the magnitude of the increase in volume at the end of the day, as there is not 
an unusually large number of announcements at that time. However, in Chapter 
7 we will see another possible explanation for this peak in trading at the end of 
the day: traders who have not been able to meet their liquidation targets will 
accelerate trade execution as the market approaches its time to close. A second, 
not unrelated, possible explanation is that traders may prefer to postpone non 
urgent executions towards the end of the day when execution costs are lower (See 
for instance Section 4.3.5 where we discuss price impact, in particular Figure 4.11 
where we show that the impact of orders (walking the LOB) is lower at the end of 
the trading day for INTC, and in Chapter 6 we show similar behaviour for SMH, 
see Figure 6.1). Finally, strategies that target volume (such as the ones developed 
in Chapter 9) will naturally exacerbate the increase in volume anticipated during 
this period. 

The right panels of Figure 4.2 expand our analysis a bit further. They show a 
functional data analysis (FDA) approach to viewing the data. In these graphs for 
every trading day we regress the realised five-minute volume against Legendre 
polynomials and plot the resulting curve as a thin line in the figure. This gen­
erates a smooth volume curve for each day of the year. We then plot the mean 
of these curves ( the solid blue line) which represents the expected ( or average) 
trading volume throughout the day for the corresponding ticker. The conclusions 
that we drew about the behaviour of volume but we obtain additional insights. 

In the right panels we observe four large outliers for AAPL - four curves that 
disappear off the bottom of the scale. These represent four special days for 2013. 
Three of these four were predictable while the other was not. The predictable 
three correspond to July 3 (Independence day), November 29 (Thanksgiving), 
and December 24 (Christmas) when NASDAQ closed early (13:00) for the hol­
idays. These days are excluded from the calculations for MENT. The fourth 
outlier corresponds to August 22, 2013. On this day NASDAQ suffered major 
problems that led to a market shutdown for about three hours. So, in addition to 
identifying regularities in intraday trading patterns, the FDA curves have helped 
us identify outliers in the data. Outliers are very important when using historical 
data for analysis, backtesting, and designing algorithms. Quite often, an outlier 
will have a disproportionate effect on an algorithm's profitability, whether when 
backtesting it against historical events or running it live in the market. Thus, 
it is crucial to keep track of these outliers and account for them in the design 
and evaluation of algorithms. In our historical analysis of the intraday pattern of 
volume, AAPL's mean daily volume function drawn in the right panels is lower 
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Figure 4.3 Trading pattern within a 

second. 

than it would have been if we had not included those four particular dates in the 

estimation. 

In order to contrast the intraday behaviour of AAPL with that of a less fre­

quently traded asset, Figure 4.2 displays the same analysis for MENT. We ob­

serve that the daily peaks at the beginning and the end of the day are also there, 

though slightly modified, and distorted by the discreteness of trading lots. For 

MENT, the initial burst of trading is not as frequent as with AAPL. As we can 

discern from the pictures on the right, there are a substantial number of days for 

which trading starts unusually slowly. These slow days balance out the bursts 

of trading from other days, so that on average volume in early trading does not 

seem to differ substantially from that during the rest of the day. It is at the end 

of the day that.we see a substantial amount of trading activity in MENT. 

We have omitted ISNS and FARO from this analysis, as the frequency of 

trading for those assets is even lower than for MENT, and thus there are many 

more zero-volume observations. The resulting figures are qualitatively similar, 

although there is a lot more noise in the estimation, and a much larger number 

of zero trading intervals. 

lntrasecond Volume Patterns 

When working at time intervals much finer than a second, a natural question 

to ask is whether we observe time patterns at such small intervals, like the 

ones we found over the duration of the day. Focusing only on AAPL we look 

at the millisecond trading pattern, that is, for each transaction we look at the 

millisecond in which it occurred. In Figure 4.3 we display the average number 

of transactions at each millisecond for each day in 2013 (AAPL), as well as the 

quartiles (Ql, median and Q3) for the daily means for each millisecond (the 

quartiles have been smoothed using moving averages). 1 

We see that there is hardly a persistent pattern at the millisecond level, al­

though an initial spike is observable at the 000-020 ms range, followed by a subtle 

1 To improve the visual presentation the 10 highest realisations in the year have been

removed from the figure. 
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valley that ends around the 100 ms point. To explore this in more detail, in Fig­

ure 4.4 we identify the empirical cumulative distribution function of the number 

of transactions ending at six different milliseconds: three early ones (at 4, 5, and 

6 milliseconds), and three later ones (at 104, 105, and 106 ms). From the figure 

we can see that the early milliseconds stochastically dominate the other three. 

(The choice of 104-106 is arbitrary and the same pattern is observed if we choose 

other milliseconds to compare with what happens at 4, 5, and 6 - sometimes 

even more starkly.) 

This pattern suggests that there is an unusual number of transactions that 

are recorded just after the exact beginning of a second. A plausible explanation 

is that there may be an unusual number of transactions that are entered ( auto­

matically) at the exact end/beginning of a second and what we observe is the 

latency or clock-asynchronicity of these orders (machines). 

Price Patterns 

It is quite standard to look at volume patterns, but not price patterns. In this 

section we ask whether executions at prices that end in multiples of 5 cents (round 

values) are different from those that do not. There is no strong fundamental 

reason why the price of an asset, which in theory represents a fraction of the 

income for shareholders generated by a firm, should have a round value, such as 

$450.25 or $21.00. However, if we look at the frequency with which we observe 

transactions taking place at different prices grouped by the number of cents in 

the price, we find the pattern displayed in Figure 4.5.2 The figure also shows the 

quartiles Ql, median and Q3 as solid lines. 

The patterns are quite evident. There is a very large accumulation of transac­

tions whose prices end in exact dollar-valued prices, a large number of transac­

tions with prices that end in 50 cents, and spikes of larger than usual numbers 

of transactions at prices that end in units of 10 cents, and even 5 cents ( these 

differences are for the most part statistically significant). 

2 To improve the visual presentation the 10 highest realisations in the year have been
removed from the picture and the quartile estimation (10 out of 98,280). 
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Figure 4.5 Price pattern: frequency of 

executions by number of cents in the price. 

There is a quite straightforward interpretation for this phenomenon, which is 

that for some reason (rational or not) there is a preference for providing liquidity 

at prices that end in round cent values. We use the term 'preference for providing 

liquidity', as transaction prices are (mostly) determined by an aggressive MO 

filling a standing posted LO, so it is liquidity providers who decide to accept a 

larger number of executions at a particular price level. 

Why would agents provide liquidity in this way? We can hypothesise that there 

are a number of stop-loss orders and momentum orders programmed to execute as 

MOs at round prices. These could be latent, having been programmed by agents 

who decide to enter/exit when the price moves beyond a certain barrier, which 

is psychologically or conveniently set at a whole number. This type of reasoning 

is consistent with chartist ideas such as 'price supports' and 'price ceilings'. If 

the above reasoning is correct, then the accumulation of executions at those 

prices may be triggered by psychologically-based demand for liquidity which is 

then happily provided by agents who do not have such psychological inclinations 

and expect the unusual demand for liquidity at these prices to be unjustified by 

economic/market microstructure fundamentals (and hence, a source of profit). 

4.3 Trading and Market Quality 

Financial markets play a key role in helping a market economy to allocate re­

sources over time and uncertainty. Financial markets provide a forum for firms 

to raise capital, and facilitate investor participation in the general economic 

progress of the economy. In this context, the stock market provides a forum 

where equity holders can convert their equity into cash (and vice versa) quickly 

and at a reasonable price. In this section we look at different ways of measur­

ing the market's effectiveness in this role under the generic heading of 'market 

quality'. 

In subsection 4.2.1 we used two basic arguments to explain intraday patterns: 

that new information increases trading volume, and that an increased desire to 

trade ( e.g. due to increased trader urgency) interacts with the quality of the mar-
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ket which feeds back to motivate further trading. Market quality enters directly 
into the second argument: an expected increase in volume generates expecta­
tions of better market quality, that is of improved effectiveness of the market 
in facilitating trade via lower execution costs (spreads), greater price efficiency 
(less mean-reversion in price levels or lower transitory volatility), etc., which in­
duces greater volume. In the first argument, market quality enters indirectly, as 
it modulates the relationship between the exogenous forces of new information 
and traders' desire to execute trades. Either way, if the quality of the market 

varies, trading activity will vary with it. 

So what determines market quality? What determines the effectiveness of the 
market in facilitating trade? Naturally, the direct cost of trading matters: how 
much does one pay for shares one wishes to buy; what is the price one pays 
relative to one's opinion of its market value; how much does one value the infor­
mation obtained from the market, and how easy is it to complete a transaction? 
Think of a medieval cattle market. Suppose one lives on a farm which is equidis­
tant from two towns that hold their weekly cattle market on the same day of the 
month. How does one choose between them? One will probably go to the market 
that is most likely to offer the best price, and which can be obtained after an 
easy sale process, and with the best guarantees that the transaction is finalised 
and one can walk away with the money. In a financial market, where agents are 
buying and selling, these dimensions along which to evaluate the quality of a 
market are: having sufficient information to identify the true market value of the 
asset, being able to buy ( or sell) any quantity at prices sufficiently close to the 
asset's value, and having the confidence that the deals are honoured. Of course, 
one may have qualms about the existence of such a thing as 'the true market 
price' of an asset, but regardless, it is a useful concept to work with and is the 
basis of much of the literature. If one does not believe there is or can ever be 
such a thing as the true market price, the concept is still useful as a theorectical 
construct in the study of market microstructure, in the same way as the concept 
of an ideal gas is useful in physics. 

From our short list of dimensions of market quality, the last one (honouring of 
deals) is usually taken for granted, although when prices suffer large fluctuations 
we do see some transactions being cancelled by the exchange ( usually because 
they occur at 'ridiculous' prices). The other two issues are captured by measures 
of market quality such as spreads, price impact, volatility, resilience, depth, 
probability of informed trading (referred to as PIN), etc. Spreads measure the 
immediate cost of executing a trade aggressively ;  price impact measures the cost 
of executing larger trades via their impact of trading on prices; volatility mea­

sures the effectiveness of the price in transmitting information about the market 
value of an asset; resilience is related to market impact and measures the mar­
ket's ability to return to equilibrium after a trade; depth measures the amount 
of visible liquidity in the market, and PIN measures the degree of information 
asymmetry in the market and hence, like volatility, the ability of the market 
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to transmit information about the market value of an asset. We now look at 

spreads, volatility, depth and price impact. 

Spreads 

Spreads measure the execution costs of small transactions by measuring how 

close the price of a trade is to the market price. The first problem, naturally, is 

to determine what is the 'true market price'. The simplest, and most common 

approach, is to use the midprice, 

( 4.1) 

the simple average of the bid (bt ) and the ask (at ) price. This reference is based 

on the economic concept that the market price is the equilibrium price, the price 

at which demand equals supply, and in a market with frictions that generate a 

gap between the best buy price (the ask) and the best sell price (the bid), the 

equilibrium should lie somewhere in between. The midprice is the simplest way 

to estimate this market price, although, as we saw in Chapter 2, the spread may 

arise for different reasons ( compensation for inventory risk, or adverse selection 

from trading against more informed traders) and in some cases the 'true price' 

may be closer to the bid or the ask. 

We saw an alternative estimate of the market price earlier as well, the micro­

price defined in (3.3). This seems more meaningful economically (and to develop 

algorithmic trading strategies) as it incorporates the quantities offered to sell and 

buy at the bid and ask (respectively) to weigh the bid and ask prices, and which 

may better reflect some of the microstructure issues described above. There are 

other, more sophisticated models that try to estimate the equilibrium price, e.g. 

by separating movements in the midprice into a temporary and a permanent 

component (the permanent being the equilibrium price), but we do not treat 

them here. 

The two most common spread measures are the quoted and the effective 

spread, both of which use the midprice as the market price. The quoted spread, 

QS, is the difference between the ask and the bid prices, 

QSt = at - bt, 

and represents the potential cost of immediacy: the difference in price between 

posting an LO at the best price and aggressively executing an MO (and hence 

'crossing the spread') at any point in time. It also reflects distance from the 

market price, if one takes the midprice as reference. The direct trading cost of a 

market sell order would be St - bt = QStf 2, while that of a market buy order 

would be at - St = QSt/2 (the quoted half-spread). 

In contrast, the effective (half-)spread, ES, measures the realised difference 

between the price paid and the midprice, which for a market buy order is 
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while for a market sell order it is 

For an MO executed in full on an exchange against a visible LO, the effective 
spread is equal to the quoted halfspread (if it does not walk the LOB). Sometimes 
it will be greater, if it does walk the LOB, or smaller, if it is matched with a 
hidden order inside the spread - it could even be negative, if the hidden order 
was aggressively posted. ewe saw hidden orders in the context of different order 
types in subsection 1.3.4 and we will discuss this further in subsection 4.5 - a 
hidden order is an LO that is posted in the LOB but is not visible to market 
participants.) A negative effective spread reflects that one is buying at a price 
below or selling at a price above the 'market price' (represented by the midprice). 
In empirical analysis, these spreads are usually normalised and expressed in bps 
relative to the midprice. 

In Table 4.2 we look at the quoted spread for our four assets during 2013 
( ordered from least to most traded). For each asset we compute the time-weighted 
average quoted spread, tQS, for each minute of the day. This is calculated as 
follows: for each minute of the day, t = 1 : 390, while the market is open (from 
9:30-16:00), 

n-1 

tQSt = 2)Ti+1 - Ti) QSt,, 
i=l 

where i E {l, ... ,n} indexes the time (in minutes) at which the quoted spread 
changes during minute t, Ti· Table 4.2 describes the statistics for the minutes of 
every day in 2013 ( 2 52 trading days), for each asset. 

Asset Mean StdDev POI Ql Median Q3 P99 

ISNS 33.2 270.8 2.0 11.0 22.0 40.0 129.2 
FARO 23.9 192.0 2.4 8.9 12.0 16.6 71.0 
MENT 3.5 27.4 1.0 1.0 1.1 2.0 13.9 
AAPL 13.6 54.7 5.4 11.0 13.8 16.9 29.3 

Table 4.2 Time-average Quoted Spread (in cents). 

The descriptive statistics of the resulting sample are provided in Table 4.2. 
The first thing to note is that the data on the table suggest that more frequently 
traded assets trade at lower spreads. This positive relationship between volume 
and market quality can work both ways: volume attracts liquidity and improves 
market quality, or higher market quality facilitates trade and generates greater 
volume. 

Nevertheless, AAPL seems to have an enormous spread. But, recalling the 
discussion on tick size earlier, the large spread for AAPL is an illusion as we 
have not adjusted for the relative tick size. The average mid prices ( at the end 
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of each minute) for our assets are: ISNS $5.25, FARO $40.62, MENT $19.93, 

and AAPL $473.00. This implies that the median quoted spreads are: for ISNS 

419bps, FARO 29.5bps, MENT 5.5bps and AAPL 2.9bps. By evaluating spreads 

relative to the midprice we recover the expected relationship between quoted 

spreads and volume. 

Also from Table 4.2 we can compute the interquartile range (as a percentage of 

the median). From these calculations we find that more frequently traded assets 

tend to have less volatile quoted spreads (the numbers arc: 1.32bps for ISNS, 

0.64bps for FARO, 0.91bps for MENT, and 0.42bps for AAPL). 

The MENT example illustrates another aspect of the importance of tick sizes 

which is of great interest, especially to regulators. In the US (for assets with 

prices greater than one dollar), the minimum tick size is legally fixed at one 

cent there are ways to trade in fractions of a cent but the one cent minimum 

is binding in most cases. Imposing a minimum tick size of one cent may affect 

trading for some assets, such as MENT. From Table 4.2 we can see that for 

almost 50 percent of all minutes, the one cent minimum is constraining MENT's 

quoted spread at that level ( one cent). This translates to a possibly significantly 

large relative minimum quoted spread ( around 5bps for MENT) and may be 

limiting the market quality for this asset. 

A final comment on Table 4.2: the numbers in this table are contaminated 

by an event we mentioned earlier, in subsection 4.2.1, namely that the data is 

not corrected for trading stops, and in particular for the trading halt during 

August 22nd. We do not include the corrected table as they are not significantly 

different and so it is not necessary, but only because our data set includes all 

the minutes in 2013, almost 100,000 observations per asset, so the overall effect 

on the statistical aggregates is very small. Nevertheless, we wanted to take this 

opportunity to point out the importance of knowing the details of your dataset. 

In the ITCH dataset, all messages are recorded and timestamped, even when the 

market is halted and there is no trading. We mentioned earlier how on August 

22nd the NASDAQ halted trading for three hours. During that time, messages 

kept coming into the exchange and were time-stamped. In particular, many or­

ders were cancelled and the 'ask' and 'bid' moved dramatically. As trading was 

suspended, these fluctuations led to huge and also negative art�ficial spreads, and 

they contaminate the data in Table 4.2 (primarily the mean and standard devi­

ation, although the effect is small). If we wanted to use our analysis for trading 

or designing an algorithm, especially if it involves unsupervised/ deep learning, 

the unfiltered data could generate significant distortions. 

We have also computed the effective (half-)spreads. In order to obtain numbers 

that are comparable to those in Table 4.2 we doubled the effective spreads and 

included them in Table 4.3. Again we have constructed one-minute buckets, and 

for each, we have computed the quantity-weighted effective spreads, qES, for our 

four assets: 
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Asset Mean StdDev POI Ql Median Q3 

ISNS 12.56 45.00 -42.00 3.50 9.23 19.00 
FARO 7.63 8.61 -10.00 3.33 6.50 10.76 
MENT 1.23 1.57 0.00 1.00 1.00 1.03 
AAPL 9.32 3.85 2.67 6.61 8.83 11.47 

Table 4.3 Quantity-weighted Effective spread (in cents). 

P99 

65.00 
32.84 

5.38 
20.20 

where j E {1, ... , m} indexes the trades that took place during minute t, qj 
denotes the number of shares in trade j, and ESj is the effective spread for trade 

j. 

Effective spreads differ from quoted spreads in several ways. Earlier we saw 

that the effective spread is equal to the quoted halfspread when a trade executes 
against a visible LO and does not walk the LOB. In our dataset, trades are 

recorded via the execution of the posted LO, so we do not have information on the 
MO that was sent to the market. This implies that none of our executions walk 

the LOB. This biases our measure of the ES downwards, but the bias is small, 
as we see very few executions of LOs away from the bid/ ask during previous 

milliseconds (a necessary condition for an MO to walk the LOB at NASDAQ, 
as the remaining quantity may need rerouting in search of best execution in all 

markets). Another reason why this bias is small, is that in the fragmented US 

market, when an MO comes into a market and it is greater than the depth at 

the bid/ask, the part that is not executed is usually routed to other markets, 
and only under very special circumstances will it literally walk the LOB. Note, 

that in general this rerouting makes it virtually impossible to reconstruct the 

quantity of a large incoming MO without specific information from the agent 
who sent it. 

Thus, our measured ES has to be equal to or lower than the (current) quoted 
spread. A visible trade will generate ES = QS/2. As not all posted LOs are 

visible, some trades will be executed at prices better than the bid/ask. This will 

generate an ES that is strictly smaller than the QS, and may even produce a 

negative ES. One obtains a negative effective spread if an incoming market buy 

(sell) order meets a hidden sell (buy) order that is below (above) the midprice. 

That this occurs is evident by looking at the first percertile of the empirical 
distribution for ES (the POl (first percentile) statistic in Table 4.3). 

There is another difference between ES and QS, namely that ES can only be 
measured when there is a trade, while quoted spreads are always observable. 

Therefore, it may be possible that quoted spreads differ from effective spreads if 
market conditions around trades are systematically different from those without 



� 
Cl) 

�20, 

ts.. 10 

AAPL 

4.3 Trading and Market Quality 75 

Figure 4.6 lntraday spread pattern: 

interquartile range for one-minute returns. 
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trades. Looking at the interquartile range and the standard deviations of ES and 

QS in Tables 4.2 and 4.3 we find that ES is less volatile than QS. This would 

happen if executions tend to be concentrated around times of narrow quoted 

spreads, something we explore in more detail in subsection 4.4. 

We have seen that assets with greater trading frequency have better market 

quality in the sense that execution costs for small trades (the quoted spread) 

is smaller. If we look at the intraday pattern of trades we find further evidence 

that lower execution costs occur when trading is high ( as anticipated by the 

theoretical discussions in Chapter 2, where we saw that if the number of in­

formed traders stays constant and the number of uninformed traders increases, 

the spread shrinks). In Figure 4.6 we plot the one-minute time-averaged quoted 

spreads for AAPL in 2013, as well as the first quartile, median and third quartile. 

As the figure shows, quoted spreads are initially high, decline rapidly during the 

first half-hour of trading, and are mostly constant throughout the remainder of 

the day until the last (half) hour of trading, when the spread rapidly declines. 

This pattern in quoted spreads is also seen in the effective spread. Recall that 

in Figure 4.2 we saw that the afternoon is associated with increased trading, 

and hence we find, as hypothesised, that during a period with a constant flow of 

information more trading and lower spreads occur together. 

This connection between trading volume and spreads fails during the morning 

where the situation is completely reversed: declining volumes go hand-in-hand 

with declining spreads. This can be explained by appealing to the other fac­

tor affecting volume which we discussed earlier, namely information. When the 

market opens, and during the subsequent hour of trading, the market absorbs 

all the information that has accumulated since the last market close. This would 

explain the heavier trading. But a lot of new information is also associated with 

a great deal of uncertainty. Theoretically, as we saw in Chapter 2, in the pres­

ence of greater uncertainty it is optimal to post wider bid-ask spreads, and in 

the market making algorithms developed in Chapter 10, see for example Section 

10.3, we show that greater price uncertainty increases the depths of the quotes 

that a risk-averse market makers sends to the LOB. Thus, more information at 
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4.3.2 

the beginning of the day explains the coincidence of wider spreads with greater 

volume. 

Volatility 

vVe now consider another dimension of market quality, namely volatility. Volatil­

ity measures price fluctuations and represents a cost (i.e. low market quality) in 

the sense that a rapidly changing price makes it difficult to determine the actual 

market price of the asset. Of course, one may observe price changes because the 

true market value of the asset is changing, and hence the literature differentiates 

between fundamental volatility and microstructure noise. The first captures the 

fluctuations in the true market price, while microstructure noise represents ex­

traneous fluctuations due to the way the market operates. There is a large (and 

growing) number of measures of raw volatility (unconditional volatility which 

does not distinguish fundamental volatility from microstructure noise) and of 

microstructure volatility. 

For simplicity we use the term volatility to refer to raw volatility, and we 

measure the volatility of asset returns, rather than of asset prices. We have seen 

several measures of volatility when studying the relationship between volume 

and volatility in Section 4.1. The simplest such measure is the realised volatility: 

the standard deviation of a sample of returns. We have seen volatility measured 

using the square ( or the absolute value) of the return � this is useful if you have 

very few observations and you are working in a sufficiently small time scale so 

that the mean return can be safely assumed to be (essentially)  equal to zero. 

Another common alternative is to use the range of the return ( or price): e.g. by 

taking the difference between the maximum (max) and minimum (min) values of 

the price over a certain interval and normalising it by either the minimum value, 

the mean/median, the initial value, or the average of the min and the max. Here 

we look at realised volatility, the range of returns, and the number of times the 

bid or the ask changes. 

Asset Mean StdDev POl Ql Median Q3 pgg 

ISNS 16.6 54.8 0.0 0.0 0.0 14.4 160.3 
FARO 8.3 12.7 0.0 3.8 6.6 10.3 31.3 
MENT 5.6 6.6 0.0 3.2 4.6 6.5 20.1 
AAPL 5.5 4.2 1.0 3.3 4.7 6.7 18.1 

Table 4.4 Realised one-min volatility (15 min samples). 

Table 4.4 displays the statistical properties of realised volatility measured as 

O"t, the standard deviation of one-minute returns over fifteen minute periods (for 

every day in 2013), that is, for every 15-minute period (each 15-minute period 
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indexed by t) , 

where j E {1, ... , 15} is the index for each of the individual minutes within the 

15 minute period (t), and rj is the realised return for minute j int. What we 
observe as we go from AAPL to ISNS in Table 4.4 is that the more frequently 

traded asset also has a higher mean volatility. 

Asset Mean StdDev POl Ql Median Q3 P99 

ISNS 0.10 1.37 0.00 0.00 0.00 0.00 0.00 
FARO 3.77 2.33 1. 10 2.50 2.84 4.26 12.05 
MENT 3.00 3.47 0.00 0.00 2.18 5.04 12.84 
AAPL 6.23 2.85 3.72 4.72 5.28 6.45 19.47 

Table 4.5 Interquartile Range of one-minute returns. 

Table 4.5 displays an alternative way to look at the same idea, only now 
we are looking at the statistical properties of a different variable, sampled over 

smaller time intervals. In Table 4.5 we include the statistics for the interquartile 

range of one-minute returns. That is, for AAPL, 5.28bps is the median of 25 2 
observations, one for each trading day, of the interquartile range observed for 

the one-minute returns during that day. 
Because the sampling method is distinct we observe some interesting differ­

ences. ISNS displays a zero interquartile range for most days. This is natural, 
as it is an asset that displays very few price movements - the median realised 

15-minute volatility is zero as we saw in Table 4.4. By focusing on the median

interquartile range for each day, this sampling method misses the very large
but relatively rare price movements that are responsible for the high volatility

numbers for ISNS in Table 4.4.

A different effect is responsible for the differences between MENT and FARO. 

Despite MENT having similar trading activity than FARO, it has lower volatility. 
MENT has more than 25% of days with an interquartile range equal to zero, but 

it also has lower realised one-minute volatility. The difference between MENT 
and FARO has probably much more to do with MENT's relative tick size. As we 

saw above when looking at the quoted spread, the one cent tick size is a binding 

constraint for MENT most of the time. This leads to an unusual degree of price 
stickiness, as many small price movements are not sufficient to push the bid or 

ask a whole cent ( 5  bps) away from their current levels. Thus, despite having 

similar activity levels as FARO, its price displays lower volatility. 

In subsection 3.5 we looked at the non-Markovian nature of price changes. We 

found that there is a significant tendency (at least for AAPL on July 3 0th, 2013) 

for price movements to reverse themselves. Thus, looking at the volatility of 
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Asset Mean StdDev POl Ql Median Q3 P99 

ISNS 2 29 0 0 0 0 16 

FARO 11 25 0 0 3 13 100 

MENT 6 18 0 0 2 7 75 

AAPL 150 149 7 64 109 185 709 

Table 4.6 Number of Changes in the ask or bid. 

one-minute returns misses many such price movements. To account for all price 

changes, we construct yet another measure of volatility: we count the number of 

changes in the bid and ask within a one-minute period, and report the statistics 

in Table 4.6. 

We find that the less frequently traded assets (ISNS, FARO and MENT) also 

have more stable prices (bid and ask) - at least 25 percent of the time we see no 

price changes at all. For ISNS this is even more marked, as it happens at least 

75 percent of the time. Nevertheless, the average is 2 per minute, suggesting 

that price changes occur infrequently but when they do, there are a lot of them. 

For MENT and FARO we see more price movements than for ISNS which is 

consistent with what we found earlier. MENT sees fewer price changes than 

FARO even though there is more trading in the former stock, but this is linked 

· to the issue of minimum tick size discussed above.

The statistics in Table 4.6 indicate that AAPL displays almost two orders

of magnitude more price changes than MENT or FARO. However, the realised

volatility of its return is lower than that of FARO and similar to that of MENT

(in Table 4.4). We interpret this as reflecting the interaction of small relative

tick size and large frequency of trading. A one cent price change for AAPL (with

an average price of around $500 in 2013) is 0.2 bps. An asset with such a small

relative tick size and with such a large trading activity is bound to have a price

level that is very sensitive ( and hence generates many changes in the bid/ ask

within a minute), but most of the resulting changes will be rapidly reversed ( as

we saw in Tables 3.5 and 3.6), generating relatively low realised volatility (Table

4.4).

To conclude our discussion of volatility, in Figure 4. 7 we look at how volatility 

(in terms of the interquartile range of one-minute returns) changes over the 

course of one trading day. The figure uses dots to displays the interquartile 

range for each minute of the day, estimated using all trading days in 2013 (390 

observations - one per minute). The lines represent fitted quartic curves. The 

blue line is fitted with standard OLS while the red line is fitted using robust 

OLS, which controls for outliers by reducing the weight of the more extreme 

observations at the beginning and the end of the day. 

Comparing the intraday volatility pattern in Figure 4. 7 to the intraday volume 

pattern in Figure 4.2, we see a common pattern: high at the beginning of the 
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Figure 4.7 lntraday volatility: 
interquartile range for one-minute returns. 

day, lower as the day progresses until it reaches a plateau between noon and 

15:00, followed by an increase until market close. While Figure 4.7 shows a large 

left-slanted smile for the volatility pattern, Figure 4.2 shows a more symmetric 

volume smile and, if anything, slanted to the right. This is consistent with trading 

at the beginning of the day being subject to more uncertainty and also being 

more informationally driven, while trading at the end of the day is driven less 
by information, and possibly more by traders rushing to close their positions. 

Market Depth and Trade Size 

Asset Mean StdDev POl Ql Median Q3 P99 

ISNS 619 787 51 150 300 750 3,250 
FARO 142 125 14 86 122 171 484 
MENT 661 694 117 351 527 784 2,852 

AAPL 189 169 64 127 161 210 662 

Table 4.7 Average Depth at the Bid and Ask (number of shares). 

Market quality is not just about the informational content of prices or the 
cost of executing a small order, it is also about depth. By depth, we mean the 
volume posted in the LOB and available for immediate execution. In this section 

we focus mostly on the volume at-the-touch, that is at the bid and ask price 

levels. Mutual and pension funds manage a large fraction of people's wealth and 
they need markets to adjust their positions, pay their investors, and evaluate 
their performance. These funds move large quantities of shares. In any one day a 
fund may want to buy or sell thousands, tens of thousands, or even more shares 
of any one company. Table 4.7 illustrates how unreasonable it is to think that 

the market will match those trades at the published bid/ask prices. The table 
shows the distribution of the one-minute time-weighted average of the quantity 

of shares available at the ask and bid on NASDAQ for every day in 2013. This 

number does not exceed 1,000 shares in 75% of cases for any one of the four 
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assets (not even AAPL). Recall (see Table 3.1) that in 2013, NASDAQ intraday 

trading represents around 22 percent of total volume. 

Depth and trade size are not independent of one another: the decision of how 

much to trade depends on the expected availability of shares resting as LOs for 

immediate execution, and similarly, the decision of how much to offer will depend 

on the expected flow of incoming MOs. If the depth is thin (few orders resting 

in the LOB), MOs will be small - which implies that in thin markets, relatively 

urgent large orders that would walk the LOB need to be broken up into smaller 

MOs which are then sequentially executed over a period of time. 

The institutional, legal, technological and economic changes of the last 15 

. years have produced a steady decline of the average trade size (the number of 

shares in a single trade). We can see this for AAPL in Figure 4.8 which displays 

the monthly average trade size, computed from CRSP data - the dots are the 

monthly averages and the dark line is a smoothed representation (a moving 

average). It shows a sharp increase in the early 2000s to a peak of around 1,300 

shares per trade, and a steady decline to around 200 shares by the end of 2013. 

(Nowadays, with the 7:1 split, the numbers should be different, though a similar 

pattern is observable in most stocks.) Table 4.8 gives the statistics on NASDAQ 

trade sizes (total number of shares traded, Q, divided by the number of trades, 

n) for 2013. As can be seen there, trade sizes in AAPL are smaller than for the

other three assets, though not substantially so.

Asset Mean StdDev POl Ql Median Q3 P99 

ISNS 206.2 348.7 1.0 100.0 100.0 200.0 1600.0 

FARO 99.8 76.4 1.0 64.0 100.0 100.3 374.8 

MENT 199.9 172.9 6.0 100.0 150.0 240.3 867.1 

AAPL 121.1 40.5 52.2 95.7 115.4 139.0 252.8 

Table 4.8 Average Size of a Trade (Q/n). 

When developing algorithms that provide liquidity to the market, the depth, 

captured by the shape of the LOB, is critical because this dictates where a trader 
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should post her LOs. We already discussed a simple model of market making 
in Section 2.1.4, and in subsequent chapters we develop these ideas further in 
the context of optimising market making and optimal execution algorithms. For 
instance, Chapter 8 looks at optimal execution (buying or selling large positions) 

when the agent employs LOs and possibly also MOs. In Chapter 10 the shape 
of the LOB plays a critical role in the optimal posting of liquidity for a market 
maker, and we consider how different assumptions about the shape of the book 
affect the optimal posting strategy. 

To close this discussion we look at the intraday patterns of depth in Figure 4.9. 
This figure shows the intraday pattern of the average quantity of shares posted 
at the bid and ask every minute of 2013. As expected, there is the usual sharp 
increase at the end of the trading day. This is consistent with greater market 
quality in the form of narrower spreads (as seen earlier, in Figure 4.6) and the 
increased desire of traders to close positions at the end of the day. Somewhat, 
though only marginally, surprising is that depth is also higher at the beginning 
of the day, where we hypothesised that high price uncertainty leads to wider 
spreads. The figure suggests that the theoretical trade-off between the benefits of 
market making from increased order arrival and the cost from higher uncertainty 
discussed in subsection 2.1.1 is resolved in practice in favour of providing greater 
liquidity. 

Price Impact 

A main concern for participants that wish to execute a large order is that the 
order will have an adverse price impact: increasing the price when buying aggres­
sively and lowering it when selling. There are several variables that can be used 
to measure the price impact of an order. Measuring depth, as we have just done, 
gives us a measure of price impact, in the sense that the depth at the bid/ ask 
tells us how large a market order can be with a zero price impact, i.e. without 
walking the LOB. 

But, in a single market, a large order would consume all the volume at the 
best quote and work its way through to the next tick and so on until the order 
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is filled. Thus, whenever an MO walks the LOB, the average price per share 

is worse than the best quote at the moment the MO was sent to the LOB. In 

Chapter 6 we have a thorough discussion of how to devise optimal strategies to 

minimise the market impact of large orders. 

So far we have only considered what happens to the MO as it reaches the LOB, 

but executing a (relatively large) trade can be quite complex. In the US, with 

11 public exchanges, regulators have felt a need to regulate what should happen 

to orders that consume all existing liquidity in one venue at the best bid/ ask, 

in order to protect investors. This regulation and the multiplicity of exchanges 

raise related issues of time delays between different venues. So, when sending an 

MO one has to design the routing strategy very carefully: to which exchanges 

and when to submit the order, and what will happen if that order consumes all 

available liquidity at some point. So, an agent needs to know what happens as 

the order is executed, but also what happens in the aftermath of a trade. 

With the information we have from NASDAQ we now look at what happens 

after orders are executed there. Table 4.9 looks at the executions for AAPL on 

NASDAQ on July 30th, 2013. As mentioned earlier (in Chapter 3), we do not 

observe MOs, but rather, what happens to existing posted orders. To illustrate 

the kind of analysis that can be done, we make the simplistic assumption that 

all orders executed at the same time (same millisecond) and at the same price 

level, are all part of the same MO, and are aggregated accordingly. 

Table 4.9 looks at what happens when different types of buy and sell orders are 

executed, i.e. we look at the arrival of MOs under different circumstances. The 

row labelled "Benchmark" captures what happens on average by including every 

10 ms interval during the trading day (2.34 million observations). This serves 

as benchmark with which to compare what happens in the 10 ms time interval 

AFTER an MO comes in. We compare this benchmark with what happens after 

the following six events: 

e Buy[Sell] Order: an order is executed against orders posted on the ask (sell­

side) [bid (buy-side)] of the book; 

• Buy[Sell] Order (n-o): same as Buy [Sell] Order but ignoring buy [sell] orders

within 10 ms of a previous buy [sell] order; 

® Buy[Sell] Order-Large: buy [sell] orders for strictly more than 300 shares. 

In Table 4.9 we include statistics on order arrival on the bid and ask side in the 

benchmark case, as well as after these six events. The columns labelled 'n = O' 

describe the percentage of cases in which we do not observe an MO arriving on 

the bid/ask side after an execution. In the benchmark case we see that despite 

the high level of trading activity in AAPL, our interval size is sufficiently small so 

that in roughly 99.4 percent of cases we do not observe an order arriving. After 

any type of execution, this proportion falls on both sides of the book. We observe 

that after a Buy MO there is at least a second MO arriving in 30 percent of cases, 

and at least one sell MO in 5 percent of cases. A similar pattern is observed after 

a Sell MO: in at least 25 percent of cases a sell MO is followed by at least one 
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other MO, while in at least 5 percent of cases a sell MK is followed by a buy MO. 

We also see very similar patterns if we exclude MO arrivals that occur just after 

other MOs. The number of arrivals, however, increases substantially after a large 

order: a large buy (sell) is followed by other buys in 43 (38) percent of cases, and 

by sells in 8 (8) percent of cases. If we look at the quartiles conditional on there 

being at least one MO (the columns labeled 'Ql', 'Q2' and 'Q3'), the arrival 

of a market buy (sell) order seems to have no clear effect on the distribution 

of arriving sell (buy) orders, but we do see evidence suggesting that incoming 

orders on the same side may be more frequent. So, our very preliminary and 

limited analysis suggests that order arrival seems to be followed by further order 

arrival on both sides of the book, and more on its own side than on the other 

side of the book. 

Buy Market Orders Sell Market Orders 
Event n n=O Ql Q2 Q3 n=O Ql Q2 Q3 

Benchmark 2,340,000 99.6 1 1 2 99.7 1 1 2 

Buy Order 6,852 70.7 1 2 3 94.3 1 1 2 

Buy Order (n-o) 5,707 71.5 1 2 3 94.4 1 1 2 

Buy Order-Large 532 57.5 1 2 5 92.1 1 1 2 

Sell Order 7,358 94.5 1 1 2 74.9 1 2 3 

Sell Order (n-o) 6,269 94.7 1 1 2 75.7 1 2 3 

Sell Order-Large 347 92.2 1 1 2 62.2 1 2 4 

Table 4.9 Market Impact of an execution on MOs (AAPL 20130730). 

In Table 4.10 we do a similar analysis where we look at how different events 

affect the bid and ask prices. For this table we follow the convention that + 1 is a 

one cent move away from the best price, that is: if the ask price is $453.02, a + 1 

in the ask is a change from $453.02 to $453.03, while on the bid side, with the bid 

price at $452.96, + 1 in the bid is a price drop of one cent, that is a change from 

$452.96 to $452.95. With this convention, positive price changes represent moves 

away from the midprice and negative price changes represent moves towards 

the midprice, which allows us to provide a more streamlined presentation of the 

different effects of MOs on bid and ask sides. 

Returning to Table 4.10, we consider how different orders affect the best price 

on their own side of the LOB, that is, the left side of the table describes how the 

ask price reacts to an aggressive buy MO, and the right decribes how the bid 

side reacts to an aggressive sell MO. 

We consider two benchmark cases: the column 'Ask' ('Bid') is the benchmark 

case that looks at average changes in the ask (bid), that is after every 10 ms 

interval. The first row tells us the percentage of time for which there was no 

change in the bid (99.5 percent) and no change in the ask (also 99.5 percent). 

We also look at what happens to the ask (bid) after a 'Buy' ('Sell') order comes 

in, and the percentage of times when the ask (bid) stays the same drops to 
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Changes in ASK Changes in BID 
Ticks Ask Buys L # 0 L > 3c Bid Sells L#O L > 3c 

Obs 6,852 3,259 1,165 7,358 4,052 1,910 

0 99.5 28.2 10.7 9.7 99.5 22.7 7.2 6.1 

::0--5 12.8 0.1 0.0 0.0 17.2 0.3 0.4 0.2 
-4 4.5 0.1 0.1 0.3 4.5 0.0 0.0 0.0 
-3 5.6 0.1 0.1 0.0 5.6 0.1 0.1 0.0 
-2 8.6 0.1 0.1 0.1 7.0 0.1 0.1 0.1 
-1 22.6 1.1 0.4 0.7 17.9 0.8 0.4 0.5 
1 14.2 19.5 20.5 0.9 13.3 15.7 14.3 0.9 
2 7.4 13.6 13.6 0.9 7.1 11.8 11.3 0.9 
3 5.6 12.3 11.9 1.9 5.5 10.4 10.2 0.9 
4 4.4 9.8 9.2 15.3 4.3 9.5 9.4 12.2 

:S5 14.3 43.4 44.2 80.0 17.5 51.3 53.9 84.4 

Table 4.10 Market Impact of an execution on the best price - own side (AAPL 
20130730). 

28 (23) percent. This percentage falls even further if we only look at executions 

that sweep the order book (6. # 0), that is after a buy (sell) order that generates 

. an immediate change in the ask (bid). Such 'large' executions are more long-lived 

in the sense that 10 ms after such a change the probability that the ask (bid) 

has returned to its pre-order arrival level drops to 11 (7) percent. The columns 

labelled '6. > 3c' look at the subset of the executions that sweep the order book, 

and we also observe a large (greater than three cent) change in the ask (bid) 

price respectively. The likelihood of returning is smaller than that for all sweep 

orders but not by much. 

The rows of Table 4.10 (except the 'Obs' and 'O' rows) reflect the distribution 

of price movements conditional on different non-zero price changes. The bench­

mark distributions for bid and ask price movements are symmetric and very 

similar, something that is not true for the distributions after MOs arrivals. After 

a buy (sell) order, the distribution of the ask (bid) clearly shifts away from its 

previous level and is almost never better ( closer to the mid price) than before the 

arrival of the MO 10 ms later. The difference we observe for a sweep order seems 

to be centred on the probability of returning to the pre-arrival level, but does 

not seem to have much effect on the distribution of price changes for non-zero 

changes. However, large price swings do seem to be followed by changes in the 

distribution of bid/ ask price changes, and we see little evidence that these large 

price movements are reversed within 10 ms. 

In Table 4.11 we repeat the analysis but looking at the effect of an order arrival 

on the other side of the book, that is how the arrival of a buy (sell) MO affects 

the bid (ask). We keep the signs so that a positive move in Table 4.10 is also a 

positive move on the other side of the book in Table 4.11. That is, suppose the 
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Changes in BID Changes in ASK 
Ticks Bid Buys 6 #0 6 > 3c Ask Sells 6#0 6 > 3c 

Obs 6852 3259 1165 7358 4052 1910 

0 99.5 81.6 78.7 75.4 99.5 82.2 80.3 79.1 

2:-5 17.5 6.9 6.5 7.7 14.3 6.0 6.0 8.3 
-4 4.3 1.8 1.7 2.8 4.4 1.7 1.8 2.0 
-3 5.5 1.8 1.9 3.1 5.6 2.1 2.1 2.8 
-2 7.1 3.2 3.9 3.1 7.4 3.4 3.3 4.3 
-1 13.3 8.7 8.2 9.1 14.2 8.0 8.1 8.5 
1 17.9 29.5 28.7 34.8 22.6 29.2 27.7 28.8 
2 7.0 10.8 11.8 11.8 8.6 11.6 12.9 13.5 
3 5.6 7.0 6.3 7.3 5.6 6.5 6.4 6.0 
4 4.5 6.1 5.0 2.4 4.5 6.8 5.6 4.5 

:::;5 17.2 24.2 25.9 17.8 12.8 24.7 26.1 21.3 

Table 4.11 Market Impact of an execution on the best price - other side (AAPL 
20130730). 

ask price is $453.02 and the bid is $452.96. After a buy order, a+ 1 cent change 

in the ask is an increase from $453.02 to $453.03 (Table 4.10), and a +l cent 

move in the bid is an increase from $452.96 to $452.97 (Table 4.11). Whereas 

after a sell order, a +l cent change in the bid results in a decrease from $452.96 

to $452.95 (Table 4.10), and a +l cent move in the ask results is a change from 

$453.02 to $453.01 (Table 4.11). 

With this convention, we see that the effect of an arrival on one side of the 

LOB is followed by a similar but weaker effect on the other. The probability of 

the price remaining/returning to the pre-arrival level drops from 99.5 to 82 for 

both the bid and the ask after a buy and a sell order arrive, respectively. This 

probability is slightly smaller for (intermarket) sweep orders. We also see a 

shift in the distribution of non-zero price changes that (weakly) follows that of 

the changes on the other side of the book. So we see how the arrival of a buy 

order is followed by a shift in the (non-zero) bid price changes away from the 

midprice, so the conditional probability of a 1 cent move away from the pre­

arrival bid price goes from 17.9 to 29.5 percent after a buy order, and that of a 

1 cent move away from the pre-arrival ask price goes from 22.6 to 29.2 percent 

after a sell order. The pattern is very similar after a buy (sell) order, a sweep 

buy (sell) order, or a sweep buy (sell) order with a large price move. Combining 

this observation with the price moves in Table 4.10, we find evidence that the 

quoted spread increases after a buy or sell order, and substantially so after a 

large sweep order. 

To conclude our look at the impact of MOs, in Table 4.12 we look at the effect 

on the changes we observed at the 10 ms horizon, we consider longer (30 ms, 100 

ms and 1,000 ms) horizons. Table 4.12 is split horizontally into three sections: 
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Changes in ASK Changes in BID 
Ticks 10 30 100 1,000 10 30 100 

<= -3 0.1 0.3 1.0 7.7 0.1 0.4 1.2 
{-1,-2} 0.2 0.4 1.2 7.7 0.1 0.3 0.7 

Bench 0 99.5 98.7 96.0 72.9 99.5 98.6 95.7 
{1,2} 0.1 0.3 0.7 3.9 0.1 0.4 1.1 
>= 3 0.1 0.3 1.0 7.7 0.1 0.4 1.3 

<= -3 0.2 0.3 0.4 1.3 6.9 9.8 13.2 
{-1, -2} 0.8 1.0 1.4 3.1 7.4 7.8 8.3 

Buys 0 28.2 26.7 24.3 16.0 81.6 77.8 72.4 
{1,2} 23.8 22.4 21.8 18.4 2.2 2.4 2.6 
>=3 47.0 49.6 52.1 61.3 1.9 2.2 3.5 

<= -3 6.8 8.3 12.0 24.0 4.1 4.2 4.6 
{-1,-2} 7.3 8.3 9.3 13.3 4.1 4.0 4.3 

Sells 0 82.2 78.8 73.4 52.3 47.3 44.6 41.1 
{1,2} 2.0 2.1 2.6 4.0 15.9 15.7 15.0 
>=3 1.8 2.4 2.7 6.4 28.5 31.4 35.0 

1,000 

8.9 
4.0 

70.3 
6.9 
9.9 

26.2 
11.3 
49.2 
4.1 
9.2 

6.8 
6.2 

28.1 
14.5 
44.4 

Table 4.12 Market Impact of an execution on the midprice over time (AAPL 20130730). 

the first ('Bench') is the benchmark table that looks at changes in the bid and 

ask over the corresponding horizons for all such time intervals; the bottom two 

sections consider the effects of the arrival of a buy and a sell order respectively 

on bid and ask prices. For this table we continue to keep the signs matched on 

the bid and ask sides, but to avoid confusion we keep the sign of changes on the 

bid (ask) side the same as in the benchmark case, as well as after a buy or a 

sell order, that is, the interpretation of the sign does not depend on whether it 

follows a buy or a sell MO, but only on which side of the book we are looking at. 

So, suppose the ask price is $453.02 and the bid is $452.96. After a buy order, a 

+ 1 cent in the ask is a move from $453.02 to $453.03, and a + 1 cent move in the

bid is a move from $452.96 to $452.95 (a 1 cent move away from the midprice).

The same happens after a sell order (and in the benchmark case): a +1 cent

in the ask results in an increase from $453.02 to $453.03, and a + 1 cent move

in the bid is move from $452.96 to $452.95 (one cent away from the midprice).

Note also, that all percentiles reflect probabilities ( we are not conditioning on

non-zero price movements in this table).

The first thing to notice in Table 4.12 is the natural effect of time on all prices: 

as we expand the horizon, prices tend to move more, and the distributions become 

more dispersed. We also see that the initial price movements are not followed 

by quick reversals and that even one second (1,000 ms) after a buy order there 

is a marked shift of the bid and ask away from its pre-execution level, with 

worse prices and a hint of a delayed price impact on future executions and wider 

spreads. 



4.3 Trading and Market Quality 87 

All these results must be interpreted in context, and not causally. As we will 
now see, MOs do not arrive at random times. They tend to arrive when spreads 
are narrow, and opportunistically hit orders that are posted closer to the mid­
price, so it is only natural that we should observe a wider spread after an exe­
cution. 

4.3.5 Walking the LOB and Permanent Price Impact 

We have seen that one of the key ingredients in trading algorithms is how the 
investor's own actions together with the order flow of the other market partic­
ipants affect the price of the assets she is trading in. In the trading algorithms 
developed in Part III we show how strategics depend on the market impact of 
trades. For example in Chapter 6 we show how to trade large positions when 
the investor's own trades walk the LOB, in addition to adversely affecting the 
midprice by exerting upward ( downward) pressure in the drift of the midprice if 
the investor is buying (selling). In Chapter 7 we study the problem of an agent 
wishing to liquidate a large position when the order flow from other traders in 
the market also impacts the midprice. In this case, if the agent's execution pro­
gramme is going with or against net order flow, the strategy adapts to maximise 
the revenues from liquidating the position. 

Here we want to empirically assess the parameter values for the different effects 
a trade can have on prices: the permanent and the temporary price impact. We 
look at these impacts for five stocks using data from NASDAQ and for the year 
2013. A first approach is to estimate these separately. We first estimate the 
permanent price impact by looking at the impact of order flow on the change in 
price over five-minute intervals. Let b..Sn = Sm- - S(n-l)T be the change in the 
midprice during the time interval [(n - l)T, nT] where T = 5 min. Let µn be the 
net order flow defined as the difference between the volumes of buy and sell MOs 
during the same time interval. We then estimate the permanent price impact as 
the parameter b in the following robust linear regression: 

( 4.2) 

where En is the error term (assumed normal). The model (4.2) is estimated 
every day, using Winsorised data, excluding the upper and lower 0.5% tails. The 
first row of Table 4.13 shows the average value of the estimated parameters for 
permanent price impact and the second row shows its standard deviation. 

In the third and fourth rows of the table we show the parameter estimate 
for temporary impact and its standard deviation respectively. To estimate this 
parameter, which we denote by k, we assume that temporary price impact is lin­
ear in the volume traded. Specifically, the difference between the execution price 
that the investor receives and the best quote is k Q, where Q is the total volume 
traded. To perform the estimation, we take a snapshot of the LOB each second, 
determine the price per share s;xec(Qi) for various volumes {Q1, Q2, . . .  , QN}
(by walking the LOB), compute the difference between the execution price per 
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share and the best quote at that time, and perform a linear regression. That is 
we regress, 

sexec,ask = sask + kask Q. + ask
i,t t i ci,t , 

where Ei,t 
represent the estimation error of the ith volume for the tth timestamp.

The slope argument of the linear regression k is an estimate of the temporary 
price impact per share at that time. We do this for every second of every trading 
day and in the table we report the mean and standard deviation of these daily 
estimates (for the buy side) when we exclude the first and last half-hour of the 
trading day an�insorise the data. Moreover, the fifth row shows the mean of 
the daily ratio bjk, and the sixth row shows its standard deviation. We observe 
that FARO shows the smallest ratio of 1.02 and SMH shows the largest at 7.43 
- at the end of this section we discuss this ratio in more detail.

FARO SMH NTAP ORCL INTC 

b 1.41 X 10-4 5.45 X 10-6 5.93 X 10-6 1.82 X 10-6 6.15 X 10-7

(9.61 X 10-5) ( 4.20 X 10-6) (2.31 X 10-6) (7.19 X 10-7) (2.16 X 10-7)

k 1.86 X 10-4 8.49 X 10-7 3.09 X 10-6 8.23 X 10-7 2.50 X 10-7

(2.56 X 10-4) (8.22 X 10-7) (1.75 X 10-6) (3. 78 X 10-7) (1.25 X 10-7)

b/k 1.02 7.43 2.04 2.28 2.55 
(0.83) (6.24) (0.77) (0.74) (0.70) 

Table 4.13 Permanent and temporary price impact parameters for NASDAQ stocks for 
2013. Below each parameter estimate we show its standard deviation. 

Moreover, to showcase the variability of the permanent price impact parame­
ter, the first panel of Figure 4.10 depicts the estimate of b for each day of 2013 
- the dashed line shows the average b. The second panel in the figure shows a
histogram of the five-minute net order flow using all the data in 2013. Finally,
the last panel shows the expected net order flow ( with error bars) conditional on
a given price change being observed. 3 As already shown by the regression results
there is a positive relationship between net order flow and price changes. The
figure shows further details of this relationship to support the finding that when
net order flow is positive (negative), that is more (less) buy than sell MOs, the
mid price tends to increase (decrease). Moreover, we see that assuming a linear
relationship between price changes and net order flow is plausible for a wide
range of midprice changes. Only in the two extremes, very high or very low price
changes, does the relationship fails to be linear, but we note that there are fewer

3 For the year 2013, 99% of the 5 minute price changes for INTC were within the range 
[-0.1,0.1]. 
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observations in the tails as shown by the histogram and this is also shown by 
the confidence intervals around the estimates. 

Figure 4.11 explores the temporary price impact for INTC. The top panel 
shows a snapshot of the LOB for INTC on Nov 1, 2013 at 11am. The bottom 
left panel captures the empirical temporary price impact curve generated by 
hypothetical MOs of various quantities as they walk through the buy side of the 
LOB. Each curve represents the curve at every second from 11:00 to 11:01. We 
also include a linear regression with intercept set to the half-spread (the dash 
line) which would correspond to the model used to estimate the parameter k 
above. Notice that the impact function fluctuates within the minute, and with it 
the impact that trades of different size could have. The linear regression provides 
an approximation of the temporary impact during that one minute. 

The third picture in the Figure shows how the slope of this linear impact 
model fluctuates throughout the entire day. We see that the largest impact tends 
to occur in the morning, then this impact flattens and stays flat throughout the 
day, and towards the end of the day it lessens. Such a pattern is seen in a number 
of assets and is consistent with the reduction in spreads and increases in depth 
we have documented earlier. 

The analysis above looks at temporary and permanent effects separately but 
their joint dynamics is a relevant quantity in execution algorithms. Liquidation 
and acquisition strategies take into account the trade-off between costs that stem 
from walking the book and the permanent impact. In particular, when both types 
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Figure 4.11 An illustration of how the 

temporary impact may be estimated from 
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-of impact are linear in the rates of trading, this trade-off is in part captured by

the ratio b/k (see for example Section 7.3 in the context of a liquidation algorithm

and Chapter 9 for strategies that track volume such as POV and VWAP). In the

left panel of Figure 4.12 we show a scatter plot of the daily pair (b, k) for INTC

which shows a clear positive relationship between temporary and permanent

impact. This is consistent with the theoretical relationship between price impact

and depth, so that days with little depth will be associated with high price

impact, both permanent and temporary, while a deep market will be associated

with lower price impacts. Finally, in the right panel of the figure we see the

histogram for the ratio b/k which ranges between 1 and 4 and is symmetric
around approximately 2.5.

4.4 Messages and Cancellation Activity 

An important feature in the way exchanges operate is the ability to cancel LOs 

which have not been filled. Traders who provide liquidity must be able to change 

their views on the market and therefore cancel their LOs or reposition them in 

the light of new information. Later, when we look at algorithms that provide 

liquidity to the market (see for instance Chapters 7, 8 and 10) we will see that 

these rely on the ability to reposition LOs in the LOB. For example, when 

we develop market making algorithms that require low latency, the agent is 
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4 5 

constantly cancelling LOs to reposition them as new information arrives and the 

agent's view on short-lived deviations in the midprice are taken into account. 

Here we employ our detailed ITCH data to measure trading activity by the 

number of messages recorded by the exchange, where a 'message' is a line of 

data in the ITCH dataset, as we saw at the beginning of the chapter. The total 

number of messages is slightly greater than twice the number of posted orders, 

as most posted orders are either cancelled or executed in full. 

Asset MeaN. StdDev PO! Ql Median Q3 pgg 

ISNS 1,711 6,078 173 450 760 1,745 8,943 
FARO 24,038 10,871 8,524 16,277 22,347 29,232 71,445 
MENT 59,661 21,755 23,157 43,477 53,972 72,639 131,715 
AAPL 531,728 166,652 280,242 417,576 500,680 614,437 1,067,248 

Table 4.14 Daily Number of Messages (in OOOs). 

Table 4.14 contains the descriptive statistics for daily messages for our four 

assets (in thousands; POl and P99 refer to the 1st and 99th percentile, respec­

tively). We can see how, as with trading activity, the number of messages for 

each asset is different by orders of magnitude ( except that for of MENT which 

is about 2.5 times that for FARO). In order to adjust for trading activity, a 

usual procedure is to normalise by the number of trades ( as we do in Table 

4.15) or by trading volume. The results in Table 4.15 suggest an interesting phe­

nomenon: more frequently traded assets 'require' fewer messages per trade than 

less frequently traded ones. 

The reverse of this phenomenon is captured in Table 4.16, where we look at the 
percentage of cancellations ( out of all messages: posts, cancels and executions). 

Only for AAPL do we see less than 45% of orders being cancelled most of the 

time. 
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Asset Mean StdDev POl Ql Median Q3 P99 

ISNS 226.7 749.1 10.8 44.4 80.7 159.1 2885.1 

FARO 88.2 55.8 20.7 57.8 79.4 106.1 223.5 

MENT 70.0 21.8 29.8 54.2 66.5 83.2 134.2 

AAPL 22.6 4.9 12.6 19.3 22.3 25.3 39.4 

Table 4.15 Messages per Number of Trades. 

Asset Mean StdDev POI Ql Median Q3 P99 

ISNS 45.8 3.2 36.3 44.2 46.4 48.3 49.9 

FARO 48.1 1.0 44.4 47.6 48.3 48.7 49.5 

MENT 47.2 1.0 44.1 46.7 47.4 48.0 48.9 

AAPL 43.1 1.9 37.8 41.8 43.3 44.3 47.1 

Table 4.16 Cancellations as percentage of Messages. 

For intraday trading, it is very important to understand the posting and can­

cellation dynamics, especially around the bid and ask. Table 4.17 looks at the 

orders posted by their distance to the midprice ('Distance to Mid', k) for AAPL 

on July 30th, 2013 and to illustrate the contents of the table we use Figure 

4.13. The second column ('Posts') counts the number of messages posted k ticks 

(cents) from the mid price. In Figure 4.13 we display this visually using a hypo­

thetical midprice of $101.05, and split the quantities evenly between the bid and 

the ask. Thus, for example, the total quantity posted two ticks from the midprice 

(3,053 units) is displayed as 1,527 units posted at $101.07 and 1,527 units posted 

at $101.03 (the total length of the bars). The third column ('% Exe') looks at 

the percentage of those posted messages that were executed, that is, the posted 

order was crossed with an incoming MO. In Figure 4.13 this is illustrated by 

using a lighter colour for the orders that were executed (and a darker one for 

those cancelled). Thus, for example, of the 1,527 units posted at $101.07, 64.7 

percent (988 units) were executed. Finally, the fourth column ('Exe') describes 

the percentage of the total number of executed orders that were executed at that 

level. So, these 988 orders executed at $101.07 plus the 988 executed at $101.03, 

represent 9.2% of the total number of orders executed that day. 

If we consider that the ( one-minute time-average) quoted spread for that day 

is 10.3 cents on average (Ql: 8.5, median: 10.2, Q3: 11.7), most of the time the 

distance to the midprice (half of the quoted spread) is between 4 and 6 cents. 

Using the information in Table 4.17 we compute that 26% of orders executed 

were initially posted at between 1 and 3 cents from the midprice, but only 32% 

are posted between 4 and 6 and the remaining 42% of orders executed had been 

originally posted relatively far from the midprice (7+ cents away). 

If, on the other hand, we look at the distance from the midprice at the time 
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At Post At Exit 

Posts % Exec Exec Posts % Exec Exec 

905 78.6 3.3 988 88.4 4.1 
3,053 64.7 9.2 3,508 76.4 12.5 
5,193 55.4 13.5 6,236 67.5 19.7 
5,617 44.4 11.7 6,448 51.5 15.6 
6,374 34.9 10.4 7,557 45.5 16.1 
7,626 27.6 9.8 7,586 29.9 10.6 
7,996 20.2 7.6 7,624 20.4 7.3 
7,826 15.9 5.8 8,062 14.2 5.4 
7,675 12.3 4.4 7,946 7.5 2.8 
7,967 8.6 3.2 7,487 6.1 2.1 

195,415 2.3 21 192,205 0.4 3.8 

Table 4.17 Messages by distance to midprice at post and at exit (AAPL 2013-07-30). 
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Figure 4.13 Illustration of orders posted 
and executed as described in Table 4.17. 

the trade was executed, not posted, in Table 4.17, we find that the distance 

to the midprice is (naturally) shorter, and we can compute that 36% of orders 

were executed at prices between 1 and 3 cents from the midprice, and 42% at 

prices between 4 and 6, so that only 22 % of executions were relatively far from 

the midprice (7+ cents away). This illustrates the point made earlier (when 

comparing the volatility of the effective and the quoted spreads) that executions 

tend to occur more often when the spread is narrower, and hence the effective 

spread will naturally be less volatile than the quoted spread. 

In Figure 4.14 we display the survivor function, S(x), (one minus the CDF: 

S(x) = Pr(X > x) = l-F(x)) of total executions, as the distance from the price 

at which the original LO was posted increases. This represents an approximation 

to the 'fill probability' - the probability that a posted order is executed. The 

thick blue line describes the distribution in Table 4.17. We have also included 

the same distribution separating executions on the bid and ask side, and it is 

interesting that the distribution for bid-( ask-)side executions lies systematically 

below (above) the one for all executions. This indicates that market buy orders 
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tended to occur much closer to the midprice than market sell orders on this 

particular day, which had an overall positive order flow for AAPL shares and a 

slight price increase from market open to market close. 

In Figure 4.14, we have also included total executions separated by the time 

of day: the first half hour after the market opens (Mkt Start), the last half hour 

before the market closes (Mkt Close), and the time in between (Intraday). We 

observe that Mkt Close tends to be below that of Intraday, implying that during 

the last half hour of trading, executions tend to be close to the midprice, which is 

consistent with the pattern of the quoted spread in Figure 4.6. But the difference 

· does not seem to be very large and may be statistically insignificant.

What happens at the market open does look very different, as the distribution

is above and quite far away from that for Intraday. It appears that the wider

spreads we observed in Figure 4.6 and the uncertainty from Figure 4.7 combine

to generate executions for orders posted quite far from the midprice.

Figure 4.15 looks at the same data from a different angle. In it we consider 

(in logs) the proportion of orders posted a certain distance from the mid price, 

that were eventually executed. Interpreting this proportion as a probability, the 

figure displays the natural decreasing relationship between the distance from the 

midprice and the probability of the order being executed. We have drawn these 

curves for: all executions, aggressive buys and sells, and executions by time of 

day: around the market open, the market close, and the rest of the day. All of 

them are very similar with only one exception: that for the first half hour of the 

trading day (Mkt Start). What we observe (looking at the underlying data) is 

that, at Mkt Start, an unusually high proportion of trades which were posted six 

cents from the midprice were later executed, and this generates the shift in the 

CDF we observe in Figure 4.15. Looking at the quoted spreads during that time, 

we find that the mean was 15.2 cents on average (Ql: 12.5, median: 14.2, Q3: 

19.0), which suggests that as early morning uncertainty over the 'true market 

price' was reduced, the quoted spread was slow to react and a relatively large 

number of executions occurred - and this happened when the quoted spread had 

fallen to around 12 cents. 
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Figure 4.15 Log of the proportion of 
posted orders that are executed as a 
function of distance from midprice. 

When discussing market quality earlier (Section 4.3), and spreads in particular, 

we saw that one of the reasons why the quoted spread is generally greater than 

the effective spread is the presence of posted orders that are not visible to market 

participants, but that will match with incoming MOs ahead of existing visible 

ones (at a price at or better than the current bid/ask). These are hidden orders. 

Asset Mean StdDev POl Ql Median Q3 P99 

ISNS 4 59 0 0 0 0 100 
FARO 31 154 0 0 0 0 600 
MENT 117 568 0 0 0 0 2,150 
AAPL 3,849 5,905 0 1,052 2,220 4,504 26,547 

ISNS 1.2 10.7 0.0 0.0 0.0 0.0 99.6 
FARO 9.9 27.l 0.0 0.0 0.0 0.0 100.0 
MENT 9.4 24.1 0.0 0.0 0.0 0.0 100.0 
AAPL 44.6 16.9 0.0 33.5 44.9 56.0 83.7 

Table 4.18 Execution against hidden orders (volume (Q) and percentage). 

Table 4.18 is split into two panels. The top panel of the table describes the 

quantity executed against hidden orders in NASDAQ per minute, for each minute 

of 2013. As we can see, for the less traded assets, ISNS, FARO and MENT, there 

is little trading taking place against hidden orders (less than 25 percent of the 

time), though when it happens it can be quite significant. But for AAPL, the case 

is quite different. We find trading against hidden orders more than 75 percent 

of the time, and for a substantial amount of shares (more than 1,000 units per 

minute). Note that these large quantities are not indicative of large trades, but 

rather of quite frequent ones: the distribution of the average size of an MO 

executed against a hidden order (per minute) has a mean of 127, with Ql equal 

to 94 and Q3 to 148 shares per trade. 

The bottom panel of Table 4.18 considers the same variable, the quantity of 
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shares executed against hidden orders, but rather than in absolute numbers, as 

a proportion of the total number of shares executed (in that minute). For ISNS, 

FARO and MENT, executions are relatively infrequent, and when they occur 

against hidden orders they tend to be isolated trades. In those cases, the hidden 

order is a large proportion, if not one hundred percent, of all shares traded 

during that minute. For AAPL, execution against hidden orders is a common 

phenomenon and half the time they represent between 33 and 56 percent of all 

trades. An agent posting visible offers for AAPL at the bid and ask ( during 2013) 

found her offers trumped by more aggressive hidden ones relatively often. 
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Introduction to Part 11 

In this part of the book, we develop the mathematical tools for the analysis of 

trading algorithms: stochastic optimal control and stopping. It is written so that 

readers without previous exposure to these techniques equip themselves with the 

necessary tools to understand the mathematical models behind some algorithmic 

trading strategies. Readers are expected to have basic knowledge of continuous­

time finance; however, the approach taken here is a pragmatic one and we do not 

delve into subtle mathematical issues. Focus is instead placed on the mechanics 

which allow for immediate application to algorithmic trading problems employed 

at low and high frequencies. To provide readers who need a refresher, and to keep 

the book self contained, we include in Appendix A a concise review of the main 

tools and results of Stochastic Calculus required to study stochastic control and 

stopping problems. 
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5.1 

Stochastic Optimal Control and 
Stopping 

Introduction 

Stochastic control problems arise in many facets of financial modelling. The 

classical example is the optimal investment problem introduced and solved in 

continuous-time by Merton (1971). Of course there is a multitude of other ap­

plications, such as optimal dividend setting, optimal entry and exit problems, 

utility indifference valuation and so on. In general, the all-encompassing goal of 

stochastic control problems is to maximise ( or minimise) some expected profit 

(cost) function by tuning a strategy which itself affects the dynamics of the un­

derlying stochastic system, and to find the strategy which attains the maximum 

(minimum). For example, in the simplest form of the Merton problem, the agent 

is trying to maximise expected utility of future wealth by trading a risky as­

set and a risk-free bank account. The agent's actions affect her wealth, but at 

the same time the uncertain dynamics in the traded asset modulate the agent's 

wealth in a stochastic manner. The resulting optimal strategies are tied to the 

dynamics of the asset and perhaps also to the agent's wealth. It is a surprising 

fact that, in many cases, the optimal strategies turn out to be Markov in the un­

derlying state variables, even if the agent is considering non-Markovian controls 

(which may depend on the entire history of the system). 

One tool keeps coming to the forefront when solving stochastic control prob­

lems: the dynamic programming principle (DPP) and the related non-linear 

partial differential equation (PDE) known as the Hamilton-Jacobi-Bellman 

(HJB) equation� also called the dynamic programming equation (DPE). 

The DPP allows a stochastic control problem to be solved from the terminal 

date backwards and the HJB equation / DPE can be viewed as its infinitesimal 

version. 

Here, the subtle mathematical issues are not addressed and focus is instead 

placed on the mechanics which allow for immediate application to algorithmic 

trading problems employed at low and high frequencies. The interested reader 

is referred to the many excellent texts which focus on the theoretical aspects of 

stochastic control for a thorough treatment of the subject: Yong & Zhou (1999), 

Fleming & Saner (2006), 0ksendal & Sulem (2007), Pham (2010), and Touzi 

(2013). 
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5.2 Examples of Control Problems in Finance 

This section provides a few examples of financially motivated stochastic control 
problems. The first example is a classical one in finance and pertains to optimal 
investment over long time horizons. The second is one of the first algorithmic 
trading control problems and pertains to the optimal liquidation of assets. The 
third refers to optimal placement of orders in a limit order book (LOB). All of 
these are essentially toy models and the last two will encompass the focus of 
many of the future chapters. 

5.2.1 The Merton Problem 

As a first example let us consider the classical portfolio optimisation problem 
of Merton ( 1971), in which the agent seeks to maximise expected (discounted) 
wealth by trading in a risky asset and the risk-free bank account (see Merton 
(1992) for many more examples and generalisations). Specifically, at time t, she 
places Kt dollars of her total wealth Xt in the risky asset St and seeks to obtain 
the so-called value function 

H(S,x)= sup lEs,x[U (X�)], (5.1) 
1rEAo,T 

which depends on the current wealth x and asset price S, and the resulting 
optimal trading strategy 1r, where, 

dSt = (µ - r) St dt + u St dWt, S0 = S, risky asset, (5.2a) 
dX( =(Kt(µ, - r) + r xn dt + 1ft u dWt, Xa = x, agent's wealth. (5.2b) 

In the above, µ represents the (expected) continuously compounded rate of 
growth of the traded asset, r is the continuously compounded rate of return 
of the risk-free bank account, 

• W = (Wt){o:"'.t:"'.T} is a Brownian motion,
® S = (St){O:"'.t:"'.T} is the discounted price process of a traded asset,
e 1r = (1rt){O:"'.t:"'.T} is a self-financing trading strategy corresponding to having

1ft invested in the risky asset at time t (with the remaining funds in the 
risk-free bank account), 

® x1r = (X!:){O:"'.t:"'.T} is the agent's discounted wealth process given that she 
follows the self-financing strategy 1r, 

e U(x) is the agent's utility function (e.g., power exponential -e-,x, and 
HARA �(x - xo)'), 

e At ,T is a set of strategies, called the admissible set, corresponding to all 
F-predictable self-financing strategies that have Jt 1r; ds < +oo. This con­
straint excludes doubling strategies and allows strong solutions of (5.2b)
to exist.
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In this classical example, the agent's trading decisions affect only her wealth 
process, but not the dynamics of the asset which she is trading. On long time 
scales, and if the agent's strategy does not change "too quickly", this is a reason­
able assumption. However, if an agent is attempting to acquire ( or sell) a large 
number of shares in a short period of time, her actions most certainly affect the 
dynamics of the price itself - in addition to her wealth process. This issue is 
ignored in the Merton problem, but is at the heart of research into algorithmic 
trading and specifically optimal execution problems which we introduce next. 

5.2.2 The Optimal Liquidation Problem 

As mentioned above, imagine that an agent has a large number of shares 1)1 of 
an asset whose price is St . Furthermore, suppose her fundamental analysis on 
the asset shows that it is no longer a valuable investment to hold. She therefore 
wishes to liquidate these shares by the end of the day, say at time T. The fact 
that the market does not have infinite liquidity ( to absorb a large sell order) 
at the best available price implies that the agent will obtain poor prices if she 
attempts to liquidate all units immediately. Instead, she should spread this out 
over time, and solve a stochastic control problem to address the issue. She may 
also have a certain sense of urgency to get rid of these shares, represented by 
penalising holding inventories different from zero throughout the strategy. If Vt 

denotes the rate at which the agent sells her shares at time t, then the agent 
seeks the value function 

H(x, S, q) = sup lE [x:;, + QT(Sf - aQT) - ¢ {
T 

(Q�)2 ds] (5.3)
vEAo,T lo 

and the resulting optimal liquidation trading strategy v*, where, 
dQt = -1/t dt,

dSf = -g(vt) dt + (}" dWt,
sr = sr - h(vt) ) 

dxr = Vt sr dt, 
In the above, 

Q� = q,

S� =S, 
S� =S, 
x� =x,

agent's inventory, 
fundamental asset price, 

execution price, 
agent's cash. 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

e v = (vt){o-<:t-<:T} is the (positive) rate at which the agent trades (liquidation 
rate) and is what the agent can control, 

e Qv = ( Qr) {o-<:t-<:T} is the agent's inventory, 
e W = (Wt){o-<:t-<:T} is a Brownian motion, 
c sv = (Sr){o-<:t-<:T} is the fundamental price process, 
e g : lR+ --+ lR+ denotes the permanent (negative) impact that the agent's 

trading action has on the fundamental price, 
® ,sv 

= (Sr) {o-<:t-<:T} corresponds to the execution price process at which the 
agent can sell the asset, 
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111 h : lFt+ ----), lFt+ denotes the temporary (negative) impact that the agent's trading action has on the price they can execute the trade at, e x
v = (Xr){ost:ST} is the agent's cash process,e At ,T is the admissible set of strategies: .F-predictable non-negative bounded strategies. This constraint excludes repurchasing of shares and keeps the liquidation rate finite. 

5.2.3 Optimal Limit Order Placement 

In the optimal liquidation problem above, the agent is assumed to post market orders spread through time to liquidate her shares. Such a strategy is intuitively sub-optimal since she will consistently be crossing the spread and potentially walking the book in order to sell her shares. Since she may also place limit orders, she can at least save the cost of crossing the spread, and perhaps even achieve better performance by posting deeper in the limit order book LOB - at a depth of 6t relative to the mid price St. The risk in doing so is that she may not execute her shares. Conditional on a market sell order arriving, the probability that it lifts the agent's posted offer at a price of St + 6t can be modelled as a function of bt which we call the fill probability and denote by P(!5t). The agent therefore can pose a control problem to decide how deep she must post in the LOB to optimise the value of liquidating her shares, subject to crossing the spread at the end of the trading horizon. In this case, the agent's value function is given by 
H(x,S,q) = sup. m:[x,f+Q}(Sf-aQ})-¢ {T(Q�/ds], 

OEA[o.TJ .J 0 

where 
Mt 
St

= So+ uWt, 
dXf = (St+ !5t) (-dQf) ,
dQf = -]{ } 

dlvlt ' u M,
' +i >P(o,) 

xg = x , 
Qg = q ,

market sell orders, 
asset midprice, 

agent's cash, 
agent's inventory. 

and where U1 , U2 , . . . are i.i.d. uniform random variables. 

5.3 Control for Diffusion Processes 

In this section, the control problems are of the general form 
H(x) = sup E [a(X¥,) + (F(s,X�,us)ds ] , 

uEAo,T Jo 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

(5.6) 
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where u = (ut) o<t<T is the vector (dim p) valued control process, xu = 
(Xt) o<t<T is the vector (dim n) valued controlled process assumed (in this sec­
tion) to be an Ito diffusion satisfying 

dXf = µ(t, Xf, Ut) dt + a(t, Xf, Ut) dWt , X�=x, (5.7) 

where (W t) o<t<T is a vector of independent Brownian motions, A is a set ( called 
the admissible set) of F-predictable processes such that (5.7) admits a strong 
solution (and may contain other constraints such as the process being bounded), 
G : ]Rn 

f--t JR is a terminal reward and F : lR+ x ]Rn+p f--t JR is a running 
penalty /reward. The running penalty /reward may, in general, be dependent on 
time t, the current position of the controlled process Xf, and the control itself Ut , 
while the terminal reward depends solely on the terminal value of the controlled 
process. For simplicity, the functions G and F are assumed uniformly bounded 
and the vector of drifts µt and volatilities at are, as usual, Lipschitz continuous. 

The integrability assumption on the controls, drift and volatility are necessary 
to ensure that the steps outlined below can be made rigorous. The predictability 
assumption on the controls is necessary since otherwise the agent may be able 
to peek into the future to optimise her strategy, and strategies which do peek 
into the future cannot be implemented in the real world. 

The value function (5.6) has the interpretation that the agent wishes to 
maximise the total of terminal reward function G and running reward/penalty by 
acting in an optimal manner. Her actions u affect the dynamics of the underlying 
system in some generic way given by (5.7). Thus, her past actions affect the future 
dynamics and she must therefore adapt and tune her actions to account for this 
feedback effect. 

For an arbitrary admissible control u, define the so-called performance cri­
teria Hu (x) by 

(5.8) 

The agent therefore seeks to maximise this performance criteria, and naturally 

H(x) = sup Hu (x). (5.9) 
uEAo,T 

As mentioned in the introduction, rather than optimising Hu (x) directly, it is 
more convenient (and powerful) to introduce a time-indexed collection of opti­
misation problems on which a dynamic programming principle (DPP) can be 
derived. The DPP in infinitesimal form leads to a DPE - the Hamilton-Jacobi­
Bellman (HJB) equation - which is a non-linear PDE whose solution is a tenta­
tive solution to the original problem. If a classical solution 1 to the DPE exists, it 
is possible to prove, through a verification argument, that it is in fact the solution 
to the original control. The next three subsections take on this programme. 

1 Here, a classical solution means that the solution is once differentiable in time and twice in 
all (diffusive) state variables, so that the infinitesimal generator can be applied to it. 
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Er,x; [c(Xf)+ j;'F(s,X)',u,)ds] 
Figure 5.1 The OPP allows the value 
function to be written as an expectation of 
the future value function. The key idea is 
to flow the dynamics of the controlled 
process from t to T and then rewrite the 
remaining expectation as the future 
performance criteria. 

1.5 2 2.5 

Time t
3 

The Dynamic Programming Principle 

The usual trick2 to solving stochastic (and deterministic!) control problems is 
to embed the original problem into a larger class of problems indexed by time 
t E [O, T] but equal to the original problem at t = 0. To this end, first define 

(with a slight abuse of notation) 

H(t, x) := sup Hu(t, x), and (5.10a) 
uEAt,T 

(5.1Gb) 

where the notation lEt,x [·] represents expectation conditional on Xf = x. These 
two objects are the time indexed analog of the original control problem and the 
performance criteria. In particular, H(O, x) coincides with the original control 

problem (5.6) and Hu(o, x) with the performance criteria (5.8). 

Next take an arbitrary admissible strategy u and imagine flowing the X pro­
cess forward in time from t to an arbitrary stopping time T � T. Then, condi­
tional on X":, the contribution of the running reward/penalty from T to T and 
the terminal reward can be viewed as the performance criteria starting from the 
new value of X": (see Figure 5.1). This allows the value function to be written 

in terms of the expectation of its future value at T plus the reward between now 

and T. 

More precisely, by iterated expectations the time-indexed performance criteria 

2 There is another approach to controlling both deterministic and stochastic systems which
makes use of Pontryagin's maximum principle. See Yong & Zhou (1999) for a wonderful 
exposition of its use for stochastic systems and the connection between it and the DPP 

formulation. 
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becomes 
Hu(t, x) = lEt,x [ G(X'!:j,) + 1TF(s, X1;, u,) ds + l

7F(s, X1;, u8) ds] 
=lEt,x [IE7,X;' [G(X'!:j,) + 1TF(s, X1;, us)ds] + l

7F(s, X1;, us)ds] 
=lEt,x [ Hu(T, X�) + l

7F(s, X1;, u5)ds], (5,11) 
Now, H(t,x) 2: Hu(t,x) for an arbitrary admissible control u (with equality holding if u is the optimal control u* � assuming that u* E At,T, i,e, the supre­mum is attained by an admissible strategy3) and an arbitrary x. Hence, on the right-hand side of ( 5 .11), the performance criteria Hu ( T, X�) at the stopping time T is bounded above by the value function H ( T, X�). The equality can then be replaced by an inequality with the value function ( and not the performance criteria) showing up under the expectation: 

Hu(t,x) S: lEt,x [ H(T, X�) + l
7F(s, X1;, us)ds] 

S: suplEt,x [H(T, X�)+17F(s, X1;, us)ds] 
uEA t 

Note that on the right-hand side of the above, the arbitrary control u only acts over the interval [t, T] and the optimal one is implicitly incorporated in the value function H(T, X�) but starting at the point to which the arbitrary control u caused the process X to flow, namely X�. Taking supremum over admissible strategies on the left-hand side, so that the left-hand side also reduces to the value function, we have that 
H(t, x) S: sup lEt,x [H(T, X�) + 17F(s, X1;, u 5) ds] 

uEA t 

(5.12) 

This provides us with a first inequality. Next, we aim to show that the inequality above can be reversed. Take an arbi­trary admissible control u E A and consider what is known as an e:-optimal con­trol denoted by v0 EA and defined as a control which is better than H(t, x)-s, but of course not as good as H ( t, x), i.e. a control such that 
H(t, x) 2: Hvs (t, x) 2: H(t, x) - s . (5.13) 

Such a control exists, assuming that the value function is continuous in the space of controls. Consider next the modification of the c-optimal control 
(5.14) 

3 It may be the case that the supremum is obtained by a limiting sequence of admissible

strategies for which the limiting strategy is in fact not admissible. 
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i.e. the modification is c-optimal after the stopping time T, but potentially sub­
optimal on the interval [t, T]. Then we have that 

H(t,x) ?.H"'(t,x) 
= lEt,x [ H"' (T, x�c) + l

rF(s, x�'' v\) ds l
=lEt,x [ H"(T,X�) + l7F(s,X�,us)dsl 
?.lEt,x [ H(T,X�)+ 17F(s,X�,u8)ds]-c ,  

Taking the limit as c \I 0, we have 
H(t, x)?. 

(from (5.11)), 
(using (5.14)), 

(by (5.13)). 

Moreover, since the above holds true for every u E A we have that 
H(t, x)?. sup lEt,x [H(T, X�) + lTF(s, x�, Us) dsl 

uEA t 

(5.15) 
The upper bound (5.12) and lower bound (5.15) form the dynamic program­

ming inequalities. Putting them together, we obtain the theorem below. 
THEOREM 5.1 Dynamic Programming Principle for Diffusions. The
value function (5.10) satisfies the DPP

H(t, x) = sup lEt,x [H(T, X�) + lTF(s, x�, Us) dsl 
uEA t 

for all (t, x) E [O, T] x ]Rn and all stopping times T::;; T.

(5.16) 

This equation is really a sequence of equations that tie the value function to its 
future expected value, plus the running reward/penalty. Since it is a sequence 
of equations, an even more powerful equation can be found by looking at its 
infinitesimal version - the so-called DPE. 

5.3.2 Dynamic Programming Equation / Hamilton-Jacobi-Bellman Equation 

The DPE is an infinitesimal version of the dynamic programming principle 
(DPP) (5.16). There are two key ideas involved: 

(i) Setting the stopping time T in the DPP to be the minimum between (a) 
the time it takes the process Xf to exit a ball of size E around its starting 
point, and (b) a fixed (small) time h - all while keeping it bounded by T.
This can be viewed as in Figure 5.2 and can be stated precisely as 

T =TI\ inf { s > t : (s -t, /X� -x/) � [O, h) x [O, E)}. 
Notice that as h \i 0, T \i t, a.s. and that T = t + h whenever h 1s 
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Figure 5.2 The DPE is an infinitesimal 

version of the DPP where the stopping 

time T is the first exit time from a ball of 

size E or a small time h, whichever occurs 

first. This sample plot of three paths, and 

the corresponding value X:;" and stopping 

time T indicated by the black circles for 

-------------------•------ E = 0.05 and h = 0.01. 

1.002 1.004 1.006 1.008 1.01 Timet 

sufficiently small - since as the time span h shrinks, it is less and less likely 
that X will exit the ball first. 

(ii) Writing the value function (for an arbitrary admissible control u) at the
stopping time T in terms of the value function at t using Ito's lemma. 
Specifically, assuming enough regularity of the value function, we can write 

lT lT (5.17) 
= H(t, x) + t (ot + .C�)H(s, X�)ds + t Dx H(s, X�) ' u�dW s,

where u"f := O"(t, Xf, Ut) for compactness, .C"f represents the infinitesimal 
generator of Xf, and Dx H(·) denotes the vector of partial derivatives with 
components [Dx H(-)]i = Ox,H(-). For example, in the one-dimensional 
case, 

£f = µf Ox+ ½(O"f)2 Oxx 

= µ(t, X, u) Ox+ ½0"2(t, x, u) Oxx . 
As before, we derive the DPE in two stages by obtaining two inequalities. 
First, taking v E A to be constant over the interval [t, r ], applying the lower 

bound (5.15), and substituting (5.17) into the right-hand side implies that 
H(t, x) :2: sup lEt,x [H(r, X�) + lTF(s, x�, Us) ds] 

uEA t 

:2: lEt,x [ H(r, X�) + lTF(s, X�,v)ds] 
=lEt,x [H(t, x) + l(ot+.C�) H(s, X�)ds 

+ 1�x H(s,X�)1u�dWs+ lTF(s, X�,v)ds] 
The integrand in the stochastic integral above, i.e . Dx H(s, X�)' u�, is bounded 
on the interval [t, r] since we have ensured that 1xr - xi :s; E on the interval. 
Hence, this stochastic integral is the increment of a martingale and we can be 
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assured that its expectation is zero. Therefore,
H(t, x) 2 lEt,x [ H(t, x) + 1

T 

{ (8t + £�) H(s, X�) + F(s, X�, v)} ds] 

and recall that T = t + h.

Moving the H(t, x) on the left-hand side over to the right-hand side, dividing
by h and taking the limit as h '\, 0 yields

0 2 �Yc}lEt,x [¼ 1
T 

{ (8t + £�) H(s, X�) + F(s, X�, v)} ds] 

= (8t + £n H(t, x) + F(t, x, v).

The second line follows from:
(i) as h '\, 0, T = t + h a.s. since the process will not hit the barrier of E in

extremely short periods of time,
(ii) the condition that IX� - xi ::; E, which implies that if the process does hit

the barrier it is bounded,
(iii) the Mean-Value Theorem allows us to write limh-1-0 ¼ J/+h w8 ds = Wt, and
(iv) the process starts at X� = x.

Since the above inequality holds for arbitrary v E A, it follows that
OtH(t,x) + sup (['fH(t,x) +F(t,x,u))::; 0 . (5.18)

uE.A 

Next, we show that the inequality is indeed an equality. To show this, suppose
that u* is an optimal control, then from (5.16), we have

H(t, x) = lEt,x [ H(T, x�·) + 1
T

F(s, x�·, u*) ds] 

As above, by applying Ito's lemma to write H(T,x�·) in terms of H(t,x) plus
the integral of its increments, taking expectations, and then the limit as h '\, 0,
we find that

8tH(t, x) + £f H(t, x) + F(t, x, u*) = 0 .
Combined with (5.18), we finally arrive at the DPE (also known in this context
as the Hamilton-Jacobi-Bellman equation)

OtH(t, x) +sup(£'( H(t, x) + F(t, x, u)) = 0 ,
uE.A (5.19)

H(T, x) = G(x). 

The terminal condition above follows from the definition of the value function in
(5.10) from which we see that the running reward/penalty drops out and G(X'!f,)
is Fr measurable.

Notice that the optimisation of the control in (5.19) is only over its value at
time t, rather than over the whole path of the control. Hence, it appears that
the optimal control can be obtained pointwise. Treating the value function as
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known, the optimal control can often be found in feedback control form in 
terms of the value function itself. Substituting the feedback control back into 
(5.19) results in non-linear PDEs. In fact the function 

fJ(t, x, DxH, D;H) = sup (Lf H(t, x) + F(t, x, u))
uEA 

is called the Hamiltonian of the associated stochastic control problem. Here 
DxH and D;H represent the collection of first and second order derivatives of 
the value function H respectively (recall that in general X is vector-valued) and 
in particular 

and H .
These objects appear in the infinitesirnal generator. 

Example: The Merton Problem 

Consider now the Merton optimisation problem described in Section 5.2.1. The 
optimisation problem is given in (5.1) and has the associated time dependent 
performance criteria 

HK (t, x, 8) = lEt,x,S [U (Xr)l ' (5.20) 
where x1r (investor wealth) and 8 (risky asset price) satisfy the SDEs (5.2) with 
1r representing the dollar value of wealth invested in the risky asset 8. From 
(5.2b ), the infinitesimal generator of the pair of processes (X;, 8t)o�t�T is then 
Lf = (r x + (µ. -r) 1r) Bx + ½0'2 7rOxx + (µ -r) 8 Bs + ½0'2 82 Bss + 0'7rOxs . 

According to (5.19), the value function H(t, x, 8) = sup1rEA [,.TJ H1r(t, x, 8) should
satisfy the equation 

0 = ( Ot + r x Bx + ½ 0'2 82 Bss) H 
+ sup { 7r ( (µ -r) Ox + O' Bxs) H + ½0'2 1r

2 DxxH}

subject to the terminal condition H(T, x, 8) = U(x). Note that the argument 
of the sup is quadratic in 7r and as long as BxxH(t, x, 8) < 0, the sup attains a 
maximum. By completing the squares we have 

where 

7r ((µ -r) Ox + O'Oxs) H + ½0'2 1r2 DxxH 
=½D'2 0xxH((1r-1r*) 2-(1r*) 2 ), 

is the optimal control in feedback form - i.e. it is the optimal control given the 
known value function H(t, x, 8). Substituting this optimum back into the DPE 
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yields the non-linear PDE for the value function 
0-(B + ,::, +l 2S2;::, )H- ((µ-r)BxH+a8xsH)2 

- t r x ux 2 a uss 2 2 8 H(J" xx This simplifies somewhat by observing that the terminal condition H(t, x, S) = U(.T) is independent of S. Hence, it suggests the ansatz H(t,x,S) = h(t,x) in which case we obtain a simpler, but still non-linear, equation for h(t,x) 
..\ (8xh(t,x))2 0=(8t+r x 8x)h(t,x)-- 8 h( ) , 2 O" xx t, X 

with terminal condition h(T, x) = U(x) and where,.\.= µ� r is the market price of risk, also referred to as the Sharpe ratio. Moreover, the optimal control simplifies to 
7r* 

= -� (�) a Bxxh 
The explicit solution of the non-linear PDE depends on the precise form of the utility function U ( x). Two classic examples are 
(i) exponential utility

U(x) = -e-,x , r > 0, 

which is defined for all x E JR, and (ii) hyperbolic absolute risk aversion (HARA) utility
U(x) = _l-, (a+ _b_ x)' 

"I 1-, ' r> 1, b>O, XE (-(l-1)%,+oo)

Admissible wealth has a lower bound in this case and the investor is in­finitely averse to dropping below this level. 
For exponential utility, the value function admits an affine solution and we can write an ansatz 

h(t,x) = -a(t) e-,xf3(t),
where a(t) and /3(t) are yet to be determined functions of time alone. From the terminal condition h(T, X) = -e-,x we have that a(T) = /3(T) = 1 and upon substituting this back into the non-linear PDE above, we find that 
Since this must hold for every x and t, the terms in braces must individually vanish. These two equations Ota - 2>;,. a = 0 and Bt/3 + r /3 = 0, together with the terminal conditions, are easily solved to find 

(t) ---"-(T-t)a = e 2 0- , /3(t) = er(T-t) .
Upon back substitution, we find that the optimal amount to invest in the risky asset is a deterministic function of time 

1r*(t) = � e-r(T-t).
ra 
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5.3.3 

As risk-aversion increases, the investor puts less into the risky asset. The fact that 
the amount invested is independent of wealth results from the agent's absolute 
risk aversion, defined as -U"(x)/U'(x) = 1, being a constant since she uses
exponential utility. For HARA utilities, e.g., neither the absolute risk aversion nor 
the relative risk aversion, defined as R(x) = -x U"(x)/U'(x), are constants.
In the HARA case, the agent's risky investment is a non-trivial function of both 
wealth and time. 

Verification 

The derivation of the DPE (5.19) in the previous section provides a necessary 
condition for the value function. A pertinent question, however, is whether or 
not a solution of the DPE does indeed provide the solution to the original control 
problem. The main workhorse for showing this is indeed the case, when classical 
solutions to the associated DPE exist, is the so-called verification theorem. 
We state the result below and refer the reader to many of the excellent texts 
on optimal control for its proof, see e.g., Yong & Zhou (1999), Fleming & Saner 
(2006), 0ksendal & Sulem (2007), and Pham (2010). 

THEOREM 5.2 Verification Theorem. Let 'ljJ E C 1
•
2 ([0, T] x 1Rn) and satisfies,

for all u EA,

Ot 'Ip ( t, X) + (,C''(ljJ ( t, X) + F ( t, X, U)) :S: 0 , V ( t, X) E [ 0, T] X JRn , 

G(x)-'1/J(T,x):::; 0 .

Then
'lj)(t, x) 2:: Hu(t, x) ,  \/ (t, x) E [O, T] X ]Rn , 

for all Markov controls u E A.
Moreover, if for every (t,x) E [O,T] x 1Rn , there exists measurable u*(t,x)

such that
0 = 8tl/J(t, x) + ( ,e�*(t,x)'lj)(t, x) + F(t, x, u*(t, x)))

= Ot'I/J(t, x) + sup (C''f"i/J(t, x) + F(t, x, u)) , \/ (t,x) E [O,T] X ]Rn , 
uEA 

with '1/J(T, x) = G(x), and the SDE
dX: = µ(t, x:, u*(t, x:)) dt + o-(t, x:, u*(t, x;))dW s,

admits a unique solution and {u*(s,x:)h:<'.s:<'.T EA, then
H(t, x) = 'lj)(t, x) , \/ (t, x) E [0, T] x ]Rn ,

and u* is an optimal Markov control.

x; =x, 

The theorem states that if we can find a solution to the DPE and demon­
strate that it is a classical solution, i.e. once differentiable in time and twice 
differentiable in the state variables, and the resulting control is admissible, then 
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the solution is indeed the value function we seek and the resulting control is the optimal one - at least an optimal Markov control. Another key result is that, un­der some more technical assumptions, the optimal control is Markov, even if we search over general F-predictable controls. See, e.g., Theorem 11.2.3 in 0ksendal (2010). 
5.4 Control for Counting Processes 

In the previous section, diffusion processes were the driving sources of uncertainty in the control problem. In many circumstances, and in particular problems re­lated to algorithmic and high-frequency trading, counting processes will be used to drive uncertainty. There are many features that can be incorporated into the analysis, but the general approach remains the same, and as such only the case of a single counting process with controlled intensity will be investigated. This amounts to treating doubly stochastic Poisson processes, or Cox processes, which arc counting processes with intensity that itself is a stochastic process and in this case at least partially controlled. Consider the situation in which the agent can control the frequency of the jumps in a counting process N and does so to maximise some target. In this case, the control problem is of the general form 
H(n) = sup lE [c(Nr) + (TF(s,N.:',vs)ds] , 

uEAo,T Jo
(5.21) 

where v, = (nt)o<t<T is the control process, (Nt)o<t<T is a controlled doubly stochastic Poisson process (starting at N0 - = n) with intensity 
xr = >.(t, N],"_, nt) so that (Nl)o"5ct'5cT, where 

Nt = Nt - 1
i >.� ds 

is a martingale, A is a set of F-predictable processes such that N is a true martingale, G : IR H IR is a terminal reward and F : IR+ x IR2 H IR is a run­ning reward/penalty. As before, the functions G and F are assumed uniformly bounded. For an arbitrary admissible control 11, 1 the performance criteria Hu(n) is given by 
Hu(n) = lE [ G (Nr) + 1T F(s, Ni) ds] , 

and the agent seeks to maximise this performance criteria, i.e. 
H(n) = sup Hu (n). 

uEAo,T 

(5.22) 

(5.23) 
In the next two subsections we provide a concise derivation of the DPP and the associated DPE. 
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5.4.1 The Dynamic Programming Principle 

As before, the original problem is embedded into a larger class of problems 
indexed by time t E [O, T] by first defining 

H(t, n) := sup Hu (t, n), and (5.24a) 
uEAt,T 

(5.24b) 

where the notation lEt,n[·] represents expectation conditional on Nt-
= 

n. Next, 
take an arbitrary admissible strategy u and flow the N process forward in time 
from t to an arbitrary stopping time T � T. Then, conditional on N}/:, the 
contribution of the running reward/penalty from T to T and the terminal reward 
can be viewed as the performance criteria starting from the new value of N}/:. 
This allows the value function to be written in terms of the expectation of its 
future value at T plus the reward between now and T. 

More precisely, by iterated expectations the time-indexed performance criteria 
becomes 

Hu(t, n) = lEt,n [ G(Ny) + _(:' F(s, N'%', U8) ds + ft7F(s, N'%', Us) ds ] 
=lEt,n [lET,N_;' [c(Ny) + J:F(s, Ni, us)ds] + JtF(s, N'%', us)ds] 
= lEt,n [ Hu ( T, N;;') + ft7F(s, N'%', 'Us) ds] . (5.25) 

Now, H(t, n) 2 Hu (t, n) for an arbitrary admissible control u (with equality 
holding if u is the optimal control ·u*) and an arbitrary n. Hence, on the right­
hand side of (5.25) the performance criteria Hu(T, N;;') is bounded above by 
the value function H ( T, N}/:) and the equality can be replaced by an inequality 
with the value function (and not the performance criteria) showing up under the 
expectation: 

Hu (t,n) � lEt,n [ H(T,N;;') + .l
7

F(s, N�u, u8)ds] 
� sup lEl,n [H(T, N;;') + rF(s, N:, Us) ds] 

·uEA lt 
(5.26) 

Note that on the right-hand side of the first line of (5.26), the arbitrary control u 
only acts over the interval [t, T] and the optimal control is implicitly incorporated 
in the value function H ( T, N;;'), but with the state variable N beginning at the 
point where the arbitrary control ·u caused N to flow, namely N;;'. Next, taking 
the best control on the right-hand side must also dominate the left-hand side, 
since the arbitrary one does. Then, the right-hand side is no longer dependent on 
the arbitrary control. Finally, taking a supremum over all admissible controls on 
the left-hand side allows us to replace the left-hand side with the value function 
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and provides us with the first inequality 
H(t,n) <::'. suplEt,n [H(T,N;/)+lTF(s,N:,us)d) 

-uEA t J 
(5.27) 

To obtain the reverse inequality, take an E-optimal control denoted by v E E A 
such that 

H(t, x) 2 Hv'(t, x) 2 H(t, x) - E . (5.28) 
Such a control exists if the value function is continuous in the space of controls. 
Consider its modification up to time T: 

(5.29) 
where 'U E A is an arbitrary admissible control. Then we have that 

H(t, n) 2 H;f (t, n) 
=lEt,n [ Hij

0 (T,N:/) + 1TF(s,NY,u!)ds] , (from (5.25)) , 

=lEt,n [ Hv
0 (T,N;/) + 1TF(s,N:,·u3)ds] , 

::O:lEt,n [ H(T,N;/) + 1TF(s,N:,us)ds] -E, 

(using (5.29)), 

(by (5.28)). 

Since the above holds for every v. and every E, it holds for the sup, and we take 
the limit as E \I O to find the inequality 

H(t, n) 2 sup lEt,n [H(T, N;/) + lTF(s, N:, Us) ds] 
-uEA t 

(5.30) 
Putting (5.30) together with (5.27), we obtain the theorem below. 
THEOREM 5.3 Dynamic Programming Principle for Counting Pro­

cesses. The value function (5.23) satisfies the DPP

H(t, n) = sup lEt,n [H(T, N;/) + r F(s, N:, Us) ds] ' 
uEA .It 

(5.31) 
for all (t, n) E [O, T] x Z+ and all stopping times T <::'. T. 

5.4.2 Dynamic Programming Equation / Hamilton-Jacobi-Bellman Equation 

This section develops the DPE satisfied by the value function, which we obtain 
by looking at the DPP over infinitesimal amounts of time. Analogous to the 
diffusion case, set the stopping time T in the DPP to be the minimum of (i) the 
time it takes the process Nt to exit a ball of size E around its starting point, and 
(ii) a fixed (small) time h, all while keeping it bounded by T.

T =TI\ inf{ s > t: (s - t, IN: - nl) if. [O, h) x [O, E)}. 
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Next, write the value function (for an arbitrary admissible control u) at the
stopping time T in terms of the value function at t using Ito's lemma. Specifically,

H(T, N,:') = H(t, n) + 1
7 (8t + ,C�)H(s, N8u) ds

+ 1
7 

[H(s, N� - + 1) - H(s, N�-)] dN.�,
(5.32)

where Ct represents the infinitesimal generator of Nt and acts on functions
h : lll+ x Z+ r-+ lll as follows:

,Cf h(t, n) = >.(t, n, v,) [h(t, n + 1) - h(t, n)]
Taking v E A to be constant over the interval [t, T], applying the lower bound

(5.30), and substituting (5.32) into the right-hand side implies that
H(t,n) 2' sup!E:t,n [ H(T,N,:') + ft7 F(s,N::,us)ds]

uEA 

2' Et,n [ H(T, N�) + }�7 F(s, N:;', v) ds]
= Et,n [ H(t, n) + f

t

7 (8t + £�) H(s, N:;') ds

+ Jt (H(s, N2)- + 1) - H(s, N�_)) dN:;' + f
t

7 

F(s, N:;', v) ds]

=Et,n [H(t,n) + ft7 ((8t +£�) H(s,N:;') +F(s,N:;',v)) ds].

The third equality follows because the stochastic integral with respect to Nt has zero mean since Nt is a martingale. The martingale property is guaranteed
because we have INt" - nl :c:; E, and so ,Cf H(t, Nt") is bounded. Subtracting
H(t, n), dividing by h, and taking the limit as h '\i O implies that

0 2' �fr} Et ,n [ ¼ 1
7 

( ( Ot + £�) H ( s, N:;') + F( s, N:;', v) ) ds]

= (8t + ,en H(t, n) + F(t, n, v) . (5.33)
In the above, the control is constant, and equals v, on the interval [t, T]. The
second line follows, as before, from:

(i) as h '\i 0, T = t + h a.s. since the process will not hit the barrier of E in
extremely short periods of time,

(ii) the condition that IN� - nl :c:; E, so that if the process does hit the barrier,
it is bounded,

(iii) the Fundamental Theorem of Calculus: limh..i,o ¾ ft

t+h W8 ds = Wt, and
(iv) Nt- = n. 

Since the above inequality holds for arbitrary v E A, it follows that
8iH(t, n) + sup (,Cf H(t, n) + F(t, n, u)) :c:; 0 . (5.34)

uEA 

Next, we show the inequality is indeed an equality. For this purpose, suppose
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that u* EA is an optimal control, then from the DPP (5.31) we have 

H(t, n) = IEi,n [ H(T, N,:'') + 1
T 

F(s, N
t

, u;) ds J 

Repeating the steps from above (i.e. applying Ito's lemma, taking expectations, 
and the limit as h \i 0) we find that 

OtH(t, n) + £f H(t, n) + F(t, n, u*) = 0. 

Combining this result with (5.34), we arrive at the DPE (also known in this 
context as the Hamilton-Jacobi-Bellman equation) 

{
8tH(t, n) + sup (£f H(t, n) + F(t, n, u)) = 0 ,  

uEA, 

H(T, n) = G(n). 
(5.35) 

The terminal condition follows from the observation that the integral in the 
optimisation problem (5.24) vanishes as t /' T. Recall that the generator Ct for 
the controlled process acts as follows: 

£f H(t, n) = A(t, n, u) [H(t, n + l) - H(t, n)] 

As in the diffusion case, the optimisation of the control in (5.35) is only over its 
value at time t, rather than over the whole path of the control. Hence, it appears 
that the optimal control can be obtained pointwise. Treating the value function 
as known, the optimal control can often be found in feedback control form 
in terms of the vaJue function itself. Substituting the feedback control back into 
(5.35) typically results in non-linear PDEs. In this Poisson case, the supremum 
in (5.35) has a very simple form since 

sup (£fH(t,n)+F(t,n,u)) 
uEA, 

= sup {A(s, n, u) [H(t, n + l) - H(t, n)] + F(t, n, u)}, 
uEA, 

and hence, if F = 0, the optimal choice of the control is to make A(s, n, u) 
as large as possible if H(t,n + l) - H(t,n) > 0 and as small as possible if 
H ( t, n + l) - H ( t, n) < 0. Such controls are called bang-bang controls because 
the quantity being controlled (in this case the intensity) reaches its extremal 
points. To make the problem more interesting we either need to (i) include a 
running reward/penalty (i.e. F # 0) or, more interestingly (and relevant), (ii) 
introduce another stochastic process which is driven by the counting process, 
and therefore controlled indirectly, and have this stochastic process affect the 
agent's terminal and running rewards. 

Using the Poisson Process to Drive a Secondary Controlled 

Process 

One such way to do this, which will also appear in later chapters as a result 
of optimisation problems in algorithmic trading, is to let (Xf )o-5ct-5cT denote a 



118 Stochastic Optimal Control and Stopping 

controlled process satisfying the SDE 
dXt = µ(t, xr, Nt, Ut) dt + O"(t, xr-' N;'-'Ut) dNt. (5.36) 

In this manner, the counting process Nu acts as the source of jumps in xu, and the control u may modulate the size of those jumps as well as the drift of the X process - in addition to the arrival rate of the jumps themselves. In this more general context, the performance criteria can depend on both Nand X. Specifically, let 
H(t, x, n) := sup Hu (t, x, n), and 

uEA 

Hu(t, x, n) := lEt,x,n [ G(X:j,, N}}) + 1
T F(s, X�, N�, u8) ds] , 

(5.37a) 

(5.37b) 

where lEt,x,n[·] denotes expectation conditional on Nt- = n and Xt- = x. Fol­lowing the same arguments as in the previous sections, the DPP for this problem can be written as 
H(t, x, n) = sup lEt,x,n [H (T, x;', N:;') + 1

T F (s, x�, N�, Us) ds] , 
uEA t 

(5.38) 

and a DPE can be derived to find 
{ 8tH(t,x,n) + sup (£f H(t,x,n) + F(t,x,n)) =0, 

uEA H(T, x, n) = G(x, n) . (5.39) 

Here, the infinitesimal generator £f acts as follows: 
£f H(t, x, n) = µ(t, x, n, u) 8x H(t, x, n) 

+ A(t, x, n, u) [H(t, x + O"(t, x, n, u), n + 1) - H(t, x, n)]Notice that the control appears in both the intensity factor and in the difference operator, and there is a partial derivative with respect to the state variable x. This represents the trade-off between increasing/ decreasing intensity through the control and what that change does to the process X;;', as well as what the control does to the drift. 
Example: Maximising Expected Wealth using Round-Trip 

Trades Here, we provide an example of an agent who uses a market order (MO) to purchase one share at the best offer and then seeks to unwind her position by posting a limit order (LO) at the mid price plus the depth u which she controls. She repeats this operation over and over again until a future date T. Her cost from acquiring the share is St + 6../2, where 6. is the spread between the best bid and best ask and is assumed constant, and since St is the midprice, the best ask is resting in the LOB at St + 6../2. The revenue from selling (if her LO is lifted by an MO) is St + Ut . Therefore, the wealth that is accrued to the agent from this round-trip trade is Ut - 6../2. 
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There is, however, no guarantee that the sell LO will be filled, and in this case 
the agent's wealth X satisfies (5.36) with µ. = 0 and CTf = (ut - % ) so that

dX;" = ( ?Lt - % ) dN;" . 

Here Nt counts the number of round-trip trades that the agent has completed 
up until time t. The agent controls the intensity of this counting process because 
the larger she chooses u, the lower is the probability of her LO being filled. 

There are many ways in which we can model the probability of the LO being 
filled given how deep in the LOB the agent posts the order. We need two ingre­
dients. First, we need to assume an arrival rate for the buy MOs that are sent 
by other market participants. Here we assume, for simplicity, that this rate is a 
constant A > 0. The other ingredient is the probability of the LO being filled 
conditional on the MO arriving. A popular choice in the literature is to assume 
that when posted u 2> 0 away from the midprice, the probability of being filled, 
given that an MO arrives, is P(u) = e-,rn,, and another is P(v.) = (1 + K.?Lt)-1, 

where r;. and I are positive constants. Putting these ingredients together gives us 
two choices to model the fill probability: Af = e-" u, A and At = (1 + r;. ?L t)-, A.

To solve the agent's optimisation problem we use the performance criteria and 
value function as in (5.37) with F = 0 and G(x, n) = x. If we assume that the 
fill rate is At = e-"u, A, the DPE becomes

8tH + sup A e-"u (H(t, x + ( u -½6.), n + 1) -H(t, x, n)) = 0 ,
u:2'.0 

subject to H(T, x, n) = x. Since there is no explicit dependence on n itself, we can
assume H(t, x, n) = h(t, x) so the value function depends solely on wealth and
time. Furthermore, due to the linear nature of the problem, we can further write 
h(t, x) = x + g(t) for some deterministic function g(t) with terminal condition
g(T) = 0. Hence, the above reduces to

8tg+supAe-"u(u-½6.) =0 . 
u:2'.0 

(5.40) 

This shows that the optimal control is independent of t, x and n. In particular, 

and it is straightforward to show that 

* 1 A 
1 

7L =2u+- . K. 

It is not difficult to check that this is indeed a maximum and not a minimum, 
and upon substituting the feedback control (which in this case is just a constant) 
back into (5.40), we find that g satisfies 

Ot9 + !:_ e-"(½L+-¼) = 0.
K.
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5.4.3 

The value function is therefore given by the very compact expression

H(t, x, n) = x + � e-/i0(½ 6+-¼) (T - t).
r; 

The optimal posting strategy (5.4.2) has a simple interpretation. The agent
must recover the half-spread cost she incurred when using an MO to acquire the
asset, and this is given by ½,6, in the optimal posting (5.4.2). In addition she
posts further away from the midprice by an amount which maximises how much
deeper her posting can rest in the book, given the probability of being filled, and
this is the term l.

The strategy derived here is optimal, but naive because it is a result of our
simplifying assumptions in the way we model the state variables, and the simple
performance criteria employed by the agent. For instance, this strategy does not
make any adjustments to the optimal posting based on important quantities
and costs such as: accumulated inventory, wealth, remaining time to trade, and
adverse selection costs. The economic principles that underpin the link between
these quantities and costs to the optimal postings were discussed in Chapter 2. In
the latter parts of this book we incorporate these issues in the trading strategies
when developing algorithms where the agent maximises profits executing round­
trip trades in a more realistic and general setting than the one developed here.

Combined Diffusion and Jumps 

As already hinted above, there are many situations in which the agent is exposed
to more than one source of uncertainty. Typically, an agent is faced with control
problems where both diffusive and jump uncertainty appear, and she may be
able to control all or only parts of the system. Such scenarios will appear in
several of the algorithmic trading problems that arise in the sections ahead and
here we simply state the main results for a fairly general class of models.

First, let Nu 

= (Nf )o<t<T denote a collection of counting processes ( of
dim p) with controlled intensities >...u 

= (>...f)o<e:t<e:T, and let u = (ut)o<e:t<e:T
denote the control processes (of dim rn). Furthermore, let W = (Wt)o<e:t<e:T
denote a collection of independent Brownian motions (of dim rn). Next, let Xu =
(X"f )o<t<T denote the controlled processes ( of dim rn) which will appear directly
in the agent's performance criteria. If one (or more) of the counting processes
Nf should appear in the performance criteria or in the dependence in µ'f, a'f

and/ or 1'f, shown below, then take Xi = N! for some j, i.e. include it through
one of the components in X. We next assume that the controlled Xu processes
satisfy the SDEs

dX"f =µ"f dt + (T"f dWt +,"f dN"f. (5.41a)

With a slight abuse of notation we write the controlled drift, volatility and jump
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size as 
µ"( :=µ(t,X'f,ut), CT"( :=CT(t,X'f,ut), 'Y"t := 'Y(t, X"t, Ut)) 

(m. x 1 vector), (m x m matrix), (m x p matrix). 
Furthermore, we assume that the controlled intensity takes the form 

(5.41 b) (5.41c) (5.41d) 
(5.4le) 

The modelling approach above implies that the agent can control, in general, the drift, volatility, jump size and jump arrivals. Precisely how much control she has depends on the specific form of the various functions appearing in (5.41b), (5.41c), (5.41d) and (5.4le). The agent's performance criteria is given by 

and the value function is then given by the usual expression 
H(t, x) = sup Hu(t, x). 

uEA[t,T] 

(5.42a) 

(5.42b) 
Repeating the analysis along similar lines to the previous sections, we arrive at the DPP for the combined problem. 

THEOREM 5.4 Dynamic Programming Principle for Jump-Diffusions.The value function (5.42) satisfies the DPP 
H(t, x) = sup Et,x [H(T, X�) + rF(s, x�, Us) ds] ' 

uEA[t.TJ .ft 
(5.43) 

for all (t, x) E [O, T] x IRm and all stopping times T::;; T. 
Moreover, following similar arguments as before, one can develop a DPE 

{8tH(t, x) + sup.(£"( H(t, x) + F(t, x, u)) = 0, 
uEA, H(T, x) = G(x), (5.44) 

where the infinitesimal generator Lf acts as follows: 
£"(H(t,x) =µ(t,x,u) · DxH(t,x) + ½CT(t,x,u)a(t,x,u)'D;H(t,x) 

+ 2:>•J(t, x, u) [H(t, x + ')'.j(t, x, u)) - H(t, x)] ,
j=l 

where 'Y.
j 

denotes the vector corresponding to the /h column of 'Y, DxH rep­resents the vector of partial derivatives with respect to x, and D;H represents the matrix of (mixed) second order partial derivatives with respect to x.
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The various terms in the generator can be easily interpreted: in the first line, 
the first term represents the ( controlled) drift of X, and the second term repre­
sents the (controlled) volatility of X; in the second line, the intensity for each 
counting process is shown separately, and each term in the sum has the ( con­
trolled) rate of arrival of that jump component through Aj , the difference terms 
that appear are due to the jump arriving and causing that component of N to 
increment, and simultaneously cause (potentially all components of) X to jump 
by r-;· 

5.5 Optimal Stopping 

In many circumstances the agent wishes to find the best time at which to enter 
or exit a given strategy. The classical finance example of this is the 'American 
put option' in which an agent who owns the option has the right, at any point 
in time up to, and including, the maturity date T, to exercise the option by 
receiving the amount of cash K in exchange for the underlying asset. The net 
cash value of this transaction at the exercise date Tis (K -ST ). Naturally, the 
agent will not exercise when ST > K, hence the effective payoff is (K -ST )+ 

where (·)+ = max(·, 0). This simple observation provides only a trivial part of 
the strategy: to determine the full strategy, the agent seeks the stopping time 
T which maximises the discounted value of the payoff, i.e. she searches for the 
stopping time which attains the supremum (if possible) 

suplE[e-n(K-ST)+J, 
TET 

where Tare the F-stopping times bounded by T. This is just one of many such 
problems, and in general, problems which seek optimal stopping times are called 
optimal stopping problems. Similar to optimal control problems, optimal 
stopping problems admit a DPP and have an infinitesimal version, i.e. a DPE. 
In this section we provide a concise outline of the DPP and DPE for optimal 
stopping problems. 

Rather than first developing the diffusion case, then the jump, and then the 
jump-diffusion, here we begin immediately with a fairly general jump-diffusion 
model. For this purpose, let X = (X t )o<t<T denote a vector-valued process of 
dim m satisfying the SDE 

whereµ: [O,T] X IRm H IRm, a: [O,T] X IRm H IRm X IRm, 1: [O,T] X IRm H 
IRm x IRm, Wis an m-dimensional Brownian motion with independent compo­
nents, and N is an m-dimensional counting process with intensities >..(t, Xt )­
The filtration F is the natural one generated by X, and the generator of the 
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process Lt acts on twice differentiable functions as follows:
Lth(t, x) = µ(t, x) · Dxh(t, x) + ½Tro-(t, x)a(t, x)' D�h(t, x)

p 

+ L A1 (t, x) [h(t, x + rj (t, x)) � h(t, x)]
j=l 

Recall that Dxh represents the vector of partial derivatives with respect to x,

and D�h represents the matrix of (mixed) second order partial derivatives with
respect to x.

The agent then has a performance criterion, for each F-stopping time T E
1Tt,T], given by

(5.45a)
where G ( X 7) is the reward upon exercise, and she seeks to find the value function

H(t,x) = sup H7(t,x) , (5.45b)
TE'Tit,T] 

and the stopping time T which attains the supremum if it exists. At first glance,
it appears that we have omitted the running reward/penalty ft7 

F(s, X s) ds that
we included when studying optimal control. Such terms can, however, be cast
into the above form by choosing one of the components of X, say X 1 , to satisfy

dXf =F(t,X;, ... ,xtm)dt ,
and writing G(x) = x 1 

+ G(x2
, ... ,xm). It is therefore no loss of generality

to consider only terminal rewards. In the stochastic control case, we kept the
explicit running reward/penalty since it traditionally appears there. Now it will
prove more convenient to absorb the running reward/penalty in G. Similarly, we
can incorporate discounting by introducing a second state process which equals
the discount factor up to that point in time, and modify G accordingly.

From the posing of the stopping problem in (5.45), intuitively, we see that the
agent is attempting to decide between stopping 'now' and receiving the reward
G, or continuing to hold off in hopes of receiving a larger reward in the future.
However, on closer examination it seems clear that she should continue to wait
at the point (t,x) E [O,T] x ]Rm as long as the value function has not attained
a value of G ( x) there. This motivates the definition of the stopping region, S,
which we define as

S = { (t,x) E [O,T] x ]Rm : H(t,x) = G(x)}.
It should be evident that whenever (t, x) E S, i.e. if the state of the system
lies in S, it is optimal to stop immediately - since the agent cannot improve
beyond G by the definition of the value function in (5.45). The complement of
this region, sc , is known as the continuation region. In this region, the agent
can still improve her value and therefore continues to wait. Both regions can be
generically visualised as in Figure 5.3.

The difficulties in optimal stopping problems arise because the region S ( or
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5.5.1 

5.5.2 

Stopping 

Region S 

Time 

Figure 5.3 A generic depiction of the 
continuation and stopping regions for the 
optimal stopping problem (5.45). A 
sample path is also shown and the red dot 
corresponds to the optimal time to stop. 

equivalently its boundary 8S) must be solved simultaneously with the value 
function itself. Hence, the DPEs which arise in this context are free-boundary 
problems, also called obstacle problems, or variational inequalities. Such PDEs 
are more difficult to solve, and even very simple examples typically do not admit 
explicit solutions take for example the American put option when the under­
lying asset is a geometric Brownian motion. Nonetheless, a non-linear PDE is 
often enough to characterise the solution and many numerical schemes exist for 
solving them. 

The Dynamic Programming Principle 

Reasoning along similar lines as before, we can show that the following DPP 
applies. 

THEOREM 5.5 Dynamic Programming Principle for Stopping Prob­

lems. The value function (5.45) satisfies the DPP 

H(t,x)= sup Et,x[G(XT)].T <e+H(B,Xe)].T :::,e], (5.46) 
TE'7it,T] 

for all (t,x) E [O,T] x ]Rm and all stopping times 8::::; T.

The intuition of this DPP is that if the optimal stopping time T* occurs prior 
to 8, then the agent's value function equals the reward at T*. If, however, the 
agent has not stopped by 8, then at 8 she receives the value function evaluated 
at the current state of the system. 

Dynamic Programming Equation 

As in the optimal control problems studied earlier, the DPP for optimal stopping 
can be recast in its infinitesimal version - a much more useful form for compu­
tation - i.e. it can be used to derive a DPE. This time, we state the result first 
and then provide the proof. We follow closely the proof in Touzi (2013) as it 
provides a nice alternative to the usual construction. It also opens the door for 
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the interested reader to move on to studying the viscosity solution approach 
to stochastic optimal control and optimal stopping, which relies heavily on the 
proof by contradiction approach taken here. 
THEOREM 5.6 Dynamic Programming Equation for Stopping Prob­

lems. Assume that the value function H(t, x) is once differentiable in t and all

second order derivatives in x exist, i.e. HE C1
,

2 ([0, T], JRm), and that G: JRm c-+ 
JR is continuous. Then H solves the variational inequality, also known as an

obstacle problem, or free-boundary, problem: 

max { 8tH + L1H , G -H } = 0 ,  on D,

where D = [O, T] x ]Rm . 

(5.47) 

Proof The proof is broken up into two steps by showing ( on D) that (i) the 
left-hand side is first smaller than or equal to zero, and that (ii) by contradiction 
the left-hand side is also greater than or equal to zero. Therefore, equality must 
hold. 

(i) First we establish that
max { 8tH + LtH , G -H } :S: 0 ,  on D.

To show this, first note that the constant stopping rule T = t is admissible. 
Therefore, the performance criteria on this constant rule equals G and we must 
have H � G so that G -H :s; 0. 

Next, take any point (to, xo) E D. We show that the desired inequality holds 
at this point. Consider the sequence of stopping times indexed by h > 0, 

0h = inf{t>to: (t,JJXt-xoll)tf:.[to,to+h]xl}, 
where 11 · I I denotes the Euclidean norm. That is, we take a stopping time equal 
to the minimum of to + h and the time it takes X to exit a ball of size 1 from 
its current position. As long as h < T- to, this is an admissible stopping time. 
Therefore, by taking T = t0, the DPP (5.46) implies that 

We then expand the term under the expectation using Ito's lemma for jump­
diffusions to write 
H (0h, Xeh

) 
= H(to, xo) 10h 1/h + { 8tH(t, Xt) + LtH(t, Xt)} dt + (a(t, Xt) DxH(t, Xt))' dWt

� � 

+ t,_ .t:

h 

[H (t, Xt + r'-j(t, Xt)) -H (t, Xt)] dN�' 
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where N t = N t - J� >..( s, X s) ds are the compensated versions of the counting 
process, and /.j denotes the lh column of T 

Since the stopping time 0h is chosen so that the process X remains bounded 
by the ball of size 1 around x0 plus the potential of a jump (which we assume 
bounded), it follows that the stochastic integrals with respect to both the 
Brownian motions and the compensated counting processes vanish under the 
expectation. Hence, we have 

Dividing by hand taking h \i 0, in which case 01i \i h a.s. (since Xt will a.s. 
not hit the edge of the bounding ball), the Mean-Value Theorem implies that 

8iH(t, xo) + LtH(to, xo) � 0. 

This completes the first part of the proof. 
(ii) We next show by contradiction that

max { 8tH + LtH , G - H } 2': 0, on D .  

If the above inequality does not hold on D, then there exists a point (to, x0) E 
D such that 

G(to, xo) - H(to, xo) < 0 and (8t + Lt)H(to, xo) < 0. (5.48) 

We show that (5.48) contradicts the DPP in (5.46). To this end, introduce 
a new function i.ps which approximates the value function near (to, xo) but 
locally dominates it: 

i.ps(t, x) := H(t, x) + E (llx - xoll4 
+ It - toi 2 ) , V(t, x) ED , E > 0. 

Under the assumption (5.48), for E > 0 but sufficiently small, there is a small 
neighbourhood around (to, xo) on which the value function is at least o larger 
than the reward G and for which the operator (8t + Lt) renders the approxi­
mation i.ps negative. More precisely, there exists h > 0 and c5 > 0 such that 

H 2". G + c5 and (8t + Lt) i.ps � 0 on Dh := [to, to+ h] x Bh , (5.49) 

where Bh is a ball of size h around xo, i.e. Bh = {x E ]Rm : llx - xoll � h}. 
Also, near (to, xo), i.ps is locally larger than H, hence, 

-( := max(H - i.ps) < 0, 
DDh 

where 8Dh represents the boundary of the set Dh. 

(5.50) 

vVe now take a stopping time equal to the first time the process exits this 
ball: 

0 :=inf{t>to : (t,Xt)t/:.Dh}· 
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Take a second stopping rule, this time arbitrary, T E Tft ,TJ, and let '1/; = TI\ 0. Then we have 
H ( '1/; , X 1/i) - H (to, xo) 

= (H - 4Jc)('1/J, X,p) + (cpc(1P, X,p) - 4Jc(to, xo)) , (5.51) 
since 4Jc and H coincide at (to, xo). From Ito's lemma, and the fact that X 1/i is bounded due to stopping the first time X exits the ball Bh, we have 

lEt0 ,x0 [cpc(?/J, X,;1) - 4Jc(to, Xo)] = lEt0 ,x0 [I: (8t + .Ct) t.ps(t, Xt) dt] :::; 0 .
The diffusive and jump terms vanish because they are martingales, and the inequality follows from the second inequality in (5.49). Hence, putting this together with (5.51), we have 
lEt0 ,x0 [H('1/;, X¢) - H(to, Xo)] :::; lEt0 ,x0 [(H - 4Je:)(?j;, X,p)] :::; -(lP'(T 2: 0) , 

where the second inequality follows from (5.50). By rearranging to isolate H(to, xo), we have 
H(to,xo) 2: (lP'(T 2: 0) +lEt0 ,x0 [H(?j;, X,p )] 

= (lP'(T 2: 0) + lEt0 ,x0 [H(T, XT)]_T <0 + H(0 , Xe)]_T ::>e] 
By the first inequality in (5.49), H 2'. G + 15 on D1i, so therefore 

H(to, xo) 2: (lP'(T 2: 0) + lEt0 ,x0 [(G(XT) + 15) ]_T<0 + H(0 , Xe)]_ T::>e] , 
where we have replaced H(T, X7) by its lower bound (G(XT) + 15) on { T < 0}, since in that event we are still in D1i. Finally, since lEto ,xo []_ T <0] = lP'(T < 0), we have 

By the arbitrariness of T E 'Tft ,TJ, and the fact that the constants added to the expectation above are positive, we arrive at a contradiction to the DPP (5.46) and the proof is complete. 
D 

The approximating function cp6 in the second part of the above proof can be seen as an upper-semicontinuous approximation to the value function, and the viscosity solution approach makes heavy use of both upper and lower semi­continuous envelopes of the value function when it is not smooth enough to differentiate. We do not divert into these discussions here, and instead refer the interested reader to the excellent monographs Touzi (2013) as well as Pham (2010) and Fleming & Saner (2006). It is worth briefly exploring the interpretation of the variational inequality appearing above, repeated here for convenience: 
max { 8tH + .CtH , G - H } = 0 , on D . 
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This really represents two possibilities: either we have 

or we have 

(i) 8tH + LtH = 0 and H < G,

(ii) H = G and 8tH + LtH < 0.

The first of these possibilities corresponds to the value function H being lower 
than the reward G, and in this region the value function satisfies a linear PDE. 
If we introduce the stochastic process ht = H ( t, X t), then due to the linear PDE 
having zero right-hand side, ht is a martingale. The region in which (i) holds is 
what we identified earlier as the continuation region sc , since it is suboptimal 
to stop there. The second of these possibilities corresponds to the value function 
H equalling the reward G, and hence occurs in the stopping region S. Moreover, 
the linear operator 8t + Lt renders the value function negative. In this region, 
if we did not pin the value function to the reward, we see that the process ht 

would be a supermartingale; however, pinning it to the reward constrains the 
process to become a martingale. Hence, we see that the stochastic process ht 

corresponding to the flow of the value function is in fact a martingale on the 
entire V. 

5.6 Combined Stopping and Control 

There are many instances in which an agent wishes to solve a combined opti­
mal stopping and control problem - i.e. she wishes to solve simultaneously 
for the optimal timing and optimal strategy in order to maximise a reward. Such 
problems inherit features from both problem types and we will see that the re­
sulting DPEs are in effect a combination of the HJB equation and variational 
inequality. 

In this case, we adopt the modelling assumptions and notation from subsection 
5.4.3 but repeat it here. First, let Nu 

= (N"(' ) o:s;t:s;T denote a collection of 
counting processes (of dim p) with controlled intensities Au = (A"t) o<t<T, and 
let u = (ut) o:s;t:s;T denote the control processes (of dimension m). Furthermore, 
let W = (Wt) o:s;t:s;T denote a collection of independent Brownian motions (of 
dim m). Next, let Xu = (X"f) o:s;t:s;T denote the controlled processes (of dim m) 
which will appear directly in the agent's performance criteria. If one (or more) 
of the counting processes Nf should appear in the performance criteria or in the 
dependence in µ'f, lT'f and/or '"Y'f, shown below, then take Xf = Nf for some 
j. i.e. include it through one of the components in X. We next assume that the
controlled Xu processes satisfy the SDEs

dX"(' =µ"(' dt+ lT"('dWt +'"Y"f dN"('. (5.52a) 

With a slight abuse of notation we write the controlled drift, volatility and jump 
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size as 

µf := µ(t, Xf' Ut)'
af :=a(t,Xf,ui), 

,f :=,(t,Xf,ut), 

(m x 1 vector) , 

(m x m matrix) , 

(m x p matrix) . 

Furthermore, we assume that the controlled intensity takes the form 

>..f := )\ (t, Xf' Ut) 

(5.52b) 

(5.52c) 

(5.52d) 

(5.52e) 

The modelling approach above implies that the agent can control, in general, 
the drift, volatility, jump size and jump arrivals. Precisely how much control she 
has depends on the specific form of the various functions appearing in (5.52b), 
(5.52c), (5.52d) and (5.52e). 

Next, the agent's performance criteria for a given admissible control u and 
admissible stopping time T is given by 

Hu,T(t, x) = lEt,x [ G (X�)] , (5.53a) 

and her value function is 

H(t,x)= sup sup Hu,T (t,x). (5.53b) 
TE'Tit,TJ uEA[t,TJ 

In this manner, the agent selects a stopping rule, seeks the best strategy, and 
then selects the stopping rule which provides the best overall performance. As 
such, she is aiming to decide whether to stop 'now' and receive the reward at 
the point in state space to which her strategy took her, or wait and continue to 
control the process in hopes of receiving a better reward later on. 

A DPP still applies in the current setting; however, now we must take care 
of both optimal stopping and control. Following similar arguments as in the 
previous sections we arrive at the following DPP. 

THEOREM 5.7 Dynamic Programming Principle for Optimal Stopping 

and Control. The vaZ.Ue function (5.53) satis:fies the DPP 

H(t, x) = sup sup lEt,x [ G(X�) ]. T<0 + H(0, X¥):n. T:::,,0]
TE7it,TJ uEA[t.TJ 

for all (t, x) E [O, T] x ]Rm and all stopping times 0 � T.

(5.54) 

The intuition here is similar to the previous DPPs. If stopping has not yet 
occurred (T 2: 0), then the agent receives the value function at that point in 
time, at that point in state space, where the optimal control has driven her to. If 
stopping has already occurred ( T < 0), then the agent has already received the 
reward, and her value equals the reward at the time it was paid, at the point in 
state space where the optimal control drove her to. 

Next, we state the DPE arising in this class of problems. 
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THEOREM 5.8 Dynamic Programming Equation for Stopping and Con­
trol Problems. Assume that the value function H(t, x) is once differentiable ·in 
t and all second order derivatives ·in x exist, i.e. H E C1

•
2 ([O, Tl, ]Rm ), and that 

G : ]Rm H IR is continuo11,s. Then H solves the quasi-variational inequality 
(QVI), 

max { cltH + sup £'(' H , G - H } = 0 , on D ,uEA, (5.55)
where D = [O, T] x lRm . 

This is similar in spirit to the variational inequality (5.47) for the optimal
stopping problem, but now contains an optimisation over the control process as
well. The optimisation results in the equation becoming non-linear, as in the HJB
equation (5.44), and hence the above equation is referred to as a quasi-variational
inequality rather than a variational inequality.

We once again have the notion of a stopping region S and continuation region
sc , where

S = { (t, x) E [O, T] x IRm : H(t, x) = G(x)}.
The only difference is that in the continuation region sc , the value function
should satisfy an HJB equation

BtH + sup £'(' H = 0 , on sc 

, uEA, 
rather than a linear PDE as in the stopping problem.
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Introduction to Part 111 

In this part of the book we delve into the modelling of algorithmic trading 

strategies. The first two chapters are concerned with optimal execution strategies 

where the agent must liquidate or acquire a large position over a pre-specified 

window and trades continuously using only market orders. Chapter 6 covers the 

classical execution problem when the investor's trades impact the price of the 

asset and also adjusts the level of urgency with which she desires to execute the 

programme. In Chapter 7 we develop three execution models where the investor: 

i) carries out the execution programme as long as the price of the asset does

not breach a critical boundary, ii) incorporates order flow in her strategy to take

advantage of trends in the midprice which are caused by one-sided pressure in

the buy or sell side of the market, and iii) trades in both a lit venue and a dark

pool.

In Chapter 8 we assume that the investor's objective is to execute a large posi­

tion over a trading window, but she employs only limit orders, or uses both limit 

and market orders. Moreover, we show execution strategies where the investor 

also tracks a particular schedule as part of the liquidation programme. 

Chapter 9 is concerned with execution algorithms that target volume-based 

schedules. We develop strategies for investors who wish to track the overall vol­

ume traded in the market by targeting: Percentage of Volume, Percentage of 

Cumulative Volume, and Volume Weighted Average Price, also known as VWAP. 

The final three chapters cover various topics in algorithmic trading. Chapter 

10 shows how market makers choose where to post limit orders in the book. The 

models that are developed look at how the strategies depend on different factors 

including the market maker's aversion to inventory risk, adverse selection, and 

short-term lived trends in the dynamics of the midprice. 

Finally, Chapter 11 is devoted to statistical arbitrage and pairs trading, and 

Chapter 12 shows how information on the volume supplied in the limit order 

book is employed to improve execution algorithms. 



6 

6,1 

Optimal Execution with Continuous 
Trading I 

Introduction 

A classical problem in finance is how an agent can sell or buy a large amount of 

shares and yet minimise adverse price movements which are a consequence of her 

own trades. Here, the term 'large' means that the amount the agent is interested 

in buying or selling is too big to execute in one trade. One way to think about 

a trade being too large is to compare it to the size of an average trade or to 

the volume posted on the limit order book (LOB) at the best bid or best offer. 

Clearly, if the number of shares that the agent seeks to execute is significantly 

larger than the average size of a trade, then it is probably not a good idea to try 

to execute all the shares in one trade. 

Investors who regularly come to the market with large orders ( orders that are 

a significant fraction of average daily volume) are institutional traders such as 

pension funds, hedge funds, mutual funds, and sovereign funds. These investors 

often delegate their trades to an agency broker (the agent) who acts on their 

behalf. The agent will slice the parent order into smaller parts ( sometimes 

called child orders) and try to execute each one of these child orders over a 

period of time, taking into account the balance between price impact (trade 

quicker) and price risk (take longer to complete all trades). What we mean by 

this trade-off is the following: imagine the situation in which the agent is selling 

shares. If she trades quickly, then her orders will walk through the buy side of 

the LOB and she will obtain worse prices for her orders. Even if she breaks up 

each order into small bits (so that each one does not walk the book), and sends 

them quickly to the market, then other traders will notice an excess of sell orders 

and reshuffle their quotes inducing again a negative price impact. If on the other 

hand, she trades slowly, so as to avoid this price impact, then she will be exposed 

to the uncertainty of what precisely the future prices will be. Hence, she must 

attempt to balance these two factors. 

The time the agent takes to space out and execute the smaller orders is crucial. 

Short time horizons will lead to faster trading ( and hence more price impact) 

and less price uncertainty, but there are also many reasons why a long trading 

horizon might not be desirable. For instance, it might be that it is decided to sell 

a large chunk of shares because the price is convenient but by the time the agent 

executes all child orders, the share price could have dropped to a less desirable 
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level. Another reason which constrains the time needed to sell all the shares, 
is that this particular operation is part of a bigger one which is the result of a 
portfolio rebalance which also requires the purchase of a large number of shares 
in another firm, and both operations need to be completed over approximately 
the same time period. 

Hence the agent must formulate a model to help her decide how to optimally 
liquidate or acquire shares, where the aim is to minimise the cost of executing 
her trade(s) and balance it against price risk. Execution costs are measured as 
the difference between a benchmark price and the actual price (measured as 
the average price per share) at which the trade was completed. Our convention 
is that when the sign of the execution cost is positive, it means that there is loss 
of value in the operation because the actual price of the trade was worse than 
the benchmark price. 

The benchmark price represents a perfectly executed price in a market with no 
frictions. It is customary to use the midprice of the asset at the time the order 
is given to execute the trade. This benchmark is known as the arrival price 
which is generally taken to be the average of the best bid and best ask, i.e. the 
midprice. Moreover, when the arrival price is the benchmark, the execution cost 
is known as the implementation shortfall or slippage, see Almgren (2010). 

6.2 The Model 

To pose the optimal execution problem we require notation to describe the num­
ber of shares the agent is holding (inventory), the dynamics of the midprice, and 
how the agent's market orders (MOs) affect the midprice. 

The key stochastic processes are: 

@ v = (vt){o<::t<::T} is the trading rate, the speed at which the agent is liqui­
dating or acquiring shares (it is also the variable the agent controls in the 
optimisation problem), 

e Qv = ( Qr) {O<::t<::T} is the agent's inventory, which is clearly affected by how 
fast she trades, 

& 3v = (Sn{o<::t<::T} is the midprice process, and is also affected in principle by 
the speed of her trading, 

@ 5v = (Sn{o<::t<::T} corresponds to the price process at which the agent can sell 
or purchase the asset, i.e. the execution price, by walking the LOB, and 

@ Xv = (Xn{o<::t<::T} is the agent's cash process resulting from the agent's 
execution strategy. 

Whether liquidating or acquiring, the agent's controlled inventory process is 
given in terms of her trading rate as follows: 

Q� = q, (6.la) 
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while the midprice is assumed to satisfy the SDE 

dSt = ±g(vt) dt + CY dWt , Sa =S, 

where 

• W = (Wt){o::;t:s;T} is a standard Brownian motion, and 

(6.lb) 

• g: lR+ -+ lR+ denotes the permanent price impact that the agent's trading 
action has on the midprice. 

The execution price satisfies the SDE 

St= St± (½fl+ f(vt)) , Ba= s, (6.lc) 

where 

• f : lR+ -+ lR+ denotes the temporary price impact that the agent's trading 
action has on the price they can execute the trade at, and 

• fl 2: 0 is the bid-ask spread, assumed here to be a constant.

Equations (6.la, 6.lb, and 6.lc) apply to both liquidation and acquisition
problems, where the sign ± changes depending on whether the problem is that 
of liquidating ( -) or acquiring ( +) shares. 

In equity markets the fundamental price of the asset (also known in the 
literature as the efficient price or true price of the asset) refers to the share 
price that reflects fundamental information about the value of the firm and this 
is impounded in the price of the share. In this chapter we assume that during 
the optimal execution trading period the fundamental price is the same as the 
midprice of the asset. Thus, as new information about the actual and expected 
performance of the firm is revealed to the market, the mid price changes. This is 
partly captured in the model by the increments of the Brownian motion W in 
(6.lb). 

A key element of the model is how the agent's trades affect the midprice. 
Here the agent's market orders affect the midprice in two ways: through f (vt) in 
(6.lc), and through g(vt) in (6.lb). These functions capture two different ways 
in which the agent's trades affect the midprice. 

At any one time, the number of shares displayed and available in the market 
at the quoted bid/ask prices S{ ± ½fl is limited. A large MO will walk the book, 
so that the average price per share obtained will be worse than the current 
bid/ ask price. This is captured in our model, as an order of size v dt will obtain 
an execution price per share of S{ ±(½ fl+ f(v)) with f(v) 2'. 0. Note, however, 
that the impact of the order as captured by f (vt) is limited to the execution 
price and does not affect the midprice of the asset. 

In Figure 6.1 we show a snapshot of the LOB (top left panel) for SMH on Oct 
1, 2013 at 11am, together with the price impact per share (top right panel) that 
an MO of various volumes would face as it walks through the buy side of the 
LOB. The bottom left panel shows the impact every second from 11:00 to 11:01 
as well as the average of those curves over the minute (the dash-dotted line). 
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Figure 6.1 An illustration of how the temporary impact may be estimated from 

snapshots of the LOB using SMH on Oct 1, 2013. The top two panels are at 11:00am. 

The bottom left from 11:00am to 11:01am and the bottom right the entire day. 

We also include a linear regression ( the dashed line) with intercept set to the 
half-spread; this would correspond to a linear impact function f(vt), which is 
the simple model we adopt in this chapter, and which is also widely used. Figure 
6.1 illustrates that the f(vt) function seems better described by a power law, 
and the model can be extended to incorporated this. We discuss this extension 
in Section 6.7. 

Notice that the impact function fluctuates within the minute, and with it 
the impact that trades of different size have. The linear regression provides an 
approximation of the temporary impact during that one minute. The bottom 
right panel shows how the slope of this linear impact model fluctuates throughout 
the entire day. We see that the largest impact tends to occur in the morning, 
then this impact flattens and stays flat throughout the day, and towards the end 
of the day it lessens. Such a pattern is seen in a number of assets. 

The second way in which the agent's execution can affect the midprice is 
through g(vt)- We refer to this as the permanent impact of the trading rate. If 
g(vt) > 0 in (6.lb) then a trade of size vdt > 0 moves the midprice of the asset 
upwards. An interpretation of this modelling assumption is that the agent is 
trading on information that reflects permanent changes in the value of the firm, 
and market participants adjust their quotes in response to the agent's trades. 
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Earlier on, in Chapter 4 we discussed linear market impact models and estimated
the parameters for various stocks, see in particular subsection 4.3.5.

The model can also be modified to incorporate the situation where the agent's
trades exert pressure on the midprice and then the pressure subsides after the
agent has completed her execution target. But, as we are focusing on an agent's
execution of a single block of shares, this is not relevant as she will never receive
any of the benefits of the 'price correction' once she stops trading, and we exclude
it from the analysis.

To conclude the description of the model, we turn to the agent's cash process,
x;:. This process satisfies the SDE

dX! = Sf Vt dt '
and the expected revenue from the sale is

xi =x, 

RV = lE [xrJ = lE [It st Vt dt]

(6.2) 

(6.3)

which is easy to see if we look at the sales proceeds over discrete time-steps.
Suppose that the agent must liquidate Q0 = 5Jt amount of shares over the time
period [O, T]. Now, split this trading horizon into equally spaced time intervals
to = 0 < t1 < t2 < · · · < tN = T where tn - tn-1 = 6.t for n = l, 2, · · · , N.

Next, assuming that over the time interval [O, t1) the agent sells Qo - Qt, shares
at the price So, and over the interval [ti, t2) she sells Qt, - Qt

2 
at the price St,,

and so on, then the total expected revenue from selling shares is

and recalling that the speed of trading is given by (6.la) we observe that as
6.t-+ 0 we obtain (6.3).

The rest of this chapter looks at different optimal strategies to trade a block
of shares using only MOs, where in each section the setup of the control prob­
lem makes different assumptions about how the agent penalises and/ or controls
inventory, and how her rate of trading affects her execution price as well as the
midprice of the asset. We also alternate between share liquidation and share ac­
quisition problems. In Section 6.3 the agent must liquidate a block of shares, and
the agent's trades affect her execution price but do not affect the midprice of the
asset (g(v) = 0). The setup of the problem assumes that the execution strategy
is designed so that all shares are liquidated by the terminal date. In Section 6.4
the agent solves for the optimal acquisition rate where any remaining unacquired
inventory may be purchased at the terminal date but subject to a penalty (and
g ( v) = 0). In Section 6. 5 the agent has to liquidate a block of shares, and the
agent's actions have both a permanent effect (g( v) :2': 0) on the execution price
and a temporary effect (.f(v) :2': 0) on the midprice of the asset. In addition, we
incorporate a parameter for the agent's urgency to execute the trade, through a
penalisation exposure to inventory throughout the entire life of the strategy.
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6.3 liquidation without Penalties only Temporary Impact 

We start by discussing how an agent uses only MOs to optimally liquidate 1)1 shares between t = 0 and T. vVe assume that the agent's own trades do not affect the mid price of the asset, thus the stock's mid price is as in ( 6.1 b) with g(vt) = 0. On the other hand, the agent's trades have temporary impact on her own execution price because these MOs walk the LOB. We assume that the temporary impact is linear in the speed of trading so f (vt) = k Vt with k > 0 in (6.lc) and recall that the speed of trading Vt is what the agent controls. For simplicity, we assume that the bid-ask spread 6. = 0, or equivalently, that Strepresents the best bid price. It is a simple matter to include a non-zero spread and we leave it as an exercise for the interested reader. Finally, we also assume that the agent is adamant that all lJ1 shares are liquidated by time T.The agent's objective is to choose the rate at which she liquidates 1)1 shares so that she obtains the maximum amount of revenue from the sale, and her strategy must be such that all shares are liquidated by time T, i.e. cannot reach expiry with any inventory left. In other words the agent wishes to find, among all admissible liquidation strategies v, the one that minimises the execution cost 

which is equivalent to maximising the expected revenues from the target sale of the 1)1 shares. Thus the agent's value function is 
H(t, S, q) = sup lEt,S,

q [1
T (Su - k vu) Vu du] 

vEA t 

where lEt,S,q[·] denotes expectation conditional on St =S and Qt = q, and A is the set of admissible strategies: F-predictable non-negative bounded strategies. This constraint excludes repurchasing of shares and keeps the liquidation rate finite. To solve this optimal control problem we use the dynamic programming prin­ciple (DPP) which suggests that the value function satisfies the dynamic pro­gramming equation (DPE) 
OtH + ½a2 BssH + sup {(S - k v) v - v8

q
H} = 0 . (6.4) 

The agent requires that the optimal strategy liquidates all the inventory by time T, thus the value function reflects this by 'penalising' any terminal inventory which is not zero, so we require 

and 
( ) t--+T 

H T, S, q ------+ -oo, for q > 0 ,  

( ) t--+T 
H T, S, 0 ------+ 0 .
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The first order condition applied to DPE (6.4) shows that it attains a supre­
mum at 

(6.5) 

which is the optimal trading speed in feedback control form. Upon substitution 
into the DPE we obtain the non-linear partial differential equation 

(6.6) 

for the value function. 
To propose an ansatz for the above equation it is helpful to look at the bound­

ary conditions to get an idea of which variables are relevant in the value function. 
We know that if the strategy reaches the terminal date with a non-zero inven­
tory, the value function must become arbitrarily large and negative - because 
the optimal strategy must ensure that all shares are liquidated. We propose that 
the value function be written in terms of the book value of the current inventory 
(marked-to-market using the midprice as reference) plus the excess value due to 
optimally liquidating the remaining shares, i.e. 

H(t, S, q) = q S + h(t, q), (6.7) 

where h(t, q) is still to be determined, though we know that it must blow up as 
t approaches T. 

The way the problem is set up, the best the agent can do is achieve the 
midprice. Hence, the correction h(t, q) to the book value must be negative, and 
the agent's objective is to minimise this downward adjustment. Substituting this 
ansatz into the DPE (6.6), we arrive at the following equation for h(t, q): 

ath+ A (oqh)
2 

= o. 

Interestingly, the volatility of the asset's midprice drops out of the problem. The 
reason for this is that the Brownian component is a martingale, and hence on 
average it contributes zero to the value of liquidating shares. 

Focusing on the above non-linear PDE for h, we see that writing a separation 
of variables in the form h(t, q) 

= q2 h2 (t) (note the subscript 2 represents that 
this function is the coefficient of q2 ) allows us to factor out q and obtain a simple 
non-linear ODE for h2(t): 

8t h2 + ½ h� = O , (6.8) 

which we solve by integrating between t and T to obtain 

( 
1 1 )-l 

h2 ( t) = -- - -(T - t) 
h2(T) k 

As discussed above, the optimal strategy must ensure that the terminal inven­
tory is zero and this is equivalent to requiring h2(t) --+ -oo as t --+ T. In this 
way the value function heavily penalises non-zero final inventory. An alternative 
way to obtain this condition is to calculate the inventory path along the optimal 
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strategy and impose that the terminal inventory be zero. To see this, use the 
ansatz (6.7) to reduce (6.5) to 

* 1 / (t) Qv"
Vt = -k 12 t ' (6.9) 

then integrate dQ( = -vt dt over [O, t] to obtain the inventory profile along the
optimal strategy: 

1t dQ( = ;
·t h2(s)

ds
Qv' k =} 

0 t , 0 

To satisfy the terminal inventory condition Q:{ = 0, and also ensure that the 
correction h(t, q) to the book value of the outstanding shares that need to be
liquidated is negative, we must have 

h2(t) --+ -oo as t--+ T.

Returning to solving the optimal problem, we have that 

so the optimal inventory to hold is 

5)1, 

and the optimal speed of trading is 

(6.10) 

(6.11) 

(6.12) 

This final result for the optimal trading speed is quite simple: the shares must 
be liquidated at a constant rate and this strategy is the same as that of the time 
weighted average price (TWAP). 

6.4 Optimal Acquisition with Terminal Penalty and Temporary 
Impact 

The problem now is to acquire (not liquidate) 5)1 shares by time T, starting
with Q0 = 0. As in the previous section the agent's MOs walk the LOB so her 
execution price is described by (6.lc) with .f(v) = k v, k > 0.

Although the agent's objective is to complete the acquisition programme by 
time T, she allows for strategies that fall short of this target, QT < sn, and
in this case she must execute a buy MO for the remaining amount and pick 
up an additional penalty. This terminal inventory penalty is parameterised by 
a > 0, which includes the cost of walking the book at T and any other additional
penalties that the agent must incur for the execution of the trade at the terminal 
date. 
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Thus, the agent's expected costs from strategy Vt is 

ECV
= IE[ Its� Vu du+ (IJ1 - QT) Sr + �- �]. 

� � -----y---

Terrninal Cash Terminal execution at mid Terminal Penalty 

(6.13) 

Compared to the expected costs in the previous section we have two additional 
terms. In the liquidation problem of the previous section, the agent seeks a 
strategy that ensures all shares are liquidated by T and the expected costs arise 
exclusively from continuous trading. Now, the agent can reach T short of her 
target, but this generates the additional terms that incorporate that sale plus 
the penalty to purchase the remaining shares at the terminal date. 

To simplify notation, we introduce a new stochastic process Y = (Yt)o<::t<::r 
to denote the shares remaining to be purchased between t and the end of the 
trading horizon T:

Y
t

= IJ1- Qr, so that dY/ = -Vt dt' 

and write the value function as 

H(t, s, y) = !�� lEt,S,y [Its� Vu du+ Y,f Sr+ a (Y,f)2 ]
where it is clear that the strategy seeks to minimise the cash paid to acquire the 
shares. 

Applying the DPP, we expect that the value function should satisfy the DPE 

0 = 8tH + ½o.2 8ssH + inf {(S + kv) v - vo
y
H} 

V 

(6.14)

with terminal condition H(T, S, y) = y S + a y2
. Solving for the first order con­

ditions, the optimal speed of trading in feedback form is given by 

v* = A (8
y
H - S) (6.15) 

and upon substitution into the DPE above, we obtain 

OtH + ½o.28ssH - A (8
y
H - s)2 

= 0. 

To solve this DPE, we can write the value function in terms of the book 
value of the assets remaining to be acquired and the excess value function from 
optimally acquiring these shares. From looking at the terminal condition, and 
the way y enters into the DPE, we hypothesise that the excess value function 
can be written in terms of a quadratic function in y. The corresponding ansatz 
is 

H(t, S, y) = y S + h0(t) + h 1 (t) y + h2(t) y2
, (6.16) 

where h2(t), h1(t), ho(t) are, yet to be determined, deterministic functions of 
time (note that the subscripts on the functions indicate the power of y which 
multiplies them in the full ansatz). Recalling that the value function at the 
terminal date T is H (T, S, y) = y S + a y2

, then

h2(T) = a and h1(T) = h0(T) = 0.
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Moreover, upon substituting the ansatz into the above non-linear PDE we find 
that 

Since this equation must be valid for each y, each term in braces must individually 
vanish. This provides us with three equations for the three functions ho , h1 and 
h2 . Due to the terminal condition h1 (T) = 0, we see that the solution we get 
for h1 (by setting the second term in braces to zero) is h1(t) = 0. Similarly, due 
to the terminal condition ho (T) = 0, we see that the solution we get for ho (by 
setting the third term in braces to zero, and knowing that h1 (t) = 0) is h0 (t) = 0.
Indeed we could have begun with the ansatz H ( t, S, y) = y S + h2 ( t) y2 and have 
ended up with the same equation for h2 . The final equation ( obtained by setting 
the first term in braces to zero) allows us to obtain h2 ( t) and in this case, since 
h2 (T) = a, we obtain the non-trivial solution 

( 1 1 )-1h2 ( t) = 'f ( T - t) + ;;; 

Putting this together with the ansatz for the value function we find that the 
optimal trading speed is 

( 
k )-1 * v; = (T - t) + ;;; �v (6.17) 

Here we see that as the terminal penalty parameter a -+ oo the acquisition 
rate converges to that of TWAP. Similarly, the smaller the value of a, all else 
being equal, the slower the acquisition rate will be. Furthermore, in the limiting 
case a -+ 0, the optimal strategy is not to purchase any shares until the terminal 
date is reached, at which point all 1)1 shares are purchased. In this limiting case, 
there are no costs of walking the book at date T, so it is optimal to purchase all 
the inventory at the end. In general, however, we expect that a » k. 

As before, we can solve for the optimal inventory path explicitly by integrating 
d�v* = -v; dt over [O, t], i.e. by solving 

for �v*. Recalling that �v = IJ1- Qr, it is straightforward to obtain the optimal 
inventory path as 

Qu* = _
t_\)1

t T+ 1':_ • 
Ct 

(6.18) 

From this equation we can see that for any finite a > 0 and finite k > 0, it is 
always optimal to leave some shares to be executed at the terminal date, and 
the fraction of shares left to execute at the end decreases with the relative price 
impact at the terminal date, k/a. 

To obtain the optimal speed of acquisition, we substitute for Q( into the 
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expression for v;, so that 

m 

T+ '5c_ .
Cl! 

(6.19) 

Comparing this with the result from the previous section (see (6.11) and 
(6.12)), we see that the agent acquires at a constant, but slower rate than that 
of an agent who heavily penalises (i.e. a -+ oo) paths which do not complete the 
execution fully. Moreover, the agent trades at a constant speed and this speed 
is the same as that of an agent who must execute everything by the end of the 
period, but who has a terminal date T' that is further into the future, T' = T + ¾. 

6.5 liquidation with Permanent Price Impact 

In this section we switch from acquisition back to liquidation. The agent contin­
ues to use only MOs to liquidate a total of5)1 shares, but now her trades have both 
a temporary and a permanent price impact. The midprice dynamics arc given by 
(6.lb) with drift g(vt) > 0, which enters the equation with negative sign because 
the agent's sell trades exert a permanent downward pressure, and the execution 
price by (6.lc) with f(vt) > 0, which enters the equation with a negative sign 
because the sell trades have an adverse temporary impact. Here we assume that 
if the agent's strategy reaches the terminal date T with inventory left, then she 
must execute an MO to reach m for a total revenue of Q'f (Sf - aQ'f), where 
a 2: 0 is the terminal liquidation penalty parameter. The agent's objective is to 
minimise the execution cost 

� )], 
Terminal Cash Midprice Penalty per Share 

where the process corresponding to the investor's wealth Xf is as in (6.2). Here 
we have switched from writing out the cash process explicitly in terms of the inte­
grated execution costs, to including the cash process directly. This way the cash 
process becomes a state variable. Naturally, we could in principle keep using the 
integrated costs representation; however, it is sometimes easier to motivate the 
choice of ansatz for the forthcoming problems when value functions are written 
in terms of X as a state variable. 

In this section, we also introduce another element into the model: a running 
inventory penalty of the form ¢ ft ( Q�)2 with ¢ 2: 0. This running inventory 
penalty is not (and should not be considered) a financial cost to the agent's strat­
egy. The parameter ¢ allows us to incorporate the agent's urgency for executing 
the trade. The higher the value of ¢, the quicker the optimal strategy liquidates 
the shares, as it increases the penalty for the late liquidation of shares and incen­
tivises strategies that front load the liquidation of inventory. Cartea, Donnelly 
& Jaimungal (2013) show that the running inventory penalty is equivalent to 
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introducing ambiguity aversion on the part of the agent, where the ambiguity is
over the midprice which, in their model, may have a non-zero stochastic drift.

Then, the agent's perfonnance criterion is
Hv (t, X, S, q) = lEt,x ,S,

q [ X!f + Qf (S�" -aQf)- ¢.f (Q�)2 du],
'-y-/ -------� � 

Terminal Cash Tcnninal Execution Inventory Penalty 

(6.20) 

and the value function
H(t, x, S, q) = sup Hv(t, x, S, q) .

vEA 

The DPP implies that the value function should satisfy the HJB equation
0= (at+½a.2ass)H -¢q2 

+ sup {(v (S - f(v)) ax - g(v) as - vaq
) H}, (6.21) 

subject to the terminal condition H(T, x, S, q) = x +Sq - a q2 . 

We use the simplifying assumption that permanent and temporary price im­
pact functions are linear in the speed of trading, i.e. f (v) = k v and g(v) = b v
for finite constants k 2: 0 and b 2: 0. The first order condition allows us to obtain
the optimal speed of trading in feedback control form as

* 1 (Sa,r- bas-aq
)Hv =21c aH X 

(6.22) 

Upon substituting the optimal feedback control into the DPE, it reduces to

_ (a 1 2 a ) H ,,1, 2 1 [(Sax - bas -aq
)H] 2 

0 - t + 2 (}' ss - '+' q + 4 k axH
By inspecting the terminal condition H(T, x, S, q) = x +Sq - a q2

, it suggests
the ansatz

H(t, x, S, q) = .T +Sq+ h(t, S, q) , (6.23) 

where h, with terminal condition h(T, S, q) = -a q2
, is yet to be determined.

The first term of the ansatz is the accumulated cash of the strategy, the second
is the marked-to-market book value (at midprice) of the remaining inventory,
and h is the extra value stemming from optimally liquidating the rest of the
shares.

Using this ansatz in the equation above and simplifying, we find the following
non-linear PDE for h:

o =(at+ ½(}'2 ass) h -¢q2 
+ A [b (q +ash)+ aq

hJ 2 

Since the above PDE contains no explicit dependence on S and the terminal
condition is independent of S, it follows that ash(t, S, q) = 0, and we can write
h(t, S, q) = h(t, q) (with a slight abuse of notation). The equation then simplifies

even further to
0 = at h(t, q) - <pq2 

+ 4
1
k [b q + aq

h(t, q)] 2 
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Furthermore, the optimal control in feedback form from (6.22) takes on the much 
more compact form 

v* = -� (oqh(t, q) + bq)2K: (6.24) 
In this form, it appears that the solution admits a separation of variables 

h(t, q) = h2 (t) q2 where h2 (t) satisfies the non-linear ODE (recall that the sub­
script 2 represents that this function is the coefficient of q2) 

(6.25) 
subject to the terminal condition h2 (T) = -a. This ODE is of Riccati type and
can be integrated exactly. First, let h2 (t) = -½b + x(t), then re-arranging the
ODE we obtain 

OtX 
kc/>- x2 

1
k' 

subject to x(T) = ½b - a. Next, integrating both sides of the above over [t, T]
yields 

so that 

where 

log vfc/j + x(T) - log vfc/j + x(t) = 21 (T - t) 
vfcp - x(T) vfcp - x(t) ' 

1 + ( e21 (T-t) x(t) = vf¢ 1 - ( e2,cr-t) 

( 6.26) 
At this point the solution of the DPE is fully determined and the optimal speed 

of trading can now be explicitly shown in terms of the state variables rather than 
in feedback form. Specifically, from (6.24), the optimal speed to trade at is 

re' (T-t) + e-, (T-t) * * _s ________ Qv 
Vt = I ( e,(T-t) - e-, (T-t) t ( 6.27) 

Interestingly, the optimal speed to trade is still proportional to the investor's 
current inventory level, as we found in the previous simpler models, but now the 
proportionality factor depends non-linearly on time. 

From this expression, it is also possible to obtain the agent's inventory Q( 
that results from following this strategy. Recall that the agent's inventory satisfies 
dQr = -Vt dt, hence 

dQ( = xkt) Q( dt so that Q( = SJtexp {1t x�s) ds} .



6.5 liquidation with Permanent Price Impact 147 

To obtain the inventory along the optimal strategy we first solve the integral 

hence 

-ds=- Vk¢----ds1t x(s) 11t 1 + (e2,(T-s) 
0 k k O 1 -(e2,(T-s) 

_ t e-2,(T-s) t (e21(T-s) 
- , Jo e-2,(T-s) -( ds + r Jo 1 -(e2,(T-s) ds

= log (e-,(T-s) -(e'(T-s)) 16 
( e,(T-t) _ e-,(T-t) =log--------( e,T -e-,T 

* ( e,(T-t) _ e-,(T-t) Qv =------SJt t ( e,T _ e-,T ·

(6.28) 
(6.29) 

(6.30) 

Substituting this expression into (6.27) allows us to write the optimal speed to 
trade as a simple deterministic function of time 

( e' (T-t) + e-, (T-t) 

v; = r ---------

SJt( e,T-e-, T 
In the limit in which the quadratic liquidation penalty goes to infinity, i.e. as 

a -+ +oo, we get ( -+ l. Then, the optimal inventory to hold and the optimal 
speed to trade simplify to 

Qr 
* sinh (,(T -t))

. ( ) sn.
a-++oo smh ,T 

and 
* cosh (,(T -t)) 1)1 

Vt 
a-++oo 

1 sinh (,T) 
Both of these expressions are independent of b. For other values of a the relation­
ship between a and the permanent price impact parameter b is more complex 
and we look at it after considering some numerical examples. 

Figure 6.2 contains plots of the inventory level under the optimal strategy for 
two levels of the liquidation penalty a and several levels of the running penalty 
¢. Note that with no running penalty, ¢ = 0, the strategies are straight lines 
and in particular, with a -+ oo the strategy is equivalent to a TWAP strategy. 
As the running penalty ¢ increases, the trading curves become more convex and 
the optimal strategy aims to sell more assets sooner. This is an intuitive result 
since ¢ represents the agent's urgency to liquidate the position, and therefore 
as it increases she initially liquidates more quickly. Naturally, as the liquidation 
penalty increases, the terminal inventory is pushed to zero. 

As an exercise, one can check that in the limit in which the running penalty 
vanishes, ¢ -+ 0, the analog of the result from the previous section is recovered, 
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Figure 6.2 The investor's inventory along the optimal path for various levels of the 
running penalty rj;. The remaining model parameters are k = 10-3, b = 10-3. 
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Equivalence Between Permanent Price Impact and Terminal Liquidation 

Penalty 

In the previous section we solved the general case when the agent's trades have 

temporary impact on the execution price and permanent impact on the mid price. 

We assumed that these two impacts were linear in the speed of trading, f(v) =
k v and g ( v) = b v for constants k 2:: 0 and b 2:: 0. One typically observes that 

b « k and we also assume that the liquidation penalty parameter a » k. In this 

section we discuss the relationship between the liquidation penalty parameter 

a and the permanent price impact parameter b - the discussion for acquisition 

problems is very similar. 

The basis for the analysis comes from observing that in the optimal speed of 

trading, as described in (6.27), the permanent impact and the liquidation penalty 

always appear in the form a - ½b, see (6.26). This implies that in the current

model, where the permanent impact is linear in the speed of trading and the 

liquidation of terminal inventory is quadratic, a Q}, one could define a single

parameter c = a - ½b (so that c = x(T)) to describe how both the permanent
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impact and the liquidation penalty affect the optimal speed of trading. Obviously, 
we cannot do this for other variables in the model, such as for the cash obtained 
from liquidating shares. The impact of the permanent price impact parameter 
on this variable is quite distinct from that of the liquidation penalty. 

To see this, we consider how the proceeds from selling the SJ1 shares are affected 
by the permanent impact that the agent's trades have on the midprice. First, 
we calculate the agent's terminal cash when she follows an arbitrary strategy Vt . 
Recall that the agent's cash position satisfies the SDE 

dX[ = (St - k Vt ) Vt dt'
where 

dSt = -bvdt + erdWt , 
and, for simplicity, assume that X0 = 0, k = 0, and So = 0. Then, the revenue 
from liquidating her shares, including the liquidation of the terminal inventory, 
is 

Rv = J
0
T St Vt dt + QT (Sf - aQr) 

= f
0
T {-b J;vu du+ er Wt } Vt dt + QT (Sf - a Qr) 

= f
0T {-b (SJ1- Qr)+ er Wt} Vt dt + QT (Sf - a Qr) 

= foT { -b (SJ1 - Qr) + er Wt} (-dQr) + QT (Sf - a QT) 
= -b foT (SJ1 - Qr) d(SJ1 - Qr) - er fo

T Wt dQr + QT ( Sf - a QT) 
= -½ b (SJ1 - Qr)2 

+ Qr (Sf - a Qr) - er Jtwt dQr. 
Having expressed Rv in this way, we see that both a and b appear together 

with ( QT )2 and both act to penalise inventories different from zero. Nevertheless, 
if we isolate the terms in Rv that are affected by a and b we obtain 

It is now clear that not only do a and b affect the revenue process in a very 
different way than they do the speed of trading, but also that the effect of the 
parameter of the permanent price impact cannot be absorbed into the liquidation 
penalty. 

Indeed, b shows up explicitly in the value function separately from a. First 
note that a and b do appear in x(t) together in the form c = a - ½b (through 
(). But, b appears separately through the relationship of h2(t) = x(t) - ½ b.

Since x(t) is what determines the optimal trading strategy, we see that b can 
be absorbed into a for the purpose of the trading strategy. But this effect does 
not extend to the revenue process. We can see this most clearly when the agent 
follows the optimal strategy in the limiting case where a -+ oo. In this limiting 
case, the agent will complete the trade by the terminal date, hence QT* = 0, 
and any terminal penalty would be applied to a terminal quantity equal to zero. 
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Nevertheless, the impact of the agent's trades on the midprice will be strictly
positive: a loss of ½ b IJ12

. 

6.6 Execution with Exponential Utility Maximiser 

In the previous sections, the agent was viewed as a risk-neutral one in the sense
that she is maximising her expected terminal wealth ( from optimally trading and
liquidating any remaining shares at maturity). With the exception of Section
6.3, the agent is not strictly risk-neutral because she is also penalising holding
inventory -which is a form of risk aversion. In this section, we demonstrate that if
the agent is risk-averse with exponential utility then she acts in the same manner
as the risk-neutral, but inventory averse, agent studied in the previous sections.

Let us consider the agent who sets preferences based on expected utility ofter­
minal wealth with exponential utility: 'U(x) = -e-, x. Her performance criteria
is

Hv (t, x, S, q) = lEt,x ,s,q [ -exp { - ,( XT + Q'y (S!f - a Q'y))}] , 
and her value function is

H(t,x,S,q) = supHv (t,x,S,q) ,
uEA 

where S", Qv and X" satisfy, as usual, the equations in (6.1) and (6.2). The
agent's terminal wealth has two components: the cash that she has accumulated
from trading through Xy, and the value she receives from liquidating any re­
maining assets at the end of the trading horizon through Q'r ( Sy - a Q'r) - which
accounts, as before, for the impact of making a lump trade.

Applying the DPP we expect that H satisfies the DPE
0 = (8t + ½o.28ss) H +sup {(v (S - kv)8x -bv8s -v8

q)H} ,
u 

with terminal condition
H(T, x, S, q) = - exp{-1 (x + q (S -a q))}.

The exponential terminal condition suggests that we use the ansatz
H(t, x, S, q) = - exp{-, (x + q S + h(t, q))},

(6.31a)

(6.31b)

(6.32)
and upon substitution into (6.31), we find that h satisfies the non-linear PDE

0 = - 1 h 8th+½ o-2 12 q2 h + sup {-1 z; (S - k v) + 1 q b v + 1 v (S + 8q h)} h ,
V 

subject to the terminal condition h(T, q) = -a q2
. Since we expect that h is

negative, due to the terminal condition, we can factor out the common -1 h
terms and obtain the simpler non-linear PDE

0 = 8th - ½ o-2

1 q2 
+ sup { -k v2 

- (q b + 8q h) z;} ( 6.33)
V 
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It is straightforward to obtain the optimal control v* in feedback form as

and upon substitution into (6.33), we further find that h solves 

0 = 8 h - l u2 1 q2 + � (q b + 8 h)2 

t 2 
2k q . 

(6.34) 

A further observation is that if we consider h to be quadratic in q, then all the 
terms in this non-linear equation are quadratic in q, and so is the terminal con­
dition. Hence, we expect that h(t, q) = h2

(t) q2 for some deterministic function 
h2 (t) with terminal condition h2 (T) = -a since h(T,q) = -aq2. Inserting this 
second ansatz, and factoring out q2 , we find that h2 (t) satisfies the non-linear 
ODE 

(6.35) 

Comparing (6.35) to (6.25), we see that the two ODEs coincide whenever ¢ = 
½r u2 , and since the terminal conditions are identical, the solutions to the two 
PDEs are identical. Hence, using the same steps that show how to solve (6.25), 
we find that in the case of an agent with exponential utility preferences, we have 

1 + ( e2 I; (T-t) 1 h2 (t)=vk10"2 

2 uT t) --b,1-(e - 2 
where the constants 

� 
� =

v2k, and
a- lb+ hk 1 u2 

( = 2 y 2 

a - ½ b - V ½ k r u2 

Recalling that h(t, q) = q2 h2 (t) and substituting in the above solution into 
(6.34), we find that the optimal speed to trade is 

* ( el; (T-t) + e-1; (T-t) 
v* vt = � ( el: (T-t) _ cl: (T-t) Qt (6.36) 

This strategy is identical in form to the one for the risk-neutral agent who is 
inventory averse appearing in (6.27). Furthermore, the value functions for the two 
problems (the exponential utility maximiser and the risk-neutral with inventory 
aversion) can be mapped to one another. From (6.32), we have 

where the superscript exp-util emphasises that this is for the exponential utility 
maximiser. Similarly, from (6.23), we have that 

Hinv-aver (t, x, q, S) = X + q S + q2 h2 (t), 
where the superscript inv -aver emphasises that this is for the inventory averse 
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agent. Since the h2 functions coincide when ¢ = ½, a2 , we can write the value functions in terms of one another as follows: 
supE[-exp{-,(Xf+ Qr(Sf-aQr))}] vEA 

= - exp{-,��� E [ Xf + Qr (Sf -a Qr) - 'Y f 1( Q�)2 du l } . 
In later sections, we see how the agent with exponential utility can be mapped back to a risk-neutral, but inventory averse agent in several different settings. For example, in Section 8.3 we study the mapping when the agent uses LOs to liquidate, in Section 9.5 we see how an agent who aims to target percentage of volume incorporates utility, and in Section 10.3 we investigate how risk-aversion modifies the behaviour of a market marker. 

6.7 Non-Linear Temporary Price Impact 

In the previous sections we assumed the price impact function f (v), see (6.lc), to be linear in the speed of trading. From Figure 6.1, which shows a snapshot of the LOB and how an order of various volumes walks the book, we see that a linear model is a good approximation, but some research has shown that a power law with power less than one fits the data better. Others also argue that, given the extremely low predictive accuracy of market impact models ( typically < 5% R
2 ), the cost of increased complexity arising from moving away from a linear model would outweigh any gains from better describing market impact. Nonetheless, it is worthwhile investigating how the problem is modified in the case of non-linear price impact. To focus on the effects of non-linear impact, we revert back to a risk-neutral agent with inventory aversion through a running penalty as in all sections, other than Section 6.6, and so the agent's performance criteria is as in (6.20) repeated here for convenience: 

H v(t, x, s, q) = Et,x,S,q [xf + QT (Sf -a Qr) -cp It (Q�)2 du],
and the dynamics of sv, xv and Qv are also repeated here with the explicit non-linear impact model written in place: 

dSt = - b Vt dt + a dWt , 
dXt = (St -f (vt) )  Vt dt , 
dQt = - Vt dt . 

As usual, the DPP suggests that the value function 
H(t,x,S,q) = supH v(t,x,S,q) , vEA 
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Figure 6.3 Graphical representation of 

the Legendre Transform F* (y) of function

F(x). The point at which the tangent hits 

the vertical axis is the value of the 

transform evaluated at the slope at the 

tangent point. 

0 = (8t + ½ 0'
2 8ss) H - cpq2 

+ sup { (v (S - f(v)) Ox - bv8s - v8
q
) H},

V 

with terminal condition H(T, x, S, q) = x+q (S-cx q). Applying the usual ansatz, 
H(t, x, S, q) = x + q S + h(t, q), which separates out the book value of cash in 
hand and inventory from the value of optimally trading the remaining shares, 
we have the following non-linear PDE for h: 

0 = Oth-¢q2 
+ sup{-v f(v) - (bq+ Oqh) v},

V 

with terminal condition h(T, q) = -ex q2
. 

To proceed, let us denote F(v) = v f(v), and assume that v f(v) is convex. 
The implication is that the net cost ( and not the price impact alone) of trading 
at a rate of v is convex. This certainly holds true for the linear price impact 
model, for which f (v) = k v and so F(v) = v 2

. It also holds for the popular 
power law price impact models f(v) = k va where a > 0. Under this convexity 
assumption, the supremum term becomes 

sup{-vf(v)- (bq+ 8qh)v} =F* (-(bq+aqh)) , 
II 

where F* is the Legendre transform of the function F defined as 

F*(y) = sup (xy - F(x)) 
X 

The Legendre transform is a mapping from the graph of a function to the set 
of its tangents, and can be best understood from Figure 6.3. The figure shows 
that the Legendre transform F* (y) of the function F equals the value at which 
the tangent at a point intersects the vertical axis, and the argument y is the slope 
of the function at that tangent point. Since the function is convex, the slope is 
increasing and therefore for each slope y, there exists only one point with that 
slope. Hence, the mapping is one-to-one. 

For example, in a power law impact model we write f ( x) = k xa , and so 
F(x) = k xl+a . Then 

F*(y) = sup (xy - kxl+a) 
X 
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Figure 6.4 The effect of non-linear 
impact on the optimal strategy in the case 
of a power law temporary impact function 
with power parameter a. The model 
parameters are b = k = 10-4, ¢ = 10 k,

a= 100 k, and T = 1. 

0.5 
Time 

We can find the optimal point x* from the first order condition 

y-k( l +a) (x*)a
=O =} x*= (

(l :a)k)"
, 

and so 

F*(y) = (y i+ ¼' 
ak 

(
= 

((l+a)k)l+¼' 

and the optimal trading speed in feedback form is 

v* = (-
bq+aqh

)
" 

(1 + a) k 

We can then write the non-linear PDE for has 

8th -cpq2 +F* (-(bq+8qh ))=0, and h (t,q)=-a.q2
. 

(6.37) 

(6.38) 

In general, this equation cannot be solved analytically, and one must resort to 
numerical PDE techniques. 

In Figure 6.4, we show the effect of the strength of the power in the power 
law parameter a on the inventory path from following the optimal strategy Q'

( 

.

These curves are obtained by numerically solving (6.38) with a finite difference 
scheme, substituting the solution into (6.37), and then numerically integrating 
dQ'

( 

= -v; dt, with Qr
( 

= l, to obtain Q'
(

. The striking result is that as the 
power law parameter decreases, so that orders of the same size have less and less 
of an impact, the agent liquidates faster. The intuition here is that since trading 
does not impact prices as much, the agent prefers to liquidate shares early and 
reduce her inventory risk, and doing so does not cause her to lose too much from 
temporary market impact. In some sense, the agent behaves as if she has a larger 
urgency parameter, but still uses a linear impact model. 
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6.9 Exercises 

E.6.1 The agent wishes to liquidate SJ1 shares between t and Tusing MOs. The value
function is

H(t, S, q) = sup lEt,S,q [1T 

(Su -kvu) Vu du - QT (Sr -o:QT )2] , 
vEAt,T t 

where k > 0 is the temporary market impact, Vt is the speed of trading, o: � 0
is the liquidation penalty, and dSt = udWt .

(a) Show that the value function H satisfies

(b) Make the ansatz

H(t, S, q) = h2 (t)q2 
+ h1(t)q + ho(t) + q S

and show that the optimal liquidation rate is

v* = Q( t T-t+!:E.·
a 

(6.39)

(6.40)

(c) Leto:---+ oo and show that (6.40) converges to (6.12). Moreover, discuss the
intuition of the strategy when o: ---+ 0.

E.6.2 This exercise is similar to that above but with a slightly different setup. The
agent wishes to liquidate SJ1 shares and her objective is to maximise expected
terminal wealth which is denoted by X!f (in the exercise above we wrote ter­
minal wealth as ft (Su - kvu) Vu du). The value function is

(6.41)
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where 

(a) Show that the HJB satisfied by the value function H(t,S,q,x) is

0 = (8t + ½u28ss) H + sup {(-v8
q 

+ (S -kv) v8x) H},
1/ 

and the optimal liquidation rate in feedback form is 

8
q
H -S8x H

v;=----­
-2k8x H 

( 6.4 2) 

(6.43) 

(6.44) 

(b) To solve (6.43), use the terminal condition H(T, x, S ,  q) = x + q S -aq2 to
propose the ansatz

H(t, s, x, q) = X + h(t) q2 
+ q S ,  

where h(t) is a deterministic function of time. Show that 

k 
h(t) = -

k ' 

and 

T-t+ ;-;_

* Q( 
V = ----'--� t T-t+i:,;_

. 
°' 

E.6.3 Let the stock price dynamics satisfy

dSt = 1idt + udWt, 

( 6 .45) 

( 6.46) 

where u > 0, µ is a constant and Wt is a standard Brownian motion. The 
agent wishes to liquidate 5)1 shares and her trades create a temporary adverse 
move in prices so the price at which she transacts is 

sr = st - k Vt,

with k > 0 and the inventory satisfies 

where Vt is the liquidation rate. Any outstanding inventory at time T is liq­
uidated at the midprice and picks up a penalty of a Q} where a :::,, 0 is a 
constant. 

The agent's value function is 

(6.4 7) 
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(a) Show that the optimal liquidation rate in feedback form is

* aqH - S 
V =---. 

-2k 
(6.48)

(b) Use the ansatz H(t, S, q) = q S + h(t, S, q) to show that the optimal liqui­
dation rate is given by

* _ Qr 1 T t 
(T - t) + 2¾

Vt - (T - t) + ¾ - 4k µ. ( - ) (T - t) + ¾ 

Comment on the magnitude of µ. and the sign of the liquidation rate.
( c) Let a -+ oo and show that the inventory along the optimal strategy is given 

by

v* 

(1)1 µ ) Qt = ( T - t) T + 4k t .
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7.1 

Optimal Execution with Continuous 
Trading 11 

Introduction 

In the previous chapter we studied the problem of optimal execution for an agent 
who aims to liquidate/acquire a considerable proportion of the average daily 
volume (ADV) of shares. There we saw how the agent trades off the impact on 
prices that her trades would have if she traded quickly, with the uncertainty in 
prices she would receive/pay if she traded slowly. We find that the agent's optimal 
strategy is to trade quickly initially ( ensuring that she receives a price close to the 
arrival price, but with a non-trivial impact) and then slow down as time goes by 
(to reduce her overall impact, but increase price uncertainty). Surprisingly, the 
optimal strategies we obtain are deterministic and in particular are independent 
of the midprice process - regardless of the level of urgency required to complete 
her trade. In this chapter, we incorporate a number of other important aspects 
of the problem that the agent may wish to include in her optimisation decision, 
and explore how her trading behaviour adjusts to account for them. 

Specifically, we look at three distinct aspects of the optimal execution problem. 

1. An upper price limit: In Section 7.2 we study the problem of an agent wishing
to acquire a large position, who has an upper price limit on what she is
willing to pay. We find that the optimal strategy in this case is no longer
independent of the midprice, beyond the obvious change that the agent stops
trading when the upper limit price is breached.

11. Informative order flow: In Section 7.3 we study the problem of an agent
wishing to liquidate a large position, taking into account that the order
flow from other traders in the market also impacts the midprice. We show
that the agent alters her strategy so that when the net effect of other market
participants is to trade in her direction, she increases her trading speed; con­
versely, if the net effect of other agents is to trade in the opposite direction,
she decreases her trading speed.

m. Dark pools: In Section 7.4, the agent has access to a (standard) lit market
and also to a dark pool. Trading in the dark pool exposes her to execution
risk, but removes some of the price impact. We find that the optimal strategy
is still deterministic: initially the agent trades in the lit market at speeds
below that dictated by Almgren & Chriss (2000) (AC), and posts the whole
of the remaining order in the dark pool, in the hope of it being filled there.



7.2 Optimal Acquisition with a Price limiter 159 

After a while, if the order has not been filled in the dark pool, the agent's 
speed of trading in the lit pool increases above that of AC. 

Throughout this chapter we use the same notation as in Chapter 6. 

7.2 Optimal Acquisition with a Price Limiter 

In this section we solve the problem for an agent whose target is to acquire 
i)1 shares over a trading horizon of T, with a cap on the price at which she 
acquires shares equal to S. If the midprice reaches this limit price before T,

all remaining shares are immediately purchased and the acquisition programme 
stops. 'vVe assume that the midprice dynamics follow (6.lb) with g(vt ) = bvt, 
b 2:'. 0, and the execution price is as in (6.lc) with linear price impact f(vt ) = k Vt , 
k > 0. The agent will stop trading if any one of the following events occur:
a. the agent's inventory reaches the target level iJ1,
b. the terminal time T is reached,
c. the midprice St reaches the upper limit price S. 
These define the following stopping time, T: 

T =TI\ inf{ t : St = S} I\ { t : Qt= iJ1}. 
When either of events (b) or (c) occur, the agent acquires the remaining iJ1-Q� 
units of the security and pays ST + a (iJ1-Q�) per unit, where a > 0. To simplify 
notation we let Y/ = iJ1 - Qt denote the remaining shares to be acquired, 
satisfying 

dYt = -Vt dt , 
where Vt is the (positive) rate of trading. 

To complete the setup of the problem, we write the agent's performance criteria 
as 

Hv(t,S,y) =lEt ,S,y [lT(Su+kvu)vudu+ YT (ST +ayT )+c/>lT y�&u], 
(7.1) 

where cJ>ft

T y� du with c/> 2:: 0 is a running inventory penalty of the remaining 
shares to be acquired ( as discussed in the previous chapter this penalty is not a 
financial penalty), and her value function is 

H(t, S, y) = inf Hv (t, S, y), 
vEA 

for all O ::::; t S T, S S S, 0 S y S Q, and .A is the admissible set of trading 
strategies in which v is non-negative and uniformly bounded from above. 
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Applying the dynamic programming principle (DPP), the value function should 
satisfy the dynamic programming equation (DPE) 

OtH + ½a2 8ssH + </>y2 

+ min { -v O
y
H + b v osH + (S + k v) v} = 0 ,  

subject to the terminal and boundary conditions 

H(T,S,y) = (S+ay)y, 

H(t, S, y) = (S + a y) y, 

H(t,S,0)=0. 

(7.2a) 

(7.2b) 

(7.2c) 

(7.2d) 

The terminal and boundary conditions reflect the fact that the agent acquires 
the remaining shares at the stopping time. Note that when her inventory equals 
the target 1)1: at t < T, she stops acquiring and there is no penalty, hence the 
value function equals zero along y = 0. 

From the first order conditions, we obtain the optimal acquisition strategy in 
feedback form as 

v*(t, s, y) = - A. (bosH - O
yH + S)

and upon substituting back into the DPE above, the value function H then solves 
the non-linear PDE 

subject to the terminal and boundary conditions in (7.2). 

Dimensionality Reduction without Permanent Price Impact 

In general, the DPE (7.3) will have to be solved numerically; however, in practice 
it is normally the case that the effect of permanent impact is much smaller than 
the temporary impact from walking the LOB, so to reduce the dimension of the 
problem we set b = 0. 

In this case, due to the form of the DPE (7.3) and its terminal and boundary 
conditions in (7.2), it is possible to solve for the dependence in q exactly by using 
the ansatz 

H(t, S, y) = y S + y2 h(t, S) , 

in which case, the function h satisfies the Fisher-type PDE 

0th+ ½a2 8ssh - f h2 
+ </> = 0, (t, S) E [0, T) x (-oo, S) ,

subject to the terminal and boundary conditions 

h(T,S ) = a, S-<:_; S, 

h(t,S ) = a, t-<:_; T, 

(7.4a) 

(7.4b) 

(7.4c) 
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and, furthermore, the optimal acquisition strategy v* reduces to
v*(t,S,y)= ¼yh(t,S). (7.5)

In particular, it follows from (7.5) that as inventory Q increases ( so that Y 
decreases), all else being equal, the optimal rate of acquisition slows down.
Numerical Solution I: Crank-Nicolson 

The (1 + 1 )-dimensional terminal boundary value problem (7.4) can be efficiently
solved numerically using a Crank-Nicolson scheme, by placing the problem on a
grid in the domain [O, T] x [�, SJ and treating the quadratic term h2 explicitly. 

By introducing this grid, we now have a new boundary at �' and, in order to
have a well-posed problem, we need to specify a boundary condition along S =
� « S. A usual approach is to specify the boundary condition as 8sshls=Q = 0.
In order to evaluate whether this is a reasonable boundary or not we determine
what this condition implies about the behaviour of the optimal strategy at the
lower boundary.

Denote x(t) = h(t, �). Combining (7.4) with 8ssh(t, �) = 0, we see that x(t)
satisfies the ordinary differential equation ( ODE)

{ OtX - ½ X2 + ¢ = 0, t E [O, T),
x(T) = a.

As this is a Riccati equation, its solution follows from standard methods ( as
outlined in Section 6.5) and is given explicitly by 

x(t) � { 

where the constants are

( e21(T-t) + 1 vkcp ( e2,(T-t) _ 1 '

(1 T-t)-i-+--
a k 

¢ > 0 ,

¢= 0 ,

7 = {tk and ( 
= 

a + vkcp .
Vk a-vkcp 

(7.6)

Note that O :S x(t) :S a and that x is increasing int and takes on its maximum
at t = T. 

Moreover, q S +q 2 x(t) is precisely the value function in which there is no limit 
price, as studied in Section 6.5 with permanent impact b set to zero. Therefore,
the boundary condition 8ssh(t, �) = 0 leads to a solution which has an optimal
trading speed equal to the no limit price trading speed. 

Thus, imposing the boundary condition 8ssh(t,�) = 0 generates a reasonable
optimal behaviour on the boundary. But, if we accept this boundary condition
because we think the boundary behaviour reasonable, we can equivalently, and
more straightforwardly, restrict admissible strategies to those that generate the
desired boundary behaviour: v must equal the no limit price strategy when S = 
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fi. We therefore impose that the agent ignores the limit price when the midpriceis sufficiently far away from it. 
Although we cannot obtain an explicit solution to (7.4), we can obtain upper

and lower bounds on the function h(t, S) by appealing to the maximum principle.
First, from standard results in PDEs, a unique solution to (7.4) exists. Hence,
by treating the non-linear term h2 

= h · Ti, where the term Ti is the solution to
the PDE, we can invoke a standard maximum principle.
THEOREM 7.1 (Maximum Principle) Suppose that D C JR is a bounded con­
nected set and that u : D x [O, oo) --+ JR satisfies

Then

8tU + 8xxU = 0,
·u(t, x) = p(t),
u(O,x) = q(x),

x ED, t > 0,
x E 8D, t > 0,
x E 8D, t > 0.

__max u � max (p(t) ; m_0xq)
nx[O,T] n 

and _min u 2: min (p(t) ; mjnq) .
nx[o,TJ n 

As noted earlier, x(t) is increasing in t and O � x � a. Hence a direct ap­
plication of this maximum principle to (7.4), supplemented with the boundary
condition h(t,;i) = x(t) (or as discussed, equivalently by restricting the trading
strategy to equal the no limit price strategy along S = fi) provides us with upper
and lower bounds on h as follows:

x(t) � h(t,S) � a . (7.7)
Since the optimal trading rate v* ( t, S, y) = ½ y h( t, S), the above inequality

implies that at each inventory level, the agent with the limit price constraint
trades at least as fast as the agent without the limit price, and attains a maximal
speed of trading of'/; y. This implies that the agent with the limit price constraint
will have acquired more shares than the agent without the constraint at any given
fixed point in time.

Finally, it is important to point out that the inventory held by the agent at
any given time can be obtained in terms of the path of the midprice process by 
solving for Yt, where Yt satisfies the SDE

dY/ = -v; dt = -½ Yt h(t, St) dt ,
hence

Qt= (1-exp{-½J�h(u,Su)du}) 91, t�T.
This has the same form as in the case without the limit price, but here the
path that the midprice takes plays an important role in determining how much
inventory the agent has at any given time. Below, after discussing an alternative
numerical solution and the case T --+ oo, we show some examples of the optimal
strategy for different midprice paths.
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Numerical Solution II: Iterative Scheme
An alternative approach to solving the non-linear terminal boundary value (TBV)
problem (7.4) is to use an exact iterative scheme, rather than resorting to finite­
difference methods. The essential idea is to take an approximate solution to the
problem at the mth-iteration, denote it by h(m-l)(t, S), and use it to linearise
the TBV to obtain an updated approximation h(m) (t, S) which solves the linear

TBV

subject to

and

( Ot + ½a2 Oss - f h(m-l) (t, S)) h(m) (t, S) + ¢ = 0

h(ml(t,S) = a, hCml (t,;i) = x(t), Vt E [O,T) ,

h(m)(T, S) = a, VS E (/:l, S).

(7.8a)

(7.8b)

(7.8c)
At each iteration, the boundary and terminal conditions are respected, so all
that changes is the behaviour of the solution in the interior. The solution to the
PDE (7.8c) can be obtained in closed-form up to a Laplace transform by first
introducing an integrating factor and writing

h(ml (t, S) = 
ef J; h (m

-l)(u, S) du g Cml(t, S) ,  

so that g Cml (t, S) satisfies the linear PDE
(8t + ½a2 8ss) g Cml (t, S) + ¢£ Cm-1l (t, S) = O ,

subject to
g Cml (t, S) = a ,e(m-ll(t, S), and
g Cml (t,;i) = x(t)£ Cm-1l (t,;i), Vt E [O,T) ,

and

where

(7.9a)

(7.9b)
(7.9c)

(7.9d)

The system of linear PD Es requires an initial guess to begin the iteration. One
simple approach is to use a linear interpolation (in S) between h( t, /:l) = x( t) 
and h(t, S) = a at each point in time. This initial guess can be written as

() 
S-S S-S 

h O (t, S) = 
-

- x(t) +=-a.
S-/:l S-/:l 

Armed with the initial guess, the above system of linear PD Es can in principle
be solved using Laplace transform techniques. The final steps are to show that
the mapping h(k-l) M h(k) is indeed a contraction mapping on a suitable space of
functions, and then show that the sequence of solutions converges to the solution
of the original non-linear PDE.
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The Perpetual Case 

As mentioned earlier, the acquisition problem with the price limit may always 
be solved numerically, e.g. via a Crank-Nicolson scheme. However, if we assume 
that the agent's terminal date T -t oo, i.e. the agent trades until she acquires 
all inventory or the limit price is reached, then the problem reduces to a simpler 
one that we can solve analytically. In this case, h is independent of time and 
equation (7.4) reduces to a boundary value problem for the ODE 

(7.10a) 

with boundary conditions 

h(S) =a, and h(SJ = Vkef>. (7.10b) 

The boundary condition h(S_) = -!k¢ arises by recalling that we impose the 
condition h(t, S..) = x(t) and from (7.6) we have limr-+oo x(t) = -!k<f>. 

The general solution of equations of the above kind are elliptic functions -
see e.g., Chapter 18 in Abramowitz & Stegun (1972). In our specific case (with 
¢ > 0), the solution can be written in terms of the Weierstrass g::i-function as 
follows: 

(7.11) 

where the last two arguments denote the invariants of the elliptic function and 
the constants C1 and C2 must be determined numerically to match the boundary 
conditions in (7.10b). 

If ¢ = 0 and S.. -t -oo the solution can be obtained in terms of elementary 
functions by solving the ODE (7.10a) using the ansatz h(S) = /31 (S + /32) /33

, 

where /31 , /32, /33 are constants to be determined. Two of the constants can be 
obtained from the boundary conditions, and the third is obtained by ensuring 
the ansatz closes the ODE. We leave it as an exercise to show that the solution 
indeed reduces to the simple equation 

(7.12) 

Recall that the optimal trading speed v* = ¼ y h(t, S). Hence, the perpetual 
solution shows that the agent's speed of trading increases (for the same fixed 
amount of inventory) as the limit price S is approached from below. This is 
natural, since the agent observes the price getting closer to the limit and therefore 
wishes to acquire as many shares as possible prior to breaching the price cap 
without paying too much in immediate impact costs. Note, however, as inventory 
is acquired, the speed of trading slows down. The net result of these two opposing 
effects will depend on which of the two is stronger. 
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Figure 7.1 Left panel: The rate of acquisition relative to remaining inventory as a 
function of time and fundamental price. Right panel: the rate of acquisition relative 
to inventory as a function of S at t = 0 for various volatility levels. 

Simulations of the Strategy with Price Limiter 

We now illustrate several aspects of the agent's optimal behaviour when she 
imposes a price limiter in her strategy. 

Throughout, we use the following parameters 

T = lday , 

a= 100k, 

k = 10-4
' b = 0, 

¢=10-3
, u=O.l. 

We also normalise the acquisition target to 1)1 = 1 (this can be viewed as 
a percentage of the ADV, and we assume the agent trades once per second). 
Recall that the ratio a/k sets the maximum trading speed, hence our choice for 
a. We set the limiting price to S = S0 + u with initial price S0 = 20, and our
choice of volatility u = 0.1 (day)-½ corresponds to annualised relative volatility
of 0.1/20 x /255 ,._, 8%.

First, in the left panel of Figure 7.1 we depict the optimal execution strategy 
z;* relative to the current remaining inventory, i.e. z;* /y. As maturity approaches, 
the trading rate increases, because for a fixed number of shares remaining the 
agent must acquire faster to avoid the terminal penalty cost. Moreover, as the 
fundamental price approaches the limit price, the speed of trading also increases 
to avoid the terminal penalty. The bounds on the rate of trading implied by 
the maximum principle (7.7) can also be seen in the figure. In the case with no 
limit price, the agent's optimal strategy is independent of the asset's volatility. 
However, with the limit price, as shown in the right panel of Figure 7.1, the 
agent's behaviour does indeed depend on volatility. The more volatile the market, 
the faster the agent trades, but as the price moves far away from the limit price, 
the effect of volatility diminishes. 

The agent's strategy is constantly being updated to reflect changes in her 
inventory ( due to her own trading) and the innovations in the mid price, hence 
the static views in Figure 7.1 do not tell the full story. To gain additional insight 
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Figure 7.2 Sample paths of the evolution of the midprice, acquisition rate and 

inventory. Dashed line in the bottom left panel represents the evolution of inventory 

in the corresponding AC strategy. 

into the dynamic behaviour, in Figure 7.2 we plot three sample paths of the 

fundamental price together with the rate of acquisition, inventory, and cost per 

share. In the bottom left panel, using a dashed line, we include the inventories' 

lower bound, the Almgren-Chriss (AC) strategy, as described by the inequality 

in (7.7). 

As the figures show, the red path is mostly away from the limit price and 

after some initial noise, the agent's strategy is very close to the deterministic AC 

strategy. The blue path stays mostly near the arrival price so that the trading 

speed displays stochastic dynamics. The agent has an increased trading rate 

between t = 0.2 and t = 0.3 when the midprice approaches the limit price. 

Also, around t = 0.6 the midprice almost touches the limit price and the agent's 

trading speed spikes there; however, due to aggressive trading earlier on, by that 

time she has already acquired a significant proportion of her shares, and the 

spike is not very large. The green path hits the limit price early on, and as the 

figure illustrates, the agent trades quickly (relative to the AC strategy) up until 

the price hits the boundary. 

The bottom right panel of Figure 7.2 shows the cost per share along the three 

paths. Note that the green path, which hits the limit price early on, is more 
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Figure 7.3 Inventory and trading speed heat-maps from 1,000 simulations of the 
optimal strategy. 

expensive than the other paths for two somewhat interrelated reasons: (i) the 

midprice was generally higher (and it hit the limit price) during trading; and 

(ii) since the price generally trended upwards, the agent trades more quickly and

hence has a large temporary impact compared with the other paths.

Finally, in Figure 7.3, we show heat-maps of the agent's inventory (left panel) 

and trading speed (right panel) resulting from 1,000 simulations. We see a thin 

contribution to the heat-map along an inventory level of 1 as well as along a 

trading speed of 0. These represent those paths that breached the price limit 

early. We also show the mean inventory path and the mean trading speed tra­

jectory. As expected, the mean inventory path lies above the AC strategy, since 

the trading speed for the same level of inventory must lie above the AC strategy 

as dictated by the maximum principle and encoded in the inequality (7.7). 

Inequality (7.7), does not, however, imply that the trading speed will always 

lie below the AC trading speed. This is because the inventory level varies with 

the sample path and will not generally equal that of the AC inventory. Indeed, 

as the right panel of Figure 7.3 shows, the mean trading speed starts above that 

of the AC, but as time passes, it eventually falls below it. The intuition for this is 

that since the optimal strategy requires the agent to trade more quickly than the 

AC, her inventory is generally higher (and closer to the target inventory) than 

if she were trading according to the AC strategy. Since she eventually has less 

inventory, her trading speed generally slows down which results in the behaviour 

observed in the figure. 

7.3 Incorporating Order Flow 

In the previous chapter and in the last section, we assume that in the absence 

of the agent's trades, the midprice process is a martingale. We also assume 

that when the agent begins to liquidate (acquire) shares, her actions induce 
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a downward (upward) drift in the midprice process. In other words, the act 
of her selling (buying) shares induces the market as a whole to adjust prices 
downwards (upwards). Yet at the same time we are ignoring the trades of other 
market participants, implicitly assuming that on average their actions even out 
to yield a net of zero drift. This may be acceptable at an aggregate level, but 
over short time horizons, there may be order flow imbalance, which very often 
results in prices trending upwards or downwards over short intervals in time. In 
this section, we show how to incorporate the order flow from the remainder of 
the market into the midprice dynamics and how the agent modifies her strategy 
to adapt to it locally. 

The Model Setup 

In addition to the usual state variables and stochastic processes introduced in 
the previous chapter, we now also model the dynamics of the buy and sell rate 
of order flow µt and assume that they satisfy the SDE 

(7.13) 

where Lt are independent Poisson processes (assumed independent of all other 
processes as well) with equal intensity A. This assumption implies that the buy 
and sell order flows arrive independently at Poisson times with rate A, and induce 
an increase in the order flow rate by T/ and jumps in order flow rate decay at the 
speed "'· 

Next, we incorporate the order flow in the midprice process St , which now 
satisfies the SDE 

where Wt is a Brownian motion independent of the Poisson processes and g is 
an impact function which dictates how the mid price drift is affected by buy/ sell 
order flow. In this manner, the action of the agent's trades and other traders' 
actions are treated symmetrically. vVe can define the net order flow µt = µi - µ;,­
and a short computation shows that 

dµ1 = -r;, (µi - µ;:) dt + T/ (dLi - dr;) 
-r;, µt dt + T/ ( dLi - dL;:) 

Hence, if the permanent impact functions g(x) = bx are linear (with b � 0), we 
can use the net order flow as a state process rather than having to keep track of 
order flow in both directions separately. Overall, we have 

dSt = (7 dWt + b (µt - Vt) dt. 

The remainder of the agent's optimisation problem is as in Section 6.5. Briefly, 
the agent's inventory Qv is 
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and her cash process xv satisfies the SDE 

dXf = (Sf -k Vt) Vt dt ' 

where k > 0 is the temporary linear impact parameter. Also, the agent's perfor­
mance is the usual one so 

Hv(t,x,S,µ.,q) = Et,x ,S,µ ,q [xr + Q� (Sf- aQ7°) -¢ Jt(Q�)2 du] , (7.14)

and her value function is 

The Resulting DPE 

H(t, x, S, µ, q) = sup Hv(t, x, S, 11,, q), 
vEA 

The DPP for the value function suggests that the value function H(t, x, S, µ, q) 
satisfies the DPE (the value function now has an additional state variable,µ) 

0 = (8t + ½o2 8ss) H + [J1H - cpq2 

+ sup {(v (S -k v) Ox+ b (µ - v) Os - v Oq) H,}

subject to the terminal condition 

H (T, x, S, µ, q) = x + q S -a q2 
, 

where the infinitesimal generator for the net order flow acts on the value function 
as follows: 

[P H(t, x, S, µ, q) = -;,, 11, oµH + A [H(t, x, S, µ + T/, q) - H(t, x, S, µ, q)]
+ A [H(t, x, S, µ - T/, q) - H(t, x, S, µ, q)] 

(7.15)
Inserting the ansatz 

H(t, x, s, µ, q) = X + q s + h(t, µ, q)' 

we see that the excess book value function h(t, µ, q) satisfies the equation

8th+ [Ph+ b µq - cpq2 
+ sup {-k v2 

- (bq + Oq
h) v} = 0,

subject to the terminal condition h(T, µ, q) = -a q2
. Recall that x + q S repre­

sents the cash from the sale of shares so far plus the book value ( at mid price) of 
the shares the agent still holds and aims to liquidate. 

The optimal control in feedback form is the same as in (6.22), but the function 
h satisfies a new equation, More specifically, the first order conditions imply that

v* = -
2
1
k (bq+oq

h),

and upon substitution back into the previous equation we find that h satisfies 
the non-linear partial-integral differential equation (PIDE) 

(7,16) 
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Solving the DPE 

Due to the existence of linear and quadratic terms in q in (7.16), and its terminal 
conditions, we expect h(t, µ, q) to be a quadratic form in q, and we assume the 
ansatz 

h(t, µ, q) = ho(t, µ) + q h1(t, µ) + q2 h2(t, µ) . 

Inserting this into ( 7 .16) and collecting like terms in q leads to the following 
coupled system of PIDEs: 

subject to the terminal conditions 

ho(T, µ) = 0, h1(T, µ) = 0, h2(T, µ)=-a. 

(7.17a) 

(7.17b) 

(7.17c) 

Note that since (7.17c) for h2 contains no source terms inµ, and its terminal 
condition is independent of µ, the solution must be independent of µ, i.e. h2 is 
a function only of time. In this case, (7.17c) reduces to (6.25) - the equation for 
h2(t) in the AC problem. Thus 

h2(t, µ) = x(t) - ½ b, 1 + ( e2,(T-t)
where x(t) = Vk¢ 

( 2 (T-t) ,
1- e 1 

with the constants I and ( as defined in (6.26), but repeated here for convenience: 

a - ½b + v1fcp
and ( =

1 a - 2b-v1fqj 

Next, to solve for h1 in (7.17b), we exploit the affine structure of the model 
for the net order flow and write 

in which case, 

with terminal conditions Ro(T) = R1 (T) = 0. Therefore, (7.17b) reduces to 

Since this must hold for every value of µ, each term in the braces must vanish 
individually and we obtain two simple ODEs for £0 and £1 . Since R0(T) = 0 and 
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its ODE is linear in £0, the solution is f0(t) = 0. For £1 , due to the source term
b, the solution is non-trivial and can be written as 

f1(t) = b lT e-"'(s-t)e½f,8x(u)duds.
As in (6.29), we use the integral

Eds= lo e e it ( ) ( ,(T-t) _ -,(T-t) 

. o k g ( e,T - e-,T
to simplify the expression for f1 to

where
1 { 1 - e-C,.,,+,)T 1 - e-(t£-,)T}l1(T) = ----- e'fT _____ (- e-,T ____ _ ( e,T - e-,T "'+ 1 "' - r 

(7.18)

(7.19)

and T = T - t represents the time remaining to the end of the trading horizon.
The solution of ho, which satisfies (7.17a), can be obtained in a similar manner,

but the optimal speed of trading does not depend on ho since as we showed 
earlier, v* = -(bq + 8qh)/2k, and Oqh(t,µ) = h1(t,1t) + 2qh2(t,µ). Putting
these results together we find that the optimal speed of trading is 

1 * b -v* = -- x(t) Qv - - f1(t) µt ·
t k t 2 k 

(7.20)
The optimal trading speed above differs from the AC solution by the second

term on the right-hand side of (7.20) which represents the perturbations to
the trading speed due to excess order flow. Recall that in the limit a -f oo,
x ::; 0, and from the explicit equation above £1 2:: 0, hence, when the excess 
order flow is tilted to the buy side (µt > 0), the agent slows down trading since
she anticipates that excess buy order flow will push the prices upwards - and
therefore will receive better prices when she eventually speeds up trading to
sell assets later on. Contrastingly, she increases her trading speed when order
flow is tilted to the sell side (µt < 0), since other traders are pushing the price
downwards and she aims to get better prices now, rather than waiting for other
traders to push it further down. Another interpretation is that she attempts to
hide her orders by trading when order flow moves in her direction. Finally, recall
that f1 (t) � 0, hence, the order flow influences the agent's trading speed less
and less as maturity approaches because there is little time left to take advantage
of directional trends in the midprice.

Somewhat surprisingly, the volatility of the order flow process 77 does not
appear explicitly in the optimal strategy. It does, however, affect the way the
agent trades through its influence on the path which order flow takes. vVhen the
order flow path is volatile, the optimal trading speed will be volatile as well. It
is also interesting to observe that if the jumps 77 in the order flow at the Poisson
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times were random and not constant, the resulting strategy would be identical, 
see Exercise E.7.1. Similarly, if we add a Brownian component to the order flow 
process µt, the resulting optimal strategy in terms of µt would be identical, i.e. 
(7.20) remains true. Naturally, the actual path taken by the order flow, and 
therefore also that of trading, would be altered by these modifications to the 
model. 

A final point we make about this optimal trading strategy is that Vt is not 
necessarily strictly positive. If the order flow µt is sufficiently positive, then the 
agent may be willing to purchase the asset to make gains from the increase in 
asset price (i.e. her liquidation rate becomes negative). This is because the way 
we have introduced order flow into the model generates predictability in the price 
process which can be exploited, even if the agent is not executing a trade. In 
fact, if the agent has liquidated the target 1)1 at t < T the optimal strategy is 
not to stop, but to continue trading and exploit the effect of the order flow, and 
we see this as her inventory can become negative at intermediate times. If there 
is sufficient selling pressure (i.e. µt is sufficiently negative), then by shorting the 
asset, she may benefit from the downward price movement. 

One approach to avoid such scenarios is to simply restrict the trading strategy 
in a naive manner, by setting 

(7.21) 

In other words, we can follow the unrestricted optimal solution whenever the 
trading rate is positive and the agent has positive inventory, otherwise we impose 
a trading stop. This trading strategy, vt , is not the true optimal strategy. To 
obtain the true optimal strategy we would need to go back to the DPE and 
impose the constraint v 2 0 in the supremum and add an additional boundary 
condition along q = 0. In this case, the DPE will not have an analytical solution, 
although numerical schemes can be used to solve the problem. Nonetheless, the 
v t strategy provides a reasonable approximation that is easy to implement. 

Simulations of the Strategy with Order Flow 

In this section we perform simulations to show the behaviour of the optimal 
strategy in this model. Throughout, we use the following parameters: 

T = l day, k = 10-3, b = 10-4, </> = 0.01, 

>. = 1000, r;, = 10, 17 � Exp(5), u = 0.1 , 

where 17 � Exp(170) denotes the exponential distribution with mean size lE['IJ] = 

'/JO· 

Figure 7.4 shows three scenarios of the midprice, the order flow, the optimal 
inventory, and the optimal speed of trading when the agent uses the augmented 
strategy vt in (7.21). As the figure shows, when the order flow is positive/negative 
the agent trades more slowly/ quickly than the AC trading speed. For example, 
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Figure 7.4 Optimal trading in the presence of order flow. The dashed lines show the 

classical AC solution. 

the large order flow in the buy direction (µt > 0), shown by the green path, 
causes the agent to trade more slowly in the initial stages of the trade. As the 

end of the trading horizon approaches, the order flow influences her strategy less, 

but she must speed up her trading since there is little time remaining in which 

to liquidate the remaining shares. The red path has order flow that fluctuates 

mostly around zero, and as shown in the diagrams, she follows closely the AC 

strategy, but locally adjusts her trades relative to the path. Finally, the blue path 

has a bias towards sell order flow, and the agent adds to this flow by trading 

more quickly throughout most of the trading horizon and eventually liquidates 

her shares early. 

To gain further insight into the strategy, Figure 7.5 shows heat-maps from 

5,000 scenarios of the optimal inventory to hold and the optimal speed of trading. 

Panel (a) shows the results when 77 � Exp(5) as in Figure 7.4, while panel (b) 

shows the results when 77 � Exp(lO). As expected, the optimal trading strategy 

in scenario (b) is more volatile than in scenario (a), despite the optimal strategy 

(as seen in (7.21)) having no explicit dependence on this volatility. 
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Figure 7.5 Heat-maps of the optimal trading in the presence of order flow for two 
volatility levels. The dashed lines show the classical AC solution. 

7.3.1 Probabilistic Interpretation 

Above we studied a particular choice of the dynamics of other market partici­

pants' rate of trading µt. Here we provide a general solution where we do not 

assume a particular model for µ, all we specify is the generator ,CY,, which nests 

(7.15) as a particular case. In this general setup the solution to the problem 

is very similar to that derived above. We need to solve the system of coupled 

PIDEs in (7.17) and in particular we must solve for h1 which satisfies equation 

(7.17b), which we repeat here for convenience: 

where 

- 1 + ( e2"f(T-t) 1 
h2(t,µ) - Vk¢J ( 2 (T-t) - 2 b. 1 - e "I 

This is a linear PIDE for h1 in which h2 + ½b acts as an effective discount

rate and b µ is a source term. The general solution of such an equation can be 
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represented using the Feynman-Kac Theorem. Thus we write 
h1(t,µ)=bIB'.t,µ [1Texp{½1u (h2(s)+½b) ds} µudu] 

and using (6.28) to simplify the exponential term, we obtain 

Recall that the optimal speed of trading is given by 
v* 

= 
-21k (bq +a

qh) , 
with 

h(t,µ,q) = ho(t,µ) +qh1(t,µ) +q2 h2(t,µ). 
Hence, we have 

* ( e2,(T-t) + 1 v* 

vt = r ( e2,(T-t) - 1 Qt
b 1T ((e'(T-u) _ e-,(T-u)) µ - 2k t (e,CT-t) -e-,(T-t) lE [µu I Ft ] du.

(7.22) 

(7.23) 

In the limit in which the terminal penalty becomes infinite (a ---+ oo), so that the agent must completely liquidate her position by the end of the trading horizon, we have ( ---+ 1 ,  and the optimal trading speed simplifies to 
r * _ cosh(, (T - t)) Q"* _ }l_ 1T sinh(,(T - u)) lE [ IF.µ] d a�� vt -, sinh(, (T-t)) t 2k t sinh(,(T-t)) µu t u.

The first term corresponds to the classical AC solution, while the second corrects the liquidation speed based on the weighted average of the future expected net order flow. If this weighted average future order flow is positive (which would occur, e.g., if the current order flow is positive and hence biased towards buying), then the agent slows down to take advantage of the upward trend in prices that the excess positive order flow will have. The opposite holds if order flow is negative. This dependence on order flow becomes less important as maturity approaches, and the agent instead focuses on completing her execution. 

7 .4 Optimal Liquidation in Lit and Dark Markets 

Up until now, the agent has been trading on transparent (lit) markets, where all agents can observe quantities being offered for sale or purchase at different prices, that is, the LOB is visible to all interested parties. We now consider the possibility that the agent can also trade in what are known as dark pools. Dark 
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pools are trading venues which, in contrast to traditional ( or lit) exchanges, do 
not display bid and ask quotes to their clients. Trading may occur continuously, as 
soon as orders are matched, or consolidated and cleared periodically (sometimes 
referred to as throttling). We focus on a particular kind of dark pool known as a 
crossing network defined by the Securities Exchange Commission (SEC) as (see 
also Section 3.6) 

" ... systems that allow participants to enter unpriced orders to 

buy and sell securities, these orders are crossed at a specified 

time at a price derived from another market ... "

Typically, the price at which transactions are crossed is the midprice in a corre­
sponding lit trading venue. When a trader places an order in a dark pool, she 
may have to wait for some time until a matching order arrives so that her order is 
executed. Thus, on the one hand the trader who sends orders to the dark pool is 
exposed to execution risk, but on the other hand does not receive the additional 
temporary price impact of walking the LOB. 

Here we analyse the case when the agent trades continuously in the lit market 
and simultaneously posts orders in the dark pool with the aim to liquidate SJ1 
shares. 

Model Setup 

On the lit market, we assume, as before, that the agent is exposed to a temporary 
market impact from her market orders so when trading Vt dt in the lit market, 
she receives St = St - k Vt per share, with k > 0, where the midprice St is a 
Brownian motion. In addition to trading in the lit market, the agent posts Yt :::; qt 
units of inventory in the dark pool, where qt _.:; SJ1 are the remaining shares to be 
liquidated, and she may continuously adjust this posted order. Matching orders 
in the dark have no price impact because they are pegged to the lit market's 
midprice, so the agent receives St per share for each unit executed in the dark 
pool which is not necessarily the whole amount Yt· 

Furthermore, other market participants send matching orders to the dark pool 
which are assumed to arrive at Poisson times and the volumes associated with 
the orders are independent. More specifically, let Nt denote a Poisson process 
with intensity .X and let { �j : j = 1, 2, ... } be a collection of independent and 
identically distributed random variables corresponding to the volume of the var­
ious matching orders which are sent by other market participants into the dark 
pool. The total volume of buy orders (which may match the agent's posted sell 
order) placed in the dark pool up to time t is the compound Poisson process 

When a matching order arrives, it may be larger or smaller than the agent's 
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posted sell order, hence the agent's inventory (accounting for both the continuous 
trading in the lit market and her post in the dark pool) satisfies the SDE 

dQ�,y = -lit dt - min (Yt, 6+N,_) dNt, 
and recall that the agent's aim is to liquidate 1)1 shares on or before the terminal 
date T. In the equation above the first term on the right-hand side represents 
the shares that the agent liquidates using MOs in the lit market and the second 
represents the orders she sends to the dark pool. 

We assume that the agent is at the front of the sell queue in the dark pool, 
so that she is first to execute against any new orders coming into that market. 
The model can be modified to account for the agent not being at the front. This 
can be done by introducing another random variable representing the volume of 
orders in front of the agent. This, however, complicates but does not alter the 
approach in a fundamental way, so we leave the interested reader to try this, see 
Exercise E.7.2. 

Hence, the agent's cash process X('Y satisfies the SDE 
dX('Y = (St - k lit) lit dt + St min (Yt, 6+N,_) dNt. 

Her performance criteria is, as usual, given by 
Hv,y(t, x, S, q) = lEt ,x ,S,q [ XT + Q�,Y (ST - a Q�0Y) - c/> 1

T (Q�'Y)2 du] 
where lEt ,x ,S,q 

[·] denotes expectation conditional on Xt- = x, St = S, Qt- = q, 
and the stopping time 

T=TAinf{t: Qt=O} , 
represents the time until the agent's inventory is completely liquidated, or the 
terminal time has arrived. The value function is 

H(t,x,S,q)= sup Hv ,y(t,x,S,q) , 
v,yEA 

where the set of admissible strategies consists of F-predictable processes bounded 
from above, and her posted volume in the dark pool is at most her remaining 
inventory, i.e. Yt <::; Q�,Y. 

The Resulting DPE 

Applying the DPP shows that the value function should satisfy the DPE 
8tH + ½0"2 8ssH - c/> q2 

+ sup {(S - k ll) llOxH - llO
qH} 

+ sup {>.JE [H (t, x + S min(y, E), S, q - min(y, 0) - HJ}= 0,
y�q 

subject to the terminal condition 
H(T, x, S, q) = x + q (S - a q) .
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In the above, the expectation represents an expectation over the random variable 
� and the various terms in the DPE carry the following interpretations: 

@ the term 055 represents the diffusion of the midprice, 
® the -¢ q2 term represents the running penalty which penalises inventories 

different from zero, 
,;, the sup

v 
{ ·} term represents optimising over continuous trading in the lit mar­

ket, 
o the sup

y
:C::q term represents optimising over the volume posted in the dark

pool, and the expectation is there to account for the fact that buy volume 
coming into the dark pool from other traders is random. 

The terminal condition once again suggests the ansatz H(t, x, S, q) = x +q S + 
h(t, q). Recall that x + q S represents the cash from sales so far, in both lit and 
dark markets, plus the book value (at midprice) of the shares the agent still 
holds and aims to liquidate. Hence, h represents the value of optimally trading 
beyond the book value of cash and assets. The DPE then reduces to a simpler 
equation for h:

8th - cpq2 + sup {-k v2 - v8
q
h} 

+>.sup IE [h (t, q - min(y, 0) - h(t, q)] = 0, 
y:C:q 

(7.24) 

subject to the terminal condition h(T, q) = -a q2 . Next, the first order condition
for v implies that the optimal speed to trade in feedback control form is 

so 

* 1
V =--Oh2k q 

(7.25) 

To determine the optimal over y (i.e. the optimal volume to post in the dark 
pool), we need to either resort to numerics or place more structure on the random 
variable�-

7.4.1 Explicit Solution when Dark Pool Executes in Full 

To obtain an explicit solution to the problem we assume that the agent's desired 
execution (the liquidation order) is small relative to the volume coming into the 
dark pool, �i � IJt (for all i = 1, 2, ... ). This assumption ensures that when a 
matching buy order arrives in the dark pool, the agent's order is executed in 
full, as the incoming buy order is larger than the amount posted in the agent's 
sell order - the agent's inventory at any point in time is at most 1)1 (the initial 
amount she must liquidate). As the agent's posts are always filled entirely, in 
(7.24) min(6, y) = y.

vVe hypothesise that the ansatz is a polynomial in q. Before proposing the 
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ansatz, note that the DPE contains an explicit q2 penalty, the optimum over v 
is quadratic in 8qh, and the terminal condition is -a q2

. Thus this suggests the 
following ansatz for h(t, q): 

h(t, q) = ho(t) + h1 (t) q + h2(t) q2
, 

with terminal conditions ho (T) = h1 (T) = 0 and h2 (T) = -a. The supremum 
over y becomes 

suplE [h (t, q - min(y, i;)) - h(t, q)] 
y<;q 

= sup [h (t, q - y) - h(t, q)] 
y"5cq 

= sup [ -y h1 + (y2 
-2 q y) h2]

y<;q 

1 2 = 
-4 h2 

(h1 -2 q h2) 

and the optimal dark pool volume in feedback form is 
1 h1y* = q+ -- . 2 h2 

From the terminal condition, h2(t) < 0. It remains to be seen that h1 (t) 2: 0 so 
that indeed y* s; q and the admissibility criteria are satisfied. 

Furthermore, the optimal speed of trading, in feedback form, simplifies to 

Notice that bothy* and v* are independent of ho, so while ho is important in 
determining the value function, it is irrelevant for obtaining the optimal strategy. 

Inserting the above feedback controls into the DPE (7.24), collecting terms in 
powers of q, and setting each to zero, leads to the coupled system of ODEs 

8th2 - ¢ - >. h2 + ½h� = 0,

8th1 + (>. + ½ h2) h1 = 0' 
8tho + l h2 

- 2-.
hi = 0

k 1 4 h2 

(7.26a) 
(7.26b) 
(7.26c) 

Since h1 vanishes at T and its ODE in (7.26b) is linear in h1, the solution 
is h1 (t) = 0 and it is also trivial to see that h0(t) = 0. If there was a drift in 
the midprice, these terms would not vanish, see Exercise E.7.3. Then, overall, 
we are left with only the h2 equation, which is modified somewhat from the no 
dark pool case ( (6.25) with b = 0) by the term ->.h2 . This term represents a 
"leakage" of inventory resulting from the possibility that the order posted in the 
dark pool is fully executed. Clearly, we see that if there is no dark pool, that 
is >. = 0, the problem reduces to that of optimal liquidation already discussed 
above in Chapter 6. For instance, see that for >. = 0, ODE (7.26a) is the same 
as (6.25) and both have the same boundary condition. 
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The equation for h 2 is of Riccati type and can be solved explicitly. Let (±
denote the roots of the polynomial¢+ >..p -½ p2 = 0, then write (7.26a) as 

Bth 2 = -½ (h2 -c+)(h2 -C),

where
(± = ½k A± J ¼k2 >..2 + kr/>.

Cross multiplying and writing as partial fractions, we have

and integrating from t to T leads to
(h2-(-) (a+(-) 1 + -)( ) log h 2 -(+ -log a+(+ =-i;:(( -( T-t,

where we have used the terminal condition h 2 (T) = -a. Re-arranging the equa­
tion, we finally obtain 

where the constants are
/5' = 

a + C- and 1 = ½ ( c+ -C) .a+(+ 
Therefore, the optimal trading strategy is

1 * * 

v; = -- h 2 (t) Q� ,Y k and * Qv* ,y* 
Yt = t (7.27)

As before, we can obtain the optimal inventory to hold, up to the arrival of
matching order in the dark pool, by solving 

* * 1 * * dQ� ,y = -v; dt = k h 2 (t) Q� ,Y dt ,
so that

Qt,y* = Qo exp { ½ Jt h 2 (u) du}
and therefore by direct integration

(7.28)
In the limit in which the terminal penalty a is very large, i.e. a --+ oo (so that
the agent guarantees full execution by the end of the trading horizon), p' --+ 1
and hence, 

v*,y* a-+= (\-+�}sinh(�(T-t)) Qt -----+ e . (' ) m.smh 2T 
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Furthermore, in the limit ,\--+ 0, (---+ -vfc{> and 1--+ 2J¢lk and thus

(a,.\)-+(oo,O) 
sinh ( {i (T - t))

sinh ( {ir) 
m, 

which recovers the results from the AC case without the dark pool.

Liquidation Strategy with Dark Pool 

It is clear that the optimal amount to send to the dark pool is always what
remains to be liquidated. This makes sense because in our model there is no
market impact in the dark pool so the agent obtains the midprice for orders that
are crossed in the dark pool. The more interesting part of the liquidation strategy
is how much the agent should send to the lit markets now that she has access
to a dark pool. To answer this question it is useful to compare the lit market
liquidation rate v* in (7.27) with the optimal liquidation strategy when there is
no dark pool, i.e. ,\ = 0. Recall that when ,\ = 0 the optimal speed of trading
in the lit market is that given by the AC solution, see for instance (6.27) with
b = 0 or simply use (7.27) with ,\ = 0. It is not immediately clear whether the
modified rate at which the agent is trading in the lit market is larger or smaller
than the liquidation rate when the agent does not have access to a dark pool.
Also, it is not clear whether the trading rate is decreasing as in the AC case.

In Figure 7.6 we plot the optimal liquidation rate in the lit market given in
(7.27) for different levels of the rate of arrival of matching orders in the dark
pool. The figure shows that the trading rate may be larger or smaller than the
AC case, and it may be increasing or decreasing. Also, the optimal inventory to
hold ( up to the time at which a matching order arrives) may be either convex or
concave or neither.

In particular, the top two panels of Figure 7.6 show the optimal inventory path
and optimal speed of trading where we also assume that the liquidation penalty
at time T is a --+ oo and the paths shown are prior to the order posted in the
dark pool being executed. Other model parameters are k = 0.001 and</>= 0.01.

The bottom two panels of the figure show the case where the order in the dark
pool was executed at time t = 0.6 and the agent's inventory drops to zero. Since
the execution of the orders in the dark pool occur according to a Poisson process
with intensity ..\, the time at which this occurs is exponentially distributed with
mean 1/ ,\. Thus, when ,\ = 0 there are no executions in the dark pool and the
liquidation strategy corresponds to the AC solution. When ,\ > 0 the agent starts
trading slower than the AC speed in the lit market, to allow for the potential of
dark pool execution, but then as time runs out and no execution occurs, her rate
of trading increases to compensate for the initially slow trading. Interestingly,
the optimal trading curve ceases to be convex, and its convexity changes signs.
In the limiting case when ,\ --+ oo, the agent does not trade at all in the lit
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market, since execution in the dark pool is guaranteed. In this case, the optimal 

inventory path flows along Q; = SJ1 ]t<T, but is then infinitely fast at T to rid 

herself of the assets. 

] 
0.4 

�0.2 -A=B 

0 -l.=16 
-l.=32 

t, 0.8 

Q) 

� 0.6 

] 
0.4 

.µ 

6
0.2 

0
0 

0.5 
Time 

0.5 
Time 

"O 6r===�------,n 
Q! -l.=O 
�5 -l.=2 

(/) -l.=4 
bO -l.=8 
P 4 -l.=16 

] 
3 

-).=32 

A 

"O 4 
Q) 
Q) 

P. 

(/) 3 

ol 2 
A 

.§ 1 
.µ 

P. 

Oo 0 

0.5 
Time 

0.5 
Time 

Figure 7.6 The top panels show optimal inventory path and speed of trading prior to a 
matching order in the dark pool. The bottom panels show the optimal inventory and 
trading speed where we assume that the dark pool matching order arrives at t = 0.6, 
right after which inventory drops to zero. 
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7 .6 Exercises 

E.7.1 Use the same setup as in Section 7.3 but allow for 'r/ to be random so that

(7.29) 
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where 7/ are i.i.d. with finite first moment. Find the optimal speed of liquidation 

and compare this result to (7.20). 

E.7.2 Assume the setup in Section 7.4. Instead of the agent's orders always being at

the front of the queue in the dark pool, assume that ahead of her order there 

are other market participants' orders which have priority. Model this volume 

as a random variable and derive the optimal speed of trading in the lit market 

and the number of shares that the agent sends to the dark pool. 

E.7.3 The setup is as in section 7.4.1 and let the midprice satisfy

dSt = µdt + udWt, 

where µ is constant. Derive the DPE and propose an ansatz to specify the 

optimal speed of trading. Compare your results to the case where µ = 0. 



8 

8.1 

Optimal Execution with Limit and 
Market Orders 

Introduction 

In the previous two chapters we focused on execution strategies which relied 

on market orders (MOs) only. One of the advantages of sending MOs is that 

execution is guaranteed. The execution price, however, is generally worse than 

the midprice due to both the existence of non-zero spread and the fact that 

orders may walk the book. In practice, the agent also employs limit orders (LOs) 

because instead of picking up liquidity-taking fees and incurring market impact 

costs, the prices at which LOs are filled are better than the midprice, but there 

is no guarantee that a matching order will arrive. 

To address these issues, this chapter looks at optimal execution problems when 

the agent employs LOs and possibly also MOs. In Sections 8.2 and 8.3, the agent 

is only allowed to use LOs. In Section 8.4, the agent is allowed to trade with 

both LOs and MOs, and in Section 8.5, the agent aims to track a given schedule 

using LOs and MOs. 

In all cases, when the agent posts LOs to liquidate a position, she posts a limit 

sell order for a fixed volume (e.g., some percentage of the average size of an MO, 

or a fixed amount of, say, 10 shares) at a price of St + Ot, where St is the mid price. 

Hence, o is a premium the agent demands for providing liquidity to the market. 

The larger o, the larger the premium, but the probability that an order arrives 

and walks the limit order book (LOB), up to the posted depth, decreases with o. 

The strategy used by the agent relies on speed to post-and-cancel LOs. At every 

instant in time: the agent reassesses market conditions, cancels any LO resting 

in the book, posts a new LO at the optimal level, and so on. To do this, requires 

software, hardware, and connection to the exchange so that the strategy does 

not have stale quotes in the LOB and can quickly process information. 

The probability of being filled when posting at a given depth o, conditional 

on the arrival of an MO, is called the fill probability which we denote by the 

function P(o). Naturally, P must be decreasing, it changes throughout the day, 

and it is sensitive to the current status of the LOB. To see this, consider the left 

panel of Figure 8.1 which shows a block-shaped LOB together with (i) a post at 

o = 10 (the dashed line); (ii) the depth to which an MO of volume 700 lifts sell 

orders (dark green region); and (iii) the depth to which an MO of volume 1,500 

lifts sell LOs (dark plus light green region). The deeper the LO is posted (i.e. 
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Figure 8.1 (Left) A flat (or block shaped) LOB. (Right) Empirical fill probabilities for 
NFLX on June 21, 2011 for the time interval 12:55pm to 1:00pm using 500 
millisecond resting times. The straight line shows the fit to an exponential function. 

further away from the midprice), the less likely it is that MOs large enough walk
the LOB up to that price level. Hence, the probability of being filled decreases
as o increases.

If we assume that the volume of individual MOs, denoted by V, is exponentially
distributed with mean volume of 77, and that the LOB is block shaped with height
A, i.e. the posted volume at a price of S + o is equal to a constant A out to a
maximum price level of S + 8, then the probability of fill is exponential. That is,
conditional on the arrival of an MO of volume V, the probability that the sell
LO is lifted is given by

IP'(order posted at depth o is lifted)= IP'(V >Ao)= exp{-¾ o}. (8.1)
One could in principle also use power law fill probabilities; however, to keep
the analysis consistent and self-contained we use the exponential fill probability
throughout.

8.2 Liquidation with Only Limit Orders 

Chapters 6 and 7 looked at the optimal execution problem for an agent who
places only MOs. In this section, the agent posts only LOs and the setup of
the problem is similar to that in Chapter 6. Now we must track not only the
agent's inventory, but also the arrival of other traders' MOs, which is what will
(possibly) lift the agent's posted sell LOs. We summarise the model ingredients
and the notation here:
• 5)1 is the amount of shares that the agent wishes to liquidate,
• T is the terminal time at which the liquidation programme ends,
• S = (St)

o<t<T 
is the asset's mid price with St = So + O" Wt, O" > 0, and

W = (Wt)�<t<T is a standard Brownian motion,
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e 5 = (5)o<t<T denotes the depth at which the agent posts limit sell orders, i.e.
the agent posts LOs at a price of St + 6t at time t,

e M = (Mt)o<t<T denotes a Poisson process (with intensity >-) corresponding 
to the number of market buy orders (from other traders) that have arrived, 

@ 
N° 

= (Nf)o<t<T denotes the (controlled) counting process corresponding to 
the number of market buy orders which lift the agent's offer, i.e. MOs which 
walk the sell side of the book to a price greater than or equal to St + 6t, 

e P( 5) = e-"0 with "' > 0 is the probability that the agent's LO will be lifted 
when a buy MO arrives, 

@ 
X0 = (Xf)o

�t�T is the agent's cash process and satisfies the SDE 

(8.2) 

@ Qf = SJt - Nf is the agent's inventory which remains to be liquidated. 
Note that whenever the process N jumps, the process M must also jump, but 
when M jumps, N will jump only if the MO is large enough to walk the book 
and lift the agent's posted LO. Moreover, conditional on an MO arriving (i.e. }YI
jumps), N jumps with probability P(5t) = e-" 0'; however N is not a Poisson 
process since its activity reacts to the depth at which the agent posts. Moreover, 
in contrast to the setup in Chapters 6 and 7, here, when the agent's orders are 
executed, she receives better than midprices. 

Finally, the filtration F on which the problem is setup is the natural one 
generated by S, N and NI. Moreover, the agent's depth postings (or strategy) 5 
will be F-predictable and in particular will be left-continuous with right limits. 

The Agent's Optimisation Problem 
The agent wishes to maximise the profit from liquidating 5)1 shares, but also 
requires that most, if not all, of the shares are sold by the terminal time T.

If the agent has inventory remaining at the end of the trading horizon, she 
liquidates it using an MO for which she obtains worse prices than the midprice. 
As argued in Chapter 6, a linear impact function on MOs is a reasonable first 
order approximation of market impact, hence the agent's optimisation problem 
is to find 

H(x,S) = suplE [ xt + Q� (ST - aQ�) I xg_ = x, So= S,Qg_ = sn] , (8.3) 
oEA 

where a 2:: 0 is the liquidation penalty (linear impact function). Moreover, the 
admissible set A consists of strategies 5 which are bounded from below, and the 
stopping time 

T = T !\ min{ t : Qf = O} 
is the minimum of T or the first time that the inventory hits zero, because then 
no more trading is necessary. 
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The corresponding value function is 
H(t, x, s, q) = sup lEt,x,S,q [ xt + Q� ( ST -a Q�)] SEA (8.4) 

where the notation lEt,x,s,d·] represents expectation conditional on Xf_ = x, 
St = S, and Qt_ = q. In this setup, the agent does not have any urgency, 
i.e. does not penalise inventories different from zero as discussed in Section 6.5.
Indeed, one can add in such a penalty and we leave this as an exercise for the
reader, see Exercise E.8.1.

The Resulting DPE 
The dynamic programming principle (DPP) suggests that the value function 
solves the following dynamic programming equation (DPE): 

+ s�p {). e-1<S [H(t, x + (S + o), s, q -1) -H(t, x, S, q)l} : 0,
H(t, x, S, 0) - x,

1 8tH + ½o-2 8ssH 

H(T,x,S,q) = x+q(S-aq). 

We have an optimal trading problem where the state variables jump and the 
resulting DPE results in a non-linear partial integral differential equation (PIDE) 
rather than a non-linear PDE. Below we elaborate on the interpretation of the 
various terms of the PIDE. 

(i) The operator 8ss corresponds to the generator of the Brownian motion which
drives the midprice.

(ii) The supremum takes into account the agent's ability to control the depth of
her sell LOs.

(iii) The term A e-"s represents the rate of arrival of other market participants'
buy MOs which lift the agent's posted sell LO at price S + o.

(iv) The difference (jump) term H(t, x + (S + o), S, q-1) -H(t, x, S, q) represents
the change in the agent's value function when an MO fills the agent's LO -
the agent's cash increases by S + o and her inventory decreases by 1.

The terminal condition at t = T represents the cash the agent has acquired up 
to that point in time, plus the value of liquidating the remaining shares at the 
worse than midprice of (S -a q) per share - recall that at T she must execute 
an MO to complete her trade and as a result walks the book. The boundary 
condition along q = 0 represents the cash the agent has at that stopping time 
and since q = 0 there is no liquidation value, and the agent simply walks away 
with x in cash. 

The terminal and boundary conditions suggest that the ansatz for the value 
function is 

H(t, x, s, q) = X + q s + h(t, q)' (8.5) 
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for a yet to be determined function h(t, q). This ansatz has three terms. The first term is the accumulated cash, the second term denotes the book value of the remaining inventory which is marked-to-market using the midprice, and finally the function h(t, q) represents the added value to the agent's cash from optimally liquidating the remaining shares. With this ansatz, upon substitution into the DPE above, we find that h(t, q) satisfies the coupled system of non-linear ODEs 

{ 8th+ s�p {A e-'"5 [5 + h(t, q - l) - h(t, q)l}
h(t,0) 
h(T, q) 

0, 0, -aq2. (8.6) 
The optimal depth can be found in feedback form by focusing on the first order conditions for the supremum. This provides us with the following: 

0 = 8o{ >.e-'"5 [5 + h(t, q - l) - h(t, q)l}=A(-"" e-"5 [5 + h(t, q - l) - h(t, q)] + e-"6)=>-e-"0 (-"" [5 + h(t,q- l)- h(t,q)] + 1) ,
and hence the optimal strategy 5* in feedback control form is given by 

5*(t,q) = � + [ h(t,q) - h(t,q- l)].
"" 

(8.7) 

This form for the optimal depth has an interesting interpretation. Consider the first term ¾. It stems from optimising the instantaneous expected profits from selling one share. The profit is given by the revenue of selling one share at ( S + 5), minus the cost S, which results in 5. Hence, the expected profit is 5 P(5), and when the fill probability is P( 5) = e-"6, the maximum is attained at Jt = ¾, seealso the discussion in 2.1.4. The difference term h(t, q) -h(t, q- l) can be viewed as the agent's correction to this static optimisation taking into account her future optimal behaviour. In particular, it represents a reservation price, which is defined as the price p such that H(t,x+p,S,q- l) = H(t,x,S,q), i.e. it is the additional wealth the agentdemands for selling the asset such that her value function remains unchanged. We expect that 5*(t, q) is decreasing in q, since the more inventory the agent has, the more urgent she should be in getting rid of her holdings and hence the closer to the midprice she should post. It may be that for large enough q the optimal depth becomes negative and the solution to the control problem is no longer financially meaningful. We should instead solve the constrained problem, where 5* 2 0 is enforced in the set of admissible strategies. One naive approach, which avoids solving the constrained problem, is to view negative depths as an indicator that the agent should execute a market order instead of positing a limit order. The sound approach to addressing the optimal posting of LOs versus MOs is investigated later in Section 8.4. 
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Inserting the optimal depth in feedback control form into (8.6) provides a
non-linear coupled system of ODEs for h(t, q)

Oth +�exp { - K [h(t, q) - h(t, q - 1)]} = 0 , (8.8)
where ,\ = A e-1 and the same terminal and boundary conditions as in (8.6)
apply. This system of ODEs can be solved exactly by making the substitution
h(t, q) = ¾ logw(t, q) and writing a new equation for w(t, q), in which case,

which implies that

A 0 =0th+ - exp { -r;, [h(t, q) - h(t, q - 1)]}
K 

1 Otw(t, q) ,\ w(t, q - l)
=----+-----'"" w(t,q) K w(t,q)

0 = Otw(t,q) + ,\w(t,q- l) ,
and the terminal and boundary conditions are now

w(T, q) = e-1<aq2 and w(t, 0) = 1 ,
respectively.

Solving the DPE 

(8.9)

The coupled system of ODEs (8.9), which the DPE reduces to, can be solved
explicitly (see Exercise E.8.2) resulting in the expression

q 5'n 
w(t, q) = L I e-"' a (q-n) 2 (T - tt.

n. 
n=O 

(8.10)

This solution provides the function h(t, q) which can then be substituted into
the equation for the optimal depth (8.7) to find

1 b*(t, q) = -
K 

q 5'n � - e-"'a (q-n) 2 (T - tt �n! 1 + log _n=_O _________ _
q-l ->.n 2 � - e-1<a (q-1-n) (T - tt�n! 
n=O 

(8.11) 

for q > 0. The optimal depth at which to post is a decreasing function of time
for any model parameter, a decreasing function of the agent's inventory q, and
increases the rate of arrival of MOs. The increasing behaviour in activity rate is
intuitive since as market order arrival rates increase, the agent is willing to post
deeper in the book so that her effective rate of filled LOs remains essentially
constant, while reaping more profits if a matching arrives.

In Figure 8.2, the optimal depths are shown as a function of time for several
inventory levels as well as penalty parameter a. MOs arrive at the rate of 50/ min
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Figure 8.2 The optimal depths b* at which the agent posts LOs as a function of time 
and current inventory. The parameters are >. = 50/ min, r;, = 100, and iJt = 5 with the 
penalty ct shown in each panel. The lowest depth corresponds to q = 5 and the 
highest depth to q = 0. 

and the agent is attempting to liquidate SJ1 = 5 shares - and is hence 10% of 
the average market volume. These plots show several interesting features of the 

optimal depths, as described below. 

(i) The depths are decreasing in inventory. This is natural, as if the agent's inven­
tory is large, she is willing to accept a lower premium o, for providing liquidity,
to increase the probability that her order is filled. At the same time, this en­

sures that she may complete the liquidation of the SJ1 shares by end of the time
horizon and avoid crossing the spread (i.e. using MOs) and paying a terminal

penalty. However, if inventories are low, the agent is willing to hold on to it

in exchange for large o, because with low inventory the terminal penalty she

picks up when crossing the spread will be moderate.

(ii) For fixed inventory level, the depths all decrease in time. Once again, this is
due to the agent becoming more averse to holding inventories as the terminal

time approaches, due to the penalty they will receive from crossing the spread.

(iii) As the penalty parameter a increases, all depths decrease because increasing
the penalty induces the trader to liquidate her position faster, but at lower
prices. We point out that if a or q is large then the optimal depths can become
negative. In practice one cannot post LOs which improve the best quote on

the other side of the LOB, so one may want to interpret this as the agent being
very keen to get her LO filled, but here we do not allow the agent to submit
MOs, we do this below in Section 8.4.

(iv) The depths keep increasing as one moves further from the end of the trading

horizon. The reason is that the agent is only being penalised by her terminal
inventory, so far from terminal time, there is no incentive to liquidate her posi­
tion. If the agent instead penalises inventories through time, the strategies will

become asymptotically constant far from maturity. For this case, see Exercise
E.8.4.
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Far from the terminal time, i.e. when T = T - t » l, the ratio appearing in
the logarithm above (i.e. w(t, q)/w(t, q-l)) is too ( (T - t)-1) given by the ratio
of the two terms n = q - l and n = q in the numerator to the term n = q - l in
the denominator. Therefore we can write 

w(t, q) 
w(t,q-l) 

5.q-l -1<a(q-(q-1))2 q-1 + .\q -1<a(q-q)2 q 
(q-l)! e T q! e T 

+ 0 (T-l) >,q-i e-"' a (q-l-(q-1))2 q-1 
(q-1)! T 

>. 
e-"'°'+-T+o(T-1).

q 

Therefore, far from the terminal time, the agent posts at depths that grow log­
arithmically as follows: 

In this expression, the dependence of the optimal depth on the parameters be­
comes clear: it is increasing in activity rate and decreasing in inventory, time, fill 
probability and terminal penalty. 

Numerical Experiments 

In this section we carry out a simulation study to explore the optimal execution 
strategy. Throughout we use the following parameters: 

T = 60 sec , A= 50/ min , r;, = 100$-1, a= 0.001 $/share ,

So = $30.00 , and a = $ sec-1/2 0.01 ,

so that the agent is trading 10% of the market over this time interval. 

S)1 = 5'

Figure 8.3 shows three simulated sample paths for the midprice (panel a), the 
optimal depth (panel b), the resulting inventory (panel c) and the average price 
per share (panel d) computed as Xt/(91 - qt)- In the average price per share 
panel, TWAP, which is given by 

ArwAP = � 1
T 

Sudu, 

is often used as a benchmark for comparison purposes so we include it as well. 
Panel ( c) shows that the algorithm may sometimes acquire all assets early, e.g. 

along the blue and green paths, or may need to execute MOs at the end of the 
interval, e.g., as in the red path. When we combine this panel with panel (b), 
which shows the inventory path, it illustrates how immediately after the agent's 
LO is filled, the agent increases the posted depth, but if the agent's LO is not 
filled, she posts closer to the midprice. Panel ( d) illustrates how the algorithm 
(solid lines) outperforms TWAP (dashed lines). The key reason is that the agent 
mostly uses LOs to achieve her goal of liquidating S)1 shares, which provides 
profits in excess of the midprice. However, some paths that do not completely 
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Figure 8.3 Three sample paths for the agent following the optimal strategy. In panel 
(d), the dashed line indicates the TWAP curve. 

liquidate prior to maturity, such as the red one, force the agent to execute MOs 

at the end of the trading horizon. Doing so causes her to lose some of the premia, 

as measured by the depth o, earned by executing LOs throughout the strategy. 

The left panel of Figure 8.4, which shows the histogram of the number of 

executed MOs over 10,000 scenarios, demonstrates that only a small number 

of paths require executing MOs at the terminal time. The right panel shows a 

heat-map of the agent's inventory through time for the same 10,000 scenarios. 

The dashed line is the mean inventory at each point in time - notice that it is 

almost linear and reduces to almost, but not equal to, zero at the end of the 

trade horizon. 

To illustrate the savings provided by the algorithm, Figure 8.5 shows the 

histogram of the difference between the price per share from the algorithm and 

the TWAP over the 10,000 scenarios. 
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Figure 8.5 Histogram of the cost savings 

per share relative to TWAP. 

8.3 Liquidation with Exponential Utility Maximiser 

In the previous section the agent is indifferent to uncertainty in the value of her 

sales and so her objective is to maximise expected proceeds from selling 1)1 shares. 

A more realistic setup is one in which the agent includes a running inventory 

penalty. Exercise E.8.4 shows that in this case the agent's performance criteria 

becomes 

(8.12) 

and, compared to the case with no running inventory penalty (i.e. ¢ = 0), the 

optimal strategy is modified to become more aggressive (sell faster) earlier on 

and then less aggressive towards the end of the trading horizon. This allows her 

to control the distribution of the value of the total sales, as well as how fast 

inventory is liquidated. This is akin to the approach taken in Chapter 6, where 

the agents have a running inventory penalty, or urgency, constraint. Some agents, 

however, may instead wish to penalise uncertainty in their sales directly. Here, 

we show that if the agent uses exponential utility as a performance measure, her 
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strategy is identical (up to a constant and a re-scaling of parameters) to the one
implied by (8.12). 

To demonstrate this equivalence, first let us consider the agent who sets pref­
erences based on expected utility of terminal wealth with exponential utility
u(x) = -e-,,x. In this case, her performance criteria is

H0 (t,x,S,q)=IB\x,S,q[-exp{-,1(X�+Q�(ST- aQ�))}],
and proceeding as usual, her value function

H(t,x,S,q) = supH0(t,x,S,q)oEA 
should satisfy the DPE

8 tH + ½CT2 8ssH
+ sup { >. e-"'0 [H(t, x + (S + o), S, q -1) -H(t, x, S, q)]} = 0 ,

0 

subject to the terminal and boundary conditions
H(T,x,S,q) = -e-,,(x+q(S-aq)) and H(t,x,S,O) = -e-'Yx .

We leave it as an exercise for the reader to show that ansatz
H(t, x, S, q) = -e-,,(x+qS+h( t ,q))

leads to the following equation for h(t, q):
1 _ e_,, [Hh(t,q-1)-h(t,q)] 8 th - lCT2 ,1 q2 + sup A e-"'0
----------

= 0 ,
2 8 'Y

with terminal and boundary conditions
h(T, q) = -a q2 and h(t, 0) = 0 .

(8.13)

(8.14)

The interpretation of the ansatz (8.13) is similar to that of (8.5), in particular, the
right-hand side of equation (8.13) is the utility derived from the sum of: accumu­
lated cash, the book value of the remaining inventory which is marked-to-market
using the midprice, and, finally, the function h(t, q) representing the added value
to the agent's utility from optimally liquidating the remaining shares. 

If one takes the limit in which 'Y -+ 0, we see that h satisfies the PDE
8 th+ sup {). e-"'0[8 + h(t, q -1) -h(t, q)J} = 0 ,

0 

(8.15)
which is precisely the equation that the excess value function h satisfied in the
previous section when the agent has linear utility (see (8.6)).

Going back to the general case 'Y > 0, we obtain, from the first order condition,
the optimal depth in feedback control form as

o* = �log (1 + �) + [h(t,q)-h(t,q-1) ]. (8.16)
This form is very similar to, but slightly differs from, the optimal depth in the
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previous section provided in (8.7). The h functions may differ and the base line 
level K;-l is modified to r:.,-1 = �log (1 +�)-This modification can be seen as a 
risk aversion bias. Indeed, in the limit of zero risk-aversion 

and the result from the previous section is recovered. Furthermore, we can view 
the contribution � log ( 1 + �) as stemming from the agent maximising her util­
ity, from selling at a price of (S + o) and immediately repurchasing at S (i.e. 
measuring relative to mid price): 

mg,x { u(x + o) P(o) + u(x) (1 -P(o))} = t log ( 1 + �) . 
Substituting the feedback form of the optimal depth (8.16) into the DPE 

(8.14), we now find the non-linear system of coupled ODEs for h to be 

where, 
1 2 2 ), 8th -2o- 1q + -exp{-K; [h(t,q) -h(t, q -1)]} = 0, 

K; 
(8.17) 

In the limit of zero risk-aversion J ,+D e-1 ,\ = J and once again we recover the 
parameter that appears in (8.8). The above ODE is in fact identical in structure 
to (8.8), except that it contains the additional term -½o-2 1q2 . As shown in 
Exercise E.8.4, when the value function G for the running penalty performance 
criteria (8.12) is written as G = x + q S + g(t, q), then g satisfies the system 
of coupled ODEs (where we write the parameters in the running penalty model 
with a subscript 0) 

2 
e-1 Ao 

8tg -</>q + -- exp {-K;o [g(t, q) -g(t, q -1)]} = 0, K;o 
and the optimal strategy is 

0� = .!_ + g ( t, q) -g ( t, q -l) .K;o 
Hence, with 

</> = ½ o-2 1, >-o = e+ 1 J, and K;o = K;, 
we see that the h(t, q) and g(t, q) coincide and the optimal strategies satisfy the 
relation 

(8.18) 
In other words, with a re-scaling of model parameters, the optimal strategy for 
the utility maximising agent is the same, up to a constant shift, as that of the 
agent who only penalises running inventory - with an appropriate choice of risk­
aversion level and a re-scaling of arrival rates. 
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In addition to the relationship between the optimal strategies, the value func­
tions can be written in terms of one another. Since h(t, q) = g(t, q), we have

1 
G(t,x,S,q) = --log(-H(t,x,S,q)),

' 

or writing the value function in its original control form
suplE� x S q [xt + Q�(ST - a QT) - q> r (Q�)2 ds]
oEA ' ' ' lo 

=_!log (- sup lEt,x,S,q [- exp{ -1 (Xt + Q�(ST - a QT))} J) 
, oEA 

(8.19) 

where JE0 [·] represents expectation under a probability measure where the arrival
rate is .\0 . This relationship between the value functions is in fact part of a more
general result that relates optimisation problems with exponential utility and
optimisation problems with penalties (see the further readings section).

8.4 liquidation with limit and Market Orders 

In the previous two sections, the agent considers posting only LOs and, as shown,
posts more aggressively (i.e. depth 5 decreases so LOs are posted nearer the
mid price) as maturity approaches when her inventory is held fixed. Here, we
consider the situation in which the agent is allowed to post MOs in addition
to LOs. In this case, when she is far behind schedule, i.e. when maturity is
approaching but she still has many shares to liquidate, then she could be willing
to execute an MO in order to place her strategy back on target. In this case, the
agent searches for both an optimal control and a sequence of optimal stopping
times at which to execute MOs.

The Agent's Optimisation Problem 

To formalise the problem, we now need to keep track of the agent's posted
MOs, in addition to other traders' MOs, and her executed LOs. Below we list
the additional stochastic processes and changes to the cash process to account
for executing MOs. All other stochastic processes, including the midprice S,
other trader's MOs M, and the agent's filled LOs N, posted at depth 5, remain
unaltered in their definition. 
e M a = (Mt)o<t<T denotes the counting process for the agent's MOs.
@ The corresponding increasing sequence of stopping times at which the agent

executes MOs is denoted by T = { Tk : k = l, . . .  , K}, with K � 5Jt, so that
Mt = �f=l ].Tk"St· Note that the agent may place fewer, but never more,
than 5Jt MOs. 
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I!! l denotes the half-spread, i.e. half-way distance between the best ask and best
bid.

® X = (Xt)o<t<r denotes the agent's cash process and satisfies the SDE

The first term on the right-hand side of the cash process denotes the cash
received from having an LO lifted, and the second term is the cash received
from selling a share using an MO. Note that when the agent executes a sell
MO she crosses the spread, which is why the proceeds from selling one
unit of the asset is the midprice minus the half-spread, i.e. the best bid.
Furthermore, we assume that the size of the MOs is small enough not to
walk the LOB.

We assume that the agent is averse to holding inventory throughout the strat­
egy - unlike in Section 8.2 where she wishes to rid herself of inventory due only
to the terminal penalty. To achieve this, we apply an urgency penalty to her
performance criteria, much like in Section 6.5, and more specifically equation
(6.20). Hence, her performance criteria is

H(T,/5) (t, x, s, q)
= Et,x,S,q [x;,/5 

+ Q;·15 Sr - £ ( Q;,15) - ¢ft (Q:•15 ) 2 

du],
(8.20)

where as usual Et,x,S,q[·] denotes expectation conditional on x;_,_15 
= x, St- = S,

Q;_,_15 
= q, and the terminal liquidation penalty

£(q) = q (l + a q) .

The terminal liquidating cost per share of the shares remaining at the end is
written as (Sr - l - a Qr) because the agent must cross the spread and then
walk the LOB to liquidate the remaining shares - recall that we assumed that
the MOs sent during the liquidation strategy before the terminal date did not
walk the LOB. And, since the agent may execute MOs, her inventory is reduced
each time an LO is filled or an MO is executed, so that

The set of admissible strategies A now includes seeking over all F-stopping
times in addition to the set of F-predictable, bounded from below, depths 6. In
this case, the value function is

H(t, x, S, q) = sup H(T,15\t, x, S, q).
(T,IS)EA 

In the following we omit the dependence on (t, x, S, q) when there is no confusion.
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The Resulting DPE 
Now, the DPP implies that the value function should satisfy the quasi-variational­inequality (QVI), rather than the usual non-linear PDE, 

0 = max{ OtH + ½0"28ssH - cpq2 

+ s�p,\e-K,6 [H(t,x + (S + 8),S,q -1) -H(t,x,S,q)l

[H(t, x + (S -(), S, q -1) -H(t, x, S, q)]},
with boundary and terminal conditions 

H(t,x,S,O) = x ,  and 
H(T, x, s, q) = X + q s - C(q) . 

Note that the first part of the maximisation above is identical to the previous section where we have limit orders only. The various terms in the QVI may be interpreted as described below. 
(i) The overall max operator represents the agent's choice to either post an LO(the continuation region) resulting in the first term in the max operator, or toexecute an MO (the stopping region) resulting in a value function change of[H(t, x + (S -(), S, q -1) -H(t, x, S, q)] - the agent's cash increases by S -(and inventory decreases by 1 upon executing an MO.

(ii) Within the continuation region where the agent posts LOs (the first term inthe max):
(a) the operator ass corresponds to the generator of the Brownian motion whichdrives midprice,
(b) the term -¢ q2 corresponds to the contribution of the running inventorypenalty,
(c) the supremum over 8 takes into account the agent's ability to control theposted depth,
( d) the ,\ e-K,o coefficient represents the arrival rate of MOs which fill the agentsposted LO at the price S + 8,
(e) the difference term [H(t, x + (S + 8), S, q -1) -H(t, x, S, q)] represents thechange in the value function when an MO fills the agent's LO - the agent'scash increases by S + 8 and her inventory decreases by 1.

As before, the terminal and boundary conditions suggest the ansatz for the value function H(t, x, S, q) = x + q S + h(t, q). Making this substitution, we find 
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that h(t, q) satisfies the much simplified QVI 
max { Oth-rpq2 +s�p,\e"'° [5 + h(t,q-1) - h(t,q)]

-� + h(t, q - 1) - h(t, q)} = 0 ,
with terminal and boundary conditions 

h(T, q) = -R(q), 

h(t,0) = 0.

q = 1, . . .  , SJ1, and 

(8.22a) 

(8.22b) 
(8.22c) 

Focusing on the supremum term, through the same computations as in the LO only case leading to (8.7), the optimal posting in feedback control form is 
5* = I_ + [h(t,q) - h(t,q-1)].

K, 

(8.23) 
In this feedback control form, the optimal posting is identical to the one without MOs (see (8.7)), but the precise function h(t, q) which enters into its computation is different. The first term l has the same interpretation as before: it is the "' optimal depth to post to maximise the expected instantaneous profit from a round-trip liquidated at midprice, i.e. the 5 that maximises 5 P(5) (and recall that P( 5) is the probability of the LO being filled conditional on an MO arriving). The difference term is the correction to this static optimisation to account for the agent's ability to optimally trade. The timing of MO executions also have a simple feedback form. From (8.22a), we see that an MO will be executed at time T

q 
whenever 

h(Tq, q - 1) - h(Tq, q) = �. (8.24) 
This can be interpreted as executing an MO whenever doing so increases the value function by the half-spread. Combining this observation with the feedback form for the optimal depth above, we can place a simple lower bound on 5* of 

5* � I_ - �.
K, Thus, it is clear that if we require 5 > 0, so that the strategy never posts sell LOs below the mid price, we must require that � < ¾. Upon substituting the optimal control in feedback form into the simplified QVI (8.22), we find that h(t, q) satisfies 

max { 0th - ¢ q2 + e-� ,\ e-"' [h(t,q)-h(t,q-l)];

-� + h(t, q - 1) - h(t, q)} = 0 . (8.25) 
At maturity, the agent is forced to execute an MO and pay a cost of � + a q per share. However, the agent may execute MOs an instant prior to maturity at a cost of� per share. Hence, it is never optimal to wait until T to execute an MO 
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to liquidate remaining inventory. As a result, the left-limit of the value function
is not equal to its value at maturity, and instead we have

for every q > 0, so that h(T-, q) = -qt This feature of having the left-limit
of the solution different from the terminal condition is sometimes referred to as
face-lifting. 

A further reduction of the DPE can be made by using the transformation
h(t, q) = � logw(t, q),

which, after some algebra, leads to the following coupled system of QVIs for
w(t, q):

max{ Otw(t,q) - t,,cpq2w(t,q) + >-w(t,q-1);
e-"i; w(t, q -1) - w(t, q)} = 0 ,

where 5- = e-1 >.. and the terminal and boundary conditions are
w(T,q) = e-,,,q(l;+aq), and w(t,0) = 1,

for q = 1, ... , 5Jl.
The intuition behind the system of equations is that one first solves for w(t, 1),

knowing the q = 0 condition w(t, 0) = l. The q = 1 solution then feeds into the
q = 2 solution, and so on.

Solving the DPE

We now illustrate how one can in principle first solve the QVI analytically and
then provide a simple numerical implementation using an explicit finite-difference
scheme for its solution.

Constructing the Analytic Solution 

The q = 1 case: Let us begin by considering q = 1, in which case (since
w(t, 0) = 1) w(t, 1) satisfies the equation

max { Otw(t, 1) - "'cpw(t, 1) + 5- ; e-"i; - w(t, 1)} = 0 ,
w(T, 1) = e-1<(/;+a) .

(8.26a)
(8.26b)

As pointed out above, it is optimal to execute MOs for all inventories greater
than zero an instant prior to maturity, and we therefore have w(T-, q) = e-q" I;_
Next, the solution to the ODE

is given by
(8.27)
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The solution to the QVI therefore has two distinct behaviours depending on the
relative sizes of the parameters. First, if

>.. e"'1; ¢�-,
r;, 

then g1 ( t) :2: e-"'1; for all t E (0, T) (i.e. the continuation value is always larger
than the execution value), hence, the solution to the QVI (8.26) is

w(t, 1) = 91(t) llt<T + e-K(l;+a) llt=T ,
and it is never optimal to execute an MO except for an instant prior to maturity.
Moreover, during the trade horizon, the optimal LO depth (see (8.23)) is

5*(t 1) = l + l log (e-KI; e-Kcp(T-t) + _l_ (1 - e-K cp (T-l)))
' K, K, K,cjJ ' 

for t < T. In this parameter regime, the depths narrow as maturity approaches.
If on the other hand

then g(t) < e-"'1; for all t E (0, T) (i.e. the continuation value is always less than
the execution value), hence, the solution to the QVI (8.26) is

w(t, 1) = e-"'1; llt<T + e-K(l;+a) llt=T ,
and it is always optimal to execute an MO at all points in time, i.e. T\ = 0.

The financial interpretation of this result is that if the running penalty is small
enough, the agent is willing to post LOs and wait all the way until maturity before
executing an MO. If on the other hand, the running penalty is large enough, it
is always optimal to immediately execute an MO because the agent's urgency
outweighs any potential gain in waiting for the possibility of filling her posted LO.

The q = 2 case: This case has more structure in its solution and we must
solve the equation
max{ 8tw(t,2)-4r;,¢w(t,2)+>..w(t,1); e-"'1;w(t,l)-w(t,2)}=0 ,

w(T, 2) = e-2K(1;+2a) .
As mentioned in the previous section, although there is an explicit terminal
condition on w(t, 2), the optimal strategy will force the agent to execute one
single MO an instant prior to maturity, so that the terminal condition is face­
lifted to w(T-, 2) = e-"' 1; w(T-, 1) = e-2"(

Here we only consider the case where ¢ < (>.. e"1;)/ r;, so that it is optimal to
post LOs when q = l. In this case, we must determine the time T2 at which
the solution to the QVI "peels away" from its immediate execution value of
w(t, 2) = e-"'1; w(t, 1). This point is determined by ensuring that w(t, 2) and its
derivative are continuous at that time, i.e. such that



202 Optimal Execution with limit and Market Orders 

From the equation that w(t, 2) must satisfy in the continuation region, we have

0 = OtW ( T2, 2) -4 K: <P w ( T2, 2) + j_ w ( T2, 1)
= e-,J, Ot W(T2, 1) -4 K:<))e-"1;w(T2, 1) + >-w(T2, 1)
=e-K/; ( K:<))W(T2, 1) ->-) -4K:¢e-Kt, w(T2, 1) + >-w(T2, 1) (from (8.26))
= [-3 K:¢e-"1;+>-]w(T2,l)-e-"1;>-,

where the third equality follows from (8.26), i.e. in the continuation region for
q = 1 (which is t E (0, T)) we have Otw(t, 1) = ¢w(t, 1) -i Hence, the optimal
time at which to execute an MO when the agent has two units of inventory,
solves

(8.28)

The above can be solved explicitly for T2 since w(t, 1) = g1 (t) where g1 (t) is
provided in (8.27). Alternatively, a numerical zero finder can be used.

Once again, there are two parameter regimes which have differing behaviour.
First, if

then a solution to (8.28) exists. Therefore, when the agent holds two units of
inventory, she posts LOs in the interval [O, Tz) and at T2 immediately executes an
MO. At that point in time, she will post an LO up until her order is executed,
or she arrives an instant prior to maturity. Second, if on the other hand,

5- e"I;,/.>-
'/-' - 3 'K: 

no solution exists, and the agent never posts LOs and instead immediately exe­
cutes an MO if holding two units of inventory.

The financial intuition for these two cases is as before: if the running penalty
is too high, there is no incentive to post LOs and hope for them to be matched,
rather the agent aims to liquidate her position quickly. If, on the other hand,
the penalty is low enough, she will be patient and post LOs up until the critical
time T2 is reached when she executes an MO.

In the remainder of the section, we assume that ¢ < ( >-e"I;) /3K:. Given the
optimal time to execute an MO, we can write the full solution for w(t, 2) by 
solving the continuation equation from T2 backwards. For this, the solution to 
the ODE
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where Y = e-"'lw( T2, 1) = e-2"'t. .>- [>- - 31,; ¢e-"'1; ]-l, is
g2 (t) = y e-4¢(T2-t) + >-1T2 e-4 ¢ (u-t) g1 ( u) du 

= y e-4K</,(Trt) + 5- e-KE,_-____ _ { 1 e-5K<p(T2-t) 
51,;¢ 

+ � (1-e-4K</,(T2-t) _ 1-e-5K</,(T2-T2))} ¢ 41,; ¢ 51,; ¢ 
Hence, the solution to the QVI for w(t, 2) is 

Finally, the optimal depths at which the agent posts LOs is given by 
"*( 2)=_!:_ _!:_ 1 w(t,2) 
u t, + og ( ) .i,; i,; w t, 1 

The procedure outlined here can be applied recursively to obtain the optimal times at which to execute MOs for all inventory levels, as well as the optimal depths at which to post. The formulae, as one can appreciate, become rather cum­bersome fairly quickly. Hence, in the next section we take a numerical approach and solve the QVIs using finite-difference methods to show different aspects of the optimal strategy. 
Numerical Experiments 

Here we carry out a simple numerical implementation to compute the optimal execution strategy, including the times at which to post an MO and the depth of posted LOs. Throughout we use the following parameters: 
T = l min, \J1 = 10, >. = 50/min, i,; = 100, 
S0 = $30.00, O" = $0.01, l = 0.005, and a = 0.001, 

so that the agent is trading 20% of the market over this time interval. The running penalty parameter ¢ will be varied to illustrate its effect on the optimal execution strategy. Figure 8.6 shows the optimal depths as well as the optimal time at which the agent should execute an MO. The TWAP schedule is also shown for comparison purposes. As before, the optimal depth at which to post an LO is decreasing in inventory and time, i.e. the agent becomes more aggressive, and posts closer to the midprice, when there is more inventory to unwind or maturity approaches. The right panels show when it is optimal to execute an MO and can be under­stood as follows. If the agent holds inventory at a point in time that lies to the right of a dot, then she must immediately execute an MO. Prior to this execution time, she will post LOs at the corresponding depth shown in the left panels. For example, when ¢ = 10-4
, at the start t = 0, the agent will immediately execute 
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Figure 8.6 The optimal execution strategy showing: (left panels) the optimal depths 
,5* at which an agent posts LOs as a function of time and current inventory; (right 
panels) the times at which to execute an MO if LO has not been filled. 

a sequence of four MOs reducing her inventory from 10 to 6. She will then post 

an LO at a depth of about 0.007 and slowly decrease it towards 0.005 until either 

an MO arrives and lifts her order, or if she is not matched by about t '"" 40 sec 

she executes an MO, dropping her inventory to 5. Her posts then jump up to 
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Figure 8.7 Some sample paths for the agent following the optimal strategy. In the 
inventory path (bottom left panel) the blue dots indicate that the agent executed an 
MO. The dashed lines indicate the TWAP for that path. Here, ¢ = 10-4_

about 0.007 and she will keep decreasing it until her order is lifted, or t rv 50 sec 

at which point she would execute another MO, and so on. 

To provide additional insight into the dynamical behaviour of the optimal 

strategy, we next perform a simulation of the trading strategy using a running 

penalty of¢= 10-4
. Figure 8.7 shows the midprice, depth, inventory and cost 

per share for three simulated paths. In the inventory path (bottom left panel) 

the blue dots indicate when the agent executed an MO. In all scenarios, the 

agent immediately executes four MOs, and every time an LO is lifted or an MO 

is executed, the optimal depth instantly jumps upwards and then decays with 

time until the next LO arrives, or the agent executes an MO. 

Finally, in the left panel of Figure 8.8 we show a heat-map of the agent's 

inventory through time as well as the mean inventory at each point in time. 

The agent immediately executes four MOs in all scenarios (hence the drop to 

Q0 = 6), then on average she slowly liquidates the remaining inventory by varying 

the depth at which she posts her LOs. In most scenarios she ends with one or 

zero shares just prior to the end of the trading horizon. If she has any inventory 

an instant prior to maturity, she executes MOs in sequence to unwind all shares 

before reaching the terminal date and picking up the terminal penalty as a result 

of walking the LOB. It is also instructive to compare the performance of the 
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Figure 8.8 The heat-map of the optimal inventory through time and the risk-reward 
profile as ¢ varies over {5 x 10-6, 5 x 10-5, 1 x 10-4, 2.5 x 10-4, 5 x 10-4, 10-3, 10-2}
from right to left. 

algorithm as the value of the running penalty ¢ varies. This is shown in the 

right panel of Figure 8.8 which contains a risk-reward plot of the profit and loss 

(P&L) relative to the arrival price: R = Xr - Qr(Sr - l - a Qr). Increasing¢ 

has two effects: (i) it decreases the standard deviation of the revenue; and (ii) it 

decreases the P&L. The limiting P&L is -0.005 which equals the half-spread l 

used in these experiments, and results from large penalties inducing the agent to 

liquidate her shares immediately by executing MOs that pick up the half-spread 

cost. 

8.5 Liquidation with Limit and Market Orders Targeting Schedules 

In the previous sections we investigated the optimal strategies followed by an 

agent who wishes to liquidate S)1 shares and who penalises inventory that differs 

from zero by including the running inventory penalty term ¢ ft ( Qu)2 du in her

performance criteria. As pointed out before, this penalty term can be interpreted 

as representing the agent's urgency in ridding herself of inventory or her aversion 

to holding too much inventory at any one point in time. Or put another way, the 

agent's execution strategy is targeting a schedule where at any point in time the 

strategy should be tracking an inventory schedule of zero and deviations from 

this target are penalised. How heavy or light the penalty will be depends on the 

parameter ¢ 2: 0. 

An agent may, however, have a particular target schedule in mind that her 

strategy should track as part of the liquidation programme. For example, she 

may be interested in liquidating shares but also in tracking the inventory sched­

ule followed by TWAP or a schedule such as those that were solved for in a 

continuous trading model in Chapter 6. 

Here, we illustrate how the agent can achieve that goal. To this end, let qt 

denote the (deterministic) schedule she wishes to target. To account for her desire 
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to target this schedule, we can easily extend the methodology of the previous section by replacing the penalty term 

Making this replacement clearly penalises strategies that deviate from the target strategy qt. Her optimal behaviour will then be modified to track this schedule, and the parameter ¢ determines how closely she matches the target schedule. It is trivial to see that if we choose to target qt = 0 for all t, we obtain the running inventory penalty discussed above. We leave it as an exercise for the reader to show that making this replacement in the agent's performance criteria, but keeping the ansatz as H(t, x, S, q) x + q S + h(t, q), leads to the usual optimal strategy 
1 o* = - + [h(t,q) -h(t,q-1)], 
K, 

and the optimal timing T
q 

of MOs solves 
h(T

q
,q-1) -h(T

q
,q) = �,

where h satisfies the following modification of the QVI in (8.25): 

-�+h(t,q-1)-h(t,q) }=o,

subject to the terminal and boundary conditions 
h(T, q) = -£(q), and h(t, 0) = -¢ 1T q;, du.

The QVI can be linearised as before by making the transformation 
1 h(t, q) = - logw(t, q) , 
K, 

to reveal that w ( t, q) satisfies 
max { (at - K,¢ (q -qt)2

) w(t, q) + e� 1 Aw(t, q -1);
e-"'� w(t, q -1) -w(t, q) } = 0 ,  

subject to the terminal and boundary conditions 
w(T,q)=e-KC(q), and w(t,O)=e-"'¢Jtq�du_

(8.29) 
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Numerical Experiments 

The QVI in (8.29) can be solved analytically as outlined in the previous section. 
Here, however, we solve it numerically and investigate the resulting strategy. For 
this we use the model parameters 

T = 60 sec, 

So= $30.00, 

SJl = 10, A = 50/min, 

i7 = $0.01, � = 0.005, 

K = 100, 

a= 0.001, </> = 10-3.

The target schedule qt is the continuous Almgren-Chriss (AC) trading schedule 
with temporary and permanent impact studied in Section 6.5, see (6.30), which 
we repeat here for convenience in the form of a target schedule: 

where 

( e,(T-t) _ e-,(T-t) 

q - ------ 1)1 t - ( e,T - e-,T , 

1 = 

{f_k 
and

a - ½b + ykqJ 
VI (

= 

a - ½b - ykqJ
, 

and use the following parameters: 

T = 60 sec, SJl = 10, k = 0.001, ¢ = 10- 5
, b = 0, a= +oo. 

Figure 8.9 shows (top left) the optimal depth at which the agent posts at 
each point in time and inventory level, ( top right) the optimal time at which to 
execute an MO at each inventory level, (bottom left) the heat-map from 10,000 
simulations of inventory she holds through time, and (bottom right) a histogram 
of the number of MOs she executes during the strategy. There are several typical 
features seen here. First, as time evolves the LOs are posted closer to the mid price 
- as the agent runs out of time, she becomes more aggressive in her posts to match
the given target. As before, the less inventory she holds, the deeper she posts to
reap additional revenue in exchange for being relatively ahead of schedule.

Second, the times at which she executes an MO occur when her LO posts are 
at the lower bound o* = ¾ - �. 

Third, the optimal time to post MOs (the blue dots) follows the target schedule 
fairly closely when the schedule changes rapidly, but allows for some slack when 
the schedule is not changing rapidly. This slack can be removed by increasing 
the penalty ¢. 

In these simulations, the agent posts on average "" 4.36 MOs during the exe­
cution, which is considerably smaller than the 1)1 = 10 inventory she wishes to 
liquidate. Most of these posts occur within the first 10 sec of trading, during 
the time when the target is changing rapidly. In the heat-map there are jumps 
downward at every stopping time corresponding to an MO execution. Finally, 
most paths lead to holding one unit up to an instant prior to maturity. 
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Figure 8.9 The optimal depth, time at which to execute MOs, heat-map of inventory, 

and histogram of executed MOs for the agent who targets an AC schedule. The solid 

blue lines represent the target inventory. The dashed line represents the mean 

inventory of the strategy. 
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8. 7 Exercises 

E.8.1 Use the setup provided in Section 8.2. Assume that the agent penalises running
inventory so that her value function (8.4) becomes 

H(t, x, S, q) = 
sup IEt,x,S,q [x! + Q� ( ST - a Q�) - ¢ 1

T 

( Qt)
2 

du]
oEA t

where ¢ ;::: 0. Find the optimal depth at which the agent posts the limit sell 
orders. 

E.8.2 Show that (8.10) is indeed the solution to (8.9) by completing the steps below.
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(a) Compute w(t, q) for q = 1, 2, 3 by explicit integration of (8.9).
(b) Notice that the solutions are all polynomials in (T - t) which increase in

order as q increases. Hence, write the ansatz

w(t, q) = L a�q) (T - t)"
n=O 

and show that the coefficients a�q) satisfy the recursion
(q) - � (q-1) an - an-1 'n 

for n = 1, ... , q, q = 1, 2, ... and a�q) = 
e-"'"' q2

• 

(8.30)

( c) Prove via induction that the above form of the solution is indeed correct.
( d) Solve the recursion and show that

(8.31)
for n = 0, ... , q and q = 1, 2, ....

E.8.3 In the optimisation problem (8.3), the terminal penalty is assumed to be -aq2
. 

Suppose instead that terminal penalty is a generic bounded and increasing
function of the terminal inventory £(q), so that the agent's optimisation prob­
lem is

H(x, S) = sup lEo,x,S,'Jl [ XT + QT ST - £(QT)]8EA (8.3 2)

(a) Derive the corresponding DPE for the associated value function, and solve
for the value function and the optimal trading strategy using the same
methods as outlined in Section 8.2.

(b) Many markets provide rebates to liquidity providers. This means that each
time that an agent posts an LO and it is filled before being cancelled, the
agent receives a rebate (3. Account for such rebates in the formulation of the
agent's optimisation problem and determine the modified optimal posting
strategy.

E.8.4 Suppose that the agent wishes to penalise inventories different from zero not
just at the terminal time, but also throughout the entire duration of trading. In
this case, the agent adds a running penalty term to the optimisation problem
and wishes to optimise

G(x, S) = suplEo,x,S,'Jl [xT + QT ( ST - a QT) - qw2 r Q; ds]8EA .lo 
(8.3 3)
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instead of (8.3), with¢ 2 0. When¢= 0, the agent solves the old optimisation problem, but when ¢ > 0, the agent modifies her behaviour to reflect her risk preference towards holding inventory. (a) Show that the corresponding value function can be written as G(t, x, S, q) =
x+q S+g(t, q), where g(t, q) satisfies the coupled non-linear system of ODEs

{ Ot9 + 5' exp {-K; [g(t, q) - g(t, q - l)]} : u¢ q2
, 

g(t,0) - 0 ,  
g(T,q) = -aq2

, 

and that the optimal depth 5* is still provided in feedback form as 
5*(t, q) = .!_ + [g(t, q) - g(t, q - l)]K; 

(8.34) 

(8.35) 
(b) By writing g(t,q) = �w(t,q), solve for w(t,q) and the optimal control 5.(c) Demonstrate that if¢ > 0, then limr-++oo 5*(t, q) is finite for each q andindependent of current time t.



9 Targeting Volume 

9.1 Introduction 

Execution algorithms are designed to minimise the market impact of large orders. 
As discussed in the previous chapters, slicing and dicing parent orders into child 
orders is the main principle upon which most algorithms are devised. One source 
of uncertainty which determines the market impact of each child order is the 
volume of the child order relative to the volume that the market can bear at 
that point in time. To see why, consider executing one child order. If it is small, 
then the order will not walk beyond the best quotes in the limit order book 
(LOB) and it will have little or no temporary market impact. If the order size is 
considerable, then it may walk through several layers of the LOB and, therefore, 
receive poor execution prices relative to the midprice. Furthermore, to complete 
this description of order size and volume we must also ask whether any other 
orders are reaching the market at the same time or just prior to the arrival of 
the child order. 

Over short-time scales (seconds), the impact of a market order (MO) depends 
on many factors where size, relative to what is displayed in the LOB, is key. But 
what traders see on the LOB might change by the time their orders reach the 
market. Even traders with access to ultra-fast technology are exposed to the risk 
of changes in the quantity and prices displayed by limit orders (LOs) because 
there is a delay between sending an MO and its execution. These changes are due 
to modifications in the provision of liquidity and the activity of liquidity takers. 
LOs may be cancelled or more may be added, thus the best quotes and/ or depth 
of the LOB change. Similarly, other MOs may arrive just before the agent's and 
deplete liquidity that was sitting in the LOB. Thus, the size of the agent's child 
order is relative to what the LOB can bear when all MOs amalgamate with that 
of the agent's on the liquidity taking side of the market. 

Over long-time scales (minutes/hours), the accumulated orders sent by the 
agent can exert unusual one-sided pressure which may result in further adverse 
market impact. Ideally, an agent's strategy may avoid adverse over-tilting of the 
market order flow by devising algorithms that camouflage her orders. One way 
to do this is to choose a rate of trading which targets a predetermined fraction 
of the total volume traded over the time horizon of the strategy. 
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Here arc two strategies that aim at executing a number of shares equivalent 
to a fraction of: 

i. the rate at which other participants are sending MOs; and
ii. the total volume that has been traded over the entire time horizon.

The rate and the total volume quantities are connected because total volume is 
the sum over the rate of trading, but the optimal execution strategy could be 
quite different in both cases. One simple approach to targeting (i) is to observe 
the volume traded over the last several seconds or minutes, and then trade a 
percentage of this volume over the next several seconds or minutes. Obviously 
this approach is not optimal because it does not address the problem of market 
impact when the agent's orders amalgamate with other orders. 

Targeting (ii) is difficult because total volume traded, over the planned execu­
tion horizon, is not known ahead of time. Naturally, trading a percentage of the 
volume that has been traded over the last several seconds will also target (ii), 
although it may not be optimal. 

Moreover, neither (i) nor (ii) is entirely compatible with the objective of com­
pleting the acquisition or liquidation of an order in full by the end of the trading 
horizon, because there is no guarantee that the sum of the fractions of volume 
traded will add up to the number of shares that the agent set out to acquire or 
liquidate. 

Trading algorithms that target benchmarks based on volume are extensively 
used. One of the most popular benchmarks is the Volume Weighted Average 
Price, known as VWAP. This benchmark consists, as it name clearly suggests, 
in calculating 

f�2 Std½ 
VWAP(T1, T2) = T 

Ir,2 d½ 
(9.1) 

where ½ is the total volume executed up to time t, St is the mid price, and [T1, T2 ] 
is the interval over which VWAP is measured. 

Targeting VWAP is challenging for it is difficult to know ahead of time how 
many shares will be traded over a period of time. Investors target VWAP because 
of their desire to ensure that when acquiring or liquidating a large position they 
obtain an average price close to what the market has traded over the same period 
of time. One way to target VWAP is to follow strategy (i) because targeting a 
fraction of the rate of trading at every instant in time ensures that the investor 
is tracking the average price. Ideally, if the investor's strategy smoothes the 
execution of the number of shares she wishes to execute over the planned time 
horizon and at the same time adamantly targets a fixed proportion of the rate at 
which other market participants are trading, then the average cost of the shares 
she executes will be close to VWAP. 

In this chapter we show how to formulate and solve the agent's liquidation 
problem for (i) and (ii) in a way that is consistent with the overall goal of full 



214 Targeting Volume 

14�---------

2 4 

Time 
6 

0.1 14 

0 

2 4 

Time 
6 

Figure 9.1 Trading volume, for both buy and sell orders, for INTC for Oct-Nov, ·2013 

using 5 minute windows. 

(or partial) liquidation - the acquisition problem is very similar. Strategies that 

target (i) are often called percentage of volume (POV) and we label strategies 

that target (ii) as percentage of cumulative volume (POCV). 

An important source of risk when targeting POV and POCV is that one cannot 

anticipate the timing and volume of the arrival of other trader's MOs. This 

uncertainty introduces another dimension of risk into the execution problem. 

In Figure 9.1 we show the volume of trades (for both buy and sell orders) of 

INTC (Intel Corporation) using 5 minute windows for every trading day (which 

consists of 6.5 hours) of the fourth quarter of 2013. The panel on the left shows 

a heat-map of the data together with the median (second quartile), and first 

and third quartile estimates - note that we plot log(l + volume) because there 

are 5 minute windows with no trades so volume is zero. The panel on the right 

shows a functional data analysis (FDA) approach to viewing the data whereby 

the volumes are regressed against Legendre polynomials (the thin lines). The 

mean of the regression is then plotted as the solid blue line, which represents the 

expected ( or average) trading volume throughout the day for this ticker. The 

data are also shown using the dots. From the two pictures one observes that 

although volume exhibits a 'U'-shape pattern, high volumes at the start and end 

of the trading day and lower volume in the hours in between, there are days 

where realised traded volumes deviate from this intraday pattern. 

Figure 9.2 uses the same data as Figure 9.1 but instead of the volume it shows 

the intensity of trades for both buy and sell orders. For each 5 minute window 

we calculate the intensity ,,\ as the number of trades that were made over that 

time window. The figure shows log(l + ..\) because there are 5 minute intervals 

where no MOs were sent. The panel on the left shows a heat-map of the data 

together with the median, and first and third quartile estimates. The panel on 

the right shows an FDA approach to viewing the data whereby the intensities 

are regressed against Legendre polynomials ( the thin lines). The mean of the 

regression is then plotted as the solid blue line, which represents the expected 

( or average) trade intensity through the day. The data are also shown using the 
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Figure 9.2 Trading intensity, for both buy and sell orders, for INTC for Oct-Nov, 2013 

using 5 minute windows. 

dots. As expected, the trading intensity follows a similar pattern to that of the 

volume shown in Figure 9.1. 

We structure this chapter as follows. In Section 9.2 we show how an agent 

optimally liquidates shares when her strategy targets a fraction of the speed of 

the rest of the market. We use simulations to show that targeting a fraction of 

POV can deliver an average execution price which is very close to VWAP. Section 

9.3 shows how the agent liquidates shares and her strategy targets POCV. In 

Section 9.4 the agent modifies her strategy because her own and other market 

participants' rates of trading have a permanent effect on the midprice. Finally, 

Section 9.5 shows how to manage price risk through exponential utility when the 

agent targets POV. 

9.2 Targeting Percentage of Market's Speed of Trading 

In this section we assume that the agent's execution strategy targets a percent­

age of the speed at which other market participants are trading, and we focus 

on the liquidation strategy with MOs only. The setup for optimal acquisition, 

as opposed to liquidation, is very similar. In the liquidation problem, the agent 

searches for an optimal liquidation speed, which we denote by Vt, to target a 

fraction p of the speed at which the overall market ( excluding the agent) is trad­

ing. This is different from a strategy which caps the optimal liquidation speed to 

be at most a fraction of other market participant's speed of trading - this will 

become clear when we write down the agent's performance criteria. The agent's 

inventory Q,, satisfies the SDE 

Q� = sn.

Let µt denote the speed at which all other market participants are selling 

shares using MOs. This rate of selling can be estimated by summing all shares 

that are executed over a small time window, and dividing by the time window. 
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We assume that the agent's speed of liquidation is not taken into account when calculating µt. The case when the agent targets a percentage of the total order flow (including her own trades) is left as Exercise E.9.3. Therefore, since the agent's objective is to seek an optimal liquidation speed Vt which targets the POV p µ,t at every instant in time, with O < p < l, her performance criteria and value function are 
Hv(t,x,S,µ,q) = lEt,x ,S,M [xT + Q'y(Sf -aQ'y) - c.p l(vu - pµ,u) 2 du] (9.2) 
and 

respectively. 
H(t, x, S, µ, q) = sup Hv(t, :r:, S, µ, q) , 

vEA 

(9.3) 
Here Xf is terminal cash, a ::;;, 0 is a liquidation penalty, and c.p ::;;, 0 is the target penalty parameter. In this setup, deviations from the target are penalised by c.p Jt(vu - p µ u) 2 &u, but this penalisation does not affect the cash process. High values of c.p constrain the strategy to closely track the target p µt at every instant in time, and low values of c.p result in liquidation strategies which are more lax about tracking the POV target. The agent's speed of trading Vt has both temporary and permanent impact on the price of the asset. We assume that the impacts are linear in Vt, so 

dsr = -b Vt dt + /J dWt ' S 0 = S , (9.4a) 
sr = sr -k Vt, s0 = s, (9.4b) 

dxr = sr Vt dt , xi =X, (9.4c) 
with b ::,, 0 and k ::,, 0. In this setup we assume that the order flow µt from other agents does not affect the midprice process. In Section 9.4 we modify this assumption and have the order flow of all agents impacting the midprice. 

9.2.1 Solving the DPE when Targeting Rate of Trading 

We solve the agent's control problem (9.3) assuming that order flow of other agents µ,t is Markov and independent of all other processes (specifically it is independent of the Brownian motion Wt which drives the mid price), and denote its infinitesimal generator by J:P. The dynamic programming principle suggests that the value function should satisfy the DPE 
0 = (8t + ½1J28ss + J:P) H 

+sup{(S -kv)v8 xH-v8
q
H bv8sH- c.p(v- pµ) 2 }, (9.5) 

subject to the terminal condition H(T, x, S, µ, q) = x + q (S - a q), and attains a supremum at 
* S8 xH -8

q
H - b8sH + 2c.ppµ

V 
=----�--------2(k+c.p) . (9.6) 
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To solve (9.5) we make the ansatz
H(t, x, s, µ, q) = X + q s + h(t, µ, q)' (9.7) 

which can be interpreted as the accumulated cash of the liquidation strategy, the
marked-to-market book value of the inventory at the midprice, and the added
value obtained from optimally liquidating the remaining shares (h( t, µ, q)).

Upon substituting the ansatz in (9.5) we obtain the following equation satisfied
by h(t,µ,q):

0 = (8t + ,Cµ) h + 4(k�
ip

) (8q
h + bq-2cppµ)2 -cpp2 µ2 ' (9.8)

subject to the terminal condition h(T, µ, q) = -aq2 . By observing that the ter­
minal condition and the DPE (9.8) are at most quadratic in q, we use the ansatz

h(t, µ, q) = ho(t, 11,) + q h1(t, µ) + q2 h2 (t, µ) . (9.9) 

With this ansatz, the optimal trading speed in feedback form reduces consider­
ably to

Moreover, substituting back into the DPE, after straightforward (but tedious)
manipulations, collecting terms in q, then setting each to zero, we find the prob­
lem reduces to solving the coupled system of equations

(h 1 b) 
2 

0 = (8 + ,Cµ) h + 2 + 2 
t 2 k+cp ,

O = ( 8t + £µ) h1 + hi ; : cp P 
µ ( h2 + ½ b) ," cp 

1 2 2 2 0= (8t+£µ) ho + 4(k+cp) (h1-2cppµ) -cpp µ ,
with terminal conditions h2 (T, µ) = -a and h1 (T, µ) = ho (T, µ) 

(9.10a)
(9.10b)
(9.10c)

0. Each
equation is in fact a linear PDE with non-linear sources terms given by the
solution to the other PD Es. These equations are also dependent in a constructive
manner, i.e. h2 is independent of all others, h1 only depends explicitly on h2,
while ho only depends on h1 . Therefore, they can be solved sequentially.

Now observe that equation (9.10a) for h2 contains no source terms dependent
on µ and its terminal condition is independent ofµ, hence the solution must also
be independent of µ, and it is given by

(9.11)
and since the optimal speed of trading does not depend on ho, we do not need
to solve (9.10c). What remains is to solve the PDE for h1(t,µ). At this point,
we instead simply assume we have solved for it and derive expressions for the
optimal trading speed and the resulting optimal inventory trajectory. Once we
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have these expressions, in the subsections ahead, we make some specific mod­
elling assumptions and compute h1 explicitly as well as provide a probabilistic 
representation for the general case. 

We can then express the optimal speed of trading as 

where the constant 
I"= k+<p 
', 1 . a- 2b

(9.12) 

The optimal speed of trading consists of two terms. The second term on the 
right-hand side of (9.12) is very similar to the strategy discussed in the optimal 
liquidation problems in Chapter 6. For instance, one can see that if in (6.27) 
we let the running inventory penalty parameter ¢ = 0, we obtain the second 
term on the right-hand side of (9.12) with <p = 0. Therefore, one can view 
this term as the TWAP-like liquidation strategy (we refer to it as TWAP-like 
because only when ( = 0 do we obtain TWAP). The first term on the right-hand 
side of (9.12) provides the volume corrections to the TWAP-like strategy. This 
correction depends on the POV target, pµt, and on the function h1(t,µ) which 
encodes how the optimal strategy behaves given the dynamics of the volume 
process. 

Before specifying the stochastic process for the rate of trading µt, we com­
ment on some general features of the POV strategy. The boundary condition 
h1 (T, µ) = 0 implies that near the end of the trading horizon, (T - t) � 1, the 
optimal strategy behaves like 

* <pp Q'{ 

Vt = k + <p µt + (T - t) + ( '

and we can further examine two interesting limiting cases. 
First, when a-+ oo, so that the agent must execute all shares by the trading 

end, ( -+ 0. For a fixed inventory level, the second term on the right-hand side 
in the equation becomes dominant as t approaches T. Hence, the agent ignores 
the POV constraint and instead focuses on using TWAP when approaching the 
end of the trading horizon. Note, however, that the inventory also flows as time 
evolves, so it is not clear if that term truly dominates near maturity. Below, once 
we solve for Q'{ , we will see that indeed the POV constraint is ignored near 
maturity. 

Second, if a remains finite, but <p -+ oo, so that the agent heavily penalises 
trades that deviate from POV, then (-+ oo and the strategy ignores the TWAP­
like term, and trades at a rate of p µt as expected. Naturally, these limits do not 
commute as they are contradictory objectives - unless the volume to be traded 
is exactly equal to p percentage of the total volume traded over the execution 
duration. 
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Armed with the optimal trading speed in (9.12), we can obtain an expression 
for the optimal inventory to hold by solving for Q(. Recall that dQ( = -v; dt, 
and hence, 

where 

The ODE above can be solved by introducing an integrating factor, by writing 
Q( = e-Jt((T-s)+()-1 ds q( 

log (T-t)+c v* (T -t) + ( v" = e r+c qt = 
T + ( qt '

and solving for the unknown process q(. By direct computation we have that 

and so 

dq
( = eJ;((T-s)+()-' ds { ((T -t) + ()-1 Q( dt + dQ(}

= -eft((T-s)+()-' ds h1 (t, µt) dt 
T+( = -

(T -t) +( h1 (t,µt)dt ,

Therefore, we can write 

Qtv* 
T + ( m t T + ( h ( ) d 

(T -t) + ( - = -Jo (T -s) + ( 1 s, µs 8' 

so that finally 

Q( = 
(9.13) 

The optimal inventory to hold at any point in time has two components. The 
first term is a TWAP-like strategy. The second term controls for fluctuations in 
the market's trading rate. Now that we are equipped with this general framework 
for the optimal trading speed (9.12) and the optimal inventory to hold (9.13), we 
proceed by specifying the volume dynamics and then solving for explicit formulae 
for the optimal speed of trading and the optimal inventory path. 
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Figure 9.3 AAPL volume rates per 

minute from 10.00 to 10.30 on Jan 5, 

2011. Estimation using 30sec and 10sec 

time windows. 

Stochastic Mean-Reverting Trading Rate 

Figure 9.3 shows the estimate of the volume rate of trading (per minute) for 
AAPL on Jan 5, 2011 from 10:00 to 10:30. The estimate is computed by counting 
the volume traded over 30 sec and 10 sec windows and scaling the counts to one 
minute. As the figure shows, a reasonable first order model is that traded volume 
comes in bursts of activity which persists for a while (seconds for instance) and 
then decays to zero. Thus, for an agent whose objective is to target the rate of 
trading over short-time horizons, we assume that the sell volume rate µt is a
mean reverting process which satisfies the SDE 

(9.14) 

where r;, � 0 is the mean reversion rate, Nt is a homogeneous Poisson process 
with intensity >-, and {171,172, ... } are non-negative i.i.d. random variables with 
distribution function F, with finite first moment, independent of Nt. The solution 
to (9.14) is 

µt = e-K,t µo + 1; e-K(t-u) T/I+Nu_ dNu 

N, 
= e-Kt µo + L e-K(t-Trn) T/m

' 
m=l 

(9.15) 

where Tm denotes the time of the mth arrival of the Poisson process. As shown 
earlier in Figure 9.2, the arrival of trades follows a U-shaped pattern that can 
be incorporated in (9.14) by introducing a deterministic component in the drift 
of the process, but here, for simplicity, we assume that the trading rate always 
mean-reverts to zero. Although the order flow process mean-reverts to zero, its 
long-run expected value is not zero; indeed from (9.15) we have 

lE[µt] = e-"'t µo + J;e-"'(t-u) lE['r/1 ]>-dt

= e-"'t µo + >-El,71] (l _ e-"'t) 

With order flow satisfying (9.14), its infinitesimal generator acts on the value 
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function as follows: 
J:P H(t, S, µ, q) = 

-K, µ aµH + .\lE [H(t, S, µ + 'T/, q) - H(t, S, µ, q)] , (9.16) 
where the expectation is with respect to the random variable 'T/ with distribution 
function F. 

We now find the solution h 1 to (9.10b) with this model assumption. Since this 
model is of the affine type, and (9.10b) is linear in µ, we expect the function 
h1 ( t, µ) to be linear in µ. Specifically, we write 

for some deterministic functions of time £0 ( t) and £ 1 ( t). The terminal condition 
h(T,µ) = 0 implies that we must also impose £0(T) = £1(T) = 0. When the
generator (9.16) acts on h1 (t, µ) we obtain 

where 'ljJ = ,\]E ['T/] so that equation (9.10b) becomes 

To solve for £0 ( t) and £ 1 ( t) in the above equation, we observe that since the 
equation must hold for all µ, the terms in braces must vanish individually. We 
first solve the ODE in the second set of braces and then use the expression for 
£1 to solve the ODE contained in the first set of braces. 

For £1 , we solve 

using the integrating factor technique by multiplying it by the integrating factor 

J 
( h2(t) + ½b _ k) d = (� _1_) -kt exp k t k + 

1 e ,
+ cp + cp a - 2b 

and after simple algebra and integrating between t and T, the ODE above reduces 
to solving 

1T d ((Tk 
- u + _1_1-) e-ku £1(u)) + k2cpp 1T 

e-ku du = 0 .  t + cp a - zb + cp t 
Finally, using the boundary condition £1 (T) = 0 we obtain

1 1 - e-r;,(T-t) £1(t)=2 cp p((T-t)+()- ----, 
K, 

where recall that the constant ( = ( k + cp) / ( a - ½ b). 
We proceed in a similar way to solve the ODE for £0 resulting from setting the 
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first set of braces to zero. First substitute the solution for £1 into the equation for £0 , then multiply the ODE through by the integrating factor 
exp! (h; + ½b) dt = (kT-t

+ _l _
1 

) 
+ <p + <p a - 2 b 

and integrate between t and T, to obtain 
1 1T 2'lj; 1T -k- d ((T-u+()Co(u))+k <pp+<p t +<p t

1-e-k(T-u)k du= 0 ,  
with terminal condition C0 (T) = 0. Evaluating the explicit integral, we can then write e-r;,(T-t) 1 + 1-,,(T t)C0(t)=2 <p p'l/J((T-t)+()-1 

- 2 - . 
K, Finally, substituting these results back into the optimal speed of trading in (9.12), we have 

9.2.3 Probabilistic Representation 

(9.17) 

In this section we show how to solve for the optimal liquidation strategy for the most general case, where we do not specify the particular process followed by the trading rate µt and the only assumption is that it is Markov and indepen­dent of the Brownian motion driving the midprice. We establish this result by applying the Feynman-Kac Theorem to (9.10b), which is the evolution equation for h1 (t, µ), and represent h1 as 
h1(t,µ) 

= - �+$ lEt,µ [1T exp { k�<p ft
u (h2(s, µs) + ½b) ds} (h2(t, µu) + ½b) µu du]

= �+$ lEt,µ [lTexp {-k�<p ft
u ( r+; + c.�½b )-l ds} [ I+; + C<�2b ]-l µu du l

= �+$ lEt,µ [1Texp { log (r+; + c.�½b) l:=J [ I+; + c.�½b r 1 µu du]
where lEt,µ[·] is shorthand notation for the conditional expectation lE[· I µt = µ]. After a series of cancellations in the integrand above, we have the following compact representation for the solution to h1 ( t, µ):

h (t ) = 2 Jt lE [µu I µt = µ] du 
1 'µ 'Pp (T -t) + ( 

(9.18)
Recall that the constant ( = (k + <p)/(a - ½b). The integral appearing above 
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is precisely the expected total volume over the remainder of the trading horizon. This is because it is the integral of the expected trading rate µt between the current time and the end of the strategy's trading horizon. Moreover, the integral term combined with the factor ((T -t) + ()- 1 is approximately the average expected trading rate for the remaining time horizon. This combination would be exactly the average expected trading rate if k = cp = 0 and/or a--+ oo. Using this general form for h1, the agent's optimal trading speed can be rep­resented as 
* cp p [ JtlE [µulFf"]dul Q( 

Vt = k + cp 
µt - (T -t) + ( + (T -t) + ( ' (9.19) 

where the conditional expectation is now with respect to the filtration Ff gen­erated by µ. By inserting the general result for h1 into the optimal inventory to hold, we also have the compact representation 
Q( = (1--t ) 1)1 T+( 

_ __!!_I!_ t (T -t) + ( [µ _ J:"'lE [µu I Ff] du] ds .k+cp}0 (T-s)+( s (T-s)+( 
(9.20) 

To understand the intuition of the strategy (9.19) we start by pointing out that the agent's performance criteria (9.2) includes competing objectives. On the one hand the strategy aims at liquidating IJ1 shares by T, and on the other hand the strategy must track a fraction of other market participants' trading rate. Only when IJ1 is exactly equal to the desired fraction p of the total volume over the execution duration T are these two objectives compatible. Next, rewrite the optimal trading speed as * cp 
Vt = k + cp 

p µt
+ (T-�) + ( ( Q( - k �cp 

1
T lE[µu I Ff"] du) 

(9.21a) 
(9.21 b) 

The first component of the strategy (9.21a) accounts for the trading rate that must be achieved to meet the POV target, taking into account the trade-off between the POV target penalty cp and the costs stemming from temporary price impact k. Although the POV target is p µt, the strategy targets a lower amount since k'P_('P :S p, where equality is achieved if the costs of missing thetarget are cp --+ oo and k remains finite, or there is no temporary impact k + 0. The second component is a TWAP-like strategy (the first term in the braces in (9.2la)) with a downward adjustment (the second term in the braces) because throughout the trading horizon there is the component targeting the POV. This is why we see that the TWAP-like strategy is applied to the remaining inventory Q( minus the number of shares that are expected to be liquidated as part of 
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the POV target, which will be done by the first term of the strategy (9.21a) over the remaining time of the strategy. We continue our discussion of the optimal strategy by looking at some limiting cases. The limiting case in which the agent wishes to always track a fraction p of the rate µt is obtained by letting the target penalty parameter c.p-+ oo. In this case, the liquidation speed and inventory path become 

<p--+CXJ because ( -'--------+ oo. 
and 

Regardless of what the inventory target is, the strategy liquidates at a rate of pµt. Clearly, as shown by the inventory path, the strategy could liquidate an amount of shares which exceeds or falls short of the initial target SJt. When the strategy reaches T any outstanding shares, short or long, are liquidated with an MO at the midprice and receive a finite penalty of o:q} which, in this limit, the agent prefers to picking up the more onerous running penalty which would be infinite if she did not liquidate at the rate pµt. The limiting case in which the agent wishes to fully liquidate her inventory leads to a finite trading strategy, with finite inventory paths. In particular, ( � 0, and so we have 

Suppose that, in addition to requiring full liquidation, the agent is also very averse to trading at a rate different from p µt. As c.p increases, she will target more and more closely the required trading rate; however, due to the constraint that she must fully liquidate, she will not be able to match the required trading rate at all times. Therefore, in the limit in which c.p -+ oo, after we have already taken o:-+ oo, the value function will become arbitrarily large and negative, and will not be finite. The limiting optimal strategy, however, does remain finite, as does her optimal inventory path, and the net value of liquidating her shares remains finite and well behaved. The optimal speed of trading and inventory position in this second double limiting case are 
1. 1. • [ It nq µu I Ff l du

] + Q( lm 1m V
t 

= p µt - -- , 
cp--+= a-+= T - t T - t 

1. 1. Qv* _ (i t ) <Y> 1t T - t [ It E [ µu I .Ff] du
]1m 1m t - - - 'J� - P -- µs -

cp--+= a-+= T 
O T - s T - s ds. 

Interestingly, when the other agents trade at a constant rate, i.e. µt is a constant, 
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Figure 9.4 Three sample paths of the market's trading rate, the optimal trading rate, 

the difference between the optimal trading rate and the targeted rate, and the agent's 

inventory. 

the POV correction terms in the above cancel and the agent's strategy becomes 
TWAP. 

Simulations 

In this section we provide some simulations of the optimal strategy for the mean­
reverting volume model in subsection 9.2.2. We focus on the double limiting case 
of first ensuring that all inventory is liquidated ( a --+ oo), and second that the 
agent wishes to trade very close to POV ( r.p --+ oo). In this case, we have 

[ 1-e-" (T-t) ( ,p) ,p
l

. . * K 
µt - K + (T - t) K Q( 

hm hm vt = p µt -
(T ) + -- ,

,p--+cc a--+cc - t T - t

where 'ljJ = ,\ JE['T/] and therefore the long-run expected trading rate is lE[µt] = 'ljJ / "'· 
For the simulations, we use the following modelling parameters: 

So = 20 , a = 0.5 , T = 1 , 

µo = 'lj;/K, 'T/""'Exp(lO), .\=50, K=20, 
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Figure 9.5 Left: histogram of the correlation between the agent's trading rate v; and 
µt. Right: histogram of the difference between the execution price per share and the 
VWAP. 

k = 0.1, b = 0.1, and p = 0.05 . 

We assume that the agent is attempting to liquidate p percentage of the volume 
she expects to arrive in the market over her trading horizon, thus S)1 = p T 'lj; / K, = 
1.25. Our parameterisation of the exponential distribution is such that JE[r)] = 10. 

In Figure 9.4 we show three sample paths of the trading rate of other market 
participants µt, the optimal trading rate v;, the difference between the optimal 
rate and the target rate v; 

- p µt, and the agent's inventory Q(. In the bottom 
left panel, the dotted line is the expected trading rate equal to 'lj; / K, and in the 
bottom right panel, the dotted line is TWAP. Note that v; and µt are strongly 
correlated. Indeed, in the left panel of Figure 9.5 we show the histogram of 
the correlation between v; and µt viewed as a time series, along 10,000 sample 
paths. The mean correlation is quite high at 0.88, illustrating the fact that the 
trading rate tracks the rate of order flow. There are, however, deviations from 
the targeted rate of p µt. These differences appear most notably towards the end 
of the trading horizon (as seen in the top right panel in Figure 9.4) where the 
agent's main concern is to drive her inventory to zero and she is less concerned 
about targeting other participants' trading rate. 

Moreover, in the right panel of Figure 9.5 we show the difference between the 
executed price per share and the VWAP. As discussed in the introduction, if 
the agent is closely targeting a fraction p of the trading volume then this results 
in strategies which do indeed target VWAP on average. The deviation around 
VWAP is symmetric (skewness = 0.06) with mean -1.4 x 10-4 and standard 
error ±3 x 10-4

. 

In Figure 9.6 we illustrate a heat-map of the agent's trading rate and her 
inventory. The dotted lines here indicate the 5%, 50% and 95% quantiles. In­
terestingly, the median inventory path is TWAP, while the agent's inventory 
may deviate both above and below this trajectory in her attempt to match the 
POV target. The median path of her optimal trading rate is essentially constant 
through time, although the mode of this trajectory tends to increase towards 
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Figure 9.6 Heat-maps of the optimal trading rate and inventory. The dotted lines 

show the 5%, 50% and 95% quantiles. 

maturity. This suggests there is a slight bias towards first trading a little more slowly compared with TWAP and then trading faster to catch up. 

9.3 Percentage of Cumulative Volume 

In this section we assume that the agent's execution strategy targets a percentage of cumulative volume (POCV) and the liquidation strategy relies on MOs only. Here the accumulated volume V of sell orders, excluding the agent's own trades, is given by 
½=lat µudu, 

where as above µt denotes other market participants' rate of trading. The agent's performance criteria is now modified to 
H"(t, x, S, µ, V, q) = Et,x,S,µ,V,q [ Xf + Q'f (Sf - aQ'f) 

- 'P It ((IJt - Q�) - p Vu/ du]
(9.22) 

where 1)1 is the number of shares that the agent wishes to liquidate by the terminal date T.The running target penalty 'P It ((IJt - Q�) - p Vu) 2 du is not a financial cost that the agent incurs. Rather, its purpose is to allow the agent to seek for optimal liquidation rates where the total amount that has been liquidated up to time tis not too far away from a percentage of what the entire market has sold. For example, when the penalty parameter 'P ---+ oo, the optimal strategy is forced to liquidate shares so that at any point in time the number of shares that have already been liquidated, IJt - qt, equals p 1/i;. In this manner, the agent devises a strategy where the cumulative sum of her own sell MOs is a fraction O < p < l 
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of the market. As in the last section, in this setup the agent's own trades are not 
taken into account in the accumulated volume. 

As usual, the agent's value function is 

H(t, x, S, µ, V, q) = sup Hv (t, x, S, µ, V, q),
vEA 

(9.23) 

and her cash process xv , the controlled mid price sv , and execution price §v 

satisfy the equations in (9.4). Applying the dynamic programming principle sug­
gests that the value function should satisfy the DPE 

0 = (at+ _cS ,µ ,V ) H - cp((IJ1- q) - p V) 2 

+sup{-bvasH + (S- kv) vaxH - vaqH}, 
(9.24)

subject to the terminal condition H(T, x, S, y, q) = x + q (S - aq). Here, _cS ,µ,V 

denotes the infinitesimal generator of the joint process (St, µt, ½)o<t<T· More­
over, we assume that the volume trading rate µt, and therefore the total volume 
½, is independent of the asset's midprice. 

The first order conditions provide us with the optimal trading rate in feedback 
form as 

v* = A (S axH - aqH - b asH) . 

The terminal condition suggests that to solve (9.24) we use the ansatz

H(t,x,S,µ,V,q) = x+q S+h(t,µ,V,q) 

to obtain the following equation satisfied by h(t, µ, V, q): 

0 = (at+ _cµY ) h + 4
1
k 

(aqh + bq) 2 
- cp (IJ1- q - p V) 2 

(9.25) 

(9.26) 

subject to the terminal condition h(T) = -aq2 , where _cµ ,V denotes the genera­
tor of the process (µt, ½)o<t<T which excludes the midprice because the trading 
rate is independent of the midprice. 

The above non-linear equation can be reduced even further by noticing that 
the equation and its terminal condition are at most quadratic in q, hence we use 
the ansatz 

h(t, µ, V, q) = ho(t, µ, V) + h1 (t, µ, V) q + h2 (t, µ, V) q
2 ,

subject to the boundary conditions 

ho(T, µ, V) = h1 (T, µ, V) = 0, and h2 (T, µ, V) =-a. 

By substituting this ansatz into equation (9.26), collecting terms with equal 
powers in q, and setting each to zero, we find that ho, h1 , and h2 must satisfy 
the coupled system of PIDEs 

O = ( at + _cµY ) h2 + ½ ( h2 + ½b) 
2 

- cp ,  
0 = (at+ _cµY ) h1 + t (h2 + ½b) h1 + 2 cp (IJ1- p V),

0 =(at+ _cµ,V ) ho+ 4\ (hi) 2 

- cp (IJ1 - p v)2 .

(9.27a) 

(9.27b) 

(9.27c) 
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As in the POV section, each equation above is a linear PIDE with non-linear
source terms given by the solution to the other PIDEs. These equations are also
dependent in a sequential manner, i.e. h2 is independent of all others, h1 only
depends explicitly on h2, while ho only depends on h1 . Therefore, they can be
solved sequentially.

Now observe that equation (9.27a) for h2 contains no source terms dependent
on V and its terminal condition is independent of V, hence the solution must
also be independent of V. Therefore, we must solve the Riccati equation

1 ( 1 ) 
2 0 = 8t h2 + k h2 + 2 b - cp ,

which can be solved explicitly, see (6.25) where we provide detailed steps to solve
a similar ODE, resulting in

where

1 + ( e2� (T-t) 

h2(t) = � 2�(T-t) - ½b'1- (e 

� = Fi_ and
Vk 

(9.28)

(9.29)

vVhat remains is to solve for h1, which we defer for now, and instead focus on
the form of the optimal trading speed, given its solution. Once we have these
expressions, in the subsections ahead, we make some specific modelling assump­
tions and compute h1 explicitly as well as provide a probabilistic representation
for the general case. As before, ho does not appear in the optimal control and,
hence, we do not attempt to solve for it, although a closed-form expression can
be obtained.

Substituting this result into the expression for the optimal liquidation rate
above, we can now express the optimal speed of trading in feedback form as

(9.30)

where h1 (t,µ, V) is the solution to (9.27b) and h2 (t) is given in (9.28).
Thus, the optimal speed of trading can be decomposed into two terms. The

second term is similar to the AC-like solution already seen in (6.27) where the
penalty on deviations from POCV plays the same role as the urgency parameter
in the AC-like setting. The first term adjusts the strategy to account for the rate
and volume of trades up to that point in time. Its specific form depends on the
precise modelling assumptions onµ and V. In all cases, however, the importance
of this term vanishes as t -+ T due to the terminal condition h1 (T, µ, V) = 0,
and the agent trades more and more like the AC solution.

Recall that the inventory Q( at time t solves the equation dQ( = -v; dt;
hence,

(9.31)
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To explicitly solve this ODE, we first multiply (9.31) through by the integrating 
factor 

exp {-¾J (h2(t) + ½ b) dt} 
and write the ODE as 

d(e
-¾f(h2 (t)+½b)dtQv*) = e-¾f((h2 (t)+½b)dt__!_ h (t µ. V,)dt.t 2 k 1 ' t, t (9.32) 

We use (9.28) and recall that � = � to calculate explicitly the integral 
appearing in the integrating factor: 

1 ;· 1 _ 

J 
1 + (e

2f,(T-t) - (h2(t) + 2 b) dt - � 
2E,(T t) dt 

r;, 1 -(e -

J 
e-2E,(T-t) 

I 
(e

2E,(T-t) = � 
e-2E,(T-t) _ ( dt + � - 1 _ (e2f,(T-t) dt

= � log [ ( e-2f,(T-t) _ () (l _ (e2E,(T-t)) J
= � log [ e2f,(T-t) ( e-2f,(T-t) _ () 2] 
= log [e-E,(T-t) -(ef,(T-t)J ' 

and integrate (9.32) between O and t to obtain 
( ef, (T-t) _ e-E, (T-t) 
--------m ( ef, T -e-f; T 

1 r ( ef; (T-t) -e-f, (T-t) + 2 k Jo ( ef, (T-u) -e-f; (T-u) h1 ( u, /Lu, Vu) du .

(9.33) 

(9.34) 

(9.35) 

In this representation, we can immediately see how the first term represents 
AC-like optimal holdings, while the second term accounts for fluctuations in 
trading volume. If we take the limit in which the agent penalises all strategies 
which do not completely liquidate her inventory, i.e. a � +oo, then ( � 1, and 
so 

v* o:---+oo sinh(� (T -t)) ft sinh(� (T -t)) . 1 Qt ----+ sinh(�T)) m+ ./
0 sinh(�(T-u)) }�� 2k hi(u,µu,Vu) du .

Next we show the optimal speed of liquidation and inventory path for the 
particular case where volume follows a compound Poisson process. Later, in 
subsection 9.3.2, we assume that volume increments are due to a trading rate 
that follows an OU-type process as in (9.14). Finally in subsection 9.3.3 we 
provide a general solution where we do not require a specific functional form for 
the volume or trading rate. Thus, the next two subsections are particular cases 
of the more general solution derived in subsection 9.3.3. 
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9.3.1 Compound Poisson Model of Volume 

In subsection 9.2.2, we motivated the volume trading rate by Figure 9.3 which 
shows the estimate of the volurne rate of trading (per minute) for AAPL on Jan 
5, 2011 from 10:00 to 10:30. The estimate is computed by counting the volume 
traded over 30 and 10 second windows and scaling the counts to one minute. 
As the figure shows, a reasonable first order model is one where traded volume 
comes in bursts of activity which persists for a while (seconds for instance) and 
then decays to zero. In this section we model volume of trades as a marked point 
process: 

N, 

½ = I: 11n, (9.36) 
n=l 

where Nt is a homogenous Poisson process with intensity .\, and { 171, 172, ... } are 
non-negative i.i.d. random variables, with distribution function F and finite first 
moment, independent of Nt and of the Brownian motion driving the midprice. 
In this case, there is no volume rate process µ,t so the value function is a function 
oft,x,S, V and q.

With this model for volume, the infinitesimal generator of V acts on the value 
function as follows: 

£.Y H (t, x, S, V, q) = .\JE [H (t, x, S, V + 17, q) 
-

H (t, x, S, V, q)] , (9.37) 

where lE is the expectation operator with respect to the random variable 17 with 
distribution function F. 

In the previous section we derived the general form (9.30) of the optimal 
strategy, with the only model dependent component stemming from the function 
h1 ( t, µ, V) which is, under the current model assumptions, now a function only 
of V. Thus, under the compound volume Poisson model, we need to solve 

0 = 8th1 +.\lE [h1(t, V + 17) -h1(t, V)] + t (h2 + ½ b) h1 -2c.p (pµ-IJt), (9.38) 

and since the source term is linear in V, we make the ansatz 

h1(t,V) =J!o(t)+J!1(t)V. 

The terminal condition h1 (T, V) = 0 implies that 1!0 (T) 
substituting this ansatz for h1 reduces (9.38) to 

f!1(T) 0, and 

Since the above must hold for every V, each term in the braces must vanish 
individually, resulting in two simple ODEs for 1!0 and 1!1 . 

We first solve the ODE for f!1(t). As before, we use the integrating factor 
technique and find that 
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Next, we use the explicit expression for the integrating factor in (9.34), integrate
between t and T, and use the boundary condition i\ (T) = 0 to find

R (t) = 

-2i.pp (cel:,(T-t) + e-1:,(T-t) - ( - 1) 1 � ( (el;(T-t) _ e-l;(T-t)) '

where the constants ( and� arc provided in (9.29).
To solve for R0(t) we proceed as above and write

Above we solved a similar ODE, so here the only new term we need to integrate
lS 

1T efz J(h2(u)+½ b) du R1(u) dv.
T 

= 

2i.pp r ( (el;(T-u) + e-l;(T-u) - ( - 1) 
dv.

� lt 

= 

2;: ( (ef,(T-t) - e-f,(T-t) -�(( + l)(T - t) + 1 - z)

Now, putting these results together we obtain
_ 2i.pm ( f,(T-l) -f,(T-t) )Ro(t) -� ((ef,(T-t) - cf,(T-t)) 

(e + e - ( - 1 

21/Ji.pp ((el;(T-t) - e-f,(T-t) -�(( + l)(T- t) + 1- ()-� (el;(T-t) _ e-1:,(T-t)
m 21/Ji.pp ((ef,(T-t) - e-l;(T-t) -�(( + l)(T- t) + 1- ()

= --;;R1(t) + � e-t;(T-t) _ (ef,(T-t)
To obtain the optimal liquidation rate and inventory path we substitute h1 

and h2 into (9.31) and (9.35).

9.3.2 Stochastic Mean-Reverting Volume Rate
In this section we adopt the model for trading volume rate developed in sub­
section 9.2.2. Recall that the cumulative volume of other market participant's
trades on the sell side of the market is given by

½ = lt 

/Ju du, (9.40) 

and we assume that rate of trading /J,t is as in (9.14), which we repeat for con­
venience:

Earlier we derived the general form of the optimal strategy, with the only model
dependent component stemming from the function h1 ( t, µ, V) which must satisfy
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(9.27b). With our current modelling assumptions, the infinitesimal generator of
the joint rate and trading volume acts on h1 (t, µ, V) as follows:

where the expectation is over the random variable T/ with distribution function
F. Due to the affine nature of this generator and the fact that the terminal
condition h1 ( t, µ, V) = 0 is a constant, we use the affine ansatz

(9.41)
with terminal conditions €i(T) = 0 for i = 1, 2, 3. Therefore, (9.27b) reduces to
solving a system of coupled ODEs for €i(t)

o = EM1 + ½ (h2 + ½b) €1 - 2 cp p,
0 = Ot€2 + (½ (h2 + ½b) - K) €2 + €1 ,
O = 8t€o + ?,b €2 + ½ ( h2 + ½ b) €0 + 2 cp iJl ,

and recall that h2 is given by ( 9. 28).

(9.42a)
(9.42b)
(9.42c)

To solve for €1 we once again make use of the integrating factor technique by
writing (9.42a) as

(9.43)
using (9.33), integrating between t and T, and using the terminal condition
€1(T) = 0 to obtain

Ji, (t) 2cpp (e
-E,(T-t) - ;-

e
f:,(T-t) + ;- - 1) ' (9.44)1 =

e-E,(T-t) _ (ef:,(T-t) " " 
where ( and � are given in (9.29).

Similarly, and after straightforward but tedious calculations, we solve (9.42b)
to obtain

2cpp €2(t) = (e (t<H)(T-t) _ e(t<-f:,)(T-t)
X (e (t<-E,)(T-t) - 1 

+ 
_(_ (1 -e (t<H)(T-t)) + 

1 -( (1 -et<(T-t)))
K-� K+� K 

Finally, since we have €2(t) we leave it to the reader to solve (9.42c) to obtain
€0 ( t).

9.3.3 Probabilistic Representation
In the previous two subsections, we analysed two modelling specifications for the
rate of volume arrivals and derived explicit closed-form expressions. It is in fact
possible to derive a general form for the function h1 in a quite general setting.
First, let us restate the equation satisfied by h1: 
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subject to the terminal condition h1 (T, µ, V) = 0, and recall that h2 is a deter­ministic function of time given by (9.28). This is a linear PIDE for h1 in which 
h2 + ½b acts as an effective discount rate and 2r.p (SJ1 -p V) is a potential (orsource) term. The general solution of such an equation can be represented using the Feynman-Kac Theorem. Thus we write 
h1(t,µ,V) =2r.plEt,µ,V [1T exp{½ lu (h2(s,µ s,Vs)+½b) ds} (SJ1-pVu) du] 

[1T { {;1u l + ( e2i;(T -s) } l = 2 r.p lEt,µ,V t exp y t t l _ ( e2i;(T-s) du (SJ1 -p Vu) du
Using (9.34) to compute the integral in the exponent, we can write 

[1T ( ( ei; (T-u) _ e-i; (T -u)) h1 (t, µ, V) = 2 <p lEt,µ,V t ( ei; (T-t) _ e-t; (T -t) 
=2r.p 1T g(t,u) (SJ1-plEt,µ,V [Vu]) du , 

where ((ei;(T-u) -e-i;(T -u)) g(t, u) =
( 

et; (T-t) -e-t; (T -t ) Upon inserting this representation into the optimal strategy we arrive at the general representation for an agent who targets POCV: 
( ( et; (T -t) + ct;(T -t) ) v; = (

( 
et; (T -t) _ e-i; (T -t) Q(

-e 1T g(t, u) (SJ1-plE [ Vu I Ff,v]) du . (9.45) 
Moreover, inserting the expression for h1 into the optimal inventory to hold (9.35) we obtain 

Q( = ( ( et; (T -t ) _ e-i;(T -t)) SJ1( ei;T -e-i;T 
+ e 1 t

1
T g(s, u) (SJ1-plE [Vu I F;'· v]) duds . (9.46) 

To understand the intuition behind this general result we look at the limiting case in which the agent wishes full execution of all orders, i.e. in the limit a -+ oo, ( � l. In this scenario, the optimal inventory to hold through time simplifiesto 
Qv* a-+oo sinh( ( (T -t)) SJ1t ----+ sinh( ( T) 

e t 
{T sinh( ( (T -u) ) + 

Jo ls sinh(((T-s)) 
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As the expression shows, the first term is the classical AC strategy, and the second term corrects for deviations of the strategy from the POCV. 

9.4 lnduding Impact of Other Traders 

So far we have assumed that other traders' volume does not move the midprice, but that the liquidating agent's trades do. This is somewhat inconsistent. In this section, we assume that MOs from all market participants, including the agent's, have a permanent effect on the midprice as shown by the SDE 
dSf = b (µi - ( Vt + µ;:)) dt + a dWt ,

where µ; denote the rate of trading for buy and sell MOs sent by other traders and Vt > 0 is the agent's liquidation rate. If the agent was acquiring shares then her trading rate would be added, instead of subtracted, to the drift of the SDE. Moreover, b > 0 represents the permanent impact that trading has on the midprice. As before, the agent's execution price Sf is assumed to be linear in her trading rate so that 
sr = sr - k vt.

Here, we assume that the agent aims to target the rate of sell trading volume, and we leave the case of targeting cumulative volume to the reader, see Exercise E.9.3. In this case, her performance criteria is given by
Hv(t,x,S,µ,q) 

= lEt,x,S,µ,q [xT + Q'f(ST -aQ7,) -cp l
T

(vu - pµ-;;)2 du]
where µ={µ +,µ-}, and her value function is 

H(t,x,S,µ,q) = supHv(t,x,S,µ,q). 
vEA 

Applying the dynamic programming principle suggests that the value function should satisfy the DPE 
0 = (8t + ½a28ss + £1-L ) H

+ s�p { (S - kv) v OxH - V 8qH (9.47) 
+ b((µ + - µ-) -v) 8sH -cp (v - p µ-)2 },

where ,[J.L denotes the infinitesimal generator ofµ. The only difference between this DPE and the one for the case without impact (see (9.5)), is the term b (µ + -µ-) 85H which does not directly affect the optimisation over the agent's trading v in feedback form - it will however alter the value function, and hence the explicit form of v*.We once again use the ansatz 
H(t, x, s, µ, q) = X + q s + h(t, µ, q)'
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where h now depends on both trading rates µ
+ andµ-, and the terminal con­

dition is h(T, µ, q) = -a q2
. Inserting into the DPE above, we find that h must

satisfy
0 = (8t + J:P')li + b (µ+ - µ-) q

+s�p{ -kv2 - (oq h+bq) v- ip (v-pµ-)2 }. (9.4 8)

Solving for the first order condition provides the optimal speed of trading in
feedback form as

v* = 
-(oq h+bq)+2ippµ-

2(k+ip) (9.49)

and upon inserting into the DPE we find the non-linear equation which h should
satisfy:
0 = ( 8t + £µ) h + b (µ+ -µ-) q + 

4 (k�'Pl ( oq h + b q - 2 ip p µ-) 2 
- ip p2 (µ-)2 .

Comparing this to the case where there is no impact from other traders shown
in (9.8), repeated here for convenience,

o =(at +£µ) h + 4 (k�
'P
l (oq h + bq- 2ip pµ)2 - ip p2 (µ)2

, 

we see that the main difference is that the agent must now account for both
buy and sell side trading rates, and the additional term b (µ+ -µ-) q makes the
agent aware of the asset's drift due to net trading in either direction.

To solve the non-linear equation for h, we observe once again that the affine
nature of the PDE and the terminal condition suggest the ansatz

h(t, µ, q) = h0(t, µ) + h1 (t, µ) q + h2(t, µ) q2

,

subject to the terminal conditions h0 (T, µ) = h
1 

(T, µ) = 0 and h0 (T, µ) = -a.
On inserting this ansatz, expanding the expression and collecting terms with like
powers in q, we find that the h; satisfy the coupled system of equations

(9.50a)

(9.50b)

(9.50c)

We see that h2 which satisfies (9.50a), is the same equation as in the case
where we ignore the impact of other agents, and its solution is given by (9.11),
repeated here for convenience:

h2(t,µ) = -(r.;; + a-\b)-
1 -½b.

As before, this is independent of the rate of trading of other agents and cor­
responds to a TWAP-like trading strategy. In the next section, we focus on
computing h1 under general assumptions.
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9.4.1 Probabilistic Representation 
In the general case, we can once again make use of a Feynman-Kac formula and write the solution to (9.50b) as 

ht(t, µ) = IEt,µ [1T ef,' h2(u,µu) du {-2 ip p h2(s, µs) µ-;; + b (µt - µ-;;)} ds]
where h2 ( t, µt

) := k�
'P 

( h2 ( t, µt
) + ½b). The above expression can be simplifiedsomewhat by noticing that 

h2(u,µ,,)du = exp {--1-
J,

s (T-s + _l_)
-l ds } = 

(T- s) + (
k+'P 

t k+'P a-½b (T - t) + ( ' 

where 
t = k+ip
C, 1 . a- 2 bInserting this integral into the expression for h 1 above, and interchanging the expectation and outer integral, we arrive at 

h ( ) - 1T IEt,µ [ µ;] d blT ((T-s)+() IE [ + -J d 
t 

t, µ - tp p t (T - t) + ( S + t (T-t)+( t,µ µs - µs S. 

As the above formula shows, the first term accounts for the one-sided trades that move in the same direction as that of the agent (i.e. sell trades), while the second term accounts for the imbalance in buys and sells. Both terms are integrated over the remaining life of the trading horizon and weight the expected selling / imbalance trading rate through time. The first term computes the mean expected future selling rate, while the second weighs the earlier trades more heavily - since those trades have more time in which to impact the midprice. Recall that the agent's optimal trading speed is given by (9.49) which, in terms of hi, reduces to 
v; = 

- k�
'P 

(h2(t, µt
) + ½b) Q( + 2(k�

'P
) (2 ip p µ-; - h1(t, µt

)) .
Substituting the above results, we finally obtain 

* Q{ 'P {- JtIE[µ;IFt]ds}
Vt 

= 

(T - t) + ( + 
k + ip p µt -

(T - t) + ( 
__ b_ Jt ((T - s) +()IE[(µ; - µ;) I Ff] ds 

k + ip (T - t) + ( 

(9.51) 

To understand the functioning of the liquidation strategy we see that the first two terms are identical to the case which does not account for the impact of other traders, see (9.19) and discussion that follows. The new term in the second line of (9.51) acts to correct her trading based on her expectations of the net order flow from that point in time until the end of the trading horizon. When there is currently no imbalance (µi = µ-;) her liquidation rate is as in (9.19). When 



238 Targeting Volume 9.4.2 there is a surplus of buy trades, however, she slows down her trading rate to allow
the midprice to appreciate before liquidating the rest of her order. When there
is a surplus of sell orders, she speeds up her trades for two reasons: (i) because
she must match the POV on the sell side; and (ii) the action of other sellers
in the market will push prices downwards, and therefore degrade her profits if
she waits. She therefore attempts to liquidate a larger portion of her orders now
rather than later. 

Example: Stochastic Mean-Reverting Volume 

It is helpful to provide a specific modelling example in which we can derive a
simple closed-form formula for the optimal liquidation speed. "\,Ve assume that
buy and sell trading volumes arrive independently, where each satisfies the SDE

where Nt
± are independent Poisson processes with intensity \ and { rJf, rJt, ... }are i.i.d. random variables, with distribution function F, representing jumps in

trading volume, and independent of Nt± and of the Brownian motion Wt driving
the mid price. In this manner, the model assumes that buy/ sell trading rates are
two independent jump Ornstein-Uhlenbeck (OU) process. 

We can solve the above SDE explicitly, by introducing an integrating factor
and writing µ; = e-,d µ;, so that 

Therefore, we can write the trading rates as

and so, for s > t, we have
± - -r; (s-t) ± + r s -K (s-u) dN ± µs - e µt Jt e T/1+N± u ·

u-

The expression for the optimal trading speed requires only the expected value
of the trading rate given its current value. For this purpose, we can compute, for
8 > t,

lEt,µ [µ�] = e-" (.,-t) µ; + j/ e-" (s-u) lE[rJ] A du
= e-" (s-t) µ; + A �[rJ] ( l _ e-" (s-t)) 
= e-" (s-t) (

µ
; _ A lE[rJ]) + A lE[rJ] .

K K 

Next, substituting this result into the expression for the optimal trading rate
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(9.51) and computing the integrals there leads to (with T := T - t)

9.5 Utility Maximiser

In this section the agent's objective is to maximise expected utility of terminal 
wealth but to also target POV. The setup is the same as the one described 
in Section 9.2 and the agent's preferences are described by exponential utility 
U(x) = -e-,x. If the agent ignores the POV objective, her performance criteria 
is 

H v (t X S µ q) = lEt . s [-e-,(Xf+Q�(S�-aQ�))] . 
' ' ' ' ,x , iµ,q 

The question is how to incorporate a POV penalty while maintaining tractability 
of the problem. One naive answer is to simply add in a penalisation as we did 
before, e.g. by considering the performance criteria 

H v (t.x S µ q) = lEt . s [-e-,(Xf+Q:;,(s:;,-aQ:;,)) - rnfT (v - pµ ) 2 d
u]J , , , ,x, ,µ,q r t u u , 

where µt is the other agents' (selling) trading rate, 0 < p < 1 is the fraction of 
the trading rate that the agent targets, and cp � 0 the target penalty parameter. 

This approach, however, does not lead to analytically tractable results. The 
main reason is that the exponential utility and the linear penalty are in a sense 
incompatible, and, here, even the cash process does not factor out of the prob­
lem. Instead, we consider what is sometimes called a recursive intertemporally 
additive penalty. Stylistically we aim to have a value function defined as the 
continuous limit of the recursion 

Ht = suplE [Ht+l'.t + cpry Ht+l'.t (vt - pµt) 2 6t] 

with Hr = lE [-e-,CXf+Q,;,(s,;,-aQ:f,))J. Alternatively, one can view this as a 
stochastic differential utility, as in Duffie & Epstein (1992). 

By adopting this approach, when the agent wishes to optimally liquidate shares 
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whilst targeting POV, her performance criteria is 
Hv (t X S µ q) = lEt 5 [ - e-,(X;f+Q:;,(5:f-aQ:;,))

' ' ' ' l ,µ,q 

+ cp, It (vu -p µu)2 HV(u, X�, s�, µu, Q�) du]
and her value function is 

H(t, x, S, µ , q) = sup Hv (t, x, S, µ, q) .
vEA 

Note that the penalty term has a positive sign in front of the integral. The reason is that H itself is negative, so that this term is indeed a penalty contribution. Deviations from the target POV are scaled by the value function at that time, so if there is a lot of value at that point in state space, the agent is averse to moving away from POV, while if there is little value at that point in state space, the agent is willing to deviate from POV if it gains her value. Applying the dynamic programming principle suggests that the value function should satisfy the DPE 
(8t + ½CT2 055 + £,i") H 

+ sup {( S - kv) v oxH -voqH -bv85H + cp1 (v-p µ) 2 H} = 0, 
subject to the terminal condition H(T, x, S, µ, q) = -e-, ( x+q (5-a q)), and at­tains a supremum at 

* 1-S8 xH+8 qH+b85H+21cppµH
z; = ------�---------2 -k8 xH + 1cpH

The form of the terminal condition suggests that we use the ansatz 
H = -e-,( x+q5+h(t,µ ,q )) 

' 

which leads to the following equation for h(t, µ, q):

0 = - £,I" ( e-,h) 
( o h 

1 2 2 2 (bq+ oq h-2cpp µ)2 2 2) -,h 
+ r t - 2 CT r q + r 4( k + cp) - ,cp P µ e , 

with terminal condition h (T, µ, q) = -a q2
. 

9.5.1 Solving the DPE with Deterministic Volume 

(9.52) 

(9.53) 

We assume that the rate at which other market participants are selling shares is a deterministic function of time with derivative d µ (t) = g(t) dt so that £PH= 8 µH g(t). In this case, we can view the agent as targeting a predictable trading pattern, which for example, may be taken as the solid blue line in the right panel of Figure 9.2. 
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Thus we write (9.53) in the form 
0=(8 +£µ) h+ 

(8qh+b q-2c.ppµ) 2 -c.pp 2µ2 __ 
2
1

0'
21q2 .t 4(k+c.p) (9.54) 

Note that (9.54) is the same as (9.8) with the extra term -½a21q2 , so we proceed as above and make the ansatz 
h(t, µ, q) = ho(t, µ) + q h1 (t, µ) + q2 

h2 (t, µ) , (9.55) 
and after straightforward manipulations and collecting terms in q we obtain the coupled system of PIDEs 

(h 1 b) 2 0 = (8t +DL) h2 + ::� - ½a2 1,
0 = (8 + £µ) h + hi -2c.ppµ (h + lb)t 1 k+c.p 2 2 , 1 ( 2 2 2 0= (8t+£µ) ho+ 4(k+c.p) h1-2c.ppµ) -c.pp µ, ,

with terminal conditions h2(T) = -a, h1(T) = ho(T) = 0. 

(9.56a) 
(9.56b) 
(9.56c) 

Now observe that equation (9.56a) for h2 contains no source terms dependent on µ and its terminal condition is independent ofµ, hence the solution must also be independent of /J,. The equation satisfied by h2 is of Riccati type and can be solved explicitly. We solve for h2, see the solution of the Riccati ODE (6.25), to obtain 

where 
----1 + ( e2w (T-t) 1 

h2 (t) = J(k + c.p) � 1 -( e2w(T-t) -2b'

w=Jk! c.p ' and
Now we turn to solving the PIDE 

h1 -2c.ppµ ( 1 )O = 8th1 -g 8µh1 + k + c.p 
h2 + 2b 

(9.57) 

(9.58) 
with terminal condition h1 (T) = 0. To solve this equation we look at the different components in (9.58) and observe that if we assume an ansatz linear inµ: 

then (9.58) becomes 
{ h2 + ½b } { 1'1 - 2c.pp ( 1 ) } 0 = 8ti'o -gi'1 + k + c.p Ro + 8ti'1 + k + c.p h2 + 2b µ . 

(9.59) 

(9.60)
Now, since this equation must hold for allµ, the terms in braces must vanish 
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individually. Therefore we must solve two uncoupled ODEs: 
h2 + ½b O = 8t£o - g£1 + k £0, 

+cp£1 
- 2cpp ( 1 )0 = 8t£1 + k h2 + 2b 

+cp

(9.61) 
(9.62) 

We first solve (9.62) using the integrating factor technique. First we calculate, in a similar way to (9.33), 
l 

J 
( 1 ) /< 

J 
l + ( e2w (T-t)

k + cp 
h2(t) + i dt = 

V 
k½ l - ( e2w(T-t) dt 

= log [ e-w(T-t) _ (ew(T-t) J
Now we write 

d ( e 
ki., 

I( h2(t)+½b) dt £1 ) =
k
2:p

cp 
e ki., f(h2(t)+½b) dt (h2(t) + ½b) ,

and integrate both sides between t and T: 
_ (e

-w(T-t) _ (ew(T-t)) /l,l(t)
1

T l + ( e2w (T-u) = 2cppw (e-w(T-u) - (e
w(T-u)) -----dut 1 _ ( e2w(T-u) 

= 2cpp ( (ew(T-t) _ 
e
-w(T-t) + l _ ()

(ew(T-t) _ 
e
-w(T-t) + 1 _ (£ 1(t) =

2cpp (ew(T-t) _ 
e
-w(T-t) 

Similarly, to solve for £0 we start as usual by writing 
d (e

ki., J(h2(t)+½b) dt £o(t)) = e ki., J(h2(t)+½b)dt g(t)£ l(t)
and integrate both sides between t and T to obtain 

£o(t) = 

2cpp 1
T 

g(u) ((ew(T-u) - e
-w(T-u) + 1- () du.

e
-w(T-t) _ (ew(T-t) t (9.63) Finally, after straightforward manipulations, the optimal speed of trading is 

* 1 + ( e2w (T-t) v* cpp - ½£1 (t) ½£o(t) Vt = -w l - ( e2w(T-t) Qt + 
k + cp µt - k + cp '

where w, ( are constant parameters given in (9.57). 
(9.64) 

In the optimal speed of liquidation we see that the first term is an AC-type term similar to the one derived in (6.27). The other three terms adjust the speed so that the liquidation rate targets the fraction p of POV. Note that when the risk aversion parameter ry-+ 0, the agent's preferences are as those of a risk-neutral agent and the optimal liquidation strategy would be 
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the same as the one derived in subsection 9.2.1 for this particular choice of £.P. 
It is easy to see that if we set 1 = 0, the system of PIDEs (9.56) is the same as 
the system (9.10) and h1(t) and h2(t) have the same boundary conditions. 
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9. 7 Exercises 

E.9.1 Assume that the agent's objective is to liquidate 1)1 shares as in Section 9.2, but
the strategy also penalises running inventory so that her performance criteria 
is 

Hl/(t, x, S, q)
= lEt,x,S,q [ x� + Qy(Sf - aQy)

-cp lT 

(vu -pVu)2 du 
- <p lT 

(Qu)2 du] 

(a) Show that the agent's value function H satisfies

0 = (8t + ½o.28ss + ,ev ) H -¢q2 

+sup{(S-kv) v-v8
q
H-bv 8sH- cp(v-pV)2 },

l/

subject to the terminal condition H(T, S, v, q) = q(S -aq). 
(b) J\ifake the ansatz

H(t, S, V, q) = q S + ho(t, V) + q h1 (t, V) + q2 h2(t, V) 

and show that the problem reduces to solving the coupled system of PIDEs 

(9.65a) 

(9.65b) 

(9.65c) 

(c) Assuming that ½ satisfies (9.14), find the optimal speed of trading and
compare it to (9.17).
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E.9.2 An agent wishes to acquire SJ1 shares by time T. Her performance criteria is
Hv (t, x, S, Y, q) = Et ,x ,S,y,q [ X:r + (SJ1 -Q'f )(ST+ a(SJ1 -Q'f ))

+ tp 1T (Q� -pYu)2 
du l

and her value function is 
H(t,x,S,y,q) = inf Hv(t,x,S,y,q) , vEA (9.66) 

where Yt is the total volume purchased by other market participants, and the acquired inventory Qr, Sf, and acquisition cost X[, satisfy 
dQr = Vt dt , 
dSf = b Vt dt + a dWt , 
dXf = (Sf +k vt )Vt dt , 

Qa = q,sg =S , 
Xlf = X. 

(a) Show that the value function satisfies the DPE
(8t + ½a28ss + £YY) H + cp(q -py)2 

+inf {(Sv + vk)v ox H + bvosH + voq H} (9.68) 

subject to terminal and boundary conditions and where _cy,V is the generatorofy and V.(b) Show that the optimal acquisition speed is

where 

with 

v* = SJ1-Q( (h (t) -lb)+ hi(t) 
t k 2 2 2k ' 

1 + ( e2� (T-t) 1 h2(t) = � 1-( e2�(T-t) -i'

(= t and
and h1 (t) solves the PIDE 

Note that if tp = b = 0 then the optimal acquisition speed is as in (6.17). E.9.3 Modify the problem of optimal liquidation described in Section 9.2 so that theliquidation rate µt takes into account the agent's trade. Derive the optimal liquidation rate and the inventory path. 
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E.9.4 Assume the setup of Section 9.4 where the trading rates of the agent and other

traders affect the midprice. Solve the optimal liquidation problem where the 

agent targets POCV, that is her performance criteria is 

H"(t,x,S,µ,q) 

= IEt,x,S.µ,q [x� + Q'f(S:f - o:Qf) - cp l
T

( (IJ1- Q�) - p Vu) 2 du l 
where 

½=la

t

µ;; du

is the total volume traded on the sell side of the market. 
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10.1 

Market Making 

Introduction 

In this chapter we model how a market maker (MM) maximises terminal wealth 
by trading in and out of positions using limit orders (LOs). The MM provides 
liquidity to the limit order book (LOB) by posting buy and sell LOs and the 
control variable is the depth, which is measured from the midprice, at which 
these LOs are posted. To formalise the problem, we list the relevant variables 
that we use throughout this section: 

• S = (St)o<t<T, denotes the midprice, with St = So + u Wt, u > 0 and
W = (Wt)o<t<T is a standard Brownian motion, 

• o± = ( o;)o<t<T 
denote the depth at which the agent posts LOs; sell LOs are 

posted at a-price of St + ot and buy LOs at a price of St - o-;, 
• M± = (Mf)o<t<T denote the counting processes corresponding to the arrival 

of other partfcipants' buy ( +) and sell ( -) market orders (MOs) which 
arrive at Poisson times with intensities >.± , 

• Nii,± = (Nf,±) denote the controlled counting processes for the agent'sO<t<T 

filled sell ( +) and buy ( -) LOs, 
• conditional on a market order (MO) arrival, the posted LO is filled with

probability e_"'± Ii;', with K:± 2:: 0, 
• X6 = (Xf)09�T denotes the MM's cash process and satisfies the SDE

(10.1) 

which accounts for the cash increase when a sell LO is lifted by a buy MO 
and the cash outflow when a buy LO is hit by an incoming sell MO, 

• Q6 = (Qn
o�t�T 

denotes the agent's inventory process and

(10.2) 

As discussed in Section 8.2, whenever the process N6,± jumps, the process 
M 6,± must also jump; but when M 6,± jumps, N6,± will jump only if the MO is 
large enough to fill the agent's LO, and N6,± is not a Poisson process. Moreover, 
note that the fill rate of LOs can be written as A�,± = >.± e-><±li;', which is the 
rate of execution of an LO. 
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To simplify notation, in the rest of this chapter we suppress the superscript 6 in the counting process for filled LOs, cash, and inventory. In Section 10.2 we discuss market making strategies when the MM does not face adverse selection costs, and her strategy takes into account restrictions on the amount of inventory she is willing to hold during the life of the strategy, as well as how costly it is to liquidate outstanding inventory at the terminal date of the strategy. In Section 10.3 the agent maximises terminal utility of cash holdings. Finally, in Section 10.4 we introduce various ways in which the MM faces adverse selection costs and how this affects the market making strategies. 

Market Making 

In this section we assume that the MM seeks the strategy ( b;)o
-<:s-<:T that max­imises cash at the terminal date T. We also assume that at time T the MM liquidates her terminal inventory Qr using an MO at a price which is worse than the midprice to account for liquidity taking fees as well as the MO walking the LOB. Finally, the MM caps her inventory so that it is bounded above by 

q_ > 0 and below by g_ < 0, both finite, and also includes a running inventory penalty so that the performance criterion is 
H6 

(t, x, S, q) = lEt,x,q,S [ Xr + Q}(S} - a Q}) - ¢ lT (Qu)2 du] 

where a 2': 0 represents the fees for taking liquidity (i.e. using an MO) as well as the impact of the MO walking the LOB, and ¢ 2': 0 is the running inventory penalty parameter. The MM's value function is 
H(t,x,S,q)= sup H6 (t,x,S,q), o±EA (10.3) 

where A denotes the set of admissible strategies, i.e. F-predictable, bounded from below. To solve the optimal control problem, a dynamic programming principle holds and the value function satisfies the DPE 
0 = OtH + ½o2 8ssH - ¢q2 

+.\+ sup {e_"+o+ 

(H(t, x + (S + 3+), q - 1, S) - H)} ]_q>q 
o+ 

-

+.\-s
�{e_"-5-(H(t,x-(S-b-),q+l,S)-H)} ]_ q<q ,

where ]_ is the indicator function, with terminal condition 
H(T, x, S, q) = x + q(S -aq). 

(10.4) 

(10.5)
Recall that the set of admissible strategies imposes bounds on qt, so that when qt = q_ (q) the optimal strategy is to post one-sided LOs which are obtained by solving (10.4) with the term proportional to .\- (.\+) absent as enforced by the 
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indicator function ]. in the DPE. Alternatively, one can view these boundary
cases as imposing J- = +oo and o+ = +oo when q = q and q_ respectively.

Intuitively, the various terms in the DPE equation represent the arrival of MOs
that may be filled by LOs together with the diffusion of the asset price through
the term ½0"2 8ssH, and the effect of penalising deviations of inventories from
zero along the entire path of the strategy which is captured by the term ¢ q2

. In
the second line of the DPE the sup over o+ contain the terms due to the arrival 
of a market buy order (which is filled by a limit sell order), and here we see the 
change in the value function H due to the arrival of the MO which fills the LO, 
so that cash increases by (S+o+) and inventory decreases by one unit. Similarly,
in the last line in the DPE the sup over J- contain the analogous terms for the
market sell orders which are filled by limit buy orders.

To solve the DPE we use the terminal condition (10.5) to make an ansatz for
H. In particular, we write

H(t, x, q, S) = X + q s + h(t, q)' (10.6)
which has a simple interpretation. The first term is the accumulated cash, the
second term is the book value of the inventory marked-to-market (i.e. the value
of the shares at the current midprice), and the last term is the added value from
following an optimal market making strategy up to the terminal date.

We proceed by substituting the ansatz into (10.4) to obtain
¢q2 

= 8th(t, q) +>.+ sup {e-J<+ o+ (o+ + h(t, q -1) -h(t, q))} liq>q o+ -
+>.- s� { e_"'_ 0_ (r + h(t, q + 1) -h(t, q))} liq<q,

(10.7)
with terminal condition h(T, q) = -aq2 . 

Then the optimal depths in feedback form are given by

o+ ·*(t,q)= "'� -h(t,q-l)+h(t,q), q=/-q_,
1 o-·*(t,q)=--h(t,q +l)+h(t,q), q=f-q,

K,-

(10.8a)

(10.8b)

and the boundary cases are o+,*(t,q) = +oo and J-,*(t,q) = +oo when q = q
and q_ respectively.

To understand the intuition behind the feedback controls we first note that
the optimal o± can be decomposed into two components. The first component,
1 / "' ±, is the optimal strategy for a MM who does not impose any restrictions on
inventory (a=¢= 0 and lq_l = q = oo) - see below in subsection 10.2.1.

The second component, the term -h(t, q-1) + h(t, q), controls for inventories
through time. As expected, if inventories are long, then the strategy consists in
posting LOs that increase the probability of limit sell orders being hit. Moreover,
the function h(t, q) also induces mean reversion to an optimal inventory level,
as a result of penalising accumulated inventories throughout the entire trading
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horizon and the strategy approaching T as well as the other parameters of the model, including ¢. Substituting the optimal controls into the DPE we obtain ,,i,q2 = 

a h(t q) +e-1 ,\+ e_"+(-h(t,q-l)+h(t,q)]. <p t 
' K+ q>q

Solving the OPE 

+ e-1
,\-e-K-(-h(t,q+l)+h(t,q))]. -_ K- q<q· (10.9) 

It is possible to find an analytical solution to the DPE if the fill probabilities of LOs are the same on both sides of the LOB. In this case, if K. = r,;+ = r,;- then write 1 
h(t, q) = -logw(t, q), 

K, and stack w(t, q) into a vector w(t) = [ w(t, q), w(t, q -1), . . .  , w(t, _(I)]' . Now, let A denote the (q -!I+ 1)-square matrix whose rows are labelled from q to q and whose entries are given by 
{ -cpr;;q2)

\+ -1 A· - /\ e '
i,q- .A-e-1,0 ,  

i = q' i=q-1 , i=q+l, otherwise , 
2 with terminal and boundary conditions w(T, q) = e-ou,q Then (10.9) becomes 

3tw(t) + Aw(t) = 0.The solution of this matrix ODE is straightforward and we finally have, 
I w(t) = 

eA(T-t) z' I where z is a (q -!I+ 1)-dim vector where each component is z1 
j =q, ... ,_(l·
Behaviour of the Strategy 

(10.10) 

(10.11) 
.•) 

-arcr
e ' 

Figure 10. l shows the behaviour of the optimal depths as a function of time for different inventory levels. In the examples the arrival rate of MOs is A± = 1 (there are on average 1 buy and 1 sell MO per second), q = -q = 3, and¢= 10-5 in panel (a), and¢= 2 x 10-4 in panel (b). In the left of pa;el (a) we show the optimal sell postings J+, i.e. upon the arrival of a market buy order the MM is willing to sell one unit of the asset at the price St + J+, and in the right of panel (a) we show the optimal buy postings J+. For example, when the strategy is faraway from expiry and inventories are close to the allowed minimum, the optimal
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Figure 10.1 The optimal depths as a function of time for various inventory levels and 
T = 30. The remaining model parame'ters are: ,>..± = 1, K± = 100, q = -q = 3,
a = 0.0001, o- = 0.01, So = 100. 

-

sell posting is furthest away from the midprice because only at a very 'high' price 
is the MM willing to decrease her inventories further, and at the same time the 
optimal buy posting is very close to the midprice because the strategy would like 
to complete round-trip trades (i.e. a buy followed by a sell or a sell followed by 
a buy) and push inventories to zero. 

We also observe that as the strategy approaches T and qt < 0 (qt > 0), 
the optimal sell (buy) depth J+ ( J-) decreases (increases). To understand the 
intuition behind the optimal strategy note that if the terminal inventory qy < 0 
is liquidated at the price Sr - aqy, then when a is sufficiently low, as well as 
being fractions of a second away from expiry, it is optimal to post nearer the 
midprice to increase the chances of being filled (i.e. selling one more unit of the 
asset) because the price is not expected to move too much before expiry and the 
entire position will be unwound at the midprice - making a profit on the last 
unit of the asset that was sold. 

It is also interesting to see that the optimal strategy induces mean reversion 
in inventories. For example, if qt = 2 then the sell depth is lower than the buy 
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Figure 10.2 Long-term inventory level. Model parameters are: >-± = 1, K± = 100, 
q = -i = 10, a= 0.0001, a= o.m, So= 100, and¢= {2 X 10-3, 10-3, 5 X 10-4}. 

depth, 5+ < 5-, so that it is more likely for the strategy to sell, than to buy, one 
unit of the asset. This asymmetry in the optimal depths is what induces mean 
reversion to zero in the inventory. Moreover, in panel (b) the strategy's running 
inventory penalty is much higher and it is clear that the higher ¢ is, the quicker 
inventories will revert to zero. 

We also see that the strategy 5d (t, q) induces mean reversion in inventories, 
by observing that the expected drift in inventories is given by the difference 
in the arrival rates of filled orders. Thus, given the pair of optimal strategies 
5+,*(t, q), <5-,*(t, q), the expected drift in inventories is given by 

µ(t, q) � lim -
1
-lE [Qs - Qt I Qt- = q]

s.j.t S - t 

=A_
e

_"'-r,*(t,q) _ ,\+e-"'+ 5+ ,*(t,q). 
(10.12) 

Note that the drift µ(t, q) depends on time. For instance, it is clear that for the 
same level of inventory the speed will be different depending on how near or far 
the strategy is from the terminal date, because at time T the strategy tries to 
unwind all outstanding inventory. 

Figure 10.2 shows the optimal level of inventory to which the strategy reverts, 
where we assume that we are far away from T - t--+ oo in (10.12). The model 
parameters are,\± = 1, i,;± = 100, q = -q = 10, a= 0.0001, a= 0.01, S0 = 100 
and we vary the running penalty ¢ = { 2 � 10-3, 10-3, 5 x 10-4}. Note that for 
the set of parameters we are using here it suffices to be a few seconds away from 
the terminal date so that the optimal postings are not affected by the proximity 
to T. In the left panel of the figure we plot the fill rate probabilities of both sides 
of the LOB which are given by ,\±e-"'±

0
±<<,q),•. Blue circles and blue crosses are 

the fill rate probabilities for the sell side and buy side of the LOB respectively 
when¢= 2 x 10-4

. 

Figure 10.3 shows the inventory and price path for one simulation of the strat­
egy. The model parameters are ,\± = 1, i,;± = 100, q = -<]_ = 10, ¢ = 2 x 10-4

, 
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Figure 10.3 Inventory and midprice path. Model parameters are: >,± = 1, 11:± = 100, 
q = -1_1 = 10, ¢ = 2 x 10-4

, a= 0.0001, (]' = 0.01, So= 100. 

a = 0.0001, O' = 0.01, So = 100. In the left panel we see how the inventory 
is mean reverting to zero and for this particular path we see that although the 
maximum and minimum amount of inventory that the strategy is allowed to hold 
is 10, it never goes beyond five units of the asset short or long. 

The right panel of Figure 10.3 shows a window of the midprice path along 
with MM's buy and sell LOs. Solid circles in the figure show the incoming MO's 
which are filled by the MM's resting LOs (a red circle is a sell MO filled by 
the MM's buy LO and a blue circle is a buy MO filled by the MM's sell LO) 
and grey circles represent MOs that were filled by other market participants. 
The distance between the midprice and the MOs that arrive shows how far the 
MOs are walking into the LOB. At the beginning of the window, the agent's 
inventory is zero and we observe that the strategy acquires two units ( one at 
185.3s and another at 187.5s) before the first sell order (at 187.8s) is filled and 
then closed out an instant later (at 187.9s). After the first filled buy order the 
strategy remains asymmetric and the agent posts closer to the midprice on the 
sell side of the book, compared to the buy side of the book, to rid herself of her 
inventory. At 189s, 190.2s, 190.8s, 191.ls and 191.9s, a sequence of sell orders 
is filled and the agent holds a short position of 2 assets after the last sale at 
191.9s. Her strategy is therefore to post closer to the midprice on the buy side 
of the book to increase her chance of unwinding her position. These shifts in her 
posts, which induce the unwinding of any inventory she acquires (long or short), 
continues until the end of the trading horizon. 

Now we turn to discussing the financial performance of the strategy. The left 
panel of Figure 10.4 shows the profit and loss (P &L) of the optimal strategy and 
the right panel shows the lifetime inventory for different running penalty param­
eters ¢ = { 10- 5, 5 x 10-5, 10-3, 10-2}. We observe that when ¢ increases the
histogram of P &L shifts to the left because the strategy does not allow inventory 
positions to stray away from zero, and hence expected profits decrease. The life­
time inventory histogram shows how much time the strategy holds an inventory 
of n. For example, when ¢ = 10-2 we know that the strategy heavily penalises 
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Figure 10.4 P&L and Life Inventory of the optimal strategy for 10,000 simulations. 

The remaining model parameters are: >.± 
= 1, ,-,;± 

= 100, q = -q = 10, a= 0.0001, 

Cf = 0.01, and So = 100. 
-

deviations of running inventory from zero, so the strategy spends most of the 
time at inventory levels of -1, 0, l. As the running inventory penalty becomes 
smaller, the strategy spends more time at levels away from zero. 

Market Making with no Inventory Restrictions 

If we assume that the MM does not penalise running inventories, does not pick 
up a terminal inventory penalty, that is ¢ = a= 0, and there are no constraints 
on the amount of inventory the strategy may accumulate, i.e l_q_l, q---+ oo, then 
the MM's strategy simplifies to 

I c5+,*(t, q) =-!+, and c5-,*(t, q) =�·I (10.13) 

This optimal strategy tells the MM to post in the LOB so that the probability 
of the LOs being filled is maximised. To see this we observe that if there are 
no penalties for liquidating terminal inventory, by assuming a = 0 the termi­
nal inventory is unwound at the midprice, and there is no running penalty for 
inventories straying away from zero, then we make the ansatz 

H(t, x, q, S) = X + q s + h(t). (10.14) 
This is similar to the one proposed above, see (10.6), but here h(t) does not de­
pend on q because the MM does not pose any restrictions on inventory through­
out the life of the strategy and can liquidate terminal inventory at the midprice. 
Thus, substituting the ansatz into the DPE 

0 =8t h+>.+ s:f { e_"+ c5+ c5+} + >.- s� { e_"-r c5-}

with terminal condition h(T) = 0, delivers the result (10.13). 

(10.15) 



254 Market Making 

10.2.2 

Furthermore, we can show that 

(,,\+ >,-)h(t) = e- 1 
K:+ + K:- (T - t). 

This result is simple to interpret. An MM who does not penalise inventories 
and who unwinds terminal inventory at the midprice, will make markets by max­
imising the probability of her LOs being filled at every instant in time regardless 
of the inventory position or how close the terminal date is. Therefore, the MM's 
problem reduces to choosing 5 ± to maximise the expected depth conditional 
on an MO hitting or lifting the appropriate side of the LOB, i.e. to maximise 
5 ± e-"± ,5± . The first order condition of this optimisation problem is

(10.16) 

so the optimal depths are as in (10.13). 

Market Making At-The-Touch 

In very liquid markets, most orders do not walk the book and instead tend to 
only lift or hit LOs posted at-the-touch. To capture this market feature, in this 
section we investigate the agent's optimal postings at-the-touch, i.e. at the best 
bid and best ofter. Throughout we assume that the spread is constant and equal 
to 6.. Next, let fi} E {O, 1} denote whether the agent is posted on the sell side 
( +) or buy side ( -) of the LOB. In this way, the agent may be posted on both 
sides of the book, only the sell side, only the buy side, or not posted at all. Her 
performance criteria is 

where her cash process Xf now satisfies the SDE 

dX£ 
= (S + �) dN+,£ - (S - �) dN-,£ 

t t 2 t t 2 t , 

where Nt±,£ denote the counting process for filled LOs. We also further assume 
that, if she is posted in the LOB, when a matching MO arrives her LO is filled 
with probability one. In this case, Nt

±,£ are controlled doubly stochastic Poisson
processes with intensity £t >,± . Finally, at the terminal date any open inventory
position is liquidated using an MO and the price obtained per share is the best 
bid ( Qr > 0) or offer ( Qr < 0) and picks up a penalty c.p Q}, with c.p 2 0, which 
includes market impact (walking the LOB) and liquidity taking fees. 

As before, the set A of admissible strategies are F-predictable such that the 
agent is not posted on the buy (sell) side if her inventory is equal to the upper 
(lower) inventory constraints q (11_) and her value function is denoted by 

H(t, x, S, q) = sup H\t, x, S, q). 
£EA 
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The Resulting DPE 

Applying the DPP, we find the agent's value function H should satisfy the DPE 
0 =(at+ ½o-2 8ss )H -<J>q2 

+A+ max { (H (t, x + (S + %-) £+ , S, q -£+) -H)} ]_q>q e+E{O,l} -
+>-- max {(H(t,x- (S-%-)r,S, q+r)-H)}]_

q<cJ, £-E{O,l} 
subject to the terminal condition 

H(T, x, S, q) = x + q (S - ( %- + cp q)) 
The various terms in the DPE carry the following interpretations: 
® the first line in the DPE represents the diffusive component of the midprice 

and the running inventory penalisation, 
e the maximisation terms represent the agent's control to post or not on the 

sell or buy side of the LOB, 
@ the maximisation term in the second line represents the change in value func­

tion, if the agent is posted, due to the arrival of an MO which lifts the 
agent's offer, 

@ the third line is for the other side of the book. 
The terminal condition once again suggests the ansatz which splits out the ac­

cumulated cash, the book value of the shares marked-to-market at the midprice, 
and the added value from optimally making markets throughout the remaining 
life of the strategy: 

H(t, x, S, q) = X + q s + h(t, q)'
and on substituting this ansatz into the above DPE we find that h satisfies 

0 = 0th - cf>q2 

+ ,>.+ max { (£+ %- + [h(t, q -£+) - h(t, q)l)} ]_q>q £+ E{O,l} -
+ >. - max { (r %- + [h(t, q + R.-) - h(t, q)l)} ]_q<cJ, £-E{O,l} 

subject to the terminal condition 
h(T, q) = -q ( %- + cp q)

The form of the optimising terms allows us to characterise the optimal postings 
in a compact form. When R. = 0 both terms that are being maximised are zero, 
hence, the optimal postings of the agent can be characterised succinctly as 

f_+ ,*(t ) -]_ 'q - { %- + [h(t,q-1)-h(t,q)J>O }n{q>g.} '
r,*(t ) -]_ 'q - { %- + [h(t,q+l)-h(t,q)J>O }n{q<q}

(10.17) 
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Figure 10.5 The optimal strategy for the agent who posts only at-the-touch. 

The interpretation of this result is that the agent posts an LO on the appropriate
side of the LOB by ensuring that she only posts if the arrival of an MO, which
hit/lifts her LO, produces a change in her value function larger than -�.

Strategy Features 

Next, we illustrate some typical features of the optimal solution to gain some
insight into the optimal strategy. For this purpose we use the following set of
model parameters:

T = 300 sec, q = -g_ = 20, >,± = � 300'
� = 0.01, </> = 0.01, rY = 0.001.

Note that the rate of arrival of market orders is chosen so that on average the
agent's upper/lower inventory bounds are no more than 20% of the market.

Figure 10.5 shows how the agent's optimal posting varies with time and the
running penalty. The left panel explicitly shows that the agent posts only sell LOs
whenever her inventory is very high, and only buy LOs whenever her inventory is
very low. In the central region, she posts both buy and sell LOs. In this manner,
the agent's inventory is constrained to remain within one unit of the green region
- once her inventory escapes she posts only on one side of the book thus pushing
inventory back into the green region. We therefore see that despite the agent
allowing herself to hold up to 20 units of the asset, long or short, the running
penalty constrains her strategy. Furthermore, note that as the running penalty
increases, the region over which the agent constrains her inventory shrinks, and
eventually reaches the point at which she only takes on one single unit of the
asset (long or short) and then immediately liquidates it.

Later, in subsection 10.4.2 we see how the agent modifies her strategy to
account for adverse selection effects.
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In the previous sections, when the agent posts an LO, she is assumed to be 
placing a single order. This single order can be thought of as the typical order 
size of, say, 100 shares. The agent may, however, wish to optimise the posted 
volume. In this case, the agent's performance criteria is taken to be 

and her cash process Xf now satisfies the SDE 
dXf = (St +%) ct dNt,c -(St -% ) c; dNt-,c '

where C;- are F-predictable such that 
Ct E { 0, 1, 2, , ... , qt - -_q_} and 

and Nt

± ,c denote the counting processes for her filled LOs - not accounting for 
the volume traded (i.e. it only counts whether an MO arrived and filled her 
posted LO). The restrictions on the volume ensure that the agent never posts a 
volume which, if filled, would send her inventory outside of her allowed trading 
bounds. We further assume that if she is posted in the LOB when a matching 
MO arrives, her LO is filled with probability p(C) where C is posted volume. 
For example, p(C) = e-,cl would represent an exponential fill probability. In 
this case, Nt± ,c are controlled doubly stochastic Poisson processes with intensity 
p(C;-) _>_± ]e±>o· In this formulation, we have further assumed that if the agent 
makes a post of a given volume, the entire volume is matched or none at all 
is matched. The approach here can be generalised to account for partial fills of 
postings, but this is left as an exercise for the reader. 

As before, the set A of admissible strategies also restricts her so that the 
strategy does not post on the buy (sell) side of the LOB if her inventory is equal 
to the upper (lower) inventory constraints q (_q_). Her value function is denoted 
by 

H(t, x, S, q) = sup Hc(t, x, S, q) .  
CEA 

The Resulting DPE 

This analysis is similar to that of the previous section, except now the set of 
strategies allows the agent to post multiple volumes. In this case, applying the 
DPP we find the agent's value function H should satisfy the DPE 
0 =(at + ½D"2 8ss )H - ¢q2 

+.>-+ max {p(C+)(H(t,x+(S+%)c+,S,q-C+)-H)}11q>q 
£+E{O,l, ... ,q-9.} -

+ _>_- max_ {p(C-) (H (t,x -(S- %) c-,S,q +C-) -H)} ]q<q,
£-E{O,l, ... ,q-q} 
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Figure 10.6 The optimal volume postings for the agent who posts only at-the-touch. 

subject to the terminal condition 

H(T,x,S,q) = x+q (S- (% +cpq)) 

With the exception that the maxima are computed over the set of allowed vol­
umes and cash jumps accordingly, this non-linear PDE is identical to the one 
derived in the previous section when the agent did not optimise over the vol­
ume of the LOs. The terminal condition suggests the usual ansatz H(t, x, S, q) =

x + q S + h(t, q) which splits out the accumulated cash, book value of the inven­
tory marked-to-market using the midprice, and the added value from optimally 
making markets throughout the remaining life of the strategy. On substituting 
into the DPE we find that h satisfies 

0 = 0th - </Jq2 

+ ,>.+ max {p(f!+ ) (£+ % + [h(t, q - c+) - h(t, q)])} ]q>q 
f+E{O,l, ... ,q-_q) -

+ r max - {p(C-) (r % + [h(t, q + r) - h(t, q)])} ]q<q ) £-E{O,l, ... ,q-q} 

subject to the terminal condition 

h(T,q) = -q (% +cpq) 

Strategy Features 

Figure 10.6 shows the agent's optimal volume postings at-the-touch using the 
following model parameters: 

T = 10 sec, q = -'l = 20, ,>.± = 5, 
l::,. = 0.01, <p = 0.01, o-= 0.001, 
p(f!)=e-oou, and ¢=10-3. 

Notice that the posted sell volume increases as inventory increases, while the 
posted buy volume increases as inventory decreases. Furthermore, there are large 
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Figure 10.7 The optimal volume postings (at t = 0) for the agent who posts only 
at-the-touch. The left panel has ¢ = 10-3 and the right panel shows only £+ .

20 

regions where the agent is posted only on one side of the LOB. Figure 10.7 shows 

the asymptotic optimal volume postings at the start of trading. The left panel 

shows both the buy and sell postings when ¢ = 10-3
, while the right panel shows 

how the postings vary when ¢ varies for the sell side of the book. For </> = 10-3
, 

the agent stops posting limit sell orders when her inventory is at or below -7 

and stops posting limit buy orders when her inventory is at or above +7. As the 

right panel in Figure 10.7 shows, the critical level below which the agent stops 

posting moves towards zero inventory as the inventory penalisation parameter 

¢ increases. With¢= 0.1, the agent will withdraw from the market and simply 

not post any limit orders. 

Interestingly, the agent's posted volume is typically not sufficient to draw her 

inventory back to zero. For example, when</>= 10-3 and her inventory is 10, she 

will post only a sell LO for 7 units, which once filled, will draw her inventory 

down to 3. At this point, she will post a sell LO for 5 units and a buy LO for 3 

units, neither of which if filled pulls her inventory to zero. 

Utility Maximising Market Maker 

In the previous section, the agent was indifferent to uncertainty in the cash value 

of her sales and instead maximised expected profit from making markets subject 

to inventory controls. Some agents, however, may instead wish to penalise un­

certainty in their sales directly. Here, we show that if the agent uses exponential 

utility as a performance measure, her strategy will be identical (up to a constant 

and a re-scaling of parameters) to the one implied by the running penalty studied 

in Section 10.2. 

To this end, suppose the agent sets preferences based on expected utility of ter­

minal cash with exponential utility u(x) = -e-,x. In this case, her performance 
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criteria is 
G8 (t, x, S, q) = lEt,x,S,q [-exp { -1 (xi+ Qi (Sr -a Qi))}]

Using the standard approach, her value function, 

will satisfy the DPE 

G(t, x, S, q) = sup G8 (t, x, S, q),iiEA 

( Ot + ½o-2 8ss) G 
+>..+ sup{e-h:+ r5+ [G(t,x+(S+5+ ),S,q-l)-G] ]_ q>.2.} 

o+ 

+>..- sup { e-h:- r5- [G(t, x -(S -5-), S, q + l) -G] ]_ q<cz} 
r5-

G(t, x, S, 0) 
G(T,x, S, q)

= 0, 
= -e-,x,
= -e-1 (x+q (S-o: q))

.

We leave it as an exercise for the reader to show that ansatz 
G(t, x, S, q) = -e-,(x+q S+g(t,q)) 

leads to the following equation for g(t, q): 
+

+ l- e-,(o++9 (t,q-l)-g(t,q))
Otg - ½o-2 1 q2 +sup >..+ e-h: 0

o+ 1 
_ _ 1 _ e-, ( r5-+9 (t,q+l)-9 (t,q)) 

+sup >..- e-h: 0 
---------- = 0 ,

o- t 

with terminal and boundary conditions 
g(t, 0) = 0, and g(T, q) = -a q2

. 

(10.18) 

From the first order condition, we find that the optimal depths, in feedback 
control form, at which the agent posts are 

. 1 ( 1 ) 8*,+ = -log 1 + + + g(t, q) -g(t, q -l) ,
t K-

- 1 ( 1 ) 8*, = :y log 1 + 1,,- + g(t, q) -g(t, q + l) ,

q > q , 
(10.19) 

q <q. 

This form is very similar to, but slightly differs from, the optimal depth in the 
previous section provided in (10.8). The g function may differ from h and the 
base line level (1,,± )-1 is modified to (R;± )-1 =�log (1 +�).This modification 
can be seen as a risk aversion bias. Indeed, in the limit of zero risk-aversion 

and the result from the previous section is recovered. 



10.4 

10.4 Market Making with Adverse Selection 261 

Substituting this feedback form into (10.18), we now find the non-linear ODE 
�+ + �- -Otg _ 1u2, q2 + _ e-K (g(t,q)-g(t,q-1)) + -=- e-K, (g(t,q)-g(t,q+l)) = 0 ,  

2 K:+ K: 
where 

In the limit of zero risk-aversion�± ,to e-1 >,± = 5'± and once again we recover 
the parameter that appears in (10.9). The above ODE is in fact identical in 
structure to (10.9). Hence, matching parameters by setting 

+1' Ao = e A , and K:o = K: , 

where the subscript O denotes the parameters to use in the base model from 
the previous section, we see that h(t, q) and g(t, q) will coincide and the optimal 
strategies satisfy the relation 

(10.20) 
In other words, with a re-scaling of model parameters, the optimal strategy for 
the utility maximising agent is the same, up to a constant shift, as that of the 
agent who only penalises running inventory. 

In addition to the relationship between the optimal strategies, the value func­
tions can be written in terms of one another. Since h(t, q) = g(t, q), we have 1 

H(t,x,S,q) = -- log(-G(t,x,S,q)) , 
' 

or writing the value function in the original control form, we obtain 
suplEt,x,S,q [xt+Q�(ST -aQT) -¢ r(Q�)2 ds]8EA lo 

=_!log (- sup lEt,x,S,q [- exp { -, (Xt + Q�(ST -a QT))}]) 1 8EA 
(10.21) 

This relationship between the value functions is in fact part of a more general 
result that relates optimisation problems to exponential utility, and optimisation 
problems to penalties ( see the further readings section). 

Market Making with Adverse Selection 

The market place is populated by traders that come to the market for different 
reasons and with varying degrees of information. One of the most important 
risks faced by MMs is adverse selection risk. As discussed in Chapter 2 (see for 
example Sections 2.2 and 2.3), when trading with informed market participants 
the MM is exposed to having a sell limit order (LO) filled right before prices 
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go up, or a buy LO filled before prices go down. In this section we extend the 
market making problem developed in Section 10.2, and present two ways in which 

midprice dynamics incorporate adverse selection effects. In the first model we 
assume that the midprice undergoes jumps in the direction of incoming market 
orders (MOs). In the second specification the midprice's drift has a short-term­

alpha component which is affected by the arrival of MOs. 

Impact of Market Orders on Midprice 

Here we assume that the midprice dynamics follows 

(10.22) 

where M;t- and Mt- are Poisson processes, with intensities .A+ and .>-- respec­

tively, which count the number of buy ( +) and sell ( -) MOs. Every time an MO 

arrives, the midprice will undergo a jump of size E± which are i.i.d. and whose 
distribution functions are p± with finite first moment denoted by c:± 

= JE[E± ]. 

Intuitively, here we can view the dynamics of the midprice as the sum of two 
components. The first component, the Brownian motion on the right-hand side 

of (10.22), captures the changes in the midprice that are due to information flows 
that reach all or some market participants who subsequently update their quotes. 

The other component, the jump process with increments E
+ dM;t- - E- dMt-, 

represents the changes in the midprice caused by the arrival of MOs that have a 
permanent price impact. MOs may come at times when there is enough liquidity 

in the market - hence prices remain unchanged or change by a negligible amount; 
or they may arrive at times when liquidity is thin or the orders are sent by traders 

with superior information, and these trades have a permanent impact on prices. 

The impact of trading on the midprice may also be viewed as the action of 

informed traders. If an informed trader purchases (sells) shares, he will only do 

so if the asset price is known to be going up (down). The resulting increase 
(decrease) of the mid price following informed trading can be approximated by 

an immediate, and permanent, price impact as we model here. 

The rest of the MM's setup is as in Section 10.2, with the only difference 
that here the midprice follows (10.22). For convenience we repeat the MM's 

performance criteria: 

so her value function is 

H(t,x,S,q)= sup H0 (t,x,S,q). 
J±EA 
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Thus the MM's value function satisfies the DPE 
0 = 8tH + ½a2 8ssH -¢q2 

+>.+ sup {e-K+ ,5+ ]_q>q lE [H(t, x + (S + 5+), S + E+, q -l) -HJ 
s+ 

-
+ (1-e-K+s+ ]_q>_q_) lE[H(t,x, S+E+,q)-HJ} (10.23)

+>.- sup { e-K-s- ]_q
<q lE [H(t, x -(S -5-), S -E-, q + 1) -HJ

s-

+ (1 -e-K-s- ]_
q
<q) lE [H(t, x, S -E-, q) -HJ} , 

subject to the terminal condition 
H(T, x, S, q) = x + q (S - aq) , (10.24) 

and where the expectation is over the random variables E± (not over x, S, or q)
and ] is the indicator function. 

Intuitively, the various terms in the HJB equation have the same interpretation 
as the case above in Section 10.2, with a difference in how the value function 
changes when the midprice jumps upon the arrival of an MO. To see this, note 
that the sup over 5+ contains the terms due to the arrival of a market buy order 
(which is filled by a limit sell order). The first term represents the expected 
change in the value function H due to the arrival of an MO which fills the LO 
and the mid price St jumps up by the random amount E+ ; and the second term 
represents the arrival of an MO which does not reach the LO's price level (but 
still causes a random jump in the midprice). Similarly, the sup over 5- contains 
the analogous terms for the market sell orders which are filled by limit buy 
orders. 

To solve the DPE we make the ansatz 
H(t, x, s, q) = X + q s + h(t, q)'

and substituting it into the DPE we obtain 
¢ q2 = 8th+>. +sup {e-K+s+ ( 5+ -c+ + h

q-1 -h
q)} ]_q>q 

� 
-

+>.-s� { e-K-s- ( 5--C + hq+ l -hq)} ]_q
<q

+(1c+ >.+ -c>.-)q , 

(10.25) 

(10.26) 

subject to h(T, q) = -aq2 which allows us to solve for the optimal controls in 
feedback form: 

5+ ,*(t, q) = "'� + c+ -h(t, q -l) + h(t, q), q # g_,

1 5-,*(t,q) = -+E--h(t,q+l)+h(t,q), q/q.
K,-

(10.27a) 

(10.27b) 

The interpretation of the optimal controls in feedback form is very similar 
to what was discussed above. The main difference is that here MOs impact the 
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mid price and this affects the optimal controls in two ways: one is explicitly shown 
in (10.27) in the form of s±, and the other is encoded in the solution of h(t, q). 

It is clear that the MM incorporates the impact of MOs by including the 
expectation of the jump in prices, conditional on an MO arriving, by posting 
LOs which are s± = E[E± ] further away from the midprice. In this way the MM 
trader recovers, on average, the losses she incurs due to adverse selection. 

Moreover, note that the effects of the jumps in the midprice also feed into 
the solution of h(t, q) because the optimal strategy must take into account the 
future arrival of MOs, as these move the prices. Thus, it is important to note 
that the optimal controls derived here are not the controls as given in (10.8) plus 
the recovery of the average losses s± adverse selection costs. This becomes clear 
when looking at the solution of the DPE which we discuss in the next subsection. 

Solving the DPE 

If K:+ = K:-= K:, then write 1 
h(t, q) = - logw(t, q) , 

K, 

and stack w(t, q) into a vector 

w(t)= [w(t,q),w(t,q-1), ... ,w(t,_q:)]'. 

Furthermore, let A denote the (q -11 + 1 )-square matrix whose rows are labelled 
from q to 11 and whose entries are given by 

i = q,

i=q-1 , 
i=q+l, 
otherwise , 

(10.28) 

where 5,± = ,\± e- 1-Kc ± . Then, on substituting h in terms of w in (10.26), we 
find that 

Otw(t) + Aw(t) = 0. 

This matrix ODE can be easily solved to find 

w(t) = eA (T-t) z ' (10.29) 

·2 

where z is a (q - 11 + 1)-dim vector where each component is Zj = e-°'"' 1 
, 

j = q, ... , 11· Note that this solution is similar to the one derived above in Section
10.2 but here we have the impact of the MOs on the midprice dynamics.

As a direct consequence of assuming that the shape of the LOB is symmetric, 
as well as assuming that the rate and impact on midprice of arrival of MOs is 
the same (K:± = K:, ,\± = A, s± = s), the MM's optimal depths on the buy 
side with q shares equals the optimal depth on the sell side with -q shares, 
Jh (t, q) = JP(t, -q). 
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Figure 10.8 The optimal depths as a function of time for various inventory levels and 

T = 30. The remaining model parameters are: .>,± 
= 1, r;;± 

= 100, q = -q = 3,

¢ = 0.02, a = 0.0001, CJ = 0.01, So = 100, E = 0.005. 
-

The Behaviour of the Strategy 

In this section we illustrate several aspects of the behaviour of the optimal strat­
egy as a function of q, ¢, a, >.± , q, and -q. In Figure 10.8 we show the optimal 
sell and buy depths when T = 30, >.± = 1, K;± = 100, 7J. = -q_ = 3, ¢ = 0.02, 
a = 0.0001, CT = 0.01, So = 100, and c = 0.005. The figure shows that when 
q = 0 the optimal buy and sell depths are the same, but when the inventory is 
q -j. 0 the optimal depths are asymmetric ( sell depth is different from buy depth) 
and the fill rates are tilted to induce mean reversion in inventories. For instance, 
if q = 2 the optimal sell depth is lower than the optimal buy depth so that it is 
more likely for the strategy to sell one unit of the asset than to acquire a unit. 

The top panel in Figure 10.9 illustrates further how the fill rates are tilted to 
induce mean reversion to the optimal level of inventory for different levels of the 
running inventory parameter¢= {0.2, 0.1, 0.05}. The other model parameters 
are: A+ = 2, >.- = 1, c = 0.005, K;± = 100, 7J. = -q_ = 10, a = 0.0001, CT = 0.01, 
So = 100. The two bottom panels show that the optimal level of inventory for 
this choice of parameters is to hold a positive amount of shares - this optimal 
point is located where the inventory drift is zero because this is the level at which 
the strategy 'pulls' inventories. 

We discuss in detail the trajectory of inventories when ¢ = 0.05 which is 
depicted by the red circles. For example, if ¢ = 0.05 and the current level of 
inventory is q = 4, the strategy posts asymmetrically so that the buy LO is 
closer to the midprice than the sell LO. In this way it is more likely for inventory 
to increase (positive inventory drift). Similarly, if the current level of inventory is 
q = 6 the optimal strategy is to post sell LOs closer to the midprice than the buy 
LOs so that it is more likely that inventory will be reduced (negative inventory 
drift). The optimal level of inventory is when q = 5 where LOs are symmetrically 
posted around the mid price (buy and sell fill rates are the same). If we follow 
the same line of reasoning, we see that for¢= 0.1, depicted by green circles, the 
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optimal level of inventory is between 2 and 3 units of the asset; and for ¢ = 0.2, 
depicted by blue circles, the optimal level of inventory is approximately 1 unit 
of the asset. 

To further understand these results, it is important to note that the optimal 
level of inventory is positive because the intensity of the arrival of buy MOs 
is A+ = 2 whilst the intensity of the arrival of sell MOs is >,- = l. Thus, 
on average, the midprice is drifting up because every time an MO arrives the 
midprice undergoes a jump (the distribution of the jumps up and down is the 
same), but since buy MOs arrive twice as often as sell MOs, the midprice is 
drifting upward - see the midprice dynamics (10.22). Therefore, it is optimal 
for the strategy to post LOs so that the fill rates are tilted in favour of holding 
positive inventory because it appreciates on average due to the mid price's upward 
trend. 

Short-Term-Alpha and Adverse Selection 

In this section we assume that the mid price of the asset follows 

dSt = ( V + CYt) dt + (J" dWt ' (10.30) 

where the drift is given by a long-term component v and by a short-term com­
ponent CYt which is a predictable zero-mean reverting process. Here the long­
and short-term components are important when devising market making strate­
gies. For example, if the agent is an MM who trades at time scales where she 
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does not 'see' the short-term component Ctt, then her strategy will not only be 
sub-optimal, but will lose money to better informed traders - traders who are 
better informed will pick-off the LOs posted by the less informed MM. On the 
other hand, if the MM has the ability to observe Ctt then she will ensure that on 
average her strategy does not lose money to other traders, and will also use this 
knowledge to execute more speculative trades when Ctt is different from zero as 
we shall show below. 

One can specify the dynamics of the predictable drift Ctt in many ways, de­
pending on the factors that affect the short-term drift of the midprice. Here 
we assume that the MM is operating at high-frequency and short-term-alpha is 
driven by order flow. Thus, we model Ctt as a zero-mean-reverting process which 
jumps by a random amount at the arrival times of MOs. The short-term drift 
jumps up when buy MOs arrive and jumps down when sell MOs arrive. As such, 
Ctt satisfies 

dat = -( Ctt dt + 17 dWt"' + f7+M+ dMt - f�+Nr dMt- ,
t- t-

(10.31) 

where {ft, ft, . . .  } are i.i.d. random variables (independent of all processes) 
representing the size of the sell/buy MO impact on the drift of the midprice. 
Moreover, Wt°' denotes a Brownian motion independent of all other processes, (, 
77 are positive constants, and the MOs arrive at an independent constant rate of 
>-± . 

Now we pose the market making problem where the MM posts only at-the­
touch, as we did in Section 10.2.2. However, here the agent's strategy accounts 
for the influence of short-term-alpha. To this end, let R; E {O, 1} denote whether 
she is posted on the sell side ( +) or buy side (-) of the LOB. Her performance 
criteria is as usual 

and her cash process Xf satisfies the SDE 

dXc 
= 

(S + Q.) dN+,c - (S - Q.) dN-,c 

t t 2 t t 2 t , 

where Nt±,c denote the counting processes for her filled LOs. We further assume 
that, if she is posted in the LOB, when a matching MO arrives her LO is filled 
with probability one. In this case, Nt±,c are controlled doubly stochastic Poisson 
processes with intensity R; >-± . (In Exercise E.10.2 we ask the reader to generalise 
the problem to account for a fill probability less than 1.) 

As before, the set .A of admissible strategies are F-predictable such that the 
agent is not posted on the buy (sell) side if her inventory is equal to the upper 
(lower) inventory constraints q (<_I_) and her value function is denoted by 

H(t, x, S, a, q) = sup Hc(t, x, S, a, q). 
£EA 
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The Resulting DPE Applying the DPP we find that the agent's value function H should satisfy the DPE 
0 = ( Ot + a Bs + ½o-2 8ss - ( aBa + ½TJ2 0aa )H - cpq2 

+>-.+ max {]_q>q lE [H (t, X + (S + % e+) e+ , s, a+ E+ , q -e+ ) -HJ£+E{O,l} -
+ (1-f+]_q>_cr) lE[H(t,x,S,a+E+ ,q)-H]}

+>-.- max {]_q<qlE[H(t,x-(S-%r) e-,s,a-E-,q+f-)-H]£-E{0,1} 
+ (1-r]_q<q) lE[H(t,x,S,a-E-,q+r)-H]},

subject to the terminal condition 
H(T,x,S,a,q) =x+q (S-(% +cpq)) 

Here, the expectations are over the random jump sizes E±. The various terms in the DPE carry the following interpretations: 
e the first line in the DPE represents the drift and diffusive components of the midprice and the short-term-alpha, as well as the alpha's mean-reverting feature, 
111 the maximisation terms represent the agent's control whether to post an LO at-the-touch, 
@ the second line represents the change in value function, if the agent is posted, due to the arrival of an MO which lifts the agent's offer and simultaneously induces a jump in the short-term-alpha, 
@ the third line represents the change in the value function when an MO arrives, but the agent is not posted - in which case only the short-term-alpha jumps, 
e the fourth and fifth lines are for the other side of the book. 

The terminal condition once again suggests the ansatz which splits out the accumulated cash, the book value of the shares which are marked-to-market at the midprice, and the added value from making markets optimally: 
H(t, x, S, a, q) = x + q S + h(t, a, q).
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In this context, h depends on time, inventory, and the short-term-alpha. Substi­tuting the ansatz into the above DPE we find that h satisfies 
0 = ( Gt - ( O:Oa + ½TJ2 Daa) h + a q 

- <p q2 

+A+ . max {] q>q 
lE [£+ % + h(t, a+ E+, q -,e+) -h(t, a+ E+ , q)] }e+E{o,1} -

+->-- max {] q<qlE[r%+h(t,a-C,q+r)-h(t,a-E-,q)]}£-E{O,l} 
+ >-+ lE [h(t, a+ E+, q) -h(t, a, q)]

+->--lE[h(t,a-E-,q)-h(t,a,q)],
subject to the terminal condition 

h(T, a, q) = -q ( % + (;J q) 
The term a q which appears in the first line of the above equation is responsible for making the solution to this problem explicitly dependent on a. If it were absent, then the optimal postings and h function would be independent of a, since the terminal conditions do not depend on a and there would be no source terms in a. However, it is precisely this dependence on a which renders the strategy interesting and allows it to adapt to the adverse selection induced by the arrival of order flow. Finally, the expectation operator lE is with respect to the random jump size E. The form of the optimising terms allows us to characterise the optimal postings in a compact form. When £ = 0 both terms that are being maximised are zero, hence, the optimal postings of the agent can be characterised succinctly as 

g+,*(t q) = ]_' { %+1E[h(t,ce+c+ ,q-l)-h(t,a+E+ ,q)J>O }n{ q>'l_} '
r·*(t, q) = ]_ 

6 _ { 2+E[h(t,a-c ,q+l)-h(t,a-c ,q)J>O }n { q<q}
(10.32) 

These postings are the analog of the optimal postings in (10.17) from subsection 10.2.2 where we investigated how the agent trades when posting only at-the­touch. The key difference here is that the agent knows that when an MO arrives, a jumps up/down and therefore she compares the expected change in the value functions evaluated at a± E± , rather than at a, with the half-spread. 
Features of the Strategy 

For the purpose of focusing solely on the effect of short-term-alpha, we set the running penalty¢= 0, and the remaining model parameters are 
T = 60 sec, q = -g_ = 20, A± = 0.8333, 6. = 0.01, (;J = 0.01, 
TJ = 0.001, ( = 0.5, lE[t] = 0.005 . 
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The choice of .A± ensures that the agent has a maximum inventory equal to 

20% of the expected number of trades. With these parameters, Figure 10.10 

shows how the optimal strategy behaves as a function of time and short-term­

alpha. The agent posts limit buys whenever her inventory is below the surface 

in the left panel, and she posts limit sells whenever her inventory is above the 

surface in the right panel. There are a number of notable features here. 

(i) Due to the symmetry of rates of arrival of MOs, the surfaces are mirror reflec­

tions of one another.

(ii) As maturity approaches her strategy becomes essentially independent of short­

term-alpha, and instead induces her to sell when her inventory is positive and

buy when inventory is negative. Therefore, the optimal strategy attempts to 

close the trading period with zero inventory.

(iii) The optimal strategies become independent of time far from maturity.

(iv) Far from maturity, the agent tends to post symmetrically when short-term­

alpha and inventory are close to zero. As a increases, she is willing to take on

inventory, but keeps posting on both sides, until a becomes quite large, then

she posts only buy LOs. The opposite holds when a decreases.

Next, Figure 10.11 shows a sample path of the agent's posts together with the

short-term-alpha. In the left panel, the green lines demonstrate when (and at 
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Figure 10.11 Sample path of the optimal strategy. Green lines show when and at what 
price the agent is posted. Solid red circles indicate MOs that arrive and hit/lift the 
posted bid/offers. Open red circles indicate MOs that arrive but do not hit/lift the 
agent's posts. Shaded region is the bid-ask spread. 

what price) she is posted, and the solid red circles indicate arrival of MOs that 

fill the agent's posts. In this sample path, her postings change a total of five 

times and her inventory begins at zero ( Q = 0). In regime A she is posted only 

on the buy side since a is large enough to suggest that purchasing the asset is 

worthwhile. As time evolves and she enters regime B, a decays and she begins 

to post symmetrically. A buy MO arrives and lifts her offer (so that Qt = -1), 

short-term-alpha immediately jumps upwards and she removes her sell LO in 

regime C. A sell MO eventually arrives and hits her bid (so that Qt = 0) and 

immediately induces a downward jump in a. Since a in regime D is relatively 

small, and her inventory is zero, she posts symmetrically once again. Eventually 

a buy MO once again lifts her offer (so that Qt = -1) and induces an upward 

jump in a. In regime E she now only posts on the buy side. A sequence of buy 

MOs arrive in this interval inducing more upward jumps in short-term-alpha; 

however, since she has no LO sell posted, her inventory remains one short and 

she remains posted only on the buy side. 
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10.6 

Market Making 

Exercises 

E.10.l Consider the framework developed in subsection 10.2.2, where the MM posts 

only at-the-touch, but assume that when an MO arrives, and the agent is 

posted on the matching side of the LOB, her order is filled with probability 

p < l. Derive the DPE and compute the optimal strategy in feedback form. 

Also, implement the resulting non-linear coupled system of ODEs and show 

how the strategy is altered by the fill probability. 

E.10.2 Consider the framework developed in subsection 10.4.2, where the MM is sub­

ject to adverse selection from active traders, but assume that when an MO 

arrives, and the agent is posted on the matching side of the LOB, her order 

is filled with probability p < l. Derive the DPE and compute the optimal 

strategy in feedback form. Also, implement the resulting non-linear coupled 

system of ODEs and show how the strategy is altered by the fill probability. 
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11.1 

Pairs Trading and Statistical 
Arbitrage Strategies 

Introduction 

The success of many trading algorithms depends on the quality of the predictions 

of stock price movements. Predictions of the price of a single stock are generally 

less accurate than predictions of a portfolio of stocks. A classical strategy which 

makes the most of the predictability of the joint, rather than the individual, 

behaviour of two assets is pairs trading where a portfolio consisting of a linear 

combination of two assets is traded. At the heart of the strategy is how the two 

assets co-move - some of these statistical issues were discussed early in Section 

3.7. As an example, take two assets whose spread, that is the difference between 

their prices, exhibits a marked pattern and deviations from it are temporary. 

Then, pairs trading algorithms profit from betting on the empirical fact that 

spread deviations tend to return to their historical or predictable level. Thus, 

pairs trading fall under the class of strategies sometimes labeled as statisti­

cal arbitrage (or StatArb for short). They are not true arbitrages (which are 

strategies that produce returns in excess of the risk-free rate with zero risk), but 

rather are strategies which bet off of the typical behaviour of asset prices, and 

hence are not risk-free. 
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Figure 11.1 INTC and SMH on November 1, 2013 for the whole day of trading: (left 
panel) midprice relative to mean midprice; (right panel) co-integration factor. The 
dashed line indicates the mean-reverting level, the dash-dotted lines indicate the 2 
standard deviation bands. 
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11.2 

In Figure 11.1 we show an example with Intel Inc. (INTC) and the Market 
Vectors Semiconductor ETF (SMH) for November 1, 2013. The left panel shows 
the midprice paths of INTC and SMH (scaled by the mean midprices), and it 
is clear that the two assets tend to move together and in the same direction. 
Thus, a portfolio consisting of long one asset and short the other will exhibit a 
less volatile and more predictable behaviour than that of the individual assets. 
In this case, since the assets tend to co-move in the same direction, a simple 
pairs trading strategy is to buy the portfolio if its value is less than a threshold 
and sell it if its value is greater than the threshold. This strategy will deliver 
profits as long as the value of the portfolio fluctuates about and reverts to the 
threshold. 

A more sophisticated approach is to look at the co-integration factor· of the 
prices of the two stocks. The right panel of Figure 11.1 shows the path of a 
co-integration factor Ct = A s?NTC) + B sf MH)' where A and Bare estimated
from the data that day to be A"' 0.95 and B"' -0.63, see Section 3.7. Thus, if 
the mean-reverting behaviour we have observed is persistent, then we expect the 
value of a portfolio long 0.95 shares in INTC and short 0.63 shares in SMH to 
hover around the mean of the co-integration factor which is zero. And how can 
we profit from the mean-reverting to zero value of this portfolio? The answer is a 
pairs trading strategy which consists in going long the portfolio when it is 'cheap' 
and then closing the position when the portfolio's value increases, or going short 
the portfolio when it is 'dear' and closing the position when the portfolio's value 
decreases. 

In this chapter we present different trading algorithms based on co-integration 
in the stock price level or in the drift component of a collection of assets. In 
Section 11.2 we show naive approaches which place ad hoc bands around the 
mean-reverting level of the co-integration factor so that the strategy enters a 
position, long or short the portfolio when either band is hit, and then another 
pair of ad hoc bands to unwind the position. In Section 11.3 we develop more 
sophisticated approaches which determine the optimal bands to enter and close a 
position, and in Section 11.4 the drifts of a collection of assets are co-integrated. 

Ad Hoc Bands 

A simple strategy to profit from the co-integration factor's mean-reversion, as 
seen in Figure 11.1, is to place bands which are one standard deviation above and 
below the mean-reverting level, which is zero, and buy one unit of the portfolio 
if the lower band is hit or sell one unit of the portfolio if the upper band is 
hit. Once the strategy has entered into a position, either long or short, the next 
step is to close it. To close the position the strategy waits for the value of the 
portfolio to be within a small interval, say 1/10 standard deviation of the mean­
reverting level of the co-integration factor, and at that point the agent liquidates 
the position. 
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Figure 11.2 A sample path of the 
co-integration factor, the trading position, 
and the book value of the trade, using the 
two standard deviation banded strategy. 
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Figure 11.2 shows three pictures: a simulated sample path of the co-integration 

factor, the path of the inventory of the strategy which opens and closes positions 

a few times during the trading horizon, and finally, the accumulated cash and 

marked-to-market value of the strategy. The strategy starts by waiting for the 

path of the co-integration factor to breach one of the outer bands. At around 

t � 0.3 the path hits the lower outer band so the agent longs the portfolio in 

anticipation of its value appreciating. Then for a short period of time the agent 

holds on to the portfolio whose value fluctuates one-to-one with changes in the 

co-integration factor. The book value of the strategy is given by 

where Xt is the strategy's accumulated cash position, and f3t denotes the units 

of the portfolio held by the strategy, in this case assuming that f3t E { -1, 0, 1}. 

The next step is to wait until the co-integration factor hits the inner band to 

close the position. Here this occurs at around t � 0.4 and the strategy goes back 

to holding zero units of the portfolio and locks in a profit equal to the difference 

between the outer and inner bands. Next, the strategy waits for a little while 

and enters into a short position at around t � 0.51 and liquidates at around 

t � 0.55. Finally, the strategy enters into a long position around t � 0.73 and 

liquidates at around t � 0.83. In all, for this simulated path, the strategy makes 

a profit of three times the outer-inner band spread. 

In the scenario in Figure 11.2, the agent ends the trading horizon with zero 
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Figure 11.3 P&L histograms from 10,000 scenarios using the naive strategy with 

various trigger bands. 

inventory. This is not guaranteed by the strategy, and in fact the strategy may 

have entered a long/short position which never reverted back to the inner band 

by the end of the trading horizon. This would induce potential losses into the 

strategy. The wider the trigger bands, the more likely it is to end with inventory. 

Also, while wider bands have larger profits when the position closes out, the 

con-integration factor makes fewer outer-inner band transitions when the band 

size increases. 

Figure 11.3 shows the profit and loss (P&L) histogram from generating 10,000 

scenarios from the estimated model, computing the co-integration factor and 

placing trades as described above. The figure shows the effect that the band size 

has on the P&L as well as the Sharpe ratio (i.e. the mean P&L divided by the 

standard deviation of the P&L). Notice that the Sharpe ratio first increases as 

the band widens, but then starts decreasing. Also notice that when the band 

size is largest at 2 x std.dev., the distribution is multimodal. In fact, on close 

examination, all of the distributions are multimodal. The reason is because the 

profit from closing out a long/short position equals approximately the band size 
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(since you enter into a long/short position once the factor hits the band and close 
it out near the mean). Hence, the P&L is concentrated near integer multiples of 
the band size and the weight on a given multiple equals the probability of making 
that many round trip trades during the trading horizon. The reason the P &L is 
not concentrated solely on the band is because towards the end of the trading 
horizon, the co-integration factor may not return to the equilibrium value prior 
to trading end. Hence, the trader must close out a position that might make less 
profit than the band size, or in fact may take a loss if the co-integration factor 
moves away from the equilibrium prior to ending the trading horizon. 

Optimal Band Selection 

In the previous section, we introduced a very simple but naive strategy for en­
tering and exiting a long/short position in the co-integration portfolio. Here, we 
determine the optimal strategy to enter and exit by posing the problem as an 
optimal stopping problem. In this context, the trader will make a single round 
trip trade and there is no terminal time horizon. 

First, assume that there is a portfolio with A shares in one asset and B shares 
in another asset so that the portfolio dynamics are given by Et, which is the 
co-integration factor, and we assume that 

de t = "' ( 0 -ct) dt + lT dWt , 
with Wt a standard Brownian motion. The coefficient "' is the rate of mean­
reversion, 0 is the level that the process mean-reverts to, and lT is the volatility 
of the process. To formulate the problem, we first solve for the optimal time at 
which to exit a long position in the portfolio and then use this as the input to 
determine when the agent should optimally enter a long position in the portfolio. 
The agent's performance criteria for exiting the long position is given by 

Hf\t,c) =lEt,s [e-p(T-tl(cT -c)],
where c is a transaction cost for closing out the portfolio, p > 0 is the agent's 
discount factor ( akin to an urgency parameter since increasing p will push the exit 
boundary in towards the long-run level), lEt,s[·] denotes expectation conditional 
on Et = c, and her corresponding value function is 

H+(t,s) = supHf)(t,s) . 

The value function seeks for the optimal stopping time which maximises the 
performance criteria, because once the agent is long the portfolio the objective 
is to unwind the position when its value has increased. 

Next, the agent's performance criteria for entering the long position is given 
by 
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and her corresponding value function is 

G+(t,c) = supG�\t,c). 

The intuition here is that the agent pays E + c for the portfolio, but receives the 
exit option which has value H+(E, T). 

Now, due to the stationary properties of the OU process, the performance 
criteria and, therefore, the value functions do not depend on time. In what follows 
we suppress the time dependence. The dynamic programming principle (DPP) 
implies that the value functions H and G should satisfy the coupled system of 
variational inequalities (VIs) 

max { ( ,C - p) H + ( E) ; ( E - c) - H + ( E)} = 0 , 
max{(£ - p) G+(c); (H+(c) - E - c) -G+(t,c)} = 0 ,  

where ,C is the infinitesimal generator of the co-integration process, i.e. 

L = K, ( 0 - E) 0,: + ½ (7
2 Off . 

The Optimal Exit Problem 

The VI for H is very similar to the value of a perpetual call option, and can be 
o btained by finding the fundamental solutions of the ODE

(£-p)F(c)=O, (1 1.1) 

which we denote F±(c), and write H+(c) = A F+(c)+B F_ (c) in the continuation 
region (c < c*) and H+(c) = (c -c) in the exercise region E > E*. We then need 
to impose the value matching and smooth pasting conditions 

H+(c*) = (c* -c) ,  and 

to solve for the optimal point E* where the agent closes out the position. 
To this end, one can check that 

100 If§ 1 2 

() 1'._l - �(0-e:)u--u F+ E = uK e " 2 du,
0 

F () 1'.-1 + ::"2(0-e:)u-'iu d 
100 lf§K 1 2 

_ E = U K e " u. 
0 

are solutions of (1 1. 1). 
Moreover, it is easy to see (by differentiating under the integral) that F� ( E) > 

0, F� ( E) > 0, F!._ ( E) < 0, and F'!. ( E) > 0, so that F + is strictly positive, increasing 
and convex, while F_ is strictly positive, decreasing and convex. (As a side note, 
these integrals can be written in terms of Whittaker or confluent hypergeometric 
functions.) 

The value function H must vanish as c --+ -oo (since the time to exiting the 
position will tend to infinity and the discount factor will render such strategies 
worthless), hence we must have 
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Figure 11.4 The optimal exit trigger levels (given by the black circles) and 
corresponding value function H+ . 

for some constant A, i.e, B = 0 otherwise H+ would blow up. Applying the value 
matching and smooth pasting conditions, we have 

and 

Taking the ratio of these equations and re-arranging, the optimal level at which 
to close out the position is the unique solution to the non-linear equation 

(11.2) 

and further we have A= ;;(�;). The value function H+ can then be written as

Figure 11.4 shows the value function Hin the continuation regions (the solid 
lines) and exercise regions ( the dashed lines) as the mean-reversion rate 1,, and dis­
count rate p vary. We also set 0 = 0, /J' = 0.5 and c = 0.01. As the mean-reversion 
rate increases, the optimal trigger levels decrease since the co-integration factor 
is drawn more strongly to the mean-reversion level. Similarly, as the discount 
rate p increases, the trigger levels decrease, to draw the stopping time nearer 
since future gains are discounted more. 

The Optimal Entry Problem 

Armed with the optimal exit strategy, we can solve for the optimal entry problem. 
This also amounts to solving for the price of a perpetual American-style option, 
albeit now with the exercise value of H+(c) - c - c rather than a simple call 
payoff. Now, we anticipate that the value function G+ should be decreasing, 
rather than increasing in c. The reason is simple: suppose that c < 0, i.e. the 
co-integration portfolio value is currently less than its long-run level; then as c 
increases, if the agent enters into a long position, she will extract less value from 
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Figure 11.5 The optimal entry trigger level (given by the black circles) and 
corresponding value function G+ . 

0 

it once she exercises at the optimal exit point E*. This value should reduce to 
zero as E tends to infinity, hence, we can write 

for some constant D. The value matching and smooth pasting conditions are 
now 

and 

or solving for C and re-arranging, we have 

(11.3) 

Naturally, we anticipate that E* < E*. Putting these results together, the value
function G can be written as 

F_(E)
G+(c) = F_(E.) 

(H+(E.) - E* - c) ]0e:, + (H+(E) - E - c) ]e:::;e: •.

Figure 11.5 shows the value function G + in the continuation regions ( the solid 
lines) and exercise regions (the dashed lines) as the mean-reversion rate r;, and 
discount rate p vary. We also set 0 = 0, u = 0.5 and c = 0.01. As the mean­
reversion rate increases, the optimal trigger levels increase ( and move towards 
the mean-reversion level) since the co-integration factor is drawn more strongly 
to the mean-reversion level. Similarly, as the discount rate p increases, the trigger 
levels increase, to draw the stopping time nearer since future gains are discounted 
more. 

Comparing Figure 11.5 to 11.4, we observe that even with the same param­
eters, the optimal entry and exit prices are not symmetric around the mean­
reversion level. This is at first a somewhat surprising result. However, since the 
entry and exit times are ordered, the discount factor plays a role in biasing the 
entry point to occur closer to the mean-reversion level, relative to the exit point. 
For example, with r;, = 4, we see the entry price is about -0.47, while the exit 
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price is about 0.51. With "' = 0.5, the asymmetry is even larger as the entry 
price is about -0.97 while the exit price is about 1.1. 

Double-Sided Optimal Entry-Exit 

In the previous sections we studied how an agent would behave if she wishes 
to enter into and then exit from a long position in a co-integration portfolio. 
This ignores the possibility that the agent may instead wish to enter into a 
short position. Here we incorporate a double-sided strategy which considers the 
optimal time in which to enter either a long or short position and then optimally 
exit the position. 

Let the performance criteria for exiting from a long or short position be given 
by 

Hfl(t,c) = lEt ,c: [e-p(T -t) (cT - c)] , 

H�T\t,c) = lEt ,c: [e-p(T -t) (-ET - c)] , 

with the corresponding value functions 

H+(t,c) = supHf\t,c), 
T 

H_(t,c) = supH�T\t,c). 
T 

Naturally, fl+ coincides with H+ from the previous section. We therefore only 
need to focus on computing H _. 

As before, we see that H _ is independent of time and should satisfy the VI 

max{(.C - p)H-(c); (-c - c) - H_(c)} = 0 .  

Clearly, since this is the value of exiting from a short position, the agent's value 
function must be decreasing in c and must vanish as c ---+ oo. Hence, we must 
have 

where c"._ is the trigger level at which the agent will close out the position. 
Applying the value matching and smooth pasting conditions we have 

AF_({�_)= -(c"._ + c), and AF�(c''.'..) = -1 , 

and taking the ratio of these equations and re-arranging, the optimal level at 
which to close out the position is the unique solution to the non-linear equation 

(11.4) 
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In all, the value functions H± can be written as 
F+ (c:) * H+ (c:) = F+ (c:"._) (c+ - c) ]_"<"+ + (c - c) ]_c2'.c':_,

H_(c:) = - :_-(�1) (c:"._ + c) ]_0>0':_ - (c + c) ]_0::;0+

Next, the agent's performance criteria Q(7l(t,c:) for the entry problem can be 
written as 

c(-r)(t,c:) = lEt,c [ e-p(r+-t) (H+ (T+,cr+ ) - Cr+ - c) ]_min(r+,r-)=r+
+ e-p(r_-t) (H-(T-,€7_) + E,-_ - c) ]_min(T+ ,T-)=r-] 

The corresponding VI is 
max { (£ - p) G(c) ; 

(H+ (c:) - E - c) - G(t, c) ; (H-(c:) + E - c) - G(t, c)} = 0 .  
Now there will be two trigger points E± * corresponding to entering the long or 
short position. In this case, in the continuation region, the function G will be a 
linear combination of both F ±, so that 

G(c) = (AF+ (c:) + B F_(c)) ].cE("•+h-) 
+ (H+(c) - E - c) ]_c:Sc,+ + (H-(c) + E - c) ]_c2'.c,-.

The constant coefficients A and B will be determined via value matching and 
smooth pasting at both trigger points. As such we have, 

AF+ (c*+) + B F_(c,+) = H+(c,+) - c,+ - c, 
AF�(c,+ ) + B F'_(c,+) = H�(c:.+ ) - 1 ,  
AF+ (E,_) + B F_(E*-) = H_(E,-) + E,_ - c, 
AF�(E*-) + B F'_(c,-) = H'_(c:*_) + 1 .  

We can solve for A and B in terms of E,± from the value matching conditions 
( first and third equa!ions): 

A= (H+k•+ ) - E•+ - c) F_(E._) - (H-(c,_) + E._ - c) F_(c.+) 
F+(c.+) F_(E*-) - F+(c._) F_(c.+) ' 

B _ (H+(E*+ ) - E•+ - c) F+ (E.- )  - (H_(c:._) + E•- - c) F+(c.+) - F_(c:.+ )F+ (E,-) -F_(E.-)F+ (E.+ ) '
and substitute these expressions back in to determine E,± as roots of the smooth 
pasting conditions (second and fourth equations). To solve for the trigger points, 
it is reasonable to use initial starting points €�

+ 
for E,± implied from the one­

sided trade results of the last section, i.e €�
+ 

"' E. and c�_ "' -E •. 
In Figure 11.6 we show the resulting value functions for the case when 

p = O.Ol , er = 0.5, 0 = l , and c = 0.01 ,
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and we allow the mean-reversion rate"" to vary. There are a few interesting points 

to notice. First, H+ and H_ behave quite differently. Second, the optimal exit 

points are not symmetric around 0. Third, the optimal entry points are in fact 

equal to the corresponding optimal exit point from the opposite portfolio: e.g., 

the optimal entry point for the long portfolio equals the optimal exit point from 

the short position. The table below illustrates this point more clearly. 

exit triggers entry triggers 
K, E+ (long) E"... (short) E,+ (long) E•- (short) 

0.5 1.9537 -0.4060 -0.4060 1.9537 
1.0 1.7460 -0.1815 -0.1815 1.7460 
2.0 1.5744 -0.0740 -0.0740 1.5744 
4.0 1.4367 -0.0410 -0.0410 1.4367 

Co-integrated Log Prices with Short-Term-Alpha 

Another approach to devise trading algorithms that take advantage of structural 

dependencies between assets, is one where the drifts of a collection of assets are 

co-integrated, rather than the prices themselves. 
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Model Setup 

Suppose that we have a collection of risky assets whose vector of prices Y 
(Y? , ... , Yt) o::;t::;T satisfy the coupled system of SD Es 

(11.5) 

where 
n 

O:t = ao + L ai log y;i 
,

i=l 

and w = (Wl' ... ' wr) O<t<T is a vector of independent Brownian motions. 
Focusing on the diffusion terrn above, it is not difficult to see that the instanta-
neous covariance, loosely interpreted as (['. [ d:f , d:,( I Ft] , between assets 'i and 
_j is given by 

n 

nij = L ClikClkj . 
k=l 

Thus, the matrix a whose elements are CJij is the Cholesky decomposition of the 
instantaneous variance-covariance matrix n so that in matrix notation n = cra- 1

. 

We assume that there are no redundant degrees of freedom here, so that a is 
invertible. Furthermore, we show below that O:t acts as a co-integration factor. 
First, note that when O:t = 0 all assets are simply correlated geometric Brownian 
motions with zero drift, and are hence martingales. In general, however, O:t will 
be non-zero representing short-term deviations from martingale behaviour, and 
may also be considered as a 'short-term-alpha' component - see subsection 10.4.2. 

\iVe justify calling O:t a co-integration factor by demonstrating that it is indeed 
a mean-reverting process. First, note that the log-prices satisfy the SDEs 

n 

dlogY/ = (5k O:t -½Dkk) dt + LD"ki dWt

i.
i=l 

Next we compute the differential of O:t as follows: 

and therefore, 

n n n 

= Lak(c5k at -½Dkk) dt+ LakLClkidW/, 
k=l k=l i=l 

dat = '°' ( 0 -O:t) dt + a' a dW t . (11.6) 
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Here, a' represents the transpose of the column vector a where 

a= (a1, ... ,an)', 
n 

"' = - L ak 5k = -/j' a,
k=l 

0 = ��=1 akDkk = l Tr(Af!)
2 ��=l ak 5k 2 /j' a

Here, Tr(·) denotes the trace of the matrix in braces (i.e. the sum of its diagonal 
elements) and A = diag( a) is a diagonal matrix whose diagonal entries are a. To 
ensure that the model does indeed describe a mean-reverting process, as opposed 
to a mean-repelling one, we assume that /j' a< 0. 

From the SDE above, we can see that a mean-reverts at a rate which depends 
on the various strengths of the impact that a has on each asset ( through /j) as 
well as the strength of the log-asset price's contribution to a itself (through a).

The mean-reversion level 0 depends on the ratio of the volatility relative to the 
impact each component has on the drift of the assets. 

Another alternative representation of the model stems from inserting the ex­
pression for O:t directly into the SDE for log Yt. In this case, we have 

so that if we let Zt = log Y k, where the log is interpreted componentwise, then 

dZ t = ( C - B z t) dt + CT dW t '

with 

In this representation, we directly see that the log-prices are a vector-autoregress­
ive model (VAR). Although this representation is in some sense more compact, 
we will find in the next section that the short-term-alpha version of the model is a 
preferable representation for solving the agent's control problem. Note that here, 
B is singular and contains exactly one positive eigenvalue due to the singular 
co-integration factor that we incorporate into the model. If we have m � n 
co-integration factors then there will be in general m positive eigenvalues. 

In contrast to our earlier work on price impact models of trading (see Chapters 
6 and 7), here we assume there is no impact from trading, and instead optimise 
the agent's utility of expected wealth. Thus, let 1r = ( 1rf, 1r;, . . .  , 1rf )o<t<T denote 
the dollar value invested in the riskless ( 1rf) and risky assets ( 1r;, . . .  , 1rf), and 
let x1r = (X;)o�t�T denote the agent's ( controlled) wealth process. With this 
convention, the number of units m} the agent holds in asset k is m} = 1rf /Y/. 
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Hence, the wealth process can be written as 

so that 

n n X1r � k � kvk 
t =6� =6mt 1 t ' k=O k=O 

dX
t
1r = � d( k y:k) - �, "dY:" - � k dY/L , mt t - L mt t - 6 rrt y:k k=O k=O k=l t 
t rr; { 6k O'.t dt +t D"ki dWti } = (n�b) O'.t dt + n�adWt,

where the second equality follows from the usual self-financing constraint - which can be interpreted as the change in the wealth process due to the change in each asset's value, assuming the positions are held fixed over a small interval of time.The third equality is obtained by assuming that the time horizon is short enough that interest rates are zero (so that dYic0 = 0), but long enough that the geometricmodel we employ is required. (It is not too difficult to include a deterministic discount factor and the interested reader is urged to try this out.) The last equality is a rewrite of the equations using vector /matrix notation. To set up the dynamic programming equations below we require the quadratic variation and cross-variations of the processes X and y. First, it is easy to see that 
n n d[Yi ' Yj ] t = L Yici Yicj O"kiO"ljd[W i ' Wj ]t = L YiciYicj 0"1,;Wzkdt = (y� n Yt

)
ij 

dt'k,l=l k=l 
where (y� n Yt)ij 

represents the ijth element of the matrix in the braces. Next, 
n n 

i,j,k,l=l i,k,l=l 
Finally, 

n n 

i,j,l=l j,l=l 
where ( n�n Yt h represents the kth element of the vector in the braces. 
The Agent's Optimisation Problem 

Next, the agent will optimise her dollar value in assets directly, rather than the rate of trading, and has exponential utility u(x) = -e-,x. Her performance criteria is given by 
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where lEt,x,y[·] represents expectation conditional on x; = x and Yt = y. The
agent's value function is as usual 

H(t, x, y) = sup Hrr(t, x, y),1TEA 
where the set of admissible strategies A are those for which

Alternatively, we can enforce the condition that each component of 7r is bounded.
Applying the dynamic programming principle leads to the DPE which the

value function should satisfy:
8tH + ab 1'Dy

H + ½V�
Y

H 

+ s�p { ( 7r 1 8) a 8x
H + ½ ( ?T�O?T) Bxx

H + 1r1D 'Dxy
H } = 0 ,

subject to H(T,x,y) = -e-,x, and where a = a0 + a'logy (the log being
interpreted componentwise) represents the state of the co-integration process,
and the following linear differential operators were introduced to reduce clutter:

'Dy
H = (y 18y,H, ... , yn8ynH)',
!1 " n 

·o ·a 'D
yy

= L"i,j=lY1 ·ijY1 
yi yj H ,

Dxy = (y18xy 'H, ... , yn8xynH)'.
Next, let us obtain the optimal investment in feedback form. For this we focus

on the supremum term and perform a matrix completion of the square. Specifi­
cally, assuming that 8xx

H =/- 0, we write
M = (1r1 8)a8x

H + (1r�01r)8xx
H +1r1DDxy

H 

1.a H {( In ) 2 ,(frn8x
H +n'Dxy

H)}2 :rx 7Ti�L7r + 7T a H xx 
1 {( -1 )' ( -1 ) £'Hn-1£H

}28xx
H 7rt + D £H D ?Tt + 0 .CH - (B

xx
H)2 

where the vector-valued linear operator £ acts on H as follows:

and we have used the fact that fl is symmetric (since it is a variance-covariance
matrix) so that (n- 1)' = (D')- 1 = n- 1. From the above expression we can
immediately identify the optimal investment in feedback control form as

(11. 7) 

From the above matrix completion of the square, we also have the maximum
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term 
,C,' H n- 1 ,e,H 

M = 
-½ 8xxH 

so that upon reinsertion into the DPE, we obtain the following non-linear PDE 
for the value function: 

( 11.8) 

Solving the DPE 
In the classical Merton problem, where the asset prices are geometric Brownian 
motions, the value function for exponential utility has the form -e-,(x+h(t)), 
where h is a deterministic function of time. Here, due to the presence of the 
co-integration factor we expect instead that the value function depends also on 
a combination of the price state variables which equals the co-integration factor. 
That is we expect to be to able to write 

H(t, x, y) = - exp{-, (x + h(t, ao) + L�=l ai logyi)} 
for some function h( t, a), with a = a0 + L�=l ai log yi, and subject to the
terminal condition h(T, a) = 0. Note that differentiation with respect to yk acts
simply on h, specifically 

so that 
ayke-,h(t,ex) =-,a: 8exh(t, a) e-,h(t,ex)' 

y 

ayj ykh(t,a) = -,ayi (:: 8exh(t,a)e-,h(t,ex)) 
Hence, for .7 # k,

while for _j = k,

a.· . -,h(t,ex)
y.1 y, e 

= -'"V (-� a h(t a) e-,h(t,ex) 
+ --5!i_a (a h(t a) e-,h(t,ex))) I (yk)2 ex , (yk)2 ex ex , 

= -, (y
a:)2 (-8exh(t, a)+ ak (8exexh(t, a) - 1 (8exh(t, a))2)) e-,h(t,ex) .
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Putting these two results together we can write 
aka· 8yjyke-"fh(t,a) = - 1'k7 (8aah(t,a)- 1'(8ah(t,a))2 ) e-"fh(t,a)
y y 

, ak 
!Cl h(t ) -"fh(t a) + Ujk 1' (yk)2 ua , a e ' , 

where Ojk is the Kronecker delta which equals 1 if j = k and O otherwise. 
Armed with these results, the various linear differential operators that appear 

in the non-linear PDE (11.8) can be written as follows: 

'DyH = (-1' H) a8ah , 
'D�Y 

= ( -'")' H) L�j=l D,ij ai aj ( Oaah - 1'( Bah )2 ) + ( 1' H) L]=l aj Djj Bah 

= -(1' H) (a'Oa) (Baah - 1'(8a h) 2 ) + (1' H) Tr(AO) Bah , 

and recall that Tr(·) denotes the trace of the matrix (i.e. the sum along its 
diagonal elements), and A= diag(a) is a diagonal matrix with the elements of 
the vector a along the diagonal. Furthermore, 

'DxyH = ( '")'2 H) a Bah , 
CH = ( -1' H) o a+ (1'2 H) Oa Bah . 

Inserting these expression into the PDE (11.8), allows us to write 

0 =(-1'H)8t h+ (-1'H) (o'a)a8ah 

+ ½ ((-1' H) (a'Oa) (Baah - ,'(8ah)2 ) + (1' H) Tr(A 0) Oah)

1 ((-1' H) oa + (1'2 H) Oa 8ah) 1 

n-
1 ((-1' H) 1fo + (1'2 H) Oa8ah) 

- 2 1'2 H 
At this point, there are three important simplifications. First, cancelling -'")' H 
in all terms, we find that 

0 =8t h+ (o'a) a Bah 

+ ½ ((a'Oa) (8aah-'")'(Oah)2 ) -Tr(AO) Oah)
1 / 1 + - (oa -'")'Oa8ah) n- (oa - 1'0a8ah) .2'")' 

Next, expanding the third line, we have 

(oa-'")'Oa8ah)' n-
1 (oa -'")'O a8ah) 

= 0 1 n,-l O a2 - 2 '")' 01 aa8ah + '")'2 a' na (8a h) 2
) 

(11.9) 

so that upon substituting into the previous expression there are two important 
cancellations: 

(i) the non-linear terms containing (8a h) 2 from the expansion above and the
second line in (11.9) cancel one another;

(ii) the terms 0 1 a a Bah from the first line in (11.9) and the above expansion also
cancel.
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Putting these observations together we then find that h satisfies a very simple 
linear PDE: 

1 ( ) 1 ( , <>' fM 2 8th- 2TrAO 8c,h+2 af!a)ac,c,h+--a =0,
2')' 

subject to h(T, a) = 0. 

(11.10) 

Returning to the optimal investment (11.7) in the assets, the ansatz for the 
value function H = - exp{-,'(x + h(t, a))} allows us to write 

-,' H (n- 1 8) a +  ('y2 H) a 8c,h 
1' 2 H 

7r* =

-(0- 1 8)a +'Ya8c,h 
')' 

= f (n- 1 8) a - a ac,h. (11.11) 

Let us recall that the optimal investment in the classical Merton problem is 
fn- 1(v - r) where r is the risk-free rate and v is (in the classical Merton 
problem) the drift of the GBMs that drives the asset prices. The first term of the 
above expression is quite similar, since here r = 0, and the drift of the assets are 
<> at - here, however, the drift is stochastic and hence the Merton solution cannot 
be applied directly. The optimal investment scales with the co-integration factor. 
Moreover, the optimal investment is perturbed from the Merton solution by the 
second term. In the corning sections we will see precisely what this contribution 
is to the investment policy. 

First, from (11.10), we can see that the solution to h must be quadratic in a. 
Indeed in the next section we construct an explicit probabilistic representation 
for h(t, a) and also characterise the value function in terms of a risk-neutral 
probability measure which makes the quadratic dependence explicit. Given that 
h is quadratic in a, we also see that the optimal dollar invested in each asset 1r* 

will be linear in a. Thus, the agent reacts to the co-integration factor in at most 
a linear fashion, but the size of the investment will vary with time. 

A Probabilistic Interpretation 

This surprisingly simple PDE (11.10) has an interesting probabilistic interpre­
tation. First, consider the probability measure change induced by a vector of 
market price of risk At, which induces a new measure JP'* through the Radon­
Nikodyrn derivative 

dlP'* - { i rT 11 112 rT ' 
} dlP' 

- exp -2 Jo As ds - Jo As dWs .

Girsanov's Theorem implies that the stochastic processes 

w; = - Ji As ds + Wt 

are independent JP'* -Brownian motions. Let us choose At such that the drift of 
the traded assets Y t are martingales, i.e. let us find the measure transformation 
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which produces the risk-neutral measure. To this end, rewrite the SDE as 
dY/ = (}k Yick O:t dt + L7= l (Jk i Yick dWi 

= ( Ok O:t + L;= l (JkiAD Yick dt + L:'=1 (Jki Yick dW/i · 
The martingale condition requires that 

L <Jki A� = -ok at , k = l, . . .  , n, {==} rr At = -15 at . 
i= l 

Therefore, since rr is invertible by assumption, we have 
(11.12) 

At this point, we have found the probability measure JP'* which renders the 
traded assets martingales. That is, we have found the risk-neutral measure. Next, 
we can ask what the dynamics of the co-integration factor are in terms of the 
risk-neutral Brownian motions. Hence, from (11.6) we have 

so that 

dat = (-½ Tr(A 0) + (a' J)at) dt + a'adW t 

(-½ Tr(A 0) + (a' c5)at) dt + a' rr (,\t dt + dW;) 
(-½ Tr(A 0) + (a' J)at + a' a At) dt + a' a dW;, 

dat = -½Tr(AD)dt+a'a dW;. (11.13) 
The last equality follows from (11.12). Surprisingly, although O:t is mean-reverting 
in the real-world lP'-measure, it is a Brownian motion under the risk-neutral JP'* -
measure. 

Let us now return to the PDE (11.10). It can be re-written in the form 
c5' no (8t + £*,°') h + -- a2 = 0 ,  

21 

subject to h(T, a) = 0, where £*,°' is the !P'*-infinitesimal generator of O:t and 
therefore, applying a Feynman-Kac formula we see that h(t, a) can be expressed 
as the following expectation: 

h(t, a)= [o'nli J,T a2 ds]2')' t s , (11.14) 
where denotes JP'* -expectation given that O:t = a. Putting this expression 
for h back into the value function we then have the following relationship: 

sup IEt.x,y [- exp (-1 X¥)] 
1rEA 

= - exp ( -1 X - ½ c5' n () IE;,x,y [it a; ds]) 
(11.15) 

The future expectation of integrated a; determines the incremental value of 
trading on this co-integrated collection of assets. The strength of the contribution 
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11.4.4 

increases with volatility (through 0) as well as through the strength that o: has
on each asset (through t:5).
Explicit Construction of the Optimal Investment Strategy
Based on the representation from the previous section, we can construct an
explicit formula for h(t, o:). In particular, we have that

h(t, o:) = JE;,a [ '\�" It a; ds]

= 8��8 lE* [It ( 0: - ½ Tr(A O)(s -t) + va'Oa (B; - B;)) 
2 

ds]

where we have introduced the process B; = v �..-.. a' a Wt which is a standard
aua IP'* -Brownian motion. Hence, 

h(t, o:) = 8
��

8 lE* [It { (o: -½ Tr(A O)(s - t))2 

+2 (o:-½Tr(AO)(s-t))va'f!a(B;-B;)
+(a'Oa) (B; -B;) 2 } ds]

= 8��8 {- 3 Tr(A !1) [ ( 0: - ½ Tr ( A fl) T) 3 
- o:3

] + ½ ( a' Oa) T
2 } , 

where T = T -t. The fourth equality follows by using Fubini to interchange the
integral and expectation, in which case the second term in the third equation
vanishes identically, and in the third term of the third equation we use JE* [ ( B; -

B;) 2 ] = (s -t).
In all, we see that h(t, o:) is quadratic in o:. Consequently, the optimal invest­

ment from (11.11) takes on the explicit form
7r* = � { (n- 1 <5) o: + �(�t) [ (o: -½ Tr(AO) T)

2 

- 0:
2

] a}
= � { ( 0- 1 '5) o: + �(�t) [½ Tr(AO) TO:+¼ (Tr(A0) ) 2 T2 ] a} ,

so that
(11.16)

As a reminder, the first term is what you would expect from the classical Merton
problem since t5 a are the drifts of the assets. The second term proportional
to a represents the correction due to co-integration. As the above expression
shows, the perturbation around the 'Merton' portfolio decays as the terminal
date approaches. That is, the agent ignores the short-term-alpha effect when
trading is coming to a close.

Numerical Experiments 

In this section we showcase how the strategy behaves in a three-asset case. For
this purpose the following modelling parameters are chosen:

t5 = (1 1 O) ', a=(-101)', ao = 0,
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Figure 11.7 A single sample path of the co-integrated asset prices and the resulting 

optimal strategy. 

and 

(
0.2000 0 

a-= 0.0375 0.1452 
0.0250 0.0039 

( 
0.04 

0 = 0.0075 
0.005 

0.0075 
0.0225 
0.0015 

0.005
) 0.0015 . 

0.01 

The volatilities of the three assets can be read off of the diagonal of O to be 
{2%, 1.5%, 1%}, and the corresponding correlation matrix pis 

(
1.00 

p = 0.25 
0.25 

0.25 
1.00 
0.10 

0.25
) 0.10 

1.00 

Finally, we start the asset prices at the following levels: 

1';;1 
= 11.10, 1';;2 

= 12.00 , 1';;3 
= 11.00 . 

The particular choice of the co-integration vector a implies that only the first 
and third assets feed into the co-integration factor. Yet, the strength term d 
implies that only the first and second asset's drift are affected by that factor. 

In Figure 11.7 we show a sample path of the asset prices, co-integration fac­
tor, optimal strategy, and agent's wealth process. In Figure 11.8 we show the 
histogram of the P&L. 
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12.1 

12.2 

Order Imbalance 

Introduction 

In many of the previous chapters, the agent made trading decisions based on 
three key ingredients: (i) the midprice, (ii) the arrival of incoming market orders 
(MOs), and (iii) the agent's own inventory. In some cases, these state variables 
were supplemented by observables such as order flow (see, e.g., Section 7.3 and 
Chapter 9), short-term-alpha in 10.4.2, and co-integration of prices in Chapter 

11, among others. In this chapter, we investigate the role that another important 

state variable plays: the quoted volume order imbalance ( or simply order imbal­

ance). This is a measure of the buy versus sell pressure on an asset and, as we 

will see, it contains predictive power on both the arrival rates of MOs, and the 

direction and size of future price movements. Hence, it is an important factor to 
include when designing trading algorithms. 

The chapter is organised as follows: in Section 12.2 we define order imbalance, 
and show using NASDAQ data how it typically evolves at an intraday level. The 
section also introduces three Markov Chain models for order imbalance, arrival 
of MOs and price jumps, and develops maximum likelihood estimators of the 

model parameters. Section 12.3 provides a brief discussion of the daily features 
exhibited by order imbalance using functional data analysis. Finally, Section 12.4 
provides an analysis of the optimal liquidation problem, using limit orders (LOs) 

only, in the presence of order imbalance. 

intraday Features 

We define limit order imbalance Pt at time t as the ratio of the quoted volume 
imbalance to the total quoted volume, i.e. 

V/� Vt 
Pt = V:b + v:a '

t t 

where V/ denotes the volume of LOs posted on the bid side of the LOB and v;,a 

denotes the volume of LOs posted on the ask side of the LOB. For simplicity, 
from now on we refer to the LO imbalance as order imbalance. The volumes 

may be computed by looking only at-the-touch, the best n-levels of the LOB, 
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Figure 12.1 Order imbalance for ORCL on 
Nov 1, 2013. In the bottom panels, blue 
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or volume that is posted within n ticks of the midprice. All of these are viable 

measures, and it is up to the agent to decide which is best in a given situation. 
Some studies suggest that the best trade-off between predictive power versus 

model complexity is strongest using only the touch. For simplicity we use only 
this information for our estimations, although nothing in the model dictates this 

restriction. 

Figure 12.1 shows order imbalance for Oracle Corporation (ORCL) computed 

from the Nov 1, 2013 event data (NASDAQ exchange) sampled every millisecond 

and averaged over lOOms, and as mentioned above, using volume posted only at­

the-touch. The bottom left and right panels show the imbalance for two-minute 

periods starting at 10:00am and 10:15am together with 5 regimes of imbalance 

chosen to be equally spaced along the points Pt E {-1, -0.6, -0.2, 0.2, 0.6, l}. 

The top panel shows the order imbalance for the entire day and illustrates the 

significant fluctuations in order imbalance throughout the day. When imbalance 

is placed into bins, the fluctuation rates are somewhat mitigated. Figure 12.2 
shows some properties of MO arrivals. The left panel shows the percentage of 

MOs which are buys/sells/total when order imbalance is in a particular regime 

- so that, e.g., when buy MOs arrive, 40.1 percent of the time order imbalance

is in regime 4. The right panel shows the arrival rate (per second) of MOs by

normalising the number of MOs that arrive in a regime according to the time

that order imbalance spends in that regime. It appears that the arrival of buy

MOs is biased towards times when order imbalance is high, and similarly sell
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Figure 12.2 MO arrival for ORCL on Nov 1, 2013 conditional on imbalance regimes. 
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Figure 12.3 Auto-correlation of imbalance (left panel) and correlation of order 

imbalance with price changes (right panel) for ORCL on Nov 1, 2013. 

2000 

MOs arrive more frequently when order imbalance is negative. The total arrival 

rates exhibit a U-shaped pattern as a function of order imbalance, indicating 
that MOs tend to arrive more frequently when the LOB is bid-heavy (p close to 

1) or ask-heavy (p close to -1). We explore these features more deeply later in

this chapter.

Figure 12.3 shows the auto-correlation function (ACF) over 2,000 lags which 

equals 200 secs, as well as the correlation between imbalance and the price change 

( conditional on a price change occurring) over the next n-intervals. As the plot 

shows, there is a significant amount of auto-correlation in order imbalance. More­

over, order imbalance is positively correlated with price changes. This correlation 

naturally becomes less significant as the lag increases. 

A Markov Chain Model 

We provide a simple Markov chain model for order imbalance and show how 

to calibrate it to market data. Let Zt E {1, ... , K} denote the order imbalance 
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regime observed at time t, here taken to be discrete t E {1, 2, ... , T}. We assume that order imbalance is described by a Markov chain with transition matrix A. 
Maximum Likelihood Estimator Let z1, z2, ... , zy denote a sequence of observations from the Markov chain Z.Below we show that the maximum likelihood estimator (MLE) of the elements of the transition matrix A is given by 

(12.1) 
where nij = LZ=

2 
]_{Z,-i=i, z,=j}, i.e. nij is the number of observed transitions from regime i to regime j.To demonstrate this result, we first write the likelihood L of the sequence of observations as 

K 

II i,j=l 
The second equality follows from collecting like terms together. Next, note that the transition matrix is constrained so that Aij 2". 0 and the sum along each row equals 1, i.e. "'I:,�

1 
Aij = l for i = 1, ... , K. Next, we wish to maximise L, or equivalently, the log-likelihood (log L) subject to this summation constraint ( the positivity constraint will be automatic). To this end, we introduce the Lagrange multipliers, 11, ... ,rK and aim to maximise 

f(A,-y) � !ogL I t 1, (t A,, - l)

� t "•i log A;, + t ,, (t A,5 - 1)
The first order conditions, DA;jJ(A,1) = 0 and 8,J(A,1) = 0, imply that the MLE estimator A of A satisfies 

nij 
o = -,- +,i,

Aij 

K 

o = I: Aij - 1 .j=l 

(12.2a) 
(12.2b) 

From (12.2a) we can write the Lagrange multiplier in terms of nij and Aij as 
(12.3) 

Next, multiplying (12.2a) by Aij and then summing over j from 1 to K implies 
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that 

where in the second equality we use the constraint (12.2b) to write �-� 1 
A.;7 = 1

and in the third equality we use (12.3) to eliminate the Lagrange multiplier. 
Solving for .A.;j provides us with the result in (12.1). 

Estimation from Data 
For the model estimation from data we use ORCL on Nov 1, 2013 with order 
balance measured every millisecond (volume at-the-touch) and averaged over the 
last lOOms. We then bin the order imbalance into 5 equally spaced regimes, and 
find the following estimator for the transition matrix: 

(

0046 0.050 0.003 0.000 0 000

) 
0.006 0.973 0.020 0.001 0.000 

A= 0.000 0.009 0.979 0.012 0.000 (12.4) 
0.000 0.000 0.013 0.980 0.008 
0.000 0.000 0.001 0.023 0.976 

The estimated transition rates indicate that the chain tends to move only be­
tween its neighbours. Moreover, for this specific asset and day, the slightly bid­
heavy regime 4 appears to be the "stickiest" since the probability of remaining 
there is highest. There also appears to be transition pressure towards cycling 
back and forth between the neutral (3) and slightly bid-heavy ( 4) regimes -­
because .A.34 > .A.32 and .A.43 > .A.45. 

From Discrete- to Continuous-Time Markov Models 
In the previous section, we focused on a discrete-time Markov model for order 
imbalance. When developing stochastic models for algorithmic trading, however, 
it proves more useful to utilise continuous-time Markov models because we are 
using the tools of continuous-time stochastic control. Indeed, there is a simple 
transformation that transforms the discrete-time model into a continuous-time 
one. First, recall that a continuous-time Markov model Z = { Zt}o<t<T with Zt E 

{l, . . .  , K}, has a generator matrix B which produces transition probabilities 

lP'(Zt = j I Zs
= i) = [exp{B (t - s)}];j , t ?. s' 

where the exponential here is a matrix exponential and [·]ij denotes the ifh 

element of the matrix in the braces. Also recall that the generator matrix must 
satisfy the conditions 

B;J ?. 0 , \/ i /c j , and 
K 

L B;j = 0 ,  
i=l 
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12.2.2 

so that the diagonal elements equal negative the sum of the off diagonal elements. 
The absolute value of the diagonal elements represent the rate of flow out of that 
regime. 

The continuous-time model can then be estimated from the discrete-time one 
by matching the estimated transition probability in the discrete setting from the 
previous section. Specifically, we set 

exp{B �T} = A =} 
A 

1 
A 

B = t::,.T logA. 

In the above, the logarithm is to be interpreted as a matrix logarithm and �T is 
the time between observations in the discrete Markov chain. In the next section 
we show a more formal approach to the estimation which also takes into account 
the arrival of MOs. 

For the lOOms transition rate matrix which we estimated at the start of the 
previous subsection (see (12.4)), the corresponding generator matrix is 

r-0553

0.521 0.030 
0.068 -0.279 0.205

i3 = 0.001 0.089 -0.219
0.000 0.002 0.128 
0.000 0.001 0.008 

0.002 
0.005 
0.128 

-0.209
0.235 

0 000 l 
0.001 
0.001 . 
0.078 

-0.244

(12.5) 

Focusing on the diagonal elements, which represent minus one times the sum 
of the rate of transition out of the corresponding regime, we see that the chain 
tends to flow out of the ask-heavy regimes towards the slightly bid-heavy regime. 
Once there, it tends to flow back to the neutral regime. 

Jointly Modelling Market Orders 

We extend the continuous-time Markov model of the previous section to include 
the modelling of MO arrivals. We also note that the continuous-time approx­
imation above has one important flaw - the discrete-time model is estimated 
from average order imbalance over a lOOms window, therefore a continuous-time 
limit based on this estimate will not account properly for the interdependence 
of overlapping time windows. 

To address these issues, we assume that, conditional on being within a given 
regime k, market buy and sell orders arrive independently at the arrival times of 
independent Poisson processes with rates >..t and x;;, respectively. That is, the 
counting processes ]VJ± = { Ml}o::;t::;r of market buy (sell) orders are doubly 
stochastic Poisson processes with activity rates Af = >.t, where >.t, >.�, . . .  , X} 
denote the activity rates in the various regimes. In addition, the order imbalance 
will be observed at every event, and the inter-arrival times of the events will play 
a role. 

Referring to Figure 12.4, let T1, T2, ... , TN denote the switching times of the 
regimes, i.e. the times at which the continuous-time Markov chain Z changes 
(with generator matrix denoted by B). We call the time interval [Tr , Tr+1) the 
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Figure 12.4 Snapshot of the 

event timeline for computing the 

within epoch likelihood. 

rth epoch (r = 0, ... , N) with TN+l = T the end of the observation time horizon. 
Next, let {br,1, br,2, ... , br,mr } and {sr,1, Sr,2, ... , Sr,nr } denote the arrival times 
of buy and sell MOs, respectively, during the rth epoch. Then, since arrivals 
within an epoch of buys and sells are i.i.d., the likelihood within the rth-epoch
is 

buy arrivals 

no more buys 

sell arrivals 

Here, we set br,o = Sr,O = Tr for notational convenience. In the first equality, the 
first (second) line represents the likelihood of the sequence of buy (sell) orders. 
In each line, the first to second last terms, of the form .A� e->-tr (tr , i -tr, t -il, 
represent the survival since the last order arrival, and then th� arrival of an MO 
at time tr. The last term in each line represents the probability that no event 
arrives between the last buy (sell) MO and the time at which the Markov chain 
switches. The second equality is obtained by re-arranging the terms and letting 
Mf denote the number of buy and sell MOs which arrive in the rth-epoch.

The full likelihood is obtained by sewing together the within epoch likelihoods 
with the transition probability and the arrival of orders that occur after the last 
regime change, but before the sample ends. In all, 

L = Lo x [eBTi ] z z x [BJ z z x
TQ Tl TQ Tl 

Recall that To = 0 and TN+l = T is the time of the last MO (buy or sell) 
after the last regime change. We in fact exclude the data from this last regime 
change to avoid some issues with censored data - which render the maximisation 
analytically intractable, although it is still amenable to numerical methods. Next, 
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recall that a continuous-time l\llarkov chain generator matrix has rows which sum to zero, and the non-diagonal elements are non-negative. Hence, we write the generator matrix B as 
-Ai A12 A13 A1K 

A21 -A2 A23 A2K B= A31 A32 -A3 A3K 

AK] AK2 Aro -AK 

where A; := I:f#i A;j represents the total rate of outflow from regime i. Thesurvival probability of the time Ti at which the chain transitions out of regime i is given by 
IP'(T; > t I Zs= i) = e-A, (t-s), s � t' 

and conditional on a transition occurring, the chain will switch from regime i to regime j with probability 
Aij [P];j = A; , for i c/ j .  

Using this representation for the transition probability and expanding the likelihood above, we have 
N { JVI+ 

L = II (Ai .. ) 
n-1 

Tn-1 

n=l 

Next, we re-arrange the terms by collecting like regimes and like transitions to obtain 
L = (}] ( At) l\!Ii e->-t 6.-r, x ( A;-) e->.;- 67')

X Ut ([P],, ) x (}] At ,-A, �s,) 

Here, NI{ denotes the number of market buy (sell) orders that occur while the chain is in regime i, !::,,Ti denotes the total time the Markov chain spent in regime i, and nij denotes the number of times the chain switches from i to j. Since the times T1, T2, ... , TN are by definition the times at which the Markovchain switches regime, we must have n;; = 0 and so [P]ii = 0. Finally, we optimise the likelihood over the parameters A;, P and Ai . Each of these optimisations can be carried out independently, and follow along the lines 
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outlined in the earlier subsection. Here, we simply record the final results for the 
MLE estimators of the model parameters: 

A± 
A± M

i 

.\ =�,
UTi 

and (12.6) 

from which we find that the MLE estimate of the off-diagonal elements of the 
generator matrix is 

The above results are similar to the simple Markov chain model, but now we 
also account for the regime specific arrival rate of market buy and sell orders. 

Applying the MLE procedure to the ORCL data on Nov 1, 2013, using the 
imbalance at every event time, we obtain the following estimates (with time 
measured in seconds): 

(0074) (085] 
0.042 0.123 

5.+ = 0.037 , 5.- = 0.048 , 
0.074 0.027 
0.216 0.025 

c34 

2.34 0.59 0.28 013)
0.31 -0.93 0.54 0.01 0.07

and i3 = 0.01 0.26 -0.58 0.30 0.02 (12.7) 
0.03 0.01 0.29 -0.56 0.23
0.03 0.03 0.09 0.74 -0.88

Comparing the estimate (12.7) with the estimate (12.5) we see some difference 
in the overall rates. This difference results from the fact that (12.5) is estimated 
using the average order imbalance over the previous lOOms, while (12. 7) is esti­
mated using the instantaneous order imbalance. Nonetheless, the chain has the 
same tendency to move to the slightly bid-heavy regime 4. The estimated arrival 
rates show a clear bias towards sell MOs on this day, with a total sell arrival rate 
of 1.079 per second versus a total buy arrival rate of 0.444 per second. Interest­
ingly, although the overall day was a sell-heavy one, if we condition on being in 
a bid-heavy regime (4 or 5), the arrival rate of buy MOs is significantly larger 
than that of sell MOs. This observation indicates that the order imbalance is 
indeed a good predictor of order flow. 

Modelling Price Jumps 

Up to this point, we have been concerned with understanding how order imbal­
ance influences the rate of arrival of MOs. An important and interesting related 
question is to determine the distribution of price changes conditional on the ar­
rival of buy and sell MOs and the order imbalance regime prior to the arrival of 
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that MO. To answer this question, we record the time of each MO and compute 
the midprice change ls afterwards, conditional on the order imbalance regime 
when split into 5 equal bins with knots at {-1, -¾, -¼, +¼, +¾, +1 }, as in the 
previous section. The corresponding states and imbalance p is given by 

1
-

2
, 

-1 

Z= 0
, 

1, 

2, 

p E [-1, -¾], 
PE [-l _l)

5' 5 ' 

pE [-¼,+¼), 
p E [+¼,+¾), 
p E [+¾, +l], 

sell-heavy, 
sell-bias, 
neutral, 
buy-bias, 
buy-heavy . 

Table 12.1 shows the price change distribution conditional on the order imbal­
ance regimes. 

Buy Market Orders 

Z= -2 Z= -1 Z=O Z = +1 Z=+2 

>,+ 0.074 0.042 0.037 0.075 0.216 

-300
-0.02
-0.01 0.05 0.01 0.01 

Ct) 
0.00 1.00 0.86 0.77 0.78 0.70 <I 

0.01 0.09 0.21 0.20 0.28 
0.02 0.02 
0.03

Sell Market Orders 

Z= -2 Z= -1 Z =0 Z = +1 Z= +2 

>.- 0.856 0.123 0.048 0.027 0.025 

-300 0.01 0.03 
-0.02 0.01 0.01 0.02 0.01 
-0.01 0.21 0.36 0.36 0.28 0.21 

Ct) 
0.00 0.79 0.64 0.63 0.69 0.75 <I 

0.01
0.02
0.03

Table 12.1 Price change distribution conditional on the order imbalance regimes for 
ORCL on Nov 1, 2013 (opening price is $33.72), ask-heavy Z = -2, ask-bias Z = -1, 
neutral Z = 0, bid-bias Z = +1, bid-heavy Z = +2. 
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Figure 12.5 Order imbalance for ORCL using 2013 data showing the first three 
functional principle components. 

Daily Features 

In the previous section, we focused on intraday features of order imbalance. In a 

trading environment, an understanding of daily features can assist in augmenting 

and tweaking the intraday model to reflect historical overall behaviour. To see 

these daily effects, Figure 12.5 shows order imbalance for Oracle Corporation 

(ORCL) from the entire 2013 event data. We place order imbalance into ten 

equal buckets from -1 to + 1 and compute the rate of arrival of buy and sell MOs 

together, conditional on an order imbalance bucket. These estimates are shown in 

the top panels. In the bottom panels, we show the rate of arrival of only buy MOs. 

The thick black, green and yellow lines are the mean curves, obtained through 

a functional regression using Legendre polynomials, and the ± one standard 

deviation show the impact of the first three functional principle components. 

(We do not go into the details of how the functional principle components are 

obtained here.) 

It is useful, however, to describe how the mean curves are obtained using 

functional data analysis (FDA) techniques. FDA takes the view that a sequence 

of observations is a realisation of a random draw from a function space, but 

observed discretely (in this case at the order imbalance buckets) with error. 

Each new collection of observations is a new random draw from this function 

space. In our present context, we view the trade activity µ(p) as being samples 



306 Order Imbalance 

12.4 

from a function space given by 

N 

µ(p) = L Din Pn(P), 
n=] 

p E [0, 1], 

where Pn(x) are the (normalised) Legendre polynomials of order O through N 
and O'.n are viewed as random variables on a probability space (0, IP', F). The 
observed imbalance activity /Lt (p) on a given day is then viewed as a sample 
realisation of the random variables O:n. In this sense, we see that µ, is in fact 
a random field, since it is parameterised continuously by p, but it is projected 
onto a finite dimensional space through the N random coefficients O:n. 

At the end of each trading day, we regress the activity as a function of im­
balance ( using the middle of each bucket) onto the Legendre polynomials, and 
determine an estimate of the realisation a of { O'.n : n = l, ... , N} on that day: 

Here, µt,m denotes the sample activity on day t in imbalance bin m, and Pm 

denotes the imbalance in the middle of regime m. In this manner, we obtain a 
time series of coefficients O'.t covering the year. 

The mean curve is obtained by computing the average of these daily estimates: 
ak = '¥' I:.,'{'=

1 
&k,t, substituting that average into (12.3) to obtain the mean curve 

N 

µ(p) = I: ak Pn(P), p E [O, 1]. 
n=l 

There are many other useful objects one can compute using FDA, such as the 
functional principle components, the estimate of the distribution of shape of the 
curve for the remainder of the day given what has been observed so far, and 
so on. For discussions on this and other tools that FDA provides we refer the 
interested reader to consult Ramsay & Silverman ( 2 010). 

Optimal liquidation 

In this section we analyse how to incorporate order flow information in the 
optimal liquidation problem. Recall that in the optimal liquidation problem, the 
agent's goal is to liquidate all shares by the end of the trading horizon. In this 
section, we pose the problem for an agent who uses only LOs to make her decision 
and is allowed to post her order at an arbitrary depth c5 in the LO book (LOB). 
In particular, we use the same approach as in Section 8.2 for posing the agent's 
optimisation problem. 

As in Section 8.2, the agent posts LOs at a depth c5 = (c5t)o<t<T from the 
midprice S = (St)o<t<T· As such, the agent's controlled cash process X0 

=



(Xf)o<t<T satisfies the SDE 
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where N15 
= (Nf )09�T is the controlled counting process which counts the 

agent's filled LOs posted at depth 5t at time t - assumed to be F-predictable. 
To keep the framework simple, we assume the agent's orders are filled at a rate 
Ai'15 = e-" 15, >..t, where >..± 

= (>..;)o�t�T represent the rate of arrival of buy 
(sell) MOs from other agents. In this manner, the deeper the agent posts in the 
book, the less likely it is that her order is filled. More specifically, conditional 
on an MO arriving, the probability that her order is filled when she is posted 
at depth 5t is e-"15'. We further let JvJ± 

= (lvft±)o<t<T denote the counting 
processes for other agent's buy (sell) MOs, with intensities >..± . 

Now we proceed by developing a model that incorporates the empirical ob­
servations described in the previous section, and in particular we jointly model 
the rate of arrival of MOs, price movements, and order imbalance. To this end, 
the midprice process should have jumps that are biased upwards when order 
imbalance is near + 1, it should have jumps that are biased downwards when 
order imbalance is near -1, and it should have symmetric jumps when order 
imbalance is near zero. 

Moreover, arrival rates of MOs should also be biased in a similar fashion. For 
this purpose, we will use the Markov chain Z = (Zt)o<t<T to represent the 
order imbalance regime, with Zt E { -1, 0, + 1} representing sell-heavy, neutral 
and buy-heavy regimes - one could incorporate more refined regimes, but the 
framework remains essentially the same. We let G denote the generator of the 
order imbalance regime, and write >..; = >.. ± ( Zt) with a slight abuse of notation. 
Moreover, let {cci k' ci k' . . .  } denote i.i.d. random variables with distribution 
function F:' and { co k ,' c;- k' . . .  } denote i.i.d. random variables with distribution 
function Fi:, for k = -1, 0, 1, also mutually independent of one another. These 
random variables will generate jumps in the midprice when an MO arrives and 
the order imbalance is in regime k (see, e.g., Table 12.1). 

Armed with the counting process M± for MOs, their intensities >..± , the 
Markov chain driving order imbalance regimes Z, and the sequence of i.i.d. ran­
dom variables for mid price jumps ct), we can now state a candidate model for
the midprice S which is driven by order imbalance: 

The random variables ct) are subordinated by the left-limit of the corresponding
processes - this is a technical condition required to ensure that stochastic inte­
grals with respect to the compensated counting processes are still martingales, 
and is the reason we indexed the random variables ct) beginning from O rather
than l. Intuitively, the above model says that the midprice jumps the instant 
an MO arrives, and the rate of arrival of the orders and the distribution of the 
jump are regime dependent. 
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12.4.1 

The model above is missing one more ingredient, which is to include the mid­
price changes that we observe between MO arrivals. Thus, we modify the above 
to include exogenous jumps which result from, e.g., additions and cancellations 
in the LOB: 

Here, {r/6 k' 
77{ k' . . .  } denote i.i.d. random variables with distribution function

Lt, and {
0

770,k
, 

0

771,
k
, . . .  } denote i.i.d. random variables with distribution function 

L;,, fork= �1,0, 1, and all random variables are mutually independent. These 
random variables generate jumps in the midprice between the arrival of MOs, 
due to other agents posting and cancelling orders in the LOB, and these changes 
can in principle be dependent on the order imbalance regime. For example, when 
order imbalance is buy-heavy, agents may pull their orders from the sell side of 
the LOB and place them in the buy side, resulting in a general upward pressure 
on the midprice. Reshuffling of orders generally occurs at a higher frequency 
than the arrival of MOs themselves. 

Optimisation Problem 

Up to this point, we have specified the joint model for order imbalance, arrival of 
MOs, and midprice movements. Here, we pose and solve the agent's optimisation 
problem subject to this modelling assumption. First, the agent continues to trade 
until the stopping time 

T =TI\ min{ t : Qf = O}, 

i.e. the minimum of Tor the first time that the inventory hits zero, because then
no more trading is necessary. The agent's performance criteria is essentially the
same as in Chapter 6, and is given by

(12.8) 

where the notation lEt,x,S,z,q[·] represents expectation conditional on Xf_ = x,
St- = S, Zt- = z and Qt_ = q. As usual, her value function is the one which 
maximises this performance criteria, over all admissible strategies A, taken to 
be the set of F-predictable, bounded from below, processes, so that 

H(t,x,S,z,q) = supH
8
(t,x,S,z,q). 

iiEA 

Applying the dynamic programming principle, we expect the value function to 



12.4 Optimal liquidation 309

satisfy the dynamic programming equation (using (t, ·) to denote (t, x, S, z, q)):

¢ q2 = BtH + A +(z) sup { e-"5 lE[H(t, x + (S + 6), S + Ed z, z, q - 1) - H(t, ·)]
5 ' 

+ (1 - e-"5
) lE[H(t, x, S + E6,z, z, q) - H(t, ·)] }

+ A-(z) lE[H(t, .T, S - Eo,z, z, q) - H(t, ·)]
+ 71+(z) lE[H(t, x, S + 7/6,z, z, q) - H(t, ·)]
+ 7)-(z) lE[H(t, x, S - 7/o,z, z, q) - H(t, ·)]
+ Lk=-1,0,1 Gz,k [H(t, X, S, k, q) - H(t, ·)],

where the expectations are over the random variables ct,z and 7/t,z, and the
boundary and terminal conditions are

H(t, x, s, z, 0) = x , and H(T, x, S, z, q) = x + q (S - a q).

The various terms in the equation have the interpretations given below.
(i) The left-hand side of the first line contains the running penalty the agent has

from holding inventory different from zero.
(ii) The supremum takes into account the agent's ability to control the depth at

which she posts her LOs.
(iii) The term,,\.+ (z) e-"5 represents the rate of arrival of MOs which fill the agent's

posted LO at price S + 6.

(iv) The expectation in the first line represents the expected change in the valua­
tion when a buy MO arrives which fills the agent's post. The agent's wealth
increases by S + 6, her inventory decreases by 1 and the midprice jumps.

(v) The term ,,\.+(z) (1- e-"5) represents the rate of arrival of buy MOs which do
not fill the agents posted LO, but still induce a jump in midprice.

(vi) The expectation in the second line represents the expected change in the val­
uation when a buy MO arrives which does not fill the agent's post but causes
a jump in midprice.

(vii) The third line represents the expected change in the value function when a
sell MO arrives and the midprice jumps.

(viii) The fourth and fifth lines represent the expected change in the value function
when the midprice jumps due to posts and cancellations in the LOB (i.e.
between MO arrivals).

(ix) The last line represents the change in value function when the order imbalance
switches regimes.
As seen several times, the terminal and boundary conditions suggest the ansatz
H(t,x,S,z,q) =x+qS+h(t,z,q), h(T,z,q) = -aq

2
, h(t,z,O) =0 ,

so that the term x + q S is the book value of the agent's inventory and cash, while
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h represents the excess value that optimal trading generates. Upon substituting 
this ansatz we find that h satisfies the coupled system of PDEs 

0=8th(t,z,q)+ µ(z)q-</Jq2 

where 

+ s�p { >.+ (z) e-!<O (o + h(t, z, q - l) - h(t, z, q))}
+ Lk=-1,0,1 Gz,k [h(t, k, q) - h(t, z, q)], 

(12.9) 

is the expected drift of the midprice while the order imbalance is in regime z.

The first two lines of this equation are of the same form as that of the liqui­
dation problem when there are no regime changes and the midprice is a drifted 
Brownian motion. The third line represents the jumps between the order imbal­
ance regimes. It is somewhat surprising how this rather rich model reduces to 
something intuitively simple. 

The first order conditions provides us with the optimal depth as 

o*(t, q, z) = ¾ -6.h(t, z, q)' 

where 
6.h(t, z, q) = h(t, z, q) - h(t, z, q - l) ) 

and upon substituting this feedback form into the previous equation, we find 
that h satisfies the equation 

0 = Oth(t, z, q)+ µ(z) q - </Jq2 + >.+ (z) ¾ e-1<(-¼-6.h(t,z,q))

+ Lk=-1,0,1 Gz,k [ h(t, k, q) - h(t, z, q) ]. (12.10) 

The above coupled system of non-linear ODEs does not appear to have a sim­
ple analytic solution and one must resort to a numerical scheme such as finite 
differences. 

The above optimal depth may become negative. One interpretation of a neg­
ative depth is that it represents executing an MO. This interpretation is purely 
heuristic and is not accounted for in the model. To properly account for execut­
ing MOs, we would have to pose the problem as a sequence of stopping problems 
similar to what we have done in Section 8.4. An alternative is to pose the problem 
as a constrained optimisation problem and modify the admissible set A to non­
negative F-predictable processes. The resulting DPE will receive a modification 
on the optimisation set, so that (12.9) becomes 

0=8th(t,z,q)+ µ(z)q-</Jq2 

+sup{ >.+ (z)e-1<0 (o+h(t,z,q-l)-h(t,z,q))}82:0 
+ Lk=-1,0,1 Gz,k [h(t, k, q) - h(t, z, q)]. 
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Figure 12.6 (a) The optimal depth to post for the sell-heavy (solid lines) and 
buy-heavy (dashed lines) regimes as a function of time and inventory. (b) The mean, 
median, 5% and 95% quantiles of inventory through time from 10,000 simulations. 

Hence, the optimal depth is modified to 

I c5*(t,q,z) =max(� - 6.h(t,z,q); 0) I· (12.11) 

Upon substitution of this feedback control into the DPE, we have 

0 =8th+ µ(z) q - ¢q2 

{ 

e-"-( .1-6.h(t,z,q)) 

} 
+ >,+ (z) 6.h(t, q, z) ].6.h(t,q,z)2'.¾ +

K K, 

].6.h(t,q,z)<¾ 

+ Lk=-1,0,1 Gz,k [ h(t, k, q) - h(t, z, q)].

(12.12) 

Simulations 

In this section, we perform simulations using the estimated parameters provided 
in Table 12.1 and (12.7). For simplicity we do not model the movements of the 
LOB between MO events. Note that the invariant distribution of the Markov 
chain with generator matrix in (12.7) is 

[0.0196 0.1548 0.3577 0.3534 0.1160], 

and from Table 12.1 we find that the invariant arrival of buy MOs is 0.0727 per 
second. In the experiments below, we use T = 300sec and SJl = 4 so that the 
trader is liquidating approximately 20 percent of the buy MO flow - which has 
the potential to lift her posted sell LOs. Finally, we use the following remaining 
parameters: 

So= 33.61, a= 0.01, "'= 100, ¢ = 10-5.

We numerically solve the constrained equation (12.12) for hand then compute 
the optimal depth 6* in (12.11). Figure 12.6(a) shows the optimal depth the agent 



312 Order Imbalance 

33.68 =�+J 
-+- MO lifts offer --e-- other buy MO 

33.66 -<>-sell MO 
Cl) 

.�33.64 
H 

0.... 33.62 

33.6 

100 200 
Time 

(a) 

300 

0.025�----------� 

0.02 

'<) 

�0.015 

Pa 0.01 
Cl) 

0.005 

100 200 
Time 

(c) 

300 

' ' 

...........
....... 

0'----�---'------'-"' 

� 
§ 1 

100 200 
Time 

(b) 

300 

E: 0 
>-< 

H 
Cl) 

"2-1 
0 

-2�-���--����� 
0 100 200 300 

Time 

(d) 

Figure 12.7 Sample path of the optimal strategy showing price, market buy and sell 
arrivals, inventory path, optimal depth and order imbalance regime. 

posts for the sell-heavy (solid lines) and buy-heavy (dashed lines) regimes as a 
function of time and inventory. In the buy-heavy regime, the agent posts deeper 

in the LOB in order to capture the expected upward tendency that prices have 
in this regime, and hence avoids being adversely selected. Similarly, in the sell­
heavy regime, the agent posts closer to the midprice since she expects prices to 
have a downward pressure and would rather capture the current price than wait 
for prices to fall. Moreover, as the agent liquidates her position, she posts deeper 
in the LOB. Panel (b) of Figure 12.6 shows the mean, median, 5 and 95 percent 

quantiles of the inventory paths when the agent follows the optimal strategy. 

To gain a better sense of how the strategy behaves, in Figure 12.7 we show 
a single sample path of the strategy. Panel (a) shows the midprice path (black 

line) and the optimal offer posting (green line) which reacts to the changes in 

the regimes shown in panel ( d) as can be seen more clearly in the optimal depth 
shown in panel ( c). In this case, the depth, and therefore the posting, reacts 

to the agent's remaining inventory which we have shown in panel ( c) together 

with the mean inventory path. In panel (a) we also show the arrival of market 
sell orders (open red circles), which naturally are never matched with the agent's 
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posted offers, and market buy orders (blue circles) which are filled if that specific 

order lifted the agent's offer. 
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12.6 Exercises 

E.12.1 Modify the setup developed in Section 12.4 for optimal liquidation using LOs

only in the following cases: 

(a) the agent optimally executes MOs only,

(b) the agent optimally executes MOs and optimally decides the depth at which

to place LOs,

( c) the agent optimally places LOs only at-the-touch,

( d) the agent optimally places LOs only at-the-touch and optimally decides

when to execute MOs.

E.12.2 Extend the analysis in Section 12.4 to the case when the agent is a market

maker and decides whether to post buy and sell LOs. 





Appendix A Stochastic Calculus for 
Finance 

This chapter provides a concise overview of stochastic calculus for diffusion and 

jump processes. There are many excellent textbooks (see, e.g., the bibliography 

and other readings at the end of this appendix) which cover these topics in an 

inordinate amount of detail. Here, however, we focus on the main tools and 

results that we require to pose and solve the algorithmic trading problems that 

appear in Part III of this textbook. 

In all sections, we work on a filtered probability space (also called a 

stochastic basi.s) denoted by (D,F, {Ft}o<t<r,lP') where as is standard: 

e D denotes the space of all events, 

e F denotes the set of all measurable events, 

• { Ft} o<t<T ( each contained in F) denotes the filtration - a sequence of sigma­

algebras which refine one another in the sense that Fs c;;; Ft for all O <::: s < 

t <::: T.

We further assume that the usual conditions apply and that the filtered proba­

bility is completed: 

e the probability space (S1, F, JP') is complete - every subset of a measure zero 

set is measurable itself and (therefore) has zero measure; more precisely, 

for all w E F s.t. lP'(w) = 0 and for all w' C w, we have w' E F and so 

lP'(w') = 0, 

• each Ft contains the zero measure sets of F,

e the filtration is right-continuous, i.e. Ft+ = ns>tT, = Ft. 

These technical conditions allow us to construct a version of a stochastic process 
which is cadlag, i.e. right continuous with left limit (RCLL). 

A.1 Diffusion Processes 

In this section, we investigate the very important stochastic process known as a 

Brownian motion or Wiener process. 
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A.1.1

A.1.2

Stochastic Calculus for Finance

Brownian Motion
DEFINITION A.l A standard Brownian motion W = (Wt)o::;t:s;T is a stoch­
astic process defined on the completed probability space (D,F, {Ft}o::;t::;r,lP'),
where the filtration is the natural one generated by W, satisfying the following
properties:

(i) Wo = 0, almost surely,
(ii) W has independent increments: for all O = t0 s; t1 S: t2 S: · · · S: tn-l s;

tn = T the increments Wtk+i - W1,, for k = 0, ... , n - 1 are independent 
random variables,

(iii) W has stationary increments: for all O S: t < t + h s; T, the increment
Wt+h - Wt ( which is a random variable) has distribution that is independent 
oft,

(iv) the random variable Wt is normally distributed with mean O and variance
t, and we will often write Wt� N(O, t),

(v) the function t H Wt is almost surely continuous.
It is not clear whether specifying the marginal distributions of the Brownian

motion, which is done in points (ii)-(iv) above, is consistent with the continuity
condition in (v). This condition is necessary, because certainly if we modify the
Brownian motion at say an exponential time T and make it equal zero there, then
the marginal properties remain the same, but it will fail to satisfy the continuity
requirement. In fact, Paul Levy proves (Jacod & Shiryaev (1987)) that indeed
there is no contradiction and such processes do in fact exist.

Stochastic Integrals
Stochastic integration with respect to Brownian motion can be most easily
viewed through the lens of Ito integrals. Let II1, II2, ... denote an infinite se­
quence of refining partitions of the interval [ O, T], so that each Ilk represents an
increasing sequence O = t�k) < tik) < t;k) < · · · < (�l

> 
= T, and the L00 norm

\\IIkll = max . (t�l -t�� 1) , 

m=l, ... ,n(k) 

tends to zero as k tends to infinity.
DEFINITION A.2 The Ito integral of an Fi-adapted stochastic process g =
(gt)o::;t:s;T which is lP'-square integrable, i.e. lE [ Jt g; ds] < +oo, often simply
said to be square integrable, or in L2

, is defined as follows:
It = t gs dWs = lim � gt -1 (Wt. - Wt _,) (A.l)

lo IIII,11-+0 L., m m m 

m=l
In the definition above, the function g is evaluated at the left-hand end point of

the interval [tm-l, tm)- This has the financial interpretation of entering a position
gt m

-i at the start of the interval, and the Brownian increment (Wt= - Wtrn
-I)
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represents the increase in the asset's value while keeping the position constant 
over that time interval. This is why Ito integrals are used ubiquitously in the 
mathematical finance literature.1 Strictly, one should introduce the Ito inte­
gral for simple functions, i.e. functions which are piecewise defined: Ht(w) =

I\ hk(w) ]ltE[t
k
,t

k
+i) for hk E Ftk , show that any g E L2 can be approximated, 

in L2
, by a sequence of such functions, and finally define the Ito integral of g as 

the limiting value of the Ito integral of the sequence. See, e.g., 0ksendal (2010). 
The Ito isometry is one of the tools which allows this programme to be developed. 

THEOREM A.3 Ito's isometry. If g E L2
, that is, g is Fi adapted and 

IE [for 
g; ds] < +oo, then

The stochastic integral (A.1) is called an Ito process, and is often written in 
differential form 

dit = gt dWt, 

despite the fact that a Brownian motion is not differentiable anywhere, so that 
the expression dWt without the integral is meaningless. It is, however, convenient 
to write it this way and renders computations more digestible. Ito processes can 
more generally be written as 

It = la
t 

µ s ds + la
t 

<58 dW s , 

whereµ and <5 are Fradapted and satisfy certain integrability requirements. The 
first term should be interpreted as a Riemann integral and the second term as 
an Ito integral. This is often written in shorthand as 

(A.2) 

When µt = µ(t, It ) and <5t = <5(t, It ), the above equation has the form of a 
differential equation, albeit one with diffusive noise, and these are referred to 
as stochastic differential equations (SDEs). Not all SDEs have solutions, and 
solutions come in two flavours, strong and weak solutions. A strong solution is 
a stochastic process which satisfies (A.2) and for which It is given explicitly in 
terms of the version of Brownian motion (Wt)o<t<T provided, i.e. it is adapted 
to the given filtration. A weak solution is one in which we seek a filtration 1-lt on 
which we have a Brownian motion Wt , and the solution It satisfying (A.2) with 
W replaced by W. We will be concerned with only strong solutions of SDEs. 

Another interesting property of Ito integrals is that they are in fact martin­
gales. 
1 There are other approaches to stochastic integration, such as the Stratonovich integral,

which is often used in quantum field theory in physics and instead evaluates g at the 

midpoint of the interval. 
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THEOREM A.4 Ito Integrals are Martingales. The stochastic integral

is a martingale. 

The intuition here is that for any given simple process approximation, g(n), to 
th It A 

• t 1 ° '  ,• b �(n) '"" (n) (w w ) d O g, e o 1n egra is given y Jt = L..k fltk-l tk - tk-l , an so 

E [Jin) ]= LE [gt�
1 (Wti, -Wtk _,)J 

= LE [m:[gt�
1 (Wt; - Wtk-1) I.Ftk- 1 l] 

k 

= LE [gt� ]E [(Wtk -Wtk-l) I.Ft i,-il] = 0. 
k 

The third equality follows since gt�
1 

is .Ftk-l measurable, and the expected 
value of the increment of the Brownian motion is zero. This argument can be 
formalised to show that the increment of the integral, and not just the simple 
process approximation, has zero mean, and all that remains is to show that the 
integral is a strict martingale, and not just a local martingale. This last part 
follows from the assumption that g E L2

. 

Next, we touch on Ito's formula which allows us to transform Ito processes, 
i.e. stochastic processes which satisfy SDEs with Brownian noise terms, into
other Ito processes. More specifically, it allows us to identify the SDE which the
transformed process satisfies.
THEOREM A.5 Ito's Formula. Let Wt denote an n-dimensional (col·umn)
vector of independent Brownian motions and suppose that the m-dimensional 
(column) vector-valued processes X t satisfy the SDE: 

dXt = µ,(t, Xt) dt + a(t, Xt)dWt , (A.3) 

where µ,(t, Xt) is an m-dimensional (column) vector of drifts, and a(t, Xt) is 
an m x n matrix of volatilities. Next, introduce a new stochastic process Yt = 

f(t,Xt), where f(t,x) is twice differentiable in each x Cil , cross-derivatives exist 
and f is once differentiable in t.  Then Yt is an It6 process satisfying the SDE 

dY;; = (otf(t, Xt) + µ,(t, Xt)' Df(t, Xt) + ½Tro-(t, Xt) o-(t, Xt)' D2 f(t, Xt)) dt 

+ D f(t, Xt)' o-(t, Xt) dWt,

where for any vector or matrix A, A' denotes its transpose, D f (t, X t) de­
notes them-dimensional (column) vector of first derivatives, i.e. (D f (t, X t)) 

j 
=

OxJ f(t, Xt), and D2 f(t, Xt) denotes them x n-dimensional matrix of mixed sec­
ond derivatives, i.e. (D f(t, Xt))

jk = OxJ xk f(t, Xt)-
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DEFINITION A.6 The infinitesimal generator, sometimes called simply the
generator, denoted by Lt of a process Xt acts on functions which are twice 
differentiable in the following manner: 

Ltf(x) = lim E [f(Xt+1i) I Xt = x] - f(x)
. . 

h+O h 

The infinitesimal generator is the generalisation of a derivative of a function to 
make it applicable to a stochastic process. From Ito's formula in Theorem A.5, 
we see that the generator of an Ito process satisfying (A.3) is given by 

Ltf(x) = µ(t, x)' Df(x) + ½Tro-(t, x) dt, x)' D2 f(x).

A.2 Jump Processes 

The basic building blocks for jump processes are counting processes, and more 
specifically, Poisson processes. 

DEFINITION A.7 A Poisson process N = (Nt)o9�T E Z+, with intensity
A, is a stochastic process which satisfies the following properties: 

(i) No = 0, a.s.,
(ii) Nt - N0 has Poisson distribution with parameter At, i.e.

-)..t(>-tr lP'(Nt - No= n) = e -
1-,

n. 

(iii) has independent increments, so that Nt - Ns ( t > s) is independent of Nv - Nu 

(v > u) whenever (s, t) n (u, v) = 0,
(iv) has stationary increments, so that Ns+t - Ns � Nt, for all s, t 2: 0.

An easy consequence of this definition is that the time between the jumps
of N are independent and exponentially distributed. Moreover, we have that 
E[Nt] = ,.\ t, so that the following proposition holds. 

PROPOSITION A.8 The compensated Poisson process N = {Nt}o<t<T,
with Nt = Nt - ,.\ t, is a martingale. 

As with Brownian motions, we can define stochastic integrals with respect to 
a compensated Poisson processes in such a way that the resulting object is a 
martingale. To this end, let g be an Fradapted process, where Ft is the natural 
filtration generated by a Poisson process N. 

DEFINITION A.9 We define the stochastic integral Y = {Yt}o�t�T of g with
respect to the compensated Poisson process N as follows: 

(A.4) 

where { T1, T2, ... } is the collection of times at which N jumps. 
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Note that the summation term evaluates g from its left limit, and not at the 
time of the jump of N. This is a technical condition which renders the stochastic 
integral a martingale. If we evaluate g at the time of the jump, we can easily 
find examples for g which make the integral not a martingale. An alternate for 
the above integral is 

(A.5) 

where the notation 

is the size of the jump in N at time s which in this case is zero or one. 

THEOREM A.10 Ito's Formula for Poisson Processes. Suppose that Y
is given by (A.5). Moreover, let Z = { Zt}o<t<T with Zt = f (t, Yt) for sorne 
function f, once d�ff erentiable in t. Then, 

dZt = (otf(t, Yt) - >-gt oyf(t, ½)) dt 

+ [f(t, Y;- + gt-) - f(t, Y;-)] dNt
= { otf (t, ½) + >-([ f (t, Y;- +gt-) - f(t, Y;-)] - gt oyf (t, Yt))} dt 

+ [f(t, Yt- + gt-) - f(t, Yt-)l dNt.
(A.6) 

The interpretation of this formula is as follows: the second term accounts for 
the change in Z whenever a jump in N arrives, while the first term accounts for 
the drift corrections. 

From the above, we see that the generator Lf of the process Y in A.5 acts as 
follows: 

Lf f(y) = >-([ f(y + gt) - f(y)] - gt oyf(y)). 

The above framework can be generalised to incorporate both diffusions and 
jumps. To this end, consider the sum of two stochastic integrals 

(A.7) 

where, f, g and h are Ft adapted processes, and the filtration F is the natural 
one generated by both the diffusion W and the Poisson process N ( assumed to be 
mutually independent). Each integral should be interpreted as in their individual 
definitions, i.e. the first term is simply a Riemann integral, the second term as 
in (A.l) and the third term as in (A.5). The Ito formula generalises naturally in 
this case. 

THEOREM A.11 Ito's Formula for Single Jumps and Diffusion. Suppose
that Y is given by (A.7). Moreover, let Z = {Zt}o<t<T with Zt = £(t, ½) for 
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some function .e, once d'iff'erentiable in t and tw'ice differentiable in y. Then, 
dZt = ( 8t + ft oy + ½ g; oyy - A ht oy) £ ( t, Yt) dt 

+ [ f(t, Yt- +ht-) - f(t, Yt-)] dNt
= { (8 t + ft oy + ½ g; oyy) f(t, Yt) 

+ A ([ f(t, Yt- + h t -) - f(t, ½-)] - ht oyf(t, Yt))} dt
+ [ .e(t, Yt- +hi-) - .e(t, Yt-)l dNt. (A.8) 

Again, we can identify the action of the generator £'{ of the generalised Y 
process in (A.7) as 

,Cr f(y) = ft oyf(y) + ½ g; oyyf(y) + A ([ f(y + h t) - £(y)] - ht oyf(y)). 

The final generalisation which we wish to address in this section is the case of 
compound Poisson processes. A compound Poisson process I = { It}o<::t<::T 
is build out of a Poisson process N (with intensity A) and a collection of indepen­
dent and identically distributed random variables { c1, c2, ... } with distribution 
function F (lE[c] < +oo, where c � F), and is given by 

N, 

It = L Ci , t 2:: 0 . 
k=l 

That is, the process jumps at the time of arrival of a Poisson process, and the 
size of the jump is independently drawn each time from the distribution function 
F. 
PROPOSITION A.12 The compensated compound Poisson process J =
{ h}o<::t<::T, w'lth lt = It - lE[c] A t, is a martingale.

Analogous to the Poisson case, we can define stochastic integrals with respect
to compound Poisson processes as well. 
DEFINITION A.13 Let F denote the natural filtration generated by I. We
define the stochastic integral Y = {Yt}o<t<T of an F-adapted process g with 
respect to the compensated compound Pcis:on process J as follows: 

where, as before, 6It = It - It - represents the jump size of I at time t.
In the next generalisation, we have the analog of the sum of stochastic integrals 

as in (A.7) by introducing three F-adapted stochastic processes, f, g and h,
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where F is the natural filtration generated by an independent Brownian motion 
W and J, and defining the stochastic integral Y as follows: 

( ( ( Yt = lo fs ds + lo 9s dWs + Jo h8- dJs ,

where each term is interpreted appropriately. 

(A.10) 

THEOREM A.14 Ito's Formula for Jump-Diffusion. Suppose that Y is
given by (A.10). Mor-eover, let Z = {Zt}o::::;t:s;T with Zt = R(t, Yt) for some func­
tion £, once dffferentiable in t and twice differentiable in y. Then, 

dZt = (at + ft ay + ½ g; ayy - >-IE[E] ht ay
) R(t, Yt) dt 

+ [ R(t, Yt- + EN, ht-) - R(t, Yt-)] dNt
= {(at + ft ay + ½ g; ayy) R(t, Yt) 

+ A ( IE [ R(t, Yt- + EN, ht-) - R(t, Yt-)] - IE[E] ht ayR(t, Yt))} dt (A.11)

+ [ R(t, Yt- + EN, ht-) - R(t, Yt-)] dNt.
For the process Yin (A.10), we can see from the above that the action of the 

generator £'{ is as follows: 
Li R(y) = ft ayR(y) + ½ g; a

yyR(y) 
+ A (IE [ R(t, y + E ht ) - R(t, y)] - IE[E] ht ayR(t, Yt)).

A.3 Doubly Stochastic Poisson Processes 

Here we consider the generalisation of jump processes which have stochastic in­
tensity. A simple way to define such processes is by expanding filtrations. Suppose
we have a counting process N and we want its intensity process A= {>-t}o<t<T
to be 'stochastic'. One approach to defining such an object is to provide a way of 
computing the probability that an event arrives at time t given the information 
we have at time s, i.e. to define IP'(Nt - Ns = n IF.,), where Fis the natural fil­
tration generated by (N, A). If we have a way to compute this, then in principle 
we can compute all other quantities of interest. Doubly stochastic Poisson 
processes, also known as Cox processes, have the following property: 

(I:>-u dur 
IP'( Nt-Ns = n I Fs VO"( Pu}s::::;u::::;t)) = exp { -J: Au du} n! , (A.12a)

so that 

(A.12b) 
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Here, CT ( { A11} s<:;u:<::t) denotes the smallest CT-algebra generated by the intensity 
process A over the time interval [s, t], and the 'join' operation F1 V F2 , where
F1 and F2 are two CT-algebras, represents the coarsest CT-algebra generated by 
taking unions of measurable sets from each individual CT-algebra. Simply put, in 
the above case, Fs V CT( { Au}s<:;u<:;t) represents the information contained from the 
observations of (N, A) up to time s together with the information on the entire
path of A up to time t, but excluding the information on the N process on the 
interval ( s, t]. Therefore, we see from ( A.12a) that the doubly stochastic Pois­
son process is conditionally ( conditioned on CT ( { A," }s<:;u<:;t)) an inhomogeneous 
Poisson process with the conditionally known intensity. 

The driver of the intensity process may in principle be anything ranging from 
an independent diffusion, an independent jump process, a combination of these, 
or even the counting process itself (in which case the process is known as a 
Hawkes process). Below are a few examples of the intensity process A, where W 
is an independent Brownian motion and J is an independent compound Poisson 
process (with intensity AJ and i.i.d. jumps c cv F ) with non-negative jumps: 

dAt = "'(0 - At) dt + T/ vi; dWt, 
dAt = - "' At dt + 1 dJt ,

dAt = "'(0 - At) dt + T/ vi; dWt +, dJt, 

At = Jig(t - s) dNs ,

Feller process, (A.13a) 
Ornstein-Uhlenbeck process, (A.13b) 

Jump-diffusion, (A.13c) 

Hawkes process. (A.13d) 

The first three processes exhibit mean-reversion. The first and third processes 
mean-revert to 0, while the second mean-reverts to 0. With jumps, however, the 
mean-reversion level does not reflect the long-run behaviour. Instead we should 
rewrite the SD Es in terms of their compensated versions. 

PROPOSITION A.15 The compensated doubly stochastic Poisson Pro-
� � . � t . . cess N = {Nt}o<:;t<:;T, with Nt = Nt - f0 As ds, 1,s a martingale. 

Writing the OU (A.13b) and jump-diffusion (A.13c) in terms of their compen­
sated versions we have 

dAt ="' ( ';J lE[c] - At) dt + 1 dlt, OU process, (A.14a)

dAt ="' (e + ,;J lE[c] - At) dt + T/ � dWt + ,dlt, Jump-diffusion. (A.14b)

From this expression, we see that the expected average intensities (in the long 
run) are ';.1 lE[c] and 0 + ';J lE[c], respectively. That is, the expected long run
intensity is the mean-reversion level plus the jump correction term ';.1 JE[c]. 

DEFINITION A.16 We define the stochastic integral Y = {Yt}o<t<T of g with
respect to the compensated doubly stochastic Poisson process N -as- follows: 

(A.15) 
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where { T1, T2, ... } is the collection of times at which N jumps.
This definition is completely analogous to Definition A.9 for the simple Pois­

son processes. The only difference appears in the compensator, which is now a
stochastic process in its own right. 
THEOREM A.17 Ito's Formula for Single doubly Stochastic Poisson

processes. Let N be a doubly stochastic Poisson process with intensity A satis­
fying the SDE 

(A.16)
where W and J are a Brownian motion and compound Poisson process (with
intensity AJ , i. i. d. jumps E � F, and corresponding counting process NI), all
m·utually independent and independent of N, andµ, er and T) are adapted to the 
natural filtration generated by N, VV and J. Furthermore, let Z = {Zt}o-<:t-<:T
with Zt = £.(t, Nt, At) for some function £, once differentiable in t and twice
differentiable in A. Then, 

dZt = ( 8t + (µt -Ac lE[E]) 8>. +½er; au - At on ) £.(t, Nt, At) dt
+ [ £.(t, Nt-' At- + EM,) -£.(t, Nt-' At-)] dMt
+ [ £.(t, Nt- + 1, At-) -£.(t, Nt-, At-)] dNt

= { ( Ot + /Lt O>,. +½er; O>.>.) £.(t, Nt, At)

(A.17) 

+ Ac ([ £.(t, Nt-, At-+ EM,) -£.(t, Nt-, At-)] - lE[E]8>.£(t, N1-, At-))
+ A ([ £.(t, Nt-+ 1, At-) -£.(t, Nt-, At-)] -8n£.(t, Nt-, At-))} dt
+ [£.(t,Nt-,At-+EM,) -£.(t,Nt-,At-)]dMt
+ [ £.(t, Nt- + 1, At-) -£.(t, Nt-, At-)] dNt.

(A.18)
From this, we see that the generator .c..1(,>. of the joint processes (N, A), where

the intensity of N is A and satisfies (A.16), acts on functions as follows: 
£1(,>.£.(n, A)= µt 8>.£.(n, A)+½ er; 8>.>.f(n, A)

+ Ac ( lE [ £. ( n, A + E) -£. ( n, A)] - lE [ E] 8 >. £. ( n, A))
+ A ( lE [ £.(n, A) -£.(n, A)] - 8n£.(n, A))

The doubly stochastic Poisson process can be further generalised to the case of
a doubly stochastic compound Poisson process, where jumps arrive at the arrival
times of a doubly stochastic Poisson process. 
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A.4 Feynman-Kac and PDEs 

Certain linear partial differential equations are closely linked to stochastic pro­cesses and particularly to stochastic differential equations. The simplest example of this is the case of the heat equation: 
{ Oth(t, x) + ½Bxxh(t, x) = 0 ,  

h(T,x) = H(x) , (A.19) 
where HE L 1, i.e. IE[IH(Xr)I ]  < +oo where X = {Xt}o<::t<::T is a Brownian mo­tion. At first glance, there seems to be no connection whatsoever to a stochastic process or SDEs. To see the connection, suppose we introduce a Brownian mo­tion X on a probability space (fl,IP',F = {Ft}o,s:t,s:r), where Fis the natural filtration generated by X, and define the stochastic process 

ft= IE[H(Xr) I Ft]. 
A key property in making the connection to the PDE, is the fact that such a stochastic process is a martingale because (i) for s -S: t -s; T, we have 

where the second equality follows from the iterated expectation property (since Fs is a coarser CT-algebra than Ft), and (ii) 

where the first inequality follows from Jensen's inequality and the last from the assumption that H is in L 1
. Next, note that the process ft is in fact Markov in 

X since 
ft= IE [H(Xr) I Ft]= IE [H ((Xr -Xt) + Xt) I Ft] 

=IE[H(vT-tZ+ Xt ) !Ft] =g(t,Xt) , 
where g(t, x) is some function, the third equality follows from the independence of (Xr -Xt) and Xt, and Z is an standard normal random variable independent of Xt. If we further assume that g is smooth enough, then we can use Ito's lemma to write (for any h > 0) 

g(t + h, Xt+h) -g(t, Xt) 
= t+h { Otg(s, Xs) + ½oxxg(s, Xs)} ds + Jth 8xg(s, Xs) dXs . 

Since g is a martingale, we have 
0 = IEt ,x [g(t + h, Xt+h) -g(t, Xt)] 

= IEt ,x [ft

t+h { Otg(s, Xs) + ½oxxg(s, Xs)} ds + ft

t+h Oxg(s, Xs) dXs ]
= IEt ,x [ftt+h { Otg(s, Xs) + ½oxxg(s, Xs )} ds] 
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Next, dividing by h, taking h + 0, and invoking the Fundamental Theorem of 
Calculus, we have 

0 = �red: lEt ,x [t+h { 8tg(s, Xs ) + ½8xx g(s, Xs)} ds]
= 8tg(t,x) + ½8xx g(t,.'.C),

and from the definition of g, we also have g(T,x) = H(x). Hence, we see thatg(t, x) satisfies the PDE (A.19). This sequence of arguments is one example of a

more general result. 

THEOREM A.18 Feynman-Kac. Let X denote an Ito process satisfyin g the SDE 
dXt = µ(t, Xt) dt + O"(t, Xt) dWt,

where W is a Brownian motion. Define the function 
f(t,x) = [lT e-1/,(u,Xu)dug(s,Xs )ds+e-ft,cu,Xu)duh(Xr)],

where lE[lh(Xr)I] < +oo, lE [for lg(s,Xs )I ds] < +oo, and J0T 1(t,Xt) dt is bounded from below a.s . . Then f(t,x) satisfies the PDE 
{ 8tf(t, x) + .Cf f(t, x) + g(t, x) f(t, x) = 1(t, x) f(t, x),

f(T,x) = h(x), 
where £,t represents the infinitesimal generator of X, specifically, 

.Cf f = µ(t, x) 8x f + ½0"2(t, x) 8xx f .
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Glossary 

At,T a set of admissible strategies over the interval [t, T], 102 
F filtration, 315 
D space of all events, 315 
JP' real-world probability measure, 315 
[, Infinitesimal generator of a process, 318 
c:-optimal control a control which leads to a performance criteria which is 

within c of the value function, 106 

Agency broker an agent who executes trade(s) on behalf of a client, 135 
Arrival price type of benchmark price given by the quoted price, mid price for 

instance, in effect at the time the order is sent to trading desk, 135 
At-The-Touch the price and/or volume at the best bid or ask, 295 

Benchmark price a price against which to measure the actual price of the 
executed shares (measure on a per share basis). Typical examples include 
the arrival price, TWAP and VWAP, 135 

Bonds are contracts whereby the corporation commits to pay the holder a reg­
ular income (interest) but includes no decision rights, 4 

CBOE Chicago Board Options Exchange the largest options exchange in the 
US for options on stocks, indices, and ETFs, 43 

Closed-end Fund a mutual fund with a fixed number of shares. These are usu­
ally issued once at inception, through an initial public offering. Closed­
end mutual fund shares that are not redeemable, that is, investors cannot 
sell them back to the fund. Its shares, like those of ETFs, are listed and 
traded continuously, 5 

Colocated also known as colocation, means that an agent's trading system is 
physically housed at the electronic exchange and has a direct connection 
to the exchanges' matching engine, 50 

Colocation see colocated, 50 
Common stock same as ordinary shares, 4 

Dark pool " ... systems that allow participants to enter unpriced orders to buy 
and sell securities, these orders are crossed at a specified time at a price 
derived from another market..." SEC, 176 

DPE dynamic programming equation, 100 
DPP dynamic programming principle, 100 
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Effective spread the realised difference between the price paid for an MO rel­
ative to the midprice, 71 

Efficient Market Hypothesis the hypothesis that all information regarding 

the price of an asset is reflected in their current price. Hence, returns 

should be independent of one another, 42 

ETF a portfolio of securities managed to meet a particular investment objective. 

Shares in ETFs are traded as a security on stock exchanges. Usually 

ETFs are passive funds tracking an index, 5 

Execution costs measured as the difference between an ideal price and the 

actual price at which the trade was done, 135 

Fill probability The probability that a limit order posted at price 5 (from the 

midprice) is filled by an incoming buy/sell MO, conditional on the arrival 

of a market buy/sell order, 184 

Fundamental price refers to the share price that reflects fundamental infor­

mation about the value of the firm, and this is impounded in the price 

of the share. This is also known in the literature as the efficient price or 

true price of the asset, 136 

Fundamental price or value of asset refers to the price that reflects funda­

mental information of the firm (and the firm's value) and this is im­

pounded in the price of the firm's shares, 138 

Fundamental traders are investors who have a direct use for the assets being 

traded, 7 

Half spread distance between the best quote (bid or offer) and the mid price 

which is also sometimes referred to as midquote, 30 

Hedge-Fund are funds that pursue investment strategies that are more aggres­

sive than other types of funds such mutual funds. These funds have fewer 

regulatory and transparency requirements, and are investment vehicles 

suitable only for qualified investors, 6 

Hidden order a limit order that is posted in the LOB but is not visible to 

market participants. Some market also allow iceberg orders, limit orders 

for which only a fraction of the total quantity offered is displayed in the 

LOB, 72 

HJB Hamilton Jacobi-Bellman, 100 

Implementation shortfall difference between arrival price and actual price. 

Also known as slippage, 135 

ITCH is not an acronym. It is the name of the industry standard protocol for 

market data feed, 39 

Latency the delay between sending a message to the market and it being re­

ceived and processed by the exchange. Sometimes the time it takes for 

the exchange to acknowledge receipt is also accounted for, 48 

Limit Order a passive order which supplies liquidity to the limit order book, 

and receives a guaranteed price, but does not guarantee execution, 9 

Limit Order Book see LOB, 9 
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LOB Limit Order Book. The collection of currently available buy and sell orders, 

their available prices and their available volumes, 9 

Locked market the situation that occurs when the bid is equal to the ask and 

the quoted spread is zero, 16 

Market depth refers to the available volume posted at different levels of the 

LOB. A deep market has a lot of posted volume. A thin market has little 

posted volume, 79 

Market Order an aggressive order which takes liquidity from the LOB and 

receives the best prices currently available, 9 

Matching algorithm, price-time priority an algorithm used by exchanges 

to determine which of the standing limit orders will be executed against 

an incoming MO. The algorithm establishes that the market order will 

be executed against standing limit orders at the best price based on the 

time at which the limit orders were posted, starting from the oldest one 

first, 9 

Matching algorithm, prorata an algorithm used by exchanges to determine 

how the quantity demanded by an incoming market order will be shared 

amongst standing limit orders. The sharing rule assigns the market order 

proportionally based on the relative quantity of shares offered by each 

limit order at the best price, 10 

Microprice the price computed as the weighted average of the bid and ask, 

where the weight on the ask is the volume posted at the ask relative to 

the total volume at the bid and ask, while the weight on the ask is the 

relative volume posted at the bid, 18 

Mid price the arithmetic average of the bid and ask, 16 

Minimum tick size the minimum price movement of an asset. Stocks in the 

US have mostly one cent minimum tick size, while in Europe it varies 

by the price of the stock. Other instruments (futures, commodities, etc.) 

have different tick sizes, 52 

Mutual Fund a portfolio of securities managed to meet a particular investment 

objective. Mutual funds may offer active asset management or passive 

index tracking. There are two primary types of mutual funds: closed-end 

and open-end funds, 5 

OLS Ordinary Least Squares the standard method of linear regression anal­

ysis. It minimises the sum of squared differences between observed and 

fitted values, 42 

OLS, robust a version of OLS modified to reduce any undue impact from out­

liers on the estimated values of the parameters. It is also used for esti­

mating models that perform well even if the distribution is not normal, 

44 

Open-end Fund a mutual fund with a number of shares that varies daily as 

fund managers create new shares for investors who want to acquire them, 

and eliminate shares as investors want to redeem them. This process 
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takes place once a day, after the close of trading, at the (net) value of 
the fund's assets (NAV), 5 

Order flow refers to the difference between executed buy and sell volume, 43 

Ordinary shares in its simplest form it is a claim of ownership on the com­
pany that gives the owner the right to receive an equal share of the 
corporation's profits, 4 

Outstanding shares number of shares being held by its shareholders. Does 
not include shares that are authorised but not issued, or shares issued 
but held/bought back by the issuing company, 42 

Pairs trading a trading strategy which bets on a linear combination, normally 
short an amount of shares in one asset and long an amount of shares in 
the other asset, following a predictable trajectory. 1N'hen the portfolio 
consisting of the two assets deviates from its historical levels or where 
it is predicted to be, the strategy places trades that bet on the portfolio 
returning to its predicted level, 273 

PIN probability of informed trading, 70 

POCV Percentage of Cumulative Volume. This refers to an execution trading 
strategy which targets a fixed percentage of the total traded volume of 
an asset over a prespecified execution horizon, 213 

POV Percentage of Volume. This refers to an execution trading strategy which 
buys/sells a fixed percentage of the traded volume of an asset over in­
tervals of time, 213 

Preferred stock are contracts whereby the corporation commits to pay the 
holder a regular income (interest) but includes no decision rights, 4 

Price impact the impact that trading has on prices, whether they are tem­
porary (e.g., by walking the book), or permanent (e.g., by inducing an 
upward pressure on prices), 70 

Price-time priority matching sec matching algorithm, price-time priority, 9 

Proprietary traders are traders who trade for their own behalf employing 
their own funds and not other investors' money, 7 

Prorata matching algorithm see matching algorithm, prorata, 10 

Quoted spread the difference between the bid and ask prices and represents 
the potential cost of immediacy: the difference in price from posting a 
passive order at the best price versus aggressively executing an MO (and 
hence 'crossing the spread') at any point in time, 71 

R squared the (adjusted) R-squared (or coefficient of determination) is a mea­
sure of how good the model fits the data, and its value is between 0 
(lowest) and 1 (highest), 44 

Resilience is the speed at which the LOB recovers after a market order walks 
through more than one level. Many models assume resilience is "infi­
nite" meaning that the book recovers immediately and the prevailing 
fundamental price does not change, 136 
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Resiliency the speed at which quotes replenish to revert to their former levels 
after order flow imbalance events - such as an MO walking the book, 70 

Share turnover number of shares traded over a period divided by the number 
of shares outstanding. This is used as a measure of a stock's liquidity -
greater turnover implies greater liquidity, 42 

Share turnover ratio see Share turnover, 42 
Slippage difference between arrival price and actual price. Also known as im­

plementation shortfall, 135 
Stub quote a stub quote is a limit order placed very far from the price range 

where orders are usually executed, for example a buy limit offer at one 
cent for an asset trading at more than 10 dollars, 16 

Survivor function also known as the reliability function, S(x). It is the prob­
ability that a random variable exceeds a certain level S(.,r) = IP'{X > x}, 
93 

Sweep order (intermarket sweep order) an intermarket sweep order is a 
special order type in the US that allows the sender to execute an order 
against all markets and execute at different prices, while bypassing the 
RegNMS order protection rule, 85 

Tick, tick size the smallest step between two neighbouring price levels in the 
LOB, 16 

TWAP Time Weighted Average Price. A market standard index benchmark 
used to measure the effectiveness of a liquidation/ acquisition strategy. 
It equals ,Js ft Su du where St is the asset's midprice and T is the time 
horiwn, 141 

VIX volatility index - an index which represents the market's anticipation of 
the future volatility published by CBOE. It is derived as a weighted 
average of a set of short maturity options on the S&P500 index, 43 

VWAP Volume Weighted Average Price. It is a benchmark calculated as the 
volume weighted average price of trades over a given time horizon, 213 

Walking the book (walking the LOB) the process whereby a large entering 
market order is executed against standing LOs at increasingly worse 
prices, 9 
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