Chapter 1 General Principles

Let us begin this book by exploring five general principles that will be extremely helpful
in your interview process. From my experience on both sides of the interview table,
these general guidelines will better prepare you for job interviews and will likely make
you a successful candidate.

1. Build a broad knowledge base

The length and the style of quant interviews differ from firm to firm. Landing a quant
job may mean enduring hours of bombardment with brain teaser, calculus, linear algebra,
probability theory, statistics, derivative pricing, or programming problems. To be a
successful candidate, you need to have broad knowledge in mathematics, finance and
programming.

Will all these topics be relevant for your future quant job? Probably not. Each specific
quant position often requires only limited knowledge in these domains. General problem
solving skills may make more difference than specific knowledge. Then why are
quantitative interviews so comprehensive? There are at least two reasons for this:

The first reason is that interviewers often have diverse backgrounds. Each interviewer
has his or her own favorite topics that are often related to his or her own educational
background or work experience. As a result, the topics you will be tested on are likely to
be very broad. The second reason is more fundamental. Your problem solving skills—a
crucial requirement for any quant job—is often positively correlated to the breadth of
your knowledge. A basic understanding of a broad range of topics often helps you better
analyze problems, explore alternative approaches, and come up with efficient solu?ions.
Besides, your responsibility may not be restricted to your own projects. You will be
expected to contribute as a member of a bigger team. Having broad knowledge will help
you contribute to the team’s success as well.

The key here is “basic understanding.” Interviewers do not expect you to be an expert on
a specific subject—unless it happens to be your PhD thesis. T_he. knowledge used in
interviews, although broad, covers mainly essential concepts. This is exact_ly the reason
why most of the books I refer to in the following chapters have the word “introduction”
or “first” in the title. If I am allowed to give only one suggestion to a candidate, it will be

know the basics very well.

2. Practice your interview skills

The interview process starts long before you step into an interview room. In a sense, the
is often determined before the first question is asked.

success or failure of your interview 1 ; vestio
Your solutions to interview problems may fail to reflect your true intelligence and
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knowledg? if you are unprepared. Although a complete review of quant interview
problems is impossible and unnecessary, practice does improve your interview skills.
Furthermore, many of the behavioral, technical and resume-related questions can be

anticipated. So prepare yourself for potential questi
: : estions long before
Interview room. 1 ¥ it

3. Listen carefully

;;‘u should be an active listener in interviews so that you understand the problems well
POI?E:)’):)SLII( ?:f::;g} on ?nswer them. If any aspect of a problem is not clear to you,
S| AL e id 1h1cla 1on. If the problem is more than a couple of sentences, jot down
bbb ibbocad i elp you remember all the information. For complex problems,

§ often give away some clues when they explain the problem. Even the

a i i i . A
ssumptions they give may include some information as to how to approach the problem.

So listen carefully and make sure you get the necessary information

4. Speak your mind

Whe :
Cleaﬁyyodue;n;i}sﬁzta problem and explore different ways to solve it, never do it silently.
¢ your analysis and write down the important steps involved if

necessary. Thi : .
methodical ::118 t;g:;l?glsl );ﬁ“: mt?}llllgence to the interviewer and shows that you are
. 2 . ase that . . . ;
interviewer the opportunity to correct b0 astty, the interaction will also b bgns

the course and provid i i
. ; ¢ you with some hints.
Speaking your mind does not mean

: explaini : . :
obvious to you, simply state the co P Sing every tiny detail. If some conclusions are

nclusion without the trivial details. More often than

prefer to have before you bllf(li(ljy to have all the necessary information or data you'd
interviewers may not give aild ‘2 model and make a decision. In interviews
make reasonable assum );flu all the necessary assumptions either. So it is up to you tc:
assumptions to the inter\?i:vns' Jhe keyword here is reasonable. Explain your
quantitative problems, it is cn.eur:i;lo tlt1mtn oo oy Bt immediate feedback. To solve
and design appropriate at you can quickly mak : i

&N appropriate frameworks to solve problems baied onetl::ailssosr:l?:h:. qIuIRpHIN

ions.

We are now ready Ny

to review basi k
have fun solvin basic concepts in quantitative ;
grea inance subject areas and

l-world interview problems!

Chapter 2 Brain Teasers

In this chapter, we cover problems that only require common sense, logic, reasoning, and
basic—no more than high school level—math knowledge to solve. In a sense, they are
real brain teasers as opposed to mathematical problems in disguise. Although these brain
teasers do not require specific math knowledge, they are no less difficult than other
quantitative interview problems. Some of these problems test your analytical and general
problem-solving skills; some require you to think out of the box; while others ask you to
solve the problems using fundamental math techniques in a creative way. In this chapter,
we review some interview problems to explain the general themes of brain teasers that

you are likely to encounter in quantitative interviews.

2.1 Problem Simplification

If the original problem is so complex that you cannot come up with an immediate
solution, try to identify a simplified version of the problem and start with it. Usually you
can start with the simplest sub-problem and gradually increase the complexity. You do
not need to have a defined plan at the beginning. Just try to solve the simplest cases and
analyze your reasoning. More often than not, you will find a pattern that will guide you

through the whole problem.

Screwy pirates
Five pirates looted a chest full of 100 gold coins. Being a bunch of democratic pirates,
they agree on the following method to divide the loot:

The most senior pirate will propose a distribution of the coins. All pirates, including the
most senior pirate, will then vote. If at least 50% of the pirates (3 pirates in this case)
accept the proposal, the gold is divided as proposed. If not, the most senior pirate will be
fed to shark and the process starts over with the next most senior pirate... The process is
repeated until a plan is approved. You can assume that all pirates are perfectly rational:
they want to stay alive first and to get as much gold as possible second. Finally, being
blood-thirsty pirates, they want to have fewer pirates on the boat if given a choice

between otherwise equal outcomes.

How will the gold coins be divided in the end?

Solution: 1f you have not studied game theory or dynamic pl.'ogramming, this strategy
problem may appear to be daunting. If the problem with 5 pirates seems complex, we

can always start with a simplified version of the problem by reducing the number of
pirates. Since the solution to 1-pirate case is trivial, let’s start with 2 pirates. The senior
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pirate (labeled as 2) can claim all the gold since he will always get 50% of the votes
from himself and pirate 1 is left with nothing.

Let’s ad(_i a more 'senior pirate, 3. He knows that if his plan is voted down, pirate 1 will
get nothing. But if he offers private 1 nothing, pirate 1 will be happy to kill him. So

pirate 3 wi.ll offer private 1 one coin and keep the remaining 99 coins, in which strategy
the plan will have 2 votes from pirate 1 and 3.

prirate 4.iS added, he kn0w§ that if his plan is voted down, pirate 2 will get nothing. So
pirate 2 will settle for one coin if pirate 4 offers one. So pirate 4 should offer pirate 2 one

coin and keep the remaining 99 coins and his pl i .
votes from pirate 2 and 4. 1s plan will be approved with 50% of the

Now w3e finally come to the S-pirate case. He knows that if his plan is voted down, both

E:)riarl]te f]nd pirate 1. will get nothing. So he only needs to offer pirate 1 and pirate 3 one

i ;ac t;) get their votes and keep the remaining 98 coins. If he divides the coins this
ay, he will have three out of the five votes: from pirates 1 and 3 as well as himself.

0 . y . !
ol;lfi?}xe ;L&;ﬂ Hﬂthﬂa simplified version and add complexity to it, the answer becomes
- Actually after the case n =35, a clear pattern has emerged and we do not need to

Stop at 5 pirates. For any 2n+1 pirate case (1 should be less than 99 though), the most

senior pirate will offer pirat 5
himself pirates 1,3, -, and 2n-1 each one coin and keep the rest for

Tiger and sheep

One hundred ti
eafe r; r;zg ttl)i(:rtsh and one sheep are put on a magic island that only has grass. Tigers
1 ey would rather eat sheep. Assume: 4. Each time only one tiger can

come a sheep after it eats the sheep. B. All
eaten? they want to survive. So will the sheep be

Solution: 100 i .

problem. 1f thez {as i}arl;lge lﬂtl:lmber, SO again let.’s Start with a simplified version of the

to worry about being eZten l%{er hall surely it will eat the sheep since it does not need

either tiger probably would d oW about 2 tigers? Since both tigers are perfectly rational,
¥ would do some thinking as to what will happen if it eats the sheep.

5 1 er. S . L
tiger will eat the sheep, BET- 50 to guarantee the highest likelihood of survival, neither

If there are 3 E

changes to a shl:ge;rs’th?; Swhﬁ?pb Will be eaten since each tiger will realize that once it
that thinks this thro’ugh will eat (1312 tigers left and it will not be eaten. So the first tiger
atthe sheep. If there are 4 tigers, ach tiger will understand
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that if it eats the sheep, it will turn to a sheep. Since there are 3 other tigers, it will be
eaten. So to guarantee the highest likelihood of survival, no tiger will eat the sheep.

Following the same logic, we can naturally show that if the number of tigers is even, the
sheep will not be eaten. If the number is odd, the sheep will be eaten. For the case
n =100, the sheep will not be eaten.

2.2 Logic Reasoning

River crossing

Four people, 4, B, C and D need to get across a river. The only way to cross the river is
by an old bridge, which holds at most 2 people at a time. Being dark, they can't cross the
bridge without a torch, of which they only have one. So each pair can only walk at the
speed of the slower person. They need to get all of them across to the other side as
quickly as possible. A is the slowest and takes 10 minutes to cross; B takes 5 minutes; C

takes 2 minutes; and D takes 1 minute.

What is the minimum time to get all of them across to the other side?’

Solution: The key point is to realize that the 10-minute person should go with the 5-

minute person and this should not happen in the first crossing, otherwise one of them
have to go back. So C and D should go across first (2 min); then send D back (1min); 4
and B go across (10 min); send C back (2min); C and D go across again (2 min).

It takes 17 minutes in total. Alternatively, we can send C back first and then D back in
the second round, which takes 17 mi_nutes as well.

hut low te show it /s Minimum 7

Birthday problem

You and your colleagues know that your boss 4’s birthday is one of the following 10
dates: e

Mar 4, Mat 5, Mar 8 f',\ xH |9 [, S |
Jun 4,W  wd | \L | \L J ,' J L .. { f_a
_ \ ny b )

Dec 1, DeeZ, Dec 8 X
A told you only thc_'inontl'DOf his birthday, and told your colleague C only the day. After

that, you first said: T don’t know 4’s birthday; C doesn’t know it either.” After hearing

' Hint: The key is to realize that 4 and B should get across the bridge together.



Brain Teasers

what you said, C replied: “I didn’t know 4’s birthday, but now I know it.” You smiled
and said: “Now I know it, too.” After looking at the 10 dates and hearing your comments,
your administrative assistant wrote down 4’s birthday without asking any questions. So
what did the assistant write?

Solz.zrion: Don’t let the “he said, she said” part confuses you. Just interpret the logic
behind each individual’s comments and try your best to derive useful information from
these comments.

Let D be the day of the month of A’s birthday, we have De{l,2,4,5,7,8}. If the

birthday is on a unique day, C will know the 4’s birthday immediately. Among possible
Qs, 2 and 7 are unique days. Considering that you are sure that C does not know A’s
birthday, you must infer that the day the C was told of is not 2 or 7. Conclusion: the
month is not June or December. (If the month had been June, the day C was told of may
have been 2; if the month had been December, the day C was told of may have been 7.)

Now C know§ tha_at the monﬂ} must be either March or September. He immediately
figures out 4’s birthday, which means the day must be unique in the March and

September list. It means 4’s birthday cannot be Mar 5 S S hd e
birthday must be Mar 4, Mar 8 or Sep 1. P PYRYP) 07, | (COpdluSp; e

Among these thrt:-:e possibilities left, Mar 4 and Mar 8 have the same month. So if the
month you have is March, you still cannot figure out 4’s birthday. Since you can figure

‘1’“‘ A’s birthday, 4’s birthday must be Sep 1. Hence, the assistant must have written Sep

Card game

A casino offers a card game using a normal deck of 52 cards. The rule is that you turn

over two cards each time. For each p-air, if both are black, they go to the dealer’s pile; if

ile; if one bl :
process is repeated until you two go ack and one red, they are discarded. The

pile, you win $100; otherwise (includi
negotiate the price you
pay to play this game?”
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red and black cards are discarded. As a result, the number of red cards left for you and
the number of black cards left for the dealer are always the same. The dealer always
wins! So we should not pay anything to play the game.

Burning ropes

You have two ropes, each of which takes 1 hour to burn. But either rope has different
densities at different points, so there's no guarantee of consistency in the time it takes
different sections within the rope to burn. How do you use these two ropes to measure 45
minutes?

Solution: This is a classic brain teaser question. For a rope that takes x minutes to burn,
if you light both ends of the rope simultaneously, it takes x/2 minutes to burn. So we
should light both ends of the first rope and light one end of the second rope. 30 minutes
later, the first rope will get completely burned, while that second rope now becomes a
30-min rope. At that moment, we can light the second rope at the other end (with the
first end still burning), and when it is burned out, the total time is exactly 45 minutes.

Defective ball

You have 12 identical balls. One of the balls is heavier OR lighter than the rest (you
don't know which). Using just a balance that can only show you which side of the tray is
heavier, how can you determine which ball is the defective one with 3 measurements?’

Solution: This weighing problem is another classic brain teaser and is still being asked
by many interviewers. The total number of balls often ranges from 8 to more than 100.
Here we use n=12 to show the fundamental approach. The key is to separate the
original group (as well as any intermediate subgroups) into three sets instead of two. The
reason is that the comparison of the first two groups always gives information about the
third group.

Considering that the solution is wordy to explain, I draw a tree diagram in Figure 2.1 to
show the approach in detail. Label the balls 1 through 12 and separate them to three
groups with 4 balls each. Weigh balls 1, 2, 3, 4 against balls 5, 6, 7, 8. Then we go on to
explore two possible scenarios: two groups balance, as expressed using an “=" sign, or 1,

3 Hint: First do it for 9 identical balls and use only 2 measurements, knowing that one is heavier than the
rest.
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2, 3, 4 are lighter than 5, 6, 7, 8, as expressed using an *“<” sign. There is no need to
explain the scenario that 1, 2, 3, 4 are heavier than 5, 6, 7, 8. (Why?")

If the two groups balance, this immediately tells us that the defective ball is in 9, 10, 11
and 12, and it is either lighter (L) or heavier (/) than other balls. Then we take 9, 10 and
11 from group 3 and compare balls 9, 10 with 8, 11. Here we have already figured out
that 8 is a normal ball. If 9, 10 are lighter, it must mean either 9 or 10is L or 11 is H. In
which case, we just compare 9 with 10. If 9 is lighter, 9 is the defective one and it is L; if
9 and 10 balance, then 11 must be defective and H; If 9 is heavier, 10 is the defective

one and itis L. If 9, 10 and 8, 11 balance, 12 is the defective one. If 9, 10 is heavier. than
either9or 10is H or 111is L.

You can easily ifollow the tree in Figure 2.1 for further analysis and it is clear from the
tree that all possible scenarios can be resolved in 3 measurements.

0,

o e

1/2/3/4 L or 5/6/7/8 H 9/10/11/12L or H
_/ :1 \: / 1 \:
1/2L or 6H
or 4L or 7/8H SHor 3L 9/10Lor 11H 12L or 12H 9/10Hor 11L

OO 00 0600 06 ®-® 0O

AN AN Y AN 7R AR

1L} 6H
9L 11H 10L 12H 12L 10H 11L 9H

Figure 2.1 Tree diagram to identify the defective ball in 12 balls
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lighter, you can identify the defective ball among up to 3" balls using no more than »

measurements since each weighing reduces the problem size by 2/3. If you have no

information as to whether the defective ball is heavier or lighter, you can identify the

defective ball al_l_fl_lonrié_tllpvt_o_ 3" =3)/2 balls lismg no more than n measurements.

Trailing zeros

How many trailing zeros are there in 100! (factorial of 100)?

Solution: This is an easy problem. We know that each pair of 2 and 5 will give a trailing
zero. If we perform prime number decomposition on all the numbers in 100!, it is
obvious that the frequency of 2 will far outnumber of the frequency of 5. So the
frequency of 5 determines the number of trailing zeros. Among numbers 1,2,---,99, and

100, 20 numbers are divisible by 5 (5, 10, ---, 100). Among these 20 numbers, 4 are
divisible by 5% (25, 50, 75,100). So the total frequency of 5 is 24 and there are 24
trailing zeros.

Horse race

There are 25 horses, each of which runs at a constant speed that is different from the
other horses’. Since the track only has 5 lanes, each race can have at most 5 horses. If
you need to find the 3 fastest horses, what is the minimum number of races needed to

identify them?

Solution: This problem tests your basic analytical skills. To find the 3 fastest horses,
surely all horses need to be tested. So a natural first step is to divide the horses to 5
groups (with horses 1-5, 6-10, 11-15, 16-20, 21-25 in each group). After 5 races, we will
have the order within each group, let’s assume the order follows the order of numbers
(e.g., 6 is the fastest and 10 is the slowest in the 6-10 group)s. That means 1, 6, 11, 16
and 21 are the fastest within each group.

Surely the last two horses within each group are eliminated. What else can we infer? We
know that within each group, if the fastest horse ranks 5th or 4th among 25 horses, then
all horses in that group cannot be in top 3; if it ranks the 3rd, no other horse in that group
can be in the top 3; if it ranks the 2nd, then one other horse in that group may be in top 3;
if it ranks the first, then two other horses in that group may be in top 3.

5 Such an assumption does not affect the generality of the solution. If the order is not as described, just
change the labels of the horses.
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So let’s race horses 1, 6, 11, 16 and 21. Again without loss of generality, let’s assume
the order is 1, 6, 11, 16 and 21. Then we immediately know that horses 4-5, 8-10, 12-15,
16-20 and 21-25 are eliminated. Since 1 is fastest among all the horses, 1 is in. We need

to determine which two among horses 2, 3, 6, 7 and 11 are in top 3, which only takes one
extra race.

So all together we need 7 races (in 3 rounds) to identify the 3 fastest horses.

Infinite sequence

If x x*x"Ax"x--=2, where x"y=x", whatis x?

So!u{ion: This problem appears to be difficult, but a simple analysis will give an elegant
solution. What do we have from the original equation?

Ilmx"x”\x’“x"x-_.--=2 SlmxAxAxAxAyge..=2.

In other w o0
i g n terms n—w er ords, as n— ¢

n-1 terms

adding or minus one x* should yield the same result.

e o S SR
S0 XAX A xAx A=y (" xAx0x)=xr2=2 3 x=4/2.

2.3 Thinking Out of the Box
Box packing

Can you pack 53 bricks of dimensions Ix1x4 into a 6x6x 6 box?
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fit in the 62 squares left, so you cannot find a way to fill in all 62 squares without
overlapping or overreaching.

Removed

Removed «—

Figure 2.2 Chess board with alternative black and white squares

Just as any good trading strategy, if more and more people get to know it and replicate it,
the effectiveness of such a strategy will disappear. As the chess bogrd problem becomes
popular, many interviewees simply commit it to memory (after all, it’s easy to remember
the answer). So some ingenious interviewer came up with the newer version to test your
thinking process, or at least your ability to extend your knowledge to new problems.

If we look at the total volume in this 3D problem, 53 bricks have a vollume of 212, which
is smaller then the box’s volume 216. Yet we can show it is impossible to pflcl_c all ?he
bricks into the box using a similar approach as the chess board problem. Let’s imagine
that the 6x6x6 box is actually comprised of small 2x2x2 cubes. There should be 27
small cubes. Similar to the chess board (but in 3D), imagine that we have blac.k cubes
and white cubes alternates—it does take a little 3D visualization. So we have elther.14
black cubes & 13 white cubes or 13 black cubes & 14 white cubes. For any 1x1x4 brick
that we pack into the box, half (1x1x2) of it must be in a black 2x2x2 cube and the
other half must be in a white 2x2x2 cube. The problem is that each 2x2x2 cube can
only be used by 4 of the 1x1x4 bricks. So for the color V\‘/lth 13 cubes, be it black or
white, we can only use them for 52 1x1x4 tubes. Thert? is no way to place the 53th
brick. So we cannot pack 53 bricks of dimensions 1x1x4 into a 6x6x6 box.

Calendar cubes

You just had two dice custom-made. Instead of numb_ers 1 — 6, you place sing.le-d.iglt
numbers on the faces of each dice so that every morning you can arrange the dice in a
way as to make the two front faces show the current day of the month. You must use
both dice (in other words, days 1 — 9 must be shown as 01 — 09), but you can switch the

11
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order of the dice if you want. What numbers do you have to put on the six faces of each
of the two dice to achieve that?

Solun'on:.The days of a month include 11 and 22, so both dice must have 1 and 2. To
express smgle--digit days, we need to have at least a 0 in one dice. Let’s put a 0 in dice
one first. Con?,ldering that we need to express all single digit days and dice two cannot
have all the _dlgits from 1 -9, it’s necessary to have a 0 in dice two as well in order to
express all single-digit days.

So far we have assigned the following numbers: -

Dice one 1 2 0 ? 9 2

Dice two 1 2 0 9 0 D

If \Efl: can assign all the rest of digits 3, 4, 5,6,7,8, and 9 to the rest of the faces. the
?i:'(:lkem i ;Olved' But there are 7 digits left. What can we do? Here’s where you neéd to
Ink out of the box. We can use a 6 as a 9 since they will never be needed at the same

time! So, simply put 3, 4, and 5 on one di ' - the
AT Tiiaiers on the tvb'dldd Wbt ice and 6, 7, and 8 on the other dice, and the

Dice one 1 2 0 3 4 5
Dice two 1 2 0 6 7 :
Door to offer

You are faci i
of ciher gggig;st\:ogﬂggs b?xgegleu:iis |1 Jour job offer and the other leads to exit. In front
You can only ask one guard one always tells lies and the other always tells the truth.

es/ i . .
offer, what question will you ask?y 1 Question. Assuming you do want to get the job

Solution: This i . !
One populal:'lsails;vl:;t?:rtf)la;:ll(cob};:m tea(sier (maybe a little out-of-date in my opinion).
guarding the door to the offer?” If heg;na;“;e Would the other guard say that you are

no, choose the door this guard is standing in ;:oi::?)’f(:hoose 18 Pther, s 1f he e

There are two possible scenarios:

L. Truth teller guards the door to offer:

Liar guards the door to exit.

fire You guarding the door to the offer?” For
Scenario 2, both guards will answer no. So a
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direct question does not help us solve the problem. The key is to involve both guards in
the questions as the popular answer does. For scenario 1, if we happen to choose the
truth teller, he will answer no since the liar will say no; if we happen to choose the liar
guard, he will answer yes since the truth teller will say no. For scenario 2, if we happen
to choose the truth teller, he will answer yes since the liar will say yes; if we happen to
choose the liar guard, he will answer no since the truth teller with say yes. So for both
scenarios, if the answer is no, we choose that door; if the answer is yes, we choose the
other door.

Message delivery

You need to communicate with your colleague in Greenwich via a messenger service.
Your documents are sent in a padlock box. Unfortunately the messenger service is not
secure, so anything inside an unlocked box will be lost (including any locks you place
inside the box) during the delivery. The high-security padlocks you and your colleague
each use have only one key which the person placing the lock owns. How can you
securely send a document to your colleague?®

Solution: If you have a document to deliver, clearly you cannot deliver it in an unlocked
box. So the first step is to deliver it to Greenwich in a locked box. Since you are the
person who has the key to that lock, your colleague cannot open the box to get the
document. Somehow you need to remove the lock before he can get the document,
which means the box should be sent back to you before your colleague can get the

document.

So what can he do before he sends back the box? He can place a second lock on the box,
which he has the key to! Once the box is back to you, you remove your own lock and
send the box back to your colleague. He opens his own lock and gets the document.

Last ball

A bag has 20 blue balls and 14 red balls. Each time you randomly take two balls out.
(Assume each ball in the bag has equal probability of being taken). You do not put these
two balls back. Instead, if both balls have the same color, you add a blue ball to the bag;
if they have different colors, you add a red ball to the bag. Assume that you have an
unlimited supply of blue and red balls, if you keep on repeating this process, what will
be the color of the last ball left in the bag?’ What if the bag has 20 blue balls and 13 red

balls instead?

® Hint: You can have more than one lock on the box.
7 Hint: Consider the changes in the number of red and blue balls after each step.
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Solution: Once you understand the hint, this problem should be an easy one. Let (B,R)

represent the number of blue balls and red balls in the bag. We can take a look what will
happen after two balls are taken out.

Both balls are blue: (B,R) — (B-1,R)
Both balls are red: (B,R) - (B+1,R-2)
One red and one blue: (B,R) — (B-1,R)

Notice that R eithe'r stays th-e same or decreases by 2, so the number of red balls will
never become odd if we begin with 14 red balls. We also know that the total number of
balls decreases by one each time until only one ball is left. Combining the information

we have, the last ball must be a blue one. Similarly, when we start with f
red balls, the final ball must be a red one. Ys with odd number o

Light switches

There is a light bulb inside a room and four switches outside. All switches are currently
at off state and only one switch controls the light bulb. You may turn any number of

§w1tches on or off any numbe.r of times you want. How many times do you need to go
into the room to figure out which switch controls the light bulb?

Solution: You may have seen the classical versi i
A i [ : ersion of this problem with 3 light bulbs
inside the room and 3 switches outside. Although this problem is slightly modgifled, the

approach is exact the same. Whether the light is on and off is binary, which only allows

us to distinguish two switches, If we have another binary factor, there are 2x2=4

5 > move on to solve some other puzzl i
P b e a1 0 o G,
The light bulb is on and hot —s switch 1 controls the light;

The light bulb is off and hot — switch 2 controls the light,‘

The light bulb is on and cold — switch 3 controls the ligh;;

The light bulb is off and cold — switch 4 controls the light
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Quant salary

Eight quants from different banks are getting together for drinks. They are all interested
in knowing the average salary of the group. Nevertheless, being cautious and humble
individuals, everyone prefers not to disclose his or her own salary to the group. Can you
come up with a strategy for the quants to calculate the average salary without knowing
other people’s salaries?

Solution: This is a light-hearted problem and has more than one answer. One approach is
for the first quant to choose a random number, adds it to his/her salary and gives it to the
second quant. The second quant will add his/her own salary to the result and give it to
the third quant; ...; the eighth quant will add his/her own salary to the result and give it
back to the first quant. Then the first quant will deduct the “random” number from the
total and divide the “real” total by 8 to yield the average salary.

You may be wondering whether this strategy has any use except being a good brain
teaser to test interviewees. It does have applications in practice. For example, a third
party data provider collect fund holding position data (securities owned by a fund and
the number of shares) from all participating firms and then distribute the information
back to participants. Surely most participants do not want others to figure out what they
are holding. If each position in the fund has the same fund ID every day, it’s easy to
reverse-engineer the fund from the holdings and to replicate the strategy. So different
random numbers (or more exactly pseudo-random numbers since the provider knows
what number is added to the fund ID of each position and complicated algorithm is
involved to make the mapping one to one) are added to the fund ID of each position in
the funds before distribution. As a result, the positions in the same fund appear to have
different fund IDs. That prevents participants from re-constructing other funds. Using
this approach, the participants can share market information and remain anonymous at

the same time.

2.4 Application of Symmetry

Coin piles

Suppose that you are blind-folded in a room and are told that there are 1000 coins on the
floor. 980 of the coins have tails up and the other 20 coins have heads up. Can you
separate the coins into two piles so to guarantee both piles have equal number of heads?
Assume that you cannot tell a coin’s side by touching it, but you are allowed to turn over

any number of coins.

Solution: Let’s say that we separate the 1000 coins into two piles with 7 coins in one pile
and 1000 —» coins in the other. If there are m coins in the first pile with heads up, there
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must be 20—m coins in the second pile with heads up. We also know that there are
n—m coins in the first pile with tails up. We clearly cannot guarantee that m =10 by
simply adjusting n.

What other options do we have? We can turn over coins if we want to. Since we have no
way of knowing what a coin’s side is, it won’t guarantee anything if we selectively flip
coins. However, if we flip all the coins in the first pile, all heads become tails and all
tails become heads. As a result, it will have n—m heads and m tails (symmetry). So, to
start, we need to make the number of tails in the original first pile equal to the number of
heads in the second pile; in other words, to make n—m=20—m. n=20 makes the
equation hold. If we take 20 coins at random and turn them all over, the number of heads

among these turned-over 20 coins should be the same as the number of heads among the
other 980 coins.

=

Mislabeled bags

;fou are given three bags of fruit.s. Qne has apples in it; one has oranges in it; and one
Uasfa mix of apples and oranges in it. Each bag has a label on it (apple, orange or mix).
nfortunately, your manager tells you that ALL bags are mislabeled. Develop a strategy

to identify the bags by taking out minimum g
. n 3
of fruits from any bags * umber of fruits? You can take any number

Solution: The key here is to use the fac
bag labeled with apple must contain ei
Let’s look at the labels: orange, apple
orange label and the apple label are s;r
pick a fruit from the bag with the oran
the bag is either all apples or a mix. If

t that ALL bags are mislabeled. For example, a
ther oranges only or a mix of oranges and apples.
mix ((?range + apple). Have you realized that the
mmetric? If not, let me explain it in detail: If you
ge label and it’s an apple (orange —> apple), then

b you pick a fruit from the b. ith |
d e bag with the apple labe
and 1t's an orange (apple — orange), then the bag is either an orange bag Elr) a mix.

Symmetric labels are not excitin :
and ,
the bag with the mix label and g%t oncare unlikely to be the correct approach. So let’s try

8
The problem struck me as a word game when | fi

details besides his or her logic reasoning skills It saw it. But it does test a candidate’s attention t0
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Wise men

A sultan has captured 50 wise men. He has a glass currently standing bottom down.
Every minute he calls one of the wise men who can choose either to turn it over (set it
upside down or bottom down) or to do nothing. The wise men will be called randomly,
possibly for an infinite number of times. When someone called to the sultan correctly
states that all wise men have already been called to the sultan at least once, everyone
goes free. But if his statement is wrong, the sultan puts everyone to death. The wise men
are allowed to communicate only once before they get imprisoned into separate rooms
(one per room). Design a strategy that lets the wise men go free.

Solution: For the strategy to work, one wise man, let’s call him the spokesman, will state
that every one has been called. What does that tell us? 1. All the other 49 wise men are
equivalent (symmetric). 2. The spokesman is different from the other 49 men. So
naturally those 49 equivalent wise men should act in the same way and the spokesman

should act differently.

Here is one of such strategies: Every one of the 49 (equivalent) wise men should flip the
glass upside down the first time that he sees the glass bottom down. He does nothing if
the glass is already upside down or he has flipped the glass once. The spokesman should
flip the glass bottom down each time he sees the glass upside down and he should do
nothing if the glass is already bottom down. After he does the 49th flip, which means all
the other 49 wise men have been called, he can declare that all the wise men have been

called.

2.5 Series Summation

Here is a famous story about the legendary mathematician/physicist Gauss: When he
was a child, his teacher gave the children a boring assignment to add the numbers from 1
to 100. To the amazement of the teacher, Gauss turned in his answer in less than a

minute. Here is his approach:

§n= 1 + 24 -+ 99+ 100

'l’=' + 4+ + o+ =

> n=100+99+:-+ 2 + 1

TGZU! l l l l 100

25 n=1014101+--+101+101=101x100=> 3 n =

n=|

100x101
2

n=l
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N
This approach can be generalized to any integer N: Z e NN+

n=]
The summation formula for consecutive squares may not be as intuitive:

N 3 2
Z;ﬁ: N(N+l)(2N+1)=i+£+_N_.
n=| 6 3 2 6

y
But if we correctly guess that ) n’ =aN'+bN>+cN+d and apply the initial
n=1

conditions

N=0=0=d
N=1=l=a+b+c+d
N=2=5=8a+4b+2c+d °’
N=3=14=27a+9%+3c+d

we will have the solution that a = 13, b=1/2,¢c =

; 4 1/6, d = 0. We can then easily show
that the same equation applies to all N by induction.

Clock pieces

A clock (numbered 1 - 12 clockwise) fell off the wall and broke into three pieces. You

ﬁ.nd that the sums of the numbers on each piece are equal. What are the numbers on each
piece? (No strange-shaped piece is allowed.)

! : i 12
Solution: Using the summation equation, dn= il 78. So the numbers on each
n=1

. 2

E;f:;,e Iizzzth‘::imtu%eto 26: Some interviewees mistakenly assume that the numbers on
i ull)at it T:: a](:d 8c§11:itmuiuszbecause no st.range—.shaped piece is allowed. It’s easy to
riif Canm.)t find 11 consg;c)m(? 6. Then the interviewees’ thinking gets stuck because

1ve numbers that add up to 26.

Such an assumption is not correct since

wrong assumption is removed, it becom
second piece is 11, 12, 1 and 2; the third

12 and 1 are continuous on a clock. Once that
es clear that 12+1=13 and 11+2=13. So the

piece is 3,4, 9 and 10.
Missing integers

Suppose we have 98 distinct integers from lto1

tWo missing integers (within [1, 1007)? 00. What is a good way to find out the
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Solution: Denote the missing integers as x and y, and the existing ones are z,,---, zy.
Applying the summation equations, we have

100 98 100)(101 98

2n=x+y+z“zi :x+y=_2—_ZI:ZJ

n=1 i=1

% . 100° 100" 100 &
e n Y P iyt + t—=> z
Z;” Xy Z]Z ¥ =m At Z. ;

Using these two equations, we can easily solve x and y. If you implement this strategy
using a computer program, it is apparent that the algorithm has a complexity of O(n) for
two missing integers in 1 to n.

Counterfeit coins |

There are 10 bags with 100 identical coins in each bag. In all bags but one, each coin
weighs 10 grams. However, all the coins in the counterfeit bag weigh either 9 or 11
grams. Can you find the counterfeit bag in only one weighing, using a digital scale that
tells the exact weight?”’

Solution: Yes, we can identify the counterfeit bag using one measurement. Take 1 coin
out of the first bag, 2 out of the second bag, 3 out the third bag, ---, and 10 coins out of

10
the tenth bag. All together, there are Zn =55 coins. If there were no counterfeit coins,
i=l
they should weigh 550 grams. Let’s assume the i-th bag is the COL.lnte.l'f?lt bag, there will
be i counterfeit coins, so the final weight will be 550 +i. Since i is distinct f(:fr ea(l:h bag,
we can identify the counterfeit coin bag as well as whether the counterfeit coins are

lighter or heavier than the real coins using 550 .

This is not the only answer: we can choose other numbers of coins from each bag as long
as they are all different numbers.

Glass balls

You are holding two glass balls in a 100-story building. If a bal] is .thrown out of th.e
window, it will not break if the floor number is less than X, and it will always break if

’ Hint: In order to find the counterfeit coin bag in one weighing, the number of coin§ from each bag must
be different. If we use the same number of coins from two bags, symmetry will prevent you from

distinguish these two bags if one is the counterfeit coin bag.
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the floor number i.s eqL.la.l to or greater than X. You would like to determine .X. What is
the strategy that will minimize the number of drops for the worst case scenario? '’

Solution. Suppose that we have a strategy with a maximum of N throws. For the first
throw of ball one, we can try the N-th floor. If the ball breaks, we can start to try the
second ball from the first floor and increase the floor number by one until the second
ball breaks. At most, there are N -1 floors to test. So a maximum of N throws are
enough to cover all possibilities. If the first ball thrown out of N-th floor does not break
we have N —1- throws left. This time we can only increase the floor number by N -1 fog
the first ball since the second ball can only cover N -2 floors if the first bal}l/ breaks. If
the first ball thrown out of (2N-1)th floor does not break, we have N —2 throws left. 'So

we can only increase the floor number b :
y N -2 for the first bal
can only cover N -3 floors if the first ball breaks. .. P e doodnd A8

U§ing such logic, we can see that the
with a maximum of N throws is N +

stories, we need to have N(N +1)/2

number of floors that these two balls can cover
(N—1)+---+1 =N(N +1)/2. In order to cover 100
2100. Taking the smallest integer, we have N =14.

Basically, we start the first bal i
stizrecbivbiniing 1,2,"31 on the 14th floor, if the ball breaks, we can use the

13 with a i
14th floor is X). If the first maximum throws of 14 (when the 13th or the

ball does not break ;
14+(14-1)= 3 cak, we will try the first ball the
(14-1)=27th floor. If it breaks, we can use the second ball to cover C‘fqoors

15,16, -+, 26 with a tota] maximum throws of 14 as well...

2.6 The Pigeon Hole Principle

Here is the basic version of the P _
than pigeons and ¢ Pigeon Hole Pri

10 g g
Hint: Assume we desi

ball can cover ¥ - p 80 a strategy with N

. maxi
00rs; ifthefirst ball is thrown twien g -,

: rst ball is t
thrown twice, the sec and hrown once, the second

ball can cover N -2 floors...
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Matching socks

Your drawer contains 2 red socks, 20 yellow socks and 31 blue socks. Being a busy and
absent-minded MIT student, you just randomly grab a number of socks out of the draw
and try to find a matching pair. Assume each sock has equal probability of being
selected, what is the minimum number of socks you need to grab in order to guarantee a
pair of socks of the same color?

Solution: This question is just a variation of the even simpler version of two-color-socks
problem, in which case you only need 3. When you have 3 colors (3 pigeon holes), by
the Pigeon Hole Principle, you will need to have 3+1=4 socks (4 pigeons) to guarantee
that at least two socks have the same color (2 pigeons share a hole).

Handshakes

You are invited to a welcome party with 25 fellow team members. Each of the fellow
members shakes hands with you to welcome you. Since a number of people in the room
haven’t met each other, there’s a lot of random handshaking among others as well. If you
don’t know the total number of handshakes, can you say with certainty that there are at
least two people present who shook hands with exactly the same number of people?

Solution: There are 26 people at the party and each shakes hands with from 1—since
everyone shakes hands with you—to 25 people. In other words, there are 26 pigeons and
25 holes. As a result, at least two people must have shaken hands with exactly the same

number of people.

Have we met before? |

Show me that, if there are 6 people at a party, then either at least 3 people met each other
before the party, or at least 3 people were strangers before the party.

Solution: This question appears to be a complex one and interviewees often get puzzled
by what the interviewer exactly wants. But once you start to analyze possible scenarios,

the answer becomes obvious.

Let’s say that you are the 6th person at the party. Then by generalized Pigeon Hole
Principle (Do we even need that for such an intuitive conclusion?), among the remaining

5 people, we conclude that either at least 3 people met you or at least 3 people did not
meet you. Now let’s explore these two mutually exclusive and collectively exhaustive

scenarios:
Case 1: Suppose that at least 3 people have met you before.

21
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If twq people in this group met each other, you and the pair (3 people) met each other. If
no pair among these people met each other, then these people (> 3 people) did not meet
each other. In either sub-case, the conclusion holds.

Case 2: Suppose at least 3 people have not met you before.

If two people in this group did not meet each other, you and the pair (3 people) did not
meet each other. If all pairs among these people knew each other, then these people (>3
people) met each other. Again, in either sub-case, the conclusion holds.

Ants on a square

There are 51 ants on a square with side length of 1. If you have a glass with a radius of

1/7, can you put your iy
: glass at a position on the square to
encompasses at least 3 ants?'! q guarantee that the glass

So!ufio;?: To guarantee that the glass encom
Square into 25 smaller areas. Applying the
show that at least one of the areas

passes at least 3 ants, we can separate the
s generalized Pigeon Hole Principle, we can
: must have at least 3 ants. So we only need to make
sure that the glass is large enough to cover any of the 25 smaller areas. Simply separate

the area into 5x5 smaller s L
: quares with side length of : . ¢ :
radius of 1/7 can cover a square'” with side leng%h 1015 10 T NG Siceriren

Counterfeit coins Ii N

11 .
Hint: Separate the s i
IR 3 € square into 25 smaller areas: th
13 aiztcéfa:"h_:‘:dlus can cover a square with s:ideell::l?tg:;:a:[t) (:: eJE iy h: sJa“ ishihy
: with a simpler problem. What i 2rand 2 = 1414,
You need from each bag to find the typeat if you have two bags of coins instead of 5, how many coins do

of coins in e s
numbers? Then how about three bags? NS in either bag? What is the minimum difference in coin
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we only use 2 coins from bag 2, the final sum for 1 coin from bag 1 and 2 coins from
bag 2 ranges from -3 to 3 (7 pigeon holes). At the same time we have 9 (3x3) possible
combinations for the weights of coins in bag 1 and bag 2 (9 pigeons). So at least two
combinations will yield the same final sum (9>7, so at least two pigeons need to share
one hole), and we can not distinguish them. If we use 3 coins from bag 2, then the sum
ranges from -4 to 4, which is possible to cover all 9 combinations. The following table
exactly shows that all possible combinations yield different sums:

Sum 1 coin, bag 1

| 0 1
a0 [
o
Al -4 3.2
L
3| 0 -1 0 1
o
wiid | 2 3 4

Cland C2 represent the weights of coins from bag 1 and 2 respectively.

Then how about 3 bags? We are going to have 3’ =27 possible combinations. Surely an
indicator ranging from —13 to 13 will cover it and we will need 9 coins from bag 3. The

possible combinations are shown in the following table:

Sum 2+-1 C2=0 C2=1
P i 0 1 -1 0 1 -1 0 1
-4
= CRRES IR T SR it 10 o IR 6l -3
w
2 el b, indiin ol atilii i3 3. .4
o
o 5 61018 8 o 110 1 VIEAE

C1, C2, and C3 represent the weights of coins from bag 1, 2, and 3 respectively.

Following this logic, it is easy to see that we will need 27 coins from bag 4 and 81 coins
from bag 5. So the answer is to take 1, 3, 9, 27 and 81 coins from bags 1, 2, 3, 4, and 5,
respectively, to determine which type of coins each bag contains using a single weighing.

2.7 Modular Arithmetic

The modulo operation—denoted as x%y or x mod y—finds the remainder of division of

number x by another number y. For simpicility, we only consider the case where y is a
positive integer. For example, 5%3=2. An intuitive property of modulo operation is
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that if x, %y =x,%y, then (x, —x,)%y =0. From this property we can also show that

x%y, (x+1)%y, -, and (x+y-1)%y are all different numbers.

Prisoner problem

One hundred prisoners are given the chance to be set free tomorrow. They are all told
that each wil! be given a red or blue hat to wear. Each prisoner can see everyone else’s
hat but not his own. The hat colors are assigned randomly and once the hats are placed
on top of eacl'l prisoner's head they cannot communicate with one another in any form, or
else th_ey are immediately executed. The prisoners will be called out in random order i;l'ld
the prisoner called out will guess the color of his hat. Each prisoner declares the color of

Els hat 50 that ev?ryone_else can hear it. If a prisoner guesses correctly the color of his
at, he is set free immediately; otherwise he is executed.

Tl‘}ey are given the night to come u
prisoners as possible. What is the
can they guarantee to save?'

p with a strategy among themselves to save as many
best strategy they can adopt and how many prisoners

Solution: At least 99 prisoners can be saved.

Eielzie?flti: ::l:lllje ErSft irésoner who can see everyone else’s hat. He declares his hat to
He Wall bk o 11 ¢ }?anf htflts he sees is odd. Otherwise he declares his hat to be blue.
bhe1 ovi kk loolcd Mt ;e of having guessed correctly. Everyone else is able to deduce
among 99 prisoners lllllng. the knowledge whether the number of red hats is odd
ekuaite ge;? uding the first) and the color of the other 98 prisoners
the other 99 prisone?: A vt example, if the number of red hats is odd among
the other 98 pri soners' (expll.lsd(.)'ner wearing a red hat will see even number of red hats in
red hat. cluding the first and himself) and deduce that he is wearing a

The two-color case is isn’t it? Wh
E eas)’, 1sn't it? 1 .
white? What is the beg o at if there are 3 possible hat colors: red, blue, and

trate
guarantee to save?'’ gy they can adopt and how many prisoners can they

1

scoring system: red=0, green=1. and b ' chance of survival. Let’s use the following
> and blue=2. The first prisoner counts the total score for
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the rest of 99 prisoners and calculates 5%3. If the remainder is 0, he announces red; if
the remainder is 1, green; 2, blue. He has 1/3 chance of living, but all the rest of the
prisoners can determine his own score (color) from the remainder. Let’s consider a
prisoner i among 99 prisoners (excluding the first prisoner). He can calculate the total

score (x) of all other 98 prisoners. Since (x+0)%3, (x+1)%3, and (x+2)%3 are all

different, so from the remainder that the first prisoner gives (for the 99 prisoners
including #), he can determine his own score (color). For example, if prisoner i sees that
there are 32 red, 29 green and 37 blue in those 98 prisoners (excluding the first and
himself). The total score of those 98 prisoners is 103. If the first prisoner announces that
the remainder is 2 (green), then prisoner i knows his own color is green (1) since
only 104%3 = 2 among 103, 104 and 105.

Theoretically, a similar strategy can be extended to any number of colors. Surely that
requires all prisoners to have exceptional memory and calculation capability.

Division by 9
Given an arbitrary integer, come up with a rule to decide whether it is divisible by 9 and
prove it.

Solution: Hopefully you still remember the rules from your high school math class. Add
up all the digits of the integer. If the sum is divisible by 9, then the integer is divisible by
9; otherwise the integer is not divisible by 9. But how do we prove it?

Let’s express the original integer as a =a,10" +a, 10" +---+ 10 +a,. Basically we
state that if a, +a, , +---+a +a,=9x (x is a integer), then the a is divisible by 9 as
well. The proof is straightforward:

For any a=a,10"+a, 10" +--+410'+a, let b=a-(a,+a, ++a+a) We
have b=a, (10" -1)+a,,(l 0" =D +--+a/l 0'—1)=a—9x, which is divisible by 9
since all (10* -1), k =1,---,n are divisible by 9. Because both b and 9x are divisible by 9,
a =b+9x must be divisible by 9 as well.

(Similarly you can also show that a=(-1)"a, +(=1)""a,  ++(1)'a +a,=1lx is the
necessary and sufficient condition for a to be divisible by 1 1.)
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Chameleon colors

A remote island has three types of chameleons with the following population: 13 red
chameleons, 15 green chameleons and 17 blue chameleons. Each time two chameleons
with different colors meet, they would change their color to the third color. For example,
if a green chameleon meets a red chameleon, they both change their color to blue. Is it
ever possible for all chameleons to become the same color? Why or why not?'®

Solution: 1t is not possible for all chameleons to become the same color. There are
several approaches to proving this conclusion. Here we discuss two of them.

Approach 1. Since the numbers 13, 15 and 17 are “large” numbers, we can simplify the
probl?m to 0, 2 and 4 for three colors. (To see this, you need to realize that if
combination (m+1,n+1,p+1) can be converted to the same color, combination

(m,n, p) can be converted to the same color as well.) Can a combination (0,2.4) be
converted to a combination (0,0,6)? The answer is NO, as shown in Figure 2.3:

(0,2,4) & »1,2,3)

\(0, 1,5) /

Figure 2.3 chameleon color combination transitions from (0, 2, 4)

Actually combination (1,2,3) is equivalent to combination (0,1,2), which can only be
converted to another (0,1,2) but will never reach (0,0,3).

Approach 2. A different
all the chameleons to
must have the same n
must has the combin

+ and more fundamental approach, is to realize that in order for
become the same color, at certain intermediate stage, two colors
Ufnber. To see this, just imagine the stage before a final stage. It
same be . ation (L,1,x). For chameleons of two different colors to have the
number, their module of 3 must be the same as well. We start with 15 =3x,
13=3y+1, and 17=32+2 chameleon, wh .

. en two chameleons of different colors meet,
we will have three possible scenarios:

|6 . .
Hint: consider the numbers in module of 3
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(Bx+2,3y,3z+1)=(3x",3y'+1,3z'+2),
(3x.3y+1,3z+2)=> (3(x—l)+2,3(y+1),3z+1)=(3x',3y'+1,32'+2),onexmeetsonez
(3(x-1)+2,3y,3(z+1)+1) = (3x',3y'+1,3z'+2), onexmeetsone y

one y meetsone z

So the pattern is preserved and we will never get two colors to have the same module of
3. In other words, we cannot make two colors have the same number. As a result, the
chameleons cannot become the same color. Essentially, the relative change of any pair of
colors after two chameleons meet is either 0 or 3. In order for all the chameleons to
become one color, at least one pair’s difference must be a multiple of 3.

2.8 Math Induction

Induction is one of the most powerful and commonly-used proof techniques in
mathematics, especially discrete mathematics. Many problems that involve integers can
be solved using induction. The general steps for proof by induction are the following:

= State that the proof uses induction and define an appropriate predicate P(n).
= Prove the base case P(1), or any other smallest number 7 for the predicate to be true.

= Prove that P(n) implies P(n+1) for every integer n. Alternatively, in a strong
induction argument, you prove that P(l), P(2), -, and P(n) together imply
P(n+1).
In most cases, the real difficulty lies not in the induction step, but to formulate the
problem as an induction problem and come up with the appropriate predicate P(n). The
simplified version of the problem can often help you identify P(n).

Coin split problem

You split 1000 coins into two piles and count the numbffr of coins in each pile. If there
are x coins in pile one and y coins in pile two, you multiple x by y to get xy. Then you
split both piles further, repeat the same counting and multiplicat.ion process, and add the
new multiplication results to the original. For example, you split x to x; andx,, y to y,
and y,, then the sum is xy+XX, +),y,. The same process is repeated until you only

have piles of 1 stone each. What is the final sum? (The final 1’s are .not inclu-dffd in the
sum.) Prove that you always get the same answer no matter how the piles are divided.
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Solution: Let n be the number of the coins and f(n) be the final sum. It is unlikely that
a solution will jump to our mind since the number » =1000 is a large number. If you
aren’t sure how to approach the problem, it never hurts to begin with the simplest cases
?.nd try to find a pattern. For this problem, the base case has n=2. Clearly the only split
is 1+1 a.ncl t?le final sumis 1. When »n =3, the first split is 2+1 and we have xy =2 and
the_ 2-coin Plle will ‘further giye an extra multiplication result 1, so the final sum is 3.
This analyms' also gives the hint that when » coins are split into x and #n—x coins, the
total sum will be f(n)=x(n-x)+ f(x)+ f(n—x). 4 coins can be split into 2+,2 or

S3ll4r~nl.61-“or either case we can apply x(n—x)+ f(x)+ f(n—x) and yields the same final

Claim: For n coins, independent of intermediate splits, the final sum is n(n=1)

S X
hgvgog.oic; ;vet:h prowlzel it? The answer should be clear to you: by strong induction. We
e claim for the base cases n=2,3,4. Assume the claim is true for

n= 2’. £ A4 H .
N -1 coins, we need to prove that it holds for 1 = N coins as well. Again we

apply the equation f(n)= x(n- : \
N —x coins, we ha\{e )=X(1=x)+ f()+ f(n=2). If N coins are split into x coins and

J(N)=x(N=-x)+ f(x)+ f(N -x)
—x(N-x)+ YN (N-x)(N-x-1) N(N-1)

2 2 i b

So indeed it holds for n= N as well and f(n)= gln-1)

. is true for any n> 2. Applying
the conclusion to 7 =1000, we have f(n)=1000x999/2

Chocolate bar problem

two smaller rectang] break i
! gles. For example, i , break one rectangle 1nto
bar into a 6x3 one and a 6 ple. in the first step you can break the 6x8 chocolate

x5 one. What i
to break the chocolate bar into 48 small squl;r;lgg total number of breaks needed in order

17
f@=1, f3)- f2)=2
and f(4)- £(3) =3 should give you enough hint to realize th is
f(ﬂ)=l+2+..‘+(n_]):ﬂ:3_—_2 realize the pattern
1t
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Solution: Let m be the number of the rows of the chocolate bar and »n be the number of
columns. Since there is nothing special for the case m=6 and n = 8, we should find a

general solution for all m and n. Let’s begin with the base case where m =1 and n=1.
The number of breaks needed is clearly 0. For m>1 and n=1, the number of breaks is

m—1; similarly for m=1 and n>1, the number of breaks is n—1. So for any m and n,

if we break the chocolate into m rows first, which takes m —1 breaks, and then break
each row into n small pieces, which takes m(n—1) breaks, the total number of breaks is

(m-1)+m(n-1)=mn-1. If we breaks it into n columns first and then break each

column into m small pieces, the total number of breaks is also mn—1. But is the total
number of breaks always mn—1 for other sequences of breaks? Of course it is. We can

prove it using strong induction.

We have shown the number of breaks is mn—1 for base cases m=1,n=1 and
m=1, n>1. To prove it for a general mxn case, let’s assume the statement is true for
cases where rows <m, columns<n and rows=<m, columns < n. If the first break is
along a row and it is broken into two smaller pieces mxn, and mx(n—n,), then the

total number of breaks is 1+(mxn,—1)+(mx(n—n,)—1)=mn—1. Here we use the

results for rows <m, columns <n. Similarly, if it is broken into two pieces m, Xn and

(m—m,)xn, the total number of breaks is 1+(mlxn—1)+((m—ml)xn—l)zmn—l. So

the total number of breaks is always mn—1 in order to break the chocolate bar into
mxn small pieces. For the case m = 6 and n =8, the number of breaks is 47.

Although induction is the standard approach used to solve this problem, there is actually
a simpler solution if you’ve noticed an important fact: the number of pieces always
increases by 1 with each break since it always breaks one piece into two. In the
beginning, we have a single piece. In the end, we will have mn pieces. So the number of

breaks must be mn—1.

Race track

Suppose that you are on a one-way circular race track. There are N gas cans randomly
tions of the track and the total sum of the gas in these cans is

placed on different loca ;
enough for your car to run exactly one circle. Assume that your car has no gas in the gas
location on the track and you can pick up

tank initially, but you can put your car at any :
the gas cans along the way to fill in your gas tank. Can you alwell;{s choose a starting
position on the track so that your car can complete the entire circle?

8 Hint: Start with N = 1, 2 and solve the problem using induction.
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Solution: If you get stuck as to how to solve the problem, again start with the simplest
cases (N =1, 2) and consider using an induction approach. Without loss of generality,

let’s assume that the circle has circumference of 1. For N =1, the problem is trivial. Just
start at where the gas can is. For N =2, The problem is still simple. Let’s use a figure to

visualize the approach. As shown in Figure 2.4A, the amount of gas in can | and can 2,
expressed as the distance the car can travel, are x, and x, respectively, so x, +x, =1.

The corresponding segments are Y, and y,, so y,+y,=1. Since x,+x,=1 and

Yi+yy =1 wemusthave x, 2 y, or x, >y, (x, < ¥, and x, < y, cannot both be true). If
> i

%1 =Yy, We can start at gas can 1, which has enough gas to reach gas can 2, and get more

gas from gas can 2 to finish the whole circle. Otherwi il j
. - Otherwise, we will just start at gas can 2
and pick up gas can 1 along the way to finish the whole circle. ! i

Yi

Y2
Y

A Yi
B

Figure 2.4 i
lo Gas can locations on the cycle and segments between gas cans

shown in
yl +y2 +"'+y”+| =1 fOr N

has x, 2 ¥, That means w
(For i =

Figure

24B, we have X, +x2 +oeeed X, 0= 1 al‘ld

=n+l, i
So there must exist at least one i, 1<i<n+]1, that
| henever the car reaches x
n+l.i ] i 4
s1tgoesto i =1 instead). In other words
X, 10 one gas can at th iti ’
i € position of x, with an amo
as can i :
g _ an i+1). But such combination reduces t

it can reach x_, with more gas
we can actually “combine” x, and
unt of gas x, +x,,, (and eliminate
he N'=n+1 problem to N =n, for
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which the statement holds. So the statement also holds for N =n+1. Hence we can
always choose a starting position on the track to complete the entire circle for any N.

There is also an alternative approach to this problem that provides a solution to the
starting point. Let’s imagine that you have another car with enough gas to finish the
circle. You put that car at the position of a randomly chosen gas can and drive the car for
a full circle. Whenever you reach a gas can (including at the initial position), you
measure the amount of gas in your gas tank before you add the gas from the can to your
gas tank. After you finish the circle, read through your measurement records and find the
lowest measurement. The gas can position corresponding to the lowest measurement
should be your starting position if the car has no gas initially. (It may take some thinking
to fully understand this argument. I’d recommend that you again draw a figure and give
this argument some careful thoughts if you don’t find the reasoning obvious.)

2.9 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were false,
then some logical contradiction or absurdity would follow. Thus, the proposition must be

true.

Irrational number

Can you prove that J2 is an irrational number? A rational number is a number that can
be expressed as a ratio of two integers; otherwise it is irrational.

Solution: This is a classical example of proof by contradiction. If J2 is not an irrational
number, it can be expressed as a ratio of two integers m and n. If m and n have any
common factor, we can remove it by dividing both m and n by the common factor. So in
the end, we will have a pair of m and »n that have no common factors. (It is called
irreducible fraction.) Since m/ n=+2, we have m*> =2n’. So m’ must be an even
number and m must be an even number as well. Let’s express m as 2x, where x is an
integer, since m is even. Then m” =4x’ and we also have n® =2x’, which means n
must be even as well. But that both m and n are even contradicts the earlier statement

that m and » have no common factors. So \E must be an irrational number.

Rainbow hats

Seven prisoners are given the chance to be set free tomorrow. An executioner will put a
hat on each prisoner’s head. Each hat can be one of the seven colors of the rainbow and
the hat colors are assigned completely at the executioner’s discretion. Every prisoner can
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see the hat colors of the other six prisoners, but not his own. They cannot communicate
with others in any form, or else they are immediately executed. Then each prisoner
writes down his guess of his own hat color. If at least one prisoner correctly guesses the
color of his hat, they all will be set free immediately; otherwise they will be executed.

They are given the night to come up with a strategy. Is there a strategy that they can
guarantee that they will be set free?'’

.Solu!ion: This problem is often perceived to be more difficult than the prisoner problem
in the modular arithmetic section. In the previous prisoner problem, the prisoners can
hear oth‘ers’ guesses. So one prisoner’s declaration gives all the necessary information
other prisoners need. In this problem, prisoners won’t know what others’ guesses are. To
solve the problem, it does require an aha moment. The key to the aha moment is given

by the hint. Once you realize that if we code the colors to 0-6, (Z?:x J%? must be
i=l

amlfiﬂg 0, 1, 2,.3, 4,5 or 6 as well. Then each prisoner i—let’s label them as 0-6 as

well—should give a guess g, so that the sum of g, and the rest of 6 prisoners’ hat color

codes will give a remainder of i when divided by 7, where g, is a unique number

between 0 and 6. For example, prisoner 0’s guess should make [go o+ Zxk ]%730'
i k=0
This way, we can guarantee at least one of g, =x, for i=0,1,2,3.4.5.6

We ¢ i : : : ?
an easily prove this conclusion by contradiction. If g #x,, then (Z%J%ﬂfﬂ

i=l

ki

(since + 0 ;
8+ 2% |%7#i and g,and x; are both between 0 and 6). But if g, #x, forall

i=0,1,2,3,4,5 :
. and 6, then [ x,J%’F #0,1,2,3, 4,5,6, which is clearly impossible. So

i S - u lng h S g . y

i=]

Chapter 3 Calculus and Linear Algebra

Calculus and linear algebra lay the foundation for many advanced math topics used in
quantitative finance. So be prepared to answer some calculus or linear algebra
problems—many of them may be incorporated into more complex problems—in
quantitative interviews. Since most of the tested calculus and linear algebra knowledge
is easy to grasp, the marginal benefit far outweighs the time you spend brushing up your
knowledge on key subjects. If your memory of calculus or linear algebra is a little rusty,
spend some time reviewing your college textbooks!

Needless to say, it is extremely difficult to condense any calculus/linear algebra books
into one chapter. Neither is it my intention to do so. This chapter focuses only on some
of the core concepts of calculus/linear algebra that are frequently occurring in
quantitative interviews. And unless necessary, it does so without covering the proof,
details or even caveats of these concepts. If you are not familiar with any of the concepts,
please refer to your favorite calculus/linear algebra books for details.

3.1 Limits and Derivatives

Basics of derivatives

Let’s begin with some basic definitions and equations used in limits and derivatives.
Although the notations may be different, you can find these materials in any calculus
textbook.

d SR ! x+Ax)- f(x
Derivative: Let y = f(x), then f'(x) =Ey= lim =~ = lim A )—J ()

Ax—0 Ay Ax—0

The product rule: If u=u(x) and v=v(x) and their respective derivatives exist,

d(uv)= qr v-d—u, (uwv)'=u'v+uv'
dx dx

, d(u) (.du__av)/, (u)_uv-uw
The quotient rule: E(:}_[Vhd;-udxj/v ’ [v] ¥

dy dydu
The chain rule: If y= f(u(x)) and u=u(x), then 71 % :};E

dyn n-1 4V f
: ERCE8h — for Vn#0
The generalized power rule: ny ;

Some useful equations:
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ax___exlua ln(ab)=lna+lnb ex=lim(1+_i_)n

n—a

!‘ij)];‘l'iL:L:l Liilg(1+x)"=l+kr for any k

Erg(ln x/x")=0 forany r>0 limx"e™ =0 for any r

X—a0

QR RIIE: da" '
—e' =¢"'— —a-=(a” lna}é{ —a-l—lnu=l£{£=i‘-
dx u

dx dx dx Srhihe

: d d
—SINX=COSX, —COSX = —Si P b 2
51 H SX sinx, dxtanx-sec X

What is the derivative of y = In x"* 9!
Solution: This is a good

: problem to test i ivative f
specifically, the chain rule and the produ(iorltl:ieknowwdge AfRmhea

Let u=1In =In(1 Inx) :
Y ( R ) InxxIn(Inx). Applying the chain rule and the product rule,

we have
du d(lny) ldy dq
i “T=;E= (dl;x)xln(lnx)+lnxxd(ln(lnx)) = ln(lnx)+ In x
d(l dx X xInx’
d In x)
To derive n( i
dx ° "eagain use the chain rule by sefting v=Inx:
d (In(In x)) _dnv)yay 1 1
dx dv dl‘_-';x;:xlnx

. lay In(lnx) Iny d
e s el AN —-}—)-_-2).. ] Inx

y dx ¥ [lixlx | & x(ln(lnx)+1)= = (In(inx)+1).

X

Maximum and minimum

Derivative £ (x) is essentially

1 the Slo e .
the instantaneous rate of chan pe of the tangent line to the curve y = f(x) and

ge (velocity) of Y with respect to x. At point x =¢, if

i = f(x)", it is common to take natural
> SInce d(lny)fdx A ]fyx@/dx,
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f'(¢)>0, f(x) is an increasing function at ¢; if f'(c) <0, f(x) is a decreasing
function at c.

Local maximum or minimum: suppose that f(x) is differentiable at ¢ and is defined
on an open interval containing c. If f(c) is either a local maximum value or a local
minimum value of f(x), then f'(c)=0.

Second Derivative test: Suppose the secondary derivative of f(x), f"(x), is
continuous near ¢. If /'(¢)=0 and f"(c)>0, then f(x) has a local minimum at ¢; if
f'(c)=0 and f"(c)<0,then f(x) hasa local maximum at c.

Without calculating the numerical results, can you tell me which number is larger, " or
en2
7

Solution: Let’s take natural logs of e™ and 7°. On the left side we have 7lne, on the
Ine Inx

right side we have elnz. If e” >7°, ¢" >7° & zxIne>exlnz Sapaae,

Inx . ) ' : !
Is it true? That depends on whether f(x)=——1s an increasing or decreasing function
x

/xxx-Inx I-Inx

from ¢ to 7. Taking the derivative of f(x), we have fix)= > =T
which is less than 0 when x>e (Inx>1). In fact, f(x) has global maximum when
x=e forall x>0. So _111_e>l££ and e* > 7°.
e V4
Alternative approach: If you are familiar with the Taylor’s series, which we will discuss
. RERIPRRE T e b T it
in Section 3.4, you can apply Taylor’s series to e = € = n:(;ﬁ: l+ﬁ+z+aﬁ+--— So

/
e >1+x, Vx>0.Let x=x/e—1,then e"'¢le>mle & "¢ .

L’Hospital’s rule
Suppose that functions f(x)and g(x)are differentiable at x — a and that LI_I’I‘; g
and limg(a)=0 or that lim f(a)— too and

(a)#0.

Further suppose that lim f(a) = 0

? Hint: Again consider taking natural logs on both sides: Ina>Inb=>a>b since Inx is a

monotonously increasing function.
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lim g(a) — too, then lim-[-(f-)-=limM. L’Hospital’s rule converts the limit from

r—3a g(x) x—a g'(x)
an indeterminate form to a determinate form.

What is the limit of e /x* as x — o0, and what is the limit of x*In x as x — 0" ?

;g

, el ] .
Solution: lim—: is a typical example of L’Hospital’s rule since lime* = and

X=p0
K X

lim x* =oo. Applying L’Hospital’s rule, we have

f(x) H _f_lﬂ: Vg

lim—-——zlim—Tzlim lim—.
w0 g(x) exl xwgi(x)  con 2y

The result still has the property that ch{{n J(x)=lime* =0 and lim g(x) = lim 2x =0, 0

we can apply the L’ Hospital’s rule again: -

ALY L LIRE 1 e § 8 i
iy o=l EB i iy AV
g (x) =50 Dy xow d(2X)i"r dx x> D }

At first look, L’Hospital’s rule does not appear to be applicable to lim x* Inx since it’s

x—0"

not in th - S()
e format of !‘12} s However, we can rewrite the original limit as lim 'IE'?'
x0T i XY

and it becomes obvious that lim x7

omx = and limInx=-w. So we can now apply

x—0*

L Hospital’s rule:

lim lenx=lim-lﬂ.{=1im d(Inx)/dx 1/x TE] gt
e s e g T g = 0
3.2 Integration

Basics of integration

Again, let’s begin with some basic definitio

If we can find a function F
antiderivative of f(x).

ns and equations used in integration.
(*) with derivative f(x), then we call F(x)ad

If =F"
TO=F@. [[16)= [ Py =g = F(b)~ F(a)

36

A Practical Guide To Quantitative Finance Interviews

) _ fx), Flay=y, = Fx)=y,+ I:f(‘)df

k+1

The generalized power rule in reverse: Iu*duz :+i+c (k #1), where ¢ is any

constant.

Integration by substitution:

[7(g())- g ) = [fQudu with u=g(x). du=g'(x)d
Substitution in definite integrals: [ /(g(x))- g'(x)dx = J::‘: f(u)du

Integration by parts: _[udv =uv— |vdu

A. What is the integral of In(x)?

Solution: This is an example of integration by parts. Let #=Inx and v=x, we have
d(uv) = vdu + udv = (x x1/ x)dx +In xdx

Jln xdx=xInx- de = xIn x — x+ ¢, where ¢ is any constant.

B. What is the integral of sec(x) fromx=0tox = 7/6?

Solution: Clearly this problem is directly related to differentiation/integration of
trigonometric functions. Although there are derivative functions for all basic

#i.
trigonometric functions, we only need to remember two of them: Esmxzcos .

—d—cos x = —sin x. The rest can be derived using the product rule or the quotient rule. For

example,
dsecx _d(l/cosx) _ szx =secxtanx,

dx dx cos” x

: 2 in’
n°x

d tan x { d(sinx/cosx) _ cos x+le Lissetbe

dx dx cos” X

x

d(secz-tan )=secx(S€CX+tanx)°

37




Calculus and Linear Algebra

Since the (sec x +tan x) term occurs in the derivative, we also have

dln|secx+tanx| secx(secx+tanx)

=secx
dx (sec x + tan x)

= _[secx:ln[secx+tanx[+c

and f msec.vc = In(sec(7 / 6) + tan(rz / 6)) —In(sec(0) + tan(0)) = ln(s/§ )

Applications of integration
A. Suppose t-hat two cylinders each with radius 1 intersect at right angles and their
centers also intersect. What is the volume of the intersection?

Solution: This problem is an a

: pplication of integration to volume calculation. For these
applied problems, the most dj

fficult part is to correctly formulate the integration. The
general integration function to calculate 3D volume is J/ = f’ A(z)dz where A(z) is the

cross-sectional area of the solid cut by a plane

dicul -axi dinate z.
The key here is to find the perpendicular to the z-axis at coordin

right expression for cross-sectional area 4 as a function of z.
Figure 3.1 gives us a clue. If you cut the intersection
be a square with side-length y(2r) ~(22)’
calculate the total volume as

2x _':[(2!')2 -(22)2]0'2 =8><|:r22~z3 /3] =16/3r’ =16/3.

r
0

by a horizontal plane, the cut will

. Taking advantage of symmetry, we can

An alternative approach requj
An alter quires even i
I Inscribed inside both nn

! be agination. Let’s imagine a sphere that
cylinders, so it is inscribe

itengy . d inside the intersection as well. The
phere should have a radiys of r/2. At each cut perpendicular to the z-axis, the circle

from the sphere is jpscr: 1
A, =Z 4 i s-ls m:s cribed in the Square from the intersection as well. S0
circle =4 Asquare+ SINCE it’s true for al] values, we have

V == 4 ry3 _
sphere TI(T) T %V;nwrsecmm = Villwrsec.-;m 4 16}(3’,3 i 16;3
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Figure 3.1 Interaction of two cylinders

B. The snow began to fall some time before noon at a constant rate. The city of
Cambridge sent out a snow plow at noon to clear Massachusetts Avenue from MIT to

Harvard. The plow removed snow at a constant volume per minute. At 1 pm, it had
moved 2 miles and at 2 pm, 3 miles. When did the snow begin to fall?

Solution: Let’s denote noon as time 0 and assume Snow began to fall T’ ho'urs before

noon. The speed at which the plow moves is inversely related to the ve.rucal Cross-

sectional area of the snow: v = ¢, / A(t), where v is the speed of the plow, ¢, isa cm']stant

representing the volume of snow that the plow can remo‘ve every hour and A(7) is the

cross-sectional area of the snow. If ¢ is defined as the tlm(? after noon, we al§0 have

A(t) = ¢,(t+T), where ¢, is the rate of cross-sectional area increase per hour (since the
!

G = where ¢=—. Taking the
G+T) i t+T c,

snow falls at a constant rate). So v=

integration, we have

1+7T
.E C df:(,"lrl(l'l'T}—ClnTzcln[ 7 ]=2,
T+t

2+T
f~c—dr=cln(2+T)—clnT=cln( T ]=3
T+t

From these two equations, we get

(HTT =[2+T]22972-—T+1=02T=(\/§—1)"2-
Tr 4
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Overall, this question, although fairly straightforward, tests analytical skills, integration
knowledge and algebra knowledge.

Expected value using integration

Integration is used extensively to calculate the unconditional or conditional expected
value of continuous random variables. In Chapter 4, we will demonstrate its value in
probability and statistics. Here we just use one example to show its application:

If X is a standard normal random variable, X ~ N(0, 1), whatis E[X | X >0]?

Solution: Since X ~ N(0, 1), the probability density function of x is f (x)=7-2'?e'” 24

and we have E[X | X >0]= Exf(x)dx= fxﬁe"”"zdx.

Because d(-1/2x")=-x and je"dy=e“+c, where ¢ is an arbitrary constant, it is

obvious that we can use integration by substitution by letting u =—1/2x. Replace

=1/2t u .
e with e“ and xdx with —du, we have

f J" e3¢ gy = F——e”du—— x[e“]ﬂz*;(o )= TJB where I:“J:p is
determined by x = O:>u—0 and x=0=>y=-om,

. E[X|X>0]=1/y27

3.3 Partial Derivatives and Multiple Integrals

Partial derivative: w= f(x, )= %xf—(xﬁ, ¥o) = lim SO + A%, yy) = £ (%65 o)
Ax

Second order partial derivatives: f g (af) 4 LA (6f) *—( f
o' ox'ox axdy oxdy oy o

The general chain rule: Suppose that w = f (x,
1%

=

Xy ,xm) and that each of variables

- IRk SRERY
1 % X, 1s a function of the variables fiy ty, -, t . If all these functions have
continuous first-order partial derivatives, then ow _ow 6x o oW ow @x2 ow 0%, gor

et
each i, 1<i<n, o ox o ox, at ox, o,
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Changing Cartesian integrals into polar integrals: The variables in two-dimension
plane can be mapped into polar coordinates: x =rcos#, y =rsiné. Tthe integration in a

continuous polar region R is converted to

Hf(x, y)dxdy = ﬂf(r cos@,rsin@)rdrdo.
R R

Calculate f e 2y

Solution: Hopefully you happen to remember that the probability density function (pdf)

=x3 42

A L 1 I
of the standard normal distribution is f(x) = Fe . By definition, we have
V4

J: J(x)dx = -[i\/—;—;e“z”dr = ZE\[—;—;e“E”zdx =1=3 fe""zf'zdx & \/%

If you’ve forgotten the pdf of the standard normal distribution or if you are specifically

asked to prove J:-\/%e"‘l’ 2dx =1, you will need to use polar integrals to solve the
n

problem:

Jje_xz 12 gy [‘ e"”z’rzdy il [‘ [Ze“’z+-"zmdxdy= ff” e—{rz00336+f'35in29)f’2rdrd9
-[ f”e-’”zrdrw:— [[erd(-r*12) ["ae

=[] [6F -
Since J: e Py = J:e_”zfzdy , we have J:e‘xzfzdx =27 = f e 2y = J%

3.4 Important Calculus Methods

Taylor’s series
One-dimensional Taylor’s series expands function f(x) as the sum of a series using the

derivatives at a point x =X, :

f(n)( 0) (x_xo)n = A

£ = S )+ £ )= 5) + LD =) o B
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" (n)
If x, =0, f(x):f(0)+f'(0)x+f—2(TQx2+~-+f—@x" +oe
! n!
Taylor’s series are often used to represent functions in power series terms. For example,

Tavlor’ ; ;
ylt:)r s series for three common transcendental functions, e*, sinx and cosx, at
X, =0 are

x < X . x3
e = — e Y
gn! +1!+2l+ 1+ ”

sinx = w—(:l):x_iﬁiz __x_3.+£___x_?_

n=0 (2n+l)! 3! 5! 7!+”'9
xS 2 g

n=0 (2}1)' 211141 6!+“.
The Taylor’s

SCTIes can also be expressed as the sum of the nth-degree Taylor
polynomial ?;(x)=f(xo).‘_Jr-(xn)(x_%)+ S (%)
2!

aremainder R (x): f (X)=T (x)+ R (x).

SR P
n!

For some ¥ between X, an f(n+1) s

dx) R =-—-—._(.£2, i+
s1id : (%) (n+1)! [x=x,["". Let M be the maximum of
If cnm(i‘)' forall ¥ between X, and x, we

|n+l

get constraint |R ( x)| < Mx| x—x,
(n+1)!

4. What is ;' 9

“ = cos@ +isin@, which
plying Taylor’s series 10

o _1. 10 (i0? (i8Y (g
€ —-l+—-—+._.__'__+(‘ ) +(19) i

Uil g her 3 g
REES Q0T P T ‘l“]-,-—z—'—i% A
2 : !4 !
cosé?-l_f__k__d_ﬁfi >
2 41 gt

sin&:g__gj__'_gi__ﬂ?

3 5 gt 2ising= 2,008 g
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Combining these three series, it is apparent that €'’ = cos €+ isin 6.
When &=, the equation becomes e” =cosr+isint=—1. When 8=r/2, the

equation becomes €"*'> = cos(z/2)+isin(z/2)= i.> So Ini= ln(ej”fz):i;rf‘?.

Hence, ln(i') =ilni=i(in/2)=-n/2=1 =e™ "2,

B. Prove (1+x)" >1+nx forall x>-1 and for all integers n2>2.

Solution: Let f(x)=(1+x)". It is clear that 1+ nx is the first two terms in the Taylor’s

series of f(x) with x, =0. So we can consider solving this problem using Taylor’s

series.

For x, =0 we have (1+x)" =1 for ¥n>2. The first and secondary derivatives of f(x)

are ['(x)=n(1+x)"" and f"(x)=n(n-1)1 +x)"%. Applying Taylor’s series, we have
/ 116)

£ = F(x,)+ £ )= %) + —2(,"-1 (r-x) = O+ O+ L2

=1+nx+n(n-1)(1+5)"x
where x<¥<0 if x<0 and x>%20 if x>0.

Since x> —1 andn>2, we have n>0, (n-1)>0, (1+%)"7 >0, x> 20.

Hence, n(n-1)(1+%)" x> 20 and f(x)=(1+x)" >1+nx.

If Taylor’s series does not jump to your mind, the condition that » is an integer may give
you the hint that you can try the induction method. We can rephrase the problem as: for

every integer n> 2, prove (1+x)" 21+nx for x>-1.

The base case: show (1+x)" 21+ nx,Vx>—1 when n =2, which can be easily proven
since (1+x)? 2142x+x> 21+2x, Vx>-1.

The induction step: show that if (1+x)" 21+nx,Vx>-1 when n= k, the same

statement holds for n=k+1:  (1+x)*' 21+(k+1)x,Vx>-1. This step is

straightforward as well.

* Clearly they satisfy equation (¢"*) =i' =¢“ =-1.
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(1+x)*" =1+ x) 1 +x)

2(1+ke)(1+x)=1+k+1)x+k?, Vi>-1
>1+(k+1)x

So the statement holds for all integers 7> 2 when x > —1.

Newton’s method

Newton’s method, also known as the Newton-Raphson method or the Newton-Fourier

method, is an iterative process for solving the equation f'(x)=0. It begins with an initial

value x, and applies the iterative step x,,, =x, PACH]

/')

to solve f(x)=0 if x,x,,

converge.*

ponvergence of Newton’s method is not
is far away from the correct solution. F
necessary that the initial point is sy
differentiable around the root. When it d
(xm -x_f):’ <5 2
—-—-—-—-—-(xn _x!)z S0 <1, where X, 18 the solution to f(x)=0.

guaranteed, especially when the starting point
“or 'Newton’s method to converge, it is often
fficiently close to the root: f(x) must be

0€s converge, the convergence rate is quadratic,
which means

4. Solve x* =37 to the third digit.

Solution: et 148 4 £
L isa:tf (;f) iy 37, the original problem is equivalent to solving f(x)=0.
¢ alural initial guess. Applying Newton’s method, we have

= __j;(_._r,_]l___ O_x§_37=6"ﬂ—608
(%) 2x, %601 3.

(6.083° = 37.00289, which is very close to 37)

If ypu do not remember Newton’s method
function f(x)= \/; with f'(x} ___%x—-lfz : ;

Jf(37)= f(36)+f'(36)(37—36) =6+1/12=6.083

You can directly apply Taylor’s series for

AN gy
The iterati i
10N equation comes from the first-order Taylor’s seri
series:

_J(x)

I(x,)

f(x__,.] “--'f(-\’..)+f'(x*){xm ~X)=0=x

J:x'
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Alternatively, we can use algebra since it is obvious that the solution should be slightly
higher than 6. We have (6+y)’ =37= )’ +12y—1=0. If we ignore the y’ term,
which is small, then y =0.083 and x=6+y =6.083.

B. Could you explain some root-finding algorithms to solve f(x)=07? Assume f(x) is
a differentiable function.

Solution: Besides Newton’s method, the bisection method and the secant method are two
alternative methods for root-finding. 1

Bisection method is an intuitive root-finding algorithm. It starts with two initial values
a,and b, such that f(a,)<0 and f(b,)>0. Since f(x) is differentiable, there must be

an x between a, and b, that makes f(x)=0. At each step, we check the sign of
f((a,+b,)/2). If f((a,+b,)/2)<0, we set b, =b, and a,, =(a,+b,)/2; If
f((a,+b,)/2)>0, we set a,,, =a, and b,,, =(a,+b,)/2; If f((a,+b,)/2)=0, or its
absolute value is within allowable error, the iteration stops and x =(a, +5,)/2. The

X1 — X7 5 3
bisection method converges linearly, ——~ <5 <1, which means it is slower than
X, =X, T
=

L

Newton’s method. But once you find an a,/b, pair, convergence is guaranteed.

Secant method starts with two initial values x,, x, and applies the iterative step

X=X, = %~ %pet f(x,). It replaces the f'(x,) in Newton’s method with a
f(xn)_f(xn—l)
linear approximation f (x,,)—f(xn_,). Compared with Newton’s method, it does not
X, —xn—]

n

require the calculation of derivative f'(x,), which makes it valuable if /'(x) is difficult

to calculate. Its convergence rate is (l +5 )/ 2, which makes it faster than the bisection

method but slower than Newton’s method. Similar to Newton’s method, convergence is
not guaranteed if initial values are not close to the root.

Lagrange multipliers

The method of Lagrange multipliers is a common technique used' to find local
maximums/minimums of a multivariate function with one or more constraints.

5 Newton’s method is also used in optimization—including multi-dimensional optimization problems—to
find local minimums or maximums.
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Let f(x, x,,---,x,) be a function of n variables x =(x,, x,.---, x,) with gradient
_(a & o s " .
vector fo(x)—(g, E’T> The necessary condition for maximizing or

minimizing f(x) subject to a set of k constraints

g1(x,,x2,---,xﬂ)=0, gz(xl*xza'"’xn):oa s gk(xwxz-“' x,)=0

**n

is that Vf(x)+/?1Vg,(x)+/12Vg2(x)+---+ing,{ (x)=0, where 4.---,4, are called the
Lagrange multipliers.

What is the distance from the origin to the plane 2x+3y+4z=129

Solution: The distance

(D) from the origin to a plane is the mini i
igi : e mini n
the origin and points o P mum distance betwee

n the plane. Mathematically, the problem can be expressed as
min D’ = f(x,y,z) = x* +y 42

St g(x,y,2)=2x+3y+4z-12 =

Applying the Lagrange multipliers, we have

Z4+2L=2x424=0)

e A=-24/29

3tA5=2y+31=0 x=24/29 :
LoaZ=2rrai=ol | y=36/29 :D:\/(%)-“L(;_g)er(%)z 2_\11229
2x+3y+4z-12=0 ) z=48/29

In general, f - ,
g ‘d|0r a plane with equation ax+by+cz=d, the distance to the origin is
D=

3.5 Ordinary Differential Equations

In this section
LIt » We cover four tvpi : !
seen in interviews. typical differential equation patterns that are commonly

6
The method of La i3
reveals the necessa srange multipliers —rri i

74 is a speci .
ry conditions for the solu(ii)gma] ot I-(a'“sh‘Kuhn-Tucker (KKT) conditions, which
NS 10 constrained nonlinear optimization problems.
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Separable differential equations

A separable differential equation has the form % = g(x)h(y). Since it is separable, we
x

can express the original equation as hfy ) = g(x)dx. Integrating both sides, we have the

dy
= dx .
") _[g(x)

solution j

A. Solve ordinary differential equation y'+6xy =0, y(0)=1

Solution: Let g(x)=-6x and h(y)=y, we have ﬂ=—6Jnca’x. Integrate both sides of
y

the equation: J‘fi-}i= j —6xdx => Iny=-3x"+c= y= e *, where ¢ is a constant.
s 4

Plugging in the initial condition y(0) =1, we have ¢ =0 and y = ot

X ok 17
Xty

B. Solve ordinary differential equation y'=

Solution: Unlike the last example, this equation is not separable in its current form. But
we can use a change of variable to turn it into a separable differential equation. Let
z = x+ y, then the original differential equation is converted to

d(z-x) Al x—(z-x) i,fiz__l =_2_x__] = 202 = 2xdx => Izdz = J2xdr+c
dx z dx 4

S(x+y)l =2 =2x"+c= y* +2xy-x" =c

First-order linear differential equations

. d
A first-order differential linear equation has the form EerP(x) y = (x). The standard

approach to solving a first-order differential equation is to identify a suitable function
I(x), called an integrating factor, such that I(x)( y'+ P(x)y)=1(x)y"+ [(x)P(x)y

” Hint: Introduce variable z = x + y.
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=(/(x)y)"; Then we have (/(x)y)'=1(x)Q(x) and we can integrate both sides to solve

[1)0(x)dx

fory: I(x)y = II(x)Q(x)d.x =y= ()

dl(x)

The integrating factor, /(x), must satisfy = I(x)P(x), which means /(x) is a

separable differential equation with general solution /(x) = e [re g

Solve ordinary different equation y'+4v— =—12-, y(1)=1, where x > 0.
iy

Solution: This is a typical example of first-order linear equations with P(x)=l and
x

L] 1 Px i 1/ x )y
O(x) et So I(x) =/ b =e" =x and we have 1(x)Q(x) = %

X (y'+ P(x)y) = (x)'=I(x)0(x)=1/x

Taking integration on both sides, xy = j(l /X)dx=Inx+c=y= g
Plugging in y(1)=1, we getc=1and y= lnx+l.
x
Homogeneous linear equations
Ah . giii
omjogenous linear e(}g_atnon 1S a second-order differential equation with the form

d’ .
a(x)a%‘i' b(X)% + c(x) = 0.

It is easy to show that, if y and y
| 2
homogeneous linear equation, then any

arbitrary Constants, is a solution to the ho

:Vhen a,b .and ¢ (a#0) are constant
inear equation has closed form solution

Let r, and r

are linearly independent solutions to the
Y(X)=¢y,(x)+c,p,(x), where ¢, and c, ar
mogeneous linear equation as well.

S Instead of functions of x, the homogenous
s:

be the roots of the characteristic equation ar’

TR T i o
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1. If r, and r, are real and 7, #r,, then the general solution is y = c,e* +¢c,e™";
2. If r, and r, are real and r, =r, =r, then the general solution is y =c,e”™ +cxe™;

3. If r, and r, are complex numbers a+if, then the general solution is
y=e"“"(c, cos fx +c, sin fx).

It is easy to verify that the general solutions indeed satisfy the homogeneous linear
solutions by taking the first and secondary derivatives of the general solutions.

What is the solution of ordinary differential equation y"+y'+y =07?

Solution: In this specific case, we have a=b=c=1 and b’ —4ac=-3<0, so we have
complex roots » = —1!2-_*'\/5!21' (a=-1/2, B= \6:’2 ), and the general solution to the
differential equation is therefore

y=e™(c, cos Bx +c,sin fx) =e'** (c, cos(+/3/2x) +¢, sin(+/3 / 2x)).

Nonhomogeneous linear equations
. . . d’y | dy .
Unlike a homogenous linear equation a?+ba+c=0, a nonhomogeneous linear

2
equation a£—¥+bgl+c=d(x) has no closed-form solution. But if we can find a

2
d
particular solution y,(x) for a—‘-fdx—';}+bzy+c=d(x), then y =y, (x)+y,(x), where

J d’ .
Y,(x) is the general solution of the homogeneous equation a_d-x%i-'-bay-'_c =0, isa

2
general solution of the nonhomogeneous equation @ Ex%i +b Ey +c=d(x).

—bt\/bz -4ac
2a

should either commit the formula to memory or be able to derive it using (r +5/2a)" = (b" - 4ac)/4a’.

® A quadratic equation ar’ +br+c =0 has roots given by quadratic formula r = You
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Although it may be difficult to identify a particular solution y ,(X) in general, in the

s‘peqial case when d(x) is a simple polynomial, the particular solution is often a
polynomial of the same degree. .-

What is the solution of ODEs y"+ y'+ y =1 and y"+ y'+ y = x ?

Solution: In these ODEs, we again have a=b=c=1 and b’ —4ac = -3 <0, so we have
complex solutions r=-1/2++/3/2i (@=-1/2, B= \/5 /2) and the general solution is
y=e ™ (c, cos(v3/2x) + ¢, sin(v/3/ 2x)).

W:lat Is a particular solution for y"+ y'+ y=1? Clearly y=1is. So the solution o
Y'+y'+y=lis

Y=y,(x)+y (x)=e"* (c, cos(\/g 12x)+c, sin(\ﬁ / 2x)) +1.

To find a particular solution for By y =1 Lot y () =pix+n,. then we have
: . 3

y"+)"+y=0+m+(mx+n)=x:> m

=Ln=-1. i T
theladhion o b4yt b b 1. So the particular solution is x—1 and

Y=y,(X)+y,(x)=e (CI cos(\/?:f2x)+ & sin(\@,fo)) +(x-1).

| 3.6 Linear Algebra
Linear algebra is extensiv

el ] : FANA
Y used in applied quantitative finance because of its role in

statistics, optimization, M

£ * » Monte Carlo simulati i

it is also a comprehens:  Stmulation, signal processing, etc. Not surprisingly:

gl prehensive mathematical field that covers m e g);
eral topics that have bigai any topics. In this section, W

methods. ficant applications in statistics and numerical

Vectors

An nx1 (column) veetor is a one

$i] -di i
a point in the R" (n-dimensiorlal) Imensional array.

It can represent th inates of
Euclidean space. B e coord
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Inner product/dot product: the inner product (or dot product) of two R" vectors x and

yis definedas ) xy, =x"y
i=l

Euclidean norm: x| =, ,i Xi= Jx'x; Jx= = x=2) " (x=»)
i=1

T

Then angle & between R" vectors x and y has the property that cosd =-“§"-"y7“. x and y

are orthogonal if x”y =0. The correlation coefficient of two random variables can be
viewed as the cosine of the angle between them in Euclidean space ( p =cos8).

There are 3 random variables x, y and z. The correlation between x and y is 0.8 and the
correlation between x and z is 0.8. What is the maximum and minimum correlation

between y and z?

Solution: We can consider random variables x, y and z as vectors. Let & be the angle
between x and , then we have cos@ = p, | =0.8. Similarly the angle between x and z is
0 as well. For y and z to have the maximum correlation, the angle between them needs

to be the smallest. In this case, the minimum angle is 0 (when vector y and z are in the
same direction) and the correlation is 1. For the minimum correlation, we want the

maximum angle between y and z, which is the case shown in Figure 3.2.

If you still remember some trigonometry,
all you need is that

c0s(26) = (cos 0)’ —(sin 6)’
=0.8°-0.6"=0.28

Otherwise, you can solve the problem using
Pythagoras's Theorem:

08x12=1xh=h=0.96
; €020 =+1"-0.96" =0.28

y 0.6 0.6

Figure 3.2 Minimum correlation and maximum angle between vectors y and z
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QR decomposition

QR decomposition: For each non-singular nx»n matrix A, there is a unique pair of
orthogonal matrix Q and upper-triangular matrix R with positive diagonal elements such

that A=QR . "

QR oecomposition is often used to solve linear systems Ax =5 when 4 is a non-singular
matrix. Since Q is an orthogonal matrix, ™' = Q' and ORx=b = Rx=Q'b. Because R
IS an upper-triangular matrix, we can begin with x (the equation is simply

R,,x,=(Q'b),), and recursively calculate al] X, Vi=nn-1,---1.

If the : :
5 uaf;eprogramonng language you are using does not have a function for the linear least
quares regression, how would you design an algorithm to do s0?

So!ution: The linear least squares regressio
analysis method. Let’s g0 over a stan
regressions using matrices,
expressed as

n is probably the most widely used statistical
N dord approach to solving linear least squares
simple linear regression with n observations can be

Vi=BX o+ X +-+ j
tcrn] and,l IB[ il ﬂp—lx:,p—] +€i’ VI 2 l-‘-'“"‘n9 W'here xr{} s l' vl- ]S Ihe lmel‘cepl
Yipsts X,y are p—-1 exogenous regressors.

The g : i
goal of the linear least squares regression is to find a set of £ =[£,, 4, Bl
=LPo>Prs™" "5 Pp-

that makes E” & th
, the smallest. ’ § 4
i S Let’s express the linear regression in matrix format:

}’:‘\’ﬂ+é‘ _“rhere )7 [ -
1 = Y‘}/)a'”- of i "
i f,]" and 5—[€1s€p“'eg,]]f are both nx1 column

cach column representing a regressor (including the
Ng an observation, Then the problem becomes

min(Y - X )" (v - x g

vectors; X' is a nx p matrix with
intercept) and each row representi

. . n
min /(8)=min } ¢ -
o B I
i=]

columns (and rows)
orthonormalization pro

Cri - -y
ease Numerical stability) is often used for QR
You are interested in the Gram-Schmidt process:
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To minimize the function 7(/), taking the first derivative'' of f() with respect to /3,
we have f(B)=2X'(Y-XB)=0= (X"X)B=X"Y, where (X'X) is a pxp

symmetric matrix and X'Y isa px1 column vector.

Let 4=(X"X) and b= X"Y, then the problem becomes Af = b, which can be solved
using QR decomposition as we described.

Alternatively, if the programming language has a function for matrix inverse, we can
directly calculate 4 as B =(X"X)"X'7."

Since we are discussing linear regressions, it’s worthwhile to point out the assumptions

behind the linear least squares regression (a common statistics question at interviews):
1. The relationship between Y and X'is linear: ¥ = X S +&.

2. Elg]=0,Vi=1,-,n

3. var(g)= o, i=1,---,n (constant variance), and E[¢,&,]=0,i# j (uncorrelated
errors).

4. No perfect multicollinearity: p(x,,x,)#xl, i# ] where p(x,,x;) is the
correlation of regressors x, and x,.

5. & and x, are independent.

Surely in practice, some of these assumptions are violated and the simple linear least
squares regression is no longer the best linear unbiased estimator (BL‘U};). Mony
econometrics books dedicate significant chapters to addressing the effects of assumption

violations and corresponding remedies.

Determinant, eigenvalue and eigenvector

Determinant: Let 4 be an nxn matrix with elements {4}, where i, j=1,---,n. The

determinant of A is defined as a scalar: det(A)=2§£/(;}')ﬂ1_,.,ag_,.z'“a,,_,,h, where
I?

p=(p, py, > p,) is any permutation of (1, 2.---, n); the sum is taken over all n!

possible permutations; and

Some of the important derivative

A | o' Ax i d

4 . dax Oxa dAx i = 1 ) o

equations for vectors/matrices are - = — =4, ; (4 + A)x, —— =24,
ax ox ox ox Oxox

O(Ax +b) C(Dx +e)

ox
12 ot L
The matrix inverse introduces large num

—A'C(Dx+e)+ D'C" (Ax +b),
erical error if the matrix is close to singular or badly scaled.
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1, if p can be coverted to natural order by even number of exchanges

y(p)= {

-1, if p can be coverted to natural order by odd number of exchanges

For example, determinants of 2x2 and 3x3 matrices can be calculated as

. aiibae
del([c dD=ad~bc, det{|d e f||=aei+bfg+cdh—ceg - ath—bdi."
Bt

1
det(4)

Eigenvalue: Let 4 be an nxn matrix. A real number J is called an eigenvalue of 4 if

the.re exists a nonzero vector x in R" such that Ax = Ax. Every nonzero vector X
satisfying this equation is called an eigenvector of 4 assoc iated with the eigenvalue 4.

Elg.envalm.:s and _eigenve?tors are crucial concepts in a variety of subjects such as
%‘ 1355 differential Frtonk I‘."ar!“’?’ chains, principal component analysis (PCA), etc.

¢ importance of determinant lies in its relationship to eigenvalues/ei genvectors.'
Th(? djferminant of matrix 4— A/, where / is an nxn identity matrix with ones on the
e“;ﬁ::liol;':gt;)el:a iﬂglﬁejot)s Flse\ﬁhew, is called thc.: 9_haracter_istic polynomial of 4. The
TN =0 is called tl-1e:characterlstic equatign of A. The eigenvalues of
al roots of the characteristic equation of 4. Using the characteristic equation,

we can also show that A2y A, =det(4) and ii}. =trace(A) = i A,
i=] i=| i

Determinant properties: det(4”) = det(4), det(4B)=det(A)det(B), det(4™')=

4is di . : e &
1S diagonalizable if and only if it has linearly independent eigenvectors. 13 Let

A, Ay, -+, A be the ei |
s s A, genvalues OfA Xol el 2 i 3
> %1» X5, -++, X, be the corresponding eigenvectors.
and){:[x,[xz |...|xﬂ], then e A

A

:D:A‘-—.XDX"} :A& =XD;(X_|.

o
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2
If matrix 4= |: 2} , what are the eigenvalues and eigenvectors of A?

Solution: This is a simple example of eigenvalues and eigenvectors. It can be solved
using three related approaches:

Approach 4: Apply the definition of eigenvalues and eigenvectors directly.
x ! e

Let 1 be an eigenvalue and x =[ '} be its corresponding eigenvector. By definition, we
%

have

Ax{z ‘}{x'Hz"i“‘ﬂ:zx:[’“'}:{z"'”z”x':>3(x.+xz)=/1(x.+x2)

1 2]L& (n#dn AX, X, +2x, = Ax,

So either A =3, in which case x, = x, (plug 4 =3 into equation 2x, +x, = Ax;) and the

1/\2

corresponding normalized eigenvector is
SR i L!ﬁ

1/\2

~1/2

], or x,+x,=0, in which case the

normalized eigenvector is 1: } and A=1 (plug x,=-x, into equation

2%, +x; =A%)

Approach B: Use equationdet(4— A1) =0.

det(A— A7) =0=>(2-A)(2-4)—1=0. Solving the equation, we have 4 =1 and
A, =3. Applying the eigenvalues to Ax=Ax, we can get the corresponding

eigenvectors.

Approach C: Use equations 4 - 4, -4, = det(4) and Z/L = trace(A) = ZI AL
i=] i=

det(4) =2x2—-1x1=3 and trace(A)=2x2=4.

So we have A =3}:> {11 1! l. Again apply the eigenvalues to Ax = Ax, and we

hriy =4 (=3

can get the corresponding eigenvectors.
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Positive semidefinite/definite matrix

When 4 is a symmetric nxn matrix, as in the cases of covariance and correlation
matrices, all the eigenvalues of 4 are real numbers. Furthermore, all eigenvectors that
belong to distinct eigenvalues of 4 are orthogonal.

Each of the following conditions is a necessary and sufficient condition to make a
symmetric matrix A positive semidefinite:

1. x"Ax>0 for any nx1 vector x.

2. All eigenvalues of 4 are nonnegative.

3. All the upper left (or lower right) submatrices A, , K =1, ---, n have nonnegative _
determinants.'® ; T

(;ovariancefcorrelation matrices must also be positive semidefinite. If there is no perfect
linear erendence among random variables, the covariance/correlation matrix must also
be positive definite. Each of the following conditions is a necessary and sufficient
condition to make a symmetric matrix 4 positive definite:

5
. x"Ax>0 for any nonzero nx1 vector x .

2. All eigenvalues of 4 are positive.

3. All the upper left (or lower right) submatrices Ay, K =1,---, n have positive
determinants. : 85

There are 3 random variables o
correlation between x and
between y and z?

X, y and z. The correlation between x and y is 0.8 and the
z 15 0.8. What is the maximum and minimum correlation

correlation matrix.

Let the i
correlation between y and z pe P » then the correlation matrix for x, yandzis

1 08 08
P=108 1
08 p 1
LT

16
A necessary, but not suff;

L h2 cient, conditi : i
negative diagonal elements, tion for matrix 4 to be positive semidifinite is that 4 has ™ :

56 | ;
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! 0.8 0.8
det(P)zlxdet[[1 pD—O.Sxdet[[O's 08D+0.8xdetﬂ D
gl p 1 {iilkg

=(1-p*)-0.8x(0.8-0.8p)+0.8x(0.8p—-0.8) =—0.28+1.28p— p* 20
= (p-D(p-0.28)<0 = 028<p<l1

So the maximum correlation between y and z is 1, the minimum is 0.28.

LU decomposition and Cholesky decomposition

Let A be a nonsingular »nxn matrix. LU decomposition expresses 4 as the product of a
lower and upper triangular matrix: 4= LU. i

LU decomposition can be use to solve Ax=b and calculate the determinant of 4:

LUx=b=Ux=y, Ly=b; det(4)=det(L)det)=[]L,[]U,

i=1 j=1
When 4 is a symmetric positive definite matrix, Cholesky decomposition expresses 4
as A= R"R, where R is a unique upper-triangular matrix with positive diagonal entries.
505 . T
Essentially, it is a LU decomposition with the property L=U".
Cholesky decomposition is useful in Monte Carlo simulation to generate correlated
random variables as shown in the following problem:

How do you generate two N(0,1) (standard normal distribution) random variables with
correlation p if you have a random number generator for standard normal distribution?

Solution: Two N(0,1) random variables x,, x, with a correlation p can be generated

from independent N(0,1) random variables z, z, using the following equations:

X =2

X, = pz, +V1'Pzzz

It is easy to confirm that var(x,) = var(z,) =1, var(x,) = p’ var(z)) +(1- p*) var(z,) =1,

and cov(x,,x,)=cov(z,pz + \fl = ;G'2 z,) =cov(z, pz)=p-
ng Cholesky decomposition to generate correlated

. : H ample usi L :
This approach is a basic examp d random variables that follow a n-dimensional

random numbers. To generate correlate

"7 LU decomposition occurs naturally in Gaussian elimination.
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multivariate  normal distribution X =[X, X, X, ] ~N(u, £) with mean
£ ¢ . . ] ! .
H=[t, 4y, 1] and covariance matrix X (a nxn positive definite matrix)'®, we can

d_ecqmppse the covariance matrix ¥ into R'R and generate » independent N(0,1)
random variables z, z,, -, z,. LetvectorZ =[z, z,,--

s
as X=u+R'z" »Z,]", then X can be generated

Alternativély,
called singula

matrices, wi -

Spanninsg, t‘;l’ghm‘i;’hsl]’;‘;nczoé? Spanning .the column space of X, and the columns of V

YR ; .S a px p diagonal matrix called the singular values of X.

ataanasens efinite covariance matrix, we have ¥ = U and 3 = UDU” . Furthermore
¢ diagonal matrix of eigenvalyes As 4y, A4 and U is th trix of n

corresponding eigenvectors, Let )2 ¥l Ay

be a diagonal matrix with dia,
’ 1314 gonal elements
J’IT \/Z, s JZ, then it s clear that D:(D'-’Z)z = (D" (D" d
E:UDUZ(UDIQ)?' ) X ) i

. Again. i
i gain, Tlf We generate a vector of » independent N(0, 1) random
1 %52, 1, Xean be generated as Y - u+UD"Z

The probability dens;
Sity of multivari 113 :
1ate norma| distribution js £ = M_ 45 (xm ﬂ))

(27)"” de(x)"?
> then the covariance matricey  _ 4x
i

9] _
N general, if y -

T
AN ‘4 F
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Chapter 4 Probability Theory

Chances are that you will face at least a couple of probability problems in most
quantitative interviews. Probability theory is the foundation of every aspect of
quantitative finance. As a result, it has become a popular topic in quantitative interviews.

Although good intuition and logic can help you solve many of the probability problems,
having a thorough understanding of basic probability theory will provide you with clear
and concise solutions to most of the problems you are likely to encounter. Furthermore,
probability theory is extremely valuable in explaining some of the seemingly-
counterintuitive results. Armed with a little knowledge, you will find that many of the
interview problems are no more than disguised textbook problems.

So we dedicate this chapter to reviewing basic probability theory that is not only broadly
tested in interviews but also likely to be helpful for your future career.' The knowledge
is applied to real interview problems to demonstrate the power of probability theory.
Nevertheless, the necessity of knowledge in no way downplays the role of intuition and
logic. Quite the contrary, common sense and sound judgment are always crucial for
analyzing and solving either interview or real-life problems. As you will see in the
following sections, all the techniques we discussed in Chapter 2 still play a vital role in

solving many of the probability problems.

Let’s have some fun playing the odds.

4.1 Basic Probability Definitions and Set Operations

First let’s begin with some basic definitions and notations used in probability. These
definitions and notations may seem dry without examples—which we will present
momentarily—yet they are crucial to our understanding of probability theory.' In
addition, it will lay a solid ground for us to systematically approach probability

problems.
Outcome (w): the outcome of an experiment or trial.
Sample space/Probability space (€): the set of all possible outcomes of an experiment.

er 3, this book does not teach probability or any other math topics due to
the space limit—it is not my goal to do so, either. The book gives a summary of the frequently-tested
knowledge and shows how it can be applied to a wide range of real interview problems. The Ifnowledge
used in this chapter is covered by most introductory probability books. It is always helpful to pick up one

or two classic probability books in case you want to refresh your memory on some of the topics. My

personal favorites are First Course in Probability by Sheldon Ross and Introduction to Probability by

Dimitri P. Bertsekas and John N. Tsitsiklis.

' As I have emphasized in Chapt
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P(w): Probability of an outcome ( P(w) >0, Vo € Q. Z P(w)=1).

well

Event: A set of outcomes and a subset of the sample space.

P(A): Probability of an event 4, P(4) = Y P(@).

weA
AU B :Union AU B isthe set of outcomes in event A or in event B (or both).
AN B or AB: Intersection A M B(or AB) is the set of outcomes in both 4 and B.
A": The complement of 4, which is the event “not 47,

Mutually Exclusive: 4B =@ where @ is an empty set.

For any mutually exclusive events £ _ £ ( 1 ] ZN
s §o E ' P E ¢ )= P E
| 2 N i i)
g i=l] ( )

Random variable: A functi

the set of real numbers, on that maps each outcome () in the sample space (£2) into

sided dice to explain these definitions and notations. A roll
omes (mapped to a random variable): 1, 2, 3, 4, 5, or 6. 50

P(A) = P(1)+P(3)+P(5) ‘ali}, then the complement of 4 is A = {2, 4, 6). Clearly
B={4,5,6}. Then the _unioz : L.et B be the event that the outcome is larger than 3:

n {4 Wil
ANB={5}. One popular 'S AUB={1.3,4,5,6} and the intersection i

random variable called indicator variable (a binary dummy

variable) for event 4 is defined as the following;

/ _{1, if xefl, 3,5 *
T ; . i
0, if xe{l,3, 5) asically 7, =1 when 4 occurs and /, =0 if 4° occurs. The
expected value of 1, is EUA]‘—'P(A) |

Now, time for some examples

o
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Coin toss game

Two gamblers are playing a coin toss game. Gambler 4 has (n+1) fair coins; B has n
fair cozins. What is the probability that 4 will have more heads than B if both flip all their
coins?

Solution: We have yet to cover all the powerful tools probability theory offers. What do
we have now? Outcomes, events, event probabilities, and surely our reasoning
capabilities! The one extra coin makes 4 different from B. If we remove a coin from 4,
A and B will become symmetric. Not surprisingly, the symmetry will give us a lot of
nice properties. So let’s remove the last coin of 4 and compare the number of heads in
A’s first n coins with B’s n coins. There are three possible outcomes:

E,: A’s n coins have more heads than B’s n coins;
E,: A’s n coins have equal number of heads as B’s n coins;
E,: A’s n coins have fewer heads than B’s n coins.

By symmetry, the probability that 4 has more heads is equal to the probability that B has
more heads. So we have P(E,)= P(E;). Let’s denote P(E,) = P(E,)=xand P(E,)=y.

Since Y P(w)=1, we have 2x+y=1. For event E,, 4 will always have more heads
well)

than B no matter what 4’s (n+1)th coin’s side is; for event E;, 4 will have no more
heads than B no matter what 4’s (n+1)th coin’s side is. For event E,, A’s (n+1)th

coin does make a difference. If it’s a head, which happens with probability 0.5, it will
make A have more heads than B. So the (n+1)th coin increases the probability that 4
has more heads than B by 0.5y and the total probability that 4 has more heads is

x+0.5y =x+0.5(1-2x)=0.5 when 4 has (n+1) coins.

Card game

A casino offers a simple card game. There are 52 cards in a deck with 4 cards for each
jack queen king ace

value 2,3, 4, 5.6, 7,8,9,10,J, O, K, A. Each time the cards are thoroughly shuffled
(so each card has equal probability of being selected). You pick up a card from the deck
and the dealer picks another one without replacement. If you have a larger number, you
win; if the numbers are equal or yours is smaller, the house wins:—gs in all.otl‘ler casinos,
the house always has better odds of winning. What is your probability of winning?

2 Hint: What are the possible results (events) if we compare the number of heads in A’s first n coins with
B’s n coins? By making the number of coins equal, we can take advantage of symmetry. For each event,

what will happen if 4’s last coin is a head? Or a tail?
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S()Ig!i(;;;{' One answer to this problem is to consider all 13 different outcomes of your
card. The card can ha\ie' a value 2,3, ---, 4 and each has 1/13 of probability. With a
vglue‘ of .2’ the probability of winning is 0/51; with a value of 3. the probability of
::22:;13 1lss 42’;}5 1(“Ehe1111 thehdez:ller picks a 2); ...; with a value of A4. the probability of
when the dealer picks a 2, 3, --. ili

iyl . or K). So your probability of
48 -

=X —t =t | =

3 (51 51 +51) Il En s

Although this is a straightforward solution
sequence, it is not the most efficie
spirits of the coin tossing problem
different outcomes:

- 12x13 8

x

1351 2 17

and it elegantly uses the sum of an integer
Nt way to solve the problem. If you have got the core
» YOu may approach the problem by considering three

E,: Your card has a number larger than the dealer’s:
E,: Your card has a number equal to the dealer’s:
E, : Your card has a number lower than the dealer’s

the probability that the two car, nly 3 cards will have the same value as your card. S0

ards have equal valye is 3/ ili
s S1.
that you win s P(E)=(1- P(E))/2=(1-3, o =SS b 71 As a result, the probability

Drunk Passenger

cogv;nience, let's say that the n-th passenger in
seat) A?llng drunk, the first person in line picks 2
i - A1 of the other passengers are sober, and will
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E, : Seat #1 is taken before #100;

E, : Seat #100 is taken before #1.

If any passenger takes seat #100 before #1 is taken, surely you will not end up in you
own seat. But if any passenger takes #1 before #100 is taken, you will definitely end up
in you own seat. By symmetry, either outcome has a probability of 0.5. So the

probability that you end up in your seat is 50%.

In case this over-simplified version of reasoning is not clear to you, consider the
following detailed explanation: If the drunk passenger takes #1 by chance, then it’s clear
all the rest of the passengers will have the correct seats. If he takes #100, then you will
not get your seat. The probabilities that he takes #1 or #100 are equal. Otherwise assume
that he takes the n-th seat, where n is a number between 2 and 99. Everyone between 2
and (n—-1) will get his own seat. That means the n-th passenger essentially becomes the
new “drunk” guy with designated seat #1. If he chooses #1, all the rest of the passengers
will have the correct seats. If he takes #100, then you will not get your seat. (The
probabilities that he takes #1 or #100 are again equal.) Otherwise he will just make
another passenger down the line the new “drunk” guy with designated seat af#l and e.ach
new “drunk” guy has equal probability of taking #1 or #100. Since at all jump points
there's an equal probability for the “drunk” guy to choose seat #! or 100, by symmetry,
the probability that you, as the 100tk passenger, will seat in #100 is 0.5.

N points on a circle
Given N points drawn randomly on the circumference of a circle, what is the probability

that they are all within a semicircle?’

Solution: Let’s start at one point and clockwise label the points as L2 N Toe
probability that all the remaining N -1 points from 2 to N are in the clockwise
semicircle starting at point 1 (That is, if point 1 is at 12:00, points 2 to N are all

between 12:00 and 6:00) is 1/2"". Similarly the probability that a clockwise semicircle

starting at any point i, where i€ {2,:-, N} contains all the other N -1 points is also

bir igad

Claim: the events that all the other N =1 points are in the clockwise semic.ircle star'ting
at point i, i =1,2,--, N are mutually exclusive. In other words, if we,-stamng at point i
and proceeding clockwise along the circle, sequentially encounters points i +1, i+ 2,0,
N, 1, ---, i—1 in half a circle, then starting at any other point j, we cannot encounter all

from a point », you can reach all the rest of the points on the circle

4 H .
Hint: Consider the events that starting _
e events mutually exclusive?

clockwise, ne{l,---,N} in a'semicircle. Are thes
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other points within a clockwise semicircle. Figure 4.1 clearly demonstrates this
conclusion. If starting at point i and proceeding clockwise along the circle, we
sequentially encounter points i+1,i+2,---, N, 1,---,i=1 within half a circle, the
clockwise arc between i—1 and i/ must be no less than half a circle. If we start at any
other point, in order to reach all other points clockwise, the clockwise arc between i -1
and i are always included. So we cannot reach all points within a clockwise semicircle

starting from any other points. Hence, all these events are mutually exclusive and we
have

N N N
P[UIE,.]=ZP(E,):>P(UEJ]= Nx1/2"" = N /2%
i=l i= i=]

The same argument can be extended to any arcs that have a length less than half a circle.
If the ratio of the arc length to the circumference of the circle is x (x<1/2), then the

probability of all N points fitting into the arc is N x x~'

i

Figure 4.1 N points fall in 3 clockwise semicircle starting from j

4.2 Combinatoria| Analysis

pgoiﬁ’:iﬁy theory can be solveq by simply counting the number of
€vent can occur, The mathematic theory of counting B

combinatorial analys; i
. _ Ysis (or combinatori i - i
ombinatoria| analysis, ittt

different ways that
often referred to as
cover the basics of ¢

Basic princi .
principle of counting: Let S be 3 get of length-k sequences. If there are
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¢ n, possible first entries,
¢ n, possible second entries for each first entry,
e n, possible third entries for each combination of first and second entries, etc.
Then there are a total of #, -n, ---n, possible outcomes.
Permutation: A rearrangement of objects into distinct sequence (i.e., order matters).
n!

Property: There are ————— different permutations of n objects, of which n, are
m'ny!l.n,!
alike, n, are alike, ---, n, are alike.

Combination: An unordered collection of objects (i.e., order doesn’t matter).

acil | different combinations of n distinct objects taken

n
Property: There are (r]_ (n—r)'r!

r at a time.

" (R n—k
Binomial theorem: (x+ ) =Z(k}x"y
k=0

Inclusion-Exclusion Principle: P(E, Y E,) = P(E, )+ P(Ey) - P(EE,)
P(E, UE, UE,) = P(E)+ P(E,) + P(E)) - P(EE;) ~ P(E.E;) = P(E,E) + P(EE,Ey)

and more generally,

P(E,UE,U..UE,) =iP(E,.)- Y P(EE)++(-D)™ Y. P(EE,.E )+
i=1

o i <h <. iy
i<y

+(-)"" P(EE, - E)

N
where ' P(EE, -+E,) has (rJ terms.

h<iy<..d,

Poker hands

Poker is a card game in which each player gets a betid ot 5 cards, There are 32 £arcs in a

deck. Each card has a value and belongs to a svit. There are 13 values,

jack queen king ace spade club heart diamond
’ v. o
2, 3,.4, 5.6, .7 8 910, L O, K. A, and four suits, & , &,
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What are the probabilities of getting hands with four-of-a-kind (four of the five cards
with the same value)? Hands with a full house (three cards of one value and two cards of
another value)? Hands with two pairs?

Solution: The number of different hands of a five-card draw is the number of 5-element
subsets of a 52-element set, so total number of hands = (552} =2,598,960.
Hands with a four-of-a-kind: First we can choose the value of the four cards with the

same value, there are 13 choices. The 5th card can be any of the rest 48 cards (12

choices for values and 4 choices for suits). So the number of hands with four-of-a kind is
13x48 =624 .

Hands with a Full House: In sequence we need to choose the value of the triple, 13

148 ! . 4 :
choices; the suits of the triple, [3] choices; the value of the pair, 12 choices; and the

; | 4 )
suits of the pair, [J choices. So the number of hands with full house is

4 4
13x| § [x12x| ) |=13x4x12x6=3,744.

Hands wi Sroqs .
$ with Two Pairs: In sequence we need to choose the values of the two pairs,

13
ices: . . (4 4
[2} choices; the suits of the first pair, ( 2] choices; the suits of the second pair, [2)

choices; a ini
T nd thf: remal'mng card, 44 (52-4x2, since the last cards can not have the
¢ value as either pair) choices, So the number of hands w

13) (4) (4
5 X 3 X 2]x44=78x6>(6x44=123,552.

To calculate the probabili
. ty of each, w
kind by the total possible number of ha?l:i):

ith two pairs is

ly need to divide the number of hands of each

Hopping rabbit

A rabbit sits at the b :
two stairs at a time, 0§§$ 1(1)12?1 Slgl_rf;:‘ase With  stairs. The rabbit can hop up only on¢ 4
top of the stairs?’ Y different ways are there for the rabbit to ascend t0
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Solution: Let’s begin with the simplest cases and consider solving the problem for any
number of stairs using induction. For n=1, there is only one way and f(I)=1. For

n=2, we can have one 2-stair hop or two I-stair hops. So f(2)=2. For any n>2,

there are always two possibilities for the last hop, either it’s a 1-stair hop or a 2-stair hop.

In the former case, the rabbit is at (n—1) before reaching n, and it has f(n—1) ways to
reach (n—1). In the latter case, the rabbit is at (n—2) before reaching », and it has
f(n-2) ways to reach (n—2). So we have f(n)= f(n=2)+ f(n—1). Using this
function we can calculate f(n) for n=3, 4, a5t

Screwy pirates 2

Having peacefully divided the loot (in chapter 2), the pirate team goes on for more
looting and expands the group to 11 pirates. To protect their hard-won treasure, they
gather together to put all the loot in a safe. Still being a democratic bunch, they decide
that only a majority — any majority — of them (=6) together can open the safe. So they
ask a locksmith to put a certain number of locks on the safe. To access the treasure,
every lock needs to be opened. Each lock can have multiple keys; but each key only
opens one lock. The locksmith can give more than one key to each pirate.

What is the smallest number of locks needed? And how many keys must each pirate
7
carry?

Solution: This problem is a good example of the application of combinatorial analysis in
information sharing and cryptography. A general version of the problem was explgmed
in a 1979 paper “How to Share a Secret” by Adi Shamir. Let’s randomly select 5 pirates
from the 11-member group; there must be a lock that none of them h?ls the key to. Yet
any of the other 6 pirates must have the key to this lock since any 6 pirates can open all
locks. In other words, we must have a “special” lock to which none of the 5 selected
pirates has a key and the other 6 pirates all have keys. Such 5-pirate groups are randomly
selected. So for each combination of 5 pirates, there must be such a “special” lock. The
11!

11
minimum number of locks needed is (5 ]z-s-%;=462 locks. Each lock has 6 keys,

which are given to a unique 6-member subgroup. So each pirate must have

il it =252 keys. That’s surely a lot of locks to put on a safe and a lot of keys for

each pirate to carry.

sequence is a sequence of Fibonacci numbers.

6 .
You may have recognized that the : !
? Hint: ev):ary subgroug: of 6 pirates should have the same key to a unique lock that the other 5 pirates do

not have.
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Chess tournament

A chess tournament has 2" players with skills 1 > 2 > --- >2" It is organized as a
knockout tournament, so that after each round only the winner proceeds to the next
round. Except for the final, opponents in each round are drawn at random. Let’s also
assume that when two players meet in a game, the player with better skills always wins.
What’s the probability that players 1 and 2 will meet in the final?®

Salufion: Thfere are at least two approaches to solve the problem. The standard approach
fapplles multlplic.:ation rule based on conditional probability, while a counting approach
is far more efficient. (We will cover conditional probability in detail in the next section.)

Let’s begin with the conditional probability approach, which is easier to grasp. Since
there are 2" players, the tournament will have » rounds (including the final). For round

n 1
1, players 2,3,---,2" each have 5] probability to be 1’s rival, so the probability that

2"-2 2x(2"' -1
v FETERE pRRYT Y
meet in round 1, 2" players proceed to the 2nd round and the conditional probability
that 1 and 2 will not meet in round 2 is 2 -2 = i
211 21 _q
process until the (n~1)th round, in which there are 22 (=2"/2"?) players left and the
conditional probability that 1 and 2 will
22-2 2x(2 -
2-1 23

Let E, be the event

1 and 2 do not meet in round 1 is

. Condition on that 1 and 2 do not

. We can repeat the same

not meet in round (n-1) I8

that 1 and 2 do not meet inround 1;

E, be the event that 1 and 2 do not meet in rounds 1 and 2;

E,_, be the event that 1 and 2 do not meet in round 1,2,.--. n—1

Apply the multiplication rule, we have

P(1 and 2 meet in the nth
gan‘lC):P(E)xP(E Eill -
=E—X—MX 2X(2"-—2"l) : 2| l)x XP(En—l iEIEZH EH—Z)

27 —1 2n-| 4

* Hint: Consider separatin

g the pla "1
same group? Or not in the Asbisibiadl

S grby? subgroups. What will happen if player 1 and 2 in ¢
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Now let’s move on to the counting approach. Figure 4.2A is the general case of what
happens in the final. Player 1 always wins, so he will be in the final. From the figure, it
is obvious that 2" players are separated to two 2"'-player subgroups and each group
will have one player reaching the final. As shown in Figure 4.2B, for player 2 to reach
the final, he/she must be in a different subgroup from 1. Since any of the remaining
players in 2,3,---,2" are likely to be one of the (2" —1) players in the same subgroup

as player 1 or one of the 2" players in the subgroup different from player 1, the
probability that 2 is in a different subgroup from 1 and that 1 and 2 will meet in the final

n-l1

is simply

n

h Clearly, the counting approach provides not only a simpler solution but

also more insight to the problem.

General Case 1 & 2 in the Final
1 ;
+ +
nth round

>M

ALTA A

1 3 2 + | (n-Ithround| 1 +
? ? 7 ?

o
i 2

1 2 nthround| 1
(n-1)th round

2™ players 2™! players
B

2™1 players 2™ players

A

Figure 4.2A The general case of separating 2" players into 2™'-player subgroups;
4.2B The special case with players 1 and 2 in different groups

Application letters

You're sending job applications to 5 firms: Morgan Stanley, Lehman Brothers, UBS,
Goldman Sachs, and Merrill Lynch. You have 5 envelopes on the table neatly typed with
names and addresses of people at these 5 firms. -You even have 5 cover letters
personalized to each of these firms. Your 3-year-old tried to be helpful and stuffed each
cover letter into each of the envelopes for you. Unfortunately she randomly put letters
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into envelopes without realizing that the letters are personalized. What is the probability
that all 5 cover letters are mailed to the wrong firms?’

Solution: This problem is a classic example for the Inclusion-Exclusion Principle. In fact
a more general case is an example in Ross’ textbook First Course in Probability.

Let’s denote by £,i=1,---,5 the event that the i-th letter has the correct envelope. Then

i=]

5
P[UE,] is the probability that at least one letter has the correct envelope and

1 * aye 5
I—P[UE;) is the probability that all letters have the wrong envelopes. P(UE:} can

i=l
i=l

be calculated using the Inclusion-Exclusion Principle:

5 5
P{UE]]= ;P(Ei)_ZP(E"JE’:)+'“+(_1)6P(EIE2".E5)

T iy <iy

It’s obvi sl :
s obvious that P(E) 3, Vi=1--,5.80 Y P(E)=1.

i=1
P(E.E,) is the event that both letter i, and letter i,
probability that j,
envelope,

have the correct envelope. The
has the correct envelope is 1/5; Conditioned on that i, has the correct
the probability that i, has the correct envelope is 1/4 (there are only 4
envelopes left). So P(E{.ﬁ}.):é.x I _6-2)

—_—

Il 5!
There are (5] = —-_.i!___ membe f .
2) 215-2) e i P(E:,E;z) n ZP(E,’E,I),SO we have
ZP(EqE;)) =‘(z‘-;z‘—)'!-)(—-—-2.!_.__=__]_
i<ty 5! 21(5-2)! 21

Similarly we have P(E E 1
E)=— 1
J,E;, ( iy lj) 3 ;‘q;"q P(EilE”E"E")ZE_’ and
1
P(ElEz"'Es)=-5-!-
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5 L 13k 1519
] gl (T A AL L . L
P[UE'] 21731 41 51 30

i=l

" . 11
So the probability that all 5 letters are mailed to the wrong firms is 1- P[UE, } =—.

i=]

Birthday problem

How many people do we need in a class to make the probability that two people have the
same birthday more than 1/2? (For simplicity, assume 365 days a year.)

Solution: The number is surprisingly small: 23. Let’s say we have n people-in the class.
Without any restrictions, we have 365 possibilities for each individual’s birthday. The

basic principle of counting tells us that there are 365" possible sequences.

We want to find the number of those sequences that have no duplication of birthdays.
For the first individual, we can choose any of the 365 days; but for the secc?nd, only 364
remaining choices left, ..., for the r#h individual, there are 365—r+1 choices. So for n
people there are 365x364x:--x(365-n+1) possible sequences where no two

365x364x---x(365-n+1) _,,,
individuals have the same birthday. We need to have 365" 3

for the odds to be in our favor. The smallest such » is 23.

100th digit
What is the 100th digit to the right of the decimal point in the decimal representation of

(1+\/§)3000 ?10

Solution: 1f you still have not figure out the solution fr
(1+42)" +(1 —J2)" isan integer when n = 3000.

om the hint, here is one more hint:

Applying the binomial theorem for (x+ )", we have

i gl 3 [ 3 [

n
b= k=2;,0$}$% .ir:EJr»rl,()sl,nc5

" Hint: (14+/2)* + (1~ +/2)° =6 . What will happen to (1 ~/2)?" as n becomes large?
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o geat- 8 (- 3 [

k=0 k:z;,os_;sg k=2)+1,05 <5

n n
So (1 +2) +(1 —\E)" =2 Z [kjl”"‘\/fk, which is always an integer. It is easy to

[P |
k=2/,0< 5=
EiiT

see that 0<(1-+2) <<10™. So the 100th digit of (1++/2)" must be 9.

Cubic of integer

L?thxll;ifl‘“ integer between 1 and 10", what is the probability that the cubic of x ends
wit !

Solution: All integers can be expressed as x = a+10b, where a is the last digit of x.
Applying the binomial theorem, we have x* = (a+10b)’ = a® +30a%b + 300ab* +10000".

The unit digit of x* only depends on a’. So 4’ has a unit digit of 1. Only a =1 satisfies
1 1 3 .
this requirement and &’ =1. Since a’ =1, the tenth digit only depends on 30a’b = 30b.

So we must have that 35 ends in 1, which requires the last digit of b to be 7.

Consequently, the last two digits of x sh 3 !
integers between 1 and 102 g x should be 71, which has a probability of 1% for

4.3 Conditional Probability and Bayes’ formula

Man i :
Osly“f;l:;?; Cil;l(l:(;tranlsactlor}s are responses to probability adjustments based on new—and
mplete—information. Conditional probability surely is one of the most

popular test subjects in quantitative ; ; :
b T € mterviews. So in thi i basic
conditional probability definitions and theorems ilbisssdiibarntii

is the fraction

Conditional probability P(4| B): If P(B)>0. then P(A| B) = P(AB)
of B outcomes that are also 4 outcomes, i

Multiplication Rule: £
Multip ule: P(E E, E,)=P(E)P(E, |E)P(E, | E\E,)--- P(E, | E, - Ea):

TERTReEs 17 ah st N CERE SR
HETH
Hing. £
int: The last two digits of x° only depend on the last two digits of
igits of x.

72

A Practical Guide To Quantitative Finance Interviews

Law of total probability: for any mutually exclusive events {F:} i=12,--,n, whose

union is the entire sample space ( F, (‘\Fj =D, Vi, UE =Q), we have

P(E) = P(EE)'*‘P(EE)"'”'+P(Eﬁ)=iP(E | E))P(F)
i=l
= P(E|F)P(F)+P(E|F,)P(F)+--+P(E|F,)P(F,)
Independent events: P(EF)= P(E)P(F) = P(EF)=P(E)P(F").

Independence is a symmetric relation: X is independent of Y <> Y is independent of X.

P(E|F)P(F)) . !
Bayes’ Formula: P(F,|E)= e T LN if £, i=1, -

3 P(E| F)P(F)

, n, are mutually

exclusive events whose union is the entire sample space.

As the following examples will demonstrate, not all conditional probability problems
have intuitive solutions. Many demand logical analysis instead.

Boys and girls

Part 4. A company is holding a dinner for working mother's with at l??s_t___O{l? son. Ms.
Jackson, a mother with two children, is invited. What is the probability that both

children are boys? h 4as ot (eact one Soh

Solution: The sample space of two children is given by Q= {(b.b). (b,8):(8,6).(g.8)}
(e.g. (g.b) means the older child is a girl and the younger child a boy), and each

BT : is invited, she has at least one son.
outcome has the same probability. Since Ms. Jackson is invited,
Let B be the event that at least one of the children is a boy and 4 be the event that both

children are boys, we have
P(ANB) P({(b,b)}) SRR
P(B)  P({(b.b).(b,2)(g:0)}) 3/4 3

P(A|B) =

Ms. Parker is known to have two children. If you see her

Part B. Your new colleague, what is the probability that both

walking with one of her children and that child is a boy,
children are boys?
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Solution: the other child is equally likely to be a boy or a girl (independent of the boy
you’ve seen), so the probability that both children are boys is 1/2.

Notice the subtle difference between part 4 and part B. In part A4, the problem essentially
asks given there is at least one boy in two children, what is the conditional probability
that both children are boys. Part B asks that given one child is a boy, what is the
conditional probability that the other child is also a boy. For both parts. we need to
assume that each child is equal likely to be a boy or a girl.

All-girl world?

Ina primitivc? society, every couple prefers to have a baby girl. There is a 50% chance
Ehat each child they have is a girl, and the genders of their children are mutually
independent. If each couple insists on having more children until they get a girl and once

they have a girl they will stop having more children, what will eventually happen to the
fraction of girls in this society?

Solution: It was surprising that many interviewees—include many who studied
Er"babf}lt)f*have the {nisconception that there will be more girls. Do not let the word

prefer” and a wrong intuition misguide you. The fraction of baby girls are driven by
nature, or at least the X and ¥ chromosomes, not by the couples® preference. You only
need to look at the ke){ information: 50% and independence. Every new-born child has
equal probability of being a boy or a girl regardless of the gender of any other children

So the fraction of girls born i . e ¢ .
stay stable at 50%,g orn is always 50% and the fractions of girls in the society il

Unfair coin

You are given 1000 coins. Amon
coins are fair coins. You rando
coin turns up head

g them, 1 coin has heads on both sides. The other 999
s. What i mly Ch?qse a coin and toss it 10 times. Each time, the
- Whatis the probability that the coin you choose is the unfair one?

This i i ' 12
15 a classic conditional probablllty question that uses Bayes theorem. Let

. s 1 the unfair one, then A€ hosen
coin is a fa ne, then 4 is the event that the chos¢”
Ir one. Let B be the event that all ten tosses turn up heads. Apply Bayes

theorem we have P( 4 | B) = w = P(B| A)P(4)
The of P(B)  P(B|4)P(A)+ P(B| 4)P(A)
€ priors are P(A4)= ¢
turns up headse so(l;)(BilillO_O Oland (A_ )=999/1000. If the coin is unfair, it always
’ )=1. If the coin is fair, each time it has 1/2 probability turning
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up heads. So P(B| A°)=(1/2)" =1/1024. Plug in all the available information and we
have the answer:
B P(B| A)P(A) iy 1/1000x 1 !

P(B| A)P(A4)+ P(B| A')P(A)  1/1000x1+999/1000x1/1024

P(4|B)

Fair probability from an unfair coin

If you have an unfair coin, which may bias toward either heads or tails at an unknown
probability, can you generate even odds using this coin?

Solution: Unlike fair coins, we clearly can not generate even odds with one toss using an
unfair coin. How about using 2 tosses? Let p, be the probability the coin will yield

head, and p, be the probability the coin will yield tails (p, +p; =1). Consider two
independent tosses. We have four possible outcomes HH, HT, TH and TT with
probabilities P(HH) = p,, p,» P(HT)= pypys P(TH)=Pp;Py> and P(TT)= p,p; .

So we have P(HT)=P(TH). By assigning HT to winning and 7H to losing, we can
\/On Newman O.[aDrf‘t"ﬁ"z

generate even odds.'?

e

Dart game

Jason throws two darts at a dartboard, aiming for the center. The _second dart lands
farther from the center than the first. If Jason throws a third dart aiming for the centerr;
what is the probability that the third throw is farther from the center than the first?

Assume Jason's skillfulness is constant.

Solution: A standard answer directly applies the conditional probability by enumerating
all possible outcomes. If we rank the three darts' results from the best (A) to the worst

(C), there are 6 possible outcomes with equal probability:

12 : 4 i5 < not the most efficient approach since I am disregarding
thf: z:;eush:{f{o:::do;jl‘fh\;lh:a}:ﬁﬁ;n;gzg ﬁg.f rh(;;?lhblisasn((:me side is far more likely thanI the .oI:hert Eide_- to occ_ur),
T T e o il e, Frmor complelgrim it s
efficiency, please refer to TMMS !or Unbiﬂsgﬂi_nggi‘ﬂ._ﬂ biasea L oin by :
Stout and Bette L. Warren, Annals of Probability 12 (1984), pp. 212-222.
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Outcome FUSHRINS I 1 95 16

Istthoow:i | 1AL B LA C B C
2ndtrow B A C A C B
3rdtrow C C B B A A

The information from the first two throws eliminates outcomes 2. 4 and 6. Conditioned
on outcomes 1, 3, and 5, the outcomes that the 3rd throw is worse than the 1st throw are

outcomes 1 and 3. So there is 2/3 probability that the third throw is farther from the
center than the first.

This approach surely is reasonable. Nevertheless, it is not an efficient approach. When

the number O.f darts is small, we can easily enumerate all outcomes. What if it is a more
complex version of the original problem:

Jason throws n (n 2 5) darts at a dartboard, aiming for the center. Each subsequent dart

is f; et tl-1 center than the first dart. If Jason throws the (n2+1)th dart, what is the
probability that it is also farther from the center than his first? . i

This QI'ICStiOH is equivalent to a simple question: what is the probability that the (n+1)h
throw is not the best among all (n+1) throws? Since the 1st throw is the best among the
first n throws, essentially | _a_n__1_§a){ing the event that the (n+ 1)th throw is the best of all
(n+1) throws (let’s call it 4, Q_ﬂ@éiepdept of the event that the 1st thrc-wi_Sz,_llﬂl_;?-_gE
of the first n throws (let’s call it 4). In fact, A, 18 iﬁdepehdem of thé order. of the first
n throws. Are these two events rea]l

_ _ y independent? The answer is a resounding yes. If it
is not e ey
obvious to you that 4,., is independent of the order of the first » throws, let’s look

tit .
at 1t another way: the order of the first n throws is independent of 4 .1 - Surely this claim

llsl(:f:lsplc;ous. But' .independence IS symmetric! Since the probability of 4, i
). the probability that (n+1)th throw is not the best is nl(n+1)."

For the origi i
original version, three darts are thrown independently, they each have a 13

chance of being the best throw
- As long as the thi i it will be
worse than the first dart. Therefore the answereis 2];3(3l ikt

Birthday line

y is the same as s hta
he o { omeone who has already boug

Pportunity to choose any position in line. Assuming that you
e

13
Here you can again
AT 56 symmetry argument: each throw i equally likely to be the best
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don't know anyone else's birthday and all birthdays are distributed randomly throughout
the year (assuming 365 da}rs in a year), what position in line gives you the largest chance
of getting the free ticket?'

Solution: 1f you have solved the problem that no two people have the same birthday in
an n-people group, this new problem is just a small extension. Assume that you choose
to be the n-th person in line. In order for you to get the free ticket, all of the first n—1
individuals in line must have different birthdays and your birthday needs to be the same
as one of those n—1 individuals.

p(n) = p( first n—1 people have no same birthday) x p( yours among those n -1 birthdays)

_365x364x--°(365—n+2)xn—l
i 365" 365

It is intuitive to argue that when n is small, increasing n will increase your chance (?f
getting the free ticket since the increase of p(yours among those n -1 birthdays) is
( first n—1 people have no same birthday). So

more significant than the decrease in p
the negative impact

when 7 is small, we have P(n)> P(n—1).Asn increases, gradually : ;
of p(first n—1 people haveno same birthday) will catch up and at a certain point we
will have P(n+1)< P(n). So we need to find such an n that satisfies P(n)> P(n—1)

and P(n)> P(n+1).

365 364  365-(n-3)_n-2
P e = —— X b 4
LB R TR B T 365
365 364  365-(n-2) n-1
P(n) = {
) e K T T g 365
365 364 365-(n=2) _365-(n-=1) _n
B ) e K LT T EABRIEY 1111119854 141365
365—-(n-2) n-1 n=2 _
P(p)> P(n-N=——armiXgesitTags | | W =3n-363<01 .,
gt nz—n—365>0

i1 365-(n-) 1
P(n)>P(n+1) = —335—> 365 365

You should be the 20th person in line.

ine, to get the free ticket, the first (n-1) people in line must not have

14 yq- i
H . n-th [)'BI'SOH inl
int: If Joe the 7-t the same binhday as one ofthcm.

the same birthday and you must have
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Dice order

We throw 3 dice one by one. What is the probability that we obtain 3 points in strictly
increasing order?"”

Solution: To have 3 points in strictly increasing order, first all three points must be
different numbers. Conditioned on three different numbers, the probability of strictly
increasing order is simply 1/3!=1/6 (one specific sequence out of all possible
permutations). So we have

P = P(different numbers in all three throws) x P(increasing order|3 different numbers)
=(Ix2x)x£=5/54

Monty Hall problem

Monty Hall problem is a probability puzzle based on an old American show Let's Make
a Deal. The problem is named after the show’s host. Suppose you're on the show now,
and you're given the choice of 3 doors. Behind one door is a car; behind the other tWo,
goats. You don’t know ahead of time what is behind each of the doors.

You pick one of the doors and announce it. As soon as you pick the door, Monty opens
one of the other two doors that he knows has a goat behind it. Then he gives you the

option' to either kee‘p_your original choice or switch to the third door. Should you switch’
What is the probability of winning a car if you switch?

S(;h;:ion:' If you don’t switch, whether you win or not is independent of Monty’s action
ol showing you a goat, so your probability of winning is 1/3. What if you switch? Many

:;flould ?)rgge' that sir}ce .thelte are only two doors left after Monty shows a door with god
e probability of winning is 1/2. But is this argument correct?

Lfsﬁ;:cl}?i(:lk ?n:[:le problem from a different perspective, the answer becomes clear. Usité

which hasga mgsgflyou \;fm the car if and only if you originally pick a door with a godt

hbiiad oatp hl ity of 2/3 (You pick a door with a goat, Monty shows a door Wl
g0al, 5o the one you switch to must have a car behind it). If you originally

picked the door with the car which h; o ;
21 o as a probabil i itching
So your probability of winning by switching is acttiatsl(l}? }02};3, fritati

o ge

rder is one of the possible permutations,
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Amoeba population

There is a one amoeba in a pond. After every minute the amoeba may die, stay the same.
split into two or split into three with equal probability. All its offspring, if it has any, will
behave the same (and independent of other amoebas). What is the probability the

amoeba population will die out?

Solution: This is just another standard conditional probability problem once you realize
we need to derive the probability conditioned on what happens to the amoeba one
minute later. Let P(E) be the probability that the amoeba population will die out and

apply the law of total probability conditioned on what happens to the amoeba one
minute later:

P(E)= P(E| F)P(F)+P(E| K)P(Fy)+-+P(E| F)P(F,) -

For the original amoeba, as stated in the question, there are four possible mutually
exclusive events each with probability 1/4. Let’s denote F, as the event the amoeba dies;
F, as the event that it stays the same; F, as the event that it splits into two; F, as the
event that it splits into three. For event E, P(E|F)=1 since no amoeba is left.

P(E| F,) = P(E) since the state is the same as the beginning. For F}, there are two
amoebas; either behaves the same as the original one. The total amoeba population will
die only if both amoebas die out. Since they are independent, the probability that they
both will die out is P(E)?. Similarly we have P(F,) = P(E)*. Plug in all the numbers,
the equation becomes P(E)= 1/4x1+1/4x P(E)+1/4x P(E)’ +1/4x P(E). Solve

this equation with the restriction 0 < P(E) <1, and we will get P(E)= V2-1~0414

(The other two roots of the equation are 1 and ~\2-1).

Candies in a jar

You are taking out candies one by on
and 30 green candies in it. What is the
I green candy left in the jar when you

probability that there are at least 1 fEJlue candy and
have taken out all the red candies?'

combinatorial one. However, a

Solution: At first look, this problem appears (o be a
J uitive answer. Let 7, 7, and T,

conditional probability approach gives a much more e

' Hint: If there are at least 1 blue candy and 1 green candy left, the Jast red candy must have been

removed before the last blue candy and the last green candy in the se(!,uence 9f 60 candies. What i_s the
probability that the blue candy is the last one in the 60-candy sequence: Conditioned on that, wr|>1at is th_e
probability that the last green candy is the last one in the 30-candy sequence (10 red, 20 green)? What if

the green candy is the last one in the 60-candy sequence? o0 gree i
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be the number that the last red, blue, and green candies are taken out respectively. To
have at least 1 blue candy and 1 green candy left when all the red candies are taken ou,
we need to have 7, <7, and T < T,. In other words, we want to derive

P(T, <T,nT < T,). There are two mutually exclusive events that satisfy 7 <7, and
Ll <BisT and T, <T, <T,.

&P <T, T <I)=P({T <T, <T,)+P(T, <L <1})

I, <T, <T, means that the last candy is green (7, =60). Since each of the 60 candies

are equally likely to be the last candy and among them 30 are green ones, we have
30

P(T, =60)=—,
7, ) 60

Conditioned on I, =60, we need P(T <T, | T, = 60). Among the 30

red and blue candies, each candy is again equally likely to be the last candy and there are
. 20 30 20 .l
20 blue candies, so B <TIT =60 == and P(T <T, <T,)=—x—. Similarly,
5 | g ) 30 (T, 3 5\,) =™ X 7
we have P(T, < Tg <T7) :.2_0.)(.3_0

60 40
Hence,

—X—p ——X— = —,

P(T, <T;ﬁ?;(TH)=P(7:<7; <];;)+P(T;<T,<Y;’)=30 20 20)(30: 7
- 60 30 60 40 12

Coin toss game

Two players, 4 and B, alternat
the coin, then 4, then B...). Th
head followed by a tail (HT sub

tail wins. What is the probability that 4

Probability that 4 wins; then the probability that B wins is

P(B)=1-P(4). Let’s condition P(4) on 4°s first toss, which has 1/2 probability of
(heads) and 1/2 probability of T (tails).

PA)=112P4| Hy+1/2p( 4 I7T)
If A°s first toss is T,

then B essentially b 17 . the
— o W {, €comes th fi for
HT subsequence). So we have P(4|7)= P(B) = i LA e (A i s sraped

li; A’s first toss ends in A, let’s further condit;
0

® oetti : ! bili
geting 7' in that case 4 loses. For the 1/ b toom: e 112 P

2 probability that B gets H, B essentially

17 g 2 ‘e
Hint: condition on the result of 4’5 first toss and use Symmetry
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becomes the first one to toss an H. In that case, 4 has (1- P(A4| H)) probability of
winning. So P(A|H)=1/2x0+1/2(1- P(4| H))= P(A| H)=1/3

Combining all the available information, we have

P(A)=1/2x1/3+1/2(1- P(A))= P(A)=4/9. Wl
Sanity check: we can see that P(4) <1/2, which is reasonable since 4 cannot win in his
first toss, yet B has 1/4 probability to win in her first toss.

Russian roulette series

Let’s play a traditional version of Russian roulette. A single bbullelt i: Sz:lltlynllitl?eli* ?0
chamber revolver. The barrel is randomly spun so that each chamber 1Sr_qwith the gun
be under the hammer. Two players take turns to pull t_h?.tr!g-g%m“ the gun goes
unfortunately pointing at one’s own head—without furtPeH?p"_‘_‘“"ih choose to go first
off and the person who gets killed loses. If you, one o_the' lp a)’etf ?;)zs"’
or second, how will you choose? And what is your probability o .

Solution: Many people have the wrong impression that thie Dirstjperson hitg Righee

i i in the first
probability of loss. Aftr al,the irst. player has a 1/6 chance of geting killed in the firs
round before the second player starts. Unfortunate-l)f, this 1; oge lfet Ttk {nibeing
intuition is wrong. Once the barrel is spun, the position of t de 5 USO the probz.lbi]ity that
Jrseyou lose il angiol i cli) mlleteirs ill};hlint]l?aetr sL’niea?Nhet.her to go first or second
you lose is the same as the second player, 1/2. P —— :

does not matter.

We will spin the barrel again after every trigger pull.

S ek s dusogs e e N player? And what is your probability of loss?

Will you choose to be the first or the second

independent. Assume that the
Al . is that each run now becomes In ’ \S Tiit
f‘lolimim. ’l:he dég:;;?t(;e olfs‘ losing is p, then the second l::layer s p.robablllﬁ« (;{elfils;:;,l ,!12
1rs pp Eif’rs chfldition the probability on the first person's first t“g%:' pu -nd frarglii
i . i tially becomes the seco |
ili ing in this run. Otherwise, he essentiall} i S
fl:gbgzii:::y afitll?sﬁlf\:n(conditional) probability of losing 1-p. That happe

=6/11. So you should
o : =1x1/6+(1-p)x5/6 = p
probability 5/6. That gives us p i1 i 1)
choose to be the second player and have 5/1 1 probability of losing

llets are randomly put in the chamber. Your opponent

¥ 1astead of one bRt 9 bue after the first trigger pull. You are given the option

played the first and he was aliv : 12
whether to spin the barrel. Should you spin the barre
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Solution: if you spin the barrel, the probability that you will lose in this round is 2/6. If
you don’t spin the barrel, there are only 5 chambers left and your probability of losing in
this round (conditioned on that your opponent survived) is 2/5. So you should spin the
barrel.

Wha‘l if the two bullets are randomly put in two consecutive positions? If your opponent
survived his first round, should you spin the barrel?

Solution: Now we have to condition our probability on the fact that the positions of the
two bullets are consecutive. As shown in Figure 4.3, let’s label the empty chambers as |,
2, 3 and 4; label the ones with bullets 5 and 6. Since your opponent survived the first
round, the possible position he encountered is 1, 2, 3 or 4 with equal probability. With
lffl cha_nce, 'the next one is a bullet (the position was 4). So if you don’t spin, the chance
of survival is 3/4. If you spin the barrel, each position has equal probability of being
chosen, and your chance of survival is only 2/3. So you should not spin the barrel.

52 cards to 4 players with 13 cards each

i permutations. If each playe!

...._.______'_____
131131131131
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needs to have one ace, we can distribute the aces first, which has 4! ways. Then we
48!

istribute th t 48 ds to 4 players with 12 cards each, which has ———
distribute the res cards to 4 play TIETTETET

permutations. So the probability that each of them will have an Ace is
48! 52! 32 39 26)(13

| i B S T

I x = ==X 4
12112112112! 13131313! 52 51 50 49

The logic becomes clearer if we use a conditional probability approach. Let’s begin with
any one of the four aces; it has probability 52/52 =1 of belonging to a pile. The second
ace can be any of the remaining 51 cards, among which 39 belong to a pile different
from the first ace. So the probability that the second ace is not in the pile of the first ace
is 39/51. Now there are 50 cards left, among which 26 belong to the other two piles. So
the conditional probability that the third ace is in one of the other 2 piles given the fl_rst
two aces are already in different piles is 26/50. Similarly, the conditional probability
that the fourth ace is in the pile different from the first three aces given that the first
three aces are in different piles is 13/49. So the probability that each pile has an ace is

39 26 13

Ix—x—x—

51 50 49°

Gambler’s ruin problem
A gambler starts with an initial fortune of idollars. On each succ'e_ssive game, the
gambler wins $1 with probability p, 0< p <1, or loses $1 with probability ¢ =1- Py He
will stop if he either accumulates N dollars or loses all his money. What is_ jhe
probability that he will end up with N dollars? |, 5, ¢y P marti napade  + 7

"

Solution: This is a classic textbook probability problem called the Gambler’s Ruin{ -

Problem. Interestingly, it is still widely used in quantitative interviews.
0<i< N, let P be the probability

From any initial state i (the dollars the gambler has),
either i +1 with

that the gambler’s fortune will reach N instead of 0. The next state is
probability p or i —1 with probability g. So we have
2 i
4q
RZPP (H_R_1)=(%J (P:—z_R—z)z”'z["'} (PI_R:I)

i+l

+qP,-_.=*P,+;—R=%

We also have the boundary probabilities £, = 0 and P, =1.

So starting from P,, we can successively evaluate P, as an expression of £:
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R=ph+qh=p=Lp =[1+i]g
p p

il

Extending this expression to P,. we have

V-1 L-Gg )" el

I—g/
» » q/p

1-(q/p)

B, if p#1/2

p

: hoop and zero point if she miss
missed on her second. For each of the follo
the fraction of throws she has made so far.
the 40th throw, the probability that she wi

throws (including the first and t
50 baskets?'® h

wing throw the probability of her scoring i
For example, if she has scored 23 points after
[ score in the 41th throw is 23/40. After 100
€ second), what is the probability that she scores exactly

Solution: 1,

throwsnan;tp(n,k)’ AR e event that the player scores k baskets after 7

i n.n,k ¥ P lg(n,k)). The solution is surprisingly simple if we use an induction
arting with n=3. . ittt

P,=1/2 and Al The third throw has 172 probability of scoring. So we hav

32 =1/2. For the i i
probability case when n=4, Jers apply the law of totd

I8 gy ])‘
Hint: Again, do not le sca
ain, t the number 100 i
pattern by Increasing »: angd prove the pattemr::iyou. it T i

: art
ng induction,
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f 211 0 £
Pq']=P((4’1)I(3"1))XPM+P((4a1)|(392))x31‘2=§><"2"+ X-E_,

1P2=P((4.2)|G.D))x P, +P((4,2)|(3,2))x P, =%

Y iarhind
P;=P((4,3)|(3,D)x P, +P((4.3)|(3,2))x B, = frsTang

:
273

1 g : :
The results indicate that P,, =——, Vk=12,---,n-1, and give the hint that the law of

n —
total probability can be used in the induction step.

1
Induction step: given that P,_k=;:—1,Vk=1, 2,--,n—1, we need to prove

K

=—l——-—=-1- Vk=1,2,--,n To show it, simply apply the law of total
" (m+)-1 n

probability:
P, = P(miss|(n,k))P,, + P(score|(nk—=D)P,,.,

( AW 2 R
=] k== T 4%
n)jn-1 n n-1 n

in these cases ket =0
The equation is also applicable to the 2,,,, and £,,,,, although in these :

Vk=12,--,n—1and Vn=2.
n

1
and [l—£]=0, respectively. So we have P, =;—],

Cars on road - | |
t one car on a highway during any 20-minute time

If the probability of observing at leas >ar 0 A il
' . ing at least one car during any
interval is 609/625, then what is the probability of observing g a car at any moment is

S-minute time interval? Assume that the probability of seein
uniform (constant) for the entire 20 minutes.

i interval into a sequence of 4 non-
Solution: break down the 20-minute n °q :
ogel;{;(;)’;)inwg_rfl?:ute intervals. Because of constant de_fault prcz‘bablhtt),;71 (?f f;fzrgéﬁﬁé
car), the pr%)bability of observing a car in any 5-minute mle5rvali r1lsu tc:?[slte?v _a it depte
the probability to be p, then the probability that in any >-m

observe a caris 1- p.
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The probability that we do not observe any car in all four of such independent 5-minute
intervals is (1- p)* =1-609/625=16/625, which gives p=3/5.

4.4 Discrete and Continuous Distributions

In thi§ section, we review a variety of distribution functions for random variables that
are widely u§ed in quantitative modeling. Although it may not be necessary to memorize
tl?e properties of these distributions, having an intuitive understanding of the
dlSlIrlb'utIOIlS and having the ability to quickly derive important properties are valuable
skills in practice. As usual, let’s begin with the theories:

Common function of random variables

T - 7 . .
v:rt;:) l4.1 SU(rinrfr_lanzes how the basic properties of discrete and continuous random
es are defined or calculated. These are the basics you should commit to memory.

Random variable (.X) Discrete Continuous'* L I3
Cumulative distribution function/cdf | F (a)=P{X <a} F(a)= f f (x)dx
Probability mass function /pmf pmf: ] d
Probability density function /pdf p(x)=P{X = x} s (e dv hi s
Expected value/ E[.X] X
x -

x.'_r§>0 p( ) -[:c Xf(x)Cix

Expected value of g(X)/ E [
8(X) A : ]
I R
Variance of T
s i E[(X - ELX]'] = E[X*] - (E[X))
tandard deviation of Y/ stg (X)
var(X
Jvar(X) i

Table 4.1 i : ;
Basic properties of discrete and continuous random variables

Discrete random variables

19
F .
or continuous random variables, P(X = xX)=0,Vxe (—o0,00) }
s 10), 50 P{X < x} = P{X < Xj:
86 | |

A Practical Guide To Quantitative Finance Interviews

independently a success with probability p. Poisson random variable represents the
number of events occurring in a fixed period of time with the expected number of

occurrences A/ when events occur with a known average rate 4 and are independent of

the time since the last event. Geometric random variable represents the trial number (n)
to get the first success when each trial is independently a success with probability p.
Negative Binomial random variable represents the trial number to get to the r-th success
when each trial is independently a success with probability p.

Name Probability mass function (pmf) E[X] | var(X)
b+a | (b—a+1)’ —1
Uni - s =a,a+ 13 g b
niform P(x) PR x=a.a 5 3
h n—-x
Binomial P(x)= [ ]p‘(l -p)"*, x=0,1n np np(1-p)
x
— — s { f lt
Poisson P(x)= Y, x=0,1, C 14 ,/
1 1-p
Geometric P(x)=(1-p) "' p, x=12, et S
4 4
. 'y l e )
Negative x—=1] Xr o FIR] o o p
. = [i— . =l
| Binomial 1) (,- : J pa-»p) p P’

Table 4.2 Probability mass function, expected value and variance of discrete P

variables

Continuous random variables

Table 4.3 includes some of the commonly encountered continuous distrit?utions.
Uniform distribution describes a random variable uniformly distributed over the interval
[a,b]. Because of the central limit theorem, normal distribution/Gaussian distribution 1s

by far the most popular continuous distribution. Exponential _d_istribgt_.ignT_n_lqdels_ ‘.._}le
arrival time of an event if it has a constant __a_l:l_'_i\_(_.’;l!__l:?.tt? A. Gamma dlstnblf{tlpn with
parameters (a, 4) often arises, in practice, as the distribution of the amount of time one
distributions are used to model events

has to wait until a total of » events occur. Beta

P kicke M kil product of arrival rate 4 and time 7 to define the parameter (expected value) since it is

the definition used in many Poisson process studies.
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that are constrained within a defined interval. By adj usting thglshape parameters a and f,
it can model different shapes of probability density functions.

§! l|
Name Probability density function (pdf) E[X] | var(X) q
I b+a | (b-a)’ i
i ——, a<x<bh I
Uniform h—a’ asx 5 > | |
"“_(x_‘fla 2 4' i:
Normal el x e o) H o Hil
V7o $1 ﬂ !
i E
Exponential | le™™, x>0 1/4 1P || |
HE 0 55 60 18
Gamma iz, » X20, T'(a) = _['me'yya_| ald | e/’ 3 A MR % i
— &35 Figure 4.4 Distributions of Banker A’s and Banker B's arrival tim :;!
r(a + JB) a-l =) a aﬂ §
Beta SR (=2 0ex<]
farg” 7 a1 p |@igri@ih

Table 4.3 Probability
random variables

Probability of triangle

. istributi tick),
A stick is cut twice randomly (each cut point follows a }mlf?nﬁzdlstrlbutlon on the stick)
what is the probability that the 3 segments can form a triangle*

density function, expected value and variance of continuous

Meeting probability

T bal.lkers .each arrive at the station at some random time between 5:00 am and 6:00
am (arrival time for ejther bank

: anker is uniformly distributed). They stay exactly five If x < y, then the three segments are X, y-x and
minutes and then leave. What s the probability they will meet on a given day? I-y. The conditions to form a triangle are

ick is 1. Let’s
Solution: Without loss of generality, let’s assume that the length of the stick is

also label the point of the first cut as x and the sec;ond cutasy. _

. i | — . Y w
independe i istributi i th # A i
only stay exactly five minutes,

| X-Y|<5.

mp——y

il Ut SR S ST S

12l
x+(y-x)>1—y:>y>1/2
So the probabili

——nE - e

2+x 2
divided by the aren of <2 ill mee is simply the area of the shadowed regio? bl il i <i/1/2 |
¥ the area of the square (the reg of the region can be combined to a square Vil (R=2)+ (1 - y) 2 % o8 i
size length 55): X0X60-2x(1/2x55x55) (604 55)x(60-55) 23 The feasible area is shown in Figure 4.5. The : |
60x60 qh—_-—ﬁ_-{}:aso T 144 case for x < y is the left gray triangle. L>]sm§ ¥ e 5
Sl): m!.n?ltr}’s e it Sle ittt Figure 4.5 Distribution of cuts X and Y
the right gray triangle.
amF?;r:;?mplg beta dl.v:trlbunqn Is widely used in modeling loss given default in risk management. If Yo G iLlt use the figure to show the distribution of x and y.

* Hint: Let the first cut point be x, the second one be y, ;
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The total shadowed area represents the region where 3 segments can form a triangle,
which is 1/4 of the square. So the probability is 1/4.

Property of Poisson process

Yo'u are waiting fqr a bus at a bus station. The buses arrive at the station according toa
Poisson process with an average arrival time of 10 minutes (A = 0.1/min ). If the buses

have been running for a long time and you arrive at the bus station at a random time,

;Nhal r1)5 your expected waiting time? On average, how many minutes ago did the last bus
eave?

Solution: Considering the importance of jump-diffusion processes in derivative pricing
and the rple of Poisson processes in studying jump processes, let’s elaborate more on
exponential random variables and the Poison process. Exponential distribution is widely
used to model the time interval between independent events that happen at a constant

Ae ™ (120)
0 (<0
Z?iézzt:j;iiﬂci ;S ;’ A*. Using integrat_ion, we can calculate the cdf of an exponentia

()=P(r<t)=1-¢™" and P(r>f)=e™, where 7 is the random

variable fi i i ' '
memomes(;;eszr.n}\;al time. One unique property of exponential distribution I8
: {T>S+’|f>s}=P(r>t}. * That means if we have waited for §

time units, the extra waiting ti istributi
it g time has the same distribution as the waiting time when We

average rate (arrival rate) 1: f(r) :{ . The expected arrival time is 1/4

When the arriv i
P s halEs1 of zll series of events each independently follow an exponentid
rmval rate 4, the number of arrivals between time 0 and ¢ can b¢
AII
., x=0,1,--- 2 The expected

ution, : i
the number of arrivals between time s and ¢ is also a Poissor

modeled as a Poisson process P(N(t):x):e_b

process P(N(f-s)=x) =ii_l(’1_£{:_~i))_
x! :

Taking advanta
ge of the memoryle }
the expected waiting time is lf’y,l 38 property of exponential distribution, we know that

. =10min. If o o ess
property still : 1 you look back in time, the memoryk®
0o TS applies. So on average, the last bus arrived 10 minutes ééo as well.

irrars SSAEeLERRRTRE R

3
1 Plt>s+1]1> 5) = ptism le™®
More rigorously, N(r) is defined asari
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This is another example that your intuition may misguide you. You may be wondering
that if the last bus on average arrived 10 minutes ago and the next bus on average will
arrive 10 minutes later, shouldn’t the average arrival time be 20 minutes instead of 10?
The explanation to the apparent discrepancy is that when you arrive at a random time,
you are more likely to arrive in a long time interval between two bus arrivals than in a
short one. For example, if one interval between two bus arrivals is 30 minutes and
another is 5 minutes, you are more likely to arrive at a time during that 30-minute
interval rather than 5-minute interval. In fact, if you arrive at a random time, the
E[X?]

for a general
2E[X

expected residual life (the time for the next bus to arrive) is

distribution.”

Moments of normal distribution
If X follows standard normal distribution (X ~ N(0, 1)), what is E[X"] forn=1,2,3

1
) |

mdgr O xR ]=(2k-D1 BT 0

Solution: The first to fourth moments of the standard normal distribution are essentially
the mean, the variance, the skewness and the kurtosis. So you probably have
remembered that the answers are 0, 1, 0 (no skewness), and 3, respectively.

=2 Using simple symmetry we

1
Standard normal distribution has pdf 7(x)= \/Z_;?e
: LA i =2,1 ion b rts are
have E[x"]= [ x" ——=e "'2dx =0 when n is odd. For n =2, integration by parts
'E‘ N2
often used. To solve E[X"] for any integer », an approach using mome
functions may be a better choice. Moment generating functions are defined as

> e p(x),
‘M(I)= E[ef_t']: 5
f e” f(x)dx, if x is continuous

nt generating

if x is discrete
Sequentially taking derivative of M (1), we getone frequently-used property of M(1):
M'(r) =§;E[e’x] =E[Xe" | =>M'(0)= E[X],

M"(r) =§:—E[Xe“" 1= E[X’e"]=>M"(0)= E[X?),

—

* The residual life is explained in Chapter 3 of

“Discrete Stochastic Process” by Robert G. Gallager.
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and M"(0)=E[X"], Yn>1 in general.

We can use this property to solve E[X"] for X ~N(0,1). For standard normal
distribution M (1) = E[¢ ] = j'; g e

1
i firt

is the pdf of normal distribution X ~ N(z, 1), so L_f'(x)dx =)

~(x-t12 3. _ 12
dc=e "".

( 1 e 12

2r
Taking derivatives, we have
M'()=te"* > M'(0)=0, M"(f)=¢" +12%" = M"(0) =’ =1.
M(0)=1e" +21e" +£¢" = 31" + 62 = M3 (0) = 0,

and M*(1)=3¢""” +3r%""? +31%" 2 1.3¢%" 2 =>M'(0)=3¢"=3.

4.5 Expected Value, Variance & Covariance

Expected value, variance and covariance are indispensable in estimating returns and

ri.SkS of any investmel?ts. Naturally, they are a popular test subject in interviews as well.
The basic knowledge includes the following:

If Elx) is finite for all i=1,---, n, then E[X, +...+ X,]=E[X ]+ + E[X,]. The
relationship holds whether the X, s are independent of each other or not.

If Xand Y are independent, then E[g(X)n(Y)]=E [g(x)]E[A(Y)] .
Covariance: Cov(X,Y) = E[(X - E[ X)) - E[Y]D]= E[XY]- E[X]E[Y].

Correlation: p(X.Y) = ——Ml_
Var(X)Var(y)

If Xand Y are independent, Cov(X,Y)=0 and p(X.Y)=0.%

General rules of variance and covariance:

CondaX, 2b%) =3 ap conx, v )

= =

I"ur(zl,\’,)z Z;Var(X,)+2ZZ Cov(X,, X )
I= I= £ {

<)

6
The reverse is not true L
- P(X.Y)=0 only means y and ¥ are uncorrelated: they may well be dependent
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el AR
[{f ) of ot ol voriethi e

Conditional expectation and variance ' W = e o ) o LA
For discrete distribution: E[g(X)|Y = y]=)_g(x)py, (x| y) =) gx)p(X =x|Y =y)

For continuous distribution: E[g(X)|Y =y]= j';g(x)f_ vy (x| y)dx

Law of total expectation:
Y E[X|Y = ylp(Y =), for discrete Y

E[X]=EE[X|Y]]=4 !
f E[X | Y = y1f, (y)dy, for continuous Y

Connecting noodles

You have 100 noodles in your soup bowl. Being blindfolded, you are told to tall:e two
ends of some noodles (each end on any noodle has the same probability of being ¢ os§n)
in your bowl and connect them. You continue until' there are no free ends. ;*he mll:yr: e;
of loops formed by the noodles this way is stochastic. Calculate the expected number 0
circles.

number 100. If you have no clue h9w
=1. Surely you have only one choice
1. How about 2 noodles? Now you

4) 4x3 6
have 4 ends (2x2) and you can connect any two of them. There are | , | =

Solution: Again do not be frightened by the large
to start, let’s begin with the simplest case where 7
(to conneet both ends of the noodle), so E[f(1)]=

2

connect both ends of the same noodle

combinations. Among them, 2 combinations will yield a single noodle.

together and yield 1 circle and 1 noodle. The other 4 choices will
So the expected number of circles is

ELfQ)]=2/6x(1+ ELf (D)) + 4/ 6x ELf (D] =1/3+ EL/ (D] =1/3+1.

LG 6x5 _ ices. Among them, 3 choices
We now move on to 3 noodles with [ 2] = T = 15 choices

will yield 1 circle and 2 noodles; the other 12 choices will yield 2 noodles only, so

E[f(3)]=3/15x(1+ E[f(z)])+12£15><E[f(2)]=”5+Elf(z)l:”5+”3+1°

we will have E[f(n)]:1+1/3+1;‘5+—--+If(2n—l),

See th ? n noodles,
¢ pattern? For any n, we will have the answer.

which can be easily proved by induction. Plug 100 i
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Actually after the 2-noodle case, you probably have found the key to this question. If

) 2n . _——
you start with n noodles, among ( i J = n(2n—1) possible combinations, we have

1 £ ; : _
i (2:_ D = - 100E probability to yield 1 circle and » —1 noodles and ‘;z ~:Il probability

to yield n—-1 noodles only, so E[f(n)]=E[f(n-1)]+

T Working backward, you
n p—
can get the final solution as well.

Optimal hedge ratio

You just bought one share of stock 4 and want to hedge it by shorting stock B. How
many shares of B should you short to minimize the variance of the hedged position?
Assume that the variance of stock 4°s return is o the variance of B’s return is 0};
their correlation coefficient is p.

Solution: Suppos)e that we short 4 shares of B, the variance of the portfolio return is
var(ry —hry) = 0, -2 pho 6, + h*o?

The best hedge ratio should minimize var(r, ~hr,). Take the first order pania]

derivative with respect to 4 and set it to zero: O var =2p0,0.+2ho? =0 = h= pg_-i,
h AV B 17

O
To confirm it’s ini

the minimum, we can also check the second-order partial derivative:
o’ var

- _'—..2 Z ; g :
oh’ @5 > 0. So Indeed when h:P‘j‘, the hedge portfolio has the minimum
B

variance,

Solution: This is
different dep‘esn]c;,ir?n giilatl;lple o the law of toul expectation. Clearly your payoff will be
g € outcome of first ro|], Let E[X] be your expected payof’faﬂd

Y be the out
Rifi pzz::z ofIYOlfr first throw. You have 1/2 chance to get Y €{1,2,3}, in which
value 1s the expected face value 2, so E[X|Y €{1,2,3)] = 2; you have
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1/2 chance to get ¥ €{4,5, 6}, in which case you get expected face value 5 and extra

throw(s). The extra throw(s) essentially means you start the game again and have an
extra expected value E[.X]. So we have E[X | Y €(4,5,6)] =5+ E[X]. Apply the law of

total expectation, we have E[X]= E[E[X |Y]]=1x2+Lx(5+E[X]) = E[X]=7.7

Card game

What is the expected number of cards that need to be turned over in a regular 52-card
deck in order to see the first ace?

Solution: There are 4 aces and 48 other cards. Let’s label them as card 1,2,---,48. Let

X =

[

{1, if card i is turned over before 4 aces

0, otherwise

The total number of cards that need to be turned over in order to see the first ace is

48 48 .
X=1+3" X so we have E[X]=1+) E[X,]. As shown in the following sequence,

i=1 i=l

each card i is equally likely to be in one of the five regions separated by 4 aces:
142 434445
So the probability that card i appears before all 4 aces is 1/5, and we have £ [X,]=1/5.

48
Therefore, E[X]=1+ ZE[X‘_] =1+48/5=10.6.
i=l
This is just a special case for random ordering of m ordinary cards and n special cards.
m
ciicds

The expected position of the first special card is 1+ ZE[X J=1+ e

i=1

Sum of random variables

Assume that X,, X,,---, and X, are independent and identically-.distributed (I.l.D)
random variables with uniform distribution between 0 and 1. What is the probability
that § =X +X,++X, 1P

by . SN

bY) : i
% Yflu will also see that the problem can be solv

_ Hint: start with the simplest case where n =1, 2,
Induction,

ing Wald’s equality in Chapter 5. 44
2:3% Try to find a general formula and prove it using

.
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Solution: This problem is a rather difficult one. The general principle to start with the
simplest cases and try to find a pattern will again help you approach the problem; even
though it may not give you the final answer. When n =1, P(S, <1) is 1. As shown in

Figure 4.6, when n=2, the probability that X, +X,<1 is just the area under
X, + X, <1 within the square with side length 1 (a triangle). So P(S, <1)=1/2. When
n =3, the probability becomes the tetrahedron ABCD under the plane X, + X, + X, <l
within the cube with side length 1. The volume of tetrahedron ABCD is 1/6.% So
P(S;<1)=1/6. Now we can guess that the solution is 1/x!. To prove it, let’s again
resort to induction. Assume P(S,<I)=1/n!. We need to prove that
P(S,,, <) =1/n+1).

n=2
Figure 4.6 Probability that S, < 1 whenn=2or n=3

Hébd . i

¢ We can use probability by conditioning. Condition on the value of X,,,,, we have
P8, <D= [ F(X, PGS, <1-X_yax
function of X, . so £ (X,..)

of n=2 and n=

w1 Where f(X ) is the probability density
=1. But how do we calculate P(S,<1-X,,,)? The casé

ided us with some clue. For S, <1-X _ instead of S, <1,

5 : ] ) n+l
ery dimension of the n-dimensional simplex”’ from 1 10

st L S

9
* You can derive it by i ared
Y Integration: I;‘
P EA(Z)dZ— 1/22%dz = 1/6, where A(z) is the cross-sectional ared:

i0
= An n-Sj [ imensi
n-Simplex is the n-dimensiona] analog of a triang|
e.
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= n 4 1 ) A
1-X,,,. So its volume should be A=X,.) X;‘*') instead of gore Plugging in these results,
n! n!
1
1-x,,) 1] =X ) fosio§ 1
P g [t e L A SR el A :
weave e =1) l: n! " n+l n n+l  (n+1)!

So the general result is true for n+1 as well and we have P(S, <1)=1/n!.

Coupon collection

There are N distinct types of coupons in cereal boxes and each type, independent of prior
selections, is equally likely to be in a box.

A. If a child wants to collect a complete set of coupons with at least one of each type,
how many coupons (boxes) on average are needed to make such a complete set?

B. If the child has collected 7 coupons, what is the expected number of distinct coupon
types?31

Solution: For part A, let X,, i=1,2,++, N, be the number of additional coupons needed
to obtain the i-th type after (i—1) distinct types have been collected. So the total number

N
of coupons needed is X = X, + X, +--+ X, =ZX* :
i=1

s have already been collected. It follows that a

Fo i, i—1 disti
rany i, i-1 distinct types of coupon _i+1)/N.

new coupon will be of a different type with probability I=@=D/N=(N ;
Essentially to obtain the i-th distinct type, the random variable X, follows a geometric

distribution with p=(N-i+1)/N and E[X ]= N /(N —i+1). For example, ifi=1, we
simply have X, = E[X,]=1.

L HxX=Y ax]-3 X ‘N[—l'+ : +'"+1}

i -,=| [ f]#ZN—i'Fl_ N N—-I 1

i=1

———

* Hint: For part 4, let X, be the number of extra ¢ ot
i~1 types of distinct coupons have been collected. Then the total expected number of co

g N §2¢2 bability (P) that the i-th
all distinct types is £[X] =Z E[X,]- For part B, which is the expected probability

oupons collected to get the i-th distinct coupon after
pons to collect

i=l

Coupon type is not in the » coupons?
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For part B, let ¥ be the number of distinct types of coupons in the set of n coupons. We
introduce indicator random variables l,i=1,2,---, N, where

I, =1, ifat least one coupon of the i-th type is in the set of n coupons
1, =0, otherwise

N
Sowehave Y=1,+L+.-+1,=)"]
i=1

A : -1
For each collected coupon, the probability that it is not the i-th coupon type is N—N-
Since all n coupons are independent, the probability that none of the » coupons is the i-th

: N-1Y i ¥
coupon type is P(l,=0)=[ . ] and we have E[]]= P(] =1)=1_(f_‘].
y N

E[Y]=ZvE[1,]=N~N[-N—;-V-—I]” e

Joint default probability

If there is a 50% probability that bond 4 will default next year and a 30% probability

that bond B will default. What s the ran i
. ‘ ge of probabilit defaults
and what is the range of their correlation? i I o et o o

gf:u;::_n' {he ral;l ge of probability that at least one bond defaults is easy to find. To have
Whenevgeisg lzlz:(}aa::;lllt?'q, WE can assume whenever 4 defaults, B does not default:
Bond detlant u Sﬂ do:as not default. So the maximum probability that at least on¢

aults 1s 50% +30% = 80%, (The result only applies if P(4)+P(B)<1). For

the minimum, we can assume whe .

L never 4 def: inimum
probability that at |east one bond defaults is 506%311115, iRt
g Correlation, let 7 4 and [, be the indicator for the event
Xt year and p,. be their correlation. Then we have
varl,)=p,x(1-p,)= 025 var(1,)=0.21.

that bond A/B defaults ne
Ell,]=0.5, E[1,]1=0.3,

A Practical Guide To Quantitative Finance Interviews

P(4 or B defaults) = E[I,]+ E[1,]- E[1,1,]
=E[l,]+ E[1,] h(E[IA]E[]B]—COV(IAJB))
=0.5+0.3-(0.5x0.3-p,,0,0,)
=0.65-0.21/2p,,

For the maximum probability, we have 0.65-+/0.21/2p,, =08= p,, =—V3/7.
For the minimum probability, we have 0.65-v0.21/2p,, =0.5= p,, =~/3/7.

In this problem, do not start with P(4 or B defaults)=0.65-+/0.21/2p,, and try to set
P =%l to calculate the maximum and minimum probability since the correlation

cannot be +1. The range of correlation is restricted to [—\/31’ 7,3/ 7].

4.6 Order Statistics

Let X be a random variable with cumulative distribution function F, (x). We can c.ierive
the distribution function for the minimum ¥, = min(X,, X, -+, X,)and for the maximum
Z,=max(X,,X,,--,X,) of n IID random variables with cdf F, (x)as

P(Y, > x)=(P(X 2 x))" = 1-F, (x) = (1- F,(0)" = £, () =nf, (x)(1= F, (x))""
! n-1
P(Z, <x)=(P(X < x))" = F, (x)=(Fy(x)" = f;,(x)= nfy (X)(Fy (x))

Expected value of max and min
Let X,X,..... X be IID random variables with uniform distribution between 0 and 1.

} a1 i ion and
What are the cumulative distribution function, the probability density functi

expected value of Z =max(X,,X,, - X,)? What are the cumul'ative ii'stribu;o;lo
function, the probability density function and expected value of ¥, = sl At

: istributi 0,1],
Solution: This is a direct test of textbook knowledge. For uniform distribution on (0.1

Fj\,(x) =x and f‘(x) £:4) Applyulg FX(x) and f:,((x) to Zn = maX(X| ’ng‘--,X,;) we
have
PZ, <x)=(P(X <x))" = Fy ()= (Fy (1)) ="
= 17, (X) = nf, (x)(F, (x))"" = nx""
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and E[Z,)= [ of, (x)dx = [ m"dx = ﬁ_l[xm' il ;% .

Applying F,(x) and f,(x)to ¥, =min(X,,X,,---,X,) we have

P(Y

n

2x)=(P(X2x))" = F, (x)=1-(1-F,(x))" =1-(1-x)"
= f;'" (X) 65 nf:\' (x)(l 9 F\' (x))”_l = n(l - x)”_l

Lilles

Correlation of max and min

Let X, and X, be IID random variables with uniform distribution between 0 and I,
Y=min(X,,X,) and Z=max(X,,X,). What is the probability of ¥ >y given that
Z <z forany y,z [0, 1]1? What is the correlation of ¥ and Z?

Solution: This problem is another demonstration that a fi gure is worth a thousand words.
As shown in Figure 4.7, the probability that Z < z is simply the square with side length

z. 80 P(Z<z)=7'. Since Z =max(X,,X,) and Y =min(X,,X,), we must hav
Y <Z for any pair of X, and X, . So if y>z, P(Y2y|ZSz):0.hFor y < z, that X
and X, satisfies ¥>y and Z<z is the square with vertices (y, y).(z,),(2,2) and
(7.2), which has an area (z- )" So P(Y 2 ynZ < 2)= (2 y)’.. Hence

P(},zylzgz):{(z—y)zr’zz, ifOSleandOﬁySz
) otherwise '

Now let’s move on to calculate the correlation of ¥ and Z

corr(Y,Z):—gE.V_(_Y_-‘.Z_L_

E[YZ)- E[Y
std(Y)xstd(Z) \/E[Yz L Anaz)

I=ELYY xE[2°)- B[z}
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X5 A
1
(y,2) (z,2)
Z
10y | (@y)
y i 109 ey
. y r4 10 %
Figure 4.7 Distribution of X;, X,, their maximum and minimum.
. TR 1i2i,2
Using previous problem’s conclusions, we have E[Y ]=_2-ﬁ=§’ E[Z]—-2—+-I-~§.

From the pdfs of ¥ and Z, £, (x) = n(1-x)"" =2(1-x) and f,(2)= nz"" =2z, we can
7. Mk
also get E[Y?]= £2(1 ‘J’)yzdyz'i‘_%:% and E[Z}]= EZz-‘dz o which give us the

! 32
vari 2 2 oL l} i d var(Z)=—-| = =7
ariances: var(}) = E[Y‘]—E[Y] =_6._ 5 _ﬁ an 2 |3 T
To calculate E[YZ], we can use E[YZ]= jjf yzf (y,z)dydz. To solve this equation, we

need f(y,z). Let’s again go back to Figure 4.7. From the figure we can see that when
0<z<land 0<y<z F(y,z) is the shadowed area with probability

2
F(y’z)zP(YSymZ£z)=P(Z£z)—P(Y2yﬁZ_<.Z)=22—(Z-J?)Z =2zy-y
1
. Ty 1, 3 2 254
"'f(y,Z)z‘aT%_F(y’z)=2 and E[YZ]= E Lzyzdydzz fz[y lidz = J:z dz h
4

SRR
i3
You may have noticed that var(¥) = var(Z) and wonder wheth

actually true for all integer ». You may want t0 lhin.k about W
Calculation. Hint: var(x) = var(1—x) for any random variable x.

W\mx()(u)(z) £in mm(lhxw'_x%) 101

er it is a coincidence for n=2. It is
hy that is true without resorting to
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An alternative and simpler approach to calculate E[YZ] is again to take advantage of
symmetry. Notice that no matter x, <x, or x,>x,, we always have Yz =xx,

(z=max(x,x,) and y=min(x,,x,)).

PN
o.-E = 5 1 4 = 1 Z | =E—X—=—,
[¥Z)= [ [ xxdds, = ELX,JELX, ] ARy
J 1 cov(Y,Z) 1
H Y,Z)=E[YZ]- E[Y]E[Z]=— = =—.
ence cov(Y,Z) = E[YZ]- E[Y]E[Z] 36 and corr(Y,Z) Jvar(Y)x Jvar(Z) >

Sanity check: That Y and Z have positive autocorrelation make sense since when Y
becomes large, Z tends to become large as well (Z>71).

Random ants

500 ants are randomly put on a 1-foot string (independent uniform distribution for each
ant between 0 and 1). Each ant randomly moves toward one end of the string (equal
probability to the left or right) at constant speed of 1 foot/minute until it falls off at one
end _Of the string. Also assume that the size of the ant is infinitely small. When two ants
collide head-on, they both immediately change directions and keep on moving at |
foot/min. What is the expected time for all ants to fall off the string?**

Solution: This problem is often perceived to be a difficult one. The following
components contribute to the complexity of the problem: The ants are randomly located:

each ant can go either direction; an ant needs to change direction when it meets another
ant. To solve the problem, let’s tackle these components.

When two ants collide head-on, both immediately change directions, What does it mean’
The following diagram illustrates the key point:

Before collision: — . After collision: 21— & , . syivch label: « 5——2
When an ant 4 collides with another ant B, both switc

2::!8 Blilbcf\lfs‘ l: St}l: k? that the collision never happens. 4 continues to move to the right
€S 10 the left. Since the labels are randomly assigned anyway, collisions make

no difference to the result S
diEitt 1 - 90 We can assume that whe just keeps
ON goIng In its original direction, Wh n two ants meet, each jus

» W€ £an use symmetry to argue that it makes no difference
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at about the random direction that each ant chooses:
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expected value for it to fall off is just x min. If it goes in the other direction, simply set x
to 1-x. So the original problem is equivalent to the following:

What is the expected value of the maximum of 500 IID random variables with uniform
distribution between 0 and 1?

Clearly the answer is 18% min, which is the expected time for all ants to fall off the
50 _

string. ride

o0
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Chapter 5 Stochastic Process and Stochastic Calculus

In this'chapter, we cover a few topics—Markov chain, random walk and martingale,
dyngmlc programming—that are often not included in introductory probability courses.
Unll%(e basic probability theory, these tools may not be considered to be standard
requirements for quantitative researchers/analysts. But a good understanding of these
topics can simplify your answers to many interview problems and give you an edge in
the interview process. Besides, once you learn the basics, you’ll find many interview
problems turning into fun-to-solve math puzzles.

5.1 Markov Chain

A Markov chain is a sequence of random variables Xy, X}, X,
property that given the present state, the future states and the past states are independent:

P{X""‘] ___j|Xn = i, Xu—l =1 i X(] =i0}=pr}' =P{Xn+| =j|Xn =£} for all n, 1'0, ¥

=l s
i i,and j, where i, j e{l, 2, -+, M} represent the state space S={8,, 5y s/ Of
X

}Fn other words, once the current state is known, past history has no bearing on the future.
or a homogenous Markov chain, the transition probability from state 7 to state j does
not depend on n.' A Markov chain with M states can be completely described by an

MxM transition matrix P and the initial probabilities P(X,)-

.. with the Markov

Pun Po " P

Transition matrix: P={p,}= Pu i Pp 7 P | \where p, is the transition

i Dar Bzl Piae
Probability from state i to state ;.

. . A’f .
hitial probabiicies: P(X,) = (P(X, =1). P(Xo =2 > P(Xo =M). 2> P(X,=D=1.
i=l

The Probability of a path: P(X, =i, X, =5""" X, =i |X,= )= PP P,
e transition matrix

Transition graph: A transition graph is often used to €xpress the tran ;
and it emphasizes

8raphically. The transition graph is more intuitive than the matrix,

Feagili ligd

1
In thi AR
this chapter, we only consider finite-state homogenous Markov chains (i.¢.,

n
Ot change over time).

transition probabilities do
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possible and impossible transitions. Figure 5.1 shows the transition graph and the
transition matrix of a Markov chain with four states:

i = 1 > 3 4 ‘-ﬁ

005 e BTy

=== 5|05 0 025 0252
O 04 041102401

e AR RIS 1 |4

Figure 5.1 Transition graph and transition matrix of the Play

Classification of states

J (3n such that P™ > (). e I, =min(n: X

iny if state j is accessible from state i, State
from j and j is accessible from j. In Figure 5.
accessible form state 1, but
state 4.

=J1 X, =i), then P(T, <o) >0 ) if and

Siand j communicate if i is accessib{e
1, state 3 and 1 communicate. State 4 is
they do not communicate since state 1 is not accessible from

'We sa‘ybl!hat stat‘e i i‘s recurrent if for every state J that is accessible from i, i is also
accessidle fromj (Vj, P(T' <w)> 0= P(T; <) =1). A state is called transient if it is

not recurrent ( 3j, P(T, <0)>0 and P(T, <x)<1). In Figure 5.1, only state 4 i

Equations

State s, @s1sa,, are unique solut

M
state(s) i+#s, and a = Za; p, for all transient
j=l

states i. These equations can be easily
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derived using the law of total probability by conditioning the absorption probabilities on
the next state.

Equations for the expected time to absorption: The expected tim-es to abso)rpl?;li
H,+, i, » are unique solutions to the equations x4, =0 for all absorbing state(s) i
12 s Mg :

" i 51 i ing the
H=1+ Zi: p. i, for all transient states i. These equations can be easily derived using t
‘ L ]

J=l ) . i the next
law of total expectation by conditioning the expected times to abtsotr;l[igon i
state. The number 1 is added since it takes one step to reach the next state.

Gambler’s ruin problem : syl
Player M has $1 and player N has $2. Each game gives the er}i{fé} t;l::;nankrupt. What
a better player, M wins 2/3 of the games. They play until one of the

is the probability that M wins?

J ies i to choose
Solution: The most difficult part of Markov chain p f-c..b.lems ?fte*:’ihe's zl?h?sol\:;oglem has
the right state space and define the transition probabilities F,’s, Vi, J. Hghagistis
fairly straightforward states. You can define the state Spaczas thfac:;n N has ($n):
money that player M has ($m) and the money ;eate F:atize since the whole
P =103,0).2.10,(1,2). (0903 (Neither m g s ot etk
game stops when one of them goes bankrupt.) SlncehtheSlS;e space using only m:
Players is always $3, we can actually simplify the
tm}={0,1,2,3} .

| e i shown in Figure 5.2.
The transition graph and the corresponding transition matrix aré

0o 0
Poo Poy Poz Pos . g % 0
L 153 23 ' P Pu P2 Pal|_| ¥ b
e o < 0 % 0 %
% P-{R;} Pao  Pay Pz P23 0 e
1 0
o \1-:,{3/ \%’_3} p?'.o pz‘] pz‘z p2.3

iti r's ruin problem
Figure 5.2 Transition matrix and transition graph for Gamble

(M

loses a game) with probability 1/3 and 2 (M WmS_m and p, . =2/3. Both state 3
Py =1/3 and p,, =2/3. Similarly we can get py; = 2

bsorbing states.
(M wins the whole game) and state 0 (M loses the whole gam:) ::: ‘;n HRARHIDEL
To calculate the probability that M reaches absorbing state 2.
Probability equations;
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3 3
a,=1,a,=0, and a = Z P4, a,= ZPEJQI
J=0 =0

Plugging in the transition probabilities using either the transition graph or transition
a,=133x0+2f3xa2} {a,=4f’7

matrix, we have =
a,=1/3xa,+2/3x1 a,=6/7

So, starting from $1, player M has 4/7 probability of winning.

Dice question

Two players Pet on roll(s) of the total of two standard six-face dice. Player 4 bets thata
sum of 12 will occur first. Player B bets that two consecutive 7s will occur first. The

players. keep rolling the dice and record the sums until one player wins. What is the
probability that 4 will win?

Solution: Many of the simple Markov chain problems can be solved using pure

conditional prot.)e.lbility argument. It is not surprising considering that Markov chain is
defined as conditional probability:

e LS M {2 1. : :
ll‘xuvl ——-_}'[A” —I"Yn--[ -_IJ:--I"-”"XO :ID}Z pa; ZP{XH-] :JIXH =l}

So let’s first solve the problem using conditional probability arguments. Let P(A) be the

prob'ability that 4 wins, Conditioning P(A4) on the first throw’s sum F, which has three
possible outcomes F=12, F=7 and F {712}, we have

P = PAIF = 120P(F <12)+ P(A| F =< TYP(F = )4 P(A| F ¢ 7,120 P(F € 07,12)
Then ™ tackle each component on the right hand side. Using simple permutation, we
can casily see that P(F =12)=1/36, P(F =7)=6/3, P(F g1{7,12}) = 29/36. Also it
is obvious lhz?t P(A|F =12)=1 and P(A| F¢{7,12}) = P(A). (The game essentially
Suarts over again.) To calculate P (4| F =7), we need to further condition on the second

throw’s total, which again has three possible outcomes: E=12, E=7, and E ¢{7,12}.

P(AlF:?)=P(A|F=?.E=l2)P(E=12|F=7)+P(A| F=7,E=T)P(E=7|F=T7)
+P(A|F = LE&{T12)P(E (1,12} F =7)
=P(A|F=7,E=12)x1/36 + P(4|F=1,E<7)x6/36
+P(A|F=7,E¢(7,121)x29/36
=1xl!36+0x6£36+P(A)x29!36=1!36+29x’36P(A)

Here the second equation

OIS 1 F=7 and £ 215, g g ePendence between the second and the fis

=12, 4 wins; if F=7 and E=7, A loses; if F=7 and
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E¢{7,12}, the game essentially starts over again. Now we have all the necessarily
information for P(A4). Plugging it into the original equation, we have

P(d)=P(A| F =12)P(F =12)+ P(A| F =T)P(F =7)+ P(A| F ¢{7,12})P(F £{7,12})
=1x1/36+6/36x(1/36+29/36P(A))+29/36P(A4)

Solving the equation, we get P(A4)=7/13.

This approach, although logically solid, is not intuitively appealmg. Now letc’lsdtrf)f a
Markov chain approach. Again the key part is to choose the right state spacelfzm 4 ei:]ns
the transition probabilities. It is apparent that we have_ two absorbing states, 12 (4 w i
and 7-7 (B wins), at least two transient states, S (starting state) and 7 (one 7 %ccurs,tl{er
no 12 or 7-7 occurred). Do we need any other states? Theoretically, you canll avedotwo
states. In fact, you can use all combination of the outcomes O,f i PR final
consecutive rolls as states to construct a transition matrix a1-1d you will get the sar-ntl: HX‘
result. Nevertheless, we want to consolidate as many equi VoA Saleh 4 poss l:nz thf':S
we just discussed in the conditional probability approach, ;fnq 1.2. has Oé?urr:t ata S 'So
most recent roll did not yield 7, we essentially go back to the initial starting .

all we need are states S, 7, 7-7 and 12. The transition graph and probability to reach state

12 are shown in Figure 5.3.
l Probability to absorption state 12

a, :ls a4 =0 13
ne 2 a, =1/36x1+6/36xa, +29/36xag = a5 =7/

\6‘ I a.,=1f36><1+6f36><0+291’36><as
1736

Figure 5.3 Transition graph and probability to absorption for dice ity

i iti ility arguments.
Here the transition probability is again derived from conditional probability arg

Yet the transition graph makes the process crystal clear.

Coin triplets

Part A, 1 you keep on tossing a fair coin, w!lat is th
that you can have HHH (heads heads heads) in a row
0sses to have THH (tails heads heads) in a row?

e expected number of tosses such
9 What is the expected number of

oose the right state
We only need four

. . . h
Solution: The most difficult part of Markov chain 1s, again, ks
T turns up before

: i ard.
Space. For the HHH sequence, the state space 18 stra:gh:vf(l)l;‘:ever 5
Sates: § (for the starting state when no coin 18 tossed or

HHH), H, HH, and HHH. The transition graph is
109




Stochastic Process and Stochastic Calculus

IOQ@/Q\@/% /w\ @G)I

1/2

;:ltv :;d‘l; L atLter‘a coin toss, the state will stay at S when the toss gives a 7. If the toss
suipal 10;5 ie ;t‘atehbeco.mes. H. At state H, it has 1/2 probability goes back to state S if
ibgind) s I: otherwise, it £0¢s 1o state HH. At state HH, it also has 1/2 probability
£0€s back 1o state S if the next toss is 7: otherwise, it reaches the absorbing state HHH.

So we have the following transition probabilities: A, (=1, P =1 p =1
58 =7 SH ~ 2> HS 2

Pl oLy Skl !
HHH = 7> P;m..w T F;H!.HHH =3, and PHHH i = 1.

We are interested in the expected n

time to absorption starting from
expected time to absorption, we hay

umber of tosses to get //HH, which is the expected
state S. Applying the standard equations for the
e

Hs=1+3pc+3pu, Uy =14
113853
Hy = I +Tlu_\' +%)UHH My = 12
Hyy =1+3py +1 ¥4 o
YHs Ty My Hyy =8

My =0 My =0

g §
‘.o f'rom the starting state, the €Xpected number of tosses to get HHH is 14
Similarly for expected time t |
grap

]
i 0 reach THH, we can construct the following transition

and estimate the corresponding expected time to absorption:

Hs = 1+J2'Ju,\' +%.u',r'

1o
: /'% 1/2 | L ni
1;2&) CTH D/\CF ) TR sitifan
N2/ M =1+ 34 + 3ty My =

Moy =0 Moy = 0

So from the startj ate S
¢ Slarting state §, the €Xpected number of tosses to get THH is 8

Part B. Keep fli

ing a fair coj il ei
is the probabilitpp 8 a fair coin until ejther HHH or

y that you get an Hp7 subsequence b THH occurs in the sequence. What

efore THH??

* Hint: This problem d
0€es not i i
between an HHH pattern ang a ;3;[:; ;lettindrli:\:] & of a Markov chain. Just think about the relationship
: can we get an HHH sequence before a THH s ?
equence:
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Solution: Let’s try a standard Markov chain approach. Again the focus is on choosing
the right state space. In this case, we begin with starting state S. We only need ordered
subsequences of either HHH or THH. After one coin is flipped, we have either state 7 or
H. After two flips, we have states TH and HH. We do not need 77T (which is equivalent
to T for this problem) or HT (which is also equivalent to 7 as well). For three coin
sequences, we only need THH and HHH states, which are both absorbing states. Using
these states, we can build the following transition graph:
1/2

| 1/2 1/2 1/2 1/2 1/2 1/2 |
TN L T
(@S S & Cad @9
‘\__112__'/
1/2

Figure 5.4 Transition graph of coin tosses to reach HHH or THH

We want to get the probability to reach absorbing state HHH from the starting state &
Applying the equations for absorption probability, we have

a'f‘ = 0’ a}’H = 0

= o LOORAL =
=30, +3a, 93
ﬂ.‘,.:laﬂ+_|.a a, =4 +La T a =%
29 T3y, ay =5a; +5ay, oA

I

a,., =1 Al e A =2
=70+ 30y, 0y, =50, 5 yyy G =2

So the probability that we end up with the HHH pattern is 1/8.
that renders the calculation unnecessary. You
ceurs, we will always get THH before HHH.

The reason is that the last twoafls in THH is HH, which is the first two COII;?HIII;
*cquence HHH. In fact, the only way that the sequence reache§ state HHH bef}(:re :
'S that we get three consecutive s in the beginning. Other\m'se, we allways que a
bt?fore the first HH sequence and always end in THH first. So if we don't sta;'lla e ;13;1}
Tipping sequence with HHH, which has a probability of 1/8, we will always have

fore HHH

This problem actually has a special feature
may have noticed that a, =0. Once a tail 0

Part C. (Difficult) Let’s add more fun to the triplet game. Instegd of fixed tn;;litsoi)srelhg
t\yo players, the new game allows both to choose their own tnp}ets. Playerl ers again
triplet first and announces it: then player 2 chooses a different triplet. The ph?));e Hosen
105 the coins until one of the two triplet sequences appears. ToR R

"tiplet appears first wins the game.
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If both player 1 and player 2 are perfectly rational and both want to maximize their

probability of winning, would you go first (as player 1)? If you go second, what is your
probability of winning?’

Solution: A common misconception is that there is always a best sequence that beats
other sequences. This misconception is often founded on a wrong assumption that these
Sequences are transitive: if sequence 4 has a higher probability occurring before
sequence B and sequence B has a higher probability occurring before sequence C, then
sequence A has a higher probability occurring before sequence C. In reality, such
transitivity does not exist for this game. No matter what sequence player 1 chooses,
player 2 can always choose another sequence with more than 1/2 probability of winning.
The key, as we have indicated in Part B, is to choose the last two coins of the sequence

—

as the _f:l_g_s_t____tyyo___cpy]S_ of player 1°s sequence. We can compile the following table for
each pair of sequences:

ety

"Y HHH [THH HTH |HHT TTH [THT [HTT [TTT
HHH | V8 25 12 Bro iz s i
THH (@)______IQ___ B4 13 i e s
A o P o T T T
s 12 28 )Y 2 s (s/ o
allTH  pro v/l 12 | 23)/ s i
THT LA VSN 1V S <V S [V 12 B/5
oTr  Bs. hn 12 W3 B i 7/8
ITT 12 b5 bn2 B 12 ps g

As shown in T

iy are_npl ;}l:f 25-;;1}’0]11 can confirm the resylts yourself), no matter what player 1’s

best sequences that play ! \;ays findy sequence to have better odds of winning. The

bold. In order to maﬂin};'e i h.c an choose ' response to 1°s choices are highlighted in

HTT, THH and THT g 1z¢ his odds of Winning, player 1 should choose among HTH:
- ven in these cases, player 2 has 2/3 probability of winning.

3
~ This problem is 5 diffi
:J"d Expected Waiting Tﬂg °L‘f;d'§§?£§f‘§ﬁu“"&““’ "Lay find the following paper helpful: “Waiting Time
0.2 ations” by v, ' stici
(May, 1997), PP. 130-133. In this section, we wiﬁ onl?d?sgumst;ﬁeﬁ?liﬁl’;f”mn i
n.
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Color balls

A box contains # balls of n different colors. Each time, you randpmly select a pair qf
balls, repaint the first to match the second, and put the pair back into the box. ;Vh\z;t is
the expected number of steps until all balls in the box are of the same color? (Very

difficult)

Solution: Let N, be the number of steps needed to make all balls the same color, and let
F,i=1,2,--, n, be the event that all balls have color i in the end. Applying the law of

total expectation, we have

E[N,]= E[N, | FPIF]+ E[N, | F,1PLF 1+ -+ EIN, | F1PLE,].

Since all the colors are symmetric (i.e., they should have equivalent pro;}er;ej)}:v;fe 111‘2;1»;
PIR]=P[F,]=---=P[F,]=1/n and E[N,]=EIN,|F]=EN,|F]=ELN, ity
means we can assume that all the balls have color 1 in the end and use E[N, | F,

represent E[N ].

S0 how do we calculate E[N, | F]? Not surprisingly,

2, SRR

only consider event F,, color 1 is different from other colors and c;oll;n: A
become equivalent. In other words, any pairs of balls that have no color 1 ball iy i
e : Il and a ball of another color are equivalen

are equivalent and any pairs with a color 1 ba e aey 1
if the order is the sar}x;e as well. So we only need to use the number of balls
(1 1

color 1 as the states. Figure 5.5 shows the transition graph.
/\ ﬂ (1 /} b @ o‘
- 6 e o

Figure 5.5 Transition graph for all n balls to become color 1

use a Markov chain. Since we

i ise it will never
e n s the only absorbing state Nf——a"‘i°‘i‘~h--‘TF!?‘?’E—LQ&?%O%%%‘T&hieh makes
'each F,. In fact, all the transition probability 1s conditione .(T _ﬁllﬂ_;aggbility it
t}_1;_{"";1_1;i1i(.IO_II__p-r(;k;.él_l:)_i_li-ty_ p:+,_| F, higher than the uncondltlon; p it (\;mhom
P..i|F, lower than p,,,. For example, Py |F;=0 and Py,

1/n probability of
tonditioning, each ball is likely to be the se-c.ond ball, so .Cor:m :o}l;:;ility, pthe problem
being the second ball.) Using the conditional transition p

. : ations:
tSsentially becomes expected time to absorption with system equ: T
X i+ z
BN, F)=1+ E[N,, | E)x B, | F; + EIN, | R1xP, | R+ BN [ X Ea 15
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To o ] .
0 calculate P, |F, let’s rewrite the probability as P(x,, =i-1|x, =i, F )
Cd + k 2 1/

Vk =0, 1,..., to make the derivation step clearer:

P(xy =i=1]x, =i, F) = 2% =bX%, =i~ 1. F)
P(x =i,F)
= P(F; |x&+i =i“'l,xk ::l-)XP(X*H :i‘—'l’xk :i)xP(xk :f)
P(F | x, =i)x P(x, =i)
<P Ixy =i Dx Pl =i-1x, =i)
P(F | x, =i)
i:—lx_lg_?_—_fl
n_nn-1) (n-i)x(@i-1)
iln n(n—1)

'The first equation is simply the definitio
is tl:ae application of Bayes’ theorem; th
d_e_nve P(F |x, =i) |

n of conditional probability; the second equation
¢ third equation applies the Markov property. To
T ed to use Symmetry. We have shown that if all
nding in ars’.t SLwe have PLF]=PIF]=--= PIF,]=1/n. Whatis
is sifnply i/n. To see that, wﬁl‘::l CIZ:JZ? iibeled i
€, J=1---i (even though they are in fa 1
balls will end with color ¢,

probabilities of ¢,'s, which gi

=i/n, we again ne

he balls are of color ¢? It
color of each of the balls of color ¢ as
ct the same color). Now it’s obvious that all

with probability 1/5. The probability for ¢ is the sum of
ves the result j/p.

Similarly we have p
(£ | x, 2I-D=@E<]

basic countin method i =U=D/n. For Pexe! =i-1|x, =i), we use a
n balls. In orcgier fOI‘OOI'l(;r Esizrarlebz(lrt_])hpossmle permutations to chokose 2 balls out of
which has i choicec. 0 Change col

as i choices; the ﬁ.rSt ball needs to beg anotl?;; ::ho'elosre C&i?cll:alil e l?e cl?l?re;.
So P(.r,(*,zi—ljxkz,'):_i’_’iﬂb 1 anifEtEan

n(n—1)

Applying the same principles, we can get

P(x,, =i|x =i (n—i)x2i

+ k -I,F)—_- | . .

i ! —-——————n(nhl} > Pl =ivl)y, =i,F)= (n—z)x(;;l).
ugei 1 (i drg
SN EIN I R) and simplifying B[N, | £1 g

(n=i)x2ixZ = p(n il ity

=D +(n =i)i+ DZ,, +(n =i)i-1z
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Using these recursive system equations and the boundary condition Z, =0, we can get

Z,=(n-1"

5.2 Martingale and Random walk

Random walk: The process {S,;n>1} is called a random walk if {X;iz1} are 1ID

(identical and independently distributed) random variables and S, = X, +---X,, where

n=1,2,--- The term comes from the fact that we can think of S, as the position at time

n for a walker who makes successive random steps X, X,, -

If X, takes values 1 and -1 with probabilities p and 1 — p respectively, S, is called a
simple random walk with parameter p. Furthermore, if p =73, the process S, is a
symmetric random walk. For symmetric random walk, it’s easy to show that
E[S,]=0 and var(S,) = E[S]- E[S, ]’ = E[S;1=n"

st often tested in quantitative
ften revolve around finding the

the probability that S, reaches

Symmetric random walk is the process that is mo
interviews. The interview questions on random walk o
first n for which S, reaches a defined threshold a, or

a for any given value of n.
chastic process with the properties that

.,Z, =z =z,. The property of a
2 z,]= z,, which

..__Mal'tingale: a martingale { Z,;n>1} is a sto
E[|Z, ||<oo for all nand E[Z,,,|Z, =2 Zu1 = Zuts”

martingale can be extended to E[Z,,,;m >n|Z, =2, 2y =2, 157114

6
means the conditional expected value of future Z, 1S the current value Z,.

A symmetric random walk is a martingale. From the definition of the symmetric random

S” +1 with probability 172 . 50 E[Sn+l 1 Sn e _S-".,...“S'i = s}]: $5
S —1 with probability 12 l

: 4e [54] )
Sitce  E[S2, - (n+1)] = 1[(S, +1)" + (5, - (a+D)=S; ~m §; = is & maringe
as well, j

Walk we have S, ={

:“"“—-——-—.__
Even this step is not straightforward. You need to plug in the /s an

L e pattern will emerge and you can see that all the terms contai
=Var(Z)=1. Induction step: If Var(S,)=
T 1

is independent of S,,.
rtingale does not need to be a Markov

either.

d try a few cases starting with

ning Z,_ . Z, 4, cancel out.

Mk n, then we
Nduction again can be used for its proof. Var(S,)

h r -
Eave ;‘ﬂ'r{SMI )= l'rar(s,., X )= l"ﬂ-"{s.)+ Var(x,,, y=n A HBIINS
PO not confuse a martingale process with a Markov process. A s
Process; a Markov process does not need to be a martingale process,
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Stop?ing rule: For an experiment with a set of IID random variables X X. ...

stopping rule for {X ;i>1} isa positive integer-value random variable N (sto ¥ inz’ ti i
such that for each n > 1, the event {N < n} is independent of X I P Il;p 'g Illm?)
says that whether to Stop at n depends only on X, X 3 X, (i e"+]];0 l::;;)k al;ea?is;ca i

Wald’s Equality: Stoppi v
s Equality: Let N be a stopping rule for IID random variables X Y. ... and let
b g ) DS T e G

Sy =X, +X, +~-+)(N s then E[S, ]= E[X]E[N]. ilii

Since it is an important—yet relatively little known—th

peoof. Let 1 . eorem, let’s briefly review its
1, be the indicator function of the event {N'>n}.So S, can be w);itten as
. >

Sy=2"X,I . where [,=Vif N2nand I, =0 if ¥ <p—

n=|

From the definition of stopping rules, we know
(it only depends on AT SRR

that /, is independent of Xkl
' Xo) So E[X,1]= E[X,]E[1,]= E[X]E[1,] and

E[S.J*E[;X"’"J:ZE[X,J»1=§E[X]E[A.]=E[X]fjE[f,,]=EIX]E[NJ-?

n=|

~—

A marfip_gale stopped at a stopping time is a m

artingale,

Drunk man

gs]!:::f:n{hfhc probability part of the problem—ofte
[merei;inj | mf(tbtr popular martingale problems ;szg
i Mar]\% i,c };:np“f;ﬂictuse a clear.-cut martingale a
gambler’s ryin problem wi\:I? ; bj?? gm"% it
end, yet a mart .
the problem,

Pearing in different disguises—is
d by quantitative interviewers.
fgument. Most candidates either
L1t as a special version of the

. hes 3
ingale argument is not on| ©S¢ approaches yield the correct results in the
MLy simpler but also illustrates the insight behind

" For detailed
proof and icati
Proc applicatio ’ .
rocesses by Robert G, Gallager, 1 Rk Equality, please refer to the book Discrete Stochastic
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Let's set the current position (the 17th meter) to 0; then the problem becomes a
symmetric random walk that stops at either 83 or -17. We also know that both S, and

S’ —n are martingales. Since a martingale stopped at a stopping time is a martingale,
S, and S, —N (where S, =X, +X,+:--+X, with N being the stopping time) are
martingales as well. Let p, be the probability that it stops at a=83, p, be the
probability it stops at —f=-17 (p; =1-p,), and N be the stopping time. Then we
have

ES,]=p, x83—(1-p,)x17=8,=0 :{ p, =017

E[S2 - N]=E[p, x83* + (1- p,)x17]- E[N]=S; -0=0]  [E[N]=144]

Hence, the probability that he will make it to the end of the bridge (the 100th meter)

before reaching the beginning is 0.17, and the expected number of steps he hrovilr
reach either the beginning or the end of the bridge is 1441.

We can easily extend the solution to a general case: a sym i -
from 0 that stops at either & (a >0) or —f (8>0). The probability that it stops at

instead of -2 is p, = /(e + ). The expected stopping time to reach either a or =/

metric random walk starting

Dice game

Suppose that you roll a dice. For each roll, you are paid th
or 6, you can roll the dice again. If you get 1, 2 or 3, the game SIOpS.

eXpected payoff of this game?

e face value. If a roll gives 4, 5
What is the

tation to solve the problem. A

Solution: C
ution: In Chapter 4, we used the law of total expe Equality since the

Simpler approach—requiring more knowledge—is to apply Wald’s I
problem has clear stopping rules. For each roll, the process has 1/2 probability of

Stopping. So the stopping time N follows a geometric distributfon with p=1/ ?r ;mci \::;
have E{N]=1/p=2. For each roll, the expected face value is E[X]= il

Xpected payoff is E[S,]= E[X]E[N]= 7/2x2=1.

Ticket line

A.l a theater ticket office, 2n people are waiting to bu}f
ills and the other » people have only $10 bills. The tic

tickets. n of them have only $5
ket seller has no change 10 start
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with. If each person buys one $5 ticket, what is the probability that all people will be
able to buy their tickets without having to change positions?

Solution: This problem is often considered to be a difficult one. Although many can
correctly formulate the problem, few can solve the problem using the reflection

principle.® This problem is one of the many cases where a broad knowledge makes a
difference.

Assign +1 to the n people with $5 bills and -1 to the n people with $10 bills. Consider
the process as a walk. Let (a,b) represent that after g steps, the walk ends at 5. So we

start at (0,0) and reaches (2n,0)after 2n steps. For these 2n steps, we need to choose n

2n)  2p!
steps as +1, so there are ( J= £5e possible paths. We are interested in the paths that
n n.n!

have the property 5 >0, VO<a<2n steps. I's easier to calculate the number_of

complement paths that reach b=-1,30<a<2n As shown in Figure 5.6, if we reflect

the path across the line Y =-1 after a path first reaches -1, for every path that r_f_rﬂ_c_}}_‘fi

(21,0) at step 2n, we have one corresponding reflected pamEﬁfﬁgj@'i—2) at
step 2n. For a path to reach (2n,—2), there are (n=1) steps of +1 and (n+1) sth.
S(; if-le_re are 2n ] 2n!

n-l _m such paths. The number of paths that have the

property b=-1,30<a < 2n, given that the path reaches (2n,0) is also [ i J and the
n~1

number of paths that have the property 520, VO<a <2p is

(2:?}_[ 2n]_ﬂ[2n} n (2n 1 (2n

n n-1 n) n+l n _n+1[n].
Hence, the probability that a] people will be ab]
change positions is H(n+1).

—— Ll

8~ .
Coi : / : .
nsider a random walk starting at a, § = g, and reaching 4 in n steps: § = 5. Denote N (a,b) as the

number of possible paths from (0,4) to (n,6) and N’(a,b) as the number possible paths from (0,a) t0
(n,b) that at some step k (k> 0,),
(,0), 30 <k < n. The reflection principle says

intuitive: for each path (0,a) to (k,0), there is a o

S, =0; in other words, N, (a,b) are the paths that contain

hat if @, 5 > 0, then N,(a,b)= N (~a,b). The proof is
ne-to-one corresponding path from (0,-q) to (,0).
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-1 NG

; : lid line
Figure 5.6 Reflected paths: the dashed line is the reflection of the so
after it reaches -1

Coin sequence

Assume that you have a fair coin. What is the ex
heads in a row?

pected number of coin tosses to get 7

of coin tosses to get 7 heads in a row. In
where n=3 (to get the pattern HHPD.
ach. Using the Markov chain
: (3)]=14. A natural

Solution: Let E[ f(n)] be the expected number

. _ : ase
the Markov chain section, we discussed t!ledc tion appro
For any integer n, we can consider an induc

= d E[f
approach, we can easy get that E[f(D]=2, ELf (2)]=6 an

! the
_an+l _9 As always, let’s prove
[t e peeial foming. 4 E[f(n)]_21 'sztrue for n=1,2,3. So we only
formula using induction. We have shown the formula 1

#2 _9 The following diagram
need to prove that if E[f(n)]=2"" -2 E[f(’;} )(]:4—21)]3 1
shows how to prove that the equation holds feiH
P=1/2

—_—

d as (n+1)H) must be n heads in a Tow

1_2 tosses 10 reach nH.
(n+1)H (the new toss
that it will go to the

The state before (n+1) heads in a row (denote _omt
(denoted as nH ), It takes an expected E[‘)_((n)z ‘\_Nlll go to
Conditioned on state nH, there is a 1/2 PrObablht); /12 probability
Yields H) and the process stops. There 1S #ia0 8
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starting state () (the new toss i
yields 7)) and ;
i0 vesbh t LU S0 ot we need another expected E£[ f(n+1)] tosses

E[f(n+1)]= E[F(n)]++x1+Lx E[ f(n+1)]
= E[f(n+1)]=2x E[F(n)]+2=2"2 -2

General Marti 12552
artingale approach: Let’s use HH - - H, to explain a general approach fot the

expected ti[lle o get an}‘ CO'll se c y i
[ ,i l l 1 qu nce b Cxplormg the Stoppmg tImeS Of mar [illgales-
llla& ne a La“lb er haS $ tO bet on a Sequence Ofn heads (M_IH ) 1 i

- na fa]r gaﬂle

with the followin .
i e | Ghinbles e zﬁlet;i?inﬂszed(onlup {gemimemiiomaed iy 11|
appears at the first o : y (unless he goes bankrupt). F i
st e s e, il v 52 will ot 3 e he cond eI
case he collects $2” (with pfo};) Slfi_a ga;l‘le or when he wins » games in a roll gin Wf:liCh
before each toss a ability 1/27). Now let’s imagine, i :
ch n . et’s imagine, inst !
with a bankroll of § I'W'agsaﬁ'bllfrJ'O'm-s"t'he'game and bets on fl%s:ééinie siﬁ%
oneos s e b itsina gf. After the i-th game, ;i gamblersniia'{/'e’ ﬁéﬁici[ﬁé& in the
game is fair, the expected valur:(z)lt{iﬁ t'hey have put in the game should be $i. Since each
denote x asthea cir total bankroll is $i ' '
X mount : i as well. In other words, if we
el tit ; of money all the participating gamblers havi 4
x, ~ i) is a martingale. rs have after the i-th game.

Now, let’s add a stoppi

the first to get n heafilsninng; Lriiﬁi tge Who_fe s e of the st R

S5 N il e il _(.) Imarlmgale stopped at a stopping time is a martingale.
4 =0. If the sequence stops after the i-th toss (i2n), the

(i=n+1)-th player i
the (i —n) Playe}r{s blesf;l;-l: l(]f-‘]rSt) player who gets n heads in a roll with payoff 2". So all
Im went bankrupt; the (i—n+2)-th player gp;t}; (n-lj heads

in a roll with payoff 27!
23] s ...; the -
payoff'is fixed and x =27 4 -1, i flzlljla);erﬂgets one head with payoff 2. So the totd
DY - n ? 8 2 :

Hence, E[(x, -i)]=2""_5_ Eli]= 0= E[i]= 2"

Tb_is: approach can be i i

sF‘tIuer_lceS_Wiih'éifﬁii'ra?}?gfl-ed 10 any coin sequences—as well as di 3

HHTTHH. We can again umber of elements. For exam 1 el' ?S d‘*?‘?--_sequ?%e

gamblers join the game use a stopped martingale Pmcep ef’ cavence HT Seque’?ﬁe

HHTTHH until one pa b(;“e by one before each tos Ha b it a1
gambler becomes the first 1o get St.hteoszgtleon th]j[;; I;;;; eq;l;rtll::

nce .
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2°. All the (i —6) players before him went bankrupt; the (i—4)th player loses in the
second toss (HT); the (i —3)rh player and the (i—2)th player lose in the first toss (D)
the (i-1)th player gets sequence HH with payoff 2° and the i-th player gets H with
payoff 2.

Hence, E[(x, —i)]=2° +2? +2' - E[i]=0= E[i]=70.

5.3 Dynamic Programming

Dynamic Programming refers to a collection of general methods developed to solve
0t is an extremely versatile tool with

sequential, or multi-stage, decision problems.'

applications in fields such as finance, supply chain management and airline scheduling.
Although theoretically simple, mastering dynamic programming algorithms requires
extensive mathematical prerequisites and rigorous logic. As a result, it is often perceived
t0 be one of the most difficult graduate level courses.

Fortunately, the dynamic programming problems you are likely to encounter in
e them as such—are rudimentary

interviews—although you often may not recogniz

problems. So in this section we will focus on the basic logic used in dynamic
programming and apply it to several interview problems. Hopefully the solutions to
these examples will convey the gist and the power of dynamic programming.

A discrete-time dynamic programming model includes two inherent components:
L. The underlying discrete-time dynamic system
ys be divided into

er of states associated
state in the next stage

ly one choice).
wing the convention, we

stages with a decision
with it. The decision

A dynamic programming problem can alwa
(at some stages and

;’qulred at each stage. Each stage has a numb
i one stage transforms the current state into a
ates, the decision may be trivial if there is on

f\ssume that the problem has N +1stages (time periods). Follo > |
abel these stages as 0, 1, -, N —1, N. At any stage k, 0<k< N —1, the state transition
system at stage k' u

f‘-an be expressed as x,,, = f (X, Uy Wi )s where x, is the state of
IS the decision selected at stage k; W, is a random parameter (also called disturbance).

za i tsi

10 g
pmg:S section barely scratches the surface
i Mming topics, I’d recommend the book Dynamic
: Mmitri P, Bertsekas.
In .
i general, x, can incorporate all p
ent information by assuming Markov property-

i i _to-date dynamic
£ dynamic programming. For up-to-
¥ yProgrammfng and Optimal Control by Professor

ussion, we only consider the

ast relevant information. In our disc

121




Stochastic Process and Stochastic Calculus

Basically the state of next stage X, 1s determined as a function of the current state 5
current decision u, (the choice we make at stage k from the available options) and the

random variable w, (the probability distribution of w, often depends on x, and u,)

2. A cost (or profit) function that is additive over time.

Except for the last stage (V), which has a cost/profit g, (x,) depending only on Xy, the

costs at all other stages 8 (X.,u,,w,) can depend on X,, u,, and w,. So the total

N-l
cost/profitis g, (x, )+ Zg# (X.u,,w,)}.
k=i

Hle goal of optimization is to select strategies/policies for the decision sequences
=fu*... i b Y il
8= {uy* ey *} that minimize expected cost (or maximize expected profit):

N-1
Je () =min E{gy (x,)+ Y g, (x,,4,.m,)}
k=0

Dynamic Programming (DP) algorithm

(l) het' d}"l"l.anTiC Prtigramming algorithm relies on an idea called the Principle of
ptima m If 7 ={U* -, uy_*} is the optimal policy for the original dynamic
programming problem, then the taj] policy 7. * = {y *,--,u, *} must be optimal for the

! N-1
tail subproblem E{g, )+ g, (x,.u,, W)} .
k=i

I) y - .- d I.r_
P-algorithm: To solve the basic problem J.(x,) = min E{gl\,(x,\,)+\Z:Ig,,(xp“ww*)}'
=0 . Hiiie IR EF TR E )T_F ----- ‘. _I k=l .”__-—.-—_—
uadbirriydn zf = 8y (xy), alE go _b_ackwards minimizing cost-to-go fl!“‘?_tjﬁfl_{&_(ﬂl'
Je(x,) T3 15{&' (xx--“;--“l)'*Jh.(f(x,(,uk,wk N}k = O_N _1. Then the J,(%)

s

— c

start with Jy(x,

gi;*_rx_c_rfgec_i_frpp_]_t_l!i§ Elhg_g_r:ithm is the e_xpec:t;ci 6;;timaf costq T

Although the algorit oks complicated, the e -

Programming problems

the final Stage (which

uncertainty) first |

e nyd) cost-ta’jd tl} : ackward towards earlier stages by applying the o
0-80 functions ypgi] You reach the initia] stage.
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Dice game

You can roll a 6-side dice up to 3 times. After the first or the second }'oll, if you get a
number x, you can decide either to get x dollars or to‘choose to continue rolllgg. H]E'il_lc_;
once you decide to continue, you forgo the number' you just rolled. If you get \L(;l t te.l {lll;
roll, you'Il just get x dollars if the third number is x and the game stops. What 1s the
game worth and what is your strategy?

Solution: This is a simple dynamic programming strategy game. Ags_al‘:idr)ézaf;l:;
programming questions, the key is to start with the final stage and work a;:t E’?l omes
this question, it is the stage where you have forgone the first two rolls. It bec

1/6
simple dice game with one roll. Face-values 1,2, 3, 4, 5, and 6 each have a
probability and your expected payoff i@_$_3‘5'

Now let’s go back one step. Imagine that you are at the point after th;fsetf: ;; % ?,-l I}Ze?;
which you can choose either to have a third roll with an ex'pe'ct.ed payo thzn 3 5 in other
the current face value. Surely you will keep the face value if it 1s lzarge; ol k;eép rolling.
words, when you get 4, 5 or 6, you stop rolling-_ e o get/ lf; 2r+ 5 4}-( 6) = $4.25.

S0 your expected payoff before the second roll is 3/6x3.5+1 x(

i first roll,
Now let’s go back one step further. Imagine that you are at the point after the firs

3 4.25 (when
for which you can choose either to have a second roll with expected payoff $4.25 (

: the face
face value is 1, 2, 3 or 4) or keep the current face value. Surely you will keep the

g t ’ S p

your expected payoff before the first roll is 4 /6x
mming—gives us the

This backward approach—called tail policy in dynal'nicl llJrsotgrz )
strategy and also the expected value of the game at the initial stage,

World series

153 Series finals. In
The Boston Red Sox and the Colorado Rockies are playing in thaex?:’n(zlﬁl b ;: 7Lgames e
€ase you are not familiar with the World Series, the.r pebhy r\llflou have $100 dollars to
the first team that wins 4 games claims the championship. You Nave 97 1

Place 4 double-or-nothing bet on the Red Sox.

Unfortunate] ly bet on each individual :
1 Shouldy;gfﬁ(;agno:agh game so that if the Red Sox ;vms t
exactly $100, and if Red Sox loses, you lose exactly $1007

Sox has won i games and the
ff, which can be negative when
we know that there may be
that whenever the

e series as a whole. How

ame, not th . .
4 Sox he whole series, you win

Solution: 1 et (i, j) represents the state that the Red

Rockies has won 7/ games, and let £(i, ) be our net payo h
"¢ lose money, at state (i, /). From the rules of -the gam ,trategy i
between 4 and 7 games in total. We need to decide on a s
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series is over, our final net payoff is either +100—when Red Sox wins the
championship—or —~100—when Red Sox loses. In other words, the state space of the
final stage includes {(4,0), (4.1). (4,2). (4.3)} with payoff J(,7j)=100 and
1(0,4), (1,4), (2,4), (3,4)} with payoff f(i,/)=-100. As all dynamic programming
questions, the key is to start with the final stage and work backwards—even though in
this case the number of stages is not fixed. For each state (i, J), if we bet $y on the Red
Sox for the next game, we will have (f(, j)+y) if the Red Sox wins and the state goes

to (i+1, j), or (f(i,/)~y) if the Red Sox loses and the state goes to (i, j+1). S0
clearly we have

S+1, j)=fG, ;‘)+y} G D=(fG+1, )+ fG, j+1))/2
TG, j+D)=fG, j)-y y=(fG+1, j)-1G, j+ 1))/2

For example, we have f(3,3)= J4.3)+/G,4) Loliatls
2

'wiFh lhe_ columns representing i and the rows represer?ting j. Now we have all the
information to fill in f(4,0), f(4,1), 7(43) f(4,2), £(0,4), £(,4), f2.49
-‘f (3, 4). as well as £(3,3). Similarly we can also fill in all f(i, j) for the states where
/=3 or j=3 as shown in Figure 5.7 Going further backward, we can fill in the net
payoffs at every possible state. Using equation Yy=(fG+1, j)—f(i, j+1))/2, we can
also calculate the bet we need to place at each state, which is essentially our strategy-

If you are not accustomed to th, : . ;
) ¢ table format, Figure 5 i binomial tree,
format you should be familiar o g .8 redraws it as a bi

: _ ; ith. If you consider that t conditions are
At AP I i mip b bap ey o
:ln':gf;g":}% assﬁt either increases by 1 or decrease by 1 after each step, and there is 10
Wil tir{1e iesntli edpll‘ob!em becomes a silmple binomial tree problem and the bet we p.lace
obtia bee e dynamic hec_lgmg_ In fact, both European options and Americal

PHOnS can be solved numerically using dynamic programming approaches.

=0. Let’s set up a table
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Red Sox Red Sox
wins| 0 1 2 3 4 wins| 0 1 2 3 4
87.54-100
2 0 100 3 0 ?‘H
K 100 < |1 754100
[ T
§ 2 100 ﬂ _g 2 ilO“""IDO
i £ 3 L4 s-—-;54—-§o<-g+-100
JE gfoo] | 3|3 BT
: 4 |-100]-100|-100|-100 © ™4 |-100]-100{-100|-100
S Red Sox
Red Sox
__wins gl 112143914 hasitio b4 F2 |3 A
i 253125 25 [12.5
2| 0| 0 [31.2562.5(87.5| 100 g 0 PB1
: Z | 1 b1.2437.5/37.5| 25
g1 [31.3 o |37.5| 75 | 100 lj B ;
s . . S 2 | 25 |37.5| 50 | 50
S| 2 |625[-375 0 | 50 | 100 3
5 5| 3 [125] 25 | 50 | 100
2|3 |875 -75|-50( 0 |100 g
3 4
| 4 |-100{-100{-100|-100
Figure 5.7 Payoffs and bets at different states
100
1 100
33765) Ihy! 100
62.5 {;.5” 4.2) i
34 50 (4.3)
31.25 375 32)
(1,0) @1 } 03]
y (3 1
%9 (1{,)1) (2.2) 2 (;T)
-31.25 375 b
it (12) 100
+13 24)
-62.5 13)
0.2) -100
03 0
i -100
0.4)

; - inomial tree
Figure 5.8 Payoff at different states expressed in a bin
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Dynamic dice game

A casino comes up with a fancy dice game. It allows you to roll a dice as many times as
you want u.nless a 6 appears. After each roll, if 1 appears, you will win $1; if 2 appears,
you v-v1Il win $2; ...; if 5 appears, you win $5: but if 6 appears all the moneys you have
won in the game is lost and the game stops. After each roll. if the dice number is 1-5,
you can decide whether to keep the money or keep on rolling. How much are you
willing to pay to play the game (if you are risk neutral)?"?

Solution: Assuming that we have accumulated » dollars, the decision to have another

roll or not depends on the expected profit versus expected loss. If we decide to have an
extra roll, our expected payoff will become

] 1 1 1
=(n+D)+=(n+2)+— - : l >
6 ) 6(" )+6(”+3)+6(n+4)+‘6—(n+5)+g><0:“6—ﬂ+25

W .
e have another roll if the expected payoff -z—n +2.5 > n, which means that we should

kee ol .
vl r,fli'?g 'tfhzhe money Is no more than $14. Considering that we will stop rolling
215, maximum payoff of the game is $19 (the dice rolls a S after reaching

th i
f‘f] :;a_le] 6n 14). We then have the following: f(19)=19, f£(18)=18, f(17)=1.
: =10, and  f(15)=15. When n<l4, we will keep on rolling 0

5
E[f(n)|n<14)=L RLRREH L |
: 6ZIE[f(n+I)]' Using this equation, we can calculate the value for

E[f(n ively
Si&ﬁ i g[ ;e;;L;;s_wglly for all n=.14.1, 13,---, 0. The results are summarized in Table 52
] =0.13, we are willing to Pay at most $6.15 for the game.

it TR

n 19
B :8 sERAE b s U bl e i) e
EU][19.00 18,00 1700 1600 1500 14.07 1336 12.59 11.85 1LI6 |

u 9

E[ffim][10.52 991 ¢ ——
‘ - .34
T4 B 880 829 78] 736 693 6.53 615
- EXpected payoff of the game when ¢

he player has accumulated n dollars

12 .
" Hint: If you decid
) € to have h
than the amount bef; anoter roll, the ex highe”
ore the roll. As th Pected amount you have after the roll should be M

appears. So wh 3 € number of g ! : ifa

en the amount of dollar reaches a cengill::?nll?:rrejzﬁs’ hym;dnstk 1051;;_8 it

s should stop rolling.
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Dynamic card game

A casino offers yet another card game with the standard 52 cards (26 red, 26 black). The
cards are thoroughly shuffled and the dealer draws cards one by one. (Drayvn cards are
not returned to the deck.) You can ask the dealer to stop at any time you l'1ke. For f-:ach
red card drawn, you win $1; for each black card drawn, you lose $1. What is the .optlmal
stopping rule in terms of maximizing expected payoff and how much are you willing to
pay for this game?

e difficult by many interviewees. Yet it is a

Solution: 1t i ivedto b
ution: It is another problem perceive r of black and red

simple dynamic programming problem. Let (b, r) represent the numbe
cards left in the deck, respectively. By symmetry, we have
red cards drawn — black cards drawn = black cardsleft —red cardsleft =b—r

Ateach (b, ), we face the decision whether to stop or keep on playing. If we ask the

dealer to stop at (b, r), the payoff is b—r. If we keep on going, there 1s yap

probability that the next card will be black—in which case the state changes 10
(b-1, r)—and —— probability that the next card will be red—in which ¢

+r .
changes to (b, 7 —1), We will stop if and only if the expected payoff of drawing more

¢ards is less than »—r. That also gives us the system equation:

ase the state

!" I .3 E I 13
[f( { )]_ maX[b Iy E[‘f(b"lsj )] l‘——'—[f(.b,,r——])]),
oundaxy COHditiOHS f(O., 4 ) - 0.,

As shown in Fj ure 5.9 (next page), using the b
g 3 B pag for E[f(. r)], we can

(6,0)=b, vb, r = 0,1,--,26, and the system equation

fecursively calculate E [/ (b, r)] for all pairs of band r.

. =$2.62.
The eXpected payoff at the beginning of the game 1S E[f (26, 26)] $2

Essentially you

-‘-‘-‘-‘--‘-‘_—‘-_‘-‘—I——

13
Y‘ou probably have recognized this system equation as the one
€cide Whether you want to exercise the option at state (6. 7):

for American options.
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5.4 Brownian Motion and Stochastic Calculus

: terpart
In this section, we briefly go over some problems for StOCh.aStIC ca.l(f‘ulus’ ﬁ:iet(l::zzzrrlemg of
of stochastic processes in continuous space. Sir-lce the basic d?ﬁ:u::,?gia;-oblems, we'll
Brownian motion and stochastic calculus are directly used as inte

Number of Black Cards Left

i i ith an overview of
simply integrate them into the problems instead of starting with a
definitions and theorems.

(b,r)
S5 GRE AN AR AN AN I T 17 18 19 20 21 22 23 M &)
ROtk abisiis i iy el imilan 9 12,13 14 15 18 17 18 19 20 .2 | 2toll ¥
WA s B R ST BT A TR 12 e 111, 12 13 14 15 18 17 18, 19| .20 24k B
it ozl e st iielin sl 6 lig 4 12 13 14 15 16 17 18 19 20 2t 2P
P lieH amioasitad 2 Isil 4|5 lelty sl 0 11 12 13 14 15 16 17 18 19 20 2
P! | (€20 040/ 000 100 1ide 207135 ) 14 iS5 6 08 10 M 12 43 e 15 o Liml {Ieaeie 2
P 017033 054 079 112 155 2153 4 5 4 Fos o8 40 1 12 43 4 a5 B | 160 [
P 014 020 045 066 091 123 166 2233 4 5 7 B g 40 11 12 43 g4 bk liEE{E T
0 013 025 039 056 076 1.01 Y34 175 230 3 &4 5 6 7 8 9 10 11 42z a8 | aw s
0 011 022 035 049 066 086 111 WAL 238 305 4 5 & 7 8 9 0 11 4z 9 e 8
i P 010 020 031 043 056 075 095 121 152 152 243 310 $3°8 e 7l e o oo 1 RFEGNE T
14
3 00 009 018 028 039 052 066 083 108 130 141 200 250 3154 5 6 7 8 @9 10 1 12 B
2 g
5 0 008 047 026 0.35 048 059 0.74 0o 112 138 169 208 257 3204 5 6 7 8 9 10 " 2
12 "
3 0 008 015 024 0.32 042 0.54 066 0 080 120 146 177 215 263 3244 s ¢ 7 & 9 10 11"
11
EI" P 997 014 022 030 039 049 060 07 089 106 128 1.53 184 222 270 328 403 5 6 7 8 9 10
214 b 007 013 "
: 020 028 0.36 045 0.5 067 080 0gs 113 135 160 191 220 275 333 406 5 6 7 8 9
16 0 006 013 019 g ¢
= | 028 033 042 051 061 073 046 102 120 142 167 198 236 281 338 409 5 6 7
2% o 008 042 04 453,
z n 8 024 031 039 047 057 067 079 093 108 1.27 148 174 205 242 287 343 413 5 6
0 006 011 047 o 81
8 p 2 029 038 044 053 062 073 085 09 115 133 155 181 211 248 293 348 416 5 5
005 011 016 02 §
o Bl 2 028 034 041 049 058 067 078 090 104 121 139 161 187 217 254 299 353 419 ot ¢
05 010 015 020 422 501"
il il 026 032 039 046 054 063 073 084 096 110 126 145 167 193 224 260 3.04 357 T
010 0.14 0.19 o a9 37
b [ 25 031 037 043 051 059 g 078 089 101 116 132 151 173 1.99 230 266 309 T,
009 014 0.19 315
R2 o 004 034 029 033 041 048 056 083 0.2 'des dod 107 1.21 138 157 1.79 205 2.35 272 !
0.09 013 018 023 g2 1277 %%
Ry fo 028 033 039 045 052 060 088 077 g 09 112 126 143 162 185 211 21 H
004 008 013 017 022 026 032 g4y o 216 247
94 037 043 049 056 064 077 2 148 168 1.90 2 2 i
be b 082 0.92 104 1.17 13 L
004 0.08 012 018 021 025 030 035 041 04 173 196 2225
be b o 741 047 053 060 068 077 086 097 108 122 1.37 154 1. L
04 008 0.12 0.16 020 g 24 029 034 039 ¢ 159 178 201 %"
He 70 045 051 057 064 072 081 090 101 143 1.26 142 1. 55
s 24 007 011 015 019 023 028 0.32 037 o 146 164 18
—243 048 054 061 068 076 085 095 1.06 118 131 1. -

Brownian motion Li1Es
i 1 on!
4. Define and enumerate some properties of a Brownian moti

question. Interestingly, part of the

Solution: This is the most basic Brownian motion e B il

- . t
definition, such as W (0) =0, and some properties are s0 obvious
recite all the details. Hih

i i otion
A continuous stochastic process W (1), ¢ 0, is a Brownianm
. W(O) =) :
W@, - W)W,
* The increments of the process W (t,)—W(0), W(t,)-W)

V0<t <1, <..-<t, are independent;

is normally distributed with distribution

* Each of these increments

W(twl)_W([j) P N(Os tH—l _ri') i

Some of the important properties of Brownian motion il

Jumps); g W@)]=0; E[W (:)2] =t; WO~ ,- sa HE i
EW(i+s) W] =W (), cov(W(s),W(t)) =5, VO<s<I;

continuous space).

are the following: continuous (no
martingale  property

Brownian motion that are valuable

There are two other important martingales related to

tools in many applications.
* Y(t)=w()’ -t is a martingale. it
; ! Z(f)=exp{/1W(t)—%/12r}, where A is any constant an
| i ingale).
motion, is a martingale. (Exponential marting )
Hi a Wiener

i W(t) since it is
l i it is denoted as :
e uaian motion is often dencted as 5, Altemathel et familiar with both.

: that you g
PIOcess. In this section, we use both notations interchangeably s0 i
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We'll show a proof of the first martingale using Ito’s lemma in the next section. A
sketch for the exponential martingale.is the following:?

E[Z(r +.s')] = E[exp{i(W(r‘):@(-.s‘)!].-%iz(! +.s‘)}]
= exp{iW(I) —%22:‘} exp {~§ﬁgs} E[exp {/IW(S)}]
24 exp{—%ﬂzs} exp{%izs} =Z

B. What is the correlation of a Brownian motion and its square?

Solution: The solution to this problem is surprisingly simple. At time 1. B ~ N(0,), by
symmetry, E[B]=0 and E[B’]=0. Applying the equation for covariance
COMN.T) = ELXY)- ELX]ELY), we have Cov(B, B?) = £[B] E[B ]E[B/]=0-0=0.
So the correlation of a Brownian motion and its square is 0, too.

C. Let B, be a Brownian motion. What is the probability that B >0 and B, <0?

again a normal distribution: B, - B ~N(OD. I
B =x>0, then for B, <0, we must have B,-B <-x,

P(B, >0, B, <0)=P(B, >0,8,- B <-B)

=f-—_].__e‘-"z’3dx 14 -2 12 il QPR TUNE P
oo L-\b——’;e dy=££5;—re " dxdy

= Tdn | B I 7};4}2___3;,2 i i 1
j ) e ‘?'df‘dgz T 1) —r /2 e

L5 Tt s
If we fully take advantage of the facts that B

Wer is no, Using conditional probability and

But do we really need the integration Step?
and B, =B, are two [ID N(0.1), the ans
independence, we can refo

P -
(8,>0,B, <0)= P(B > 0)P(B, - B, <0)P( B, =B 5B )

=If’2xlf2xlf2=l!8

W)~ N(0,s). So Efe ;
\8). Xp{AW (5)}] i : ble
NO.s), [ Py ()}] is the moment generating function of normal random Varia
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s d
This approach is better demonstrated in Figure 5.10. When we .have B >0 dar;
B,- B, < -B,, which accounts for 1/8 of the density volume. (All 8 regions separated by
x2={] | p= 0I y=x, and y =—x have the same density volume by symmetry.)

0.15

P
-
o 0.1
Q

|

i

0.05 ‘ : VAWM
7T
| ¢ W%@?‘@iﬁ\
~ .m -
NS e, P SIS 3
-3 T -1::_:’:* < r "f 'z:‘:.ﬁ :.“:"" S 3 3
-2 ——— o": "‘ 0
= B 1
0
| 2 -2 B
& 9 B2
7

Figure 5.10 Probability density graph of (B1, Bz-B1)
Stopping time/ first passage time L

| ian motion to
A What is the mean of the stopping time for a Brownian lving Ito’s
: roved by applying
Solution: As we have discussed, Bf ~¢ is martingale. It 621 iiti

lemma;
2 Bzr_f) ] _dr.}.d[.‘—‘ZB:dB;-
d(B gy OB =) ., OBI-0) , VOB D 4 opap

e 2 0B’
a.Br ar mln{f, B, =1 or -1} Al

: - t T =
% d(B! 1) has no drift term and is mamnga]_el- A lies: A martingale stopped at
*Ontinuous time and space, the following property still app s o =~
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a stopping time is a martingale! So Bl -T isa martingale and E[Bf. = T:] =B} -0=(,
The probability that B hits 1 or -1is 1, s0 B2 =1 = ET)=E[ B} ]=1.

B. Let W(r) be a standard Wiener process and 7, (x> 0) be the first passage time to

level x (7, =min{r; W (1)=x}). What is the probability density function of r. and the
expected value of 7, ?

Solution: This is a textbook problem that is elegantly solved using the reflection

principle, so we will simply summarize the explanation. For any Wiener process paths
that reach x before (7, <t), they have equal probability ending above x or below x at

time 1, P(z, SLW()2x)=P(r, SLW()<x). The explanation lies in the reflection
principle. As shown in Figure 5.11, for each path that reaches x before 7 and is at a level

y above x at time ¢

rreﬂccrt"fi path will end at 2x~y that is below x at time (. For a standard Wiener process
(Brownian motion), both paths have equal probability.

P(r. <t)= P(z, SLW()> Jc)-i-P(r_Ir SLW(r) < x) = ZP(Z'I <tLW(1) 2 x)

=2P0H () 2x)=2[ *‘“rfl e gy
" N2t

W .
Let v=—0 ; -wi/y g 4
5

. ] ? .
Jo e Seye (UL LG 1114 1ge §i 1105
v ot d“~2J:ﬁ—\E—;e Cdv=2-2N(x/ ).}

l'ake the derivative with respect to 1, we haye

- dPir. <1} ap \ 5
f (!):——-‘—.-L_.__’_-—-—-—l_r_ré_(‘i_d(x;"\/;) X xe—_\ 12t
1 L g =2N* 312 0
d d(l‘f\/;) T il (x;\/{_)xé_f il N2zt Wil

From part A, jt's €asy 1o show that the ex

‘ ected ing ti ither a (2>0)
o -8 (£50) is i E[N] Pected stopping time to reach either

=@f. The expected first passage time to level ¥ 1°
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. ¥ = 00 =00,
essentially the expected stopping time to reach either x or —o and E[r, |=xx

2e ‘on!
Although we have P(r. <o0) = 2_2N(x/\/o—o) =1, the expected value of 7, is !

1
1
1
1
=k

—
-‘_.__-_
o —

p) £57) ER—

- its reflected path
Figure 5.11 Sample path of a standard Weiner process and its

i f X starts at 0,
. (4114, ift,i.e. dX(r)=dW(0). 11X starts at!
C. Suppose that X is a Brownian motion with no drift, 1_5'? What if X has drift m, 1.¢.

What is the probability that X hits 3 before hitting
dX(f) = -
()= mdt + dw (1) 2 ety e

Slution: A Brownian motion is a martingale. Let ps ed at a stopping time is @
Brownian motion hits 3 before -5. Since a martingale ss-[;l;far to random walk, if we
Martingale, we have 3P +(-5)1-B)=0=h =5!8.h | robability that it stops at @
have stopping boundaries (a >0) and - (B> i l i ﬁme to reach either @ or =p
instead of B is p, = B/(a+ B). The expected stopping
1S again g [N |=ap. (1,x) be the probability

a martingale. Let i h X is no longer a

When x has drift m, the process is no longer X =x at time [. Althoug

hat the process hits 3 before hitting -5 when
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martingale process, it is still a Markov process. So P(1,x) = P(x) is actually independent
of 1. Applying the Feynman-Kac equation’, we have

mP (x)+1/2P_(x)=0 for -5<x<3.

We also have boundary conditions that P(3)=1 and P(-5)=0.

mP (x)+1/2P,(x)=0 is a homogeneous linear differential equation with two real roots;
=0 and r,=-2m. So the general solution is P(x)=c,e"™ +c,e™ =¢ +c,e™.

Applying the boundary conditions, we have

{L'l 3 2 (214 e 1 G = _elﬂm J'{(C_hm - eIUm) p 0 e]f)m =]
" 2. =0 * T =c +c, =
(‘I +(2l) e 0 Cl n l},a(e b _elﬂm) ( ) 1 2

“Yom _—6m

g g

zf\ different and simpler approach takes advantage of the exponential martingale:
(1) =CXP{)‘W(’)“%A"}- Since W (t)= X(t)—mt, X(t)—mt is a Brownian motion as
well. Applying the exponential martingale, we have E[exp(,{(X —m!)—%f{ﬂﬁ e

any constant 4. To remove the terms including time /, we can set A=-2m and the
equation becomes £ [CXP(_-?"’IX )] =1. Since a martingale stopped at a stopping time is

. L 10m
a martingale, we have ﬁ exp(—2m x 3) +(1- P,)exp(~2mx -S=1= __O__i_.,
a el mn L m

g. Sgppose th.at Xisa generalized Weiner process dX = dir + dW (1), where W(t) is &
rownian motion. What is the probability that X ever reaches -1?

Solution; To s i 4
on: 10 solve this problem, we again can use the equation E [exp(—ZmX )J:]

fro a1 d 4
; ;:;:Ia]rz]: ﬁ;cuwgu:» problem with m =1, |t may not be obvious since we only have on¢
ndary, ~1. To apply the stopping time, we also need a corresponding

positive boundary. To addr i i
4 ess this problem, w ' it
boundary and the equation becomes kit it

4
Let X be an Ito process given by equation dX (1) =

$ # ; tion of X.
Define function Vit,x) = E[f( Pl Xdt + y(1, X)aw and f(x) be a functi

X [ = , . i
IX = x], then ¥, x) is a martingale process that satisfies the partid
differential equation ._al. aV | Ay,
+ﬁ(f..\'}———+— : % : all

! ) 4 UJ)—__aS’: =0 and terminal condition ¥ (7. x)= f(¥) u
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P, exp(=2x—1)+ (1— P, ) exp(-2x+0) = X A T

lto’s lemma

lto’s lemma is the stochastic counterpart of the chain rule in ordinary calculus. Let X(1)
be an Ito process satisfying dX(r)=p(, X)dt+y(t, X)dW (1), and f(X(f)’f) k.)e i
wice-differentiable function of X (r) and f. Then f(X(¢),r) is an Ito process satisfying

| o 1., i I P S aw ).
df-(6—1+ﬁ(r,X)a+2y (t,X) &2] t+7( )Ebc

. of L e T
Drift rate ==+ B(t, X)—+—y (t,X)
Al e i

y i Z,?1s
A.Let B be a Brownian motion and Z, = JiB,. What is the mean and variance of Z,

Z, a martingale process?

out 0. Since JI- I8

n ich i etric ab
Solution: : :on. B ~ N(0, t), which 1s symm '
on: As a Brownian motion, b, ( (I

i me
d Constant at t, Z, :J;B, is symmetric about 0 and has

(xvar(B,) = 1*. More exactly, Z, ~ N(0, 1*)- | |
e 0, itisnota martingale. Applying [to’s

Although Z, has unconditional expected valu
52, 2 0% gy 1 OB gt = i B+ 1B,
lemma to Z, =i B,, we have dZ, =_§3‘Ld3r+-5‘_- ilkisd L2 Bt is not
1 i it Tane )
For all the cases that B #0, which has probablllty 1, the drift term 3

5 : - hoale process.
Zr0.” Hence, the process Z, = Jt B, isnota martingale P

. ess?
B.Let W (f) be a Brownian motion. Is /¥ (f ) a martingale proc

Frpyar okl y if the

: .
A generalized Wiener process dx = a(x,0)dt +b(x,0)dw (1) 15
drift term has coefficient a(x,t) =0.

a martingale process if and onl
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Solution: Applying Ito’s lemma to f(W(f),t):W(f)" we have g W (1)
) =J i
oW (1) s

ARG

¢ W)

=6W (1), and df (W(t), t)=3W (t)dt +3W (1)’ dW (t). So again for the

0
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Chapter 6 Finance

It used to be common for candidates with no finance knowledge to get hired into
quantitative finance positions. Although this still happens for candidates with specialized
knowledge that is in high demand, it’s more likely that you are required, or at least
expected, to have a basic grasp of topics in finance. So you should expect to answer
some finance questions and be judged on your anSWets.

Besides classic textbooks,' there are a few interview books in the market to help you
prepare for finance interviews.” If you want to get prepared for general finance problems,
you may want to read a finance interview book to get a feel for what types of questions
are asked. The focus of this chapter is more on the intuitions and mathematics behind
derlyative pricing instead of basic finance knowledge. Derivative problems are popular
chollces in quantitative interviews—even for divisions that are not directly related to
derivative markets—because these problems are complex enough to test your

understanding of quantitative finance.

6.1. Option Pricing

Let’s begin with some notations that we will use in the followin

I maturity date; #: the current time; 7=T —1: time to maturity; S : stock price at time £;
: continuous risk-free interest rate; y: continuous dividend yield; o: anﬂuall_zed asset
volatility; ¢: price of a European call; p: price of a European put; [$4 ;.mlce of an
American call; P: price of an American put; D: present value, at [, of future dividends: K:

strike price; PV: present value at 7.

g sections.

Price direction of options

How do vanilla European/American option prices ¢
changes?

Solution: The payoff of a call is max(S - K,0) and the payoff of a putis max(K =5:0)
A Buropean option can only be exercised at the expiration time, while an American

?hption' can be exercised at any time before maturity. [ntuitively we can ﬁgure_ c::i ;l::;
€ price of a European/American call should decrease when the strike price 11

o T RESRS

hange when S, K,t,0,71 0f D

7vi Bodie, Alex
John C. Hull is 2

commend Investments by

1
For bag;
asic finance the f i t knowledge, Ire :
ory and inancial marke g er Derivatives by

ane and Al TEVT : es and Oth . t ol ?
an J. Marcus. For derivatives, OPf19% meu;tochastic calculus and derivative pricing, I'd

teven E. Shreve. LR,
d I1) by Stev Advanced and Quantitative

Clas i .
sic. If you want to gain a deeper understanding 0

r
*commend Stochastic Calculus for Finance (Volumes 3

F .
O example, Vault Guide to Finance Interviews and Vault Guide 10

nance Interviews.
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Sil.lcc a call with a higher strike has no higher—and sometimes lower—payoff than a call
with ‘a‘lower strike. !Jsmg similar analyses, we summarize the effect of changing market
conditions on an option’s value in Table 6.1.

The impact pi‘time to maturity on the price of a European call/put is uncertain. If there is
a large dividend payoff between two different maturity dates, a European call with
shlorter maturity that expires before the ex-dividend date may be worth more than a call
with !ongcr maturity. For deep in-the-money European ;')uts, the one with shorter
maturity is worth more since it can be exercised earlier (time value of the money).

Variable European call | European put | American call | American Put
Stock price 1 1 ! 1 J i
Strike price 1 | 1 I 1

Time to maturity 1 | ? ? 1 1

Volatility 1 1 1 1 1

Risk-free rate 1 1 ! 1 !

Dividends 1 ! 1 ! 1

Ta‘ble 6.1 Impactof S, K, 7,0, r, and D on option prices
T:Increase; |: decrease; ?: increase or decrease

It is also wort :

all others stay I:hzoég:ﬁethithlib!e it assumes that only one factor changes value while

are related. For exampl.e a la :n gract;ce FRey] el be realistic since some of the factors

fhily wid intrehoes the tq‘k fge decrease in interest rate often triggers a stock market
Stock price, which has an opposite effect on option value.

Put-call parity

Put-call parity: ¢+ K7 = ,Dw
=P{S - D, where the European call option and the Europed"

put option have th :
¢ same underlying security, the same maturity 7 and the same strike

price K. Since p>0, w
D20, we can als i . g
the put-call parity. o derive boundaries for ¢, §—D—Ke™" <¢<8, from

For American options, the e

S-D-K<C-p<S—k-r quality no longer holds and it becomes two inequalities:

Brupee ; s K < C [-) .(' f/ 3 }\ g
2ipy

et L

Can you write d
own : C-p =S :
the put-call parity for Européan options on non-dividend paying

stocks and prove it?
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Solution: The put-call parity for European options on non-dividend paying stocks 1s
¢+K"" = p+S. We can treat the left side of the equation as portfolio A—a call and a
zro-coupon bond with face value K—and the right side as portfolio B—a put and the
mderlying  stock, which is a protective  put. Portfolio A4 has payoff
max(S, - K,0)+ K = max(S,,K) at maturity T. portfolio B has payoff
max(K - §,,0)+ S, = max(S;,K) at T. Since both portfolios have the same payoff at T
and no payoff between ¢ and 7, the no-arbitrage argument3 dictates that they must have
the same value at 7. Hence, ¢+ K™~ = p+§.

If we rearrange the put-call parity equation into ¢ = p = S— K", it will give us different

insight. The portfolio on the left side of the equation—long a call and short a put—has
the payoff max(S, — K,0) —max(K —S;,0)=5; = K, which is the payoff of a forward

with delivery price K. A forward with delivéfy ‘price K has present value S - K&". So
r*_This expression shows that when the

we again have the put-call parity ¢—p=5—-K2 i
strike price K = S'* (forward price), a call has the same value as put; when K <S5, 2

call has higher value; and when K >S"*, a put has higher value.

American v.s. European options
4. Since American options can be exercised at any time before maturity, dr:ey ;:z ;ﬁzi
more valuable than European options with the same characterisucs. But when

? be
pays no dividend, the theoretical price for an American _call and Europez;ln cilil Sgslﬂgver
the same since it is never optimal to exercise the American call. Why should ¥

: : ity?
exercise an American call on a non-dividend paying stock before maturity:

h
Solution: There are a number of solutions to this popular problem. We present three

arguments for the conclusion.

Aaflgumem 1. If you exercises the call option, you W
i 1_'? - K. The price of the American/European cal :
Positive for a call on a non-dividend paying stock. So the investo
Option than exercising it before maturity.

ill only get the intrinsic value of the

] also includes time value, w!fuch is
¢ is better off selling the

for European options, W€ have

a European call on 2 non-
insic

I fact, if we rearrange the put-call parity
=8 K7y o (5— K)+ (K- K ™)+ p. The valte &
dividenq paying stock includes three components: the fir t
Yalue S~ K; the second component s the time value of the stf

st component is the intr
ike (if you exercise now,

gttt

k]
A hy i the okl
& l-?el‘ of transactions is an arbitrage opportunity if the initial inve
¢ Inequalities is strict.

stment < 03 payoff 2 0: and at least one
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you pay K now instead of K at the maturity date, which is lower in present value); and
the third component is the value of the put, which is often considered to be a protection

against falling stock price. Clearly the second and the third components are both positive.

So the European call should be worth more than its intrinsic value. Considering that the
corresponding American call is worth at least as much as the European call, it is worth

more than its intrinsic value as well. As a result, it is not optimal to exercise the
American call before maturity.

Argument 2. Let’s compare two different strategies. In strategy 1, we exercise the call
option® at time 7 (¢ < T) and receive cash S — K. Alternatively, we can keep the call,
short the underlying stock and lend K dollars with interest rate » (the cash proceedings
from the short sale, S, is larger than K). At the maturity date 7, we exercise the call if it's

in the money, close the short position and close the lending. Table 6.2 shows the cash
flow of such a strategy:

It c}carly‘* shows that at time 1, we have the same cash flow as exercising the call, S-K.
But at time 7, we always have positive cash flow as well. So this strategy is clearly

beltf:r than exercising the call at time . By keeping the call alive, the extra benefit can be
realized at maturity.

Cash flow b r

§ Sr <K Sr> K
Call option 0 0 ik
Short Stock S iSp 5
Lend K at ¢ -K Ke'" Ke'™

e
[y i :
Olal S K Keir __131?. 5 0 Ke_,,r ——K < 0

Table 6.2 Payoff of an alternative strategy without exercising the call

f;;rgumc:‘nt.?). Let S use ‘a‘mathfematica! argument relying on risk-neutral pricing and
.fnsen S quuallty——n_f(X) 1S a convex function,’ then E[ f(X)]= f(E[X]D- From
I'l'gurc 6.1, it’s obvious that the payoff (if exerciséd when S> K ) c;f a call option
C(S)=(S-K)" is a convex function of stock price with property

CAS, +(1-2)5,) S AC(S) + (1-2)C(S, ), 0< 4<1.

We assume S > K in our discussion. Otherwi

se, the call surely should not be exercised.

‘A function f(X) is convex if and only iff(&x+{l-—l)y)s Af()+(A-A)f () 0< A< |
S (x)>0, Vx. then J(X) is convex.
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‘ Lt S =S and S, =0, then C(AS) < AC(S)+(1-A)C(0) = AC(S) since C(0)=0.
i | 2

CA

ARSI (L MIC(S), posmmmsr=mrmmrass it b S g
CAS+(1-N)Sy) |---==-m-====--2="""7

1
L}
I
1
1
I
]
[}
]
1
[}
1
1
1
Ll
1

—
-

0 S5 AS;+H(1-M)S2 S1 S

Figure 6.1 Payoff of a European call option
- K). If it is not exercised until

L0408 . : t, the pa offattis C(S,
Ifthe option is exercised at time pay [e-rrC(ST )] under risk-neutral

maturity, the discounted expected payoff (to 7) 15 7l

SR 3 [ Sf,’rr.
measure. Under risk-neutral probabilities, we also have E[S;]1=5,

~ —rr re
So E‘[e_”C(S.‘,‘)} =e"E[C(S, )] 2eC (E[S.,. ]) =f_ r_(le_ _SQ
where the inequality is from Jensen’s inequality. '

] =T !'rs:
Let S=¢"S, and A =e~"", we have C(48)=C(5,)=¢ (s,
) forany 1< ! und_gr_ the

<eE[C(S)] -

: SEIAR iR asacanid 1Y)
Since the discounted payoff ™" E[C ()] i HBEES—@EI‘IT r(; l;efore expiration.
ﬁilgrlffglral measure, it is never optimal to exercise the optio

:on of the stock price.
I should point out that the payoff of a put is also a convn::l -t;,li:(i::;:;d thheh <ock, The
But it is often optimal to exercise an American putonan L PUS)< A P(S). In fact,
difference is that P(0) = K, so it does not have the ll‘ropel't):lot apply 10 American puts.
i T ot i it American call option for
Similar analysis can also show that early exermSFbIOffg? the time right before an €%
dividend-paying stocks is never optimal f?iifff’_t_@fl.--l snisitiil
dividend date,

ke price $80 i

stock with strl §90 is priced

k with strike price
ptions‘?

idend paying
the same sto¢
o in these tWo 0

B. A European put option on a n-on-div
currently priced at $8 and a put option On
A$9.1s there an arbitrage opportunity existin
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Solution: In the last problem, we mentioned that the payoff of a put is a convex function

in stock price. The price of a put option as a function of the strike price is a convex

function as well. Since a put option with strike 0 is worthless. we always have
P(0)+AP(K)=AP(K) > P(AK).
For this specific problem, we should have 8/9 x P(90) =8/9%x9 =8> P(80). Since the

put option with strike price $80 is currently price at 8. it is overpriced and we should
short it. The overall arbitrage portfolio is to short 9 units of put with K = $80 and long 8

units of put with K = 90. At time 0, the initial cash flow is 0. At the maturity date, we
have three possible scenarios:

S, 290, payoff =0 (No put is exercised.)
90> S, >80, payoff =8x(90- S;) >0 (Puts with K = 90 are exercised.)
S, <80, payoff =8x(90-S,)~9x (80-S,)=5, >0 (All puts are exercised.)

The final payoff >0 with positive probability that payoff > 0. So it is clearly an
arbitrage opportunity.

Black-Scholes-Merton differential equation

Can you w:rite down the Black-Scholes-Merton differential equation and briefly explain
how to derive it?

Solution: If the evolution of
dS = uSdt + oSdW (1), and the

applying Ito’s lemma yields:
a 1 2 2 GEV

ﬁ”"=(g—’+#S—E+-—a~s~ ov . -
ot oSyt ng)d" 1% SESTd W(t), where W (t)is a Brownian motion.

the stock price is a geometric Brownian motion,
derivative V' =¥(S,r) is a function of § and f, then

The Black-Scholes-Merton differential equation is a

should be satisfied by V: g—p:-#rS?K-p-]_g?S? _(:fz -V
ot S 2 Eretatigh

To derive the BIack-Scholes-Merton differential

partial differential equation that

equation, we build a portfolio with two

components: long one unit of the derivative and short i unit of the underlying stock
(l

=1

Then the portfolio has value [1=p —QE
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, 4
L. A B iy~ st + o SAW (1))
= o A SY — dr+O'S dW(!) (Ju
“G S S T s as

ov 1 ,.,0V
=(—+—0" '——-:)df

(81 26 A

It is apparent that this portfolio is risk-free since it has no diffusion term. It should have
2t bining these results we have
risk-free rate of return as well: dI1=r(V —Eq—S )dt. Com g

L.

) ov
.1 200V LT TNLLANE LN
ydt =r(V aSS)df ot oS 2

—+=0'8" —
5% |
which is the Black-Scholes-Merton differential equation.

J111 : discounted
The Black-Scholes-Merton differential equation 1S a _s_pecll_lﬁ!] rf:::e t?lfiltdhse the bridge
Fg;ﬁ;ﬂ;a;i-Kac theorem. The discounted Feynr-nan-_KaC tt_e?e uations and applies to
between stochastic differential equations and partial differential €q

all Ito processes in general:

Let X be an Ito process given by equation dx (1) =£ :
be a function of X. Define function V' (£,x) = E[e_r'[ f (Xf') 1%
martingale process that satisfies the partial differential equation

(I,X)dt+y(f._X)dW(f) and f(x)
= x], then V(t,x) is a

ov LA P A
—+ B, x)—+=y (. x)— =rV (X
ot [P0 Ox 2y( X

and boundary condition V(T,x) = f(x) for all x.

|

ety aisiiingth tion becomes the Black-
7(t,X) = oS, then the discounted Feynman-Kac eql:a

oV v 1 25'3..6—K—=rV.

Merton differential equation =~y +rS _8_.5'_+ EJ oS’

). Let S=X, ﬁ(l,X)er and
Scholes-

Black-Scholes formula

.The Black-Scholes formula for Eu
is:

calls and puts with continuous dividend yield y
ropean

-1t N(~d,)-Se " N(=d)
¢= S N(d,)- Ke""N(d,) and p=Ke "N(-d)=>¢ 1
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bl In(Se™ /K)+(r+0* /2)tr _ In(S/K)+(r-y+06°/2)z
] O‘\/; O’\/;
i In(S/K)+(r-y-o’/2)r =d _J\/;

o

N(x) is the cdf of the standard normal distribution and N'(x) is the pdf of the standard

where

normal distribution: N(x)= ["
Q0

8"1‘3."26!_. and N' )= 1 )—-.\'24"2
27 f o Br

If the underlying asset is a fi futures contract, then yield y = r. If the underlying asset is a
lorelgn currency, then yie[d y=r, Where r, is the iore{g:,n risk-free interest rate.

A. What are the assumptions behind the Black-Scholes formula?

Solution: The original Black-Scholes formula for European calls and puts consists of the
equations ¢ = SN(d,)- Ke™" N (d)) and p=Ke™" N (- d,)-SN(—d,), which require the
following assumptions:

I. The stock pays no dividends. ( o relo oy

2. The risk-free interest rate is constant and known. /

3. The stock price follows a : L ) !
aid geometric Bro Hafe! st - d
volatility o dS:;!?dHO'?dW(f)_ i whian motion with constant drift x an

4. The
1€IC are no transaction costs or taxes: the proceeds of short selling can be fully

invested. 8¢

5. All securities are perfectly divisible. Vv

o

There are no risk-free arbitrage opportunities V4

B. How can you derive the Black-Scholes formula fo
paying stock using risk-neutral probability measyre?

Solution: The Black-Scholes

stock is

ra European call on a non-dividend

formula for 5 European call on a non-dividend paying

€=SNMd)~Ke"N(d,), where ¢ < INS/K)+(r+0?/2);
2) ¢.d =22 )RR OT )

154 and dzzd,—cr\/;-
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Under the risk-neutral probability measure, the drift of stock price becomes the risk-free
interest rate r(¢): dS = r(t)Sdt + oSdW (t). Risk-neutral measure allows the option to be

priced as the discounted value of its expected payoff with the risk-free interest rate:

7
- I riu)du

V(T) S(!):]._ 0<t<T, where V(T) is the payoff at maturity 7.

V()= E{e

When r is constant, the formula can be further simplified as V(1) = e'”E[V(T)lS(f}J.
Under risk-neutral probabilities, dS = rSdt +oSAW (t). Applying Ito’s lemma, we get

d(In($)) = (r -0’ /2)dt +odW (1) = InS, ~ N(InS+(r -0’ /2)7,077).
So S, =Se'" " “2)evore , where & ~ N(0, 1). For a European option, we have

V() {Se"“": Prvodie g, St STY EERES K

0, otherwise
In(K/$)=(r=0*/2t __; ang
ot
1

] r-ati2)r+ate
EWUMﬂ=Epmmg_Kmnq=[;@a 2) -Kkﬁj

—Se ”[t \/_ ~(&- J_cr) L K'EG_J_;_;(;-;FQC]S

Let &=¢— o7, then de =dE, £ =—d, :>f=—d2-af=*d: and we have

Se(?‘—d’“a’l}r+o’v’?&‘ > K — >

ey
e e

L #rgs 25N(d),

Svf,'rr _. _(L J‘o— -_S i

K[ g KU-N@¢n=Kng

E[V(T)] Se”"N(d,)—-KN(d,) and V(t)=e"E[V(T)]=5N(d)-K
N(-d,)=N(d,) is the risk-

¢ N(d,)

From the derivation process, it is also obvious that 1=
heutral probability that the call option finishes in the money.

non-
iy mula for a European call option on a
How do you derive the Black-Scholes for dlabinyhin e

dividend paying stock by solving the Black-Scholes-
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Solution: You can skip this problem if you don’t have background in partial differental
equations (PDE). One approach to solving the problem is to convert the Black-Scholes-
Merton differential equation to a heat equation and then apply the boundary conditions
to the heat equation to derive the Black-Scholes formula.

: . 4 i} oV oV oVdy 18V
Let y=InS (S=¢")and r =T —t, then o =—(Q AL :

’ =———=—— gp
ot of 8S oydS S oy
o'V QV((?VJ ovil1ov) -i EEV+ LoVv(oVv) -1ov 1 & 6
S i mlRT ARl s oIt t——]| T o b e
S as\oS) as|s dy) Sy Saos ) Sy S§y?
- = 'y b )_.? 7 :
The Black-Scholes-Merton differential equation iz+nS‘—(‘3i+lo'3S‘f—i,—H’Zﬁ
ot os 2 oS*
can be converted to — QI%R—[r ~103J§K+163§i~ﬂ" =
ot 2 y 2 9’
Let u=e"V | the €quation becomes —f£+(r—lo'2]€zi+l ’-(:/—;lj=
ot 2 & 2 o

s Iiia 3
Finally, - let x:)"'F(-’”‘;O"'Jf=InS+[r_.lo-2]f and 7=7. then . and

2 p) oy X
Ou Ou I ,)ou hich
537 Aa-H T—Zo" |—, whic { i
5 a7 > o transforms the equation to
ou 1 ,\ou 1 H? 2 4

e o (R AT N M

r 2 Ox 2 X 2 ox? or 2 ox’
So the original e uation b iffusi on SELL 20w t

q ecomes a heat/diffusion €quation —=—g°—. For hea
] ] i T ox*
" , 0°

equation — =_52 2 ¥

+ Where u = u(x,7) j5 4 function of time 7 and space variable .

with boundary condition u(x,0) =y, (x), the solution is

or. 2 ox-

! 1 x (X‘-' 2
UK 1) it |4
(x,7) fpeg Lun(;y)exp H__zg__z_}_ !

B .
The log is taken to convert the

: geometric Brown;i :
IS used to convert the POl

€quation from 5 backw,
7 =0 (the boundary conditionat ¢ = 7 =7 :6‘; !

On to an arithmetic Brownian motion; 7 .=_T Hrt
duation to a forward equation with initial condition 2
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For European calls, the boundary condition is (S, ) = max (S, -K,0).

Szexp(x-(r'—[).So-E)r). When x=y and 7=0, S, =¢".

2
b b (x-v)" |
u(S,7)=u(x,7) = o i [; max(e“’—K,{))exp ——22—}1;;/

2
1 _ _(x"zV)
Mcr -EK (" =& jexp 207t

Ly dy
W x T o )VZ
, then de=—=r, e
oVr NE
In(K/S)-(r-c>/2)r _ d
=] K’ = T
(i s ot

L u(S,7) = J:; (Se”‘"zm”a"% - K)ﬁe"’”zdg

Let &=

2
oreo exp _M]:e””%z and when

! ion fi
Now, it’s clear that the equation for u(S,7) is exactly the same as the eKquft::(;l( do)r
E[v(1)| S] in question B. Hence, we have V(S,1)=e™"u(S,7) = SN(d,) - Ke 2

as well.

] i / dividend.
D. Assume zero interest rate and a stock with cmre’nt price at’ $1 tlzari ;ﬂ?& 2(; i
When the price hits level $H (H >1) for the first time you can ex
. 2
receive $1. What is this option worth to you today*

. ssuming that
Solution: First let’s use a brute-force approac'h to solye the Embi-(i:gr?(_giu?;:lu?n e:;sure:
the stock price follows a geometric Brownian motion un i = —L1o%dt+odW ().
dS =rSdt + oSdw (). Since r=0, dS=oSdW ()= d(InS)=-]

When ¢ =0, we have S, =1=1In(S;) = 0.

! . Ou _l_a_'i with initial condition u,(w)=f(y) is
The fundamental solution to heat equation ;; s

I ) 21}.
LEEETY 18 IR 1Y exp{—(x-v) /
u(x,t) = J: P(x, = x )Xo =) f(y)dy, where p(x, =x|x, =¥) 2zt {

Saley votives by
matics of Financial Derivatives
For detailed discussion about heat equation, please refer to The Mathematics of
Paul Wilmott, Sam Howison, and Jeff Dewynne.
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Hence, nS=-1c’t+alW(t)= M

=W (t) is a Brownian motion.
When A i
payoﬁt‘:rse; lz‘or;a]claisd $H,‘ tlile payolft is $1. Because the interest rate is 0, the discounted
er risk-neutral measure. So the value of th ion i ili
g leutr isure. of the option is the probability
ever reaches $/., which is equivalent to the probability that InS ever reaches

| o k |
n H. Again we can apply the exponential martingale Z() = exp{iW(r)—iAz!} as we
did in Chapter 5: E[Z(1)]= E{exp{iln—siéa—%—i EIH =1

o 3 i

T s ! AN
Eo[ ;;n}()lves‘ the terms including time #, we can set A =0 and the equation becomes

‘ p(In )] =1. The Let P be the probability that InS ever reaches In H (using —
as the negative boundary for stopping time), we have

chp{]nH)+(1—P)exp(—oo)=PxH:l:>P=1/H

So the ili

SI/H I\[I)(r)(t)il::ibltl}:g; tlglaitSSaever rfzaches $H is 1/H and the price of the option should be

negative drift. The ;easo 'm‘r;lrtmgal? ¥ nder the risk-neutral measure;® but InS has a

el Tolliws L nis t at ln';S follows a (symmetrical) normal distribution, but §
ognormal distribution, which is positively skewed. As 7 — o, a!t,hough

the expect i1
pected value of S, is 1, the probability that S, >1 actually approaches 0

It is simpler to use i
a no-arbitrage argument to derive the price. In order to pay $1 when

the stock price hit
p its $H, we need to buy 1/H shares of the stock (at $1/H). So the option

should be worth no more
i« than $1/ : . . _
(C<1/H=CH <1), we can buy$ a:{. Yet if the option price C is less than $U/H

initial investment is 0. Once th option by borrowing (' shares of the stock. The
the pock b kidtbel 6 ke e stock price hits $/7, we will excise the option and retum
have no initial investmer:ts at’ price $H, which gives payoff 1—CH > 0. That means We
comra'dictory to the no arbitla”ayi,:en-wfle have possible positive future payoff, which is
the price is exactly $1/H. gument. So the price cannot be less than $1/H. Hence,

E. Assume a non-divi
-div .
vidend paying stock follows a geometric Brownian motion. What is

the value of a ¢
ontract that at maturi
the maturity? t maturity 7' pays the inv : t
y erse of the stock price observed @

8
Once we recogni :
gnize that S is

that § follows a i

> | s a geometric Browni . sk neutral m ion
conditions are 7(0) =0 and ;(: :"lan motion. S has two boundaries‘::zflcs::I :i o i BOt s mehasls;:l:?npl;;w
1 = 1 . 0 3 L4
)=1. Using the martingale, the probabilit?rptll?agt. it ::?l 1e;rr:aches His

a martingale under the rj

PxH+(1-P)x0=8, =1=p=1/k
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Solution: Under risk-neutral measure dS = rSdt +Sdw (t). Apply Ito’s lemma to

3
dv = 13’KrS+Qli+l—a—l:~o'zsz dr+§£chdW(t)
i 1 s o 208 2
S poes v L STREERND 8 ! 1
= ——2'?'6 +0+-2-§'3—O' S dt——éTanW(t)=(—r+0' )Vdf-O'VdW(f)

So V follows a geometric Brownian motion as well and we can apply Ito’s lemma to

InV:

2 1 ’
d(nV) =(%(—r +O’z)+0—-%%0’2]d[+%6dW(I)=(—r +EO"]dI —gdW(1).

2
-rr+a T

Hence, In(V,) ~ ln(V,)+N((ﬁr+-;—crz)r,azr) and E[V,)=Ele""]1=%e

~2rr4o’r

Discounting the payoff by e, we have V=¢"E [V,] =4€

6.2. The Greeks
ial derivatives of the option price with

e used to measure the risks—as well as
g Greeks for a derivative f are

All Greeks are first-order or second-order' part

respect to different underlying factors, which ar :

potential returns—of the financial derivative. The followin

routinely used by financial institutions:

of of
g o'f : ﬂ_af_- . p=—; Rho: p=—-

Delta: &=Ef§; Gamma: r:é?; Theta: © = o ; Vega: V=2 = 3

Delta

For a European call with dividend yield y: A=€ V'N(d)

For a European put with dividend yield y: A= —[1-N(d)]

ption on 2 non-dividend paying stock? How do

A. What is the delta of a European call 0
you derive the delta?
paying stock has a clean

Solution: The delta of a European call on a non-dividend ' :
: / treatin
expression: A= N (dl)_ For the derivation, though, many make the mistake by tre g
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N(d,)and N(d,) as constants in the call pricing formula ¢ = SN(d, )—Ke™ N(d,)and ‘
simply taking the partial derivative on § to yield N(d,). The derivation step is actually

more complex than that since both N(d,) and N(d,) are functions of S through d, and ‘
d,. So the correct partial derivative is g-;— =N(d)+S x(—? N(d)-Ke™"" i N(d,)
as as' it

L

Take the partial derivative with respectto § for N(d,) and N(d,)°:

0 d q_
'(;EN(di)zN'(d])le =_l_e_°’ff3x I 4 1 e_dlzf-z

oS 2r Sor So\2xr
< N(@,)= N'(dz)_'dz = %2, l = l ,—(d~aT) /2
i os V27 Sor So\2xr i

L2 4 |
=— d, "'lze(’\"?de—(r'rr"z i 1 —d} /2 1_? T

-_"_———_e —_
Sov2zr So\2zr K

. 0 S
So we have ——N(d,)=2 e N (4 ) 50 -0
2 = SXx—N(d )= Ko~'t i = the
S K ! S (d,) - Ke aSz\(dz) 0. Hence,

last two components of €. oc
p SO P cancel out and S N(d,)

Solution: For an at-the-money Eyro

S:K:>d=(r+o-2f2)r- r o :
ol G0 and A=N(d))>0.5. As shown in Figure
the-money call options indee

higher the A, Ag T-t—-0

pean call, the stock price equals the strike price.

6.2, all at-
d have A> (5 and the longer the maturity, the

r o
. (‘g+‘§')x/? =0 = N(d))=N(0)=0.5, which is als0
shown in Figure 6.2 (=104

: ays). The : ith
continuous dividend rate yif r e argument is true for calls on stock i

>y.
Figure 6.2 3 :
shorter theamsz?ts:‘ji?wst}:ha; Wiyl large (§ > g ). A approaches 1. Furthermore, the

Y the faster the dejtq approaches 1. On the other hand, if S is small

(§<<K), Aa ¢
PProaches () and the shorter the Maturity, the faster the delta approaches P

\

hed-oVe s Ny S gy, ), %4, _ o4,
K ek
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Delta of Call Options
1 : —
09 | © =10 days P
----- = 1 month o
0.8 ‘ """"" 1= 3 months /
4
0.7
0.6
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o 05 ]
= '
1
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!
]
0.3 i
!
]
0.2 i
i
4
0.1 e /’ :
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Spot Price

Figure 6.2 Variation of delta of a European call option with respect to S and
T.K=100, r=0.05, o= 0.25.

call option on GM stock and decide
sk from the fluctuation of GM stock
your hedge, the price of GM has a

C. You just entered a long position for a European
t0 dynamically hedge the position to elilpinate the ri
price. How will you hedge the call option? If aftt?r e
Sudden increase, how will you rebalance your hedging position:

z .
+(r-y+o/2) —e¢ " N(d.) is a monotonously
S(Jhlﬁon_' Since dl — IH(S‘!K) C(:J;y a]’ld A=e ( |)

incr €asing function of d,, we have S T=d T=A T

=e " f stock
One hedging method is delta hedging, for which we short A=e¢ Y*N(d,) shares of s

: i hares of GM
for each unit of call option to make the portfolio delta-neutra!. ‘S;::rslfi aﬁsths(ie;rfhe i
stock costs more than one unit of GM option, we also need tlo "c]i RFL A o ash
Price exactly follows the Black-Scholes formula, we need to len 2

151

I —




;

Finance

unit of option) in the money market. If there is a sudden increase in S, d, increases and

A increases as well. That means we need to short more stock and lend more cash
(Ke™""N(d,) also increases).

The delta hedge only replicates the value and the slope of the option. To hedge the
curvature of the option, we will need to hedge gamma as well.

D. Can you estimate the value of an at-the-money call on a non-dividend paying stock?
Assume the interest rate is low and the call has short maturity.

Solution: When S=K. we have c=S(fv'(a’,)~e_”N(d2)). In a low-interest

environment, »~0 and e”’" 21 .50 ¢~ S(N(d,)~N(d,)).

l 2
We also have N(d,)- Nd,)= El ——e " gy
2271 :

where d,= (L_E)\/; and d = (L.;_E)\/;_
o2 ol 2

For a small r, a typical & for stocks (< 40% per year) and a short maturity (< 3 months).
both d, and d, are close to 0. For example, if 7 =0.03, 6=0.3, and 7 =1/6 year, then

dy=-0.02 and ¢™2% _ 98

\Z

b1 " iyl ONT
. A(d,)—x\(dz)n-:/—y;(dl —d3)=—J2—_Z— ~040\T =1 = ¢~ 040847 .

In practice, this approximation is used by some vola

allitl tility traders to estimate the implied
volatility of an at-the-money option. {

The approximation ¢~'/2* - . :
( pproximation e ~1 causes a smal] overestimation since ¢”'** <1; but the

. : g STIT 'y
:PP::}: ma;;on by K'~—K causes a small underestimation. To some extent, the two
Pposite ettects cancel out and the overall approximation s fairly accurate.)

Gamma

For a European call/put with dividend yield y: I = N'(d)e"

SOO'\/;
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What happens to the gamma of an at-the-money European option when it approaches its
maturity?

Solution: From the put-call parity, it is obvious that a call and a put \a}!i.th identical
characteristics have the same gamma (since I' =0 for both the casl_l position and the
underlying stock). Taking the partial derivative of the A of a call option with respect to

N'(d)e™ PP T
r:—_, where N(d)—_e .
S, we have Sods LA o=

So for plain vanilla call and put options, gamma is always positive.

Figure 6.3 shows that gamma is high when options are at the money, wl:1ich is the stock
price region that A changes rapidly with S. If § << K or § >> K (deep in the money or
out of the money), gamma approaches 0 since A stays constant at 1 or 0.

The gamma of options with shorter maturities approaches Oomuch faster thag Optijol?i
with longer maturities as S moves away from K..So for deep in-the-money 9; t ;eepstock
of-the-money options, longer maturity means higher gamma. In contrast,ll ety
prices are close to the strike price (at the money) as the maturity nears, tlhe s top::he an
for an at-the-money call becomes steeper and steeper. So for options close to

price, shorter-term options have higher gammas.

As 7 — 0, an at-the-money call/put has ' — o (A becomes a step fupction).dT'!il; iz;n
be shown from the formula of gamma for a European call/put with no dividend,

PN,

Sort
] is 1/27;
: o : [ ——— . The numerator 18 >
WhenS =K, d, = lrl_’mo(—;_ s Wr 0= lImN(d) =

. r words, When t =7,
yet the denominator has a limit 11_1}1(1} Soyt =0, so I . Inothe 1
ri -the-money opti
delta becomes a step function. This phenomenon'rpakes Tdny::]fiit;he money op
difficult when ¢ — 7' since delta is extremely sensitive to chang -
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Gamma of Call/Put Options
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Figure 6.3 Variation of gamma of
K=100, r=0.05 0=0.25.

Theta

a European call option with respect to S and T.

For a European call option: © = -2 (d))oe™" —yr —rt
P 3154 +ySe™ N(d,)-rKe " N(d,)

For a European put option: © = —w i il

e ¥Se > N(~d,)+rKe " N(~d,)
When there is no dividend, th
gl SN'(d))

|

- )-ﬂ'r . .
23l Ke™ N(d,), which is always negative. As shown in Figure 6.4, when
§<<K, N(d,)~0 and N'(d,)

¢ theta for a European call option is simplified ©

~0. Hence, ® - 0. When § >> K. N(d,)=1 and
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N'(d] ) ~(. Hence, ® - —rKe™"". When S~ K, © has large negative value and the

smaller the 7, the more negative the ©.

Theta of Call Options

.
o
wet

vt
i
we®
ant

ot

Theta

-20

7 = 10 days
_____ = 1 month
.......... =3 months

25 ‘

] - - - t.i- - -
H

4 PR RV ASSA  RAES RANRN LE BT R S
B 80 8 9 9 100 105 110 115 [ 120,125
Spot Price

Figure 6.4 Variation of theta of a European call option with respect to S and
T.K=100, o = 0.25, r= 0.05

A. When will a European option have positive theta?

European calls on non-dividend paying assets,

he-money European puts, their values may
so they may have positive

Solution: For American options as well as
theta is always negative. But for deep in-t o
Increase as 7 approaches 7' if all other factors remain the same,
theta,

SN'(d)o | .ke"*N(~d,). If the
A put option on a non-dividend paying asset has © =~ 0Wr 1

i ~ d N _,.d z], HBHCC,
Put option is deep in-the-money (§ <<K), then N (40 o0d W)
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©~rKe™™ > (. That’s also the reason why it can be optimal to exercise a deep in-the-
money American put before maturity.

For deep in-the-money European call options with high dividend yield. the theta can be

positive as well. If a call option with high dividend yield is deep in-the-money (S >> K),

N(d,)~N(d,)=1, N '(d,)~0, so the component YySe™"N(d,) can make © positive.

B. Y(.m Just entered a long position for a call option on GM and hedged the position by
shorting GM shares to make the portfolio delta neutral. If there is an immediate increase
or Qecrease in GM’s stock price, what will happen to the value of your portfolio? Is it an
arbitrage opportunity? Assume that GM does not pay dividends.

Solution: A position in the underlying asset has zero gamma. So the portfolio is delta-
neutral a}nd lqng gamma. Therefore, either an immediate increase or decrease in the GM
stock price will increase the portfolio value. The convexity (positive gamma) enhances
returns when there is a large move in the stock price in either direction.

Nevertheless, it is not an arbitrage opportunity. It is a trade-off between gamma and

theta instead. From the Black-Scholes-Merton differential equation, the portfolio V

PARN o sl GV oV 1 oV
tisfi sl 202 C Jieyd
satisties the equation Py +r85§+50- S _LSFH O+ rSA 4 ;O.—S-r = rV. For a delta-

- W 1 .
neutral portfolio, we have (-)+50'28‘]' =rV. This indicates that gamma and theta often

Vega

For European options; p = 9‘"_ - _@. = §o)r -
0o do néatEN d)

At-the-mone ions iti
fligitin, my(ggt::z: élre most sensitive to volatility change, so they have higher vegas
Y Or out-of-the-money options, The vegas of all options decrease

as time to expiration be
i ) comes shorter (/7 i ion i 1
Sensitive to change in volatility. (\/*-)0) iRl

A. Explain implie ili %1
plain implied volatility ang volatility smile, What is the implication of volatility
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smile for the Black-Scholes pricing model?

Solution: Implied volatility is the volatility that makes the model option price equal to
the market option price. Volatility smile describes the relationship between the implied
volatility of the options and the strike prices for a given asset. For currency options,
implied volatilities tend to be higher for in-the-money and out-of-the-money options
than for at-the-money options. For equity, volatility often decreases as the strike price
increases (also called volatility skew). The Black-Scholes model assumes that the asset
price follows a lognormal distribution with constant volatility. In reality, volatilities are
neither constant nor deterministic. In fact, the volatility is a stochastic process itself.
Furthermore, there may be jumps in asset prices.

B. You have to price a European call option either with a constant volatility 30% or by
drawing volatility from a random distribution with a mean’ of 30%. Which option would

be more expensive?

Solution: Many would simply argue that stochastic volatility makes the stock price
more volatile, so the call price is more valuable when the volatility is drawq from a
random distribution. Mathematically, the underlying argument is that the price of a
European call option is a convex function of volatility and as a result

¢(E[o])<E [¢(0)]. where o is the random variable representing volatility and c is the

call option price. Is the underlying argument correct? It’s correct in most, but not all,

. oc >0 ES— is the
cases. If the call price ¢ is always a convex function of o, then BT A

Vega of the option. For a European call option,

d
v =—§ =SVrN'(d)= SVt exp(—d; /2).

d NeTs
2

The secondary partial derivative aﬁ-c? is called Volga. For a European call option,
o

o%c S\/;

oo’ V2r
' i nd
v is always positive. For most out-of-the-money call options, both 4, a

: i itive. So d,d, >0
Negative; for most in-the-money call options, both 4, and d, are posmve. d,
ut theoretically, we can

dd,
exp(de /2)‘5"‘:2 :u—;_—'-

d, are

N most cases and ¢ is a convex function of o when dd, > 0. B

2 - .
i in
g C; <0 when the option is close to being

have conditions that d, >0 and d, <0 and P
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at-the-money. So the function is not always convex. In those cases. the option with
constant volatility may have a higher value.

C. The Black-Scholes formula for non-dividend paying stocks assumes that the stock
follows a geometric Brownian motion. Now assume that you don’t know the stochastic
process followed by the stock price, but you have the European call prices for all
(continuous) strike prices K. Can you determine the risk-neutral probability density
function of the stock price at time 77

Solution: The payoff a European call at its maturity date is Max(S, — K, 0). Therefore
under risk-neutral measure, we have c:e"”ﬂ(s—[()j; (s)ds, where f (s) is the

probability density function of S, under the risk-neutral probability measure. Taking the
first and second derivatives of ¢ with respect to K,'’ we have

B EME . R : ,
oK ¢ o k6 f, ds

_-n [O(s=K) .. iii8iEs

=g J:\ Py f-\} (s)ds—e™ (K- K)x1

e -[: ._f\ (s5)ds

~2 ~ : -
< d i = o —ai — J_r{_ﬁ_ \.__ \ ]l
an K 8]\’(6}( e GK-[:' f\ (s)ds=e .)‘_\._f (K).

Hence the risk-neutral probability density function is f. (K)=e" o0'c -
oy K.'!

o))

6.3. Option Portfolios and Exotic Options

In addition to the pricing and properties of vanilla European and American options, you
m' y be expccle.d to be familiar with the construction and payoff of basic Option-based
t1ra'dmg slrmeges——covercd call, protective put, bull/bear spread, butterfly spread,
straddle, etc. Furthermore, if You are applying for a derivatives-related position, you

e
10 ...
T'o calculate the derivatives

. requires the Leibniz > : : i definite
integral whose limits are funct; MIZ integral rule, a formula for differentiating a

. ons of the differential variable:

X 12) 45 1 n (z) (7{1:) 1 ab

3l .R. J(x,2)dx = J:”-;_——aff’r_/(5(3)-2J7—f(ﬂ(2),3)3£i
74 oz z
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should also have a good understanding of pricing and hedging of some of the common
exotic derivatives—binary option, barrier option, Asian option, chooser option, etc.

Bull spread

What are the price boundaries for a bull call spread?

Solution: A bull call spread is a portfolio with two options: long a call ¢, with strike K,
and short a call ¢, with strike K, (K, <K,). The cash flow of a bull spread is
summarized in table 6.3.

Maturity 7'
Cash flow | Time 0 S, <K, K <8<k |8.2K,
Long c, -, o Sy — K, S; =K,
Shorte, | e, 0 0 (S, -K,)
Total c,—¢,<0 |0 8; =K, K,-K |

Table 6.3 Cash flows of a bull call spread.

Since K, < K,, the initial cash flow is negative. Considering that the final payoff is
2 ) T
bounded by K, -K,, the price of the spread, ¢, —c,, is bounded by e (K, -K)).

! K, —K ice i ded b
Besides, the payoff is also bounded by e LS,, so the price is also boun y

2

Straddle

EXplain what a straddle is and when you want to purchase a straddle.

. tion with
Solution: A straddle includes long positions in both a call option and a put opti

ff of a long
the same strike price K and maturity date 7 on the same stock. Thekpas’i(c’e ;oves. Iﬁ
Straddle is | S, — K |. So a straddle may be used to bet on large stock p

> : Jatility. If an
Practice, a straddle is also used as a trading strategy for mall;mli britjc%nh\;zh " tl}lan the
vestor believes that the realized (future) volatility Shouh a straddle. For example,
'Mplied volatility of call and put options, he or she will purchase
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the value of an at-the-money call or put is almost a linear function of volatility. If the
investor purchases an at-the-money straddle, both the call and the put options have the
price ¢ = ;}20.4(7?3\/;. where o, is the implied volatility. If the realized volatility
o, >0,, both options are undervalued. When the market prices converge to the prices
with the realized volatility, both the call and the put will become more valuable.

Although initially a straddle with an at-the-money call and an at-the-money put (K =S)
has a delta close to 0, as the stock price moves away from the strike price, the delta is no
longer close to 0 and the investor is exposed to stock price movements. So a straddle is
not a pure bet on stock volatility. For a pure bet on volatility, it is better to use volatility

{8 R 88 . IEARERS ] ; :
SWaps or variance swaps. " For example, a variance swap pays N x (o’ —K_ ), where N

var

is the notional value, o is the realized variance and K, is the strike for the variance.

Binary options

dwh’ﬂl is the price of a binary (cash-or-nothing digital) European call option on a non-
ividend paying stock if the stock price follows a geometric Brownian motion? How

;’;l[l]d y‘?u hedge a cash-or-nothing call option and what’s the limitation of your hedging
" eg)’ !

Solution: A cash-or-nothin
above the strike price at th
option is ¢, =¢ ”

g call option with strike price K pays $1 if the asset price I
. ¢ maturity date, otherwise it pays nothing. The price of the
' N(d,) if the underlying asset is a non-dividend paying stock. As we
have dlSCU.SSCd in the derivation of the Black-Scholes formula, N(d,) is the probability
tITat a vanilla call option finishes in the money under the risk-neutral measure. So its
discounted value s e "N(d,).

Theoretically ash- : .
etically, a cash or-nothing call option can be hedged using the standard delta

hedging strategy. Since Azﬁﬁ}i:ﬂ_”N'(d) :
os 1

. a long position in a cash-or-
SO‘ T

nothing call option can be :

SoNTt
dge works well when the difference between S and K
Ut. when the option is approaching maturity 7 (7 —0)

hedged by shorting ¢ v '(d,) shares (and a risk-free

money market position). Such a he
is large and 7 is not close to 0.B

—_—

I
For detailed discussion ili
L S about volatility sw
0 Kt i g Suei by KréSimiipgemZ?sfrrefer to the paper “More Than You Ever wanted
X ]
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and the stock price S is close to K, A is extremely volatile'” and small changes in the
stock price cause very large changes in A. In these cases, it is practically impossible to
hedge a cash-or-nothing call option by delta hedging.

We can also approximate a digital option using a bull spread with two calls. If call

options are available for all strike prices and there are no transaction costs, we can long
1/2¢ call options with strike price K —¢& and short 1/2¢ call options with strike price

K +¢. The payoff of the bull spread is the same as the digital call option if S, <K -&
(both have payoff 0) or S, > K+¢ (both have payoff §1). When K-&£<S§, <K +¢&,
their payoffs are different. Nevertheless, if we set £ — 0, such a strategy will exactly

replicate the digital call. So it provides another way of hedging a c'iigital- call option. Th.is
hedging strategy suffers its own drawback. In practice, not all strike prices are tradef:l in
the market. Even if all strike prices were traded in the market, the number of options

needed for hedging, 1/2¢, will be large in order to keep & small.

Exchange options

How would you price an exchange call option that pays max (S“ ~Sr2s 0) at maturity.
Assume that S, and S, are non-dividend paying stocks and both follow geometric
Brownian motions with correlation p.

Solution: The solution to this problem uses change of numeraire. Numeraire r}l:czins c;
unit of measurement. When we express the price of an lasset, we u.sually use ld -t;‘f ocrz:l
currency as the numeraire. But for modeling purposes, it is often easier to use al“l,a esrcbe
asset as the numeraire. The only requirement for a numeraire is that it must alway

positive.
The payoff of the exchange option depends on both S,
and S, , (price of S, at 7), so it appears that we need two geome

(price of S, at maturity date 7)

tric Brownian motions:

dS, = u,S,dt + 0,S,dw,,

dS, = u,S,dt + ¢,S,dW,

j ne geometric
Yet if we use S, as the numeraire, we can convert the problem to just 0 g,\
ﬁi_],oJ. When

Brownian motion. The final payoff is max(s"'-z_s?"]’o)zsr'l max(s.“

———— -rr
1ile 0.

_.>
2 AT
?8 5K and r>0=>In(S/K)—>0=4d, —->(r;’o'+0.50'}\/;'-*0 hr sor
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+

S, and S, are geometrical Browian motions, £ =3 sageometric Brownian motion as

1
well. One intuitive explanation is that both In S, and In S, follow normal distributions,

50 In/=InS, -InS, follows a normal distribution as well and 7 follows a lognormal

ul

distribution. More rigorously, we can apply the Ito’s lemma to = _Sl

~
L
1

o5 o e a8 Ry g S0 -
o5, 5 as, s'as? 8@ ases, o

B A W R R 2 f
df :_“‘(ls +—‘—QJ31+_____‘_ d‘S‘ "+ i ¥ s (o) f z
l;33| I 8S2 1L ('j?SI2 ( ') 2 8822 (dgl) + 6SI 6_._‘5'2 dSl I7A) )

1 S, &, |1 S, S, 5 S
==y TSTd[ — 0O E;‘d‘wu i, —=df + o, ?.de’:_z toy _Zidf —pP0o,0, L_,Zd[

2 d i | i

= ()u_‘ —ba ,(?D'[O'E)_fdf-O'I‘}‘dH/:‘] +o, fdW, ,

= (,u_, -H4+0o’ —po,az)fdl +4 o] =2po,0, +0; X fdw, .

1 e .
['o make f :—S_-— a martingale, set z, — M,
i r v

|

2 ol s A
+0, —po,0, =0 and we have E| == TS
i If ‘I L ]

LS‘ -
and —= is a marting

L

ale under the new measure. The value of the exchange option using

1l

S, as the numeraire is B E[max( gj ---_I,OH. which is just the value of a call option
it

with underlying asset price § — =2 strike price K
KSY]

os =4Jo? -2poo,+0?.  So its

=1, interest rate » =0, and volatility

value s . =3 N(d,)-N(d,), where
s=3 2
s _In(5,/8)+0502 |
e e ik i
' ot and d, =d, -g[r. The payoff of the exchange option

expressed in local currency is S,C, = § N(d,)-S N(d )
LR ey 2/

162

A Practical Guide To Quantitative Finance Interviews

6.4. Other Finance Questions

Besides option pricing problems, a variety of other quantitative finance problems are
tested in quantitative interviews as well. Many of these problems tend to be position-
specific. For example, if you are applying for a risk management job, prepare to answer
questions about VaR; for fixed-income jobs, get ready to answer questions about interest
rate. models. As I explained in Chapter 1, it always helps if you grasp the basic
knowledge before the interview. In this section, we use several examples to show some
typical interview problems.

Portfolio optimization

You are constructing a simple portfolio using two stocks 4 and B. Both have the same
expected return of 12%. The standard deviation of A’s return is 20% and the stgndard
deviation of B’s return is 30%; the correlation of their returns is §0%. How will you
allocate your investment between these two stocks to minimize the risk of your portfolio?

Solution: Portfolio optimization has always been a cruc:‘ial top:c_ for ‘mvestment
management firms. Harry Markowitz’s mean-variance portfolio theory is by far the mtost
well-known and well-studied portfolio optimization model.l The essence of the m;:an—
variance portfolio theory assumes that investors prefer (1) higher expec}e@ retfumg ora
given level of standard deviation/variance and (2) lower stgndard de\{raltlons vanagce':sl
for a given level of expected return. Portfolios thfit provide _the mmlmuml s(;arr;nz:;n
deviation for a given expected return are termed efficient portfolios. The expecte

and the variance of a portfolio with N assets can be expressed as

it
Hp SWilh +Woty +-2+ Wy pty =W 4

N =
Var(rﬂ) = Z O',zwf & Z oWW, = w >w
i=1 i#j
. 10° '.—_l,-—-,N,iS
Where w,,Vi=1,---, N, is the weight of the i-th asset in the portfolio; x, Vi

j < el iance of i-th asset’s return;
the expected return of the i-th asset; o) is the var

I

Correlation; w is an N x1 column vector of w,’s;

{ /x N matrix.
2 is the covariance matrix of the returns of N assets, an N x

ariance of the return for a given level of

Since the optimal portfolio minimizes the v formulated as the following optimization

€Xpected return, the efficient portfolio can be
problem:
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min w' Zw
:

? . , where e is an N x1 vector with all elements equal to 1."
St wp=p, we=1

For this specific problem, the expected returns are 12% for both stocks. So 4, is always

12% no matter what w, and w, (w, +w, =1) are. The variance of the portfolio is
e M, Sy P
var(r,) = o,w, + oW, +2p, ,0,0,W,W,
Wy Ao 2 2
=ow,+to(1-w,) +2p, ,0,0,w,(1-w,)

l'aking the derivative of var(r,) with respect to w, and setting it to zero, we have

0 var( r,) 4 ’
(}‘1'.1 T} 20.-1 Wy~ 20_;;(1 5e. )+ 2[)‘1..30"40'3 (1- w, )— zp_{HO'AO'HI-Vj, =0
=Sw, = Oy = P450 40y 0.09-0.5x0.2x0.3 6

03-2p,40,0,+07 0.04-2x05x02x03+009 7"

So we should invest 6/7 of the money in stock 4 and 1/7 in stock B.

Value at risk

Briefly explain what VaR is. What is the

e sk 6 Mot ol potential drawback of using VaR to measure

Su!u{:’on: Value at Risk (VaR) and stress
two important aspects of risk management.
VaR is defined as the following: VAR is t
that there is a low, pre-specified probability

test—or more general scenario analysis——arlfj
In the Financial Risk Manager Handbook
he maximum loss over a target horizon such

that the actual loss will be larger.

(1 : o "
jiven a confidence level a e (0, 1), the VaR can be implicitly defined as

a= ; ) . X 7 1o ~
L_‘m xf (x)dx, where x is the dollar profit (loss) and f(x) is its probability density

function. In practi i
practice, a is often set to 95% or 99%,

: LRS! VaR is an ex ular choice
in financial risk management since it summarizes tremely pop

the risk to a single dollar number.

' The optimal weights have ¢l ; : C-#8
closed form solution W= A% "e+ 75 'y, where )Lz._f;_)b’

u,A-B

7= , A= =e'S'y ¢

t e'Le>0, B=e's U C=pw'S'us0, p=4c- B

4 g . . :
Financial Risk Manager Handbook by Phillj

aspects of risk management. A classic book for viﬁeii‘iﬁ:iﬂeiifn?ff’ 2;:hin5igﬁ'FOORJCU'W;mg e
» also by Philippe Jorion.
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Mathematically, it is simply the (negative) first or fifth percentile of the profit
distribution.

As a percentile-based measure on the profit distribution, VaR does not depend on the
shape of the tails before (and after) probability 1-a, so it does not describe the loss on
the left tail. When the profit/loss distribution is far from a normal distribution, as in }he
cases of many derivatives, the tail portion has a large impact on the risk, and VaR otlep
does not reflect the real risk." For example, let’s consider a short position in a credit
default swap. The underlying asset is bond 4 with a $1M notional value. Further assume
that 4 has a 3% default probability and the loss given default is 100% (no recovery).
Clearly we are facing the credit risk of bond 4. Yet if we use 95% confidence level,
VaR(A) =0 since the probability of default is less than 5%.

Furthermore, VaR is not sub-additive and is not a coherent measure of risk, which
means that when we combine two positions 4 and B to form a portfolio C, we do.nol
always have VaR(C) < VaR(A)+VaR(B). For example, if we add a short position in a

credit default swap on bond B with a $1M notional value.' B also has 3.3% default
probability independent of 4 and the loss given default_ is 100%. Again we have
VaR(B) = 0. When A and B form a portfolio C, the probability that at least one bond will

default becomes 1-(1-3%)(1-3%)=5.9%. So VaR(C)=$IM > Vc.:R(A‘)+ VaR(B).
Lack of sub-additivity directly contradicts the intuitive idea that diversification reduces
risk. So it is a theoretical drawback of VaR. i
(Sub-additivity is one property of a coherent risk measure. A risk measure p(X) :’s
considered coherent if the following conditions holds: p(X +Y)< p(X )+ p(Y);
plaX)=ap(X), Va>0; p(X)<p), if X <Y: and p(X +k)=p(X)-k for an}’
constant k. It is defined in Coherent Measure of Risk by Artzner, P., etal., Mathematical
Finance, 9 (3):203-228. Conditional VaR is a coherent risk measure.)

Duration and convexity

1dp i i the bond and y
The duration of a bond is defined as D = -?’-;1; where P is the price of the
1d’P .
: ! : : C = ———. Applying
1s yield to maturity. The convexity of a bond 1s defined as Py

AP
2 i S Ny
Taylor’s expansion, ﬁ‘_; ~-DAy+ _;-C Ay’. when Ay 18 small, n )

- ¢ ity T:
For a fixed-rate bond with coupon rate ¢ and time-to-maturity

imati tail risk.
" Stress test is often used as a complement to VaR by estimating the
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T Dl et bdiat=bl 1 Flsct st pl=C .

rice chang i i
Euch ki Swiesw;e;;' the yle-ld (:'hangeslby one basis point. For some bond derivatives
¢ ps. dollar duration is especially important. A swap may have value P =0 iI;
which case dollar duration is more meaningful than duration |

When »n bonds wi -
)iy wn.h val‘ues Biis lf s n, and Durations D, (convexities C ) form a
! uration of the portfolio is the value-weighted aversge of the durstins o

the components: D = 3 ﬁ DiC= b <
Zl: p ( —;‘};C, ), where Pzz}?. The dollar duration of
i=l

the i0 is si
e portfolio is simply the sum of the dollar durations of the components: $D = i$D
i=1

What are the pri . :
price and duration of an inverse floater with face value $100 and annual

.5 0.

zero-coupon bonds) and float
: ting-ra
following conclusions: i
Price of ot i i
DO]]; :); :II:;;:(;?U? tshecurlty = Price of the replicating portfolio
. . :
€ exotic security = Dollar duration of the replicating portfolio

To replicate the described inverse f

3 floating rate PRy oater, we can use a po oc L

3 oating ot bnds, wich i worhS100sach,and o 5 e e

floating-rate bond is adiusyle:iv I?h 3 worth $100 each as well. The coupon rate of a

1+0.5y is determined at TheeVer}hO.S years payable in arrear: the coupon rate paid at

summarized in the followi ‘ ‘ 41 flOWs of both positions and the whole portfolio are
owing table. It is apparent that the total cash flows of the portfolio

are the same as the described i e
of thd bdtlek: S r.1 ed inverse floater. So the pri i is the pri
kit folio: P : price of the inverse float is the pric
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Cash flow Year 0 Year 0.5 Year 4.5 Year 5 \
Short 3 floating-

rate bonds 300 B’ . ~150r, ~300-150r,, \
Long 4 bonds with

S Coupon it -400 15 15 400+15

i -100 151507, 30-300r, 115-150r,,

The dollar duration of the inverse floater is the same as the dollar duration of the

portfolio as well: $D,.. . =4x$D,; —3%$D - Since the yield curve is flat,

r,=7.5% and the floating-rate bond is always worth $103.75 (after the payment of
$3.75, the price of the floating-rate bond is $100) at year 0.5, and the dollar duration'® is

L —lOOx-—OL=48.19.

S b ecekod it
AT 1+y/2

$D,, :_d(103.75/(1+y/2))
oating
dy

. 2L /2 100 ; d
The price of a fixed-rate bond is P = Z a :y/ 2 - (1+y/2)” , where T is the maturity

=1

of the bond. So the dollar duration of the fixed-rate bond is

it e 2"ii+ﬂ?J=410.64.
dy 1+y/2\&201+y/2) (+y/2)

So $D, =4x$D, , —3%X$D i ine =1 498 and the duration of the inverse floater is

inverse fixed

$D,

D, . .=$D /P  =1498.

Inverse mverse

Forward and futures

What's the difference between futures and forwards?
is strongly positively correlated with interest rates, an
which one has higher price: futures or forwards? Why?

If the price of the underlying asset
d the interest rates ar¢ stochastic,

e-traded standardized contracts; forward
are more flexible. Futures contracts

Solution: Futures contracts are exchang
itled at the end of the contract term.

contracts are over-the-counter agreements SO they
are marked-to-market daily; forwards contacts are s¢

zero coupon bond.

he same as the duration of a six-month

16 L 1) !
The initial duration of a floating rate bond is t
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If the interest rate is deterministic, futures and forwards have the same theoretical price:
F =8e" ") where u represents all the storage costs and y represents dividend yield

for investment assets, convenience yield for commodities and foreign risk-free interest
rate for foreign currencies.

The mark-to-market property of futures makes their values differ from forwards when
interest rates vary unpredictably (as they do in the real world). As the life of a futures
contract increases, the differences between forward and futures contracts may become
significant. If the futures price is positively correlated with the interest rate, the
increases of the futures price tend to oceur the same time when interest rate is high.
Because of the mark-to-market feature, the investor who longs the futures has an
immediate profit that can be reinvested at a higher rate. The loss tends to occur when the
interest rate is low so that it can be financed at a low rate. So a futures contract is more
valuable than the forward when its value is positively correlated with interest rates and
the futures price should be higher.

Interest rate models

Explain some of the basic interest rate models and their differences.

Solution: In general, interest rate models can be separated into two categories: short-rate
{nodels and folrward-rate models. The short-rate models describe the evolution of the
Instantaneous interest rate R(r) as stochastic processes, and the forward rate models
(e.g., Ih‘c one- or two-factor Heath-Jarrow-Morton model) capture the dynamics of the
whgle tor\:vard rate curve. A different classification separates interest rate models into
arbitrage-free models and equilibrium models, Arbitrage-free models take the current
term structure—constructed from most liquid bonds—and are arbitrage-free with respect

to the current market prices of bonds, Equilibrium models, on the other hand, do not
necessarily match the current term structure. |

Some of the simplest short-rate models are the Vasicek model, the Cox-Ingersoll-Ross
model, the Ho-Lee model, and the Hull-White model. '

Equilibrium short-rate models
Vasicek model: dR(t) = a(b- R(t))dt + o dW (1)

When R(¢) > b, the drift rate is negative;

. when R(t) < b,the drift rate is positive. So the
Vasicek model has the desirable property !

of mean-reverting towards long-term average

Cox-Ingersoll-Ross model: U'R(f):u(b—R(;))d;+0.de({)
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The Cox-Ingersoll-Ross model keeps the mean-reversion property of the Vasicek model.
But the diffusion rate o+/R(u#) addresses the drawback of Vasicek model by

guaranteeing that the short rate is positive.
No-arbitrage short-rate models
Ho-Lee model: dr = 6(t)dt + odz

The Ho-Lee model is the simplest no-arbitrage short-rate model where 6(¢) is a time-
dependent drift. 6(r) is adjusted to make the model match the current rate curve.

Hull-White model: dR(r)=a(b(r)— R())dt +cdW (1)

The Hull-White model has a structure similar to the 'Vasicek modeli(Tbteﬁ(:ltf}f]'?EEc:e r|1st
that b(¢) is a time-dependent variable in the Hull-White model to make 1

term structure.
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Chapter 7 Algorithms and Numerical Methods

Although the percentage of time that a quant spends on programming varies with the job
function (e.g., quant analyst/researcher versus quant developer) and firm culture, a
typical quant generally devotes part of his or her time to implementing models through
programming. Therefore, programming skill test is often an inherent part of the
quantitative interview.

To a great extent, the programming problems asked in quantitative interviews are similar
to those asked in technology interviews. Not surprisingly, many of these problems are
platform- or language-specific. Although C++ and Java still dominate the market, we’ve
seen a growing diversification to other programming languages such as Matlab, SAS, S-
Plus, and R. Since there are many existing books and websites dedicated to technology
interviews, this chapter will not give a comprehensive review of programming problems.
Instead, it discusses some algorithm problems and numerical methods that are favorite

topics of quantitative interviews.

7.1. Algorithms

In programming, the analysis of algorithm complexity often uses asyrpptolic analysis
that ignores machine-dependent constants and studies the running time 7'(n) —the
number of primitive operations such as addition, multiplication, and comparison—as the
number of inputs # — o.!

Three of the most important notations in algorithm complexity are big- O notation, Q
notation and ® notation:

O(g(n))= { f(n): there exist positive constants ¢ and n, such that 0 < f(n) <cg(n) for

all n>n 3. It is the asymptotic upper bound of f(n).

Q(X("))Z { f(n): there exist positive constants ¢ and n, such that 0 <cg(n) < f(n) for

all n2p, }. It is the asymptotic lower bound of f(n).

O(g (n)) = { f(n): there exist positive constants ¢, ¢, and i nfj such that
€8(n)< f(n)<c,g(n) forall n>n,}. Itis the asymptotic tight bound of f(n).

: in algorithm complexity:
Besides notations, it is also important to explain two concepts in algorithm complexity

e T L

l ithm” by Thomas H.
“Introduction to Algomhm_ | ;
et It covers all the theories discussed in

[ -
If you want to review basic algorithms, I highly ’ ¥
C?"n‘?n, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.

ing in i iews.
this section and includes many algorithms frequently appearing in interview
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Worst-case running time /¥ () : an upper bound on the running time for any » inputs.

Average-case running time A(n): the expected running time if the » inputs are
randomly selected.

For many algorithms, W(n) and A(n) have the same ()(g(n)). But as we will discuss

in some problems, they may well be different and their relative importance often
depends on the specific problem at hand.

A problem with » inputs can often be split into a subproblems with n/b inputs in each
subproblem. This paradigm is commonly called divide-and-conquer. If it takes f(n)

Rr_‘_i_mitive_ operations to divide the problem into subproblems and to merge the solutions
of the subproblems, the running time can be expressed as a recurrence equation
I'(n)=aT(n/b)+ f(n), wherea>1.b> 1. and f(n)20.

“1(. master theorem is a valuable tool in ﬁ/l}liug the tight bound for recurrence
equation 7(n)=al(n/b)+ f(n): If .f'(ﬂ)ZO(”iogh?g) for some constant &>0,

o log, a : ! o
T(n)= 9(;? b ) since f(n)grows slower than »'°%<. Iff(n)z(-)(;?"’gh” log"* n) for

. : log, a ;
s > =3 2p k+1 q : ,
some k =0, f(”)*g(” log™ n) » since f(n) and nlué””grow at similar rates. If

- LY. log, a+€
Y (")‘Q(” 4 )for some constant &> 0, and af(n/b)<cf(n) for some constant
¢ <l Ttn) = O(f(n)), since f(n) grows faster than n8a

Let’s use binary s : 41)1
| s use binary 5ez.ir‘ch to show the application of the master theorem. To find an
element 1n an array, if the numbers in the array are sorted (g, <a, <---<a ), we can us¢

binary search: . 1
ary search: The algorithm starts with o If 4,5 =X, the search stops. If

a,., >Xx, we only need -
\n/2] ) to search a,, s If a,, <x, we only need to search

@201+ @, Each time we can reduce the number of elements to search by half after

making one comparison. So we have a =1 b = 2 and f(n)=1. Hence
. 11 log,1 0 . 1 . |

f(n)= @(n log n) and the binary search has complexity ©(logn).

——

Number swap

How do you swap two integers, i and J- without using additional

Solution: Comparison and swap are the
common technique for swap uses a tem
in this problem since the temporary va

storage space?

basic operations for many algorithms. The most
porary variable, which unfortunately is forbidden
riable requires additional storage space. A simple
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mathematic approach is to store the sum of i and j first, then extract i’s value and assign
it to j and finally assign j’s value to i. The implementation is shown in the following

code:?

void swap(int &i, int &J) {

IR M e )
= i value
el = 9 THE

}
An alternative solution uses bitwise XOR (*) function by
thatx*x=0and 0 *x =x:

taking advantage of the fact

void swap(int &i, int &j){

b 1

2 2 el 8 SR S R il
. 23 A %

J_:lx\]; 1 7= 1 1. i

Unique elements gt
; } e some code to extract the unique elemen
If you are given a sorted array, can you wmflfol, 3.3.3.5,5,5,9,9, 9. 9], the unique

from the array? For example, if the array is
elements should be [1,3,5,9]. sortedd

1 <..-<a_,. Whenever
Solution: Let a be an n-element sorted array with elements @, <4, ik a,, -
a in the sorted array, its value is different from 1

i the unique
sing this property we can easily fl:xtrict q
he following function:

int n) |

we encounter a new element

previous element (a, #4a,)- Y
elements. One implementation in C++ 18 shown as t

template <class T> vector<T> unique (T all

.void resizing problem

vector<T> vecC;
vec.reserve (n):

vec.push_back(a[0]):

for (int i=1; i<n; ++i) |

lems, the algorithms are

—

! This chapter uses C++ to demonstrate som

described using pseudo codes.

The following is a one-line equiva

it lacks clarity , :

,Void swap(int &i, int &J ) |
I'should point out that C++ STL has general

e implementations. For other prob
i d, though, as
lent function for swapping two integers. It is not recommen g
BRI fhi: ol g ' | |
J.“l] ;r(itlh;sjfinr tjhis basic operation: unique and unique_copy
g
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LEfafi] Y= ari=d1)

vec.push _back(a[i]);

turn vec;

Horner's algorithm
Write an algorithm to compute = A+Ax+ A4+ AXx + o4 4 x".

.S‘afuu'of?: A naive approach calculates each component of the polynomial and adds them
up, which takes O(n”) number of multiplications. We can use Horner’s algorithm to
reduce the number of multiplications to O(n). The algorithm expresses the original
polynomial as _v:((((A,,x+A”_,)x+A”_z)x+---+Az)x+ A,)x+ 4, and sequentially
C [ ] s -

Siinte D= B s el Ll B, = Bx+4,. We have y = B, with at most n

multiplications.

Moving average

Given a larg :
Hiikioils n;e a{l:'ra); 4 of length m, can you develop an efficient algorithm to build
y-containing the pn-element moving average of the original array

r i ':B."'. a3 !
L[ (‘L,__ B”_i \??:)B‘ iz (Af—”H +A.-—-n+2 ++ Ai’)’r’ns vl =115 *a m)r)

Wi b x|
ot Solution: W i
oS/ deridn reuse th};en r\:‘l’:lcakiula‘t ¢ the moving average of the next » consecutive numbers, we
subtract the ﬁrsﬁ nulmliS Y computed moving average, Just multiply that average by 7.

mber in that moving average and then add the new number, and you

g the new sum by 5 yields the new moving average. Here is
la‘rmg the moving average:

S=A[l1]+... + A[n]; B[n)] = S/p:
for (i=n+1 to m) {S=8- Ali-n] + A[i]; B[i] = S/n; }

Sorting algorithm

Could you i .
1 you explain .three sorting algorithms to sort 5, distinct values 4,,-:,4, and
alyze the complexity of each algorithm?

Solution: Sorting is
iy pmgram:g ql; 5:1 f\l/mcllamental process that is directly or indirectly implemented in
ariety of sorting algorithms have been developed for different
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purposes. Here let’s discuss three such algorithms: insertion sort, merge sort and quick

ot e

Insertion sort: Insertion sort uses an incremental approach. Assume that we have sorted
subarray A[1, ..., i-1]. We insert element 4, into the appropriate place in A[1, ..., i-1],
which yields sorted subarray A[1, ..., i]. Starting with i =1 and increases i step by step
to n, we will have a fully sorted array. For each step, the expected number of
comparisons is i/2 and the _worst-case number of comparisons is i. So we have

A(n) = G(im) =Q(n?) and W(n)= @(ii} =0(n%).

i=l i=1

Merge sort: Merge sort uses the divide-and-conquer paradigm. It divides the array into
two subarrays each with n/2 items and sorts each subarray. Unles:s tht? s:ubanfiy is sxpall
enough (with no more than a few elements), the subarray is again divided for sorting.
Finally, the sorted subarrays are merged to form a single sorted array.

The algorithm can be expressed as the following pseudocode:
mergesort(A, beginindex, endindex)
if beginindex < endindex
then centerindex « (beginindex + endindex)/2
mergel <- mergesort(A, beginindex, centerindex)
merge2 <- mergesort(A, centerindex + 1, endindex)
merge(mergel, merge2)

The merge of two sorted arrays with n/2 elements each int.o one an‘.a)’ lﬁiﬁition‘
Primitive operations. The running time 7'(n) follows the s i |

s O(n)

2T(n/2)+O(n), if n>1
L ifn=1

d 13 =0 n)‘
Applying the master theorem to 7(n) with a=2,b=2, At (W are the
f(n)= ®(nlog“’” log" n)‘ So T(n) = ©(nlogn). For merge sort, iy e “

I'(n)= {

we have

ame as 7'(n).

sorting method. It chooses one of the
ther values with it. Those elements

¢ elements larger than 4, are
ted on both subarrays

Quicksort: Quicksort is another recursive
elements, 4, from the sequence and compares all 0

Smaller than A, are put in a subarray to the left of A,.; thos )
Put in a subarray to the right of 4,.The algorithm is then Tepe
(and any subarrays from them) until all values are sorted.
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In the worst case, q'u‘icksorl requires the same number of comparisons as the insertion
sort. For example, if we always choose the first element in the array (subarray) and
compare all other elements with it, the worst case happens when 4,.---, 4 are already

sorted. In such cases, one of the subarray is empty and the other has 7 —1 element. Each
n
step only reduces the subarray size by one. Hence, W(n)= @(Z i] =0(n)
i=I
To destlmate the average-case running time, let’s assume that the initial ordering is
n;n omtso t‘hal each comparison is likely to be any pair of elements chosen from
A+, A4,. If we suspect that the original sequence of elements has a certain pattern, we

can always randomly permute the sequence first with complexity ©O(n) as explained in

VI B Procaii 4, and 4, be the pth and gth element (1< p<g<n)in the final
sorted array. There are ¢ — p + 1 numbers between 4 , and A ,- The probability that A
P

and ;Ihl is compared i ili s S p
J pared is the probability that 4, is compared with 4, before 4,,,,-+-, or

4. is c {8 et )| okl 1% ihij :
d!;t] is {.oanared with either 4, or 4 (otherwise, 4, and 4, are separated into
crent subarrays and will not be compared), which happens with probability

P(p,@) =—=—— (vou can aaal
/ P (You can again use the Symmetry argument to derive this probablity).

The total expected number of compari : n_ g-1 n_ g-l 2
parison 1s 4(n) = P(p.g) = SLEELENY
| 2.2 P(p.q) E,Z(q_wl]
O(nlgn).

4=2 p=I g=2 p=I1

Although theoretically quicksort can be sl

2T ] _ ower than m i it
often as fast as, if not faster than, merge sort. e oot it ers bibes D

Random permutation

A. If you have
Y a random number generator tha can generate random numbers from

! ; ; n - ho

random numbers, 4 By symmet
sequences) is equally likely. T

—

YIf we use the continuo
probability of being equal.

hTY- every pos§ible order (out of n! possible ordered
¢ complexity is determined by the sorting step, so the

us uniform distributj i
n distribution, theoretically any two random numbers have zero
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running time is @(nlogn). For a small n, such as n=52 in a deck of cards, the
complexity ®(nlogn) is acceptable. For large n, we may want to use a faster algorithm

following loop to generate a random permutation:

for (=1 to n) swap(4[i], A[Random(i, n*_)]),
where Random(i, #) is a random number from the discrete uniform distribution between
iandn. ~ Seudif Jipity ; '

fhe Knuth shuffle has a complexity of ©(n) and an intuitive interpretation. In the first

step, each of the  cards has equal probability of being chosen as the first card sinE:e the
card number is chosen from the discrete uniform distribution between 1 ?pd n; in }he
second step, each of the remaining n —1 cards elements has equal probability of being
chosen as the second card; and so on. So naturally each ordered sequence has 1/n!

probability.

characters in the file can be read

B.Y isting of characters. The
ik How do you pick a character so that

sequentially, but the length of the file is unknown.

every character in the file has equal probability of being chosen?
acter. If there is a second character, we

S . d ’ 1 1 1 f t hal'
olution: Let’s start with picking the first ¢ and replace the pick with the second

keep the first character with probability 1/2 " §
character with probability 1/2. If there is a third character, we keep the pick (from the

. . : l
first two characters) with probability 2/3 and replace the_ pick wm; tiil]e tl::tri crnarthz;
with probability 1/3. The same process is continued until the final character.

d the
words, let C, be the character that we pick after we have scanned »n characters an
n it
ili i : ok is —— and the probability
(n+1)th character exists, the probability of keeping the pick is e
g simple induction, we can easily

44l i
of switching to the (n+1)th character is R Usin
n re m characters.

Prove that each character has 1/m probability of being chosen if there

Search algorithm

4. Develop an algorithm to find both the minimum
Using no more than 3»/2 comparisons.

and the maximum of n numbers

mbers, it takes n—1 comparisons 0 1(1:1;1’;?’

: i S 2
wever, it takes at most -

o f we separate the

the maximum. I i
i and put the smaller one in group

Solution: For an unsorted array of n nu
cither the minimum or the maximum of the a
Comparisons to identify both the minimum an® =
elements to 7/2 pairs, compare the elements In each pair
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A and the larger one in group B. This step takes n/2 comparisons. Since the minimum
of the whole array must be in group 4 and the maximum must be in group B, we only
need to find the minimum in 4 and the maximum in B, either of which takes n/2-1
comparisons. So the total number of comparisons is at most 3n/2.”

B. You are given an array of numbers. From the beginning of the array to some position,
a!] elements are zero; after that position, all elements are nonzero. If you don't know the
size of the array, how do you find the position of the first nonzero element?

Solution: We can start with the 1st element; if it is zero, we check the 2nd element; if the
2nd element is zero, we check the 4th element... The process is repeated until the ith

i i-1

step when the 2'th element is nonzero. Then we check the th element. If it is

i i-1

zero, the search range is limited to the elements between the th element and

=Y F)' | =9 . . . . .
the 2'th element; otherwise the search range is limited to the elements between the

i il

il a .
2" thelement and the th element... Each time, we cut the range by half. This

mcthgd is basicall_?' a binary search. If the first nonzero element is at position n, the
algorithm complexity is ©(log n).

C. iYo;{hhaV'e a square grid of numbers. The numbers in each row increase from left to
;_lg C;t. he numbers in each colufnn increase from top to bottom. Design an algorithm to
Ind a given number from the grid. What is the complexity of your algorithm?

Solution: Let A be an nxn matrix representing the grid of numbers and x be the number

we want to find in the grid. Begin the search with the last column from top to bottom:

A, 4,,. If the number is found, then stop the search. If A, <x, xisnot in the grid

and _lhe search stops as well. If 4, < x< A4.,,» then we know that all the numbers in
rows 1..- 1 are less than x and are eliminated as well.® Then we search the (i + 1)th ToW
from right t_o left. If the number is found in the (i+1)yth row, the search stops. If
A, > X, x is not in the grid since all the number in rows i + 1 and above are larger than

x. If 4 % oF SIFL AL
10 > X> A, o we eliminate all the numbers in columns j+1,---,n. Then we

can search along ¢ ) : ist |
arch along column from 4, towards A, , until we find x (or x does not exist

;‘ §I1ghibad[_]iuslm.em needs to be made if » is odd, but the upper bound 3n/2 still applies
ica B 5 X 1 i .
n be 0, which means x < 4,,» in which case we can search the first row from right to left.
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the grid) or a k that makes 4,  <x<4,,,, and then we search left along the row k +1

from A4, , towards 4, ... Using this algorithm, the search takes at most 2n steps. So

its complexity is O(n).

Fibonacci numbers
Consider the following C++ program for producing Fibonacci numbers:

int Fibonacci (int n)
{
if (n <= 0)
return 0;
else if (n==1)
return 1;
else

return Fibonacci (n-1) +Fibonacci (n-2) ;

}

If for some large n, it takes 100 seconds to comp
to compute Fibonacci(n+1), to the nearest seco
would you calculate Fibonacci numbers?

ute Fibonacci(n), how long Tﬂvill it take
nd? Is this algorithm efficient? How

er inefficient recursive method 1o calculate

Solution: This C++ function uses a rath \ |
duyle fined as the following recurrence:

Fibonacci numbers. Fibonacci numbers are de

F,=0,F=1,F =F,_ +F,,, Vn22

i Lli_@—_—(l—ﬂ which can be easily proven
F, has closed-formed solution F, = A !

using induction. From the function, it is clear that

r0)=1,70)=1, T(n)zr(n*1)+r(n-2)+1. i
nce of Fibonacci numbers as well, For a

So the running time is a proportional to a seque
T(n+l) _ J5+ L 4f it takes 100 seconds to compute

large ~J5)Y = 0. so ——
B (1-¥3)' 0. B0 Ty il 5+l >
. . <X _T(n)=16
Fibonacci(), the time to compute Fibonacci(n+1) 15 T(n+D)=—3
seconds.’
"¢= J5_2+1 is called the golden ratio.
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.\/§+1T\

The recursive algorithm has exponential complexity @ [ J which is surely
=

inefficient. The reason is that it fails to effectively use the information from Fibonacci
numbers with smaller » in the Fibonacci number sequence. If we compute £, F, - F

in sequence using the definition, the running time has complexity @(n).

An algorithm called recursive squaring can further reduce the complexity to ®(logn).

Since F:_’” fy J:[I l}!: & F”"J and [E ﬁjl:{l ]J we can show that
LIS I G D) P o ORI 11 of

in% F; ] I 4 . . . l ] b

{ F F JZ‘:] OJ using induction. Let 4 :L 0:'. we can again apply the divide-

n n

and-conquer paradigm to calculate 4”: 47 =) X4 i i Y The
A2 A2 o 4 if h is odd
multiplication of two 2x2 matrices has complexity ©(1). So 7'(n) =7 (n/2)+6(1).

Applying the master theorem, we have I'(n) = O(log n).

Maximum contiguous subarray

Suppose you have a one-dimensional array A with length » that contains both positive
and negative numbers. Design an algorithm to find the maximum sum of any contiguous
subarray A[i, j] of 4: V (i, j) = D Alx)1<i< j<n.

X=f

The most apparent algorithm is an O(

he most n’) algorithm that sequentially calculates the
V(i, j)’s from scratch using the followi

ng equations:
V(. 1) = Al w d31 i J i1
(1,1) = A[i] when j =i and J (i, ) :ZA[x]: V(,j~1)+ 4[] when j>i.

As the V' (i, j)’s are calculated, we also keep track of the m

! . aximum of V (i, j) as well as
the corresponding subarray indices ; and j.
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A more efficient approach uses the divide-and-conquer paradigm. Let’'s define

T(i)=Y,A[x] and T(0)=0, then V'(i,j)=T(j)-T(i-1),V1<i<j<n. Clearly for
x=1

any fixed j, when 7'(i—1) is minimized, V'(i,j) is maximized. So the maximum
Si_ll;étrray ending at j is V,, =T(j)-T,, where T, =min(T(1),---,7(j-1)). If we keep
track of and update ¥, and 7, as j increases, we can develop the following O(n)

algorithm:

T=Al];V

max

= A[1); T, = min(0,T)

For j=2ton
{ T=T+A4j];
If 7-T. >V _ teaV.. =T-1T.:

min max

IfT<T, ,then T, =T;

}
Return V. :

max *

] indices i and j
The following is a corresponding C++ function that returns V,,,, and indices /

given an array and its length: I H R
i i3 int &1, 1int
double maxSubarray(double A[], int len, 0

{
double T=A[0], Vmax=A[0];

double Tmin = min(0.0, T);

for (int k=1; k<len; ++k)

{

T+=A£k]; ! i=k:}
if (T-Tmin > Vmax) {Mmaxslinl i T L
| (k+1<jJ? {}{1—1}:];}

if (T<Tmin) {Tmin = Ji- B B R

1

}
return Vmax;
}
Applying it to the following array 4,

-5.0, -1.0}7
double A ]={1.Ojr2.01'5‘-0*'4'0’_3'0r

2.0, 6.0,

(
int i =10, § =0;
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double Vmax = maxSubarray(A, sizeof(a)/sizeof(A[1]), i, j);

will give V. =9, i=3 and j=6. So the subarray is [4.0, — 3.0, 2.0, 6.0].

7.2. The Power of Two

There are only 10 kinds of people in the world—those who know binary, and those who
don't. If you happen to get this joke, you probably know that computers operate using
the binary (base-2) number system. Instead of decimal digits 0-9, each bit (binary digit)
has only two possible values: 0 and 1. Binary representation of numbers gives some
intqresting Qropcrlies that are widely explored in practice and makes it an interesting
topic to test in interviews.

Power of 2

How do you determine whether an integer is a power of 27

Solution: Any integer x=2" (n>0) has a single bit (the (n+1)th bit from the right) set

to 1. For cxam‘pie, 8(=2%)is expressed as 0---01000. It is also easy to see that 2" -1
has all the » bits from the right set to 1. For example, 7 is expressed as 0---00111. So
2" and 2" ~1do not share any common bits. Asaresult, x & (x—1)==0, where & isa

bitwise AND operator, is a simple way to identify whether the integer x is a power of 2.

Multiplication by 7

Give a fast way to multiply an integer by 7 without using the multiplication (*) operator?

Solution: (x << 3) - x, where << is the bit-shift left operator. X << 3 is equivalent to x*8.
Hence (x << 3) - x js x*7.3 LFENARE a3y

Probability simulation

You are given a fair coin, Can you desi

o SLLLFL gn a simple ame using the fair coin so that your
probability of winning isp, 0< p<19° ple g g the fa

Zanansne TeLTELRRLITINT NN

8
3 |I|Ii1f(n€‘u" could be wrong if << causes an overflow,
Aint: Computer stores binary n S ins i
: ; Y numbers instes ' : igit i ' ;
simulated using a fair cojn. i e tnithnabibebinis vl ]
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Solution: The key to this problem is to realize that p €(0,1) can also be expressed as a

binary number and each digit of the binary number can be simulated using a fair coin.
First, we can express the probability p as binary number:

p:O'pIPE-"pn = plz_l +p22_2 +'“+pn2_”" pa‘ E{O,l}, Vl =1.~ 2-: AN

Then, we can start tossing the fair coin, and count heads as 1 and tails as 0. Let s, € {0,1}
be the result of the i-th toss starting from i =1. After each toss, we compare p, with s,.
If 5, < p,, we win and the coin tossing stops. If s, > p,, we lose and the coin tossiflg
stops. If s, = p,, we continue to toss more coins. Some p values (e.g., 1/3) are infinite

series when expressed as a binary number (n' —» 00 ) In these cases, the prObabll]ty lﬁ
reach s # p, is 1 as i increases. If the sequence is finite, (e.g., 1/4=0.01) and we reac

the final stage with s = p, ., we lose (e.g., for 1/4, only the sequence 00 will be

classified as a win; all other three sequences 0.1, 10 and 11 are classified as a loss). Such
a simulation will give us probability p of winning.

Poisonous wine

You’ve got 1000 bottles of wines for a birthday party. ; : s
the winf;gry sent you an urgent message that one bottle of wine was poisoned.

happen to have 10 lab mice that can be used tq test whethfl:r a bott:e (;1; \;\lf;r;ersls gﬁ;sg:lerl:
The poison is so strong that any amount will kill a mouse in exactly 41X t'hat i
the death on the 18th hour, there are no other symptoms. li there a sure way

find the poisoned bottle using the 10 mice before the party

imi ime,
Solution: If the mice can be tested sequentially to eliminate half of g:l: lizt;leisdzict:il} ; e
the problem becomes a simple binary search problem. lTen_ :;e dhiptivsinisivs
poisonous bottle in up to 1024 bottles of wines. Unfortunately, si e T
show up until 18 hours later and we only ha\'/e 20 hpurs, \T’f? cam:rS iy g
mice. Nevertheless, the binary search idea still applies. Alb mt]cg1000 byt i
can be expressed in 10-bit binary format.ﬁFor2 fxag;ple, ottle
_ & bucd b4 ¥ +2%
ek A has a 1 in the first bit (the lowest bit
e with a 1 in the second bi.t; arl1d,
10th bit (the highest bit).
he lowest bit and treat a

Twenty hours before the party,

Now let mouse 1 take a sip from every bottle thaiﬂ
on the right); let mouse 2 take a sip from every bo i) nos
finally, let mouse 10 take a sip from every bottle w1

: ighest to t .
Eighteen hours later, if we line up the mlcle froemc?; E;igy back track the label of the
live mouse as 0 and a dead mouse as 1, W

i d and all others are
poisonous bottle. For example, if the 6th, Giidvrph }T Kigbaerlefg:ihe poisonous bottle
alive, the line-up gives the sequence 0101100000 and the

is 2° +2° 4 2% =352,
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7.3 Numerical Methods

The prices of many financial instruments do not have closed-form analytical solutions.
The valuation of these financial instruments relies on a variety of numerical methods. In

this section, we discuss the application of Monte Carlo simulation and finite difference
methods.

Monte Carlo simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model

using random numbers with appropriate probabilities as inputs. For derivative pricing, it
simulates a large number of price paths of the underlying assets with probability
corresponding to the underlying stochastic process (usually under risk-neutral measure),
calculates the discounted payoff of the derivative for each path, and averages the

discounted payoffs to yield the derivative price. The validity of Monte Carlo simulation
relies on the law of large numbers.

Monte-Carlo simulation can be used to estimate derivative prices if the payoffs only
depend on the final values of the underlying assets, and it can be adapted to estimate
prices if the payoffs are path-dependent as well. Nevertheless, it cannot be directly
applied to American options or any other derivatives with early exercise options.

A. Explain how you can use Monte Carlo simulation to price a European call option?
Solution: If we assume that st

' i ock price follows a geometric Brownian motion, we can
simulate possible stock price

paths. We can split the time between s and 7 into N
equally-spaced time steps,'U So A;:I% and ¢, =+ Arxi, for i=012--,N. We

then simulate the stock price paths under risk-n

: eutral probability using equation
] )[f"ahflz}{af}?ﬁﬁ&‘ . ' . ~
S;=S,_e ', where & 's are IID random variables from standard normal

distribution. Let’s say that we simulate

M paths and each one yields a stock price S, ;.
where k =1,2.

“*sM, at maturity date 7.

——
10 :
For European options, we can simply set N=]

But for more gener. ions, especially the path-
dependent ones, we want to have small time steps an Srass optits, o 3

d therefore N should be large.
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The estimated price of the European call is the present value of the expected payoff,

M
> max(S;, - K,0)

e—r(?'—” k=1

which can be calculated as C = =

2 . . .
B. How do you generate random variables that follow N(u,o ) (normal dlSlI’ll‘Tuth]'l
with mean x and variance o) if your computer can only generate random variables
. S hs o
that follow continuous uniform distribution between 0 and 17

: m number
Solution: This is a great question to lest'the b'asw knowledge (tJf lﬁlirsldoucstion 3
generation, the foundation of Monte Carlo simulation. The solution to this q

be dissected to two steps:

1. Generate random variable of x ~ N(0,1) from uniform random number generator

i jecti hod.
using inverse transform method and rejection met

2
2. Scale xto u+0ox to generate the final random variables that follow N(x,07).

ions. A popular
. : . rves some explanations
The second step is straightforward; the first step dese N it Fas iy

] ! : 4
i m variables is the inverse : i :
R g lative density funct W=F (X)), the

continuous random variable X with cumu S
. 1 " = F U'),-5 0 = "t ki
random variable X can be defined as the inverse function of U.L’J_‘,

: : <U<1. So any
It is obvious that X = F~'(U) is a one-to-one function e Oa

i ing process:
continuous random variable can be generated using the follow g'p o
ndard uniform distribution.

ber u from the sta
j{itrmaha niadbm i e random number from the

* Compute the value x such that u=F(x) as th
distribution described by F.

% le. For standar
For this model to work, F™'(U) must be computable .
has no analytical

d normal distribution,
solution.
¢ '2dx. The inverse function

u
-one mapping of X"t U as the nu
= £C 212 ysing numerical

ea k|
U = F(X) — —_——
Theoretically, we can come up with the one-to

I }‘ d l Ie 1 1 F ! — X)= —_—

meric

I
integration method such as the Euler method.
the rejection method:

y, = F(x): the Euler

and a known initial value | i
tive) to sequentially approximate

"'To integrate y = F(x) with first derivative y'= G

itive or nega
method chooses a small step size / ( A can be positive © g i}
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Some random variables have pdf f(x), but no analytical solution for F (U). In these

cases, we can use a random variable with pdf g(y) and ¥ =G'(U) to help generate

random variables with pdf 7 (x). Assume that M is a constant such that J) <M, Vy.

SNy g)
We can implement the following acceptance-rejection method:

e Sampling step: Generate random variable y from g(y) and a random variable v

from standard uniform distribution [0,1].

* Acceptance/rejection step: If v< f(»)
Mg(y)

. accept x = y; otherwise, repeat the

sampling step.'?

An exponential random variable (g(x)=Ae™™) with A =1 has cdf u =G(x)=1-¢".

So the inverse function has analytical solution x =—log(l-u)and a random variable

with exponential distribution can be conveniently simulated. For standard normal

v ihtiti - 1 4
distribution, f(x)= e
3

2z i
\/7" ate One Sidlg o C'T ol Cllou

. '

2 ~(x=1¥/2+1/2 2 /2 i
o Sk £ < =" %132, V0<x <
T T

M =132 and use the acceptance-rejection method to generate
x ~ N(0,1) random variables and scale them to N(u,07) random variables.

gx) \Vxz

So we can choose

C. Can you explain a few variance r

eduction techniques to improve the efficiency of
Monte Carlo simulation? # i }

Solution: Monte Carlo simulation, in its basic form, is the mean of IID random variables

| 3 l M
A ALETS) ALY =T!Z]} Since the expected value of each Y is unbiased, the
estimator ¥ is unbiased as well.

{I'ur(}_:):d/m,
Sted 7

If Var(Y)=0 and we generate [ID Y, then

where M is the number of simulations. Not surprisingly, Monte Carlo

F(x, +h) = F(x)+ f(x )xh, F(x +2h) =

F(x, +h)+ f(x,+ hyxh,---. The initial value of the cdf of
a standard normal can be F(0)= 0.5
12 P[ \ < _‘.} oc 2(1] )'{‘.) dr-— it B P((Y < ]
= §V)—™—ay=M Vv . 3 =4 x) %7
;r‘ Afg{l'} f, f (.} )aﬁ = !(. (I) = _‘—‘——-—)‘)(JY 3 ’XJ) = : f('v)dy
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simulation is computationally intensive if o is large. Thousands or even millions. of

simulations are often required to get the desired accuracy. D'cpendmg on the specific

problems, a variety of methods have been applied to reduce variance.

Antithetic variable: For each series of &'s, calculate its corresponding payoit‘

Y(¢,,--,€,) . Then reverse the sign of all ¢,'s and calculate the corresponding payoff
12" "N ) ]

Y(-¢,++,—€y). When Y(g, --,&y) and ¥ (—&,,-,—€y) are negatively correlated, the

12 t N7 ’ ]
variance is reduced.

i the
Moment matching: Specific samples of the random variable may ngtth?:tfémscale
population distribution well. We can draw a large set of slamples ﬁr}slt e:;lost ity
the samples to make the samples’ moments (mean and variance are the

used) match the desired population moments.

AT i lated
\‘/éontrol variate: If we want to price a derivative X and there is a closely re
4

. seri dom numbers
erivative Y that has an analytical solution, we can generate a.bel‘lef il :;m}; Then X can
and use the same random sequences to price both X arld Yto yield X an ' .tion e
¥ a
be estimated as X + (¥ —Y). Essentially we use (¥ 1) 40 conpect the c8

X. Correlation’? L
i t X),
Importance sampling: To estimate the expected value of h(x) from distribution f(x)

; : istribution g(x) and
instead of drawing x from distribution f(x) , we can i o l
l f;h(x)f(x) :
: . / (¢ Leen sEor Rl
use Monte Carlo simulation to estimate expected value \ &) /

—

h(x)f (_x) 13
MOLG) v = {_____}
Eylho)) = [he)f (o) = [ 584 =Eao| T

_\E’Ub' ven QUK P " -T:’ /; Vi

A under oltferemt P : It in a
| | L 1 . ling can resuit 1
If Hx)f(x) has a smaller variance than A(x) , then importance sampling

8(x) : - o a deep out-of-the-money
more efficient estimator. This method is better explamedSUS)“;i ?}Edljs ribution, most of
option as an example. If we directly use risk-neutral f (%7

. Jation variance will be
the simulated paths will yield 4(S;)=0 and as a result;lfjiz?:;?“?" o tail for S; ),
wi -

large. If we introduce a distributiol_l g(S;) that h"?‘?' gass add :

;). The scaling factqr

more simulated paths will have pOSjtlith(,

A

: er variance.
estimator unbiased, but the approach will have low

re.
: nge of measu
| : od using a cha
" Importance sampling is essentially a variance reduction mefh

187




Algorithms and Numerical Methods

Low-discrepancy sequence: Instead of using random samples, we can generate a
deterministic sequence of “random variable™ that represents the distribution. Such low-
discrepancy sequences may make the convergence rate 1/ M.

D. If there is no closed-form pricing formula for an option, how would you estimate its
delta and gamma?

Solution: As we have discussed in problem A, the prices of options with or without
closed-form pricing formulas can be derived using Monte Carlo simulation. The same
methods can also be used to estimate delta and gamma by slightly changing the current
underlying price from S to S+4S, where §S is a small positive value. Run Monte
Carlo simulation for all three starting prices S -J5, S and S +6S, we will get their

corresponding option prices f(S—6S), f(S) and f(S +585).

Estimated delta: A = _‘Si _J(§+88)-f(S-585)
‘ 208
Estimated gamma: I' = (/(S+05)- F(9))-(£(S)- (S~ 5S))
oS’

'l"o. rcduce‘ variance, it’s often better to use the same random number sequences to
estimate f(S-4S), f(S) and f(S+685)."

E. How do you use Monte Carlo simulation to estimate 7 ?

Solution: Estimation of 7 is a classic example of Monte Carlo simulation. One standard
method to estimate 7 is to randomly select points in the unit square (x and y are
independent uniform random variables between 0 and 1) and determine the ratio of

points that are within the circle x* + )’ <1, For simplicity, we focus on the first quadrant.

As shown in Figure 7.1, any points within the circle satisfy the equation x’ +y’ <1.The
percentage of the points within the circle
Number of (x,y,) within x> +y? <1 1/47 |

Number of (x,,y,) within the square  1x1 :Z}T:f =4p.

is proportional to its area:
p=

S0 we generate a large number of independent (x, y) points, estimate the ratio of the

p::)i}ns within the circle to the points in the square, and multiply the ratio by 4 to yield an
estimation of 7. Figure 7.1 uses only 1000 points for illustration. With today’s

1L ol
The method may not work well if the payoff function is not continuous
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computing power, we can easily generate millions of (x, y) pairs to estimate 7 with
good precision. 1,000 simulations with 1,000,000 (x, y) points each using Matlab wf)k
less than 1 minute on a laptop and gave an average estimation of 7 as 3.1416 with
standard deviation 0.0015.

Figure 7.1 A Monte Carlo simulation method to estimate 1m

Finite difference method

The finite difference method is another popular numer ate the price of a derivative
pricing. It numerically solves a differential equation to estim e Ra oy the
by discretizing the time and the price of the underlying Sae;t'al 3’1 (ferontial equation, 10
Black-Scholes-Merton equation, a secone ey nonlll};;_f pnev:f equation, expressed as a
a heat diffusion equation (as we did in Cha]:{tef 6). This of the underlying security),
function of t (time to maturity) and x (a func!mn-()ftheT%nCZifference between various
is a general differential equation for derivatives. Z rid of x and 7 and using the
derivatives lies in the boundary conditions. By building atbevery ¢ and t using finite
boundary conditions, we can recursively calculate #

difference methods.

umerical technique for derivative

: 9
A. Can you briefly explain finite difference methods’

n practice. Let's

i sed i
. i o difference methods u
Solution: There are several version of BH d. the implicit difference method and the

briefly go over the explicit difference metho
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Crank-Nicols
olson method. As s o
. As shown in Figure . -
gure 7.2, if we divide the range of 7, [0 ;r] iito
' L) » - 41 . 1 n . n
conditions and equation u}" =au/, +(1-2a)u] +auj,, we can estimate all u}'s on

h s :
0> X, ], into the grid.

.)’ d[bL'LIL HllL dals cre C AX = 4 az oy I) | ]"],ll‘:‘

N discrete intervals with i
e intervals with increment A7 =7/ N and divide th
/] / e range of x, [

d difference at time f,,, and the

" SR Y —
* i J =10y J.
1 n n+l n+l n+l d
! ay E i U “2u, Al 08
‘_ second-order central difference at x;: — el i g ~R—.
X, g | (Ax) 0x
X).1 The Crank-Nicolson method uses the central difference at time (1, +1,,)/2 and the
second-order central difference at X,
au u”+| _un n 2 n n n+l _2uu+l +ui|‘+] ~2
X I g :l Ujn— u_;+u}_,+££|____;___ts_ :-,_O_E
ot Az 2 (Ax)’ (Ax)’ ox’
X
/
X1 B; If you are solving a parabolic partial differential equation using thf: explicit finite
difference method, is it worse to have too many steps in the time dimension or too many
e steps in the space dimension?

finite difference method 18

u™ in the explicit
. finite difference

7 Ut =au | +(1-2a)u] +auj, where & = At/(Ax)’. For the explicit
method to be stable, we need to have 1-2 5 0= At/(Ax)’ <1/2. 502 small A7 (1€-

. ¢ ake
many time steps) is desirable, but small Ax (too many Space steps) may m
e to have too marny steps

Solution: The equation for

n

X,
X, At [(Ax)’ >1/2 and the results unstable. In that sense, it is worse 10 - ble and
” in the space dimension. In contrast, the implicit difference method is always stable an
) ¥ r ! convergent.
¥ T4 ¥
1 1+ ] TaLs Ty &

; S

The explicit di
! ifference meth e
od uses the forward difference at ti
ime 7, and the second-
n

n+l n

order central diff: 0
r QLnIrJl LiI“Cl“L‘nL‘L‘ at x cu ”_.- 3 “H ¥ 2 n n
Kol == 445 J+l “.n’ +”;—] 6214‘
R . T 1 Ay Tad
carranging erms, we can eXpre 1+ il
an express u"*

Y as a linear ¢ F il
=au,, +(1-2a)u’ +au”,,, wher combination of u7.,,, u; and u]
i 2 j+13 €re a = At/ 32 y ¢ 5
co s 1" " A& '
nditions u), u.and " for all =1 (Ax)". Besides, we often have boundary
FheyN j=0 ]

u'"'
2

-+, J. Combining the boundary
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