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Preface

The use of quantitative methods and programming skills
in all areas of finance, from trading to risk management
has grown tremendously in recent years, and accelerated
through the financial crisis and with the advent of the big
data era.

A core body of knowledge is required for successfully
interviewing for a quant type position. The challenge lies
in the fact that this knowledge encompasses finance, pro-
gramming (in particular C++ programming), and several
areas of mathematics (probability and stochastic calculus,
numerical methods, linear algebra, and advanced calcu-
lus). Moreover, brainteasers are often asked to probe the
ingenuity of candidates.

This book contains over 150 questions covering this
core body of knowledge, without which it is not possible
to advance to a final interview round. These questions are
not only frequently, but also currently, asked on interviews
for quantitative positions, and cover a vast spectrum, from
C++ and data structures, to finance, brainteasers, and
stochastic calculus.

The answers to all of these questions are included in
the book. These answers are written in the same very
practical vein that was used to select the questions: they
are complete, but straight to the point — as they would be
given in an interview.



% PREFACE

Topics:
e Mathematics, calculus, differential equations.
e Covariance and correlation matrices. Linear algebra.

e Financial instruments: options, bonds, swaps, forwards,
futures.

e C++, algorithms, data structures.
e Monte Carlo simulations. Numerical methods.
e Probability. Stochastic calculus.

e Brainteasers.

The authors are faculty members of the Baruch Col-
lege Financial Engineering Masters Program, and have
over 20 years of experience educating students who were
very successful interviewing for quantitative positions. As
such, the authors had the privilege to interact with gen-
erations of exceptional students, whose contributions as
alumni to the continued success of our students has been
tremendous. This book is a tribute to our special Baruch
MFE community.

This is the first book in the Pocket Book Guides for
Quant Interviews Series, to be followed by books on ad-
vanced probability and stochastic calculus questions and
on challenging brainteasers asked in quant interviews.

New York, 2013
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Chapter 1

First Look: Ten Questions.

1. Put options with strikes 30 and 20 on the same un-
derlying asset and with the same maturity are trad-
ing for $6 and $4, respectively. Can you find an
arbitrage?

2. The number 2?° has 9 digits, all different. Without
computing 2?°, find the missing digit.

3. Let W; be a Wiener process, and let

t
Xt = / WTdT.
0

What is the distribution of X;? Is Xt a martingale?

4. Alice and Bob stand at opposite ends of a straight
line segment. Bob sends 50 ants towards Alice, one
after another. Alice sends 20 ants towards Bob. All
ants travel along the straight line segment. When-
ever two ants collide, they simply bounce back and
start traveling in the opposite direction. How many

1
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10.
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ants reach Bob and how many ants reach Alice?
How many ant collisions take place?

. Find all the values of p such that

1 0.6 -0.3
0.6 1 p
-03 o»p 1

is a correlation matrix.

. How many independent random variables uniformly

distributed on [0, 1] should you generate to ensure
that there is at least one between 0.70 and 0.72 with
probability 95%7

. Show that the probability density function of the

standard normal integrates to 1.

. Assume the Earth is perfectly spherical and you are

standing somewhere on its surface. You travel ex-
actly 1 mile south, then 1 mile east, then 1 mile
north. Surprisingly, you find yourself back at the
starting point. If you are not at the North Pole,
where can you possibly be?!

. Solve the Ornstein-Uhlenbeck SDE

th = A(G—rt)dt =+ Uth,

which is used, e.g., in the Vasicek model for interest
rates.

Write a C++ function that computes the n-th Fi-
bonacci number.



Solutions

Question 1. Put options with strikes 30 and 20 on the
same underlying asset and with the same maturity are
trading for $6 and $4, respectively. Can you find an arbi-
trage?

Answer: Since the value of a put option with strike 0 is
$0, we in fact know the prices of put options with three
different strikes, i.e.,

P(30) = 6; P(20) =4; P(0) =0,

where P(K) denotes the value of a put option with strike
K.

In the plane (K, P(K)), these option values correspond
to the points (30,6), (20,4), and (0, 0), which are on the
line P(K) = 2K.

This contradicts the fact that put options are strictly
convex functions of strike price, and creates an arbitrage
opportunity.

The arbitrage comes from the fact that the put with
strike 20 is overpriced. Using a ”buy low, sell high” strat-
egy, we could buy (i.e., go long) % put options with strike
30, and sell (i.e., go short) 1 put option with strike 20. To
avoid fractions, we set up the following portfolio:

e long 2 puts with strike 30;
e short 3 puts with strike 20.

This portfolio is set up at no initial cost, since the cash
flow generated by selling 3 puts with strike 20 and buying
2 puts with strike 30 is $0:

3:84-2-%6 = $0.

At the maturity T of the options, the value of the port-
folio is

V(T) = 2max(30 — S(T),0) — 3max(20 — S(T'), 0).
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Note that V(T') is nonnegative for any value S(7) of
the underlying asset:
If S(T') > 30, then both put options expire worthless,
and V(T') = 0.
If 20 < S(T) < 30, then
V(T) = 2(30—S(T)) > O.
If 0 < S(T) < 20, then

V(T) 2(30 — S(T)) — 3(20 — S(T))
S(T)
5 0

In other words, we took advantage of the existing ar-
bitrage opportunity by setting up, at no initial cost, a
portfolio with nonnegative payoff at 7' regardless of the
price S(T') of the underlying asset, and with a strictly
positive payoff if 0 < S(T) < 30. O

Question 2. The number 2%° has 9 digits, all different.
Without computing 2%°, find the missing digit.

Answer: For any positive integer n, denote by D(n) the
sum of the digits of n. Recall that the difference between
a number and the sum of its digits is divisible by 9, i.e.,

9 | n — D(n);
see the footnote below! for details.
If the digits of n are ak, ak—1, ...a1, ao (from left to right),
then
n = ar-10"+ak_1-10*"1 4+...a1 10+ ao;
D(n) = ak+ak-—1+...+a1+ao.

Hence,
k
n — D(n) = Z a; - (10° —1).
i=0

Since 10° — 1 is an 4-digit number with all digits equal to 9, it
follows that 9 | 10° — 1, for all 4 = 1 : k, and therefore 9 | n — D(n).



Thus, for n = 2%°, it follows that
9|2% -D(2%). (1.1)

We are given that 2?° has 9 digits, and that all 9 digits
are different. Denote by = the missing digit. Then,

DT = (i;) —z=45—z. (1.2)
j=0

From (1.1) and (1.2), it follows that

9|2% — (45 — ). (1.3)
Note that
229 A 25 Y (26)4 2 25 < 644
= 2% (68 +1)%
= 25.(63-k+1)
= 2°.63.-k+2°, (1.4)

where k is a positive integer.?
From (1.4), we find that

2% 9% = 3.2 <k,

and therefore
g| 2% -2 (1.5)

From (1.3) and (1.5), it follows that
B e -2 - @Y - =)

= (45— ) — 2°
=3 —a@.
21t is easy to see that

63 +4-63°+6-63°+4.63+1
= 63-(63°+4-632+6-63+4)+1
= 63-k+1,

where k = 63% +4-63%2 +6-63 +4.

(63 +1)*
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Since 9 | 13—z and z is a digit, we conclude that z = 4.
In other words, we identified that z, the missing digit from
2%° must be 4.

Indeed, 2%° = 536870912, i.e., 2%° has 9 digits, all
different, and 4 is not a digit of 2%°. O

Question 3. Let W; be a Wiener process, and let
t
Xt = / WTdT. (16)
0

What is the distribution of X;? Is X; a martingale?

Answer: Note that we can rewrite (1.6) in differential
form as
dXy = Widt = Widt + 0dWs.

Then, X; is a diffusion process with only drift part W4,
and therefore X; is not a martingale.

We use integration by parts to find the distribution of
X:; a different solution can be found in Section 3.6.

By applying integration by parts, we obtain that

t
Xt = / W-,-dT
0

t
tW, — / TdW-
0

t t
t / aw, — / 7dW-
0 0

/Ot(t .

Recall that, if f(t) is a deterministic square integrable
function, then the stochastic integral fot f(1)dW; is a nor-
mal random variable of mean 0 and variance f(f |f(m)|%dr,

g /0 f)dW. ~ N (o, /O ¥ f(T)|2d7->.



Thus,

& = o g=nuk
| e-n
N(O,/Ot(t—r)sz)
¥ (05).

We conclude that X is a normal random variable of mean
0 and variance 5. 0O

2

Question 4. Alice and Bob stand at opposite ends of a
straight line segment. Bob sends 50 ants towards Alice,
one after another. Alice sends 20 ants towards Bob. All
ants travel along the straight line segment. Whenever two
ants collide, they simply bounce back and start traveling
in the opposite direction. How many ants reach Bob and
how many ants reach Alice? How many ant collisions take
place?

Answer: Imagine that when two ants meet, they switch
identities. Hence, even after a collision, two ants are trav-
eling in two opposite directions. It follows that 20 ants
reach Bob, while 50 ants reach Alice.

To calculate the number of ant collisions, imagine that
each ant carries a message. In other words, Bob sends
50 messages to Alice, one message per ant. Similarly,
Alice sends 20 messages to Bob, one message per ant.
Furthermore, imagine that the two ants swap messages
when they collide. Then a message always makes forward
progress. Each of Alice’s messages goes through 50 ant
collisions. Each of Bob’s messages goes through 20 ant
collisions. The total number of collisions is 50 times 20,
which is 1000 collisions. [
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Question 5. Find all the values of p such that

1 0.6 -0.3
0.6 1 p
-03 »p 1

is a correlation matrix.

Answer: A symmetric matrix with diagonal entries equal
to 1 is a correlation matrix if and only if the matrix is
symmetric positive semidefinite. Thus, we need to find all
the values of p such that the matrix

o 0608
Q = g6 1 n (1.7)
o

is symmetric positive semidefinite.

We give a short solution using Sylvester’s criterion.
Two more solutions, one using the Cholesky decomposi-
tion, and another one based on the definition of symmetric
positive semidefinite matrices will be given in Section 3.2.

Recall from Sylvester’s criterion that a matrix is sym-
metric positive semidefinite if and only if all its principal
minors are greater than or equal to 0. Also, recall that
the principal minors of a matrix are the determinants of
all the square matrices obtained by eliminating the same
rows and columns from the matrix. In particular, the
matrix © from (1.7) has the following principal minors:

det(1)=1; ' det(l) =15 det(1)=1;

1016 :

det< e 1 ) =0:64;

1 -0.3 o ;

det( —0.3 1 ) =" 0:91;
1aop = 2,
det ( E ) = . L—p%



det(Q) = 1-0.36p— 0.09 — 0.36 — p?
= 0.55—0.36p— p°.

Thus, it follows from Sylvester’s criterion that € is a
symmetric positive semidefinite matrix if and only if
T pff 1 30 10y
0.55—0.36p— p> > 0,
which is equivalent to —1 < p < 1 and
2
p°+0.36p—0.55 < 0. (1.8)

Since the roots of the quadratic equation corresponding
to (1.8) are —0.9432 and 0.5832, we conclude that the
matrix €2 is symmetric positive semidefinite, and therefore
a correlation matrix, if and only if

—0.9432 < p < 0.5832. O (1.9)

Question 6. How many independent random variables
uniformly distributed on [0, 1] should you generate to en-
sure that there is at least one between 0.70 and 0.72 with
probability 95%?

Answer: Denote by N the smallest number of random
variables you should generate such that

P(at least one r.v. in [0.70,0.72]) > 0.95. (1.10)

The probability that a random variable uniformly dis-
tributed on [0, 1] is not in the interval [0.70,0.72] is 0.98.
Thus, the probability that none of the N independent
variables are in [0.70,0.72] is 0.98", i.e.,

P(no r.v. in [0.70,0.72]) = 0.98".
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Note that

P(at least one r.v. in [0.70,0.72])
= 1— P(nor.v. in [0.70,0.72])
=1 ~(0.98)". (1.11)

From (1.10) and (1.11), we find that N is the smallest
integer such that

1,= (0.98)Y. > 0.95,
which is equivalent to

(0.98)Y < 0.05
< NIn(0.98) < In(0.05)

In(0.05)
= N> ~ 148.28
= In(0.98)
s N=149.

We conclude that at least 149 uniform random vari-
ables on [0,1] must be generated in order to have 95%
confidence that at least one of the random variables is
between 0.70 and 0.72. O

Question 7. Show that the probability density function
of the standard normal integrates to 1.

Answer: The probability density function of the standard
2

normal variable is \/;2—” e~ 'T. We want to show that

1 2 2 d
P e 2 dt = ]_’
V2T /_oo

which, using the substitution ¢ = v/2z, can be written as

g o /w e do = /7. (1.12)
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We prove (1.12) by using polar coordinates. Since z is
just an integrating variable, we can also write the integral
I in terms of another integrating variable, denoted by v,

asd &7 e~V dy.

Then,?
</ e dm> . (/ it dy)
/ / e eV dody (1.13)

e /w /oo e~ dzdy.
-Q00 -00

We use the polar coordinates transformation = rcos@
and y = rsinf, with »r € [0, o0) and 6 € [0, 27), to
evaluate the last integral. Since dzdy = rdfdr, we obtain

that
o oo 2 2
/ / e~ @ +v%) dzdy
—o0 J —o0

] 2m
2 2 22
o / / r e—(r cos® 6+r“ sin 9) dodr
0 0

oo 2 2
= / / re ' dbdr (1.14)
o Jo

= / rre T dr
0

t

P |
= 27 Jim re " dr
t—o0 0

= 2r li e
ool A Tg%

I2

1—2

t

0

note that (1.14) follows from the equality cos® 6 +sin® 6§ =
1 for any real number 6.

3Note that Fubini’s theorem is needed for a rigorous derivation
of the equality (1.13); this technical step is rarely required by the
interviewer.
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Since I > 0, I = +/m, which is what we wanted to
prove; see (1.12). 0O

Question 8. Assume the Earth is perfectly spherical and
you are standing somewhere on its surface. You travel
exactly 1 mile south, then 1 mile east, then 1 mile north.
Surprisingly, you find yourself back at the starting point.
If you are not at the North Pole, where can you possibly
be?!

Answer: There are infinitely many locations, aside from
the North Pole, that have this property.

Somewhere near the South Pole, there is a latitude
that has a circumference of one mile. In other words, if
you are at this latitude and start walking east (or west),
in one mile you will be back exactly where you started
from. If you instead start at some point one mile north
of this latitude, your journey will take you one mile south
to this special latitude, then one mile east “around the
globe” and finally one mile north right back to wherever
you started from. Moreover, there are infinitely many
points on the Earth that are one mile north of this special
latitude, where you could start your journey and eventu-
ally end up exactly where you started.

We are still not finished! There are infinitely many spe-
cial latitudes as well; namely, you could start at any point
one mile north of the latitude that has a circumference of
1/k miles, where k is a positive integer. Your journey will
take you one mile south to this special latitude, then one
mile east looping “around the globe” k times, and finally
one mile north right back to where you started from. [

Question 9. Solve the Ornstein-Uhlenbeck SDE
dry = MO —ry)dt + odWs, (1.15)

which is used, e.g., in the Vasicek model for interest rates.
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Answer: We can rewrite (1.15) as
dri + Aridt = \0dt + ocdWs. (116)

By multiplying (1.16) on both sides by the integrating
factor e, we obtain that

eMdry + AeMtrdt = A Mdt + ot dW,
which is equivalent to
d (e“n) = AeMdt pod™ W - (1AM

By integrating (1.17) from O to t, it follows that
¢ t
eri—ro = >\0/ e>‘3ds+a/ e dW,
0 0
¢
= 0 (e’\' - 1) +0/ erdw, .
0

By solving for r;, we find that the solution to the Ornstein-
Uhlenbeck SDE is

t
& Mry e Mo (e” 2 1) + ae_)‘t/ M dW,
0

Tt

t
e Mro+6 (1 - e””) - a/ e O\ g
0

Note that the process 7; is mean reverting to 6, regard-
less of the starting point 7. To see this, recall that the
expected value of the stochastic integral fot f(s)dWs of a
non-random function f(s) is 0. Then,

:
E {/ e‘*“‘”dws} =0,
0

Elrs) = e Mro+6 (1 - e_)‘t) :

and therefore
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Thus,
tlim ] =10,

Question 10. Write a C++ function that computes the
n-th Fibonacci number.

Answer: The Fibonacci numbers (F,),>0 are given by the
following recurrence:

Fotai=Frii+ By, Y20,
with Fo =0 and F; = 1.

//recursive implementation
int fib(int n) {
if (n == 0 || n == 1) return n;
else {
return fib(n-1) + fib(n-2);
i
}

//iterative implementation

int fib(int n ){
if (n =0 || n == 1) return n;
int prev = 0, last = 1, temp;
for (int i = 2; i <=n; ++i) {

temp = last;
last = prev + last;
prev = temp;

¥

return last;

B

//tail recursive implementation
int fib(int n, int last = 1, int prev = 0)
{

if (n == 0) return prev;



if (n == 1) return last;
return fib(n-1, last+prev, last);

15



Chapter 2

Questions

1. Mathematics, calculus, differential equations.

2. Covariance and corelation matrices. Linear
algebra.

3. Financial instruments: options, bonds, swaps,
forwards, futures.

4. C++. Data structures.
5. Monte Carlo simulations. Numerical methods.
6. Probability. Stochastic calculus.

7. Brainteasers.

17
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2.1 Mathematics, calculus, differential
equations.

1. What is the value of ¢, where i = /—17
2. Which number is larger, 7¢ or e"?

3. Show that

T 4 oY e
e; _>_e—§'ﬂ, Vz,y€R.

4. Solve z® = 64.

5. What is the derivative of 7

6. Calculate

\/;+\/2+W.

7. Find x such that

8. Which of the following series converge:

=i 1 1
Y aw Loa

oo fes
k=1 k=1 k=2
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10.
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12.

13.

14.

15.

MATHEMATICS, CALCULUS, ODE 19

)
/H_x?dz'

. Compute

Compute

/mln(z)dw and /mezda:.

Compute

/1‘" In(z) da.

Compute

/(ln(:v))n dz.

Solve the ODE

V' — 4y +dy=1.

Find f(z) such that

fi@) = fl@)(1- f(z)).

Derive the Black-Scholes PDE.
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2.2

CHAPTER 2. QUESTIONS

Covariance and correlation matrices.
Linear algebra.

. Show that any covariance matrix is symmetric pos-

itive semidefinite. Show that the same is true for
correlation matrices.

Find the correlation matrix of three random vari-
ables with covariance matrix

1 036 —-1.44
Ux = 0.36 4 0.80
—1.44 0.80 9

. Assume that all the entries of an n x n correlation

matrix which are not on the main diagonal are equal
to p. Find upper and lower bounds on the possible
values of p.

. How many eigenvalues does an n x n matrix with

real entries have? How many eigenvectors?

A= (_22 ‘52>.

(i) Find a 2 x 2 matrix M such that M? = A;

Let

(ii) Find a 2 x 2 matrix M such that A = MM?.
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10.

. The 2 x 2 matrix A has eigenvalues 2 and —3 with

corresponding eigenvectors < ; ) and < il ) If

3
v=(:13),ﬁndAv.

. Let A and B be square matrices of the same size.

Show that the traces of the matrices AB and BA
are equal.

. Can you find n x n matrices A and B such that

ABLBA S 1

where I, is the identity matrix of size n?

. A probability matrix is a matrix with nonnegative

entries such that the sum of the entries in each row
of the matrix is equal to 1. Show that the product
of two probability matrices is a probability matrix.

Find all the values of p such that
1 0.6 -0.3

8:6 I pnuap

TR

is a correlation matrix.!

LA solution to this question was given in Chapter 1 using
Sylvester’s criterion; two different solutions will be given herein.
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CHAPTER 2. QUESTIONS

2.3 Financial instruments: options,

bonds, swaps, forwards, futures.

. The prices of three put options with strikes 40, 50,

and 70, but otherwise identical, are $10, $20, and
$30, respectively. Is there an arbitrage opportunity
present? If yes, how can you make a riskless profit?

. The price of a stock is $50. In three months, it will

either be $47 or $52, with 50% probability. How
much would you pay for an at-the-money put? As-
sume for simplicity that the stock pays no dividends
and that interest rates are zero.

. A stock worth $50 today will be worth either $60

or $40 in three months, with equal probability. The
value of a three months at—the-money put on this
stock is $4. Does the value of the three months ATM
put increase or decrease, and by how much, if the
probability of the stock going up to $60 were 75%
and the probability of the stock going down to $40
were 25%7

. What is risk-neutral pricing?

. Describe briefly how you arrive at the Black—Scholes

formula.

. How much should a three months at—-the-money put

on an asset with spot price $40 and volatility 30%
be worth? Assume, for simplicity, that interest rates
are zero and that the asset does not pay dividends.



2.3.

10.

115

12.

133

14.

15.

FINANCIAL INSTRUMENTS 23

. If the price of a stock doubles in one day, by how

much will the value of a call option on this stock
change?

. What are the smallest and largest values that Delta

can take?

. What is the Delta of an at—the-money call? What

is the Delta of an at—the-money put?

What is the Put—Call parity? How do you prove it?

Show that the time value of a European call option
is highest at—-the-money.

What is implied volatility? What is a volatility
smile? How about a volatility skew?

What is the Gamma of an option? Why is it prefer-
able to have small Gamma? Why is the Gamma of
plain vanilla options positive?

When are a European call and a European put worth
the same? (The options are written on the same
asset and have the same strike and maturity.) What
is the intuition behind this result?

What is the two year volatility of an asset with 30%
six months volatility?
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16.

17

18

19.

20.

2105

22,

23.

CHAPTER 2. QUESTIONS

How do you value an interest rate swap?

By how much will the price of a ten year zero coupon
bond change if the yield increases by ten basis points?

A five year bond with 3.5 years duration is worth
102. What is the value of the bond if the yield de-
creases by fifty basis points?

What is a forward contract? What is the forward
price?

What is the forward price for treasury futures con-
tracts? What is the forward price for commodities
futures contracts?

What is a Eurodollar futures contract?

What are the most important differences between
forward contracts and futures contracts?

What is the ten—day 99% VaR of a portfolio with a
five-day 98% VaR of $10 million?
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C++. Data structures.

. How do you declare an array?

. How do you get the address of a variable?

. How do you declare an array of pointers?

. How do you declare a const pointer, a pointer to a

const and a const pointer to a const?

. How do you declare a dynamic array?

. What is the general form for a function signature?

. How do you pass-by-reference?

. How do you pass a read only argument by reference?

. What are the important differences between using a

pointer and a reference?

How do you set a default value for a parameter?

How do you create a template function?
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How do you declare a pointer to a function?

How do you prevent the compiler from doing an im-
plicit conversion with your class?

Describe all the uses of the keyword static in C+4-.

Can a static member function be const?

C++ constructors support the initialization of mem-
ber data via an initializer list. When is this prefer-
able to initialization inside the body of the construc-
tor?

What is a copy constructor, and how can the default
copy constructor cause problems when you have
pointer data members?

What is the output of the following code:

#include <iostream>
using namespace std;

class A
{
public:
int * ptr;
A0
{
delete(ptr);
}

¥
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void foo(A object_input)

{

}

int main()

{
A aa;
aa.ptr = new int(2);
foo(aa);
cout<<(*aa.ptr)<<endl;
return 0;

¥

How do you overload an operator?

What are smart pointers?

What is encapsulation?

What is a polymorphism?

What is inheritance?

What is a virtual function? What is a pure virtual
function and when do you use it?

Why are virtual functions use for destructors? Can
they be used for constructors?
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. Write a function that computes the factorial of a
positive integer.

Write a function that takes an array and returns the
subarray with the largest sum.

Write a function that returns the prime factors of a
positive integer.

Write a function that takes a 64-bit integer and
swaps the bits at indices i and j.

Write a function that reverses a single linked list.

Write a function that takes a string and returns true
if its parenthesis are balanced.

Write a function that returns the height of an arbi-
trary binary tree.
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Monte Carlo simulations. Numerical
methods.

. How would you compute 7 using Monte Carlo sim-

ulations? What is the standard deviation of this
method?

. What methods do you know for generating indepen-

dent samples of the standard normal distribution?

. How do you generate a geometric Brownian motion

stock path using random numbers from a normal
distribution?

. How do you generate a sample of the standard nor-

mal distribution from 12 independent samples of the
uniform distribution on [0, 1]?

. What is the rate of convergence for Monte Carlo

methods?

. What variance reduction techniques do you know?

. How do you generate samples of normal random

variables with correlation p?

. What is the order of convergence of the Newton’s

method?
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9. Which finite difference method corresponds to tri-
nomial trees?
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Probability. Stochastic calculus.

. What is the exponential distribution? What are the

mean and the variance of the exponential distribu-
tion?

. If X and Y are independent exponential random

variables with mean 6 and 8, respectively, what is
the probability that Y is greater than X?

. What are the expected value and the variance of the

Poisson distribution?

. A point is chosen uniformly from the unit disk. What

is the expected value of the distance between the
point and the center of the disk?

. Consider two random variables X and Y with mean

0 and variance 1, and with joint normal distribu-
tion. If cov(X,Y) = %, what is the conditional

probability P(X > 0|Y < 0)?

. If X and Y are lognormal random variables, is their

product XY lognormally distributed?

. Let X be a normal random variable with mean p and

variance o2, and let ® be the cumulative distribution
function of the standard normal distribution. Find
the expected value of Y = ®(X).
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. What is the law of large numbers?

. What is the central limit theorem?

What is a martingale? How is it related to option
pricing?

Explain the assumption (dW;)? = dt used in the
informal derivation of It6’s Lemma.

If W; is a Wiener process, find E[W,W;].
If W, is a Wiener process, what is var(W; + Ws)?

Let Wi be a Wiener process. Find

t t
/ Ws dW, and E [/ Ws dWs] :
0 0

Find the distribution of the random variable

1
X:/ WidWr.
0

Let W; be a Wiener process. Find the mean and the

variance of 5
/ W2dWs.
0
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If W, is a Wiener process, find the variance of

2

1 W,
X = / Vie ® dW,.
0

If W; is a Wiener process, what is F [ewt]?

If Wy is a Wiener process, find the variance of

t
/ s dWs.
0

Let W be a Wiener process, and let

t
Xt = / W-,-d'?'.
0

33

What is the distribution of X;? Is X; a martingale??

What is an It6é process?

What is Ité’s lemma?

If W; is a Wiener process, is the process X; = W}

a martingale?

2 A solution to this question was given in Chapter 1 using inte-
gration by parts; a different solution will be given herein.
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. If W; is a Wiener process, is the process

N, = W2 - 3tW,

a martingale?
What is Girsanov’s theorem?

What is the martingale representation theorem, and
how is it related to option pricing and hedging?

Solve dY; = Y; dW;, where W; is a Wiener process.

Solve the following SDEs:

(i) dY: = pYidt + oYedWy;
(i) dX¢ = pdt + (aX¢ + b)dWs.

What is the Heston model?
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Brainteasers.

. A flea is going between two points which are 100

inches apart by jumping (always in the same direc-
tion) either one inch or two inches at a time. How
many different paths can the flea travel by?

. I have a bag containing three pancakes: one golden

on both sides, one burnt on both sides, and one
golden on one side and burnt on the other. You
shake the bag, draw a pancake at random, look at
one side, and notice that it is golden. What is the
probability that the other side is golden?

. Alice and Bob are playing heads and tails, Alice

tosses n + 1 coins, Bob tosses n coins. The coins are
fair. What is the probability that Alice will have
strictly more heads than Bob?

. Alice is in a restaurant trying to decide between

three desserts. How can she choose one of three
desserts with equal probability with the help of a
fair coin? What if the coin is biased and the bias is
unknown?

. What is the expected number of times you must flip

a fair coin until it lands on head? What if the coin
is biased and lands on head with probability p?

. What is the expected number of coin tosses of a fair

coin in order to get two heads in a row? What if
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the coin is biased with 25% probability of getting
heads?

. A fair coin is tossed n times. What is the probability

that no two consecutive heads appear?

. You have two identical Fabergé eggs, either of which

would break if dropped from the top of a building
with 100 floors. Your task is to determine the high-
est floor from which the an egg could be dropped
without breaking. What is the minimum number of
drops required to achieve this? You are allowed to
break both eggs in the process.

An ant is in the corner of a 10 x 10 x 10 room and
wants to go to the opposite corner. What is the
length of the shortest path the ant can take?

A 10 x 10 x 10 cube is made of 1,000 unit cubes.
How many unit cubes can you see on the outside?

Fox Mulder is imprisoned by aliens in a large circular
field surrounded by a fence. Outside the fence is
a vicious alien that can run four times as fast as
Mulder, but is constrained to stay near the fence. If
Mulder can contrive to get to an unguarded point on
the fence, he can quickly scale the fence and escape.
Can he get to a point on the fence ahead of the alien?

At your subway station, you notice that of the two
trains running in opposite directions which are sup-
posed to arrive with the same frequency, the train
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going in one direction comes first 80% of the time,
while the train going in the opposite direction comes
first only 20% of the time. What do you think could
be happening?

You start off with one amoeba. Every minute, this
amoeba can either die, do nothing, split into two
amoebas, or split into three amoebas; all these sce-
narios being equally likely to happen. All further
amoebas behave the same way. What is the proba-
bility that the amoebas eventually die off?

Given a set X with n elements, choose two subsets
A and B at random. What is the probability of A
being a subset of B?

Alice writes two distinct real numbers between 0
and 1 on two sheets of paper. Bob selects one of
the sheets randomly to inspect it. He then has to
declare whether the number he sees is the bigger or
smaller of the two. Is there any way Bob can expect
to be correct more than half the times Alice plays
this game with him?

How many digits does the number 125'°° have? You
are not allowed to use values of log,, 2 or log,, 5.

For every subset of {1,2,3,...,2013}, arrange the
numbers in the increasing order and take the sum
with alternating signs. The resulting integer is called
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the weight of the subset.®> Find the sum of the
weights of all the subsets of {1,2,3,...,2013}.

Alice and Bob alternately choose one number from
one of the following nine numbers: 1/16, 1/8, 1/4,
1/2, 1, 2, 4, 8, 16, without replacement. Whoever
gets three numbers that multiply to one wins the
game. Alice starts first. What should her strategy
be? Can she always win?

Mr. and Mrs. Jones invite four other couples over
for a party. At the end of the party, Mr. Jones asks
everyone else how many people they shook hands
with, and finds that everyone gives a different an-
swer. Of course, no one shook hands with his or her
spouse and no one shook the same person’s hand
twice. How many people did Mrs. Jones shake
hands with?

The New York Yankees and the San Francisco Gi-
ants are playing in the World Series (best of seven
format). You would like to bet $100 on the Yankees
winning the World Series, but you can only place
bets on individual games, and every time at even
odds. How much should you bet on the first game?

We have two red, two green and two yellow balls.
For each color, one ball is heavy and the other is
light. All heavy balls weigh the same. All light balls
weigh the same. How many weighings on a scale are
necessary to identify the three heavy balls?

3For example, the weight of the subset {3} is 3. The weight of
the subset {2,5,8} is2—-5+8 =5.
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There is a row of 10 rooms and a treasure in one of
them. Each night, a ghost moves the treasure to an
adjacent room. You are trying to find the treasure,
but can only check one room per day. How do you
find it?

How many comparisons do you need to find the max-
imum in a set of n distinct numbers? How many
comparisons do you need to find both the maximum
and minimum in a set of n distinct numbers?

Given a cube, you can jump from one vertex to a
neighboring vertex with equal probability. Assume
you start from a certain vertex (does not matter
which one). What is the expected number of jumps
to reach the opposite vertex?

Select numbers uniformly distributed between 0 and
1, one after the other, as long as they keep decreas-
ing; i.e. stop selecting when you obtain a number
that is greater than the previous one you selected.

To organize a charity event that costs $100K, an or-
ganization raises funds. Independent of each other,
one donor after another donates some amount of
money that is exponentially distributed with a mean
of $20K. The process is stopped as soon as $100K
or more has been collected. Find the distribution,
mean, and variance of the number of donors needed
until at least $100K has been collected.
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Consider a random walk starting at 1 and with equal
probability of moving to the left or to the right by
one unit, and stopping either at 0 or at 3.

(i) What is the expected number of steps to do so?

(ii) What is the probability of the random walk end-
ing at 3 rather than at 07

A stick of length 1 drops and breaks at a random
place uniformly distributed across the length. What
is the expected length of the smaller part?

You are given a stick of unit length.

(i) The stick drops and breaks at two places. What
is the probability that the three pieces could form a
triangle?

(ii) The stick drops and breaks at one place. Then
the larger piece is taken and dropped again, breaking
at one place. What is the probability that the three
pieces could form a triangle?

Why is a manhole cover round?

When is the first time after 12 o’clock that the hour
and minute hands of a clock meet again?

Three light switches are in one room, and they turn
three light bulbs in another. How do you figure out
which switch turns on which bulb in one shot?
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Solutions

3.1 Mathematics, calculus, differential
equations.

Question 1. What is the value of ¢, where 5 = /=17

Answer: Recall that e*® = cos@ + i sin 6. Then,

; osﬂ-—}—'inw e
t = cos— +isin— =
2 2 :

and therefore

since i2=—1. 0O

Question 2. Which number is larger, 7¢ or e™?

Answer: We will show that 7¢ < e™. By taking the natu-
ral logarithm, we find that

™

™ <e” <= In(r°) <In(e") = eln(n) <

@ < é, (3.1)

41
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which can be written as

In(x) _ Ine)

/g €

Let f: (0,00) — R given by f(z) = ln(z) . Then,

Note that f’(z) = 0 has one solution, z = e. Also, f'(z) >
0for 0 < z < e, and f'(z) < 0 for z > e, and therefore
f(z) is increasing on the interval (0,e) and is decreasing
on the interval (e, 00).

Thus, the function f(z) = M has a global maximum
pointratia = e, i.e;, flm) < f(e) 1 for all z > 0 with
 # e, and therefore

fm =20 o O 1

e (5

which is equivalent to 7¢ < e”; cf. (3.1). O

Question 3. Show that

z y i
= ”;e > "%, Va,yeR. (3.2)

Answer: Let e* = a and e = b. Note that a,b > 0, and

that
L Ve - e N

Then, (3.2) can be written as
a+b
5 > Vab < a+b - 2Vab > 0
2
= (\/——\/1—7)

which is what we wanted to show. [
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Question 4. Solve z° = 64.

Answer: Recall that the six unit roots of 2° = 1 are
ex i R ex i
N e
cos (k—;) + isin (%) ; (3.3)

for k = 0 : 5. Since v/64 = 2, we obtain from (3.3) that
the solutions of 2° = 64 are

2k

Il

k= 2cos<k?ﬂ>+2isin<%7—[>, Wik =05 SR

Question 5. What is the derivative of z*?

Answer: Note that

R eln(zz)

T gty (3.4)

Using Chain Rule and (3.4), we find that

o (ezln(x))’ = &""@ (z1n(z))’
= @ 0nle)+ 1% O

Question 6. Calculate

\/2+\/2+\/‘ﬁf. (3.5)

Answer: Assume that the limit from (3.5) exists, and de-
note that limit by {. Then, | = +/2+ [, which can be
written as

Pl = -0+ =0
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Since I > 0, we obtain that | = 2, ie.,

\/2+\/2+\/m kg (3.6)

Thus, proving (3.6) is equivalent to showing that the
sequence (Zn)n,>0 given by zo = +/2 and

Tnt1 = V2425, VN 2>0,

is convergent.

We can see by induction that the sequence (z)n>0 is
bounded from above by 2, since zo = v/2 < 2, and, if we
assume that z, < 2, then

Tnt1 = V243, < Vi = 2

Moreover, the sequence (z,)n>0 is increasing, since

Tn < Tp4l "= T <V2+z,
< 22-2,-2<0

= (zn—2)(zn+1) <0,
which holds true since x, > 0, and since, as shown above,
Tn < 2foralln > 0.
Thus, the sequence (zn),>0 is convergent since it is

increasing and bounded from above, which is what we
needed to show in order to prove (3.6). [

Question 7. Find z such that
z® = 9 (3.7)

Answer: If & exists such that (3.7) holds true, then
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and therefore the only possible solution to (3.7) is z = /2.
We prove that & = v/2 is, indeed, the solution to (3.7), by

showing that ‘
vz
o = 2, (3.8)

Consider the sequence (zn)n>0 With 2o = /2 and sat-
isfying the following recursion:

P (\/i)z" = 222 Yn>0. (3.9)

We can see by induction that (zn)n>0 is an increasing

: V2 :
sequence, since zo = V2 < V2" = z1, and, if we assume
that zn_1 < @5, then

P 3012 o GBald o e

Also by induction, we can prove that the sequence
(Zn)n>0 is bounded from above by 2, since zo = /2 < 2,
and, if z, < 2, then

Tpp1 = 2012 2eg.

Thus, the sequence (zn)n>o is convergent since it is
increasing and bounded from above.

Let | =limn—. Zn. From (3.9), we find that [ = 22,
which is equivalent to

P M3, (3.10)
The function f : (0,00) — (0,00) given by

1 = " = exp ("))

- (22)

is increasing for ¢t < e and decreasing for ¢ > e, since

g o 1 —tlzn(t) . (m@))

t

Il
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and f'(t) >0 for t <eand f'(t) <0 fort >e.

Thus, there are two values of [ such that (3.10) is sat-
isfied, i.e., such that [*/' = 21/2, one value being equal to
2, and the other one greater than e. Since we showed that
Zn < 2 forall m > 0, we conclude that | = limp— o0 Tn = 2,
which is what we needed to show to complete the proof of
@8, O

Question 8. Which of the following series converge:

i A e el onSen il
k' K2’ kn(k)

k=1 =1 k=2

Eol

Answer: We show that

e
Z 2 is convergent;
k=1

are divergent.

?rl'—‘

oc oo
k=1 k=2

Since all the terms of the series Y 2 ; Elz- are positive,
it is enough to show that the partial sums > }_; Fl; are
uniformly bounded, in order to conclude that the series is
convergent. This can be seen as follows:

Zﬁ = 1+k27€a
=2

k=1

IN

#

+
™:
2

I —_—
=




3.1. MATHEMATICS, CALCULUS, ODE 47

To show that the series Y32, % is divergent, we will
prove that

“ 1 il
— 1 — s Vi =1 :
;;:1 g n(n) + SeoV e (3.11)

Since % is a decreasing function, it follows that

£ < l, Vk<z<k+1.
T k
Then,
n n—1 k41
/ ld:z: = / — dzx
i, i Nl
< / — dzx
k=1"k k
b n—ll
k.—_lk
1 "1
e e ZE (3.12)

From (3.12), we find that
Z > / H dz + X
e e n

v,

|

= In(n) +

S|

which is what we wanted to prove; see (3.11).

Similarly, note that

1 ” 1l
zIn(z) kln(k)’

VkE<z<k+1,
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and therefore

n+1 1 d n k+1 il
/2 zln(z) @ T Z/k a:ln(:c)dw

k=2
k+1
/,c kln e

(3.13)

Z
30
Since

n+1
/2 ﬁ(m) dzr = In(ln(n + 1)) — In(In(2)),

we obtain from (3.13) that
i 1
“~ kln(k

and we conclude that the series > 7°, #(k) is divergent.

> In(In(n + 1)) — In(In(2)),

Note: Although not needed to answer this question, it can

be shown that
SR
el k2 6

and

: = 1

lim_ <Z g 1n(n)> = 1,
where v =~ 0.57721 is Euler’s constant. [

Question 9. Compute

1
/1-1—:1:2 i
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Answer: Use the substitution z = tan(z). Then, dz =
Q%Edz and

1 1
/1+m2 - /(1+tan2(z))cos2(z) i
1
o /cosz(z)+sin2(z) -

= /ldz

= 2O

where C is a real constant, since cos?(z) + sin?(z) =
for any z. Solving & = tan(z) for z, we obtain that z
arctan(z), and therefore

1

i
/m dr = arctan(z) + C. O

Question 10. Compute

/wln(:v)dx and /mezd:c

Answer: By integration by parts,

/mln(m) dz %ln(x /__ s

.’172

1
= —2—ln(x) - §/wd:v

?In(z) «?
S B

/mezdx = et /l-ezdar:

= gef—-e*+C. O
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Question 11. Compute

/ z" In(z) dz.

Answer: If n # —1, we use integration by parts and find
that

n+1 n+1
/z" In(z) dz x In(z) —/ = : dx

n+1 n+l =z
n+1
oo @ il o] /:z:" s
n+l n+1
4 2" In(z) % alt? &
n+1 (nk1)2
For n = —1, we obtain that

JECPREC
x 2 {

where C is a real constant, since

((l—"g’i> = 5 -2n(2)- (n(@))’ = lnim)' :

Question 12. Compute
/ @) de

Answer: For every integer n > 0, let

falx) = / (In(z))" dz.
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By using integration by parts, we find that, for any n > 1,
/m@wm
ey / 2 (In(@))") de
SR / 2 -n(a()""" - (n(z)) do
e L / z (@) 1 do
= st / (Inz))"" da,

i

and therefore
fa(z) = z(ln(z))” — nfr-1(z), Vn>1. (3.14)
Note that
fo(z) = /ldm = R,

Thus, the recursion (3.14) can be used to find the values
of fn(x) for all n. For example:
fi(z) zln(z) — fo(z) = z(In(z) - 1) +C;
fa(z) z(In(z))® - 2/1(x)
= z((In(z))? - 2In(z) + 2) +C.

The following general formula can be obtained by in-
duction:

/(lnz) =mz(l ln:c)) + C,
foriallin >0 [

Question 13. Solve the ODE

Y — 4y +4y=1. (3.15)
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Answer: Note that (3.15) is a second order non homoge-
neous linear ODE with constant coefficients. The homo-
geneous ODE associated to (3.15) is

' — 4y +4y =0, (3.16)

whose characteristic equation, z2—4z+4 = 0, has a double
root z1 = z2 = 2. Thus, the solution to the homogeneous
ODE (3.16) is

y(z) = cie®™ + cawe™?, (3.17)

where ¢1 and cz are constants.

Since the constant function yo(z) = % is a solution
to the non homogeneous ODE (3.15), we conclude from
(3.17) that the general form of the solution of (3.15) is

1
y(z) = cie®”® + coze®® + 1 O

Question 14. Find f(x) such that
f'@) = f@)(1 - f(2)) (3.18)

Answer: Note that (3.18) is as an ODE with separable
variables and can be written as follows:

0

—_—y - —
Ty (G e

where y = f(z). By integrating (3.19) with respect to =
we obtain that

Gl 2 3 ,
/y(l_y)dm /1d:c s4 0L B

where C; € R is a real constant.
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Note that dy = y'dz, and therefore
/
Y i
Sl e / araluiniig
/yﬂ—y) yi-y) ¥
i 1
Sl )
/ dy + /—— dy

In(|y[) — In(|1 - y|)

lfy% (3.21)

In

From (3.20) and (3.21), it follows that

y
1—%

In

{ = z+4 (4,

and therefore

‘LJ = ez+C1 == C’zex’
=y

where C2 = €1 > 0is a positive real constant.

Thus, either —L = Cq€”, or —E— = —(C2€”, which can
be written as ;
where C is a real constant.

From (3.22), we obtain that y = —€£°_ . We conclude

1+Ce®
that the ODE (3.18) has the following solution:

Ce”

e ivee

where C € R is a fixed constant. [

Question 15. Derive the Black-Scholes PDE.
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Answer: Consider an asset with spot price S following a
lognormal distribution with drift x4 and volatility ¢ and
paying dividends continuously at rate g. Then,

= (u—q)Sdt + oSdW,

where Wy, t > 0, is a Wiener process.

Let V = V(S,t) be the value at time t of a replicable
non path dependent derivative security on this asset, when
the underlying is priced at S. Set up a portfolio II made
of a long position in the derivative security V' and a short
position in

ov

&=

(3.23)
units of the asset. Then,
II = V-AS

Denote by dS, dV, and dII the changes in the values
of S, V, and II, respectively, over an infinitesimally small
time period dt. Then,

dll = dV — AdS — AgSdt, (3.24)

where AgSdt is the dividend payment owed over the time
dt on the short A units asset position. From (3.23) and
(3.24), we find that

oV oV
il =" d¥ anS Sas dt. (3.25)
From It6’s formula, it follows that
av. o8 'Y
dVsi= <§+——2 —-——6S2)dt
oV
—-— 3.
g df, (3.26)

and, from (3.25) and (3.26), we obtain that

o . o5V v
dl = (-a—t'+—2——gs,?— SaS)dt (3.27)
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which means that the value of the portfolio II is determin-
istic over the small time period dt. For no-arbitrage, the
value of the portfolio IT must grow at the risk—free rate
over the time period dt, i.e., dII = rIldt, where r denotes
the risk—free rate. Thus,

dil = rlldt = r(V — AS)dt
= <rV - TSZ—‘;) dt. (3.28)

From (3.27) and (3.28), we find that

W gt8eH )% oV
WiTrew W gem T - Wgn

and therefore

o O PV
at 2 982

which is the Black-Scholes PDE for V(S,t). O

%
+ (r—q)Sﬁ — V. =0,
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3.2 Covariance and correlation matrices.
Linear algebra.

Question 1. Show that any covariance matrix is sym-
metric positive semidefinite. Show that the same is true
for correlation matrices.

Answer: Let ¥x and Qx be the covariance matrix and
the correlation matrix of n random variables X1, Xo, ...,
Xn. It is easy to see that ¥x and Qx are symmetric
matrices:

Ex(j,k) = COV(Xj,Xk) = COV(Xk,Xj)
Ex(k,j3), Y1<jk<m;

Qx(4, k). = eorr(Xy;:Xg) = core(Xg, X;)
Let c1, ¢, ..., cn be real numbers, and let C = (¢;)i=1:n
be a column vector of size n. Recall that
n
var <Z ciX,»> = C*'ExC. (3.29)
i=1

Since the variance of any random variable is nonnega-
tive, it follows that

OG>0, YCeR", (3.30)

and we conclude that ¥ x is a symmetric positive semidef-
inite matrix.

For completeness, we include a proof of (3.29) here.
Let Y = E?:l CZX:L Then,

n

0 e

=1
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where p; = E[X;], for i = 1: n, and therefore

var (i ciX¢>
i=1

=icvar(Y) =B [(Y—E[Y))Z]

s [(Z:: e X — )2] (3.31)

> cion(Xs — pi)(Xe - Mk)}

1<j,k<n

= Z cickE[(X; — 15)( Xk — )]

1<j,k<n

= E cjekcov(X;, Xk)
1<j5,k<n

= Z cickXx (4, k)
1<j,k<n
= C'BxC, (3.32)

= FE

where, for (3.31) and for (3.32), we used the following
facts, respectively:

2
<Zn:zz) = Z 242k Vo e Rog="1"1n;

i=1 1<j,k<n

Az = Z z;jzk A, k),

1<j,k<n
for any n x 1 vector = (i)i=1.n € R", and for any n xn
matrix A.

To show that Qx is a symmetric positive semidefinite ma-
trix, recall the following correspondence between covari-
ance matrices and correlation matrices:

Sx = DoyQxDoy, (3.33)
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where Doy = diag(o4),_,,, is the diagonal matrix with
entries equal to the standard deviations of the n random
variables, i.e., 07 = var(X;), fori =1: n.
Note that (D, )~! = diag (%) . Let v € R™, and
Tk i=lin
wn = (D)

Then,
who= (DY = D

since (D,,)™" is a diagonal matrix and therefore sym-

metric, i.e., ((Dax)_l)t =)

From (3.33), (3.34), and (3.30), we find that
wExw = W (DoyxQxDoy)w

v* (Dax)_l (DUXQXDUX) (Ddx)_-l Y
UtQXv

2L

Thus, v*Qxv > 0 for all v € R™, and we conclude that
Qx is a symmetric positive semidefinite matrix. [

Question 2. Find the correlation matrix of three random
variables with covariance matrix

15k 086 " 144
SR ARG T N (3.35)
180 080 9

Answer: If Qx is the correlation matrix of the three ran-
dom variables, then
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where o5, i = 1 : 3, are the standard deviations of the
three random variables, and therefore

L 0 0 L 0 0
o1 g1 1

O =1 0 0 U JEep e LY
Bl g 00

Since the standard deviations of the random variables
with covariance matrix ¥ x given by (3.35) are

B = A (L et
gy = JER22) =

g3+ = o/ Nx(2:2) 3,

we obtain that
1
Yx 0
0

i 0.18 . =048
0.18 1 0:1338 15 hE
—0.48 0.1333 i

Il

Qx =

P e
o O =
o O
WO O
on= O

w- O O
S e

Il

Question 3. Assume that all the entries of an n X n
correlation matrix which are not on the main diagonal are
equal to p. Find upper and lower bounds on the possible
values of p.

Answer: Recall that a symmetric matrix with diagonal
entries equal to 1 is a correlation matrix if and only if the
matrix is symmetric positive semidefinite, i.e., if and only
if all the eigenvalues of the matrix are nonnegative.

Let

1 capndoait e
= [P

’ 5 4 P

P s o=
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We include two ways to compute the eigenvalues of Q,
which are then used to find the necessary and sufficient
conditions for the matrix Q to be a correlation matrix.

Solution 1: Note that

<)
Il

Bl + ’?

DR

05 Sws A
= (L-a)f ok oM,
where M is the n x n matrix with all entries equal to 1,
and I is the n x n identity matrix.
Let A and v = (vi)i=1:n be an eigenvalue and a corre-
sponding eigenvector of M, i.e., Mv = Av, with v # 0.
Then, Mv = Av can be written as

vitvet+- ot un = Avg
vitvztcctUn = Avg;
v1+v2—|:~~~+vn = .)\vn,

and therefore
Avi = Az = ... = Avp

Thus, either A = 0, or v1 = v2 = -+ = vp, in which case

nvy = A1, and therefore A = n, since v = (vi)i=1:n # 0.
In other words, the eigenvalues of M are A\ = 0 and
PN )
Note that, if Mv = Av, then,

Q = (Q-pv+pMv = (1-p)v+plv
= (1-p+pA)v.

Thus, u =1 — p+ pA and v are an eigenvalue and corre-
sponding eigenvector of 2.
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Since the eigenvalues of M are A = 0 and A = n, it
follows that the eigenvalues!' of Q are pn = 1— p, corre-
sponding to A =0, and = (1—-p)+np =1+ (n—1)p,
corresponding to A\ = n.

Since € is a correlation matrix if and only if all its
eigenvalues are nonnegative, we conclude that the matrix
Q is a correlation matrix if and only if

0<1l+(n—-1)p and 0<1-p,
which is equivalent to

1

e S R (3.36)
Solution 2: Note that
1 ! 1
B el 4l
£ 5y
1 J A |
I
= (1-pI + p latanea)
1
= (1- o)1+ pww’

where I is the n x n identity matrix and A is the n x n
matrix given by A = ww®, where w is the n x 1 column
vector of size n with all entries equal to 1.

Recall that an m x n matrix of the form uu?, where
u = (ui)i=1m is an n X 1 column vector, has an eigen-
value equal to Y7  u? with multiplicity 1 and another
eigenvalue equal to 0 with multiplicity n — 1.

! The eigenvalue 1 — p has multiplicity n — 1, and the eigenvalue
1+ (n — 1)p has multiplicity 1; see Solution 2 of this question.



62 CHAPTER 3. SOLUTIONS

Then, the eigenvalues of the matrix A are:
A=Y" w?=%" 1=n with multiplicity 1;
A = 0 with multiplicity n — 1.

Note that, if A and v are an eigenvalue and a corre-
sponding eigenvector of A, then Av = \v, and therefore

Q = (1-plv+pAv = (1-p)v+plv
= (1-p+pA).

Thus, 1—p+pA and v are an eigenvalue and corresponding
eigenvector of 2. and we obtain that the matrix Q has the
following eigenvalues:
o (1-p)+np=1+(n—1)p with multiplicity 1;
e 1 — p with multiplicity n — 1.

As before, since Q is a correlation matrix if and only if
all its eigenvalues are nonnegative, we conclude that the
matrix € is a correlation matrix if and only if

0<1+(n—1)p and 0<1-—p,

which is equivalent to

which is the same as (3.36). O

Question 4. How many eigenvalues does an n x n matrix
with real entries have? How many eigenvectors?

Answer: Any nxn matrix with real entries has n eigenval-
ues, counted with their multiplicities; some of the eigen-
values may be complex numbers. Any n X n matrix has
at most n eigenvectors.

Let A be an n x n matrix. Let A be an eigenvalue of
A with corresponding eigenvector v # 0, and let Pa(z) =
det(zI, — A) be the characteristic polynomial of A, where
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I,, is the n x n identity matrix. Note that
(Mp—Av=0,v#0

M, — A singular matrix
det(\, — A) =0
PafNy=0.

Av=2v, v#0

1111

In other words, \ is an eigenvalue of A if and only if
) is a root of the corresponding characteristic polynomial
Pa(z). Since Pa(z) is a polynomial of degree n, it follows
from the Fundamental Theorem of Algebra that Pa(zx)
has exactly n (complex) roots when counted with their
multiplicities. We conclude that any n x n matrix has n
eigenvalues, counted with their multiplicities.

An eigenvalue of multiplicity m has at least one eigen-
vector and at most m linearly independent corresponding
eigenvectors, but it may have less than m linearly inde-
pendent eigenvectors.” Thus, an n X n matrix has at most
n eigenvectors, and at least as many eigenvectors as the
number of distinct eigenvalues of the matrix. [

Question 5. Let

S 2 -2
oo (o)
(i) Find a 2 x 2 matrix M such that M? = A;

(ii) Find a 2 x 2 matrix M such that A = MM".

Answer: (i) Recall that any symmetric matrix has the
diagonal form

A = QAQY, (3.37)

2 1
2For example, the matrix ( 0

) has eigenvalue 2 with

0

ik

2
1
multiplicity 3 and only one eigenvector, 0
0
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where A is the diagonal matrix whose entries on the main
diagonal are the eigenvalues of A and Q is the orthogonal
matrix whose columns are the corresponding eigenvectors
of A of norm 1, i.e.,

e (Aol - ); QU e ey AR

where Av; = \v1 and Ave = Apv2, with [|vi]]| = [|vz]| =
1:

If the matrix A has nonnegative eigenvalues, i.e., if
A1 > 0 and A2 > 0, then the matrix
M = QAV?Q (3.39)

with

AY? = ( */0*_1 \/(2\_2> (3.40)

has the property that M? = A:

M2

Il

(QAI/ZQt) <QA1/2Qt)
a1l QAl/z(QtQ)Al/th

i QAl/ZAl/ZQt

QAQ"

= ,47

Il

since Q is an orthogonal matrix and therefore QQ =1,
and since, from (3.40), it follows that AMEAVE - A

We now proceed to compute the eigenvalues and the
eigenvectors of the matrix A. The eigenvalues of the ma-
trix A are the roots of the characteristic polynomial P4 (z)
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of the matrix A given by®

Pala). = det(wl—A):det($52 :c35>
(z-2)(z—5)—4 = 2> Tz +6
= (z—1)(z —6).

The roots of Pa(x) are 1 and 6, and therefore the eigen-
values of A are A1 = 1 and X2 = 6. The corresponding
eigenvectors of norm 1 are

L2 g
vlz(\{_> andvzz(‘/g>.
V5 Vs

For example, if A2 = 6, any corresponding eigenvector

vy = < g # 0 is a solution to Av = 6v, which can be

ot

written as

{ 2a — 2b 6a & {g —2a

—2a

—2a+5b = 6b

Thus, any eigenvector corresponding to the eigenvalue
A2 = 6 is of the form

o= () =o(5)

By choosing a = Ls’ we obtain that an eigenvector of
norm 1 corresponding to the eigenvalue Ay = 6 is

w:(‘%).
VB

3The characteristic polynomial of the matrix A can also be
obtained as follows:

Pa(z) = 2% — tr(A)z +det(4) = 22 — 7z + 6,
where tr(4) =2+ 5=7 and det(A) =2-5 — (-2) - (-2) =6.
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Then, it follows from (3.39) and (3.40) that the matrix

M given by
2 1 2 1
v (el
o e 0 VBN B
g Lis9 2 1
R S R, 0 V6 T 29
_ 1( 4+v6 2-2V6
T BN 006 1 4y/6

has the property that M? = A.

(if) We found that the eigenvalues of A are 1 and 6, i.e.,
positive. Then, A is a symmetric positive definite matrix,
and therefore has a Cholesky decomposition. Recall that,
if U is the Cholesky factor of the matrix A, then, by defi-
nition, A = U'U. Thus, in order to find a matrix M such
that A = MM?, it is enough to compute the Cholesky

factor
U L, LUl 2
i < (0 ! UEZ, 2; >

of the matrix A and let M = U®.
Note that A = U'U can be written as

(463 423) @41
s ( U(1,1) 0 > ( Ul 1) Ud2) )
& U{1,2) 40122 0 g

In the first step of the Cholesky decomposition, the
first row of U is computed as follows:

U,1) = AQ1,1)=v?2;

i A(1,2) L 2 L %
S e oty fi

see also (3.41).



3.2. LINEAR ALGEBRA 67

In the next step of the Cholesky decomposition, the
entry A(2,2) of A is updated to A(2,2) — U(1, 2)%i—=13:
and therefore

U2,2) = vA(22) -(UQ1,2)
= /5-(-v2)?
= 3
Thus, the Cholesky factor of the matrix A is
e =
AR
and therefore the matrix M = U" given by
- (A%

has the property that A = MM*. O

Question 6. The 2 x 2 matrix A has eigenvalues 2 and

—3 with corresponding eigenvectors ( é ) and ( —}’1 )

va:(?),ﬁndAv.

Answer: Let A1 = 2, v1 = ( ; ), and A2 = =3, v2 =

( _31 ) We first find constants ci,c2 € R such that

v = c1v1 + c2v2, i.e., such that

3 = ca—-c
1 = 2c¢1+3c
The solution of this linear system is ¢1 = 2 and c2 = —1.

Thus,
v = 2v1 — V2. (3.42)
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Since Avi = A\v1 = 2v1 and Ave = Aove = —3vz, we
find from (3.42) that
Av = 2Av: — Ave = 2(2v1) — (—3v2)
4v1 + 3v2

@) -

Question 7. Let A and B be square matrices of the same
size. Show that the traces of the matrices AB and BA are
equal.

Answer: Recall that, for any two square matrices A and
B of the same size, the matrices AB and BA have the
same characteristic polynomial, i.e.,

Pap(z) = det(zI — AB) = det(zI — BA)
= Ppalz), - Yz eR; (3.43)

where I is the identity matrix of the same size as the
matrices A and B.

Also, recall the following connection between the char-
acteristic polynomial Py (z) of an n x n matrix M and
the trace tr(M) of the matrix:

PM(ZL‘)
= det(zI — M)
z" —tr(M) + -+ + (—1)"det(M). (3.44)
Since Pag(z) = Psa(z), see (3.43), we conclude from

(3.44) that
tr(AB) = tr(BA). (3.45)

For completeness, we include a proof of (3.43). If the
matrix B is nonsingular, then

zI — AB = B~ '(zI - BA)B,
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and therefore

det(zI — AB) det(B~")det(zI — BA)det(B)

det(zI — BA), (3.46)

since
det(B~')det(B) = det(B™'B) = det(I) = 1.

If the matrix B is singular, let € be a real number, and
note that the matrix B — €I is singular if and only if € is
equal to an eigenvalue of B. Since the n X n matrix B has
at most n eigenvalues, it follows that, except for a finite
number of values of €, the matrix B — €l is nonsingular,
in which case we obtain from (3.46) that

det(zI — A(B —€l)) = det(zI — (B—el)A). (3.47)

Since both sides of (3.47) are polynomials of degree n
in ¢, and therefore continuous functions of €, we can let
€ — 0 in (3.47) and obtain that

lir%( det(zI — A(B —¢€l)))
= lir%( det(zI — (B —€el)A))
<= det(z] — AB) = det(zI — BA). (3.48)
From (3.46) and (3.48), we conclude that det(z —
AB) = det(zI — BA) regardless of whether the matrix

B is nonsingular or singular, which concludes the proof of
(8:43) =~ 1D

Question 8. Can you find n X n matrices A and B such
that

AB—BA = I,

where I, is the identity matrix of size n?
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Answer: We give a proof by contradiction. If it were
possible to find n x n matrices A and B such that AB —
BA =1, then

tr(AB — BA) = tr(I,) = n. (3.49)
However,
tr(AB — BA) = tr(AB) —tr(BA) = 0, (3.50)

since, if A and B are square matrices, then tr(AB) =
tr(BA); cf. (3.45).

Since (3.49) and (3.50) contradict each other, we con-
clude that there are no matrices A and B such that AB —
Badis ]

Question 9. A probability matrix is a matrix with non-
negative entries such that the sum of the entries in each
row of the matrix is equal to 1. Show that the product of
two probability matrices is a probability matrix.

Answer: We first establish the following equivalent defi-
nition for a probability matrix:

The n x n matrix M is a probability matrix if and only if
all the entries of M are nonnegative and

M1 = 1, (3.51)
where 1 is the n x 1 column vector with all entries equal

to ks

To see this, let M = row (r;),_,.,, be the row form
of the matrix M, where r; is an 1 x n row vector, for
j =1:n. The sum of all the entries in the j-th row r; of
M can be written as follows:*

Zn: Py (k) = rjl. (3.52)
k=1

4Note that r; is an 1 x n vector and 1 is an n X 1 vector, and
therefore the expression ;1 from (3.52) is consistent.
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Thus, the definition of a probability matrix as a matrix
with the sum of the entries in each row equal to 1 can be
written as

n
er(k) o bR R
k=1

— rnl=1 Vj=1:n
<~ (le)j=1n =l
= . MT = 1

since M1 = (rj1)j=1.n if M = row(r;)
form of M.

In other words, we established that (3.51) is an equiv-
alent condition for M to be a probability matrix.

Let A and B be probability matrices. Then all the
entries of A and B are nonnegative, and therefore all the
entries of AB are also nonnegative. From (3.51), it follows
that

j=1.n 18 the row

Al =1 and Bli=1

and therefore
(AB)1 = A(Bl) = Al = 1.

Then, from (3.51), we conclude that AB is a probability
matrix. 0O

Question 10. Find all the values of p such that

1 0.6 -0.3
0.6 1 )
-03 »p 1

is a correlation matrix.

Answer: Recall that a solution to this question based on
was Sylvester’s criterion was included in Chapter 1. We
give two more solutions to this question here, one using
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the Cholesky decomposition, and another one based on
the definition of symmetric positive semidefinite matrices.

A symmetric matrix with diagonal entries equal to 1 is
a correlation matrix if and only if the matrix is symmetric
positive semidefinite. Thus, we need to find all the values
of p such that the matrix

1 aE S
R 56 1o (3.53)

SR g ad

is symmetric positive semidefinite.

Solution 1: To identify the values of p such that the ma-
trix Q is symmetric positive semidefinite, we apply the
first step of the Cholesky algorithm to €2, and obtain the
following 2 x 2 matrix:

(,1, ’f) e (_0(';_53>(0.6 -0.3)
(Terdp N A

=5 064 p+0.18
3 A+ 008 001 ;

Thus, the matrix 2 is symmetric positive semidefinite
if and only if the matrix

& 064 p+0.18
s P <p+0.18 0.91 )

is symmetric positive semidefinite. Since M(1,1) = 0.64 >
0, it follows that M is symmetric positive semidefinite if
and only if det(M) > 0, i.e., if and only if

det(M) = 0.5824 — (p+0.18)> > 0, (3.54)

which is equivalent to

lp+0.18| < +/0.5824 = 0.7632.
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We conclude that €2 is a symmetric positive semidefi-
nite matrix, and therefore a correlation matrix, if and only
if

—0.7632 < p+0.18 < 0.7632,

which can be written as

—0.9432 < p < 0.5832. (3.55)

Note that condition (3.55) is the same as condition
(1.9) obtained when solving the same question using
Sylvester’s Criterion; see Chapter 1.

Solution 2: By definition, the matrix Q is symmetric pos-
itive semidefinite if and only if z'Qx > 0 for all z =
(z:)i=1:3 € R®. Note that

z'Qx
1 0.6 —-0.3 o
= (1}1 T2 .’1}3) 06 1 P T2
—-0.3 P 1 X3

= xf -+ wg + w§ + 1.2z122 — 0.62123 + 2pT2Ts3.
By completing the square, we obtain that

z'Qx
= 224 221(0.6z2 — 0.3z3) + T2+ T2 + 2pz27s
= (z1+ 0.6z2 — 0.3x3)°

—(0.6z2 — 0.3x3)° + 22 + z2 + 2pT2T3
= (z1+ 0.6x2 — 0.3x3)>

+0.6423 + 2z2a3(p + 0.18) + 0.91z3.
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By completing the square once again, we find that

0.64z3 + 2x223(p + 0.18) + 0.91x3
p+0. 18>

0.8

iad (p+ 0.18)
S ETE0ieA

<0 8xo + x3

(0 8x2 + x3

+0.91z3
o+ 0.18> .

0.8

0 64 (0 5824 — (p+ 0.18)%)

and therefore
z'Qux
= ($1 + 0.622 — 0.3.’E3)2

p+0.18\°
0.8

+ <08$2 + 3
2
+22 (0.5824 — (p+0.18)%).
Thus, z!Qz > 0 for all = (zi)i=1.3 € R® if and only
if
(CIJ1 + 0.6x2 — 0.31’3)2

p+0.18\2
0.8

- (0.8:02 + z3

2
064 (0 5824 — (p+ 0.18) )
> 0, Vzi,22,23 € R.

The last inequality holds if and only if
0.5824 — (p + 0.18)*> > 0, (3.56)

which is the same as (3.54).
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We conclude that €2 is a correlation matrix if and only
if
—0.9432 < p < 0.5832. O
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3.3 Financial instruments: options,
bonds, swaps, forwards, futures.

Question 1. The prices of three put options with strikes
40, 50, and 70, but otherwise identical, are $10, $20,
and $30, respectively. Is there an arbitrage opportunity
present? If yes, how can you make a riskless profit?

Answer: If an arbitrage exists, it will be due to the fact
that the convexity of put option values with respect to the
strike price is violated.

In the plane (K,y), the line passing through the points
(K = 40, P(40) = 10) and (K = 70, P(70) = 30) is given
by
70 - K K —40

R
The point on this line corresponding to strike 50 is ob-
tained by substituting K = 50 in (3.57), and has y-
coordinate equal to

30. (3.57)

2 1
§~10+3~30 G

Since P(K) is a strictly convex function of K, a no—
arbitrage value of the put option with strike 50 should
be below the line passing through the price points of the
options with strikes 40 and 70. However, P(50) = 20 >
§39. Thus, the put option with strike 50 is overpriced, and
an arbitrage exists.

Using a “buy low, sell high” strategy, we can take ad-
vantage of this arbitrage opportunity as follows: buy 2
put options with strike 40, buy 1 put option with strike
70, and sell 3 put options with strike 50. There is a $10
positive cash flow when setting up this portfolio, since

3-$20 — 2-8$10 — $30 = $10.
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The value V/(T') of the portfolio at the maturity 7' of
the options is
V(T) = 2max(40 — S(T),0)
+ max(70 — S(T),0)
— 3max(50 — S(T), 0).
Note that V(') is nonnegative for any value S(T') of the
underlying asset at 7":
If 70 < S(T'), then all options expire out of the money

and
V(T) = 0.

If 50 < S(T') < 70, then
V(T) = 70-S(T) > o.

If 40 < S(T') < 50, then

VIT) s= (10~ SE)) — 350~ 8(T))
= 28(T)-80
>. 6

If S(T') < 40, then
V(T) = 25(T) — 80 + 2(40 — S(T)) = 0.

In other words, we set up a portfolio with positive cash
flow at inception which does not lose money regardless of
the value of the underlying asset at time 7". The risk—free
profit is equal to the future value at time 7' of the $10
cash flow from setting up the portfolio. [

Question 2. The price of a stock is $50. In three months,
it will either be $47 or $52, with 50% probability. How
much would you pay for an at the money put? Assume
for simplicity that the stock pays no dividends and that
interest rates are zero.
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Answer: Recall first that real world probabilities do not
play any role in valuing an option in a (one period) bino-
mial tree model. Thus, the 50% probability stated in the
question is only meant to throw you off—course.

Solution 1: The value of the option is the discounted ex-
pected value of the payoff of the option in the risk-neutral
probability measure. Since interest rates are zero, this can
be written as

P(O) =2 pRN,upPup + pRN,dO‘wnPdown' (3.58)

The up and down factors are u = % = 1.04 and d =
% = 0.94, respectively. The risk-neutral probabilities of
going up and down are

1-d u—1

PRNup = - =06, PRNdown = e e
The ATM put pays $3 if the stock price goes down to $47,
i.e., Pgown = 3, and expires worthless if the stock price
goes up to 8§52, i.e., Py, = 0. From (3.58), we find that
the value of the ATM put is

P(0) = 06-0+04-3 = 1.2, (3.59)
In other words, you should pay at most $1.20 for an at
the money put.
Solution 2: An insightful solution can be given by setting
up a hedged portfolio. The Delta of the put option is
Pup—Pdown i 0—3
Sup i Sdown 52 — 47
A portfolio which is long one ATM put and short Ap
shares will be long the put and long 0.6 shares, and will

have the same value at maturity regardless of whether the
stock price goes down to $47 or up to $52:

I(T) P(T) + 0.65(T)

il gyg.e
= 1 3+06:47

AP = = —06

31.20, if S(T) = 52;
31.20, if S(T) = 47.
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For no—arbitrage, the value of the portfolio at inception
must be the discounted value of its payoff. Since the inter-
est rates are zero, we obtain that I1(0) = P(0)+0.6S(0) =
31.20, and therefore

P(0) = 31.20—-0.6-50 = 1.20,

which is the same value of the put, $1.20, obtained above;
see (3.59). O

Question 3. A stock worth $50 today will be worth either
$60 or $40 in three months, with equal probability. The
value of a three months at the money put on this stock is
$4. Does the value of the three months ATM put increase
or decrease, and by how much, if the probability of the
stock going up to $60 were 75% and the probability of the
stock going down to $40 were 25%7

Answer: In a one period binomial tree model, the actual
probabilities of the asset going up or down do not play
any role in the valuation of a plain vanilla option. Thus,
the value of the three months at the money put would be
the same, $4, even if the probability of the stock going up
to $60 were 75%. O

Question 4. What is risk-neutral pricing?

Answer: Risk-neutral pricing, or valuation, refers to valu-
ing derivative securities as discounted expected values of
their payoffs at maturity, under the assumption that the
underlying asset has lognormal distribution with a drift
equal to the risk-free rate.

More precisely, if the price of the underlying asset has
a lognormal distribution with volatility o and pays div-
idends continuously at the rate g, then the value of a
derivative security on this asset with payoff V(7) at ma-
turity T given by risk—neutral valuation is

V() = e T Ern|[V(S(T))],
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where 7 is the risk—free rate assumed to be constant, and
the expected value is computed with respect to the log-
normal random variable S(7") given by

S(T) = S(0) kI F)T + VT2

Risk—neutral valuation can be used for derivative se-
curities which can be perfectly hedged dynamically using
cash and the underlying asset. Plain vanilla European op-
tions, as well as European options with other payoffs at
maturity (such as asset—or-nothing and cash—or-nothing
options) can be priced using risk-neutrality. Risk-neutral
valuation cannot be used for path dependent options such
as American options, barrier options, and Asian options.

O

Question 5. Describe briefly how you arrive at the Black—
Scholes formula.

Answer: The Black—Scholes formulas give the values of
plain vanilla European put and call options on an under-
lying asset with lognormal distribution. Several methods
for deriving the Black-Scholes formulas are:

e Risk neutral pricing: the expected value of the payoff of
the option at maturity computed under the assumption
that the price of the underlying asset has a lognormal
distribution with drift equal to the risk free rate gives the
Black—Scholes value of the option.

e Black—Scholes PDE solution: the Black—Scholes value of
the option satisfies the Black—Scholes PDE with bound-
ary conditions given by the payoff of the option at matu-
rity. The Black—Scholes PDE is transformed into the heat
PDE using a lognormal change of variables, and the closed
form solution of the heat PDE is then used to derive the
closed form solution of the Black—Scholes PDE, which is
the Black—Scholes value of the option.
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e Binomial tree model pricing: the evolution of the un-
derlying asset is modeled using a binomial tree calibrated
to converge in the limit to a lognormal distribution with
drift equal to the risk free rate. For every tree, an ap-
proximate option value is obtained from the binomial tree
model. The limit of these binomial tree option values as
the number of time intervals in the tree goes to infinity is
the Black—Scholes value of the option.

Note that twelve different ways to derive the Black—
Scholes formula can be found in Wilmott [4]. O

Question 6. How much should a three months at the
money put on an asset with spot price $40 and volatility
30% be worth? Assume, for simplicity, that interest rates
are zero and that the asset does not pay dividends.

Answer: The following approximation for the value of an
at the money put option on a non dividend paying un-
derlying asset and assuming zero risk—free interest rates
is easy to estimate and very accurate if the total variance
is small (e.g., if 0?7 < 0.25):

Pary = 0.40’50\/?; (3.60)

see Stefanica [3] for a derivation of formula (3.60).

For So = 40, 0 = 0.3, and T' = %, we obtain that the
value of the at the money put is approximately 2.40.

For comparison purposes, note that the value of the put
option computed using the Black—Scholes formula would
be 2.3914; the approximate formula (3.60) is very accurate

in this case. [

Question 7. If the price of a stock doubles in one day,
by how much will the value of a call option on this stock
change?

Answer: The value of a deep in the money call on a non
dividend paying asset can be approximated, e.g., by using
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the Put-Call parity, as C ~ S — Ke™ "7, where K and T
are the strike and the maturity of the option, and 7 is the
constant risk free rate. Thus, if the spot price S doubles,
the call option will be even deeper in the money, and
therefore its value will be approximately 2S5 — Ke™"T. In
other words, the value of deep in the money calls roughly
doubles if the spot price doubles.

If the option is around at the money, the percentage
change generated by the doubling of the stock price is
about one order of magnitude larger since the option will
become deep in the money.

If the option is deep out of the money, then it trades
for fraction of cents. The doubling of the spot price would
result in changing of the price of the option by several
orders of magnitude.

As a numerical example, consider a six months call op-
tion with strike 20 on a non dividend paying underlying
asset with volatility 25%. Assume that the risk free rate is
constant at 5%. The Black—Scholes values of the call op-
tion corresponding to several spot prices of the underlying
asset can be found below:

Spot Price | Option Price
10 0.000045
20 1.65
40 20.49
80 60.49
400 380.49
800 780.49

If the call option is deep out of the money and the
spot price doubles from $10 to $20, the value of the call
increases from $0.000045 to $1.65, i.e., by more than four
orders of magnitude.

If the call option is at the money and the spot price
doubles from $20 to $40, the value of the call increases
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from $1.65 to $20.49, i.e., more than tenfold.

If the call option is deep in the money, and the spot
price doubles from $40 to $80, the value of the call in-
creases from $20.49 to $60.49, i.e., by a factor of 2.95;
if the call option is even deeper in the money® and the
spot price doubles from $400 to $800, the value of the call
increases from $380.49 to $780.49, i.e., the call approxi-
mately doubles in value.

Moreover, if the call option is deep in the money, its
value is very close to S— Ke™"T, i.e., the value of the spot
price of the underlying asset minus the present value of
the strike. For all the spot prices greater than $40, the
estimate C ~ S — Ke™ "7 is very accurate. Thus, if the
call option is at the money and the spot price doubles,
the value of the call option increases by the same amount
as the increase in the spot price. For example, if the
spot price doubles from $40 to $80, the value of the call
increases by $40, from $20.49 to $60.49, which is exactly
the increase in the spot price. [

Question 8. What are the smallest and largest val-
ues that Delta can take?

Answer: Assume, for simplicity, that the underlying asset
does not pay dividends.

The Delta (A) of a long position in a plain vanilla call
option is between 0 and 1 (and therefore the Delta of a
short plain vanilla call position is between —1 and 0). The
Delta of a long call position increases with the spot price
of the underlying asset, and goes from 0, when the asset
is worthless (i.e., when the call option is deep out of the
money), to 1, when the spot price of the asset is very large
(i.e., when the call option is deep in the money).

50f course, call options with strike ten times smaller than the
spot price of the underlying asset never occur in practice; this part
of the example is for illustration purposes.
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The Delta of a long position in a plain vanilla put op-
tion is between —1 and 0; the Delta of a short position in
a plain vanilla put option is between 0 and 1. The Delta
of a long put position also increases with the spot price of
the underlying asset, and goes from —1, when the asset is
worthless (i.e., when the put option is deep in the money),
to 0, when the spot price of the asset is very large (i.e.,
when the put option is deep out of the money).

Note that, from the Put-Call parity, i.e., C — P =
S — Ke™", it follows that A(P) = A(C) — 1, which is
consistent with the bounds above. O

Question 9. What is the Delta of an at-the-money call?
What is the Delta of an at—the—money put?

Answer: The Delta of an at—the—money call is approxi-
mately 0.5; the Delta of an at—the-money put is approxi-
mately —0.5.

Assume, for simplicity, a Black—Scholes framework with
zero risk—free rates and an underlying asset paying no div-
idends. Then, A(Cs) = N(d1), where N(z) denotes the
cumulative distribution of the standard normal variable
and

d =

n(£)+(r—q+%)T s
- ,

oVT

for K =S and for r = ¢ =0.
The linear Taylor approximation of N(z) around 0 is

N(z) ~ 0.5+ \/%_W ~ 0.5+ 0.4z, (3.62)

since \/— = 0.3989 =~ 0.4. Thus,

A(Cps) = N(dy) = N(”‘/—) ~ 0.5+ 0.20VT.
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This is roughly estimated as A(Cgs) =~ 0.5, since 0.20v/T
is small for most options (e.g., 0.20v/T < 0.1 for volatility
less than 50% and for maturity less than one year).

For put options, A(Pss) = —N(—di1), where d1 =
%T; cf. (3.61). From (3.62), it follows that

A(Pgs) = —N(———) ~ —0.5+0.20VT,

which, using the same rationale outlined above, is often
stated as A(Pps) ~ —-0.5. O

Question 10. What is the Put—Call parity? How do you
prove it?

Answer: The Put—Call parity is a model independent no—
arbitrage relationship between the prices of European call
and put options with the same strike and maturity.

In a nutshell, the Put—Call parity states that being
long a call option and short a put option on the same
underlying asset, and with the same strike and maturity,
is the same as being long a forward contract on the asset,
with the same maturity as the maturity of the options,
and with delivery price equal to the strike of the options.
Equivalently, being long a call and short a put is the same
as being long one unit of the underlying asset (for non
dividend paying assets) and short the present value of the
strike of the options.

More precisely, if C(t) and P(t) are the values at time
t of a European call and put option with maturity 7' and
strike K, on the same non dividend paying asset with spot
price S(t), then the Put—Call parity states that

) ~ Pl = 8@) ~ Ke 2% (3.63)

where r denotes the risk—free rate, assumed to be constant.
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If the underlying asset pays dividends continuously at
the rate g, the Put—Call parity has the form

&) ~ Plt) = 8{e "9 - Ke "9 364

For simplicity, we restrict our attention to non dividend
paying underlying assets and prove formula (3.63).
Consider a portfolio made of the following assets:
e long 1 put option;
e long 1 unit of the underlying asset;
e short 1 call option.
The value of the portfolio at time ¢ is

1/po-rtfolio(t) = P(t) o S(t) s C(t) (365)

The values of the call and put option at maturity are
C(T) = max(S(T)— K,0);
(L) max(K — S(T),0).

Then, regardless of whether S(7) < K or S(T') > K, the
value of the portfolio at time 7" will be equal to K:

If S(T) < K, then P(T) = K — S(T) and C(T) = 0, and
therefore

Vportfolio(T) o P(T) s S(T) e C(T)
= (K-8(T) + S(T) - 0
K. (3.66)

If S(T) > K, then P(T) = 0 and C(T) = S(T) — K, and
therefore

‘/portfolz‘o (T) 2 P(T) I S(T) e C(T)
— Q4 8(T) - (S(T) - K)
K. (3.67)

From (3.66) and (3.67), we find that
Vportfotio(T) = P(T)+S(T) —C(T) = K, (3.68)
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regardless of the value S(T') of the underlying asset at the
maturity of the option.

Then, for no-arbitrage, the value of the portfolio at
time ¢ must be equal to the present value of K at time t,
ie.,

‘/portfalio(t) = KC_T(T_t)- (369)

From (3.65) and (3.69), we obtain that
P(t) + S(t) — C@#) = Ke "T-9,
This can be written as
C@) - Py = 808 — Re "9

which is the Put-Call parity formula (3.63).

The Put-Call parity formula (3.64) corresponding to
an underlying asset paying dividends continuously at the
rate ¢ can be obtained similarly using a portfolio with a
long put position, a short call position, and a long position
in =47~ units of the underlying asset. All dividends
payed by the long asset position between time ¢ and time
T are used to purchase additional fractions of the asset.
Doing so continuously results in an asset position at time
T equal to long one unit of the asset. Thus, the value of
the portfolio at time 7" will be equal to K regardless of
the value of S(T'), and the Put—Call parity formula (3.64)
for underlying assets paying dividends continuously can
be obtained as before. [

Question 11. Show that the time value of a European
call option is highest at the money.

Answer: The time value of a call option is the difference
between the value C(S) of the option and the intrinsic
value max(S — K,0) of the call option. In other words,
the time value of the option is

C(S) — max(S — K,0).
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We want to establish that the time value of the option
is highest at the money, i.e., when S = K. To do so, we
show that the function

f(S) = C(S) —max(S — K,0)

attains its maximum for S = K.
Note that®

: (S, if Si<K:
f(8) = { ey L ;f FontRe

For S < K, the function f(S) is the value of a call with
strike K, and therefore is increasing.
For S > K, we find that

78 = A[Q) -1 < B,

since the Delta of a call option is always less than 1,7 and
therefore the function f(S) is decreasing.

We conclude that f(S) has a global maximum point at
S = K, which is what we wanted to show.

Note that a similar reasoning shows that the time value
of a put option, given by

P(S) — max(K — S,0),

is largest at the money, i.e., for S = K. If g(S) = P(S) —
max(K — S,0), then

LR -kis G 2
9(8) = { P(S), i85 R

SThe function f(S) is a continuous function, but it is not dif-
ferentiable at S = K.

"The Delta of a long call position is an increasing function
going from 0 when the spot price of the underlying asset is 0 and
the call option is deep out of the money, to 1 when the spot price
of the underlying asset goes to oo and the call option is deep in the
money. For example, in the Black—Scholes model,

A(Cps) = e ¥TN(d1) < N(dy) < 1.
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For S< K,
g'(S) = A(P)+1 > 0,

and therefore the function g(S) is increasing, since the
Delta of a put option is between —1 (when the put is
deep in the money) and 0 (when the put is deep out of
the money), and therefore is always greater than —1.

For S > K, the function g(S) is the value of a put with
strike K, and therefore is decreasing.

Thus, g(S) has a global maximum point at S = K, and
therefore the time value of the put option is largest at the
money. [J

Question 12. What is implied volatility? What is a
volatility smile? How about a volatility skew?

Answer: By definition, implied volatility is the unique
value of the volatility parameter o from the lognormal
model for the evolution of the price of an underlying that
makes the Black-Scholes value of an option equal to the
market price of the option. Implied volatility exists and is
unique® for any arbitrage—free market value of the option.

On the same asset, prices of options with multiple
strikes and maturities are quoted, and implied volatilities
can be computed for each of these options. If the price
of the asset had a lognormal distribution as assumed in
the Black—Scholes model, then the resulting plots of im-
plied volatility vs strike for the same maturity should be
flat. In practice, they are not flat, and are often shaped
as “smiles” or “skews”.

An implied volatility smile occurs when the implied
volatilities of deep in the money options and of deep out of
the money options are higher than the implied volatilities

8The uniqueness of the implied volatility comes from the fact
that the Black—Scholes value of the option is a strictly increasing
function of the volatility parameter (or, equivalently, the vega of
the option is strictly positive).
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of options close to at the money. Volatility smiles are
typical for currency options.

An implied volatility skew occurs when the implied
volatilities of options with large strikes are lower than
the implied volatilities of at the money options (reverse
skew), or when the implied volatilities of options with
small strikes are lower than the implied volatilities of at
the money options (forward skew). Reverse skews are typ-
ical for long dated equity and index options. Forward
skews are typical for commodities options. [

Question 13. What is the Gamma of an option? Why is
it preferable to have small Gamma? Why is the Gamma
of plain vanilla options positive?

Answer: The Gamma (I") of an option measures the sen-
sitivity of the Delta of the option with respect to the price
of the underlying asset, i.e.,

OA o’V
T 08 noan
where V' denotes the value of the option.

It is often important to immunize a portfolio with re-
spect to changes in the price of the underlying asset, i.e.,
to make the portfolio Delta—neutral. A portfolio with
small Gamma would need to be rebalanced less often in
order to be kept Delta—neutral, since the change in the
Delta of the portfolio is proportional to Gamma for small
changes in the value of the underlying asset. Thus, a
Delta—neutral and Gamma—neutral portfolio is well hedged
against small changes in the price of the underlying asset
(although not against jumps in the price of the underlying
asset).

The Delta of plain vanilla options (calls or puts) in-
creases as the spot price of the underlying asset increases.
Thus, Gamma is positive, since Gamma is the rate of
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change of Delta. Moreover, Gamma is asymptotically go-
ing to 0 for deep out of the money options and for deep
in the money options, and the highest value of Gamma
corresponds to options with strike close to the spot price
(at the money options). O

Question 14. When are a European call and a European
put worth the same? (The options are written on the same
asset and have the same strike and maturity.) What is the
intuition behind this result?

Answer: Recall from the Put—Call parity that
QP e, (3.70)

where C' and P are the values of a call and put 6ption,
respectively, with strike K and maturity 7' on an under-
lying asset with spot price S and paying dividends con-
tinuously at rate ¢q. If C = P, it follows from (3.70) that
K = Sel™ 97 Since the forward price of the underlying
asset is F = Se""9T | we conclude that a call and a put
are worth the same if their strike is equal to the forward
price of the asset; these options are called at—the-money—
forward options.

Note that this result is independent of any assumption
on the evolution of the price of the underlying asset, since
Put—Call parity is model independent.

The fact that an at-the-money—forward call and an
at—the-money—forward put are worth the same may seem
counterintuitive at first glance: call options have unlim-
ited upside since their payoff at maturity,

C(T) = max(S(T) - K,0),

can be infinitely large, while put options have limited up-
side since their payoff at maturity,

P(T) = max(K — S(T),0),
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is bounded by the strike price, i.e., P(T) < K.

However, the value of an option is equal to the risk—
neutral expected value of the option payoff at maturity.
In every model for the evolution of the price of the un-
derlying asset (including in the geometric Brownian mo-
tion model underlying the Black—Scholes framework), the
probability density of the underlying asset at maturity
decreases exponentially for large values of the spot price.
This renders the expected value of large payoffs negligi-
ble, and makes it possible for at—the-money—forward put
options to be worth the same as at-the-money—forward
call options. [

Question 15. What is the two year volatility of an asset
with 30% six months volatility?

Answer: Asset volatility scales with the square root of
time: if o denotes the annualized volatility of an asset,
the volatility o(t) of the asset over a time horizon ¢ is
given by o(t) = o+/t. Then,

U(tz) 2 t_2
o(t1) Vit
For t; = 2, t1 = 0.5, and o(t1) = ¢(0.5) = 0.3, we find

that o(t2) = o(2) = 0.6, i.e., the two year volatility of the
asset is 60%. O

Question 16. How do you value an interest rate swap?

Answer: For valuation purposes only, add payments at
maturity equal to the notional of the swap both for the
fixed leg and for the floating leg of the swap. Then, the
value of the swap for the party receiving fixed payments
is Vowap = Vpiz — Vfioat, Where Vi is the value of a
coupon bond with coupon rate equal to the fixed rate of
the swap, and Vjioq¢ is the value of an instrument making
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the floating payments of the swap, plus a payment equal
to the notional at maturity.

The value Vy;; of the fixed rate coupon bond is the sum
of the present values of its future payments discounted
using risk—free zero rates (most frequently, LIBOR rates).

To compute Vyioat, note that, right after a payment is
made, the remaining payments of the floating leg (includ-
ing the notional at maturity) are equivalent to rolling over
the notional at the prevailing zero rates until maturity.
Thus, the value of all the floating payments on a payment
date for the swap is equal to the notional. We conclude
that V}ioat is the present value of the next floating pay-
ment (which was determined at the prior swap payment
date) plus the notional.

To illustrate swap valuation with an example, consider
a 19-month semiannual swap on a $10 million notional
with 3% fixed rate and paying semiannually compounded
LIBOR. The next floating payment that will be made in
one month is $125,000 (and was determined five months
ago, at the previous cash flow date). X

The cash flow dates of the swap are 1 month, 7 months,
13 months, and 19 months. The value of the swap for the
party receiving fixed payments is Vyyap = Viie — Viioat.
The value of the 3% semiannual coupon bond correspond-
ing to the fixed leg of the swap is

Viiz = 150,000 - disc (%)
+ 150, 000 - disc (l>
12
: 13
+ 150, 000 - disc <E)
+ 10, 150, 000 - disc (%) s o (3.71)

where disc(¢) denotes the discount factor corresponding
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to time ¢. For example, if the discount factors are given
in terms of the semiannually compounded LIBOR rate
LIBOR(t), then

disc(t) = (1+ H—B(;—I{(E)—)—zt.

On the next cash flow date, i.e., in one month, the
floating leg of the swap is equal to the value of the next
floating payment, $125,000, plus the $10 million notional,
i.e., $10,125,000. Thus, the value of the floating leg of
the swap today is the present value of $10,125,000 in one
month, i.e.,

Viioat = 10,125,000 - disc (-115) . (3.72)

The value of the swap for the party receiving fixed pay-

ments is Vswap = Vfizc — Vfioat, Where Viiz and Vfioas are
given by (3.71) and (3.72), respectively. O

Question 17. By how much will the price of a ten year
zero coupon bond change if the yield increases by ten basis
points?

Answer: The first order approximation of the change AB
in the bond price in terms of the change Ay in the bond
yield is

AB = Z—fAy L ADEAY, (3.73)
where D = —%%—5 is the duration of the bond. Thus,
i PRI N (3.74)

B

Note that D = 10, since the duration of a zero coupon
bond is equal to the maturity of the bond. Moreover, the
change in the bond yield is Ay = 0.001, since 1% = 100
basis points (bps), and therefore 10 bps = 0.1% = 0.001.
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From (3.74), we find that the percentage change in the
value of the bond can be estimated as follows:

AB

~ —10 : = —0.01.
B 10 x 0.001 0.0

In other words, the price of the ten year Z€ero-coupon
bond decreases by 1% if the yield increases by ten basis
points. [

Question 18. A five year bond with 3.5 years duration
is worth 102. What is the value of the bond if the yield
decreases by fifty basis points?

Answer: The value of the bond will increase, since the
vield of the bond decreases. More precisely, recall from
(3.73) that

AB ~ - DBAy. (3.75)

For B = 102, D = 3.5 and Ay = —0.005 (1% = 100
bps, and therefore 50 bps = 0.5% = 0.005), we find from
(3.75) that AB ~ 1.785. Thus, the new value of the bond
is B+ AB = 103.785. [O

Question 19. What is a forward contract? What is the
forward price?

Answer: A forward contract is an agreement between two
parties in which one party (the long position) agrees to
buy a specified quantity of the underlying asset from the
other party (the short position) at a given time in the
future and for a price, called the forward price, that is
agreed upon at the inception of the forward contract. The
forward price is chosen such that the forward contract has
value 0 at inception.®

If the underlying asset has spot price Sy and pays div-
idends continuously at rate g, the forward price for a for-

9Note that the forward price is not the price of the forward.
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ward contract maturing at 7 is
IR Soe(r_q)T
where r is the risk—free rate between 0 and 7. [

Question 20. What is the forward price for treasury
futures contracts? What is the forward price for com-
modities futures contracts?

Answer: A short position in a forward contract (i.e., sell-
ing a forward contract) is perfectly hedged by buying one
unit of the underlying asset and holding that position until
the maturity of the forward contract. The forward price
is the future value at the maturity of the forward contract
of the cost of buying one unit of the underlying asset.

For a treasury futures contract, buying the underlying
treasury bond generates a positive cash flow from receiv-
ing all the bond coupon payments until the maturity of
the forward contract. If Sp is the spot price of the under-
lying treasury bond and if C' is the present value of all the
coupon payments received during the life of the futures
contract, then the forward price F' of a treasury futures
contract with maturity 7" is the future value at time 7" of
Sy Cites = (Sp— @)et”,

For a commodities futures contract, buying the under-
lying commodity incurs storage costs; for example, for a
gold futures contract, buying the underlying gold would
require storing the gold safely. If So is the spot price of
the underlying commodity and if C' is the present value of
all the storage costs, then the forward price F' of a com-
modities futures contract with maturity 7" is the future
value at time T of So + C, i.e., F = (So + C)e"", where r
denotes the risk—free rate between 0 and 7. [

Question 21. What is a Eurodollar futures contract?
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Answer: A Eurodollar is a dollar deposit in a bank outside
the United States. The Eurodollar rate is the interest
rate earned on Eurodollars deposited by one bank with
another bank (and is very close to LIBOR for short term
maturities).

A Eurodollar futures contract is a futures contract on
a Eurodollar rate, and deliveries are for up to ten years in
the future.

For example, a three-month Eurodollar futures con-
tract is a futures contract on the three month (90-day)
Eurodollar rate. The start date is the third Wednesday of
the delivery month (March, June,

September, December). [

Question 22. What are the most important differences
between forward contracts and futures contracts?

Answer: The main differences between the ways forward
and futures contracts are structured, settled, and traded
are:

e Futures contracts trade on exchanges and have standard
features, while forward contracts are over-the-counter in-
struments.

e Futures are marked to market and settled in a margin
account on a daily basis, while forward contracts are not
settled before maturity.

e Futures carry almost no credit and counterparty risk,
since they are settled daily, while entering into a forward
contract carries some credit risk.

e Futures have a range of delivery dates, while forward
contracts have a specified delivery date.

e Futures contracts require the delivery of the underlying
asset for the futures price, while forward contracts can
be settled in cash at maturity, without the delivery of a
physical asset. [
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Question 23. What is the ten—day 99% VaR of a port-
folio with a five-day 98% VaR of $10 million?

Answer: If we assume normally distributed short term
portfolio returns, the VaR (Value at Risk) of a portfolio is
proportional to the square root of the time horizon. More
precisely, if the N day C% VaR of the portfolio is denoted
by VaR(N, C), where N is the number of days in the time
horizon and C is the confidence level, then

o e R L R
252
where, oy is the (annualized) standard deviation of the
rate of return of the portfolio, z¢ is the z—score of the stan-
dard normal distribution corresponding to C, i.e., P(Z <
2¢) = C, and V/(0) is the current value of the portfolio.
From (3.76), it follows that

299V 10

298 \/g

For VaR(5 days,98%) = $10,000,000, and since zg9 ~
2.326348 and 298 ~ 2.053749, we obtain that

VaR (10 days, 99%) =~ VaR(5 days, 98%).

VaR(10 days,99%) ~ $16,019,255. [
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3.4 C++4. Data structures.

Question 1. How do you declare an array?

Answer: An array can be declared either on stack, or on
heap.

//created on stack, uninitialized
T identifier[size];

//created on stack, initialized
T identifier[] = initializer_list;

//created on heap, uninitialized
T* identifier = new T[size];
Ezample:

int fool[3];
int bar[] = {1,2,3};
int* baz = new int[3];

Question 2. How do you get the address of a variable?

Answer: Use the ampersand before the name of the vari-
able, e.g.

T var:;
T* ptr = &var
Ezample:

int foo = 13
int* foo_ptr = &foo;

Question 3. How do you declare an array of pointers?

Answer: The same way as declaring an array, but making
the type, T, a pointer:
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T+ identifier[sizel;
Tx identifier[] = initializer_list;
T** identifier = new T*[sizel;

Exzample:

intoa = 1; int'b = 2; int.c = 33
int* fool[3];

int* bar[] = {&a, &b, &c};
int** baz = new intx*[3];

Question 4. How do you declare a const pointer, a
pointer to a const and a const pointer to a const?

Answer:

//pointer to a read only variable
const T* identifier;
T const* identifier;

//read only pointer to a variable
T *const identifier = rvalue;

//read only pointer to a read only variable
const T *const identifier = rvalue;
T const *const identifier = rvalue;

Ezample:

//read only variables
const int a = 2; const int b = 2;
ink cciim 1.

//pointer to a read only b
int const* foo_two;

foo_two = &a; foo_two = &b;

//pointer to read only a
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const int* foo;
foo = &a; foo = &b;

//read only pointer to c
//it needs to be initialized
int *const bar = &c;

//read only pointer to read only a
//it needs to be initialized
const int *const baz = &a;

Question 5. How do you declare a dynamic array?

Answer:

T* identifier = new T[size];
T* identifier = nullptr;
T* identifier;

delete[] identifier;

Ezxample:

int *foo = new int[4];
int *bar = nullptr;
bar = new int[4];

Question 6. What is the general form for a function
signature?

Answer:

return_type function_na.me(parameter_list);

Ezample:

int my_sum(int a, int b);
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Question 7. How do you pass-by-reference?

Answer:
return_type function_name(T & identifier);

The identifier is now an alias for the argument.

Question 8. How do you pass a read only argument by
reference?

Answer:
return_type function_name(const T & identifier);

Once you define a parameter as const, you will not be
able to modify it in the function.

Question 9. What are the important differences between
using a pointer and a reference?

Answer: Several differences between using a pointer and
a reference are:

e A pointer can be re-assigned any number of times, while
a reference cannot be reassigned after initialization.

e A pointer can point to NULL (nullptr in C++11),
while a reference can never be referred to NULL.

e It is not possible to take the address of a reference as it
is done with pointers.

e There is no reference arithmetic.

Question 10. How do you set a default value for a pa-
rameter?

Answer:
return_type function_name(T identifier = rvalue)

The parameters with default value must be placed at the
end of the parameter list.
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Question 11. How do you create a template function?
Answer:

template<class T>
return_type function_name(parameter_list);

template<typename T>
return_type function_name(parameter_list);

Note that the parameter type can be specified, when call-
ing the function, explicitly or implicitly. Also note that
there is no technical difference between using class or
typename besides code readability (typename for primitive
types and class for classes).

Ezample:

template<typename T>
T temp_sum(T a, T b) {return a+b;}

struct Processor{

int a;

int apply(int b) {return a+b;}
*

template<class T>

int temp_sum_2(int a, int b) {
T processor;
processor.a = a;
return processor.apply(b);

int main(){
//implicit, foo equals 3
int foo = temp_sum(1,2);

//explicit, bar equals 3
int bar = temp_sum_2<Processor>(1,2);
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Question 12. How do you declare a pointer to a func-
tion?

Answer:

return_type (*identifier) (list_parameter_types)

Ezxample:

int my_sum(int a, int b) {return a+b;}
int main(){

int (*p_func) (int,int);

p-func = & my_sum;

// foo equals 3
int foo = p_func(1,2);

Question 13. How do you prevent the compiler from
doing an implicit conversion with your class?

Answer: Use the keyword explicit to define the con-
structor:

explicit Classname(parameter_list)

Question 14. Describe all the uses of the keyword static
in C++.

Answer: Inside a function, using the keyword static
means that once the variable has been initialized it re-
mains in memory up until the end of the program.

Inside a class definition, either for a variable or for a
member function, using the keyword static means that
the there is only one copy of them per class, and shared
between instances.

As a global variable in a file of code, using the keyword
static means that the variable is private within the scope
of the file.
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Question 15. Can a static member function be const?

Answer: When the const qualifier is applied to a non-
static member function it implies that member function
can not change the instance class when called (i.e. can
not change any non mutable members from *this). Since
static member function are defined at a class level, where
there is no notion of this the const qualifier for member
functions does not apply.

Question 16. C++ constructors support the initializa-
tion of member data via an initializer list. When is this
preferable to initialization inside the body of the construc-
tor?

Answer: The initialization list has to be used for const
members, references and with members without default
constructors, but for any type of members initialization
through the initialization list is still preferable, since it
is for efficient. Using the initialization list, the members
are initialized calling directly their constructors. If the
initialization is done in the body of the constructor for
each member being initialized there is an instance of it
created and then a copy assignment operation is called to
assign that instance to its respective member.

Question 17. What is a copy constructor, and how can
the default copy constructor cause problems when you
have

pointer data members?

Answer: A copy constructor allows you to create a new
object as a copy of an existing instance. The default copy
constructor creates the new object by copying the exist-
ing object, member by member, and thus when there are
member pointer you end up with two objects pointing to
the same object.

It is important to note that the copy constructor is
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called every time a function receives an object via the
pass-by-value mechanism. This means that the copy con-
structor needs to be implemented using a pass by refer-
ence. Otherwise you will be recursively calling the copy
constructor. You should always set the parameter for a
copy constructor to be const.

ClassName( const ClassName& other );
ClassName( ClassName& other );

ClassName( volatile const ClassName& other) ;
ClassName( volatile ClassName& other );

Question 18. What is the output of the following code:

#include <iostream>
using namespace std;

class A
{
public:
int * ptr;
“AQ
{
delete(ptr);
;
T;
void foo(A object_input)
{
¥
int main()
{

A aa;
aa.ptr = new int(2);
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foo(aa);
cout<<(*aa.ptr)<<endl;
return 0;

}

Answer: The output of the code is an uncertain number,
depending on the compiler used; for some compilers it
could generate an error. The reason for this is that we do
not define our own copy constructor.

When we call the foo function, the compiler will gen-
erate a default copy constructor which will shallow copy
every data members defined in class A. This will lead to
the result that two pointers, one in temporary object and
the other in the object aa, will point to the same area in
memory. When we get out the foo function, the compiler
will automatically call the destructor function of the tem-
porary object in which the pointer will be deleting and the
area it points to will be free. In this situation, the pointer
in aa will still point to the same area which has been free.
When we try to visit the data through the pointer in aa,
we will get garbage information.

Question 19. How do you overload an operator?

Answer:
type operator symbol (parameter_list);

If you define the operator outside of the class, then it
will be a global operator function.

Example:

struct FooClass{int a;};

int operator + (FooClass lhs, FooClass rhs) {
return lhs.a + rhs.a;

}

Question 20. What are smart pointers?
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Answer: A smart pointer is a class built to mimic a pointer
(offering dereferencing, indirection, arithmetic) that also
offers extra features to simplify the usage, sharing and
management of resources.

C++11 comes with three implementations of smart
pointers: shared_ptr, unique_ptr, and weak_ptr.

Ezample:

//shared_pointer maintains

//a reference count

//when the count is zero the object
//pointed to is destroyed

std: :shared_ptr<int> foo(new int(3));
std: :shared_ptr<int> bar = foo;

//memory not released
//bar is still in scope
foo.reset();

//releases the memory,
//since no one is using it
bar.reset();

i

Question 21. What is encapsulation?

Answer: Encapsulation is the ability to expose an inter-
face while hiding implementation. This is usually achieved
through access modifiers (public, private, protected, etc.).

Question 22. What is a polymorphism?

Answer: Polymorphism is the ability for a set of classes
to all be referenced through a common interface.

Question 23. What is inheritance?
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Answer: Inheritance is the ability for one class to extend
another through sub-classing. This is also referred to as
“white-box” (the opposite of “black-box”) re-use. A li-
brary can provide base classes that may be extended by
the application developer.

Question 24. What is a virtual function? What is a
pure virtual function and when do you use it?

Answer: Virtual functions are functions that are resolved
by the compiler, at runtime, to the most derived version
with the same signature. This means that if a function
that was defined using a base class Foo, with a virtual
member function £, is called using an instance of a sub
class FooChild, that function is going to be dynamically
binded to the implementation of the sub class (regardless
that the actual code only refers to the base class).

A pure virtual function is a virtual function with no
implementation in the base class, making the base class
abstract (and thus can’t be instantiated). Derived classes
are forced to override the pure virtual function if they
want to be instantiated. You use the same syntax as the
virtual function but add =0 to its declaration within the
class.

Question 25. Why are virtual functions used for de-
structors? Can they be used for constructors?

Answer: Destructors are recommended to be defined as
virtual, so the proper destructor (in the class hierarchy)
is called at running time.

When calling a constructor, the caller needs to know
the exact type of the object to be created, and thus they
cannot be virtual.

Question 26. Write a function that computes the facto-
rial of a positive integer.
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Answer:

//for implementation
int factorial(int n){
int output =1;
for (int i =2 ; i <=n ; ++i)
output *= ij;
return output;

X

//recursive implementation
int factorial(int n){
if (n == 0) return 1;
return n*factorial(n-1);

}

//tail recursive implementation

int factorial(int n, int last = 1){
if (n == 0) return last;
return factorial(n-1, last * n);

Question 27. Write a function that takes an array and
returns the subarray with the largest sum.

Answer:

#include <vector>
#include <algorithm> // std::max

using namespace std;

template <typename T>
T max_sub_array(vector<T> const & numbers){
T max_ending = 0, max_so_far = 0;
for(auto & number: numbers){
max_ending = max(0, max_ending + number);
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max_so_far = max(max_so_far, max_ending) ;
}

return max_so_far;

Question 28. Write a function that returns the prime
factors of a positive integer.

Answer:

#include <vector>
using namepsace std;

vector<int> prime_factors(int n){
vector<int> factors;
for (int i = 2;'i <= /i : ++i)
while (n % i == 0) {
factors.push_back(i);
n /= 1i;
}
if i (n.>i1)
factors.push_back(n);
return factors;

Question 29. Write a function that takes a 64-bit integer
and swaps the bits at indices i and j.
Answer:
long swap_bits (long x, const int &i, const int &j){
Af 0G0 >>1) & 1L) = (lx>%9) & 1L)-)
%= (1L <<i ) | GIL <<§)s;
return Xx;

Question 30. Write a function that reverses a single
linked list.
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Answer:

#include <memory> // shared_ptr
using namespace std;

template<typename T>
struct node_t {
T data;
shared_ptr<node_T<T>> next;
};

//recursive implementation

SOLUTIONS

template<typename T> shared_ptr<node_t<T>>

reverse_linked_list(

const shared_ptr<node_t <T>> &head){

if (lhead || !'head->next) {
return head;

}

shared_ptr<node_t<T>>

new_head = reverse_linked_list(head->next);

head->next->next = head;
head->next = nullptr;
return new_head;

}

//while implementation

template<typename T> shared_ptr<node_t<T>>

reverse_linked_list(

const shared_ptr<node_t <T>> &head){

shared_ptr<node_t<T>>
prev = nullptr, curr = head;
while(curr) {

shared_ptr<node_t<T>> temp = curr-> next;

curr->next = prev;
prev = curr;
curr = temp;
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}

return prev;

Question 31. Write a function that takes a string and
returns true if its parenthesis are balanced.

Answer:

#include<string>
#include<stack>
using namespace std;

bool is_par_balanced(const string input)
{
/7)) O)"=> false
/7" (a(dd) O) (0)))"=>true
stack<char> par_stack;
for(auto &c: input)
£
if(c==7)"7)
{
if (par_stack.empty())
return false;
else if (par_stack.top()=="(")
par_stack.pop();
}
else if(c==’(’)
par_stack.push(c);
s

return par_stack.empty();

Question 32. Write a function that returns the height
of an arbitrary binary tree.

Answer:
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#include<memory> //std::shared_ptr
#include<algorithm> //std::max
using namespace std;

template <typename T>
struct BinaryTree {

T data;

shared_ptr<BinaryTree<T>> left, right;
s

template <typename T>
int height(
const shared_ptr<BinaryTree<T>> &tree,
int count = -1){
if (!tree) return count;
return max(
height (tree->left, count + 1),
height (tree->right, count +1));
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3.5 Monte Carlo simulations. Numerical
methods.

Question 1. How would you compute 7 using Monte
Carlo simulations? What is the standard deviation of this
method?

Answer: An Acceptance-Rejection type method can be
used to approximate 7 as follows: generate N points uni-
formly in the [—1,1] x [—1, 1] square and accept a point
(x,y) if the point is in the unit disk D(0,1), i.e., if 2% +
y? < 1. If the number of accepted points is A, then the
ratio % converges in the limit as N — oo to the ratio of
the area of the unit disk to the area of the square, which
is equal to 7. Therefore,

4A
N

T )X

The standard deviation of the method is O (\/—%) We
make this more precise by computing below the coefficient
of ﬁ in O (ﬁ), see (3.79).

Let U;,Us, -+ be a sequence of independent identi-
cally distributed bivariate random variables uniformly dis-
tributed in [—1,1] x [—1,1]. Denote by 1p,1) the indica-
tor function of the unit disk D(0, 1), i.e.,

1, if (z,y) € D(0,1);
1D<o,1)(w,y)={ 0, ot}(1erwise. e

Let
X: = 1pey(li), Yiz1.

The random variables X;, ¢ > 1, are independent and
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identically distributed, with

1
E[X;] = E[lpeyUs)] = // Zda:dy
D(0,1)

s
1 (3:77)
Since X;, ¢ > 1, are integrable, it follows from the strong
law of large numbers that

3 X1+X2+"'+Xn a5
lim = — almost surely.
n—oo n 4

Note that X1 + X2+ - - - + X, counts how many points
out of the randomly selected n points reside in the disk
D(0,1). Thus, for N large enough,

Xk Xo b ch Xy o

i3
N 4’

(3.78)

To calculate the variance of the estimation in (3.78),
note that, for 1 << N,

(1o (@3)* = 1pey(Us), Y1<i<N,
and therefore, using (3.77), we find that

var(X;) = E[X]] - (E[Xi)?
= [0y ®)] - (3)°

2
= E[lpey(U)] - =

16
R N
3 V4 VG
(4 —m)

16
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Then,

Bk Kad ok Xy
N

0 % (var(X1) + -+ + var(Xw))
fite oy m(4 — )
w4 —m)

16N °
By taking the square root of the variance, we conclude

that the standard deviation of this Monte Carlo method
for estimating = is

b Al e AN A S i
by, R R (3.79)

Question 2. What methods do you know for generating
independent samples of the standard normal distribution?

Answer: The three most commonly used methods to gen-
erate independent standard normal samples are:

e Box-Muller (using the Marsaglia—Bray algorithm in or-
der to avoid estimating trigonometric functions);

e Acceptance-Rejection;
e Inverse Transform.

For details on these methods, see Glasserman [2]. O

Question 3. How do you generate a geometric Brownian
motion stock path using random numbers from a normal
distribution?

Answer: Consider a stock whose price follows the geomet-
ric Brownian motion

dS, = uS.dt+ oS,dWs, (3.80)
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where p and o are the drift and the volatility of the stock
price, and W; is a Weiner process. To generate a price
path for the stock between time 0 and time T, discretize
the time interval into m equal time steps of size 0t = %,
and let t; = jét, for j = 0:m.

By integrating (3.80) between t; and t;j11, it follows
that

tj+1 tit1
Stj+1 _Stj = ,LL/ Stdt -+ U/ Stth. (381)
t

tj

We use the following approximations:

ti+1
|7 s
t

g

ti+1
/ SdWy
1

J

Q

St; (ti+1 —t5)

= S, 6t; (3.82)

Q

St; Wy — Wa;)

= 8y, Vot Zj41, (3.83)

where Z;41 is a standard normal variable, since W; is a
Wiener process and therefore Wy, ,, — Wy, is a normal
variable with mean 0 and variance t;+1 — t; = dt, i.e.,

Wiyor — Wy = VotZjqa. (3.84)

Note that Z;, for j = 1 : m, are independent standard
normals.

If 21, 22, ..., zm are independent samples of the stan-
dard normal distribution, we obtain from (3.81-3.83) that
(3.80) can be discretized as follows:

Stjy1 — St

J

= ,uStjét o Ung\/EZ]q.l,

for j = 0: (m — 1), which can be written as

Stj+1 = Stj (1 + /L&t e U\/(S—tz]'+1) 5
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for j=0:(m—1).

Note that there is a very small probability that the
price path above becomes negative, which is a drawback
of using this discretization.

A price path which is always positive can be generated
using It6’s formula to express (3.80) as

2
d(In(Sy)) = (,u - %—) dt + odWs. (3.85)
By integrating (3.85) between t; and t;41, it follows that

4
In(S:,,,) —In(Sy;) = In (—S—J'—l)

tj

0.2
(P«_ ?) (ti+1 —t5) + o(We,, — Wey)
02
= <'u, - 7) 0t + oVétZ;ia, (3.86)

for j =0: (m — 1), where (3.84) was used for (3.86).
Then, (3.86) can be discretized as follows:

S- 2
1n<L:.1_> = (N—%—>5t+0\/322j+1,

for j =0:(m — 1), and therefore

:
St;p1 = Si; exp ((p — %) 5t+0’\/§Zj+1) 3

forallj=0:(m—-1). O

Question 4. How do you generate a sample of the stan-
dard normal distribution from 12 independent samples of
the uniform distribution on [0, 1]?

Answer: If ui, uz, ..., ui2 are 12 independent samples of
the uniform distribution on [0, 1], then

12
> ui -6 (3.87)
i=1
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can be used as a sample of the standard normal distribu-
tion.

To see this, recall from the Central Limit Theorem
that, if X;, i > 1, are independent identically distributed
random variables with finite expected value E[X] and
standard deviation o(X), then

1 n
lim 2 Gl X~ B 4 z (3.88)

n—oo a(X)
n

where Z is the standard normal distribution and the con-
vergence in (3.88) is in distribution.

Let Ui, Ua, ..., Uiz be 12 independent uniform distri-
butions on [0, 1]. Using (3.88) for n = 12 and X; = U,
i =1:12, we infer that

5 (Zi2.U:) - E[U]

Z ~ 12 e : (3.89)
12
where
1 1
B0 = /udu = ey (3.90)
0 2
1 1\2
a2 = E[UZ]—(E[U])2=/O uzdu—<§)
e IR R Y
TG e D
and thus i

From (3.89-3.91), we obtain that

% (Zzli1 Ui) = %
1

12
= % e &
=1

Z =
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and therefore (3.87) can be used as an approximate sample
of the standard normal distribution.

Note that this is an inefficient method, since it uses
12 samples from the uniform distribution to generate one
approximate sample of the standard normal distribution,
and all the samples that it generates are in the interval
[—6,6]. More efficient methods for generating indepen-
dent standard normal samples are Box—Muller, which uses
two uniform distribution samples to generate two sam-
ples of the standard normal distribution, and Acceptance—
Rejection. O

Question 5. What is the rate of convergence for Monte
Carlo methods?

Answer: If n is the number of paths in the Monte Carlo
simulation and m is the number of time steps between 0
and T used in the discretization of each path, then the
convergence rate of the Monte Carlo simulation is

ofom(E:5))

The estimate above holds for Monte Carlo simulations
on multi asset derivative securities, i.e., is independent of
the number of underlying assets of the derivative security,
unlike finite differences and numerical integration meth-
ods, where the convergence slows down as the number of
underlying assets increases. [

Question 6. What variance reduction techniques do you
know?

Answer: The variance reduction techniques are used to
reduce the constant factor corresponding to the Monte
Carlo approximation error O (%) Some of the most
commonly used variance reduction techniques are:

e Control Variates;
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e Antithetic Variables;
e Moment Matching.

For details on these methods and their implementation,
see Glasserman [2]. O

Question 7. How do you generate samples of normal
random variables with correlation p?

Answer: Assume that you can generate two samples 21
and 2o from two independent standard normal variables
Z1 and Z,. Let X1 = Z1 and X2 = pZ1 + /1 — p?Z,.
Note that X is a linear combination of independent nor-

mal variables, and therefore X is a normal variable as
well. Also,

corr(X1,X2) = corr(Z1,pZ1 + /1 — p2Z3)
= pcorr(Z1,21)
+ /1= p? corr(Z1, Z3)
= pvar(Z)
= p
since var(Z1) = 1 and corr(Z1, Z2) = 0, since Z; and Z»
are independent.
We conclude that X; and X> are normal random vari-

ables with correlation p. Thus, starting with two indepen-
dent standard normal samples 21 and 22,

1=z and z2=pz1++/1—p?z

are samples of normal random variables with correlation
s o [El

Question 8. What is the order of convergence of the
Newton’s method?

Answer: If it is convergent, Newton’s method is quadrat-
ically (second order) convergent.
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Recall that, given an initial guess xo, the Newton’s
method recursion for solving f(x) = 0, where f : R — R,

is
f(zx)

f'lzk)’

The quadratic convergence of Newton’s method can
be stated formally as follows: Let z* be a solution of
f(xz) = 0. If f(z) is a twice differentiable function with
f"(x) continuous, if f'(z*) # 0, and if o is close enough
to 2*, then there exists M > 0 and nas a positive integer
such that

Thi1 = Tk — Vk>o0. (3.92)

|Zkt1 — 27|

o <M, YEZna (3.93)
s

To provide the intuition behind (3.93), note that, since
f(z*) = 0, the recursion (3.92) can be written as

Tht1 — 2
e o flen)eif(a?)
=i B e _——_f/(ﬂi'k)
O EN S ) Y - 2 ()
o i . (3.99)

Recall from the linear Taylor expansion of the function
f(z) around the point z that, if f”'(z) is continuous, then
there exists a point ¢k between z* and xx such that

f@*) = flzx)+ (2" — zx)f (z)

Hoins 2
i she s 2“) " (cx). (3.95)
From (3.94) and (3.95), we find that
s l 2 f”(ck)
BT
and conclude that
|Te1 — 2] I (cx)
= 5 3.96
ax =2 = |2F () Sy
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I f"(w) and f’(z) are continuous functions such that
o

fi= 0, it follows that, if zx is close to z*, then
51]:7(% is close to ‘5’;—1%% < 0. Therefore, the term

(
L) | 4 uniformly bounded if z, is close enough to z*

7 (1 )
and (3.96) can be written formally as (3.93). O

N,

Question 9. Which finite difference method corresponds
to trinomial trees?

Answer: Forward Euler. As an explicit finite difference
method, the Forward Euler discretization of the Black—
Scholes PDE gives the finite difference value of the option
at a node as a linear combination of the option values at
three nodes on the prior time step, which is similar to the
risk neutral formula for trinomial trees.

If the calibration of the trinomial trees is done in the
log space, i.e., if the up and down factors are calibrated
to the normal distribution of In(S), and if the Forward
Euler discretization is done for the constant coefficients
PDE obtained by the change of variables z = In(S), the
classical trinomial tree recursion and the Forward Euler
recursion are almost identical. [
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3.6 Probability. Stochastic calculus.

Question 1. What is the exponential distribution? What
are the mean and the variance of the exponential distri-
bution?

Answer: The density function of the exponential random
variable X with parameter a > 0 is

2 aresSr . i >0
el = { B oo
The expected value and the variance of the exponential
random variable X are

E[X] = é and var(X) = é.

To see this, use integration by parts to find that

oo —azx |® oo
= Te 1 =
/ pe " Mdy == +—/ e *dx
0 Qg @ Jo
g 0 —azx |%° o 1
Sl T ig#
0
oo 2 _—az | oo
1o Toe 2 5
/ plen ORI +—/ ze **dx
0 & 0 @ Jo
2 1 2
= 04+—%x— —.
o? s

Then,

BlX]= /oo $f($)d$=a/0w:ce‘“dx = é;

BiX?] = /oo 2’ f(x) dx = a/oo:vze_‘" e

&
—o0 0 a
Therefore,

var(X) = E[X? — (E[X])? = % X (&‘)2 =
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Question 2. If X and Y are independent exponential
random variables with mean 6 and 8, respectively, what
is the probability that Y is greater than X?

Answer: The probability density functions of X and Y
are, respectively:

%e'%, if £ > 0;
fx(x) =
0, if z <0;

e ¥ ify > 0;
=
0, if of <i0;

Since X and Y are independent, the joint probability den-
sity function fxvy(z,y) of (X,Y) is the product of the
marginal probability density functions, i.e.,

fxy(z,y) = fx(z)fr(y)
1%6_%_% b e 050
0, otherwise.

Let

A = {(z,y) eR*:y 2z}

The probability that Y is greater than X can be found by
evaluating the double integral

Pz X) - = /fxy(a:,y)dxdy

A
1. fR Y g
= E/o /0 e 6 sdxdy
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as follows:
© v
PYa > X)) % e ¥ (/ e_%dac) dy
0 0
1 s Y z |Y
= == ] —Be=6 d
48/0 : ( . 0) Y
oo
= %/ e_jSL(l—e_%)dy
0
A ek
0
1 24
= 5le )

O

I

e

Question 3. What are the expected value and the vari-
ance of the Poisson distribution?

Answer: A Poisson distribution is a random variable X
taking nonnegative integer values with probabilities

where A > 0 is a fixed positive number.
We show that the expected value and the variance of
the Poisson distribution X are

EX]=X and var(X)=\.

By definition,

oo st e—)\)\k
ElX] = Y P(X=k k= ZTk
k=0 k=1
= e_)‘)\i L. (3.97)
£l ~T)l
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Since the Taylor series expansion for el is
- ¥4
= )
et k!

it follows that

ol R 3.98
e B S
o )\k—Z 3

i B 7o Ik (3.99)

From (3.97) and (3.98), we find that E[X] = A.
To calculate var(X), note that

EXx% = P(X=k) K

6_/\>\k kz

> A= (k—1)AF B
EX"] = eAZ——((k_i)! +e’\2=:(k_1)!
_x)\i

Il
|
>
>
N
Eol
3N
N
A\
Byl
[\]
":

= M4,

where (3.98) and (3.99) were used for the last equality.
We conclude that

var(X) = E[X?] - (E[X])’= ). O
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Question 4. A point is chosen uniformly from the unit
disk. What is the expected value of the distance between
the point and the center of the disk?

Answer: The expected value of the distance between a
uniformly chosen point in the unit disk D and the cen-
ter of the disk can be computed as E [\/X 24+ Y2] , where
(X,Y) is uniformly distributed in the unit disk D. The
probability density function of (X,Y’) is

i, ifzeD;
flz,y) =

0, otherwise.

Then,

E{\/X2+Y2] = %//\/dedy. (3.100)
D

Using the polar coordinates substitution z = rcosf and
y=rsinf, with0<r <land 0< f < 2, and recalling
that dzdy = rdrdf, we obtain from (3.100) that

E[\/X2+Y2]
2 pl
= l/ / \/;2 (cos? 6 + sin® 0) rdrdf
i / / r2dg dr (3.101)
1
= —/ omr? dr = /rzdr
T™Jo 0

:

3 )

where for (3.101) we used the fact that cos® 0 +sin’6 =1
forallg. 0O

Question 5. Consider two random variables X and Y
with mean 0 and variance 1, and with joint normal dis-
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tribution. If cov(X,Y) = \/—, what is the conditional
probability P(X > 0]Y < 0)?

Answer: From the definition of conditional probability, it
follows that

P(X >0,Y <0)

P(X >0|Y <0) = BY <0) (3.102)
Note that 1
P(Y<0) = 3 (3.103)
since Y is a standard normal random variable.
In order to compute P(X > 0,Y < 0), let
= V2X-Y. (3.104)

Since E[X] = E[Y] = 0, it follows that E[W] = 0. More-
over, since

ar(X) =var(Y) =1 and cov(X,Y)= 7
we obtain that
var(W) = var (\/§X - Y)

= var (\/§X) —2 cov (\/§X, Y) + var(Y)
= 2var(X) — 2v2 cov(X,Y) + var(Y)

= 1,
and
cov(W,Y) = cov (\/iX - Y,Y)
= V2cov(X,Y) —var(Y)
0.

Note that W = v/2 X —Y is a normal random variable
since X and Y have joint normal distribution. Moreover,
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since E[W] = 0, var(W) = 1, and cov(W,Y) = 0, it
follows that W and Y are independent standard normal
variables.

From (3.104), we find that

A
V2

Then, the probability of the event {X > 0,Y < 0} can be
written as

X = —(W+Y).

P(X >0, <0)

P(Jﬁ(W+Y)>o,Y<0>

PW+Y >0,Y < 0) (3.105)

The two straight lines w +y = 0 and y = 0 cut the
(w,y) plane into four wedges:

Ry ={w+y>0,y <0}
Ry ={w+y >0,y >0}
Rs={w+y <0,y <0}
Ry ={w+y <0,y >0}

Note that
PW4+Y >0Y <0) = P(W)Y) €Ri). (3.100)

Since W and Y are independent normal random variables,
their joint probability density function is rotationally sym-
metric, and therefore

P((W,Y)€e R1) = P(W,Y)€ Rs); (3.107)

P((W,Y) € Rp) P((W,Y) € Rs); (3.108)
P((W,Y) € Ry) 3P((W,Y) € R1);

Il

Il

see Figure 3.1.
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y

Figure 3.1: The regions Ri to Ra in the (w,y) plane.

Also, note that

S P(W,Y)€R) =1, (3.109)

i=1

since P(W +Y =0or Y =0) = 0.
From (3.107-3.109), we find that

1= 3 R Yy Ry

2P((W,Y) € R1) + 2P((W,Y) € Rz)
8P((W,Y) € Ru),

and therefore

P(W)Y) € R1) =

Q| =

Thus,
PW+Y>0Y<0) = 3; (3.110)
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see (3.106).
Then, from (3.105) and (3.110), it follows that
P(X>0,Y <0) = % (3.111)

From (3.102), (3.103), and (3.111), we conclude that

P(X.>0¥<0)
P(¥Y < 0)
1

=4.D

PX 0l <0) s =

Question 6. If X and Y are lognormal random variables,
is their product XY lognormally distributed?

Answer: First, note that, if X and Y are independent
lognormal random variables, then XY is lognormally dis-
tributed, since In(XY) = In(X) + In(Y’) is the sum of two
independent normal random variables, and therefore it is
normally distributed.

In a more general setting, if In(X) and In(Y") have joint
normal distribution, then In(X) + In(Y’) is normally dis-
tributed and therefore XY is a lognormal random vari-
able.

Otherwise, In(X) + In(Y) may not be normally dis-
tributed even if In(X) and In(Y") are normally distributed,
in which case XY is not lognormally distributed. O

Question 7. Let X be a normal random variable with
mean p and variance o, and let ® be the cumulative
distribution function of the standard normal distribution.
Find the expected value of Y = ®(X).

Answer: Let Z be a standard normal random variable
independent of X. Then,

Ve B = P(Z<XX) —ehlfame X
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and therefore
ElY] = E[E[1z<x|X]]. (3.112)

Recall from the Tower Property for conditional expec-
tation'® that, for any two random variables T' and W/,

E[T] = E[E[T|W]]. (3.113)
Using (3.113) for T'= 1z<x and W = X, we obtain that
E[E[1z¢x|X]] = E[lz<x]
P(Z="X). (3.114)
From (3.112) and (3.114), we obtain that
ElY] = P(Z< X). (3.115)

Recall that X is a normal random variable with mean
w and variance o2, and that X and Z are independent.
Then, Z — X is a normal random variable with the follow-
ing mean and variance:

e SR
var(Z — X) = var(Z)+var(X) = 14 0°

and Z — X is a normal random variable with mean —pu
and variance 1+ o2. Thus, Z=Z££ js a standard normal

V1402

random variable and therefore

Poey o FZoEZO)
L P(Z_X+“< £ )
Vi+o2 = /1402

= & (—1\/_%> : (3.116)

1%Tn other words, to calculate the expected value of T, one can
first calculate the conditional expected value of T knowing the ex-
tra information from W, then average out the resulting conditional
expected value over W.




3.6. PROBABILITY. STOCHASTIC CALCULUS 135

From (3.115) and (3.116) we conclude that

w
E[Y] q)(\/l-i-—c?E) : (3.117)

We note that, if X is the standard normal variable,
then Y = ®(X) is uniformly distributed in the interval
[0,1], and therefore E[Y] = ;. Note that, for u = 0 and
o =1in (3.117), i.e., if X is a standard normal variable,
then E[Y] = ®(0) = 3, which is consistent to the com-
ment above. [

Question 8. What is the law of large numbers?

Answer: There is a strong law of large numbers and there
is a weak law of large numbers. The strong law of large
numbers states that the average of a large number of in-
dependent identically distributed integrable random vari-
ables converges almost surely to their common mean; in
the case of the weak law of large numbers, the convergence
is only in probability.

More precisely, let X1, X2, ...be a sequence of inde-
pendent identically distributed random variables with fi-
nite expected value p = E[X;], and let Sp = X1+ -+ Xo.

The strong law of large numbers states that %’-”‘ — W
almost surely, i.e.,

P ( iy T ) g (3.118)
The weak law of large numbers states that %ﬂ — U
in probability, i.e.,

n—oo

limP(‘%—u'>e> g W EST EE19)

Note that, if a sequence of random variables conver-
gences almost surely, than it also converges in probability,
and therefore, if (3.118) holds true, then (3.119) also holds
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true. This is the sense in which the strong law of large
numbers is “stronger” than the weak law of large numbers.

O

Question 9. What is the central limit theorem?

Answer: The central limit theorem states that the limiting
distribution of the centered and scaled sum of an indepen-
dent identically distributed sequence of random variables
is a normal distribution if the common distribution of the
random variables has finite variance.

More precisely, let X1, X2, ...be a sequence of in-
dependent identically distributed random variables with
finite expected value p = E[X;] and finite variance o® =
var[X;]. Let Sp = X1 + -+ + Xy. Then,

lim S T

n—ooo  o\/n

where Z is the standard normal distribution, and the con-
vergence is in distribution, i.e.,

:Z’

Sn — nu
ov/n

Putting together the Law of Large Numbers and the
Central Limit Theorem, the following approximation as n
goes to infinity holds:

lim P(

n—0o0

St) = prE <l

Sy o
Ty —Z7. O
n 'u+\/ﬁ

Question 10. What is a martingale? How is it related
to option pricing?

Answer: Let (2, F:, P) be a filtered probability

space, where € is the sample space, F; is a filtration, and
P is a probability measure on Q. A stochastic process X
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is called a martingale with respect to the filtration {F:}
if and only if

(i) X; is adapted, i.e., X is Fi-measurable for all ¢;

(ii) X is integrable for all ¢, i.e., F[|X¢|] < oo for all ¢;
(iii) B[X¢|Fs] = X, almost surely for all s < t.

In other words, a martingale is a stochastic process
in which, given the available information F, up to the
current time s, the optimal estimation (in the least square
sense) of the process in the future time ¢, i.e., E[X:|Fs,
is the current value X, almost surely.

The martingale concept is one of the cornerstones of
option pricing theory. The fundamental theorem of as-
set pricing states that, if a market model is arbitrage—
free, then there exists a risk neutral probability so that
each discounted asset price process under the risk neutral
probability is a martingale. Thus, a way to price a deriva-
tive security is to figure out a partial differential equation,
called the pricing equation, usually deduced by applying
1t6’s formula, so that the discounted price process of the
derivative is a martingale under risk neutral probability.

Question 11. Explain the assumption (dW3)? = dt used
in the informal derivation of It6’s Lemma.

Answer: The notation in differential form (dW;)* = dt is
a shorthand for the conventional integral notation used in
Riemann integral

/OT(th)2 = /OT dt. (3.120)

The intuition behind (3.120) is related to the

quadratic variation of a Brownian path. By definition, the
quadratic variation QVi [0, T of the Brownian path W in
the interval [0, 7] is

|2

QVw[0,T] = lim > [Wey — Wi,
=1
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where t; = %T , for i = 0 : n. Therefore, in expectation,
we have that

- l:nli—{rolo Z thi ~ Wi '2]

i=1

i nli_{&zn:E [thi —Wt,._lfz]
=1

— nlLII;o Z(tz % ti_l)

=1

= T,
since Wy, — W4, _, ~ N(0,t; — ti—1) for i = 1: n. In fact,
it can be shown that the convergence

n
Z’Wti_Wti_1|2_“’T as n — 00

i=1

is in L? sense, ie.,

n 2:

oW -Wa |2 -T

i=1

lim E =0.

n—oo

By mimicking the notations used in the conventional Rie-
mann integral, we write that

n

T
L@ = S -w P = T

=1
T
[ a
0

whose shorthand notation in differential form is

(dWy)? =dt. O

Question 12. If W; is a Wiener process, find E[W,W,].
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Answer: Assume that s < ¢t. Write Wy as Wy = (W; —
Ws) + Ws, and note that

WW, = (Wi — Wo)W, + W2 (3.121)

Since W-, 7 > 0, is a Wiener process, it follows that
Wi—W, and W are independent normal random variables
of mean 0, and therefore

E[(W: — W)W, = E[W; — W,|E[W,]
= 0. (3.122)

Also, W is normal of mean E[W;] = 0 and variance
var(Ws) = s. Thus,

var(W,) = E{Wsz] = (E[WS])Z
= E[W2],

and therefore
EW?] = var(W,) = s. (3.123)
From (3.121-3.123), we obtain that
EW:W,] = E[(W;— W,)W,] + E[W?]
= s (3.124)

Since (3.124) was derived under the assumption s < ¢,
we conclude that

EW:W,] = min(s,t). O (3.125)

Question 13. If W, is a Wiener process, what is var(W;+
Ws)?

Answer: Assume that s < t. Write W; as Wy = (W —
W) + Ws, and note that Wy + W, = (W — W) + 2W,.
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Then,
var(Wy + Ws) = var(W; — Ws)

+ 4cov(Wy — W, W)

+ 4var(W5). (3.126)
Since Wy, 7 > 0, is a Wiener process, it follows that

cov(Wy — W, Ws) = 0 (3.127)
var(Wy — W,) = t—s; (3.128)
var(Ws) = s, (3.129)

since Wi — W, and W, are independent normal variables
of variance t — s and s, respectively.
From (3.126-3.129), we obtain that

var(Wy + W) = (t—s)+4s = t+3s. (3.130)

Since (3.130) was derived under the assumption s < ¢,
we conclude that

var(W; + W,) = max(s,t)+3min(s,t). O

Question 14. Let W; be a Wiener process. Find Find

t t
/ Ws dW, and E [/ W, dWs] ;
0 0

Answer: 2Since fex dn= % + C, we begin by comput-
ing d (Lv,f— . Recall from Itd’s lemma that, if f(z,t) is a

continuously differentiable function, then

0 0 162
df= a—{dt+a—£dwt+ 5%(”

For f(zit)= %, we find that

W 1
d(%) = WdW, + sdt,
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and therefore

W2 —
d ( t2 t) = WidW:. (3.131)
By integrating (3.131) between 0 and ¢, and since Wp = 0,
we obtain that

t 55 )
/ W, dW, = W—tQ——t V> 0. (3.132)
0

From (3.132), it follows that

t oy
E[/ WdeS} =%=0,
0

since W, is normally distributed with mean 0 and variance
t and therefore

E[Wtz] — var(Wt)+(E[Wt])2
(EEE

Question 15. Find the distribution of the random vari-
able

i
X=/ WedWs.
0

Answer: Recall from Ité’s formula that, if W; is a Wiener
process and f(x) is a function with continuous second or-
der derivative, then

dF (W) = f/(W)dWs + % £1(W)dt. (3.133)

For f(z) = 2°, we obtain from (3.133) that

AW = 2WidW; + dt. (3.134)
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By integrating (3.134) from 0 to 1, we obtain that
1
Wi = 2/ WidW: +1 = 2X +1. (3.135)
0

Note that W is a standard normal random variable, and
let W1 = Z. By solving (3.135) for X, we find that

We =1 e |
X = = = :
2 2

Let fx(z) and Fx(z) be the probability density func-
tion of X and the cumulative distribution function of X,
respectively.

Note that

P(Xg—%) = P(Z°<0}=0

Thus, if z < —3, then Fx(z) = P(X < z) = 0 and
therefore
fx(z) =0,
since fx(z) = Fx(z).
Hz> —%, then
Z:-1
Pelg) = PX<a)=P S Ee

= Pl aasi1)
P(—V22+1<Z <2z +1)

= SP{0<Z< Vi +])

v2z+1

s
e iR

2/ d
V2r Jo =
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By differentiating Fix(z), it follows that, for z < —3,

fx(z) = Fx(z)

2 d Hhies
= m/o e

VZzF1)?
2 vy

2x+1
S e B
w2+ 1

We conclude that

5 _21:211 i
Ve atl RN
2 ? 2’
fX(m) i T +2z+1 D
0 if 2<%

Question 16. Let W; be a Wiener process. Find the
mean and the variance of

t
/ W2dWs.
0

Answer: Let B; be the Borel o-algebra over the time in-
terval [0,t] and let F; be the filtration for the probability
space in which the Wiener process W; resides. We will
use the following results:**

Theorem 38.1. (Martingality)

Let fs be progressively measurable and square integrable
in [0,T), i.e., ft is By ® Fi-measurable for every t € [0,T]
and E [fOT|ft|2dt] < oo. Then, the stochastic integral

1 For the proofs of Theorem 3.1 and Theorem 3.2, see Theorem
2.8 on p.65 and Theorem 3.1 on p.67, respectively, from Fried-
man [1].
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f(: fsdWs defines a zero mean, square integrable martin-
gale for t € [0,T]. In particular,

E [/Otfdea] =0, Vtel[o,T). (3.136)

Theorem 3.2. (Itd’s isometry)
Let f; and g+ be progressively measurable and square inte-
grable processes. Then,

E {/Ot fsdWs /Otgdes} = ./Ot E[fs gs]ds.

In particular, if fs = gs, it follows that

E [( /0 . fadWS) 2] - /0 ' Blf2ds. (3.137)

For our problem, we need to compute E[X] and var(X),
where

t
X = /Wdes.
0

We first check that the integrand W2 is progressively
measurable and square integrable in [0, t].

Note that W2 is progressively measurable because it is
adapted and continuous.

Furthermore, since W5 ~ N (0, s), it follows that W =
\/8Z, where Z is a standard normal random variable, and
therefore

EW4=E [(\/EZ)“] =2 E[Z2Y =3+,  (3.138)

where we used the fact that the fourth moment of the
standard normal distribution is 3, i.e., E[Z*] = 3. From
(3.138), it follows that

t t
/ E[W(]ds = / 3sds = t% < 0. (3.139)
0 0
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In other words, W2 is square integrable in [0, t].

We can therefore apply both Theorems 3.1 and 3.2 with
fs =W?2? and g; = W2.
From (3.136) for fs = W2, we find that

E[X]|=E [/Ot Wdes] =0. (3.140)

From (3.137) for fs = gs = W2, and using (3.139), it

follows that
t 2 t
( / Wdes> = / E[W:]ds
0 0

Since E[X] = 0, see (3.140), we find that

E[X?

var(X) = E[X?) - (E[X])*=¢*. O

Question 17. If W, is a Wiener process, find the variance
of

2

1 w
= / VieE dW,.
0

Answer: We will use Theorems 3.1 and 3.2 to solve this
problem To do so, we first check that the integrand

\/ie_sL is progressively measurable and square integrable
in [0,1].
W2
The process \/z_te—sL is progressively measurable be-
cause it is adapted and continuous.
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Furthermore, since Wy ~ N(0,t), the probability den-
2
z_

sity function of W; is \/%e— 2t , and therefore

wi 1
FE le 4 =
[ } N2 s

)
- v
2

Nlﬂw

€
2

gt
e 4

83

tdr
2
30)= 4y
-t 2
2t dz

e(l_

83

1

m/_of

1 2t
— “2 c— 3.141
2t i you ( )
2

= et (3.142)

where, for (3.141), we used the 1dent1ty

i e

for any positive constant A > 0. From (3.142), it follows
that
1 w2
/ tE |:6_4L:| dt
0

Al E [tev‘f} dt
= Q\f (t+9vZ=D):
= (8—5\/2'). (3.143)

}2gte

j

F

Thus, fo E [te E: ] dt < oo, and we conclude that both

Theorems 3.1 and 3.2 can be applied here.
From (3.136), it follows that

EX|=E [ /0 ; \/Eezsdet} =0. (3.144)



3.6. PROBABILITY. STOCHASTIC CALCULUS 147

From (3.137), and using (3.143), we obtain that
b G AT 2
([t o)
0
i A2
/ E ( te—a‘“> }dt
0
1 =5
/ E [te_‘lL] dt
0

%(8 — 5v/2). (3.145)

E[X?

E

Il

From (3.144) and (3.145), we conclude that

var(X) = B[X?] - (B[X])? = g (3-5v2). O

Question 18. If W; is a Wiener process, what is E ["*]?

Answer:
Solution 1: If W is a Wiener process and Y = e™*, then

In(Y) = W = V1Z, (3.146)

where Z is the standard normal random variable, and
therefore Y is a lognormal random variable. Recall that
the expected value of a lognormal random variable given
by In(V) =p+oZis

-NIQM

BV =% (3.147)

From (3.146), and using (3.147) with 4 = 0 and o = Vi,
we conclude that
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Solution 2: Since Wy = \/tZ, it follows that

Wi I Vil S 1 i —%3
E[e ] = E[e ]————m/_ooe e dx
fo o} 2
Vie— -
e e 7 dx. 3.148
\ 2 /_oo ( )

By completing the square, we find that

i

and therefore
2 2
ol N B s (3.149)

From (3.148) and (3.149), it follows that

2
P 00 SRR )’ e
[6 } € \/—2—; €

) 1

= e2 6'2 d 3.150

’_27r e y ( )
t

= e3, (3.151)

where we used the substitution y = & — v/t for (3.150),
and, for (3.151), we used the fact that

2
_..Ldy e 1’

=/

2
since %e'ﬁf is the probability density function of the
standard normal distribution. [

Question 19. If W; is a Wiener process, find the variance

of ;
/ s dWs.
0
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Answer: Recall that, for any deterministic square inte-
grable function f : [a,b] — R, the stochastic integral
fab f(s)dWs is normally distributed with mean 0 and vari-
ance equal to the square of the L? norm of i cties,

/abf(s)dWs ~ N (0, /ab f2(s)ds> !
Then,

t i t3
/ sdW, ~ N(O,/ s"’ds) = N(O,—),
0 0 3

and we conclude that
t 3
var (/ de3> =—. O
o 3

Question 20. Let W; be a Wiener process, and let
t
Npl= / Wrdr. (3.152)
0

What is the distribution of X:? Is X; a martingale?

Answer: A solution to this question was given in Chap-
ter 1 using integration by parts; we include a different
solution here.

Note that X; is not a martingale because, if we rewrite
(3.152) in differential form as

dXe = "Wadt = Wtdt+0th,

we can think of X; as being a diffusion process with only
the drift part Ws.

Recall that the integral of a one-parameter family of
Gaussian random variables remains Gaussian. Since W,
is a Gaussian family, X; is normally distributed. Further-
more,

E[X)] = /0  B[Wyjdr =o.
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Therefore,
var(X;) = E[X7] - (E[X:))® = ElX¢].  (3.153)

Note that

t 2 t pt
X2 = < / Wsds) = / / WWadsdu, (3.154)
0 0 0

and recall that
E[W,W,] = min{s,u}, Vs,u>0; (3.155)

see (3.125).
From (3.153-3.155), we obtain that

var(Xy) = EBIXJ] = /0 ; /0 tE[WsWu]dsdu

/Ot /Ot min{s, u}dsdu
/Ot </Ousds—+—/:uds) du
/Ot (%—2+u(t—u)) du

Il
| 6 o] 6 S

We conclude that X; is normally distributed with mean
3
0 and variance %, i.e.,

tB
X e N(O,g). i)
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Question 21. What is an It6 process?

Answer: An It6 process is a generic term referring to
a stochastic process X; determined by the solution of a
stochastic differential equation (SDE) of the form

dXt = a(Xt,t)dt + b(Xt,t)th, (3156)

where W, is a Wiener process. The coefficient a(z,t) of
the dt term is the drift of Xy; the coefficient b(z,t) of
the dW; term is the diffusion of X;. The SDE (3.156) is,
by definition, the shorthand notation for the stochastic
integral equation

t

Xt =X0+/
0

t
a(Xs, s) ds+/ b(Xs,s) dWs.
0

We note that a sufficient condition for the existence
and uniqueness of the (strong) solution to an SDE is for
the drift and the diffusion coefficients a(z, t) and b(z,t) to
be locally Lipschitz functions of at most linear growth in
o

Question 22. What is Itd’s lemma?

Answer: 1t6’s lemma, also known as It6’s formula, states
that, if X; is an It0 process satisfying the SDE

ng = a(Xt,t)dt + b(Xt,t)th,

then for any function f(z,t) with continuous second order
partial derivative in z and continuous first order partial
derivative in ¢, the process f(X¢,t) is also an It6 process,
driven by the same Wiener process Wy, and the drift and
diffusion parts of f(X¢,t) are determined according to the
Taylor expansion of f(z,t) to first order for the ¢ part and
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up to second order for the z part:

162
TS g’; A gi ¥, + e
- g{ P gi [a(Xt,t)dt + b(Xs,t)dWi]
%g—’:— [a( X+, t)dt + b(Xe, t)dWs]?
- af f L PXet) 8f
N (Xt,t) 92 Ox2 dt
+b(Xt,t)Qf— .. (3.157)

Oz
Note that for (3.157) we used the fact that

(dX)? = [a(Xe,t)dt + b(Xe, t)dWy]?
b?(Xe, t)dt

since (dW;)? = dt (see Problem 3.6 in this section), (e =
0, and dW;dt=0. 0O

Question 23. If W; is a Wiener process, is the process
X: = W# a martingale?

Answer: Recall that a stochastic process M; defined in a
filtered probability space (2, F:, P) is a martingale if and
only if

(i) M, is adapted, i.e., M; is F-measurable for all ¢;

(ii) M is integrable for all ¢, i.e., E[M;] < oo for all t;
(iii) E[|M:||Fs] = M, almost surely for all s < t.

We check whether the process X satisfies the condi-
tions (i), (ii), and (iii) above.

Since any continuous function of the Wiener process
W; is adapted, the process X: is adapted, and therefore
condition (i) is satisfied.

Also, E[X;] = E[W{] = t < oo, since W; is a normal
random variable of mean 0 and variance t, and therefore
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E[W{] = var[W;] = t. Thus, the random variable X; is
integrable for every ¢, and X; satisfies condition (ii).

To check whether X; satisfies condition (iii), note that,
for every s < t,

E[X4|F.) = E[W|F.)
E [(Wy — Wy + W,)2|F]
= B [(W:— W,)%|F,] + 2E [(Wy — We)W,|F,]
+ E [W2|F.]. (3.158)

Since the Wiener process W; has independent increments,
i.e, Wiy — W; is independent of F;, and stationary incre-
ment, ie., Wy — W, ~ Wi_s. Moreover, Wy — W is a
normal random variable of mean 0 and variance t — s, i.e.,
E[W;_s] = 0 and var(Wi—;) = E[Wtz_s] =t —s. Then,

E[(W:—W,)?|F] = EWZ,] = t—s, (3.159)

and
E [(Wt e WS)WSI.FS] = W,E [Wt T Ws|-7'—s}
= W,E[W:i_s]
= 0. (3.160)

Since W is Fs-measurable, it follows that
E[W2|F,) = W2. (3.161)
From (3.158-3.161), we find that
E[X:|F.]
E [(We — W,)?|Fs] + 2E [(Wy — W)W, | Fs]
+ E[W2|F.]
b a LW,

Thus,
E[X|Fs) = t— s+ W2t W= X,,
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and therefore the process X; does not satisfy condition
(iii).

We conclude that X; is not a martingale. [

Question 24. If W; is a Wiener process, is the process
Ny = W - 3tW,
a martingale?

Answer:

Solution 1: A stochastic process M; defined in a filtered
probability space (2, Fs, P) is called a martingale if and
only if

(i) M, is adapted, i.e., M; is Fi-measurable for all t;

(ii) M, is integrable for all ¢, i.e., E[|M|] < oo for all ¢;
(iii) E[M¢|Fs] = M, almost surely for all s < ¢.

We check whether the process N; satisfies the condi-
tions (i), (ii), and (iii) above.

Since any continuous function of the Wiener process
W is adapted, the process N; is adapted, and therefore
condition (i) is satisfied.

Also,

E[N;] = E[W2] - 3tE[W:] = 0 < oo,
since W; ~ N(0,t), therefore E[W;] = E[W?] = 0. Thus,
the random variable N; is integrable for every ¢, and N,
satisfies condition (ii).
To check whether N satisfies condition (iii), note that,
for every s < t,

E [N¢|F
= E[W; - 3tW:|F,
= E[(Wi— W, + W,)?|F,] — 3tE [W:|F]
= E[(W: — W,)°|F,] + 3E [(Wy — W,)* W, | F]
+ 3E [(We - W)WEIF,] + E[WS|F)]
— BLE[Wi|F,].
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Recall that the Wiener process W; has independent
increments, i.e, Wy — W, is independent of F,, and sta-
tionary increment, i.e., Wy — Wy ~ W;_s, and the fact
that W is Fs-measurable. Then,

E[W:-W.)*|F] = E[W.,]
= 0; (3.162)
E[(Wi — W,)°W,|Fs] = W, E[WZ,]
= (t—s)Ws (3.163)
E (Wi — W)W2|F,] = W2 E[W;_,]
= 0 (3.164)
E[wW\F,] = Wi, (3.165)

since Wi_s ~ N(0,¢ — s), and therefore
E[We-o] = E[Wi_,] = 0;
EW?_,] = var[Wi—,] = t — s.
Moreover, since W; is a martingale, it follows that
EWi|F,] = W,. (3.166)
From (3.162-3.166), we find that
E [N¢|F]
= E[(We—W,)®|Fs] +3E [(Wi — Wa)* W, | Fo]
+ 3E[(We - W)W2|F,] + E[W23|F]
— 3tE [Wi|Fo
= 0+43(t—s)W, +0+ W2 —3tW,
= W2 -3sW,
=10V

Thus, the process N; satisfies condition (iii), and we con-
clude that N; is a martingale.
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Solution 2: By applying Ito’s formula to N¢, we obtain
that

dNy

d(W2 — 3tWy)
3WZdW; + -;- C6Wedt — 3(Widt + tdWy)
3(WE — t)dW,.

The process N; has zero drift and can be written as a
stochastic integral as

t
Ny =/ 3(W?2 — 5)dWs.
0

Moreover,
t

B (372 - 5))*] ds

9 Uot (B[WS] — 2sE[W?2] + s°) ds]

t
9 [ / (3s% — 25% + %) ds] (3.167)
0
= 6t°< 00;

for (3.167), we used the fact that W, = /sZ, where Z is
a standard normal random variable, and therefore

E[(\/EZ)Z] = sE[Z?] = s
E[(\/EZ)4] ="PEZY = 3

E[W;]

E[W,]

Therefore, the process 3(W2 — s) is square integrable
for s € [0,¢], and, from Theorem 3.1, we conclude that N;
is a martingale.

Question 25. What is Girsanov’s theorem?
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Answer: Girsanov’s theorem is providing a way to change
the drift of a Wiener process by defining a new probability
measure via a Radon-Nikodym derivative. More precisely,
let (Q,F:,P), for 0 < t < T, be a filtered probability
space, and let Wy be a Wiener process in the probability
measure P. Let h; be a progressively measurable stochas-
tic process such that the stochastic exponential

t t
Ei(h) = exp (/ hsdWs —%/ hfds)
0 0

is a martingale in the probability measure P. Define a
new probability measure P over 2 given by the Radon-
Nikodym derivative as follows:

dP a B g
Ip = XP (/0 htdW; — -2—/0 h; dt> ; (3.168)

Then, W; is a Wiener process with drift A under the new
probability measure P. Equivalently, if we define W by
Wi = Wi — hy, then W; is a Wiener process in the P-
measure. More generally, if X; is the diffusion process
satisfying the SDE

dXt = a(Xt, t)th =+ b(Xt, t)dt

under the probability measure P, then under the probabil-
ity measure P defined in (3.168), X; satisfies the following
SDE

dX;

a(Xt, t)th + b(Xt, t)dt
a(Xy,t) (th i htdt) + (X, t)dt

a( X, t)dWs + (b(Xe, 1) + hea(Xe, t)) dt.

In other words, in the P-measure, X; has drift part b and
diffusion part a; whereas in the P-measure, the diffusion
part stays the same while the drift part becomes b + ha.
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In particular, if we choose h to be —%, then X: becomes
driftless in the P-measure provided that the stochastic
exponential & (k) is a martingale.

We note that the martingality'? of the stochastic expo-
nential & (h) guarantees that the new measure P defined
in (3.168) is a probability measure, i.e., fn dP = 1, since

~ dP
/ndP QgﬁdP
dP
dP
= Elér(h)]
= &(h)
= Sk B

=

Question 26. What is the martingale representation the-
orem, and how is it related to option pricing and hedging?

Answer: Let W: be a Wiener process defined on the fil-
tered probability space (Q, F¢, P), where the filtration {F:}
is generated by the Wiener process Wr. Let M; be a mar-
tingale with respect to {F:} such that M; is square inte-
grable for every t, i.e., E[M?] < oo, for all . The mar-
tingale representation theorem asserts that, for any such
a martingale Mz, there exists an F;-adapted square inte-
grable process 6; such that M; has the stochastic integral
representation

t
M, = E[Mo] + / 0,dW,
0

almost surely. Note that such martingales have to be con-
tinuous.

12 A sufficient condition which ensures the martingality of £¢(h)

i : S35 1 (T r2
is the Novikov’s condition E [ez Joi " d'] 200
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The relationship between the martingale representa-
tion theorem and option pricing and hedging is as follows.
For simplicity, assume that the risk free rate is zero. As-
sume that the price process S; of the underlying asset
follows the diffusion process determined by the SDE

dSt =0t Sg th

under risk neutral probability P, where the driving Wiener
process W; is defined on the filtered probability space
(Q, Fi, P) with the filtration {F;} is generated by W.
Consider a derivative whose payoff function (possibly path
dependent) is @7 at maturity 7. The Fundamental The-
orem of Asset Pricing asserts that, because the risk free
rate is assumed zero, the value process V; of the derivative
security is a martingale under risk neutral probability. In
fact,
Vi = Elpr|Fi).

Moreover, if the payoff function ¢ is square integrable,
i.e., E[p7] < 0o, then V; is a square integrable martingale.
Therefore, by applying the martingale representation the-
orem, we find that there exists a Fi-adapted process 6
such that

Il

T
s Ve = BIVikE / 6,dW,
0

E[V]+/T a8
0 ik t-

Note that the quantity — —i—— indicates the amount of shares
to hold in order to dynamlcally hedge the position of the
derivative with payoff function ¢7 at maturity 7'. In par-
ticular, if o7 is the payoff of a call option, then —‘— cor-
responds to the delta of the call. [

Question 27. Solve
dYy = YidWs, (3.169)
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where W; is a Wiener process.

Answer:
Solution 1: Note that (3.169) is a particular case for u = 0
and ¢ = 1 of the stochastic differential equation

dSs = /LStdt + oSidWs, (3170)

which is the model for the evolution of an asset in the
Black-Scholes framework. The solution of (3.170) has the
distribution

2
8 = S ((u o ‘%) t +m/ZZ) ; (3.171)

with ¢ > 0, where Z is the standard normal variable. For
p=0and o =1 in (3.171), we obtain that the solution
to (3.169) is

Y = Yoexp (—% & \/ZZ) . (3.172)

Solution 2: From Itd’s lemma it follows that, if Y; is a
stochastic process satisfying dY; = YidW; and f(y) is a
function with continuous second order derivative, then
1
d(f(Y) = 5f"(V)¥idt + f'(V)YedWe.  (3.173)
For f(y) = In(y), we obtain from (3.173) that
1
din(¥3)) = - §dt + dW;. (3.174)
By integrating (3.174) between 0 and t, we find that
t
In(Y:) —In(Yo) = - ‘2‘+Wt_WO = —%-i—Wt,

since Wy = 0, and therefore

o Ve (—%+Wt).
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Since W; is a Wiener process, W; is a normal random vari-
able of mean 0 and variance t, i.e., Wi = \/tZ, where Z is
the standard normal variable. Thus, Y; has the distribu-
tion

Y: = Yo exp <—% +\/ZZ) ;
which is the same as (3.172). [
Question 28. Solve the following SDEs:

(i) dY: = pYidt + oYedWy;

(i) dX; = pdt+ (aX¢+ b)dWs.

Answer:
(i) Recall from It&’s formula that, if Y; satisfies the SDE

dY; = pYsdt + oYsdWs,

and if f(y) is a function with continuous second order
derivative, then

df (Yz)

F(YdY: + 51" (F)oYVid

2
pmﬂm+%ﬁﬂm>w
+ oYif' (Ya)dWs. (3.175)

For f(y) = In(y), we obtain from (3.175) that
din(Y:) = (u = —) dt + odWs. (3.176)
By integrating (3.176) from 0 to t, we obtain that

In(Y;) — In(Yo) = <[J, - —2—2) t +oWs, (3170
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and by solving (3.177) for Y;, we conclude that

2
u—l—)t+o’Wt
Y — Yoe( 2 :

(ii) We look for a solution of
adX; = [l,dt 4+ (aXt + b)th (3178)

of the form
X = Uy, (3.179)

where the process U; is defined by the solution to the SDE
dU, = aU,dWs, with Up = 1, (3.180)

and the process V; is the solution to the SDE
dVy = oudt + BedWe, with Vo = Xo, (3.181)

where the coefficients a; and 3; are to be determined.
Recall from (i) that the solution to

dY; = pYidt + oYsdWe

is
2
(u.— 95—) t+oWi

Y, =Yoe (3.182)

By letting 4 = 0 and o = a in (3.182), we find that the
solution to (3.180) is

2
AR e (3.183)
Note that
dU:dV: = (aUpdW) (aedt + BedWe)

a,@tUtdt, (3184)
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since (dW;)? = dt and dW;dt = 0 (because this term has
order (dt)*?). By applying Ité’s product rule to X, =
UtV; and using (3.184), we obtain that
dX: = d{UV) = UdVi + VidU, + dU: dV4
= Ut(atdt + ﬁtth) + Vt(aUtth)
+ aﬂtUtdt
= (aB: + ar)Uidt + (aUV; + B:Us)dWe
= (aﬂt + at)Utdt -+ (aXt + ﬂtUt)th(3].85)
Then, X; = UV, is a solution to (3.178) if and only if
the coefficients of the dW; terms and of the dt terms in
(3.178) and (3.185) are equal.
From the dW; terms, we obtain that
aX:+b=aX; + B:U:
el = b

2
= B =bU;' =be ™t Tt (3.186)
From the dt terms, we obtain that

(aBt + a)Us = p

<< afit+oar= [,LUt—l
= o=pU" —af
T — ue_“wt“u?ﬁt - abe'aw"*g‘?zt
2
= ar=(u—ab)e Wt Tt (3.187)

Note that the solution V; to (3.181) is given by

t t
St o / ditlos / BodWs. (3.188)
0 0

From (3.179), (3.183), and (3.188), we find that the
solution X; to (3.178) is

2 t &
xi = et (xos [fatar [(Buaw.),
0 0
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and, using (3.186) and (3.187), we obtain that
W, gfzt ¥ —aW., +2_2.
Np e ha {Xo+/ (u—ab)e *"*" T %ds
0

t Xl
o / be_W“LTdes}
0
XO eaWt_g'git

t 2
+ (,u—ab)/ - Walo iy Cotlils
0

o b/tea(Wt—Ws)-ﬂ';(t—s)dWs_ O
0

Question 29. What is the Heston model?

Answer: In Heston’s stochastic volatility model, it is as-
sumed that the price of the underlying asset satisfies the
same SDE as in the lognormal model, i.e.,

dS: = pSedt + +/v:S:dWr,

whereas the instantaneous variance v; itself follows a mean
reverting CIR (Cox-Ingersoll-Ross) process

dve = )\(vt—m)dt + n\/U_tdZt,

where A > 0 and m > 0 are positive constants. The
driving Wiener processes W; and Z; are correlated with
constant correlation p, i.e.,

corr(dWy,dZy) = pdt.

The Heston model is a benchmark, and is commonly used
in derivative pricing because it has following features:

e it takes into account the leverage effect, namely, the
driving Wiener processes W; and Z; are correlated;
empirically, the correlation p is negative and that is
why the word ”leverage”;
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e it has a quasi closed form (up to an inverse Fourier
transform) solution for the prices of European op-
tions, which make the calibration more tractable;

e the variance process is mean reverting with rate of
reversion A and long term mean m.

Note that, if the parameters of the volatility process
are in the regime 2Am < 7%, then zero is an attainable
boundary for the volatility process. Practitioners usually
assume that the boundary behavior at zero is either ab-
sorption, i.e., the process is stuck at zero once it hits zero,
or reflection, i.e, the process bounces back right after it
hits zero. On the other hand, the other boundary infinity
is an unattainable boundary. [
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3.7 Brainteasers.

Question 1. A flea is going between two points which
are 100 inches apart by jumping (always in the same direc-
tion) either one inch or two inches at a time. How many
different paths can the flea travel by?

Answer: Let a, denote the number of different paths of
the flea that covers the distance of n inches, jumping either
one inch or two inches at a time. We want to find a100.

Since the flea can jump either one inch or two inches at
a time, it could have made the last jump either from the
end of the (n — 1)st inch or from the end of the (n —2)nd
inch. Hence, the total number of ways the flea can cover
the distance of n inches, jumping either one inch or two
inches at a time, is the sum of the number of ways the flea
can cover the distance of n — 1 inches, jumping either one
inch or two inches at a time, and the number of ways the
flea can cover the distance of n — 2 inches, jumping either
one inch or two inches at a time.

In other words, for n > 2, we have

Gn = AGn-1 + An-2. (3189)
Note that a1 = 1, since the flea can cover 1 inch in only
one way, jumping one inch once; while az = 2, since the
flea can cover 2 inches in two ways, either jumping one
inch twice, or jumping two inches once.
Note that (3.189) is the recurrence relation for the Fi-
bonacci sequence. Let

1+2\/5 and ¢2 = 1 —2\/5

be the roots of the characteristic equation o —p=1=0
corresponding to (3.189).
Then,

o1 =

Qn = Ol¢?+cz¢gv Vnzl,
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where the constants C; and C5 are such that a; = 1 and
ao=2.
By solving the linear system

Cip1+Capp = 1
Ci1¢i + Cag3 = 2,
we obtain that
i = Sl = 4
2v5 V5
o L

e g
and therefore

1 n+1 o n+1

an:%(l 2)~

Plugging n = 100 into the last expression gives the
answer. [

Question 2. I have a bag containing three pancakes:
one golden on both sides, one burnt on both sides, and
one golden on one side and burnt on the other. You shake
the bag, draw a pancake at random, look at one side, and
notice that it is golden. What is the probability that the
other side is golden?

Answer:
Solution 1: Label the pancakes 0, 1, and 2, according to
the number of burnt sides. Let E;, i = 0, 1, 2, denote the
event that the pancake with ¢ burnt sides is drawn from
the bag. Let A denote the event that the side (of the
randomly drawn pancake) we look at is golden.

The probability of the pancake drawn from the bag
having no burnt sides given that one side is golden is
P(Ey|A). Then, from the Bayes'formula, we obtain that
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PLE N4
P(A)
P(Eo)P(A|Eo)
T P(A|Ey)P(E1) + P(A|E2)P(E>)

P(Eo|A) =

—

P(A|Eo)P(Eo

NI jeo|=
W] =

¥0-

=
|-

—

Wi =

Solution 2: Out of the six possible sides that we could
have seen, three are golden. Out of these, two belong to
a pancake that is golden on both sides. Therefore, the
probability of the other side being golden is 3 O

Question 3. Alice and Bob are playing heads and tails,
Alice tosses n + 1 coins, Bob tosses n coins. The coins are
fair. What is the probability that Alice will have strictly
more heads than Bob?

Answer:
Solution 1: Alice flips the coin more often than Bob, so
either she must end up with more heads or with more tails
than Bob. She cannot, however, end up with more heads
and more tails, because she only flips one more coin than
Bob. We deduce that either Alice gets more heads or she
gets more tails.

Since these events are equally likely, they both have
probablhty , and therefore the probability that Alice will
have strlctly more heads than Bob is 3

Solution 2: Suppose that Alice and Bob begin by flipping
n coins each. Let p be the probability that Alice gets
more heads than Bob, and let g be the probability that
both Alice and Bob get an equal number of heads. Note
that 2p + ¢ = 1 since the probability that Alice gets more
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heads than Bob is, by symmetry, equal to the probability
that Bob gets more heads than Alice.

Alice then flips the (n + 1)st coin. For Alice to have
more heads, she either had more heads than Bob before
flipping the last coin; or the same number of heads as Bob
before flipping the last coin and her (n + 1)st flip must
come up heads. Hence, the probability of Alice winning
is p+ 3q.

Since 2p+g¢ =1, thenp+3g=3. O

Question 4. Alice is in a restaurant trying to decide
between three desserts. How can she choose one of three
desserts with equal probability with the help of a fair coin?
What if the coin is biased and the bias is unknown?

Answer:

Solution 1: Denote the desserts by A, B, and C. First,
suppose the coin is fair. Denote heads by H and tails by
T. The procedure to choose one of three desserts with
equal probability is as follows: toss the coin twice; let
the outcomes TH, HT, and TT correspond to choosing
desserts A, B, and C, respectively; if the outcome is HH,
repeat the procedure.

Note that the probability of our procedure not being
repeated is p = %; hence, the number of times our proce-
dure is repeated is a geometric random variable with p as
its parameter. The expected number of times our proce-
dure is repeated is % — %. Since each procedure involves
two coin tosses, the expected number of coin tosses before
Alice chooses one of three desserts with equal probability
is %.

Now, suppose the coin is biased. One procedure to
choose one of three desserts with equal probability would
be as follows: toss the coin four times; denote by THHT,
HTTH, and THTH the outcomes corresponding to choos-
ing desserts A, B, and C, respectively; all the other 4-toss
outcomes result in repeating the procedure.
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Solution 2: An alternative procedure is as follows: toss
the coin three times; denote by HT'T, THT, and HTT
the outcomes corresponding to choosing desserts A, B,
and C, respectively; all the other 3-toss outcomes result
in repeating the procedure.

Using an argument similar to the case with a fair coin,
one finds that the expected number of tosses of a coin
with an unknown bias, before Alice chooses one of three
desserts with equal probability, is % and 8, respectively,
for the two procedures described above. [

Question 5. What is the expected number of times you
must flip a fair coin until it lands on head? What if the
coin is biased and lands on head with probability p?

Answer: Denote by X be the number of times you must
flip a fair coin until it lands on head. If the first coin
toss is a head (which happens with probability %), then
X = 1. If the first coin toss is a tail (which also happens
with probability %), then the coin tossing process resets
and the number of steps before the coin lands on head
will be 1 plus the expected number of coin tosses until the
coin lands heads. In other words, the expected number of
coin toss E[X] satisfies the equation
1 1
E[X] = 3 T 3 (1+ E[X)). (3.190)

Solving (3.190) for E[X], we conclude that E[X] = 2, i.e.,
the expected number of times you must flip a fair coin
until it lands heads is 2.

On the other hand, if the coin is biased with the prob-
ability p of landing on head, the same argument still ap-
plies. However, in this case, (3.190) reads

E[X] = p + (1-p) (1+ E[X]).

Again, solve for E[X], we obtain E[X| = %. O
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Question 6. What is the expected number of coin tosses
of a fair coin in order to get two heads in a row? What if
the coin is biased with 25% probability of getting heads?

Answer: We solve the general case of a biased coin with
probability p of the coin toss resulting in heads. The out-
comes of the first two tosses are as follows:

o If the first toss is tails, which happens with probability
1 — p, then the process resets and the expected number of
tosses increases by 1.

e If the first toss is heads, and if the second toss is also
heads, which happens with probability p?, then two con-
secutive heads are obtained after two tosses.

e If the first toss is heads, and if the second toss is tails,
which happens with probability p(1— p), then the process
resets and the expected number of tosses increases by 2.

If E[X] denotes the expected number of tosses in order
to get two heads in a row, we conclude that

E[X] = (1-p)(1+ E[X]) + 20" + p(1 - p)(2 + E[X]).
By solving for E[X], we obtain that

1+p
P2

For an unbiased coin, i.e., for p = %, we find from
(3.191) that E[X] = 6, i.e., the expected number of coin
tosses to obtain two heads in a row is 6.

For a biased coin with 25% probability of getting heads,
ie., for p= %, we find from (3.191) that E[X] = 20, i.e.,
the expected number of coin tosses to obtain two heads in
a row in this case is 20. O

E[X] =

; (3.191)

Question 7. A fair coin is tossed n times. What is the
probability that no two consecutive heads appear?

Answer: The total number of sequences of heads and tails
of length n is 2". Let a, be the number of sequences of
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heads and tails of length n, such that no two consecutive
heads appear. Then, the probability that no two consec-
utive heads appear is 2.

Note that a; = 2 (H and T do not contain two consec-
utive heads) and a2 = 3 (out of HH, HT, TH, and TT,
only HH contains two consecutive heads). We find the
closed formula for a,, by deriving a recurrence relation as
follows:

A sequence of n > 3 coin tosses does not contain two
consecutive heads if and only if: (i) either it begins with a
tail, followed by a sequence of n—1 coin tosses with no two
consecutive heads; (ii) or it begins with a head, followed
by a tail, and followed by a sequence of n — 2 coin tosses
with no two consecutive heads. Since these two scenarios
are mutually exclusive, it follows that

Gn = Gn-1+0n_2, Vn>3. (3.192)

Note that (3.192) is the recurrence relation for the Fi-
bonacci sequence. Let ¢; = 1%@ and ¢ = l%@ be
the roots of the characteristic equation 2> —z — 1 = 0
corresponding to (3.192). Then,

an = Ci1¢7 +C2¢y, Vn>1,
where the constants C; and C, are such that a; = 2 and

az=3i
By solving the linear system

Ci¢g1+Capp = 2
Cig?+ Ca¢3 = 3,
we obtain that
G = Bet R = ¢—%
2v5 V5’
i 2
Cz = 3 \/5 i~ — ¢2

;.
5
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We conclude that

1
an = —= (¢7%% - ¢g+2),

7

and therefore the probability that no two consecutive heads
appear in n tosses of a fair coin, which is equal to B2, 1S
1

2n4/5

(¢'£L+2_ ;z+2)' O

Question 8. You have two identical Fabergé eggs, either
of which would break if dropped from the top of a building
with 100 floors. Your task is to determine the highest floor
from which the an egg could be dropped without breaking.
What is the minimum number of drops required to achieve
this? You are allowed to break both eggs in the process.

Answer: Consider the following more general problem:

Find the largest number of floors he(n) a building could
have in order to be able to determine the highest floor from
which the an egg could be dropped without breaking using
e eggs and n drops.

Since one drop can only determine one floor, it follows
that
he(1) = 1. (3.193)

If we have only one egg at our disposal, the only pos-
sible strategy is to try the floors one by one from bottom
to top; hence,

hi(n) =n.

When e > 2 and n > 2, the first drop cannot be from
the floor higher than h._1(n — 1) + 1, since if the egg
breaks, there are only e — 1 eggs and n — 1 drops left,
and the highest floor we can still handle is he—1(n — 1).
If the first drop does not break an egg, we can treat floor
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he—1(n — 1) + 2 as the new floor 1, and reduce it to a
problem with e eggs and n — 1 drops, and therefore

he(n) = 1+ he—1(n—1) + he(n—1).
Iterating this argument, we obtain that

he(n)
T e
= 2+he_1(n—1)+he_1(n—2)+he(n—2)

= (n-1) +Zhe 1(5) + he(1)
= n+Zhe_1(j),

since he(1) = 1; see (3.193).

For e = 2, the formula above becomes

ha(n)
= n+2h( = s (n—l)
1(g n+ZJ Nk T
£) n_("+_)
= ) ; (3.194)

where the next-to-last step follows from the summation

formula E?=1 = kktD)
Since h2(13) = 91 < 100 < 105 = ho(14), the required
number of drops is 14.

Note that our iterative argument also provides an al-
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gorithm: you drop the first egg from the floors

14 1+ hy(13),
27 = 24 hi(13) + h1(12),

13
39 = 3+ m(),

j=11

13
50 = 4+ h(j),

j=10

13
60 = 5+3 hij),
i=9

13
69 = 6+ hi(y),
j=8
13
o= T+ ),
J=7
13
84 = 8+ m(),
=6

13
90 = 9+ h(),
j=5

13

9% = 10+ h(j),
=4
13

99 = 11+ h(j),
j=3

and 100; that is, move up by 14 = 1 + h4(13) floors, then
by 13 = 1+ h1(12) floors, then by 12 = 1 + hy(11) floors,
and so on, until the first egg breaks (or does not) from
the 100th floor. Calling the floor from which the first egg
breaks f and the previously tested floor f’, you drop the
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second egg from the intervening floors f'+1, f'+2,..., f—
1 in that order. [

Question 9. An ant is in the corner of a 10 x 10 x 10
room and wants to go to the opposite corner. What is the
length of the shortest path the ant can take?

Answer: For clarity, assume that the ant is in a corner
by the ceiling. Denote that corner by A, and denote by
B the opposite corner to A, which is by the floor. The
shortest path from A to B would require the ant to go on
a straight line across a wall of the room to a side of the
floor and from there on a straight line along the floor to
the B. If you imagine laying down to the floor the vertical
wall the ant went down from A to the floor, you have a
10 x 20 rectangle with A and B opposite corners in the
rectangle. The shortest path for the ant to go from A to
B is by following the diagonal of the rectangle, which has
length 10v/5 ~ 22.36. O

Question 10. A 10 x 10 x 10 cube is made of 1,000 unit
cubes. How many unit cubes can you see on the outside?

Answer: If all the outside unit cubes are removed, what
remains is an 8 X 8 x 8 cube, which is made of 8 = 512
unit cubes. Thus, there are 1000 — 512 = 488 outside unit
cubes. [

Question 11. Fox Mulder is imprisoned by aliens in a
large circular field surrounded by a fence. Outside the
fence is a vicious alien that can run four times as fast
as Mulder, but is constrained to stay near the fence. If
Mulder can contrive to get to an unguarded point on the
fence, he can quickly scale the fence and escape. Can he
get to a point on the fence ahead of the alien?

Answer: Let R denote the radius of the circular field,
whose center we denote by C. Denote Mulder’s speed by
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v. The alien’s speed is then 4v. Denote Mulder’s and
alien’s positions by M and A, respectively.

Mulder cannot just run for the fence along the straight
line connecting C with the point on the fence diametrically
opposite to A. Indeed, while it takes Mulder % time to
cover the distance R, the alien would cover the distance
mR i 1n tlme and the alien would catch up with Mulder,
since £ > 4v

To optlmlze this strategy, Mulder needs to start run-
ning for the fence from a point that is closer to the fence
than C. Assume that Mulder somehow managed to be at
a point M that is zR away from C (where 0 < z < 1),
with M, C, and A collinear, and C between M and A. De-
note by P the point on the circle diametrically opposite to
A; see Figure 3.2. Then, MC = zR and MP = (1-z)R.
It takes Mulder Sl_—fﬁ time to reach the fence running

R

from M to P, while the alien needs Z:* time to reach the

point P going from A to P on a semicircle. Note that

(bea KR E
= < T if i vl i
Thus, if x > 1 — Z, Mulder would be able to escape the

alien.

We are now ready to describe Mulder’s escape strat-
egy. He sets z =1-— 7 +0.01. Note that z < 4, since
0.01 < == Regardless of the alien’s movement, Mulder
first runs from C to any point on the circle of radius zR,
centered at C. Then he runs around that circle, until his
position M is such that M, C, and A are collinear, with
C between M and A. He is able to do so, since z < -
and the alien’s speed is only 4 times his speed.*® Fmally,

3 Mulder is able to do so since, if ¢ < 4, his angular speed,
-2 is larger than the angular speed %% of the alien:
v 46v 1

—. = = >
7rRz>7rR 4>:c
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Figure 3.2: Mulder can reach P from M before the alien
can do so from A.

Mulder runs from M to P and will reach P before alien
does, as shown above, since z >1—-%. [0

Question 12. At your subway station, you notice that
of the two trains running in opposite directions which are
supposed to arrive with the same frequency, the train go-
ing in one direction comes first 80% of the time, while the
train going in the opposite direction comes first only 20%
of the time. What do you think could be happening?

Answer: One thing that could be happening is that the
train that comes first 80% of the time comes in fact more
frequently than the other one. However, even if both
trains run with the same frequency, one train might come
first 80% of the time. For example, assuming that your ar-
rival in the station is uniformly distributed, if both trains
run every ten minutes, and train A comes into the station
at 1:00, 1:10, 1:20, ..., while train B comes at 1:12, 1:22,
1:32, ..., then train A will come first 80% of the time.
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a

Question 13. You start off with one amoeba. Every
minute, this amoeba can either die, do nothing, split into
two amoebas, or split into three amoebas; all these scenar-
ios being equally likely to happen. All further amoebas
behave the same way. What is the probability that the
amoebas eventually die off?

Answer:
Solution 1: (Due to Yu Gan, Baruch MFE’14.) Denote by
Aj the event that no amoebas are alive after k£ minutes.
Let px = P(Ax). Note that p1 = 7 and Ax C Ag4, for
all-k'>01,

The probability p that the amoebas eventually die off
is the probability that at some point in time, i.e., after n
minutes for some n, no amoebas are alive. In other words,

o p<[‘jA)

Note that | Jz_; Ax = An, since Ax C Ag41 for all & > 1.

Then,
oo n
P(UAk> = P<1im UAk)
k=1 it ol

n
= i (U Ak) = lim P(An)
n—oo Pt n—oo
= ilim s (3.195)

n—oc

i
Il

Given the four equally probable outcomes after the first
minute, i.e, the amoeba can die, remain one amoeba, split
into two amoebas, or split into three amoebas, it follows
that

1 1

1
Pn = 1 =+ an—l = Zpi—l * Zpi—u (3.196)
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for all n > 2.
The sequence (pn)n>0 is increasing. Recall that A, C
Apy1, and therefore

D PEA s Gl A G 0). = Drinss Vel

Also, we can see by induction that the sequence (pn)n>0
is bounded from above by v/2 — 1, since p1 = < v2-1,
and, if we assume that pp—1 < V2 — 1 for some n > 2,
then we obtain from (3.196) that

Pa = i+i(\/§—1)+i(\/§—l)2+i(\/§—l)3
= +2-1.

Thus, the sequence (pr)n>0 is bounded from above and
increasing, and therefore convergent.

Recall from (3.195) that limp—co pn = p, where p is
the probability that the amoebas eventually die off. Since
pn < V2 —1 for all n > 1, it follows that p < VoI R
Moreover, from (3.196), we find that

NG| 1.5

= 1 3
e JrarT Y

which can be written as
din o 2
0=p"+p —3p+1 = (p-1p" +2-1),

and has solutions 1, v/2 —1, and —v/2 — 1. Since 0 < p <
V2 — 1, we obtain that p = v/2 — 1.

In other words, the probability that the amoebas even-
tually die off is v/2 — 1.

Solution 2: Let p be the probability that the descendants
of a single amoeba will die out eventually. Then, the prob-
ability that the descendants of n amoebas will all die out
eventually is p", since each amoeba is independent of all
other amoebas.
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Furthermore, the probability that the descendants of
an amoeba will die out eventually is independent of time
when averaged over all the possibilities.

At the beginning, the probability that the descendants
of an amoeba will die out eventually is, by definition, p.
After one minute, the initial amoeba turns into 0, 1, 2, or
3 amoebas, with probability of % for each case. Thus, the
probability that the descendants of the amoeba die out is
now

1 1
@+ +p°+0%) = Z(1+p+0’ +9°).

4 4
These two probabilities must be equal, and therefore
1
p = Z(1+p+p2+p3), (3.197)

which is the same as
PP+p°—3p+1 = (p—1D®*+2p—1) = 0. (3.198)

The roots of (3.198) are p=1,p=—v2—1,and p =
V2 — 1. The only root in the interval (0,1) is p = V2 — 1,
and this is the probability that the amoebas eventually
die off.

A more subtle question is why p = 1 is not one of
the possible answers to the problem in hand? The right
hand side of (3.197) is the generating function h(p) of
amoeba’s branching process. It is a well-known theorem
on branching processes that if the mean number of off-
spring produced by a single amoeba is bigger than 1, then
the smallest positive root of the equation p = h(p) is the
probability that amoeba’s descendants will die out eventu-
ally. In our case, the mean number of offspring produced
by a single amoeba is  (0+1+2+3) = % >1,:80 the
theorem applies. [

Question 14. Given a set X with n elements, choose two
subsets A and B at random. What is the probability of
A being a subset of B?
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Answer: When two subsets A and B of X are chosen at
random, each element of X is equally likely to end up in
any of the following four sets:

A\B, B\ A, ANB, and X\ (AUB).

For A to be a subset of B, A\ B would have to be
empty; in other words, none of the n elements of X would
end up in A\ B. The probability of any element of X not
ending up in A\ B is 2.

We conclude that the probability of A being a subset

of B is
4

Question 15. Alice writes two distinct real numbers be-
tween 0 and 1 on two sheets of paper. Bob selects one of
the sheets randomly to inspect it. He then has to declare
whether the number he sees is the bigger or smaller of the
two.

Is there any way Bob can expect to be correct more
than half the times Alice plays this game with him?

Answer: Denote the numbers Alice writes on two sheets of
paper by a1 and a2, 0 < a1 < a2 < 1. Denote the number
Bob selects by A. Bob’s task is to guess (with probability
of being correct bigger than 1/2) whether A =a; or A =
az.

Bob’s strategy is as follows: after seeing A, Bob draws a
number B uniformly at random from (0, 1); if B is smaller
than A, Bob declares that A = a2; otherwise, he declares
that A = a;.

Denote by E the event that Bob is correct using this
strategy.
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Then,

P(E) = P(E|A=a1)-P(A=a1)
+ P(E|A=a2) - P(A=a)
= P(B>a)-P(A=a)
+ P(B<a2):P(A=a2)
= (1-a1)-0.54+a2-0.5
= 0.5+ 0.5(a2 — a1)
a0,

The probability that Bob is correct using this strategy
is therefore greater than % g

Question 16. How many digits does the number 125'%°

have? You are not allowed to use values of log,,2 or
log 5.

Answer: Note that

(3.199)

Jpuinnl_ (1000)‘00 100098
28 ~ 9300

Since 2'° = 1024, we obtain that

o6 1000*% - 1008°®
12577 = Tozam = T.024%0° @40)

We first show that

I« 10840 & 1 (3.201)

From the binomial expansion, it follows that

0 _ o= (30), o
(140029 = Y ; 0.0247. (3.202)

=0
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Note that the ratio of every two consecutive terms in
(3.202) is less than 0.72, since

(22 )0.0247+1 e

Jj+1 J+1
= -0.024
30
(%)0.0249 ]
30! 7! (30 — j5)!
= . -0.024
(j+1)' (30—j5—1)! 30! 4
w30
7 +
< 30-0.024
= 0.72.
Then,
30
( )0 024’ < 0.72 Vi< 7 <80; (3.203)
J

and, from (3.202) and (3.203), we obtain that

oo
(1+0024" e S o079« Yoogz

ik
1-0.72
10;

note that, for the equality on the second line above, we
used the geometric series identity

oo
sz = —— for z=0.72.

j=1

Thus, the inequality (3.201) is proved.
From (3.200) and (3.201), we obtain that

102!

< 3.204
1.02430

10209 = 125100
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and conclude that 125'°° has 210 digits. 0O

Question 17. For every subset of {1,2,3,..., 2013}, ar-
range the numbers in the increasing order and take the
sum with alternating signs. The resulting integer is called
the weight of the subset.’* Find the sum of the weights
of all the subsets of {1,2,3,...,2013}.

Answer: Let w (S) denote the weight of subset S. Every
subset S of {1,2,3,...,2013} that does not contain ele-
ment 1 can be uniquely paired with the subset {1} U S
that contains element 1. Since there are 22°*2 subsets of
{1,2,3,...,2013}, there are 22°'2 such pairs. Note that
w(S) + w({1}US) = 1; that is, the combined weight
of each pair is 1. For example,

w({2,58}) + w({1,258})
S PR g H e e
= 1

Hence, the sum of the weights of all the subsets of
{1.2,3, 7. 79018 s 2918 "y

Question 18. Alice and Bob alternately choose one num-
ber from one of the following nine numbers: 1/16, 1/8,
1/4, 1/2, 1, 2, 4, 8, 16, without replacement. Whoever
gets three numbers that multiply to one wins the game.
Alice starts first. What should her strategy be? Can she
always win?

Answer: First, notice that the numbers Alice and Bob
play with are powers of two, namely, 274, 272, 272 271,
0oL 92 i rnd. 2%, Next, imagine that Alice and Bob
are playing on the 3 x 3 square, whose entries are as fol-
lows: the first row (from left to right) is 23, 274, 2!; the

!4For example, the weight of the subset {3} is 3. The weight of
the subset {2,5,8} is 2 -5+ 8 = 5.
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second row is 272, 2°, 22; and the third row is et
0

The product of the entries in every row, every column,
and every diagonal is 1, and these possibilities cover all
the ways to choose three of the given numbers multiplying
to 1. Thus, Alice and Bob are essentially playing Tic-
Tac-Toe! It is well-known that best play by both players
in Tic-Tac-Toe leads to a draw. We conclude that Alice
does not have a winning strategy, although she cannot lose
either. [

Question 19. Mr. and Mrs. Jones invite four other cou-
ples over for a party. At the end of the party, Mr. Jones
asks everyone else how many people they shook hands
with, and finds that everyone gives a different answer. Of
course, no one shook hands with his or her spouse and
no one shook the same person’s hand twice. How many
people did Mrs. Jones shake hands with?

Answer: Since each person shook hands with at most eight
others, the nine different answers received by Mr. Jones
are exactly the numbers 0 through 8. Denote by P; the
person with 4 handshakes, i = 0,1,...,8. Mr. Jones is
not assigned any additional notation.

Ps shook hands with 8 people of the total of 9 other
people. Thus, Pg did not shake the hand of only one other
person, so that person must be his or her spouse. On the
other hand, Ps did not shake the hand of P, since nobody
did that. Therefore, Ps and Py are married, and Ps shook
everyone’s hand except for Py. P; did not shake the hands
of two people, one of whom was his/her spouse. One of
these two people had to be Py as he or she did not shake
anyone’s hand, and the other one had to be P; as he or she
had only one handshake, namely with Ps. Since spouses
do not shake hands, the spouse of P; is either P; or Pp.
However, Py is married to Ps, so P, must be married to
Py.
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Proceeding similarly, we find that Ps and P; must be
married, and that Ps and P; must be married. Then, Py
must be Mrs. Jones, since this is the only person whose
spouse was not identified, and Mr. Jones was not any one
Ofpo, wis ey Ps.

We conclude that Mrs. Jones shook hands with four
people. [

Question 20. The New York Yankees and the San Fran-
cisco Giants are playing in the World Series (best of seven
format). You would like to bet $100 on the Yankees win-
ning the World Series, but you can only place bets on in-
dividual games, and every time at even odds. How much
should you bet on the first game?

Answer: Let P be a 5x 5 matrix containing the net payoffs
for all the states in this dynamic programming problem.
More precisely, P(%,j) denotes the net payoff in the state
(4,7) when Yankees have won i and lost j games (0 < 4, j <
4). Clearly, P(4,) =100 (0 < j < 3), and P(i,4) = —100
(0 <14 < 3). Moreover, P(4,4) is left blank, as (4,4) is not
in our state space (4 wins and 4 losses cannot be achieved
in a best of seven series).

Let B be a 4 x 4 matrix containing the bets we need
to place at each state (i,7), given that we would like to
bet $100 on the Yankees winning the World Series, and
given that Yankees have won ¢ and lost j games so far
(0 < 4,5 < 3). Clearly, B(3,3) = 100.

Given that Yankees have won 7 and lost j games so
far, if we bet B(i,j) on the Yankees for the next game,
our payoff will be P(i,j) + B(,7) if the Yankees win, or
P(i,j) — B(4,7) if the Yankees lose. Therefore,

P@i+1,5) = P@4)+B@,5);  (3.205)

By adding and subtracting the equations (3.205) and
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(3.206) we obtain that

(P(i+ 1,5) + P(i,5 + 1)) (3.207)

N =

P(i,5)

B(i, j)

Il

%(P(i +1,5) = P(i,j +1)) (3.208)

Now, it is easy to compute all the entries of P, using
(3.207) and working backwards from P(4, j) and P(i,4).
For example,

P(3,3) = %(P(4,3)+P(3,4)) & %(100—100)=0.

Once matrix P is computed, we use (3.208) to compute
the matrix B. For example,

B(2,1) = %(P(B,l)—P(2,2)) - %(75-0):37.5.

In other words, given that Yankees have won 2 games
and lost 1 game so far, and we would like to bet $100
on the Yankees winning the World Series, we should bet
$37.5 on the Yankees for the next game. We include both
matrices below:

0 —-31.25 —-62.5 -87.5 -100

31.25 0 =375 —17b =100
P 62.5 37.5 0 =507 =100 |
87.5 75 50 0 —100

100 100 100 100 0

31:26i::31.25: 25 ;12,5
3267 1375 3.5 25

25 370400 50
12.5 25 50 100

Therefore, we should bet B(1,1) = 31.25 dollars (on
the Yankees) on the first game. Note that the probability
of the Yankees winning or losing a single game does not
affect your betting strategy. [J

B =
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Question 21. We have two red, two green and two yellow
balls. For each color, one ball is heavy and the other is
light. All heavy balls weigh the same. All light balls weigh
the same. How many weighings on a scale are necessary
to identify the three heavy balls?

Answer: It is clear that one weighing does not suffice. We
show that the heavy balls can be identified in only two
weighings.

Label the red balls R; and Rg, the green balls G; and
G2, and the yellow balls Y; and Y>. Our first weighing is
{R1, G1} VS. {Rz, Y1}.

If the scale is in balance, then either G; or Y; is heavy,
but not both. Our second weighing is {G1} vs. {Y1}. If
G1 is heavier, then the set of heavy balls is {R2, G1,Y2}.
If Y1 is heavier, then the set of heavy balls is {R1, G2,Y1}.

If {R1,G1} is heavy, then either Gi is heavy or Yi
is light. Our second weighing is {G1,Y1} vs. {G2,Y2}.
If the scale is in balance, then G is heavy; hence, the
set of heavy balls is {R1,G1,Y2}. If {G1,Y1} is heavier,
then G1 and Y; are both heavy. The set of heavy balls is
{R1,G1,Y1}. If {G2,Y2} is heavier, then G2 and Y> are
both heavy. The set of heavy balls is {R1,G2,Y2}.

If {R2,Y1} is heavy, then either Yi is heavy or Gi
is light. Our second weighing is {G1,Y1} vs. {G2,Y2}.
If the scale is in balance, then Y; is heavy; hence, the
set of heavy balls is {R2,G2,Y1}. If {G1,Y1} is heavy,
then G; and Y; are both heavy. The set of heavy balls is
{R2,G1,Y1}. If {G2,Y>2} is heavier, then G2 and Y> are
both heavy. The set of heavy balls is {R2,G2,Y2}. O

Question 22. There is a row of 10 rooms and a treasure
in one of them. Each night, a ghost moves the treasure
to an adjacent room. You are trying to find the treasure,
but can only check one room per day. How do you find
it?
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Answer: The treasure can be found in at most 16 days.
Label the rooms 1 through 10. Denote by 7} the room
where the treasure is on day k, and let Rx denote the room
you check on day k. Adopt the following strategy: for days
k=1,2,...,8, let Rx = b41; for days k= 9,10,..:,16,
let Ry, = 18 — k.

If 71 is even, then we will find the treasure in one of
the first eight days. In other words, there exists k with
1 < k < 8 such that Tx = Ri. Note that for 1 < k < 8,
Ty and Ry have the same parity, since 7} is even, R; = 2,
and both Ty and Ry change by at most 1 from day to
day, according to ghost’s moves and our strategy. Hence,
T — Ry is even. Furthermore, 71 # 1 and T # 10, which
implies 71 — R1 > 0 and T3 — Rg < 0. Since Tk — Ry can
change by at most 2 from day to day, there must exist
some k, 1 < k < 8, such that T — Rx = 0.

If 71 is odd, then we claim T} = Ry forsome k, 9 < k <
16. Note that Ty is odd since 7} is odd and the treasure
is moved to an adjacent room each night. Furthermore,
for 9 < k < 16, Ty and R have the same parity since Ty
is odd, Rg = 9, and both Ty and Ry change by at most
1 from day to day, according to ghost’s moves and our
strategy. Hence, Rx — T} is even. Furthermore, Ty # 10
and T16 # 1, which implies Rg—Ty > 0 and Rig—Tis =0,
Since Ry — Tk can change by at most 2 from day to day,
there must exist some &, 9 < k < 16, such that Ry — =
0.

Finally, note that this strategy can be generalized to
any number n > 2 of rooms, when the treasure will be
found in 2n — 4 days, by checking the rooms 2, 3=
1,n—1,n—2,...,3, 2, in that order, = [

Question 23. How many comparisons do you need to
find the maximum in a set of n distinct numbers? How
many comparisons do you need to find both the maximum
and minimum in a set of n distinct numbers?
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Answer: We can find the maximum in n — 1 comparisons
as follows: let {z1,z2,...,Zn} denote the set of n dis-
tinct numbers. Scan the numbers from left to right, while
maintaining the current maximum M. More precisely, set
21 = M, and, in the ith comparison, compare M and 2;1.
If M > 211, leave M as is; otherwise, set M = z;11. Do
thigford =1l1,...,n=1.

Similarly, one can find the minimum in a set of n dis-
tinct numbers in n — 1 comparisons.

Then, we can find the maximum M and the minimum
m in {@1,%2,...,Zn} with 2n — 3 comparisons: find the
maximum M in {z1,Z2,...,Zn} with n — 1 comparisons,
and then find the minimum m in {z1,22,...,zn} \ {M}
with n — 2 comparisons.

However, one can find m and M significantly faster.

If n is even, compare all % consecutive pairs of numbers
x2i—1 and T2, ¢ = 1: &, and put the smaller number into
a set S and the larger number into a set L. This requires
2 comparisons. Note that S and L have % elements each.
Then, find the minimum m in S using 4§ — 1 comparisons,
and find the maximum M in L using 5 — 1 comparisons.
The total number of comparisons to find m and M is

n n n 3n
2 ——1) (——1) sl 3.209
2 & (2 ® 2 2 ( )
If n is odd, compare "T‘l consecutive pairs of numbers
Z2i-1 and T2i, i = 1 : 25, and put the smaller number

into a set S and the larger number into a set L. This

n—

requires —2—1 comparisons. Place z, into both S and L.

Note that S and L have ﬂg—l +1= &21 elements each.

Then, find the minimum m in S using 2 — 1 = 254

comparisons, and find the maximum M in L using E—%’—l -
= "—;1 comparisons. The total number of comparisons

to find m and M is
L o e R Rty e B 3n+1__

2+2 I HT WY

% 3210)
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Note that the results of (3.209) and (3.210) can be
written succinctly as

% ‘
chim 2 comparisons,
where [x] denotes the ceiling of z, the smallest integer
greater than or equal to z. [

Question 24. Given a cube, you can jump from one
vertex to a neighboring vertex with equal probability. As-
sume you start from a certain vertex (does not matter
which one). What is the expected number of jumps to
reach the opposite vertex?

Answer: Label the vertices of the cube with 0, 1, 2, and
3, according to your distance from the opposite vertex. In
other words, label the starting vertex with 3, the vertices
adjacent to the starting vertex with 2, the vertices adja-
cent to the opposite vertex with 1, and the opposite vertex
with 0. Call the opposite vertex your final destination.

Denote by E;, i = 0,1,2,3, the expected number of
jumps yet to be made to reach the final destination, given
that you are currently in one of the vertices labeled with
i. Note that Eo = 0, and we have to find E3.

After the first jump, you are in one of the vertices la-
beled with 2, so

E; = 1+ E;. (3.211)

From a vertex labeled with 2, you can jump to three
vertices: two of them are labeled with 1, and one of them
is labeled with 3. Thus, you jump to a vertex labeled with
1 with probability %, or to a vertex labeled with 3 with
probability % Hence,

2 1
E, = 1+ §E1 ot §E3' (3:212)

Similarly, from one of the vertices labeled with 1, you
jump to a vertex labeled with 2 with probability %, or to
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a vertex labeled with 0 with probability % Hence,

2 1 2
By = 1+§E2+§Eo = 1+§E2, (3.213)

since Ep = 0.

Solving (3.211-3.213) yields E1 =7, E; =9, and E3 =
10.

We conclude that it will take 10 jumps, on average, to
reach the opposite vertex. [

Question 25. Select numbers uniformly distributed be-
tween 0 and 1, one after the other, as long as they keep
decreasing; i.e. stop selecting when you obtain a number
that is greater than the previous one you selected.

(i) On average, how many numbers have you selected?

(i) What is the average value of the smallest number you
have selected?

Answer: We give three solutions for part (i); the third
solution will be used to solve part (ii).

(i) Solution 1: Denote by E(z) the expected number of
numbers you have yet to select, given that you have just
selected number z. For example, E(0) = 1, since the next
number you select is greater than x = 0, upon which the
game stops.

Assume that you have just selected number z. Denote
by v the next number you select. We find E(z) by con-
ditioning on y. With probability 1 — , y is greater than
z; the game stops, and, thus, you have selected only one
number after selecting z. On the other hand, y could be
smaller than z, in which case you expect to select E(y)
additional numbers after selecting y; in other words, you
expect to select 1+ E(y) additional numbers after selecting
. Since the probability density function of y is f(y) = 1,
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the law of total probability gives

B = 1 0-a)+ / "1+ B@)f (@) dy
- <1—x)+/2<1+E<y>>dy
0
— 1-}—/0 E(y) dy.
Differentiating

Ble)s= 1+/02E(y)dy

with respect to x yields

Thus, E(z) = Ce®, where C is a constant. The condi-
tion E(0) = 1 gives C = 1. Hence, E(x) = €°.

Note that the first number selected is automatically
smaller than 1. Then, the number of numbers selected
after starting with the number 1, which was denoted by
E(1), is equal to the number of numbers selected starting
with a random number between 0 and 1. Therefore, the
average number of numbers you have selected is E(1) = e.

(i) Solution 2: Denote by N the average number of num-
bers you have selected. Denote by z; the ith number you
selected, ¢ > 1, and let p; denote the probability that
i < Ti—1 < ... < x1. Since there are i! permutations of
Tiy.. oy @q; then pi = %.

You select at least two numbers before stopping. The
probability that you select exactly ¢ numbers, ¢ > 2, before
stopping is equal to the probability that z;—1 < ... <
22 < 21 and z; > z;—1. The latter equals the probability
that ;-1 < ... < T2 < z1 minus the probability that
i < Tio1 < ... < Xy < x1ythat is, pi—1 — pi.
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We conclude that the expected number of numbers you
have selected is

oo

Ko 2o 3 dpn o)

=2

(@)

=1
i!

I
.MS

1

i

1

-

1
Il
, (3.214)

Il
Db 5090 £t

|

o <
Il
o

where (3.214) follows from the Taylor series expansion of
e” around 0, i.e.

Vz €R,

1M
=:| 8,

by letting z = 0.

(i) Solution 3: Denote by p(z)dz the probability that a
number between x and z + dz is selected as part of the
decreasing sequence. Let p;(z ) dz denote the probability
that a number between x and z + dz is selected as the ith
term of the decreasing sequence. Then,

p(z)dz = (Z Di (x)) dx. (3:215)

The probability that a number between 2 and = + dz is
selected as the ith term of the decreasing sequence is

pi(z)dz = (1-=z)""dz, (3.216)

i
(- 1)
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since (1 —z)*~! is the probability that the first  — 1 num-
bers selected are greater than x, and C—lT)' is the proba-
bility that they are selected in decreasing order.

From (3.215) and (3.216), we obtain that

p(x) dz i M dz
i=1

—~  (i—1)!
o0 AP
s Z(l—'—w)—dm
= 7
=. e "%dz; (3.217)

where (3.217) follows from the Taylor series expansion of
et around 0, i.e.

E —, VteR,
gl

by letting t =1 — .
Therefore, the expected number of numbers selected in
the decreasing sequence is

1 1
/ p(z)dz = / e Cdr=e—1.
0 0

Adding the last number selected (which is not in the de-
creasing sequence) gives an average of e numbers selected.

(ii) Denote by s the smallest number selected. It is the
last number selected in the decreasing sequence. Since
the probability that a number between z and z + dz is
selected as part of the decreasing sequence equals e* = dz,
see (3.217), and since the probability that the next number
selected is larger is (1 — ), then the probability that s is
between z and z + dz is e ~*(1 — ) dz.
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Therefore, the expected value of the smallest number
you have selected is

Hs) = /Olwel_z(l—x)dw

/01 eYy(1 —y) dy, (3.218)

where (3.218) follows from the substitution y = 1 — z.
Using integration by parts to compute (3.218), we find
that

E(s) = ey(y—yz)‘;—/oley(l—%)dy
- ey(y—yz)};—eyf;+2/01yeydy

1 1 1
= ey(y—yz—l)} +2ye”" —2/ eV dy
0 0 0

y 2 L yl
= e'By-y —1)‘0—2e ~0
Y 2 .
= e'(By—y —3)]0
=piedivien i

Question 26. To organize a charity event that costs
$100K, an organization raises funds. Independent of each
other, one donor after another donates some amount of
money that is exponentially distributed with a mean of
$20K. The process is stopped as soon as $100K or more
has been collected. Find the distribution, mean, and vari-
ance of the number of donors needed until at least $100K
has been collected.

Answer: Denote by a; the amount of money donated by
donor i, that is exponentially distributed with mean 1 /A
Let sn, = )", a; be the total amount of money donated
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by donors 1,...,n, and let

N = min{n such that s, > a}
n>1

be the discrete random variable denoting the smallest in-
dex n such that s, is at least a.

Denote by P(n|a), n > 1, the probability mass function
of N, that is, the probability that N = n when a total of
a needs to be raised. Note that

P(lla) = P(a1>a) = e (3.219)

We find P(n|a), n > 1, by conditioning on a;. Given
that the first donor donated a1 = z < a, N is equal to
n if and only if the remaining amount a — z is raised by
the next n — 1 donors (and not by fewer than the next
n — 1 donors), an event that by definition has probability
P(n — 1|la — z). Since the probability density function of
a1 is fa,(z) = Ae™ ", then, for n > 1, the law of total
probability yields

Plnla)= /Pn—1|a Yo (@)de

o

= / e~ P(n —1|a — ) dz. (3.220)
0

We will prove that

Yokt ()\a)n—l —Aa
P(nla) = i)t e aal (3:221)
by induction on n. The base case n = 1 was already
established; see (3.219). Assume that (3.221) holds for
n > 1; we will show that it also holds for n + 1.
From the induction hypothesis, we obtain that

P(nla—z) = (—’\—((ﬁn—__—xl)))r—_l g PR S
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for all 0 < z < a. From (3.220), it follows that
a
P(n+1la) = / e P(n|a — z) dz. (3.223)
0

From (3.222) and (3.223), we find that

P(n+1la)
& /0“ A% . (A(Eln—_ml)))!""l e Na=2) g
- (’\:—e__;% /Oa(a—w)"-ldx
Y ()\Z!)n oha,

We conclude that (3.221) holds for n + 1, and therefore
(3.221) is proved by induction.

From (3.221), it follows that N has the same distribu-
tion as 1 + M, where M has a Poisson distribution with
mean Aa. Then,

E[N] =1+ Xa; Var(N) = Ja.

For our problem, 1/ = $20K and a = $100K. Thus,
E[N] =1+ Xa =6 and Var(N) = Aa = 5.

We conclude that the number of donors needed until at
least $100K is collected has mean 6 and variance 5. [J

Question 27. Consider a random walk starting at 1 and
with equal probability of moving to the left or to the right
by one unit, and stopping either at 0 or at 3.

(i) What is the expected number of steps to do so?

(ii) What is the probability of the random walk ending at
3 rather than at 07

Answer: Denote by X% the position of the random walk
at time n, where the superscript refers to the starting po-
sition of the walk; for example, X§ = £. In this question,
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we are concerned with X.}. For a random walk starting
at £ € {0,1,2,3}, denote by 7, the number of steps taken
by the random walk in order to reach either 0 or 3 for
the first time, and by ¢, = E[T}] the expected number of
steps.

(i) We are looking to find ¢1. We derive a recurrence
relation among the t;’s as follows: for £ = 1,2,

tE == B
ET|X{=0-1]-P(X{f=0-1)
+ E[L|Xi=¢+1] - P(Xf=t+1)
El+Tp1]-P(X{f=¢-1) (3.224)
+ E[l+Tu]-P(Xf=£+1) (3.225)

(3.226)

1 1
(T+te-1) =+ (1 +teq1) - 3’

2

where the following identities were used to derive (3.224)
and (3.225):

EliXi=¢-1 = E[l+Tei]; (3.227)
E[lyX{=£0+1] = E[1+T] (3.228)

Note that (3.227) and (3.228) follow from the fact that,
starting at ¢, once the random walk took its first step to
£—1 (or £+ 1), it becomes equivalent to a random walk
starting afresh at £ — 1 (or £ + 1). The plus 1 term on
the right hand side of (3.227) and (3.228) accounts for the
first step.

Since to = t3 = 0, by letting [ = 1 and then [ = 2 in
(3.226), we obtain the following linear system for #; and
to:

1+to 1+t
2 ¥ 2
1 1+t
4 SR

t1 =

2 2~
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1+t 1+t3
R S
? Y
b ey S T
3h 2

Thus, t1 = 2 and t; = 2.

We conclude that the expected number of steps before
stopping is 2.

(ii) Denote by pe the probability that the random walk
reaches 3 before it reaches 0 when its position 1s at ¢, for
£ €{0,1,2,3}. We need to find p;. Denote by 7¢ the first
time the walk reaches 0 when starting at £, and by 74 the
first time the walk reaches 3 when starting at £. We derive
a recurrence relation for the p,’s as follows: for £ = 1, 2,

pe = P(r§<ré)
= P(T§<Térxf=e+1)13(xf=e+1)
+P(T§<Té{Xf=€——1)P(Xf=Z—1)
= P(r§+1<T§+1) P(Xf=t+1)

+P (73 < Té*l) P(Xf=1¢-1)

ik 1
e s B 3.229
2 Pet1 + B Pe-1, ( )

because the random walk is equally likely to move to the
left or to the right and, once it moved, the random walk
starts afresh.

Since po = 0 and p3 = 1, by letting | = 1 and then
I =2 in (3.229), we obtain the following linear system for
p1 and pa:

wotalog e g oy
pl == 2+2 27
Seallop e Sl L
T U
Thus, p1=%and p2 = %
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We conclude that the probability of the random walk
ending at 3 rather than at O is % O

Question 28. A stick of length 1 drops and breaks at
a random place uniformly distributed across the length.
What is the expected length of the smaller part?

Answer:

Solution 1: Treating the stick as an interval [0, 1], the
breakpoint X becomes a random variable uniformly dis-
tributed on (0,1). Its probability density function fx(z)
is 1, for 0 < z < 1, and 0 otherwise. Denote by L the
length of the smaller part. Then, L = min (z,1 —z). We
conclude that

E[L] = /0 min (z,1—z) - fx(z)dz

Il

1
/ min (z,1 —z)dz
0

1/2 1
zdz + / (1-—2z)dz
1/2

+

|

Il
st ool St

Solution 2: Treating the stick as an interval [0,1], the
breakpoint X becomes a random variable uniformly dis-
tributed on (0,1). Denote by L the length of the smaller
part.

Let A be the event that the breakpoint X is in (0, 3).
Then, A is the event that the breakpoint X is in (3,1).
Clearly, P(A) = P(A) = 1. Given A, the length of the
smaller part is X. Given 4, the length of the smaller part
is1—X.
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The law of total probability yields

E[L] = E[L|A] P(A)+E[L|Z] P(A4)
= EIX|A]- 5+ Bl1-X[A) ]
= E[X[A]-%+%—E[X|A] 3 (3:230)

Note that, given A, X is uniformly distributed on (0 )
and, Given A, X is uniformly distributed on (3,1). Since
the expectation of a random variable uniformly distributed
on an interval (a, b) is equal to %%, we obtain that

E[XlA]:i and E[X[A] ==

Then, (3.230) yields

E[L]

=]

Question 29. You are given a stick of unit length.

(i) The stick drops and breaks at two places. What is the
probability that the three pieces could form a triangle?

(ii) The stick drops and breaks at one place. Then the
larger piece is taken and dropped again, breaking at one
place. What is the probability that the three pieces could
form a triangle?

Answer: We offer two solutions for part (i); the second
solution will be used to solve part (ii).

(i) Solution 1: Denote by X and Y the two break points,
and assume X and Y are independent random variables
uniformly distributed on (0,1). To form a triangle, the
sum of the lengths of any two pieces must be greater than
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the length of the third piece. Equivalently, each piece
must be of length less than 1/2.

Assume that Y > X. Then, the length of the three
pieces are X, Y — X, and 1 —Y. Each of these pieces is of
length less than 1/2 if and only if the point (X,Y) belongs
to the region {(z,y) : ¢ < 1/2,y—x < 1/2,1-y < 1/2,z €
(0,1),y € (0,1),z < y} in the unit square. Since the area
of this region is 1/8, the probability of the three pieces
forming a triangle, given Y > X, is 1/8. Symmetrically,
the probability of the three pieces forming a triangle, given
¥ <X I8 1/8. " BEvents {Y > X} and {¥Y i< XL are
disjoint; hence, the probability of the three pieces forming
a triangle is 1/4.

(i) Solution 2: Consider an equilateral triangle ABC with
height of length 1. Given a point P in its interior, let hq,
hy, and h. be the lengths of the perpendiculars dropped
from P to the sides BC, CA, and AB, respectively. Since
the areas of triangles BPC, CPA, and APB sum up to
the area of ABC, we conclude that h, + hp +he = 1, and,
thus, is independent of the position of P. Breaking a stick
of length 1 into three pieces of lengths h,, hy, and he, is
clearly equivalent to (uniquely) specifying a point P in
the interior of the triangle ABC.

Connect the midpoints A’, B’, C’, of the sides of trian-
gle ABC to split it into four congruent equilateral trian-
gles, with the medial triangle A’B’C’ in the middle (see
Figure 3.3). Each piece of the broken stick has length
less than 1/2 if and only if the corresponding point P be-
longs to the medial triangle. Since the area of the medial
triangle is 1/4 of the area of triangle ABC, the desired
probability is 1/4.

(ii) Assume that the pieces have lengths h and (1 — h)
after the first break, with h < (1—h), i.e., h < 1/2. With
h fixed, the (larger) piece of length 1 — h is taken and
dropped again, breaking at one place uniformly at ran-
dom. The probability that the three pieces thus obtained



3.7 BRAINTEASERS 205

Figure 3.3: Point P inside the medial triangle A’B'C’ of
the equilateral triangle ABC.

form a triangle clearly depends on h. It is close to O for h
close to 0, and it is close to 1 for h close to 1/2.

More precisely, using the representation from the sec-
ond solution of part (a) above, the probability that the
three pieces form a triangle, given a fixed h < 1/2, is
equal to the probability that the point P, that lies on the
segment UZ parallel to side AB and at distance h from
it, belongs to the segment VW, that is the intersection
of UZ with the medial triangle A'B’'C’ (see Figure 3.3).
Since P is chosen (by the second break of the stick) from
UZ uniformly at random, the probability that P belongs
to VW is equal to the ratio of their lengths, namely %

Next, we express this ratio in terms of h. First, note
that the medial triangle A’B’C’ has side length AB/2
and height 1/2. Since the triangles ABC and UZC are

similar, we have Y2 = 1=t  Since the triangles WV C’
AB 1
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and A'B'C’ are similar, we have 45 = % Dividing
the last two equations, we obtain that
Vil ol
UZ — F—h
Therefore, given h < 1/2, the probability that the three
pieces form a triangle is

Vi 124 _p /2 4
s L T == —— dh.
/0 B /0 T +/0 ik
By using the substitution y =1 — h, it follows that
R 1 g
= = ~—+/ S
/0 L=h 2 172 Y A

Il

|
N =

|

p

=)
AT
N =
Nt

Il
5
2o

|

|

Since the probability that h < 1/2, where h is chosen
uniformly at random from (0, 1) (by the first break of the
stick), is 1/2, then the total probability that the three
pieces form a triangle is

In2 = L2

= 2In2—1.
172 2ln2—-1. O

Question 30. Why is a manhole cover round?

Answer: A circle is the shape with minimal surface given
a required minimal width in any direction. Moreover, the
cover of a round manhole cannot fall through the hole.
If the manhole were square, its cover turned on its edge
could fall through the hole since the diagonal of a square
is v/2 times larger than its edge. [
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Question 31. When is the first time after 12 o’clock that
the hour and minute hands of a clock meet again?

Answer: The minute hand moves at a speed of 360 de-
grees per hour, while the hour hand moves at a speed of
30 degrees per hour. They start together at 12 o’clock.
The first time they meet, the minute hand made one full
rotation more than the hour hand, which is the same as
360 degrees more than the hour hand. If ¢ denotes the
time (measured in hours) until the two hands meet again,
this can be written as

360-t = 30-¢+ 360.

Thuss it = i—f hours, which is approximately 1 hour, 5
minutes, and 27 seconds. [

Question 32. Three light switches are in one room, and
they turn three light bulbs in another. How do you figure
out which switch turns on which bulb in one shot?

Answer: Turn on two switches for a couple of minutes,
and then turn one of the switches off and go into the other
room. The bulb that is lit corresponds to the switch that
is still on; the bulb that is not lit but is hot corresponds
to the switch that was turned on and then turned off; the
bulb that is not lit and is cold corresponds to the switch
that was never turned on. 0O
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